Add support for Motorola XGATE embedded CPU
[deliverable/binutils-gdb.git] / binutils / readelf.c
1 /* readelf.c -- display contents of an ELF format file
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5
6 Originally developed by Eric Youngdale <eric@andante.jic.com>
7 Modifications by Nick Clifton <nickc@redhat.com>
8
9 This file is part of GNU Binutils.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25 \f
26 /* The difference between readelf and objdump:
27
28 Both programs are capable of displaying the contents of ELF format files,
29 so why does the binutils project have two file dumpers ?
30
31 The reason is that objdump sees an ELF file through a BFD filter of the
32 world; if BFD has a bug where, say, it disagrees about a machine constant
33 in e_flags, then the odds are good that it will remain internally
34 consistent. The linker sees it the BFD way, objdump sees it the BFD way,
35 GAS sees it the BFD way. There was need for a tool to go find out what
36 the file actually says.
37
38 This is why the readelf program does not link against the BFD library - it
39 exists as an independent program to help verify the correct working of BFD.
40
41 There is also the case that readelf can provide more information about an
42 ELF file than is provided by objdump. In particular it can display DWARF
43 debugging information which (at the moment) objdump cannot. */
44 \f
45 #include "sysdep.h"
46 #include <assert.h>
47 #include <time.h>
48 #ifdef HAVE_ZLIB_H
49 #include <zlib.h>
50 #endif
51
52 #if __GNUC__ >= 2
53 /* Define BFD64 here, even if our default architecture is 32 bit ELF
54 as this will allow us to read in and parse 64bit and 32bit ELF files.
55 Only do this if we believe that the compiler can support a 64 bit
56 data type. For now we only rely on GCC being able to do this. */
57 #define BFD64
58 #endif
59
60 #include "bfd.h"
61 #include "bucomm.h"
62 #include "elfcomm.h"
63 #include "dwarf.h"
64
65 #include "elf/common.h"
66 #include "elf/external.h"
67 #include "elf/internal.h"
68
69
70 /* Included here, before RELOC_MACROS_GEN_FUNC is defined, so that
71 we can obtain the H8 reloc numbers. We need these for the
72 get_reloc_size() function. We include h8.h again after defining
73 RELOC_MACROS_GEN_FUNC so that we get the naming function as well. */
74
75 #include "elf/h8.h"
76 #undef _ELF_H8_H
77
78 /* Undo the effects of #including reloc-macros.h. */
79
80 #undef START_RELOC_NUMBERS
81 #undef RELOC_NUMBER
82 #undef FAKE_RELOC
83 #undef EMPTY_RELOC
84 #undef END_RELOC_NUMBERS
85 #undef _RELOC_MACROS_H
86
87 /* The following headers use the elf/reloc-macros.h file to
88 automatically generate relocation recognition functions
89 such as elf_mips_reloc_type() */
90
91 #define RELOC_MACROS_GEN_FUNC
92
93 #include "elf/alpha.h"
94 #include "elf/arc.h"
95 #include "elf/arm.h"
96 #include "elf/avr.h"
97 #include "elf/bfin.h"
98 #include "elf/cr16.h"
99 #include "elf/cris.h"
100 #include "elf/crx.h"
101 #include "elf/d10v.h"
102 #include "elf/d30v.h"
103 #include "elf/dlx.h"
104 #include "elf/epiphany.h"
105 #include "elf/fr30.h"
106 #include "elf/frv.h"
107 #include "elf/h8.h"
108 #include "elf/hppa.h"
109 #include "elf/i386.h"
110 #include "elf/i370.h"
111 #include "elf/i860.h"
112 #include "elf/i960.h"
113 #include "elf/ia64.h"
114 #include "elf/ip2k.h"
115 #include "elf/lm32.h"
116 #include "elf/iq2000.h"
117 #include "elf/m32c.h"
118 #include "elf/m32r.h"
119 #include "elf/m68k.h"
120 #include "elf/m68hc11.h"
121 #include "elf/mcore.h"
122 #include "elf/mep.h"
123 #include "elf/microblaze.h"
124 #include "elf/mips.h"
125 #include "elf/mmix.h"
126 #include "elf/mn10200.h"
127 #include "elf/mn10300.h"
128 #include "elf/moxie.h"
129 #include "elf/mt.h"
130 #include "elf/msp430.h"
131 #include "elf/or32.h"
132 #include "elf/pj.h"
133 #include "elf/ppc.h"
134 #include "elf/ppc64.h"
135 #include "elf/rl78.h"
136 #include "elf/rx.h"
137 #include "elf/s390.h"
138 #include "elf/score.h"
139 #include "elf/sh.h"
140 #include "elf/sparc.h"
141 #include "elf/spu.h"
142 #include "elf/tic6x.h"
143 #include "elf/tilegx.h"
144 #include "elf/tilepro.h"
145 #include "elf/v850.h"
146 #include "elf/vax.h"
147 #include "elf/x86-64.h"
148 #include "elf/xc16x.h"
149 #include "elf/xgate.h"
150 #include "elf/xstormy16.h"
151 #include "elf/xtensa.h"
152
153 #include "getopt.h"
154 #include "libiberty.h"
155 #include "safe-ctype.h"
156 #include "filenames.h"
157
158 char * program_name = "readelf";
159 static long archive_file_offset;
160 static unsigned long archive_file_size;
161 static unsigned long dynamic_addr;
162 static bfd_size_type dynamic_size;
163 static unsigned int dynamic_nent;
164 static char * dynamic_strings;
165 static unsigned long dynamic_strings_length;
166 static char * string_table;
167 static unsigned long string_table_length;
168 static unsigned long num_dynamic_syms;
169 static Elf_Internal_Sym * dynamic_symbols;
170 static Elf_Internal_Syminfo * dynamic_syminfo;
171 static unsigned long dynamic_syminfo_offset;
172 static unsigned int dynamic_syminfo_nent;
173 static char program_interpreter[PATH_MAX];
174 static bfd_vma dynamic_info[DT_ENCODING];
175 static bfd_vma dynamic_info_DT_GNU_HASH;
176 static bfd_vma version_info[16];
177 static Elf_Internal_Ehdr elf_header;
178 static Elf_Internal_Shdr * section_headers;
179 static Elf_Internal_Phdr * program_headers;
180 static Elf_Internal_Dyn * dynamic_section;
181 static Elf_Internal_Shdr * symtab_shndx_hdr;
182 static int show_name;
183 static int do_dynamic;
184 static int do_syms;
185 static int do_dyn_syms;
186 static int do_reloc;
187 static int do_sections;
188 static int do_section_groups;
189 static int do_section_details;
190 static int do_segments;
191 static int do_unwind;
192 static int do_using_dynamic;
193 static int do_header;
194 static int do_dump;
195 static int do_version;
196 static int do_histogram;
197 static int do_debugging;
198 static int do_arch;
199 static int do_notes;
200 static int do_archive_index;
201 static int is_32bit_elf;
202
203 struct group_list
204 {
205 struct group_list * next;
206 unsigned int section_index;
207 };
208
209 struct group
210 {
211 struct group_list * root;
212 unsigned int group_index;
213 };
214
215 static size_t group_count;
216 static struct group * section_groups;
217 static struct group ** section_headers_groups;
218
219
220 /* Flag bits indicating particular types of dump. */
221 #define HEX_DUMP (1 << 0) /* The -x command line switch. */
222 #define DISASS_DUMP (1 << 1) /* The -i command line switch. */
223 #define DEBUG_DUMP (1 << 2) /* The -w command line switch. */
224 #define STRING_DUMP (1 << 3) /* The -p command line switch. */
225 #define RELOC_DUMP (1 << 4) /* The -R command line switch. */
226
227 typedef unsigned char dump_type;
228
229 /* A linked list of the section names for which dumps were requested. */
230 struct dump_list_entry
231 {
232 char * name;
233 dump_type type;
234 struct dump_list_entry * next;
235 };
236 static struct dump_list_entry * dump_sects_byname;
237
238 /* A dynamic array of flags indicating for which sections a dump
239 has been requested via command line switches. */
240 static dump_type * cmdline_dump_sects = NULL;
241 static unsigned int num_cmdline_dump_sects = 0;
242
243 /* A dynamic array of flags indicating for which sections a dump of
244 some kind has been requested. It is reset on a per-object file
245 basis and then initialised from the cmdline_dump_sects array,
246 the results of interpreting the -w switch, and the
247 dump_sects_byname list. */
248 static dump_type * dump_sects = NULL;
249 static unsigned int num_dump_sects = 0;
250
251
252 /* How to print a vma value. */
253 typedef enum print_mode
254 {
255 HEX,
256 DEC,
257 DEC_5,
258 UNSIGNED,
259 PREFIX_HEX,
260 FULL_HEX,
261 LONG_HEX
262 }
263 print_mode;
264
265 #define UNKNOWN -1
266
267 #define SECTION_NAME(X) \
268 ((X) == NULL ? _("<none>") \
269 : string_table == NULL ? _("<no-name>") \
270 : ((X)->sh_name >= string_table_length ? _("<corrupt>") \
271 : string_table + (X)->sh_name))
272
273 #define DT_VERSIONTAGIDX(tag) (DT_VERNEEDNUM - (tag)) /* Reverse order! */
274
275 #define GET_ELF_SYMBOLS(file, section, sym_count) \
276 (is_32bit_elf ? get_32bit_elf_symbols (file, section, sym_count) \
277 : get_64bit_elf_symbols (file, section, sym_count))
278
279 #define VALID_DYNAMIC_NAME(offset) ((dynamic_strings != NULL) && (offset < dynamic_strings_length))
280 /* GET_DYNAMIC_NAME asssumes that VALID_DYNAMIC_NAME has
281 already been called and verified that the string exists. */
282 #define GET_DYNAMIC_NAME(offset) (dynamic_strings + offset)
283
284 #define REMOVE_ARCH_BITS(ADDR) \
285 do \
286 { \
287 if (elf_header.e_machine == EM_ARM) \
288 (ADDR) &= ~1; \
289 } \
290 while (0)
291 \f
292 /* Retrieve NMEMB structures, each SIZE bytes long from FILE starting at OFFSET.
293 Put the retrieved data into VAR, if it is not NULL. Otherwise allocate a buffer
294 using malloc and fill that. In either case return the pointer to the start of
295 the retrieved data or NULL if something went wrong. If something does go wrong
296 emit an error message using REASON as part of the context. */
297
298 static void *
299 get_data (void * var, FILE * file, long offset, size_t size, size_t nmemb,
300 const char * reason)
301 {
302 void * mvar;
303
304 if (size == 0 || nmemb == 0)
305 return NULL;
306
307 if (fseek (file, archive_file_offset + offset, SEEK_SET))
308 {
309 error (_("Unable to seek to 0x%lx for %s\n"),
310 (unsigned long) archive_file_offset + offset, reason);
311 return NULL;
312 }
313
314 mvar = var;
315 if (mvar == NULL)
316 {
317 /* Check for overflow. */
318 if (nmemb < (~(size_t) 0 - 1) / size)
319 /* + 1 so that we can '\0' terminate invalid string table sections. */
320 mvar = malloc (size * nmemb + 1);
321
322 if (mvar == NULL)
323 {
324 error (_("Out of memory allocating 0x%lx bytes for %s\n"),
325 (unsigned long)(size * nmemb), reason);
326 return NULL;
327 }
328
329 ((char *) mvar)[size * nmemb] = '\0';
330 }
331
332 if (fread (mvar, size, nmemb, file) != nmemb)
333 {
334 error (_("Unable to read in 0x%lx bytes of %s\n"),
335 (unsigned long)(size * nmemb), reason);
336 if (mvar != var)
337 free (mvar);
338 return NULL;
339 }
340
341 return mvar;
342 }
343
344 /* Print a VMA value. */
345
346 static int
347 print_vma (bfd_vma vma, print_mode mode)
348 {
349 int nc = 0;
350
351 switch (mode)
352 {
353 case FULL_HEX:
354 nc = printf ("0x");
355 /* Drop through. */
356
357 case LONG_HEX:
358 #ifdef BFD64
359 if (is_32bit_elf)
360 return nc + printf ("%8.8" BFD_VMA_FMT "x", vma);
361 #endif
362 printf_vma (vma);
363 return nc + 16;
364
365 case DEC_5:
366 if (vma <= 99999)
367 return printf ("%5" BFD_VMA_FMT "d", vma);
368 /* Drop through. */
369
370 case PREFIX_HEX:
371 nc = printf ("0x");
372 /* Drop through. */
373
374 case HEX:
375 return nc + printf ("%" BFD_VMA_FMT "x", vma);
376
377 case DEC:
378 return printf ("%" BFD_VMA_FMT "d", vma);
379
380 case UNSIGNED:
381 return printf ("%" BFD_VMA_FMT "u", vma);
382 }
383 return 0;
384 }
385
386 /* Display a symbol on stdout. Handles the display of non-printing characters.
387
388 If DO_WIDE is not true then format the symbol to be at most WIDTH characters,
389 truncating as necessary. If WIDTH is negative then format the string to be
390 exactly - WIDTH characters, truncating or padding as necessary.
391
392 Returns the number of emitted characters. */
393
394 static unsigned int
395 print_symbol (int width, const char *symbol)
396 {
397 const char *c;
398 bfd_boolean extra_padding = FALSE;
399 unsigned int num_printed = 0;
400
401 if (do_wide)
402 {
403 /* Set the width to a very large value. This simplifies the
404 code below. */
405 width = INT_MAX;
406 }
407 else if (width < 0)
408 {
409 /* Keep the width positive. This also helps. */
410 width = - width;
411 extra_padding = TRUE;
412 }
413
414 while (width)
415 {
416 int len;
417
418 c = symbol;
419
420 /* Look for non-printing symbols inside the symbol's name.
421 This test is triggered in particular by the names generated
422 by the assembler for local labels. */
423 while (ISPRINT (*c))
424 c++;
425
426 len = c - symbol;
427
428 if (len)
429 {
430 if (len > width)
431 len = width;
432
433 printf ("%.*s", len, symbol);
434
435 width -= len;
436 num_printed += len;
437 }
438
439 if (*c == 0 || width == 0)
440 break;
441
442 /* Now display the non-printing character, if
443 there is room left in which to dipslay it. */
444 if ((unsigned char) *c < 32)
445 {
446 if (width < 2)
447 break;
448
449 printf ("^%c", *c + 0x40);
450
451 width -= 2;
452 num_printed += 2;
453 }
454 else
455 {
456 if (width < 6)
457 break;
458
459 printf ("<0x%.2x>", (unsigned char) *c);
460
461 width -= 6;
462 num_printed += 6;
463 }
464
465 symbol = c + 1;
466 }
467
468 if (extra_padding && width > 0)
469 {
470 /* Fill in the remaining spaces. */
471 printf ("%-*s", width, " ");
472 num_printed += 2;
473 }
474
475 return num_printed;
476 }
477
478 /* Return a pointer to section NAME, or NULL if no such section exists. */
479
480 static Elf_Internal_Shdr *
481 find_section (const char * name)
482 {
483 unsigned int i;
484
485 for (i = 0; i < elf_header.e_shnum; i++)
486 if (streq (SECTION_NAME (section_headers + i), name))
487 return section_headers + i;
488
489 return NULL;
490 }
491
492 /* Return a pointer to a section containing ADDR, or NULL if no such
493 section exists. */
494
495 static Elf_Internal_Shdr *
496 find_section_by_address (bfd_vma addr)
497 {
498 unsigned int i;
499
500 for (i = 0; i < elf_header.e_shnum; i++)
501 {
502 Elf_Internal_Shdr *sec = section_headers + i;
503 if (addr >= sec->sh_addr && addr < sec->sh_addr + sec->sh_size)
504 return sec;
505 }
506
507 return NULL;
508 }
509
510 /* Read an unsigned LEB128 encoded value from p. Set *PLEN to the number of
511 bytes read. */
512
513 static unsigned long
514 read_uleb128 (unsigned char *data, unsigned int *length_return)
515 {
516 return read_leb128 (data, length_return, 0);
517 }
518
519 /* Return true if the current file is for IA-64 machine and OpenVMS ABI.
520 This OS has so many departures from the ELF standard that we test it at
521 many places. */
522
523 static inline int
524 is_ia64_vms (void)
525 {
526 return elf_header.e_machine == EM_IA_64
527 && elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS;
528 }
529
530 /* Guess the relocation size commonly used by the specific machines. */
531
532 static int
533 guess_is_rela (unsigned int e_machine)
534 {
535 switch (e_machine)
536 {
537 /* Targets that use REL relocations. */
538 case EM_386:
539 case EM_486:
540 case EM_960:
541 case EM_ARM:
542 case EM_D10V:
543 case EM_CYGNUS_D10V:
544 case EM_DLX:
545 case EM_MIPS:
546 case EM_MIPS_RS3_LE:
547 case EM_CYGNUS_M32R:
548 case EM_OPENRISC:
549 case EM_OR32:
550 case EM_SCORE:
551 case EM_XGATE:
552 return FALSE;
553
554 /* Targets that use RELA relocations. */
555 case EM_68K:
556 case EM_860:
557 case EM_ADAPTEVA_EPIPHANY:
558 case EM_ALPHA:
559 case EM_ALTERA_NIOS2:
560 case EM_AVR:
561 case EM_AVR_OLD:
562 case EM_BLACKFIN:
563 case EM_CR16:
564 case EM_CRIS:
565 case EM_CRX:
566 case EM_D30V:
567 case EM_CYGNUS_D30V:
568 case EM_FR30:
569 case EM_CYGNUS_FR30:
570 case EM_CYGNUS_FRV:
571 case EM_H8S:
572 case EM_H8_300:
573 case EM_H8_300H:
574 case EM_IA_64:
575 case EM_IP2K:
576 case EM_IP2K_OLD:
577 case EM_IQ2000:
578 case EM_LATTICEMICO32:
579 case EM_M32C_OLD:
580 case EM_M32C:
581 case EM_M32R:
582 case EM_MCORE:
583 case EM_CYGNUS_MEP:
584 case EM_MMIX:
585 case EM_MN10200:
586 case EM_CYGNUS_MN10200:
587 case EM_MN10300:
588 case EM_CYGNUS_MN10300:
589 case EM_MOXIE:
590 case EM_MSP430:
591 case EM_MSP430_OLD:
592 case EM_MT:
593 case EM_NIOS32:
594 case EM_PPC64:
595 case EM_PPC:
596 case EM_RL78:
597 case EM_RX:
598 case EM_S390:
599 case EM_S390_OLD:
600 case EM_SH:
601 case EM_SPARC:
602 case EM_SPARC32PLUS:
603 case EM_SPARCV9:
604 case EM_SPU:
605 case EM_TI_C6000:
606 case EM_TILEGX:
607 case EM_TILEPRO:
608 case EM_V850:
609 case EM_CYGNUS_V850:
610 case EM_VAX:
611 case EM_X86_64:
612 case EM_L1OM:
613 case EM_K1OM:
614 case EM_XSTORMY16:
615 case EM_XTENSA:
616 case EM_XTENSA_OLD:
617 case EM_MICROBLAZE:
618 case EM_MICROBLAZE_OLD:
619 return TRUE;
620
621 case EM_68HC05:
622 case EM_68HC08:
623 case EM_68HC11:
624 case EM_68HC16:
625 case EM_FX66:
626 case EM_ME16:
627 case EM_MMA:
628 case EM_NCPU:
629 case EM_NDR1:
630 case EM_PCP:
631 case EM_ST100:
632 case EM_ST19:
633 case EM_ST7:
634 case EM_ST9PLUS:
635 case EM_STARCORE:
636 case EM_SVX:
637 case EM_TINYJ:
638 default:
639 warn (_("Don't know about relocations on this machine architecture\n"));
640 return FALSE;
641 }
642 }
643
644 static int
645 slurp_rela_relocs (FILE * file,
646 unsigned long rel_offset,
647 unsigned long rel_size,
648 Elf_Internal_Rela ** relasp,
649 unsigned long * nrelasp)
650 {
651 Elf_Internal_Rela * relas;
652 unsigned long nrelas;
653 unsigned int i;
654
655 if (is_32bit_elf)
656 {
657 Elf32_External_Rela * erelas;
658
659 erelas = (Elf32_External_Rela *) get_data (NULL, file, rel_offset, 1,
660 rel_size, _("32-bit relocation data"));
661 if (!erelas)
662 return 0;
663
664 nrelas = rel_size / sizeof (Elf32_External_Rela);
665
666 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
667 sizeof (Elf_Internal_Rela));
668
669 if (relas == NULL)
670 {
671 free (erelas);
672 error (_("out of memory parsing relocs\n"));
673 return 0;
674 }
675
676 for (i = 0; i < nrelas; i++)
677 {
678 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
679 relas[i].r_info = BYTE_GET (erelas[i].r_info);
680 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
681 }
682
683 free (erelas);
684 }
685 else
686 {
687 Elf64_External_Rela * erelas;
688
689 erelas = (Elf64_External_Rela *) get_data (NULL, file, rel_offset, 1,
690 rel_size, _("64-bit relocation data"));
691 if (!erelas)
692 return 0;
693
694 nrelas = rel_size / sizeof (Elf64_External_Rela);
695
696 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
697 sizeof (Elf_Internal_Rela));
698
699 if (relas == NULL)
700 {
701 free (erelas);
702 error (_("out of memory parsing relocs\n"));
703 return 0;
704 }
705
706 for (i = 0; i < nrelas; i++)
707 {
708 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
709 relas[i].r_info = BYTE_GET (erelas[i].r_info);
710 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
711
712 /* The #ifdef BFD64 below is to prevent a compile time
713 warning. We know that if we do not have a 64 bit data
714 type that we will never execute this code anyway. */
715 #ifdef BFD64
716 if (elf_header.e_machine == EM_MIPS
717 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
718 {
719 /* In little-endian objects, r_info isn't really a
720 64-bit little-endian value: it has a 32-bit
721 little-endian symbol index followed by four
722 individual byte fields. Reorder INFO
723 accordingly. */
724 bfd_vma inf = relas[i].r_info;
725 inf = (((inf & 0xffffffff) << 32)
726 | ((inf >> 56) & 0xff)
727 | ((inf >> 40) & 0xff00)
728 | ((inf >> 24) & 0xff0000)
729 | ((inf >> 8) & 0xff000000));
730 relas[i].r_info = inf;
731 }
732 #endif /* BFD64 */
733 }
734
735 free (erelas);
736 }
737 *relasp = relas;
738 *nrelasp = nrelas;
739 return 1;
740 }
741
742 static int
743 slurp_rel_relocs (FILE * file,
744 unsigned long rel_offset,
745 unsigned long rel_size,
746 Elf_Internal_Rela ** relsp,
747 unsigned long * nrelsp)
748 {
749 Elf_Internal_Rela * rels;
750 unsigned long nrels;
751 unsigned int i;
752
753 if (is_32bit_elf)
754 {
755 Elf32_External_Rel * erels;
756
757 erels = (Elf32_External_Rel *) get_data (NULL, file, rel_offset, 1,
758 rel_size, _("32-bit relocation data"));
759 if (!erels)
760 return 0;
761
762 nrels = rel_size / sizeof (Elf32_External_Rel);
763
764 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
765
766 if (rels == NULL)
767 {
768 free (erels);
769 error (_("out of memory parsing relocs\n"));
770 return 0;
771 }
772
773 for (i = 0; i < nrels; i++)
774 {
775 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
776 rels[i].r_info = BYTE_GET (erels[i].r_info);
777 rels[i].r_addend = 0;
778 }
779
780 free (erels);
781 }
782 else
783 {
784 Elf64_External_Rel * erels;
785
786 erels = (Elf64_External_Rel *) get_data (NULL, file, rel_offset, 1,
787 rel_size, _("64-bit relocation data"));
788 if (!erels)
789 return 0;
790
791 nrels = rel_size / sizeof (Elf64_External_Rel);
792
793 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
794
795 if (rels == NULL)
796 {
797 free (erels);
798 error (_("out of memory parsing relocs\n"));
799 return 0;
800 }
801
802 for (i = 0; i < nrels; i++)
803 {
804 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
805 rels[i].r_info = BYTE_GET (erels[i].r_info);
806 rels[i].r_addend = 0;
807
808 /* The #ifdef BFD64 below is to prevent a compile time
809 warning. We know that if we do not have a 64 bit data
810 type that we will never execute this code anyway. */
811 #ifdef BFD64
812 if (elf_header.e_machine == EM_MIPS
813 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
814 {
815 /* In little-endian objects, r_info isn't really a
816 64-bit little-endian value: it has a 32-bit
817 little-endian symbol index followed by four
818 individual byte fields. Reorder INFO
819 accordingly. */
820 bfd_vma inf = rels[i].r_info;
821 inf = (((inf & 0xffffffff) << 32)
822 | ((inf >> 56) & 0xff)
823 | ((inf >> 40) & 0xff00)
824 | ((inf >> 24) & 0xff0000)
825 | ((inf >> 8) & 0xff000000));
826 rels[i].r_info = inf;
827 }
828 #endif /* BFD64 */
829 }
830
831 free (erels);
832 }
833 *relsp = rels;
834 *nrelsp = nrels;
835 return 1;
836 }
837
838 /* Returns the reloc type extracted from the reloc info field. */
839
840 static unsigned int
841 get_reloc_type (bfd_vma reloc_info)
842 {
843 if (is_32bit_elf)
844 return ELF32_R_TYPE (reloc_info);
845
846 switch (elf_header.e_machine)
847 {
848 case EM_MIPS:
849 /* Note: We assume that reloc_info has already been adjusted for us. */
850 return ELF64_MIPS_R_TYPE (reloc_info);
851
852 case EM_SPARCV9:
853 return ELF64_R_TYPE_ID (reloc_info);
854
855 default:
856 return ELF64_R_TYPE (reloc_info);
857 }
858 }
859
860 /* Return the symbol index extracted from the reloc info field. */
861
862 static bfd_vma
863 get_reloc_symindex (bfd_vma reloc_info)
864 {
865 return is_32bit_elf ? ELF32_R_SYM (reloc_info) : ELF64_R_SYM (reloc_info);
866 }
867
868 /* Display the contents of the relocation data found at the specified
869 offset. */
870
871 static void
872 dump_relocations (FILE * file,
873 unsigned long rel_offset,
874 unsigned long rel_size,
875 Elf_Internal_Sym * symtab,
876 unsigned long nsyms,
877 char * strtab,
878 unsigned long strtablen,
879 int is_rela)
880 {
881 unsigned int i;
882 Elf_Internal_Rela * rels;
883
884 if (is_rela == UNKNOWN)
885 is_rela = guess_is_rela (elf_header.e_machine);
886
887 if (is_rela)
888 {
889 if (!slurp_rela_relocs (file, rel_offset, rel_size, &rels, &rel_size))
890 return;
891 }
892 else
893 {
894 if (!slurp_rel_relocs (file, rel_offset, rel_size, &rels, &rel_size))
895 return;
896 }
897
898 if (is_32bit_elf)
899 {
900 if (is_rela)
901 {
902 if (do_wide)
903 printf (_(" Offset Info Type Sym. Value Symbol's Name + Addend\n"));
904 else
905 printf (_(" Offset Info Type Sym.Value Sym. Name + Addend\n"));
906 }
907 else
908 {
909 if (do_wide)
910 printf (_(" Offset Info Type Sym. Value Symbol's Name\n"));
911 else
912 printf (_(" Offset Info Type Sym.Value Sym. Name\n"));
913 }
914 }
915 else
916 {
917 if (is_rela)
918 {
919 if (do_wide)
920 printf (_(" Offset Info Type Symbol's Value Symbol's Name + Addend\n"));
921 else
922 printf (_(" Offset Info Type Sym. Value Sym. Name + Addend\n"));
923 }
924 else
925 {
926 if (do_wide)
927 printf (_(" Offset Info Type Symbol's Value Symbol's Name\n"));
928 else
929 printf (_(" Offset Info Type Sym. Value Sym. Name\n"));
930 }
931 }
932
933 for (i = 0; i < rel_size; i++)
934 {
935 const char * rtype;
936 bfd_vma offset;
937 bfd_vma inf;
938 bfd_vma symtab_index;
939 bfd_vma type;
940
941 offset = rels[i].r_offset;
942 inf = rels[i].r_info;
943
944 type = get_reloc_type (inf);
945 symtab_index = get_reloc_symindex (inf);
946
947 if (is_32bit_elf)
948 {
949 printf ("%8.8lx %8.8lx ",
950 (unsigned long) offset & 0xffffffff,
951 (unsigned long) inf & 0xffffffff);
952 }
953 else
954 {
955 #if BFD_HOST_64BIT_LONG
956 printf (do_wide
957 ? "%16.16lx %16.16lx "
958 : "%12.12lx %12.12lx ",
959 offset, inf);
960 #elif BFD_HOST_64BIT_LONG_LONG
961 #ifndef __MSVCRT__
962 printf (do_wide
963 ? "%16.16llx %16.16llx "
964 : "%12.12llx %12.12llx ",
965 offset, inf);
966 #else
967 printf (do_wide
968 ? "%16.16I64x %16.16I64x "
969 : "%12.12I64x %12.12I64x ",
970 offset, inf);
971 #endif
972 #else
973 printf (do_wide
974 ? "%8.8lx%8.8lx %8.8lx%8.8lx "
975 : "%4.4lx%8.8lx %4.4lx%8.8lx ",
976 _bfd_int64_high (offset),
977 _bfd_int64_low (offset),
978 _bfd_int64_high (inf),
979 _bfd_int64_low (inf));
980 #endif
981 }
982
983 switch (elf_header.e_machine)
984 {
985 default:
986 rtype = NULL;
987 break;
988
989 case EM_M32R:
990 case EM_CYGNUS_M32R:
991 rtype = elf_m32r_reloc_type (type);
992 break;
993
994 case EM_386:
995 case EM_486:
996 rtype = elf_i386_reloc_type (type);
997 break;
998
999 case EM_68HC11:
1000 case EM_68HC12:
1001 rtype = elf_m68hc11_reloc_type (type);
1002 break;
1003
1004 case EM_68K:
1005 rtype = elf_m68k_reloc_type (type);
1006 break;
1007
1008 case EM_960:
1009 rtype = elf_i960_reloc_type (type);
1010 break;
1011
1012 case EM_AVR:
1013 case EM_AVR_OLD:
1014 rtype = elf_avr_reloc_type (type);
1015 break;
1016
1017 case EM_OLD_SPARCV9:
1018 case EM_SPARC32PLUS:
1019 case EM_SPARCV9:
1020 case EM_SPARC:
1021 rtype = elf_sparc_reloc_type (type);
1022 break;
1023
1024 case EM_SPU:
1025 rtype = elf_spu_reloc_type (type);
1026 break;
1027
1028 case EM_V850:
1029 case EM_CYGNUS_V850:
1030 rtype = v850_reloc_type (type);
1031 break;
1032
1033 case EM_D10V:
1034 case EM_CYGNUS_D10V:
1035 rtype = elf_d10v_reloc_type (type);
1036 break;
1037
1038 case EM_D30V:
1039 case EM_CYGNUS_D30V:
1040 rtype = elf_d30v_reloc_type (type);
1041 break;
1042
1043 case EM_DLX:
1044 rtype = elf_dlx_reloc_type (type);
1045 break;
1046
1047 case EM_SH:
1048 rtype = elf_sh_reloc_type (type);
1049 break;
1050
1051 case EM_MN10300:
1052 case EM_CYGNUS_MN10300:
1053 rtype = elf_mn10300_reloc_type (type);
1054 break;
1055
1056 case EM_MN10200:
1057 case EM_CYGNUS_MN10200:
1058 rtype = elf_mn10200_reloc_type (type);
1059 break;
1060
1061 case EM_FR30:
1062 case EM_CYGNUS_FR30:
1063 rtype = elf_fr30_reloc_type (type);
1064 break;
1065
1066 case EM_CYGNUS_FRV:
1067 rtype = elf_frv_reloc_type (type);
1068 break;
1069
1070 case EM_MCORE:
1071 rtype = elf_mcore_reloc_type (type);
1072 break;
1073
1074 case EM_MMIX:
1075 rtype = elf_mmix_reloc_type (type);
1076 break;
1077
1078 case EM_MOXIE:
1079 rtype = elf_moxie_reloc_type (type);
1080 break;
1081
1082 case EM_MSP430:
1083 case EM_MSP430_OLD:
1084 rtype = elf_msp430_reloc_type (type);
1085 break;
1086
1087 case EM_PPC:
1088 rtype = elf_ppc_reloc_type (type);
1089 break;
1090
1091 case EM_PPC64:
1092 rtype = elf_ppc64_reloc_type (type);
1093 break;
1094
1095 case EM_MIPS:
1096 case EM_MIPS_RS3_LE:
1097 rtype = elf_mips_reloc_type (type);
1098 break;
1099
1100 case EM_ALPHA:
1101 rtype = elf_alpha_reloc_type (type);
1102 break;
1103
1104 case EM_ARM:
1105 rtype = elf_arm_reloc_type (type);
1106 break;
1107
1108 case EM_ARC:
1109 rtype = elf_arc_reloc_type (type);
1110 break;
1111
1112 case EM_PARISC:
1113 rtype = elf_hppa_reloc_type (type);
1114 break;
1115
1116 case EM_H8_300:
1117 case EM_H8_300H:
1118 case EM_H8S:
1119 rtype = elf_h8_reloc_type (type);
1120 break;
1121
1122 case EM_OPENRISC:
1123 case EM_OR32:
1124 rtype = elf_or32_reloc_type (type);
1125 break;
1126
1127 case EM_PJ:
1128 case EM_PJ_OLD:
1129 rtype = elf_pj_reloc_type (type);
1130 break;
1131 case EM_IA_64:
1132 rtype = elf_ia64_reloc_type (type);
1133 break;
1134
1135 case EM_CRIS:
1136 rtype = elf_cris_reloc_type (type);
1137 break;
1138
1139 case EM_860:
1140 rtype = elf_i860_reloc_type (type);
1141 break;
1142
1143 case EM_X86_64:
1144 case EM_L1OM:
1145 case EM_K1OM:
1146 rtype = elf_x86_64_reloc_type (type);
1147 break;
1148
1149 case EM_S370:
1150 rtype = i370_reloc_type (type);
1151 break;
1152
1153 case EM_S390_OLD:
1154 case EM_S390:
1155 rtype = elf_s390_reloc_type (type);
1156 break;
1157
1158 case EM_SCORE:
1159 rtype = elf_score_reloc_type (type);
1160 break;
1161
1162 case EM_XSTORMY16:
1163 rtype = elf_xstormy16_reloc_type (type);
1164 break;
1165
1166 case EM_CRX:
1167 rtype = elf_crx_reloc_type (type);
1168 break;
1169
1170 case EM_VAX:
1171 rtype = elf_vax_reloc_type (type);
1172 break;
1173
1174 case EM_ADAPTEVA_EPIPHANY:
1175 rtype = elf_epiphany_reloc_type (type);
1176 break;
1177
1178 case EM_IP2K:
1179 case EM_IP2K_OLD:
1180 rtype = elf_ip2k_reloc_type (type);
1181 break;
1182
1183 case EM_IQ2000:
1184 rtype = elf_iq2000_reloc_type (type);
1185 break;
1186
1187 case EM_XTENSA_OLD:
1188 case EM_XTENSA:
1189 rtype = elf_xtensa_reloc_type (type);
1190 break;
1191
1192 case EM_LATTICEMICO32:
1193 rtype = elf_lm32_reloc_type (type);
1194 break;
1195
1196 case EM_M32C_OLD:
1197 case EM_M32C:
1198 rtype = elf_m32c_reloc_type (type);
1199 break;
1200
1201 case EM_MT:
1202 rtype = elf_mt_reloc_type (type);
1203 break;
1204
1205 case EM_BLACKFIN:
1206 rtype = elf_bfin_reloc_type (type);
1207 break;
1208
1209 case EM_CYGNUS_MEP:
1210 rtype = elf_mep_reloc_type (type);
1211 break;
1212
1213 case EM_CR16:
1214 rtype = elf_cr16_reloc_type (type);
1215 break;
1216
1217 case EM_MICROBLAZE:
1218 case EM_MICROBLAZE_OLD:
1219 rtype = elf_microblaze_reloc_type (type);
1220 break;
1221
1222 case EM_RL78:
1223 rtype = elf_rl78_reloc_type (type);
1224 break;
1225
1226 case EM_RX:
1227 rtype = elf_rx_reloc_type (type);
1228 break;
1229
1230 case EM_XC16X:
1231 case EM_C166:
1232 rtype = elf_xc16x_reloc_type (type);
1233 break;
1234
1235 case EM_TI_C6000:
1236 rtype = elf_tic6x_reloc_type (type);
1237 break;
1238
1239 case EM_TILEGX:
1240 rtype = elf_tilegx_reloc_type (type);
1241 break;
1242
1243 case EM_TILEPRO:
1244 rtype = elf_tilepro_reloc_type (type);
1245 break;
1246
1247 case EM_XGATE:
1248 rtype = elf_xgate_reloc_type (type);
1249 break;
1250 }
1251
1252 if (rtype == NULL)
1253 printf (_("unrecognized: %-7lx"), (unsigned long) type & 0xffffffff);
1254 else
1255 printf (do_wide ? "%-22.22s" : "%-17.17s", rtype);
1256
1257 if (elf_header.e_machine == EM_ALPHA
1258 && rtype != NULL
1259 && streq (rtype, "R_ALPHA_LITUSE")
1260 && is_rela)
1261 {
1262 switch (rels[i].r_addend)
1263 {
1264 case LITUSE_ALPHA_ADDR: rtype = "ADDR"; break;
1265 case LITUSE_ALPHA_BASE: rtype = "BASE"; break;
1266 case LITUSE_ALPHA_BYTOFF: rtype = "BYTOFF"; break;
1267 case LITUSE_ALPHA_JSR: rtype = "JSR"; break;
1268 case LITUSE_ALPHA_TLSGD: rtype = "TLSGD"; break;
1269 case LITUSE_ALPHA_TLSLDM: rtype = "TLSLDM"; break;
1270 case LITUSE_ALPHA_JSRDIRECT: rtype = "JSRDIRECT"; break;
1271 default: rtype = NULL;
1272 }
1273 if (rtype)
1274 printf (" (%s)", rtype);
1275 else
1276 {
1277 putchar (' ');
1278 printf (_("<unknown addend: %lx>"),
1279 (unsigned long) rels[i].r_addend);
1280 }
1281 }
1282 else if (symtab_index)
1283 {
1284 if (symtab == NULL || symtab_index >= nsyms)
1285 printf (_(" bad symbol index: %08lx"), (unsigned long) symtab_index);
1286 else
1287 {
1288 Elf_Internal_Sym * psym;
1289
1290 psym = symtab + symtab_index;
1291
1292 printf (" ");
1293
1294 if (ELF_ST_TYPE (psym->st_info) == STT_GNU_IFUNC)
1295 {
1296 const char * name;
1297 unsigned int len;
1298 unsigned int width = is_32bit_elf ? 8 : 14;
1299
1300 /* Relocations against GNU_IFUNC symbols do not use the value
1301 of the symbol as the address to relocate against. Instead
1302 they invoke the function named by the symbol and use its
1303 result as the address for relocation.
1304
1305 To indicate this to the user, do not display the value of
1306 the symbol in the "Symbols's Value" field. Instead show
1307 its name followed by () as a hint that the symbol is
1308 invoked. */
1309
1310 if (strtab == NULL
1311 || psym->st_name == 0
1312 || psym->st_name >= strtablen)
1313 name = "??";
1314 else
1315 name = strtab + psym->st_name;
1316
1317 len = print_symbol (width, name);
1318 printf ("()%-*s", len <= width ? (width + 1) - len : 1, " ");
1319 }
1320 else
1321 {
1322 print_vma (psym->st_value, LONG_HEX);
1323
1324 printf (is_32bit_elf ? " " : " ");
1325 }
1326
1327 if (psym->st_name == 0)
1328 {
1329 const char * sec_name = "<null>";
1330 char name_buf[40];
1331
1332 if (ELF_ST_TYPE (psym->st_info) == STT_SECTION)
1333 {
1334 if (psym->st_shndx < elf_header.e_shnum)
1335 sec_name
1336 = SECTION_NAME (section_headers + psym->st_shndx);
1337 else if (psym->st_shndx == SHN_ABS)
1338 sec_name = "ABS";
1339 else if (psym->st_shndx == SHN_COMMON)
1340 sec_name = "COMMON";
1341 else if ((elf_header.e_machine == EM_MIPS
1342 && psym->st_shndx == SHN_MIPS_SCOMMON)
1343 || (elf_header.e_machine == EM_TI_C6000
1344 && psym->st_shndx == SHN_TIC6X_SCOMMON))
1345 sec_name = "SCOMMON";
1346 else if (elf_header.e_machine == EM_MIPS
1347 && psym->st_shndx == SHN_MIPS_SUNDEFINED)
1348 sec_name = "SUNDEF";
1349 else if ((elf_header.e_machine == EM_X86_64
1350 || elf_header.e_machine == EM_L1OM
1351 || elf_header.e_machine == EM_K1OM)
1352 && psym->st_shndx == SHN_X86_64_LCOMMON)
1353 sec_name = "LARGE_COMMON";
1354 else if (elf_header.e_machine == EM_IA_64
1355 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX
1356 && psym->st_shndx == SHN_IA_64_ANSI_COMMON)
1357 sec_name = "ANSI_COM";
1358 else if (is_ia64_vms ()
1359 && psym->st_shndx == SHN_IA_64_VMS_SYMVEC)
1360 sec_name = "VMS_SYMVEC";
1361 else
1362 {
1363 sprintf (name_buf, "<section 0x%x>",
1364 (unsigned int) psym->st_shndx);
1365 sec_name = name_buf;
1366 }
1367 }
1368 print_symbol (22, sec_name);
1369 }
1370 else if (strtab == NULL)
1371 printf (_("<string table index: %3ld>"), psym->st_name);
1372 else if (psym->st_name >= strtablen)
1373 printf (_("<corrupt string table index: %3ld>"), psym->st_name);
1374 else
1375 print_symbol (22, strtab + psym->st_name);
1376
1377 if (is_rela)
1378 {
1379 bfd_signed_vma off = rels[i].r_addend;
1380
1381 if (off < 0)
1382 printf (" - %" BFD_VMA_FMT "x", - off);
1383 else
1384 printf (" + %" BFD_VMA_FMT "x", off);
1385 }
1386 }
1387 }
1388 else if (is_rela)
1389 {
1390 printf ("%*c", is_32bit_elf ?
