a71bf94cf3e3439a84f4b604680fca67198edce7
[deliverable/binutils-gdb.git] / binutils / readelf.c
1 /* readelf.c -- display contents of an ELF format file
2 Copyright 1998-2013 Free Software Foundation, Inc.
3
4 Originally developed by Eric Youngdale <eric@andante.jic.com>
5 Modifications by Nick Clifton <nickc@redhat.com>
6
7 This file is part of GNU Binutils.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
22 02110-1301, USA. */
23 \f
24 /* The difference between readelf and objdump:
25
26 Both programs are capable of displaying the contents of ELF format files,
27 so why does the binutils project have two file dumpers ?
28
29 The reason is that objdump sees an ELF file through a BFD filter of the
30 world; if BFD has a bug where, say, it disagrees about a machine constant
31 in e_flags, then the odds are good that it will remain internally
32 consistent. The linker sees it the BFD way, objdump sees it the BFD way,
33 GAS sees it the BFD way. There was need for a tool to go find out what
34 the file actually says.
35
36 This is why the readelf program does not link against the BFD library - it
37 exists as an independent program to help verify the correct working of BFD.
38
39 There is also the case that readelf can provide more information about an
40 ELF file than is provided by objdump. In particular it can display DWARF
41 debugging information which (at the moment) objdump cannot. */
42 \f
43 #include "sysdep.h"
44 #include <assert.h>
45 #include <time.h>
46 #ifdef HAVE_ZLIB_H
47 #include <zlib.h>
48 #endif
49 #ifdef HAVE_WCHAR_H
50 #include <wchar.h>
51 #endif
52
53 #if __GNUC__ >= 2
54 /* Define BFD64 here, even if our default architecture is 32 bit ELF
55 as this will allow us to read in and parse 64bit and 32bit ELF files.
56 Only do this if we believe that the compiler can support a 64 bit
57 data type. For now we only rely on GCC being able to do this. */
58 #define BFD64
59 #endif
60
61 #include "bfd.h"
62 #include "bucomm.h"
63 #include "elfcomm.h"
64 #include "dwarf.h"
65
66 #include "elf/common.h"
67 #include "elf/external.h"
68 #include "elf/internal.h"
69
70
71 /* Included here, before RELOC_MACROS_GEN_FUNC is defined, so that
72 we can obtain the H8 reloc numbers. We need these for the
73 get_reloc_size() function. We include h8.h again after defining
74 RELOC_MACROS_GEN_FUNC so that we get the naming function as well. */
75
76 #include "elf/h8.h"
77 #undef _ELF_H8_H
78
79 /* Undo the effects of #including reloc-macros.h. */
80
81 #undef START_RELOC_NUMBERS
82 #undef RELOC_NUMBER
83 #undef FAKE_RELOC
84 #undef EMPTY_RELOC
85 #undef END_RELOC_NUMBERS
86 #undef _RELOC_MACROS_H
87
88 /* The following headers use the elf/reloc-macros.h file to
89 automatically generate relocation recognition functions
90 such as elf_mips_reloc_type() */
91
92 #define RELOC_MACROS_GEN_FUNC
93
94 #include "elf/aarch64.h"
95 #include "elf/alpha.h"
96 #include "elf/arc.h"
97 #include "elf/arm.h"
98 #include "elf/avr.h"
99 #include "elf/bfin.h"
100 #include "elf/cr16.h"
101 #include "elf/cris.h"
102 #include "elf/crx.h"
103 #include "elf/d10v.h"
104 #include "elf/d30v.h"
105 #include "elf/dlx.h"
106 #include "elf/epiphany.h"
107 #include "elf/fr30.h"
108 #include "elf/frv.h"
109 #include "elf/h8.h"
110 #include "elf/hppa.h"
111 #include "elf/i386.h"
112 #include "elf/i370.h"
113 #include "elf/i860.h"
114 #include "elf/i960.h"
115 #include "elf/ia64.h"
116 #include "elf/ip2k.h"
117 #include "elf/lm32.h"
118 #include "elf/iq2000.h"
119 #include "elf/m32c.h"
120 #include "elf/m32r.h"
121 #include "elf/m68k.h"
122 #include "elf/m68hc11.h"
123 #include "elf/mcore.h"
124 #include "elf/mep.h"
125 #include "elf/metag.h"
126 #include "elf/microblaze.h"
127 #include "elf/mips.h"
128 #include "elf/mmix.h"
129 #include "elf/mn10200.h"
130 #include "elf/mn10300.h"
131 #include "elf/moxie.h"
132 #include "elf/mt.h"
133 #include "elf/msp430.h"
134 #include "elf/or32.h"
135 #include "elf/pj.h"
136 #include "elf/ppc.h"
137 #include "elf/ppc64.h"
138 #include "elf/rl78.h"
139 #include "elf/rx.h"
140 #include "elf/s390.h"
141 #include "elf/score.h"
142 #include "elf/sh.h"
143 #include "elf/sparc.h"
144 #include "elf/spu.h"
145 #include "elf/tic6x.h"
146 #include "elf/tilegx.h"
147 #include "elf/tilepro.h"
148 #include "elf/v850.h"
149 #include "elf/vax.h"
150 #include "elf/x86-64.h"
151 #include "elf/xc16x.h"
152 #include "elf/xgate.h"
153 #include "elf/xstormy16.h"
154 #include "elf/xtensa.h"
155
156 #include "elf/nios2.h"
157
158 #include "getopt.h"
159 #include "libiberty.h"
160 #include "safe-ctype.h"
161 #include "filenames.h"
162
163 #ifndef offsetof
164 #define offsetof(TYPE, MEMBER) ((size_t) &(((TYPE *) 0)->MEMBER))
165 #endif
166
167 char * program_name = "readelf";
168 static long archive_file_offset;
169 static unsigned long archive_file_size;
170 static unsigned long dynamic_addr;
171 static bfd_size_type dynamic_size;
172 static unsigned int dynamic_nent;
173 static char * dynamic_strings;
174 static unsigned long dynamic_strings_length;
175 static char * string_table;
176 static unsigned long string_table_length;
177 static unsigned long num_dynamic_syms;
178 static Elf_Internal_Sym * dynamic_symbols;
179 static Elf_Internal_Syminfo * dynamic_syminfo;
180 static unsigned long dynamic_syminfo_offset;
181 static unsigned int dynamic_syminfo_nent;
182 static char program_interpreter[PATH_MAX];
183 static bfd_vma dynamic_info[DT_ENCODING];
184 static bfd_vma dynamic_info_DT_GNU_HASH;
185 static bfd_vma version_info[16];
186 static Elf_Internal_Ehdr elf_header;
187 static Elf_Internal_Shdr * section_headers;
188 static Elf_Internal_Phdr * program_headers;
189 static Elf_Internal_Dyn * dynamic_section;
190 static Elf_Internal_Shdr * symtab_shndx_hdr;
191 static int show_name;
192 static int do_dynamic;
193 static int do_syms;
194 static int do_dyn_syms;
195 static int do_reloc;
196 static int do_sections;
197 static int do_section_groups;
198 static int do_section_details;
199 static int do_segments;
200 static int do_unwind;
201 static int do_using_dynamic;
202 static int do_header;
203 static int do_dump;
204 static int do_version;
205 static int do_histogram;
206 static int do_debugging;
207 static int do_arch;
208 static int do_notes;
209 static int do_archive_index;
210 static int is_32bit_elf;
211
212 struct group_list
213 {
214 struct group_list * next;
215 unsigned int section_index;
216 };
217
218 struct group
219 {
220 struct group_list * root;
221 unsigned int group_index;
222 };
223
224 static size_t group_count;
225 static struct group * section_groups;
226 static struct group ** section_headers_groups;
227
228
229 /* Flag bits indicating particular types of dump. */
230 #define HEX_DUMP (1 << 0) /* The -x command line switch. */
231 #define DISASS_DUMP (1 << 1) /* The -i command line switch. */
232 #define DEBUG_DUMP (1 << 2) /* The -w command line switch. */
233 #define STRING_DUMP (1 << 3) /* The -p command line switch. */
234 #define RELOC_DUMP (1 << 4) /* The -R command line switch. */
235
236 typedef unsigned char dump_type;
237
238 /* A linked list of the section names for which dumps were requested. */
239 struct dump_list_entry
240 {
241 char * name;
242 dump_type type;
243 struct dump_list_entry * next;
244 };
245 static struct dump_list_entry * dump_sects_byname;
246
247 /* A dynamic array of flags indicating for which sections a dump
248 has been requested via command line switches. */
249 static dump_type * cmdline_dump_sects = NULL;
250 static unsigned int num_cmdline_dump_sects = 0;
251
252 /* A dynamic array of flags indicating for which sections a dump of
253 some kind has been requested. It is reset on a per-object file
254 basis and then initialised from the cmdline_dump_sects array,
255 the results of interpreting the -w switch, and the
256 dump_sects_byname list. */
257 static dump_type * dump_sects = NULL;
258 static unsigned int num_dump_sects = 0;
259
260
261 /* How to print a vma value. */
262 typedef enum print_mode
263 {
264 HEX,
265 DEC,
266 DEC_5,
267 UNSIGNED,
268 PREFIX_HEX,
269 FULL_HEX,
270 LONG_HEX
271 }
272 print_mode;
273
274 #define UNKNOWN -1
275
276 #define SECTION_NAME(X) \
277 ((X) == NULL ? _("<none>") \
278 : string_table == NULL ? _("<no-name>") \
279 : ((X)->sh_name >= string_table_length ? _("<corrupt>") \
280 : string_table + (X)->sh_name))
281
282 #define DT_VERSIONTAGIDX(tag) (DT_VERNEEDNUM - (tag)) /* Reverse order! */
283
284 #define GET_ELF_SYMBOLS(file, section, sym_count) \
285 (is_32bit_elf ? get_32bit_elf_symbols (file, section, sym_count) \
286 : get_64bit_elf_symbols (file, section, sym_count))
287
288 #define VALID_DYNAMIC_NAME(offset) ((dynamic_strings != NULL) && (offset < dynamic_strings_length))
289 /* GET_DYNAMIC_NAME asssumes that VALID_DYNAMIC_NAME has
290 already been called and verified that the string exists. */
291 #define GET_DYNAMIC_NAME(offset) (dynamic_strings + offset)
292
293 #define REMOVE_ARCH_BITS(ADDR) \
294 do \
295 { \
296 if (elf_header.e_machine == EM_ARM) \
297 (ADDR) &= ~1; \
298 } \
299 while (0)
300 \f
301 /* Retrieve NMEMB structures, each SIZE bytes long from FILE starting at OFFSET.
302 Put the retrieved data into VAR, if it is not NULL. Otherwise allocate a buffer
303 using malloc and fill that. In either case return the pointer to the start of
304 the retrieved data or NULL if something went wrong. If something does go wrong
305 emit an error message using REASON as part of the context. */
306
307 static void *
308 get_data (void * var, FILE * file, long offset, size_t size, size_t nmemb,
309 const char * reason)
310 {
311 void * mvar;
312
313 if (size == 0 || nmemb == 0)
314 return NULL;
315
316 if (fseek (file, archive_file_offset + offset, SEEK_SET))
317 {
318 error (_("Unable to seek to 0x%lx for %s\n"),
319 (unsigned long) archive_file_offset + offset, reason);
320 return NULL;
321 }
322
323 mvar = var;
324 if (mvar == NULL)
325 {
326 /* Check for overflow. */
327 if (nmemb < (~(size_t) 0 - 1) / size)
328 /* + 1 so that we can '\0' terminate invalid string table sections. */
329 mvar = malloc (size * nmemb + 1);
330
331 if (mvar == NULL)
332 {
333 error (_("Out of memory allocating 0x%lx bytes for %s\n"),
334 (unsigned long)(size * nmemb), reason);
335 return NULL;
336 }
337
338 ((char *) mvar)[size * nmemb] = '\0';
339 }
340
341 if (fread (mvar, size, nmemb, file) != nmemb)
342 {
343 error (_("Unable to read in 0x%lx bytes of %s\n"),
344 (unsigned long)(size * nmemb), reason);
345 if (mvar != var)
346 free (mvar);
347 return NULL;
348 }
349
350 return mvar;
351 }
352
353 /* Print a VMA value. */
354
355 static int
356 print_vma (bfd_vma vma, print_mode mode)
357 {
358 int nc = 0;
359
360 switch (mode)
361 {
362 case FULL_HEX:
363 nc = printf ("0x");
364 /* Drop through. */
365
366 case LONG_HEX:
367 #ifdef BFD64
368 if (is_32bit_elf)
369 return nc + printf ("%8.8" BFD_VMA_FMT "x", vma);
370 #endif
371 printf_vma (vma);
372 return nc + 16;
373
374 case DEC_5:
375 if (vma <= 99999)
376 return printf ("%5" BFD_VMA_FMT "d", vma);
377 /* Drop through. */
378
379 case PREFIX_HEX:
380 nc = printf ("0x");
381 /* Drop through. */
382
383 case HEX:
384 return nc + printf ("%" BFD_VMA_FMT "x", vma);
385
386 case DEC:
387 return printf ("%" BFD_VMA_FMT "d", vma);
388
389 case UNSIGNED:
390 return printf ("%" BFD_VMA_FMT "u", vma);
391 }
392 return 0;
393 }
394
395 /* Display a symbol on stdout. Handles the display of control characters and
396 multibye characters (assuming the host environment supports them).
397
398 Display at most abs(WIDTH) characters, truncating as necessary, unless do_wide is true.
399
400 If WIDTH is negative then ensure that the output is at least (- WIDTH) characters,
401 padding as necessary.
402
403 Returns the number of emitted characters. */
404
405 static unsigned int
406 print_symbol (int width, const char *symbol)
407 {
408 bfd_boolean extra_padding = FALSE;
409 int num_printed = 0;
410 #ifdef HAVE_MBSTATE_T
411 mbstate_t state;
412 #endif
413 int width_remaining;
414
415 if (width < 0)
416 {
417 /* Keep the width positive. This also helps. */
418 width = - width;
419 extra_padding = TRUE;
420 }
421
422 if (do_wide)
423 /* Set the remaining width to a very large value.
424 This simplifies the code below. */
425 width_remaining = INT_MAX;
426 else
427 width_remaining = width;
428
429 #ifdef HAVE_MBSTATE_T
430 /* Initialise the multibyte conversion state. */
431 memset (& state, 0, sizeof (state));
432 #endif
433
434 while (width_remaining)
435 {
436 size_t n;
437 const char c = *symbol++;
438
439 if (c == 0)
440 break;
441
442 /* Do not print control characters directly as they can affect terminal
443 settings. Such characters usually appear in the names generated
444 by the assembler for local labels. */
445 if (ISCNTRL (c))
446 {
447 if (width_remaining < 2)
448 break;
449
450 printf ("^%c", c + 0x40);
451 width_remaining -= 2;
452 num_printed += 2;
453 }
454 else if (ISPRINT (c))
455 {
456 putchar (c);
457 width_remaining --;
458 num_printed ++;
459 }
460 else
461 {
462 #ifdef HAVE_MBSTATE_T
463 wchar_t w;
464 #endif
465 /* Let printf do the hard work of displaying multibyte characters. */
466 printf ("%.1s", symbol - 1);
467 width_remaining --;
468 num_printed ++;
469
470 #ifdef HAVE_MBSTATE_T
471 /* Try to find out how many bytes made up the character that was
472 just printed. Advance the symbol pointer past the bytes that
473 were displayed. */
474 n = mbrtowc (& w, symbol - 1, MB_CUR_MAX, & state);
475 #else
476 n = 1;
477 #endif
478 if (n != (size_t) -1 && n != (size_t) -2 && n > 0)
479 symbol += (n - 1);
480 }
481 }
482
483 if (extra_padding && num_printed < width)
484 {
485 /* Fill in the remaining spaces. */
486 printf ("%-*s", width - num_printed, " ");
487 num_printed = width;
488 }
489
490 return num_printed;
491 }
492
493 /* Return a pointer to section NAME, or NULL if no such section exists. */
494
495 static Elf_Internal_Shdr *
496 find_section (const char * name)
497 {
498 unsigned int i;
499
500 for (i = 0; i < elf_header.e_shnum; i++)
501 if (streq (SECTION_NAME (section_headers + i), name))
502 return section_headers + i;
503
504 return NULL;
505 }
506
507 /* Return a pointer to a section containing ADDR, or NULL if no such
508 section exists. */
509
510 static Elf_Internal_Shdr *
511 find_section_by_address (bfd_vma addr)
512 {
513 unsigned int i;
514
515 for (i = 0; i < elf_header.e_shnum; i++)
516 {
517 Elf_Internal_Shdr *sec = section_headers + i;
518 if (addr >= sec->sh_addr && addr < sec->sh_addr + sec->sh_size)
519 return sec;
520 }
521
522 return NULL;
523 }
524
525 /* Return a pointer to section NAME, or NULL if no such section exists,
526 restricted to the list of sections given in SET. */
527
528 static Elf_Internal_Shdr *
529 find_section_in_set (const char * name, unsigned int * set)
530 {
531 unsigned int i;
532
533 if (set != NULL)
534 {
535 while ((i = *set++) > 0)
536 if (streq (SECTION_NAME (section_headers + i), name))
537 return section_headers + i;
538 }
539
540 return find_section (name);
541 }
542
543 /* Read an unsigned LEB128 encoded value from p. Set *PLEN to the number of
544 bytes read. */
545
546 static inline unsigned long
547 read_uleb128 (unsigned char *data,
548 unsigned int *length_return,
549 const unsigned char * const end)
550 {
551 return read_leb128 (data, length_return, FALSE, end);
552 }
553
554 /* Return true if the current file is for IA-64 machine and OpenVMS ABI.
555 This OS has so many departures from the ELF standard that we test it at
556 many places. */
557
558 static inline int
559 is_ia64_vms (void)
560 {
561 return elf_header.e_machine == EM_IA_64
562 && elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS;
563 }
564
565 /* Guess the relocation size commonly used by the specific machines. */
566
567 static int
568 guess_is_rela (unsigned int e_machine)
569 {
570 switch (e_machine)
571 {
572 /* Targets that use REL relocations. */
573 case EM_386:
574 case EM_486:
575 case EM_960:
576 case EM_ARM:
577 case EM_D10V:
578 case EM_CYGNUS_D10V:
579 case EM_DLX:
580 case EM_MIPS:
581 case EM_MIPS_RS3_LE:
582 case EM_CYGNUS_M32R:
583 case EM_OPENRISC:
584 case EM_OR32:
585 case EM_SCORE:
586 case EM_XGATE:
587 return FALSE;
588
589 /* Targets that use RELA relocations. */
590 case EM_68K:
591 case EM_860:
592 case EM_AARCH64:
593 case EM_ADAPTEVA_EPIPHANY:
594 case EM_ALPHA:
595 case EM_ALTERA_NIOS2:
596 case EM_AVR:
597 case EM_AVR_OLD:
598 case EM_BLACKFIN:
599 case EM_CR16:
600 case EM_CRIS:
601 case EM_CRX:
602 case EM_D30V:
603 case EM_CYGNUS_D30V:
604 case EM_FR30:
605 case EM_CYGNUS_FR30:
606 case EM_CYGNUS_FRV:
607 case EM_H8S:
608 case EM_H8_300:
609 case EM_H8_300H:
610 case EM_IA_64:
611 case EM_IP2K:
612 case EM_IP2K_OLD:
613 case EM_IQ2000:
614 case EM_LATTICEMICO32:
615 case EM_M32C_OLD:
616 case EM_M32C:
617 case EM_M32R:
618 case EM_MCORE:
619 case EM_CYGNUS_MEP:
620 case EM_METAG:
621 case EM_MMIX:
622 case EM_MN10200:
623 case EM_CYGNUS_MN10200:
624 case EM_MN10300:
625 case EM_CYGNUS_MN10300:
626 case EM_MOXIE:
627 case EM_MSP430:
628 case EM_MSP430_OLD:
629 case EM_MT:
630 case EM_NIOS32:
631 case EM_PPC64:
632 case EM_PPC:
633 case EM_RL78:
634 case EM_RX:
635 case EM_S390:
636 case EM_S390_OLD:
637 case EM_SH:
638 case EM_SPARC:
639 case EM_SPARC32PLUS:
640 case EM_SPARCV9:
641 case EM_SPU:
642 case EM_TI_C6000:
643 case EM_TILEGX:
644 case EM_TILEPRO:
645 case EM_V800:
646 case EM_V850:
647 case EM_CYGNUS_V850:
648 case EM_VAX:
649 case EM_X86_64:
650 case EM_L1OM:
651 case EM_K1OM:
652 case EM_XSTORMY16:
653 case EM_XTENSA:
654 case EM_XTENSA_OLD:
655 case EM_MICROBLAZE:
656 case EM_MICROBLAZE_OLD:
657 return TRUE;
658
659 case EM_68HC05:
660 case EM_68HC08:
661 case EM_68HC11:
662 case EM_68HC16:
663 case EM_FX66:
664 case EM_ME16:
665 case EM_MMA:
666 case EM_NCPU:
667 case EM_NDR1:
668 case EM_PCP:
669 case EM_ST100:
670 case EM_ST19:
671 case EM_ST7:
672 case EM_ST9PLUS:
673 case EM_STARCORE:
674 case EM_SVX:
675 case EM_TINYJ:
676 default:
677 warn (_("Don't know about relocations on this machine architecture\n"));
678 return FALSE;
679 }
680 }
681
682 static int
683 slurp_rela_relocs (FILE * file,
684 unsigned long rel_offset,
685 unsigned long rel_size,
686 Elf_Internal_Rela ** relasp,
687 unsigned long * nrelasp)
688 {
689 Elf_Internal_Rela * relas;
690 unsigned long nrelas;
691 unsigned int i;
692
693 if (is_32bit_elf)
694 {
695 Elf32_External_Rela * erelas;
696
697 erelas = (Elf32_External_Rela *) get_data (NULL, file, rel_offset, 1,
698 rel_size, _("32-bit relocation data"));
699 if (!erelas)
700 return 0;
701
702 nrelas = rel_size / sizeof (Elf32_External_Rela);
703
704 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
705 sizeof (Elf_Internal_Rela));
706
707 if (relas == NULL)
708 {
709 free (erelas);
710 error (_("out of memory parsing relocs\n"));
711 return 0;
712 }
713
714 for (i = 0; i < nrelas; i++)
715 {
716 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
717 relas[i].r_info = BYTE_GET (erelas[i].r_info);
718 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
719 }
720
721 free (erelas);
722 }
723 else
724 {
725 Elf64_External_Rela * erelas;
726
727 erelas = (Elf64_External_Rela *) get_data (NULL, file, rel_offset, 1,
728 rel_size, _("64-bit relocation data"));
729 if (!erelas)
730 return 0;
731
732 nrelas = rel_size / sizeof (Elf64_External_Rela);
733
734 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
735 sizeof (Elf_Internal_Rela));
736
737 if (relas == NULL)
738 {
739 free (erelas);
740 error (_("out of memory parsing relocs\n"));
741 return 0;
742 }
743
744 for (i = 0; i < nrelas; i++)
745 {
746 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
747 relas[i].r_info = BYTE_GET (erelas[i].r_info);
748 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
749
750 /* The #ifdef BFD64 below is to prevent a compile time
751 warning. We know that if we do not have a 64 bit data
752 type that we will never execute this code anyway. */
753 #ifdef BFD64
754 if (elf_header.e_machine == EM_MIPS
755 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
756 {
757 /* In little-endian objects, r_info isn't really a
758 64-bit little-endian value: it has a 32-bit
759 little-endian symbol index followed by four
760 individual byte fields. Reorder INFO
761 accordingly. */
762 bfd_vma inf = relas[i].r_info;
763 inf = (((inf & 0xffffffff) << 32)
764 | ((inf >> 56) & 0xff)
765 | ((inf >> 40) & 0xff00)
766 | ((inf >> 24) & 0xff0000)
767 | ((inf >> 8) & 0xff000000));
768 relas[i].r_info = inf;
769 }
770 #endif /* BFD64 */
771 }
772
773 free (erelas);
774 }
775 *relasp = relas;
776 *nrelasp = nrelas;
777 return 1;
778 }
779
780 static int
781 slurp_rel_relocs (FILE * file,
782 unsigned long rel_offset,
783 unsigned long rel_size,
784 Elf_Internal_Rela ** relsp,
785 unsigned long * nrelsp)
786 {
787 Elf_Internal_Rela * rels;
788 unsigned long nrels;
789 unsigned int i;
790
791 if (is_32bit_elf)
792 {
793 Elf32_External_Rel * erels;
794
795 erels = (Elf32_External_Rel *) get_data (NULL, file, rel_offset, 1,
796 rel_size, _("32-bit relocation data"));
797 if (!erels)
798 return 0;
799
800 nrels = rel_size / sizeof (Elf32_External_Rel);
801
802 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
803
804 if (rels == NULL)
805 {
806 free (erels);
807 error (_("out of memory parsing relocs\n"));
808 return 0;
809 }
810
811 for (i = 0; i < nrels; i++)
812 {
813 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
814 rels[i].r_info = BYTE_GET (erels[i].r_info);
815 rels[i].r_addend = 0;
816 }
817
818 free (erels);
819 }
820 else
821 {
822 Elf64_External_Rel * erels;
823
824 erels = (Elf64_External_Rel *) get_data (NULL, file, rel_offset, 1,
825 rel_size, _("64-bit relocation data"));
826 if (!erels)
827 return 0;
828
829 nrels = rel_size / sizeof (Elf64_External_Rel);
830
831 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
832
833 if (rels == NULL)
834 {
835 free (erels);
836 error (_("out of memory parsing relocs\n"));
837 return 0;
838 }
839
840 for (i = 0; i < nrels; i++)
841 {
842 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
843 rels[i].r_info = BYTE_GET (erels[i].r_info);
844 rels[i].r_addend = 0;
845
846 /* The #ifdef BFD64 below is to prevent a compile time
847 warning. We know that if we do not have a 64 bit data
848 type that we will never execute this code anyway. */
849 #ifdef BFD64
850 if (elf_header.e_machine == EM_MIPS
851 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
852 {
853 /* In little-endian objects, r_info isn't really a
854 64-bit little-endian value: it has a 32-bit
855 little-endian symbol index followed by four
856 individual byte fields. Reorder INFO
857 accordingly. */
858 bfd_vma inf = rels[i].r_info;
859 inf = (((inf & 0xffffffff) << 32)
860 | ((inf >> 56) & 0xff)
861 | ((inf >> 40) & 0xff00)
862 | ((inf >> 24) & 0xff0000)
863 | ((inf >> 8) & 0xff000000));
864 rels[i].r_info = inf;
865 }
866 #endif /* BFD64 */
867 }
868
869 free (erels);
870 }
871 *relsp = rels;
872 *nrelsp = nrels;
873 return 1;
874 }
875
876 /* Returns the reloc type extracted from the reloc info field. */
877
878 static unsigned int
879 get_reloc_type (bfd_vma reloc_info)
880 {
881 if (is_32bit_elf)
882 return ELF32_R_TYPE (reloc_info);
883
884 switch (elf_header.e_machine)
885 {
886 case EM_MIPS:
887 /* Note: We assume that reloc_info has already been adjusted for us. */
888 return ELF64_MIPS_R_TYPE (reloc_info);
889
890 case EM_SPARCV9:
891 return ELF64_R_TYPE_ID (reloc_info);
892
893 default:
894 return ELF64_R_TYPE (reloc_info);
895 }
896 }
897
898 /* Return the symbol index extracted from the reloc info field. */
899
900 static bfd_vma
901 get_reloc_symindex (bfd_vma reloc_info)
902 {
903 return is_32bit_elf ? ELF32_R_SYM (reloc_info) : ELF64_R_SYM (reloc_info);
904 }
905
906 /* Display the contents of the relocation data found at the specified
907 offset. */
908
909 static void
910 dump_relocations (FILE * file,
911 unsigned long rel_offset,
912 unsigned long rel_size,
913 Elf_Internal_Sym * symtab,
914 unsigned long nsyms,
915 char * strtab,
916 unsigned long strtablen,
917 int is_rela)
918 {
919 unsigned int i;
920 Elf_Internal_Rela * rels;
921
922 if (is_rela == UNKNOWN)
923 is_rela = guess_is_rela (elf_header.e_machine);
924
925 if (is_rela)
926 {
927 if (!slurp_rela_relocs (file, rel_offset, rel_size, &rels, &rel_size))
928 return;
929 }
930 else
931 {
932 if (!slurp_rel_relocs (file, rel_offset, rel_size, &rels, &rel_size))
933 return;
934 }
935
936 if (is_32bit_elf)
937 {
938 if (is_rela)
939 {
940 if (do_wide)
941 printf (_(" Offset Info Type Sym. Value Symbol's Name + Addend\n"));
942 else
943 printf (_(" Offset Info Type Sym.Value Sym. Name + Addend\n"));
944 }
945 else
946 {
947 if (do_wide)
948 printf (_(" Offset Info Type Sym. Value Symbol's Name\n"));
949 else
950 printf (_(" Offset Info Type Sym.Value Sym. Name\n"));
951 }
952 }
953 else
954 {
955 if (is_rela)
956 {
957 if (do_wide)
958 printf (_(" Offset Info Type Symbol's Value Symbol's Name + Addend\n"));
959 else
960 printf (_(" Offset Info Type Sym. Value Sym. Name + Addend\n"));
961 }
962 else
963 {
964 if (do_wide)
965 printf (_(" Offset Info Type Symbol's Value Symbol's Name\n"));
966 else
967 printf (_(" Offset Info Type Sym. Value Sym. Name\n"));
968 }
969 }
970
971 for (i = 0; i < rel_size; i++)
972 {
973 const char * rtype;
974 bfd_vma offset;
975 bfd_vma inf;
976 bfd_vma symtab_index;
977 bfd_vma type;
978
979 offset = rels[i].r_offset;
980 inf = rels[i].r_info;
981
982 type = get_reloc_type (inf);
983 symtab_index = get_reloc_symindex (inf);
984
985 if (is_32bit_elf)
986 {
987 printf ("%8.8lx %8.8lx ",
988 (unsigned long) offset & 0xffffffff,
989 (unsigned long) inf & 0xffffffff);
990 }
991 else
992 {
993 #if BFD_HOST_64BIT_LONG
994 printf (do_wide
995 ? "%16.16lx %16.16lx "
996 : "%12.12lx %12.12lx ",
997 offset, inf);
998 #elif BFD_HOST_64BIT_LONG_LONG
999 #ifndef __MSVCRT__
1000 printf (do_wide
1001 ? "%16.16llx %16.16llx "
1002 : "%12.12llx %12.12llx ",
1003 offset, inf);
1004 #else
1005 printf (do_wide
1006 ? "%16.16I64x %16.16I64x "
1007 : "%12.12I64x %12.12I64x ",
1008 offset, inf);
1009 #endif
1010 #else
1011 printf (do_wide
1012 ? "%8.8lx%8.8lx %8.8lx%8.8lx "
1013 : "%4.4lx%8.8lx %4.4lx%8.8lx ",
1014 _bfd_int64_high (offset),
1015 _bfd_int64_low (offset),
1016 _bfd_int64_high (inf),
1017 _bfd_int64_low (inf));
1018 #endif
1019 }
1020
1021 switch (elf_header.e_machine)
1022 {
1023 default:
1024 rtype = NULL;
1025 break;
1026
1027 case EM_AARCH64:
1028 rtype = elf_aarch64_reloc_type (type);
1029 break;
1030
1031 case EM_M32R:
1032 case EM_CYGNUS_M32R:
1033 rtype = elf_m32r_reloc_type (type);
1034 break;
1035
1036 case EM_386:
1037 case EM_486:
1038 rtype = elf_i386_reloc_type (type);
1039 break;
1040
1041 case EM_68HC11:
1042 case EM_68HC12:
1043 rtype = elf_m68hc11_reloc_type (type);
1044 break;
1045
1046 case EM_68K:
1047 rtype = elf_m68k_reloc_type (type);
1048 break;
1049
1050 case EM_960:
1051 rtype = elf_i960_reloc_type (type);
1052 break;
1053
1054 case EM_AVR:
1055 case EM_AVR_OLD:
1056 rtype = elf_avr_reloc_type (type);
1057 break;
1058
1059 case EM_OLD_SPARCV9:
1060 case EM_SPARC32PLUS:
1061 case EM_SPARCV9:
1062 case EM_SPARC:
1063 rtype = elf_sparc_reloc_type (type);
1064 break;
1065
1066 case EM_SPU:
1067 rtype = elf_spu_reloc_type (type);
1068 break;
1069
1070 case EM_V800:
1071 rtype = v800_reloc_type (type);
1072 break;
1073 case EM_V850:
1074 case EM_CYGNUS_V850:
1075 rtype = v850_reloc_type (type);
1076 break;
1077
1078 case EM_D10V:
1079 case EM_CYGNUS_D10V:
1080 rtype = elf_d10v_reloc_type (type);
1081 break;
1082
1083 case EM_D30V:
1084 case EM_CYGNUS_D30V:
1085 rtype = elf_d30v_reloc_type (type);
1086 break;
1087
1088 case EM_DLX:
1089 rtype = elf_dlx_reloc_type (type);
1090 break;
1091
1092 case EM_SH:
1093 rtype = elf_sh_reloc_type (type);
1094 break;
1095
1096 case EM_MN10300:
1097 case EM_CYGNUS_MN10300:
1098 rtype = elf_mn10300_reloc_type (type);
1099 break;
1100
1101 case EM_MN10200:
1102 case EM_CYGNUS_MN10200:
1103 rtype = elf_mn10200_reloc_type (type);
1104 break;
1105
1106 case EM_FR30:
1107 case EM_CYGNUS_FR30:
1108 rtype = elf_fr30_reloc_type (type);
1109 break;
1110
1111 case EM_CYGNUS_FRV:
1112 rtype = elf_frv_reloc_type (type);
1113 break;
1114
1115 case EM_MCORE:
1116 rtype = elf_mcore_reloc_type (type);
1117 break;
1118
1119 case EM_MMIX:
1120 rtype = elf_mmix_reloc_type (type);
1121 break;
1122
1123 case EM_MOXIE:
1124 rtype = elf_moxie_reloc_type (type);
1125 break;
1126
1127 case EM_MSP430:
1128 case EM_MSP430_OLD:
1129 rtype = elf_msp430_reloc_type (type);
1130 break;
1131
1132 case EM_PPC:
1133 rtype = elf_ppc_reloc_type (type);
1134 break;
1135
1136 case EM_PPC64:
1137 rtype = elf_ppc64_reloc_type (type);
1138 break;
1139
1140 case EM_MIPS:
1141 case EM_MIPS_RS3_LE:
1142 rtype = elf_mips_reloc_type (type);
1143 break;
1144
1145 case EM_ALPHA:
1146 rtype = elf_alpha_reloc_type (type);
1147 break;
1148
1149 case EM_ARM:
1150 rtype = elf_arm_reloc_type (type);
1151 break;
1152
1153 case EM_ARC:
1154 rtype = elf_arc_reloc_type (type);
1155 break;
1156
1157 case EM_PARISC:
1158 rtype = elf_hppa_reloc_type (type);
1159 break;
1160
1161 case EM_H8_300:
1162 case EM_H8_300H:
1163 case EM_H8S:
1164 rtype = elf_h8_reloc_type (type);
1165 break;
1166
1167 case EM_OPENRISC:
1168 case EM_OR32:
1169 rtype = elf_or32_reloc_type (type);
1170 break;
1171
1172 case EM_PJ:
1173 case EM_PJ_OLD:
1174 rtype = elf_pj_reloc_type (type);
1175 break;
1176 case EM_IA_64:
1177 rtype = elf_ia64_reloc_type (type);
1178 break;
1179
1180 case EM_CRIS:
1181 rtype = elf_cris_reloc_type (type);
1182 break;
1183
1184 case EM_860:
1185 rtype = elf_i860_reloc_type (type);
1186 break;
1187
1188 case EM_X86_64:
1189 case EM_L1OM:
1190 case EM_K1OM:
1191 rtype = elf_x86_64_reloc_type (type);
1192 break;
1193
1194 case EM_S370:
1195 rtype = i370_reloc_type (type);
1196 break;
1197
1198 case EM_S390_OLD:
1199 case EM_S390:
1200 rtype = elf_s390_reloc_type (type);
1201 break;
1202
1203 case EM_SCORE:
1204 rtype = elf_score_reloc_type (type);
1205 break;
1206
1207 case EM_XSTORMY16:
1208 rtype = elf_xstormy16_reloc_type (type);
1209 break;
1210
1211 case EM_CRX:
1212 rtype = elf_crx_reloc_type (type);
1213 break;
1214
1215 case EM_VAX:
1216 rtype = elf_vax_reloc_type (type);
1217 break;
1218
1219 case EM_ADAPTEVA_EPIPHANY:
1220 rtype = elf_epiphany_reloc_type (type);
1221 break;
1222
1223 case EM_IP2K:
1224 case EM_IP2K_OLD:
1225 rtype = elf_ip2k_reloc_type (type);
1226 break;
1227
1228 case EM_IQ2000:
1229 rtype = elf_iq2000_reloc_type (type);
1230 break;
1231
1232 case EM_XTENSA_OLD:
1233 case EM_XTENSA:
1234 rtype = elf_xtensa_reloc_type (type);
1235 break;
1236
1237 case EM_LATTICEMICO32:
1238 rtype = elf_lm32_reloc_type (type);
1239 break;
1240
1241 case EM_M32C_OLD:
1242 case EM_M32C:
1243 rtype = elf_m32c_reloc_type (type);
1244 break;
1245
1246 case EM_MT:
1247 rtype = elf_mt_reloc_type (type);
1248 break;
1249
1250 case EM_BLACKFIN:
1251 rtype = elf_bfin_reloc_type (type);
1252 break;
1253
1254 case EM_CYGNUS_MEP:
1255 rtype = elf_mep_reloc_type (type);
1256 break;
1257
1258 case EM_CR16:
1259 rtype = elf_cr16_reloc_type (type);
1260 break;
1261
1262 case EM_MICROBLAZE:
1263 case EM_MICROBLAZE_OLD:
1264 rtype = elf_microblaze_reloc_type (type);
1265 break;
1266
1267 case EM_RL78:
1268 rtype = elf_rl78_reloc_type (type);
1269 break;
1270
1271 case EM_RX:
1272 rtype = elf_rx_reloc_type (type);
1273 break;
1274
1275 case EM_METAG:
1276 rtype = elf_metag_reloc_type (type);
1277 break;
1278
1279 case EM_XC16X:
1280 case EM_C166:
1281 rtype = elf_xc16x_reloc_type (type);
1282 break;
1283
1284 case EM_TI_C6000:
1285 rtype = elf_tic6x_reloc_type (type);
1286 break;
1287
1288 case EM_TILEGX:
1289 rtype = elf_tilegx_reloc_type (type);
1290 break;
1291
1292 case EM_TILEPRO:
1293 rtype = elf_tilepro_reloc_type (type);
1294 break;
1295
1296 case EM_XGATE:
1297 rtype = elf_xgate_reloc_type (type);
1298 break;
1299
1300 case EM_ALTERA_NIOS2:
1301 rtype = elf_nios2_reloc_type (type);
1302 break;
1303 }
1304
1305 if (rtype == NULL)
1306 printf (_("unrecognized: %-7lx"), (unsigned long) type & 0xffffffff);
1307 else
1308 printf (do_wide ? "%-22.22s" : "%-17.17s", rtype);
1309
1310 if (elf_header.e_machine == EM_ALPHA
1311 && rtype != NULL
1312 && streq (rtype, "R_ALPHA_LITUSE")
1313 && is_rela)
1314 {
1315 switch (rels[i].r_addend)
1316 {
1317 case LITUSE_ALPHA_ADDR: rtype = "ADDR"; break;
1318 case LITUSE_ALPHA_BASE: rtype = "BASE"; break;
1319 case LITUSE_ALPHA_BYTOFF: rtype = "BYTOFF"; break;
1320 case LITUSE_ALPHA_JSR: rtype = "JSR"; break;
1321 case LITUSE_ALPHA_TLSGD: rtype = "TLSGD"; break;
1322 case LITUSE_ALPHA_TLSLDM: rtype = "TLSLDM"; break;
1323 case LITUSE_ALPHA_JSRDIRECT: rtype = "JSRDIRECT"; break;
1324 default: rtype = NULL;
1325 }
1326 if (rtype)
1327 printf (" (%s)", rtype);
1328 else
1329 {
1330 putchar (' ');
1331 printf (_("<unknown addend: %lx>"),
1332 (unsigned long) rels[i].r_addend);
1333 }
1334 }
1335 else if (symtab_index)
1336 {
1337 if (symtab == NULL || symtab_index >= nsyms)
1338 printf (_(" bad symbol index: %08lx"), (unsigned long) symtab_index);
1339 else
1340 {
1341 Elf_Internal_Sym * psym;
1342
1343 psym = symtab + symtab_index;
1344
1345 printf (" ");
1346
1347 if (ELF_ST_TYPE (psym->st_info) == STT_GNU_IFUNC)
1348 {
1349 const char * name;
1350 unsigned int len;
1351 unsigned int width = is_32bit_elf ? 8 : 14;
1352
1353 /* Relocations against GNU_IFUNC symbols do not use the value
1354 of the symbol as the address to relocate against. Instead
1355 they invoke the function named by the symbol and use its
1356 result as the address for relocation.