1391 (do_wide ? 34 : 28) : (do_wide ? 26 : 20), ' ');
1392 print_vma (rels[i].r_addend, LONG_HEX);
1393 }
1394
1395 if (elf_header.e_machine == EM_SPARCV9
1396 && rtype != NULL
1397 && streq (rtype, "R_SPARC_OLO10"))
1398 printf (" + %lx", (unsigned long) ELF64_R_TYPE_DATA (inf));
1399
1400 putchar ('\n');
1401
1402 #ifdef BFD64
1403 if (! is_32bit_elf && elf_header.e_machine == EM_MIPS)
1404 {
1405 bfd_vma type2 = ELF64_MIPS_R_TYPE2 (inf);
1406 bfd_vma type3 = ELF64_MIPS_R_TYPE3 (inf);
1407 const char * rtype2 = elf_mips_reloc_type (type2);
1408 const char * rtype3 = elf_mips_reloc_type (type3);
1409
1410 printf (" Type2: ");
1411
1412 if (rtype2 == NULL)
1413 printf (_("unrecognized: %-7lx"),
1414 (unsigned long) type2 & 0xffffffff);
1415 else
1416 printf ("%-17.17s", rtype2);
1417
1418 printf ("\n Type3: ");
1419
1420 if (rtype3 == NULL)
1421 printf (_("unrecognized: %-7lx"),
1422 (unsigned long) type3 & 0xffffffff);
1423 else
1424 printf ("%-17.17s", rtype3);
1425
1426 putchar ('\n');
1427 }
1428 #endif /* BFD64 */
1429 }
1430
1431 free (rels);
1432 }
1433
1434 static const char *
1435 get_mips_dynamic_type (unsigned long type)
1436 {
1437 switch (type)
1438 {
1439 case DT_MIPS_RLD_VERSION: return "MIPS_RLD_VERSION";
1440 case DT_MIPS_TIME_STAMP: return "MIPS_TIME_STAMP";
1441 case DT_MIPS_ICHECKSUM: return "MIPS_ICHECKSUM";
1442 case DT_MIPS_IVERSION: return "MIPS_IVERSION";
1443 case DT_MIPS_FLAGS: return "MIPS_FLAGS";
1444 case DT_MIPS_BASE_ADDRESS: return "MIPS_BASE_ADDRESS";
1445 case DT_MIPS_MSYM: return "MIPS_MSYM";
1446 case DT_MIPS_CONFLICT: return "MIPS_CONFLICT";
1447 case DT_MIPS_LIBLIST: return "MIPS_LIBLIST";
1448 case DT_MIPS_LOCAL_GOTNO: return "MIPS_LOCAL_GOTNO";
1449 case DT_MIPS_CONFLICTNO: return "MIPS_CONFLICTNO";
1450 case DT_MIPS_LIBLISTNO: return "MIPS_LIBLISTNO";
1451 case DT_MIPS_SYMTABNO: return "MIPS_SYMTABNO";
1452 case DT_MIPS_UNREFEXTNO: return "MIPS_UNREFEXTNO";
1453 case DT_MIPS_GOTSYM: return "MIPS_GOTSYM";
1454 case DT_MIPS_HIPAGENO: return "MIPS_HIPAGENO";
1455 case DT_MIPS_RLD_MAP: return "MIPS_RLD_MAP";
1456 case DT_MIPS_DELTA_CLASS: return "MIPS_DELTA_CLASS";
1457 case DT_MIPS_DELTA_CLASS_NO: return "MIPS_DELTA_CLASS_NO";
1458 case DT_MIPS_DELTA_INSTANCE: return "MIPS_DELTA_INSTANCE";
1459 case DT_MIPS_DELTA_INSTANCE_NO: return "MIPS_DELTA_INSTANCE_NO";
1460 case DT_MIPS_DELTA_RELOC: return "MIPS_DELTA_RELOC";
1461 case DT_MIPS_DELTA_RELOC_NO: return "MIPS_DELTA_RELOC_NO";
1462 case DT_MIPS_DELTA_SYM: return "MIPS_DELTA_SYM";
1463 case DT_MIPS_DELTA_SYM_NO: return "MIPS_DELTA_SYM_NO";
1464 case DT_MIPS_DELTA_CLASSSYM: return "MIPS_DELTA_CLASSSYM";
1465 case DT_MIPS_DELTA_CLASSSYM_NO: return "MIPS_DELTA_CLASSSYM_NO";
1466 case DT_MIPS_CXX_FLAGS: return "MIPS_CXX_FLAGS";
1467 case DT_MIPS_PIXIE_INIT: return "MIPS_PIXIE_INIT";
1468 case DT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
1469 case DT_MIPS_LOCALPAGE_GOTIDX: return "MIPS_LOCALPAGE_GOTIDX";
1470 case DT_MIPS_LOCAL_GOTIDX: return "MIPS_LOCAL_GOTIDX";
1471 case DT_MIPS_HIDDEN_GOTIDX: return "MIPS_HIDDEN_GOTIDX";
1472 case DT_MIPS_PROTECTED_GOTIDX: return "MIPS_PROTECTED_GOTIDX";
1473 case DT_MIPS_OPTIONS: return "MIPS_OPTIONS";
1474 case DT_MIPS_INTERFACE: return "MIPS_INTERFACE";
1475 case DT_MIPS_DYNSTR_ALIGN: return "MIPS_DYNSTR_ALIGN";
1476 case DT_MIPS_INTERFACE_SIZE: return "MIPS_INTERFACE_SIZE";
1477 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: return "MIPS_RLD_TEXT_RESOLVE_ADDR";
1478 case DT_MIPS_PERF_SUFFIX: return "MIPS_PERF_SUFFIX";
1479 case DT_MIPS_COMPACT_SIZE: return "MIPS_COMPACT_SIZE";
1480 case DT_MIPS_GP_VALUE: return "MIPS_GP_VALUE";
1481 case DT_MIPS_AUX_DYNAMIC: return "MIPS_AUX_DYNAMIC";
1482 case DT_MIPS_PLTGOT: return "MIPS_PLTGOT";
1483 case DT_MIPS_RWPLT: return "MIPS_RWPLT";
1484 default:
1485 return NULL;
1486 }
1487 }
1488
1489 static const char *
1490 get_sparc64_dynamic_type (unsigned long type)
1491 {
1492 switch (type)
1493 {
1494 case DT_SPARC_REGISTER: return "SPARC_REGISTER";
1495 default:
1496 return NULL;
1497 }
1498 }
1499
1500 static const char *
1501 get_ppc_dynamic_type (unsigned long type)
1502 {
1503 switch (type)
1504 {
1505 case DT_PPC_GOT: return "PPC_GOT";
1506 case DT_PPC_TLSOPT: return "PPC_TLSOPT";
1507 default:
1508 return NULL;
1509 }
1510 }
1511
1512 static const char *
1513 get_ppc64_dynamic_type (unsigned long type)
1514 {
1515 switch (type)
1516 {
1517 case DT_PPC64_GLINK: return "PPC64_GLINK";
1518 case DT_PPC64_OPD: return "PPC64_OPD";
1519 case DT_PPC64_OPDSZ: return "PPC64_OPDSZ";
1520 case DT_PPC64_TLSOPT: return "PPC64_TLSOPT";
1521 default:
1522 return NULL;
1523 }
1524 }
1525
1526 static const char *
1527 get_parisc_dynamic_type (unsigned long type)
1528 {
1529 switch (type)
1530 {
1531 case DT_HP_LOAD_MAP: return "HP_LOAD_MAP";
1532 case DT_HP_DLD_FLAGS: return "HP_DLD_FLAGS";
1533 case DT_HP_DLD_HOOK: return "HP_DLD_HOOK";
1534 case DT_HP_UX10_INIT: return "HP_UX10_INIT";
1535 case DT_HP_UX10_INITSZ: return "HP_UX10_INITSZ";
1536 case DT_HP_PREINIT: return "HP_PREINIT";
1537 case DT_HP_PREINITSZ: return "HP_PREINITSZ";
1538 case DT_HP_NEEDED: return "HP_NEEDED";
1539 case DT_HP_TIME_STAMP: return "HP_TIME_STAMP";
1540 case DT_HP_CHECKSUM: return "HP_CHECKSUM";
1541 case DT_HP_GST_SIZE: return "HP_GST_SIZE";
1542 case DT_HP_GST_VERSION: return "HP_GST_VERSION";
1543 case DT_HP_GST_HASHVAL: return "HP_GST_HASHVAL";
1544 case DT_HP_EPLTREL: return "HP_GST_EPLTREL";
1545 case DT_HP_EPLTRELSZ: return "HP_GST_EPLTRELSZ";
1546 case DT_HP_FILTERED: return "HP_FILTERED";
1547 case DT_HP_FILTER_TLS: return "HP_FILTER_TLS";
1548 case DT_HP_COMPAT_FILTERED: return "HP_COMPAT_FILTERED";
1549 case DT_HP_LAZYLOAD: return "HP_LAZYLOAD";
1550 case DT_HP_BIND_NOW_COUNT: return "HP_BIND_NOW_COUNT";
1551 case DT_PLT: return "PLT";
1552 case DT_PLT_SIZE: return "PLT_SIZE";
1553 case DT_DLT: return "DLT";
1554 case DT_DLT_SIZE: return "DLT_SIZE";
1555 default:
1556 return NULL;
1557 }
1558 }
1559
1560 static const char *
1561 get_ia64_dynamic_type (unsigned long type)
1562 {
1563 switch (type)
1564 {
1565 case DT_IA_64_PLT_RESERVE: return "IA_64_PLT_RESERVE";
1566 case DT_IA_64_VMS_SUBTYPE: return "VMS_SUBTYPE";
1567 case DT_IA_64_VMS_IMGIOCNT: return "VMS_IMGIOCNT";
1568 case DT_IA_64_VMS_LNKFLAGS: return "VMS_LNKFLAGS";
1569 case DT_IA_64_VMS_VIR_MEM_BLK_SIZ: return "VMS_VIR_MEM_BLK_SIZ";
1570 case DT_IA_64_VMS_IDENT: return "VMS_IDENT";
1571 case DT_IA_64_VMS_NEEDED_IDENT: return "VMS_NEEDED_IDENT";
1572 case DT_IA_64_VMS_IMG_RELA_CNT: return "VMS_IMG_RELA_CNT";
1573 case DT_IA_64_VMS_SEG_RELA_CNT: return "VMS_SEG_RELA_CNT";
1574 case DT_IA_64_VMS_FIXUP_RELA_CNT: return "VMS_FIXUP_RELA_CNT";
1575 case DT_IA_64_VMS_FIXUP_NEEDED: return "VMS_FIXUP_NEEDED";
1576 case DT_IA_64_VMS_SYMVEC_CNT: return "VMS_SYMVEC_CNT";
1577 case DT_IA_64_VMS_XLATED: return "VMS_XLATED";
1578 case DT_IA_64_VMS_STACKSIZE: return "VMS_STACKSIZE";
1579 case DT_IA_64_VMS_UNWINDSZ: return "VMS_UNWINDSZ";
1580 case DT_IA_64_VMS_UNWIND_CODSEG: return "VMS_UNWIND_CODSEG";
1581 case DT_IA_64_VMS_UNWIND_INFOSEG: return "VMS_UNWIND_INFOSEG";
1582 case DT_IA_64_VMS_LINKTIME: return "VMS_LINKTIME";
1583 case DT_IA_64_VMS_SEG_NO: return "VMS_SEG_NO";
1584 case DT_IA_64_VMS_SYMVEC_OFFSET: return "VMS_SYMVEC_OFFSET";
1585 case DT_IA_64_VMS_SYMVEC_SEG: return "VMS_SYMVEC_SEG";
1586 case DT_IA_64_VMS_UNWIND_OFFSET: return "VMS_UNWIND_OFFSET";
1587 case DT_IA_64_VMS_UNWIND_SEG: return "VMS_UNWIND_SEG";
1588 case DT_IA_64_VMS_STRTAB_OFFSET: return "VMS_STRTAB_OFFSET";
1589 case DT_IA_64_VMS_SYSVER_OFFSET: return "VMS_SYSVER_OFFSET";
1590 case DT_IA_64_VMS_IMG_RELA_OFF: return "VMS_IMG_RELA_OFF";
1591 case DT_IA_64_VMS_SEG_RELA_OFF: return "VMS_SEG_RELA_OFF";
1592 case DT_IA_64_VMS_FIXUP_RELA_OFF: return "VMS_FIXUP_RELA_OFF";
1593 case DT_IA_64_VMS_PLTGOT_OFFSET: return "VMS_PLTGOT_OFFSET";
1594 case DT_IA_64_VMS_PLTGOT_SEG: return "VMS_PLTGOT_SEG";
1595 case DT_IA_64_VMS_FPMODE: return "VMS_FPMODE";
1596 default:
1597 return NULL;
1598 }
1599 }
1600
1601 static const char *
1602 get_alpha_dynamic_type (unsigned long type)
1603 {
1604 switch (type)
1605 {
1606 case DT_ALPHA_PLTRO: return "ALPHA_PLTRO";
1607 default:
1608 return NULL;
1609 }
1610 }
1611
1612 static const char *
1613 get_score_dynamic_type (unsigned long type)
1614 {
1615 switch (type)
1616 {
1617 case DT_SCORE_BASE_ADDRESS: return "SCORE_BASE_ADDRESS";
1618 case DT_SCORE_LOCAL_GOTNO: return "SCORE_LOCAL_GOTNO";
1619 case DT_SCORE_SYMTABNO: return "SCORE_SYMTABNO";
1620 case DT_SCORE_GOTSYM: return "SCORE_GOTSYM";
1621 case DT_SCORE_UNREFEXTNO: return "SCORE_UNREFEXTNO";
1622 case DT_SCORE_HIPAGENO: return "SCORE_HIPAGENO";
1623 default:
1624 return NULL;
1625 }
1626 }
1627
1628 static const char *
1629 get_tic6x_dynamic_type (unsigned long type)
1630 {
1631 switch (type)
1632 {
1633 case DT_C6000_GSYM_OFFSET: return "C6000_GSYM_OFFSET";
1634 case DT_C6000_GSTR_OFFSET: return "C6000_GSTR_OFFSET";
1635 case DT_C6000_DSBT_BASE: return "C6000_DSBT_BASE";
1636 case DT_C6000_DSBT_SIZE: return "C6000_DSBT_SIZE";
1637 case DT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
1638 case DT_C6000_DSBT_INDEX: return "C6000_DSBT_INDEX";
1639 default:
1640 return NULL;
1641 }
1642 }
1643
1644 static const char *
1645 get_dynamic_type (unsigned long type)
1646 {
1647 static char buff[64];
1648
1649 switch (type)
1650 {
1651 case DT_NULL: return "NULL";
1652 case DT_NEEDED: return "NEEDED";
1653 case DT_PLTRELSZ: return "PLTRELSZ";
1654 case DT_PLTGOT: return "PLTGOT";
1655 case DT_HASH: return "HASH";
1656 case DT_STRTAB: return "STRTAB";
1657 case DT_SYMTAB: return "SYMTAB";
1658 case DT_RELA: return "RELA";
1659 case DT_RELASZ: return "RELASZ";
1660 case DT_RELAENT: return "RELAENT";
1661 case DT_STRSZ: return "STRSZ";
1662 case DT_SYMENT: return "SYMENT";
1663 case DT_INIT: return "INIT";
1664 case DT_FINI: return "FINI";
1665 case DT_SONAME: return "SONAME";
1666 case DT_RPATH: return "RPATH";
1667 case DT_SYMBOLIC: return "SYMBOLIC";
1668 case DT_REL: return "REL";
1669 case DT_RELSZ: return "RELSZ";
1670 case DT_RELENT: return "RELENT";
1671 case DT_PLTREL: return "PLTREL";
1672 case DT_DEBUG: return "DEBUG";
1673 case DT_TEXTREL: return "TEXTREL";
1674 case DT_JMPREL: return "JMPREL";
1675 case DT_BIND_NOW: return "BIND_NOW";
1676 case DT_INIT_ARRAY: return "INIT_ARRAY";
1677 case DT_FINI_ARRAY: return "FINI_ARRAY";
1678 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ";
1679 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ";
1680 case DT_RUNPATH: return "RUNPATH";
1681 case DT_FLAGS: return "FLAGS";
1682
1683 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY";
1684 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ";
1685
1686 case DT_CHECKSUM: return "CHECKSUM";
1687 case DT_PLTPADSZ: return "PLTPADSZ";
1688 case DT_MOVEENT: return "MOVEENT";
1689 case DT_MOVESZ: return "MOVESZ";
1690 case DT_FEATURE: return "FEATURE";
1691 case DT_POSFLAG_1: return "POSFLAG_1";
1692 case DT_SYMINSZ: return "SYMINSZ";
1693 case DT_SYMINENT: return "SYMINENT"; /* aka VALRNGHI */
1694
1695 case DT_ADDRRNGLO: return "ADDRRNGLO";
1696 case DT_CONFIG: return "CONFIG";
1697 case DT_DEPAUDIT: return "DEPAUDIT";
1698 case DT_AUDIT: return "AUDIT";
1699 case DT_PLTPAD: return "PLTPAD";
1700 case DT_MOVETAB: return "MOVETAB";
1701 case DT_SYMINFO: return "SYMINFO"; /* aka ADDRRNGHI */
1702
1703 case DT_VERSYM: return "VERSYM";
1704
1705 case DT_TLSDESC_GOT: return "TLSDESC_GOT";
1706 case DT_TLSDESC_PLT: return "TLSDESC_PLT";
1707 case DT_RELACOUNT: return "RELACOUNT";
1708 case DT_RELCOUNT: return "RELCOUNT";
1709 case DT_FLAGS_1: return "FLAGS_1";
1710 case DT_VERDEF: return "VERDEF";
1711 case DT_VERDEFNUM: return "VERDEFNUM";
1712 case DT_VERNEED: return "VERNEED";
1713 case DT_VERNEEDNUM: return "VERNEEDNUM";
1714
1715 case DT_AUXILIARY: return "AUXILIARY";
1716 case DT_USED: return "USED";
1717 case DT_FILTER: return "FILTER";
1718
1719 case DT_GNU_PRELINKED: return "GNU_PRELINKED";
1720 case DT_GNU_CONFLICT: return "GNU_CONFLICT";
1721 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ";
1722 case DT_GNU_LIBLIST: return "GNU_LIBLIST";
1723 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ";
1724 case DT_GNU_HASH: return "GNU_HASH";
1725
1726 default:
1727 if ((type >= DT_LOPROC) && (type <= DT_HIPROC))
1728 {
1729 const char * result;
1730
1731 switch (elf_header.e_machine)
1732 {
1733 case EM_MIPS:
1734 case EM_MIPS_RS3_LE:
1735 result = get_mips_dynamic_type (type);
1736 break;
1737 case EM_SPARCV9:
1738 result = get_sparc64_dynamic_type (type);
1739 break;
1740 case EM_PPC:
1741 result = get_ppc_dynamic_type (type);
1742 break;
1743 case EM_PPC64:
1744 result = get_ppc64_dynamic_type (type);
1745 break;
1746 case EM_IA_64:
1747 result = get_ia64_dynamic_type (type);
1748 break;
1749 case EM_ALPHA:
1750 result = get_alpha_dynamic_type (type);
1751 break;
1752 case EM_SCORE:
1753 result = get_score_dynamic_type (type);
1754 break;
1755 case EM_TI_C6000:
1756 result = get_tic6x_dynamic_type (type);
1757 break;
1758 default:
1759 result = NULL;
1760 break;
1761 }
1762
1763 if (result != NULL)
1764 return result;
1765
1766 snprintf (buff, sizeof (buff), _("Processor Specific: %lx"), type);
1767 }
1768 else if (((type >= DT_LOOS) && (type <= DT_HIOS))
1769 || (elf_header.e_machine == EM_PARISC
1770 && (type >= OLD_DT_LOOS) && (type <= OLD_DT_HIOS)))
1771 {
1772 const char * result;
1773
1774 switch (elf_header.e_machine)
1775 {
1776 case EM_PARISC:
1777 result = get_parisc_dynamic_type (type);
1778 break;
1779 case EM_IA_64:
1780 result = get_ia64_dynamic_type (type);
1781 break;
1782 default:
1783 result = NULL;
1784 break;
1785 }
1786
1787 if (result != NULL)
1788 return result;
1789
1790 snprintf (buff, sizeof (buff), _("Operating System specific: %lx"),
1791 type);
1792 }
1793 else
1794 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), type);
1795
1796 return buff;
1797 }
1798 }
1799
1800 static char *
1801 get_file_type (unsigned e_type)
1802 {
1803 static char buff[32];
1804
1805 switch (e_type)
1806 {
1807 case ET_NONE: return _("NONE (None)");
1808 case ET_REL: return _("REL (Relocatable file)");
1809 case ET_EXEC: return _("EXEC (Executable file)");
1810 case ET_DYN: return _("DYN (Shared object file)");
1811 case ET_CORE: return _("CORE (Core file)");
1812
1813 default:
1814 if ((e_type >= ET_LOPROC) && (e_type <= ET_HIPROC))
1815 snprintf (buff, sizeof (buff), _("Processor Specific: (%x)"), e_type);
1816 else if ((e_type >= ET_LOOS) && (e_type <= ET_HIOS))
1817 snprintf (buff, sizeof (buff), _("OS Specific: (%x)"), e_type);
1818 else
1819 snprintf (buff, sizeof (buff), _("<unknown>: %x"), e_type);
1820 return buff;
1821 }
1822 }
1823
1824 static char *
1825 get_machine_name (unsigned e_machine)
1826 {
1827 static char buff[64]; /* XXX */
1828
1829 switch (e_machine)
1830 {
1831 case EM_NONE: return _("None");
1832 case EM_M32: return "WE32100";
1833 case EM_SPARC: return "Sparc";
1834 case EM_SPU: return "SPU";
1835 case EM_386: return "Intel 80386";
1836 case EM_68K: return "MC68000";
1837 case EM_88K: return "MC88000";
1838 case EM_486: return "Intel 80486";
1839 case EM_860: return "Intel 80860";
1840 case EM_MIPS: return "MIPS R3000";
1841 case EM_S370: return "IBM System/370";
1842 case EM_MIPS_RS3_LE: return "MIPS R4000 big-endian";
1843 case EM_OLD_SPARCV9: return "Sparc v9 (old)";
1844 case EM_PARISC: return "HPPA";
1845 case EM_PPC_OLD: return "Power PC (old)";
1846 case EM_SPARC32PLUS: return "Sparc v8+" ;
1847 case EM_960: return "Intel 90860";
1848 case EM_PPC: return "PowerPC";
1849 case EM_PPC64: return "PowerPC64";
1850 case EM_V800: return "NEC V800";
1851 case EM_FR20: return "Fujitsu FR20";
1852 case EM_RH32: return "TRW RH32";
1853 case EM_MCORE: return "MCORE";
1854 case EM_ARM: return "ARM";
1855 case EM_OLD_ALPHA: return "Digital Alpha (old)";
1856 case EM_SH: return "Renesas / SuperH SH";
1857 case EM_SPARCV9: return "Sparc v9";
1858 case EM_TRICORE: return "Siemens Tricore";
1859 case EM_ARC: return "ARC";
1860 case EM_H8_300: return "Renesas H8/300";
1861 case EM_H8_300H: return "Renesas H8/300H";
1862 case EM_H8S: return "Renesas H8S";
1863 case EM_H8_500: return "Renesas H8/500";
1864 case EM_IA_64: return "Intel IA-64";
1865 case EM_MIPS_X: return "Stanford MIPS-X";
1866 case EM_COLDFIRE: return "Motorola Coldfire";
1867 case EM_68HC12: return "Motorola M68HC12";
1868 case EM_ALPHA: return "Alpha";
1869 case EM_CYGNUS_D10V:
1870 case EM_D10V: return "d10v";
1871 case EM_CYGNUS_D30V:
1872 case EM_D30V: return "d30v";
1873 case EM_CYGNUS_M32R:
1874 case EM_M32R: return "Renesas M32R (formerly Mitsubishi M32r)";
1875 case EM_CYGNUS_V850:
1876 case EM_V850: return "Renesas V850";
1877 case EM_CYGNUS_MN10300:
1878 case EM_MN10300: return "mn10300";
1879 case EM_CYGNUS_MN10200:
1880 case EM_MN10200: return "mn10200";
1881 case EM_MOXIE: return "Moxie";
1882 case EM_CYGNUS_FR30:
1883 case EM_FR30: return "Fujitsu FR30";
1884 case EM_CYGNUS_FRV: return "Fujitsu FR-V";
1885 case EM_PJ_OLD:
1886 case EM_PJ: return "picoJava";
1887 case EM_MMA: return "Fujitsu Multimedia Accelerator";
1888 case EM_PCP: return "Siemens PCP";
1889 case EM_NCPU: return "Sony nCPU embedded RISC processor";
1890 case EM_NDR1: return "Denso NDR1 microprocesspr";
1891 case EM_STARCORE: return "Motorola Star*Core processor";
1892 case EM_ME16: return "Toyota ME16 processor";
1893 case EM_ST100: return "STMicroelectronics ST100 processor";
1894 case EM_TINYJ: return "Advanced Logic Corp. TinyJ embedded processor";
1895 case EM_PDSP: return "Sony DSP processor";
1896 case EM_PDP10: return "Digital Equipment Corp. PDP-10";
1897 case EM_PDP11: return "Digital Equipment Corp. PDP-11";
1898 case EM_FX66: return "Siemens FX66 microcontroller";
1899 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 bit microcontroller";
1900 case EM_ST7: return "STMicroelectronics ST7 8-bit microcontroller";
1901 case EM_68HC16: return "Motorola MC68HC16 Microcontroller";
1902 case EM_68HC11: return "Motorola MC68HC11 Microcontroller";
1903 case EM_68HC08: return "Motorola MC68HC08 Microcontroller";
1904 case EM_68HC05: return "Motorola MC68HC05 Microcontroller";
1905 case EM_SVX: return "Silicon Graphics SVx";
1906 case EM_ST19: return "STMicroelectronics ST19 8-bit microcontroller";
1907 case EM_VAX: return "Digital VAX";
1908 case EM_AVR_OLD:
1909 case EM_AVR: return "Atmel AVR 8-bit microcontroller";
1910 case EM_CRIS: return "Axis Communications 32-bit embedded processor";
1911 case EM_JAVELIN: return "Infineon Technologies 32-bit embedded cpu";
1912 case EM_FIREPATH: return "Element 14 64-bit DSP processor";
1913 case EM_ZSP: return "LSI Logic's 16-bit DSP processor";
1914 case EM_MMIX: return "Donald Knuth's educational 64-bit processor";
1915 case EM_HUANY: return "Harvard Universitys's machine-independent object format";
1916 case EM_PRISM: return "Vitesse Prism";
1917 case EM_X86_64: return "Advanced Micro Devices X86-64";
1918 case EM_L1OM: return "Intel L1OM";
1919 case EM_K1OM: return "Intel K1OM";
1920 case EM_S390_OLD:
1921 case EM_S390: return "IBM S/390";
1922 case EM_SCORE: return "SUNPLUS S+Core";
1923 case EM_XSTORMY16: return "Sanyo XStormy16 CPU core";
1924 case EM_OPENRISC:
1925 case EM_OR32: return "OpenRISC";
1926 case EM_ARC_A5: return "ARC International ARCompact processor";
1927 case EM_CRX: return "National Semiconductor CRX microprocessor";
1928 case EM_ADAPTEVA_EPIPHANY: return "Adapteva EPIPHANY";
1929 case EM_DLX: return "OpenDLX";
1930 case EM_IP2K_OLD:
1931 case EM_IP2K: return "Ubicom IP2xxx 8-bit microcontrollers";
1932 case EM_IQ2000: return "Vitesse IQ2000";
1933 case EM_XTENSA_OLD:
1934 case EM_XTENSA: return "Tensilica Xtensa Processor";
1935 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor";
1936 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor";
1937 case EM_NS32K: return "National Semiconductor 32000 series";
1938 case EM_TPC: return "Tenor Network TPC processor";
1939 case EM_ST200: return "STMicroelectronics ST200 microcontroller";
1940 case EM_MAX: return "MAX Processor";
1941 case EM_CR: return "National Semiconductor CompactRISC";
1942 case EM_F2MC16: return "Fujitsu F2MC16";
1943 case EM_MSP430: return "Texas Instruments msp430 microcontroller";
1944 case EM_LATTICEMICO32: return "Lattice Mico32";
1945 case EM_M32C_OLD:
1946 case EM_M32C: return "Renesas M32c";
1947 case EM_MT: return "Morpho Techologies MT processor";
1948 case EM_BLACKFIN: return "Analog Devices Blackfin";
1949 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors";
1950 case EM_SEP: return "Sharp embedded microprocessor";
1951 case EM_ARCA: return "Arca RISC microprocessor";
1952 case EM_UNICORE: return "Unicore";
1953 case EM_EXCESS: return "eXcess 16/32/64-bit configurable embedded CPU";
1954 case EM_DXP: return "Icera Semiconductor Inc. Deep Execution Processor";
1955 case EM_NIOS32: return "Altera Nios";
1956 case EM_ALTERA_NIOS2: return "Altera Nios II";
1957 case EM_C166:
1958 case EM_XC16X: return "Infineon Technologies xc16x";
1959 case EM_M16C: return "Renesas M16C series microprocessors";
1960 case EM_DSPIC30F: return "Microchip Technology dsPIC30F Digital Signal Controller";
1961 case EM_CE: return "Freescale Communication Engine RISC core";
1962 case EM_TSK3000: return "Altium TSK3000 core";
1963 case EM_RS08: return "Freescale RS08 embedded processor";
1964 case EM_ECOG2: return "Cyan Technology eCOG2 microprocessor";
1965 case EM_DSP24: return "New Japan Radio (NJR) 24-bit DSP Processor";
1966 case EM_VIDEOCORE3: return "Broadcom VideoCore III processor";
1967 case EM_SE_C17: return "Seiko Epson C17 family";
1968 case EM_TI_C6000: return "Texas Instruments TMS320C6000 DSP family";
1969 case EM_TI_C2000: return "Texas Instruments TMS320C2000 DSP family";
1970 case EM_TI_C5500: return "Texas Instruments TMS320C55x DSP family";
1971 case EM_MMDSP_PLUS: return "STMicroelectronics 64bit VLIW Data Signal Processor";
1972 case EM_CYPRESS_M8C: return "Cypress M8C microprocessor";
1973 case EM_R32C: return "Renesas R32C series microprocessors";
1974 case EM_TRIMEDIA: return "NXP Semiconductors TriMedia architecture family";
1975 case EM_QDSP6: return "QUALCOMM DSP6 Processor";
1976 case EM_8051: return "Intel 8051 and variants";
1977 case EM_STXP7X: return "STMicroelectronics STxP7x family";
1978 case EM_NDS32: return "Andes Technology compact code size embedded RISC processor family";
1979 case EM_ECOG1X: return "Cyan Technology eCOG1X family";
1980 case EM_MAXQ30: return "Dallas Semiconductor MAXQ30 Core microcontrollers";
1981 case EM_XIMO16: return "New Japan Radio (NJR) 16-bit DSP Processor";
1982 case EM_MANIK: return "M2000 Reconfigurable RISC Microprocessor";
1983 case EM_CRAYNV2: return "Cray Inc. NV2 vector architecture";
1984 case EM_CYGNUS_MEP: return "Toshiba MeP Media Engine";
1985 case EM_CR16:
1986 case EM_MICROBLAZE:
1987 case EM_MICROBLAZE_OLD: return "Xilinx MicroBlaze";
1988 case EM_RL78: return "Renesas RL78";
1989 case EM_RX: return "Renesas RX";
1990 case EM_METAG: return "Imagination Technologies META processor architecture";
1991 case EM_MCST_ELBRUS: return "MCST Elbrus general purpose hardware architecture";
1992 case EM_ECOG16: return "Cyan Technology eCOG16 family";
1993 case EM_ETPU: return "Freescale Extended Time Processing Unit";
1994 case EM_SLE9X: return "Infineon Technologies SLE9X core";
1995 case EM_AVR32: return "Atmel Corporation 32-bit microprocessor family";
1996 case EM_STM8: return "STMicroeletronics STM8 8-bit microcontroller";
1997 case EM_TILE64: return "Tilera TILE64 multicore architecture family";
1998 case EM_TILEPRO: return "Tilera TILEPro multicore architecture family";
1999 case EM_TILEGX: return "Tilera TILE-Gx multicore architecture family";
2000 case EM_CUDA: return "NVIDIA CUDA architecture";
2001 case EM_XGATE: return "Motorola XGATE embedded processor";
2002 default:
2003 snprintf (buff, sizeof (buff), _("<unknown>: 0x%x"), e_machine);
2004 return buff;
2005 }
2006 }
2007
2008 static void
2009 decode_ARM_machine_flags (unsigned e_flags, char buf[])
2010 {
2011 unsigned eabi;
2012 int unknown = 0;
2013
2014 eabi = EF_ARM_EABI_VERSION (e_flags);
2015 e_flags &= ~ EF_ARM_EABIMASK;
2016
2017 /* Handle "generic" ARM flags. */
2018 if (e_flags & EF_ARM_RELEXEC)
2019 {
2020 strcat (buf, ", relocatable executable");
2021 e_flags &= ~ EF_ARM_RELEXEC;
2022 }
2023
2024 if (e_flags & EF_ARM_HASENTRY)
2025 {
2026 strcat (buf, ", has entry point");
2027 e_flags &= ~ EF_ARM_HASENTRY;
2028 }
2029
2030 /* Now handle EABI specific flags. */
2031 switch (eabi)
2032 {
2033 default:
2034 strcat (buf, ", <unrecognized EABI>");
2035 if (e_flags)
2036 unknown = 1;
2037 break;
2038
2039 case EF_ARM_EABI_VER1:
2040 strcat (buf, ", Version1 EABI");
2041 while (e_flags)
2042 {
2043 unsigned flag;
2044
2045 /* Process flags one bit at a time. */
2046 flag = e_flags & - e_flags;
2047 e_flags &= ~ flag;
2048
2049 switch (flag)
2050 {
2051 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2052 strcat (buf, ", sorted symbol tables");
2053 break;
2054
2055 default:
2056 unknown = 1;
2057 break;
2058 }
2059 }
2060 break;
2061
2062 case EF_ARM_EABI_VER2:
2063 strcat (buf, ", Version2 EABI");
2064 while (e_flags)
2065 {
2066 unsigned flag;
2067
2068 /* Process flags one bit at a time. */
2069 flag = e_flags & - e_flags;
2070 e_flags &= ~ flag;
2071
2072 switch (flag)
2073 {
2074 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2075 strcat (buf, ", sorted symbol tables");
2076 break;
2077
2078 case EF_ARM_DYNSYMSUSESEGIDX:
2079 strcat (buf, ", dynamic symbols use segment index");
2080 break;
2081
2082 case EF_ARM_MAPSYMSFIRST:
2083 strcat (buf, ", mapping symbols precede others");
2084 break;
2085
2086 default:
2087 unknown = 1;
2088 break;
2089 }
2090 }
2091 break;
2092
2093 case EF_ARM_EABI_VER3:
2094 strcat (buf, ", Version3 EABI");
2095 break;
2096
2097 case EF_ARM_EABI_VER4:
2098 strcat (buf, ", Version4 EABI");
2099 goto eabi;
2100
2101 case EF_ARM_EABI_VER5:
2102 strcat (buf, ", Version5 EABI");
2103 eabi:
2104 while (e_flags)
2105 {
2106 unsigned flag;
2107
2108 /* Process flags one bit at a time. */
2109 flag = e_flags & - e_flags;
2110 e_flags &= ~ flag;
2111
2112 switch (flag)
2113 {
2114 case EF_ARM_BE8:
2115 strcat (buf, ", BE8");
2116 break;
2117
2118 case EF_ARM_LE8:
2119 strcat (buf, ", LE8");
2120 break;
2121
2122 default:
2123 unknown = 1;
2124 break;
2125 }
2126 }
2127 break;
2128
2129 case EF_ARM_EABI_UNKNOWN:
2130 strcat (buf, ", GNU EABI");
2131 while (e_flags)
2132 {
2133 unsigned flag;
2134
2135 /* Process flags one bit at a time. */
2136 flag = e_flags & - e_flags;
2137 e_flags &= ~ flag;
2138
2139 switch (flag)
2140 {
2141 case EF_ARM_INTERWORK:
2142 strcat (buf, ", interworking enabled");
2143 break;
2144
2145 case EF_ARM_APCS_26:
2146 strcat (buf, ", uses APCS/26");
2147 break;
2148
2149 case EF_ARM_APCS_FLOAT:
2150 strcat (buf, ", uses APCS/float");
2151 break;
2152
2153 case EF_ARM_PIC:
2154 strcat (buf, ", position independent");
2155 break;
2156
2157 case EF_ARM_ALIGN8:
2158 strcat (buf, ", 8 bit structure alignment");
2159 break;
2160
2161 case EF_ARM_NEW_ABI:
2162 strcat (buf, ", uses new ABI");
2163 break;
2164
2165 case EF_ARM_OLD_ABI:
2166 strcat (buf, ", uses old ABI");
2167 break;
2168
2169 case EF_ARM_SOFT_FLOAT:
2170 strcat (buf, ", software FP");
2171 break;
2172
2173 case EF_ARM_VFP_FLOAT:
2174 strcat (buf, ", VFP");
2175 break;
2176
2177 case EF_ARM_MAVERICK_FLOAT:
2178 strcat (buf, ", Maverick FP");
2179 break;
2180
2181 default:
2182 unknown = 1;
2183 break;
2184 }
2185 }
2186 }
2187
2188 if (unknown)
2189 strcat (buf,_(", <unknown>"));
2190 }
2191
2192 static char *
2193 get_machine_flags (unsigned e_flags, unsigned e_machine)
2194 {
2195 static char buf[1024];
2196
2197 buf[0] = '\0';
2198
2199 if (e_flags)
2200 {
2201 switch (e_machine)
2202 {
2203 default:
2204 break;
2205
2206 case EM_ARM:
2207 decode_ARM_machine_flags (e_flags, buf);
2208 break;
2209
2210 case EM_BLACKFIN:
2211 if (e_flags & EF_BFIN_PIC)
2212 strcat (buf, ", PIC");
2213
2214 if (e_flags & EF_BFIN_FDPIC)
2215 strcat (buf, ", FDPIC");
2216
2217 if (e_flags & EF_BFIN_CODE_IN_L1)
2218 strcat (buf, ", code in L1");
2219
2220 if (e_flags & EF_BFIN_DATA_IN_L1)
2221 strcat (buf, ", data in L1");
2222
2223 break;
2224
2225 case EM_CYGNUS_FRV:
2226 switch (e_flags & EF_FRV_CPU_MASK)
2227 {
2228 case EF_FRV_CPU_GENERIC:
2229 break;
2230
2231 default:
2232 strcat (buf, ", fr???");
2233 break;
2234
2235 case EF_FRV_CPU_FR300:
2236 strcat (buf, ", fr300");
2237 break;
2238
2239 case EF_FRV_CPU_FR400:
2240 strcat (buf, ", fr400");
2241 break;
2242 case EF_FRV_CPU_FR405:
2243 strcat (buf, ", fr405");
2244 break;
2245
2246 case EF_FRV_CPU_FR450:
2247 strcat (buf, ", fr450");
2248 break;
2249
2250 case EF_FRV_CPU_FR500:
2251 strcat (buf, ", fr500");
2252 break;
2253 case EF_FRV_CPU_FR550:
2254 strcat (buf, ", fr550");
2255 break;
2256
2257 case EF_FRV_CPU_SIMPLE:
2258 strcat (buf, ", simple");
2259 break;
2260 case EF_FRV_CPU_TOMCAT:
2261 strcat (buf, ", tomcat");
2262 break;
2263 }
2264 break;
2265
2266 case EM_68K:
2267 if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
2268 strcat (buf, ", m68000");
2269 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
2270 strcat (buf, ", cpu32");
2271 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
2272 strcat (buf, ", fido_a");
2273 else
2274 {
2275 char const * isa = _("unknown");
2276 char const * mac = _("unknown mac");
2277 char const * additional = NULL;
2278
2279 switch (e_flags & EF_M68K_CF_ISA_MASK)
2280 {
2281 case EF_M68K_CF_ISA_A_NODIV:
2282 isa = "A";
2283 additional = ", nodiv";
2284 break;
2285 case EF_M68K_CF_ISA_A:
2286 isa = "A";
2287 break;
2288 case EF_M68K_CF_ISA_A_PLUS:
2289 isa = "A+";
2290 break;
2291 case EF_M68K_CF_ISA_B_NOUSP:
2292 isa = "B";
2293 additional = ", nousp";
2294 break;
2295 case EF_M68K_CF_ISA_B:
2296 isa = "B";
2297 break;
2298 case EF_M68K_CF_ISA_C:
2299 isa = "C";
2300 break;
2301 case EF_M68K_CF_ISA_C_NODIV:
2302 isa = "C";
2303 additional = ", nodiv";
2304 break;
2305 }
2306 strcat (buf, ", cf, isa ");
2307 strcat (buf, isa);
2308 if (additional)
2309 strcat (buf, additional);
2310 if (e_flags & EF_M68K_CF_FLOAT)
2311 strcat (buf, ", float");
2312 switch (e_flags & EF_M68K_CF_MAC_MASK)
2313 {
2314 case 0:
2315 mac = NULL;
2316 break;
2317 case EF_M68K_CF_MAC:
2318 mac = "mac";
2319 break;
2320 case EF_M68K_CF_EMAC:
2321 mac = "emac";
2322 break;
2323 case EF_M68K_CF_EMAC_B:
2324 mac = "emac_b";
2325 break;
2326 }
2327 if (mac)
2328 {
2329 strcat (buf, ", ");
2330 strcat (buf, mac);
2331 }
2332 }
2333 break;
2334
2335 case EM_PPC:
2336 if (e_flags & EF_PPC_EMB)
2337 strcat (buf, ", emb");
2338
2339 if (e_flags & EF_PPC_RELOCATABLE)
2340 strcat (buf, _(", relocatable"));
2341
2342 if (e_flags & EF_PPC_RELOCATABLE_LIB)
2343 strcat (buf, _(", relocatable-lib"));
2344 break;
2345
2346 case EM_V850:
2347 case EM_CYGNUS_V850:
2348 switch (e_flags & EF_V850_ARCH)
2349 {
2350 case E_V850E2V3_ARCH:
2351 strcat (buf, ", v850e2v3");
2352 break;
2353 case E_V850E2_ARCH:
2354 strcat (buf, ", v850e2");
2355 break;
2356 case E_V850E1_ARCH:
2357 strcat (buf, ", v850e1");
2358 break;
2359 case E_V850E_ARCH:
2360 strcat (buf, ", v850e");
2361 break;
2362 case E_V850_ARCH:
2363 strcat (buf, ", v850");
2364 break;
2365 default:
2366 strcat (buf, _(", unknown v850 architecture variant"));
2367 break;
2368 }
2369 break;
2370
2371 case EM_M32R:
2372 case EM_CYGNUS_M32R:
2373 if ((e_flags & EF_M32R_ARCH) == E_M32R_ARCH)
2374 strcat (buf, ", m32r");
2375 break;
2376
2377 case EM_MIPS:
2378 case EM_MIPS_RS3_LE:
2379 if (e_flags & EF_MIPS_NOREORDER)
2380 strcat (buf, ", noreorder");
2381
2382 if (e_flags & EF_MIPS_PIC)
2383 strcat (buf, ", pic");
2384
2385 if (e_flags & EF_MIPS_CPIC)
2386 strcat (buf, ", cpic");
2387
2388 if (e_flags & EF_MIPS_UCODE)
2389 strcat (buf, ", ugen_reserved");
2390
2391 if (e_flags & EF_MIPS_ABI2)
2392 strcat (buf, ", abi2");
2393
2394 if (e_flags & EF_MIPS_OPTIONS_FIRST)
2395 strcat (buf, ", odk first");
2396
2397 if (e_flags & EF_MIPS_32BITMODE)
2398 strcat (buf, ", 32bitmode");
2399
2400 switch ((e_flags & EF_MIPS_MACH))
2401 {
2402 case E_MIPS_MACH_3900: strcat (buf, ", 3900"); break;
2403 case E_MIPS_MACH_4010: strcat (buf, ", 4010"); break;
2404 case E_MIPS_MACH_4100: strcat (buf, ", 4100"); break;
2405 case E_MIPS_MACH_4111: strcat (buf, ", 4111"); break;
2406 case E_MIPS_MACH_4120: strcat (buf, ", 4120"); break;
2407 case E_MIPS_MACH_4650: strcat (buf, ", 4650"); break;
2408 case E_MIPS_MACH_5400: strcat (buf, ", 5400"); break;
2409 case E_MIPS_MACH_5500: strcat (buf, ", 5500"); break;
2410 case E_MIPS_MACH_SB1: strcat (buf, ", sb1"); break;
2411 case E_MIPS_MACH_9000: strcat (buf, ", 9000"); break;
2412 case E_MIPS_MACH_LS2E: strcat (buf, ", loongson-2e"); break;
2413 case E_MIPS_MACH_LS2F: strcat (buf, ", loongson-2f"); break;
2414 case E_MIPS_MACH_LS3A: strcat (buf, ", loongson-3a"); break;
2415 case E_MIPS_MACH_OCTEON: strcat (buf, ", octeon"); break;
2416 case E_MIPS_MACH_OCTEON2: strcat (buf, ", octeon2"); break;
2417 case E_MIPS_MACH_XLR: strcat (buf, ", xlr"); break;
2418 case 0:
2419 /* We simply ignore the field in this case to avoid confusion:
2420 MIPS ELF does not specify EF_MIPS_MACH, it is a GNU
2421 extension. */
2422 break;
2423 default: strcat (buf, _(", unknown CPU")); break;
2424 }
2425
2426 switch ((e_flags & EF_MIPS_ABI))
2427 {
2428 case E_MIPS_ABI_O32: strcat (buf, ", o32"); break;
2429 case E_MIPS_ABI_O64: strcat (buf, ", o64"); break;
2430 case E_MIPS_ABI_EABI32: strcat (buf, ", eabi32"); break;
2431 case E_MIPS_ABI_EABI64: strcat (buf, ", eabi64"); break;
2432 case 0:
2433 /* We simply ignore the field in this case to avoid confusion:
2434 MIPS ELF does not specify EF_MIPS_ABI, it is a GNU extension.
2435 This means it is likely to be an o32 file, but not for
2436 sure. */
2437 break;
2438 default: strcat (buf, _(", unknown ABI")); break;
2439 }
2440
2441 if (e_flags & EF_MIPS_ARCH_ASE_MDMX)
2442 strcat (buf, ", mdmx");
2443
2444 if (e_flags & EF_MIPS_ARCH_ASE_M16)
2445 strcat (buf, ", mips16");
2446
2447 if (e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
2448 strcat (buf, ", micromips");
2449
2450 switch ((e_flags & EF_MIPS_ARCH))
2451 {
2452 case E_MIPS_ARCH_1: strcat (buf, ", mips1"); break;
2453 case E_MIPS_ARCH_2: strcat (buf, ", mips2"); break;
2454 case E_MIPS_ARCH_3: strcat (buf, ", mips3"); break;
2455 case E_MIPS_ARCH_4: strcat (buf, ", mips4"); break;
2456 case E_MIPS_ARCH_5: strcat (buf, ", mips5"); break;
2457 case E_MIPS_ARCH_32: strcat (buf, ", mips32"); break;
2458 case E_MIPS_ARCH_32R2: strcat (buf, ", mips32r2"); break;
2459 case E_MIPS_ARCH_64: strcat (buf, ", mips64"); break;
2460 case E_MIPS_ARCH_64R2: strcat (buf, ", mips64r2"); break;
2461 default: strcat (buf, _(", unknown ISA")); break;
2462 }
2463
2464 if (e_flags & EF_SH_PIC)
2465 strcat (buf, ", pic");
2466
2467 if (e_flags & EF_SH_FDPIC)
2468 strcat (buf, ", fdpic");
2469 break;
2470
2471 case EM_SH:
2472 switch ((e_flags & EF_SH_MACH_MASK))
2473 {
2474 case EF_SH1: strcat (buf, ", sh1"); break;
2475 case EF_SH2: strcat (buf, ", sh2"); break;
2476 case EF_SH3: strcat (buf, ", sh3"); break;
2477 case EF_SH_DSP: strcat (buf, ", sh-dsp"); break;
2478 case EF_SH3_DSP: strcat (buf, ", sh3-dsp"); break;
2479 case EF_SH4AL_DSP: strcat (buf, ", sh4al-dsp"); break;
2480 case EF_SH3E: strcat (buf, ", sh3e"); break;
2481 case EF_SH4: strcat (buf, ", sh4"); break;
2482 case EF_SH5: strcat (buf, ", sh5"); break;
2483 case EF_SH2E: strcat (buf, ", sh2e"); break;
2484 case EF_SH4A: strcat (buf, ", sh4a"); break;
2485 case EF_SH2A: strcat (buf, ", sh2a"); break;
2486 case EF_SH4_NOFPU: strcat (buf, ", sh4-nofpu"); break;
2487 case EF_SH4A_NOFPU: strcat (buf, ", sh4a-nofpu"); break;
2488 case EF_SH2A_NOFPU: strcat (buf, ", sh2a-nofpu"); break;
2489 case EF_SH3_NOMMU: strcat (buf, ", sh3-nommu"); break;
2490 case EF_SH4_NOMMU_NOFPU: strcat (buf, ", sh4-nommu-nofpu"); break;
2491 case EF_SH2A_SH4_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh4-nommu-nofpu"); break;
2492 case EF_SH2A_SH3_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh3-nommu"); break;
2493 case EF_SH2A_SH4: strcat (buf, ", sh2a-or-sh4"); break;
2494 case EF_SH2A_SH3E: strcat (buf, ", sh2a-or-sh3e"); break;
2495 default: strcat (buf, _(", unknown ISA")); break;
2496 }
2497
2498 break;
2499
2500 case EM_SPARCV9:
2501 if (e_flags & EF_SPARC_32PLUS)
2502 strcat (buf, ", v8+");
2503
2504 if (e_flags & EF_SPARC_SUN_US1)
2505 strcat (buf, ", ultrasparcI");
2506
2507 if (e_flags & EF_SPARC_SUN_US3)
2508 strcat (buf, ", ultrasparcIII");
2509
2510 if (e_flags & EF_SPARC_HAL_R1)
2511 strcat (buf, ", halr1");
2512
2513 if (e_flags & EF_SPARC_LEDATA)
2514 strcat (buf, ", ledata");
2515
2516 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_TSO)
2517 strcat (buf, ", tso");
2518
2519 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_PSO)
2520 strcat (buf, ", pso");
2521
2522 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_RMO)
2523 strcat (buf, ", rmo");
2524 break;
2525
2526 case EM_PARISC:
2527 switch (e_flags & EF_PARISC_ARCH)
2528 {
2529 case EFA_PARISC_1_0:
2530 strcpy (buf, ", PA-RISC 1.0");
2531 break;
2532 case EFA_PARISC_1_1:
2533 strcpy (buf, ", PA-RISC 1.1");
2534 break;
2535 case EFA_PARISC_2_0:
2536 strcpy (buf, ", PA-RISC 2.0");
2537 break;
2538 default:
2539 break;
2540 }
2541 if (e_flags & EF_PARISC_TRAPNIL)
2542 strcat (buf, ", trapnil");
2543 if (e_flags & EF_PARISC_EXT)
2544 strcat (buf, ", ext");
2545 if (e_flags & EF_PARISC_LSB)
2546 strcat (buf, ", lsb");
2547 if (e_flags & EF_PARISC_WIDE)
2548 strcat (buf, ", wide");
2549 if (e_flags & EF_PARISC_NO_KABP)
2550 strcat (buf, ", no kabp");
2551 if (e_flags & EF_PARISC_LAZYSWAP)
2552 strcat (buf, ", lazyswap");
2553 break;
2554
2555 case EM_PJ:
2556 case EM_PJ_OLD:
2557 if ((e_flags & EF_PICOJAVA_NEWCALLS) == EF_PICOJAVA_NEWCALLS)
2558 strcat (buf, ", new calling convention");
2559
2560 if ((e_flags & EF_PICOJAVA_GNUCALLS) == EF_PICOJAVA_GNUCALLS)
2561 strcat (buf, ", gnu calling convention");
2562 break;
2563
2564 case EM_IA_64:
2565 if ((e_flags & EF_IA_64_ABI64))
2566 strcat (buf, ", 64-bit");
2567 else
2568 strcat (buf, ", 32-bit");
2569 if ((e_flags & EF_IA_64_REDUCEDFP))
2570 strcat (buf, ", reduced fp model");
2571 if ((e_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
2572 strcat (buf, ", no function descriptors, constant gp");
2573 else if ((e_flags & EF_IA_64_CONS_GP))
2574 strcat (buf, ", constant gp");
2575 if ((e_flags & EF_IA_64_ABSOLUTE))
2576 strcat (buf, ", absolute");
2577 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
2578 {
2579 if ((e_flags & EF_IA_64_VMS_LINKAGES))
2580 strcat (buf, ", vms_linkages");
2581 switch ((e_flags & EF_IA_64_VMS_COMCOD))
2582 {
2583 case EF_IA_64_VMS_COMCOD_SUCCESS:
2584 break;
2585 case EF_IA_64_VMS_COMCOD_WARNING:
2586 strcat (buf, ", warning");
2587 break;
2588 case EF_IA_64_VMS_COMCOD_ERROR:
2589 strcat (buf, ", error");
2590 break;
2591 case EF_IA_64_VMS_COMCOD_ABORT:
2592 strcat (buf, ", abort");
2593 break;
2594 default:
2595 abort ();
2596 }
2597 }
2598 break;
2599
2600 case EM_VAX:
2601 if ((e_flags & EF_VAX_NONPIC))
2602 strcat (buf, ", non-PIC");
2603 if ((e_flags & EF_VAX_DFLOAT))
2604 strcat (buf, ", D-Float");
2605 if ((e_flags & EF_VAX_GFLOAT))
2606 strcat (buf, ", G-Float");
2607 break;
2608
2609 case EM_RX:
2610 if (e_flags & E_FLAG_RX_64BIT_DOUBLES)
2611 strcat (buf, ", 64-bit doubles");
2612 if (e_flags & E_FLAG_RX_DSP)
2613 strcat (buf, ", dsp");
2614 if (e_flags & E_FLAG_RX_PID)
2615 strcat (buf, ", pid");
2616 break;
2617
2618 case EM_S390:
2619 if (e_flags & EF_S390_HIGH_GPRS)
2620 strcat (buf, ", highgprs");
2621 break;
2622
2623 case EM_TI_C6000:
2624 if ((e_flags & EF_C6000_REL))
2625 strcat (buf, ", relocatable module");
2626 break;
2627 }
2628 }
2629
2630 return buf;
2631 }
2632
2633 static const char *
2634 get_osabi_name (unsigned int osabi)
2635 {
2636 static char buff[32];
2637
2638 switch (osabi)
2639 {
2640 case ELFOSABI_NONE: return "UNIX - System V";
2641 case ELFOSABI_HPUX: return "UNIX - HP-UX";
2642 case ELFOSABI_NETBSD: return "UNIX - NetBSD";
2643 case ELFOSABI_GNU: return "UNIX - GNU";
2644 case ELFOSABI_SOLARIS: return "UNIX - Solaris";
2645 case ELFOSABI_AIX: return "UNIX - AIX";
2646 case ELFOSABI_IRIX: return "UNIX - IRIX";
2647 case ELFOSABI_FREEBSD: return "UNIX - FreeBSD";
2648 case ELFOSABI_TRU64: return "UNIX - TRU64";
2649 case ELFOSABI_MODESTO: return "Novell - Modesto";
2650 case ELFOSABI_OPENBSD: return "UNIX - OpenBSD";
2651 case ELFOSABI_OPENVMS: return "VMS - OpenVMS";
2652 case ELFOSABI_NSK: return "HP - Non-Stop Kernel";
2653 case ELFOSABI_AROS: return "AROS";
2654 case ELFOSABI_FENIXOS: return "FenixOS";
2655 default:
2656 if (osabi >= 64)
2657 switch (elf_header.e_machine)
2658 {
2659 case EM_ARM:
2660 switch (osabi)
2661 {
2662 case ELFOSABI_ARM: return "ARM";
2663 default:
2664 break;
2665 }
2666 break;
2667
2668 case EM_MSP430:
2669 case EM_MSP430_OLD:
2670 switch (osabi)
2671 {
2672 case ELFOSABI_STANDALONE: return _("Standalone App");
2673 default:
2674 break;
2675 }
2676 break;
2677
2678 case EM_TI_C6000:
2679 switch (osabi)
2680 {
2681 case ELFOSABI_C6000_ELFABI: return _("Bare-metal C6000");
2682 case ELFOSABI_C6000_LINUX: return "Linux C6000";
2683 default:
2684 break;
2685 }
2686 break;
2687
2688 default:
2689 break;
2690 }
2691 snprintf (buff, sizeof (buff), _("<unknown: %x>"), osabi);
2692 return buff;
2693 }
2694 }
2695
2696 static const char *
2697 get_arm_segment_type (unsigned long type)
2698 {
2699 switch (type)
2700 {
2701 case PT_ARM_EXIDX:
2702 return "EXIDX";
2703 default:
2704 break;
2705 }
2706
2707 return NULL;
2708 }
2709
2710 static const char *
2711 get_mips_segment_type (unsigned long type)
2712 {
2713 switch (type)
2714 {
2715 case PT_MIPS_REGINFO:
2716 return "REGINFO";
2717 case PT_MIPS_RTPROC:
2718 return "RTPROC";
2719 case PT_MIPS_OPTIONS:
2720 return "OPTIONS";
2721 default:
2722 break;
2723 }
2724
2725 return NULL;
2726 }
2727
2728 static const char *
2729 get_parisc_segment_type (unsigned long type)
2730 {
2731 switch (type)
2732 {
2733 case PT_HP_TLS: return "HP_TLS";
2734 case PT_HP_CORE_NONE: return "HP_CORE_NONE";
2735 case PT_HP_CORE_VERSION: return "HP_CORE_VERSION";
2736 case PT_HP_CORE_KERNEL: return "HP_CORE_KERNEL";
2737 case PT_HP_CORE_COMM: return "HP_CORE_COMM";
2738 case PT_HP_CORE_PROC: return "HP_CORE_PROC";
2739 case PT_HP_CORE_LOADABLE: return "HP_CORE_LOADABLE";
2740 case PT_HP_CORE_STACK: return "HP_CORE_STACK";
2741 case PT_HP_CORE_SHM: return "HP_CORE_SHM";
2742 case PT_HP_CORE_MMF: return "HP_CORE_MMF";
2743 case PT_HP_PARALLEL: return "HP_PARALLEL";
2744 case PT_HP_FASTBIND: return "HP_FASTBIND";
2745 case PT_HP_OPT_ANNOT: return "HP_OPT_ANNOT";
2746 case PT_HP_HSL_ANNOT: return "HP_HSL_ANNOT";
2747 case PT_HP_STACK: return "HP_STACK";
2748 case PT_HP_CORE_UTSNAME: return "HP_CORE_UTSNAME";
2749 case PT_PARISC_ARCHEXT: return "PARISC_ARCHEXT";
2750 case PT_PARISC_UNWIND: return "PARISC_UNWIND";
2751 case PT_PARISC_WEAKORDER: return "PARISC_WEAKORDER";
2752 default:
2753 break;
2754 }
2755
2756 return NULL;
2757 }
2758
2759 static const char *
2760 get_ia64_segment_type (unsigned long type)
2761 {
2762 switch (type)
2763 {
2764 case PT_IA_64_ARCHEXT: return "IA_64_ARCHEXT";
2765 case PT_IA_64_UNWIND: return "IA_64_UNWIND";
2766 case PT_HP_TLS: return "HP_TLS";
2767 case PT_IA_64_HP_OPT_ANOT: return "HP_OPT_ANNOT";
2768 case PT_IA_64_HP_HSL_ANOT: return "HP_HSL_ANNOT";
2769 case PT_IA_64_HP_STACK: return "HP_STACK";
2770 default:
2771 break;
2772 }
2773
2774 return NULL;
2775 }
2776
2777 static const char *
2778 get_tic6x_segment_type (unsigned long type)
2779 {
2780 switch (type)
2781 {
2782 case PT_C6000_PHATTR: return "C6000_PHATTR";
2783 default:
2784 break;
2785 }
2786
2787 return NULL;
2788 }
2789
2790 static const char *
2791 get_segment_type (unsigned long p_type)
2792 {
2793 static char buff[32];
2794
2795 switch (p_type)
2796 {
2797 case PT_NULL: return "NULL";
2798 case PT_LOAD: return "LOAD";
2799 case PT_DYNAMIC: return "DYNAMIC";
2800 case PT_INTERP: return "INTERP";
2801 case PT_NOTE: return "NOTE";
2802 case PT_SHLIB: return "SHLIB";
2803 case PT_PHDR: return "PHDR";
2804 case PT_TLS: return "TLS";
2805
2806 case PT_GNU_EH_FRAME:
2807 return "GNU_EH_FRAME";
2808 case PT_GNU_STACK: return "GNU_STACK";
2809 case PT_GNU_RELRO: return "GNU_RELRO";
2810
2811 default:
2812 if ((p_type >= PT_LOPROC) && (p_type <= PT_HIPROC))
2813 {
2814 const char * result;
2815
2816 switch (elf_header.e_machine)
2817 {
2818 case EM_ARM:
2819 result = get_arm_segment_type (p_type);
2820 break;
2821 case EM_MIPS:
2822 case EM_MIPS_RS3_LE:
2823 result = get_mips_segment_type (p_type);
2824 break;
2825 case EM_PARISC:
2826 result = get_parisc_segment_type (p_type);
2827 break;
2828 case EM_IA_64:
2829 result = get_ia64_segment_type (p_type);
2830 break;
2831 case EM_TI_C6000:
2832 result = get_tic6x_segment_type (p_type);
2833 break;
2834 default:
2835 result = NULL;
2836 break;
2837 }
2838
2839 if (result != NULL)
2840 return result;
2841
2842 sprintf (buff, "LOPROC+%lx", p_type - PT_LOPROC);
2843 }
2844 else if ((p_type >= PT_LOOS) && (p_type <= PT_HIOS))
2845 {
2846 const char * result;
2847
2848 switch (elf_header.e_machine)
2849 {
2850 case EM_PARISC:
2851 result = get_parisc_segment_type (p_type);
2852 break;
2853 case EM_IA_64:
2854 result = get_ia64_segment_type (p_type);
2855 break;
2856 default:
2857 result = NULL;
2858 break;
2859 }
2860
2861 if (result != NULL)
2862 return result;
2863
2864 sprintf (buff, "LOOS+%lx", p_type - PT_LOOS);
2865 }
2866 else
2867 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), p_type);
2868
2869 return buff;
2870 }
2871 }
2872
2873 static const char *
2874 get_mips_section_type_name (unsigned int sh_type)
2875 {
2876 switch (sh_type)
2877 {
2878 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST";
2879 case SHT_MIPS_MSYM: return "MIPS_MSYM";
2880 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT";
2881 case SHT_MIPS_GPTAB: return "MIPS_GPTAB";
2882 case SHT_MIPS_UCODE: return "MIPS_UCODE";
2883 case SHT_MIPS_DEBUG: return "MIPS_DEBUG";
2884 case SHT_MIPS_REGINFO: return "MIPS_REGINFO";
2885 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE";
2886 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM";
2887 case SHT_MIPS_RELD: return "MIPS_RELD";
2888 case SHT_MIPS_IFACE: return "MIPS_IFACE";
2889 case SHT_MIPS_CONTENT: return "MIPS_CONTENT";
2890 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS";
2891 case SHT_MIPS_SHDR: return "MIPS_SHDR";
2892 case SHT_MIPS_FDESC: return "MIPS_FDESC";
2893 case SHT_MIPS_EXTSYM: return "MIPS_EXTSYM";
2894 case SHT_MIPS_DENSE: return "MIPS_DENSE";
2895 case SHT_MIPS_PDESC: return "MIPS_PDESC";
2896 case SHT_MIPS_LOCSYM: return "MIPS_LOCSYM";
2897 case SHT_MIPS_AUXSYM: return "MIPS_AUXSYM";
2898 case SHT_MIPS_OPTSYM: return "MIPS_OPTSYM";
2899 case SHT_MIPS_LOCSTR: return "MIPS_LOCSTR";
2900 case SHT_MIPS_LINE: return "MIPS_LINE";
2901 case SHT_MIPS_RFDESC: return "MIPS_RFDESC";
2902 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM";
2903 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST";
2904 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS";
2905 case SHT_MIPS_DWARF: return "MIPS_DWARF";
2906 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL";
2907 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
2908 case SHT_MIPS_EVENTS: return "MIPS_EVENTS";
2909 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE";
2910 case SHT_MIPS_PIXIE: return "MIPS_PIXIE";
2911 case SHT_MIPS_XLATE: return "MIPS_XLATE";
2912 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG";
2913 case SHT_MIPS_WHIRL: return "MIPS_WHIRL";
2914 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION";
2915 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD";
2916 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION";
2917 default:
2918 break;
2919 }
2920 return NULL;
2921 }
2922
2923 static const char *
2924 get_parisc_section_type_name (unsigned int sh_type)
2925 {
2926 switch (sh_type)
2927 {
2928 case SHT_PARISC_EXT: return "PARISC_EXT";
2929 case SHT_PARISC_UNWIND: return "PARISC_UNWIND";
2930 case SHT_PARISC_DOC: return "PARISC_DOC";
2931 case SHT_PARISC_ANNOT: return "PARISC_ANNOT";
2932 case SHT_PARISC_SYMEXTN: return "PARISC_SYMEXTN";
2933 case SHT_PARISC_STUBS: return "PARISC_STUBS";
2934 case SHT_PARISC_DLKM: return "PARISC_DLKM";
2935 default:
2936 break;
2937 }
2938 return NULL;
2939 }
2940
2941 static const char *
2942 get_ia64_section_type_name (unsigned int sh_type)
2943 {
2944 /* If the top 8 bits are 0x78 the next 8 are the os/abi ID. */
2945 if ((sh_type & 0xFF000000) == SHT_IA_64_LOPSREG)
2946 return get_osabi_name ((sh_type & 0x00FF0000) >> 16);
2947
2948 switch (sh_type)
2949 {
2950 case SHT_IA_64_EXT: return "IA_64_EXT";
2951 case SHT_IA_64_UNWIND: return "IA_64_UNWIND";
2952 case SHT_IA_64_PRIORITY_INIT: return "IA_64_PRIORITY_INIT";
2953 case SHT_IA_64_VMS_TRACE: return "VMS_TRACE";
2954 case SHT_IA_64_VMS_TIE_SIGNATURES: return "VMS_TIE_SIGNATURES";
2955 case SHT_IA_64_VMS_DEBUG: return "VMS_DEBUG";
2956 case SHT_IA_64_VMS_DEBUG_STR: return "VMS_DEBUG_STR";
2957 case SHT_IA_64_VMS_LINKAGES: return "VMS_LINKAGES";
2958 case SHT_IA_64_VMS_SYMBOL_VECTOR: return "VMS_SYMBOL_VECTOR";
2959 case SHT_IA_64_VMS_FIXUP: return "VMS_FIXUP";
2960 default:
2961 break;
2962 }
2963 return NULL;
2964 }
2965
2966 static const char *
2967 get_x86_64_section_type_name (unsigned int sh_type)
2968 {
2969 switch (sh_type)
2970 {
2971 case SHT_X86_64_UNWIND: return "X86_64_UNWIND";
2972 default:
2973 break;
2974 }
2975 return NULL;
2976 }
2977
2978 static const char *
2979 get_arm_section_type_name (unsigned int sh_type)
2980 {
2981 switch (sh_type)
2982 {
2983 case SHT_ARM_EXIDX: return "ARM_EXIDX";
2984 case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP";
2985 case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES";
2986 case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY";
2987 case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION";
2988 default:
2989 break;
2990 }
2991 return NULL;
2992 }
2993
2994 static const char *
2995 get_tic6x_section_type_name (unsigned int sh_type)
2996 {
2997 switch (sh_type)
2998 {
2999 case SHT_C6000_UNWIND:
3000 return "C6000_UNWIND";
3001 case SHT_C6000_PREEMPTMAP:
3002 return "C6000_PREEMPTMAP";
3003 case SHT_C6000_ATTRIBUTES:
3004 return "C6000_ATTRIBUTES";
3005 case SHT_TI_ICODE:
3006 return "TI_ICODE";
3007 case SHT_TI_XREF:
3008 return "TI_XREF";
3009 case SHT_TI_HANDLER:
3010 return "TI_HANDLER";
3011 case SHT_TI_INITINFO:
3012 return "TI_INITINFO";
3013 case SHT_TI_PHATTRS:
3014 return "TI_PHATTRS";
3015 default:
3016 break;
3017 }
3018 return NULL;
3019 }
3020
3021 static const char *
3022 get_section_type_name (unsigned int sh_type)
3023 {
3024 static char buff[32];
3025
3026 switch (sh_type)
3027 {
3028 case SHT_NULL: return "NULL";
3029 case SHT_PROGBITS: return "PROGBITS";
3030 case SHT_SYMTAB: return "SYMTAB";
3031 case SHT_STRTAB: return "STRTAB";
3032 case SHT_RELA: return "RELA";
3033 case SHT_HASH: return "HASH";
3034 case SHT_DYNAMIC: return "DYNAMIC";
3035 case SHT_NOTE: return "NOTE";
3036 case SHT_NOBITS: return "NOBITS";
3037 case SHT_REL: return "REL";
3038 case SHT_SHLIB: return "SHLIB";
3039 case SHT_DYNSYM: return "DYNSYM";
3040 case SHT_INIT_ARRAY: return "INIT_ARRAY";
3041 case SHT_FINI_ARRAY: return "FINI_ARRAY";
3042 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY";
3043 case SHT_GNU_HASH: return "GNU_HASH";
3044 case SHT_GROUP: return "GROUP";
3045 case SHT_SYMTAB_SHNDX: return "SYMTAB SECTION INDICIES";
3046 case SHT_GNU_verdef: return "VERDEF";
3047 case SHT_GNU_verneed: return "VERNEED";
3048 case SHT_GNU_versym: return "VERSYM";
3049 case 0x6ffffff0: return "VERSYM";
3050 case 0x6ffffffc: return "VERDEF";
3051 case 0x7ffffffd: return "AUXILIARY";
3052 case 0x7fffffff: return "FILTER";
3053 case SHT_GNU_LIBLIST: return "GNU_LIBLIST";
3054
3055 default:
3056 if ((sh_type >= SHT_LOPROC) && (sh_type <= SHT_HIPROC))
3057 {
3058 const char * result;
3059
3060 switch (elf_header.e_machine)
3061 {
3062 case EM_MIPS:
3063 case EM_MIPS_RS3_LE:
3064 result = get_mips_section_type_name (sh_type);
3065 break;
3066 case EM_PARISC:
3067 result = get_parisc_section_type_name (sh_type);
3068 break;
3069 case EM_IA_64:
3070 result = get_ia64_section_type_name (sh_type);
3071 break;
3072 case EM_X86_64:
3073 case EM_L1OM:
3074 case EM_K1OM:
3075 result = get_x86_64_section_type_name (sh_type);
3076 break;
3077 case EM_ARM:
3078 result = get_arm_section_type_name (sh_type);
3079 break;
3080 case EM_TI_C6000:
3081 result = get_tic6x_section_type_name (sh_type);
3082 break;
3083 default:
3084 result = NULL;
3085 break;
3086 }
3087
3088 if (result != NULL)
3089 return result;
3090
3091 sprintf (buff, "LOPROC+%x", sh_type - SHT_LOPROC);
3092 }
3093 else if ((sh_type >= SHT_LOOS) && (sh_type <= SHT_HIOS))
3094 {
3095 const char * result;
3096
3097 switch (elf_header.e_machine)
3098 {
3099 case EM_IA_64:
3100 result = get_ia64_section_type_name (sh_type);
3101 break;
3102 default:
3103 result = NULL;
3104 break;
3105 }
3106
3107 if (result != NULL)
3108 return result;
3109
3110 sprintf (buff, "LOOS+%x", sh_type - SHT_LOOS);
3111 }
3112 else if ((sh_type >= SHT_LOUSER) && (sh_type <= SHT_HIUSER))
3113 sprintf (buff, "LOUSER+%x", sh_type - SHT_LOUSER);
3114 else
3115 /* This message is probably going to be displayed in a 15
3116 character wide field, so put the hex value first. */
3117 snprintf (buff, sizeof (buff), _("%08x: <unknown>"), sh_type);
3118
3119 return buff;
3120 }
3121 }
3122
3123 #define OPTION_DEBUG_DUMP 512
3124 #define OPTION_DYN_SYMS 513
3125 #define OPTION_DWARF_DEPTH 514
3126 #define OPTION_DWARF_START 515
3127
3128 static struct option options[] =
3129 {
3130 {"all", no_argument, 0, 'a'},
3131 {"file-header", no_argument, 0, 'h'},
3132 {"program-headers", no_argument, 0, 'l'},
3133 {"headers", no_argument, 0, 'e'},
3134 {"histogram", no_argument, 0, 'I'},
3135 {"segments", no_argument, 0, 'l'},
3136 {"sections", no_argument, 0, 'S'},
3137 {"section-headers", no_argument, 0, 'S'},
3138 {"section-groups", no_argument, 0, 'g'},
3139 {"section-details", no_argument, 0, 't'},
3140 {"full-section-name",no_argument, 0, 'N'},
3141 {"symbols", no_argument, 0, 's'},
3142 {"syms", no_argument, 0, 's'},
3143 {"dyn-syms", no_argument, 0, OPTION_DYN_SYMS},
3144 {"relocs", no_argument, 0, 'r'},
3145 {"notes", no_argument, 0, 'n'},
3146 {"dynamic", no_argument, 0, 'd'},
3147 {"arch-specific", no_argument, 0, 'A'},
3148 {"version-info", no_argument, 0, 'V'},
3149 {"use-dynamic", no_argument, 0, 'D'},
3150 {"unwind", no_argument, 0, 'u'},
3151 {"archive-index", no_argument, 0, 'c'},
3152 {"hex-dump", required_argument, 0, 'x'},
3153 {"relocated-dump", required_argument, 0, 'R'},
3154 {"string-dump", required_argument, 0, 'p'},
3155 #ifdef SUPPORT_DISASSEMBLY
3156 {"instruction-dump", required_argument, 0, 'i'},
3157 #endif
3158 {"debug-dump", optional_argument, 0, OPTION_DEBUG_DUMP},
3159
3160 {"dwarf-depth", required_argument, 0, OPTION_DWARF_DEPTH},
3161 {"dwarf-start", required_argument, 0, OPTION_DWARF_START},
3162
3163 {"version", no_argument, 0, 'v'},
3164 {"wide", no_argument, 0, 'W'},
3165 {"help", no_argument, 0, 'H'},
3166 {0, no_argument, 0, 0}
3167 };
3168
3169 static void
3170 usage (FILE * stream)
3171 {
3172 fprintf (stream, _("Usage: readelf <option(s)> elf-file(s)\n"));
3173 fprintf (stream, _(" Display information about the contents of ELF format files\n"));
3174 fprintf (stream, _(" Options are:\n\
3175 -a --all Equivalent to: -h -l -S -s -r -d -V -A -I\n\
3176 -h --file-header Display the ELF file header\n\
3177 -l --program-headers Display the program headers\n\
3178 --segments An alias for --program-headers\n\
3179 -S --section-headers Display the sections' header\n\
3180 --sections An alias for --section-headers\n\
3181 -g --section-groups Display the section groups\n\
3182 -t --section-details Display the section details\n\
3183 -e --headers Equivalent to: -h -l -S\n\
3184 -s --syms Display the symbol table\n\
3185 --symbols An alias for --syms\n\
3186 --dyn-syms Display the dynamic symbol table\n\
3187 -n --notes Display the core notes (if present)\n\
3188 -r --relocs Display the relocations (if present)\n\
3189 -u --unwind Display the unwind info (if present)\n\
3190 -d --dynamic Display the dynamic section (if present)\n\
3191 -V --version-info Display the version sections (if present)\n\
3192 -A --arch-specific Display architecture specific information (if any)\n\
3193 -c --archive-index Display the symbol/file index in an archive\n\
3194 -D --use-dynamic Use the dynamic section info when displaying symbols\n\
3195 -x --hex-dump=<number|name>\n\
3196 Dump the contents of section <number|name> as bytes\n\
3197 -p --string-dump=<number|name>\n\
3198 Dump the contents of section <number|name> as strings\n\
3199 -R --relocated-dump=<number|name>\n\
3200 Dump the contents of section <number|name> as relocated bytes\n\
3201 -w[lLiaprmfFsoRt] or\n\
3202 --debug-dump[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,\n\
3203 =frames-interp,=str,=loc,=Ranges,=pubtypes,\n\
3204 =gdb_index,=trace_info,=trace_abbrev,=trace_aranges]\n\
3205 Display the contents of DWARF2 debug sections\n"));
3206 fprintf (stream, _("\
3207 --dwarf-depth=N Do not display DIEs at depth N or greater\n\
3208 --dwarf-start=N Display DIEs starting with N, at the same depth\n\
3209 or deeper\n"));
3210 #ifdef SUPPORT_DISASSEMBLY
3211 fprintf (stream, _("\
3212 -i --instruction-dump=<number|name>\n\
3213 Disassemble the contents of section <number|name>\n"));
3214 #endif
3215 fprintf (stream, _("\
3216 -I --histogram Display histogram of bucket list lengths\n\
3217 -W --wide Allow output width to exceed 80 characters\n\
3218 @<file> Read options from <file>\n\
3219 -H --help Display this information\n\
3220 -v --version Display the version number of readelf\n"));
3221
3222 if (REPORT_BUGS_TO[0] && stream == stdout)
3223 fprintf (stdout, _("Report bugs to %s\n"), REPORT_BUGS_TO);
3224
3225 exit (stream == stdout ? 0 : 1);
3226 }
3227
3228 /* Record the fact that the user wants the contents of section number
3229 SECTION to be displayed using the method(s) encoded as flags bits
3230 in TYPE. Note, TYPE can be zero if we are creating the array for
3231 the first time. */
3232
3233 static void
3234 request_dump_bynumber (unsigned int section, dump_type type)
3235 {
3236 if (section >= num_dump_sects)
3237 {
3238 dump_type * new_dump_sects;
3239
3240 new_dump_sects = (dump_type *) calloc (section + 1,
3241 sizeof (* dump_sects));
3242
3243 if (new_dump_sects == NULL)
3244 error (_("Out of memory allocating dump request table.\n"));
3245 else
3246 {
3247 /* Copy current flag settings. */
3248 memcpy (new_dump_sects, dump_sects, num_dump_sects * sizeof (* dump_sects));
3249
3250 free (dump_sects);
3251
3252 dump_sects = new_dump_sects;
3253 num_dump_sects = section + 1;
3254 }
3255 }
3256
3257 if (dump_sects)
3258 dump_sects[section] |= type;
3259
3260 return;
3261 }
3262
3263 /* Request a dump by section name. */
3264
3265 static void
3266 request_dump_byname (const char * section, dump_type type)
3267 {
3268 struct dump_list_entry * new_request;
3269
3270 new_request = (struct dump_list_entry *)
3271 malloc (sizeof (struct dump_list_entry));
3272 if (!new_request)
3273 error (_("Out of memory allocating dump request table.\n"));
3274
3275 new_request->name = strdup (section);
3276 if (!new_request->name)
3277 error (_("Out of memory allocating dump request table.\n"));
3278
3279 new_request->type = type;
3280
3281 new_request->next = dump_sects_byname;
3282 dump_sects_byname = new_request;
3283 }
3284
3285 static inline void
3286 request_dump (dump_type type)
3287 {
3288 int section;
3289 char * cp;
3290
3291 do_dump++;
3292 section = strtoul (optarg, & cp, 0);
3293
3294 if (! *cp && section >= 0)
3295 request_dump_bynumber (section, type);
3296 else
3297 request_dump_byname (optarg, type);
3298 }
3299
3300
3301 static void
3302 parse_args (int argc, char ** argv)
3303 {
3304 int c;
3305
3306 if (argc < 2)
3307 usage (stderr);
3308
3309 while ((c = getopt_long
3310 (argc, argv, "ADHINR:SVWacdeghi:lnp:rstuvw::x:", options, NULL)) != EOF)
3311 {
3312 switch (c)
3313 {
3314 case 0:
3315 /* Long options. */
3316 break;
3317 case 'H':
3318 usage (stdout);
3319 break;
3320
3321 case 'a':
3322 do_syms++;
3323 do_reloc++;
3324 do_unwind++;
3325 do_dynamic++;
3326 do_header++;
3327 do_sections++;
3328 do_section_groups++;
3329 do_segments++;
3330 do_version++;
3331 do_histogram++;
3332 do_arch++;
3333 do_notes++;
3334 break;
3335 case 'g':
3336 do_section_groups++;
3337 break;
3338 case 't':
3339 case 'N':
3340 do_sections++;
3341 do_section_details++;
3342 break;
3343 case 'e':
3344 do_header++;
3345 do_sections++;
3346 do_segments++;
3347 break;
3348 case 'A':
3349 do_arch++;
3350 break;
3351 case 'D':
3352 do_using_dynamic++;
3353 break;
3354 case 'r':
3355 do_reloc++;
3356 break;
3357 case 'u':
3358 do_unwind++;
3359 break;
3360 case 'h':
3361 do_header++;
3362 break;
3363 case 'l':
3364 do_segments++;
3365 break;
3366 case 's':
3367 do_syms++;
3368 break;
3369 case 'S':
3370 do_sections++;
3371 break;
3372 case 'd':
3373 do_dynamic++;
3374 break;
3375 case 'I':
3376 do_histogram++;
3377 break;
3378 case 'n':
3379 do_notes++;
3380 break;
3381 case 'c':
3382 do_archive_index++;
3383 break;
3384 case 'x':
3385 request_dump (HEX_DUMP);
3386 break;
3387 case 'p':
3388 request_dump (STRING_DUMP);
3389 break;
3390 case 'R':
3391 request_dump (RELOC_DUMP);
3392 break;
3393 case 'w':
3394 do_dump++;
3395 if (optarg == 0)
3396 {
3397 do_debugging = 1;
3398 dwarf_select_sections_all ();
3399 }
3400 else
3401 {
3402 do_debugging = 0;
3403 dwarf_select_sections_by_letters (optarg);
3404 }
3405 break;
3406 case OPTION_DEBUG_DUMP:
3407 do_dump++;
3408 if (optarg == 0)
3409 do_debugging = 1;
3410 else
3411 {
3412 do_debugging = 0;
3413 dwarf_select_sections_by_names (optarg);
3414 }
3415 break;
3416 case OPTION_DWARF_DEPTH:
3417 {
3418 char *cp;
3419
3420 dwarf_cutoff_level = strtoul (optarg, & cp, 0);
3421 }
3422 break;
3423 case OPTION_DWARF_START:
3424 {
3425 char *cp;
3426
3427 dwarf_start_die = strtoul (optarg, & cp, 0);
3428 }
3429 break;
3430 case OPTION_DYN_SYMS:
3431 do_dyn_syms++;
3432 break;
3433 #ifdef SUPPORT_DISASSEMBLY
3434 case 'i':
3435 request_dump (DISASS_DUMP);
3436 break;
3437 #endif
3438 case 'v':
3439 print_version (program_name);
3440 break;
3441 case 'V':
3442 do_version++;
3443 break;
3444 case 'W':
3445 do_wide++;
3446 break;
3447 default:
3448 /* xgettext:c-format */
3449 error (_("Invalid option '-%c'\n"), c);
3450 /* Drop through. */
3451 case '?':
3452 usage (stderr);
3453 }
3454 }
3455
3456 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
3457 && !do_segments && !do_header && !do_dump && !do_version
3458 && !do_histogram && !do_debugging && !do_arch && !do_notes
3459 && !do_section_groups && !do_archive_index
3460 && !do_dyn_syms)
3461 usage (stderr);
3462 else if (argc < 3)
3463 {
3464 warn (_("Nothing to do.\n"));
3465 usage (stderr);
3466 }
3467 }
3468
3469 static const char *
3470 get_elf_class (unsigned int elf_class)
3471 {
3472 static char buff[32];
3473
3474 switch (elf_class)
3475 {
3476 case ELFCLASSNONE: return _("none");
3477 case ELFCLASS32: return "ELF32";
3478 case ELFCLASS64: return "ELF64";
3479 default:
3480 snprintf (buff, sizeof (buff), _("<unknown: %x>"), elf_class);
3481 return buff;
3482 }
3483 }
3484
3485 static const char *
3486 get_data_encoding (unsigned int encoding)
3487 {
3488 static char buff[32];
3489
3490 switch (encoding)
3491 {
3492 case ELFDATANONE: return _("none");
3493 case ELFDATA2LSB: return _("2's complement, little endian");
3494 case ELFDATA2MSB: return _("2's complement, big endian");
3495 default:
3496 snprintf (buff, sizeof (buff), _("<unknown: %x>"), encoding);
3497 return buff;
3498 }
3499 }
3500
3501 /* Decode the data held in 'elf_header'. */
3502
3503 static int
3504 process_file_header (void)
3505 {
3506 if ( elf_header.e_ident[EI_MAG0] != ELFMAG0
3507 || elf_header.e_ident[EI_MAG1] != ELFMAG1
3508 || elf_header.e_ident[EI_MAG2] != ELFMAG2
3509 || elf_header.e_ident[EI_MAG3] != ELFMAG3)
3510 {
3511 error
3512 (_("Not an ELF file - it has the wrong magic bytes at the start\n"));
3513 return 0;
3514 }
3515
3516 init_dwarf_regnames (elf_header.e_machine);
3517
3518 if (do_header)
3519 {
3520 int i;
3521
3522 printf (_("ELF Header:\n"));
3523 printf (_(" Magic: "));
3524 for (i = 0; i < EI_NIDENT; i++)
3525 printf ("%2.2x ", elf_header.e_ident[i]);
3526 printf ("\n");
3527 printf (_(" Class: %s\n"),
3528 get_elf_class (elf_header.e_ident[EI_CLASS]));
3529 printf (_(" Data: %s\n"),
3530 get_data_encoding (elf_header.e_ident[EI_DATA]));
3531 printf (_(" Version: %d %s\n"),
3532 elf_header.e_ident[EI_VERSION],
3533 (elf_header.e_ident[EI_VERSION] == EV_CURRENT
3534 ? "(current)"
3535 : (elf_header.e_ident[EI_VERSION] != EV_NONE
3536 ? _("<unknown: %lx>")
3537 : "")));
3538 printf (_(" OS/ABI: %s\n"),
3539 get_osabi_name (elf_header.e_ident[EI_OSABI]));
3540 printf (_(" ABI Version: %d\n"),
3541 elf_header.e_ident[EI_ABIVERSION]);
3542 printf (_(" Type: %s\n"),
3543 get_file_type (elf_header.e_type));
3544 printf (_(" Machine: %s\n"),
3545 get_machine_name (elf_header.e_machine));
3546 printf (_(" Version: 0x%lx\n"),
3547 (unsigned long) elf_header.e_version);
3548
3549 printf (_(" Entry point address: "));
3550 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
3551 printf (_("\n Start of program headers: "));
3552 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
3553 printf (_(" (bytes into file)\n Start of section headers: "));
3554 print_vma ((bfd_vma) elf_header.e_shoff, DEC);
3555 printf (_(" (bytes into file)\n"));
3556
3557 printf (_(" Flags: 0x%lx%s\n"),
3558 (unsigned long) elf_header.e_flags,
3559 get_machine_flags (elf_header.e_flags, elf_header.e_machine));
3560 printf (_(" Size of this header: %ld (bytes)\n"),
3561 (long) elf_header.e_ehsize);
3562 printf (_(" Size of program headers: %ld (bytes)\n"),
3563 (long) elf_header.e_phentsize);
3564 printf (_(" Number of program headers: %ld"),
3565 (long) elf_header.e_phnum);
3566 if (section_headers != NULL
3567 && elf_header.e_phnum == PN_XNUM
3568 && section_headers[0].sh_info != 0)
3569 printf (" (%ld)", (long) section_headers[0].sh_info);
3570 putc ('\n', stdout);
3571 printf (_(" Size of section headers: %ld (bytes)\n"),
3572 (long) elf_header.e_shentsize);
3573 printf (_(" Number of section headers: %ld"),
3574 (long) elf_header.e_shnum);
3575 if (section_headers != NULL && elf_header.e_shnum == SHN_UNDEF)
3576 printf (" (%ld)", (long) section_headers[0].sh_size);
3577 putc ('\n', stdout);
3578 printf (_(" Section header string table index: %ld"),
3579 (long) elf_header.e_shstrndx);
3580 if (section_headers != NULL
3581 && elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
3582 printf (" (%u)", section_headers[0].sh_link);
3583 else if (elf_header.e_shstrndx != SHN_UNDEF
3584 && elf_header.e_shstrndx >= elf_header.e_shnum)
3585 printf (_(" <corrupt: out of range>"));
3586 putc ('\n', stdout);
3587 }
3588
3589 if (section_headers != NULL)
3590 {
3591 if (elf_header.e_phnum == PN_XNUM
3592 && section_headers[0].sh_info != 0)
3593 elf_header.e_phnum = section_headers[0].sh_info;
3594 if (elf_header.e_shnum == SHN_UNDEF)
3595 elf_header.e_shnum = section_headers[0].sh_size;
3596 if (elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
3597 elf_header.e_shstrndx = section_headers[0].sh_link;
3598 else if (elf_header.e_shstrndx >= elf_header.e_shnum)
3599 elf_header.e_shstrndx = SHN_UNDEF;
3600 free (section_headers);
3601 section_headers = NULL;
3602 }
3603
3604 return 1;
3605 }
3606
3607
3608 static int
3609 get_32bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
3610 {
3611 Elf32_External_Phdr * phdrs;
3612 Elf32_External_Phdr * external;
3613 Elf_Internal_Phdr * internal;
3614 unsigned int i;
3615
3616 phdrs = (Elf32_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
3617 elf_header.e_phentsize,
3618 elf_header.e_phnum,
3619 _("program headers"));
3620 if (!phdrs)
3621 return 0;
3622
3623 for (i = 0, internal = pheaders, external = phdrs;
3624 i < elf_header.e_phnum;
3625 i++, internal++, external++)
3626 {
3627 internal->p_type = BYTE_GET (external->p_type);
3628 internal->p_offset = BYTE_GET (external->p_offset);
3629 internal->p_vaddr = BYTE_GET (external->p_vaddr);
3630 internal->p_paddr = BYTE_GET (external->p_paddr);
3631 internal->p_filesz = BYTE_GET (external->p_filesz);
3632 internal->p_memsz = BYTE_GET (external->p_memsz);
3633 internal->p_flags = BYTE_GET (external->p_flags);
3634 internal->p_align = BYTE_GET (external->p_align);
3635 }
3636
3637 free (phdrs);
3638
3639 return 1;
3640 }
3641
3642 static int
3643 get_64bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
3644 {
3645 Elf64_External_Phdr * phdrs;
3646 Elf64_External_Phdr * external;
3647 Elf_Internal_Phdr * internal;
3648 unsigned int i;
3649
3650 phdrs = (Elf64_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
3651 elf_header.e_phentsize,
3652 elf_header.e_phnum,
3653 _("program headers"));
3654 if (!phdrs)
3655 return 0;
3656
3657 for (i = 0, internal = pheaders, external = phdrs;
3658 i < elf_header.e_phnum;
3659 i++, internal++, external++)
3660 {
3661 internal->p_type = BYTE_GET (external->p_type);
3662 internal->p_flags = BYTE_GET (external->p_flags);
3663 internal->p_offset = BYTE_GET (external->p_offset);
3664 internal->p_vaddr = BYTE_GET (external->p_vaddr);
3665 internal->p_paddr = BYTE_GET (external->p_paddr);
3666 internal->p_filesz = BYTE_GET (external->p_filesz);
3667 internal->p_memsz = BYTE_GET (external->p_memsz);
3668 internal->p_align = BYTE_GET (external->p_align);
3669 }
3670
3671 free (phdrs);
3672
3673 return 1;
3674 }
3675
3676 /* Returns 1 if the program headers were read into `program_headers'. */
3677
3678 static int
3679 get_program_headers (FILE * file)
3680 {
3681 Elf_Internal_Phdr * phdrs;
3682
3683 /* Check cache of prior read. */
3684 if (program_headers != NULL)
3685 return 1;
3686
3687 phdrs = (Elf_Internal_Phdr *) cmalloc (elf_header.e_phnum,
3688 sizeof (Elf_Internal_Phdr));
3689
3690 if (phdrs == NULL)
3691 {
3692 error (_("Out of memory\n"));
3693 return 0;
3694 }
3695
3696 if (is_32bit_elf
3697 ? get_32bit_program_headers (file, phdrs)
3698 : get_64bit_program_headers (file, phdrs))
3699 {
3700 program_headers = phdrs;
3701 return 1;
3702 }
3703
3704 free (phdrs);
3705 return 0;
3706 }
3707
3708 /* Returns 1 if the program headers were loaded. */
3709
3710 static int
3711 process_program_headers (FILE * file)
3712 {
3713 Elf_Internal_Phdr * segment;
3714 unsigned int i;
3715
3716 if (elf_header.e_phnum == 0)
3717 {
3718 /* PR binutils/12467. */
3719 if (elf_header.e_phoff != 0)
3720 warn (_("possibly corrupt ELF header - it has a non-zero program"
3721 " header offset, but no program headers"));
3722 else if (do_segments)
3723 printf (_("\nThere are no program headers in this file.\n"));
3724 return 0;
3725 }
3726
3727 if (do_segments && !do_header)
3728 {
3729 printf (_("\nElf file type is %s\n"), get_file_type (elf_header.e_type));
3730 printf (_("Entry point "));
3731 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
3732 printf (_("\nThere are %d program headers, starting at offset "),
3733 elf_header.e_phnum);
3734 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
3735 printf ("\n");
3736 }
3737
3738 if (! get_program_headers (file))
3739 return 0;
3740
3741 if (do_segments)
3742 {
3743 if (elf_header.e_phnum > 1)
3744 printf (_("\nProgram Headers:\n"));
3745 else
3746 printf (_("\nProgram Headers:\n"));
3747
3748 if (is_32bit_elf)
3749 printf
3750 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
3751 else if (do_wide)
3752 printf
3753 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
3754 else
3755 {
3756 printf
3757 (_(" Type Offset VirtAddr PhysAddr\n"));
3758 printf
3759 (_(" FileSiz MemSiz Flags Align\n"));
3760 }
3761 }
3762
3763 dynamic_addr = 0;
3764 dynamic_size = 0;
3765
3766 for (i = 0, segment = program_headers;
3767 i < elf_header.e_phnum;
3768 i++, segment++)
3769 {
3770 if (do_segments)
3771 {
3772 printf (" %-14.14s ", get_segment_type (segment->p_type));
3773
3774 if (is_32bit_elf)
3775 {
3776 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
3777 printf ("0x%8.8lx ", (unsigned long) segment->p_vaddr);
3778 printf ("0x%8.8lx ", (unsigned long) segment->p_paddr);
3779 printf ("0x%5.5lx ", (unsigned long) segment->p_filesz);
3780 printf ("0x%5.5lx ", (unsigned long) segment->p_memsz);
3781 printf ("%c%c%c ",
3782 (segment->p_flags & PF_R ? 'R' : ' '),
3783 (segment->p_flags & PF_W ? 'W' : ' '),
3784 (segment->p_flags & PF_X ? 'E' : ' '));
3785 printf ("%#lx", (unsigned long) segment->p_align);
3786 }
3787 else if (do_wide)
3788 {
3789 if ((unsigned long) segment->p_offset == segment->p_offset)
3790 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
3791 else
3792 {
3793 print_vma (segment->p_offset, FULL_HEX);
3794 putchar (' ');
3795 }
3796
3797 print_vma (segment->p_vaddr, FULL_HEX);
3798 putchar (' ');
3799 print_vma (segment->p_paddr, FULL_HEX);
3800 putchar (' ');
3801
3802 if ((unsigned long) segment->p_filesz == segment->p_filesz)
3803 printf ("0x%6.6lx ", (unsigned long) segment->p_filesz);
3804 else
3805 {
3806 print_vma (segment->p_filesz, FULL_HEX);
3807 putchar (' ');
3808 }
3809
3810 if ((unsigned long) segment->p_memsz == segment->p_memsz)
3811 printf ("0x%6.6lx", (unsigned long) segment->p_memsz);
3812 else
3813 {
3814 print_vma (segment->p_memsz, FULL_HEX);
3815 }
3816
3817 printf (" %c%c%c ",
3818 (segment->p_flags & PF_R ? 'R' : ' '),
3819 (segment->p_flags & PF_W ? 'W' : ' '),
3820 (segment->p_flags & PF_X ? 'E' : ' '));
3821
3822 if ((unsigned long) segment->p_align == segment->p_align)
3823 printf ("%#lx", (unsigned long) segment->p_align);
3824 else
3825 {
3826 print_vma (segment->p_align, PREFIX_HEX);
3827 }
3828 }
3829 else
3830 {
3831 print_vma (segment->p_offset, FULL_HEX);
3832 putchar (' ');
3833 print_vma (segment->p_vaddr, FULL_HEX);
3834 putchar (' ');
3835 print_vma (segment->p_paddr, FULL_HEX);
3836 printf ("\n ");
3837 print_vma (segment->p_filesz, FULL_HEX);
3838 putchar (' ');
3839 print_vma (segment->p_memsz, FULL_HEX);
3840 printf (" %c%c%c ",
3841 (segment->p_flags & PF_R ? 'R' : ' '),
3842 (segment->p_flags & PF_W ? 'W' : ' '),
3843 (segment->p_flags & PF_X ? 'E' : ' '));
3844 print_vma (segment->p_align, HEX);
3845 }
3846 }
3847
3848 switch (segment->p_type)
3849 {
3850 case PT_DYNAMIC:
3851 if (dynamic_addr)
3852 error (_("more than one dynamic segment\n"));
3853
3854 /* By default, assume that the .dynamic section is the first
3855 section in the DYNAMIC segment. */
3856 dynamic_addr = segment->p_offset;
3857 dynamic_size = segment->p_filesz;
3858
3859 /* Try to locate the .dynamic section. If there is
3860 a section header table, we can easily locate it. */
3861 if (section_headers != NULL)
3862 {
3863 Elf_Internal_Shdr * sec;
3864
3865 sec = find_section (".dynamic");
3866 if (sec == NULL || sec->sh_size == 0)
3867 {
3868 /* A corresponding .dynamic section is expected, but on
3869 IA-64/OpenVMS it is OK for it to be missing. */
3870 if (!is_ia64_vms ())
3871 error (_("no .dynamic section in the dynamic segment\n"));
3872 break;
3873 }
3874
3875 if (sec->sh_type == SHT_NOBITS)
3876 {
3877 dynamic_size = 0;
3878 break;
3879 }
3880
3881 dynamic_addr = sec->sh_offset;
3882 dynamic_size = sec->sh_size;
3883
3884 if (dynamic_addr < segment->p_offset
3885 || dynamic_addr > segment->p_offset + segment->p_filesz)
3886 warn (_("the .dynamic section is not contained"
3887 " within the dynamic segment\n"));
3888 else if (dynamic_addr > segment->p_offset)
3889 warn (_("the .dynamic section is not the first section"
3890 " in the dynamic segment.\n"));
3891 }
3892 break;
3893
3894 case PT_INTERP:
3895 if (fseek (file, archive_file_offset + (long) segment->p_offset,
3896 SEEK_SET))
3897 error (_("Unable to find program interpreter name\n"));
3898 else
3899 {
3900 char fmt [32];
3901 int ret = snprintf (fmt, sizeof (fmt), "%%%ds", PATH_MAX);
3902
3903 if (ret >= (int) sizeof (fmt) || ret < 0)
3904 error (_("Internal error: failed to create format string to display program interpreter\n"));
3905
3906 program_interpreter[0] = 0;
3907 if (fscanf (file, fmt, program_interpreter) <= 0)
3908 error (_("Unable to read program interpreter name\n"));
3909
3910 if (do_segments)
3911 printf (_("\n [Requesting program interpreter: %s]"),
3912 program_interpreter);
3913 }
3914 break;
3915 }
3916
3917 if (do_segments)
3918 putc ('\n', stdout);
3919 }
3920
3921 if (do_segments && section_headers != NULL && string_table != NULL)
3922 {
3923 printf (_("\n Section to Segment mapping:\n"));
3924 printf (_(" Segment Sections...\n"));
3925
3926 for (i = 0; i < elf_header.e_phnum; i++)
3927 {
3928 unsigned int j;
3929 Elf_Internal_Shdr * section;
3930
3931 segment = program_headers + i;
3932 section = section_headers + 1;
3933
3934 printf (" %2.2d ", i);
3935
3936 for (j = 1; j < elf_header.e_shnum; j++, section++)
3937 {
3938 if (!ELF_TBSS_SPECIAL (section, segment)
3939 && ELF_SECTION_IN_SEGMENT_STRICT (section, segment))
3940 printf ("%s ", SECTION_NAME (section));
3941 }
3942
3943 putc ('\n',stdout);
3944 }
3945 }
3946
3947 return 1;
3948 }
3949
3950
3951 /* Find the file offset corresponding to VMA by using the program headers. */
3952
3953 static long
3954 offset_from_vma (FILE * file, bfd_vma vma, bfd_size_type size)
3955 {
3956 Elf_Internal_Phdr * seg;
3957
3958 if (! get_program_headers (file))
3959 {
3960 warn (_("Cannot interpret virtual addresses without program headers.\n"));
3961 return (long) vma;
3962 }
3963
3964 for (seg = program_headers;
3965 seg < program_headers + elf_header.e_phnum;
3966 ++seg)
3967 {
3968 if (seg->p_type != PT_LOAD)
3969 continue;
3970
3971 if (vma >= (seg->p_vaddr & -seg->p_align)
3972 && vma + size <= seg->p_vaddr + seg->p_filesz)
3973 return vma - seg->p_vaddr + seg->p_offset;
3974 }
3975
3976 warn (_("Virtual address 0x%lx not located in any PT_LOAD segment.\n"),
3977 (unsigned long) vma);
3978 return (long) vma;
3979 }
3980
3981
3982 static int
3983 get_32bit_section_headers (FILE * file, unsigned int num)
3984 {
3985 Elf32_External_Shdr * shdrs;
3986 Elf_Internal_Shdr * internal;
3987 unsigned int i;
3988
3989 shdrs = (Elf32_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
3990 elf_header.e_shentsize, num,
3991 _("section headers"));
3992 if (!shdrs)
3993 return 0;
3994
3995 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
3996 sizeof (Elf_Internal_Shdr));
3997
3998 if (section_headers == NULL)
3999 {
4000 error (_("Out of memory\n"));
4001 return 0;
4002 }
4003
4004 for (i = 0, internal = section_headers;
4005 i < num;
4006 i++, internal++)
4007 {
4008 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
4009 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
4010 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
4011 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
4012 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
4013 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
4014 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
4015 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
4016 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
4017 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
4018 }
4019
4020 free (shdrs);
4021
4022 return 1;
4023 }
4024
4025 static int
4026 get_64bit_section_headers (FILE * file, unsigned int num)
4027 {
4028 Elf64_External_Shdr * shdrs;
4029 Elf_Internal_Shdr * internal;
4030 unsigned int i;
4031
4032 shdrs = (Elf64_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
4033 elf_header.e_shentsize, num,
4034 _("section headers"));
4035 if (!shdrs)
4036 return 0;
4037
4038 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
4039 sizeof (Elf_Internal_Shdr));
4040
4041 if (section_headers == NULL)
4042 {
4043 error (_("Out of memory\n"));
4044 return 0;
4045 }
4046
4047 for (i = 0, internal = section_headers;
4048 i < num;
4049 i++, internal++)
4050 {
4051 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
4052 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
4053 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
4054 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
4055 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
4056 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
4057 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
4058 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
4059 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
4060 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
4061 }
4062
4063 free (shdrs);
4064
4065 return 1;
4066 }
4067
4068 static Elf_Internal_Sym *
4069 get_32bit_elf_symbols (FILE * file,
4070 Elf_Internal_Shdr * section,
4071 unsigned long * num_syms_return)
4072 {
4073 unsigned long number = 0;
4074 Elf32_External_Sym * esyms = NULL;
4075 Elf_External_Sym_Shndx * shndx = NULL;
4076 Elf_Internal_Sym * isyms = NULL;
4077 Elf_Internal_Sym * psym;
4078 unsigned int j;
4079
4080 /* Run some sanity checks first. */
4081 if (section->sh_entsize == 0)
4082 {
4083 error (_("sh_entsize is zero\n"));
4084 goto exit_point;
4085 }
4086
4087 number = section->sh_size / section->sh_entsize;
4088
4089 if (number * sizeof (Elf32_External_Sym) > section->sh_size + 1)
4090 {
4091 error (_("Invalid sh_entsize\n"));
4092 goto exit_point;
4093 }
4094
4095 esyms = (Elf32_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
4096 section->sh_size, _("symbols"));
4097 if (esyms == NULL)
4098 goto exit_point;
4099
4100 shndx = NULL;
4101 if (symtab_shndx_hdr != NULL
4102 && (symtab_shndx_hdr->sh_link
4103 == (unsigned long) (section - section_headers)))
4104 {
4105 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
4106 symtab_shndx_hdr->sh_offset,
4107 1, symtab_shndx_hdr->sh_size,
4108 _("symbol table section indicies"));
4109 if (shndx == NULL)
4110 goto exit_point;
4111 }
4112
4113 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
4114
4115 if (isyms == NULL)
4116 {
4117 error (_("Out of memory\n"));
4118 goto exit_point;
4119 }
4120
4121 for (j = 0, psym = isyms; j < number; j++, psym++)
4122 {
4123 psym->st_name = BYTE_GET (esyms[j].st_name);
4124 psym->st_value = BYTE_GET (esyms[j].st_value);
4125 psym->st_size = BYTE_GET (esyms[j].st_size);
4126 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
4127 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
4128 psym->st_shndx
4129 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
4130 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
4131 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
4132 psym->st_info = BYTE_GET (esyms[j].st_info);
4133 psym->st_other = BYTE_GET (esyms[j].st_other);
4134 }
4135
4136 exit_point:
4137 if (shndx != NULL)
4138 free (shndx);
4139 if (esyms != NULL)
4140 free (esyms);
4141
4142 if (num_syms_return != NULL)
4143 * num_syms_return = isyms == NULL ? 0 : number;
4144
4145 return isyms;
4146 }
4147
4148 static Elf_Internal_Sym *
4149 get_64bit_elf_symbols (FILE * file,
4150 Elf_Internal_Shdr * section,
4151 unsigned long * num_syms_return)
4152 {
4153 unsigned long number = 0;
4154 Elf64_External_Sym * esyms = NULL;
4155 Elf_External_Sym_Shndx * shndx = NULL;
4156 Elf_Internal_Sym * isyms = NULL;
4157 Elf_Internal_Sym * psym;
4158 unsigned int j;
4159
4160 /* Run some sanity checks first. */
4161 if (section->sh_entsize == 0)
4162 {
4163 error (_("sh_entsize is zero\n"));
4164 goto exit_point;
4165 }
4166
4167 number = section->sh_size / section->sh_entsize;
4168
4169 if (number * sizeof (Elf64_External_Sym) > section->sh_size + 1)
4170 {
4171 error (_("Invalid sh_entsize\n"));
4172 goto exit_point;
4173 }
4174
4175 esyms = (Elf64_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
4176 section->sh_size, _("symbols"));
4177 if (!esyms)
4178 goto exit_point;
4179
4180 if (symtab_shndx_hdr != NULL
4181 && (symtab_shndx_hdr->sh_link
4182 == (unsigned long) (section - section_headers)))
4183 {
4184 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
4185 symtab_shndx_hdr->sh_offset,
4186 1, symtab_shndx_hdr->sh_size,
4187 _("symbol table section indicies"));
4188 if (shndx == NULL)
4189 goto exit_point;
4190 }
4191
4192 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
4193
4194 if (isyms == NULL)
4195 {
4196 error (_("Out of memory\n"));
4197 goto exit_point;
4198 }
4199
4200 for (j = 0, psym = isyms; j < number; j++, psym++)
4201 {
4202 psym->st_name = BYTE_GET (esyms[j].st_name);
4203 psym->st_info = BYTE_GET (esyms[j].st_info);
4204 psym->st_other = BYTE_GET (esyms[j].st_other);
4205 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
4206
4207 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
4208 psym->st_shndx
4209 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
4210 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
4211 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
4212
4213 psym->st_value = BYTE_GET (esyms[j].st_value);
4214 psym->st_size = BYTE_GET (esyms[j].st_size);
4215 }
4216
4217 exit_point:
4218 if (shndx != NULL)
4219 free (shndx);
4220 if (esyms != NULL)
4221 free (esyms);
4222
4223 if (num_syms_return != NULL)
4224 * num_syms_return = isyms == NULL ? 0 : number;
4225
4226 return isyms;
4227 }
4228
4229 static const char *
4230 get_elf_section_flags (bfd_vma sh_flags)
4231 {
4232 static char buff[1024];
4233 char * p = buff;
4234 int field_size = is_32bit_elf ? 8 : 16;
4235 int sindex;
4236 int size = sizeof (buff) - (field_size + 4 + 1);
4237 bfd_vma os_flags = 0;
4238 bfd_vma proc_flags = 0;
4239 bfd_vma unknown_flags = 0;
4240 static const struct
4241 {
4242 const char * str;
4243 int len;
4244 }
4245 flags [] =
4246 {
4247 /* 0 */ { STRING_COMMA_LEN ("WRITE") },
4248 /* 1 */ { STRING_COMMA_LEN ("ALLOC") },
4249 /* 2 */ { STRING_COMMA_LEN ("EXEC") },
4250 /* 3 */ { STRING_COMMA_LEN ("MERGE") },
4251 /* 4 */ { STRING_COMMA_LEN ("STRINGS") },
4252 /* 5 */ { STRING_COMMA_LEN ("INFO LINK") },
4253 /* 6 */ { STRING_COMMA_LEN ("LINK ORDER") },
4254 /* 7 */ { STRING_COMMA_LEN ("OS NONCONF") },
4255 /* 8 */ { STRING_COMMA_LEN ("GROUP") },
4256 /* 9 */ { STRING_COMMA_LEN ("TLS") },
4257 /* IA-64 specific. */
4258 /* 10 */ { STRING_COMMA_LEN ("SHORT") },
4259 /* 11 */ { STRING_COMMA_LEN ("NORECOV") },
4260 /* IA-64 OpenVMS specific. */
4261 /* 12 */ { STRING_COMMA_LEN ("VMS_GLOBAL") },
4262 /* 13 */ { STRING_COMMA_LEN ("VMS_OVERLAID") },
4263 /* 14 */ { STRING_COMMA_LEN ("VMS_SHARED") },
4264 /* 15 */ { STRING_COMMA_LEN ("VMS_VECTOR") },
4265 /* 16 */ { STRING_COMMA_LEN ("VMS_ALLOC_64BIT") },
4266 /* 17 */ { STRING_COMMA_LEN ("VMS_PROTECTED") },
4267 /* Generic. */
4268 /* 18 */ { STRING_COMMA_LEN ("EXCLUDE") },
4269 /* SPARC specific. */
4270 /* 19 */ { STRING_COMMA_LEN ("ORDERED") }
4271 };
4272
4273 if (do_section_details)
4274 {
4275 sprintf (buff, "[%*.*lx]: ",
4276 field_size, field_size, (unsigned long) sh_flags);
4277 p += field_size + 4;
4278 }
4279
4280 while (sh_flags)
4281 {
4282 bfd_vma flag;
4283
4284 flag = sh_flags & - sh_flags;
4285 sh_flags &= ~ flag;
4286
4287 if (do_section_details)
4288 {
4289 switch (flag)
4290 {
4291 case SHF_WRITE: sindex = 0; break;
4292 case SHF_ALLOC: sindex = 1; break;
4293 case SHF_EXECINSTR: sindex = 2; break;
4294 case SHF_MERGE: sindex = 3; break;
4295 case SHF_STRINGS: sindex = 4; break;
4296 case SHF_INFO_LINK: sindex = 5; break;
4297 case SHF_LINK_ORDER: sindex = 6; break;
4298 case SHF_OS_NONCONFORMING: sindex = 7; break;
4299 case SHF_GROUP: sindex = 8; break;
4300 case SHF_TLS: sindex = 9; break;
4301 case SHF_EXCLUDE: sindex = 18; break;
4302
4303 default:
4304 sindex = -1;
4305 switch (elf_header.e_machine)
4306 {
4307 case EM_IA_64:
4308 if (flag == SHF_IA_64_SHORT)
4309 sindex = 10;
4310 else if (flag == SHF_IA_64_NORECOV)
4311 sindex = 11;
4312 #ifdef BFD64
4313 else if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
4314 switch (flag)
4315 {
4316 case SHF_IA_64_VMS_GLOBAL: sindex = 12; break;
4317 case SHF_IA_64_VMS_OVERLAID: sindex = 13; break;
4318 case SHF_IA_64_VMS_SHARED: sindex = 14; break;
4319 case SHF_IA_64_VMS_VECTOR: sindex = 15; break;
4320 case SHF_IA_64_VMS_ALLOC_64BIT: sindex = 16; break;
4321 case SHF_IA_64_VMS_PROTECTED: sindex = 17; break;
4322 default: break;
4323 }
4324 #endif
4325 break;
4326
4327 case EM_386:
4328 case EM_486:
4329 case EM_X86_64:
4330 case EM_L1OM:
4331 case EM_K1OM:
4332 case EM_OLD_SPARCV9:
4333 case EM_SPARC32PLUS:
4334 case EM_SPARCV9:
4335 case EM_SPARC:
4336 if (flag == SHF_ORDERED)
4337 sindex = 19;
4338 break;
4339 default:
4340 break;
4341 }
4342 }
4343
4344 if (sindex != -1)
4345 {
4346 if (p != buff + field_size + 4)
4347 {
4348 if (size < (10 + 2))
4349 abort ();
4350 size -= 2;
4351 *p++ = ',';
4352 *p++ = ' ';
4353 }
4354
4355 size -= flags [sindex].len;
4356 p = stpcpy (p, flags [sindex].str);
4357 }
4358 else if (flag & SHF_MASKOS)
4359 os_flags |= flag;
4360 else if (flag & SHF_MASKPROC)
4361 proc_flags |= flag;
4362 else
4363 unknown_flags |= flag;
4364 }
4365 else
4366 {
4367 switch (flag)
4368 {
4369 case SHF_WRITE: *p = 'W'; break;
4370 case SHF_ALLOC: *p = 'A'; break;
4371 case SHF_EXECINSTR: *p = 'X'; break;
4372 case SHF_MERGE: *p = 'M'; break;
4373 case SHF_STRINGS: *p = 'S'; break;
4374 case SHF_INFO_LINK: *p = 'I'; break;
4375 case SHF_LINK_ORDER: *p = 'L'; break;
4376 case SHF_OS_NONCONFORMING: *p = 'O'; break;
4377 case SHF_GROUP: *p = 'G'; break;
4378 case SHF_TLS: *p = 'T'; break;
4379 case SHF_EXCLUDE: *p = 'E'; break;
4380
4381 default:
4382 if ((elf_header.e_machine == EM_X86_64
4383 || elf_header.e_machine == EM_L1OM
4384 || elf_header.e_machine == EM_K1OM)
4385 && flag == SHF_X86_64_LARGE)
4386 *p = 'l';
4387 else if (flag & SHF_MASKOS)
4388 {
4389 *p = 'o';
4390 sh_flags &= ~ SHF_MASKOS;
4391 }
4392 else if (flag & SHF_MASKPROC)
4393 {
4394 *p = 'p';
4395 sh_flags &= ~ SHF_MASKPROC;
4396 }
4397 else
4398 *p = 'x';
4399 break;
4400 }
4401 p++;
4402 }
4403 }
4404
4405 if (do_section_details)
4406 {
4407 if (os_flags)
4408 {
4409 size -= 5 + field_size;
4410 if (p != buff + field_size + 4)
4411 {
4412 if (size < (2 + 1))
4413 abort ();
4414 size -= 2;
4415 *p++ = ',';
4416 *p++ = ' ';
4417 }
4418 sprintf (p, "OS (%*.*lx)", field_size, field_size,
4419 (unsigned long) os_flags);
4420 p += 5 + field_size;
4421 }
4422 if (proc_flags)
4423 {
4424 size -= 7 + field_size;
4425 if (p != buff + field_size + 4)
4426 {
4427 if (size < (2 + 1))
4428 abort ();
4429 size -= 2;
4430 *p++ = ',';
4431 *p++ = ' ';
4432 }
4433 sprintf (p, "PROC (%*.*lx)", field_size, field_size,
4434 (unsigned long) proc_flags);
4435 p += 7 + field_size;
4436 }
4437 if (unknown_flags)
4438 {
4439 size -= 10 + field_size;
4440 if (p != buff + field_size + 4)
4441 {
4442 if (size < (2 + 1))
4443 abort ();
4444 size -= 2;
4445 *p++ = ',';
4446 *p++ = ' ';
4447 }
4448 sprintf (p, _("UNKNOWN (%*.*lx)"), field_size, field_size,
4449 (unsigned long) unknown_flags);
4450 p += 10 + field_size;
4451 }
4452 }
4453
4454 *p = '\0';
4455 return buff;
4456 }
4457
4458 static int
4459 process_section_headers (FILE * file)
4460 {
4461 Elf_Internal_Shdr * section;
4462 unsigned int i;
4463
4464 section_headers = NULL;
4465
4466 if (elf_header.e_shnum == 0)
4467 {
4468 /* PR binutils/12467. */
4469 if (elf_header.e_shoff != 0)
4470 warn (_("possibly corrupt ELF file header - it has a non-zero"
4471 " section header offset, but no section headers\n"));
4472 else if (do_sections)
4473 printf (_("\nThere are no sections in this file.\n"));
4474
4475 return 1;
4476 }
4477
4478 if (do_sections && !do_header)
4479 printf (_("There are %d section headers, starting at offset 0x%lx:\n"),
4480 elf_header.e_shnum, (unsigned long) elf_header.e_shoff);
4481
4482 if (is_32bit_elf)
4483 {
4484 if (! get_32bit_section_headers (file, elf_header.e_shnum))
4485 return 0;
4486 }
4487 else if (! get_64bit_section_headers (file, elf_header.e_shnum))
4488 return 0;
4489
4490 /* Read in the string table, so that we have names to display. */
4491 if (elf_header.e_shstrndx != SHN_UNDEF
4492 && elf_header.e_shstrndx < elf_header.e_shnum)
4493 {
4494 section = section_headers + elf_header.e_shstrndx;
4495
4496 if (section->sh_size != 0)
4497 {
4498 string_table = (char *) get_data (NULL, file, section->sh_offset,
4499 1, section->sh_size,
4500 _("string table"));
4501
4502 string_table_length = string_table != NULL ? section->sh_size : 0;
4503 }
4504 }
4505
4506 /* Scan the sections for the dynamic symbol table
4507 and dynamic string table and debug sections. */
4508 dynamic_symbols = NULL;
4509 dynamic_strings = NULL;
4510 dynamic_syminfo = NULL;
4511 symtab_shndx_hdr = NULL;
4512
4513 eh_addr_size = is_32bit_elf ? 4 : 8;
4514 switch (elf_header.e_machine)
4515 {
4516 case EM_MIPS:
4517 case EM_MIPS_RS3_LE:
4518 /* The 64-bit MIPS EABI uses a combination of 32-bit ELF and 64-bit
4519 FDE addresses. However, the ABI also has a semi-official ILP32
4520 variant for which the normal FDE address size rules apply.
4521
4522 GCC 4.0 marks EABI64 objects with a dummy .gcc_compiled_longXX
4523 section, where XX is the size of longs in bits. Unfortunately,
4524 earlier compilers provided no way of distinguishing ILP32 objects
4525 from LP64 objects, so if there's any doubt, we should assume that
4526 the official LP64 form is being used. */
4527 if ((elf_header.e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64
4528 && find_section (".gcc_compiled_long32") == NULL)
4529 eh_addr_size = 8;
4530 break;
4531
4532 case EM_H8_300:
4533 case EM_H8_300H:
4534 switch (elf_header.e_flags & EF_H8_MACH)
4535 {
4536 case E_H8_MACH_H8300:
4537 case E_H8_MACH_H8300HN:
4538 case E_H8_MACH_H8300SN:
4539 case E_H8_MACH_H8300SXN:
4540 eh_addr_size = 2;
4541 break;
4542 case E_H8_MACH_H8300H:
4543 case E_H8_MACH_H8300S:
4544 case E_H8_MACH_H8300SX:
4545 eh_addr_size = 4;
4546 break;
4547 }
4548 break;
4549
4550 case EM_M32C_OLD:
4551 case EM_M32C:
4552 switch (elf_header.e_flags & EF_M32C_CPU_MASK)
4553 {
4554 case EF_M32C_CPU_M16C:
4555 eh_addr_size = 2;
4556 break;
4557 }
4558 break;
4559 }
4560
4561 #define CHECK_ENTSIZE_VALUES(section, i, size32, size64) \
4562 do \
4563 { \
4564 size_t expected_entsize \
4565 = is_32bit_elf ? size32 : size64; \
4566 if (section->sh_entsize != expected_entsize) \
4567 error (_("Section %d has invalid sh_entsize %lx (expected %lx)\n"), \
4568 i, (unsigned long int) section->sh_entsize, \
4569 (unsigned long int) expected_entsize); \
4570 section->sh_entsize = expected_entsize; \
4571 } \
4572 while (0)
4573 #define CHECK_ENTSIZE(section, i, type) \
4574 CHECK_ENTSIZE_VALUES (section, i, sizeof (Elf32_External_##type), \
4575 sizeof (Elf64_External_##type))
4576
4577 for (i = 0, section = section_headers;
4578 i < elf_header.e_shnum;
4579 i++, section++)
4580 {
4581 char * name = SECTION_NAME (section);
4582
4583 if (section->sh_type == SHT_DYNSYM)
4584 {
4585 if (dynamic_symbols != NULL)
4586 {
4587 error (_("File contains multiple dynamic symbol tables\n"));
4588 continue;
4589 }
4590
4591 CHECK_ENTSIZE (section, i, Sym);
4592 dynamic_symbols = GET_ELF_SYMBOLS (file, section, & num_dynamic_syms);
4593 }
4594 else if (section->sh_type == SHT_STRTAB
4595 && streq (name, ".dynstr"))
4596 {
4597 if (dynamic_strings != NULL)
4598 {
4599 error (_("File contains multiple dynamic string tables\n"));
4600 continue;
4601 }
4602
4603 dynamic_strings = (char *) get_data (NULL, file, section->sh_offset,
4604 1, section->sh_size,
4605 _("dynamic strings"));
4606 dynamic_strings_length = dynamic_strings == NULL ? 0 : section->sh_size;
4607 }
4608 else if (section->sh_type == SHT_SYMTAB_SHNDX)
4609 {
4610 if (symtab_shndx_hdr != NULL)
4611 {
4612 error (_("File contains multiple symtab shndx tables\n"));
4613 continue;
4614 }
4615 symtab_shndx_hdr = section;
4616 }
4617 else if (section->sh_type == SHT_SYMTAB)
4618 CHECK_ENTSIZE (section, i, Sym);
4619 else if (section->sh_type == SHT_GROUP)
4620 CHECK_ENTSIZE_VALUES (section, i, GRP_ENTRY_SIZE, GRP_ENTRY_SIZE);
4621 else if (section->sh_type == SHT_REL)
4622 CHECK_ENTSIZE (section, i, Rel);
4623 else if (section->sh_type == SHT_RELA)
4624 CHECK_ENTSIZE (section, i, Rela);
4625 else if ((do_debugging || do_debug_info || do_debug_abbrevs
4626 || do_debug_lines || do_debug_pubnames || do_debug_pubtypes
4627 || do_debug_aranges || do_debug_frames || do_debug_macinfo
4628 || do_debug_str || do_debug_loc || do_debug_ranges)
4629 && (const_strneq (name, ".debug_")
4630 || const_strneq (name, ".zdebug_")))
4631 {
4632 if (name[1] == 'z')
4633 name += sizeof (".zdebug_") - 1;
4634 else
4635 name += sizeof (".debug_") - 1;
4636
4637 if (do_debugging
4638 || (do_debug_info && streq (name, "info"))
4639 || (do_debug_info && streq (name, "types"))
4640 || (do_debug_abbrevs && streq (name, "abbrev"))
4641 || (do_debug_lines && streq (name, "line"))
4642 || (do_debug_pubnames && streq (name, "pubnames"))
4643 || (do_debug_pubtypes && streq (name, "pubtypes"))
4644 || (do_debug_aranges && streq (name, "aranges"))
4645 || (do_debug_ranges && streq (name, "ranges"))
4646 || (do_debug_frames && streq (name, "frame"))
4647 || (do_debug_macinfo && streq (name, "macinfo"))
4648 || (do_debug_macinfo && streq (name, "macro"))
4649 || (do_debug_str && streq (name, "str"))
4650 || (do_debug_loc && streq (name, "loc"))
4651 )
4652 request_dump_bynumber (i, DEBUG_DUMP);
4653 }
4654 /* Linkonce section to be combined with .debug_info at link time. */
4655 else if ((do_debugging || do_debug_info)
4656 && const_strneq (name, ".gnu.linkonce.wi."))