1357
1358 To indicate this to the user, do not display the value of
1359 the symbol in the "Symbols's Value" field. Instead show
1360 its name followed by () as a hint that the symbol is
1361 invoked. */
1362
1363 if (strtab == NULL
1364 || psym->st_name == 0
1365 || psym->st_name >= strtablen)
1366 name = "??";
1367 else
1368 name = strtab + psym->st_name;
1369
1370 len = print_symbol (width, name);
1371 printf ("()%-*s", len <= width ? (width + 1) - len : 1, " ");
1372 }
1373 else
1374 {
1375 print_vma (psym->st_value, LONG_HEX);
1376
1377 printf (is_32bit_elf ? " " : " ");
1378 }
1379
1380 if (psym->st_name == 0)
1381 {
1382 const char * sec_name = "<null>";
1383 char name_buf[40];
1384
1385 if (ELF_ST_TYPE (psym->st_info) == STT_SECTION)
1386 {
1387 if (psym->st_shndx < elf_header.e_shnum)
1388 sec_name
1389 = SECTION_NAME (section_headers + psym->st_shndx);
1390 else if (psym->st_shndx == SHN_ABS)
1391 sec_name = "ABS";
1392 else if (psym->st_shndx == SHN_COMMON)
1393 sec_name = "COMMON";
1394 else if ((elf_header.e_machine == EM_MIPS
1395 && psym->st_shndx == SHN_MIPS_SCOMMON)
1396 || (elf_header.e_machine == EM_TI_C6000
1397 && psym->st_shndx == SHN_TIC6X_SCOMMON))
1398 sec_name = "SCOMMON";
1399 else if (elf_header.e_machine == EM_MIPS
1400 && psym->st_shndx == SHN_MIPS_SUNDEFINED)
1401 sec_name = "SUNDEF";
1402 else if ((elf_header.e_machine == EM_X86_64
1403 || elf_header.e_machine == EM_L1OM
1404 || elf_header.e_machine == EM_K1OM)
1405 && psym->st_shndx == SHN_X86_64_LCOMMON)
1406 sec_name = "LARGE_COMMON";
1407 else if (elf_header.e_machine == EM_IA_64
1408 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX
1409 && psym->st_shndx == SHN_IA_64_ANSI_COMMON)
1410 sec_name = "ANSI_COM";
1411 else if (is_ia64_vms ()
1412 && psym->st_shndx == SHN_IA_64_VMS_SYMVEC)
1413 sec_name = "VMS_SYMVEC";
1414 else
1415 {
1416 sprintf (name_buf, "<section 0x%x>",
1417 (unsigned int) psym->st_shndx);
1418 sec_name = name_buf;
1419 }
1420 }
1421 print_symbol (22, sec_name);
1422 }
1423 else if (strtab == NULL)
1424 printf (_("<string table index: %3ld>"), psym->st_name);
1425 else if (psym->st_name >= strtablen)
1426 printf (_("<corrupt string table index: %3ld>"), psym->st_name);
1427 else
1428 print_symbol (22, strtab + psym->st_name);
1429
1430 if (is_rela)
1431 {
1432 bfd_signed_vma off = rels[i].r_addend;
1433
1434 if (off < 0)
1435 printf (" - %" BFD_VMA_FMT "x", - off);
1436 else
1437 printf (" + %" BFD_VMA_FMT "x", off);
1438 }
1439 }
1440 }
1441 else if (is_rela)
1442 {
1443 bfd_signed_vma off = rels[i].r_addend;
1444
1445 printf ("%*c", is_32bit_elf ? 12 : 20, ' ');
1446 if (off < 0)
1447 printf ("-%" BFD_VMA_FMT "x", - off);
1448 else
1449 printf ("%" BFD_VMA_FMT "x", off);
1450 }
1451
1452 if (elf_header.e_machine == EM_SPARCV9
1453 && rtype != NULL
1454 && streq (rtype, "R_SPARC_OLO10"))
1455 printf (" + %lx", (unsigned long) ELF64_R_TYPE_DATA (inf));
1456
1457 putchar ('\n');
1458
1459 #ifdef BFD64
1460 if (! is_32bit_elf && elf_header.e_machine == EM_MIPS)
1461 {
1462 bfd_vma type2 = ELF64_MIPS_R_TYPE2 (inf);
1463 bfd_vma type3 = ELF64_MIPS_R_TYPE3 (inf);
1464 const char * rtype2 = elf_mips_reloc_type (type2);
1465 const char * rtype3 = elf_mips_reloc_type (type3);
1466
1467 printf (" Type2: ");
1468
1469 if (rtype2 == NULL)
1470 printf (_("unrecognized: %-7lx"),
1471 (unsigned long) type2 & 0xffffffff);
1472 else
1473 printf ("%-17.17s", rtype2);
1474
1475 printf ("\n Type3: ");
1476
1477 if (rtype3 == NULL)
1478 printf (_("unrecognized: %-7lx"),
1479 (unsigned long) type3 & 0xffffffff);
1480 else
1481 printf ("%-17.17s", rtype3);
1482
1483 putchar ('\n');
1484 }
1485 #endif /* BFD64 */
1486 }
1487
1488 free (rels);
1489 }
1490
1491 static const char *
1492 get_mips_dynamic_type (unsigned long type)
1493 {
1494 switch (type)
1495 {
1496 case DT_MIPS_RLD_VERSION: return "MIPS_RLD_VERSION";
1497 case DT_MIPS_TIME_STAMP: return "MIPS_TIME_STAMP";
1498 case DT_MIPS_ICHECKSUM: return "MIPS_ICHECKSUM";
1499 case DT_MIPS_IVERSION: return "MIPS_IVERSION";
1500 case DT_MIPS_FLAGS: return "MIPS_FLAGS";
1501 case DT_MIPS_BASE_ADDRESS: return "MIPS_BASE_ADDRESS";
1502 case DT_MIPS_MSYM: return "MIPS_MSYM";
1503 case DT_MIPS_CONFLICT: return "MIPS_CONFLICT";
1504 case DT_MIPS_LIBLIST: return "MIPS_LIBLIST";
1505 case DT_MIPS_LOCAL_GOTNO: return "MIPS_LOCAL_GOTNO";
1506 case DT_MIPS_CONFLICTNO: return "MIPS_CONFLICTNO";
1507 case DT_MIPS_LIBLISTNO: return "MIPS_LIBLISTNO";
1508 case DT_MIPS_SYMTABNO: return "MIPS_SYMTABNO";
1509 case DT_MIPS_UNREFEXTNO: return "MIPS_UNREFEXTNO";
1510 case DT_MIPS_GOTSYM: return "MIPS_GOTSYM";
1511 case DT_MIPS_HIPAGENO: return "MIPS_HIPAGENO";
1512 case DT_MIPS_RLD_MAP: return "MIPS_RLD_MAP";
1513 case DT_MIPS_DELTA_CLASS: return "MIPS_DELTA_CLASS";
1514 case DT_MIPS_DELTA_CLASS_NO: return "MIPS_DELTA_CLASS_NO";
1515 case DT_MIPS_DELTA_INSTANCE: return "MIPS_DELTA_INSTANCE";
1516 case DT_MIPS_DELTA_INSTANCE_NO: return "MIPS_DELTA_INSTANCE_NO";
1517 case DT_MIPS_DELTA_RELOC: return "MIPS_DELTA_RELOC";
1518 case DT_MIPS_DELTA_RELOC_NO: return "MIPS_DELTA_RELOC_NO";
1519 case DT_MIPS_DELTA_SYM: return "MIPS_DELTA_SYM";
1520 case DT_MIPS_DELTA_SYM_NO: return "MIPS_DELTA_SYM_NO";
1521 case DT_MIPS_DELTA_CLASSSYM: return "MIPS_DELTA_CLASSSYM";
1522 case DT_MIPS_DELTA_CLASSSYM_NO: return "MIPS_DELTA_CLASSSYM_NO";
1523 case DT_MIPS_CXX_FLAGS: return "MIPS_CXX_FLAGS";
1524 case DT_MIPS_PIXIE_INIT: return "MIPS_PIXIE_INIT";
1525 case DT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
1526 case DT_MIPS_LOCALPAGE_GOTIDX: return "MIPS_LOCALPAGE_GOTIDX";
1527 case DT_MIPS_LOCAL_GOTIDX: return "MIPS_LOCAL_GOTIDX";
1528 case DT_MIPS_HIDDEN_GOTIDX: return "MIPS_HIDDEN_GOTIDX";
1529 case DT_MIPS_PROTECTED_GOTIDX: return "MIPS_PROTECTED_GOTIDX";
1530 case DT_MIPS_OPTIONS: return "MIPS_OPTIONS";
1531 case DT_MIPS_INTERFACE: return "MIPS_INTERFACE";
1532 case DT_MIPS_DYNSTR_ALIGN: return "MIPS_DYNSTR_ALIGN";
1533 case DT_MIPS_INTERFACE_SIZE: return "MIPS_INTERFACE_SIZE";
1534 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: return "MIPS_RLD_TEXT_RESOLVE_ADDR";
1535 case DT_MIPS_PERF_SUFFIX: return "MIPS_PERF_SUFFIX";
1536 case DT_MIPS_COMPACT_SIZE: return "MIPS_COMPACT_SIZE";
1537 case DT_MIPS_GP_VALUE: return "MIPS_GP_VALUE";
1538 case DT_MIPS_AUX_DYNAMIC: return "MIPS_AUX_DYNAMIC";
1539 case DT_MIPS_PLTGOT: return "MIPS_PLTGOT";
1540 case DT_MIPS_RWPLT: return "MIPS_RWPLT";
1541 default:
1542 return NULL;
1543 }
1544 }
1545
1546 static const char *
1547 get_sparc64_dynamic_type (unsigned long type)
1548 {
1549 switch (type)
1550 {
1551 case DT_SPARC_REGISTER: return "SPARC_REGISTER";
1552 default:
1553 return NULL;
1554 }
1555 }
1556
1557 static const char *
1558 get_ppc_dynamic_type (unsigned long type)
1559 {
1560 switch (type)
1561 {
1562 case DT_PPC_GOT: return "PPC_GOT";
1563 case DT_PPC_TLSOPT: return "PPC_TLSOPT";
1564 default:
1565 return NULL;
1566 }
1567 }
1568
1569 static const char *
1570 get_ppc64_dynamic_type (unsigned long type)
1571 {
1572 switch (type)
1573 {
1574 case DT_PPC64_GLINK: return "PPC64_GLINK";
1575 case DT_PPC64_OPD: return "PPC64_OPD";
1576 case DT_PPC64_OPDSZ: return "PPC64_OPDSZ";
1577 case DT_PPC64_TLSOPT: return "PPC64_TLSOPT";
1578 default:
1579 return NULL;
1580 }
1581 }
1582
1583 static const char *
1584 get_parisc_dynamic_type (unsigned long type)
1585 {
1586 switch (type)
1587 {
1588 case DT_HP_LOAD_MAP: return "HP_LOAD_MAP";
1589 case DT_HP_DLD_FLAGS: return "HP_DLD_FLAGS";
1590 case DT_HP_DLD_HOOK: return "HP_DLD_HOOK";
1591 case DT_HP_UX10_INIT: return "HP_UX10_INIT";
1592 case DT_HP_UX10_INITSZ: return "HP_UX10_INITSZ";
1593 case DT_HP_PREINIT: return "HP_PREINIT";
1594 case DT_HP_PREINITSZ: return "HP_PREINITSZ";
1595 case DT_HP_NEEDED: return "HP_NEEDED";
1596 case DT_HP_TIME_STAMP: return "HP_TIME_STAMP";
1597 case DT_HP_CHECKSUM: return "HP_CHECKSUM";
1598 case DT_HP_GST_SIZE: return "HP_GST_SIZE";
1599 case DT_HP_GST_VERSION: return "HP_GST_VERSION";
1600 case DT_HP_GST_HASHVAL: return "HP_GST_HASHVAL";
1601 case DT_HP_EPLTREL: return "HP_GST_EPLTREL";
1602 case DT_HP_EPLTRELSZ: return "HP_GST_EPLTRELSZ";
1603 case DT_HP_FILTERED: return "HP_FILTERED";
1604 case DT_HP_FILTER_TLS: return "HP_FILTER_TLS";
1605 case DT_HP_COMPAT_FILTERED: return "HP_COMPAT_FILTERED";
1606 case DT_HP_LAZYLOAD: return "HP_LAZYLOAD";
1607 case DT_HP_BIND_NOW_COUNT: return "HP_BIND_NOW_COUNT";
1608 case DT_PLT: return "PLT";
1609 case DT_PLT_SIZE: return "PLT_SIZE";
1610 case DT_DLT: return "DLT";
1611 case DT_DLT_SIZE: return "DLT_SIZE";
1612 default:
1613 return NULL;
1614 }
1615 }
1616
1617 static const char *
1618 get_ia64_dynamic_type (unsigned long type)
1619 {
1620 switch (type)
1621 {
1622 case DT_IA_64_PLT_RESERVE: return "IA_64_PLT_RESERVE";
1623 case DT_IA_64_VMS_SUBTYPE: return "VMS_SUBTYPE";
1624 case DT_IA_64_VMS_IMGIOCNT: return "VMS_IMGIOCNT";
1625 case DT_IA_64_VMS_LNKFLAGS: return "VMS_LNKFLAGS";
1626 case DT_IA_64_VMS_VIR_MEM_BLK_SIZ: return "VMS_VIR_MEM_BLK_SIZ";
1627 case DT_IA_64_VMS_IDENT: return "VMS_IDENT";
1628 case DT_IA_64_VMS_NEEDED_IDENT: return "VMS_NEEDED_IDENT";
1629 case DT_IA_64_VMS_IMG_RELA_CNT: return "VMS_IMG_RELA_CNT";
1630 case DT_IA_64_VMS_SEG_RELA_CNT: return "VMS_SEG_RELA_CNT";
1631 case DT_IA_64_VMS_FIXUP_RELA_CNT: return "VMS_FIXUP_RELA_CNT";
1632 case DT_IA_64_VMS_FIXUP_NEEDED: return "VMS_FIXUP_NEEDED";
1633 case DT_IA_64_VMS_SYMVEC_CNT: return "VMS_SYMVEC_CNT";
1634 case DT_IA_64_VMS_XLATED: return "VMS_XLATED";
1635 case DT_IA_64_VMS_STACKSIZE: return "VMS_STACKSIZE";
1636 case DT_IA_64_VMS_UNWINDSZ: return "VMS_UNWINDSZ";
1637 case DT_IA_64_VMS_UNWIND_CODSEG: return "VMS_UNWIND_CODSEG";
1638 case DT_IA_64_VMS_UNWIND_INFOSEG: return "VMS_UNWIND_INFOSEG";
1639 case DT_IA_64_VMS_LINKTIME: return "VMS_LINKTIME";
1640 case DT_IA_64_VMS_SEG_NO: return "VMS_SEG_NO";
1641 case DT_IA_64_VMS_SYMVEC_OFFSET: return "VMS_SYMVEC_OFFSET";
1642 case DT_IA_64_VMS_SYMVEC_SEG: return "VMS_SYMVEC_SEG";
1643 case DT_IA_64_VMS_UNWIND_OFFSET: return "VMS_UNWIND_OFFSET";
1644 case DT_IA_64_VMS_UNWIND_SEG: return "VMS_UNWIND_SEG";
1645 case DT_IA_64_VMS_STRTAB_OFFSET: return "VMS_STRTAB_OFFSET";
1646 case DT_IA_64_VMS_SYSVER_OFFSET: return "VMS_SYSVER_OFFSET";
1647 case DT_IA_64_VMS_IMG_RELA_OFF: return "VMS_IMG_RELA_OFF";
1648 case DT_IA_64_VMS_SEG_RELA_OFF: return "VMS_SEG_RELA_OFF";
1649 case DT_IA_64_VMS_FIXUP_RELA_OFF: return "VMS_FIXUP_RELA_OFF";
1650 case DT_IA_64_VMS_PLTGOT_OFFSET: return "VMS_PLTGOT_OFFSET";
1651 case DT_IA_64_VMS_PLTGOT_SEG: return "VMS_PLTGOT_SEG";
1652 case DT_IA_64_VMS_FPMODE: return "VMS_FPMODE";
1653 default:
1654 return NULL;
1655 }
1656 }
1657
1658 static const char *
1659 get_alpha_dynamic_type (unsigned long type)
1660 {
1661 switch (type)
1662 {
1663 case DT_ALPHA_PLTRO: return "ALPHA_PLTRO";
1664 default:
1665 return NULL;
1666 }
1667 }
1668
1669 static const char *
1670 get_score_dynamic_type (unsigned long type)
1671 {
1672 switch (type)
1673 {
1674 case DT_SCORE_BASE_ADDRESS: return "SCORE_BASE_ADDRESS";
1675 case DT_SCORE_LOCAL_GOTNO: return "SCORE_LOCAL_GOTNO";
1676 case DT_SCORE_SYMTABNO: return "SCORE_SYMTABNO";
1677 case DT_SCORE_GOTSYM: return "SCORE_GOTSYM";
1678 case DT_SCORE_UNREFEXTNO: return "SCORE_UNREFEXTNO";
1679 case DT_SCORE_HIPAGENO: return "SCORE_HIPAGENO";
1680 default:
1681 return NULL;
1682 }
1683 }
1684
1685 static const char *
1686 get_tic6x_dynamic_type (unsigned long type)
1687 {
1688 switch (type)
1689 {
1690 case DT_C6000_GSYM_OFFSET: return "C6000_GSYM_OFFSET";
1691 case DT_C6000_GSTR_OFFSET: return "C6000_GSTR_OFFSET";
1692 case DT_C6000_DSBT_BASE: return "C6000_DSBT_BASE";
1693 case DT_C6000_DSBT_SIZE: return "C6000_DSBT_SIZE";
1694 case DT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
1695 case DT_C6000_DSBT_INDEX: return "C6000_DSBT_INDEX";
1696 default:
1697 return NULL;
1698 }
1699 }
1700
1701 static const char *
1702 get_nios2_dynamic_type (unsigned long type)
1703 {
1704 switch (type)
1705 {
1706 case DT_NIOS2_GP: return "NIOS2_GP";
1707 default:
1708 return NULL;
1709 }
1710 }
1711
1712 static const char *
1713 get_dynamic_type (unsigned long type)
1714 {
1715 static char buff[64];
1716
1717 switch (type)
1718 {
1719 case DT_NULL: return "NULL";
1720 case DT_NEEDED: return "NEEDED";
1721 case DT_PLTRELSZ: return "PLTRELSZ";
1722 case DT_PLTGOT: return "PLTGOT";
1723 case DT_HASH: return "HASH";
1724 case DT_STRTAB: return "STRTAB";
1725 case DT_SYMTAB: return "SYMTAB";
1726 case DT_RELA: return "RELA";
1727 case DT_RELASZ: return "RELASZ";
1728 case DT_RELAENT: return "RELAENT";
1729 case DT_STRSZ: return "STRSZ";
1730 case DT_SYMENT: return "SYMENT";
1731 case DT_INIT: return "INIT";
1732 case DT_FINI: return "FINI";
1733 case DT_SONAME: return "SONAME";
1734 case DT_RPATH: return "RPATH";
1735 case DT_SYMBOLIC: return "SYMBOLIC";
1736 case DT_REL: return "REL";
1737 case DT_RELSZ: return "RELSZ";
1738 case DT_RELENT: return "RELENT";
1739 case DT_PLTREL: return "PLTREL";
1740 case DT_DEBUG: return "DEBUG";
1741 case DT_TEXTREL: return "TEXTREL";
1742 case DT_JMPREL: return "JMPREL";
1743 case DT_BIND_NOW: return "BIND_NOW";
1744 case DT_INIT_ARRAY: return "INIT_ARRAY";
1745 case DT_FINI_ARRAY: return "FINI_ARRAY";
1746 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ";
1747 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ";
1748 case DT_RUNPATH: return "RUNPATH";
1749 case DT_FLAGS: return "FLAGS";
1750
1751 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY";
1752 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ";
1753
1754 case DT_CHECKSUM: return "CHECKSUM";
1755 case DT_PLTPADSZ: return "PLTPADSZ";
1756 case DT_MOVEENT: return "MOVEENT";
1757 case DT_MOVESZ: return "MOVESZ";
1758 case DT_FEATURE: return "FEATURE";
1759 case DT_POSFLAG_1: return "POSFLAG_1";
1760 case DT_SYMINSZ: return "SYMINSZ";
1761 case DT_SYMINENT: return "SYMINENT"; /* aka VALRNGHI */
1762
1763 case DT_ADDRRNGLO: return "ADDRRNGLO";
1764 case DT_CONFIG: return "CONFIG";
1765 case DT_DEPAUDIT: return "DEPAUDIT";
1766 case DT_AUDIT: return "AUDIT";
1767 case DT_PLTPAD: return "PLTPAD";
1768 case DT_MOVETAB: return "MOVETAB";
1769 case DT_SYMINFO: return "SYMINFO"; /* aka ADDRRNGHI */
1770
1771 case DT_VERSYM: return "VERSYM";
1772
1773 case DT_TLSDESC_GOT: return "TLSDESC_GOT";
1774 case DT_TLSDESC_PLT: return "TLSDESC_PLT";
1775 case DT_RELACOUNT: return "RELACOUNT";
1776 case DT_RELCOUNT: return "RELCOUNT";
1777 case DT_FLAGS_1: return "FLAGS_1";
1778 case DT_VERDEF: return "VERDEF";
1779 case DT_VERDEFNUM: return "VERDEFNUM";
1780 case DT_VERNEED: return "VERNEED";
1781 case DT_VERNEEDNUM: return "VERNEEDNUM";
1782
1783 case DT_AUXILIARY: return "AUXILIARY";
1784 case DT_USED: return "USED";
1785 case DT_FILTER: return "FILTER";
1786
1787 case DT_GNU_PRELINKED: return "GNU_PRELINKED";
1788 case DT_GNU_CONFLICT: return "GNU_CONFLICT";
1789 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ";
1790 case DT_GNU_LIBLIST: return "GNU_LIBLIST";
1791 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ";
1792 case DT_GNU_HASH: return "GNU_HASH";
1793
1794 default:
1795 if ((type >= DT_LOPROC) && (type <= DT_HIPROC))
1796 {
1797 const char * result;
1798
1799 switch (elf_header.e_machine)
1800 {
1801 case EM_MIPS:
1802 case EM_MIPS_RS3_LE:
1803 result = get_mips_dynamic_type (type);
1804 break;
1805 case EM_SPARCV9:
1806 result = get_sparc64_dynamic_type (type);
1807 break;
1808 case EM_PPC:
1809 result = get_ppc_dynamic_type (type);
1810 break;
1811 case EM_PPC64:
1812 result = get_ppc64_dynamic_type (type);
1813 break;
1814 case EM_IA_64:
1815 result = get_ia64_dynamic_type (type);
1816 break;
1817 case EM_ALPHA:
1818 result = get_alpha_dynamic_type (type);
1819 break;
1820 case EM_SCORE:
1821 result = get_score_dynamic_type (type);
1822 break;
1823 case EM_TI_C6000:
1824 result = get_tic6x_dynamic_type (type);
1825 break;
1826 case EM_ALTERA_NIOS2:
1827 result = get_nios2_dynamic_type (type);
1828 break;
1829 default:
1830 result = NULL;
1831 break;
1832 }
1833
1834 if (result != NULL)
1835 return result;
1836
1837 snprintf (buff, sizeof (buff), _("Processor Specific: %lx"), type);
1838 }
1839 else if (((type >= DT_LOOS) && (type <= DT_HIOS))
1840 || (elf_header.e_machine == EM_PARISC
1841 && (type >= OLD_DT_LOOS) && (type <= OLD_DT_HIOS)))
1842 {
1843 const char * result;
1844
1845 switch (elf_header.e_machine)
1846 {
1847 case EM_PARISC:
1848 result = get_parisc_dynamic_type (type);
1849 break;
1850 case EM_IA_64:
1851 result = get_ia64_dynamic_type (type);
1852 break;
1853 default:
1854 result = NULL;
1855 break;
1856 }
1857
1858 if (result != NULL)
1859 return result;
1860
1861 snprintf (buff, sizeof (buff), _("Operating System specific: %lx"),
1862 type);
1863 }
1864 else
1865 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), type);
1866
1867 return buff;
1868 }
1869 }
1870
1871 static char *
1872 get_file_type (unsigned e_type)
1873 {
1874 static char buff[32];
1875
1876 switch (e_type)
1877 {
1878 case ET_NONE: return _("NONE (None)");
1879 case ET_REL: return _("REL (Relocatable file)");
1880 case ET_EXEC: return _("EXEC (Executable file)");
1881 case ET_DYN: return _("DYN (Shared object file)");
1882 case ET_CORE: return _("CORE (Core file)");
1883
1884 default:
1885 if ((e_type >= ET_LOPROC) && (e_type <= ET_HIPROC))
1886 snprintf (buff, sizeof (buff), _("Processor Specific: (%x)"), e_type);
1887 else if ((e_type >= ET_LOOS) && (e_type <= ET_HIOS))
1888 snprintf (buff, sizeof (buff), _("OS Specific: (%x)"), e_type);
1889 else
1890 snprintf (buff, sizeof (buff), _("<unknown>: %x"), e_type);
1891 return buff;
1892 }
1893 }
1894
1895 static char *
1896 get_machine_name (unsigned e_machine)
1897 {
1898 static char buff[64]; /* XXX */
1899
1900 switch (e_machine)
1901 {
1902 case EM_NONE: return _("None");
1903 case EM_AARCH64: return "AArch64";
1904 case EM_M32: return "WE32100";
1905 case EM_SPARC: return "Sparc";
1906 case EM_SPU: return "SPU";
1907 case EM_386: return "Intel 80386";
1908 case EM_68K: return "MC68000";
1909 case EM_88K: return "MC88000";
1910 case EM_486: return "Intel 80486";
1911 case EM_860: return "Intel 80860";
1912 case EM_MIPS: return "MIPS R3000";
1913 case EM_S370: return "IBM System/370";
1914 case EM_MIPS_RS3_LE: return "MIPS R4000 big-endian";
1915 case EM_OLD_SPARCV9: return "Sparc v9 (old)";
1916 case EM_PARISC: return "HPPA";
1917 case EM_PPC_OLD: return "Power PC (old)";
1918 case EM_SPARC32PLUS: return "Sparc v8+" ;
1919 case EM_960: return "Intel 90860";
1920 case EM_PPC: return "PowerPC";
1921 case EM_PPC64: return "PowerPC64";
1922 case EM_FR20: return "Fujitsu FR20";
1923 case EM_RH32: return "TRW RH32";
1924 case EM_MCORE: return "MCORE";
1925 case EM_ARM: return "ARM";
1926 case EM_OLD_ALPHA: return "Digital Alpha (old)";
1927 case EM_SH: return "Renesas / SuperH SH";
1928 case EM_SPARCV9: return "Sparc v9";
1929 case EM_TRICORE: return "Siemens Tricore";
1930 case EM_ARC: return "ARC";
1931 case EM_H8_300: return "Renesas H8/300";
1932 case EM_H8_300H: return "Renesas H8/300H";
1933 case EM_H8S: return "Renesas H8S";
1934 case EM_H8_500: return "Renesas H8/500";
1935 case EM_IA_64: return "Intel IA-64";
1936 case EM_MIPS_X: return "Stanford MIPS-X";
1937 case EM_COLDFIRE: return "Motorola Coldfire";
1938 case EM_ALPHA: return "Alpha";
1939 case EM_CYGNUS_D10V:
1940 case EM_D10V: return "d10v";
1941 case EM_CYGNUS_D30V:
1942 case EM_D30V: return "d30v";
1943 case EM_CYGNUS_M32R:
1944 case EM_M32R: return "Renesas M32R (formerly Mitsubishi M32r)";
1945 case EM_CYGNUS_V850:
1946 case EM_V800: return "Renesas V850 (using RH850 ABI)";
1947 case EM_V850: return "Renesas V850";
1948 case EM_CYGNUS_MN10300:
1949 case EM_MN10300: return "mn10300";
1950 case EM_CYGNUS_MN10200:
1951 case EM_MN10200: return "mn10200";
1952 case EM_MOXIE: return "Moxie";
1953 case EM_CYGNUS_FR30:
1954 case EM_FR30: return "Fujitsu FR30";
1955 case EM_CYGNUS_FRV: return "Fujitsu FR-V";
1956 case EM_PJ_OLD:
1957 case EM_PJ: return "picoJava";
1958 case EM_MMA: return "Fujitsu Multimedia Accelerator";
1959 case EM_PCP: return "Siemens PCP";
1960 case EM_NCPU: return "Sony nCPU embedded RISC processor";
1961 case EM_NDR1: return "Denso NDR1 microprocesspr";
1962 case EM_STARCORE: return "Motorola Star*Core processor";
1963 case EM_ME16: return "Toyota ME16 processor";
1964 case EM_ST100: return "STMicroelectronics ST100 processor";
1965 case EM_TINYJ: return "Advanced Logic Corp. TinyJ embedded processor";
1966 case EM_PDSP: return "Sony DSP processor";
1967 case EM_PDP10: return "Digital Equipment Corp. PDP-10";
1968 case EM_PDP11: return "Digital Equipment Corp. PDP-11";
1969 case EM_FX66: return "Siemens FX66 microcontroller";
1970 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 bit microcontroller";
1971 case EM_ST7: return "STMicroelectronics ST7 8-bit microcontroller";
1972 case EM_68HC16: return "Motorola MC68HC16 Microcontroller";
1973 case EM_68HC12: return "Motorola MC68HC12 Microcontroller";
1974 case EM_68HC11: return "Motorola MC68HC11 Microcontroller";
1975 case EM_68HC08: return "Motorola MC68HC08 Microcontroller";
1976 case EM_68HC05: return "Motorola MC68HC05 Microcontroller";
1977 case EM_SVX: return "Silicon Graphics SVx";
1978 case EM_ST19: return "STMicroelectronics ST19 8-bit microcontroller";
1979 case EM_VAX: return "Digital VAX";
1980 case EM_AVR_OLD:
1981 case EM_AVR: return "Atmel AVR 8-bit microcontroller";
1982 case EM_CRIS: return "Axis Communications 32-bit embedded processor";
1983 case EM_JAVELIN: return "Infineon Technologies 32-bit embedded cpu";
1984 case EM_FIREPATH: return "Element 14 64-bit DSP processor";
1985 case EM_ZSP: return "LSI Logic's 16-bit DSP processor";
1986 case EM_MMIX: return "Donald Knuth's educational 64-bit processor";
1987 case EM_HUANY: return "Harvard Universitys's machine-independent object format";
1988 case EM_PRISM: return "Vitesse Prism";
1989 case EM_X86_64: return "Advanced Micro Devices X86-64";
1990 case EM_L1OM: return "Intel L1OM";
1991 case EM_K1OM: return "Intel K1OM";
1992 case EM_S390_OLD:
1993 case EM_S390: return "IBM S/390";
1994 case EM_SCORE: return "SUNPLUS S+Core";
1995 case EM_XSTORMY16: return "Sanyo XStormy16 CPU core";
1996 case EM_OPENRISC:
1997 case EM_OR32: return "OpenRISC";
1998 case EM_ARC_A5: return "ARC International ARCompact processor";
1999 case EM_CRX: return "National Semiconductor CRX microprocessor";
2000 case EM_ADAPTEVA_EPIPHANY: return "Adapteva EPIPHANY";
2001 case EM_DLX: return "OpenDLX";
2002 case EM_IP2K_OLD:
2003 case EM_IP2K: return "Ubicom IP2xxx 8-bit microcontrollers";
2004 case EM_IQ2000: return "Vitesse IQ2000";
2005 case EM_XTENSA_OLD:
2006 case EM_XTENSA: return "Tensilica Xtensa Processor";
2007 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor";
2008 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor";
2009 case EM_NS32K: return "National Semiconductor 32000 series";
2010 case EM_TPC: return "Tenor Network TPC processor";
2011 case EM_ST200: return "STMicroelectronics ST200 microcontroller";
2012 case EM_MAX: return "MAX Processor";
2013 case EM_CR: return "National Semiconductor CompactRISC";
2014 case EM_F2MC16: return "Fujitsu F2MC16";
2015 case EM_MSP430: return "Texas Instruments msp430 microcontroller";
2016 case EM_LATTICEMICO32: return "Lattice Mico32";
2017 case EM_M32C_OLD:
2018 case EM_M32C: return "Renesas M32c";
2019 case EM_MT: return "Morpho Techologies MT processor";
2020 case EM_BLACKFIN: return "Analog Devices Blackfin";
2021 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors";
2022 case EM_SEP: return "Sharp embedded microprocessor";
2023 case EM_ARCA: return "Arca RISC microprocessor";
2024 case EM_UNICORE: return "Unicore";
2025 case EM_EXCESS: return "eXcess 16/32/64-bit configurable embedded CPU";
2026 case EM_DXP: return "Icera Semiconductor Inc. Deep Execution Processor";
2027 case EM_NIOS32: return "Altera Nios";
2028 case EM_ALTERA_NIOS2: return "Altera Nios II";
2029 case EM_C166:
2030 case EM_XC16X: return "Infineon Technologies xc16x";
2031 case EM_M16C: return "Renesas M16C series microprocessors";
2032 case EM_DSPIC30F: return "Microchip Technology dsPIC30F Digital Signal Controller";
2033 case EM_CE: return "Freescale Communication Engine RISC core";
2034 case EM_TSK3000: return "Altium TSK3000 core";
2035 case EM_RS08: return "Freescale RS08 embedded processor";
2036 case EM_ECOG2: return "Cyan Technology eCOG2 microprocessor";
2037 case EM_DSP24: return "New Japan Radio (NJR) 24-bit DSP Processor";
2038 case EM_VIDEOCORE3: return "Broadcom VideoCore III processor";
2039 case EM_SE_C17: return "Seiko Epson C17 family";
2040 case EM_TI_C6000: return "Texas Instruments TMS320C6000 DSP family";
2041 case EM_TI_C2000: return "Texas Instruments TMS320C2000 DSP family";
2042 case EM_TI_C5500: return "Texas Instruments TMS320C55x DSP family";
2043 case EM_MMDSP_PLUS: return "STMicroelectronics 64bit VLIW Data Signal Processor";
2044 case EM_CYPRESS_M8C: return "Cypress M8C microprocessor";
2045 case EM_R32C: return "Renesas R32C series microprocessors";
2046 case EM_TRIMEDIA: return "NXP Semiconductors TriMedia architecture family";
2047 case EM_QDSP6: return "QUALCOMM DSP6 Processor";
2048 case EM_8051: return "Intel 8051 and variants";
2049 case EM_STXP7X: return "STMicroelectronics STxP7x family";
2050 case EM_NDS32: return "Andes Technology compact code size embedded RISC processor family";
2051 case EM_ECOG1X: return "Cyan Technology eCOG1X family";
2052 case EM_MAXQ30: return "Dallas Semiconductor MAXQ30 Core microcontrollers";
2053 case EM_XIMO16: return "New Japan Radio (NJR) 16-bit DSP Processor";
2054 case EM_MANIK: return "M2000 Reconfigurable RISC Microprocessor";
2055 case EM_CRAYNV2: return "Cray Inc. NV2 vector architecture";
2056 case EM_CYGNUS_MEP: return "Toshiba MeP Media Engine";
2057 case EM_CR16:
2058 case EM_MICROBLAZE:
2059 case EM_MICROBLAZE_OLD: return "Xilinx MicroBlaze";
2060 case EM_RL78: return "Renesas RL78";
2061 case EM_RX: return "Renesas RX";
2062 case EM_METAG: return "Imagination Technologies Meta processor architecture";
2063 case EM_MCST_ELBRUS: return "MCST Elbrus general purpose hardware architecture";
2064 case EM_ECOG16: return "Cyan Technology eCOG16 family";
2065 case EM_ETPU: return "Freescale Extended Time Processing Unit";
2066 case EM_SLE9X: return "Infineon Technologies SLE9X core";
2067 case EM_AVR32: return "Atmel Corporation 32-bit microprocessor family";
2068 case EM_STM8: return "STMicroeletronics STM8 8-bit microcontroller";
2069 case EM_TILE64: return "Tilera TILE64 multicore architecture family";
2070 case EM_TILEPRO: return "Tilera TILEPro multicore architecture family";
2071 case EM_TILEGX: return "Tilera TILE-Gx multicore architecture family";
2072 case EM_CUDA: return "NVIDIA CUDA architecture";
2073 case EM_XGATE: return "Motorola XGATE embedded processor";
2074 default:
2075 snprintf (buff, sizeof (buff), _("<unknown>: 0x%x"), e_machine);
2076 return buff;
2077 }
2078 }
2079
2080 static void
2081 decode_ARM_machine_flags (unsigned e_flags, char buf[])
2082 {
2083 unsigned eabi;
2084 int unknown = 0;
2085
2086 eabi = EF_ARM_EABI_VERSION (e_flags);
2087 e_flags &= ~ EF_ARM_EABIMASK;
2088
2089 /* Handle "generic" ARM flags. */
2090 if (e_flags & EF_ARM_RELEXEC)
2091 {
2092 strcat (buf, ", relocatable executable");
2093 e_flags &= ~ EF_ARM_RELEXEC;
2094 }
2095
2096 if (e_flags & EF_ARM_HASENTRY)
2097 {
2098 strcat (buf, ", has entry point");
2099 e_flags &= ~ EF_ARM_HASENTRY;
2100 }
2101
2102 /* Now handle EABI specific flags. */
2103 switch (eabi)
2104 {
2105 default:
2106 strcat (buf, ", <unrecognized EABI>");
2107 if (e_flags)
2108 unknown = 1;
2109 break;
2110
2111 case EF_ARM_EABI_VER1:
2112 strcat (buf, ", Version1 EABI");
2113 while (e_flags)
2114 {
2115 unsigned flag;
2116
2117 /* Process flags one bit at a time. */
2118 flag = e_flags & - e_flags;
2119 e_flags &= ~ flag;
2120
2121 switch (flag)
2122 {
2123 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2124 strcat (buf, ", sorted symbol tables");
2125 break;
2126
2127 default:
2128 unknown = 1;
2129 break;
2130 }
2131 }
2132 break;
2133
2134 case EF_ARM_EABI_VER2:
2135 strcat (buf, ", Version2 EABI");
2136 while (e_flags)
2137 {
2138 unsigned flag;
2139
2140 /* Process flags one bit at a time. */
2141 flag = e_flags & - e_flags;
2142 e_flags &= ~ flag;
2143
2144 switch (flag)
2145 {
2146 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2147 strcat (buf, ", sorted symbol tables");
2148 break;
2149
2150 case EF_ARM_DYNSYMSUSESEGIDX:
2151 strcat (buf, ", dynamic symbols use segment index");
2152 break;
2153
2154 case EF_ARM_MAPSYMSFIRST:
2155 strcat (buf, ", mapping symbols precede others");
2156 break;
2157
2158 default:
2159 unknown = 1;
2160 break;
2161 }
2162 }
2163 break;
2164
2165 case EF_ARM_EABI_VER3:
2166 strcat (buf, ", Version3 EABI");
2167 break;
2168
2169 case EF_ARM_EABI_VER4:
2170 strcat (buf, ", Version4 EABI");
2171 while (e_flags)
2172 {
2173 unsigned flag;
2174
2175 /* Process flags one bit at a time. */
2176 flag = e_flags & - e_flags;
2177 e_flags &= ~ flag;
2178
2179 switch (flag)
2180 {
2181 case EF_ARM_BE8:
2182 strcat (buf, ", BE8");
2183 break;
2184
2185 case EF_ARM_LE8:
2186 strcat (buf, ", LE8");
2187 break;
2188
2189 default:
2190 unknown = 1;
2191 break;
2192 }
2193 break;
2194 }
2195 break;
2196
2197 case EF_ARM_EABI_VER5:
2198 strcat (buf, ", Version5 EABI");
2199 while (e_flags)
2200 {
2201 unsigned flag;
2202
2203 /* Process flags one bit at a time. */
2204 flag = e_flags & - e_flags;
2205 e_flags &= ~ flag;
2206
2207 switch (flag)
2208 {
2209 case EF_ARM_BE8:
2210 strcat (buf, ", BE8");
2211 break;
2212
2213 case EF_ARM_LE8:
2214 strcat (buf, ", LE8");
2215 break;
2216
2217 case EF_ARM_ABI_FLOAT_SOFT: /* Conflicts with EF_ARM_SOFT_FLOAT. */
2218 strcat (buf, ", soft-float ABI");
2219 break;
2220
2221 case EF_ARM_ABI_FLOAT_HARD: /* Conflicts with EF_ARM_VFP_FLOAT. */
2222 strcat (buf, ", hard-float ABI");
2223 break;
2224
2225 default:
2226 unknown = 1;
2227 break;
2228 }
2229 }
2230 break;
2231
2232 case EF_ARM_EABI_UNKNOWN:
2233 strcat (buf, ", GNU EABI");
2234 while (e_flags)
2235 {
2236 unsigned flag;
2237
2238 /* Process flags one bit at a time. */
2239 flag = e_flags & - e_flags;
2240 e_flags &= ~ flag;
2241
2242 switch (flag)
2243 {
2244 case EF_ARM_INTERWORK:
2245 strcat (buf, ", interworking enabled");
2246 break;
2247
2248 case EF_ARM_APCS_26:
2249 strcat (buf, ", uses APCS/26");
2250 break;
2251
2252 case EF_ARM_APCS_FLOAT:
2253 strcat (buf, ", uses APCS/float");
2254 break;
2255
2256 case EF_ARM_PIC:
2257 strcat (buf, ", position independent");
2258 break;
2259
2260 case EF_ARM_ALIGN8:
2261 strcat (buf, ", 8 bit structure alignment");
2262 break;
2263
2264 case EF_ARM_NEW_ABI:
2265 strcat (buf, ", uses new ABI");
2266 break;
2267
2268 case EF_ARM_OLD_ABI:
2269 strcat (buf, ", uses old ABI");
2270 break;
2271
2272 case EF_ARM_SOFT_FLOAT:
2273 strcat (buf, ", software FP");
2274 break;
2275
2276 case EF_ARM_VFP_FLOAT:
2277 strcat (buf, ", VFP");
2278 break;
2279
2280 case EF_ARM_MAVERICK_FLOAT:
2281 strcat (buf, ", Maverick FP");
2282 break;
2283
2284 default:
2285 unknown = 1;
2286 break;
2287 }
2288 }
2289 }
2290
2291 if (unknown)
2292 strcat (buf,_(", <unknown>"));
2293 }
2294
2295 static char *
2296 get_machine_flags (unsigned e_flags, unsigned e_machine)
2297 {
2298 static char buf[1024];
2299
2300 buf[0] = '\0';
2301
2302 if (e_flags)
2303 {
2304 switch (e_machine)
2305 {
2306 default:
2307 break;
2308
2309 case EM_ARM:
2310 decode_ARM_machine_flags (e_flags, buf);
2311 break;
2312
2313 case EM_BLACKFIN:
2314 if (e_flags & EF_BFIN_PIC)
2315 strcat (buf, ", PIC");
2316
2317 if (e_flags & EF_BFIN_FDPIC)
2318 strcat (buf, ", FDPIC");
2319
2320 if (e_flags & EF_BFIN_CODE_IN_L1)
2321 strcat (buf, ", code in L1");
2322
2323 if (e_flags & EF_BFIN_DATA_IN_L1)
2324 strcat (buf, ", data in L1");
2325
2326 break;
2327
2328 case EM_CYGNUS_FRV:
2329 switch (e_flags & EF_FRV_CPU_MASK)
2330 {
2331 case EF_FRV_CPU_GENERIC:
2332 break;
2333
2334 default:
2335 strcat (buf, ", fr???");
2336 break;
2337
2338 case EF_FRV_CPU_FR300:
2339 strcat (buf, ", fr300");
2340 break;
2341
2342 case EF_FRV_CPU_FR400:
2343 strcat (buf, ", fr400");
2344 break;
2345 case EF_FRV_CPU_FR405:
2346 strcat (buf, ", fr405");
2347 break;
2348
2349 case EF_FRV_CPU_FR450:
2350 strcat (buf, ", fr450");
2351 break;
2352
2353 case EF_FRV_CPU_FR500:
2354 strcat (buf, ", fr500");
2355 break;
2356 case EF_FRV_CPU_FR550:
2357 strcat (buf, ", fr550");
2358 break;
2359
2360 case EF_FRV_CPU_SIMPLE:
2361 strcat (buf, ", simple");
2362 break;
2363 case EF_FRV_CPU_TOMCAT:
2364 strcat (buf, ", tomcat");
2365 break;
2366 }
2367 break;
2368
2369 case EM_68K:
2370 if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
2371 strcat (buf, ", m68000");
2372 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
2373 strcat (buf, ", cpu32");
2374 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
2375 strcat (buf, ", fido_a");
2376 else
2377 {
2378 char const * isa = _("unknown");
2379 char const * mac = _("unknown mac");
2380 char const * additional = NULL;
2381
2382 switch (e_flags & EF_M68K_CF_ISA_MASK)
2383 {
2384 case EF_M68K_CF_ISA_A_NODIV:
2385 isa = "A";
2386 additional = ", nodiv";
2387 break;
2388 case EF_M68K_CF_ISA_A:
2389 isa = "A";
2390 break;
2391 case EF_M68K_CF_ISA_A_PLUS:
2392 isa = "A+";
2393 break;
2394 case EF_M68K_CF_ISA_B_NOUSP:
2395 isa = "B";
2396 additional = ", nousp";
2397 break;
2398 case EF_M68K_CF_ISA_B:
2399 isa = "B";
2400 break;
2401 case EF_M68K_CF_ISA_C:
2402 isa = "C";
2403 break;
2404 case EF_M68K_CF_ISA_C_NODIV:
2405 isa = "C";
2406 additional = ", nodiv";
2407 break;
2408 }
2409 strcat (buf, ", cf, isa ");
2410 strcat (buf, isa);
2411 if (additional)
2412 strcat (buf, additional);
2413 if (e_flags & EF_M68K_CF_FLOAT)
2414 strcat (buf, ", float");
2415 switch (e_flags & EF_M68K_CF_MAC_MASK)
2416 {
2417 case 0:
2418 mac = NULL;
2419 break;
2420 case EF_M68K_CF_MAC:
2421 mac = "mac";
2422 break;
2423 case EF_M68K_CF_EMAC:
2424 mac = "emac";
2425 break;
2426 case EF_M68K_CF_EMAC_B:
2427 mac = "emac_b";
2428 break;
2429 }
2430 if (mac)
2431 {
2432 strcat (buf, ", ");
2433 strcat (buf, mac);
2434 }
2435 }
2436 break;
2437
2438 case EM_PPC:
2439 if (e_flags & EF_PPC_EMB)
2440 strcat (buf, ", emb");
2441
2442 if (e_flags & EF_PPC_RELOCATABLE)
2443 strcat (buf, _(", relocatable"));
2444
2445 if (e_flags & EF_PPC_RELOCATABLE_LIB)
2446 strcat (buf, _(", relocatable-lib"));
2447 break;
2448
2449 case EM_V800:
2450 if ((e_flags & EF_RH850_ABI) == EF_RH850_ABI)
2451 strcat (buf, ", RH850 ABI");
2452
2453 if (e_flags & EF_V800_850E3)
2454 strcat (buf, ", V3 architecture");
2455
2456 if ((e_flags & (EF_RH850_FPU_DOUBLE | EF_RH850_FPU_SINGLE)) == 0)
2457 strcat (buf, ", FPU not used");
2458
2459 if ((e_flags & (EF_RH850_REGMODE22 | EF_RH850_REGMODE32)) == 0)
2460 strcat (buf, ", regmode: COMMON");
2461
2462 if ((e_flags & (EF_RH850_GP_FIX | EF_RH850_GP_NOFIX)) == 0)
2463 strcat (buf, ", r4 not used");
2464
2465 if ((e_flags & (EF_RH850_EP_FIX | EF_RH850_EP_NOFIX)) == 0)
2466 strcat (buf, ", r30 not used");
2467
2468 if ((e_flags & (EF_RH850_TP_FIX | EF_RH850_TP_NOFIX)) == 0)
2469 strcat (buf, ", r5 not used");
2470
2471 if ((e_flags & (EF_RH850_REG2_RESERVE | EF_RH850_REG2_NORESERVE)) == 0)
2472 strcat (buf, ", r2 not used");
2473
2474 for (e_flags &= 0xFFFF; e_flags; e_flags &= ~ (e_flags & - e_flags))
2475 {
2476 switch (e_flags & - e_flags)
2477 {
2478 case EF_RH850_FPU_DOUBLE: strcat (buf, ", double precision FPU"); break;
2479 case EF_RH850_FPU_SINGLE: strcat (buf, ", single precision FPU"); break;
2480 case EF_RH850_SIMD: strcat (buf, ", SIMD"); break;
2481 case EF_RH850_CACHE: strcat (buf, ", CACHE"); break;
2482 case EF_RH850_MMU: strcat (buf, ", MMU"); break;
2483 case EF_RH850_REGMODE22: strcat (buf, ", regmode:22"); break;
2484 case EF_RH850_REGMODE32: strcat (buf, ", regmode:23"); break;
2485 case EF_RH850_DATA_ALIGN8: strcat (buf, ", 8-byte alignment"); break;
2486 case EF_RH850_GP_FIX: strcat (buf, ", r4 fixed"); break;
2487 case EF_RH850_GP_NOFIX: strcat (buf, ", r4 free"); break;
2488 case EF_RH850_EP_FIX: strcat (buf, ", r30 fixed"); break;
2489 case EF_RH850_EP_NOFIX: strcat (buf, ", r30 free"); break;
2490 case EF_RH850_TP_FIX: strcat (buf, ", r5 fixed"); break;
2491 case EF_RH850_TP_NOFIX: strcat (buf, ", r5 free"); break;
2492 case EF_RH850_REG2_RESERVE: strcat (buf, ", r2 fixed"); break;
2493 case EF_RH850_REG2_NORESERVE: strcat (buf, ", r2 free"); break;
2494 default: break;
2495 }
2496 }
2497 break;
2498
2499 case EM_V850:
2500 case EM_CYGNUS_V850:
2501 switch (e_flags & EF_V850_ARCH)
2502 {
2503 case E_V850E3V5_ARCH:
2504 strcat (buf, ", v850e3v5");
2505 break;
2506 case E_V850E2V3_ARCH:
2507 strcat (buf, ", v850e2v3");
2508 break;
2509 case E_V850E2_ARCH:
2510 strcat (buf, ", v850e2");
2511 break;
2512 case E_V850E1_ARCH:
2513 strcat (buf, ", v850e1");
2514 break;
2515 case E_V850E_ARCH:
2516 strcat (buf, ", v850e");
2517 break;
2518 case E_V850_ARCH:
2519 strcat (buf, ", v850");
2520 break;
2521 default:
2522 strcat (buf, _(", unknown v850 architecture variant"));
2523 break;
2524 }
2525 break;
2526
2527 case EM_M32R:
2528 case EM_CYGNUS_M32R:
2529 if ((e_flags & EF_M32R_ARCH) == E_M32R_ARCH)
2530 strcat (buf, ", m32r");
2531 break;
2532
2533 case EM_MIPS:
2534 case EM_MIPS_RS3_LE:
2535 if (e_flags & EF_MIPS_NOREORDER)
2536 strcat (buf, ", noreorder");
2537
2538 if (e_flags & EF_MIPS_PIC)
2539 strcat (buf, ", pic");
2540
2541 if (e_flags & EF_MIPS_CPIC)
2542 strcat (buf, ", cpic");
2543
2544 if (e_flags & EF_MIPS_UCODE)
2545 strcat (buf, ", ugen_reserved");
2546
2547 if (e_flags & EF_MIPS_ABI2)
2548 strcat (buf, ", abi2");
2549
2550 if (e_flags & EF_MIPS_OPTIONS_FIRST)
2551 strcat (buf, ", odk first");
2552
2553 if (e_flags & EF_MIPS_32BITMODE)
2554 strcat (buf, ", 32bitmode");
2555
2556 switch ((e_flags & EF_MIPS_MACH))
2557 {
2558 case E_MIPS_MACH_3900: strcat (buf, ", 3900"); break;
2559 case E_MIPS_MACH_4010: strcat (buf, ", 4010"); break;
2560 case E_MIPS_MACH_4100: strcat (buf, ", 4100"); break;
2561 case E_MIPS_MACH_4111: strcat (buf, ", 4111"); break;
2562 case E_MIPS_MACH_4120: strcat (buf, ", 4120"); break;
2563 case E_MIPS_MACH_4650: strcat (buf, ", 4650"); break;
2564 case E_MIPS_MACH_5400: strcat (buf, ", 5400"); break;
2565 case E_MIPS_MACH_5500: strcat (buf, ", 5500"); break;
2566 case E_MIPS_MACH_SB1: strcat (buf, ", sb1"); break;
2567 case E_MIPS_MACH_9000: strcat (buf, ", 9000"); break;
2568 case E_MIPS_MACH_LS2E: strcat (buf, ", loongson-2e"); break;
2569 case E_MIPS_MACH_LS2F: strcat (buf, ", loongson-2f"); break;
2570 case E_MIPS_MACH_LS3A: strcat (buf, ", loongson-3a"); break;
2571 case E_MIPS_MACH_OCTEON: strcat (buf, ", octeon"); break;
2572 case E_MIPS_MACH_OCTEON2: strcat (buf, ", octeon2"); break;
2573 case E_MIPS_MACH_XLR: strcat (buf, ", xlr"); break;
2574 case 0:
2575 /* We simply ignore the field in this case to avoid confusion:
2576 MIPS ELF does not specify EF_MIPS_MACH, it is a GNU
2577 extension. */
2578 break;
2579 default: strcat (buf, _(", unknown CPU")); break;
2580 }
2581
2582 switch ((e_flags & EF_MIPS_ABI))
2583 {
2584 case E_MIPS_ABI_O32: strcat (buf, ", o32"); break;
2585 case E_MIPS_ABI_O64: strcat (buf, ", o64"); break;
2586 case E_MIPS_ABI_EABI32: strcat (buf, ", eabi32"); break;
2587 case E_MIPS_ABI_EABI64: strcat (buf, ", eabi64"); break;
2588 case 0:
2589 /* We simply ignore the field in this case to avoid confusion:
2590 MIPS ELF does not specify EF_MIPS_ABI, it is a GNU extension.
2591 This means it is likely to be an o32 file, but not for
2592 sure. */
2593 break;
2594 default: strcat (buf, _(", unknown ABI")); break;
2595 }
2596
2597 if (e_flags & EF_MIPS_ARCH_ASE_MDMX)
2598 strcat (buf, ", mdmx");
2599
2600 if (e_flags & EF_MIPS_ARCH_ASE_M16)
2601 strcat (buf, ", mips16");
2602
2603 if (e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
2604 strcat (buf, ", micromips");
2605
2606 switch ((e_flags & EF_MIPS_ARCH))
2607 {
2608 case E_MIPS_ARCH_1: strcat (buf, ", mips1"); break;
2609 case E_MIPS_ARCH_2: strcat (buf, ", mips2"); break;
2610 case E_MIPS_ARCH_3: strcat (buf, ", mips3"); break;
2611 case E_MIPS_ARCH_4: strcat (buf, ", mips4"); break;
2612 case E_MIPS_ARCH_5: strcat (buf, ", mips5"); break;
2613 case E_MIPS_ARCH_32: strcat (buf, ", mips32"); break;
2614 case E_MIPS_ARCH_32R2: strcat (buf, ", mips32r2"); break;
2615 case E_MIPS_ARCH_64: strcat (buf, ", mips64"); break;
2616 case E_MIPS_ARCH_64R2: strcat (buf, ", mips64r2"); break;
2617 default: strcat (buf, _(", unknown ISA")); break;
2618 }
2619 break;
2620
2621 case EM_SH:
2622 switch ((e_flags & EF_SH_MACH_MASK))
2623 {
2624 case EF_SH1: strcat (buf, ", sh1"); break;
2625 case EF_SH2: strcat (buf, ", sh2"); break;
2626 case EF_SH3: strcat (buf, ", sh3"); break;
2627 case EF_SH_DSP: strcat (buf, ", sh-dsp"); break;
2628 case EF_SH3_DSP: strcat (buf, ", sh3-dsp"); break;
2629 case EF_SH4AL_DSP: strcat (buf, ", sh4al-dsp"); break;
2630 case EF_SH3E: strcat (buf, ", sh3e"); break;
2631 case EF_SH4: strcat (buf, ", sh4"); break;
2632 case EF_SH5: strcat (buf, ", sh5"); break;
2633 case EF_SH2E: strcat (buf, ", sh2e"); break;
2634 case EF_SH4A: strcat (buf, ", sh4a"); break;
2635 case EF_SH2A: strcat (buf, ", sh2a"); break;
2636 case EF_SH4_NOFPU: strcat (buf, ", sh4-nofpu"); break;
2637 case EF_SH4A_NOFPU: strcat (buf, ", sh4a-nofpu"); break;
2638 case EF_SH2A_NOFPU: strcat (buf, ", sh2a-nofpu"); break;
2639 case EF_SH3_NOMMU: strcat (buf, ", sh3-nommu"); break;
2640 case EF_SH4_NOMMU_NOFPU: strcat (buf, ", sh4-nommu-nofpu"); break;
2641 case EF_SH2A_SH4_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh4-nommu-nofpu"); break;
2642 case EF_SH2A_SH3_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh3-nommu"); break;
2643 case EF_SH2A_SH4: strcat (buf, ", sh2a-or-sh4"); break;
2644 case EF_SH2A_SH3E: strcat (buf, ", sh2a-or-sh3e"); break;
2645 default: strcat (buf, _(", unknown ISA")); break;
2646 }
2647
2648 if (e_flags & EF_SH_PIC)
2649 strcat (buf, ", pic");
2650
2651 if (e_flags & EF_SH_FDPIC)
2652 strcat (buf, ", fdpic");
2653 break;
2654
2655 case EM_SPARCV9:
2656 if (e_flags & EF_SPARC_32PLUS)
2657 strcat (buf, ", v8+");
2658
2659 if (e_flags & EF_SPARC_SUN_US1)
2660 strcat (buf, ", ultrasparcI");
2661
2662 if (e_flags & EF_SPARC_SUN_US3)
2663 strcat (buf, ", ultrasparcIII");
2664
2665 if (e_flags & EF_SPARC_HAL_R1)
2666 strcat (buf, ", halr1");
2667
2668 if (e_flags & EF_SPARC_LEDATA)
2669 strcat (buf, ", ledata");
2670
2671 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_TSO)
2672 strcat (buf, ", tso");
2673
2674 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_PSO)
2675 strcat (buf, ", pso");
2676
2677 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_RMO)
2678 strcat (buf, ", rmo");
2679 break;
2680
2681 case EM_PARISC:
2682 switch (e_flags & EF_PARISC_ARCH)
2683 {
2684 case EFA_PARISC_1_0:
2685 strcpy (buf, ", PA-RISC 1.0");
2686 break;
2687 case EFA_PARISC_1_1:
2688 strcpy (buf, ", PA-RISC 1.1");
2689 break;
2690 case EFA_PARISC_2_0:
2691 strcpy (buf, ", PA-RISC 2.0");
2692 break;
2693 default:
2694 break;
2695 }
2696 if (e_flags & EF_PARISC_TRAPNIL)
2697 strcat (buf, ", trapnil");
2698 if (e_flags & EF_PARISC_EXT)
2699 strcat (buf, ", ext");
2700 if (e_flags & EF_PARISC_LSB)
2701 strcat (buf, ", lsb");
2702 if (e_flags & EF_PARISC_WIDE)
2703 strcat (buf, ", wide");
2704 if (e_flags & EF_PARISC_NO_KABP)
2705 strcat (buf, ", no kabp");
2706 if (e_flags & EF_PARISC_LAZYSWAP)
2707 strcat (buf, ", lazyswap");
2708 break;
2709
2710 case EM_PJ:
2711 case EM_PJ_OLD:
2712 if ((e_flags & EF_PICOJAVA_NEWCALLS) == EF_PICOJAVA_NEWCALLS)
2713 strcat (buf, ", new calling convention");
2714
2715 if ((e_flags & EF_PICOJAVA_GNUCALLS) == EF_PICOJAVA_GNUCALLS)
2716 strcat (buf, ", gnu calling convention");
2717 break;
2718
2719 case EM_IA_64:
2720 if ((e_flags & EF_IA_64_ABI64))
2721 strcat (buf, ", 64-bit");
2722 else
2723 strcat (buf, ", 32-bit");
2724 if ((e_flags & EF_IA_64_REDUCEDFP))
2725 strcat (buf, ", reduced fp model");
2726 if ((e_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
2727 strcat (buf, ", no function descriptors, constant gp");
2728 else if ((e_flags & EF_IA_64_CONS_GP))
2729 strcat (buf, ", constant gp");
2730 if ((e_flags & EF_IA_64_ABSOLUTE))
2731 strcat (buf, ", absolute");
2732 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
2733 {
2734 if ((e_flags & EF_IA_64_VMS_LINKAGES))
2735 strcat (buf, ", vms_linkages");
2736 switch ((e_flags & EF_IA_64_VMS_COMCOD))
2737 {
2738 case EF_IA_64_VMS_COMCOD_SUCCESS:
2739 break;
2740 case EF_IA_64_VMS_COMCOD_WARNING:
2741 strcat (buf, ", warning");
2742 break;
2743 case EF_IA_64_VMS_COMCOD_ERROR:
2744 strcat (buf, ", error");
2745 break;
2746 case EF_IA_64_VMS_COMCOD_ABORT:
2747 strcat (buf, ", abort");
2748 break;
2749 default:
2750 abort ();
2751 }
2752 }
2753 break;
2754
2755 case EM_VAX:
2756 if ((e_flags & EF_VAX_NONPIC))
2757 strcat (buf, ", non-PIC");
2758 if ((e_flags & EF_VAX_DFLOAT))
2759 strcat (buf, ", D-Float");
2760 if ((e_flags & EF_VAX_GFLOAT))
2761 strcat (buf, ", G-Float");
2762 break;
2763
2764 case EM_RX:
2765 if (e_flags & E_FLAG_RX_64BIT_DOUBLES)
2766 strcat (buf, ", 64-bit doubles");
2767 if (e_flags & E_FLAG_RX_DSP)
2768 strcat (buf, ", dsp");
2769 if (e_flags & E_FLAG_RX_PID)
2770 strcat (buf, ", pid");
2771 if (e_flags & E_FLAG_RX_ABI)
2772 strcat (buf, ", RX ABI");
2773 break;
2774
2775 case EM_S390:
2776 if (e_flags & EF_S390_HIGH_GPRS)
2777 strcat (buf, ", highgprs");
2778 break;
2779
2780 case EM_TI_C6000:
2781 if ((e_flags & EF_C6000_REL))
2782 strcat (buf, ", relocatable module");
2783 break;
2784 }
2785 }
2786
2787 return buf;
2788 }
2789
2790 static const char *
2791 get_osabi_name (unsigned int osabi)
2792 {
2793 static char buff[32];
2794
2795 switch (osabi)
2796 {
2797 case ELFOSABI_NONE: return "UNIX - System V";
2798 case ELFOSABI_HPUX: return "UNIX - HP-UX";
2799 case ELFOSABI_NETBSD: return "UNIX - NetBSD";
2800 case ELFOSABI_GNU: return "UNIX - GNU";
2801 case ELFOSABI_SOLARIS: return "UNIX - Solaris";
2802 case ELFOSABI_AIX: return "UNIX - AIX";
2803 case ELFOSABI_IRIX: return "UNIX - IRIX";
2804 case ELFOSABI_FREEBSD: return "UNIX - FreeBSD";
2805 case ELFOSABI_TRU64: return "UNIX - TRU64";
2806 case ELFOSABI_MODESTO: return "Novell - Modesto";
2807 case ELFOSABI_OPENBSD: return "UNIX - OpenBSD";
2808 case ELFOSABI_OPENVMS: return "VMS - OpenVMS";
2809 case ELFOSABI_NSK: return "HP - Non-Stop Kernel";
2810 case ELFOSABI_AROS: return "AROS";
2811 case ELFOSABI_FENIXOS: return "FenixOS";
2812 default:
2813 if (osabi >= 64)
2814 switch (elf_header.e_machine)
2815 {
2816 case EM_ARM:
2817 switch (osabi)
2818 {
2819 case ELFOSABI_ARM: return "ARM";
2820 default:
2821 break;
2822 }
2823 break;
2824
2825 case EM_MSP430:
2826 case EM_MSP430_OLD:
2827 switch (osabi)
2828 {
2829 case ELFOSABI_STANDALONE: return _("Standalone App");
2830 default:
2831 break;
2832 }
2833 break;
2834
2835 case EM_TI_C6000:
2836 switch (osabi)
2837 {
2838 case ELFOSABI_C6000_ELFABI: return _("Bare-metal C6000");
2839 case ELFOSABI_C6000_LINUX: return "Linux C6000";
2840 default:
2841 break;
2842 }
2843 break;
2844
2845 default:
2846 break;
2847 }
2848 snprintf (buff, sizeof (buff), _("<unknown: %x>"), osabi);
2849 return buff;
2850 }
2851 }
2852
2853 static const char *
2854 get_aarch64_segment_type (unsigned long type)
2855 {
2856 switch (type)
2857 {
2858 case PT_AARCH64_ARCHEXT:
2859 return "AARCH64_ARCHEXT";
2860 default:
2861 break;
2862 }
2863
2864 return NULL;
2865 }
2866
2867 static const char *
2868 get_arm_segment_type (unsigned long type)
2869 {
2870 switch (type)
2871 {
2872 case PT_ARM_EXIDX:
2873 return "EXIDX";
2874 default:
2875 break;
2876 }
2877
2878 return NULL;
2879 }
2880
2881 static const char *
2882 get_mips_segment_type (unsigned long type)
2883 {
2884 switch (type)
2885 {
2886 case PT_MIPS_REGINFO:
2887 return "REGINFO";
2888 case PT_MIPS_RTPROC:
2889 return "RTPROC";
2890 case PT_MIPS_OPTIONS:
2891 return "OPTIONS";
2892 default:
2893 break;
2894 }
2895
2896 return NULL;
2897 }
2898
2899 static const char *
2900 get_parisc_segment_type (unsigned long type)
2901 {
2902 switch (type)
2903 {
2904 case PT_HP_TLS: return "HP_TLS";
2905 case PT_HP_CORE_NONE: return "HP_CORE_NONE";
2906 case PT_HP_CORE_VERSION: return "HP_CORE_VERSION";
2907 case PT_HP_CORE_KERNEL: return "HP_CORE_KERNEL";
2908 case PT_HP_CORE_COMM: return "HP_CORE_COMM";
2909 case PT_HP_CORE_PROC: return "HP_CORE_PROC";
2910 case PT_HP_CORE_LOADABLE: return "HP_CORE_LOADABLE";
2911 case PT_HP_CORE_STACK: return "HP_CORE_STACK";
2912 case PT_HP_CORE_SHM: return "HP_CORE_SHM";
2913 case PT_HP_CORE_MMF: return "HP_CORE_MMF";
2914 case PT_HP_PARALLEL: return "HP_PARALLEL";
2915 case PT_HP_FASTBIND: return "HP_FASTBIND";
2916 case PT_HP_OPT_ANNOT: return "HP_OPT_ANNOT";
2917 case PT_HP_HSL_ANNOT: return "HP_HSL_ANNOT";
2918 case PT_HP_STACK: return "HP_STACK";
2919 case PT_HP_CORE_UTSNAME: return "HP_CORE_UTSNAME";
2920 case PT_PARISC_ARCHEXT: return "PARISC_ARCHEXT";
2921 case PT_PARISC_UNWIND: return "PARISC_UNWIND";
2922 case PT_PARISC_WEAKORDER: return "PARISC_WEAKORDER";
2923 default:
2924 break;
2925 }
2926
2927 return NULL;
2928 }
2929
2930 static const char *
2931 get_ia64_segment_type (unsigned long type)
2932 {
2933 switch (type)
2934 {
2935 case PT_IA_64_ARCHEXT: return "IA_64_ARCHEXT";
2936 case PT_IA_64_UNWIND: return "IA_64_UNWIND";
2937 case PT_HP_TLS: return "HP_TLS";
2938 case PT_IA_64_HP_OPT_ANOT: return "HP_OPT_ANNOT";
2939 case PT_IA_64_HP_HSL_ANOT: return "HP_HSL_ANNOT";
2940 case PT_IA_64_HP_STACK: return "HP_STACK";
2941 default:
2942 break;
2943 }
2944
2945 return NULL;
2946 }
2947
2948 static const char *
2949 get_tic6x_segment_type (unsigned long type)
2950 {
2951 switch (type)
2952 {
2953 case PT_C6000_PHATTR: return "C6000_PHATTR";
2954 default:
2955 break;
2956 }
2957
2958 return NULL;
2959 }
2960
2961 static const char *
2962 get_segment_type (unsigned long p_type)
2963 {
2964 static char buff[32];
2965
2966 switch (p_type)
2967 {
2968 case PT_NULL: return "NULL";
2969 case PT_LOAD: return "LOAD";
2970 case PT_DYNAMIC: return "DYNAMIC";
2971 case PT_INTERP: return "INTERP";
2972 case PT_NOTE: return "NOTE";
2973 case PT_SHLIB: return "SHLIB";
2974 case PT_PHDR: return "PHDR";
2975 case PT_TLS: return "TLS";
2976
2977 case PT_GNU_EH_FRAME:
2978 return "GNU_EH_FRAME";
2979 case PT_GNU_STACK: return "GNU_STACK";
2980 case PT_GNU_RELRO: return "GNU_RELRO";
2981
2982 default:
2983 if ((p_type >= PT_LOPROC) && (p_type <= PT_HIPROC))
2984 {
2985 const char * result;
2986
2987 switch (elf_header.e_machine)
2988 {
2989 case EM_AARCH64:
2990 result = get_aarch64_segment_type (p_type);
2991 break;
2992 case EM_ARM:
2993 result = get_arm_segment_type (p_type);
2994 break;
2995 case EM_MIPS:
2996 case EM_MIPS_RS3_LE:
2997 result = get_mips_segment_type (p_type);
2998 break;
2999 case EM_PARISC:
3000 result = get_parisc_segment_type (p_type);
3001 break;
3002 case EM_IA_64:
3003 result = get_ia64_segment_type (p_type);
3004 break;
3005 case EM_TI_C6000:
3006 result = get_tic6x_segment_type (p_type);
3007 break;
3008 default:
3009 result = NULL;
3010 break;
3011 }
3012
3013 if (result != NULL)
3014 return result;
3015
3016 sprintf (buff, "LOPROC+%lx", p_type - PT_LOPROC);
3017 }
3018 else if ((p_type >= PT_LOOS) && (p_type <= PT_HIOS))
3019 {
3020 const char * result;
3021
3022 switch (elf_header.e_machine)
3023 {
3024 case EM_PARISC:
3025 result = get_parisc_segment_type (p_type);
3026 break;
3027 case EM_IA_64:
3028 result = get_ia64_segment_type (p_type);
3029 break;
3030 default:
3031 result = NULL;
3032 break;
3033 }
3034
3035 if (result != NULL)
3036 return result;
3037
3038 sprintf (buff, "LOOS+%lx", p_type - PT_LOOS);
3039 }
3040 else
3041 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), p_type);
3042
3043 return buff;
3044 }
3045 }
3046
3047 static const char *
3048 get_mips_section_type_name (unsigned int sh_type)
3049 {
3050 switch (sh_type)
3051 {
3052 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST";
3053 case SHT_MIPS_MSYM: return "MIPS_MSYM";
3054 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT";
3055 case SHT_MIPS_GPTAB: return "MIPS_GPTAB";
3056 case SHT_MIPS_UCODE: return "MIPS_UCODE";
3057 case SHT_MIPS_DEBUG: return "MIPS_DEBUG";
3058 case SHT_MIPS_REGINFO: return "MIPS_REGINFO";
3059 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE";