4657 request_dump_bynumber (i, DEBUG_DUMP);
4658 else if (do_debug_frames && streq (name, ".eh_frame"))
4659 request_dump_bynumber (i, DEBUG_DUMP);
4660 else if (do_gdb_index && streq (name, ".gdb_index"))
4661 request_dump_bynumber (i, DEBUG_DUMP);
4662 /* Trace sections for Itanium VMS. */
4663 else if ((do_debugging || do_trace_info || do_trace_abbrevs
4664 || do_trace_aranges)
4665 && const_strneq (name, ".trace_"))
4666 {
4667 name += sizeof (".trace_") - 1;
4668
4669 if (do_debugging
4670 || (do_trace_info && streq (name, "info"))
4671 || (do_trace_abbrevs && streq (name, "abbrev"))
4672 || (do_trace_aranges && streq (name, "aranges"))
4673 )
4674 request_dump_bynumber (i, DEBUG_DUMP);
4675 }
4676
4677 }
4678
4679 if (! do_sections)
4680 return 1;
4681
4682 if (elf_header.e_shnum > 1)
4683 printf (_("\nSection Headers:\n"));
4684 else
4685 printf (_("\nSection Header:\n"));
4686
4687 if (is_32bit_elf)
4688 {
4689 if (do_section_details)
4690 {
4691 printf (_(" [Nr] Name\n"));
4692 printf (_(" Type Addr Off Size ES Lk Inf Al\n"));
4693 }
4694 else
4695 printf
4696 (_(" [Nr] Name Type Addr Off Size ES Flg Lk Inf Al\n"));
4697 }
4698 else if (do_wide)
4699 {
4700 if (do_section_details)
4701 {
4702 printf (_(" [Nr] Name\n"));
4703 printf (_(" Type Address Off Size ES Lk Inf Al\n"));
4704 }
4705 else
4706 printf
4707 (_(" [Nr] Name Type Address Off Size ES Flg Lk Inf Al\n"));
4708 }
4709 else
4710 {
4711 if (do_section_details)
4712 {
4713 printf (_(" [Nr] Name\n"));
4714 printf (_(" Type Address Offset Link\n"));
4715 printf (_(" Size EntSize Info Align\n"));
4716 }
4717 else
4718 {
4719 printf (_(" [Nr] Name Type Address Offset\n"));
4720 printf (_(" Size EntSize Flags Link Info Align\n"));
4721 }
4722 }
4723
4724 if (do_section_details)
4725 printf (_(" Flags\n"));
4726
4727 for (i = 0, section = section_headers;
4728 i < elf_header.e_shnum;
4729 i++, section++)
4730 {
4731 if (do_section_details)
4732 {
4733 printf (" [%2u] %s\n",
4734 i,
4735 SECTION_NAME (section));
4736 if (is_32bit_elf || do_wide)
4737 printf (" %-15.15s ",
4738 get_section_type_name (section->sh_type));
4739 }
4740 else
4741 printf ((do_wide ? " [%2u] %-17s %-15s "
4742 : " [%2u] %-17.17s %-15.15s "),
4743 i,
4744 SECTION_NAME (section),
4745 get_section_type_name (section->sh_type));
4746
4747 if (is_32bit_elf)
4748 {
4749 const char * link_too_big = NULL;
4750
4751 print_vma (section->sh_addr, LONG_HEX);
4752
4753 printf ( " %6.6lx %6.6lx %2.2lx",
4754 (unsigned long) section->sh_offset,
4755 (unsigned long) section->sh_size,
4756 (unsigned long) section->sh_entsize);
4757
4758 if (do_section_details)
4759 fputs (" ", stdout);
4760 else
4761 printf (" %3s ", get_elf_section_flags (section->sh_flags));
4762
4763 if (section->sh_link >= elf_header.e_shnum)
4764 {
4765 link_too_big = "";
4766 /* The sh_link value is out of range. Normally this indicates
4767 an error but it can have special values in Solaris binaries. */
4768 switch (elf_header.e_machine)
4769 {
4770 case EM_386:
4771 case EM_486:
4772 case EM_X86_64:
4773 case EM_L1OM:
4774 case EM_K1OM:
4775 case EM_OLD_SPARCV9:
4776 case EM_SPARC32PLUS:
4777 case EM_SPARCV9:
4778 case EM_SPARC:
4779 if (section->sh_link == (SHN_BEFORE & 0xffff))
4780 link_too_big = "BEFORE";
4781 else if (section->sh_link == (SHN_AFTER & 0xffff))
4782 link_too_big = "AFTER";
4783 break;
4784 default:
4785 break;
4786 }
4787 }
4788
4789 if (do_section_details)
4790 {
4791 if (link_too_big != NULL && * link_too_big)
4792 printf ("<%s> ", link_too_big);
4793 else
4794 printf ("%2u ", section->sh_link);
4795 printf ("%3u %2lu\n", section->sh_info,
4796 (unsigned long) section->sh_addralign);
4797 }
4798 else
4799 printf ("%2u %3u %2lu\n",
4800 section->sh_link,
4801 section->sh_info,
4802 (unsigned long) section->sh_addralign);
4803
4804 if (link_too_big && ! * link_too_big)
4805 warn (_("section %u: sh_link value of %u is larger than the number of sections\n"),
4806 i, section->sh_link);
4807 }
4808 else if (do_wide)
4809 {
4810 print_vma (section->sh_addr, LONG_HEX);
4811
4812 if ((long) section->sh_offset == section->sh_offset)
4813 printf (" %6.6lx", (unsigned long) section->sh_offset);
4814 else
4815 {
4816 putchar (' ');
4817 print_vma (section->sh_offset, LONG_HEX);
4818 }
4819
4820 if ((unsigned long) section->sh_size == section->sh_size)
4821 printf (" %6.6lx", (unsigned long) section->sh_size);
4822 else
4823 {
4824 putchar (' ');
4825 print_vma (section->sh_size, LONG_HEX);
4826 }
4827
4828 if ((unsigned long) section->sh_entsize == section->sh_entsize)
4829 printf (" %2.2lx", (unsigned long) section->sh_entsize);
4830 else
4831 {
4832 putchar (' ');
4833 print_vma (section->sh_entsize, LONG_HEX);
4834 }
4835
4836 if (do_section_details)
4837 fputs (" ", stdout);
4838 else
4839 printf (" %3s ", get_elf_section_flags (section->sh_flags));
4840
4841 printf ("%2u %3u ", section->sh_link, section->sh_info);
4842
4843 if ((unsigned long) section->sh_addralign == section->sh_addralign)
4844 printf ("%2lu\n", (unsigned long) section->sh_addralign);
4845 else
4846 {
4847 print_vma (section->sh_addralign, DEC);
4848 putchar ('\n');
4849 }
4850 }
4851 else if (do_section_details)
4852 {
4853 printf (" %-15.15s ",
4854 get_section_type_name (section->sh_type));
4855 print_vma (section->sh_addr, LONG_HEX);
4856 if ((long) section->sh_offset == section->sh_offset)
4857 printf (" %16.16lx", (unsigned long) section->sh_offset);
4858 else
4859 {
4860 printf (" ");
4861 print_vma (section->sh_offset, LONG_HEX);
4862 }
4863 printf (" %u\n ", section->sh_link);
4864 print_vma (section->sh_size, LONG_HEX);
4865 putchar (' ');
4866 print_vma (section->sh_entsize, LONG_HEX);
4867
4868 printf (" %-16u %lu\n",
4869 section->sh_info,
4870 (unsigned long) section->sh_addralign);
4871 }
4872 else
4873 {
4874 putchar (' ');
4875 print_vma (section->sh_addr, LONG_HEX);
4876 if ((long) section->sh_offset == section->sh_offset)
4877 printf (" %8.8lx", (unsigned long) section->sh_offset);
4878 else
4879 {
4880 printf (" ");
4881 print_vma (section->sh_offset, LONG_HEX);
4882 }
4883 printf ("\n ");
4884 print_vma (section->sh_size, LONG_HEX);
4885 printf (" ");
4886 print_vma (section->sh_entsize, LONG_HEX);
4887
4888 printf (" %3s ", get_elf_section_flags (section->sh_flags));
4889
4890 printf (" %2u %3u %lu\n",
4891 section->sh_link,
4892 section->sh_info,
4893 (unsigned long) section->sh_addralign);
4894 }
4895
4896 if (do_section_details)
4897 printf (" %s\n", get_elf_section_flags (section->sh_flags));
4898 }
4899
4900 if (!do_section_details)
4901 {
4902 if (elf_header.e_machine == EM_X86_64
4903 || elf_header.e_machine == EM_L1OM
4904 || elf_header.e_machine == EM_K1OM)
4905 printf (_("Key to Flags:\n\
4906 W (write), A (alloc), X (execute), M (merge), S (strings), l (large)\n\
4907 I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)\n\
4908 O (extra OS processing required) o (OS specific), p (processor specific)\n"));
4909 else
4910 printf (_("Key to Flags:\n\
4911 W (write), A (alloc), X (execute), M (merge), S (strings)\n\
4912 I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)\n\
4913 O (extra OS processing required) o (OS specific), p (processor specific)\n"));
4914 }
4915
4916 return 1;
4917 }
4918
4919 static const char *
4920 get_group_flags (unsigned int flags)
4921 {
4922 static char buff[32];
4923 switch (flags)
4924 {
4925 case 0:
4926 return "";
4927
4928 case GRP_COMDAT:
4929 return "COMDAT ";
4930
4931 default:
4932 snprintf (buff, sizeof (buff), _("[<unknown>: 0x%x] "), flags);
4933 break;
4934 }
4935 return buff;
4936 }
4937
4938 static int
4939 process_section_groups (FILE * file)
4940 {
4941 Elf_Internal_Shdr * section;
4942 unsigned int i;
4943 struct group * group;
4944 Elf_Internal_Shdr * symtab_sec;
4945 Elf_Internal_Shdr * strtab_sec;
4946 Elf_Internal_Sym * symtab;
4947 unsigned long num_syms;
4948 char * strtab;
4949 size_t strtab_size;
4950
4951 /* Don't process section groups unless needed. */
4952 if (!do_unwind && !do_section_groups)
4953 return 1;
4954
4955 if (elf_header.e_shnum == 0)
4956 {
4957 if (do_section_groups)
4958 printf (_("\nThere are no sections to group in this file.\n"));
4959
4960 return 1;
4961 }
4962
4963 if (section_headers == NULL)
4964 {
4965 error (_("Section headers are not available!\n"));
4966 /* PR 13622: This can happen with a corrupt ELF header. */
4967 return 0;
4968 }
4969
4970 section_headers_groups = (struct group **) calloc (elf_header.e_shnum,
4971 sizeof (struct group *));
4972
4973 if (section_headers_groups == NULL)
4974 {
4975 error (_("Out of memory\n"));
4976 return 0;
4977 }
4978
4979 /* Scan the sections for the group section. */
4980 group_count = 0;
4981 for (i = 0, section = section_headers;
4982 i < elf_header.e_shnum;
4983 i++, section++)
4984 if (section->sh_type == SHT_GROUP)
4985 group_count++;
4986
4987 if (group_count == 0)
4988 {
4989 if (do_section_groups)
4990 printf (_("\nThere are no section groups in this file.\n"));
4991
4992 return 1;
4993 }
4994
4995 section_groups = (struct group *) calloc (group_count, sizeof (struct group));
4996
4997 if (section_groups == NULL)
4998 {
4999 error (_("Out of memory\n"));
5000 return 0;
5001 }
5002
5003 symtab_sec = NULL;
5004 strtab_sec = NULL;
5005 symtab = NULL;
5006 num_syms = 0;
5007 strtab = NULL;
5008 strtab_size = 0;
5009 for (i = 0, section = section_headers, group = section_groups;
5010 i < elf_header.e_shnum;
5011 i++, section++)
5012 {
5013 if (section->sh_type == SHT_GROUP)
5014 {
5015 char * name = SECTION_NAME (section);
5016 char * group_name;
5017 unsigned char * start;
5018 unsigned char * indices;
5019 unsigned int entry, j, size;
5020 Elf_Internal_Shdr * sec;
5021 Elf_Internal_Sym * sym;
5022
5023 /* Get the symbol table. */
5024 if (section->sh_link >= elf_header.e_shnum
5025 || ((sec = section_headers + section->sh_link)->sh_type
5026 != SHT_SYMTAB))
5027 {
5028 error (_("Bad sh_link in group section `%s'\n"), name);
5029 continue;
5030 }
5031
5032 if (symtab_sec != sec)
5033 {
5034 symtab_sec = sec;
5035 if (symtab)
5036 free (symtab);
5037 symtab = GET_ELF_SYMBOLS (file, symtab_sec, & num_syms);
5038 }
5039
5040 if (symtab == NULL)
5041 {
5042 error (_("Corrupt header in group section `%s'\n"), name);
5043 continue;
5044 }
5045
5046 if (section->sh_info >= num_syms)
5047 {
5048 error (_("Bad sh_info in group section `%s'\n"), name);
5049 continue;
5050 }
5051
5052 sym = symtab + section->sh_info;
5053
5054 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5055 {
5056 if (sym->st_shndx == 0
5057 || sym->st_shndx >= elf_header.e_shnum)
5058 {
5059 error (_("Bad sh_info in group section `%s'\n"), name);
5060 continue;
5061 }
5062
5063 group_name = SECTION_NAME (section_headers + sym->st_shndx);
5064 strtab_sec = NULL;
5065 if (strtab)
5066 free (strtab);
5067 strtab = NULL;
5068 strtab_size = 0;
5069 }
5070 else
5071 {
5072 /* Get the string table. */
5073 if (symtab_sec->sh_link >= elf_header.e_shnum)
5074 {
5075 strtab_sec = NULL;
5076 if (strtab)
5077 free (strtab);
5078 strtab = NULL;
5079 strtab_size = 0;
5080 }
5081 else if (strtab_sec
5082 != (sec = section_headers + symtab_sec->sh_link))
5083 {
5084 strtab_sec = sec;
5085 if (strtab)
5086 free (strtab);
5087 strtab = (char *) get_data (NULL, file, strtab_sec->sh_offset,
5088 1, strtab_sec->sh_size,
5089 _("string table"));
5090 strtab_size = strtab != NULL ? strtab_sec->sh_size : 0;
5091 }
5092 group_name = sym->st_name < strtab_size
5093 ? strtab + sym->st_name : _("<corrupt>");
5094 }
5095
5096 start = (unsigned char *) get_data (NULL, file, section->sh_offset,
5097 1, section->sh_size,
5098 _("section data"));
5099 if (start == NULL)
5100 continue;
5101
5102 indices = start;
5103 size = (section->sh_size / section->sh_entsize) - 1;
5104 entry = byte_get (indices, 4);
5105 indices += 4;
5106
5107 if (do_section_groups)
5108 {
5109 printf (_("\n%sgroup section [%5u] `%s' [%s] contains %u sections:\n"),
5110 get_group_flags (entry), i, name, group_name, size);
5111
5112 printf (_(" [Index] Name\n"));
5113 }
5114
5115 group->group_index = i;
5116
5117 for (j = 0; j < size; j++)
5118 {
5119 struct group_list * g;
5120
5121 entry = byte_get (indices, 4);
5122 indices += 4;
5123
5124 if (entry >= elf_header.e_shnum)
5125 {
5126 error (_("section [%5u] in group section [%5u] > maximum section [%5u]\n"),
5127 entry, i, elf_header.e_shnum - 1);
5128 continue;
5129 }
5130
5131 if (section_headers_groups [entry] != NULL)
5132 {
5133 if (entry)
5134 {
5135 error (_("section [%5u] in group section [%5u] already in group section [%5u]\n"),
5136 entry, i,
5137 section_headers_groups [entry]->group_index);
5138 continue;
5139 }
5140 else
5141 {
5142 /* Intel C/C++ compiler may put section 0 in a
5143 section group. We just warn it the first time
5144 and ignore it afterwards. */
5145 static int warned = 0;
5146 if (!warned)
5147 {
5148 error (_("section 0 in group section [%5u]\n"),
5149 section_headers_groups [entry]->group_index);
5150 warned++;
5151 }
5152 }
5153 }
5154
5155 section_headers_groups [entry] = group;
5156
5157 if (do_section_groups)
5158 {
5159 sec = section_headers + entry;
5160 printf (" [%5u] %s\n", entry, SECTION_NAME (sec));
5161 }
5162
5163 g = (struct group_list *) xmalloc (sizeof (struct group_list));
5164 g->section_index = entry;
5165 g->next = group->root;
5166 group->root = g;
5167 }
5168
5169 if (start)
5170 free (start);
5171
5172 group++;
5173 }
5174 }
5175
5176 if (symtab)
5177 free (symtab);
5178 if (strtab)
5179 free (strtab);
5180 return 1;
5181 }
5182
5183 /* Data used to display dynamic fixups. */
5184
5185 struct ia64_vms_dynfixup
5186 {
5187 bfd_vma needed_ident; /* Library ident number. */
5188 bfd_vma needed; /* Index in the dstrtab of the library name. */
5189 bfd_vma fixup_needed; /* Index of the library. */
5190 bfd_vma fixup_rela_cnt; /* Number of fixups. */
5191 bfd_vma fixup_rela_off; /* Fixups offset in the dynamic segment. */
5192 };
5193
5194 /* Data used to display dynamic relocations. */
5195
5196 struct ia64_vms_dynimgrela
5197 {
5198 bfd_vma img_rela_cnt; /* Number of relocations. */
5199 bfd_vma img_rela_off; /* Reloc offset in the dynamic segment. */
5200 };
5201
5202 /* Display IA-64 OpenVMS dynamic fixups (used to dynamically link a shared
5203 library). */
5204
5205 static void
5206 dump_ia64_vms_dynamic_fixups (FILE *file, struct ia64_vms_dynfixup *fixup,
5207 const char *strtab, unsigned int strtab_sz)
5208 {
5209 Elf64_External_VMS_IMAGE_FIXUP *imfs;
5210 long i;
5211 const char *lib_name;
5212
5213 imfs = get_data (NULL, file, dynamic_addr + fixup->fixup_rela_off,
5214 1, fixup->fixup_rela_cnt * sizeof (*imfs),
5215 _("dynamic section image fixups"));
5216 if (!imfs)
5217 return;
5218
5219 if (fixup->needed < strtab_sz)
5220 lib_name = strtab + fixup->needed;
5221 else
5222 {
5223 warn ("corrupt library name index of 0x%lx found in dynamic entry",
5224 (unsigned long) fixup->needed);
5225 lib_name = "???";
5226 }
5227 printf (_("\nImage fixups for needed library #%d: %s - ident: %lx\n"),
5228 (int) fixup->fixup_needed, lib_name, (long) fixup->needed_ident);
5229 printf
5230 (_("Seg Offset Type SymVec DataType\n"));
5231
5232 for (i = 0; i < (long) fixup->fixup_rela_cnt; i++)
5233 {
5234 unsigned int type;
5235 const char *rtype;
5236
5237 printf ("%3u ", (unsigned) BYTE_GET (imfs [i].fixup_seg));
5238 printf_vma ((bfd_vma) BYTE_GET (imfs [i].fixup_offset));
5239 type = BYTE_GET (imfs [i].type);
5240 rtype = elf_ia64_reloc_type (type);
5241 if (rtype == NULL)
5242 printf (" 0x%08x ", type);
5243 else
5244 printf (" %-32s ", rtype);
5245 printf ("%6u ", (unsigned) BYTE_GET (imfs [i].symvec_index));
5246 printf ("0x%08x\n", (unsigned) BYTE_GET (imfs [i].data_type));
5247 }
5248
5249 free (imfs);
5250 }
5251
5252 /* Display IA-64 OpenVMS dynamic relocations (used to relocate an image). */
5253
5254 static void
5255 dump_ia64_vms_dynamic_relocs (FILE *file, struct ia64_vms_dynimgrela *imgrela)
5256 {
5257 Elf64_External_VMS_IMAGE_RELA *imrs;
5258 long i;
5259
5260 imrs = get_data (NULL, file, dynamic_addr + imgrela->img_rela_off,
5261 1, imgrela->img_rela_cnt * sizeof (*imrs),
5262 _("dynamic section image relocations"));
5263 if (!imrs)
5264 return;
5265
5266 printf (_("\nImage relocs\n"));
5267 printf
5268 (_("Seg Offset Type Addend Seg Sym Off\n"));
5269
5270 for (i = 0; i < (long) imgrela->img_rela_cnt; i++)
5271 {
5272 unsigned int type;
5273 const char *rtype;
5274
5275 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].rela_seg));
5276 printf ("%08" BFD_VMA_FMT "x ",
5277 (bfd_vma) BYTE_GET (imrs [i].rela_offset));
5278 type = BYTE_GET (imrs [i].type);
5279 rtype = elf_ia64_reloc_type (type);
5280 if (rtype == NULL)
5281 printf ("0x%08x ", type);
5282 else
5283 printf ("%-31s ", rtype);
5284 print_vma (BYTE_GET (imrs [i].addend), FULL_HEX);
5285 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].sym_seg));
5286 printf ("%08" BFD_VMA_FMT "x\n",
5287 (bfd_vma) BYTE_GET (imrs [i].sym_offset));
5288 }
5289
5290 free (imrs);
5291 }
5292
5293 /* Display IA-64 OpenVMS dynamic relocations and fixups. */
5294
5295 static int
5296 process_ia64_vms_dynamic_relocs (FILE *file)
5297 {
5298 struct ia64_vms_dynfixup fixup;
5299 struct ia64_vms_dynimgrela imgrela;
5300 Elf_Internal_Dyn *entry;
5301 int res = 0;
5302 bfd_vma strtab_off = 0;
5303 bfd_vma strtab_sz = 0;
5304 char *strtab = NULL;
5305
5306 memset (&fixup, 0, sizeof (fixup));
5307 memset (&imgrela, 0, sizeof (imgrela));
5308
5309 /* Note: the order of the entries is specified by the OpenVMS specs. */
5310 for (entry = dynamic_section;
5311 entry < dynamic_section + dynamic_nent;
5312 entry++)
5313 {
5314 switch (entry->d_tag)
5315 {
5316 case DT_IA_64_VMS_STRTAB_OFFSET:
5317 strtab_off = entry->d_un.d_val;
5318 break;
5319 case DT_STRSZ:
5320 strtab_sz = entry->d_un.d_val;
5321 if (strtab == NULL)
5322 strtab = get_data (NULL, file, dynamic_addr + strtab_off,
5323 1, strtab_sz, _("dynamic string section"));
5324 break;
5325
5326 case DT_IA_64_VMS_NEEDED_IDENT:
5327 fixup.needed_ident = entry->d_un.d_val;
5328 break;
5329 case DT_NEEDED:
5330 fixup.needed = entry->d_un.d_val;
5331 break;
5332 case DT_IA_64_VMS_FIXUP_NEEDED:
5333 fixup.fixup_needed = entry->d_un.d_val;
5334 break;
5335 case DT_IA_64_VMS_FIXUP_RELA_CNT:
5336 fixup.fixup_rela_cnt = entry->d_un.d_val;
5337 break;
5338 case DT_IA_64_VMS_FIXUP_RELA_OFF:
5339 fixup.fixup_rela_off = entry->d_un.d_val;
5340 res++;
5341 dump_ia64_vms_dynamic_fixups (file, &fixup, strtab, strtab_sz);
5342 break;
5343
5344 case DT_IA_64_VMS_IMG_RELA_CNT:
5345 imgrela.img_rela_cnt = entry->d_un.d_val;
5346 break;
5347 case DT_IA_64_VMS_IMG_RELA_OFF:
5348 imgrela.img_rela_off = entry->d_un.d_val;
5349 res++;
5350 dump_ia64_vms_dynamic_relocs (file, &imgrela);
5351 break;
5352
5353 default:
5354 break;
5355 }
5356 }
5357
5358 if (strtab != NULL)
5359 free (strtab);
5360
5361 return res;
5362 }
5363
5364 static struct
5365 {
5366 const char * name;
5367 int reloc;
5368 int size;
5369 int rela;
5370 } dynamic_relocations [] =
5371 {
5372 { "REL", DT_REL, DT_RELSZ, FALSE },
5373 { "RELA", DT_RELA, DT_RELASZ, TRUE },
5374 { "PLT", DT_JMPREL, DT_PLTRELSZ, UNKNOWN }
5375 };
5376
5377 /* Process the reloc section. */
5378
5379 static int
5380 process_relocs (FILE * file)
5381 {
5382 unsigned long rel_size;
5383 unsigned long rel_offset;
5384
5385
5386 if (!do_reloc)
5387 return 1;
5388
5389 if (do_using_dynamic)
5390 {
5391 int is_rela;
5392 const char * name;
5393 int has_dynamic_reloc;
5394 unsigned int i;
5395
5396 has_dynamic_reloc = 0;
5397
5398 for (i = 0; i < ARRAY_SIZE (dynamic_relocations); i++)
5399 {
5400 is_rela = dynamic_relocations [i].rela;
5401 name = dynamic_relocations [i].name;
5402 rel_size = dynamic_info [dynamic_relocations [i].size];
5403 rel_offset = dynamic_info [dynamic_relocations [i].reloc];
5404
5405 has_dynamic_reloc |= rel_size;
5406
5407 if (is_rela == UNKNOWN)
5408 {
5409 if (dynamic_relocations [i].reloc == DT_JMPREL)
5410 switch (dynamic_info[DT_PLTREL])
5411 {
5412 case DT_REL:
5413 is_rela = FALSE;
5414 break;
5415 case DT_RELA:
5416 is_rela = TRUE;
5417 break;
5418 }
5419 }
5420
5421 if (rel_size)
5422 {
5423 printf
5424 (_("\n'%s' relocation section at offset 0x%lx contains %ld bytes:\n"),
5425 name, rel_offset, rel_size);
5426
5427 dump_relocations (file,
5428 offset_from_vma (file, rel_offset, rel_size),
5429 rel_size,
5430 dynamic_symbols, num_dynamic_syms,
5431 dynamic_strings, dynamic_strings_length, is_rela);
5432 }
5433 }
5434
5435 if (is_ia64_vms ())
5436 has_dynamic_reloc |= process_ia64_vms_dynamic_relocs (file);
5437
5438 if (! has_dynamic_reloc)
5439 printf (_("\nThere are no dynamic relocations in this file.\n"));
5440 }
5441 else
5442 {
5443 Elf_Internal_Shdr * section;
5444 unsigned long i;
5445 int found = 0;
5446
5447 for (i = 0, section = section_headers;
5448 i < elf_header.e_shnum;
5449 i++, section++)
5450 {
5451 if ( section->sh_type != SHT_RELA
5452 && section->sh_type != SHT_REL)
5453 continue;
5454
5455 rel_offset = section->sh_offset;
5456 rel_size = section->sh_size;
5457
5458 if (rel_size)
5459 {
5460 Elf_Internal_Shdr * strsec;
5461 int is_rela;
5462
5463 printf (_("\nRelocation section "));
5464
5465 if (string_table == NULL)
5466 printf ("%d", section->sh_name);
5467 else
5468 printf ("'%s'", SECTION_NAME (section));
5469
5470 printf (_(" at offset 0x%lx contains %lu entries:\n"),
5471 rel_offset, (unsigned long) (rel_size / section->sh_entsize));
5472
5473 is_rela = section->sh_type == SHT_RELA;
5474
5475 if (section->sh_link != 0
5476 && section->sh_link < elf_header.e_shnum)
5477 {
5478 Elf_Internal_Shdr * symsec;
5479 Elf_Internal_Sym * symtab;
5480 unsigned long nsyms;
5481 unsigned long strtablen = 0;
5482 char * strtab = NULL;
5483
5484 symsec = section_headers + section->sh_link;
5485 if (symsec->sh_type != SHT_SYMTAB
5486 && symsec->sh_type != SHT_DYNSYM)
5487 continue;
5488
5489 symtab = GET_ELF_SYMBOLS (file, symsec, & nsyms);
5490
5491 if (symtab == NULL)
5492 continue;
5493
5494 if (symsec->sh_link != 0
5495 && symsec->sh_link < elf_header.e_shnum)
5496 {
5497 strsec = section_headers + symsec->sh_link;
5498
5499 strtab = (char *) get_data (NULL, file, strsec->sh_offset,
5500 1, strsec->sh_size,
5501 _("string table"));
5502 strtablen = strtab == NULL ? 0 : strsec->sh_size;
5503 }
5504
5505 dump_relocations (file, rel_offset, rel_size,
5506 symtab, nsyms, strtab, strtablen, is_rela);
5507 if (strtab)
5508 free (strtab);
5509 free (symtab);
5510 }
5511 else
5512 dump_relocations (file, rel_offset, rel_size,
5513 NULL, 0, NULL, 0, is_rela);
5514
5515 found = 1;
5516 }
5517 }
5518
5519 if (! found)
5520 printf (_("\nThere are no relocations in this file.\n"));
5521 }
5522
5523 return 1;
5524 }
5525
5526 /* Process the unwind section. */
5527
5528 #include "unwind-ia64.h"
5529
5530 /* An absolute address consists of a section and an offset. If the
5531 section is NULL, the offset itself is the address, otherwise, the
5532 address equals to LOAD_ADDRESS(section) + offset. */
5533
5534 struct absaddr
5535 {
5536 unsigned short section;
5537 bfd_vma offset;
5538 };
5539
5540 #define ABSADDR(a) \
5541 ((a).section \
5542 ? section_headers [(a).section].sh_addr + (a).offset \
5543 : (a).offset)
5544
5545 struct ia64_unw_table_entry
5546 {
5547 struct absaddr start;
5548 struct absaddr end;
5549 struct absaddr info;
5550 };
5551
5552 struct ia64_unw_aux_info
5553 {
5554
5555 struct ia64_unw_table_entry *table; /* Unwind table. */
5556 unsigned long table_len; /* Length of unwind table. */
5557 unsigned char * info; /* Unwind info. */
5558 unsigned long info_size; /* Size of unwind info. */
5559 bfd_vma info_addr; /* starting address of unwind info. */
5560 bfd_vma seg_base; /* Starting address of segment. */
5561 Elf_Internal_Sym * symtab; /* The symbol table. */
5562 unsigned long nsyms; /* Number of symbols. */
5563 char * strtab; /* The string table. */
5564 unsigned long strtab_size; /* Size of string table. */
5565 };
5566
5567 static void
5568 find_symbol_for_address (Elf_Internal_Sym * symtab,
5569 unsigned long nsyms,
5570 const char * strtab,
5571 unsigned long strtab_size,
5572 struct absaddr addr,
5573 const char ** symname,
5574 bfd_vma * offset)
5575 {
5576 bfd_vma dist = 0x100000;
5577 Elf_Internal_Sym * sym;
5578 Elf_Internal_Sym * best = NULL;
5579 unsigned long i;
5580
5581 REMOVE_ARCH_BITS (addr.offset);
5582
5583 for (i = 0, sym = symtab; i < nsyms; ++i, ++sym)
5584 {
5585 bfd_vma value = sym->st_value;
5586
5587 REMOVE_ARCH_BITS (value);
5588
5589 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC
5590 && sym->st_name != 0
5591 && (addr.section == SHN_UNDEF || addr.section == sym->st_shndx)
5592 && addr.offset >= value
5593 && addr.offset - value < dist)
5594 {
5595 best = sym;
5596 dist = addr.offset - value;
5597 if (!dist)
5598 break;
5599 }
5600 }
5601
5602 if (best)
5603 {
5604 *symname = (best->st_name >= strtab_size
5605 ? _("<corrupt>") : strtab + best->st_name);
5606 *offset = dist;
5607 return;
5608 }
5609
5610 *symname = NULL;
5611 *offset = addr.offset;
5612 }
5613
5614 static void
5615 dump_ia64_unwind (struct ia64_unw_aux_info * aux)
5616 {
5617 struct ia64_unw_table_entry * tp;
5618 int in_body;
5619
5620 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
5621 {
5622 bfd_vma stamp;
5623 bfd_vma offset;
5624 const unsigned char * dp;
5625 const unsigned char * head;
5626 const char * procname;
5627
5628 find_symbol_for_address (aux->symtab, aux->nsyms, aux->strtab,
5629 aux->strtab_size, tp->start, &procname, &offset);
5630
5631 fputs ("\n<", stdout);
5632
5633 if (procname)
5634 {
5635 fputs (procname, stdout);
5636
5637 if (offset)
5638 printf ("+%lx", (unsigned long) offset);
5639 }
5640
5641 fputs (">: [", stdout);
5642 print_vma (tp->start.offset, PREFIX_HEX);
5643 fputc ('-', stdout);
5644 print_vma (tp->end.offset, PREFIX_HEX);
5645 printf ("], info at +0x%lx\n",
5646 (unsigned long) (tp->info.offset - aux->seg_base));
5647
5648 head = aux->info + (ABSADDR (tp->info) - aux->info_addr);
5649 stamp = byte_get ((unsigned char *) head, sizeof (stamp));
5650
5651 printf (" v%u, flags=0x%lx (%s%s), len=%lu bytes\n",
5652 (unsigned) UNW_VER (stamp),
5653 (unsigned long) ((stamp & UNW_FLAG_MASK) >> 32),
5654 UNW_FLAG_EHANDLER (stamp) ? " ehandler" : "",
5655 UNW_FLAG_UHANDLER (stamp) ? " uhandler" : "",
5656 (unsigned long) (eh_addr_size * UNW_LENGTH (stamp)));
5657
5658 if (UNW_VER (stamp) != 1)
5659 {
5660 printf (_("\tUnknown version.\n"));
5661 continue;
5662 }
5663
5664 in_body = 0;
5665 for (dp = head + 8; dp < head + 8 + eh_addr_size * UNW_LENGTH (stamp);)
5666 dp = unw_decode (dp, in_body, & in_body);
5667 }
5668 }
5669
5670 static int
5671 slurp_ia64_unwind_table (FILE * file,
5672 struct ia64_unw_aux_info * aux,
5673 Elf_Internal_Shdr * sec)
5674 {
5675 unsigned long size, nrelas, i;
5676 Elf_Internal_Phdr * seg;
5677 struct ia64_unw_table_entry * tep;
5678 Elf_Internal_Shdr * relsec;
5679 Elf_Internal_Rela * rela;
5680 Elf_Internal_Rela * rp;
5681 unsigned char * table;
5682 unsigned char * tp;
5683 Elf_Internal_Sym * sym;
5684 const char * relname;
5685
5686 /* First, find the starting address of the segment that includes
5687 this section: */
5688
5689 if (elf_header.e_phnum)
5690 {
5691 if (! get_program_headers (file))
5692 return 0;
5693
5694 for (seg = program_headers;
5695 seg < program_headers + elf_header.e_phnum;
5696 ++seg)
5697 {
5698 if (seg->p_type != PT_LOAD)
5699 continue;
5700
5701 if (sec->sh_addr >= seg->p_vaddr
5702 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
5703 {
5704 aux->seg_base = seg->p_vaddr;
5705 break;
5706 }
5707 }
5708 }
5709
5710 /* Second, build the unwind table from the contents of the unwind section: */
5711 size = sec->sh_size;
5712 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
5713 _("unwind table"));
5714 if (!table)
5715 return 0;
5716
5717 aux->table = (struct ia64_unw_table_entry *)
5718 xcmalloc (size / (3 * eh_addr_size), sizeof (aux->table[0]));
5719 tep = aux->table;
5720 for (tp = table; tp < table + size; ++tep)
5721 {
5722 tep->start.section = SHN_UNDEF;
5723 tep->end.section = SHN_UNDEF;
5724 tep->info.section = SHN_UNDEF;
5725 tep->start.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
5726 tep->end.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
5727 tep->info.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
5728 tep->start.offset += aux->seg_base;
5729 tep->end.offset += aux->seg_base;
5730 tep->info.offset += aux->seg_base;
5731 }
5732 free (table);
5733
5734 /* Third, apply any relocations to the unwind table: */
5735 for (relsec = section_headers;
5736 relsec < section_headers + elf_header.e_shnum;
5737 ++relsec)
5738 {
5739 if (relsec->sh_type != SHT_RELA
5740 || relsec->sh_info >= elf_header.e_shnum
5741 || section_headers + relsec->sh_info != sec)
5742 continue;
5743
5744 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
5745 & rela, & nrelas))
5746 return 0;
5747
5748 for (rp = rela; rp < rela + nrelas; ++rp)
5749 {
5750 relname = elf_ia64_reloc_type (get_reloc_type (rp->r_info));
5751 sym = aux->symtab + get_reloc_symindex (rp->r_info);
5752
5753 if (! const_strneq (relname, "R_IA64_SEGREL"))
5754 {
5755 warn (_("Skipping unexpected relocation type %s\n"), relname);
5756 continue;
5757 }
5758
5759 i = rp->r_offset / (3 * eh_addr_size);
5760
5761 switch (rp->r_offset/eh_addr_size % 3)
5762 {
5763 case 0:
5764 aux->table[i].start.section = sym->st_shndx;
5765 aux->table[i].start.offset = rp->r_addend + sym->st_value;
5766 break;
5767 case 1:
5768 aux->table[i].end.section = sym->st_shndx;
5769 aux->table[i].end.offset = rp->r_addend + sym->st_value;
5770 break;
5771 case 2:
5772 aux->table[i].info.section = sym->st_shndx;
5773 aux->table[i].info.offset = rp->r_addend + sym->st_value;
5774 break;
5775 default:
5776 break;
5777 }
5778 }
5779
5780 free (rela);
5781 }
5782
5783 aux->table_len = size / (3 * eh_addr_size);
5784 return 1;
5785 }
5786
5787 static void
5788 ia64_process_unwind (FILE * file)
5789 {
5790 Elf_Internal_Shdr * sec;
5791 Elf_Internal_Shdr * unwsec = NULL;
5792 Elf_Internal_Shdr * strsec;
5793 unsigned long i, unwcount = 0, unwstart = 0;
5794 struct ia64_unw_aux_info aux;
5795
5796 memset (& aux, 0, sizeof (aux));
5797
5798 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
5799 {
5800 if (sec->sh_type == SHT_SYMTAB
5801 && sec->sh_link < elf_header.e_shnum)
5802 {
5803 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
5804
5805 strsec = section_headers + sec->sh_link;
5806 assert (aux.strtab == NULL);
5807 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
5808 1, strsec->sh_size,
5809 _("string table"));
5810 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
5811 }
5812 else if (sec->sh_type == SHT_IA_64_UNWIND)
5813 unwcount++;
5814 }
5815
5816 if (!unwcount)
5817 printf (_("\nThere are no unwind sections in this file.\n"));
5818
5819 while (unwcount-- > 0)
5820 {
5821 char * suffix;
5822 size_t len, len2;
5823
5824 for (i = unwstart, sec = section_headers + unwstart;
5825 i < elf_header.e_shnum; ++i, ++sec)
5826 if (sec->sh_type == SHT_IA_64_UNWIND)
5827 {
5828 unwsec = sec;
5829 break;
5830 }
5831
5832 unwstart = i + 1;
5833 len = sizeof (ELF_STRING_ia64_unwind_once) - 1;
5834
5835 if ((unwsec->sh_flags & SHF_GROUP) != 0)
5836 {
5837 /* We need to find which section group it is in. */
5838 struct group_list * g = section_headers_groups [i]->root;
5839
5840 for (; g != NULL; g = g->next)
5841 {
5842 sec = section_headers + g->section_index;
5843
5844 if (streq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info))
5845 break;
5846 }
5847
5848 if (g == NULL)
5849 i = elf_header.e_shnum;
5850 }
5851 else if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind_once, len))
5852 {
5853 /* .gnu.linkonce.ia64unw.FOO -> .gnu.linkonce.ia64unwi.FOO. */
5854 len2 = sizeof (ELF_STRING_ia64_unwind_info_once) - 1;
5855 suffix = SECTION_NAME (unwsec) + len;
5856 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
5857 ++i, ++sec)
5858 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info_once, len2)
5859 && streq (SECTION_NAME (sec) + len2, suffix))
5860 break;
5861 }
5862 else
5863 {
5864 /* .IA_64.unwindFOO -> .IA_64.unwind_infoFOO
5865 .IA_64.unwind or BAR -> .IA_64.unwind_info. */
5866 len = sizeof (ELF_STRING_ia64_unwind) - 1;
5867 len2 = sizeof (ELF_STRING_ia64_unwind_info) - 1;
5868 suffix = "";
5869 if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind, len))
5870 suffix = SECTION_NAME (unwsec) + len;
5871 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
5872 ++i, ++sec)
5873 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info, len2)
5874 && streq (SECTION_NAME (sec) + len2, suffix))
5875 break;
5876 }
5877
5878 if (i == elf_header.e_shnum)
5879 {
5880 printf (_("\nCould not find unwind info section for "));
5881
5882 if (string_table == NULL)
5883 printf ("%d", unwsec->sh_name);
5884 else
5885 printf (_("'%s'"), SECTION_NAME (unwsec));
5886 }
5887 else
5888 {
5889 aux.info_addr = sec->sh_addr;
5890 aux.info = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1,
5891 sec->sh_size,
5892 _("unwind info"));
5893 aux.info_size = aux.info == NULL ? 0 : sec->sh_size;
5894
5895 printf (_("\nUnwind section "));
5896
5897 if (string_table == NULL)
5898 printf ("%d", unwsec->sh_name);
5899 else
5900 printf (_("'%s'"), SECTION_NAME (unwsec));
5901
5902 printf (_(" at offset 0x%lx contains %lu entries:\n"),
5903 (unsigned long) unwsec->sh_offset,
5904 (unsigned long) (unwsec->sh_size / (3 * eh_addr_size)));
5905
5906 (void) slurp_ia64_unwind_table (file, & aux, unwsec);
5907
5908 if (aux.table_len > 0)
5909 dump_ia64_unwind (& aux);
5910
5911 if (aux.table)
5912 free ((char *) aux.table);
5913 if (aux.info)
5914 free ((char *) aux.info);
5915 aux.table = NULL;
5916 aux.info = NULL;
5917 }
5918 }
5919
5920 if (aux.symtab)
5921 free (aux.symtab);
5922 if (aux.strtab)
5923 free ((char *) aux.strtab);
5924 }
5925
5926 struct hppa_unw_table_entry
5927 {
5928 struct absaddr start;
5929 struct absaddr end;
5930 unsigned int Cannot_unwind:1; /* 0 */
5931 unsigned int Millicode:1; /* 1 */
5932 unsigned int Millicode_save_sr0:1; /* 2 */
5933 unsigned int Region_description:2; /* 3..4 */
5934 unsigned int reserved1:1; /* 5 */
5935 unsigned int Entry_SR:1; /* 6 */
5936 unsigned int Entry_FR:4; /* number saved */ /* 7..10 */
5937 unsigned int Entry_GR:5; /* number saved */ /* 11..15 */
5938 unsigned int Args_stored:1; /* 16 */
5939 unsigned int Variable_Frame:1; /* 17 */
5940 unsigned int Separate_Package_Body:1; /* 18 */
5941 unsigned int Frame_Extension_Millicode:1; /* 19 */
5942 unsigned int Stack_Overflow_Check:1; /* 20 */
5943 unsigned int Two_Instruction_SP_Increment:1; /* 21 */
5944 unsigned int Ada_Region:1; /* 22 */
5945 unsigned int cxx_info:1; /* 23 */
5946 unsigned int cxx_try_catch:1; /* 24 */
5947 unsigned int sched_entry_seq:1; /* 25 */
5948 unsigned int reserved2:1; /* 26 */
5949 unsigned int Save_SP:1; /* 27 */
5950 unsigned int Save_RP:1; /* 28 */
5951 unsigned int Save_MRP_in_frame:1; /* 29 */
5952 unsigned int extn_ptr_defined:1; /* 30 */
5953 unsigned int Cleanup_defined:1; /* 31 */
5954
5955 unsigned int MPE_XL_interrupt_marker:1; /* 0 */
5956 unsigned int HP_UX_interrupt_marker:1; /* 1 */
5957 unsigned int Large_frame:1; /* 2 */
5958 unsigned int Pseudo_SP_Set:1; /* 3 */
5959 unsigned int reserved4:1; /* 4 */
5960 unsigned int Total_frame_size:27; /* 5..31 */
5961 };
5962
5963 struct hppa_unw_aux_info
5964 {
5965 struct hppa_unw_table_entry *table; /* Unwind table. */
5966 unsigned long table_len; /* Length of unwind table. */
5967 bfd_vma seg_base; /* Starting address of segment. */
5968 Elf_Internal_Sym * symtab; /* The symbol table. */
5969 unsigned long nsyms; /* Number of symbols. */
5970 char * strtab; /* The string table. */
5971 unsigned long strtab_size; /* Size of string table. */
5972 };
5973
5974 static void
5975 dump_hppa_unwind (struct hppa_unw_aux_info * aux)
5976 {
5977 struct hppa_unw_table_entry * tp;
5978
5979 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
5980 {
5981 bfd_vma offset;
5982 const char * procname;
5983
5984 find_symbol_for_address (aux->symtab, aux->nsyms, aux->strtab,
5985 aux->strtab_size, tp->start, &procname,
5986 &offset);
5987
5988 fputs ("\n<", stdout);
5989
5990 if (procname)
5991 {
5992 fputs (procname, stdout);
5993
5994 if (offset)
5995 printf ("+%lx", (unsigned long) offset);
5996 }
5997
5998 fputs (">: [", stdout);
5999 print_vma (tp->start.offset, PREFIX_HEX);
6000 fputc ('-', stdout);
6001 print_vma (tp->end.offset, PREFIX_HEX);
6002 printf ("]\n\t");
6003
6004 #define PF(_m) if (tp->_m) printf (#_m " ");
6005 #define PV(_m) if (tp->_m) printf (#_m "=%d ", tp->_m);
6006 PF(Cannot_unwind);
6007 PF(Millicode);
6008 PF(Millicode_save_sr0);
6009 /* PV(Region_description); */
6010 PF(Entry_SR);
6011 PV(Entry_FR);
6012 PV(Entry_GR);
6013 PF(Args_stored);
6014 PF(Variable_Frame);
6015 PF(Separate_Package_Body);
6016 PF(Frame_Extension_Millicode);
6017 PF(Stack_Overflow_Check);
6018 PF(Two_Instruction_SP_Increment);
6019 PF(Ada_Region);
6020 PF(cxx_info);
6021 PF(cxx_try_catch);
6022 PF(sched_entry_seq);
6023 PF(Save_SP);
6024 PF(Save_RP);
6025 PF(Save_MRP_in_frame);
6026 PF(extn_ptr_defined);
6027 PF(Cleanup_defined);
6028 PF(MPE_XL_interrupt_marker);
6029 PF(HP_UX_interrupt_marker);
6030 PF(Large_frame);
6031 PF(Pseudo_SP_Set);
6032 PV(Total_frame_size);
6033 #undef PF
6034 #undef PV
6035 }
6036
6037 printf ("\n");
6038 }
6039
6040 static int
6041 slurp_hppa_unwind_table (FILE * file,
6042 struct hppa_unw_aux_info * aux,
6043 Elf_Internal_Shdr * sec)
6044 {
6045 unsigned long size, unw_ent_size, nentries, nrelas, i;
6046 Elf_Internal_Phdr * seg;
6047 struct hppa_unw_table_entry * tep;
6048 Elf_Internal_Shdr * relsec;
6049 Elf_Internal_Rela * rela;
6050 Elf_Internal_Rela * rp;
6051 unsigned char * table;
6052 unsigned char * tp;
6053 Elf_Internal_Sym * sym;
6054 const char * relname;
6055
6056 /* First, find the starting address of the segment that includes
6057 this section. */
6058
6059 if (elf_header.e_phnum)
6060 {
6061 if (! get_program_headers (file))
6062 return 0;
6063
6064 for (seg = program_headers;
6065 seg < program_headers + elf_header.e_phnum;
6066 ++seg)
6067 {
6068 if (seg->p_type != PT_LOAD)
6069 continue;
6070
6071 if (sec->sh_addr >= seg->p_vaddr
6072 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
6073 {
6074 aux->seg_base = seg->p_vaddr;
6075 break;
6076 }
6077 }
6078 }
6079
6080 /* Second, build the unwind table from the contents of the unwind
6081 section. */
6082 size = sec->sh_size;
6083 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
6084 _("unwind table"));
6085 if (!table)
6086 return 0;
6087
6088 unw_ent_size = 16;
6089 nentries = size / unw_ent_size;
6090 size = unw_ent_size * nentries;
6091
6092 tep = aux->table = (struct hppa_unw_table_entry *)
6093 xcmalloc (nentries, sizeof (aux->table[0]));
6094
6095 for (tp = table; tp < table + size; tp += unw_ent_size, ++tep)
6096 {
6097 unsigned int tmp1, tmp2;
6098
6099 tep->start.section = SHN_UNDEF;
6100 tep->end.section = SHN_UNDEF;
6101
6102 tep->start.offset = byte_get ((unsigned char *) tp + 0, 4);
6103 tep->end.offset = byte_get ((unsigned char *) tp + 4, 4);
6104 tmp1 = byte_get ((unsigned char *) tp + 8, 4);
6105 tmp2 = byte_get ((unsigned char *) tp + 12, 4);
6106
6107 tep->start.offset += aux->seg_base;
6108 tep->end.offset += aux->seg_base;
6109
6110 tep->Cannot_unwind = (tmp1 >> 31) & 0x1;
6111 tep->Millicode = (tmp1 >> 30) & 0x1;
6112 tep->Millicode_save_sr0 = (tmp1 >> 29) & 0x1;
6113 tep->Region_description = (tmp1 >> 27) & 0x3;
6114 tep->reserved1 = (tmp1 >> 26) & 0x1;
6115 tep->Entry_SR = (tmp1 >> 25) & 0x1;
6116 tep->Entry_FR = (tmp1 >> 21) & 0xf;
6117 tep->Entry_GR = (tmp1 >> 16) & 0x1f;
6118 tep->Args_stored = (tmp1 >> 15) & 0x1;
6119 tep->Variable_Frame = (tmp1 >> 14) & 0x1;
6120 tep->Separate_Package_Body = (tmp1 >> 13) & 0x1;
6121 tep->Frame_Extension_Millicode = (tmp1 >> 12) & 0x1;
6122 tep->Stack_Overflow_Check = (tmp1 >> 11) & 0x1;
6123 tep->Two_Instruction_SP_Increment = (tmp1 >> 10) & 0x1;
6124 tep->Ada_Region = (tmp1 >> 9) & 0x1;
6125 tep->cxx_info = (tmp1 >> 8) & 0x1;
6126 tep->cxx_try_catch = (tmp1 >> 7) & 0x1;
6127 tep->sched_entry_seq = (tmp1 >> 6) & 0x1;
6128 tep->reserved2 = (tmp1 >> 5) & 0x1;
6129 tep->Save_SP = (tmp1 >> 4) & 0x1;
6130 tep->Save_RP = (tmp1 >> 3) & 0x1;
6131 tep->Save_MRP_in_frame = (tmp1 >> 2) & 0x1;
6132 tep->extn_ptr_defined = (tmp1 >> 1) & 0x1;
6133 tep->Cleanup_defined = tmp1 & 0x1;
6134
6135 tep->MPE_XL_interrupt_marker = (tmp2 >> 31) & 0x1;
6136 tep->HP_UX_interrupt_marker = (tmp2 >> 30) & 0x1;
6137 tep->Large_frame = (tmp2 >> 29) & 0x1;
6138 tep->Pseudo_SP_Set = (tmp2 >> 28) & 0x1;
6139 tep->reserved4 = (tmp2 >> 27) & 0x1;
6140 tep->Total_frame_size = tmp2 & 0x7ffffff;
6141 }
6142 free (table);
6143
6144 /* Third, apply any relocations to the unwind table. */
6145 for (relsec = section_headers;
6146 relsec < section_headers + elf_header.e_shnum;
6147 ++relsec)
6148 {
6149 if (relsec->sh_type != SHT_RELA
6150 || relsec->sh_info >= elf_header.e_shnum
6151 || section_headers + relsec->sh_info != sec)
6152 continue;
6153
6154 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
6155 & rela, & nrelas))
6156 return 0;
6157
6158 for (rp = rela; rp < rela + nrelas; ++rp)
6159 {
6160 relname = elf_hppa_reloc_type (get_reloc_type (rp->r_info));
6161 sym = aux->symtab + get_reloc_symindex (rp->r_info);
6162
6163 /* R_PARISC_SEGREL32 or R_PARISC_SEGREL64. */
6164 if (! const_strneq (relname, "R_PARISC_SEGREL"))
6165 {
6166 warn (_("Skipping unexpected relocation type %s\n"), relname);
6167 continue;
6168 }
6169
6170 i = rp->r_offset / unw_ent_size;
6171
6172 switch ((rp->r_offset % unw_ent_size) / eh_addr_size)
6173 {
6174 case 0:
6175 aux->table[i].start.section = sym->st_shndx;
6176 aux->table[i].start.offset = sym->st_value + rp->r_addend;
6177 break;
6178 case 1:
6179 aux->table[i].end.section = sym->st_shndx;
6180 aux->table[i].end.offset = sym->st_value + rp->r_addend;
6181 break;
6182 default:
6183 break;
6184 }
6185 }
6186
6187 free (rela);
6188 }
6189
6190 aux->table_len = nentries;
6191
6192 return 1;
6193 }
6194
6195 static void
6196 hppa_process_unwind (FILE * file)
6197 {
6198 struct hppa_unw_aux_info aux;
6199 Elf_Internal_Shdr * unwsec = NULL;
6200 Elf_Internal_Shdr * strsec;
6201 Elf_Internal_Shdr * sec;
6202 unsigned long i;
6203
6204 if (string_table == NULL)
6205 return;
6206
6207 memset (& aux, 0, sizeof (aux));
6208
6209 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
6210 {
6211 if (sec->sh_type == SHT_SYMTAB
6212 && sec->sh_link < elf_header.e_shnum)
6213 {
6214 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
6215
6216 strsec = section_headers + sec->sh_link;
6217 assert (aux.strtab == NULL);
6218 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
6219 1, strsec->sh_size,
6220 _("string table"));
6221 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
6222 }
6223 else if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
6224 unwsec = sec;
6225 }
6226
6227 if (!unwsec)
6228 printf (_("\nThere are no unwind sections in this file.\n"));
6229
6230 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
6231 {
6232 if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
6233 {
6234 printf (_("\nUnwind section "));
6235 printf (_("'%s'"), SECTION_NAME (sec));
6236
6237 printf (_(" at offset 0x%lx contains %lu entries:\n"),
6238 (unsigned long) sec->sh_offset,
6239 (unsigned long) (sec->sh_size / (2 * eh_addr_size + 8)));
6240
6241 slurp_hppa_unwind_table (file, &aux, sec);
6242 if (aux.table_len > 0)
6243 dump_hppa_unwind (&aux);
6244
6245 if (aux.table)
6246 free ((char *) aux.table);
6247 aux.table = NULL;
6248 }
6249 }
6250
6251 if (aux.symtab)
6252 free (aux.symtab);
6253 if (aux.strtab)
6254 free ((char *) aux.strtab);
6255 }
6256
6257 struct arm_section
6258 {
6259 unsigned char * data; /* The unwind data. */
6260 Elf_Internal_Shdr * sec; /* The cached unwind section header. */
6261 Elf_Internal_Rela * rela; /* The cached relocations for this section. */
6262 unsigned long nrelas; /* The number of relocations. */
6263 unsigned int rel_type; /* REL or RELA ? */
6264 Elf_Internal_Rela * next_rela; /* Cyclic pointer to the next reloc to process. */
6265 };
6266
6267 struct arm_unw_aux_info
6268 {
6269 FILE * file; /* The file containing the unwind sections. */
6270 Elf_Internal_Sym * symtab; /* The file's symbol table. */
6271 unsigned long nsyms; /* Number of symbols. */
6272 char * strtab; /* The file's string table. */
6273 unsigned long strtab_size; /* Size of string table. */
6274 };
6275
6276 static const char *
6277 arm_print_vma_and_name (struct arm_unw_aux_info *aux,
6278 bfd_vma fn, struct absaddr addr)
6279 {
6280 const char *procname;
6281 bfd_vma sym_offset;
6282
6283 if (addr.section == SHN_UNDEF)
6284 addr.offset = fn;
6285
6286 find_symbol_for_address (aux->symtab, aux->nsyms, aux->strtab,
6287 aux->strtab_size, addr, &procname,
6288 &sym_offset);
6289
6290 print_vma (fn, PREFIX_HEX);
6291
6292 if (procname)
6293 {
6294 fputs (" <", stdout);
6295 fputs (procname, stdout);
6296
6297 if (sym_offset)
6298 printf ("+0x%lx", (unsigned long) sym_offset);
6299 fputc ('>', stdout);
6300 }
6301
6302 return procname;
6303 }
6304
6305 static void
6306 arm_free_section (struct arm_section *arm_sec)
6307 {
6308 if (arm_sec->data != NULL)
6309 free (arm_sec->data);
6310
6311 if (arm_sec->rela != NULL)
6312 free (arm_sec->rela);
6313 }
6314
6315 /* 1) If SEC does not match the one cached in ARM_SEC, then free the current
6316 cached section and install SEC instead.
6317 2) Locate the 32-bit word at WORD_OFFSET in unwind section SEC
6318 and return its valued in * WORDP, relocating if necessary.
6319 3) Update the NEXT_RELA field in ARM_SEC and store the section index and
6320 relocation's offset in ADDR.
6321 4) If SYM_NAME is non-NULL and a relocation was applied, record the offset
6322 into the string table of the symbol associated with the reloc. If no
6323 reloc was applied store -1 there.
6324 5) Return TRUE upon success, FALSE otherwise. */
6325
6326 static bfd_boolean
6327 get_unwind_section_word (struct arm_unw_aux_info * aux,
6328 struct arm_section * arm_sec,
6329 Elf_Internal_Shdr * sec,
6330 bfd_vma word_offset,
6331 unsigned int * wordp,
6332 struct absaddr * addr,
6333 bfd_vma * sym_name)
6334 {
6335 Elf_Internal_Rela *rp;
6336 Elf_Internal_Sym *sym;
6337 const char * relname;
6338 unsigned int word;
6339 bfd_boolean wrapped;
6340
6341 addr->section = SHN_UNDEF;
6342 addr->offset = 0;
6343
6344 if (sym_name != NULL)
6345 *sym_name = (bfd_vma) -1;
6346
6347 /* If necessary, update the section cache. */
6348 if (sec != arm_sec->sec)
6349 {
6350 Elf_Internal_Shdr *relsec;
6351
6352 arm_free_section (arm_sec);
6353
6354 arm_sec->sec = sec;
6355 arm_sec->data = get_data (NULL, aux->file, sec->sh_offset, 1,
6356 sec->sh_size, _("unwind data"));
6357 arm_sec->rela = NULL;
6358 arm_sec->nrelas = 0;
6359
6360 for (relsec = section_headers;
6361 relsec < section_headers + elf_header.e_shnum;
6362 ++relsec)
6363 {
6364 if (relsec->sh_info >= elf_header.e_shnum
6365 || section_headers + relsec->sh_info != sec)
6366 continue;
6367
6368 arm_sec->rel_type = relsec->sh_type;
6369 if (relsec->sh_type == SHT_REL)
6370 {
6371 if (!slurp_rel_relocs (aux->file, relsec->sh_offset,
6372 relsec->sh_size,
6373 & arm_sec->rela, & arm_sec->nrelas))
6374 return FALSE;
6375 break;
6376 }
6377 else if (relsec->sh_type == SHT_RELA)
6378 {
6379 if (!slurp_rela_relocs (aux->file, relsec->sh_offset,
6380 relsec->sh_size,
6381 & arm_sec->rela, & arm_sec->nrelas))
6382 return FALSE;
6383 break;
6384 }
6385 else
6386 warn (_("unexpected relocation type (%d) for section %d"),
6387 relsec->sh_type, relsec->sh_info);
6388 }
6389
6390 arm_sec->next_rela = arm_sec->rela;
6391 }
6392
6393 /* If there is no unwind data we can do nothing. */
6394 if (arm_sec->data == NULL)
6395 return FALSE;
6396
6397 /* Get the word at the required offset. */
6398 word = byte_get (arm_sec->data + word_offset, 4);
6399
6400 /* Look through the relocs to find the one that applies to the provided offset. */
6401 wrapped = FALSE;
6402 for (rp = arm_sec->next_rela; rp != arm_sec->rela + arm_sec->nrelas; rp++)
6403 {
6404 bfd_vma prelval, offset;
6405
6406 if (rp->r_offset > word_offset && !wrapped)
6407 {
6408 rp = arm_sec->rela;
6409 wrapped = TRUE;
6410 }
6411 if (rp->r_offset > word_offset)
6412 break;
6413
6414 if (rp->r_offset & 3)
6415 {
6416 warn (_("Skipping unexpected relocation at offset 0x%lx\n"),
6417 (unsigned long) rp->r_offset);
6418 continue;
6419 }
6420
6421 if (rp->r_offset < word_offset)
6422 continue;
6423
6424 sym = aux->symtab + ELF32_R_SYM (rp->r_info);
6425
6426 if (arm_sec->rel_type == SHT_REL)
6427 {
6428 offset = word & 0x7fffffff;
6429 if (offset & 0x40000000)
6430 offset |= ~ (bfd_vma) 0x7fffffff;
6431 }
6432 else if (arm_sec->rel_type == SHT_RELA)
6433 offset = rp->r_addend;
6434 else
6435 abort ();
6436
6437 offset += sym->st_value;
6438 prelval = offset - (arm_sec->sec->sh_addr + rp->r_offset);
6439
6440 /* Check that we are processing the expected reloc type. */
6441 if (elf_header.e_machine == EM_ARM)
6442 {
6443 relname = elf_arm_reloc_type (ELF32_R_TYPE (rp->r_info));
6444
6445 if (streq (relname, "R_ARM_NONE"))
6446 continue;
6447
6448 if (! streq (relname, "R_ARM_PREL31"))
6449 {
6450 warn (_("Skipping unexpected relocation type %s\n"), relname);
6451 continue;
6452 }
6453 }
6454 else if (elf_header.e_machine == EM_TI_C6000)
6455 {
6456 relname = elf_tic6x_reloc_type (ELF32_R_TYPE (rp->r_info));
6457
6458 if (streq (relname, "R_C6000_NONE"))
6459 continue;
6460
6461 if (! streq (relname, "R_C6000_PREL31"))
6462 {
6463 warn (_("Skipping unexpected relocation type %s\n"), relname);
6464 continue;
6465 }
6466
6467 prelval >>= 1;
6468 }
6469 else
6470 /* This function currently only supports ARM and TI unwinders. */
6471 abort ();
6472
6473 word = (word & ~ (bfd_vma) 0x7fffffff) | (prelval & 0x7fffffff);
6474 addr->section = sym->st_shndx;
6475 addr->offset = offset;
6476 if (sym_name)
6477 * sym_name = sym->st_name;
6478 break;
6479 }
6480
6481 *wordp = word;
6482 arm_sec->next_rela = rp;
6483
6484 return TRUE;
6485 }
6486
6487 static const char *tic6x_unwind_regnames[16] =
6488 {
6489 "A15", "B15", "B14", "B13", "B12", "B11", "B10", "B3",
6490 "A14", "A13", "A12", "A11", "A10",
6491 "[invalid reg 13]", "[invalid reg 14]", "[invalid reg 15]"
6492 };
6493
6494 static void
6495 decode_tic6x_unwind_regmask (unsigned int mask)
6496 {
6497 int i;
6498
6499 for (i = 12; mask; mask >>= 1, i--)
6500 {
6501 if (mask & 1)
6502 {
6503 fputs (tic6x_unwind_regnames[i], stdout);
6504 if (mask > 1)
6505 fputs (", ", stdout);
6506 }
6507 }
6508 }
6509
6510 #define ADVANCE \
6511 if (remaining == 0 && more_words) \
6512 { \
6513 data_offset += 4; \
6514 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, \
6515 data_offset, & word, & addr, NULL)) \
6516 return; \
6517 remaining = 4; \
6518 more_words--; \
6519 } \
6520
6521 #define GET_OP(OP) \
6522 ADVANCE; \
6523 if (remaining) \
6524 { \
6525 remaining--; \
6526 (OP) = word >> 24; \
6527 word <<= 8; \
6528 } \
6529 else \
6530 { \
6531 printf (_("[Truncated opcode]\n")); \
6532 return; \
6533 } \
6534 printf ("0x%02x ", OP)
6535
6536 static void
6537 decode_arm_unwind_bytecode (struct arm_unw_aux_info *aux,
6538 unsigned int word, unsigned int remaining,
6539 unsigned int more_words,
6540 bfd_vma data_offset, Elf_Internal_Shdr *data_sec,
6541 struct arm_section *data_arm_sec)
6542 {
6543 struct absaddr addr;
6544
6545 /* Decode the unwinding instructions. */
6546 while (1)
6547 {
6548 unsigned int op, op2;
6549
6550 ADVANCE;
6551 if (remaining == 0)
6552 break;
6553 remaining--;
6554 op = word >> 24;
6555 word <<= 8;
6556
6557 printf (" 0x%02x ", op);
6558
6559 if ((op & 0xc0) == 0x00)
6560 {
6561 int offset = ((op & 0x3f) << 2) + 4;
6562
6563 printf (" vsp = vsp + %d", offset);
6564 }
6565 else if ((op & 0xc0) == 0x40)
6566 {
6567 int offset = ((op & 0x3f) << 2) + 4;
6568
6569 printf (" vsp = vsp - %d", offset);
6570 }
6571 else if ((op & 0xf0) == 0x80)
6572 {
6573 GET_OP (op2);
6574 if (op == 0x80 && op2 == 0)
6575 printf (_("Refuse to unwind"));
6576 else
6577 {
6578 unsigned int mask = ((op & 0x0f) << 8) | op2;
6579 int first = 1;
6580 int i;
6581
6582 printf ("pop {");
6583 for (i = 0; i < 12; i++)
6584 if (mask & (1 << i))
6585 {
6586 if (first)
6587 first = 0;
6588 else
6589 printf (", ");
6590 printf ("r%d", 4 + i);
6591 }
6592 printf ("}");
6593 }
6594 }
6595 else if ((op & 0xf0) == 0x90)
6596 {
6597 if (op == 0x9d || op == 0x9f)
6598 printf (_(" [Reserved]"));
6599 else
6600 printf (" vsp = r%d", op & 0x0f);
6601 }
6602 else if ((op & 0xf0) == 0xa0)
6603 {
6604 int end = 4 + (op & 0x07);
6605 int first = 1;
6606 int i;
6607
6608 printf (" pop {");
6609 for (i = 4; i <= end; i++)
6610 {
6611 if (first)
6612 first = 0;
6613 else
6614 printf (", ");
6615 printf ("r%d", i);
6616 }
6617 if (op & 0x08)
6618 {
6619 if (!first)
6620 printf (", ");
6621 printf ("r14");
6622 }
6623 printf ("}");
6624 }
6625 else if (op == 0xb0)
6626 printf (_(" finish"));
6627 else if (op == 0xb1)
6628 {
6629 GET_OP (op2);
6630 if (op2 == 0 || (op2 & 0xf0) != 0)
6631 printf (_("[Spare]"));
6632 else
6633 {
6634 unsigned int mask = op2 & 0x0f;
6635 int first = 1;
6636 int i;
6637
6638 printf ("pop {");
6639 for (i = 0; i < 12; i++)
6640 if (mask & (1 << i))
6641 {
6642 if (first)
6643 first = 0;
6644 else
6645 printf (", ");
6646 printf ("r%d", i);
6647 }
6648 printf ("}");
6649 }
6650 }
6651 else if (op == 0xb2)
6652 {
6653 unsigned char buf[9];
6654 unsigned int i, len;
6655 unsigned long offset;
6656
6657 for (i = 0; i < sizeof (buf); i++)
6658 {
6659 GET_OP (buf[i]);
6660 if ((buf[i] & 0x80) == 0)
6661 break;
6662 }
6663 assert (i < sizeof (buf));
6664 offset = read_uleb128 (buf, &len);
6665 assert (len == i + 1);
6666 offset = offset * 4 + 0x204;
6667 printf ("vsp = vsp + %ld", offset);
6668 }
6669 else if (op == 0xb3 || op == 0xc8 || op == 0xc9)
6670 {
6671 unsigned int first, last;
6672
6673 GET_OP (op2);
6674 first = op2 >> 4;
6675 last = op2 & 0x0f;
6676 if (op == 0xc8)
6677 first = first + 16;
6678 printf ("pop {D%d", first);
6679 if (last)
6680 printf ("-D%d", first + last);
6681 printf ("}");
6682 }
6683 else if ((op & 0xf8) == 0xb8 || (op & 0xf8) == 0xd0)
6684 {
6685 unsigned int count = op & 0x07;
6686
6687 printf ("pop {D8");
6688 if (count)
6689 printf ("-D%d", 8 + count);
6690 printf ("}");
6691 }
6692 else if (op >= 0xc0 && op <= 0xc5)
6693 {
6694 unsigned int count = op & 0x07;
6695
6696 printf (" pop {wR10");
6697 if (count)
6698 printf ("-wR%d", 10 + count);
6699 printf ("}");
6700 }
6701 else if (op == 0xc6)
6702 {
6703 unsigned int first, last;
6704
6705 GET_OP (op2);
6706 first = op2 >> 4;
6707 last = op2 & 0x0f;
6708 printf ("pop {wR%d", first);
6709 if (last)
6710 printf ("-wR%d", first + last);
6711 printf ("}");
6712 }
6713 else if (op == 0xc7)
6714 {
6715 GET_OP (op2);
6716 if (op2 == 0 || (op2 & 0xf0) != 0)
6717 printf (_("[Spare]"));
6718 else
6719 {
6720 unsigned int mask = op2 & 0x0f;
6721 int first = 1;
6722 int i;
6723
6724 printf ("pop {");
6725 for (i = 0; i < 4; i++)
6726 if (mask & (1 << i))
6727 {
6728 if (first)
6729 first = 0;
6730 else
6731 printf (", ");
6732 printf ("wCGR%d", i);
6733 }
6734 printf ("}");
6735 }
6736 }
6737 else
6738 printf (_(" [unsupported opcode]"));
6739 printf ("\n");
6740 }
6741 }
6742
6743 static void
6744 decode_tic6x_unwind_bytecode (struct arm_unw_aux_info *aux,
6745 unsigned int word, unsigned int remaining,
6746 unsigned int more_words,
6747 bfd_vma data_offset, Elf_Internal_Shdr *data_sec,
6748 struct arm_section *data_arm_sec)
6749 {
6750 struct absaddr addr;
6751
6752 /* Decode the unwinding instructions. */
6753 while (1)
6754 {
6755 unsigned int op, op2;
6756
6757 ADVANCE;
6758 if (remaining == 0)
6759 break;
6760 remaining--;
6761 op = word >> 24;
6762 word <<= 8;
6763
6764 printf (" 0x%02x ", op);
6765
6766 if ((op & 0xc0) == 0x00)
6767 {
6768 int offset = ((op & 0x3f) << 3) + 8;
6769 printf (" sp = sp + %d", offset);
6770 }
6771 else if ((op & 0xc0) == 0x80)
6772 {
6773 GET_OP (op2);
6774 if (op == 0x80 && op2 == 0)
6775 printf (_("Refuse to unwind"));
6776 else
6777 {
6778 unsigned int mask = ((op & 0x1f) << 8) | op2;
6779 if (op & 0x20)
6780 printf ("pop compact {");
6781 else
6782 printf ("pop {");
6783
6784 decode_tic6x_unwind_regmask (mask);
6785 printf("}");
6786 }
6787 }
6788 else if ((op & 0xf0) == 0xc0)
6789 {
6790 unsigned int reg;
6791 unsigned int nregs;
6792 unsigned int i;
6793 const char *name;
6794 struct
6795 {
6796 unsigned int offset;
6797 unsigned int reg;
6798 } regpos[16];
6799
6800 /* Scan entire instruction first so that GET_OP output is not
6801 interleaved with disassembly. */
6802 nregs = 0;
6803 for (i = 0; nregs < (op & 0xf); i++)
6804 {
6805 GET_OP (op2);
6806 reg = op2 >> 4;
6807 if (reg != 0xf)
6808 {
6809 regpos[nregs].offset = i * 2;
6810 regpos[nregs].reg = reg;
6811 nregs++;
6812 }
6813
6814 reg = op2 & 0xf;
6815 if (reg != 0xf)
6816 {
6817 regpos[nregs].offset = i * 2 + 1;
6818 regpos[nregs].reg = reg;
6819 nregs++;
6820 }
6821 }
6822
6823 printf (_("pop frame {"));
6824 reg = nregs - 1;
6825 for (i = i * 2; i > 0; i--)
6826 {
6827 if (regpos[reg].offset == i - 1)
6828 {
6829 name = tic6x_unwind_regnames[regpos[reg].reg];
6830 if (reg > 0)
6831 reg--;
6832 }
6833 else
6834 name = _("[pad]");
6835
6836 fputs (name, stdout);
6837 if (i > 1)
6838 printf (", ");
6839 }
6840
6841 printf ("}");
6842 }
6843 else if (op == 0xd0)
6844 printf (" MOV FP, SP");
6845 else if (op == 0xd1)
6846 printf (" __c6xabi_pop_rts");
6847 else if (op == 0xd2)
6848 {
6849 unsigned char buf[9];
6850 unsigned int i, len;
6851 unsigned long offset;
6852
6853 for (i = 0; i < sizeof (buf); i++)
6854 {
6855 GET_OP (buf[i]);
6856 if ((buf[i] & 0x80) == 0)
6857 break;
6858 }
6859 assert (i < sizeof (buf));
6860 offset = read_uleb128 (buf, &len);
6861 assert (len == i + 1);
6862 offset = offset * 8 + 0x408;
6863 printf (_("sp = sp + %ld"), offset);
6864 }
6865 else if ((op & 0xf0) == 0xe0)
6866 {
6867 if ((op & 0x0f) == 7)
6868 printf (" RETURN");
6869 else
6870 printf (" MV %s, B3", tic6x_unwind_regnames[op & 0x0f]);
6871 }
6872 else
6873 {
6874 printf (_(" [unsupported opcode]"));
6875 }
6876 putchar ('\n');
6877 }
6878 }
6879
6880 static bfd_vma
6881 arm_expand_prel31 (bfd_vma word, bfd_vma where)
6882 {
6883 bfd_vma offset;
6884
6885 offset = word & 0x7fffffff;
6886 if (offset & 0x40000000)
6887 offset |= ~ (bfd_vma) 0x7fffffff;
6888
6889 if (elf_header.e_machine == EM_TI_C6000)
6890 offset <<= 1;
6891
6892 return offset + where;
6893 }
6894
6895 static void
6896 decode_arm_unwind (struct arm_unw_aux_info * aux,
6897 unsigned int word,
6898 unsigned int remaining,
6899 bfd_vma data_offset,
6900 Elf_Internal_Shdr * data_sec,
6901 struct arm_section * data_arm_sec)
6902 {
6903 int per_index;
6904 unsigned int more_words = 0;
6905 struct absaddr addr;
6906 bfd_vma sym_name = (bfd_vma) -1;
6907
6908 if (remaining == 0)
6909 {
6910 /* Fetch the first word.