3060 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM";
3061 case SHT_MIPS_RELD: return "MIPS_RELD";
3062 case SHT_MIPS_IFACE: return "MIPS_IFACE";
3063 case SHT_MIPS_CONTENT: return "MIPS_CONTENT";
3064 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS";
3065 case SHT_MIPS_SHDR: return "MIPS_SHDR";
3066 case SHT_MIPS_FDESC: return "MIPS_FDESC";
3067 case SHT_MIPS_EXTSYM: return "MIPS_EXTSYM";
3068 case SHT_MIPS_DENSE: return "MIPS_DENSE";
3069 case SHT_MIPS_PDESC: return "MIPS_PDESC";
3070 case SHT_MIPS_LOCSYM: return "MIPS_LOCSYM";
3071 case SHT_MIPS_AUXSYM: return "MIPS_AUXSYM";
3072 case SHT_MIPS_OPTSYM: return "MIPS_OPTSYM";
3073 case SHT_MIPS_LOCSTR: return "MIPS_LOCSTR";
3074 case SHT_MIPS_LINE: return "MIPS_LINE";
3075 case SHT_MIPS_RFDESC: return "MIPS_RFDESC";
3076 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM";
3077 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST";
3078 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS";
3079 case SHT_MIPS_DWARF: return "MIPS_DWARF";
3080 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL";
3081 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
3082 case SHT_MIPS_EVENTS: return "MIPS_EVENTS";
3083 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE";
3084 case SHT_MIPS_PIXIE: return "MIPS_PIXIE";
3085 case SHT_MIPS_XLATE: return "MIPS_XLATE";
3086 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG";
3087 case SHT_MIPS_WHIRL: return "MIPS_WHIRL";
3088 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION";
3089 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD";
3090 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION";
3091 default:
3092 break;
3093 }
3094 return NULL;
3095 }
3096
3097 static const char *
3098 get_parisc_section_type_name (unsigned int sh_type)
3099 {
3100 switch (sh_type)
3101 {
3102 case SHT_PARISC_EXT: return "PARISC_EXT";
3103 case SHT_PARISC_UNWIND: return "PARISC_UNWIND";
3104 case SHT_PARISC_DOC: return "PARISC_DOC";
3105 case SHT_PARISC_ANNOT: return "PARISC_ANNOT";
3106 case SHT_PARISC_SYMEXTN: return "PARISC_SYMEXTN";
3107 case SHT_PARISC_STUBS: return "PARISC_STUBS";
3108 case SHT_PARISC_DLKM: return "PARISC_DLKM";
3109 default:
3110 break;
3111 }
3112 return NULL;
3113 }
3114
3115 static const char *
3116 get_ia64_section_type_name (unsigned int sh_type)
3117 {
3118 /* If the top 8 bits are 0x78 the next 8 are the os/abi ID. */
3119 if ((sh_type & 0xFF000000) == SHT_IA_64_LOPSREG)
3120 return get_osabi_name ((sh_type & 0x00FF0000) >> 16);
3121
3122 switch (sh_type)
3123 {
3124 case SHT_IA_64_EXT: return "IA_64_EXT";
3125 case SHT_IA_64_UNWIND: return "IA_64_UNWIND";
3126 case SHT_IA_64_PRIORITY_INIT: return "IA_64_PRIORITY_INIT";
3127 case SHT_IA_64_VMS_TRACE: return "VMS_TRACE";
3128 case SHT_IA_64_VMS_TIE_SIGNATURES: return "VMS_TIE_SIGNATURES";
3129 case SHT_IA_64_VMS_DEBUG: return "VMS_DEBUG";
3130 case SHT_IA_64_VMS_DEBUG_STR: return "VMS_DEBUG_STR";
3131 case SHT_IA_64_VMS_LINKAGES: return "VMS_LINKAGES";
3132 case SHT_IA_64_VMS_SYMBOL_VECTOR: return "VMS_SYMBOL_VECTOR";
3133 case SHT_IA_64_VMS_FIXUP: return "VMS_FIXUP";
3134 default:
3135 break;
3136 }
3137 return NULL;
3138 }
3139
3140 static const char *
3141 get_x86_64_section_type_name (unsigned int sh_type)
3142 {
3143 switch (sh_type)
3144 {
3145 case SHT_X86_64_UNWIND: return "X86_64_UNWIND";
3146 default:
3147 break;
3148 }
3149 return NULL;
3150 }
3151
3152 static const char *
3153 get_aarch64_section_type_name (unsigned int sh_type)
3154 {
3155 switch (sh_type)
3156 {
3157 case SHT_AARCH64_ATTRIBUTES:
3158 return "AARCH64_ATTRIBUTES";
3159 default:
3160 break;
3161 }
3162 return NULL;
3163 }
3164
3165 static const char *
3166 get_arm_section_type_name (unsigned int sh_type)
3167 {
3168 switch (sh_type)
3169 {
3170 case SHT_ARM_EXIDX: return "ARM_EXIDX";
3171 case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP";
3172 case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES";
3173 case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY";
3174 case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION";
3175 default:
3176 break;
3177 }
3178 return NULL;
3179 }
3180
3181 static const char *
3182 get_tic6x_section_type_name (unsigned int sh_type)
3183 {
3184 switch (sh_type)
3185 {
3186 case SHT_C6000_UNWIND:
3187 return "C6000_UNWIND";
3188 case SHT_C6000_PREEMPTMAP:
3189 return "C6000_PREEMPTMAP";
3190 case SHT_C6000_ATTRIBUTES:
3191 return "C6000_ATTRIBUTES";
3192 case SHT_TI_ICODE:
3193 return "TI_ICODE";
3194 case SHT_TI_XREF:
3195 return "TI_XREF";
3196 case SHT_TI_HANDLER:
3197 return "TI_HANDLER";
3198 case SHT_TI_INITINFO:
3199 return "TI_INITINFO";
3200 case SHT_TI_PHATTRS:
3201 return "TI_PHATTRS";
3202 default:
3203 break;
3204 }
3205 return NULL;
3206 }
3207
3208 static const char *
3209 get_section_type_name (unsigned int sh_type)
3210 {
3211 static char buff[32];
3212
3213 switch (sh_type)
3214 {
3215 case SHT_NULL: return "NULL";
3216 case SHT_PROGBITS: return "PROGBITS";
3217 case SHT_SYMTAB: return "SYMTAB";
3218 case SHT_STRTAB: return "STRTAB";
3219 case SHT_RELA: return "RELA";
3220 case SHT_HASH: return "HASH";
3221 case SHT_DYNAMIC: return "DYNAMIC";
3222 case SHT_NOTE: return "NOTE";
3223 case SHT_NOBITS: return "NOBITS";
3224 case SHT_REL: return "REL";
3225 case SHT_SHLIB: return "SHLIB";
3226 case SHT_DYNSYM: return "DYNSYM";
3227 case SHT_INIT_ARRAY: return "INIT_ARRAY";
3228 case SHT_FINI_ARRAY: return "FINI_ARRAY";
3229 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY";
3230 case SHT_GNU_HASH: return "GNU_HASH";
3231 case SHT_GROUP: return "GROUP";
3232 case SHT_SYMTAB_SHNDX: return "SYMTAB SECTION INDICIES";
3233 case SHT_GNU_verdef: return "VERDEF";
3234 case SHT_GNU_verneed: return "VERNEED";
3235 case SHT_GNU_versym: return "VERSYM";
3236 case 0x6ffffff0: return "VERSYM";
3237 case 0x6ffffffc: return "VERDEF";
3238 case 0x7ffffffd: return "AUXILIARY";
3239 case 0x7fffffff: return "FILTER";
3240 case SHT_GNU_LIBLIST: return "GNU_LIBLIST";
3241
3242 default:
3243 if ((sh_type >= SHT_LOPROC) && (sh_type <= SHT_HIPROC))
3244 {
3245 const char * result;
3246
3247 switch (elf_header.e_machine)
3248 {
3249 case EM_MIPS:
3250 case EM_MIPS_RS3_LE:
3251 result = get_mips_section_type_name (sh_type);
3252 break;
3253 case EM_PARISC:
3254 result = get_parisc_section_type_name (sh_type);
3255 break;
3256 case EM_IA_64:
3257 result = get_ia64_section_type_name (sh_type);
3258 break;
3259 case EM_X86_64:
3260 case EM_L1OM:
3261 case EM_K1OM:
3262 result = get_x86_64_section_type_name (sh_type);
3263 break;
3264 case EM_AARCH64:
3265 result = get_aarch64_section_type_name (sh_type);
3266 break;
3267 case EM_ARM:
3268 result = get_arm_section_type_name (sh_type);
3269 break;
3270 case EM_TI_C6000:
3271 result = get_tic6x_section_type_name (sh_type);
3272 break;
3273 default:
3274 result = NULL;
3275 break;
3276 }
3277
3278 if (result != NULL)
3279 return result;
3280
3281 sprintf (buff, "LOPROC+%x", sh_type - SHT_LOPROC);
3282 }
3283 else if ((sh_type >= SHT_LOOS) && (sh_type <= SHT_HIOS))
3284 {
3285 const char * result;
3286
3287 switch (elf_header.e_machine)
3288 {
3289 case EM_IA_64:
3290 result = get_ia64_section_type_name (sh_type);
3291 break;
3292 default:
3293 result = NULL;
3294 break;
3295 }
3296
3297 if (result != NULL)
3298 return result;
3299
3300 sprintf (buff, "LOOS+%x", sh_type - SHT_LOOS);
3301 }
3302 else if ((sh_type >= SHT_LOUSER) && (sh_type <= SHT_HIUSER))
3303 sprintf (buff, "LOUSER+%x", sh_type - SHT_LOUSER);
3304 else
3305 /* This message is probably going to be displayed in a 15
3306 character wide field, so put the hex value first. */
3307 snprintf (buff, sizeof (buff), _("%08x: <unknown>"), sh_type);
3308
3309 return buff;
3310 }
3311 }
3312
3313 #define OPTION_DEBUG_DUMP 512
3314 #define OPTION_DYN_SYMS 513
3315 #define OPTION_DWARF_DEPTH 514
3316 #define OPTION_DWARF_START 515
3317 #define OPTION_DWARF_CHECK 516
3318
3319 static struct option options[] =
3320 {
3321 {"all", no_argument, 0, 'a'},
3322 {"file-header", no_argument, 0, 'h'},
3323 {"program-headers", no_argument, 0, 'l'},
3324 {"headers", no_argument, 0, 'e'},
3325 {"histogram", no_argument, 0, 'I'},
3326 {"segments", no_argument, 0, 'l'},
3327 {"sections", no_argument, 0, 'S'},
3328 {"section-headers", no_argument, 0, 'S'},
3329 {"section-groups", no_argument, 0, 'g'},
3330 {"section-details", no_argument, 0, 't'},
3331 {"full-section-name",no_argument, 0, 'N'},
3332 {"symbols", no_argument, 0, 's'},
3333 {"syms", no_argument, 0, 's'},
3334 {"dyn-syms", no_argument, 0, OPTION_DYN_SYMS},
3335 {"relocs", no_argument, 0, 'r'},
3336 {"notes", no_argument, 0, 'n'},
3337 {"dynamic", no_argument, 0, 'd'},
3338 {"arch-specific", no_argument, 0, 'A'},
3339 {"version-info", no_argument, 0, 'V'},
3340 {"use-dynamic", no_argument, 0, 'D'},
3341 {"unwind", no_argument, 0, 'u'},
3342 {"archive-index", no_argument, 0, 'c'},
3343 {"hex-dump", required_argument, 0, 'x'},
3344 {"relocated-dump", required_argument, 0, 'R'},
3345 {"string-dump", required_argument, 0, 'p'},
3346 #ifdef SUPPORT_DISASSEMBLY
3347 {"instruction-dump", required_argument, 0, 'i'},
3348 #endif
3349 {"debug-dump", optional_argument, 0, OPTION_DEBUG_DUMP},
3350
3351 {"dwarf-depth", required_argument, 0, OPTION_DWARF_DEPTH},
3352 {"dwarf-start", required_argument, 0, OPTION_DWARF_START},
3353 {"dwarf-check", no_argument, 0, OPTION_DWARF_CHECK},
3354
3355 {"version", no_argument, 0, 'v'},
3356 {"wide", no_argument, 0, 'W'},
3357 {"help", no_argument, 0, 'H'},
3358 {0, no_argument, 0, 0}
3359 };
3360
3361 static void
3362 usage (FILE * stream)
3363 {
3364 fprintf (stream, _("Usage: readelf <option(s)> elf-file(s)\n"));
3365 fprintf (stream, _(" Display information about the contents of ELF format files\n"));
3366 fprintf (stream, _(" Options are:\n\
3367 -a --all Equivalent to: -h -l -S -s -r -d -V -A -I\n\
3368 -h --file-header Display the ELF file header\n\
3369 -l --program-headers Display the program headers\n\
3370 --segments An alias for --program-headers\n\
3371 -S --section-headers Display the sections' header\n\
3372 --sections An alias for --section-headers\n\
3373 -g --section-groups Display the section groups\n\
3374 -t --section-details Display the section details\n\
3375 -e --headers Equivalent to: -h -l -S\n\
3376 -s --syms Display the symbol table\n\
3377 --symbols An alias for --syms\n\
3378 --dyn-syms Display the dynamic symbol table\n\
3379 -n --notes Display the core notes (if present)\n\
3380 -r --relocs Display the relocations (if present)\n\
3381 -u --unwind Display the unwind info (if present)\n\
3382 -d --dynamic Display the dynamic section (if present)\n\
3383 -V --version-info Display the version sections (if present)\n\
3384 -A --arch-specific Display architecture specific information (if any)\n\
3385 -c --archive-index Display the symbol/file index in an archive\n\
3386 -D --use-dynamic Use the dynamic section info when displaying symbols\n\
3387 -x --hex-dump=<number|name>\n\
3388 Dump the contents of section <number|name> as bytes\n\
3389 -p --string-dump=<number|name>\n\
3390 Dump the contents of section <number|name> as strings\n\
3391 -R --relocated-dump=<number|name>\n\
3392 Dump the contents of section <number|name> as relocated bytes\n\
3393 -w[lLiaprmfFsoRt] or\n\
3394 --debug-dump[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,\n\
3395 =frames-interp,=str,=loc,=Ranges,=pubtypes,\n\
3396 =gdb_index,=trace_info,=trace_abbrev,=trace_aranges,\n\
3397 =addr,=cu_index]\n\
3398 Display the contents of DWARF2 debug sections\n"));
3399 fprintf (stream, _("\
3400 --dwarf-depth=N Do not display DIEs at depth N or greater\n\
3401 --dwarf-start=N Display DIEs starting with N, at the same depth\n\
3402 or deeper\n"));
3403 #ifdef SUPPORT_DISASSEMBLY
3404 fprintf (stream, _("\
3405 -i --instruction-dump=<number|name>\n\
3406 Disassemble the contents of section <number|name>\n"));
3407 #endif
3408 fprintf (stream, _("\
3409 -I --histogram Display histogram of bucket list lengths\n\
3410 -W --wide Allow output width to exceed 80 characters\n\
3411 @<file> Read options from <file>\n\
3412 -H --help Display this information\n\
3413 -v --version Display the version number of readelf\n"));
3414
3415 if (REPORT_BUGS_TO[0] && stream == stdout)
3416 fprintf (stdout, _("Report bugs to %s\n"), REPORT_BUGS_TO);
3417
3418 exit (stream == stdout ? 0 : 1);
3419 }
3420
3421 /* Record the fact that the user wants the contents of section number
3422 SECTION to be displayed using the method(s) encoded as flags bits
3423 in TYPE. Note, TYPE can be zero if we are creating the array for
3424 the first time. */
3425
3426 static void
3427 request_dump_bynumber (unsigned int section, dump_type type)
3428 {
3429 if (section >= num_dump_sects)
3430 {
3431 dump_type * new_dump_sects;
3432
3433 new_dump_sects = (dump_type *) calloc (section + 1,
3434 sizeof (* dump_sects));
3435
3436 if (new_dump_sects == NULL)
3437 error (_("Out of memory allocating dump request table.\n"));
3438 else
3439 {
3440 /* Copy current flag settings. */
3441 memcpy (new_dump_sects, dump_sects, num_dump_sects * sizeof (* dump_sects));
3442
3443 free (dump_sects);
3444
3445 dump_sects = new_dump_sects;
3446 num_dump_sects = section + 1;
3447 }
3448 }
3449
3450 if (dump_sects)
3451 dump_sects[section] |= type;
3452
3453 return;
3454 }
3455
3456 /* Request a dump by section name. */
3457
3458 static void
3459 request_dump_byname (const char * section, dump_type type)
3460 {
3461 struct dump_list_entry * new_request;
3462
3463 new_request = (struct dump_list_entry *)
3464 malloc (sizeof (struct dump_list_entry));
3465 if (!new_request)
3466 error (_("Out of memory allocating dump request table.\n"));
3467
3468 new_request->name = strdup (section);
3469 if (!new_request->name)
3470 error (_("Out of memory allocating dump request table.\n"));
3471
3472 new_request->type = type;
3473
3474 new_request->next = dump_sects_byname;
3475 dump_sects_byname = new_request;
3476 }
3477
3478 static inline void
3479 request_dump (dump_type type)
3480 {
3481 int section;
3482 char * cp;
3483
3484 do_dump++;
3485 section = strtoul (optarg, & cp, 0);
3486
3487 if (! *cp && section >= 0)
3488 request_dump_bynumber (section, type);
3489 else
3490 request_dump_byname (optarg, type);
3491 }
3492
3493
3494 static void
3495 parse_args (int argc, char ** argv)
3496 {
3497 int c;
3498
3499 if (argc < 2)
3500 usage (stderr);
3501
3502 while ((c = getopt_long
3503 (argc, argv, "ADHINR:SVWacdeghi:lnp:rstuvw::x:", options, NULL)) != EOF)
3504 {
3505 switch (c)
3506 {
3507 case 0:
3508 /* Long options. */
3509 break;
3510 case 'H':
3511 usage (stdout);
3512 break;
3513
3514 case 'a':
3515 do_syms++;
3516 do_reloc++;
3517 do_unwind++;
3518 do_dynamic++;
3519 do_header++;
3520 do_sections++;
3521 do_section_groups++;
3522 do_segments++;
3523 do_version++;
3524 do_histogram++;
3525 do_arch++;
3526 do_notes++;
3527 break;
3528 case 'g':
3529 do_section_groups++;
3530 break;
3531 case 't':
3532 case 'N':
3533 do_sections++;
3534 do_section_details++;
3535 break;
3536 case 'e':
3537 do_header++;
3538 do_sections++;
3539 do_segments++;
3540 break;
3541 case 'A':
3542 do_arch++;
3543 break;
3544 case 'D':
3545 do_using_dynamic++;
3546 break;
3547 case 'r':
3548 do_reloc++;
3549 break;
3550 case 'u':
3551 do_unwind++;
3552 break;
3553 case 'h':
3554 do_header++;
3555 break;
3556 case 'l':
3557 do_segments++;
3558 break;
3559 case 's':
3560 do_syms++;
3561 break;
3562 case 'S':
3563 do_sections++;
3564 break;
3565 case 'd':
3566 do_dynamic++;
3567 break;
3568 case 'I':
3569 do_histogram++;
3570 break;
3571 case 'n':
3572 do_notes++;
3573 break;
3574 case 'c':
3575 do_archive_index++;
3576 break;
3577 case 'x':
3578 request_dump (HEX_DUMP);
3579 break;
3580 case 'p':
3581 request_dump (STRING_DUMP);
3582 break;
3583 case 'R':
3584 request_dump (RELOC_DUMP);
3585 break;
3586 case 'w':
3587 do_dump++;
3588 if (optarg == 0)
3589 {
3590 do_debugging = 1;
3591 dwarf_select_sections_all ();
3592 }
3593 else
3594 {
3595 do_debugging = 0;
3596 dwarf_select_sections_by_letters (optarg);
3597 }
3598 break;
3599 case OPTION_DEBUG_DUMP:
3600 do_dump++;
3601 if (optarg == 0)
3602 do_debugging = 1;
3603 else
3604 {
3605 do_debugging = 0;
3606 dwarf_select_sections_by_names (optarg);
3607 }
3608 break;
3609 case OPTION_DWARF_DEPTH:
3610 {
3611 char *cp;
3612
3613 dwarf_cutoff_level = strtoul (optarg, & cp, 0);
3614 }
3615 break;
3616 case OPTION_DWARF_START:
3617 {
3618 char *cp;
3619
3620 dwarf_start_die = strtoul (optarg, & cp, 0);
3621 }
3622 break;
3623 case OPTION_DWARF_CHECK:
3624 dwarf_check = 1;
3625 break;
3626 case OPTION_DYN_SYMS:
3627 do_dyn_syms++;
3628 break;
3629 #ifdef SUPPORT_DISASSEMBLY
3630 case 'i':
3631 request_dump (DISASS_DUMP);
3632 break;
3633 #endif
3634 case 'v':
3635 print_version (program_name);
3636 break;
3637 case 'V':
3638 do_version++;
3639 break;
3640 case 'W':
3641 do_wide++;
3642 break;
3643 default:
3644 /* xgettext:c-format */
3645 error (_("Invalid option '-%c'\n"), c);
3646 /* Drop through. */
3647 case '?':
3648 usage (stderr);
3649 }
3650 }
3651
3652 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
3653 && !do_segments && !do_header && !do_dump && !do_version
3654 && !do_histogram && !do_debugging && !do_arch && !do_notes
3655 && !do_section_groups && !do_archive_index
3656 && !do_dyn_syms)
3657 usage (stderr);
3658 else if (argc < 3)
3659 {
3660 warn (_("Nothing to do.\n"));
3661 usage (stderr);
3662 }
3663 }
3664
3665 static const char *
3666 get_elf_class (unsigned int elf_class)
3667 {
3668 static char buff[32];
3669
3670 switch (elf_class)
3671 {
3672 case ELFCLASSNONE: return _("none");
3673 case ELFCLASS32: return "ELF32";
3674 case ELFCLASS64: return "ELF64";
3675 default:
3676 snprintf (buff, sizeof (buff), _("<unknown: %x>"), elf_class);
3677 return buff;
3678 }
3679 }
3680
3681 static const char *
3682 get_data_encoding (unsigned int encoding)
3683 {
3684 static char buff[32];
3685
3686 switch (encoding)
3687 {
3688 case ELFDATANONE: return _("none");
3689 case ELFDATA2LSB: return _("2's complement, little endian");
3690 case ELFDATA2MSB: return _("2's complement, big endian");
3691 default:
3692 snprintf (buff, sizeof (buff), _("<unknown: %x>"), encoding);
3693 return buff;
3694 }
3695 }
3696
3697 /* Decode the data held in 'elf_header'. */
3698
3699 static int
3700 process_file_header (void)
3701 {
3702 if ( elf_header.e_ident[EI_MAG0] != ELFMAG0
3703 || elf_header.e_ident[EI_MAG1] != ELFMAG1
3704 || elf_header.e_ident[EI_MAG2] != ELFMAG2
3705 || elf_header.e_ident[EI_MAG3] != ELFMAG3)
3706 {
3707 error
3708 (_("Not an ELF file - it has the wrong magic bytes at the start\n"));
3709 return 0;
3710 }
3711
3712 init_dwarf_regnames (elf_header.e_machine);
3713
3714 if (do_header)
3715 {
3716 int i;
3717
3718 printf (_("ELF Header:\n"));
3719 printf (_(" Magic: "));
3720 for (i = 0; i < EI_NIDENT; i++)
3721 printf ("%2.2x ", elf_header.e_ident[i]);
3722 printf ("\n");
3723 printf (_(" Class: %s\n"),
3724 get_elf_class (elf_header.e_ident[EI_CLASS]));
3725 printf (_(" Data: %s\n"),
3726 get_data_encoding (elf_header.e_ident[EI_DATA]));
3727 printf (_(" Version: %d %s\n"),
3728 elf_header.e_ident[EI_VERSION],
3729 (elf_header.e_ident[EI_VERSION] == EV_CURRENT
3730 ? "(current)"
3731 : (elf_header.e_ident[EI_VERSION] != EV_NONE
3732 ? _("<unknown: %lx>")
3733 : "")));
3734 printf (_(" OS/ABI: %s\n"),
3735 get_osabi_name (elf_header.e_ident[EI_OSABI]));
3736 printf (_(" ABI Version: %d\n"),
3737 elf_header.e_ident[EI_ABIVERSION]);
3738 printf (_(" Type: %s\n"),
3739 get_file_type (elf_header.e_type));
3740 printf (_(" Machine: %s\n"),
3741 get_machine_name (elf_header.e_machine));
3742 printf (_(" Version: 0x%lx\n"),
3743 (unsigned long) elf_header.e_version);
3744
3745 printf (_(" Entry point address: "));
3746 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
3747 printf (_("\n Start of program headers: "));
3748 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
3749 printf (_(" (bytes into file)\n Start of section headers: "));
3750 print_vma ((bfd_vma) elf_header.e_shoff, DEC);
3751 printf (_(" (bytes into file)\n"));
3752
3753 printf (_(" Flags: 0x%lx%s\n"),
3754 (unsigned long) elf_header.e_flags,
3755 get_machine_flags (elf_header.e_flags, elf_header.e_machine));
3756 printf (_(" Size of this header: %ld (bytes)\n"),
3757 (long) elf_header.e_ehsize);
3758 printf (_(" Size of program headers: %ld (bytes)\n"),
3759 (long) elf_header.e_phentsize);
3760 printf (_(" Number of program headers: %ld"),
3761 (long) elf_header.e_phnum);
3762 if (section_headers != NULL
3763 && elf_header.e_phnum == PN_XNUM
3764 && section_headers[0].sh_info != 0)
3765 printf (" (%ld)", (long) section_headers[0].sh_info);
3766 putc ('\n', stdout);
3767 printf (_(" Size of section headers: %ld (bytes)\n"),
3768 (long) elf_header.e_shentsize);
3769 printf (_(" Number of section headers: %ld"),
3770 (long) elf_header.e_shnum);
3771 if (section_headers != NULL && elf_header.e_shnum == SHN_UNDEF)
3772 printf (" (%ld)", (long) section_headers[0].sh_size);
3773 putc ('\n', stdout);
3774 printf (_(" Section header string table index: %ld"),
3775 (long) elf_header.e_shstrndx);
3776 if (section_headers != NULL
3777 && elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
3778 printf (" (%u)", section_headers[0].sh_link);
3779 else if (elf_header.e_shstrndx != SHN_UNDEF
3780 && elf_header.e_shstrndx >= elf_header.e_shnum)
3781 printf (_(" <corrupt: out of range>"));
3782 putc ('\n', stdout);
3783 }
3784
3785 if (section_headers != NULL)
3786 {
3787 if (elf_header.e_phnum == PN_XNUM
3788 && section_headers[0].sh_info != 0)
3789 elf_header.e_phnum = section_headers[0].sh_info;
3790 if (elf_header.e_shnum == SHN_UNDEF)
3791 elf_header.e_shnum = section_headers[0].sh_size;
3792 if (elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
3793 elf_header.e_shstrndx = section_headers[0].sh_link;
3794 else if (elf_header.e_shstrndx >= elf_header.e_shnum)
3795 elf_header.e_shstrndx = SHN_UNDEF;
3796 free (section_headers);
3797 section_headers = NULL;
3798 }
3799
3800 return 1;
3801 }
3802
3803
3804 static int
3805 get_32bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
3806 {
3807 Elf32_External_Phdr * phdrs;
3808 Elf32_External_Phdr * external;
3809 Elf_Internal_Phdr * internal;
3810 unsigned int i;
3811
3812 phdrs = (Elf32_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
3813 elf_header.e_phentsize,
3814 elf_header.e_phnum,
3815 _("program headers"));
3816 if (!phdrs)
3817 return 0;
3818
3819 for (i = 0, internal = pheaders, external = phdrs;
3820 i < elf_header.e_phnum;
3821 i++, internal++, external++)
3822 {
3823 internal->p_type = BYTE_GET (external->p_type);
3824 internal->p_offset = BYTE_GET (external->p_offset);
3825 internal->p_vaddr = BYTE_GET (external->p_vaddr);
3826 internal->p_paddr = BYTE_GET (external->p_paddr);
3827 internal->p_filesz = BYTE_GET (external->p_filesz);
3828 internal->p_memsz = BYTE_GET (external->p_memsz);
3829 internal->p_flags = BYTE_GET (external->p_flags);
3830 internal->p_align = BYTE_GET (external->p_align);
3831 }
3832
3833 free (phdrs);
3834
3835 return 1;
3836 }
3837
3838 static int
3839 get_64bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
3840 {
3841 Elf64_External_Phdr * phdrs;
3842 Elf64_External_Phdr * external;
3843 Elf_Internal_Phdr * internal;
3844 unsigned int i;
3845
3846 phdrs = (Elf64_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
3847 elf_header.e_phentsize,
3848 elf_header.e_phnum,
3849 _("program headers"));
3850 if (!phdrs)
3851 return 0;
3852
3853 for (i = 0, internal = pheaders, external = phdrs;
3854 i < elf_header.e_phnum;
3855 i++, internal++, external++)
3856 {
3857 internal->p_type = BYTE_GET (external->p_type);
3858 internal->p_flags = BYTE_GET (external->p_flags);
3859 internal->p_offset = BYTE_GET (external->p_offset);
3860 internal->p_vaddr = BYTE_GET (external->p_vaddr);
3861 internal->p_paddr = BYTE_GET (external->p_paddr);
3862 internal->p_filesz = BYTE_GET (external->p_filesz);
3863 internal->p_memsz = BYTE_GET (external->p_memsz);
3864 internal->p_align = BYTE_GET (external->p_align);
3865 }
3866
3867 free (phdrs);
3868
3869 return 1;
3870 }
3871
3872 /* Returns 1 if the program headers were read into `program_headers'. */
3873
3874 static int
3875 get_program_headers (FILE * file)
3876 {
3877 Elf_Internal_Phdr * phdrs;
3878
3879 /* Check cache of prior read. */
3880 if (program_headers != NULL)
3881 return 1;
3882
3883 phdrs = (Elf_Internal_Phdr *) cmalloc (elf_header.e_phnum,
3884 sizeof (Elf_Internal_Phdr));
3885
3886 if (phdrs == NULL)
3887 {
3888 error (_("Out of memory\n"));
3889 return 0;
3890 }
3891
3892 if (is_32bit_elf
3893 ? get_32bit_program_headers (file, phdrs)
3894 : get_64bit_program_headers (file, phdrs))
3895 {
3896 program_headers = phdrs;
3897 return 1;
3898 }
3899
3900 free (phdrs);
3901 return 0;
3902 }
3903
3904 /* Returns 1 if the program headers were loaded. */
3905
3906 static int
3907 process_program_headers (FILE * file)
3908 {
3909 Elf_Internal_Phdr * segment;
3910 unsigned int i;
3911
3912 if (elf_header.e_phnum == 0)
3913 {
3914 /* PR binutils/12467. */
3915 if (elf_header.e_phoff != 0)
3916 warn (_("possibly corrupt ELF header - it has a non-zero program"
3917 " header offset, but no program headers"));
3918 else if (do_segments)
3919 printf (_("\nThere are no program headers in this file.\n"));
3920 return 0;
3921 }
3922
3923 if (do_segments && !do_header)
3924 {
3925 printf (_("\nElf file type is %s\n"), get_file_type (elf_header.e_type));
3926 printf (_("Entry point "));
3927 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
3928 printf (_("\nThere are %d program headers, starting at offset "),
3929 elf_header.e_phnum);
3930 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
3931 printf ("\n");
3932 }
3933
3934 if (! get_program_headers (file))
3935 return 0;
3936
3937 if (do_segments)
3938 {
3939 if (elf_header.e_phnum > 1)
3940 printf (_("\nProgram Headers:\n"));
3941 else
3942 printf (_("\nProgram Headers:\n"));
3943
3944 if (is_32bit_elf)
3945 printf
3946 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
3947 else if (do_wide)
3948 printf
3949 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