6911 Note - when decoding an object file the address extracted
6912 here will always be 0. So we also pass in the sym_name
6913 parameter so that we can find the symbol associated with
6914 the personality routine. */
6915 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, data_offset,
6916 & word, & addr, & sym_name))
6917 return;
6918
6919 remaining = 4;
6920 }
6921
6922 if ((word & 0x80000000) == 0)
6923 {
6924 /* Expand prel31 for personality routine. */
6925 bfd_vma fn;
6926 const char *procname;
6927
6928 fn = arm_expand_prel31 (word, data_sec->sh_addr + data_offset);
6929 printf (_(" Personality routine: "));
6930 if (fn == 0
6931 && addr.section == SHN_UNDEF && addr.offset == 0
6932 && sym_name != (bfd_vma) -1 && sym_name < aux->strtab_size)
6933 {
6934 procname = aux->strtab + sym_name;
6935 print_vma (fn, PREFIX_HEX);
6936 if (procname)
6937 {
6938 fputs (" <", stdout);
6939 fputs (procname, stdout);
6940 fputc ('>', stdout);
6941 }
6942 }
6943 else
6944 procname = arm_print_vma_and_name (aux, fn, addr);
6945 fputc ('\n', stdout);
6946
6947 /* The GCC personality routines use the standard compact
6948 encoding, starting with one byte giving the number of
6949 words. */
6950 if (procname != NULL
6951 && (const_strneq (procname, "__gcc_personality_v0")
6952 || const_strneq (procname, "__gxx_personality_v0")
6953 || const_strneq (procname, "__gcj_personality_v0")
6954 || const_strneq (procname, "__gnu_objc_personality_v0")))
6955 {
6956 remaining = 0;
6957 more_words = 1;
6958 ADVANCE;
6959 if (!remaining)
6960 {
6961 printf (_(" [Truncated data]\n"));
6962 return;
6963 }
6964 more_words = word >> 24;
6965 word <<= 8;
6966 remaining--;
6967 per_index = -1;
6968 }
6969 else
6970 return;
6971 }
6972 else
6973 {
6974 /* ARM EHABI Section 6.3:
6975
6976 An exception-handling table entry for the compact model looks like:
6977
6978 31 30-28 27-24 23-0
6979 -- ----- ----- ----
6980 1 0 index Data for personalityRoutine[index] */
6981
6982 if (elf_header.e_machine == EM_ARM
6983 && (word & 0x70000000))
6984 warn (_("Corrupt ARM compact model table entry: %x \n"), word);
6985
6986 per_index = (word >> 24) & 0x7f;
6987 printf (_(" Compact model index: %d\n"), per_index);
6988 if (per_index == 0)
6989 {
6990 more_words = 0;
6991 word <<= 8;
6992 remaining--;
6993 }
6994 else if (per_index < 3)
6995 {
6996 more_words = (word >> 16) & 0xff;
6997 word <<= 16;
6998 remaining -= 2;
6999 }
7000 }
7001
7002 switch (elf_header.e_machine)
7003 {
7004 case EM_ARM:
7005 if (per_index < 3)
7006 {
7007 decode_arm_unwind_bytecode (aux, word, remaining, more_words,
7008 data_offset, data_sec, data_arm_sec);
7009 }
7010 else
7011 {
7012 warn (_("Unknown ARM compact model index encountered\n"));
7013 printf (_(" [reserved]\n"));
7014 }
7015 break;
7016
7017 case EM_TI_C6000:
7018 if (per_index < 3)
7019 {
7020 decode_tic6x_unwind_bytecode (aux, word, remaining, more_words,
7021 data_offset, data_sec, data_arm_sec);
7022 }
7023 else if (per_index < 5)
7024 {
7025 if (((word >> 17) & 0x7f) == 0x7f)
7026 printf (_(" Restore stack from frame pointer\n"));
7027 else
7028 printf (_(" Stack increment %d\n"), (word >> 14) & 0x1fc);
7029 printf (_(" Registers restored: "));
7030 if (per_index == 4)
7031 printf (" (compact) ");
7032 decode_tic6x_unwind_regmask ((word >> 4) & 0x1fff);
7033 putchar ('\n');
7034 printf (_(" Return register: %s\n"),
7035 tic6x_unwind_regnames[word & 0xf]);
7036 }
7037 else
7038 printf (_(" [reserved (%d)]\n"), per_index);
7039 break;
7040
7041 default:
7042 error (_("Unsupported architecture type %d encountered when decoding unwind table"),
7043 elf_header.e_machine);
7044 }
7045
7046 /* Decode the descriptors. Not implemented. */
7047 }
7048
7049 static void
7050 dump_arm_unwind (struct arm_unw_aux_info *aux, Elf_Internal_Shdr *exidx_sec)
7051 {
7052 struct arm_section exidx_arm_sec, extab_arm_sec;
7053 unsigned int i, exidx_len;
7054
7055 memset (&exidx_arm_sec, 0, sizeof (exidx_arm_sec));
7056 memset (&extab_arm_sec, 0, sizeof (extab_arm_sec));
7057 exidx_len = exidx_sec->sh_size / 8;
7058
7059 for (i = 0; i < exidx_len; i++)
7060 {
7061 unsigned int exidx_fn, exidx_entry;
7062 struct absaddr fn_addr, entry_addr;
7063 bfd_vma fn;
7064
7065 fputc ('\n', stdout);
7066
7067 if (! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
7068 8 * i, & exidx_fn, & fn_addr, NULL)
7069 || ! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
7070 8 * i + 4, & exidx_entry, & entry_addr, NULL))
7071 {
7072 arm_free_section (& exidx_arm_sec);
7073 arm_free_section (& extab_arm_sec);
7074 return;
7075 }
7076
7077 /* ARM EHABI, Section 5:
7078 An index table entry consists of 2 words.
7079 The first word contains a prel31 offset to the start of a function, with bit 31 clear. */
7080 if (exidx_fn & 0x80000000)
7081 warn (_("corrupt index table entry: %x\n"), exidx_fn);
7082
7083 fn = arm_expand_prel31 (exidx_fn, exidx_sec->sh_addr + 8 * i);
7084
7085 arm_print_vma_and_name (aux, fn, fn_addr);
7086 fputs (": ", stdout);
7087
7088 if (exidx_entry == 1)
7089 {
7090 print_vma (exidx_entry, PREFIX_HEX);
7091 fputs (" [cantunwind]\n", stdout);
7092 }
7093 else if (exidx_entry & 0x80000000)
7094 {
7095 print_vma (exidx_entry, PREFIX_HEX);
7096 fputc ('\n', stdout);
7097 decode_arm_unwind (aux, exidx_entry, 4, 0, NULL, NULL);
7098 }
7099 else
7100 {
7101 bfd_vma table, table_offset = 0;
7102 Elf_Internal_Shdr *table_sec;
7103
7104 fputs ("@", stdout);
7105 table = arm_expand_prel31 (exidx_entry, exidx_sec->sh_addr + 8 * i + 4);
7106 print_vma (table, PREFIX_HEX);
7107 printf ("\n");
7108
7109 /* Locate the matching .ARM.extab. */
7110 if (entry_addr.section != SHN_UNDEF
7111 && entry_addr.section < elf_header.e_shnum)
7112 {
7113 table_sec = section_headers + entry_addr.section;
7114 table_offset = entry_addr.offset;
7115 }
7116 else
7117 {
7118 table_sec = find_section_by_address (table);
7119 if (table_sec != NULL)
7120 table_offset = table - table_sec->sh_addr;
7121 }
7122 if (table_sec == NULL)
7123 {
7124 warn (_("Could not locate .ARM.extab section containing 0x%lx.\n"),
7125 (unsigned long) table);
7126 continue;
7127 }
7128 decode_arm_unwind (aux, 0, 0, table_offset, table_sec,
7129 &extab_arm_sec);
7130 }
7131 }
7132
7133 printf ("\n");
7134
7135 arm_free_section (&exidx_arm_sec);
7136 arm_free_section (&extab_arm_sec);
7137 }
7138
7139 /* Used for both ARM and C6X unwinding tables. */
7140
7141 static void
7142 arm_process_unwind (FILE *file)
7143 {
7144 struct arm_unw_aux_info aux;
7145 Elf_Internal_Shdr *unwsec = NULL;
7146 Elf_Internal_Shdr *strsec;
7147 Elf_Internal_Shdr *sec;
7148 unsigned long i;
7149 unsigned int sec_type;
7150
7151 switch (elf_header.e_machine)
7152 {
7153 case EM_ARM:
7154 sec_type = SHT_ARM_EXIDX;
7155 break;
7156
7157 case EM_TI_C6000:
7158 sec_type = SHT_C6000_UNWIND;
7159 break;
7160
7161 default:
7162 error (_("Unsupported architecture type %d encountered when processing unwind table"),
7163 elf_header.e_machine);
7164 return;
7165 }
7166
7167 if (string_table == NULL)
7168 return;
7169
7170 memset (& aux, 0, sizeof (aux));
7171 aux.file = file;
7172
7173 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7174 {
7175 if (sec->sh_type == SHT_SYMTAB && sec->sh_link < elf_header.e_shnum)
7176 {
7177 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
7178
7179 strsec = section_headers + sec->sh_link;
7180 assert (aux.strtab == NULL);
7181 aux.strtab = get_data (NULL, file, strsec->sh_offset,
7182 1, strsec->sh_size, _("string table"));
7183 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7184 }
7185 else if (sec->sh_type == sec_type)
7186 unwsec = sec;
7187 }
7188
7189 if (unwsec == NULL)
7190 printf (_("\nThere are no unwind sections in this file.\n"));
7191 else
7192 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7193 {
7194 if (sec->sh_type == sec_type)
7195 {
7196 printf (_("\nUnwind table index '%s' at offset 0x%lx contains %lu entries:\n"),
7197 SECTION_NAME (sec),
7198 (unsigned long) sec->sh_offset,
7199 (unsigned long) (sec->sh_size / (2 * eh_addr_size)));
7200
7201 dump_arm_unwind (&aux, sec);
7202 }
7203 }
7204
7205 if (aux.symtab)
7206 free (aux.symtab);
7207 if (aux.strtab)
7208 free ((char *) aux.strtab);
7209 }
7210
7211 static void
7212 process_unwind (FILE * file)
7213 {
7214 struct unwind_handler
7215 {
7216 int machtype;
7217 void (* handler)(FILE *);
7218 } handlers[] =
7219 {
7220 { EM_ARM, arm_process_unwind },
7221 { EM_IA_64, ia64_process_unwind },
7222 { EM_PARISC, hppa_process_unwind },
7223 { EM_TI_C6000, arm_process_unwind },
7224 { 0, 0 }
7225 };
7226 int i;
7227
7228 if (!do_unwind)
7229 return;
7230
7231 for (i = 0; handlers[i].handler != NULL; i++)
7232 if (elf_header.e_machine == handlers[i].machtype)
7233 return handlers[i].handler (file);
7234
7235 printf (_("\nThe decoding of unwind sections for machine type %s is not currently supported.\n"),
7236 get_machine_name (elf_header.e_machine));
7237 }
7238
7239 static void
7240 dynamic_section_mips_val (Elf_Internal_Dyn * entry)
7241 {
7242 switch (entry->d_tag)
7243 {
7244 case DT_MIPS_FLAGS:
7245 if (entry->d_un.d_val == 0)
7246 printf (_("NONE"));
7247 else
7248 {
7249 static const char * opts[] =
7250 {
7251 "QUICKSTART", "NOTPOT", "NO_LIBRARY_REPLACEMENT",
7252 "NO_MOVE", "SGI_ONLY", "GUARANTEE_INIT", "DELTA_C_PLUS_PLUS",
7253 "GUARANTEE_START_INIT", "PIXIE", "DEFAULT_DELAY_LOAD",
7254 "REQUICKSTART", "REQUICKSTARTED", "CORD", "NO_UNRES_UNDEF",
7255 "RLD_ORDER_SAFE"
7256 };
7257 unsigned int cnt;
7258 int first = 1;
7259
7260 for (cnt = 0; cnt < ARRAY_SIZE (opts); ++cnt)
7261 if (entry->d_un.d_val & (1 << cnt))
7262 {
7263 printf ("%s%s", first ? "" : " ", opts[cnt]);
7264 first = 0;
7265 }
7266 }
7267 break;
7268
7269 case DT_MIPS_IVERSION:
7270 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
7271 printf (_("Interface Version: %s"), GET_DYNAMIC_NAME (entry->d_un.d_val));
7272 else
7273 printf (_("<corrupt: %" BFD_VMA_FMT "d>"), entry->d_un.d_ptr);
7274 break;
7275
7276 case DT_MIPS_TIME_STAMP:
7277 {
7278 char timebuf[20];
7279 struct tm * tmp;
7280
7281 time_t atime = entry->d_un.d_val;
7282 tmp = gmtime (&atime);
7283 snprintf (timebuf, sizeof (timebuf), "%04u-%02u-%02uT%02u:%02u:%02u",
7284 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
7285 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
7286 printf (_("Time Stamp: %s"), timebuf);
7287 }
7288 break;
7289
7290 case DT_MIPS_RLD_VERSION:
7291 case DT_MIPS_LOCAL_GOTNO:
7292 case DT_MIPS_CONFLICTNO:
7293 case DT_MIPS_LIBLISTNO:
7294 case DT_MIPS_SYMTABNO:
7295 case DT_MIPS_UNREFEXTNO:
7296 case DT_MIPS_HIPAGENO:
7297 case DT_MIPS_DELTA_CLASS_NO:
7298 case DT_MIPS_DELTA_INSTANCE_NO:
7299 case DT_MIPS_DELTA_RELOC_NO:
7300 case DT_MIPS_DELTA_SYM_NO:
7301 case DT_MIPS_DELTA_CLASSSYM_NO:
7302 case DT_MIPS_COMPACT_SIZE:
7303 print_vma (entry->d_un.d_ptr, DEC);
7304 break;
7305
7306 default:
7307 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7308 }
7309 putchar ('\n');
7310 }
7311
7312 static void
7313 dynamic_section_parisc_val (Elf_Internal_Dyn * entry)
7314 {
7315 switch (entry->d_tag)
7316 {
7317 case DT_HP_DLD_FLAGS:
7318 {
7319 static struct
7320 {
7321 long int bit;
7322 const char * str;
7323 }
7324 flags[] =
7325 {
7326 { DT_HP_DEBUG_PRIVATE, "HP_DEBUG_PRIVATE" },
7327 { DT_HP_DEBUG_CALLBACK, "HP_DEBUG_CALLBACK" },
7328 { DT_HP_DEBUG_CALLBACK_BOR, "HP_DEBUG_CALLBACK_BOR" },
7329 { DT_HP_NO_ENVVAR, "HP_NO_ENVVAR" },
7330 { DT_HP_BIND_NOW, "HP_BIND_NOW" },
7331 { DT_HP_BIND_NONFATAL, "HP_BIND_NONFATAL" },
7332 { DT_HP_BIND_VERBOSE, "HP_BIND_VERBOSE" },
7333 { DT_HP_BIND_RESTRICTED, "HP_BIND_RESTRICTED" },
7334 { DT_HP_BIND_SYMBOLIC, "HP_BIND_SYMBOLIC" },
7335 { DT_HP_RPATH_FIRST, "HP_RPATH_FIRST" },
7336 { DT_HP_BIND_DEPTH_FIRST, "HP_BIND_DEPTH_FIRST" },
7337 { DT_HP_GST, "HP_GST" },
7338 { DT_HP_SHLIB_FIXED, "HP_SHLIB_FIXED" },
7339 { DT_HP_MERGE_SHLIB_SEG, "HP_MERGE_SHLIB_SEG" },
7340 { DT_HP_NODELETE, "HP_NODELETE" },
7341 { DT_HP_GROUP, "HP_GROUP" },
7342 { DT_HP_PROTECT_LINKAGE_TABLE, "HP_PROTECT_LINKAGE_TABLE" }
7343 };
7344 int first = 1;
7345 size_t cnt;
7346 bfd_vma val = entry->d_un.d_val;
7347
7348 for (cnt = 0; cnt < ARRAY_SIZE (flags); ++cnt)
7349 if (val & flags[cnt].bit)
7350 {
7351 if (! first)
7352 putchar (' ');
7353 fputs (flags[cnt].str, stdout);
7354 first = 0;
7355 val ^= flags[cnt].bit;
7356 }
7357
7358 if (val != 0 || first)
7359 {
7360 if (! first)
7361 putchar (' ');
7362 print_vma (val, HEX);
7363 }
7364 }
7365 break;
7366
7367 default:
7368 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7369 break;
7370 }
7371 putchar ('\n');
7372 }
7373
7374 #ifdef BFD64
7375
7376 /* VMS vs Unix time offset and factor. */
7377
7378 #define VMS_EPOCH_OFFSET 35067168000000000LL
7379 #define VMS_GRANULARITY_FACTOR 10000000
7380
7381 /* Display a VMS time in a human readable format. */
7382
7383 static void
7384 print_vms_time (bfd_int64_t vmstime)
7385 {
7386 struct tm *tm;
7387 time_t unxtime;
7388
7389 unxtime = (vmstime - VMS_EPOCH_OFFSET) / VMS_GRANULARITY_FACTOR;
7390 tm = gmtime (&unxtime);
7391 printf ("%04u-%02u-%02uT%02u:%02u:%02u",
7392 tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
7393 tm->tm_hour, tm->tm_min, tm->tm_sec);
7394 }
7395 #endif /* BFD64 */
7396
7397 static void
7398 dynamic_section_ia64_val (Elf_Internal_Dyn * entry)
7399 {
7400 switch (entry->d_tag)
7401 {
7402 case DT_IA_64_PLT_RESERVE:
7403 /* First 3 slots reserved. */
7404 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7405 printf (" -- ");
7406 print_vma (entry->d_un.d_ptr + (3 * 8), PREFIX_HEX);
7407 break;
7408
7409 case DT_IA_64_VMS_LINKTIME:
7410 #ifdef BFD64
7411 print_vms_time (entry->d_un.d_val);
7412 #endif
7413 break;
7414
7415 case DT_IA_64_VMS_LNKFLAGS:
7416 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7417 if (entry->d_un.d_val & VMS_LF_CALL_DEBUG)
7418 printf (" CALL_DEBUG");
7419 if (entry->d_un.d_val & VMS_LF_NOP0BUFS)
7420 printf (" NOP0BUFS");
7421 if (entry->d_un.d_val & VMS_LF_P0IMAGE)
7422 printf (" P0IMAGE");
7423 if (entry->d_un.d_val & VMS_LF_MKTHREADS)
7424 printf (" MKTHREADS");
7425 if (entry->d_un.d_val & VMS_LF_UPCALLS)
7426 printf (" UPCALLS");
7427 if (entry->d_un.d_val & VMS_LF_IMGSTA)
7428 printf (" IMGSTA");
7429 if (entry->d_un.d_val & VMS_LF_INITIALIZE)
7430 printf (" INITIALIZE");
7431 if (entry->d_un.d_val & VMS_LF_MAIN)
7432 printf (" MAIN");
7433 if (entry->d_un.d_val & VMS_LF_EXE_INIT)
7434 printf (" EXE_INIT");
7435 if (entry->d_un.d_val & VMS_LF_TBK_IN_IMG)
7436 printf (" TBK_IN_IMG");
7437 if (entry->d_un.d_val & VMS_LF_DBG_IN_IMG)
7438 printf (" DBG_IN_IMG");
7439 if (entry->d_un.d_val & VMS_LF_TBK_IN_DSF)
7440 printf (" TBK_IN_DSF");
7441 if (entry->d_un.d_val & VMS_LF_DBG_IN_DSF)
7442 printf (" DBG_IN_DSF");
7443 if (entry->d_un.d_val & VMS_LF_SIGNATURES)
7444 printf (" SIGNATURES");
7445 if (entry->d_un.d_val & VMS_LF_REL_SEG_OFF)
7446 printf (" REL_SEG_OFF");
7447 break;
7448
7449 default:
7450 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7451 break;
7452 }
7453 putchar ('\n');
7454 }
7455
7456 static int
7457 get_32bit_dynamic_section (FILE * file)
7458 {
7459 Elf32_External_Dyn * edyn;
7460 Elf32_External_Dyn * ext;
7461 Elf_Internal_Dyn * entry;
7462
7463 edyn = (Elf32_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
7464 dynamic_size, _("dynamic section"));
7465 if (!edyn)
7466 return 0;
7467
7468 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
7469 might not have the luxury of section headers. Look for the DT_NULL
7470 terminator to determine the number of entries. */
7471 for (ext = edyn, dynamic_nent = 0;
7472 (char *) ext < (char *) edyn + dynamic_size;
7473 ext++)
7474 {
7475 dynamic_nent++;
7476 if (BYTE_GET (ext->d_tag) == DT_NULL)
7477 break;
7478 }
7479
7480 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
7481 sizeof (* entry));
7482 if (dynamic_section == NULL)
7483 {
7484 error (_("Out of memory\n"));
7485 free (edyn);
7486 return 0;
7487 }
7488
7489 for (ext = edyn, entry = dynamic_section;
7490 entry < dynamic_section + dynamic_nent;
7491 ext++, entry++)
7492 {
7493 entry->d_tag = BYTE_GET (ext->d_tag);
7494 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
7495 }
7496
7497 free (edyn);
7498
7499 return 1;
7500 }
7501
7502 static int
7503 get_64bit_dynamic_section (FILE * file)
7504 {
7505 Elf64_External_Dyn * edyn;
7506 Elf64_External_Dyn * ext;
7507 Elf_Internal_Dyn * entry;
7508
7509 edyn = (Elf64_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
7510 dynamic_size, _("dynamic section"));
7511 if (!edyn)
7512 return 0;
7513
7514 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
7515 might not have the luxury of section headers. Look for the DT_NULL
7516 terminator to determine the number of entries. */
7517 for (ext = edyn, dynamic_nent = 0;
7518 (char *) ext < (char *) edyn + dynamic_size;
7519 ext++)
7520 {
7521 dynamic_nent++;
7522 if (BYTE_GET (ext->d_tag) == DT_NULL)
7523 break;
7524 }
7525
7526 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
7527 sizeof (* entry));
7528 if (dynamic_section == NULL)
7529 {
7530 error (_("Out of memory\n"));
7531 free (edyn);
7532 return 0;
7533 }
7534
7535 for (ext = edyn, entry = dynamic_section;
7536 entry < dynamic_section + dynamic_nent;
7537 ext++, entry++)
7538 {
7539 entry->d_tag = BYTE_GET (ext->d_tag);
7540 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
7541 }
7542
7543 free (edyn);
7544
7545 return 1;
7546 }
7547
7548 static void
7549 print_dynamic_flags (bfd_vma flags)
7550 {
7551 int first = 1;
7552
7553 while (flags)
7554 {
7555 bfd_vma flag;
7556
7557 flag = flags & - flags;
7558 flags &= ~ flag;
7559
7560 if (first)
7561 first = 0;
7562 else
7563 putc (' ', stdout);
7564
7565 switch (flag)
7566 {
7567 case DF_ORIGIN: fputs ("ORIGIN", stdout); break;
7568 case DF_SYMBOLIC: fputs ("SYMBOLIC", stdout); break;
7569 case DF_TEXTREL: fputs ("TEXTREL", stdout); break;
7570 case DF_BIND_NOW: fputs ("BIND_NOW", stdout); break;
7571 case DF_STATIC_TLS: fputs ("STATIC_TLS", stdout); break;
7572 default: fputs (_("unknown"), stdout); break;
7573 }
7574 }
7575 puts ("");
7576 }
7577
7578 /* Parse and display the contents of the dynamic section. */
7579
7580 static int
7581 process_dynamic_section (FILE * file)
7582 {
7583 Elf_Internal_Dyn * entry;
7584
7585 if (dynamic_size == 0)
7586 {
7587 if (do_dynamic)
7588 printf (_("\nThere is no dynamic section in this file.\n"));
7589
7590 return 1;
7591 }
7592
7593 if (is_32bit_elf)
7594 {
7595 if (! get_32bit_dynamic_section (file))
7596 return 0;
7597 }
7598 else if (! get_64bit_dynamic_section (file))
7599 return 0;
7600
7601 /* Find the appropriate symbol table. */
7602 if (dynamic_symbols == NULL)
7603 {
7604 for (entry = dynamic_section;
7605 entry < dynamic_section + dynamic_nent;
7606 ++entry)
7607 {
7608 Elf_Internal_Shdr section;
7609
7610 if (entry->d_tag != DT_SYMTAB)
7611 continue;
7612
7613 dynamic_info[DT_SYMTAB] = entry->d_un.d_val;
7614
7615 /* Since we do not know how big the symbol table is,
7616 we default to reading in the entire file (!) and
7617 processing that. This is overkill, I know, but it
7618 should work. */
7619 section.sh_offset = offset_from_vma (file, entry->d_un.d_val, 0);
7620
7621 if (archive_file_offset != 0)
7622 section.sh_size = archive_file_size - section.sh_offset;
7623 else
7624 {
7625 if (fseek (file, 0, SEEK_END))
7626 error (_("Unable to seek to end of file!\n"));
7627
7628 section.sh_size = ftell (file) - section.sh_offset;
7629 }
7630
7631 if (is_32bit_elf)
7632 section.sh_entsize = sizeof (Elf32_External_Sym);
7633 else
7634 section.sh_entsize = sizeof (Elf64_External_Sym);
7635
7636 dynamic_symbols = GET_ELF_SYMBOLS (file, &section, & num_dynamic_syms);
7637 if (num_dynamic_syms < 1)
7638 {
7639 error (_("Unable to determine the number of symbols to load\n"));
7640 continue;
7641 }
7642 }
7643 }
7644
7645 /* Similarly find a string table. */
7646 if (dynamic_strings == NULL)
7647 {
7648 for (entry = dynamic_section;
7649 entry < dynamic_section + dynamic_nent;
7650 ++entry)
7651 {
7652 unsigned long offset;
7653 long str_tab_len;
7654
7655 if (entry->d_tag != DT_STRTAB)
7656 continue;
7657
7658 dynamic_info[DT_STRTAB] = entry->d_un.d_val;
7659
7660 /* Since we do not know how big the string table is,
7661 we default to reading in the entire file (!) and
7662 processing that. This is overkill, I know, but it
7663 should work. */
7664
7665 offset = offset_from_vma (file, entry->d_un.d_val, 0);
7666
7667 if (archive_file_offset != 0)
7668 str_tab_len = archive_file_size - offset;
7669 else
7670 {
7671 if (fseek (file, 0, SEEK_END))
7672 error (_("Unable to seek to end of file\n"));
7673 str_tab_len = ftell (file) - offset;
7674 }
7675
7676 if (str_tab_len < 1)
7677 {
7678 error
7679 (_("Unable to determine the length of the dynamic string table\n"));
7680 continue;
7681 }
7682
7683 dynamic_strings = (char *) get_data (NULL, file, offset, 1,
7684 str_tab_len,
7685 _("dynamic string table"));
7686 dynamic_strings_length = dynamic_strings == NULL ? 0 : str_tab_len;
7687 break;
7688 }
7689 }
7690
7691 /* And find the syminfo section if available. */
7692 if (dynamic_syminfo == NULL)
7693 {
7694 unsigned long syminsz = 0;
7695
7696 for (entry = dynamic_section;
7697 entry < dynamic_section + dynamic_nent;
7698 ++entry)
7699 {
7700 if (entry->d_tag == DT_SYMINENT)
7701 {
7702 /* Note: these braces are necessary to avoid a syntax
7703 error from the SunOS4 C compiler. */
7704 assert (sizeof (Elf_External_Syminfo) == entry->d_un.d_val);
7705 }
7706 else if (entry->d_tag == DT_SYMINSZ)
7707 syminsz = entry->d_un.d_val;
7708 else if (entry->d_tag == DT_SYMINFO)
7709 dynamic_syminfo_offset = offset_from_vma (file, entry->d_un.d_val,
7710 syminsz);
7711 }
7712
7713 if (dynamic_syminfo_offset != 0 && syminsz != 0)
7714 {
7715 Elf_External_Syminfo * extsyminfo;
7716 Elf_External_Syminfo * extsym;
7717 Elf_Internal_Syminfo * syminfo;
7718
7719 /* There is a syminfo section. Read the data. */
7720 extsyminfo = (Elf_External_Syminfo *)
7721 get_data (NULL, file, dynamic_syminfo_offset, 1, syminsz,
7722 _("symbol information"));
7723 if (!extsyminfo)
7724 return 0;
7725
7726 dynamic_syminfo = (Elf_Internal_Syminfo *) malloc (syminsz);
7727 if (dynamic_syminfo == NULL)
7728 {
7729 error (_("Out of memory\n"));
7730 return 0;
7731 }
7732
7733 dynamic_syminfo_nent = syminsz / sizeof (Elf_External_Syminfo);
7734 for (syminfo = dynamic_syminfo, extsym = extsyminfo;
7735 syminfo < dynamic_syminfo + dynamic_syminfo_nent;
7736 ++syminfo, ++extsym)
7737 {
7738 syminfo->si_boundto = BYTE_GET (extsym->si_boundto);
7739 syminfo->si_flags = BYTE_GET (extsym->si_flags);
7740 }
7741
7742 free (extsyminfo);
7743 }
7744 }
7745
7746 if (do_dynamic && dynamic_addr)
7747 printf (_("\nDynamic section at offset 0x%lx contains %u entries:\n"),
7748 dynamic_addr, dynamic_nent);
7749 if (do_dynamic)
7750 printf (_(" Tag Type Name/Value\n"));
7751
7752 for (entry = dynamic_section;
7753 entry < dynamic_section + dynamic_nent;
7754 entry++)
7755 {
7756 if (do_dynamic)
7757 {
7758 const char * dtype;
7759
7760 putchar (' ');
7761 print_vma (entry->d_tag, FULL_HEX);
7762 dtype = get_dynamic_type (entry->d_tag);
7763 printf (" (%s)%*s", dtype,
7764 ((is_32bit_elf ? 27 : 19)
7765 - (int) strlen (dtype)),
7766 " ");
7767 }
7768
7769 switch (entry->d_tag)
7770 {
7771 case DT_FLAGS:
7772 if (do_dynamic)
7773 print_dynamic_flags (entry->d_un.d_val);
7774 break;
7775
7776 case DT_AUXILIARY:
7777 case DT_FILTER:
7778 case DT_CONFIG:
7779 case DT_DEPAUDIT:
7780 case DT_AUDIT:
7781 if (do_dynamic)
7782 {
7783 switch (entry->d_tag)
7784 {
7785 case DT_AUXILIARY:
7786 printf (_("Auxiliary library"));
7787 break;
7788
7789 case DT_FILTER:
7790 printf (_("Filter library"));
7791 break;
7792
7793 case DT_CONFIG:
7794 printf (_("Configuration file"));
7795 break;
7796
7797 case DT_DEPAUDIT:
7798 printf (_("Dependency audit library"));
7799 break;
7800
7801 case DT_AUDIT:
7802 printf (_("Audit library"));
7803 break;
7804 }
7805
7806 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
7807 printf (": [%s]\n", GET_DYNAMIC_NAME (entry->d_un.d_val));
7808 else
7809 {
7810 printf (": ");
7811 print_vma (entry->d_un.d_val, PREFIX_HEX);
7812 putchar ('\n');
7813 }
7814 }
7815 break;
7816
7817 case DT_FEATURE:
7818 if (do_dynamic)
7819 {
7820 printf (_("Flags:"));
7821
7822 if (entry->d_un.d_val == 0)
7823 printf (_(" None\n"));
7824 else
7825 {
7826 unsigned long int val = entry->d_un.d_val;
7827
7828 if (val & DTF_1_PARINIT)
7829 {
7830 printf (" PARINIT");
7831 val ^= DTF_1_PARINIT;
7832 }
7833 if (val & DTF_1_CONFEXP)
7834 {
7835 printf (" CONFEXP");
7836 val ^= DTF_1_CONFEXP;
7837 }
7838 if (val != 0)
7839 printf (" %lx", val);
7840 puts ("");
7841 }
7842 }
7843 break;
7844
7845 case DT_POSFLAG_1:
7846 if (do_dynamic)
7847 {
7848 printf (_("Flags:"));
7849
7850 if (entry->d_un.d_val == 0)
7851 printf (_(" None\n"));
7852 else
7853 {
7854 unsigned long int val = entry->d_un.d_val;
7855
7856 if (val & DF_P1_LAZYLOAD)
7857 {
7858 printf (" LAZYLOAD");
7859 val ^= DF_P1_LAZYLOAD;
7860 }
7861 if (val & DF_P1_GROUPPERM)
7862 {
7863 printf (" GROUPPERM");
7864 val ^= DF_P1_GROUPPERM;
7865 }
7866 if (val != 0)
7867 printf (" %lx", val);
7868 puts ("");
7869 }
7870 }
7871 break;
7872
7873 case DT_FLAGS_1:
7874 if (do_dynamic)
7875 {
7876 printf (_("Flags:"));
7877 if (entry->d_un.d_val == 0)
7878 printf (_(" None\n"));
7879 else
7880 {
7881 unsigned long int val = entry->d_un.d_val;
7882
7883 if (val & DF_1_NOW)
7884 {
7885 printf (" NOW");
7886 val ^= DF_1_NOW;
7887 }
7888 if (val & DF_1_GLOBAL)
7889 {
7890 printf (" GLOBAL");
7891 val ^= DF_1_GLOBAL;
7892 }
7893 if (val & DF_1_GROUP)
7894 {
7895 printf (" GROUP");
7896 val ^= DF_1_GROUP;
7897 }
7898 if (val & DF_1_NODELETE)
7899 {
7900 printf (" NODELETE");
7901 val ^= DF_1_NODELETE;
7902 }
7903 if (val & DF_1_LOADFLTR)
7904 {
7905 printf (" LOADFLTR");
7906 val ^= DF_1_LOADFLTR;
7907 }
7908 if (val & DF_1_INITFIRST)
7909 {
7910 printf (" INITFIRST");
7911 val ^= DF_1_INITFIRST;
7912 }
7913 if (val & DF_1_NOOPEN)
7914 {
7915 printf (" NOOPEN");
7916 val ^= DF_1_NOOPEN;
7917 }
7918 if (val & DF_1_ORIGIN)
7919 {
7920 printf (" ORIGIN");
7921 val ^= DF_1_ORIGIN;
7922 }
7923 if (val & DF_1_DIRECT)
7924 {
7925 printf (" DIRECT");
7926 val ^= DF_1_DIRECT;
7927 }
7928 if (val & DF_1_TRANS)
7929 {
7930 printf (" TRANS");
7931 val ^= DF_1_TRANS;
7932 }
7933 if (val & DF_1_INTERPOSE)
7934 {
7935 printf (" INTERPOSE");
7936 val ^= DF_1_INTERPOSE;
7937 }
7938 if (val & DF_1_NODEFLIB)
7939 {
7940 printf (" NODEFLIB");
7941 val ^= DF_1_NODEFLIB;
7942 }
7943 if (val & DF_1_NODUMP)
7944 {
7945 printf (" NODUMP");
7946 val ^= DF_1_NODUMP;
7947 }
7948 if (val & DF_1_CONLFAT)
7949 {
7950 printf (" CONLFAT");
7951 val ^= DF_1_CONLFAT;
7952 }
7953 if (val != 0)
7954 printf (" %lx", val);
7955 puts ("");
7956 }
7957 }
7958 break;
7959
7960 case DT_PLTREL:
7961 dynamic_info[entry->d_tag] = entry->d_un.d_val;
7962 if (do_dynamic)
7963 puts (get_dynamic_type (entry->d_un.d_val));
7964 break;
7965
7966 case DT_NULL :
7967 case DT_NEEDED :
7968 case DT_PLTGOT :
7969 case DT_HASH :
7970 case DT_STRTAB :
7971 case DT_SYMTAB :
7972 case DT_RELA :
7973 case DT_INIT :
7974 case DT_FINI :
7975 case DT_SONAME :
7976 case DT_RPATH :
7977 case DT_SYMBOLIC:
7978 case DT_REL :
7979 case DT_DEBUG :
7980 case DT_TEXTREL :
7981 case DT_JMPREL :
7982 case DT_RUNPATH :
7983 dynamic_info[entry->d_tag] = entry->d_un.d_val;
7984
7985 if (do_dynamic)
7986 {
7987 char * name;
7988
7989 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
7990 name = GET_DYNAMIC_NAME (entry->d_un.d_val);
7991 else
7992 name = NULL;
7993
7994 if (name)
7995 {
7996 switch (entry->d_tag)
7997 {
7998 case DT_NEEDED:
7999 printf (_("Shared library: [%s]"), name);
8000
8001 if (streq (name, program_interpreter))
8002 printf (_(" program interpreter"));
8003 break;
8004
8005 case DT_SONAME:
8006 printf (_("Library soname: [%s]"), name);
8007 break;
8008
8009 case DT_RPATH:
8010 printf (_("Library rpath: [%s]"), name);
8011 break;
8012
8013 case DT_RUNPATH:
8014 printf (_("Library runpath: [%s]"), name);
8015 break;
8016
8017 default:
8018 print_vma (entry->d_un.d_val, PREFIX_HEX);
8019 break;
8020 }
8021 }
8022 else
8023 print_vma (entry->d_un.d_val, PREFIX_HEX);
8024
8025 putchar ('\n');
8026 }
8027 break;
8028
8029 case DT_PLTRELSZ:
8030 case DT_RELASZ :
8031 case DT_STRSZ :
8032 case DT_RELSZ :
8033 case DT_RELAENT :
8034 case DT_SYMENT :
8035 case DT_RELENT :
8036 dynamic_info[entry->d_tag] = entry->d_un.d_val;
8037 case DT_PLTPADSZ:
8038 case DT_MOVEENT :
8039 case DT_MOVESZ :
8040 case DT_INIT_ARRAYSZ:
8041 case DT_FINI_ARRAYSZ:
8042 case DT_GNU_CONFLICTSZ:
8043 case DT_GNU_LIBLISTSZ:
8044 if (do_dynamic)
8045 {
8046 print_vma (entry->d_un.d_val, UNSIGNED);
8047 printf (_(" (bytes)\n"));
8048 }
8049 break;
8050
8051 case DT_VERDEFNUM:
8052 case DT_VERNEEDNUM:
8053 case DT_RELACOUNT:
8054 case DT_RELCOUNT:
8055 if (do_dynamic)
8056 {
8057 print_vma (entry->d_un.d_val, UNSIGNED);
8058 putchar ('\n');
8059 }
8060 break;
8061
8062 case DT_SYMINSZ:
8063 case DT_SYMINENT:
8064 case DT_SYMINFO:
8065 case DT_USED:
8066 case DT_INIT_ARRAY:
8067 case DT_FINI_ARRAY:
8068 if (do_dynamic)
8069 {
8070 if (entry->d_tag == DT_USED
8071 && VALID_DYNAMIC_NAME (entry->d_un.d_val))
8072 {
8073 char * name = GET_DYNAMIC_NAME (entry->d_un.d_val);
8074
8075 if (*name)
8076 {
8077 printf (_("Not needed object: [%s]\n"), name);
8078 break;
8079 }
8080 }
8081
8082 print_vma (entry->d_un.d_val, PREFIX_HEX);
8083 putchar ('\n');
8084 }
8085 break;
8086
8087 case DT_BIND_NOW:
8088 /* The value of this entry is ignored. */
8089 if (do_dynamic)
8090 putchar ('\n');
8091 break;
8092
8093 case DT_GNU_PRELINKED:
8094 if (do_dynamic)
8095 {
8096 struct tm * tmp;
8097 time_t atime = entry->d_un.d_val;
8098
8099 tmp = gmtime (&atime);
8100 printf ("%04u-%02u-%02uT%02u:%02u:%02u\n",
8101 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
8102 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
8103
8104 }
8105 break;
8106
8107 case DT_GNU_HASH:
8108 dynamic_info_DT_GNU_HASH = entry->d_un.d_val;
8109 if (do_dynamic)
8110 {
8111 print_vma (entry->d_un.d_val, PREFIX_HEX);
8112 putchar ('\n');
8113 }
8114 break;
8115
8116 default:
8117 if ((entry->d_tag >= DT_VERSYM) && (entry->d_tag <= DT_VERNEEDNUM))
8118 version_info[DT_VERSIONTAGIDX (entry->d_tag)] =
8119 entry->d_un.d_val;
8120
8121 if (do_dynamic)
8122 {
8123 switch (elf_header.e_machine)
8124 {
8125 case EM_MIPS:
8126 case EM_MIPS_RS3_LE:
8127 dynamic_section_mips_val (entry);
8128 break;
8129 case EM_PARISC:
8130 dynamic_section_parisc_val (entry);
8131 break;
8132 case EM_IA_64:
8133 dynamic_section_ia64_val (entry);
8134 break;
8135 default:
8136 print_vma (entry->d_un.d_val, PREFIX_HEX);
8137 putchar ('\n');
8138 }
8139 }
8140 break;
8141 }
8142 }
8143
8144 return 1;
8145 }
8146
8147 static char *
8148 get_ver_flags (unsigned int flags)
8149 {
8150 static char buff[32];
8151
8152 buff[0] = 0;
8153
8154 if (flags == 0)
8155 return _("none");
8156
8157 if (flags & VER_FLG_BASE)
8158 strcat (buff, "BASE ");
8159
8160 if (flags & VER_FLG_WEAK)
8161 {
8162 if (flags & VER_FLG_BASE)
8163 strcat (buff, "| ");
8164
8165 strcat (buff, "WEAK ");
8166 }
8167
8168 if (flags & VER_FLG_INFO)
8169 {
8170 if (flags & (VER_FLG_BASE|VER_FLG_WEAK))
8171 strcat (buff, "| ");
8172
8173 strcat (buff, "INFO ");
8174 }
8175
8176 if (flags & ~(VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
8177 strcat (buff, _("| <unknown>"));
8178
8179 return buff;
8180 }
8181
8182 /* Display the contents of the version sections. */
8183
8184 static int
8185 process_version_sections (FILE * file)
8186 {
8187 Elf_Internal_Shdr * section;
8188 unsigned i;
8189 int found = 0;
8190
8191 if (! do_version)
8192 return 1;
8193
8194 for (i = 0, section = section_headers;
8195 i < elf_header.e_shnum;
8196 i++, section++)
8197 {
8198 switch (section->sh_type)
8199 {
8200 case SHT_GNU_verdef:
8201 {
8202 Elf_External_Verdef * edefs;
8203 unsigned int idx;
8204 unsigned int cnt;
8205 char * endbuf;
8206
8207 found = 1;
8208
8209 printf
8210 (_("\nVersion definition section '%s' contains %u entries:\n"),
8211 SECTION_NAME (section), section->sh_info);
8212
8213 printf (_(" Addr: 0x"));
8214 printf_vma (section->sh_addr);
8215 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
8216 (unsigned long) section->sh_offset, section->sh_link,
8217 section->sh_link < elf_header.e_shnum
8218 ? SECTION_NAME (section_headers + section->sh_link)
8219 : _("<corrupt>"));
8220
8221 edefs = (Elf_External_Verdef *)
8222 get_data (NULL, file, section->sh_offset, 1,section->sh_size,
8223 _("version definition section"));
8224 if (!edefs)
8225 break;
8226 endbuf = (char *) edefs + section->sh_size;
8227
8228 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
8229 {
8230 char * vstart;
8231 Elf_External_Verdef * edef;
8232 Elf_Internal_Verdef ent;
8233 Elf_External_Verdaux * eaux;
8234 Elf_Internal_Verdaux aux;
8235 int j;
8236 int isum;
8237
8238 /* Check for negative or very large indicies. */
8239 if ((unsigned char *) edefs + idx < (unsigned char *) edefs)
8240 break;
8241
8242 vstart = ((char *) edefs) + idx;
8243 if (vstart + sizeof (*edef) > endbuf)
8244 break;
8245
8246 edef = (Elf_External_Verdef *) vstart;
8247
8248 ent.vd_version = BYTE_GET (edef->vd_version);
8249 ent.vd_flags = BYTE_GET (edef->vd_flags);
8250 ent.vd_ndx = BYTE_GET (edef->vd_ndx);
8251 ent.vd_cnt = BYTE_GET (edef->vd_cnt);
8252 ent.vd_hash = BYTE_GET (edef->vd_hash);
8253 ent.vd_aux = BYTE_GET (edef->vd_aux);
8254 ent.vd_next = BYTE_GET (edef->vd_next);
8255
8256 printf (_(" %#06x: Rev: %d Flags: %s"),
8257 idx, ent.vd_version, get_ver_flags (ent.vd_flags));
8258
8259 printf (_(" Index: %d Cnt: %d "),
8260 ent.vd_ndx, ent.vd_cnt);
8261
8262 /* Check for overflow. */
8263 if ((unsigned char *)(vstart + ent.vd_aux) < (unsigned char *) vstart
8264 || (unsigned char *)(vstart + ent.vd_aux) > (unsigned char *) endbuf)
8265 break;
8266
8267 vstart += ent.vd_aux;
8268
8269 eaux = (Elf_External_Verdaux *) vstart;
8270
8271 aux.vda_name = BYTE_GET (eaux->vda_name);
8272 aux.vda_next = BYTE_GET (eaux->vda_next);
8273
8274 if (VALID_DYNAMIC_NAME (aux.vda_name))
8275 printf (_("Name: %s\n"), GET_DYNAMIC_NAME (aux.vda_name));
8276 else
8277 printf (_("Name index: %ld\n"), aux.vda_name);
8278
8279 isum = idx + ent.vd_aux;
8280
8281 for (j = 1; j < ent.vd_cnt; j++)
8282 {
8283 /* Check for overflow. */
8284 if ((unsigned char *)(vstart + aux.vda_next) < (unsigned char *) vstart
8285 || (unsigned char *)(vstart + aux.vda_next) > (unsigned char *) endbuf)
8286 break;
8287
8288 isum += aux.vda_next;
8289 vstart += aux.vda_next;
8290
8291 eaux = (Elf_External_Verdaux *) vstart;
8292 if (vstart + sizeof (*eaux) > endbuf)
8293 break;
8294
8295 aux.vda_name = BYTE_GET (eaux->vda_name);
8296 aux.vda_next = BYTE_GET (eaux->vda_next);
8297
8298 if (VALID_DYNAMIC_NAME (aux.vda_name))
8299 printf (_(" %#06x: Parent %d: %s\n"),
8300 isum, j, GET_DYNAMIC_NAME (aux.vda_name));
8301 else
8302 printf (_(" %#06x: Parent %d, name index: %ld\n"),
8303 isum, j, aux.vda_name);
8304 }
8305
8306 if (j < ent.vd_cnt)
8307 printf (_(" Version def aux past end of section\n"));
8308
8309 idx += ent.vd_next;
8310 }
8311
8312 if (cnt < section->sh_info)
8313 printf (_(" Version definition past end of section\n"));
8314
8315 free (edefs);
8316 }
8317 break;
8318
8319 case SHT_GNU_verneed:
8320 {
8321 Elf_External_Verneed * eneed;
8322 unsigned int idx;
8323 unsigned int cnt;
8324 char * endbuf;
8325
8326 found = 1;
8327
8328 printf (_("\nVersion needs section '%s' contains %u entries:\n"),
8329 SECTION_NAME (section), section->sh_info);
8330
8331 printf (_(" Addr: 0x"));
8332 printf_vma (section->sh_addr);
8333 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
8334 (unsigned long) section->sh_offset, section->sh_link,
8335 section->sh_link < elf_header.e_shnum
8336 ? SECTION_NAME (section_headers + section->sh_link)
8337 : _("<corrupt>"));
8338
8339 eneed = (Elf_External_Verneed *) get_data (NULL, file,
8340 section->sh_offset, 1,
8341 section->sh_size,
8342 _("Version Needs section"));
8343 if (!eneed)
8344 break;
8345 endbuf = (char *) eneed + section->sh_size;
8346
8347 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
8348 {
8349 Elf_External_Verneed * entry;
8350 Elf_Internal_Verneed ent;
8351 int j;
8352 int isum;
8353 char * vstart;
8354
8355 if ((unsigned char *) eneed + idx < (unsigned char *) eneed)
8356 break;
8357
8358 vstart = ((char *) eneed) + idx;
8359 if (vstart + sizeof (*entry) > endbuf)
8360 break;
8361
8362 entry = (Elf_External_Verneed *) vstart;
8363
8364 ent.vn_version = BYTE_GET (entry->vn_version);
8365 ent.vn_cnt = BYTE_GET (entry->vn_cnt);
8366 ent.vn_file = BYTE_GET (entry->vn_file);
8367 ent.vn_aux = BYTE_GET (entry->vn_aux);
8368 ent.vn_next = BYTE_GET (entry->vn_next);
8369
8370 printf (_(" %#06x: Version: %d"), idx, ent.vn_version);
8371
8372 if (VALID_DYNAMIC_NAME (ent.vn_file))
8373 printf (_(" File: %s"), GET_DYNAMIC_NAME (ent.vn_file));
8374 else
8375 printf (_(" File: %lx"), ent.vn_file);
8376
8377 printf (_(" Cnt: %d\n"), ent.vn_cnt);
8378
8379 /* Check for overflow. */
8380 if ((unsigned char *)(vstart + ent.vn_aux) < (unsigned char *) vstart
8381 || (unsigned char *)(vstart + ent.vn_aux) > (unsigned char *) endbuf)
8382 break;
8383
8384 vstart += ent.vn_aux;
8385
8386 for (j = 0, isum = idx + ent.vn_aux; j < ent.vn_cnt; ++j)
8387 {
8388 Elf_External_Vernaux * eaux;
8389 Elf_Internal_Vernaux aux;
8390
8391 if (vstart + sizeof (*eaux) > endbuf)
8392 break;
8393 eaux = (Elf_External_Vernaux *) vstart;
8394
8395 aux.vna_hash = BYTE_GET (eaux->vna_hash);
8396 aux.vna_flags = BYTE_GET (eaux->vna_flags);
8397 aux.vna_other = BYTE_GET (eaux->vna_other);
8398 aux.vna_name = BYTE_GET (eaux->vna_name);
8399 aux.vna_next = BYTE_GET (eaux->vna_next);
8400
8401 if (VALID_DYNAMIC_NAME (aux.vna_name))
8402 printf (_(" %#06x: Name: %s"),
8403 isum, GET_DYNAMIC_NAME (aux.vna_name));
8404 else
8405 printf (_(" %#06x: Name index: %lx"),
8406 isum, aux.vna_name);
8407
8408 printf (_(" Flags: %s Version: %d\n"),
8409 get_ver_flags (aux.vna_flags), aux.vna_other);
8410
8411 /* Check for overflow. */
8412 if ((unsigned char *)(vstart + aux.vna_next) < (unsigned char *) vstart
8413 || (unsigned char *)(vstart + aux.vna_next) > (unsigned char *) endbuf)
8414 break;
8415
8416 isum += aux.vna_next;
8417 vstart += aux.vna_next;
8418 }
8419
8420 if (j < ent.vn_cnt)
8421 warn (_("Missing Version Needs auxillary information\n"));
8422
8423 idx += ent.vn_next;
8424 }
8425
8426 if (cnt < section->sh_info)
8427 warn (_("Missing Version Needs information\n"));
8428
8429 free (eneed);
8430 }
8431 break;
8432
8433 case SHT_GNU_versym:
8434 {
8435 Elf_Internal_Shdr * link_section;
8436 int total;
8437 int cnt;
8438 unsigned char * edata;
8439 unsigned short * data;
8440 char * strtab;
8441 Elf_Internal_Sym * symbols;
8442 Elf_Internal_Shdr * string_sec;
8443 unsigned long num_syms;
8444 long off;
8445
8446 if (section->sh_link >= elf_header.e_shnum)
8447 break;
8448
8449 link_section = section_headers + section->sh_link;
8450 total = section->sh_size / sizeof (Elf_External_Versym);
8451
8452 if (link_section->sh_link >= elf_header.e_shnum)
8453 break;
8454
8455 found = 1;
8456
8457 symbols = GET_ELF_SYMBOLS (file, link_section, & num_syms);
8458 if (symbols == NULL)
8459 break;
8460
8461 string_sec = section_headers + link_section->sh_link;
8462
8463 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
8464 string_sec->sh_size,
8465 _("version string table"));
8466 if (!strtab)
8467 {
8468 free (symbols);
8469 break;
8470 }
8471
8472 printf (_("\nVersion symbols section '%s' contains %d entries:\n"),
8473 SECTION_NAME (section), total);
8474
8475 printf (_(" Addr: "));
8476 printf_vma (section->sh_addr);
8477 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
8478 (unsigned long) section->sh_offset, section->sh_link,
8479 SECTION_NAME (link_section));
8480
8481 off = offset_from_vma (file,
8482 version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
8483 total * sizeof (short));
8484 edata = (unsigned char *) get_data (NULL, file, off, total,
8485 sizeof (short),
8486 _("version symbol data"));
8487 if (!edata)
8488 {
8489 free (strtab);
8490 free (symbols);
8491 break;
8492 }
8493
8494 data = (short unsigned int *) cmalloc (total, sizeof (short));
8495
8496 for (cnt = total; cnt --;)
8497 data[cnt] = byte_get (edata + cnt * sizeof (short),
8498 sizeof (short));
8499
8500 free (edata);
8501
8502 for (cnt = 0; cnt < total; cnt += 4)
8503 {
8504 int j, nn;
8505 int check_def, check_need;
8506 char * name;
8507
8508 printf (" %03x:", cnt);
8509
8510 for (j = 0; (j < 4) && (cnt + j) < total; ++j)
8511 switch (data[cnt + j])
8512 {
8513 case 0:
8514 fputs (_(" 0 (*local*) "), stdout);
8515 break;
8516
8517 case 1:
8518 fputs (_(" 1 (*global*) "), stdout);
8519 break;
8520
8521 default:
8522 nn = printf ("%4x%c", data[cnt + j] & VERSYM_VERSION,
8523 data[cnt + j] & VERSYM_HIDDEN ? 'h' : ' ');
8524
8525 /* If this index value is greater than the size of the symbols
8526 array, break to avoid an out-of-bounds read. */
8527 if ((unsigned long)(cnt + j) >= num_syms)
8528 {
8529 warn (_("invalid index into symbol array\n"));
8530 break;
8531 }
8532
8533 check_def = 1;
8534 check_need = 1;
8535 if (symbols[cnt + j].st_shndx >= elf_header.e_shnum
8536 || section_headers[symbols[cnt + j].st_shndx].sh_type
8537 != SHT_NOBITS)
8538 {
8539 if (symbols[cnt + j].st_shndx == SHN_UNDEF)
8540 check_def = 0;
8541 else
8542 check_need = 0;
8543 }
8544
8545 if (check_need
8546 && version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
8547 {
8548 Elf_Internal_Verneed ivn;
8549 unsigned long offset;
8550
8551 offset = offset_from_vma
8552 (file, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
8553 sizeof (Elf_External_Verneed));
8554
8555 do
8556 {
8557 Elf_Internal_Vernaux ivna;
8558 Elf_External_Verneed evn;
8559 Elf_External_Vernaux evna;
8560 unsigned long a_off;
8561
8562 if (get_data (&evn, file, offset, sizeof (evn), 1,
8563 _("version need")) == NULL)
8564 break;
8565
8566 ivn.vn_aux = BYTE_GET (evn.vn_aux);
8567 ivn.vn_next = BYTE_GET (evn.vn_next);
8568
8569 a_off = offset + ivn.vn_aux;
8570
8571 do
8572 {
8573 if (get_data (&evna, file, a_off, sizeof (evna),
8574 1, _("version need aux (2)")) == NULL)
8575 {
8576 ivna.vna_next = 0;
8577 ivna.vna_other = 0;
8578 }
8579 else
8580 {
8581 ivna.vna_next = BYTE_GET (evna.vna_next);
8582 ivna.vna_other = BYTE_GET (evna.vna_other);
8583 }
8584
8585 a_off += ivna.vna_next;
8586 }
8587 while (ivna.vna_other != data[cnt + j]
8588 && ivna.vna_next != 0);
8589
8590 if (ivna.vna_other == data[cnt + j])
8591 {
8592 ivna.vna_name = BYTE_GET (evna.vna_name);
8593
8594 if (ivna.vna_name >= string_sec->sh_size)
8595 name = _("*invalid*");
8596 else
8597 name = strtab + ivna.vna_name;
8598 nn += printf ("(%s%-*s",
8599 name,
8600 12 - (int) strlen (name),
8601 ")");
8602 check_def = 0;
8603 break;
8604 }
8605
8606 offset += ivn.vn_next;
8607 }
8608 while (ivn.vn_next);
8609 }
8610
8611 if (check_def && data[cnt + j] != 0x8001
8612 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
8613 {
8614 Elf_Internal_Verdef ivd;
8615 Elf_External_Verdef evd;
8616 unsigned long offset;
8617
8618 offset = offset_from_vma
8619 (file, version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
8620 sizeof evd);
8621
8622 do
8623 {
8624 if (get_data (&evd, file, offset, sizeof (evd), 1,
8625 _("version def")) == NULL)
8626 {
8627 ivd.vd_next = 0;
8628 ivd.vd_ndx = 0;
8629 }
8630 else
8631 {
8632 ivd.vd_next = BYTE_GET (evd.vd_next);
8633 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
8634 }
8635
8636 offset += ivd.vd_next;
8637 }
8638 while (ivd.vd_ndx != (data[cnt + j] & VERSYM_VERSION)
8639 && ivd.vd_next != 0);
8640
8641 if (ivd.vd_ndx == (data[cnt + j] & VERSYM_VERSION))
8642 {
8643 Elf_External_Verdaux evda;
8644 Elf_Internal_Verdaux ivda;
8645
8646 ivd.vd_aux = BYTE_GET (evd.vd_aux);
8647
8648 if (get_data (&evda, file,
8649 offset - ivd.vd_next + ivd.vd_aux,
8650 sizeof (evda), 1,
8651 _("version def aux")) == NULL)
8652 break;
8653
8654 ivda.vda_name = BYTE_GET (evda.vda_name);
8655
8656 if (ivda.vda_name >= string_sec->sh_size)
8657 name = _("*invalid*");
8658 else
8659 name = strtab + ivda.vda_name;
8660 nn += printf ("(%s%-*s",
8661 name,
8662 12 - (int) strlen (name),
8663 ")");
8664 }
8665 }
8666
8667 if (nn < 18)
8668 printf ("%*c", 18 - nn, ' ');
8669 }
8670
8671 putchar ('\n');
8672 }
8673
8674 free (data);
8675 free (strtab);
8676 free (symbols);
8677 }
8678 break;
8679
8680 default:
8681 break;
8682 }
8683 }
8684
8685 if (! found)
8686 printf (_("\nNo version information found in this file.\n"));
8687
8688 return 1;
8689 }
8690
8691 static const char *
8692 get_symbol_binding (unsigned int binding)
8693 {
8694 static char buff[32];
8695
8696 switch (binding)
8697 {
8698 case STB_LOCAL: return "LOCAL";
8699 case STB_GLOBAL: return "GLOBAL";
8700 case STB_WEAK: return "WEAK";
8701 default:
8702 if (binding >= STB_LOPROC && binding <= STB_HIPROC)
8703 snprintf (buff, sizeof (buff), _("<processor specific>: %d"),
8704 binding);
8705 else if (binding >= STB_LOOS && binding <= STB_HIOS)
8706 {
8707 if (binding == STB_GNU_UNIQUE
8708 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
8709 /* GNU is still using the default value 0. */
8710 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
8711 return "UNIQUE";
8712 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), binding);
8713 }
8714 else
8715 snprintf (buff, sizeof (buff), _("<unknown>: %d"), binding);
8716 return buff;
8717 }
8718 }
8719
8720 static const char *
8721 get_symbol_type (unsigned int type)
8722 {
8723 static char buff[32];
8724
8725 switch (type)
8726 {
8727 case STT_NOTYPE: return "NOTYPE";
8728 case STT_OBJECT: return "OBJECT";
8729 case STT_FUNC: return "FUNC";
8730 case STT_SECTION: return "SECTION";
8731 case STT_FILE: return "FILE";
8732 case STT_COMMON: return "COMMON";
8733 case STT_TLS: return "TLS";
8734 case STT_RELC: return "RELC";
8735 case STT_SRELC: return "SRELC";
8736 default:
8737 if (type >= STT_LOPROC && type <= STT_HIPROC)
8738 {
8739 if (elf_header.e_machine == EM_ARM && type == STT_ARM_TFUNC)
8740 return "THUMB_FUNC";
8741
8742 if (elf_header.e_machine == EM_SPARCV9 && type == STT_REGISTER)
8743 return "REGISTER";
8744
8745 if (elf_header.e_machine == EM_PARISC && type == STT_PARISC_MILLI)
8746 return "PARISC_MILLI";
8747
8748 snprintf (buff, sizeof (buff), _("<processor specific>: %d"), type);
8749 }
8750 else if (type >= STT_LOOS && type <= STT_HIOS)
8751 {
8752 if (elf_header.e_machine == EM_PARISC)
8753 {
8754 if (type == STT_HP_OPAQUE)
8755 return "HP_OPAQUE";
8756 if (type == STT_HP_STUB)
8757 return "HP_STUB";
8758 }
8759
8760 if (type == STT_GNU_IFUNC
8761 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
8762 || elf_header.e_ident[EI_OSABI] == ELFOSABI_FREEBSD
8763 /* GNU is still using the default value 0. */
8764 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
8765 return "IFUNC";
8766
8767 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), type);
8768 }
8769 else
8770 snprintf (buff, sizeof (buff), _("<unknown>: %d"), type);
8771 return buff;
8772 }
8773 }
8774
8775 static const char *
8776 get_symbol_visibility (unsigned int visibility)
8777 {
8778 switch (visibility)
8779 {
8780 case STV_DEFAULT: return "DEFAULT";
8781 case STV_INTERNAL: return "INTERNAL";
8782 case STV_HIDDEN: return "HIDDEN";
8783 case STV_PROTECTED: return "PROTECTED";
8784 default: abort ();
8785 }
8786 }
8787
8788 static const char *
8789 get_mips_symbol_other (unsigned int other)
8790 {
8791 switch (other)
8792 {
8793 case STO_OPTIONAL:
8794 return "OPTIONAL";
8795 case STO_MIPS_PLT:
8796 return "MIPS PLT";
8797 case STO_MIPS_PIC:
8798 return "MIPS PIC";
8799 case STO_MICROMIPS:
8800 return "MICROMIPS";
8801 case STO_MICROMIPS | STO_MIPS_PIC:
8802 return "MICROMIPS, MIPS PIC";
8803 case STO_MIPS16:
8804 return "MIPS16";
8805 default:
8806 return NULL;
8807 }
8808 }
8809
8810 static const char *
8811 get_ia64_symbol_other (unsigned int other)
8812 {
8813 if (is_ia64_vms ())
8814 {
8815 static char res[32];
8816
8817 res[0] = 0;
8818
8819 /* Function types is for images and .STB files only. */
8820 switch (elf_header.e_type)
8821 {
8822 case ET_DYN:
8823 case ET_EXEC:
8824 switch (VMS_ST_FUNC_TYPE (other))
8825 {
8826 case VMS_SFT_CODE_ADDR:
8827 strcat (res, " CA");
8828 break;
8829 case VMS_SFT_SYMV_IDX:
8830 strcat (res, " VEC");
8831 break;
8832 case VMS_SFT_FD:
8833 strcat (res, " FD");
8834 break;
8835 case VMS_SFT_RESERVE:
8836 strcat (res, " RSV");
8837 break;
8838 default:
8839 abort ();
8840 }
8841 break;
8842 default:
8843 break;
8844 }
8845 switch (VMS_ST_LINKAGE (other))
8846 {
8847 case VMS_STL_IGNORE:
8848 strcat (res, " IGN");
8849 break;
8850 case VMS_STL_RESERVE:
8851 strcat (res, " RSV");
8852 break;
8853 case VMS_STL_STD:
8854 strcat (res, " STD");
8855 break;
8856 case VMS_STL_LNK:
8857 strcat (res, " LNK");
8858 break;
8859 default:
8860 abort ();
8861 }
8862
8863 if (res[0] != 0)
8864 return res + 1;
8865 else
8866 return res;
8867 }
8868 return NULL;
8869 }
8870
8871 static const char *
8872 get_symbol_other (unsigned int other)
8873 {
8874 const char * result = NULL;
8875 static char buff [32];
8876
8877 if (other == 0)
8878 return "";
8879
8880 switch (elf_header.e_machine)
8881 {
8882 case EM_MIPS:
8883 result = get_mips_symbol_other (other);
8884 break;
8885 case EM_IA_64:
8886 result = get_ia64_symbol_other (other);
8887 break;
8888 default:
8889 break;
8890 }
8891
8892 if (result)
8893 return result;
8894
8895 snprintf (buff, sizeof buff, _("<other>: %x"), other);
8896 return buff;
8897 }
8898
8899 static const char *
8900 get_symbol_index_type (unsigned int type)
8901 {
8902 static char buff[32];
8903
8904 switch (type)
8905 {
8906 case SHN_UNDEF: return "UND";
8907 case SHN_ABS: return "ABS";
8908 case SHN_COMMON: return "COM";
8909 default:
8910 if (type == SHN_IA_64_ANSI_COMMON
8911 && elf_header.e_machine == EM_IA_64
8912 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX)
8913 return "ANSI_COM";
8914 else if ((elf_header.e_machine == EM_X86_64
8915 || elf_header.e_machine == EM_L1OM
8916 || elf_header.e_machine == EM_K1OM)
8917 && type == SHN_X86_64_LCOMMON)
8918 return "LARGE_COM";
8919 else if ((type == SHN_MIPS_SCOMMON
8920 && elf_header.e_machine == EM_MIPS)
8921 || (type == SHN_TIC6X_SCOMMON
8922 && elf_header.e_machine == EM_TI_C6000))
8923 return "SCOM";
8924 else if (type == SHN_MIPS_SUNDEFINED
8925 && elf_header.e_machine == EM_MIPS)
8926 return "SUND";
8927 else if (type >= SHN_LOPROC && type <= SHN_HIPROC)
8928 sprintf (buff, "PRC[0x%04x]", type & 0xffff);
8929 else if (type >= SHN_LOOS && type <= SHN_HIOS)
8930 sprintf (buff, "OS [0x%04x]", type & 0xffff);
8931 else if (type >= SHN_LORESERVE)
8932 sprintf (buff, "RSV[0x%04x]", type & 0xffff);
8933 else
8934 sprintf (buff, "%3d", type);
8935 break;
8936 }
8937
8938 return buff;
8939 }
8940
8941 static bfd_vma *
8942 get_dynamic_data (FILE * file, unsigned int number, unsigned int ent_size)
8943 {
8944 unsigned char * e_data;
8945 bfd_vma * i_data;
8946
8947 e_data = (unsigned char *) cmalloc (number, ent_size);
8948
8949 if (e_data == NULL)
8950 {
8951 error (_("Out of memory\n"));
8952 return NULL;
8953 }
8954
8955 if (fread (e_data, ent_size, number, file) != number)
8956 {
8957 error (_("Unable to read in dynamic data\n"));
8958 return NULL;
8959 }
8960
8961 i_data = (bfd_vma *) cmalloc (number, sizeof (*i_data));
8962
8963 if (i_data == NULL)
8964 {
8965 error (_("Out of memory\n"));
8966 free (e_data);
8967 return NULL;
8968 }
8969
8970 while (number--)
8971 i_data[number] = byte_get (e_data + number * ent_size, ent_size);
8972
8973 free (e_data);
8974
8975 return i_data;
8976 }
8977
8978 static void
8979 print_dynamic_symbol (bfd_vma si, unsigned long hn)
8980 {
8981 Elf_Internal_Sym * psym;
8982 int n;
8983
8984 psym = dynamic_symbols + si;
8985
8986 n = print_vma (si, DEC_5);
8987 if (n < 5)
8988 fputs (" " + n, stdout);
8989 printf (" %3lu: ", hn);
8990 print_vma (psym->st_value, LONG_HEX);
8991 putchar (' ');
8992 print_vma (psym->st_size, DEC_5);
8993
8994 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
8995 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
8996 printf (" %-7s", get_symbol_visibility (ELF_ST_VISIBILITY (psym->st_other)));
8997 /* Check to see if any other bits in the st_other field are set.
8998 Note - displaying this information disrupts the layout of the
8999 table being generated, but for the moment this case is very
9000 rare. */
9001 if (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other))
9002 printf (" [%s] ", get_symbol_other (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other)));
9003 printf (" %3.3s ", get_symbol_index_type (psym->st_shndx));
9004 if (VALID_DYNAMIC_NAME (psym->st_name))
9005 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
9006 else
9007 printf (_(" <corrupt: %14ld>"), psym->st_name);
9008 putchar ('\n');
9009 }
9010
9011 /* Dump the symbol table. */
9012 static int
9013 process_symbol_table (FILE * file)
9014 {
9015 Elf_Internal_Shdr * section;
9016 bfd_vma nbuckets = 0;
9017 bfd_vma nchains = 0;
9018 bfd_vma * buckets = NULL;
9019 bfd_vma * chains = NULL;
9020 bfd_vma ngnubuckets = 0;
9021 bfd_vma * gnubuckets = NULL;
9022 bfd_vma * gnuchains = NULL;
9023 bfd_vma gnusymidx = 0;
9024
9025 if (!do_syms && !do_dyn_syms && !do_histogram)
9026 return 1;
9027
9028 if (dynamic_info[DT_HASH]
9029 && (do_histogram
9030 || (do_using_dynamic
9031 && !do_dyn_syms
9032 && dynamic_strings != NULL)))
9033 {
9034 unsigned char nb[8];
9035 unsigned char nc[8];
9036 int hash_ent_size = 4;
9037
9038 if ((elf_header.e_machine == EM_ALPHA
9039 || elf_header.e_machine == EM_S390
9040 || elf_header.e_machine == EM_S390_OLD)
9041 && elf_header.e_ident[EI_CLASS] == ELFCLASS64)
9042 hash_ent_size = 8;
9043
9044 if (fseek (file,
9045 (archive_file_offset
9046 + offset_from_vma (file, dynamic_info[DT_HASH],
9047 sizeof nb + sizeof nc)),
9048 SEEK_SET))
9049 {
9050 error (_("Unable to seek to start of dynamic information\n"));
9051 goto no_hash;
9052 }
9053
9054 if (fread (nb, hash_ent_size, 1, file) != 1)
9055 {
9056 error (_("Failed to read in number of buckets\n"));
9057 goto no_hash;
9058 }
9059
9060 if (fread (nc, hash_ent_size, 1, file) != 1)
9061 {
9062 error (_("Failed to read in number of chains\n"));
9063 goto no_hash;
9064 }
9065
9066 nbuckets = byte_get (nb, hash_ent_size);
9067 nchains = byte_get (nc, hash_ent_size);
9068
9069 buckets = get_dynamic_data (file, nbuckets, hash_ent_size);
9070 chains = get_dynamic_data (file, nchains, hash_ent_size);
9071
9072 no_hash:
9073 if (buckets == NULL || chains == NULL)
9074 {
9075 if (do_using_dynamic)
9076 return 0;
9077 free (buckets);
9078 free (chains);
9079 buckets = NULL;
9080 chains = NULL;
9081 nbuckets = 0;
9082 nchains = 0;
9083 }
9084 }
9085
9086 if (dynamic_info_DT_GNU_HASH
9087 && (do_histogram
9088 || (do_using_dynamic
9089 && !do_dyn_syms
9090 && dynamic_strings != NULL)))
9091 {
9092 unsigned char nb[16];
9093 bfd_vma i, maxchain = 0xffffffff, bitmaskwords;
9094 bfd_vma buckets_vma;
9095
9096 if (fseek (file,
9097 (archive_file_offset
9098 + offset_from_vma (file, dynamic_info_DT_GNU_HASH,
9099 sizeof nb)),
9100 SEEK_SET))
9101 {
9102 error (_("Unable to seek to start of dynamic information\n"));
9103 goto no_gnu_hash;
9104 }
9105
9106 if (fread (nb, 16, 1, file) != 1)
9107 {
9108 error (_("Failed to read in number of buckets\n"));
9109 goto no_gnu_hash;
9110 }
9111
9112 ngnubuckets = byte_get (nb, 4);
9113 gnusymidx = byte_get (nb + 4, 4);
9114 bitmaskwords = byte_get (nb + 8, 4);
9115 buckets_vma = dynamic_info_DT_GNU_HASH + 16;
9116 if (is_32bit_elf)
9117 buckets_vma += bitmaskwords * 4;
9118 else
9119 buckets_vma += bitmaskwords * 8;
9120
9121 if (fseek (file,
9122 (archive_file_offset
9123 + offset_from_vma (file, buckets_vma, 4)),
9124 SEEK_SET))
9125 {
9126 error (_("Unable to seek to start of dynamic information\n"));
9127 goto no_gnu_hash;
9128 }
9129
9130 gnubuckets = get_dynamic_data (file, ngnubuckets, 4);
9131
9132 if (gnubuckets == NULL)
9133 goto no_gnu_hash;
9134
9135 for (i = 0; i < ngnubuckets; i++)
9136 if (gnubuckets[i] != 0)
9137 {
9138 if (gnubuckets[i] < gnusymidx)
9139 return 0;
9140
9141 if (maxchain == 0xffffffff || gnubuckets[i] > maxchain)
9142 maxchain = gnubuckets[i];
9143 }
9144
9145 if (maxchain == 0xffffffff)
9146 goto no_gnu_hash;
9147
9148 maxchain -= gnusymidx;
9149
9150 if (fseek (file,
9151 (archive_file_offset
9152 + offset_from_vma (file, buckets_vma
9153 + 4 * (ngnubuckets + maxchain), 4)),
9154 SEEK_SET))
9155 {
9156 error (_("Unable to seek to start of dynamic information\n"));
9157 goto no_gnu_hash;
9158 }
9159
9160 do
9161 {
9162 if (fread (nb, 4, 1, file) != 1)
9163 {
9164 error (_("Failed to determine last chain length\n"));
9165 goto no_gnu_hash;
9166 }
9167
9168 if (maxchain + 1 == 0)
9169 goto no_gnu_hash;
9170
9171 ++maxchain;
9172 }
9173 while ((byte_get (nb, 4) & 1) == 0);
9174
9175 if (fseek (file,
9176 (archive_file_offset
9177 + offset_from_vma (file, buckets_vma + 4 * ngnubuckets, 4)),
9178 SEEK_SET))
9179 {
9180 error (_("Unable to seek to start of dynamic information\n"));
9181 goto no_gnu_hash;
9182 }
9183
9184 gnuchains = get_dynamic_data (file, maxchain, 4);
9185
9186 no_gnu_hash:
9187 if (gnuchains == NULL)
9188 {
9189 free (gnubuckets);
9190 gnubuckets = NULL;
9191 ngnubuckets = 0;
9192 if (do_using_dynamic)
9193 return 0;
9194 }
9195 }
9196
9197 if ((dynamic_info[DT_HASH] || dynamic_info_DT_GNU_HASH)
9198 && do_syms
9199 && do_using_dynamic
9200 && dynamic_strings != NULL)
9201 {
9202 unsigned long hn;
9203
9204 if (dynamic_info[DT_HASH])
9205 {
9206 bfd_vma si;
9207
9208 printf (_("\nSymbol table for image:\n"));
9209 if (is_32bit_elf)
9210 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
9211 else
9212 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
9213
9214 for (hn = 0; hn < nbuckets; hn++)
9215 {
9216 if (! buckets[hn])
9217 continue;
9218
9219 for (si = buckets[hn]; si < nchains && si > 0; si = chains[si])
9220 print_dynamic_symbol (si, hn);
9221 }
9222 }
9223
9224 if (dynamic_info_DT_GNU_HASH)
9225 {
9226 printf (_("\nSymbol table of `.gnu.hash' for image:\n"));
9227 if (is_32bit_elf)
9228 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
9229 else
9230 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
9231
9232 for (hn = 0; hn < ngnubuckets; ++hn)
9233 if (gnubuckets[hn] != 0)
9234 {
9235 bfd_vma si = gnubuckets[hn];
9236 bfd_vma off = si - gnusymidx;
9237
9238 do
9239 {
9240 print_dynamic_symbol (si, hn);
9241 si++;
9242 }
9243 while ((gnuchains[off++] & 1) == 0);
9244 }
9245 }
9246 }
9247 else if (do_dyn_syms || (do_syms && !do_using_dynamic))
9248 {
9249 unsigned int i;
9250
9251 for (i = 0, section = section_headers;
9252 i < elf_header.e_shnum;
9253 i++, section++)
9254 {
9255 unsigned int si;
9256 char * strtab = NULL;
9257 unsigned long int strtab_size = 0;
9258 Elf_Internal_Sym * symtab;
9259 Elf_Internal_Sym * psym;
9260 unsigned long num_syms;
9261
9262 if ((section->sh_type != SHT_SYMTAB
9263 && section->sh_type != SHT_DYNSYM)
9264 || (!do_syms
9265 && section->sh_type == SHT_SYMTAB))
9266 continue;
9267
9268 if (section->sh_entsize == 0)
9269 {
9270 printf (_("\nSymbol table '%s' has a sh_entsize of zero!\n"),
9271 SECTION_NAME (section));
9272 continue;
9273 }
9274
9275 printf (_("\nSymbol table '%s' contains %lu entries:\n"),
9276 SECTION_NAME (section),
9277 (unsigned long) (section->sh_size / section->sh_entsize));
9278
9279 if (is_32bit_elf)
9280 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
9281 else
9282 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
9283
9284 symtab = GET_ELF_SYMBOLS (file, section, & num_syms);
9285 if (symtab == NULL)
9286 continue;
9287
9288 if (section->sh_link == elf_header.e_shstrndx)
9289 {
9290 strtab = string_table;
9291 strtab_size = string_table_length;
9292 }
9293 else if (section->sh_link < elf_header.e_shnum)
9294 {
9295 Elf_Internal_Shdr * string_sec;
9296
9297 string_sec = section_headers + section->sh_link;
9298
9299 strtab = (char *) get_data (NULL, file, string_sec->sh_offset,
9300 1, string_sec->sh_size,
9301 _("string table"));
9302 strtab_size = strtab != NULL ? string_sec->sh_size : 0;
9303 }
9304
9305 for (si = 0, psym = symtab; si < num_syms; si++, psym++)
9306 {
9307 printf ("%6d: ", si);
9308 print_vma (psym->st_value, LONG_HEX);
9309 putchar (' ');
9310 print_vma (psym->st_size, DEC_5);
9311 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
9312 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
9313 printf (" %-7s", get_symbol_visibility (ELF_ST_VISIBILITY (psym->st_other)));
9314 /* Check to see if any other bits in the st_other field are set.
9315 Note - displaying this information disrupts the layout of the
9316 table being generated, but for the moment this case is very rare. */
9317 if (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other))
9318 printf (" [%s] ", get_symbol_other (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other)));
9319 printf (" %4s ", get_symbol_index_type (psym->st_shndx));
9320 print_symbol (25, psym->st_name < strtab_size
9321 ? strtab + psym->st_name : _("<corrupt>"));
9322
9323 if (section->sh_type == SHT_DYNSYM
9324 && version_info[DT_VERSIONTAGIDX (DT_VERSYM)] != 0)
9325 {
9326 unsigned char data[2];
9327 unsigned short vers_data;
9328 unsigned long offset;
9329 int is_nobits;
9330 int check_def;
9331
9332 offset = offset_from_vma
9333 (file, version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
9334 sizeof data + si * sizeof (vers_data));
9335
9336 if (get_data (&data, file, offset + si * sizeof (vers_data),
9337 sizeof (data), 1, _("version data")) == NULL)
9338 break;
9339
9340 vers_data = byte_get (data, 2);
9341
9342 is_nobits = (psym->st_shndx < elf_header.e_shnum
9343 && section_headers[psym->st_shndx].sh_type
9344 == SHT_NOBITS);
9345
9346 check_def = (psym->st_shndx != SHN_UNDEF);
9347
9348 if ((vers_data & VERSYM_HIDDEN) || vers_data > 1)
9349 {
9350 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)]
9351 && (is_nobits || ! check_def))
9352 {
9353 Elf_External_Verneed evn;
9354 Elf_Internal_Verneed ivn;
9355 Elf_Internal_Vernaux ivna;
9356
9357 /* We must test both. */
9358 offset = offset_from_vma
9359 (file, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
9360 sizeof evn);
9361
9362 do
9363 {
9364 unsigned long vna_off;
9365
9366 if (get_data (&evn, file, offset, sizeof (evn), 1,
9367 _("version need")) == NULL)
9368 {
9369 ivna.vna_next = 0;
9370 ivna.vna_other = 0;
9371 ivna.vna_name = 0;
9372 break;
9373 }
9374
9375 ivn.vn_aux = BYTE_GET (evn.vn_aux);
9376 ivn.vn_next = BYTE_GET (evn.vn_next);
9377
9378 vna_off = offset + ivn.vn_aux;
9379
9380 do
9381 {
9382 Elf_External_Vernaux evna;
9383
9384 if (get_data (&evna, file, vna_off,
9385 sizeof (evna), 1,
9386 _("version need aux (3)")) == NULL)
9387 {
9388 ivna.vna_next = 0;
9389 ivna.vna_other = 0;
9390 ivna.vna_name = 0;
9391 }
9392 else
9393 {
9394 ivna.vna_other = BYTE_GET (evna.vna_other);
9395 ivna.vna_next = BYTE_GET (evna.vna_next);
9396 ivna.vna_name = BYTE_GET (evna.vna_name);
9397 }
9398
9399 vna_off += ivna.vna_next;
9400 }
9401 while (ivna.vna_other != vers_data
9402 && ivna.vna_next != 0);
9403
9404 if (ivna.vna_other == vers_data)
9405 break;
9406
9407 offset += ivn.vn_next;
9408 }
9409 while (ivn.vn_next != 0);
9410
9411 if (ivna.vna_other == vers_data)
9412 {
9413 printf ("@%s (%d)",
9414 ivna.vna_name < strtab_size
9415 ? strtab + ivna.vna_name : _("<corrupt>"),
9416 ivna.vna_other);
9417 check_def = 0;
9418 }
9419 else if (! is_nobits)
9420 error (_("bad dynamic symbol\n"));
9421 else
9422 check_def = 1;
9423 }
9424
9425 if (check_def)
9426 {
9427 if (vers_data != 0x8001
9428 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
9429 {
9430 Elf_Internal_Verdef ivd;
9431 Elf_Internal_Verdaux ivda;
9432 Elf_External_Verdaux evda;
9433 unsigned long off;
9434
9435 off = offset_from_vma
9436 (file,
9437 version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
9438 sizeof (Elf_External_Verdef));
9439
9440 do
9441 {
9442 Elf_External_Verdef evd;
9443
9444 if (get_data (&evd, file, off, sizeof (evd),
9445 1, _("version def")) == NULL)
9446 {
9447 ivd.vd_ndx = 0;
9448 ivd.vd_aux = 0;
9449 ivd.vd_next = 0;
9450 }
9451 else
9452 {
9453 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
9454 ivd.vd_aux = BYTE_GET (evd.vd_aux);
9455 ivd.vd_next = BYTE_GET (evd.vd_next);
9456 }
9457
9458 off += ivd.vd_next;
9459 }
9460 while (ivd.vd_ndx != (vers_data & VERSYM_VERSION)
9461 && ivd.vd_next != 0);
9462
9463 off -= ivd.vd_next;
9464 off += ivd.vd_aux;
9465
9466 if (get_data (&evda, file, off, sizeof (evda),
9467 1, _("version def aux")) == NULL)
9468 break;
9469
9470 ivda.vda_name = BYTE_GET (evda.vda_name);
9471
9472 if (psym->st_name != ivda.vda_name)
9473 printf ((vers_data & VERSYM_HIDDEN)
9474 ? "@%s" : "@@%s",
9475 ivda.vda_name < strtab_size
9476 ? strtab + ivda.vda_name : _("<corrupt>"));
9477 }
9478 }
9479 }
9480 }
9481
9482 putchar ('\n');
9483 }
9484
9485 free (symtab);
9486 if (strtab != string_table)
9487 free (strtab);
9488 }
9489 }
9490 else if (do_syms)
9491 printf
9492 (_("\nDynamic symbol information is not available for displaying symbols.\n"));
9493
9494 if (do_histogram && buckets != NULL)
9495 {
9496 unsigned long * lengths;
9497 unsigned long * counts;
9498 unsigned long hn;
9499 bfd_vma si;
9500 unsigned long maxlength = 0;
9501 unsigned long nzero_counts = 0;
9502 unsigned long nsyms = 0;
9503
9504 printf (_("\nHistogram for bucket list length (total of %lu buckets):\n"),
9505 (unsigned long) nbuckets);
9506 printf (_(" Length Number %% of total Coverage\n"));
9507
9508 lengths = (unsigned long *) calloc (nbuckets, sizeof (*lengths));
9509 if (lengths == NULL)
9510 {
9511 error (_("Out of memory\n"));
9512 return 0;
9513 }
9514 for (hn = 0; hn < nbuckets; ++hn)
9515 {
9516 for (si = buckets[hn]; si > 0 && si < nchains; si = chains[si])
9517 {
9518 ++nsyms;
9519 if (maxlength < ++lengths[hn])
9520 ++maxlength;
9521 }
9522 }
9523
9524 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
9525 if (counts == NULL)
9526 {
9527 error (_("Out of memory\n"));
9528 return 0;
9529 }
9530
9531 for (hn = 0; hn < nbuckets; ++hn)
9532 ++counts[lengths[hn]];
9533
9534 if (nbuckets > 0)
9535 {
9536 unsigned long i;
9537 printf (" 0 %-10lu (%5.1f%%)\n",
9538 counts[0], (counts[0] * 100.0) / nbuckets);
9539 for (i = 1; i <= maxlength; ++i)
9540 {
9541 nzero_counts += counts[i] * i;
9542 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
9543 i, counts[i], (counts[i] * 100.0) / nbuckets,
9544 (nzero_counts * 100.0) / nsyms);
9545 }
9546 }
9547
9548 free (counts);
9549 free (lengths);
9550 }
9551
9552 if (buckets != NULL)
9553 {
9554 free (buckets);
9555 free (chains);
9556 }
9557
9558 if (do_histogram && gnubuckets != NULL)
9559 {
9560 unsigned long * lengths;
9561 unsigned long * counts;
9562 unsigned long hn;
9563 unsigned long maxlength = 0;
9564 unsigned long nzero_counts = 0;
9565 unsigned long nsyms = 0;
9566
9567 lengths = (unsigned long *) calloc (ngnubuckets, sizeof (*lengths));
9568 if (lengths == NULL)
9569 {
9570 error (_("Out of memory\n"));
9571 return 0;
9572 }
9573
9574 printf (_("\nHistogram for `.gnu.hash' bucket list length (total of %lu buckets):\n"),
9575 (unsigned long) ngnubuckets);
9576 printf (_(" Length Number %% of total Coverage\n"));
9577
9578 for (hn = 0; hn < ngnubuckets; ++hn)
9579 if (gnubuckets[hn] != 0)
9580 {
9581 bfd_vma off, length = 1;
9582
9583 for (off = gnubuckets[hn] - gnusymidx;
9584 (gnuchains[off] & 1) == 0; ++off)
9585 ++length;
9586 lengths[hn] = length;
9587 if (length > maxlength)
9588 maxlength = length;
9589 nsyms += length;
9590 }
9591
9592 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
9593 if (counts == NULL)
9594 {
9595 error (_("Out of memory\n"));
9596 return 0;
9597 }
9598
9599 for (hn = 0; hn < ngnubuckets; ++hn)
9600 ++counts[lengths[hn]];
9601
9602 if (ngnubuckets > 0)
9603 {
9604 unsigned long j;
9605 printf (" 0 %-10lu (%5.1f%%)\n",
9606 counts[0], (counts[0] * 100.0) / ngnubuckets);
9607 for (j = 1; j <= maxlength; ++j)
9608 {
9609 nzero_counts += counts[j] * j;
9610 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
9611 j, counts[j], (counts[j] * 100.0) / ngnubuckets,
9612 (nzero_counts * 100.0) / nsyms);
9613 }
9614 }
9615
9616 free (counts);
9617 free (lengths);
9618 free (gnubuckets);
9619 free (gnuchains);
9620 }
9621
9622 return 1;
9623 }
9624
9625 static int
9626 process_syminfo (FILE * file ATTRIBUTE_UNUSED)
9627 {
9628 unsigned int i;
9629
9630 if (dynamic_syminfo == NULL
9631 || !do_dynamic)
9632 /* No syminfo, this is ok. */
9633 return 1;
9634
9635 /* There better should be a dynamic symbol section. */
9636 if (dynamic_symbols == NULL || dynamic_strings == NULL)
9637 return 0;
9638
9639 if (dynamic_addr)
9640 printf (_("\nDynamic info segment at offset 0x%lx contains %d entries:\n"),
9641 dynamic_syminfo_offset, dynamic_syminfo_nent);
9642
9643 printf (_(" Num: Name BoundTo Flags\n"));
9644 for (i = 0; i < dynamic_syminfo_nent; ++i)
9645 {
9646 unsigned short int flags = dynamic_syminfo[i].si_flags;
9647
9648 printf ("%4d: ", i);
9649 if (VALID_DYNAMIC_NAME (dynamic_symbols[i].st_name))
9650 print_symbol (30, GET_DYNAMIC_NAME (dynamic_symbols[i].st_name));
9651 else
9652 printf (_("<corrupt: %19ld>"), dynamic_symbols[i].st_name);
9653 putchar (' ');
9654
9655 switch (dynamic_syminfo[i].si_boundto)
9656 {
9657 case SYMINFO_BT_SELF:
9658 fputs ("SELF ", stdout);
9659 break;
9660 case SYMINFO_BT_PARENT:
9661 fputs ("PARENT ", stdout);
9662 break;
9663 default:
9664 if (dynamic_syminfo[i].si_boundto > 0
9665 && dynamic_syminfo[i].si_boundto < dynamic_nent
9666 && VALID_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val))
9667 {
9668 print_symbol (10, GET_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val));
9669 putchar (' ' );
9670 }
9671 else
9672 printf ("%-10d ", dynamic_syminfo[i].si_boundto);
9673 break;
9674 }
9675
9676 if (flags & SYMINFO_FLG_DIRECT)
9677 printf (" DIRECT");
9678 if (flags & SYMINFO_FLG_PASSTHRU)
9679 printf (" PASSTHRU");
9680 if (flags & SYMINFO_FLG_COPY)
9681 printf (" COPY");
9682 if (flags & SYMINFO_FLG_LAZYLOAD)
9683 printf (" LAZYLOAD");
9684
9685 puts ("");
9686 }
9687
9688 return 1;
9689 }
9690
9691 /* Check to see if the given reloc needs to be handled in a target specific
9692 manner. If so then process the reloc and return TRUE otherwise return
9693 FALSE. */
9694
9695 static bfd_boolean
9696 target_specific_reloc_handling (Elf_Internal_Rela * reloc,
9697 unsigned char * start,
9698 Elf_Internal_Sym * symtab)
9699 {
9700 unsigned int reloc_type = get_reloc_type (reloc->r_info);
9701
9702 switch (elf_header.e_machine)
9703 {
9704 case EM_MN10300:
9705 case EM_CYGNUS_MN10300:
9706 {
9707 static Elf_Internal_Sym * saved_sym = NULL;
9708
9709 switch (reloc_type)
9710 {
9711 case 34: /* R_MN10300_ALIGN */
9712 return TRUE;
9713 case 33: /* R_MN10300_SYM_DIFF */
9714 saved_sym = symtab + get_reloc_symindex (reloc->r_info);
9715 return TRUE;
9716 case 1: /* R_MN10300_32 */
9717 case 2: /* R_MN10300_16 */
9718 if (saved_sym != NULL)
9719 {
9720 bfd_vma value;
9721
9722 value = reloc->r_addend
9723 + (symtab[get_reloc_symindex (reloc->r_info)].st_value
9724 - saved_sym->st_value);
9725
9726 byte_put (start + reloc->r_offset, value, reloc_type == 1 ? 4 : 2);
9727
9728 saved_sym = NULL;
9729 return TRUE;
9730 }
9731 break;
9732 default:
9733 if (saved_sym != NULL)
9734 error (_("Unhandled MN10300 reloc type found after SYM_DIFF reloc"));
9735 break;
9736 }
9737 break;
9738 }
9739 }
9740
9741 return FALSE;
9742 }
9743
9744 /* Returns TRUE iff RELOC_TYPE is a 32-bit absolute RELA relocation used in
9745 DWARF debug sections. This is a target specific test. Note - we do not
9746 go through the whole including-target-headers-multiple-times route, (as
9747 we have already done with <elf/h8.h>) because this would become very
9748 messy and even then this function would have to contain target specific
9749 information (the names of the relocs instead of their numeric values).
9750 FIXME: This is not the correct way to solve this problem. The proper way
9751 is to have target specific reloc sizing and typing functions created by
9752 the reloc-macros.h header, in the same way that it already creates the
9753 reloc naming functions. */
9754
9755 static bfd_boolean
9756 is_32bit_abs_reloc (unsigned int reloc_type)
9757 {
9758 switch (elf_header.e_machine)
9759 {
9760 case EM_386:
9761 case EM_486:
9762 return reloc_type == 1; /* R_386_32. */
9763 case EM_68K:
9764 return reloc_type == 1; /* R_68K_32. */
9765 case EM_860:
9766 return reloc_type == 1; /* R_860_32. */
9767 case EM_960:
9768 return reloc_type == 2; /* R_960_32. */
9769 case EM_ALPHA:
9770 return reloc_type == 1; /* R_ALPHA_REFLONG. */
9771 case EM_ARC:
9772 return reloc_type == 1; /* R_ARC_32. */
9773 case EM_ARM:
9774 return reloc_type == 2; /* R_ARM_ABS32 */
9775 case EM_AVR_OLD:
9776 case EM_AVR:
9777 return reloc_type == 1;
9778 case EM_ADAPTEVA_EPIPHANY:
9779 return reloc_type == 3;
9780 case EM_BLACKFIN:
9781 return reloc_type == 0x12; /* R_byte4_data. */
9782 case EM_CRIS:
9783 return reloc_type == 3; /* R_CRIS_32. */
9784 case EM_CR16:
9785 return reloc_type == 3; /* R_CR16_NUM32. */
9786 case EM_CRX:
9787 return reloc_type == 15; /* R_CRX_NUM32. */
9788 case EM_CYGNUS_FRV:
9789 return reloc_type == 1;
9790 case EM_CYGNUS_D10V:
9791 case EM_D10V:
9792 return reloc_type == 6; /* R_D10V_32. */
9793 case EM_CYGNUS_D30V:
9794 case EM_D30V:
9795 return reloc_type == 12; /* R_D30V_32_NORMAL. */
9796 case EM_DLX:
9797 return reloc_type == 3; /* R_DLX_RELOC_32. */
9798 case EM_CYGNUS_FR30:
9799 case EM_FR30:
9800 return reloc_type == 3; /* R_FR30_32. */
9801 case EM_H8S:
9802 case EM_H8_300:
9803 case EM_H8_300H:
9804 return reloc_type == 1; /* R_H8_DIR32. */
9805 case EM_IA_64:
9806 return reloc_type == 0x65; /* R_IA64_SECREL32LSB. */
9807 case EM_IP2K_OLD:
9808 case EM_IP2K:
9809 return reloc_type == 2; /* R_IP2K_32. */
9810 case EM_IQ2000:
9811 return reloc_type == 2; /* R_IQ2000_32. */
9812 case EM_LATTICEMICO32:
9813 return reloc_type == 3; /* R_LM32_32. */
9814 case EM_M32C_OLD:
9815 case EM_M32C:
9816 return reloc_type == 3; /* R_M32C_32. */
9817 case EM_M32R:
9818 return reloc_type == 34; /* R_M32R_32_RELA. */
9819 case EM_MCORE:
9820 return reloc_type == 1; /* R_MCORE_ADDR32. */
9821 case EM_CYGNUS_MEP:
9822 return reloc_type == 4; /* R_MEP_32. */
9823 case EM_MICROBLAZE:
9824 return reloc_type == 1; /* R_MICROBLAZE_32. */
9825 case EM_MIPS:
9826 return reloc_type == 2; /* R_MIPS_32. */
9827 case EM_MMIX:
9828 return reloc_type == 4; /* R_MMIX_32. */
9829 case EM_CYGNUS_MN10200:
9830 case EM_MN10200:
9831 return reloc_type == 1; /* R_MN10200_32. */
9832 case EM_CYGNUS_MN10300:
9833 case EM_MN10300:
9834 return reloc_type == 1; /* R_MN10300_32. */
9835 case EM_MOXIE:
9836 return reloc_type == 1; /* R_MOXIE_32. */
9837 case EM_MSP430_OLD:
9838 case EM_MSP430:
9839 return reloc_type == 1; /* R_MSP43_32. */
9840 case EM_MT:
9841 return reloc_type == 2; /* R_MT_32. */
9842 case EM_ALTERA_NIOS2:
9843 case EM_NIOS32:
9844 return reloc_type == 1; /* R_NIOS_32. */
9845 case EM_OPENRISC:
9846 case EM_OR32:
9847 return reloc_type == 1; /* R_OR32_32. */
9848 case EM_PARISC:
9849 return (reloc_type == 1 /* R_PARISC_DIR32. */
9850 || reloc_type == 41); /* R_PARISC_SECREL32. */
9851 case EM_PJ:
9852 case EM_PJ_OLD:
9853 return reloc_type == 1; /* R_PJ_DATA_DIR32. */
9854 case EM_PPC64:
9855 return reloc_type == 1; /* R_PPC64_ADDR32. */
9856 case EM_PPC:
9857 return reloc_type == 1; /* R_PPC_ADDR32. */
9858 case EM_RL78:
9859 return reloc_type == 1; /* R_RL78_DIR32. */
9860 case EM_RX:
9861 return reloc_type == 1; /* R_RX_DIR32. */
9862 case EM_S370:
9863 return reloc_type == 1; /* R_I370_ADDR31. */
9864 case EM_S390_OLD:
9865 case EM_S390:
9866 return reloc_type == 4; /* R_S390_32. */
9867 case EM_SCORE:
9868 return reloc_type == 8; /* R_SCORE_ABS32. */
9869 case EM_SH:
9870 return reloc_type == 1; /* R_SH_DIR32. */
9871 case EM_SPARC32PLUS:
9872 case EM_SPARCV9:
9873 case EM_SPARC:
9874 return reloc_type == 3 /* R_SPARC_32. */
9875 || reloc_type == 23; /* R_SPARC_UA32. */
9876 case EM_SPU:
9877 return reloc_type == 6; /* R_SPU_ADDR32 */
9878 case EM_TI_C6000:
9879 return reloc_type == 1; /* R_C6000_ABS32. */
9880 case EM_TILEGX:
9881 return reloc_type == 2; /* R_TILEGX_32. */
9882 case EM_TILEPRO:
9883 return reloc_type == 1; /* R_TILEPRO_32. */
9884 case EM_CYGNUS_V850:
9885 case EM_V850:
9886 return reloc_type == 6; /* R_V850_ABS32. */
9887 case EM_VAX:
9888 return reloc_type == 1; /* R_VAX_32. */
9889 case EM_X86_64:
9890 case EM_L1OM:
9891 case EM_K1OM:
9892 return reloc_type == 10; /* R_X86_64_32. */
9893 case EM_XC16X:
9894 case EM_C166:
9895 return reloc_type == 3; /* R_XC16C_ABS_32. */
9896 case EM_XGATE:
9897 return reloc_type == 4; /* R_XGATE_32. */
9898 case EM_XSTORMY16:
9899 return reloc_type == 1; /* R_XSTROMY16_32. */
9900 case EM_XTENSA_OLD:
9901 case EM_XTENSA:
9902 return reloc_type == 1; /* R_XTENSA_32. */
9903 default:
9904 error (_("Missing knowledge of 32-bit reloc types used in DWARF sections of machine number %d\n"),
9905 elf_header.e_machine);
9906 abort ();
9907 }
9908 }
9909
9910 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
9911 a 32-bit pc-relative RELA relocation used in DWARF debug sections. */
9912
9913 static bfd_boolean
9914 is_32bit_pcrel_reloc (unsigned int reloc_type)
9915 {
9916 switch (elf_header.e_machine)
9917 {
9918 case EM_386:
9919 case EM_486:
9920 return reloc_type == 2; /* R_386_PC32. */
9921 case EM_68K:
9922 return reloc_type == 4; /* R_68K_PC32. */
9923 case EM_ADAPTEVA_EPIPHANY:
9924 return reloc_type == 6;
9925 case EM_ALPHA:
9926 return reloc_type == 10; /* R_ALPHA_SREL32. */
9927 case EM_ARM:
9928 return reloc_type == 3; /* R_ARM_REL32 */
9929 case EM_MICROBLAZE:
9930 return reloc_type == 2; /* R_MICROBLAZE_32_PCREL. */
9931 case EM_PARISC:
9932 return reloc_type == 9; /* R_PARISC_PCREL32. */
9933 case EM_PPC:
9934 return reloc_type == 26; /* R_PPC_REL32. */
9935 case EM_PPC64:
9936 return reloc_type == 26; /* R_PPC64_REL32. */
9937 case EM_S390_OLD:
9938 case EM_S390:
9939 return reloc_type == 5; /* R_390_PC32. */
9940 case EM_SH:
9941 return reloc_type == 2; /* R_SH_REL32. */
9942 case EM_SPARC32PLUS:
9943 case EM_SPARCV9:
9944 case EM_SPARC:
9945 return reloc_type == 6; /* R_SPARC_DISP32. */
9946 case EM_SPU:
9947 return reloc_type == 13; /* R_SPU_REL32. */
9948 case EM_TILEGX:
9949 return reloc_type == 6; /* R_TILEGX_32_PCREL. */
9950 case EM_TILEPRO:
9951 return reloc_type == 4; /* R_TILEPRO_32_PCREL. */
9952 case EM_X86_64:
9953 case EM_L1OM:
9954 case EM_K1OM:
9955 return reloc_type == 2; /* R_X86_64_PC32. */
9956 case EM_XTENSA_OLD:
9957 case EM_XTENSA:
9958 return reloc_type == 14; /* R_XTENSA_32_PCREL. */
9959 default:
9960 /* Do not abort or issue an error message here. Not all targets use
9961 pc-relative 32-bit relocs in their DWARF debug information and we
9962 have already tested for target coverage in is_32bit_abs_reloc. A
9963 more helpful warning message will be generated by apply_relocations
9964 anyway, so just return. */
9965 return FALSE;
9966 }
9967 }
9968
9969 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
9970 a 64-bit absolute RELA relocation used in DWARF debug sections. */
9971
9972 static bfd_boolean
9973 is_64bit_abs_reloc (unsigned int reloc_type)
9974 {
9975 switch (elf_header.e_machine)
9976 {
9977 case EM_ALPHA:
9978 return reloc_type == 2; /* R_ALPHA_REFQUAD. */
9979 case EM_IA_64:
9980 return reloc_type == 0x27; /* R_IA64_DIR64LSB. */
9981 case EM_PARISC:
9982 return reloc_type == 80; /* R_PARISC_DIR64. */
9983 case EM_PPC64:
9984 return reloc_type == 38; /* R_PPC64_ADDR64. */
9985 case EM_SPARC32PLUS:
9986 case EM_SPARCV9:
9987 case EM_SPARC:
9988 return reloc_type == 54; /* R_SPARC_UA64. */
9989 case EM_X86_64:
9990 case EM_L1OM:
9991 case EM_K1OM:
9992 return reloc_type == 1; /* R_X86_64_64. */
9993 case EM_S390_OLD:
9994 case EM_S390:
9995 return reloc_type == 22; /* R_S390_64. */
9996 case EM_TILEGX:
9997 return reloc_type == 1; /* R_TILEGX_64. */
9998 case EM_MIPS:
9999 return reloc_type == 18; /* R_MIPS_64. */
10000 default:
10001 return FALSE;
10002 }
10003 }
10004
10005 /* Like is_32bit_pcrel_reloc except that it returns TRUE iff RELOC_TYPE is
10006 a 64-bit pc-relative RELA relocation used in DWARF debug sections. */
10007
10008 static bfd_boolean
10009 is_64bit_pcrel_reloc (unsigned int reloc_type)
10010 {
10011 switch (elf_header.e_machine)
10012 {
10013 case EM_ALPHA:
10014 return reloc_type == 11; /* R_ALPHA_SREL64. */
10015 case EM_IA_64:
10016 return reloc_type == 0x4f; /* R_IA64_PCREL64LSB. */
10017 case EM_PARISC:
10018 return reloc_type == 72; /* R_PARISC_PCREL64. */
10019 case EM_PPC64:
10020 return reloc_type == 44; /* R_PPC64_REL64. */
10021 case EM_SPARC32PLUS:
10022 case EM_SPARCV9:
10023 case EM_SPARC:
10024 return reloc_type == 46; /* R_SPARC_DISP64. */
10025 case EM_X86_64:
10026 case EM_L1OM:
10027 case EM_K1OM:
10028 return reloc_type == 24; /* R_X86_64_PC64. */
10029 case EM_S390_OLD:
10030 case EM_S390:
10031 return reloc_type == 23; /* R_S390_PC64. */
10032 case EM_TILEGX:
10033 return reloc_type == 5; /* R_TILEGX_64_PCREL. */
10034 default:
10035 return FALSE;
10036 }
10037 }
10038
10039 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
10040 a 24-bit absolute RELA relocation used in DWARF debug sections. */
10041
10042 static bfd_boolean
10043 is_24bit_abs_reloc (unsigned int reloc_type)
10044 {
10045 switch (elf_header.e_machine)
10046 {
10047 case EM_CYGNUS_MN10200:
10048 case EM_MN10200:
10049 return reloc_type == 4; /* R_MN10200_24. */
10050 default:
10051 return FALSE;
10052 }
10053 }
10054
10055 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
10056 a 16-bit absolute RELA relocation used in DWARF debug sections. */
10057
10058 static bfd_boolean
10059 is_16bit_abs_reloc (unsigned int reloc_type)
10060 {
10061 switch (elf_header.e_machine)
10062 {
10063 case EM_AVR_OLD:
10064 case EM_AVR:
10065 return reloc_type == 4; /* R_AVR_16. */
10066 case EM_ADAPTEVA_EPIPHANY:
10067 return reloc_type == 5;
10068 case EM_CYGNUS_D10V:
10069 case EM_D10V:
10070 return reloc_type == 3; /* R_D10V_16. */
10071 case EM_H8S:
10072 case EM_H8_300:
10073 case EM_H8_300H:
10074 return reloc_type == R_H8_DIR16;
10075 case EM_IP2K_OLD:
10076 case EM_IP2K:
10077 return reloc_type == 1; /* R_IP2K_16. */
10078 case EM_M32C_OLD:
10079 case EM_M32C:
10080 return reloc_type == 1; /* R_M32C_16 */
10081 case EM_MSP430_OLD:
10082 case EM_MSP430:
10083 return reloc_type == 5; /* R_MSP430_16_BYTE. */
10084 case EM_ALTERA_NIOS2:
10085 case EM_NIOS32:
10086 return reloc_type == 9; /* R_NIOS_16. */
10087 case EM_TI_C6000:
10088 return reloc_type == 2; /* R_C6000_ABS16. */
10089 case EM_XC16X:
10090 case EM_C166:
10091 return reloc_type == 2; /* R_XC16C_ABS_16. */
10092 case EM_CYGNUS_MN10300:
10093 case EM_MN10300:
10094 return reloc_type == 2; /* R_MN10300_16. */
10095 case EM_XGATE:
10096 return reloc_type == 3; /* R_XGATE_16. */
10097 default:
10098 return FALSE;
10099 }
10100 }
10101
10102 /* Returns TRUE iff RELOC_TYPE is a NONE relocation used for discarded
10103 relocation entries (possibly formerly used for SHT_GROUP sections). */
10104
10105 static bfd_boolean
10106 is_none_reloc (unsigned int reloc_type)
10107 {
10108 switch (elf_header.e_machine)
10109 {
10110 case EM_68K: /* R_68K_NONE. */
10111 case EM_386: /* R_386_NONE. */
10112 case EM_SPARC32PLUS:
10113 case EM_SPARCV9:
10114 case EM_SPARC: /* R_SPARC_NONE. */
10115 case EM_MIPS: /* R_MIPS_NONE. */
10116 case EM_PARISC: /* R_PARISC_NONE. */
10117 case EM_ALPHA: /* R_ALPHA_NONE. */
10118 case EM_ADAPTEVA_EPIPHANY:
10119 case EM_PPC: /* R_PPC_NONE. */
10120 case EM_PPC64: /* R_PPC64_NONE. */
10121 case EM_ARM: /* R_ARM_NONE. */
10122 case EM_IA_64: /* R_IA64_NONE. */
10123 case EM_SH: /* R_SH_NONE. */
10124 case EM_S390_OLD:
10125 case EM_S390: /* R_390_NONE. */
10126 case EM_CRIS: /* R_CRIS_NONE. */
10127 case EM_X86_64: /* R_X86_64_NONE. */
10128 case EM_L1OM: /* R_X86_64_NONE. */
10129 case EM_K1OM: /* R_X86_64_NONE. */
10130 case EM_MN10300: /* R_MN10300_NONE. */
10131 case EM_MOXIE: /* R_MOXIE_NONE. */
10132 case EM_M32R: /* R_M32R_NONE. */
10133 case EM_TI_C6000:/* R_C6000_NONE. */
10134 case EM_TILEGX: /* R_TILEGX_NONE. */
10135 case EM_TILEPRO: /* R_TILEPRO_NONE. */
10136 case EM_XC16X:
10137 case EM_C166: /* R_XC16X_NONE. */
10138 return reloc_type == 0;
10139 case EM_XTENSA_OLD:
10140 case EM_XTENSA:
10141 return (reloc_type == 0 /* R_XTENSA_NONE. */
10142 || reloc_type == 17 /* R_XTENSA_DIFF8. */
10143 || reloc_type == 18 /* R_XTENSA_DIFF16. */
10144 || reloc_type == 19 /* R_XTENSA_DIFF32. */);
10145 }
10146 return FALSE;
10147 }
10148
10149 /* Apply relocations to a section.
10150 Note: So far support has been added only for those relocations
10151 which can be found in debug sections.