3950 else
3951 {
3952 printf
3953 (_(" Type Offset VirtAddr PhysAddr\n"));
3954 printf
3955 (_(" FileSiz MemSiz Flags Align\n"));
3956 }
3957 }
3958
3959 dynamic_addr = 0;
3960 dynamic_size = 0;
3961
3962 for (i = 0, segment = program_headers;
3963 i < elf_header.e_phnum;
3964 i++, segment++)
3965 {
3966 if (do_segments)
3967 {
3968 printf (" %-14.14s ", get_segment_type (segment->p_type));
3969
3970 if (is_32bit_elf)
3971 {
3972 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
3973 printf ("0x%8.8lx ", (unsigned long) segment->p_vaddr);
3974 printf ("0x%8.8lx ", (unsigned long) segment->p_paddr);
3975 printf ("0x%5.5lx ", (unsigned long) segment->p_filesz);
3976 printf ("0x%5.5lx ", (unsigned long) segment->p_memsz);
3977 printf ("%c%c%c ",
3978 (segment->p_flags & PF_R ? 'R' : ' '),
3979 (segment->p_flags & PF_W ? 'W' : ' '),
3980 (segment->p_flags & PF_X ? 'E' : ' '));
3981 printf ("%#lx", (unsigned long) segment->p_align);
3982 }
3983 else if (do_wide)
3984 {
3985 if ((unsigned long) segment->p_offset == segment->p_offset)
3986 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
3987 else
3988 {
3989 print_vma (segment->p_offset, FULL_HEX);
3990 putchar (' ');
3991 }
3992
3993 print_vma (segment->p_vaddr, FULL_HEX);
3994 putchar (' ');
3995 print_vma (segment->p_paddr, FULL_HEX);
3996 putchar (' ');
3997
3998 if ((unsigned long) segment->p_filesz == segment->p_filesz)
3999 printf ("0x%6.6lx ", (unsigned long) segment->p_filesz);
4000 else
4001 {
4002 print_vma (segment->p_filesz, FULL_HEX);
4003 putchar (' ');
4004 }
4005
4006 if ((unsigned long) segment->p_memsz == segment->p_memsz)
4007 printf ("0x%6.6lx", (unsigned long) segment->p_memsz);
4008 else
4009 {
4010 print_vma (segment->p_memsz, FULL_HEX);
4011 }
4012
4013 printf (" %c%c%c ",
4014 (segment->p_flags & PF_R ? 'R' : ' '),
4015 (segment->p_flags & PF_W ? 'W' : ' '),
4016 (segment->p_flags & PF_X ? 'E' : ' '));
4017
4018 if ((unsigned long) segment->p_align == segment->p_align)
4019 printf ("%#lx", (unsigned long) segment->p_align);
4020 else
4021 {
4022 print_vma (segment->p_align, PREFIX_HEX);
4023 }
4024 }
4025 else
4026 {
4027 print_vma (segment->p_offset, FULL_HEX);
4028 putchar (' ');
4029 print_vma (segment->p_vaddr, FULL_HEX);
4030 putchar (' ');
4031 print_vma (segment->p_paddr, FULL_HEX);
4032 printf ("\n ");
4033 print_vma (segment->p_filesz, FULL_HEX);
4034 putchar (' ');
4035 print_vma (segment->p_memsz, FULL_HEX);
4036 printf (" %c%c%c ",
4037 (segment->p_flags & PF_R ? 'R' : ' '),
4038 (segment->p_flags & PF_W ? 'W' : ' '),
4039 (segment->p_flags & PF_X ? 'E' : ' '));
4040 print_vma (segment->p_align, HEX);
4041 }
4042 }
4043
4044 switch (segment->p_type)
4045 {
4046 case PT_DYNAMIC:
4047 if (dynamic_addr)
4048 error (_("more than one dynamic segment\n"));
4049
4050 /* By default, assume that the .dynamic section is the first
4051 section in the DYNAMIC segment. */
4052 dynamic_addr = segment->p_offset;
4053 dynamic_size = segment->p_filesz;
4054
4055 /* Try to locate the .dynamic section. If there is
4056 a section header table, we can easily locate it. */
4057 if (section_headers != NULL)
4058 {
4059 Elf_Internal_Shdr * sec;
4060
4061 sec = find_section (".dynamic");
4062 if (sec == NULL || sec->sh_size == 0)
4063 {
4064 /* A corresponding .dynamic section is expected, but on
4065 IA-64/OpenVMS it is OK for it to be missing. */
4066 if (!is_ia64_vms ())
4067 error (_("no .dynamic section in the dynamic segment\n"));
4068 break;
4069 }
4070
4071 if (sec->sh_type == SHT_NOBITS)
4072 {
4073 dynamic_size = 0;
4074 break;
4075 }
4076
4077 dynamic_addr = sec->sh_offset;
4078 dynamic_size = sec->sh_size;
4079
4080 if (dynamic_addr < segment->p_offset
4081 || dynamic_addr > segment->p_offset + segment->p_filesz)
4082 warn (_("the .dynamic section is not contained"
4083 " within the dynamic segment\n"));
4084 else if (dynamic_addr > segment->p_offset)
4085 warn (_("the .dynamic section is not the first section"
4086 " in the dynamic segment.\n"));
4087 }
4088 break;
4089
4090 case PT_INTERP:
4091 if (fseek (file, archive_file_offset + (long) segment->p_offset,
4092 SEEK_SET))
4093 error (_("Unable to find program interpreter name\n"));
4094 else
4095 {
4096 char fmt [32];
4097 int ret = snprintf (fmt, sizeof (fmt), "%%%ds", PATH_MAX);
4098
4099 if (ret >= (int) sizeof (fmt) || ret < 0)
4100 error (_("Internal error: failed to create format string to display program interpreter\n"));
4101
4102 program_interpreter[0] = 0;
4103 if (fscanf (file, fmt, program_interpreter) <= 0)
4104 error (_("Unable to read program interpreter name\n"));
4105
4106 if (do_segments)
4107 printf (_("\n [Requesting program interpreter: %s]"),
4108 program_interpreter);
4109 }
4110 break;
4111 }
4112
4113 if (do_segments)
4114 putc ('\n', stdout);
4115 }
4116
4117 if (do_segments && section_headers != NULL && string_table != NULL)
4118 {
4119 printf (_("\n Section to Segment mapping:\n"));
4120 printf (_(" Segment Sections...\n"));
4121
4122 for (i = 0; i < elf_header.e_phnum; i++)
4123 {
4124 unsigned int j;
4125 Elf_Internal_Shdr * section;
4126
4127 segment = program_headers + i;
4128 section = section_headers + 1;
4129
4130 printf (" %2.2d ", i);
4131
4132 for (j = 1; j < elf_header.e_shnum; j++, section++)
4133 {
4134 if (!ELF_TBSS_SPECIAL (section, segment)
4135 && ELF_SECTION_IN_SEGMENT_STRICT (section, segment))
4136 printf ("%s ", SECTION_NAME (section));
4137 }
4138
4139 putc ('\n',stdout);
4140 }
4141 }
4142
4143 return 1;
4144 }
4145
4146
4147 /* Find the file offset corresponding to VMA by using the program headers. */
4148
4149 static long
4150 offset_from_vma (FILE * file, bfd_vma vma, bfd_size_type size)
4151 {
4152 Elf_Internal_Phdr * seg;
4153
4154 if (! get_program_headers (file))
4155 {
4156 warn (_("Cannot interpret virtual addresses without program headers.\n"));
4157 return (long) vma;
4158 }
4159
4160 for (seg = program_headers;
4161 seg < program_headers + elf_header.e_phnum;
4162 ++seg)
4163 {
4164 if (seg->p_type != PT_LOAD)
4165 continue;
4166
4167 if (vma >= (seg->p_vaddr & -seg->p_align)
4168 && vma + size <= seg->p_vaddr + seg->p_filesz)
4169 return vma - seg->p_vaddr + seg->p_offset;
4170 }
4171
4172 warn (_("Virtual address 0x%lx not located in any PT_LOAD segment.\n"),
4173 (unsigned long) vma);
4174 return (long) vma;
4175 }
4176
4177
4178 static int
4179 get_32bit_section_headers (FILE * file, unsigned int num)
4180 {
4181 Elf32_External_Shdr * shdrs;
4182 Elf_Internal_Shdr * internal;
4183 unsigned int i;
4184
4185 shdrs = (Elf32_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
4186 elf_header.e_shentsize, num,
4187 _("section headers"));
4188 if (!shdrs)
4189 return 0;
4190
4191 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
4192 sizeof (Elf_Internal_Shdr));
4193
4194 if (section_headers == NULL)
4195 {
4196 error (_("Out of memory\n"));
4197 return 0;
4198 }
4199
4200 for (i = 0, internal = section_headers;
4201 i < num;
4202 i++, internal++)
4203 {
4204 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
4205 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
4206 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
4207 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
4208 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
4209 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
4210 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
4211 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
4212 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
4213 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
4214 }
4215
4216 free (shdrs);
4217
4218 return 1;
4219 }
4220
4221 static int
4222 get_64bit_section_headers (FILE * file, unsigned int num)
4223 {
4224 Elf64_External_Shdr * shdrs;
4225 Elf_Internal_Shdr * internal;
4226 unsigned int i;
4227
4228 shdrs = (Elf64_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
4229 elf_header.e_shentsize, num,
4230 _("section headers"));
4231 if (!shdrs)
4232 return 0;
4233
4234 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
4235 sizeof (Elf_Internal_Shdr));
4236
4237 if (section_headers == NULL)
4238 {
4239 error (_("Out of memory\n"));
4240 return 0;
4241 }
4242
4243 for (i = 0, internal = section_headers;
4244 i < num;
4245 i++, internal++)
4246 {
4247 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
4248 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
4249 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
4250 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
4251 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
4252 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
4253 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
4254 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
4255 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
4256 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
4257 }
4258
4259 free (shdrs);
4260
4261 return 1;
4262 }
4263
4264 static Elf_Internal_Sym *
4265 get_32bit_elf_symbols (FILE * file,
4266 Elf_Internal_Shdr * section,
4267 unsigned long * num_syms_return)
4268 {
4269 unsigned long number = 0;
4270 Elf32_External_Sym * esyms = NULL;
4271 Elf_External_Sym_Shndx * shndx = NULL;
4272 Elf_Internal_Sym * isyms = NULL;
4273 Elf_Internal_Sym * psym;
4274 unsigned int j;
4275
4276 /* Run some sanity checks first. */
4277 if (section->sh_entsize == 0)
4278 {
4279 error (_("sh_entsize is zero\n"));
4280 goto exit_point;
4281 }
4282
4283 number = section->sh_size / section->sh_entsize;
4284
4285 if (number * sizeof (Elf32_External_Sym) > section->sh_size + 1)
4286 {
4287 error (_("Invalid sh_entsize\n"));
4288 goto exit_point;
4289 }
4290
4291 esyms = (Elf32_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
4292 section->sh_size, _("symbols"));
4293 if (esyms == NULL)
4294 goto exit_point;
4295
4296 shndx = NULL;
4297 if (symtab_shndx_hdr != NULL
4298 && (symtab_shndx_hdr->sh_link
4299 == (unsigned long) (section - section_headers)))
4300 {
4301 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
4302 symtab_shndx_hdr->sh_offset,
4303 1, symtab_shndx_hdr->sh_size,
4304 _("symbol table section indicies"));
4305 if (shndx == NULL)
4306 goto exit_point;
4307 }
4308
4309 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
4310
4311 if (isyms == NULL)
4312 {
4313 error (_("Out of memory\n"));
4314 goto exit_point;
4315 }
4316
4317 for (j = 0, psym = isyms; j < number; j++, psym++)
4318 {
4319 psym->st_name = BYTE_GET (esyms[j].st_name);
4320 psym->st_value = BYTE_GET (esyms[j].st_value);
4321 psym->st_size = BYTE_GET (esyms[j].st_size);
4322 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
4323 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
4324 psym->st_shndx
4325 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
4326 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
4327 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
4328 psym->st_info = BYTE_GET (esyms[j].st_info);
4329 psym->st_other = BYTE_GET (esyms[j].st_other);
4330 }
4331
4332 exit_point:
4333 if (shndx != NULL)
4334 free (shndx);
4335 if (esyms != NULL)
4336 free (esyms);
4337
4338 if (num_syms_return != NULL)
4339 * num_syms_return = isyms == NULL ? 0 : number;
4340
4341 return isyms;
4342 }
4343
4344 static Elf_Internal_Sym *
4345 get_64bit_elf_symbols (FILE * file,
4346 Elf_Internal_Shdr * section,
4347 unsigned long * num_syms_return)
4348 {
4349 unsigned long number = 0;
4350 Elf64_External_Sym * esyms = NULL;
4351 Elf_External_Sym_Shndx * shndx = NULL;
4352 Elf_Internal_Sym * isyms = NULL;
4353 Elf_Internal_Sym * psym;
4354 unsigned int j;
4355
4356 /* Run some sanity checks first. */
4357 if (section->sh_entsize == 0)
4358 {
4359 error (_("sh_entsize is zero\n"));
4360 goto exit_point;
4361 }
4362
4363 number = section->sh_size / section->sh_entsize;
4364
4365 if (number * sizeof (Elf64_External_Sym) > section->sh_size + 1)
4366 {
4367 error (_("Invalid sh_entsize\n"));
4368 goto exit_point;
4369 }
4370
4371 esyms = (Elf64_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
4372 section->sh_size, _("symbols"));
4373 if (!esyms)
4374 goto exit_point;
4375
4376 if (symtab_shndx_hdr != NULL
4377 && (symtab_shndx_hdr->sh_link
4378 == (unsigned long) (section - section_headers)))
4379 {
4380 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
4381 symtab_shndx_hdr->sh_offset,
4382 1, symtab_shndx_hdr->sh_size,
4383 _("symbol table section indicies"));
4384 if (shndx == NULL)
4385 goto exit_point;
4386 }
4387
4388 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
4389
4390 if (isyms == NULL)
4391 {
4392 error (_("Out of memory\n"));
4393 goto exit_point;
4394 }
4395
4396 for (j = 0, psym = isyms; j < number; j++, psym++)
4397 {
4398 psym->st_name = BYTE_GET (esyms[j].st_name);
4399 psym->st_info = BYTE_GET (esyms[j].st_info);
4400 psym->st_other = BYTE_GET (esyms[j].st_other);
4401 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
4402
4403 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
4404 psym->st_shndx
4405 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
4406 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
4407 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
4408
4409 psym->st_value = BYTE_GET (esyms[j].st_value);
4410 psym->st_size = BYTE_GET (esyms[j].st_size);
4411 }
4412
4413 exit_point:
4414 if (shndx != NULL)
4415 free (shndx);
4416 if (esyms != NULL)
4417 free (esyms);
4418
4419 if (num_syms_return != NULL)
4420 * num_syms_return = isyms == NULL ? 0 : number;
4421
4422 return isyms;
4423 }
4424
4425 static const char *
4426 get_elf_section_flags (bfd_vma sh_flags)
4427 {
4428 static char buff[1024];
4429 char * p = buff;
4430 int field_size = is_32bit_elf ? 8 : 16;
4431 int sindex;
4432 int size = sizeof (buff) - (field_size + 4 + 1);
4433 bfd_vma os_flags = 0;
4434 bfd_vma proc_flags = 0;
4435 bfd_vma unknown_flags = 0;
4436 static const struct
4437 {
4438 const char * str;
4439 int len;
4440 }
4441 flags [] =
4442 {
4443 /* 0 */ { STRING_COMMA_LEN ("WRITE") },
4444 /* 1 */ { STRING_COMMA_LEN ("ALLOC") },
4445 /* 2 */ { STRING_COMMA_LEN ("EXEC") },
4446 /* 3 */ { STRING_COMMA_LEN ("MERGE") },
4447 /* 4 */ { STRING_COMMA_LEN ("STRINGS") },
4448 /* 5 */ { STRING_COMMA_LEN ("INFO LINK") },
4449 /* 6 */ { STRING_COMMA_LEN ("LINK ORDER") },
4450 /* 7 */ { STRING_COMMA_LEN ("OS NONCONF") },
4451 /* 8 */ { STRING_COMMA_LEN ("GROUP") },
4452 /* 9 */ { STRING_COMMA_LEN ("TLS") },
4453 /* IA-64 specific. */
4454 /* 10 */ { STRING_COMMA_LEN ("SHORT") },
4455 /* 11 */ { STRING_COMMA_LEN ("NORECOV") },
4456 /* IA-64 OpenVMS specific. */
4457 /* 12 */ { STRING_COMMA_LEN ("VMS_GLOBAL") },
4458 /* 13 */ { STRING_COMMA_LEN ("VMS_OVERLAID") },
4459 /* 14 */ { STRING_COMMA_LEN ("VMS_SHARED") },
4460 /* 15 */ { STRING_COMMA_LEN ("VMS_VECTOR") },
4461 /* 16 */ { STRING_COMMA_LEN ("VMS_ALLOC_64BIT") },
4462 /* 17 */ { STRING_COMMA_LEN ("VMS_PROTECTED") },
4463 /* Generic. */
4464 /* 18 */ { STRING_COMMA_LEN ("EXCLUDE") },
4465 /* SPARC specific. */
4466 /* 19 */ { STRING_COMMA_LEN ("ORDERED") }
4467 };
4468
4469 if (do_section_details)
4470 {
4471 sprintf (buff, "[%*.*lx]: ",
4472 field_size, field_size, (unsigned long) sh_flags);
4473 p += field_size + 4;
4474 }
4475
4476 while (sh_flags)
4477 {
4478 bfd_vma flag;
4479
4480 flag = sh_flags & - sh_flags;
4481 sh_flags &= ~ flag;
4482
4483 if (do_section_details)
4484 {
4485 switch (flag)
4486 {
4487 case SHF_WRITE: sindex = 0; break;
4488 case SHF_ALLOC: sindex = 1; break;
4489 case SHF_EXECINSTR: sindex = 2; break;
4490 case SHF_MERGE: sindex = 3; break;
4491 case SHF_STRINGS: sindex = 4; break;
4492 case SHF_INFO_LINK: sindex = 5; break;
4493 case SHF_LINK_ORDER: sindex = 6; break;
4494 case SHF_OS_NONCONFORMING: sindex = 7; break;
4495 case SHF_GROUP: sindex = 8; break;
4496 case SHF_TLS: sindex = 9; break;
4497 case SHF_EXCLUDE: sindex = 18; break;
4498
4499 default:
4500 sindex = -1;
4501 switch (elf_header.e_machine)
4502 {
4503 case EM_IA_64:
4504 if (flag == SHF_IA_64_SHORT)
4505 sindex = 10;
4506 else if (flag == SHF_IA_64_NORECOV)
4507 sindex = 11;
4508 #ifdef BFD64
4509 else if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
4510 switch (flag)
4511 {
4512 case SHF_IA_64_VMS_GLOBAL: sindex = 12; break;
4513 case SHF_IA_64_VMS_OVERLAID: sindex = 13; break;
4514 case SHF_IA_64_VMS_SHARED: sindex = 14; break;
4515 case SHF_IA_64_VMS_VECTOR: sindex = 15; break;
4516 case SHF_IA_64_VMS_ALLOC_64BIT: sindex = 16; break;
4517 case SHF_IA_64_VMS_PROTECTED: sindex = 17; break;
4518 default: break;
4519 }
4520 #endif
4521 break;
4522
4523 case EM_386:
4524 case EM_486:
4525 case EM_X86_64:
4526 case EM_L1OM:
4527 case EM_K1OM:
4528 case EM_OLD_SPARCV9:
4529 case EM_SPARC32PLUS:
4530 case EM_SPARCV9:
4531 case EM_SPARC:
4532 if (flag == SHF_ORDERED)
4533 sindex = 19;
4534 break;
4535 default:
4536 break;
4537 }
4538 }
4539
4540 if (sindex != -1)
4541 {
4542 if (p != buff + field_size + 4)
4543 {
4544 if (size < (10 + 2))
4545 abort ();
4546 size -= 2;
4547 *p++ = ',';
4548 *p++ = ' ';
4549 }
4550
4551 size -= flags [sindex].len;
4552 p = stpcpy (p, flags [sindex].str);
4553 }
4554 else if (flag & SHF_MASKOS)
4555 os_flags |= flag;
4556 else if (flag & SHF_MASKPROC)
4557 proc_flags |= flag;
4558 else
4559 unknown_flags |= flag;
4560 }
4561 else
4562 {
4563 switch (flag)
4564 {
4565 case SHF_WRITE: *p = 'W'; break;
4566 case SHF_ALLOC: *p = 'A'; break;
4567 case SHF_EXECINSTR: *p = 'X'; break;
4568 case SHF_MERGE: *p = 'M'; break;
4569 case SHF_STRINGS: *p = 'S'; break;
4570 case SHF_INFO_LINK: *p = 'I'; break;
4571 case SHF_LINK_ORDER: *p = 'L'; break;
4572 case SHF_OS_NONCONFORMING: *p = 'O'; break;
4573 case SHF_GROUP: *p = 'G'; break;
4574 case SHF_TLS: *p = 'T'; break;
4575 case SHF_EXCLUDE: *p = 'E'; break;
4576
4577 default:
4578 if ((elf_header.e_machine == EM_X86_64
4579 || elf_header.e_machine == EM_L1OM
4580 || elf_header.e_machine == EM_K1OM)
4581 && flag == SHF_X86_64_LARGE)
4582 *p = 'l';
4583 else if (flag & SHF_MASKOS)
4584 {
4585 *p = 'o';
4586 sh_flags &= ~ SHF_MASKOS;
4587 }
4588 else if (flag & SHF_MASKPROC)
4589 {
4590 *p = 'p';
4591 sh_flags &= ~ SHF_MASKPROC;
4592 }
4593 else
4594 *p = 'x';
4595 break;
4596 }
4597 p++;
4598 }
4599 }
4600
4601 if (do_section_details)
4602 {
4603 if (os_flags)
4604 {
4605 size -= 5 + field_size;
4606 if (p != buff + field_size + 4)
4607 {
4608 if (size < (2 + 1))
4609 abort ();
4610 size -= 2;
4611 *p++ = ',';
4612 *p++ = ' ';
4613 }
4614 sprintf (p, "OS (%*.*lx)", field_size, field_size,
4615 (unsigned long) os_flags);
4616 p += 5 + field_size;
4617 }
4618 if (proc_flags)
4619 {
4620 size -= 7 + field_size;
4621 if (p != buff + field_size + 4)
4622 {
4623 if (size < (2 + 1))
4624 abort ();
4625 size -= 2;
4626 *p++ = ',';
4627 *p++ = ' ';
4628 }
4629 sprintf (p, "PROC (%*.*lx)", field_size, field_size,
4630 (unsigned long) proc_flags);
4631 p += 7 + field_size;
4632 }
4633 if (unknown_flags)
4634 {
4635 size -= 10 + field_size;
4636 if (p != buff + field_size + 4)
4637 {
4638 if (size < (2 + 1))
4639 abort ();
4640 size -= 2;
4641 *p++ = ',';
4642 *p++ = ' ';
4643 }
4644 sprintf (p, _("UNKNOWN (%*.*lx)"), field_size, field_size,
4645 (unsigned long) unknown_flags);
4646 p += 10 + field_size;
4647 }
4648 }
4649
4650 *p = '\0';
4651 return buff;
4652 }
4653
4654 static int
4655 process_section_headers (FILE * file)
4656 {
4657 Elf_Internal_Shdr * section;
4658 unsigned int i;
4659
4660 section_headers = NULL;
4661
4662 if (elf_header.e_shnum == 0)
4663 {
4664 /* PR binutils/12467. */
4665 if (elf_header.e_shoff != 0)
4666 warn (_("possibly corrupt ELF file header - it has a non-zero"
4667 " section header offset, but no section headers\n"));
4668 else if (do_sections)
4669 printf (_("\nThere are no sections in this file.\n"));
4670
4671 return 1;
4672 }
4673
4674 if (do_sections && !do_header)
4675 printf (_("There are %d section headers, starting at offset 0x%lx:\n"),
4676 elf_header.e_shnum, (unsigned long) elf_header.e_shoff);
4677
4678 if (is_32bit_elf)
4679 {
4680 if (! get_32bit_section_headers (file, elf_header.e_shnum))
4681 return 0;
4682 }
4683 else if (! get_64bit_section_headers (file, elf_header.e_shnum))
4684 return 0;
4685
4686 /* Read in the string table, so that we have names to display. */
4687 if (elf_header.e_shstrndx != SHN_UNDEF
4688 && elf_header.e_shstrndx < elf_header.e_shnum)
4689 {
4690 section = section_headers + elf_header.e_shstrndx;
4691
4692 if (section->sh_size != 0)
4693 {
4694 string_table = (char *) get_data (NULL, file, section->sh_offset,
4695 1, section->sh_size,
4696 _("string table"));
4697
4698 string_table_length = string_table != NULL ? section->sh_size : 0;
4699 }
4700 }
4701
4702 /* Scan the sections for the dynamic symbol table
4703 and dynamic string table and debug sections. */
4704 dynamic_symbols = NULL;
4705 dynamic_strings = NULL;
4706 dynamic_syminfo = NULL;
4707 symtab_shndx_hdr = NULL;
4708
4709 eh_addr_size = is_32bit_elf ? 4 : 8;
4710 switch (elf_header.e_machine)
4711 {
4712 case EM_MIPS:
4713 case EM_MIPS_RS3_LE:
4714 /* The 64-bit MIPS EABI uses a combination of 32-bit ELF and 64-bit
4715 FDE addresses. However, the ABI also has a semi-official ILP32
4716 variant for which the normal FDE address size rules apply.
4717
4718 GCC 4.0 marks EABI64 objects with a dummy .gcc_compiled_longXX
4719 section, where XX is the size of longs in bits. Unfortunately,
4720 earlier compilers provided no way of distinguishing ILP32 objects
4721 from LP64 objects, so if there's any doubt, we should assume that
4722 the official LP64 form is being used. */
4723 if ((elf_header.e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64
4724 && find_section (".gcc_compiled_long32") == NULL)
4725 eh_addr_size = 8;
4726 break;
4727
4728 case EM_H8_300:
4729 case EM_H8_300H:
4730 switch (elf_header.e_flags & EF_H8_MACH)
4731 {
4732 case E_H8_MACH_H8300:
4733 case E_H8_MACH_H8300HN:
4734 case E_H8_MACH_H8300SN:
4735 case E_H8_MACH_H8300SXN:
4736 eh_addr_size = 2;
4737 break;
4738 case E_H8_MACH_H8300H:
4739 case E_H8_MACH_H8300S:
4740 case E_H8_MACH_H8300SX:
4741 eh_addr_size = 4;
4742 break;
4743 }
4744 break;
4745
4746 case EM_M32C_OLD:
4747 case EM_M32C:
4748 switch (elf_header.e_flags & EF_M32C_CPU_MASK)
4749 {
4750 case EF_M32C_CPU_M16C:
4751 eh_addr_size = 2;
4752 break;
4753 }
4754 break;
4755 }
4756
4757 #define CHECK_ENTSIZE_VALUES(section, i, size32, size64) \
4758 do \
4759 { \
4760 bfd_size_type expected_entsize = is_32bit_elf ? size32 : size64; \
4761 if (section->sh_entsize != expected_entsize) \
4762 { \
4763 error (_("Section %d has invalid sh_entsize of %" BFD_VMA_FMT "x\n"), \
4764 i, section->sh_entsize); \
4765 error (_("(Using the expected size of %d for the rest of this dump)\n"), \
4766 (int) expected_entsize); \
4767 section->sh_entsize = expected_entsize; \
4768 } \
4769 } \
4770 while (0)
4771
4772 #define CHECK_ENTSIZE(section, i, type) \
4773 CHECK_ENTSIZE_VALUES (section, i, sizeof (Elf32_External_##type), \
4774 sizeof (Elf64_External_##type))
4775
4776 for (i = 0, section = section_headers;
4777 i < elf_header.e_shnum;
4778 i++, section++)
4779 {
4780 char * name = SECTION_NAME (section);
4781
4782 if (section->sh_type == SHT_DYNSYM)
4783 {
4784 if (dynamic_symbols != NULL)
4785 {
4786 error (_("File contains multiple dynamic symbol tables\n"));
4787 continue;
4788 }
4789
4790 CHECK_ENTSIZE (section, i, Sym);
4791 dynamic_symbols = GET_ELF_SYMBOLS (file, section, & num_dynamic_syms);
4792 }
4793 else if (section->sh_type == SHT_STRTAB
4794 && streq (name, ".dynstr"))
4795 {
4796 if (dynamic_strings != NULL)
4797 {
4798 error (_("File contains multiple dynamic string tables\n"));
4799 continue;
4800 }
4801
4802 dynamic_strings = (char *) get_data (NULL, file, section->sh_offset,
4803 1, section->sh_size,
4804 _("dynamic strings"));
4805 dynamic_strings_length = dynamic_strings == NULL ? 0 : section->sh_size;
4806 }
4807 else if (section->sh_type == SHT_SYMTAB_SHNDX)
4808 {
4809 if (symtab_shndx_hdr != NULL)
4810 {
4811 error (_("File contains multiple symtab shndx tables\n"));
4812 continue;
4813 }
4814 symtab_shndx_hdr = section;
4815 }
4816 else if (section->sh_type == SHT_SYMTAB)
4817 CHECK_ENTSIZE (section, i, Sym);
4818 else if (section->sh_type == SHT_GROUP)
4819 CHECK_ENTSIZE_VALUES (section, i, GRP_ENTRY_SIZE, GRP_ENTRY_SIZE);
4820 else if (section->sh_type == SHT_REL)
4821 CHECK_ENTSIZE (section, i, Rel);
4822 else if (section->sh_type == SHT_RELA)
4823 CHECK_ENTSIZE (section, i, Rela);
4824 else if ((do_debugging || do_debug_info || do_debug_abbrevs
4825 || do_debug_lines || do_debug_pubnames || do_debug_pubtypes
4826 || do_debug_aranges || do_debug_frames || do_debug_macinfo
4827 || do_debug_str || do_debug_loc || do_debug_ranges
4828 || do_debug_addr || do_debug_cu_index)
4829 && (const_strneq (name, ".debug_")
4830 || const_strneq (name, ".zdebug_")))
4831 {
4832 if (name[1] == 'z')
4833 name += sizeof (".zdebug_") - 1;
4834 else
4835 name += sizeof (".debug_") - 1;
4836
4837 if (do_debugging
4838 || (do_debug_info && const_strneq (name, "info"))
4839 || (do_debug_info && const_strneq (name, "types"))
4840 || (do_debug_abbrevs && const_strneq (name, "abbrev"))
4841 || (do_debug_lines && strcmp (name, "line") == 0)
4842 || (do_debug_lines && const_strneq (name, "line."))
4843 || (do_debug_pubnames && const_strneq (name, "pubnames"))
4844 || (do_debug_pubtypes && const_strneq (name, "pubtypes"))
4845 || (do_debug_aranges && const_strneq (name, "aranges"))
4846 || (do_debug_ranges && const_strneq (name, "ranges"))
4847 || (do_debug_frames && const_strneq (name, "frame"))
4848 || (do_debug_macinfo && const_strneq (name, "macinfo"))
4849 || (do_debug_macinfo && const_strneq (name, "macro"))
4850 || (do_debug_str && const_strneq (name, "str"))
4851 || (do_debug_loc && const_strneq (name, "loc"))
4852 || (do_debug_addr && const_strneq (name, "addr"))
4853 || (do_debug_cu_index && const_strneq (name, "cu_index"))
4854 || (do_debug_cu_index && const_strneq (name, "tu_index"))
4855 )
4856 request_dump_bynumber (i, DEBUG_DUMP);
4857 }
4858 /* Linkonce section to be combined with .debug_info at link time. */
4859 else if ((do_debugging || do_debug_info)
4860 && const_strneq (name, ".gnu.linkonce.wi."))