10152 FIXME: Add support for more relocations ? */
10153
10154 static void
10155 apply_relocations (void * file,
10156 Elf_Internal_Shdr * section,
10157 unsigned char * start)
10158 {
10159 Elf_Internal_Shdr * relsec;
10160 unsigned char * end = start + section->sh_size;
10161
10162 if (elf_header.e_type != ET_REL)
10163 return;
10164
10165 /* Find the reloc section associated with the section. */
10166 for (relsec = section_headers;
10167 relsec < section_headers + elf_header.e_shnum;
10168 ++relsec)
10169 {
10170 bfd_boolean is_rela;
10171 unsigned long num_relocs;
10172 Elf_Internal_Rela * relocs;
10173 Elf_Internal_Rela * rp;
10174 Elf_Internal_Shdr * symsec;
10175 Elf_Internal_Sym * symtab;
10176 unsigned long num_syms;
10177 Elf_Internal_Sym * sym;
10178
10179 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
10180 || relsec->sh_info >= elf_header.e_shnum
10181 || section_headers + relsec->sh_info != section
10182 || relsec->sh_size == 0
10183 || relsec->sh_link >= elf_header.e_shnum)
10184 continue;
10185
10186 is_rela = relsec->sh_type == SHT_RELA;
10187
10188 if (is_rela)
10189 {
10190 if (!slurp_rela_relocs ((FILE *) file, relsec->sh_offset,
10191 relsec->sh_size, & relocs, & num_relocs))
10192 return;
10193 }
10194 else
10195 {
10196 if (!slurp_rel_relocs ((FILE *) file, relsec->sh_offset,
10197 relsec->sh_size, & relocs, & num_relocs))
10198 return;
10199 }
10200
10201 /* SH uses RELA but uses in place value instead of the addend field. */
10202 if (elf_header.e_machine == EM_SH)
10203 is_rela = FALSE;
10204
10205 symsec = section_headers + relsec->sh_link;
10206 symtab = GET_ELF_SYMBOLS ((FILE *) file, symsec, & num_syms);
10207
10208 for (rp = relocs; rp < relocs + num_relocs; ++rp)
10209 {
10210 bfd_vma addend;
10211 unsigned int reloc_type;
10212 unsigned int reloc_size;
10213 unsigned char * rloc;
10214 unsigned long sym_index;
10215
10216 reloc_type = get_reloc_type (rp->r_info);
10217
10218 if (target_specific_reloc_handling (rp, start, symtab))
10219 continue;
10220 else if (is_none_reloc (reloc_type))
10221 continue;
10222 else if (is_32bit_abs_reloc (reloc_type)
10223 || is_32bit_pcrel_reloc (reloc_type))
10224 reloc_size = 4;
10225 else if (is_64bit_abs_reloc (reloc_type)
10226 || is_64bit_pcrel_reloc (reloc_type))
10227 reloc_size = 8;
10228 else if (is_24bit_abs_reloc (reloc_type))
10229 reloc_size = 3;
10230 else if (is_16bit_abs_reloc (reloc_type))
10231 reloc_size = 2;
10232 else
10233 {
10234 warn (_("unable to apply unsupported reloc type %d to section %s\n"),
10235 reloc_type, SECTION_NAME (section));
10236 continue;
10237 }
10238
10239 rloc = start + rp->r_offset;
10240 if ((rloc + reloc_size) > end)
10241 {
10242 warn (_("skipping invalid relocation offset 0x%lx in section %s\n"),
10243 (unsigned long) rp->r_offset,
10244 SECTION_NAME (section));
10245 continue;
10246 }
10247
10248 sym_index = (unsigned long) get_reloc_symindex (rp->r_info);
10249 if (sym_index >= num_syms)
10250 {
10251 warn (_("skipping invalid relocation symbol index 0x%lx in section %s\n"),
10252 sym_index, SECTION_NAME (section));
10253 continue;
10254 }
10255 sym = symtab + sym_index;
10256
10257 /* If the reloc has a symbol associated with it,
10258 make sure that it is of an appropriate type.
10259
10260 Relocations against symbols without type can happen.
10261 Gcc -feliminate-dwarf2-dups may generate symbols
10262 without type for debug info.
10263
10264 Icc generates relocations against function symbols
10265 instead of local labels.
10266
10267 Relocations against object symbols can happen, eg when
10268 referencing a global array. For an example of this see
10269 the _clz.o binary in libgcc.a. */
10270 if (sym != symtab
10271 && ELF_ST_TYPE (sym->st_info) > STT_SECTION)
10272 {
10273 warn (_("skipping unexpected symbol type %s in %ld'th relocation in section %s\n"),
10274 get_symbol_type (ELF_ST_TYPE (sym->st_info)),
10275 (long int)(rp - relocs),
10276 SECTION_NAME (relsec));
10277 continue;
10278 }
10279
10280 addend = 0;
10281 if (is_rela)
10282 addend += rp->r_addend;
10283 /* R_XTENSA_32, R_PJ_DATA_DIR32 and R_D30V_32_NORMAL are
10284 partial_inplace. */
10285 if (!is_rela
10286 || (elf_header.e_machine == EM_XTENSA
10287 && reloc_type == 1)
10288 || ((elf_header.e_machine == EM_PJ
10289 || elf_header.e_machine == EM_PJ_OLD)
10290 && reloc_type == 1)
10291 || ((elf_header.e_machine == EM_D30V
10292 || elf_header.e_machine == EM_CYGNUS_D30V)
10293 && reloc_type == 12))
10294 addend += byte_get (rloc, reloc_size);
10295
10296 if (is_32bit_pcrel_reloc (reloc_type)
10297 || is_64bit_pcrel_reloc (reloc_type))
10298 {
10299 /* On HPPA, all pc-relative relocations are biased by 8. */
10300 if (elf_header.e_machine == EM_PARISC)
10301 addend -= 8;
10302 byte_put (rloc, (addend + sym->st_value) - rp->r_offset,
10303 reloc_size);
10304 }
10305 else
10306 byte_put (rloc, addend + sym->st_value, reloc_size);
10307 }
10308
10309 free (symtab);
10310 free (relocs);
10311 break;
10312 }
10313 }
10314
10315 #ifdef SUPPORT_DISASSEMBLY
10316 static int
10317 disassemble_section (Elf_Internal_Shdr * section, FILE * file)
10318 {
10319 printf (_("\nAssembly dump of section %s\n"),
10320 SECTION_NAME (section));
10321
10322 /* XXX -- to be done --- XXX */
10323
10324 return 1;
10325 }
10326 #endif
10327
10328 /* Reads in the contents of SECTION from FILE, returning a pointer
10329 to a malloc'ed buffer or NULL if something went wrong. */
10330
10331 static char *
10332 get_section_contents (Elf_Internal_Shdr * section, FILE * file)
10333 {
10334 bfd_size_type num_bytes;
10335
10336 num_bytes = section->sh_size;
10337
10338 if (num_bytes == 0 || section->sh_type == SHT_NOBITS)
10339 {
10340 printf (_("\nSection '%s' has no data to dump.\n"),
10341 SECTION_NAME (section));
10342 return NULL;
10343 }
10344
10345 return (char *) get_data (NULL, file, section->sh_offset, 1, num_bytes,
10346 _("section contents"));
10347 }
10348
10349
10350 static void
10351 dump_section_as_strings (Elf_Internal_Shdr * section, FILE * file)
10352 {
10353 Elf_Internal_Shdr * relsec;
10354 bfd_size_type num_bytes;
10355 char * data;
10356 char * end;
10357 char * start;
10358 char * name = SECTION_NAME (section);
10359 bfd_boolean some_strings_shown;
10360
10361 start = get_section_contents (section, file);
10362 if (start == NULL)
10363 return;
10364
10365 printf (_("\nString dump of section '%s':\n"), name);
10366
10367 /* If the section being dumped has relocations against it the user might
10368 be expecting these relocations to have been applied. Check for this
10369 case and issue a warning message in order to avoid confusion.
10370 FIXME: Maybe we ought to have an option that dumps a section with
10371 relocs applied ? */
10372 for (relsec = section_headers;
10373 relsec < section_headers + elf_header.e_shnum;
10374 ++relsec)
10375 {
10376 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
10377 || relsec->sh_info >= elf_header.e_shnum
10378 || section_headers + relsec->sh_info != section
10379 || relsec->sh_size == 0
10380 || relsec->sh_link >= elf_header.e_shnum)
10381 continue;
10382
10383 printf (_(" Note: This section has relocations against it, but these have NOT been applied to this dump.\n"));
10384 break;
10385 }
10386
10387 num_bytes = section->sh_size;
10388 data = start;
10389 end = start + num_bytes;
10390 some_strings_shown = FALSE;
10391
10392 while (data < end)
10393 {
10394 while (!ISPRINT (* data))
10395 if (++ data >= end)
10396 break;
10397
10398 if (data < end)
10399 {
10400 #ifndef __MSVCRT__
10401 /* PR 11128: Use two separate invocations in order to work
10402 around bugs in the Solaris 8 implementation of printf. */
10403 printf (" [%6tx] ", data - start);
10404 printf ("%s\n", data);
10405 #else
10406 printf (" [%6Ix] %s\n", (size_t) (data - start), data);
10407 #endif
10408 data += strlen (data);
10409 some_strings_shown = TRUE;
10410 }
10411 }
10412
10413 if (! some_strings_shown)
10414 printf (_(" No strings found in this section."));
10415
10416 free (start);
10417
10418 putchar ('\n');
10419 }
10420
10421 static void
10422 dump_section_as_bytes (Elf_Internal_Shdr * section,
10423 FILE * file,
10424 bfd_boolean relocate)
10425 {
10426 Elf_Internal_Shdr * relsec;
10427 bfd_size_type bytes;
10428 bfd_vma addr;
10429 unsigned char * data;
10430 unsigned char * start;
10431
10432 start = (unsigned char *) get_section_contents (section, file);
10433 if (start == NULL)
10434 return;
10435
10436 printf (_("\nHex dump of section '%s':\n"), SECTION_NAME (section));
10437
10438 if (relocate)
10439 {
10440 apply_relocations (file, section, start);
10441 }
10442 else
10443 {
10444 /* If the section being dumped has relocations against it the user might
10445 be expecting these relocations to have been applied. Check for this
10446 case and issue a warning message in order to avoid confusion.
10447 FIXME: Maybe we ought to have an option that dumps a section with
10448 relocs applied ? */
10449 for (relsec = section_headers;
10450 relsec < section_headers + elf_header.e_shnum;
10451 ++relsec)
10452 {
10453 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
10454 || relsec->sh_info >= elf_header.e_shnum
10455 || section_headers + relsec->sh_info != section
10456 || relsec->sh_size == 0
10457 || relsec->sh_link >= elf_header.e_shnum)
10458 continue;
10459
10460 printf (_(" NOTE: This section has relocations against it, but these have NOT been applied to this dump.\n"));
10461 break;
10462 }
10463 }
10464
10465 addr = section->sh_addr;
10466 bytes = section->sh_size;
10467 data = start;
10468
10469 while (bytes)
10470 {
10471 int j;
10472 int k;
10473 int lbytes;
10474
10475 lbytes = (bytes > 16 ? 16 : bytes);
10476
10477 printf (" 0x%8.8lx ", (unsigned long) addr);
10478
10479 for (j = 0; j < 16; j++)
10480 {
10481 if (j < lbytes)
10482 printf ("%2.2x", data[j]);
10483 else
10484 printf (" ");
10485
10486 if ((j & 3) == 3)
10487 printf (" ");
10488 }
10489
10490 for (j = 0; j < lbytes; j++)
10491 {
10492 k = data[j];
10493 if (k >= ' ' && k < 0x7f)
10494 printf ("%c", k);
10495 else
10496 printf (".");
10497 }
10498
10499 putchar ('\n');
10500
10501 data += lbytes;
10502 addr += lbytes;
10503 bytes -= lbytes;
10504 }
10505
10506 free (start);
10507
10508 putchar ('\n');
10509 }
10510
10511 /* Uncompresses a section that was compressed using zlib, in place. */
10512
10513 static int
10514 uncompress_section_contents (unsigned char **buffer ATTRIBUTE_UNUSED,
10515 dwarf_size_type *size ATTRIBUTE_UNUSED)
10516 {
10517 #ifndef HAVE_ZLIB_H
10518 return FALSE;
10519 #else
10520 dwarf_size_type compressed_size = *size;
10521 unsigned char * compressed_buffer = *buffer;
10522 dwarf_size_type uncompressed_size;
10523 unsigned char * uncompressed_buffer;
10524 z_stream strm;
10525 int rc;
10526 dwarf_size_type header_size = 12;
10527
10528 /* Read the zlib header. In this case, it should be "ZLIB" followed
10529 by the uncompressed section size, 8 bytes in big-endian order. */
10530 if (compressed_size < header_size
10531 || ! streq ((char *) compressed_buffer, "ZLIB"))
10532 return 0;
10533
10534 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
10535 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
10536 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
10537 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
10538 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
10539 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
10540 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
10541 uncompressed_size += compressed_buffer[11];
10542
10543 /* It is possible the section consists of several compressed
10544 buffers concatenated together, so we uncompress in a loop. */
10545 strm.zalloc = NULL;
10546 strm.zfree = NULL;
10547 strm.opaque = NULL;
10548 strm.avail_in = compressed_size - header_size;
10549 strm.next_in = (Bytef *) compressed_buffer + header_size;
10550 strm.avail_out = uncompressed_size;
10551 uncompressed_buffer = (unsigned char *) xmalloc (uncompressed_size);
10552
10553 rc = inflateInit (& strm);
10554 while (strm.avail_in > 0)
10555 {
10556 if (rc != Z_OK)
10557 goto fail;
10558 strm.next_out = ((Bytef *) uncompressed_buffer
10559 + (uncompressed_size - strm.avail_out));
10560 rc = inflate (&strm, Z_FINISH);
10561 if (rc != Z_STREAM_END)
10562 goto fail;
10563 rc = inflateReset (& strm);
10564 }
10565 rc = inflateEnd (& strm);
10566 if (rc != Z_OK
10567 || strm.avail_out != 0)
10568 goto fail;
10569
10570 free (compressed_buffer);
10571 *buffer = uncompressed_buffer;
10572 *size = uncompressed_size;
10573 return 1;
10574
10575 fail:
10576 free (uncompressed_buffer);
10577 /* Indicate decompression failure. */
10578 *buffer = NULL;
10579 return 0;
10580 #endif /* HAVE_ZLIB_H */
10581 }
10582
10583 static int
10584 load_specific_debug_section (enum dwarf_section_display_enum debug,
10585 Elf_Internal_Shdr * sec, void * file)
10586 {
10587 struct dwarf_section * section = &debug_displays [debug].section;
10588 char buf [64];
10589
10590 /* If it is already loaded, do nothing. */
10591 if (section->start != NULL)
10592 return 1;
10593
10594 snprintf (buf, sizeof (buf), _("%s section data"), section->name);
10595 section->address = sec->sh_addr;
10596 section->start = (unsigned char *) get_data (NULL, (FILE *) file,
10597 sec->sh_offset, 1,
10598 sec->sh_size, buf);
10599 if (section->start == NULL)
10600 section->size = 0;
10601 else
10602 {
10603 section->size = sec->sh_size;
10604 if (uncompress_section_contents (&section->start, &section->size))
10605 sec->sh_size = section->size;
10606 }
10607
10608 if (section->start == NULL)
10609 return 0;
10610
10611 if (debug_displays [debug].relocate)
10612 apply_relocations ((FILE *) file, sec, section->start);
10613
10614 return 1;
10615 }
10616
10617 int
10618 load_debug_section (enum dwarf_section_display_enum debug, void * file)
10619 {
10620 struct dwarf_section * section = &debug_displays [debug].section;
10621 Elf_Internal_Shdr * sec;
10622
10623 /* Locate the debug section. */
10624 sec = find_section (section->uncompressed_name);
10625 if (sec != NULL)
10626 section->name = section->uncompressed_name;
10627 else
10628 {
10629 sec = find_section (section->compressed_name);
10630 if (sec != NULL)
10631 section->name = section->compressed_name;
10632 }
10633 if (sec == NULL)
10634 return 0;
10635
10636 return load_specific_debug_section (debug, sec, (FILE *) file);
10637 }
10638
10639 void
10640 free_debug_section (enum dwarf_section_display_enum debug)
10641 {
10642 struct dwarf_section * section = &debug_displays [debug].section;
10643
10644 if (section->start == NULL)
10645 return;
10646
10647 free ((char *) section->start);
10648 section->start = NULL;
10649 section->address = 0;
10650 section->size = 0;
10651 }
10652
10653 static int
10654 display_debug_section (Elf_Internal_Shdr * section, FILE * file)
10655 {
10656 char * name = SECTION_NAME (section);
10657 bfd_size_type length;
10658 int result = 1;
10659 int i;
10660
10661 length = section->sh_size;
10662 if (length == 0)
10663 {
10664 printf (_("\nSection '%s' has no debugging data.\n"), name);
10665 return 0;
10666 }
10667 if (section->sh_type == SHT_NOBITS)
10668 {
10669 /* There is no point in dumping the contents of a debugging section
10670 which has the NOBITS type - the bits in the file will be random.
10671 This can happen when a file containing a .eh_frame section is
10672 stripped with the --only-keep-debug command line option. */
10673 printf (_("section '%s' has the NOBITS type - its contents are unreliable.\n"), name);
10674 return 0;
10675 }
10676
10677 if (const_strneq (name, ".gnu.linkonce.wi."))
10678 name = ".debug_info";
10679
10680 /* See if we know how to display the contents of this section. */
10681 for (i = 0; i < max; i++)
10682 if (streq (debug_displays[i].section.uncompressed_name, name)
10683 || streq (debug_displays[i].section.compressed_name, name))
10684 {
10685 struct dwarf_section * sec = &debug_displays [i].section;
10686 int secondary = (section != find_section (name));
10687
10688 if (secondary)
10689 free_debug_section ((enum dwarf_section_display_enum) i);
10690
10691 if (streq (sec->uncompressed_name, name))
10692 sec->name = sec->uncompressed_name;
10693 else
10694 sec->name = sec->compressed_name;
10695 if (load_specific_debug_section ((enum dwarf_section_display_enum) i,
10696 section, file))
10697 {
10698 result &= debug_displays[i].display (sec, file);
10699
10700 if (secondary || (i != info && i != abbrev))
10701 free_debug_section ((enum dwarf_section_display_enum) i);
10702 }
10703
10704 break;
10705 }
10706
10707 if (i == max)
10708 {
10709 printf (_("Unrecognized debug section: %s\n"), name);
10710 result = 0;
10711 }
10712
10713 return result;
10714 }
10715
10716 /* Set DUMP_SECTS for all sections where dumps were requested
10717 based on section name. */
10718
10719 static void
10720 initialise_dumps_byname (void)
10721 {
10722 struct dump_list_entry * cur;
10723
10724 for (cur = dump_sects_byname; cur; cur = cur->next)
10725 {
10726 unsigned int i;
10727 int any;
10728
10729 for (i = 0, any = 0; i < elf_header.e_shnum; i++)
10730 if (streq (SECTION_NAME (section_headers + i), cur->name))
10731 {
10732 request_dump_bynumber (i, cur->type);
10733 any = 1;
10734 }
10735
10736 if (!any)
10737 warn (_("Section '%s' was not dumped because it does not exist!\n"),
10738 cur->name);
10739 }
10740 }
10741
10742 static void
10743 process_section_contents (FILE * file)
10744 {
10745 Elf_Internal_Shdr * section;
10746 unsigned int i;
10747
10748 if (! do_dump)
10749 return;
10750
10751 initialise_dumps_byname ();
10752
10753 for (i = 0, section = section_headers;
10754 i < elf_header.e_shnum && i < num_dump_sects;
10755 i++, section++)
10756 {
10757 #ifdef SUPPORT_DISASSEMBLY
10758 if (dump_sects[i] & DISASS_DUMP)
10759 disassemble_section (section, file);
10760 #endif
10761 if (dump_sects[i] & HEX_DUMP)
10762 dump_section_as_bytes (section, file, FALSE);
10763
10764 if (dump_sects[i] & RELOC_DUMP)
10765 dump_section_as_bytes (section, file, TRUE);
10766
10767 if (dump_sects[i] & STRING_DUMP)
10768 dump_section_as_strings (section, file);
10769
10770 if (dump_sects[i] & DEBUG_DUMP)
10771 display_debug_section (section, file);
10772 }
10773
10774 /* Check to see if the user requested a
10775 dump of a section that does not exist. */
10776 while (i++ < num_dump_sects)
10777 if (dump_sects[i])
10778 warn (_("Section %d was not dumped because it does not exist!\n"), i);
10779 }
10780
10781 static void
10782 process_mips_fpe_exception (int mask)
10783 {
10784 if (mask)
10785 {
10786 int first = 1;
10787 if (mask & OEX_FPU_INEX)
10788 fputs ("INEX", stdout), first = 0;
10789 if (mask & OEX_FPU_UFLO)
10790 printf ("%sUFLO", first ? "" : "|"), first = 0;
10791 if (mask & OEX_FPU_OFLO)
10792 printf ("%sOFLO", first ? "" : "|"), first = 0;
10793 if (mask & OEX_FPU_DIV0)
10794 printf ("%sDIV0", first ? "" : "|"), first = 0;
10795 if (mask & OEX_FPU_INVAL)
10796 printf ("%sINVAL", first ? "" : "|");
10797 }
10798 else
10799 fputs ("0", stdout);
10800 }
10801
10802 /* ARM EABI attributes section. */
10803 typedef struct
10804 {
10805 int tag;
10806 const char * name;
10807 /* 0 = special, 1 = string, 2 = uleb123, > 0x80 == table lookup. */
10808 int type;
10809 const char ** table;
10810 } arm_attr_public_tag;
10811
10812 static const char * arm_attr_tag_CPU_arch[] =
10813 {"Pre-v4", "v4", "v4T", "v5T", "v5TE", "v5TEJ", "v6", "v6KZ", "v6T2",
10814 "v6K", "v7", "v6-M", "v6S-M", "v7E-M"};
10815 static const char * arm_attr_tag_ARM_ISA_use[] = {"No", "Yes"};
10816 static const char * arm_attr_tag_THUMB_ISA_use[] =
10817 {"No", "Thumb-1", "Thumb-2"};
10818 static const char * arm_attr_tag_FP_arch[] =
10819 {"No", "VFPv1", "VFPv2", "VFPv3", "VFPv3-D16", "VFPv4", "VFPv4-D16"};
10820 static const char * arm_attr_tag_WMMX_arch[] = {"No", "WMMXv1", "WMMXv2"};
10821 static const char * arm_attr_tag_Advanced_SIMD_arch[] =
10822 {"No", "NEONv1", "NEONv1 with Fused-MAC"};
10823 static const char * arm_attr_tag_PCS_config[] =
10824 {"None", "Bare platform", "Linux application", "Linux DSO", "PalmOS 2004",
10825 "PalmOS (reserved)", "SymbianOS 2004", "SymbianOS (reserved)"};
10826 static const char * arm_attr_tag_ABI_PCS_R9_use[] =
10827 {"V6", "SB", "TLS", "Unused"};
10828 static const char * arm_attr_tag_ABI_PCS_RW_data[] =
10829 {"Absolute", "PC-relative", "SB-relative", "None"};
10830 static const char * arm_attr_tag_ABI_PCS_RO_data[] =
10831 {"Absolute", "PC-relative", "None"};
10832 static const char * arm_attr_tag_ABI_PCS_GOT_use[] =
10833 {"None", "direct", "GOT-indirect"};
10834 static const char * arm_attr_tag_ABI_PCS_wchar_t[] =
10835 {"None", "??? 1", "2", "??? 3", "4"};
10836 static const char * arm_attr_tag_ABI_FP_rounding[] = {"Unused", "Needed"};
10837 static const char * arm_attr_tag_ABI_FP_denormal[] =
10838 {"Unused", "Needed", "Sign only"};
10839 static const char * arm_attr_tag_ABI_FP_exceptions[] = {"Unused", "Needed"};
10840 static const char * arm_attr_tag_ABI_FP_user_exceptions[] = {"Unused", "Needed"};
10841 static const char * arm_attr_tag_ABI_FP_number_model[] =
10842 {"Unused", "Finite", "RTABI", "IEEE 754"};
10843 static const char * arm_attr_tag_ABI_enum_size[] =
10844 {"Unused", "small", "int", "forced to int"};
10845 static const char * arm_attr_tag_ABI_HardFP_use[] =
10846 {"As Tag_FP_arch", "SP only", "DP only", "SP and DP"};
10847 static const char * arm_attr_tag_ABI_VFP_args[] =
10848 {"AAPCS", "VFP registers", "custom"};
10849 static const char * arm_attr_tag_ABI_WMMX_args[] =
10850 {"AAPCS", "WMMX registers", "custom"};
10851 static const char * arm_attr_tag_ABI_optimization_goals[] =
10852 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
10853 "Aggressive Size", "Prefer Debug", "Aggressive Debug"};
10854 static const char * arm_attr_tag_ABI_FP_optimization_goals[] =
10855 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
10856 "Aggressive Size", "Prefer Accuracy", "Aggressive Accuracy"};
10857 static const char * arm_attr_tag_CPU_unaligned_access[] = {"None", "v6"};
10858 static const char * arm_attr_tag_FP_HP_extension[] =
10859 {"Not Allowed", "Allowed"};
10860 static const char * arm_attr_tag_ABI_FP_16bit_format[] =
10861 {"None", "IEEE 754", "Alternative Format"};
10862 static const char * arm_attr_tag_MPextension_use[] =
10863 {"Not Allowed", "Allowed"};
10864 static const char * arm_attr_tag_DIV_use[] =
10865 {"Allowed in Thumb-ISA, v7-R or v7-M", "Not allowed",
10866 "Allowed in v7-A with integer division extension"};
10867 static const char * arm_attr_tag_T2EE_use[] = {"Not Allowed", "Allowed"};
10868 static const char * arm_attr_tag_Virtualization_use[] =
10869 {"Not Allowed", "TrustZone", "Virtualization Extensions",
10870 "TrustZone and Virtualization Extensions"};
10871 static const char * arm_attr_tag_MPextension_use_legacy[] =
10872 {"Not Allowed", "Allowed"};
10873
10874 #define LOOKUP(id, name) \
10875 {id, #name, 0x80 | ARRAY_SIZE(arm_attr_tag_##name), arm_attr_tag_##name}
10876 static arm_attr_public_tag arm_attr_public_tags[] =
10877 {
10878 {4, "CPU_raw_name", 1, NULL},
10879 {5, "CPU_name", 1, NULL},
10880 LOOKUP(6, CPU_arch),
10881 {7, "CPU_arch_profile", 0, NULL},
10882 LOOKUP(8, ARM_ISA_use),
10883 LOOKUP(9, THUMB_ISA_use),
10884 LOOKUP(10, FP_arch),
10885 LOOKUP(11, WMMX_arch),
10886 LOOKUP(12, Advanced_SIMD_arch),
10887 LOOKUP(13, PCS_config),
10888 LOOKUP(14, ABI_PCS_R9_use),
10889 LOOKUP(15, ABI_PCS_RW_data),
10890 LOOKUP(16, ABI_PCS_RO_data),
10891 LOOKUP(17, ABI_PCS_GOT_use),
10892 LOOKUP(18, ABI_PCS_wchar_t),
10893 LOOKUP(19, ABI_FP_rounding),
10894 LOOKUP(20, ABI_FP_denormal),
10895 LOOKUP(21, ABI_FP_exceptions),
10896 LOOKUP(22, ABI_FP_user_exceptions),
10897 LOOKUP(23, ABI_FP_number_model),
10898 {24, "ABI_align_needed", 0, NULL},
10899 {25, "ABI_align_preserved", 0, NULL},
10900 LOOKUP(26, ABI_enum_size),
10901 LOOKUP(27, ABI_HardFP_use),
10902 LOOKUP(28, ABI_VFP_args),
10903 LOOKUP(29, ABI_WMMX_args),
10904 LOOKUP(30, ABI_optimization_goals),
10905 LOOKUP(31, ABI_FP_optimization_goals),
10906 {32, "compatibility", 0, NULL},
10907 LOOKUP(34, CPU_unaligned_access),
10908 LOOKUP(36, FP_HP_extension),
10909 LOOKUP(38, ABI_FP_16bit_format),
10910 LOOKUP(42, MPextension_use),
10911 LOOKUP(44, DIV_use),
10912 {64, "nodefaults", 0, NULL},
10913 {65, "also_compatible_with", 0, NULL},
10914 LOOKUP(66, T2EE_use),
10915 {67, "conformance", 1, NULL},
10916 LOOKUP(68, Virtualization_use),
10917 LOOKUP(70, MPextension_use_legacy)
10918 };
10919 #undef LOOKUP
10920
10921 static unsigned char *
10922 display_arm_attribute (unsigned char * p)
10923 {
10924 int tag;
10925 unsigned int len;
10926 int val;
10927 arm_attr_public_tag * attr;
10928 unsigned i;
10929 int type;
10930
10931 tag = read_uleb128 (p, &len);
10932 p += len;
10933 attr = NULL;
10934 for (i = 0; i < ARRAY_SIZE (arm_attr_public_tags); i++)
10935 {
10936 if (arm_attr_public_tags[i].tag == tag)
10937 {
10938 attr = &arm_attr_public_tags[i];
10939 break;
10940 }
10941 }
10942
10943 if (attr)
10944 {
10945 printf (" Tag_%s: ", attr->name);
10946 switch (attr->type)
10947 {
10948 case 0:
10949 switch (tag)
10950 {
10951 case 7: /* Tag_CPU_arch_profile. */
10952 val = read_uleb128 (p, &len);
10953 p += len;
10954 switch (val)
10955 {
10956 case 0: printf (_("None\n")); break;
10957 case 'A': printf (_("Application\n")); break;
10958 case 'R': printf (_("Realtime\n")); break;
10959 case 'M': printf (_("Microcontroller\n")); break;
10960 case 'S': printf (_("Application or Realtime\n")); break;
10961 default: printf ("??? (%d)\n", val); break;
10962 }
10963 break;
10964
10965 case 24: /* Tag_align_needed. */
10966 val = read_uleb128 (p, &len);
10967 p += len;
10968 switch (val)
10969 {
10970 case 0: printf (_("None\n")); break;
10971 case 1: printf (_("8-byte\n")); break;
10972 case 2: printf (_("4-byte\n")); break;
10973 case 3: printf ("??? 3\n"); break;
10974 default:
10975 if (val <= 12)
10976 printf (_("8-byte and up to %d-byte extended\n"),
10977 1 << val);
10978 else
10979 printf ("??? (%d)\n", val);
10980 break;
10981 }
10982 break;
10983
10984 case 25: /* Tag_align_preserved. */
10985 val = read_uleb128 (p, &len);
10986 p += len;
10987 switch (val)
10988 {
10989 case 0: printf (_("None\n")); break;
10990 case 1: printf (_("8-byte, except leaf SP\n")); break;
10991 case 2: printf (_("8-byte\n")); break;
10992 case 3: printf ("??? 3\n"); break;
10993 default:
10994 if (val <= 12)
10995 printf (_("8-byte and up to %d-byte extended\n"),
10996 1 << val);
10997 else
10998 printf ("??? (%d)\n", val);
10999 break;
11000 }
11001 break;
11002
11003 case 32: /* Tag_compatibility. */
11004 val = read_uleb128 (p, &len);
11005 p += len;
11006 printf (_("flag = %d, vendor = %s\n"), val, p);
11007 p += strlen ((char *) p) + 1;
11008 break;
11009
11010 case 64: /* Tag_nodefaults. */
11011 p++;
11012 printf (_("True\n"));
11013 break;
11014
11015 case 65: /* Tag_also_compatible_with. */
11016 val = read_uleb128 (p, &len);
11017 p += len;
11018 if (val == 6 /* Tag_CPU_arch. */)
11019 {
11020 val = read_uleb128 (p, &len);
11021 p += len;
11022 if ((unsigned int)val >= ARRAY_SIZE (arm_attr_tag_CPU_arch))
11023 printf ("??? (%d)\n", val);
11024 else
11025 printf ("%s\n", arm_attr_tag_CPU_arch[val]);
11026 }
11027 else
11028 printf ("???\n");
11029 while (*(p++) != '\0' /* NUL terminator. */);
11030 break;
11031
11032 default:
11033 abort ();
11034 }
11035 return p;
11036
11037 case 1:
11038 case 2:
11039 type = attr->type;
11040 break;
11041
11042 default:
11043 assert (attr->type & 0x80);
11044 val = read_uleb128 (p, &len);
11045 p += len;
11046 type = attr->type & 0x7f;
11047 if (val >= type)
11048 printf ("??? (%d)\n", val);
11049 else
11050 printf ("%s\n", attr->table[val]);
11051 return p;
11052 }
11053 }
11054 else
11055 {
11056 if (tag & 1)
11057 type = 1; /* String. */
11058 else
11059 type = 2; /* uleb128. */
11060 printf (" Tag_unknown_%d: ", tag);
11061 }
11062
11063 if (type == 1)
11064 {
11065 printf ("\"%s\"\n", p);
11066 p += strlen ((char *) p) + 1;
11067 }
11068 else
11069 {
11070 val = read_uleb128 (p, &len);
11071 p += len;
11072 printf ("%d (0x%x)\n", val, val);
11073 }
11074
11075 return p;
11076 }
11077
11078 static unsigned char *
11079 display_gnu_attribute (unsigned char * p,
11080 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, int))
11081 {
11082 int tag;
11083 unsigned int len;
11084 int val;
11085 int type;
11086
11087 tag = read_uleb128 (p, &len);
11088 p += len;
11089
11090 /* Tag_compatibility is the only generic GNU attribute defined at
11091 present. */
11092 if (tag == 32)
11093 {
11094 val = read_uleb128 (p, &len);
11095 p += len;
11096 printf (_("flag = %d, vendor = %s\n"), val, p);
11097 p += strlen ((char *) p) + 1;
11098 return p;
11099 }
11100
11101 if ((tag & 2) == 0 && display_proc_gnu_attribute)
11102 return display_proc_gnu_attribute (p, tag);
11103
11104 if (tag & 1)
11105 type = 1; /* String. */
11106 else
11107 type = 2; /* uleb128. */
11108 printf (" Tag_unknown_%d: ", tag);
11109
11110 if (type == 1)
11111 {
11112 printf ("\"%s\"\n", p);
11113 p += strlen ((char *) p) + 1;
11114 }
11115 else
11116 {
11117 val = read_uleb128 (p, &len);
11118 p += len;
11119 printf ("%d (0x%x)\n", val, val);
11120 }
11121
11122 return p;
11123 }
11124
11125 static unsigned char *
11126 display_power_gnu_attribute (unsigned char * p, int tag)
11127 {
11128 int type;
11129 unsigned int len;
11130 int val;
11131
11132 if (tag == Tag_GNU_Power_ABI_FP)
11133 {
11134 val = read_uleb128 (p, &len);
11135 p += len;
11136 printf (" Tag_GNU_Power_ABI_FP: ");
11137
11138 switch (val)
11139 {
11140 case 0:
11141 printf (_("Hard or soft float\n"));
11142 break;
11143 case 1:
11144 printf (_("Hard float\n"));
11145 break;
11146 case 2:
11147 printf (_("Soft float\n"));
11148 break;
11149 case 3:
11150 printf (_("Single-precision hard float\n"));
11151 break;
11152 default:
11153 printf ("??? (%d)\n", val);
11154 break;
11155 }
11156 return p;
11157 }
11158
11159 if (tag == Tag_GNU_Power_ABI_Vector)
11160 {
11161 val = read_uleb128 (p, &len);
11162 p += len;
11163 printf (" Tag_GNU_Power_ABI_Vector: ");
11164 switch (val)
11165 {
11166 case 0:
11167 printf (_("Any\n"));
11168 break;
11169 case 1:
11170 printf (_("Generic\n"));
11171 break;
11172 case 2:
11173 printf ("AltiVec\n");
11174 break;
11175 case 3:
11176 printf ("SPE\n");
11177 break;
11178 default:
11179 printf ("??? (%d)\n", val);
11180 break;
11181 }
11182 return p;
11183 }
11184
11185 if (tag == Tag_GNU_Power_ABI_Struct_Return)
11186 {
11187 val = read_uleb128 (p, &len);
11188 p += len;
11189 printf (" Tag_GNU_Power_ABI_Struct_Return: ");
11190 switch (val)
11191 {
11192 case 0:
11193 printf (_("Any\n"));
11194 break;
11195 case 1:
11196 printf ("r3/r4\n");
11197 break;
11198 case 2:
11199 printf (_("Memory\n"));
11200 break;
11201 default:
11202 printf ("??? (%d)\n", val);
11203 break;
11204 }
11205 return p;
11206 }
11207
11208 if (tag & 1)
11209 type = 1; /* String. */
11210 else
11211 type = 2; /* uleb128. */
11212 printf (" Tag_unknown_%d: ", tag);
11213
11214 if (type == 1)
11215 {
11216 printf ("\"%s\"\n", p);
11217 p += strlen ((char *) p) + 1;
11218 }
11219 else
11220 {
11221 val = read_uleb128 (p, &len);
11222 p += len;
11223 printf ("%d (0x%x)\n", val, val);
11224 }
11225
11226 return p;
11227 }
11228
11229 static void
11230 display_sparc_hwcaps (int mask)
11231 {
11232 if (mask)
11233 {
11234 int first = 1;
11235 if (mask & ELF_SPARC_HWCAP_MUL32)
11236 fputs ("mul32", stdout), first = 0;
11237 if (mask & ELF_SPARC_HWCAP_DIV32)
11238 printf ("%sdiv32", first ? "" : "|"), first = 0;
11239 if (mask & ELF_SPARC_HWCAP_FSMULD)
11240 printf ("%sfsmuld", first ? "" : "|"), first = 0;
11241 if (mask & ELF_SPARC_HWCAP_V8PLUS)
11242 printf ("%sv8plus", first ? "" : "|"), first = 0;
11243 if (mask & ELF_SPARC_HWCAP_POPC)
11244 printf ("%spopc", first ? "" : "|"), first = 0;
11245 if (mask & ELF_SPARC_HWCAP_VIS)
11246 printf ("%svis", first ? "" : "|"), first = 0;
11247 if (mask & ELF_SPARC_HWCAP_VIS2)
11248 printf ("%svis2", first ? "" : "|"), first = 0;
11249 if (mask & ELF_SPARC_HWCAP_ASI_BLK_INIT)
11250 printf ("%sASIBlkInit", first ? "" : "|"), first = 0;
11251 if (mask & ELF_SPARC_HWCAP_FMAF)
11252 printf ("%sfmaf", first ? "" : "|"), first = 0;
11253 if (mask & ELF_SPARC_HWCAP_VIS3)
11254 printf ("%svis3", first ? "" : "|"), first = 0;
11255 if (mask & ELF_SPARC_HWCAP_HPC)
11256 printf ("%shpc", first ? "" : "|"), first = 0;
11257 if (mask & ELF_SPARC_HWCAP_RANDOM)
11258 printf ("%srandom", first ? "" : "|"), first = 0;
11259 if (mask & ELF_SPARC_HWCAP_TRANS)
11260 printf ("%strans", first ? "" : "|"), first = 0;
11261 if (mask & ELF_SPARC_HWCAP_FJFMAU)
11262 printf ("%sfjfmau", first ? "" : "|"), first = 0;
11263 if (mask & ELF_SPARC_HWCAP_IMA)
11264 printf ("%sima", first ? "" : "|"), first = 0;
11265 if (mask & ELF_SPARC_HWCAP_ASI_CACHE_SPARING)
11266 printf ("%scspare", first ? "" : "|"), first = 0;
11267 }
11268 else
11269 fputc('0', stdout);
11270 fputc('\n', stdout);
11271 }
11272
11273 static unsigned char *
11274 display_sparc_gnu_attribute (unsigned char * p, int tag)
11275 {
11276 int type;
11277 unsigned int len;
11278 int val;
11279
11280 if (tag == Tag_GNU_Sparc_HWCAPS)
11281 {
11282 val = read_uleb128 (p, &len);
11283 p += len;
11284 printf (" Tag_GNU_Sparc_HWCAPS: ");
11285
11286 display_sparc_hwcaps (val);
11287 return p;
11288 }
11289
11290 if (tag & 1)
11291 type = 1; /* String. */
11292 else
11293 type = 2; /* uleb128. */
11294 printf (" Tag_unknown_%d: ", tag);
11295
11296 if (type == 1)
11297 {
11298 printf ("\"%s\"\n", p);
11299 p += strlen ((char *) p) + 1;
11300 }
11301 else
11302 {
11303 val = read_uleb128 (p, &len);
11304 p += len;
11305 printf ("%d (0x%x)\n", val, val);
11306 }
11307
11308 return p;
11309 }
11310
11311 static unsigned char *
11312 display_mips_gnu_attribute (unsigned char * p, int tag)
11313 {
11314 int type;
11315 unsigned int len;
11316 int val;
11317
11318 if (tag == Tag_GNU_MIPS_ABI_FP)
11319 {
11320 val = read_uleb128 (p, &len);
11321 p += len;
11322 printf (" Tag_GNU_MIPS_ABI_FP: ");
11323
11324 switch (val)
11325 {
11326 case 0:
11327 printf (_("Hard or soft float\n"));
11328 break;
11329 case 1:
11330 printf (_("Hard float (double precision)\n"));
11331 break;
11332 case 2:
11333 printf (_("Hard float (single precision)\n"));
11334 break;
11335 case 3:
11336 printf (_("Soft float\n"));
11337 break;
11338 case 4:
11339 printf (_("Hard float (MIPS32r2 64-bit FPU)\n"));
11340 break;
11341 default:
11342 printf ("??? (%d)\n", val);
11343 break;
11344 }
11345 return p;
11346 }
11347
11348 if (tag & 1)
11349 type = 1; /* String. */
11350 else
11351 type = 2; /* uleb128. */
11352 printf (" Tag_unknown_%d: ", tag);
11353
11354 if (type == 1)
11355 {
11356 printf ("\"%s\"\n", p);
11357 p += strlen ((char *) p) + 1;
11358 }
11359 else
11360 {
11361 val = read_uleb128 (p, &len);
11362 p += len;
11363 printf ("%d (0x%x)\n", val, val);
11364 }
11365
11366 return p;
11367 }
11368
11369 static unsigned char *
11370 display_tic6x_attribute (unsigned char * p)
11371 {
11372 int tag;
11373 unsigned int len;
11374 int val;
11375
11376 tag = read_uleb128 (p, &len);
11377 p += len;
11378
11379 switch (tag)
11380 {
11381 case Tag_ISA:
11382 val = read_uleb128 (p, &len);
11383 p += len;
11384 printf (" Tag_ISA: ");
11385
11386 switch (val)
11387 {
11388 case C6XABI_Tag_ISA_none:
11389 printf (_("None\n"));
11390 break;
11391 case C6XABI_Tag_ISA_C62X:
11392 printf ("C62x\n");
11393 break;
11394 case C6XABI_Tag_ISA_C67X:
11395 printf ("C67x\n");
11396 break;
11397 case C6XABI_Tag_ISA_C67XP:
11398 printf ("C67x+\n");
11399 break;
11400 case C6XABI_Tag_ISA_C64X:
11401 printf ("C64x\n");
11402 break;
11403 case C6XABI_Tag_ISA_C64XP:
11404 printf ("C64x+\n");
11405 break;
11406 case C6XABI_Tag_ISA_C674X:
11407 printf ("C674x\n");
11408 break;
11409 default:
11410 printf ("??? (%d)\n", val);
11411 break;
11412 }
11413 return p;
11414
11415 case Tag_ABI_wchar_t:
11416 val = read_uleb128 (p, &len);
11417 p += len;
11418 printf (" Tag_ABI_wchar_t: ");
11419 switch (val)
11420 {
11421 case 0:
11422 printf (_("Not used\n"));
11423 break;
11424 case 1:
11425 printf (_("2 bytes\n"));
11426 break;
11427 case 2:
11428 printf (_("4 bytes\n"));
11429 break;
11430 default:
11431 printf ("??? (%d)\n", val);
11432 break;
11433 }
11434 return p;
11435
11436 case Tag_ABI_stack_align_needed:
11437 val = read_uleb128 (p, &len);
11438 p += len;
11439 printf (" Tag_ABI_stack_align_needed: ");
11440 switch (val)
11441 {
11442 case 0:
11443 printf (_("8-byte\n"));
11444 break;
11445 case 1:
11446 printf (_("16-byte\n"));
11447 break;
11448 default:
11449 printf ("??? (%d)\n", val);
11450 break;
11451 }
11452 return p;
11453
11454 case Tag_ABI_stack_align_preserved:
11455 val = read_uleb128 (p, &len);
11456 p += len;
11457 printf (" Tag_ABI_stack_align_preserved: ");
11458 switch (val)
11459 {
11460 case 0:
11461 printf (_("8-byte\n"));
11462 break;
11463 case 1:
11464 printf (_("16-byte\n"));
11465 break;
11466 default:
11467 printf ("??? (%d)\n", val);
11468 break;
11469 }
11470 return p;
11471
11472 case Tag_ABI_DSBT:
11473 val = read_uleb128 (p, &len);
11474 p += len;
11475 printf (" Tag_ABI_DSBT: ");
11476 switch (val)
11477 {
11478 case 0:
11479 printf (_("DSBT addressing not used\n"));
11480 break;
11481 case 1:
11482 printf (_("DSBT addressing used\n"));
11483 break;
11484 default:
11485 printf ("??? (%d)\n", val);
11486 break;
11487 }
11488 return p;
11489
11490 case Tag_ABI_PID:
11491 val = read_uleb128 (p, &len);
11492 p += len;
11493 printf (" Tag_ABI_PID: ");
11494 switch (val)
11495 {
11496 case 0:
11497 printf (_("Data addressing position-dependent\n"));
11498 break;
11499 case 1:
11500 printf (_("Data addressing position-independent, GOT near DP\n"));
11501 break;
11502 case 2:
11503 printf (_("Data addressing position-independent, GOT far from DP\n"));
11504 break;
11505 default:
11506 printf ("??? (%d)\n", val);
11507 break;
11508 }
11509 return p;
11510
11511 case Tag_ABI_PIC:
11512 val = read_uleb128 (p, &len);
11513 p += len;
11514 printf (" Tag_ABI_PIC: ");
11515 switch (val)
11516 {
11517 case 0:
11518 printf (_("Code addressing position-dependent\n"));
11519 break;
11520 case 1:
11521 printf (_("Code addressing position-independent\n"));
11522 break;
11523 default:
11524 printf ("??? (%d)\n", val);
11525 break;
11526 }
11527 return p;
11528
11529 case Tag_ABI_array_object_alignment:
11530 val = read_uleb128 (p, &len);
11531 p += len;
11532 printf (" Tag_ABI_array_object_alignment: ");
11533 switch (val)
11534 {
11535 case 0:
11536 printf (_("8-byte\n"));
11537 break;
11538 case 1:
11539 printf (_("4-byte\n"));
11540 break;
11541 case 2:
11542 printf (_("16-byte\n"));
11543 break;
11544 default:
11545 printf ("??? (%d)\n", val);
11546 break;
11547 }
11548 return p;
11549
11550 case Tag_ABI_array_object_align_expected:
11551 val = read_uleb128 (p, &len);
11552 p += len;
11553 printf (" Tag_ABI_array_object_align_expected: ");
11554 switch (val)
11555 {
11556 case 0:
11557 printf (_("8-byte\n"));
11558 break;
11559 case 1:
11560 printf (_("4-byte\n"));
11561 break;
11562 case 2:
11563 printf (_("16-byte\n"));
11564 break;
11565 default:
11566 printf ("??? (%d)\n", val);
11567 break;
11568 }
11569 return p;
11570
11571 case Tag_ABI_compatibility:
11572 val = read_uleb128 (p, &len);
11573 p += len;
11574 printf (" Tag_ABI_compatibility: ");
11575 printf (_("flag = %d, vendor = %s\n"), val, p);
11576 p += strlen ((char *) p) + 1;
11577 return p;
11578
11579 case Tag_ABI_conformance:
11580 printf (" Tag_ABI_conformance: ");
11581 printf ("\"%s\"\n", p);
11582 p += strlen ((char *) p) + 1;
11583 return p;
11584 }
11585
11586 printf (" Tag_unknown_%d: ", tag);
11587
11588 if (tag & 1)
11589 {
11590 printf ("\"%s\"\n", p);
11591 p += strlen ((char *) p) + 1;
11592 }
11593 else
11594 {
11595 val = read_uleb128 (p, &len);
11596 p += len;
11597 printf ("%d (0x%x)\n", val, val);
11598 }
11599
11600 return p;
11601 }
11602
11603 static int
11604 process_attributes (FILE * file,
11605 const char * public_name,
11606 unsigned int proc_type,
11607 unsigned char * (* display_pub_attribute) (unsigned char *),
11608 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, int))
11609 {
11610 Elf_Internal_Shdr * sect;
11611 unsigned char * contents;
11612 unsigned char * p;
11613 unsigned char * end;
11614 bfd_vma section_len;
11615 bfd_vma len;
11616 unsigned i;
11617
11618 /* Find the section header so that we get the size. */
11619 for (i = 0, sect = section_headers;
11620 i < elf_header.e_shnum;
11621 i++, sect++)
11622 {
11623 if (sect->sh_type != proc_type && sect->sh_type != SHT_GNU_ATTRIBUTES)
11624 continue;
11625
11626 contents = (unsigned char *) get_data (NULL, file, sect->sh_offset, 1,
11627 sect->sh_size, _("attributes"));
11628 if (contents == NULL)
11629 continue;
11630
11631 p = contents;
11632 if (*p == 'A')
11633 {
11634 len = sect->sh_size - 1;
11635 p++;
11636
11637 while (len > 0)
11638 {
11639 int namelen;
11640 bfd_boolean public_section;
11641 bfd_boolean gnu_section;
11642
11643 section_len = byte_get (p, 4);
11644 p += 4;
11645
11646 if (section_len > len)
11647 {
11648 printf (_("ERROR: Bad section length (%d > %d)\n"),
11649 (int) section_len, (int) len);
11650 section_len = len;
11651 }
11652
11653 len -= section_len;
11654 printf (_("Attribute Section: %s\n"), p);
11655
11656 if (public_name && streq ((char *) p, public_name))
11657 public_section = TRUE;
11658 else
11659 public_section = FALSE;
11660
11661 if (streq ((char *) p, "gnu"))
11662 gnu_section = TRUE;
11663 else
11664 gnu_section = FALSE;
11665
11666 namelen = strlen ((char *) p) + 1;
11667 p += namelen;
11668 section_len -= namelen + 4;
11669
11670 while (section_len > 0)
11671 {
11672 int tag = *(p++);
11673 int val;
11674 bfd_vma size;
11675
11676 size = byte_get (p, 4);
11677 if (size > section_len)
11678 {
11679 printf (_("ERROR: Bad subsection length (%d > %d)\n"),
11680 (int) size, (int) section_len);
11681 size = section_len;
11682 }
11683
11684 section_len -= size;
11685 end = p + size - 1;
11686 p += 4;
11687
11688 switch (tag)
11689 {
11690 case 1:
11691 printf (_("File Attributes\n"));
11692 break;
11693 case 2:
11694 printf (_("Section Attributes:"));
11695 goto do_numlist;
11696 case 3:
11697 printf (_("Symbol Attributes:"));
11698 do_numlist:
11699 for (;;)
11700 {
11701 unsigned int j;
11702
11703 val = read_uleb128 (p, &j);
11704 p += j;
11705 if (val == 0)
11706 break;
11707 printf (" %d", val);
11708 }
11709 printf ("\n");
11710 break;
11711 default:
11712 printf (_("Unknown tag: %d\n"), tag);
11713 public_section = FALSE;
11714 break;
11715 }
11716
11717 if (public_section)
11718 {
11719 while (p < end)
11720 p = display_pub_attribute (p);
11721 }
11722 else if (gnu_section)
11723 {
11724 while (p < end)
11725 p = display_gnu_attribute (p,
11726 display_proc_gnu_attribute);
11727 }
11728 else
11729 {
11730 /* ??? Do something sensible, like dump hex. */
11731 printf (_(" Unknown section contexts\n"));
11732 p = end;
11733 }
11734 }
11735 }
11736 }
11737 else
11738 printf (_("Unknown format '%c'\n"), *p);
11739
11740 free (contents);
11741 }
11742 return 1;
11743 }
11744
11745 static int
11746 process_arm_specific (FILE * file)
11747 {
11748 return process_attributes (file, "aeabi", SHT_ARM_ATTRIBUTES,
11749 display_arm_attribute, NULL);
11750 }
11751
11752 static int
11753 process_power_specific (FILE * file)
11754 {
11755 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
11756 display_power_gnu_attribute);
11757 }
11758
11759 static int
11760 process_sparc_specific (FILE * file)
11761 {
11762 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
11763 display_sparc_gnu_attribute);
11764 }
11765
11766 static int
11767 process_tic6x_specific (FILE * file)
11768 {
11769 return process_attributes (file, "c6xabi", SHT_C6000_ATTRIBUTES,
11770 display_tic6x_attribute, NULL);
11771 }
11772
11773 /* DATA points to the contents of a MIPS GOT that starts at VMA PLTGOT.