4861 request_dump_bynumber (i, DEBUG_DUMP);
4862 else if (do_debug_frames && streq (name, ".eh_frame"))
4863 request_dump_bynumber (i, DEBUG_DUMP);
4864 else if (do_gdb_index && streq (name, ".gdb_index"))
4865 request_dump_bynumber (i, DEBUG_DUMP);
4866 /* Trace sections for Itanium VMS. */
4867 else if ((do_debugging || do_trace_info || do_trace_abbrevs
4868 || do_trace_aranges)
4869 && const_strneq (name, ".trace_"))
4870 {
4871 name += sizeof (".trace_") - 1;
4872
4873 if (do_debugging
4874 || (do_trace_info && streq (name, "info"))
4875 || (do_trace_abbrevs && streq (name, "abbrev"))
4876 || (do_trace_aranges && streq (name, "aranges"))
4877 )
4878 request_dump_bynumber (i, DEBUG_DUMP);
4879 }
4880
4881 }
4882
4883 if (! do_sections)
4884 return 1;
4885
4886 if (elf_header.e_shnum > 1)
4887 printf (_("\nSection Headers:\n"));
4888 else
4889 printf (_("\nSection Header:\n"));
4890
4891 if (is_32bit_elf)
4892 {
4893 if (do_section_details)
4894 {
4895 printf (_(" [Nr] Name\n"));
4896 printf (_(" Type Addr Off Size ES Lk Inf Al\n"));
4897 }
4898 else
4899 printf
4900 (_(" [Nr] Name Type Addr Off Size ES Flg Lk Inf Al\n"));
4901 }
4902 else if (do_wide)
4903 {
4904 if (do_section_details)
4905 {
4906 printf (_(" [Nr] Name\n"));
4907 printf (_(" Type Address Off Size ES Lk Inf Al\n"));
4908 }
4909 else
4910 printf
4911 (_(" [Nr] Name Type Address Off Size ES Flg Lk Inf Al\n"));
4912 }
4913 else
4914 {
4915 if (do_section_details)
4916 {
4917 printf (_(" [Nr] Name\n"));
4918 printf (_(" Type Address Offset Link\n"));
4919 printf (_(" Size EntSize Info Align\n"));
4920 }
4921 else
4922 {
4923 printf (_(" [Nr] Name Type Address Offset\n"));
4924 printf (_(" Size EntSize Flags Link Info Align\n"));
4925 }
4926 }
4927
4928 if (do_section_details)
4929 printf (_(" Flags\n"));
4930
4931 for (i = 0, section = section_headers;
4932 i < elf_header.e_shnum;
4933 i++, section++)
4934 {
4935 printf (" [%2u] ", i);
4936 if (do_section_details)
4937 {
4938 print_symbol (INT_MAX, SECTION_NAME (section));
4939 printf ("\n ");
4940 }
4941 else
4942 {
4943 print_symbol (-17, SECTION_NAME (section));
4944 }
4945
4946 printf (do_wide ? " %-15s " : " %-15.15s ",
4947 get_section_type_name (section->sh_type));
4948
4949 if (is_32bit_elf)
4950 {
4951 const char * link_too_big = NULL;
4952
4953 print_vma (section->sh_addr, LONG_HEX);
4954
4955 printf ( " %6.6lx %6.6lx %2.2lx",
4956 (unsigned long) section->sh_offset,
4957 (unsigned long) section->sh_size,
4958 (unsigned long) section->sh_entsize);
4959
4960 if (do_section_details)
4961 fputs (" ", stdout);
4962 else
4963 printf (" %3s ", get_elf_section_flags (section->sh_flags));
4964
4965 if (section->sh_link >= elf_header.e_shnum)
4966 {
4967 link_too_big = "";
4968 /* The sh_link value is out of range. Normally this indicates
4969 an error but it can have special values in Solaris binaries. */
4970 switch (elf_header.e_machine)
4971 {
4972 case EM_386:
4973 case EM_486:
4974 case EM_X86_64:
4975 case EM_L1OM:
4976 case EM_K1OM:
4977 case EM_OLD_SPARCV9:
4978 case EM_SPARC32PLUS:
4979 case EM_SPARCV9:
4980 case EM_SPARC:
4981 if (section->sh_link == (SHN_BEFORE & 0xffff))
4982 link_too_big = "BEFORE";
4983 else if (section->sh_link == (SHN_AFTER & 0xffff))
4984 link_too_big = "AFTER";
4985 break;
4986 default:
4987 break;
4988 }
4989 }
4990
4991 if (do_section_details)
4992 {
4993 if (link_too_big != NULL && * link_too_big)
4994 printf ("<%s> ", link_too_big);
4995 else
4996 printf ("%2u ", section->sh_link);
4997 printf ("%3u %2lu\n", section->sh_info,
4998 (unsigned long) section->sh_addralign);
4999 }
5000 else
5001 printf ("%2u %3u %2lu\n",
5002 section->sh_link,
5003 section->sh_info,
5004 (unsigned long) section->sh_addralign);
5005
5006 if (link_too_big && ! * link_too_big)
5007 warn (_("section %u: sh_link value of %u is larger than the number of sections\n"),
5008 i, section->sh_link);
5009 }
5010 else if (do_wide)
5011 {
5012 print_vma (section->sh_addr, LONG_HEX);
5013
5014 if ((long) section->sh_offset == section->sh_offset)
5015 printf (" %6.6lx", (unsigned long) section->sh_offset);
5016 else
5017 {
5018 putchar (' ');
5019 print_vma (section->sh_offset, LONG_HEX);
5020 }
5021
5022 if ((unsigned long) section->sh_size == section->sh_size)
5023 printf (" %6.6lx", (unsigned long) section->sh_size);
5024 else
5025 {
5026 putchar (' ');
5027 print_vma (section->sh_size, LONG_HEX);
5028 }
5029
5030 if ((unsigned long) section->sh_entsize == section->sh_entsize)
5031 printf (" %2.2lx", (unsigned long) section->sh_entsize);
5032 else
5033 {
5034 putchar (' ');
5035 print_vma (section->sh_entsize, LONG_HEX);
5036 }
5037
5038 if (do_section_details)
5039 fputs (" ", stdout);
5040 else
5041 printf (" %3s ", get_elf_section_flags (section->sh_flags));
5042
5043 printf ("%2u %3u ", section->sh_link, section->sh_info);
5044
5045 if ((unsigned long) section->sh_addralign == section->sh_addralign)
5046 printf ("%2lu\n", (unsigned long) section->sh_addralign);
5047 else
5048 {
5049 print_vma (section->sh_addralign, DEC);
5050 putchar ('\n');
5051 }
5052 }
5053 else if (do_section_details)
5054 {
5055 printf (" %-15.15s ",
5056 get_section_type_name (section->sh_type));
5057 print_vma (section->sh_addr, LONG_HEX);
5058 if ((long) section->sh_offset == section->sh_offset)
5059 printf (" %16.16lx", (unsigned long) section->sh_offset);
5060 else
5061 {
5062 printf (" ");
5063 print_vma (section->sh_offset, LONG_HEX);
5064 }
5065 printf (" %u\n ", section->sh_link);
5066 print_vma (section->sh_size, LONG_HEX);
5067 putchar (' ');
5068 print_vma (section->sh_entsize, LONG_HEX);
5069
5070 printf (" %-16u %lu\n",
5071 section->sh_info,
5072 (unsigned long) section->sh_addralign);
5073 }
5074 else
5075 {
5076 putchar (' ');
5077 print_vma (section->sh_addr, LONG_HEX);
5078 if ((long) section->sh_offset == section->sh_offset)
5079 printf (" %8.8lx", (unsigned long) section->sh_offset);
5080 else
5081 {
5082 printf (" ");
5083 print_vma (section->sh_offset, LONG_HEX);
5084 }
5085 printf ("\n ");
5086 print_vma (section->sh_size, LONG_HEX);
5087 printf (" ");
5088 print_vma (section->sh_entsize, LONG_HEX);
5089
5090 printf (" %3s ", get_elf_section_flags (section->sh_flags));
5091
5092 printf (" %2u %3u %lu\n",
5093 section->sh_link,
5094 section->sh_info,
5095 (unsigned long) section->sh_addralign);
5096 }
5097
5098 if (do_section_details)
5099 printf (" %s\n", get_elf_section_flags (section->sh_flags));
5100 }
5101
5102 if (!do_section_details)
5103 {
5104 if (elf_header.e_machine == EM_X86_64
5105 || elf_header.e_machine == EM_L1OM
5106 || elf_header.e_machine == EM_K1OM)
5107 printf (_("Key to Flags:\n\
5108 W (write), A (alloc), X (execute), M (merge), S (strings), l (large)\n\
5109 I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)\n\
5110 O (extra OS processing required) o (OS specific), p (processor specific)\n"));
5111 else
5112 printf (_("Key to Flags:\n\
5113 W (write), A (alloc), X (execute), M (merge), S (strings)\n\
5114 I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)\n\
5115 O (extra OS processing required) o (OS specific), p (processor specific)\n"));
5116 }
5117
5118 return 1;
5119 }
5120
5121 static const char *
5122 get_group_flags (unsigned int flags)
5123 {
5124 static char buff[32];
5125 switch (flags)
5126 {
5127 case 0:
5128 return "";
5129
5130 case GRP_COMDAT:
5131 return "COMDAT ";
5132
5133 default:
5134 snprintf (buff, sizeof (buff), _("[<unknown>: 0x%x] "), flags);
5135 break;
5136 }
5137 return buff;
5138 }
5139
5140 static int
5141 process_section_groups (FILE * file)
5142 {
5143 Elf_Internal_Shdr * section;
5144 unsigned int i;
5145 struct group * group;
5146 Elf_Internal_Shdr * symtab_sec;
5147 Elf_Internal_Shdr * strtab_sec;
5148 Elf_Internal_Sym * symtab;
5149 unsigned long num_syms;
5150 char * strtab;
5151 size_t strtab_size;
5152
5153 /* Don't process section groups unless needed. */
5154 if (!do_unwind && !do_section_groups)
5155 return 1;
5156
5157 if (elf_header.e_shnum == 0)
5158 {
5159 if (do_section_groups)
5160 printf (_("\nThere are no sections to group in this file.\n"));
5161
5162 return 1;
5163 }
5164
5165 if (section_headers == NULL)
5166 {
5167 error (_("Section headers are not available!\n"));
5168 /* PR 13622: This can happen with a corrupt ELF header. */
5169 return 0;
5170 }
5171
5172 section_headers_groups = (struct group **) calloc (elf_header.e_shnum,
5173 sizeof (struct group *));
5174
5175 if (section_headers_groups == NULL)
5176 {
5177 error (_("Out of memory\n"));
5178 return 0;
5179 }
5180
5181 /* Scan the sections for the group section. */
5182 group_count = 0;
5183 for (i = 0, section = section_headers;
5184 i < elf_header.e_shnum;
5185 i++, section++)
5186 if (section->sh_type == SHT_GROUP)
5187 group_count++;
5188
5189 if (group_count == 0)
5190 {
5191 if (do_section_groups)
5192 printf (_("\nThere are no section groups in this file.\n"));
5193
5194 return 1;
5195 }
5196
5197 section_groups = (struct group *) calloc (group_count, sizeof (struct group));
5198
5199 if (section_groups == NULL)
5200 {
5201 error (_("Out of memory\n"));
5202 return 0;
5203 }
5204
5205 symtab_sec = NULL;
5206 strtab_sec = NULL;
5207 symtab = NULL;
5208 num_syms = 0;
5209 strtab = NULL;
5210 strtab_size = 0;
5211 for (i = 0, section = section_headers, group = section_groups;
5212 i < elf_header.e_shnum;
5213 i++, section++)
5214 {
5215 if (section->sh_type == SHT_GROUP)
5216 {
5217 char * name = SECTION_NAME (section);
5218 char * group_name;
5219 unsigned char * start;
5220 unsigned char * indices;
5221 unsigned int entry, j, size;
5222 Elf_Internal_Shdr * sec;
5223 Elf_Internal_Sym * sym;
5224
5225 /* Get the symbol table. */
5226 if (section->sh_link >= elf_header.e_shnum
5227 || ((sec = section_headers + section->sh_link)->sh_type
5228 != SHT_SYMTAB))
5229 {
5230 error (_("Bad sh_link in group section `%s'\n"), name);
5231 continue;
5232 }
5233
5234 if (symtab_sec != sec)
5235 {
5236 symtab_sec = sec;
5237 if (symtab)
5238 free (symtab);
5239 symtab = GET_ELF_SYMBOLS (file, symtab_sec, & num_syms);
5240 }
5241
5242 if (symtab == NULL)
5243 {
5244 error (_("Corrupt header in group section `%s'\n"), name);
5245 continue;
5246 }
5247
5248 if (section->sh_info >= num_syms)
5249 {
5250 error (_("Bad sh_info in group section `%s'\n"), name);
5251 continue;
5252 }
5253
5254 sym = symtab + section->sh_info;
5255
5256 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5257 {
5258 if (sym->st_shndx == 0
5259 || sym->st_shndx >= elf_header.e_shnum)
5260 {
5261 error (_("Bad sh_info in group section `%s'\n"), name);
5262 continue;
5263 }
5264
5265 group_name = SECTION_NAME (section_headers + sym->st_shndx);
5266 strtab_sec = NULL;
5267 if (strtab)
5268 free (strtab);
5269 strtab = NULL;
5270 strtab_size = 0;
5271 }
5272 else
5273 {
5274 /* Get the string table. */
5275 if (symtab_sec->sh_link >= elf_header.e_shnum)
5276 {
5277 strtab_sec = NULL;
5278 if (strtab)
5279 free (strtab);
5280 strtab = NULL;
5281 strtab_size = 0;
5282 }
5283 else if (strtab_sec
5284 != (sec = section_headers + symtab_sec->sh_link))
5285 {
5286 strtab_sec = sec;
5287 if (strtab)
5288 free (strtab);
5289 strtab = (char *) get_data (NULL, file, strtab_sec->sh_offset,
5290 1, strtab_sec->sh_size,
5291 _("string table"));
5292 strtab_size = strtab != NULL ? strtab_sec->sh_size : 0;
5293 }
5294 group_name = sym->st_name < strtab_size
5295 ? strtab + sym->st_name : _("<corrupt>");
5296 }
5297
5298 start = (unsigned char *) get_data (NULL, file, section->sh_offset,
5299 1, section->sh_size,
5300 _("section data"));
5301 if (start == NULL)
5302 continue;
5303
5304 indices = start;
5305 size = (section->sh_size / section->sh_entsize) - 1;
5306 entry = byte_get (indices, 4);
5307 indices += 4;
5308
5309 if (do_section_groups)
5310 {
5311 printf (_("\n%sgroup section [%5u] `%s' [%s] contains %u sections:\n"),
5312 get_group_flags (entry), i, name, group_name, size);
5313
5314 printf (_(" [Index] Name\n"));
5315 }
5316
5317 group->group_index = i;
5318
5319 for (j = 0; j < size; j++)
5320 {
5321 struct group_list * g;
5322
5323 entry = byte_get (indices, 4);
5324 indices += 4;
5325
5326 if (entry >= elf_header.e_shnum)
5327 {
5328 error (_("section [%5u] in group section [%5u] > maximum section [%5u]\n"),
5329 entry, i, elf_header.e_shnum - 1);
5330 continue;
5331 }
5332
5333 if (section_headers_groups [entry] != NULL)
5334 {
5335 if (entry)
5336 {
5337 error (_("section [%5u] in group section [%5u] already in group section [%5u]\n"),
5338 entry, i,
5339 section_headers_groups [entry]->group_index);
5340 continue;
5341 }
5342 else
5343 {
5344 /* Intel C/C++ compiler may put section 0 in a
5345 section group. We just warn it the first time
5346 and ignore it afterwards. */
5347 static int warned = 0;
5348 if (!warned)
5349 {
5350 error (_("section 0 in group section [%5u]\n"),
5351 section_headers_groups [entry]->group_index);
5352 warned++;
5353 }
5354 }
5355 }
5356
5357 section_headers_groups [entry] = group;
5358
5359 if (do_section_groups)
5360 {
5361 sec = section_headers + entry;
5362 printf (" [%5u] %s\n", entry, SECTION_NAME (sec));
5363 }
5364
5365 g = (struct group_list *) xmalloc (sizeof (struct group_list));
5366 g->section_index = entry;
5367 g->next = group->root;
5368 group->root = g;
5369 }
5370
5371 if (start)
5372 free (start);
5373
5374 group++;
5375 }
5376 }
5377
5378 if (symtab)
5379 free (symtab);
5380 if (strtab)
5381 free (strtab);
5382 return 1;
5383 }
5384
5385 /* Data used to display dynamic fixups. */
5386
5387 struct ia64_vms_dynfixup
5388 {
5389 bfd_vma needed_ident; /* Library ident number. */
5390 bfd_vma needed; /* Index in the dstrtab of the library name. */
5391 bfd_vma fixup_needed; /* Index of the library. */
5392 bfd_vma fixup_rela_cnt; /* Number of fixups. */
5393 bfd_vma fixup_rela_off; /* Fixups offset in the dynamic segment. */
5394 };
5395
5396 /* Data used to display dynamic relocations. */
5397
5398 struct ia64_vms_dynimgrela
5399 {
5400 bfd_vma img_rela_cnt; /* Number of relocations. */
5401 bfd_vma img_rela_off; /* Reloc offset in the dynamic segment. */
5402 };
5403
5404 /* Display IA-64 OpenVMS dynamic fixups (used to dynamically link a shared
5405 library). */
5406
5407 static void
5408 dump_ia64_vms_dynamic_fixups (FILE *file, struct ia64_vms_dynfixup *fixup,
5409 const char *strtab, unsigned int strtab_sz)
5410 {
5411 Elf64_External_VMS_IMAGE_FIXUP *imfs;
5412 long i;
5413 const char *lib_name;
5414
5415 imfs = get_data (NULL, file, dynamic_addr + fixup->fixup_rela_off,
5416 1, fixup->fixup_rela_cnt * sizeof (*imfs),
5417 _("dynamic section image fixups"));
5418 if (!imfs)
5419 return;
5420
5421 if (fixup->needed < strtab_sz)
5422 lib_name = strtab + fixup->needed;
5423 else
5424 {
5425 warn ("corrupt library name index of 0x%lx found in dynamic entry",
5426 (unsigned long) fixup->needed);
5427 lib_name = "???";
5428 }
5429 printf (_("\nImage fixups for needed library #%d: %s - ident: %lx\n"),
5430 (int) fixup->fixup_needed, lib_name, (long) fixup->needed_ident);
5431 printf
5432 (_("Seg Offset Type SymVec DataType\n"));
5433
5434 for (i = 0; i < (long) fixup->fixup_rela_cnt; i++)
5435 {
5436 unsigned int type;
5437 const char *rtype;
5438
5439 printf ("%3u ", (unsigned) BYTE_GET (imfs [i].fixup_seg));
5440 printf_vma ((bfd_vma) BYTE_GET (imfs [i].fixup_offset));
5441 type = BYTE_GET (imfs [i].type);
5442 rtype = elf_ia64_reloc_type (type);
5443 if (rtype == NULL)
5444 printf (" 0x%08x ", type);
5445 else
5446 printf (" %-32s ", rtype);
5447 printf ("%6u ", (unsigned) BYTE_GET (imfs [i].symvec_index));
5448 printf ("0x%08x\n", (unsigned) BYTE_GET (imfs [i].data_type));
5449 }
5450
5451 free (imfs);
5452 }
5453
5454 /* Display IA-64 OpenVMS dynamic relocations (used to relocate an image). */
5455
5456 static void
5457 dump_ia64_vms_dynamic_relocs (FILE *file, struct ia64_vms_dynimgrela *imgrela)
5458 {
5459 Elf64_External_VMS_IMAGE_RELA *imrs;
5460 long i;
5461
5462 imrs = get_data (NULL, file, dynamic_addr + imgrela->img_rela_off,
5463 1, imgrela->img_rela_cnt * sizeof (*imrs),
5464 _("dynamic section image relocations"));
5465 if (!imrs)
5466 return;
5467
5468 printf (_("\nImage relocs\n"));
5469 printf
5470 (_("Seg Offset Type Addend Seg Sym Off\n"));
5471
5472 for (i = 0; i < (long) imgrela->img_rela_cnt; i++)
5473 {
5474 unsigned int type;
5475 const char *rtype;
5476
5477 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].rela_seg));
5478 printf ("%08" BFD_VMA_FMT "x ",
5479 (bfd_vma) BYTE_GET (imrs [i].rela_offset));
5480 type = BYTE_GET (imrs [i].type);
5481 rtype = elf_ia64_reloc_type (type);
5482 if (rtype == NULL)
5483 printf ("0x%08x ", type);
5484 else
5485 printf ("%-31s ", rtype);
5486 print_vma (BYTE_GET (imrs [i].addend), FULL_HEX);
5487 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].sym_seg));
5488 printf ("%08" BFD_VMA_FMT "x\n",
5489 (bfd_vma) BYTE_GET (imrs [i].sym_offset));
5490 }
5491
5492 free (imrs);
5493 }
5494
5495 /* Display IA-64 OpenVMS dynamic relocations and fixups. */
5496
5497 static int
5498 process_ia64_vms_dynamic_relocs (FILE *file)
5499 {
5500 struct ia64_vms_dynfixup fixup;
5501 struct ia64_vms_dynimgrela imgrela;
5502 Elf_Internal_Dyn *entry;
5503 int res = 0;
5504 bfd_vma strtab_off = 0;
5505 bfd_vma strtab_sz = 0;
5506 char *strtab = NULL;
5507
5508 memset (&fixup, 0, sizeof (fixup));
5509 memset (&imgrela, 0, sizeof (imgrela));
5510
5511 /* Note: the order of the entries is specified by the OpenVMS specs. */
5512 for (entry = dynamic_section;
5513 entry < dynamic_section + dynamic_nent;
5514 entry++)
5515 {
5516 switch (entry->d_tag)
5517 {
5518 case DT_IA_64_VMS_STRTAB_OFFSET:
5519 strtab_off = entry->d_un.d_val;
5520 break;
5521 case DT_STRSZ:
5522 strtab_sz = entry->d_un.d_val;
5523 if (strtab == NULL)
5524 strtab = get_data (NULL, file, dynamic_addr + strtab_off,
5525 1, strtab_sz, _("dynamic string section"));
5526 break;
5527
5528 case DT_IA_64_VMS_NEEDED_IDENT:
5529 fixup.needed_ident = entry->d_un.d_val;
5530 break;
5531 case DT_NEEDED:
5532 fixup.needed = entry->d_un.d_val;
5533 break;
5534 case DT_IA_64_VMS_FIXUP_NEEDED:
5535 fixup.fixup_needed = entry->d_un.d_val;
5536 break;
5537 case DT_IA_64_VMS_FIXUP_RELA_CNT:
5538 fixup.fixup_rela_cnt = entry->d_un.d_val;
5539 break;
5540 case DT_IA_64_VMS_FIXUP_RELA_OFF:
5541 fixup.fixup_rela_off = entry->d_un.d_val;
5542 res++;
5543 dump_ia64_vms_dynamic_fixups (file, &fixup, strtab, strtab_sz);
5544 break;
5545
5546 case DT_IA_64_VMS_IMG_RELA_CNT:
5547 imgrela.img_rela_cnt = entry->d_un.d_val;
5548 break;
5549 case DT_IA_64_VMS_IMG_RELA_OFF:
5550 imgrela.img_rela_off = entry->d_un.d_val;
5551 res++;
5552 dump_ia64_vms_dynamic_relocs (file, &imgrela);
5553 break;
5554
5555 default:
5556 break;
5557 }
5558 }
5559
5560 if (strtab != NULL)
5561 free (strtab);
5562
5563 return res;
5564 }
5565
5566 static struct
5567 {
5568 const char * name;
5569 int reloc;
5570 int size;
5571 int rela;
5572 } dynamic_relocations [] =
5573 {
5574 { "REL", DT_REL, DT_RELSZ, FALSE },
5575 { "RELA", DT_RELA, DT_RELASZ, TRUE },
5576 { "PLT", DT_JMPREL, DT_PLTRELSZ, UNKNOWN }
5577 };
5578
5579 /* Process the reloc section. */
5580
5581 static int
5582 process_relocs (FILE * file)
5583 {
5584 unsigned long rel_size;
5585 unsigned long rel_offset;
5586
5587
5588 if (!do_reloc)
5589 return 1;
5590
5591 if (do_using_dynamic)
5592 {
5593 int is_rela;
5594 const char * name;
5595 int has_dynamic_reloc;
5596 unsigned int i;
5597
5598 has_dynamic_reloc = 0;
5599
5600 for (i = 0; i < ARRAY_SIZE (dynamic_relocations); i++)
5601 {
5602 is_rela = dynamic_relocations [i].rela;
5603 name = dynamic_relocations [i].name;
5604 rel_size = dynamic_info [dynamic_relocations [i].size];
5605 rel_offset = dynamic_info [dynamic_relocations [i].reloc];
5606
5607 has_dynamic_reloc |= rel_size;
5608
5609 if (is_rela == UNKNOWN)
5610 {
5611 if (dynamic_relocations [i].reloc == DT_JMPREL)
5612 switch (dynamic_info[DT_PLTREL])
5613 {
5614 case DT_REL:
5615 is_rela = FALSE;
5616 break;
5617 case DT_RELA:
5618 is_rela = TRUE;
5619 break;
5620 }
5621 }
5622
5623 if (rel_size)
5624 {
5625 printf
5626 (_("\n'%s' relocation section at offset 0x%lx contains %ld bytes:\n"),
5627 name, rel_offset, rel_size);
5628
5629 dump_relocations (file,
5630 offset_from_vma (file, rel_offset, rel_size),
5631 rel_size,
5632 dynamic_symbols, num_dynamic_syms,
5633 dynamic_strings, dynamic_strings_length, is_rela);
5634 }
5635 }
5636
5637 if (is_ia64_vms ())
5638 has_dynamic_reloc |= process_ia64_vms_dynamic_relocs (file);
5639
5640 if (! has_dynamic_reloc)
5641 printf (_("\nThere are no dynamic relocations in this file.\n"));
5642 }
5643 else
5644 {
5645 Elf_Internal_Shdr * section;
5646 unsigned long i;
5647 int found = 0;
5648
5649 for (i = 0, section = section_headers;
5650 i < elf_header.e_shnum;
5651 i++, section++)
5652 {
5653 if ( section->sh_type != SHT_RELA
5654 && section->sh_type != SHT_REL)
5655 continue;
5656
5657 rel_offset = section->sh_offset;
5658 rel_size = section->sh_size;
5659
5660 if (rel_size)
5661 {
5662 Elf_Internal_Shdr * strsec;
5663 int is_rela;
5664
5665 printf (_("\nRelocation section "));
5666
5667 if (string_table == NULL)
5668 printf ("%d", section->sh_name);
5669 else
5670 printf ("'%s'", SECTION_NAME (section));
5671
5672 printf (_(" at offset 0x%lx contains %lu entries:\n"),
5673 rel_offset, (unsigned long) (rel_size / section->sh_entsize));
5674
5675 is_rela = section->sh_type == SHT_RELA;
5676
5677 if (section->sh_link != 0
5678 && section->sh_link < elf_header.e_shnum)
5679 {
5680 Elf_Internal_Shdr * symsec;
5681 Elf_Internal_Sym * symtab;
5682 unsigned long nsyms;
5683 unsigned long strtablen = 0;
5684 char * strtab = NULL;
5685
5686 symsec = section_headers + section->sh_link;
5687 if (symsec->sh_type != SHT_SYMTAB
5688 && symsec->sh_type != SHT_DYNSYM)
5689 continue;
5690
5691 symtab = GET_ELF_SYMBOLS (file, symsec, & nsyms);
5692
5693 if (symtab == NULL)
5694 continue;
5695
5696 if (symsec->sh_link != 0
5697 && symsec->sh_link < elf_header.e_shnum)
5698 {
5699 strsec = section_headers + symsec->sh_link;
5700
5701 strtab = (char *) get_data (NULL, file, strsec->sh_offset,
5702 1, strsec->sh_size,
5703 _("string table"));
5704 strtablen = strtab == NULL ? 0 : strsec->sh_size;
5705 }
5706
5707 dump_relocations (file, rel_offset, rel_size,
5708 symtab, nsyms, strtab, strtablen, is_rela);
5709 if (strtab)
5710 free (strtab);
5711 free (symtab);
5712 }
5713 else
5714 dump_relocations (file, rel_offset, rel_size,
5715 NULL, 0, NULL, 0, is_rela);
5716
5717 found = 1;
5718 }
5719 }
5720
5721 if (! found)
5722 printf (_("\nThere are no relocations in this file.\n"));
5723 }
5724
5725 return 1;
5726 }
5727
5728 /* Process the unwind section. */
5729
5730 #include "unwind-ia64.h"
5731
5732 /* An absolute address consists of a section and an offset. If the
5733 section is NULL, the offset itself is the address, otherwise, the
5734 address equals to LOAD_ADDRESS(section) + offset. */
5735
5736 struct absaddr
5737 {
5738 unsigned short section;
5739 bfd_vma offset;
5740 };
5741
5742 #define ABSADDR(a) \
5743 ((a).section \
5744 ? section_headers [(a).section].sh_addr + (a).offset \
5745 : (a).offset)
5746
5747 struct ia64_unw_table_entry
5748 {
5749 struct absaddr start;
5750 struct absaddr end;
5751 struct absaddr info;
5752 };
5753
5754 struct ia64_unw_aux_info
5755 {
5756
5757 struct ia64_unw_table_entry *table; /* Unwind table. */
5758 unsigned long table_len; /* Length of unwind table. */
5759 unsigned char * info; /* Unwind info. */
5760 unsigned long info_size; /* Size of unwind info. */
5761 bfd_vma info_addr; /* starting address of unwind info. */
5762 bfd_vma seg_base; /* Starting address of segment. */
5763 Elf_Internal_Sym * symtab; /* The symbol table. */
5764 unsigned long nsyms; /* Number of symbols. */
5765 char * strtab; /* The string table. */
5766 unsigned long strtab_size; /* Size of string table. */
5767 };
5768
5769 static void
5770 find_symbol_for_address (Elf_Internal_Sym * symtab,
5771 unsigned long nsyms,
5772 const char * strtab,
5773 unsigned long strtab_size,
5774 struct absaddr addr,
5775 const char ** symname,
5776 bfd_vma * offset)
5777 {
5778 bfd_vma dist = 0x100000;
5779 Elf_Internal_Sym * sym;
5780 Elf_Internal_Sym * best = NULL;
5781 unsigned long i;
5782
5783 REMOVE_ARCH_BITS (addr.offset);
5784
5785 for (i = 0, sym = symtab; i < nsyms; ++i, ++sym)
5786 {
5787 bfd_vma value = sym->st_value;
5788
5789 REMOVE_ARCH_BITS (value);
5790
5791 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC
5792 && sym->st_name != 0
5793 && (addr.section == SHN_UNDEF || addr.section == sym->st_shndx)
5794 && addr.offset >= value
5795 && addr.offset - value < dist)
5796 {
5797 best = sym;
5798 dist = addr.offset - value;
5799 if (!dist)
5800 break;
5801 }
5802 }
5803
5804 if (best)
5805 {
5806 *symname = (best->st_name >= strtab_size
5807 ? _("<corrupt>") : strtab + best->st_name);
5808 *offset = dist;
5809 return;
5810 }
5811
5812 *symname = NULL;
5813 *offset = addr.offset;
5814 }
5815
5816 static void
5817 dump_ia64_unwind (struct ia64_unw_aux_info * aux)
5818 {
5819 struct ia64_unw_table_entry * tp;
5820 int in_body;
5821
5822 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
5823 {
5824 bfd_vma stamp;
5825 bfd_vma offset;
5826 const unsigned char * dp;
5827 const unsigned char * head;
5828 const char * procname;
5829
5830 find_symbol_for_address (aux->symtab, aux->nsyms, aux->strtab,
5831 aux->strtab_size, tp->start, &procname, &offset);
5832
5833 fputs ("\n<", stdout);
5834
5835 if (procname)
5836 {
5837 fputs (procname, stdout);
5838
5839 if (offset)
5840 printf ("+%lx", (unsigned long) offset);
5841 }
5842
5843 fputs (">: [", stdout);
5844 print_vma (tp->start.offset, PREFIX_HEX);
5845 fputc ('-', stdout);
5846 print_vma (tp->end.offset, PREFIX_HEX);
5847 printf ("], info at +0x%lx\n",
5848 (unsigned long) (tp->info.offset - aux->seg_base));
5849
5850 head = aux->info + (ABSADDR (tp->info) - aux->info_addr);
5851 stamp = byte_get ((unsigned char *) head, sizeof (stamp));
5852
5853 printf (" v%u, flags=0x%lx (%s%s), len=%lu bytes\n",
5854 (unsigned) UNW_VER (stamp),
5855 (unsigned long) ((stamp & UNW_FLAG_MASK) >> 32),
5856 UNW_FLAG_EHANDLER (stamp) ? " ehandler" : "",
5857 UNW_FLAG_UHANDLER (stamp) ? " uhandler" : "",
5858 (unsigned long) (eh_addr_size * UNW_LENGTH (stamp)));
5859
5860 if (UNW_VER (stamp) != 1)
5861 {
5862 printf (_("\tUnknown version.\n"));
5863 continue;
5864 }
5865
5866 in_body = 0;
5867 for (dp = head + 8; dp < head + 8 + eh_addr_size * UNW_LENGTH (stamp);)
5868 dp = unw_decode (dp, in_body, & in_body);
5869 }
5870 }
5871
5872 static int
5873 slurp_ia64_unwind_table (FILE * file,
5874 struct ia64_unw_aux_info * aux,
5875 Elf_Internal_Shdr * sec)
5876 {
5877 unsigned long size, nrelas, i;
5878 Elf_Internal_Phdr * seg;
5879 struct ia64_unw_table_entry * tep;
5880 Elf_Internal_Shdr * relsec;
5881 Elf_Internal_Rela * rela;
5882 Elf_Internal_Rela * rp;
5883 unsigned char * table;
5884 unsigned char * tp;
5885 Elf_Internal_Sym * sym;
5886 const char * relname;
5887
5888 /* First, find the starting address of the segment that includes
5889 this section: */
5890
5891 if (elf_header.e_phnum)
5892 {
5893 if (! get_program_headers (file))
5894 return 0;
5895
5896 for (seg = program_headers;
5897 seg < program_headers + elf_header.e_phnum;
5898 ++seg)
5899 {
5900 if (seg->p_type != PT_LOAD)
5901 continue;
5902
5903 if (sec->sh_addr >= seg->p_vaddr
5904 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
5905 {
5906 aux->seg_base = seg->p_vaddr;
5907 break;
5908 }
5909 }
5910 }
5911
5912 /* Second, build the unwind table from the contents of the unwind section: */
5913 size = sec->sh_size;
5914 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
5915 _("unwind table"));
5916 if (!table)
5917 return 0;
5918
5919 aux->table = (struct ia64_unw_table_entry *)
5920 xcmalloc (size / (3 * eh_addr_size), sizeof (aux->table[0]));
5921 tep = aux->table;
5922 for (tp = table; tp < table + size; ++tep)
5923 {
5924 tep->start.section = SHN_UNDEF;
5925 tep->end.section = SHN_UNDEF;
5926 tep->info.section = SHN_UNDEF;
5927 tep->start.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
5928 tep->end.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
5929 tep->info.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
5930 tep->start.offset += aux->seg_base;
5931 tep->end.offset += aux->seg_base;
5932 tep->info.offset += aux->seg_base;
5933 }
5934 free (table);
5935
5936 /* Third, apply any relocations to the unwind table: */
5937 for (relsec = section_headers;
5938 relsec < section_headers + elf_header.e_shnum;
5939 ++relsec)
5940 {
5941 if (relsec->sh_type != SHT_RELA
5942 || relsec->sh_info >= elf_header.e_shnum
5943 || section_headers + relsec->sh_info != sec)
5944 continue;
5945
5946 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
5947 & rela, & nrelas))
5948 return 0;
5949
5950 for (rp = rela; rp < rela + nrelas; ++rp)
5951 {
5952 relname = elf_ia64_reloc_type (get_reloc_type (rp->r_info));
5953 sym = aux->symtab + get_reloc_symindex (rp->r_info);
5954
5955 if (! const_strneq (relname, "R_IA64_SEGREL"))
5956 {
5957 warn (_("Skipping unexpected relocation type %s\n"), relname);
5958 continue;
5959 }
5960
5961 i = rp->r_offset / (3 * eh_addr_size);
5962
5963 switch (rp->r_offset/eh_addr_size % 3)
5964 {
5965 case 0:
5966 aux->table[i].start.section = sym->st_shndx;
5967 aux->table[i].start.offset = rp->r_addend + sym->st_value;
5968 break;
5969 case 1:
5970 aux->table[i].end.section = sym->st_shndx;
5971 aux->table[i].end.offset = rp->r_addend + sym->st_value;