11774 Print the Address, Access and Initial fields of an entry at VMA ADDR
11775 and return the VMA of the next entry. */
11776
11777 static bfd_vma
11778 print_mips_got_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
11779 {
11780 printf (" ");
11781 print_vma (addr, LONG_HEX);
11782 printf (" ");
11783 if (addr < pltgot + 0xfff0)
11784 printf ("%6d(gp)", (int) (addr - pltgot - 0x7ff0));
11785 else
11786 printf ("%10s", "");
11787 printf (" ");
11788 if (data == NULL)
11789 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
11790 else
11791 {
11792 bfd_vma entry;
11793
11794 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
11795 print_vma (entry, LONG_HEX);
11796 }
11797 return addr + (is_32bit_elf ? 4 : 8);
11798 }
11799
11800 /* DATA points to the contents of a MIPS PLT GOT that starts at VMA
11801 PLTGOT. Print the Address and Initial fields of an entry at VMA
11802 ADDR and return the VMA of the next entry. */
11803
11804 static bfd_vma
11805 print_mips_pltgot_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
11806 {
11807 printf (" ");
11808 print_vma (addr, LONG_HEX);
11809 printf (" ");
11810 if (data == NULL)
11811 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
11812 else
11813 {
11814 bfd_vma entry;
11815
11816 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
11817 print_vma (entry, LONG_HEX);
11818 }
11819 return addr + (is_32bit_elf ? 4 : 8);
11820 }
11821
11822 static int
11823 process_mips_specific (FILE * file)
11824 {
11825 Elf_Internal_Dyn * entry;
11826 size_t liblist_offset = 0;
11827 size_t liblistno = 0;
11828 size_t conflictsno = 0;
11829 size_t options_offset = 0;
11830 size_t conflicts_offset = 0;
11831 size_t pltrelsz = 0;
11832 size_t pltrel = 0;
11833 bfd_vma pltgot = 0;
11834 bfd_vma mips_pltgot = 0;
11835 bfd_vma jmprel = 0;
11836 bfd_vma local_gotno = 0;
11837 bfd_vma gotsym = 0;
11838 bfd_vma symtabno = 0;
11839
11840 process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
11841 display_mips_gnu_attribute);
11842
11843 /* We have a lot of special sections. Thanks SGI! */
11844 if (dynamic_section == NULL)
11845 /* No information available. */
11846 return 0;
11847
11848 for (entry = dynamic_section; entry->d_tag != DT_NULL; ++entry)
11849 switch (entry->d_tag)
11850 {
11851 case DT_MIPS_LIBLIST:
11852 liblist_offset
11853 = offset_from_vma (file, entry->d_un.d_val,
11854 liblistno * sizeof (Elf32_External_Lib));
11855 break;
11856 case DT_MIPS_LIBLISTNO:
11857 liblistno = entry->d_un.d_val;
11858 break;
11859 case DT_MIPS_OPTIONS:
11860 options_offset = offset_from_vma (file, entry->d_un.d_val, 0);
11861 break;
11862 case DT_MIPS_CONFLICT:
11863 conflicts_offset
11864 = offset_from_vma (file, entry->d_un.d_val,
11865 conflictsno * sizeof (Elf32_External_Conflict));
11866 break;
11867 case DT_MIPS_CONFLICTNO:
11868 conflictsno = entry->d_un.d_val;
11869 break;
11870 case DT_PLTGOT:
11871 pltgot = entry->d_un.d_ptr;
11872 break;
11873 case DT_MIPS_LOCAL_GOTNO:
11874 local_gotno = entry->d_un.d_val;
11875 break;
11876 case DT_MIPS_GOTSYM:
11877 gotsym = entry->d_un.d_val;
11878 break;
11879 case DT_MIPS_SYMTABNO:
11880 symtabno = entry->d_un.d_val;
11881 break;
11882 case DT_MIPS_PLTGOT:
11883 mips_pltgot = entry->d_un.d_ptr;
11884 break;
11885 case DT_PLTREL:
11886 pltrel = entry->d_un.d_val;
11887 break;
11888 case DT_PLTRELSZ:
11889 pltrelsz = entry->d_un.d_val;
11890 break;
11891 case DT_JMPREL:
11892 jmprel = entry->d_un.d_ptr;
11893 break;
11894 default:
11895 break;
11896 }
11897
11898 if (liblist_offset != 0 && liblistno != 0 && do_dynamic)
11899 {
11900 Elf32_External_Lib * elib;
11901 size_t cnt;
11902
11903 elib = (Elf32_External_Lib *) get_data (NULL, file, liblist_offset,
11904 liblistno,
11905 sizeof (Elf32_External_Lib),
11906 _("liblist section data"));
11907 if (elib)
11908 {
11909 printf (_("\nSection '.liblist' contains %lu entries:\n"),
11910 (unsigned long) liblistno);
11911 fputs (_(" Library Time Stamp Checksum Version Flags\n"),
11912 stdout);
11913
11914 for (cnt = 0; cnt < liblistno; ++cnt)
11915 {
11916 Elf32_Lib liblist;
11917 time_t atime;
11918 char timebuf[20];
11919 struct tm * tmp;
11920
11921 liblist.l_name = BYTE_GET (elib[cnt].l_name);
11922 atime = BYTE_GET (elib[cnt].l_time_stamp);
11923 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
11924 liblist.l_version = BYTE_GET (elib[cnt].l_version);
11925 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
11926
11927 tmp = gmtime (&atime);
11928 snprintf (timebuf, sizeof (timebuf),
11929 "%04u-%02u-%02uT%02u:%02u:%02u",
11930 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
11931 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
11932
11933 printf ("%3lu: ", (unsigned long) cnt);
11934 if (VALID_DYNAMIC_NAME (liblist.l_name))
11935 print_symbol (20, GET_DYNAMIC_NAME (liblist.l_name));
11936 else
11937 printf (_("<corrupt: %9ld>"), liblist.l_name);
11938 printf (" %s %#10lx %-7ld", timebuf, liblist.l_checksum,
11939 liblist.l_version);
11940
11941 if (liblist.l_flags == 0)
11942 puts (_(" NONE"));
11943 else
11944 {
11945 static const struct
11946 {
11947 const char * name;
11948 int bit;
11949 }
11950 l_flags_vals[] =
11951 {
11952 { " EXACT_MATCH", LL_EXACT_MATCH },
11953 { " IGNORE_INT_VER", LL_IGNORE_INT_VER },
11954 { " REQUIRE_MINOR", LL_REQUIRE_MINOR },
11955 { " EXPORTS", LL_EXPORTS },
11956 { " DELAY_LOAD", LL_DELAY_LOAD },
11957 { " DELTA", LL_DELTA }
11958 };
11959 int flags = liblist.l_flags;
11960 size_t fcnt;
11961
11962 for (fcnt = 0; fcnt < ARRAY_SIZE (l_flags_vals); ++fcnt)
11963 if ((flags & l_flags_vals[fcnt].bit) != 0)
11964 {
11965 fputs (l_flags_vals[fcnt].name, stdout);
11966 flags ^= l_flags_vals[fcnt].bit;
11967 }
11968 if (flags != 0)
11969 printf (" %#x", (unsigned int) flags);
11970
11971 puts ("");
11972 }
11973 }
11974
11975 free (elib);
11976 }
11977 }
11978
11979 if (options_offset != 0)
11980 {
11981 Elf_External_Options * eopt;
11982 Elf_Internal_Shdr * sect = section_headers;
11983 Elf_Internal_Options * iopt;
11984 Elf_Internal_Options * option;
11985 size_t offset;
11986 int cnt;
11987
11988 /* Find the section header so that we get the size. */
11989 while (sect->sh_type != SHT_MIPS_OPTIONS)
11990 ++sect;
11991
11992 eopt = (Elf_External_Options *) get_data (NULL, file, options_offset, 1,
11993 sect->sh_size, _("options"));
11994 if (eopt)
11995 {
11996 iopt = (Elf_Internal_Options *)
11997 cmalloc ((sect->sh_size / sizeof (eopt)), sizeof (* iopt));
11998 if (iopt == NULL)
11999 {
12000 error (_("Out of memory\n"));
12001 return 0;
12002 }
12003
12004 offset = cnt = 0;
12005 option = iopt;
12006
12007 while (offset < sect->sh_size)
12008 {
12009 Elf_External_Options * eoption;
12010
12011 eoption = (Elf_External_Options *) ((char *) eopt + offset);
12012
12013 option->kind = BYTE_GET (eoption->kind);
12014 option->size = BYTE_GET (eoption->size);
12015 option->section = BYTE_GET (eoption->section);
12016 option->info = BYTE_GET (eoption->info);
12017
12018 offset += option->size;
12019
12020 ++option;
12021 ++cnt;
12022 }
12023
12024 printf (_("\nSection '%s' contains %d entries:\n"),
12025 SECTION_NAME (sect), cnt);
12026
12027 option = iopt;
12028
12029 while (cnt-- > 0)
12030 {
12031 size_t len;
12032
12033 switch (option->kind)
12034 {
12035 case ODK_NULL:
12036 /* This shouldn't happen. */
12037 printf (" NULL %d %lx", option->section, option->info);
12038 break;
12039 case ODK_REGINFO:
12040 printf (" REGINFO ");
12041 if (elf_header.e_machine == EM_MIPS)
12042 {
12043 /* 32bit form. */
12044 Elf32_External_RegInfo * ereg;
12045 Elf32_RegInfo reginfo;
12046
12047 ereg = (Elf32_External_RegInfo *) (option + 1);
12048 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
12049 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
12050 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
12051 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
12052 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
12053 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
12054
12055 printf ("GPR %08lx GP 0x%lx\n",
12056 reginfo.ri_gprmask,
12057 (unsigned long) reginfo.ri_gp_value);
12058 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
12059 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
12060 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
12061 }
12062 else
12063 {
12064 /* 64 bit form. */
12065 Elf64_External_RegInfo * ereg;
12066 Elf64_Internal_RegInfo reginfo;
12067
12068 ereg = (Elf64_External_RegInfo *) (option + 1);
12069 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
12070 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
12071 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
12072 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
12073 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
12074 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
12075
12076 printf ("GPR %08lx GP 0x",
12077 reginfo.ri_gprmask);
12078 printf_vma (reginfo.ri_gp_value);
12079 printf ("\n");
12080
12081 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
12082 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
12083 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
12084 }
12085 ++option;
12086 continue;
12087 case ODK_EXCEPTIONS:
12088 fputs (" EXCEPTIONS fpe_min(", stdout);
12089 process_mips_fpe_exception (option->info & OEX_FPU_MIN);
12090 fputs (") fpe_max(", stdout);
12091 process_mips_fpe_exception ((option->info & OEX_FPU_MAX) >> 8);
12092 fputs (")", stdout);
12093
12094 if (option->info & OEX_PAGE0)
12095 fputs (" PAGE0", stdout);
12096 if (option->info & OEX_SMM)
12097 fputs (" SMM", stdout);
12098 if (option->info & OEX_FPDBUG)
12099 fputs (" FPDBUG", stdout);
12100 if (option->info & OEX_DISMISS)
12101 fputs (" DISMISS", stdout);
12102 break;
12103 case ODK_PAD:
12104 fputs (" PAD ", stdout);
12105 if (option->info & OPAD_PREFIX)
12106 fputs (" PREFIX", stdout);
12107 if (option->info & OPAD_POSTFIX)
12108 fputs (" POSTFIX", stdout);
12109 if (option->info & OPAD_SYMBOL)
12110 fputs (" SYMBOL", stdout);
12111 break;
12112 case ODK_HWPATCH:
12113 fputs (" HWPATCH ", stdout);
12114 if (option->info & OHW_R4KEOP)
12115 fputs (" R4KEOP", stdout);
12116 if (option->info & OHW_R8KPFETCH)
12117 fputs (" R8KPFETCH", stdout);
12118 if (option->info & OHW_R5KEOP)
12119 fputs (" R5KEOP", stdout);
12120 if (option->info & OHW_R5KCVTL)
12121 fputs (" R5KCVTL", stdout);
12122 break;
12123 case ODK_FILL:
12124 fputs (" FILL ", stdout);
12125 /* XXX Print content of info word? */
12126 break;
12127 case ODK_TAGS:
12128 fputs (" TAGS ", stdout);
12129 /* XXX Print content of info word? */
12130 break;
12131 case ODK_HWAND:
12132 fputs (" HWAND ", stdout);
12133 if (option->info & OHWA0_R4KEOP_CHECKED)
12134 fputs (" R4KEOP_CHECKED", stdout);
12135 if (option->info & OHWA0_R4KEOP_CLEAN)
12136 fputs (" R4KEOP_CLEAN", stdout);
12137 break;
12138 case ODK_HWOR:
12139 fputs (" HWOR ", stdout);
12140 if (option->info & OHWA0_R4KEOP_CHECKED)
12141 fputs (" R4KEOP_CHECKED", stdout);
12142 if (option->info & OHWA0_R4KEOP_CLEAN)
12143 fputs (" R4KEOP_CLEAN", stdout);
12144 break;
12145 case ODK_GP_GROUP:
12146 printf (" GP_GROUP %#06lx self-contained %#06lx",
12147 option->info & OGP_GROUP,
12148 (option->info & OGP_SELF) >> 16);
12149 break;
12150 case ODK_IDENT:
12151 printf (" IDENT %#06lx self-contained %#06lx",
12152 option->info & OGP_GROUP,
12153 (option->info & OGP_SELF) >> 16);
12154 break;
12155 default:
12156 /* This shouldn't happen. */
12157 printf (" %3d ??? %d %lx",
12158 option->kind, option->section, option->info);
12159 break;
12160 }
12161
12162 len = sizeof (* eopt);
12163 while (len < option->size)
12164 if (((char *) option)[len] >= ' '
12165 && ((char *) option)[len] < 0x7f)
12166 printf ("%c", ((char *) option)[len++]);
12167 else
12168 printf ("\\%03o", ((char *) option)[len++]);
12169
12170 fputs ("\n", stdout);
12171 ++option;
12172 }
12173
12174 free (eopt);
12175 }
12176 }
12177
12178 if (conflicts_offset != 0 && conflictsno != 0)
12179 {
12180 Elf32_Conflict * iconf;
12181 size_t cnt;
12182
12183 if (dynamic_symbols == NULL)
12184 {
12185 error (_("conflict list found without a dynamic symbol table\n"));
12186 return 0;
12187 }
12188
12189 iconf = (Elf32_Conflict *) cmalloc (conflictsno, sizeof (* iconf));
12190 if (iconf == NULL)
12191 {
12192 error (_("Out of memory\n"));
12193 return 0;
12194 }
12195
12196 if (is_32bit_elf)
12197 {
12198 Elf32_External_Conflict * econf32;
12199
12200 econf32 = (Elf32_External_Conflict *)
12201 get_data (NULL, file, conflicts_offset, conflictsno,
12202 sizeof (* econf32), _("conflict"));
12203 if (!econf32)
12204 return 0;
12205
12206 for (cnt = 0; cnt < conflictsno; ++cnt)
12207 iconf[cnt] = BYTE_GET (econf32[cnt]);
12208
12209 free (econf32);
12210 }
12211 else
12212 {
12213 Elf64_External_Conflict * econf64;
12214
12215 econf64 = (Elf64_External_Conflict *)
12216 get_data (NULL, file, conflicts_offset, conflictsno,
12217 sizeof (* econf64), _("conflict"));
12218 if (!econf64)
12219 return 0;
12220
12221 for (cnt = 0; cnt < conflictsno; ++cnt)
12222 iconf[cnt] = BYTE_GET (econf64[cnt]);
12223
12224 free (econf64);
12225 }
12226
12227 printf (_("\nSection '.conflict' contains %lu entries:\n"),
12228 (unsigned long) conflictsno);
12229 puts (_(" Num: Index Value Name"));
12230
12231 for (cnt = 0; cnt < conflictsno; ++cnt)
12232 {
12233 Elf_Internal_Sym * psym = & dynamic_symbols[iconf[cnt]];
12234
12235 printf ("%5lu: %8lu ", (unsigned long) cnt, iconf[cnt]);
12236 print_vma (psym->st_value, FULL_HEX);
12237 putchar (' ');
12238 if (VALID_DYNAMIC_NAME (psym->st_name))
12239 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
12240 else
12241 printf (_("<corrupt: %14ld>"), psym->st_name);
12242 putchar ('\n');
12243 }
12244
12245 free (iconf);
12246 }
12247
12248 if (pltgot != 0 && local_gotno != 0)
12249 {
12250 bfd_vma ent, local_end, global_end;
12251 size_t i, offset;
12252 unsigned char * data;
12253 int addr_size;
12254
12255 ent = pltgot;
12256 addr_size = (is_32bit_elf ? 4 : 8);
12257 local_end = pltgot + local_gotno * addr_size;
12258 global_end = local_end + (symtabno - gotsym) * addr_size;
12259
12260 offset = offset_from_vma (file, pltgot, global_end - pltgot);
12261 data = (unsigned char *) get_data (NULL, file, offset,
12262 global_end - pltgot, 1,
12263 _("Global Offset Table data"));
12264 if (data == NULL)
12265 return 0;
12266
12267 printf (_("\nPrimary GOT:\n"));
12268 printf (_(" Canonical gp value: "));
12269 print_vma (pltgot + 0x7ff0, LONG_HEX);
12270 printf ("\n\n");
12271
12272 printf (_(" Reserved entries:\n"));
12273 printf (_(" %*s %10s %*s Purpose\n"),
12274 addr_size * 2, _("Address"), _("Access"),
12275 addr_size * 2, _("Initial"));
12276 ent = print_mips_got_entry (data, pltgot, ent);
12277 printf (_(" Lazy resolver\n"));
12278 if (data
12279 && (byte_get (data + ent - pltgot, addr_size)
12280 >> (addr_size * 8 - 1)) != 0)
12281 {
12282 ent = print_mips_got_entry (data, pltgot, ent);
12283 printf (_(" Module pointer (GNU extension)\n"));
12284 }
12285 printf ("\n");
12286
12287 if (ent < local_end)
12288 {
12289 printf (_(" Local entries:\n"));
12290 printf (" %*s %10s %*s\n",
12291 addr_size * 2, _("Address"), _("Access"),
12292 addr_size * 2, _("Initial"));
12293 while (ent < local_end)
12294 {
12295 ent = print_mips_got_entry (data, pltgot, ent);
12296 printf ("\n");
12297 }
12298 printf ("\n");
12299 }
12300
12301 if (gotsym < symtabno)
12302 {
12303 int sym_width;
12304
12305 printf (_(" Global entries:\n"));
12306 printf (" %*s %10s %*s %*s %-7s %3s %s\n",
12307 addr_size * 2, _("Address"),
12308 _("Access"),
12309 addr_size * 2, _("Initial"),
12310 addr_size * 2, _("Sym.Val."),
12311 _("Type"),
12312 /* Note for translators: "Ndx" = abbreviated form of "Index". */
12313 _("Ndx"), _("Name"));
12314
12315 sym_width = (is_32bit_elf ? 80 : 160) - 28 - addr_size * 6 - 1;
12316 for (i = gotsym; i < symtabno; i++)
12317 {
12318 Elf_Internal_Sym * psym;
12319
12320 psym = dynamic_symbols + i;
12321 ent = print_mips_got_entry (data, pltgot, ent);
12322 printf (" ");
12323 print_vma (psym->st_value, LONG_HEX);
12324 printf (" %-7s %3s ",
12325 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
12326 get_symbol_index_type (psym->st_shndx));
12327 if (VALID_DYNAMIC_NAME (psym->st_name))
12328 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
12329 else
12330 printf (_("<corrupt: %14ld>"), psym->st_name);
12331 printf ("\n");
12332 }
12333 printf ("\n");
12334 }
12335
12336 if (data)
12337 free (data);
12338 }
12339
12340 if (mips_pltgot != 0 && jmprel != 0 && pltrel != 0 && pltrelsz != 0)
12341 {
12342 bfd_vma ent, end;
12343 size_t offset, rel_offset;
12344 unsigned long count, i;
12345 unsigned char * data;
12346 int addr_size, sym_width;
12347 Elf_Internal_Rela * rels;
12348
12349 rel_offset = offset_from_vma (file, jmprel, pltrelsz);
12350 if (pltrel == DT_RELA)
12351 {
12352 if (!slurp_rela_relocs (file, rel_offset, pltrelsz, &rels, &count))
12353 return 0;
12354 }
12355 else
12356 {
12357 if (!slurp_rel_relocs (file, rel_offset, pltrelsz, &rels, &count))
12358 return 0;
12359 }
12360
12361 ent = mips_pltgot;
12362 addr_size = (is_32bit_elf ? 4 : 8);
12363 end = mips_pltgot + (2 + count) * addr_size;
12364
12365 offset = offset_from_vma (file, mips_pltgot, end - mips_pltgot);
12366 data = (unsigned char *) get_data (NULL, file, offset, end - mips_pltgot,
12367 1, _("Procedure Linkage Table data"));
12368 if (data == NULL)
12369 return 0;
12370
12371 printf ("\nPLT GOT:\n\n");
12372 printf (_(" Reserved entries:\n"));
12373 printf (_(" %*s %*s Purpose\n"),
12374 addr_size * 2, _("Address"), addr_size * 2, _("Initial"));
12375 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
12376 printf (_(" PLT lazy resolver\n"));
12377 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
12378 printf (_(" Module pointer\n"));
12379 printf ("\n");
12380
12381 printf (_(" Entries:\n"));
12382 printf (" %*s %*s %*s %-7s %3s %s\n",
12383 addr_size * 2, _("Address"),
12384 addr_size * 2, _("Initial"),
12385 addr_size * 2, _("Sym.Val."), _("Type"), _("Ndx"), _("Name"));
12386 sym_width = (is_32bit_elf ? 80 : 160) - 17 - addr_size * 6 - 1;
12387 for (i = 0; i < count; i++)
12388 {
12389 Elf_Internal_Sym * psym;
12390
12391 psym = dynamic_symbols + get_reloc_symindex (rels[i].r_info);
12392 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
12393 printf (" ");
12394 print_vma (psym->st_value, LONG_HEX);
12395 printf (" %-7s %3s ",
12396 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
12397 get_symbol_index_type (psym->st_shndx));
12398 if (VALID_DYNAMIC_NAME (psym->st_name))
12399 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
12400 else
12401 printf (_("<corrupt: %14ld>"), psym->st_name);
12402 printf ("\n");
12403 }
12404 printf ("\n");
12405
12406 if (data)
12407 free (data);
12408 free (rels);
12409 }
12410
12411 return 1;
12412 }
12413
12414 static int
12415 process_gnu_liblist (FILE * file)
12416 {
12417 Elf_Internal_Shdr * section;
12418 Elf_Internal_Shdr * string_sec;
12419 Elf32_External_Lib * elib;
12420 char * strtab;
12421 size_t strtab_size;
12422 size_t cnt;
12423 unsigned i;
12424
12425 if (! do_arch)
12426 return 0;
12427
12428 for (i = 0, section = section_headers;
12429 i < elf_header.e_shnum;
12430 i++, section++)
12431 {
12432 switch (section->sh_type)
12433 {
12434 case SHT_GNU_LIBLIST:
12435 if (section->sh_link >= elf_header.e_shnum)
12436 break;
12437
12438 elib = (Elf32_External_Lib *)
12439 get_data (NULL, file, section->sh_offset, 1, section->sh_size,
12440 _("liblist section data"));
12441
12442 if (elib == NULL)
12443 break;
12444 string_sec = section_headers + section->sh_link;
12445
12446 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
12447 string_sec->sh_size,
12448 _("liblist string table"));
12449 if (strtab == NULL
12450 || section->sh_entsize != sizeof (Elf32_External_Lib))
12451 {
12452 free (elib);
12453 free (strtab);
12454 break;
12455 }
12456 strtab_size = string_sec->sh_size;
12457
12458 printf (_("\nLibrary list section '%s' contains %lu entries:\n"),
12459 SECTION_NAME (section),
12460 (unsigned long) (section->sh_size / sizeof (Elf32_External_Lib)));
12461
12462 puts (_(" Library Time Stamp Checksum Version Flags"));
12463
12464 for (cnt = 0; cnt < section->sh_size / sizeof (Elf32_External_Lib);
12465 ++cnt)
12466 {
12467 Elf32_Lib liblist;
12468 time_t atime;
12469 char timebuf[20];
12470 struct tm * tmp;
12471
12472 liblist.l_name = BYTE_GET (elib[cnt].l_name);
12473 atime = BYTE_GET (elib[cnt].l_time_stamp);
12474 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
12475 liblist.l_version = BYTE_GET (elib[cnt].l_version);
12476 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
12477
12478 tmp = gmtime (&atime);
12479 snprintf (timebuf, sizeof (timebuf),
12480 "%04u-%02u-%02uT%02u:%02u:%02u",
12481 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
12482 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
12483
12484 printf ("%3lu: ", (unsigned long) cnt);
12485 if (do_wide)
12486 printf ("%-20s", liblist.l_name < strtab_size
12487 ? strtab + liblist.l_name : _("<corrupt>"));
12488 else
12489 printf ("%-20.20s", liblist.l_name < strtab_size
12490 ? strtab + liblist.l_name : _("<corrupt>"));
12491 printf (" %s %#010lx %-7ld %-7ld\n", timebuf, liblist.l_checksum,
12492 liblist.l_version, liblist.l_flags);
12493 }
12494
12495 free (elib);
12496 free (strtab);
12497 }
12498 }
12499
12500 return 1;
12501 }
12502
12503 static const char *
12504 get_note_type (unsigned e_type)
12505 {
12506 static char buff[64];
12507
12508 if (elf_header.e_type == ET_CORE)
12509 switch (e_type)
12510 {
12511 case NT_AUXV:
12512 return _("NT_AUXV (auxiliary vector)");
12513 case NT_PRSTATUS:
12514 return _("NT_PRSTATUS (prstatus structure)");
12515 case NT_FPREGSET:
12516 return _("NT_FPREGSET (floating point registers)");
12517 case NT_PRPSINFO:
12518 return _("NT_PRPSINFO (prpsinfo structure)");
12519 case NT_TASKSTRUCT:
12520 return _("NT_TASKSTRUCT (task structure)");
12521 case NT_PRXFPREG:
12522 return _("NT_PRXFPREG (user_xfpregs structure)");
12523 case NT_PPC_VMX:
12524 return _("NT_PPC_VMX (ppc Altivec registers)");
12525 case NT_PPC_VSX:
12526 return _("NT_PPC_VSX (ppc VSX registers)");
12527 case NT_X86_XSTATE:
12528 return _("NT_X86_XSTATE (x86 XSAVE extended state)");
12529 case NT_S390_HIGH_GPRS:
12530 return _("NT_S390_HIGH_GPRS (s390 upper register halves)");
12531 case NT_S390_TIMER:
12532 return _("NT_S390_TIMER (s390 timer register)");
12533 case NT_S390_TODCMP:
12534 return _("NT_S390_TODCMP (s390 TOD comparator register)");
12535 case NT_S390_TODPREG:
12536 return _("NT_S390_TODPREG (s390 TOD programmable register)");
12537 case NT_S390_CTRS:
12538 return _("NT_S390_CTRS (s390 control registers)");
12539 case NT_S390_PREFIX:
12540 return _("NT_S390_PREFIX (s390 prefix register)");
12541 case NT_ARM_VFP:
12542 return _("NT_ARM_VFP (arm VFP registers)");
12543 case NT_PSTATUS:
12544 return _("NT_PSTATUS (pstatus structure)");
12545 case NT_FPREGS:
12546 return _("NT_FPREGS (floating point registers)");
12547 case NT_PSINFO:
12548 return _("NT_PSINFO (psinfo structure)");
12549 case NT_LWPSTATUS:
12550 return _("NT_LWPSTATUS (lwpstatus_t structure)");
12551 case NT_LWPSINFO:
12552 return _("NT_LWPSINFO (lwpsinfo_t structure)");
12553 case NT_WIN32PSTATUS:
12554 return _("NT_WIN32PSTATUS (win32_pstatus structure)");
12555 default:
12556 break;
12557 }
12558 else
12559 switch (e_type)
12560 {
12561 case NT_VERSION:
12562 return _("NT_VERSION (version)");
12563 case NT_ARCH:
12564 return _("NT_ARCH (architecture)");
12565 default:
12566 break;
12567 }
12568
12569 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
12570 return buff;
12571 }
12572
12573 static const char *
12574 get_gnu_elf_note_type (unsigned e_type)
12575 {
12576 static char buff[64];
12577
12578 switch (e_type)
12579 {
12580 case NT_GNU_ABI_TAG:
12581 return _("NT_GNU_ABI_TAG (ABI version tag)");
12582 case NT_GNU_HWCAP:
12583 return _("NT_GNU_HWCAP (DSO-supplied software HWCAP info)");
12584 case NT_GNU_BUILD_ID:
12585 return _("NT_GNU_BUILD_ID (unique build ID bitstring)");
12586 case NT_GNU_GOLD_VERSION:
12587 return _("NT_GNU_GOLD_VERSION (gold version)");
12588 default:
12589 break;
12590 }
12591
12592 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
12593 return buff;
12594 }
12595
12596 static int
12597 print_gnu_note (Elf_Internal_Note *pnote)
12598 {
12599 switch (pnote->type)
12600 {
12601 case NT_GNU_BUILD_ID:
12602 {
12603 unsigned long i;
12604
12605 printf (_(" Build ID: "));
12606 for (i = 0; i < pnote->descsz; ++i)
12607 printf ("%02x", pnote->descdata[i] & 0xff);
12608 printf ("\n");
12609 }
12610 break;
12611
12612 case NT_GNU_ABI_TAG:
12613 {
12614 unsigned long os, major, minor, subminor;
12615 const char *osname;
12616
12617 os = byte_get ((unsigned char *) pnote->descdata, 4);
12618 major = byte_get ((unsigned char *) pnote->descdata + 4, 4);
12619 minor = byte_get ((unsigned char *) pnote->descdata + 8, 4);
12620 subminor = byte_get ((unsigned char *) pnote->descdata + 12, 4);
12621
12622 switch (os)
12623 {
12624 case GNU_ABI_TAG_LINUX:
12625 osname = "Linux";
12626 break;
12627 case GNU_ABI_TAG_HURD:
12628 osname = "Hurd";
12629 break;
12630 case GNU_ABI_TAG_SOLARIS:
12631 osname = "Solaris";
12632 break;
12633 case GNU_ABI_TAG_FREEBSD:
12634 osname = "FreeBSD";
12635 break;
12636 case GNU_ABI_TAG_NETBSD:
12637 osname = "NetBSD";
12638 break;
12639 default:
12640 osname = "Unknown";
12641 break;
12642 }
12643
12644 printf (_(" OS: %s, ABI: %ld.%ld.%ld\n"), osname,
12645 major, minor, subminor);
12646 }
12647 break;
12648 }
12649
12650 return 1;
12651 }
12652
12653 static const char *
12654 get_netbsd_elfcore_note_type (unsigned e_type)
12655 {
12656 static char buff[64];
12657
12658 if (e_type == NT_NETBSDCORE_PROCINFO)
12659 {
12660 /* NetBSD core "procinfo" structure. */
12661 return _("NetBSD procinfo structure");
12662 }
12663
12664 /* As of Jan 2002 there are no other machine-independent notes
12665 defined for NetBSD core files. If the note type is less
12666 than the start of the machine-dependent note types, we don't
12667 understand it. */
12668
12669 if (e_type < NT_NETBSDCORE_FIRSTMACH)
12670 {
12671 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
12672 return buff;
12673 }
12674
12675 switch (elf_header.e_machine)
12676 {
12677 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0
12678 and PT_GETFPREGS == mach+2. */
12679
12680 case EM_OLD_ALPHA:
12681 case EM_ALPHA:
12682 case EM_SPARC:
12683 case EM_SPARC32PLUS:
12684 case EM_SPARCV9:
12685 switch (e_type)
12686 {
12687 case NT_NETBSDCORE_FIRSTMACH + 0:
12688 return _("PT_GETREGS (reg structure)");
12689 case NT_NETBSDCORE_FIRSTMACH + 2:
12690 return _("PT_GETFPREGS (fpreg structure)");
12691 default:
12692 break;
12693 }
12694 break;
12695
12696 /* On all other arch's, PT_GETREGS == mach+1 and
12697 PT_GETFPREGS == mach+3. */
12698 default:
12699 switch (e_type)
12700 {
12701 case NT_NETBSDCORE_FIRSTMACH + 1:
12702 return _("PT_GETREGS (reg structure)");
12703 case NT_NETBSDCORE_FIRSTMACH + 3:
12704 return _("PT_GETFPREGS (fpreg structure)");
12705 default:
12706 break;
12707 }
12708 }
12709
12710 snprintf (buff, sizeof (buff), "PT_FIRSTMACH+%d",
12711 e_type - NT_NETBSDCORE_FIRSTMACH);
12712 return buff;
12713 }
12714
12715 static const char *
12716 get_stapsdt_note_type (unsigned e_type)
12717 {
12718 static char buff[64];
12719
12720 switch (e_type)
12721 {
12722 case NT_STAPSDT:
12723 return _("NT_STAPSDT (SystemTap probe descriptors)");
12724
12725 default:
12726 break;
12727 }
12728
12729 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
12730 return buff;
12731 }
12732
12733 static int
12734 print_stapsdt_note (Elf_Internal_Note *pnote)
12735 {
12736 int addr_size = is_32bit_elf ? 4 : 8;
12737 char *data = pnote->descdata;
12738 char *data_end = pnote->descdata + pnote->descsz;
12739 bfd_vma pc, base_addr, semaphore;
12740 char *provider, *probe, *arg_fmt;
12741
12742 pc = byte_get ((unsigned char *) data, addr_size);
12743 data += addr_size;
12744 base_addr = byte_get ((unsigned char *) data, addr_size);
12745 data += addr_size;
12746 semaphore = byte_get ((unsigned char *) data, addr_size);
12747 data += addr_size;
12748
12749 provider = data;
12750 data += strlen (data) + 1;
12751 probe = data;
12752 data += strlen (data) + 1;
12753 arg_fmt = data;
12754 data += strlen (data) + 1;
12755
12756 printf (_(" Provider: %s\n"), provider);
12757 printf (_(" Name: %s\n"), probe);
12758 printf (_(" Location: "));
12759 print_vma (pc, FULL_HEX);
12760 printf (_(", Base: "));
12761 print_vma (base_addr, FULL_HEX);
12762 printf (_(", Semaphore: "));
12763 print_vma (semaphore, FULL_HEX);
12764 printf ("\n");
12765 printf (_(" Arguments: %s\n"), arg_fmt);
12766
12767 return data == data_end;
12768 }
12769
12770 static const char *
12771 get_ia64_vms_note_type (unsigned e_type)
12772 {
12773 static char buff[64];
12774
12775 switch (e_type)
12776 {
12777 case NT_VMS_MHD:
12778 return _("NT_VMS_MHD (module header)");
12779 case NT_VMS_LNM:
12780 return _("NT_VMS_LNM (language name)");
12781 case NT_VMS_SRC:
12782 return _("NT_VMS_SRC (source files)");
12783 case NT_VMS_TITLE:
12784 return "NT_VMS_TITLE";
12785 case NT_VMS_EIDC:
12786 return _("NT_VMS_EIDC (consistency check)");
12787 case NT_VMS_FPMODE:
12788 return _("NT_VMS_FPMODE (FP mode)");
12789 case NT_VMS_LINKTIME:
12790 return "NT_VMS_LINKTIME";
12791 case NT_VMS_IMGNAM:
12792 return _("NT_VMS_IMGNAM (image name)");
12793 case NT_VMS_IMGID:
12794 return _("NT_VMS_IMGID (image id)");
12795 case NT_VMS_LINKID:
12796 return _("NT_VMS_LINKID (link id)");
12797 case NT_VMS_IMGBID:
12798 return _("NT_VMS_IMGBID (build id)");
12799 case NT_VMS_GSTNAM:
12800 return _("NT_VMS_GSTNAM (sym table name)");
12801 case NT_VMS_ORIG_DYN:
12802 return "NT_VMS_ORIG_DYN";
12803 case NT_VMS_PATCHTIME:
12804 return "NT_VMS_PATCHTIME";
12805 default:
12806 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
12807 return buff;
12808 }
12809 }
12810
12811 static int
12812 print_ia64_vms_note (Elf_Internal_Note * pnote)
12813 {
12814 switch (pnote->type)
12815 {
12816 case NT_VMS_MHD:
12817 if (pnote->descsz > 36)
12818 {
12819 size_t l = strlen (pnote->descdata + 34);
12820 printf (_(" Creation date : %.17s\n"), pnote->descdata);
12821 printf (_(" Last patch date: %.17s\n"), pnote->descdata + 17);
12822 printf (_(" Module name : %s\n"), pnote->descdata + 34);
12823 printf (_(" Module version : %s\n"), pnote->descdata + 34 + l + 1);
12824 }
12825 else
12826 printf (_(" Invalid size\n"));
12827 break;
12828 case NT_VMS_LNM:
12829 printf (_(" Language: %s\n"), pnote->descdata);
12830 break;
12831 #ifdef BFD64
12832 case NT_VMS_FPMODE:
12833 printf (_(" Floating Point mode: "));
12834 printf ("0x%016" BFD_VMA_FMT "x\n",
12835 (bfd_vma)byte_get ((unsigned char *)pnote->descdata, 8));
12836 break;
12837 case NT_VMS_LINKTIME:
12838 printf (_(" Link time: "));
12839 print_vms_time
12840 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
12841 printf ("\n");
12842 break;
12843 case NT_VMS_PATCHTIME:
12844 printf (_(" Patch time: "));
12845 print_vms_time
12846 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
12847 printf ("\n");
12848 break;
12849 case NT_VMS_ORIG_DYN:
12850 printf (_(" Major id: %u, minor id: %u\n"),
12851 (unsigned) byte_get ((unsigned char *)pnote->descdata, 4),
12852 (unsigned) byte_get ((unsigned char *)pnote->descdata + 4, 4));
12853 printf (_(" Last modified : "));
12854 print_vms_time
12855 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata + 8, 8));
12856 printf (_("\n Link flags : "));
12857 printf ("0x%016" BFD_VMA_FMT "x\n",
12858 (bfd_vma)byte_get ((unsigned char *)pnote->descdata + 16, 8));
12859 printf (_(" Header flags: 0x%08x\n"),
12860 (unsigned)byte_get ((unsigned char *)pnote->descdata + 24, 4));
12861 printf (_(" Image id : %s\n"), pnote->descdata + 32);
12862 break;
12863 #endif
12864 case NT_VMS_IMGNAM:
12865 printf (_(" Image name: %s\n"), pnote->descdata);
12866 break;
12867 case NT_VMS_GSTNAM:
12868 printf (_(" Global symbol table name: %s\n"), pnote->descdata);
12869 break;
12870 case NT_VMS_IMGID:
12871 printf (_(" Image id: %s\n"), pnote->descdata);
12872 break;
12873 case NT_VMS_LINKID:
12874 printf (_(" Linker id: %s\n"), pnote->descdata);
12875 break;
12876 default:
12877 break;
12878 }
12879 return 1;
12880 }
12881
12882 /* Note that by the ELF standard, the name field is already null byte
12883 terminated, and namesz includes the terminating null byte.
12884 I.E. the value of namesz for the name "FSF" is 4.
12885
12886 If the value of namesz is zero, there is no name present. */
12887 static int
12888 process_note (Elf_Internal_Note * pnote)
12889 {
12890 const char * name = pnote->namesz ? pnote->namedata : "(NONE)";
12891 const char * nt;
12892
12893 if (pnote->namesz == 0)
12894 /* If there is no note name, then use the default set of
12895 note type strings. */
12896 nt = get_note_type (pnote->type);
12897
12898 else if (const_strneq (pnote->namedata, "GNU"))
12899 /* GNU-specific object file notes. */
12900 nt = get_gnu_elf_note_type (pnote->type);
12901
12902 else if (const_strneq (pnote->namedata, "NetBSD-CORE"))
12903 /* NetBSD-specific core file notes. */
12904 nt = get_netbsd_elfcore_note_type (pnote->type);
12905
12906 else if (strneq (pnote->namedata, "SPU/", 4))
12907 {
12908 /* SPU-specific core file notes. */
12909 nt = pnote->namedata + 4;
12910 name = "SPU";
12911 }
12912
12913 else if (const_strneq (pnote->namedata, "IPF/VMS"))
12914 /* VMS/ia64-specific file notes. */
12915 nt = get_ia64_vms_note_type (pnote->type);
12916
12917 else if (const_strneq (pnote->namedata, "stapsdt"))
12918 nt = get_stapsdt_note_type (pnote->type);
12919
12920 else
12921 /* Don't recognize this note name; just use the default set of
12922 note type strings. */
12923 nt = get_note_type (pnote->type);
12924
12925 printf (" %-20s 0x%08lx\t%s\n", name, pnote->descsz, nt);
12926
12927 if (const_strneq (pnote->namedata, "IPF/VMS"))
12928 return print_ia64_vms_note (pnote);
12929 else if (const_strneq (pnote->namedata, "GNU"))
12930 return print_gnu_note (pnote);
12931 else if (const_strneq (pnote->namedata, "stapsdt"))
12932 return print_stapsdt_note (pnote);
12933 else
12934 return 1;
12935 }
12936
12937
12938 static int
12939 process_corefile_note_segment (FILE * file, bfd_vma offset, bfd_vma length)
12940 {
12941 Elf_External_Note * pnotes;
12942 Elf_External_Note * external;
12943 int res = 1;
12944
12945 if (length <= 0)
12946 return 0;
12947
12948 pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
12949 _("notes"));
12950 if (pnotes == NULL)
12951 return 0;
12952
12953 external = pnotes;
12954
12955 printf (_("\nNotes at offset 0x%08lx with length 0x%08lx:\n"),
12956 (unsigned long) offset, (unsigned long) length);
12957 printf (_(" %-20s %10s\tDescription\n"), _("Owner"), _("Data size"));
12958
12959 while (external < (Elf_External_Note *) ((char *) pnotes + length))
12960 {
12961 Elf_External_Note * next;
12962 Elf_Internal_Note inote;
12963 char * temp = NULL;
12964
12965 if (!is_ia64_vms ())
12966 {
12967 inote.type = BYTE_GET (external->type);
12968 inote.namesz = BYTE_GET (external->namesz);
12969 inote.namedata = external->name;
12970 inote.descsz = BYTE_GET (external->descsz);
12971 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
12972 inote.descpos = offset + (inote.descdata - (char *) pnotes);
12973
12974 next = (Elf_External_Note *) (inote.descdata + align_power (inote.descsz, 2));
12975 }
12976 else
12977 {
12978 Elf64_External_VMS_Note *vms_external;
12979
12980 vms_external = (Elf64_External_VMS_Note *)external;
12981 inote.type = BYTE_GET (vms_external->type);
12982 inote.namesz = BYTE_GET (vms_external->namesz);
12983 inote.namedata = vms_external->name;
12984 inote.descsz = BYTE_GET (vms_external->descsz);
12985 inote.descdata = inote.namedata + align_power (inote.namesz, 3);
12986 inote.descpos = offset + (inote.descdata - (char *) pnotes);
12987
12988 next = (Elf_External_Note *)
12989 (inote.descdata + align_power (inote.descsz, 3));
12990 }
12991
12992 if ( ((char *) next > ((char *) pnotes) + length)
12993 || ((char *) next < (char *) pnotes))
12994 {
12995 warn (_("corrupt note found at offset %lx into core notes\n"),
12996 (unsigned long) ((char *) external - (char *) pnotes));
12997 warn (_(" type: %lx, namesize: %08lx, descsize: %08lx\n"),
12998 inote.type, inote.namesz, inote.descsz);
12999 break;
13000 }
13001
13002 external = next;
13003
13004 /* Prevent out-of-bounds indexing. */
13005 if (inote.namedata + inote.namesz > (char *) pnotes + length
13006 || inote.namedata + inote.namesz < inote.namedata)
13007 {
13008 warn (_("corrupt note found at offset %lx into core notes\n"),
13009 (unsigned long) ((char *) external - (char *) pnotes));
13010 warn (_(" type: %lx, namesize: %08lx, descsize: %08lx\n"),
13011 inote.type, inote.namesz, inote.descsz);
13012 break;
13013 }
13014
13015 /* Verify that name is null terminated. It appears that at least
13016 one version of Linux (RedHat 6.0) generates corefiles that don't
13017 comply with the ELF spec by failing to include the null byte in
13018 namesz. */
13019 if (inote.namedata[inote.namesz - 1] != '\0')
13020 {
13021 temp = (char *) malloc (inote.namesz + 1);
13022
13023 if (temp == NULL)
13024 {
13025 error (_("Out of memory\n"));
13026 res = 0;
13027 break;
13028 }
13029
13030 strncpy (temp, inote.namedata, inote.namesz);
13031 temp[inote.namesz] = 0;
13032
13033 /* warn (_("'%s' NOTE name not properly null terminated\n"), temp); */
13034 inote.namedata = temp;
13035 }
13036
13037 res &= process_note (& inote);
13038
13039 if (temp != NULL)
13040 {
13041 free (temp);
13042 temp = NULL;
13043 }
13044 }
13045
13046 free (pnotes);
13047
13048 return res;
13049 }
13050
13051 static int
13052 process_corefile_note_segments (FILE * file)
13053 {
13054 Elf_Internal_Phdr * segment;
13055 unsigned int i;
13056 int res = 1;
13057
13058 if (! get_program_headers (file))
13059 return 0;
13060
13061 for (i = 0, segment = program_headers;
13062 i < elf_header.e_phnum;
13063 i++, segment++)
13064 {
13065 if (segment->p_type == PT_NOTE)
13066 res &= process_corefile_note_segment (file,
13067 (bfd_vma) segment->p_offset,
13068 (bfd_vma) segment->p_filesz);
13069 }
13070
13071 return res;
13072 }
13073
13074 static int
13075 process_note_sections (FILE * file)
13076 {
13077 Elf_Internal_Shdr * section;
13078 unsigned long i;
13079 int res = 1;
13080
13081 for (i = 0, section = section_headers;
13082 i < elf_header.e_shnum && section != NULL;
13083 i++, section++)
13084 if (section->sh_type == SHT_NOTE)
13085 res &= process_corefile_note_segment (file,
13086 (bfd_vma) section->sh_offset,
13087 (bfd_vma) section->sh_size);
13088
13089 return res;
13090 }
13091
13092 static int
13093 process_notes (FILE * file)
13094 {
13095 /* If we have not been asked to display the notes then do nothing. */
13096 if (! do_notes)
13097 return 1;
13098
13099 if (elf_header.e_type != ET_CORE)
13100 return process_note_sections (file);
13101
13102 /* No program headers means no NOTE segment. */
13103 if (elf_header.e_phnum > 0)
13104 return process_corefile_note_segments (file);
13105
13106 printf (_("No note segments present in the core file.\n"));
13107 return 1;
13108 }
13109
13110 static int
13111 process_arch_specific (FILE * file)
13112 {
13113 if (! do_arch)
13114 return 1;
13115
13116 switch (elf_header.e_machine)
13117 {
13118 case EM_ARM:
13119 return process_arm_specific (file);
13120 case EM_MIPS:
13121 case EM_MIPS_RS3_LE:
13122 return process_mips_specific (file);
13123 break;
13124 case EM_PPC:
13125 return process_power_specific (file);
13126 break;
13127 case EM_SPARC:
13128 case EM_SPARC32PLUS:
13129 case EM_SPARCV9:
13130 return process_sparc_specific (file);
13131 break;
13132 case EM_TI_C6000:
13133 return process_tic6x_specific (file);
13134 break;
13135 default:
13136 break;
13137 }
13138 return 1;
13139 }
13140
13141 static int
13142 get_file_header (FILE * file)
13143 {
13144 /* Read in the identity array. */
13145 if (fread (elf_header.e_ident, EI_NIDENT, 1, file) != 1)
13146 return 0;
13147
13148 /* Determine how to read the rest of the header. */
13149 switch (elf_header.e_ident[EI_DATA])
13150 {
13151 default: /* fall through */
13152 case ELFDATANONE: /* fall through */
13153 case ELFDATA2LSB:
13154 byte_get = byte_get_little_endian;
13155 byte_put = byte_put_little_endian;
13156 break;
13157 case ELFDATA2MSB:
13158 byte_get = byte_get_big_endian;
13159 byte_put = byte_put_big_endian;
13160 break;
13161 }
13162
13163 /* For now we only support 32 bit and 64 bit ELF files. */
13164 is_32bit_elf = (elf_header.e_ident[EI_CLASS] != ELFCLASS64);
13165
13166 /* Read in the rest of the header. */
13167 if (is_32bit_elf)
13168 {
13169 Elf32_External_Ehdr ehdr32;
13170
13171 if (fread (ehdr32.e_type, sizeof (ehdr32) - EI_NIDENT, 1, file) != 1)
13172 return 0;
13173
13174 elf_header.e_type = BYTE_GET (ehdr32.e_type);
13175 elf_header.e_machine = BYTE_GET (ehdr32.e_machine);
13176 elf_header.e_version = BYTE_GET (ehdr32.e_version);
13177 elf_header.e_entry = BYTE_GET (ehdr32.e_entry);
13178 elf_header.e_phoff = BYTE_GET (ehdr32.e_phoff);
13179 elf_header.e_shoff = BYTE_GET (ehdr32.e_shoff);
13180 elf_header.e_flags = BYTE_GET (ehdr32.e_flags);
13181 elf_header.e_ehsize = BYTE_GET (ehdr32.e_ehsize);
13182 elf_header.e_phentsize = BYTE_GET (ehdr32.e_phentsize);
13183 elf_header.e_phnum = BYTE_GET (ehdr32.e_phnum);
13184 elf_header.e_shentsize = BYTE_GET (ehdr32.e_shentsize);
13185 elf_header.e_shnum = BYTE_GET (ehdr32.e_shnum);
13186 elf_header.e_shstrndx = BYTE_GET (ehdr32.e_shstrndx);
13187 }
13188 else
13189 {
13190 Elf64_External_Ehdr ehdr64;
13191
13192 /* If we have been compiled with sizeof (bfd_vma) == 4, then
13193 we will not be able to cope with the 64bit data found in
13194 64 ELF files. Detect this now and abort before we start
13195 overwriting things. */
13196 if (sizeof (bfd_vma) < 8)
13197 {
13198 error (_("This instance of readelf has been built without support for a\n\
13199 64 bit data type and so it cannot read 64 bit ELF files.\n"));
13200 return 0;
13201 }
13202
13203 if (fread (ehdr64.e_type, sizeof (ehdr64) - EI_NIDENT, 1, file) != 1)
13204 return 0;
13205
13206 elf_header.e_type = BYTE_GET (ehdr64.e_type);
13207 elf_header.e_machine = BYTE_GET (ehdr64.e_machine);
13208 elf_header.e_version = BYTE_GET (ehdr64.e_version);
13209 elf_header.e_entry = BYTE_GET (ehdr64.e_entry);
13210 elf_header.e_phoff = BYTE_GET (ehdr64.e_phoff);
13211 elf_header.e_shoff = BYTE_GET (ehdr64.e_shoff);
13212 elf_header.e_flags = BYTE_GET (ehdr64.e_flags);
13213 elf_header.e_ehsize = BYTE_GET (ehdr64.e_ehsize);
13214 elf_header.e_phentsize = BYTE_GET (ehdr64.e_phentsize);
13215 elf_header.e_phnum = BYTE_GET (ehdr64.e_phnum);
13216 elf_header.e_shentsize = BYTE_GET (ehdr64.e_shentsize);
13217 elf_header.e_shnum = BYTE_GET (ehdr64.e_shnum);
13218 elf_header.e_shstrndx = BYTE_GET (ehdr64.e_shstrndx);
13219 }
13220
13221 if (elf_header.e_shoff)
13222 {
13223 /* There may be some extensions in the first section header. Don't
13224 bomb if we can't read it. */
13225 if (is_32bit_elf)
13226 get_32bit_section_headers (file, 1);
13227 else
13228 get_64bit_section_headers (file, 1);
13229 }
13230
13231 return 1;
13232 }
13233
13234 /* Process one ELF object file according to the command line options.
13235 This file may actually be stored in an archive. The file is
13236 positioned at the start of the ELF object. */
13237
13238 static int
13239 process_object (char * file_name, FILE * file)
13240 {
13241 unsigned int i;
13242
13243 if (! get_file_header (file))
13244 {
13245 error (_("%s: Failed to read file header\n"), file_name);
13246 return 1;
13247 }
13248
13249 /* Initialise per file variables. */
13250 for (i = ARRAY_SIZE (version_info); i--;)
13251 version_info[i] = 0;
13252
13253 for (i = ARRAY_SIZE (dynamic_info); i--;)
13254 dynamic_info[i] = 0;
13255 dynamic_info_DT_GNU_HASH = 0;
13256
13257 /* Process the file. */
13258 if (show_name)
13259 printf (_("\nFile: %s\n"), file_name);
13260
13261 /* Initialise the dump_sects array from the cmdline_dump_sects array.
13262 Note we do this even if cmdline_dump_sects is empty because we
13263 must make sure that the dump_sets array is zeroed out before each
13264 object file is processed. */
13265 if (num_dump_sects > num_cmdline_dump_sects)
13266 memset (dump_sects, 0, num_dump_sects * sizeof (* dump_sects));
13267
13268 if (num_cmdline_dump_sects > 0)
13269 {
13270 if (num_dump_sects == 0)
13271 /* A sneaky way of allocating the dump_sects array. */
13272 request_dump_bynumber (num_cmdline_dump_sects, 0);
13273
13274 assert (num_dump_sects >= num_cmdline_dump_sects);
13275 memcpy (dump_sects, cmdline_dump_sects,
13276 num_cmdline_dump_sects * sizeof (* dump_sects));
13277 }
13278
13279 if (! process_file_header ())
13280 return 1;
13281
13282 if (! process_section_headers (file))
13283 {
13284 /* Without loaded section headers we cannot process lots of
13285 things. */
13286 do_unwind = do_version = do_dump = do_arch = 0;
13287
13288 if (! do_using_dynamic)
13289 do_syms = do_dyn_syms = do_reloc = 0;
13290 }
13291
13292 if (! process_section_groups (file))
13293 {
13294 /* Without loaded section groups we cannot process unwind. */
13295 do_unwind = 0;
13296 }
13297
13298 if (process_program_headers (file))
13299 process_dynamic_section (file);
13300
13301 process_relocs (file);
13302
13303 process_unwind (file);
13304
13305 process_symbol_table (file);
13306
13307 process_syminfo (file);
13308
13309 process_version_sections (file);
13310
13311 process_section_contents (file);
13312
13313 process_notes (file);
13314
13315 process_gnu_liblist (file);
13316
13317 process_arch_specific (file);
13318
13319 if (program_headers)
13320 {
13321 free (program_headers);
13322 program_headers = NULL;
13323 }
13324
13325 if (section_headers)
13326 {
13327 free (section_headers);
13328 section_headers = NULL;
13329 }
13330
13331 if (string_table)
13332 {
13333 free (string_table);
13334 string_table = NULL;
13335 string_table_length = 0;
13336 }
13337
13338 if (dynamic_strings)
13339 {
13340 free (dynamic_strings);
13341 dynamic_strings = NULL;
13342 dynamic_strings_length = 0;
13343 }
13344
13345 if (dynamic_symbols)
13346 {
13347 free (dynamic_symbols);
13348 dynamic_symbols = NULL;
13349 num_dynamic_syms = 0;
13350 }
13351
13352 if (dynamic_syminfo)
13353 {
13354 free (dynamic_syminfo);
13355 dynamic_syminfo = NULL;
13356 }
13357
13358 if (dynamic_section)
13359 {
13360 free (dynamic_section);
13361 dynamic_section = NULL;
13362 }
13363
13364 if (section_headers_groups)
13365 {
13366 free (section_headers_groups);
13367 section_headers_groups = NULL;
13368 }
13369
13370 if (section_groups)
13371 {
13372 struct group_list * g;
13373 struct group_list * next;
13374
13375 for (i = 0; i < group_count; i++)
13376 {
13377 for (g = section_groups [i].root; g != NULL; g = next)
13378 {
13379 next = g->next;
13380 free (g);
13381 }
13382 }
13383
13384 free (section_groups);
13385 section_groups = NULL;
13386 }
13387
13388 free_debug_memory ();
13389
13390 return 0;
13391 }
13392
13393 /* Process an ELF archive.
13394 On entry the file is positioned just after the ARMAG string. */
13395
13396 static int
13397 process_archive (char * file_name, FILE * file, bfd_boolean is_thin_archive)
13398 {
13399 struct archive_info arch;
13400 struct archive_info nested_arch;
13401 size_t got;
13402 int ret;
13403
13404 show_name = 1;
13405
13406 /* The ARCH structure is used to hold information about this archive. */
13407 arch.file_name = NULL;
13408 arch.file = NULL;
13409 arch.index_array = NULL;
13410 arch.sym_table = NULL;
13411 arch.longnames = NULL;
13412
13413 /* The NESTED_ARCH structure is used as a single-item cache of information
13414 about a nested archive (when members of a thin archive reside within
13415 another regular archive file). */
13416 nested_arch.file_name = NULL;
13417 nested_arch.file = NULL;
13418 nested_arch.index_array = NULL;
13419 nested_arch.sym_table = NULL;
13420 nested_arch.longnames = NULL;
13421
13422 if (setup_archive (&arch, file_name, file, is_thin_archive, do_archive_index) != 0)
13423 {
13424 ret = 1;
13425 goto out;
13426 }
13427
13428 if (do_archive_index)
13429 {
13430 if (arch.sym_table == NULL)
13431 error (_("%s: unable to dump the index as none was found\n"), file_name);
13432 else
13433 {
13434 unsigned int i, l;
13435 unsigned long current_pos;
13436
13437 printf (_("Index of archive %s: (%ld entries, 0x%lx bytes in the symbol table)\n"),
13438 file_name, arch.index_num, arch.sym_size);
13439 current_pos = ftell (file);
13440
13441 for (i = l = 0; i < arch.index_num; i++)
13442 {
13443 if ((i == 0) || ((i > 0) && (arch.index_array[i] != arch.index_array[i - 1])))
13444 {
13445 char * member_name;
13446
13447 member_name = get_archive_member_name_at (&arch, arch.index_array[i], &nested_arch);
13448
13449 if (member_name != NULL)
13450 {
13451 char * qualified_name = make_qualified_name (&arch, &nested_arch, member_name);
13452
13453 if (qualified_name != NULL)
13454 {
13455 printf (_("Binary %s contains:\n"), qualified_name);
13456 free (qualified_name);
13457 }
13458 }
13459 }
13460
13461 if (l >= arch.sym_size)
13462 {
13463 error (_("%s: end of the symbol table reached before the end of the index\n"),
13464 file_name);
13465 break;
13466 }
13467 printf ("\t%s\n", arch.sym_table + l);
13468 l += strlen (arch.sym_table + l) + 1;
13469 }
13470
13471 if (l & 01)
13472 ++l;
13473 if (l < arch.sym_size)
13474 error (_("%s: symbols remain in the index symbol table, but without corresponding entries in the index table\n"),
13475 file_name);
13476
13477 if (fseek (file, current_pos, SEEK_SET) != 0)
13478 {
13479 error (_("%s: failed to seek back to start of object files in the archive\n"), file_name);
13480 ret = 1;
13481 goto out;
13482 }
13483 }
13484
13485 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
13486 && !do_segments && !do_header && !do_dump && !do_version
13487 && !do_histogram && !do_debugging && !do_arch && !do_notes
13488 && !do_section_groups && !do_dyn_syms)
13489 {
13490 ret = 0; /* Archive index only. */
13491 goto out;
13492 }
13493 }
13494
13495 ret = 0;
13496
13497 while (1)
13498 {
13499 char * name;
13500 size_t namelen;
13501 char * qualified_name;
13502
13503 /* Read the next archive header. */
13504 if (fseek (file, arch.next_arhdr_offset, SEEK_SET) != 0)
13505 {
13506 error (_("%s: failed to seek to next archive header\n"), file_name);
13507 return 1;
13508 }
13509 got = fread (&arch.arhdr, 1, sizeof arch.arhdr, file);
13510 if (got != sizeof arch.arhdr)
13511 {
13512 if (got == 0)
13513 break;
13514 error (_("%s: failed to read archive header\n"), file_name);
13515 ret = 1;
13516 break;
13517 }
13518 if (memcmp (arch.arhdr.ar_fmag, ARFMAG, 2) != 0)
13519 {
13520 error (_("%s: did not find a valid archive header\n"), arch.file_name);
13521 ret = 1;
13522 break;
13523 }
13524
13525 arch.next_arhdr_offset += sizeof arch.arhdr;
13526
13527 archive_file_size = strtoul (arch.arhdr.ar_size, NULL, 10);
13528 if (archive_file_size & 01)
13529 ++archive_file_size;
13530
13531 name = get_archive_member_name (&arch, &nested_arch);
13532 if (name == NULL)
13533 {
13534 error (_("%s: bad archive file name\n"), file_name);
13535 ret = 1;
13536 break;
13537 }
13538 namelen = strlen (name);
13539
13540 qualified_name = make_qualified_name (&arch, &nested_arch, name);
13541 if (qualified_name == NULL)
13542 {
13543 error (_("%s: bad archive file name\n"), file_name);
13544 ret = 1;
13545 break;
13546 }
13547
13548 if (is_thin_archive && arch.nested_member_origin == 0)
13549 {
13550 /* This is a proxy for an external member of a thin archive. */
13551 FILE * member_file;
13552 char * member_file_name = adjust_relative_path (file_name, name, namelen);
13553 if (member_file_name == NULL)
13554 {
13555 ret = 1;
13556 break;
13557 }
13558
13559 member_file = fopen (member_file_name, "rb");
13560 if (member_file == NULL)
13561 {
13562 error (_("Input file '%s' is not readable.\n"), member_file_name);
13563 free (member_file_name);
13564 ret = 1;
13565 break;
13566 }
13567
13568 archive_file_offset = arch.nested_member_origin;
13569
13570 ret |= process_object (qualified_name, member_file);
13571
13572 fclose (member_file);
13573 free (member_file_name);
13574 }
13575 else if (is_thin_archive)
13576 {
13577 /* This is a proxy for a member of a nested archive. */
13578 archive_file_offset = arch.nested_member_origin + sizeof arch.arhdr;
13579
13580 /* The nested archive file will have been opened and setup by
13581 get_archive_member_name. */
13582 if (fseek (nested_arch.file, archive_file_offset, SEEK_SET) != 0)
13583 {
13584 error (_("%s: failed to seek to archive member.\n"), nested_arch.file_name);
13585 ret = 1;
13586 break;
13587 }
13588
13589 ret |= process_object (qualified_name, nested_arch.file);
13590 }
13591 else
13592 {
13593 archive_file_offset = arch.next_arhdr_offset;
13594 arch.next_arhdr_offset += archive_file_size;
13595
13596 ret |= process_object (qualified_name, file);
13597 }
13598
13599 if (dump_sects != NULL)
13600 {
13601 free (dump_sects);
13602 dump_sects = NULL;
13603 num_dump_sects = 0;
13604 }
13605
13606 free (qualified_name);
13607 }
13608
13609 out:
13610 if (nested_arch.file != NULL)
13611 fclose (nested_arch.file);
13612 release_archive (&nested_arch);
13613 release_archive (&arch);
13614
13615 return ret;
13616 }
13617
13618 static int
13619 process_file (char * file_name)
13620 {
13621 FILE * file;
13622 struct stat statbuf;
13623 char armag[SARMAG];
13624 int ret;
13625
13626 if (stat (file_name, &statbuf) < 0)
13627 {
13628 if (errno == ENOENT)
13629 error (_("'%s': No such file\n"), file_name);
13630 else
13631 error (_("Could not locate '%s'. System error message: %s\n"),
13632 file_name, strerror (errno));
13633 return 1;
13634 }
13635
13636 if (! S_ISREG (statbuf.st_mode))
13637 {
13638 error (_("'%s' is not an ordinary file\n"), file_name);
13639 return 1;
13640 }
13641
13642 file = fopen (file_name, "rb");
13643 if (file == NULL)
13644 {
13645 error (_("Input file '%s' is not readable.\n"), file_name);
13646 return 1;
13647 }
13648
13649 if (fread (armag, SARMAG, 1, file) != 1)
13650 {
13651 error (_("%s: Failed to read file's magic number\n"), file_name);
13652 fclose (file);
13653 return 1;
13654 }
13655
13656 if (memcmp (armag, ARMAG, SARMAG) == 0)
13657 ret = process_archive (file_name, file, FALSE);
13658 else if (memcmp (armag, ARMAGT, SARMAG) == 0)
13659 ret = process_archive (file_name, file, TRUE);
13660 else
13661 {
13662 if (do_archive_index)
13663 error (_("File %s is not an archive so its index cannot be displayed.\n"),
13664 file_name);
13665
13666 rewind (file);
13667 archive_file_size = archive_file_offset = 0;
13668 ret = process_object (file_name, file);
13669 }
13670
13671 fclose (file);
13672
13673 return ret;
13674 }
13675
13676 #ifdef SUPPORT_DISASSEMBLY
13677 /* Needed by the i386 disassembler. For extra credit, someone could
13678 fix this so that we insert symbolic addresses here, esp for GOT/PLT
13679 symbols. */
13680
13681 void
13682 print_address (unsigned int addr, FILE * outfile)
13683 {
13684 fprintf (outfile,"0x%8.8x", addr);
13685 }
13686
13687 /* Needed by the i386 disassembler. */
13688 void
13689 db_task_printsym (unsigned int addr)
13690 {
13691 print_address (addr, stderr);
13692 }
13693 #endif
13694
13695 int
13696 main (int argc, char ** argv)
13697 {
13698 int err;
13699
13700 #if defined (HAVE_SETLOCALE) && defined (HAVE_LC_MESSAGES)
13701 setlocale (LC_MESSAGES, "");
13702 #endif
13703 #if defined (HAVE_SETLOCALE)
13704 setlocale (LC_CTYPE, "");
13705 #endif
13706 bindtextdomain (PACKAGE, LOCALEDIR);
13707 textdomain (PACKAGE);
13708
13709 expandargv (&argc, &argv);
13710
13711 parse_args (argc, argv);
13712
13713 if (num_dump_sects > 0)
13714 {
13715 /* Make a copy of the dump_sects array. */
13716 cmdline_dump_sects = (dump_type *)
13717 malloc (num_dump_sects * sizeof (* dump_sects));
13718 if (cmdline_dump_sects == NULL)
13719 error (_("Out of memory allocating dump request table.\n"));
13720 else
13721 {
13722 memcpy (cmdline_dump_sects, dump_sects,
13723 num_dump_sects * sizeof (* dump_sects));
13724 num_cmdline_dump_sects = num_dump_sects;
13725 }
13726 }
13727
13728 if (optind < (argc - 1))
13729 show_name = 1;
13730
13731 err = 0;
13732 while (optind < argc)
13733 err |= process_file (argv[optind++]);
13734
13735 if (dump_sects != NULL)
13736 free (dump_sects);
13737 if (cmdline_dump_sects != NULL)
13738 free (cmdline_dump_sects);
13739
13740 return err;
13741 }
This page took 0.394918 seconds and 4 git commands to generate.