5972 break;
5973 case 2:
5974 aux->table[i].info.section = sym->st_shndx;
5975 aux->table[i].info.offset = rp->r_addend + sym->st_value;
5976 break;
5977 default:
5978 break;
5979 }
5980 }
5981
5982 free (rela);
5983 }
5984
5985 aux->table_len = size / (3 * eh_addr_size);
5986 return 1;
5987 }
5988
5989 static void
5990 ia64_process_unwind (FILE * file)
5991 {
5992 Elf_Internal_Shdr * sec;
5993 Elf_Internal_Shdr * unwsec = NULL;
5994 Elf_Internal_Shdr * strsec;
5995 unsigned long i, unwcount = 0, unwstart = 0;
5996 struct ia64_unw_aux_info aux;
5997
5998 memset (& aux, 0, sizeof (aux));
5999
6000 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
6001 {
6002 if (sec->sh_type == SHT_SYMTAB
6003 && sec->sh_link < elf_header.e_shnum)
6004 {
6005 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
6006
6007 strsec = section_headers + sec->sh_link;
6008 assert (aux.strtab == NULL);
6009 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
6010 1, strsec->sh_size,
6011 _("string table"));
6012 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
6013 }
6014 else if (sec->sh_type == SHT_IA_64_UNWIND)
6015 unwcount++;
6016 }
6017
6018 if (!unwcount)
6019 printf (_("\nThere are no unwind sections in this file.\n"));
6020
6021 while (unwcount-- > 0)
6022 {
6023 char * suffix;
6024 size_t len, len2;
6025
6026 for (i = unwstart, sec = section_headers + unwstart;
6027 i < elf_header.e_shnum; ++i, ++sec)
6028 if (sec->sh_type == SHT_IA_64_UNWIND)
6029 {
6030 unwsec = sec;
6031 break;
6032 }
6033
6034 unwstart = i + 1;
6035 len = sizeof (ELF_STRING_ia64_unwind_once) - 1;
6036
6037 if ((unwsec->sh_flags & SHF_GROUP) != 0)
6038 {
6039 /* We need to find which section group it is in. */
6040 struct group_list * g = section_headers_groups [i]->root;
6041
6042 for (; g != NULL; g = g->next)
6043 {
6044 sec = section_headers + g->section_index;
6045
6046 if (streq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info))
6047 break;
6048 }
6049
6050 if (g == NULL)
6051 i = elf_header.e_shnum;
6052 }
6053 else if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind_once, len))
6054 {
6055 /* .gnu.linkonce.ia64unw.FOO -> .gnu.linkonce.ia64unwi.FOO. */
6056 len2 = sizeof (ELF_STRING_ia64_unwind_info_once) - 1;
6057 suffix = SECTION_NAME (unwsec) + len;
6058 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
6059 ++i, ++sec)
6060 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info_once, len2)
6061 && streq (SECTION_NAME (sec) + len2, suffix))
6062 break;
6063 }
6064 else
6065 {
6066 /* .IA_64.unwindFOO -> .IA_64.unwind_infoFOO
6067 .IA_64.unwind or BAR -> .IA_64.unwind_info. */
6068 len = sizeof (ELF_STRING_ia64_unwind) - 1;
6069 len2 = sizeof (ELF_STRING_ia64_unwind_info) - 1;
6070 suffix = "";
6071 if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind, len))
6072 suffix = SECTION_NAME (unwsec) + len;
6073 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
6074 ++i, ++sec)
6075 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info, len2)
6076 && streq (SECTION_NAME (sec) + len2, suffix))
6077 break;
6078 }
6079
6080 if (i == elf_header.e_shnum)
6081 {
6082 printf (_("\nCould not find unwind info section for "));
6083
6084 if (string_table == NULL)
6085 printf ("%d", unwsec->sh_name);
6086 else
6087 printf (_("'%s'"), SECTION_NAME (unwsec));
6088 }
6089 else
6090 {
6091 aux.info_addr = sec->sh_addr;
6092 aux.info = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1,
6093 sec->sh_size,
6094 _("unwind info"));
6095 aux.info_size = aux.info == NULL ? 0 : sec->sh_size;
6096
6097 printf (_("\nUnwind section "));
6098
6099 if (string_table == NULL)
6100 printf ("%d", unwsec->sh_name);
6101 else
6102 printf (_("'%s'"), SECTION_NAME (unwsec));
6103
6104 printf (_(" at offset 0x%lx contains %lu entries:\n"),
6105 (unsigned long) unwsec->sh_offset,
6106 (unsigned long) (unwsec->sh_size / (3 * eh_addr_size)));
6107
6108 (void) slurp_ia64_unwind_table (file, & aux, unwsec);
6109
6110 if (aux.table_len > 0)
6111 dump_ia64_unwind (& aux);
6112
6113 if (aux.table)
6114 free ((char *) aux.table);
6115 if (aux.info)
6116 free ((char *) aux.info);
6117 aux.table = NULL;
6118 aux.info = NULL;
6119 }
6120 }
6121
6122 if (aux.symtab)
6123 free (aux.symtab);
6124 if (aux.strtab)
6125 free ((char *) aux.strtab);
6126 }
6127
6128 struct hppa_unw_table_entry
6129 {
6130 struct absaddr start;
6131 struct absaddr end;
6132 unsigned int Cannot_unwind:1; /* 0 */
6133 unsigned int Millicode:1; /* 1 */
6134 unsigned int Millicode_save_sr0:1; /* 2 */
6135 unsigned int Region_description:2; /* 3..4 */
6136 unsigned int reserved1:1; /* 5 */
6137 unsigned int Entry_SR:1; /* 6 */
6138 unsigned int Entry_FR:4; /* number saved */ /* 7..10 */
6139 unsigned int Entry_GR:5; /* number saved */ /* 11..15 */
6140 unsigned int Args_stored:1; /* 16 */
6141 unsigned int Variable_Frame:1; /* 17 */
6142 unsigned int Separate_Package_Body:1; /* 18 */
6143 unsigned int Frame_Extension_Millicode:1; /* 19 */
6144 unsigned int Stack_Overflow_Check:1; /* 20 */
6145 unsigned int Two_Instruction_SP_Increment:1; /* 21 */
6146 unsigned int Ada_Region:1; /* 22 */
6147 unsigned int cxx_info:1; /* 23 */
6148 unsigned int cxx_try_catch:1; /* 24 */
6149 unsigned int sched_entry_seq:1; /* 25 */
6150 unsigned int reserved2:1; /* 26 */
6151 unsigned int Save_SP:1; /* 27 */
6152 unsigned int Save_RP:1; /* 28 */
6153 unsigned int Save_MRP_in_frame:1; /* 29 */
6154 unsigned int extn_ptr_defined:1; /* 30 */
6155 unsigned int Cleanup_defined:1; /* 31 */
6156
6157 unsigned int MPE_XL_interrupt_marker:1; /* 0 */
6158 unsigned int HP_UX_interrupt_marker:1; /* 1 */
6159 unsigned int Large_frame:1; /* 2 */
6160 unsigned int Pseudo_SP_Set:1; /* 3 */
6161 unsigned int reserved4:1; /* 4 */
6162 unsigned int Total_frame_size:27; /* 5..31 */
6163 };
6164
6165 struct hppa_unw_aux_info
6166 {
6167 struct hppa_unw_table_entry *table; /* Unwind table. */
6168 unsigned long table_len; /* Length of unwind table. */
6169 bfd_vma seg_base; /* Starting address of segment. */
6170 Elf_Internal_Sym * symtab; /* The symbol table. */
6171 unsigned long nsyms; /* Number of symbols. */
6172 char * strtab; /* The string table. */
6173 unsigned long strtab_size; /* Size of string table. */
6174 };
6175
6176 static void
6177 dump_hppa_unwind (struct hppa_unw_aux_info * aux)
6178 {
6179 struct hppa_unw_table_entry * tp;
6180
6181 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
6182 {
6183 bfd_vma offset;
6184 const char * procname;
6185
6186 find_symbol_for_address (aux->symtab, aux->nsyms, aux->strtab,
6187 aux->strtab_size, tp->start, &procname,
6188 &offset);
6189
6190 fputs ("\n<", stdout);
6191
6192 if (procname)
6193 {
6194 fputs (procname, stdout);
6195
6196 if (offset)
6197 printf ("+%lx", (unsigned long) offset);
6198 }
6199
6200 fputs (">: [", stdout);
6201 print_vma (tp->start.offset, PREFIX_HEX);
6202 fputc ('-', stdout);
6203 print_vma (tp->end.offset, PREFIX_HEX);
6204 printf ("]\n\t");
6205
6206 #define PF(_m) if (tp->_m) printf (#_m " ");
6207 #define PV(_m) if (tp->_m) printf (#_m "=%d ", tp->_m);
6208 PF(Cannot_unwind);
6209 PF(Millicode);
6210 PF(Millicode_save_sr0);
6211 /* PV(Region_description); */
6212 PF(Entry_SR);
6213 PV(Entry_FR);
6214 PV(Entry_GR);
6215 PF(Args_stored);
6216 PF(Variable_Frame);
6217 PF(Separate_Package_Body);
6218 PF(Frame_Extension_Millicode);
6219 PF(Stack_Overflow_Check);
6220 PF(Two_Instruction_SP_Increment);
6221 PF(Ada_Region);
6222 PF(cxx_info);
6223 PF(cxx_try_catch);
6224 PF(sched_entry_seq);
6225 PF(Save_SP);
6226 PF(Save_RP);
6227 PF(Save_MRP_in_frame);
6228 PF(extn_ptr_defined);
6229 PF(Cleanup_defined);
6230 PF(MPE_XL_interrupt_marker);
6231 PF(HP_UX_interrupt_marker);
6232 PF(Large_frame);
6233 PF(Pseudo_SP_Set);
6234 PV(Total_frame_size);
6235 #undef PF
6236 #undef PV
6237 }
6238
6239 printf ("\n");
6240 }
6241
6242 static int
6243 slurp_hppa_unwind_table (FILE * file,
6244 struct hppa_unw_aux_info * aux,
6245 Elf_Internal_Shdr * sec)
6246 {
6247 unsigned long size, unw_ent_size, nentries, nrelas, i;
6248 Elf_Internal_Phdr * seg;
6249 struct hppa_unw_table_entry * tep;
6250 Elf_Internal_Shdr * relsec;
6251 Elf_Internal_Rela * rela;
6252 Elf_Internal_Rela * rp;
6253 unsigned char * table;
6254 unsigned char * tp;
6255 Elf_Internal_Sym * sym;
6256 const char * relname;
6257
6258 /* First, find the starting address of the segment that includes
6259 this section. */
6260
6261 if (elf_header.e_phnum)
6262 {
6263 if (! get_program_headers (file))
6264 return 0;
6265
6266 for (seg = program_headers;
6267 seg < program_headers + elf_header.e_phnum;
6268 ++seg)
6269 {
6270 if (seg->p_type != PT_LOAD)
6271 continue;
6272
6273 if (sec->sh_addr >= seg->p_vaddr
6274 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
6275 {
6276 aux->seg_base = seg->p_vaddr;
6277 break;
6278 }
6279 }
6280 }
6281
6282 /* Second, build the unwind table from the contents of the unwind
6283 section. */
6284 size = sec->sh_size;
6285 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
6286 _("unwind table"));
6287 if (!table)
6288 return 0;
6289
6290 unw_ent_size = 16;
6291 nentries = size / unw_ent_size;
6292 size = unw_ent_size * nentries;
6293
6294 tep = aux->table = (struct hppa_unw_table_entry *)
6295 xcmalloc (nentries, sizeof (aux->table[0]));
6296
6297 for (tp = table; tp < table + size; tp += unw_ent_size, ++tep)
6298 {
6299 unsigned int tmp1, tmp2;
6300
6301 tep->start.section = SHN_UNDEF;
6302 tep->end.section = SHN_UNDEF;
6303
6304 tep->start.offset = byte_get ((unsigned char *) tp + 0, 4);
6305 tep->end.offset = byte_get ((unsigned char *) tp + 4, 4);
6306 tmp1 = byte_get ((unsigned char *) tp + 8, 4);
6307 tmp2 = byte_get ((unsigned char *) tp + 12, 4);
6308
6309 tep->start.offset += aux->seg_base;
6310 tep->end.offset += aux->seg_base;
6311
6312 tep->Cannot_unwind = (tmp1 >> 31) & 0x1;
6313 tep->Millicode = (tmp1 >> 30) & 0x1;
6314 tep->Millicode_save_sr0 = (tmp1 >> 29) & 0x1;
6315 tep->Region_description = (tmp1 >> 27) & 0x3;
6316 tep->reserved1 = (tmp1 >> 26) & 0x1;
6317 tep->Entry_SR = (tmp1 >> 25) & 0x1;
6318 tep->Entry_FR = (tmp1 >> 21) & 0xf;
6319 tep->Entry_GR = (tmp1 >> 16) & 0x1f;
6320 tep->Args_stored = (tmp1 >> 15) & 0x1;
6321 tep->Variable_Frame = (tmp1 >> 14) & 0x1;
6322 tep->Separate_Package_Body = (tmp1 >> 13) & 0x1;
6323 tep->Frame_Extension_Millicode = (tmp1 >> 12) & 0x1;
6324 tep->Stack_Overflow_Check = (tmp1 >> 11) & 0x1;
6325 tep->Two_Instruction_SP_Increment = (tmp1 >> 10) & 0x1;
6326 tep->Ada_Region = (tmp1 >> 9) & 0x1;
6327 tep->cxx_info = (tmp1 >> 8) & 0x1;
6328 tep->cxx_try_catch = (tmp1 >> 7) & 0x1;
6329 tep->sched_entry_seq = (tmp1 >> 6) & 0x1;
6330 tep->reserved2 = (tmp1 >> 5) & 0x1;
6331 tep->Save_SP = (tmp1 >> 4) & 0x1;
6332 tep->Save_RP = (tmp1 >> 3) & 0x1;
6333 tep->Save_MRP_in_frame = (tmp1 >> 2) & 0x1;
6334 tep->extn_ptr_defined = (tmp1 >> 1) & 0x1;
6335 tep->Cleanup_defined = tmp1 & 0x1;
6336
6337 tep->MPE_XL_interrupt_marker = (tmp2 >> 31) & 0x1;
6338 tep->HP_UX_interrupt_marker = (tmp2 >> 30) & 0x1;
6339 tep->Large_frame = (tmp2 >> 29) & 0x1;
6340 tep->Pseudo_SP_Set = (tmp2 >> 28) & 0x1;
6341 tep->reserved4 = (tmp2 >> 27) & 0x1;
6342 tep->Total_frame_size = tmp2 & 0x7ffffff;
6343 }
6344 free (table);
6345
6346 /* Third, apply any relocations to the unwind table. */
6347 for (relsec = section_headers;
6348 relsec < section_headers + elf_header.e_shnum;
6349 ++relsec)
6350 {
6351 if (relsec->sh_type != SHT_RELA
6352 || relsec->sh_info >= elf_header.e_shnum
6353 || section_headers + relsec->sh_info != sec)
6354 continue;
6355
6356 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
6357 & rela, & nrelas))
6358 return 0;
6359
6360 for (rp = rela; rp < rela + nrelas; ++rp)
6361 {
6362 relname = elf_hppa_reloc_type (get_reloc_type (rp->r_info));
6363 sym = aux->symtab + get_reloc_symindex (rp->r_info);
6364
6365 /* R_PARISC_SEGREL32 or R_PARISC_SEGREL64. */
6366 if (! const_strneq (relname, "R_PARISC_SEGREL"))
6367 {
6368 warn (_("Skipping unexpected relocation type %s\n"), relname);
6369 continue;
6370 }
6371
6372 i = rp->r_offset / unw_ent_size;
6373
6374 switch ((rp->r_offset % unw_ent_size) / eh_addr_size)
6375 {
6376 case 0:
6377 aux->table[i].start.section = sym->st_shndx;
6378 aux->table[i].start.offset = sym->st_value + rp->r_addend;
6379 break;
6380 case 1:
6381 aux->table[i].end.section = sym->st_shndx;
6382 aux->table[i].end.offset = sym->st_value + rp->r_addend;
6383 break;
6384 default:
6385 break;
6386 }
6387 }
6388
6389 free (rela);
6390 }
6391
6392 aux->table_len = nentries;
6393
6394 return 1;
6395 }
6396
6397 static void
6398 hppa_process_unwind (FILE * file)
6399 {
6400 struct hppa_unw_aux_info aux;
6401 Elf_Internal_Shdr * unwsec = NULL;
6402 Elf_Internal_Shdr * strsec;
6403 Elf_Internal_Shdr * sec;
6404 unsigned long i;
6405
6406 if (string_table == NULL)
6407 return;
6408
6409 memset (& aux, 0, sizeof (aux));
6410
6411 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
6412 {
6413 if (sec->sh_type == SHT_SYMTAB
6414 && sec->sh_link < elf_header.e_shnum)
6415 {
6416 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
6417
6418 strsec = section_headers + sec->sh_link;
6419 assert (aux.strtab == NULL);
6420 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
6421 1, strsec->sh_size,
6422 _("string table"));
6423 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
6424 }
6425 else if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
6426 unwsec = sec;
6427 }
6428
6429 if (!unwsec)
6430 printf (_("\nThere are no unwind sections in this file.\n"));
6431
6432 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
6433 {
6434 if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
6435 {
6436 printf (_("\nUnwind section "));
6437 printf (_("'%s'"), SECTION_NAME (sec));
6438
6439 printf (_(" at offset 0x%lx contains %lu entries:\n"),
6440 (unsigned long) sec->sh_offset,
6441 (unsigned long) (sec->sh_size / (2 * eh_addr_size + 8)));
6442
6443 slurp_hppa_unwind_table (file, &aux, sec);
6444 if (aux.table_len > 0)
6445 dump_hppa_unwind (&aux);
6446
6447 if (aux.table)
6448 free ((char *) aux.table);
6449 aux.table = NULL;
6450 }
6451 }
6452
6453 if (aux.symtab)
6454 free (aux.symtab);
6455 if (aux.strtab)
6456 free ((char *) aux.strtab);
6457 }
6458
6459 struct arm_section
6460 {
6461 unsigned char * data; /* The unwind data. */
6462 Elf_Internal_Shdr * sec; /* The cached unwind section header. */
6463 Elf_Internal_Rela * rela; /* The cached relocations for this section. */
6464 unsigned long nrelas; /* The number of relocations. */
6465 unsigned int rel_type; /* REL or RELA ? */
6466 Elf_Internal_Rela * next_rela; /* Cyclic pointer to the next reloc to process. */
6467 };
6468
6469 struct arm_unw_aux_info
6470 {
6471 FILE * file; /* The file containing the unwind sections. */
6472 Elf_Internal_Sym * symtab; /* The file's symbol table. */
6473 unsigned long nsyms; /* Number of symbols. */
6474 char * strtab; /* The file's string table. */
6475 unsigned long strtab_size; /* Size of string table. */
6476 };
6477
6478 static const char *
6479 arm_print_vma_and_name (struct arm_unw_aux_info *aux,
6480 bfd_vma fn, struct absaddr addr)
6481 {
6482 const char *procname;
6483 bfd_vma sym_offset;
6484
6485 if (addr.section == SHN_UNDEF)
6486 addr.offset = fn;
6487
6488 find_symbol_for_address (aux->symtab, aux->nsyms, aux->strtab,
6489 aux->strtab_size, addr, &procname,
6490 &sym_offset);
6491
6492 print_vma (fn, PREFIX_HEX);
6493
6494 if (procname)
6495 {
6496 fputs (" <", stdout);
6497 fputs (procname, stdout);
6498
6499 if (sym_offset)
6500 printf ("+0x%lx", (unsigned long) sym_offset);
6501 fputc ('>', stdout);
6502 }
6503
6504 return procname;
6505 }
6506
6507 static void
6508 arm_free_section (struct arm_section *arm_sec)
6509 {
6510 if (arm_sec->data != NULL)
6511 free (arm_sec->data);
6512
6513 if (arm_sec->rela != NULL)
6514 free (arm_sec->rela);
6515 }
6516
6517 /* 1) If SEC does not match the one cached in ARM_SEC, then free the current
6518 cached section and install SEC instead.
6519 2) Locate the 32-bit word at WORD_OFFSET in unwind section SEC
6520 and return its valued in * WORDP, relocating if necessary.
6521 3) Update the NEXT_RELA field in ARM_SEC and store the section index and
6522 relocation's offset in ADDR.
6523 4) If SYM_NAME is non-NULL and a relocation was applied, record the offset
6524 into the string table of the symbol associated with the reloc. If no
6525 reloc was applied store -1 there.
6526 5) Return TRUE upon success, FALSE otherwise. */
6527
6528 static bfd_boolean
6529 get_unwind_section_word (struct arm_unw_aux_info * aux,
6530 struct arm_section * arm_sec,
6531 Elf_Internal_Shdr * sec,
6532 bfd_vma word_offset,
6533 unsigned int * wordp,
6534 struct absaddr * addr,
6535 bfd_vma * sym_name)
6536 {
6537 Elf_Internal_Rela *rp;
6538 Elf_Internal_Sym *sym;
6539 const char * relname;
6540 unsigned int word;
6541 bfd_boolean wrapped;
6542
6543 addr->section = SHN_UNDEF;
6544 addr->offset = 0;
6545
6546 if (sym_name != NULL)
6547 *sym_name = (bfd_vma) -1;
6548
6549 /* If necessary, update the section cache. */
6550 if (sec != arm_sec->sec)
6551 {
6552 Elf_Internal_Shdr *relsec;
6553
6554 arm_free_section (arm_sec);
6555
6556 arm_sec->sec = sec;
6557 arm_sec->data = get_data (NULL, aux->file, sec->sh_offset, 1,
6558 sec->sh_size, _("unwind data"));
6559 arm_sec->rela = NULL;
6560 arm_sec->nrelas = 0;
6561
6562 for (relsec = section_headers;
6563 relsec < section_headers + elf_header.e_shnum;
6564 ++relsec)
6565 {
6566 if (relsec->sh_info >= elf_header.e_shnum
6567 || section_headers + relsec->sh_info != sec)
6568 continue;
6569
6570 arm_sec->rel_type = relsec->sh_type;
6571 if (relsec->sh_type == SHT_REL)
6572 {
6573 if (!slurp_rel_relocs (aux->file, relsec->sh_offset,
6574 relsec->sh_size,
6575 & arm_sec->rela, & arm_sec->nrelas))
6576 return FALSE;
6577 break;
6578 }
6579 else if (relsec->sh_type == SHT_RELA)
6580 {
6581 if (!slurp_rela_relocs (aux->file, relsec->sh_offset,
6582 relsec->sh_size,
6583 & arm_sec->rela, & arm_sec->nrelas))
6584 return FALSE;
6585 break;
6586 }
6587 else
6588 warn (_("unexpected relocation type (%d) for section %d"),
6589 relsec->sh_type, relsec->sh_info);
6590 }
6591
6592 arm_sec->next_rela = arm_sec->rela;
6593 }
6594
6595 /* If there is no unwind data we can do nothing. */
6596 if (arm_sec->data == NULL)
6597 return FALSE;
6598
6599 /* Get the word at the required offset. */
6600 word = byte_get (arm_sec->data + word_offset, 4);
6601
6602 /* Look through the relocs to find the one that applies to the provided offset. */
6603 wrapped = FALSE;
6604 for (rp = arm_sec->next_rela; rp != arm_sec->rela + arm_sec->nrelas; rp++)
6605 {
6606 bfd_vma prelval, offset;
6607
6608 if (rp->r_offset > word_offset && !wrapped)
6609 {
6610 rp = arm_sec->rela;
6611 wrapped = TRUE;
6612 }
6613 if (rp->r_offset > word_offset)
6614 break;
6615
6616 if (rp->r_offset & 3)
6617 {
6618 warn (_("Skipping unexpected relocation at offset 0x%lx\n"),
6619 (unsigned long) rp->r_offset);
6620 continue;
6621 }
6622
6623 if (rp->r_offset < word_offset)
6624 continue;
6625
6626 sym = aux->symtab + ELF32_R_SYM (rp->r_info);
6627
6628 if (arm_sec->rel_type == SHT_REL)
6629 {
6630 offset = word & 0x7fffffff;
6631 if (offset & 0x40000000)
6632 offset |= ~ (bfd_vma) 0x7fffffff;
6633 }
6634 else if (arm_sec->rel_type == SHT_RELA)
6635 offset = rp->r_addend;
6636 else
6637 abort ();
6638
6639 offset += sym->st_value;
6640 prelval = offset - (arm_sec->sec->sh_addr + rp->r_offset);
6641
6642 /* Check that we are processing the expected reloc type. */
6643 if (elf_header.e_machine == EM_ARM)
6644 {
6645 relname = elf_arm_reloc_type (ELF32_R_TYPE (rp->r_info));
6646
6647 if (streq (relname, "R_ARM_NONE"))
6648 continue;
6649
6650 if (! streq (relname, "R_ARM_PREL31"))
6651 {
6652 warn (_("Skipping unexpected relocation type %s\n"), relname);
6653 continue;
6654 }
6655 }
6656 else if (elf_header.e_machine == EM_TI_C6000)
6657 {
6658 relname = elf_tic6x_reloc_type (ELF32_R_TYPE (rp->r_info));
6659
6660 if (streq (relname, "R_C6000_NONE"))
6661 continue;
6662
6663 if (! streq (relname, "R_C6000_PREL31"))
6664 {
6665 warn (_("Skipping unexpected relocation type %s\n"), relname);
6666 continue;
6667 }
6668
6669 prelval >>= 1;
6670 }
6671 else
6672 /* This function currently only supports ARM and TI unwinders. */
6673 abort ();
6674
6675 word = (word & ~ (bfd_vma) 0x7fffffff) | (prelval & 0x7fffffff);
6676 addr->section = sym->st_shndx;
6677 addr->offset = offset;
6678 if (sym_name)
6679 * sym_name = sym->st_name;
6680 break;
6681 }
6682
6683 *wordp = word;
6684 arm_sec->next_rela = rp;
6685
6686 return TRUE;
6687 }
6688
6689 static const char *tic6x_unwind_regnames[16] =
6690 {
6691 "A15", "B15", "B14", "B13", "B12", "B11", "B10", "B3",
6692 "A14", "A13", "A12", "A11", "A10",
6693 "[invalid reg 13]", "[invalid reg 14]", "[invalid reg 15]"
6694 };
6695
6696 static void
6697 decode_tic6x_unwind_regmask (unsigned int mask)
6698 {
6699 int i;
6700
6701 for (i = 12; mask; mask >>= 1, i--)
6702 {
6703 if (mask & 1)
6704 {
6705 fputs (tic6x_unwind_regnames[i], stdout);
6706 if (mask > 1)
6707 fputs (", ", stdout);
6708 }
6709 }
6710 }
6711
6712 #define ADVANCE \
6713 if (remaining == 0 && more_words) \
6714 { \
6715 data_offset += 4; \
6716 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, \
6717 data_offset, & word, & addr, NULL)) \
6718 return; \
6719 remaining = 4; \
6720 more_words--; \
6721 } \
6722
6723 #define GET_OP(OP) \
6724 ADVANCE; \
6725 if (remaining) \
6726 { \
6727 remaining--; \
6728 (OP) = word >> 24; \
6729 word <<= 8; \
6730 } \
6731 else \
6732 { \
6733 printf (_("[Truncated opcode]\n")); \
6734 return; \
6735 } \
6736 printf ("0x%02x ", OP)
6737
6738 static void
6739 decode_arm_unwind_bytecode (struct arm_unw_aux_info *aux,
6740 unsigned int word, unsigned int remaining,
6741 unsigned int more_words,
6742 bfd_vma data_offset, Elf_Internal_Shdr *data_sec,
6743 struct arm_section *data_arm_sec)
6744 {
6745 struct absaddr addr;
6746
6747 /* Decode the unwinding instructions. */
6748 while (1)
6749 {
6750 unsigned int op, op2;
6751
6752 ADVANCE;
6753 if (remaining == 0)
6754 break;
6755 remaining--;
6756 op = word >> 24;
6757 word <<= 8;
6758
6759 printf (" 0x%02x ", op);
6760
6761 if ((op & 0xc0) == 0x00)
6762 {
6763 int offset = ((op & 0x3f) << 2) + 4;
6764
6765 printf (" vsp = vsp + %d", offset);
6766 }
6767 else if ((op & 0xc0) == 0x40)
6768 {
6769 int offset = ((op & 0x3f) << 2) + 4;
6770
6771 printf (" vsp = vsp - %d", offset);
6772 }
6773 else if ((op & 0xf0) == 0x80)
6774 {
6775 GET_OP (op2);
6776 if (op == 0x80 && op2 == 0)
6777 printf (_("Refuse to unwind"));
6778 else
6779 {
6780 unsigned int mask = ((op & 0x0f) << 8) | op2;
6781 int first = 1;
6782 int i;
6783
6784 printf ("pop {");
6785 for (i = 0; i < 12; i++)
6786 if (mask & (1 << i))
6787 {
6788 if (first)
6789 first = 0;
6790 else
6791 printf (", ");
6792 printf ("r%d", 4 + i);
6793 }
6794 printf ("}");
6795 }
6796 }
6797 else if ((op & 0xf0) == 0x90)
6798 {
6799 if (op == 0x9d || op == 0x9f)
6800 printf (_(" [Reserved]"));
6801 else
6802 printf (" vsp = r%d", op & 0x0f);
6803 }
6804 else if ((op & 0xf0) == 0xa0)
6805 {
6806 int end = 4 + (op & 0x07);
6807 int first = 1;
6808 int i;
6809
6810 printf (" pop {");
6811 for (i = 4; i <= end; i++)
6812 {
6813 if (first)
6814 first = 0;
6815 else
6816 printf (", ");
6817 printf ("r%d", i);
6818 }
6819 if (op & 0x08)
6820 {
6821 if (!first)
6822 printf (", ");
6823 printf ("r14");
6824 }
6825 printf ("}");
6826 }
6827 else if (op == 0xb0)
6828 printf (_(" finish"));
6829 else if (op == 0xb1)
6830 {
6831 GET_OP (op2);
6832 if (op2 == 0 || (op2 & 0xf0) != 0)
6833 printf (_("[Spare]"));
6834 else
6835 {
6836 unsigned int mask = op2 & 0x0f;
6837 int first = 1;
6838 int i;
6839
6840 printf ("pop {");
6841 for (i = 0; i < 12; i++)
6842 if (mask & (1 << i))
6843 {
6844 if (first)
6845 first = 0;
6846 else
6847 printf (", ");
6848 printf ("r%d", i);
6849 }
6850 printf ("}");
6851 }
6852 }
6853 else if (op == 0xb2)
6854 {
6855 unsigned char buf[9];
6856 unsigned int i, len;
6857 unsigned long offset;
6858
6859 for (i = 0; i < sizeof (buf); i++)
6860 {
6861 GET_OP (buf[i]);
6862 if ((buf[i] & 0x80) == 0)
6863 break;
6864 }
6865 assert (i < sizeof (buf));
6866 offset = read_uleb128 (buf, &len, buf + i + 1);
6867 assert (len == i + 1);
6868 offset = offset * 4 + 0x204;
6869 printf ("vsp = vsp + %ld", offset);
6870 }
6871 else if (op == 0xb3 || op == 0xc8 || op == 0xc9)
6872 {
6873 unsigned int first, last;
6874
6875 GET_OP (op2);
6876 first = op2 >> 4;
6877 last = op2 & 0x0f;
6878 if (op == 0xc8)
6879 first = first + 16;
6880 printf ("pop {D%d", first);
6881 if (last)
6882 printf ("-D%d", first + last);
6883 printf ("}");
6884 }
6885 else if ((op & 0xf8) == 0xb8 || (op & 0xf8) == 0xd0)
6886 {
6887 unsigned int count = op & 0x07;
6888
6889 printf ("pop {D8");
6890 if (count)
6891 printf ("-D%d", 8 + count);
6892 printf ("}");
6893 }
6894 else if (op >= 0xc0 && op <= 0xc5)
6895 {
6896 unsigned int count = op & 0x07;
6897
6898 printf (" pop {wR10");
6899 if (count)
6900 printf ("-wR%d", 10 + count);
6901 printf ("}");
6902 }
6903 else if (op == 0xc6)
6904 {
6905 unsigned int first, last;
6906
6907 GET_OP (op2);
6908 first = op2 >> 4;
6909 last = op2 & 0x0f;
6910 printf ("pop {wR%d", first);
6911 if (last)
6912 printf ("-wR%d", first + last);
6913 printf ("}");
6914 }
6915 else if (op == 0xc7)
6916 {
6917 GET_OP (op2);
6918 if (op2 == 0 || (op2 & 0xf0) != 0)
6919 printf (_("[Spare]"));
6920 else
6921 {
6922 unsigned int mask = op2 & 0x0f;
6923 int first = 1;
6924 int i;
6925
6926 printf ("pop {");
6927 for (i = 0; i < 4; i++)
6928 if (mask & (1 << i))
6929 {
6930 if (first)
6931 first = 0;
6932 else
6933 printf (", ");
6934 printf ("wCGR%d", i);
6935 }
6936 printf ("}");
6937 }
6938 }
6939 else
6940 printf (_(" [unsupported opcode]"));
6941 printf ("\n");
6942 }
6943 }
6944
6945 static void
6946 decode_tic6x_unwind_bytecode (struct arm_unw_aux_info *aux,
6947 unsigned int word, unsigned int remaining,
6948 unsigned int more_words,
6949 bfd_vma data_offset, Elf_Internal_Shdr *data_sec,
6950 struct arm_section *data_arm_sec)
6951 {
6952 struct absaddr addr;
6953
6954 /* Decode the unwinding instructions. */
6955 while (1)
6956 {
6957 unsigned int op, op2;
6958
6959 ADVANCE;
6960 if (remaining == 0)
6961 break;
6962 remaining--;
6963 op = word >> 24;
6964 word <<= 8;
6965
6966 printf (" 0x%02x ", op);
6967
6968 if ((op & 0xc0) == 0x00)
6969 {
6970 int offset = ((op & 0x3f) << 3) + 8;
6971 printf (" sp = sp + %d", offset);
6972 }
6973 else if ((op & 0xc0) == 0x80)
6974 {
6975 GET_OP (op2);
6976 if (op == 0x80 && op2 == 0)
6977 printf (_("Refuse to unwind"));
6978 else
6979 {
6980 unsigned int mask = ((op & 0x1f) << 8) | op2;
6981 if (op & 0x20)
6982 printf ("pop compact {");
6983 else
6984 printf ("pop {");
6985
6986 decode_tic6x_unwind_regmask (mask);
6987 printf("}");
6988 }
6989 }
6990 else if ((op & 0xf0) == 0xc0)
6991 {
6992 unsigned int reg;
6993 unsigned int nregs;
6994 unsigned int i;
6995 const char *name;
6996 struct
6997 {
6998 unsigned int offset;
6999 unsigned int reg;
7000 } regpos[16];
7001
7002 /* Scan entire instruction first so that GET_OP output is not
7003 interleaved with disassembly. */
7004 nregs = 0;
7005 for (i = 0; nregs < (op & 0xf); i++)
7006 {
7007 GET_OP (op2);
7008 reg = op2 >> 4;
7009 if (reg != 0xf)
7010 {
7011 regpos[nregs].offset = i * 2;
7012 regpos[nregs].reg = reg;
7013 nregs++;
7014 }
7015
7016 reg = op2 & 0xf;
7017 if (reg != 0xf)
7018 {
7019 regpos[nregs].offset = i * 2 + 1;
7020 regpos[nregs].reg = reg;
7021 nregs++;
7022 }
7023 }
7024
7025 printf (_("pop frame {"));
7026 reg = nregs - 1;
7027 for (i = i * 2; i > 0; i--)
7028 {
7029 if (regpos[reg].offset == i - 1)
7030 {
7031 name = tic6x_unwind_regnames[regpos[reg].reg];
7032 if (reg > 0)
7033 reg--;
7034 }
7035 else
7036 name = _("[pad]");
7037
7038 fputs (name, stdout);
7039 if (i > 1)
7040 printf (", ");
7041 }
7042
7043 printf ("}");
7044 }
7045 else if (op == 0xd0)
7046 printf (" MOV FP, SP");
7047 else if (op == 0xd1)
7048 printf (" __c6xabi_pop_rts");
7049 else if (op == 0xd2)
7050 {
7051 unsigned char buf[9];
7052 unsigned int i, len;
7053 unsigned long offset;
7054
7055 for (i = 0; i < sizeof (buf); i++)
7056 {
7057 GET_OP (buf[i]);
7058 if ((buf[i] & 0x80) == 0)
7059 break;
7060 }
7061 assert (i < sizeof (buf));
7062 offset = read_uleb128 (buf, &len, buf + i + 1);
7063 assert (len == i + 1);
7064 offset = offset * 8 + 0x408;
7065 printf (_("sp = sp + %ld"), offset);
7066 }
7067 else if ((op & 0xf0) == 0xe0)
7068 {
7069 if ((op & 0x0f) == 7)
7070 printf (" RETURN");
7071 else
7072 printf (" MV %s, B3", tic6x_unwind_regnames[op & 0x0f]);
7073 }
7074 else
7075 {
7076 printf (_(" [unsupported opcode]"));
7077 }
7078 putchar ('\n');
7079 }
7080 }
7081
7082 static bfd_vma
7083 arm_expand_prel31 (bfd_vma word, bfd_vma where)
7084 {
7085 bfd_vma offset;
7086
7087 offset = word & 0x7fffffff;
7088 if (offset & 0x40000000)
7089 offset |= ~ (bfd_vma) 0x7fffffff;
7090
7091 if (elf_header.e_machine == EM_TI_C6000)
7092 offset <<= 1;
7093
7094 return offset + where;
7095 }
7096
7097 static void
7098 decode_arm_unwind (struct arm_unw_aux_info * aux,
7099 unsigned int word,
7100 unsigned int remaining,
7101 bfd_vma data_offset,
7102 Elf_Internal_Shdr * data_sec,
7103 struct arm_section * data_arm_sec)
7104 {
7105 int per_index;
7106 unsigned int more_words = 0;
7107 struct absaddr addr;
7108 bfd_vma sym_name = (bfd_vma) -1;
7109
7110 if (remaining == 0)
7111 {
7112 /* Fetch the first word.
7113 Note - when decoding an object file the address extracted
7114 here will always be 0. So we also pass in the sym_name
7115 parameter so that we can find the symbol associated with
7116 the personality routine. */
7117 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, data_offset,
7118 & word, & addr, & sym_name))
7119 return;
7120
7121 remaining = 4;
7122 }
7123
7124 if ((word & 0x80000000) == 0)
7125 {
7126 /* Expand prel31 for personality routine. */
7127 bfd_vma fn;
7128 const char *procname;
7129
7130 fn = arm_expand_prel31 (word, data_sec->sh_addr + data_offset);
7131 printf (_(" Personality routine: "));
7132 if (fn == 0
7133 && addr.section == SHN_UNDEF && addr.offset == 0
7134 && sym_name != (bfd_vma) -1 && sym_name < aux->strtab_size)
7135 {
7136 procname = aux->strtab + sym_name;
7137 print_vma (fn, PREFIX_HEX);
7138 if (procname)
7139 {
7140 fputs (" <", stdout);
7141 fputs (procname, stdout);
7142 fputc ('>', stdout);
7143 }
7144 }
7145 else
7146 procname = arm_print_vma_and_name (aux, fn, addr);
7147 fputc ('\n', stdout);
7148
7149 /* The GCC personality routines use the standard compact
7150 encoding, starting with one byte giving the number of
7151 words. */
7152 if (procname != NULL
7153 && (const_strneq (procname, "__gcc_personality_v0")
7154 || const_strneq (procname, "__gxx_personality_v0")
7155 || const_strneq (procname, "__gcj_personality_v0")
7156 || const_strneq (procname, "__gnu_objc_personality_v0")))
7157 {
7158 remaining = 0;
7159 more_words = 1;
7160 ADVANCE;
7161 if (!remaining)
7162 {
7163 printf (_(" [Truncated data]\n"));
7164 return;
7165 }
7166 more_words = word >> 24;
7167 word <<= 8;
7168 remaining--;
7169 per_index = -1;
7170 }
7171 else
7172 return;
7173 }
7174 else
7175 {
7176 /* ARM EHABI Section 6.3:
7177
7178 An exception-handling table entry for the compact model looks like:
7179
7180 31 30-28 27-24 23-0
7181 -- ----- ----- ----
7182 1 0 index Data for personalityRoutine[index] */
7183
7184 if (elf_header.e_machine == EM_ARM
7185 && (word & 0x70000000))
7186 warn (_("Corrupt ARM compact model table entry: %x \n"), word);
7187
7188 per_index = (word >> 24) & 0x7f;
7189 printf (_(" Compact model index: %d\n"), per_index);
7190 if (per_index == 0)
7191 {
7192 more_words = 0;
7193 word <<= 8;
7194 remaining--;
7195 }
7196 else if (per_index < 3)
7197 {
7198 more_words = (word >> 16) & 0xff;
7199 word <<= 16;
7200 remaining -= 2;
7201 }
7202 }
7203
7204 switch (elf_header.e_machine)
7205 {
7206 case EM_ARM:
7207 if (per_index < 3)
7208 {
7209 decode_arm_unwind_bytecode (aux, word, remaining, more_words,
7210 data_offset, data_sec, data_arm_sec);
7211 }
7212 else
7213 {
7214 warn (_("Unknown ARM compact model index encountered\n"));
7215 printf (_(" [reserved]\n"));
7216 }
7217 break;
7218
7219 case EM_TI_C6000:
7220 if (per_index < 3)
7221 {
7222 decode_tic6x_unwind_bytecode (aux, word, remaining, more_words,
7223 data_offset, data_sec, data_arm_sec);
7224 }
7225 else if (per_index < 5)
7226 {
7227 if (((word >> 17) & 0x7f) == 0x7f)
7228 printf (_(" Restore stack from frame pointer\n"));
7229 else
7230 printf (_(" Stack increment %d\n"), (word >> 14) & 0x1fc);
7231 printf (_(" Registers restored: "));
7232 if (per_index == 4)
7233 printf (" (compact) ");
7234 decode_tic6x_unwind_regmask ((word >> 4) & 0x1fff);
7235 putchar ('\n');
7236 printf (_(" Return register: %s\n"),
7237 tic6x_unwind_regnames[word & 0xf]);
7238 }
7239 else
7240 printf (_(" [reserved (%d)]\n"), per_index);
7241 break;
7242
7243 default:
7244 error (_("Unsupported architecture type %d encountered when decoding unwind table"),
7245 elf_header.e_machine);
7246 }
7247
7248 /* Decode the descriptors. Not implemented. */
7249 }
7250
7251 static void
7252 dump_arm_unwind (struct arm_unw_aux_info *aux, Elf_Internal_Shdr *exidx_sec)
7253 {
7254 struct arm_section exidx_arm_sec, extab_arm_sec;
7255 unsigned int i, exidx_len;
7256
7257 memset (&exidx_arm_sec, 0, sizeof (exidx_arm_sec));
7258 memset (&extab_arm_sec, 0, sizeof (extab_arm_sec));
7259 exidx_len = exidx_sec->sh_size / 8;
7260
7261 for (i = 0; i < exidx_len; i++)
7262 {
7263 unsigned int exidx_fn, exidx_entry;
7264 struct absaddr fn_addr, entry_addr;
7265 bfd_vma fn;
7266
7267 fputc ('\n', stdout);
7268
7269 if (! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
7270 8 * i, & exidx_fn, & fn_addr, NULL)
7271 || ! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
7272 8 * i + 4, & exidx_entry, & entry_addr, NULL))
7273 {
7274 arm_free_section (& exidx_arm_sec);
7275 arm_free_section (& extab_arm_sec);
7276 return;
7277 }
7278
7279 /* ARM EHABI, Section 5:
7280 An index table entry consists of 2 words.
7281 The first word contains a prel31 offset to the start of a function, with bit 31 clear. */
7282 if (exidx_fn & 0x80000000)
7283 warn (_("corrupt index table entry: %x\n"), exidx_fn);
7284
7285 fn = arm_expand_prel31 (exidx_fn, exidx_sec->sh_addr + 8 * i);
7286
7287 arm_print_vma_and_name (aux, fn, fn_addr);
7288 fputs (": ", stdout);
7289
7290 if (exidx_entry == 1)
7291 {
7292 print_vma (exidx_entry, PREFIX_HEX);
7293 fputs (" [cantunwind]\n", stdout);
7294 }
7295 else if (exidx_entry & 0x80000000)
7296 {
7297 print_vma (exidx_entry, PREFIX_HEX);
7298 fputc ('\n', stdout);
7299 decode_arm_unwind (aux, exidx_entry, 4, 0, NULL, NULL);
7300 }
7301 else
7302 {
7303 bfd_vma table, table_offset = 0;
7304 Elf_Internal_Shdr *table_sec;
7305
7306 fputs ("@", stdout);
7307 table = arm_expand_prel31 (exidx_entry, exidx_sec->sh_addr + 8 * i + 4);
7308 print_vma (table, PREFIX_HEX);
7309 printf ("\n");
7310
7311 /* Locate the matching .ARM.extab. */
7312 if (entry_addr.section != SHN_UNDEF
7313 && entry_addr.section < elf_header.e_shnum)
7314 {
7315 table_sec = section_headers + entry_addr.section;
7316 table_offset = entry_addr.offset;
7317 }
7318 else
7319 {
7320 table_sec = find_section_by_address (table);
7321 if (table_sec != NULL)
7322 table_offset = table - table_sec->sh_addr;
7323 }
7324 if (table_sec == NULL)
7325 {
7326 warn (_("Could not locate .ARM.extab section containing 0x%lx.\n"),
7327 (unsigned long) table);
7328 continue;
7329 }
7330 decode_arm_unwind (aux, 0, 0, table_offset, table_sec,
7331 &extab_arm_sec);
7332 }
7333 }
7334
7335 printf ("\n");
7336
7337 arm_free_section (&exidx_arm_sec);
7338 arm_free_section (&extab_arm_sec);
7339 }
7340
7341 /* Used for both ARM and C6X unwinding tables. */
7342
7343 static void
7344 arm_process_unwind (FILE *file)
7345 {
7346 struct arm_unw_aux_info aux;
7347 Elf_Internal_Shdr *unwsec = NULL;
7348 Elf_Internal_Shdr *strsec;
7349 Elf_Internal_Shdr *sec;
7350 unsigned long i;
7351 unsigned int sec_type;
7352
7353 switch (elf_header.e_machine)
7354 {
7355 case EM_ARM:
7356 sec_type = SHT_ARM_EXIDX;
7357 break;
7358
7359 case EM_TI_C6000:
7360 sec_type = SHT_C6000_UNWIND;
7361 break;
7362
7363 default:
7364 error (_("Unsupported architecture type %d encountered when processing unwind table"),
7365 elf_header.e_machine);
7366 return;
7367 }
7368
7369 if (string_table == NULL)
7370 return;
7371
7372 memset (& aux, 0, sizeof (aux));
7373 aux.file = file;
7374
7375 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7376 {
7377 if (sec->sh_type == SHT_SYMTAB && sec->sh_link < elf_header.e_shnum)
7378 {
7379 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
7380
7381 strsec = section_headers + sec->sh_link;
7382 assert (aux.strtab == NULL);
7383 aux.strtab = get_data (NULL, file, strsec->sh_offset,
7384 1, strsec->sh_size, _("string table"));
7385 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7386 }
7387 else if (sec->sh_type == sec_type)
7388 unwsec = sec;
7389 }
7390
7391 if (unwsec == NULL)
7392 printf (_("\nThere are no unwind sections in this file.\n"));
7393 else
7394 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7395 {
7396 if (sec->sh_type == sec_type)
7397 {
7398 printf (_("\nUnwind table index '%s' at offset 0x%lx contains %lu entries:\n"),
7399 SECTION_NAME (sec),
7400 (unsigned long) sec->sh_offset,
7401 (unsigned long) (sec->sh_size / (2 * eh_addr_size)));
7402
7403 dump_arm_unwind (&aux, sec);
7404 }
7405 }
7406
7407 if (aux.symtab)
7408 free (aux.symtab);
7409 if (aux.strtab)
7410 free ((char *) aux.strtab);
7411 }
7412
7413 static void
7414 process_unwind (FILE * file)
7415 {
7416 struct unwind_handler
7417 {
7418 int machtype;
7419 void (* handler)(FILE *);
7420 } handlers[] =
7421 {
7422 { EM_ARM, arm_process_unwind },
7423 { EM_IA_64, ia64_process_unwind },
7424 { EM_PARISC, hppa_process_unwind },
7425 { EM_TI_C6000, arm_process_unwind },
7426 { 0, 0 }
7427 };
7428 int i;
7429
7430 if (!do_unwind)
7431 return;
7432
7433 for (i = 0; handlers[i].handler != NULL; i++)
7434 if (elf_header.e_machine == handlers[i].machtype)
7435 return handlers[i].handler (file);
7436
7437 printf (_("\nThe decoding of unwind sections for machine type %s is not currently supported.\n"),
7438 get_machine_name (elf_header.e_machine));
7439 }
7440
7441 static void
7442 dynamic_section_mips_val (Elf_Internal_Dyn * entry)
7443 {
7444 switch (entry->d_tag)
7445 {
7446 case DT_MIPS_FLAGS:
7447 if (entry->d_un.d_val == 0)
7448 printf (_("NONE"));
7449 else
7450 {
7451 static const char * opts[] =
7452 {
7453 "QUICKSTART", "NOTPOT", "NO_LIBRARY_REPLACEMENT",
7454 "NO_MOVE", "SGI_ONLY", "GUARANTEE_INIT", "DELTA_C_PLUS_PLUS",
7455 "GUARANTEE_START_INIT", "PIXIE", "DEFAULT_DELAY_LOAD",
7456 "REQUICKSTART", "REQUICKSTARTED", "CORD", "NO_UNRES_UNDEF",
7457 "RLD_ORDER_SAFE"
7458 };
7459 unsigned int cnt;
7460 int first = 1;
7461
7462 for (cnt = 0; cnt < ARRAY_SIZE (opts); ++cnt)
7463 if (entry->d_un.d_val & (1 << cnt))
7464 {
7465 printf ("%s%s", first ? "" : " ", opts[cnt]);
7466 first = 0;
7467 }
7468 }
7469 break;
7470
7471 case DT_MIPS_IVERSION:
7472 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
7473 printf (_("Interface Version: %s"), GET_DYNAMIC_NAME (entry->d_un.d_val));
7474 else
7475 printf (_("<corrupt: %" BFD_VMA_FMT "d>"), entry->d_un.d_ptr);
7476 break;
7477
7478 case DT_MIPS_TIME_STAMP:
7479 {
7480 char timebuf[20];
7481 struct tm * tmp;
7482
7483 time_t atime = entry->d_un.d_val;
7484 tmp = gmtime (&atime);
7485 snprintf (timebuf, sizeof (timebuf), "%04u-%02u-%02uT%02u:%02u:%02u",
7486 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
7487 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
7488 printf (_("Time Stamp: %s"), timebuf);
7489 }
7490 break;
7491
7492 case DT_MIPS_RLD_VERSION:
7493 case DT_MIPS_LOCAL_GOTNO:
7494 case DT_MIPS_CONFLICTNO:
7495 case DT_MIPS_LIBLISTNO:
7496 case DT_MIPS_SYMTABNO:
7497 case DT_MIPS_UNREFEXTNO:
7498 case DT_MIPS_HIPAGENO:
7499 case DT_MIPS_DELTA_CLASS_NO:
7500 case DT_MIPS_DELTA_INSTANCE_NO:
7501 case DT_MIPS_DELTA_RELOC_NO:
7502 case DT_MIPS_DELTA_SYM_NO:
7503 case DT_MIPS_DELTA_CLASSSYM_NO:
7504 case DT_MIPS_COMPACT_SIZE:
7505 print_vma (entry->d_un.d_ptr, DEC);
7506 break;
7507
7508 default:
7509 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7510 }
7511 putchar ('\n');
7512 }
7513
7514 static void
7515 dynamic_section_parisc_val (Elf_Internal_Dyn * entry)
7516 {
7517 switch (entry->d_tag)
7518 {
7519 case DT_HP_DLD_FLAGS:
7520 {
7521 static struct
7522 {
7523 long int bit;
7524 const char * str;
7525 }
7526 flags[] =
7527 {
7528 { DT_HP_DEBUG_PRIVATE, "HP_DEBUG_PRIVATE" },
7529 { DT_HP_DEBUG_CALLBACK, "HP_DEBUG_CALLBACK" },
7530 { DT_HP_DEBUG_CALLBACK_BOR, "HP_DEBUG_CALLBACK_BOR" },
7531 { DT_HP_NO_ENVVAR, "HP_NO_ENVVAR" },
7532 { DT_HP_BIND_NOW, "HP_BIND_NOW" },
7533 { DT_HP_BIND_NONFATAL, "HP_BIND_NONFATAL" },
7534 { DT_HP_BIND_VERBOSE, "HP_BIND_VERBOSE" },
7535 { DT_HP_BIND_RESTRICTED, "HP_BIND_RESTRICTED" },
7536 { DT_HP_BIND_SYMBOLIC, "HP_BIND_SYMBOLIC" },
7537 { DT_HP_RPATH_FIRST, "HP_RPATH_FIRST" },
7538 { DT_HP_BIND_DEPTH_FIRST, "HP_BIND_DEPTH_FIRST" },
7539 { DT_HP_GST, "HP_GST" },
7540 { DT_HP_SHLIB_FIXED, "HP_SHLIB_FIXED" },
7541 { DT_HP_MERGE_SHLIB_SEG, "HP_MERGE_SHLIB_SEG" },
7542 { DT_HP_NODELETE, "HP_NODELETE" },
7543 { DT_HP_GROUP, "HP_GROUP" },
7544 { DT_HP_PROTECT_LINKAGE_TABLE, "HP_PROTECT_LINKAGE_TABLE" }
7545 };
7546 int first = 1;
7547 size_t cnt;
7548 bfd_vma val = entry->d_un.d_val;
7549
7550 for (cnt = 0; cnt < ARRAY_SIZE (flags); ++cnt)
7551 if (val & flags[cnt].bit)
7552 {
7553 if (! first)
7554 putchar (' ');
7555 fputs (flags[cnt].str, stdout);
7556 first = 0;
7557 val ^= flags[cnt].bit;
7558 }
7559
7560 if (val != 0 || first)
7561 {
7562 if (! first)
7563 putchar (' ');
7564 print_vma (val, HEX);
7565 }
7566 }
7567 break;
7568
7569 default:
7570 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7571 break;
7572 }
7573 putchar ('\n');
7574 }
7575
7576 #ifdef BFD64
7577
7578 /* VMS vs Unix time offset and factor. */
7579
7580 #define VMS_EPOCH_OFFSET 35067168000000000LL
7581 #define VMS_GRANULARITY_FACTOR 10000000
7582
7583 /* Display a VMS time in a human readable format. */
7584
7585 static void
7586 print_vms_time (bfd_int64_t vmstime)
7587 {
7588 struct tm *tm;
7589 time_t unxtime;
7590
7591 unxtime = (vmstime - VMS_EPOCH_OFFSET) / VMS_GRANULARITY_FACTOR;
7592 tm = gmtime (&unxtime);
7593 printf ("%04u-%02u-%02uT%02u:%02u:%02u",
7594 tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
7595 tm->tm_hour, tm->tm_min, tm->tm_sec);
7596 }
7597 #endif /* BFD64 */
7598
7599 static void
7600 dynamic_section_ia64_val (Elf_Internal_Dyn * entry)
7601 {
7602 switch (entry->d_tag)
7603 {
7604 case DT_IA_64_PLT_RESERVE:
7605 /* First 3 slots reserved. */
7606 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7607 printf (" -- ");
7608 print_vma (entry->d_un.d_ptr + (3 * 8), PREFIX_HEX);
7609 break;
7610
7611 case DT_IA_64_VMS_LINKTIME:
7612 #ifdef BFD64
7613 print_vms_time (entry->d_un.d_val);
7614 #endif
7615 break;
7616
7617 case DT_IA_64_VMS_LNKFLAGS:
7618 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7619 if (entry->d_un.d_val & VMS_LF_CALL_DEBUG)
7620 printf (" CALL_DEBUG");
7621 if (entry->d_un.d_val & VMS_LF_NOP0BUFS)
7622 printf (" NOP0BUFS");
7623 if (entry->d_un.d_val & VMS_LF_P0IMAGE)
7624 printf (" P0IMAGE");
7625 if (entry->d_un.d_val & VMS_LF_MKTHREADS)
7626 printf (" MKTHREADS");
7627 if (entry->d_un.d_val & VMS_LF_UPCALLS)
7628 printf (" UPCALLS");
7629 if (entry->d_un.d_val & VMS_LF_IMGSTA)
7630 printf (" IMGSTA");
7631 if (entry->d_un.d_val & VMS_LF_INITIALIZE)
7632 printf (" INITIALIZE");
7633 if (entry->d_un.d_val & VMS_LF_MAIN)
7634 printf (" MAIN");
7635 if (entry->d_un.d_val & VMS_LF_EXE_INIT)
7636 printf (" EXE_INIT");
7637 if (entry->d_un.d_val & VMS_LF_TBK_IN_IMG)
7638 printf (" TBK_IN_IMG");
7639 if (entry->d_un.d_val & VMS_LF_DBG_IN_IMG)
7640 printf (" DBG_IN_IMG");
7641 if (entry->d_un.d_val & VMS_LF_TBK_IN_DSF)
7642 printf (" TBK_IN_DSF");
7643 if (entry->d_un.d_val & VMS_LF_DBG_IN_DSF)
7644 printf (" DBG_IN_DSF");
7645 if (entry->d_un.d_val & VMS_LF_SIGNATURES)
7646 printf (" SIGNATURES");
7647 if (entry->d_un.d_val & VMS_LF_REL_SEG_OFF)
7648 printf (" REL_SEG_OFF");
7649 break;
7650
7651 default:
7652 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7653 break;
7654 }
7655 putchar ('\n');
7656 }
7657
7658 static int
7659 get_32bit_dynamic_section (FILE * file)
7660 {
7661 Elf32_External_Dyn * edyn;
7662 Elf32_External_Dyn * ext;
7663 Elf_Internal_Dyn * entry;
7664
7665 edyn = (Elf32_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
7666 dynamic_size, _("dynamic section"));
7667 if (!edyn)
7668 return 0;
7669
7670 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
7671 might not have the luxury of section headers. Look for the DT_NULL
7672 terminator to determine the number of entries. */
7673 for (ext = edyn, dynamic_nent = 0;
7674 (char *) ext < (char *) edyn + dynamic_size;
7675 ext++)
7676 {
7677 dynamic_nent++;
7678 if (BYTE_GET (ext->d_tag) == DT_NULL)
7679 break;
7680 }
7681
7682 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
7683 sizeof (* entry));
7684 if (dynamic_section == NULL)
7685 {
7686 error (_("Out of memory\n"));
7687 free (edyn);
7688 return 0;
7689 }
7690
7691 for (ext = edyn, entry = dynamic_section;
7692 entry < dynamic_section + dynamic_nent;
7693 ext++, entry++)
7694 {
7695 entry->d_tag = BYTE_GET (ext->d_tag);
7696 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
7697 }
7698
7699 free (edyn);
7700
7701 return 1;
7702 }
7703
7704 static int
7705 get_64bit_dynamic_section (FILE * file)
7706 {
7707 Elf64_External_Dyn * edyn;
7708 Elf64_External_Dyn * ext;
7709 Elf_Internal_Dyn * entry;
7710
7711 edyn = (Elf64_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
7712 dynamic_size, _("dynamic section"));
7713 if (!edyn)
7714 return 0;
7715
7716 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
7717 might not have the luxury of section headers. Look for the DT_NULL
7718 terminator to determine the number of entries. */
7719 for (ext = edyn, dynamic_nent = 0;
7720 (char *) ext < (char *) edyn + dynamic_size;
7721 ext++)
7722 {
7723 dynamic_nent++;
7724 if (BYTE_GET (ext->d_tag) == DT_NULL)
7725 break;
7726 }
7727
7728 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
7729 sizeof (* entry));
7730 if (dynamic_section == NULL)
7731 {
7732 error (_("Out of memory\n"));
7733 free (edyn);
7734 return 0;
7735 }
7736
7737 for (ext = edyn, entry = dynamic_section;
7738 entry < dynamic_section + dynamic_nent;
7739 ext++, entry++)
7740 {
7741 entry->d_tag = BYTE_GET (ext->d_tag);
7742 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
7743 }
7744
7745 free (edyn);
7746
7747 return 1;
7748 }
7749
7750 static void
7751 print_dynamic_flags (bfd_vma flags)
7752 {
7753 int first = 1;
7754
7755 while (flags)
7756 {
7757 bfd_vma flag;
7758
7759 flag = flags & - flags;
7760 flags &= ~ flag;
7761
7762 if (first)
7763 first = 0;
7764 else
7765 putc (' ', stdout);
7766
7767 switch (flag)
7768 {
7769 case DF_ORIGIN: fputs ("ORIGIN", stdout); break;
7770 case DF_SYMBOLIC: fputs ("SYMBOLIC", stdout); break;
7771 case DF_TEXTREL: fputs ("TEXTREL", stdout); break;
7772 case DF_BIND_NOW: fputs ("BIND_NOW", stdout); break;
7773 case DF_STATIC_TLS: fputs ("STATIC_TLS", stdout); break;
7774 default: fputs (_("unknown"), stdout); break;
7775 }
7776 }
7777 puts ("");
7778 }
7779
7780 /* Parse and display the contents of the dynamic section. */
7781
7782 static int
7783 process_dynamic_section (FILE * file)
7784 {
7785 Elf_Internal_Dyn * entry;
7786
7787 if (dynamic_size == 0)
7788 {
7789 if (do_dynamic)
7790 printf (_("\nThere is no dynamic section in this file.\n"));
7791
7792 return 1;
7793 }
7794
7795 if (is_32bit_elf)
7796 {
7797 if (! get_32bit_dynamic_section (file))
7798 return 0;
7799 }
7800 else if (! get_64bit_dynamic_section (file))
7801 return 0;
7802
7803 /* Find the appropriate symbol table. */
7804 if (dynamic_symbols == NULL)
7805 {
7806 for (entry = dynamic_section;
7807 entry < dynamic_section + dynamic_nent;
7808 ++entry)
7809 {
7810 Elf_Internal_Shdr section;
7811
7812 if (entry->d_tag != DT_SYMTAB)
7813 continue;
7814
7815 dynamic_info[DT_SYMTAB] = entry->d_un.d_val;
7816
7817 /* Since we do not know how big the symbol table is,
7818 we default to reading in the entire file (!) and
7819 processing that. This is overkill, I know, but it
7820 should work. */
7821 section.sh_offset = offset_from_vma (file, entry->d_un.d_val, 0);
7822
7823 if (archive_file_offset != 0)
7824 section.sh_size = archive_file_size - section.sh_offset;
7825 else
7826 {
7827 if (fseek (file, 0, SEEK_END))
7828 error (_("Unable to seek to end of file!\n"));
7829
7830 section.sh_size = ftell (file) - section.sh_offset;
7831 }
7832
7833 if (is_32bit_elf)
7834 section.sh_entsize = sizeof (Elf32_External_Sym);
7835 else
7836 section.sh_entsize = sizeof (Elf64_External_Sym);
7837
7838 dynamic_symbols = GET_ELF_SYMBOLS (file, &section, & num_dynamic_syms);
7839 if (num_dynamic_syms < 1)
7840 {
7841 error (_("Unable to determine the number of symbols to load\n"));
7842 continue;
7843 }
7844 }
7845 }
7846
7847 /* Similarly find a string table. */
7848 if (dynamic_strings == NULL)
7849 {
7850 for (entry = dynamic_section;
7851 entry < dynamic_section + dynamic_nent;
7852 ++entry)
7853 {
7854 unsigned long offset;
7855 long str_tab_len;
7856
7857 if (entry->d_tag != DT_STRTAB)
7858 continue;
7859
7860 dynamic_info[DT_STRTAB] = entry->d_un.d_val;
7861
7862 /* Since we do not know how big the string table is,
7863 we default to reading in the entire file (!) and
7864 processing that. This is overkill, I know, but it
7865 should work. */
7866
7867 offset = offset_from_vma (file, entry->d_un.d_val, 0);
7868
7869 if (archive_file_offset != 0)
7870 str_tab_len = archive_file_size - offset;
7871 else
7872 {
7873 if (fseek (file, 0, SEEK_END))
7874 error (_("Unable to seek to end of file\n"));
7875 str_tab_len = ftell (file) - offset;
7876 }
7877
7878 if (str_tab_len < 1)
7879 {
7880 error
7881 (_("Unable to determine the length of the dynamic string table\n"));
7882 continue;
7883 }
7884
7885 dynamic_strings = (char *) get_data (NULL, file, offset, 1,
7886 str_tab_len,
7887 _("dynamic string table"));
7888 dynamic_strings_length = dynamic_strings == NULL ? 0 : str_tab_len;
7889 break;
7890 }
7891 }
7892
7893 /* And find the syminfo section if available. */
7894 if (dynamic_syminfo == NULL)
7895 {
7896 unsigned long syminsz = 0;
7897
7898 for (entry = dynamic_section;
7899 entry < dynamic_section + dynamic_nent;
7900 ++entry)
7901 {
7902 if (entry->d_tag == DT_SYMINENT)
7903 {
7904 /* Note: these braces are necessary to avoid a syntax
7905 error from the SunOS4 C compiler. */
7906 assert (sizeof (Elf_External_Syminfo) == entry->d_un.d_val);
7907 }
7908 else if (entry->d_tag == DT_SYMINSZ)
7909 syminsz = entry->d_un.d_val;
7910 else if (entry->d_tag == DT_SYMINFO)
7911 dynamic_syminfo_offset = offset_from_vma (file, entry->d_un.d_val,
7912 syminsz);
7913 }
7914
7915 if (dynamic_syminfo_offset != 0 && syminsz != 0)
7916 {
7917 Elf_External_Syminfo * extsyminfo;
7918 Elf_External_Syminfo * extsym;
7919 Elf_Internal_Syminfo * syminfo;
7920
7921 /* There is a syminfo section. Read the data. */
7922 extsyminfo = (Elf_External_Syminfo *)
7923 get_data (NULL, file, dynamic_syminfo_offset, 1, syminsz,
7924 _("symbol information"));
7925 if (!extsyminfo)
7926 return 0;
7927
7928 dynamic_syminfo = (Elf_Internal_Syminfo *) malloc (syminsz);
7929 if (dynamic_syminfo == NULL)
7930 {
7931 error (_("Out of memory\n"));
7932 return 0;
7933 }
7934
7935 dynamic_syminfo_nent = syminsz / sizeof (Elf_External_Syminfo);
7936 for (syminfo = dynamic_syminfo, extsym = extsyminfo;
7937 syminfo < dynamic_syminfo + dynamic_syminfo_nent;
7938 ++syminfo, ++extsym)
7939 {
7940 syminfo->si_boundto = BYTE_GET (extsym->si_boundto);
7941 syminfo->si_flags = BYTE_GET (extsym->si_flags);
7942 }
7943
7944 free (extsyminfo);
7945 }
7946 }
7947
7948 if (do_dynamic && dynamic_addr)
7949 printf (_("\nDynamic section at offset 0x%lx contains %u entries:\n"),
7950 dynamic_addr, dynamic_nent);
7951 if (do_dynamic)
7952 printf (_(" Tag Type Name/Value\n"));
7953
7954 for (entry = dynamic_section;
7955 entry < dynamic_section + dynamic_nent;
7956 entry++)
7957 {
7958 if (do_dynamic)
7959 {
7960 const char * dtype;
7961
7962 putchar (' ');
7963 print_vma (entry->d_tag, FULL_HEX);
7964 dtype = get_dynamic_type (entry->d_tag);
7965 printf (" (%s)%*s", dtype,
7966 ((is_32bit_elf ? 27 : 19)
7967 - (int) strlen (dtype)),
7968 " ");
7969 }
7970
7971 switch (entry->d_tag)
7972 {
7973 case DT_FLAGS:
7974 if (do_dynamic)
7975 print_dynamic_flags (entry->d_un.d_val);
7976 break;
7977
7978 case DT_AUXILIARY:
7979 case DT_FILTER:
7980 case DT_CONFIG:
7981 case DT_DEPAUDIT:
7982 case DT_AUDIT:
7983 if (do_dynamic)
7984 {
7985 switch (entry->d_tag)
7986 {
7987 case DT_AUXILIARY:
7988 printf (_("Auxiliary library"));
7989 break;
7990
7991 case DT_FILTER:
7992 printf (_("Filter library"));
7993 break;
7994
7995 case DT_CONFIG:
7996 printf (_("Configuration file"));
7997 break;
7998
7999 case DT_DEPAUDIT:
8000 printf (_("Dependency audit library"));
8001 break;
8002
8003 case DT_AUDIT:
8004 printf (_("Audit library"));
8005 break;
8006 }
8007
8008 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
8009 printf (": [%s]\n", GET_DYNAMIC_NAME (entry->d_un.d_val));
8010 else
8011 {
8012 printf (": ");
8013 print_vma (entry->d_un.d_val, PREFIX_HEX);
8014 putchar ('\n');
8015 }
8016 }
8017 break;
8018
8019 case DT_FEATURE:
8020 if (do_dynamic)
8021 {
8022 printf (_("Flags:"));
8023
8024 if (entry->d_un.d_val == 0)
8025 printf (_(" None\n"));
8026 else
8027 {
8028 unsigned long int val = entry->d_un.d_val;
8029
8030 if (val & DTF_1_PARINIT)
8031 {
8032 printf (" PARINIT");
8033 val ^= DTF_1_PARINIT;
8034 }
8035 if (val & DTF_1_CONFEXP)
8036 {
8037 printf (" CONFEXP");
8038 val ^= DTF_1_CONFEXP;
8039 }
8040 if (val != 0)
8041 printf (" %lx", val);
8042 puts ("");
8043 }
8044 }
8045 break;
8046
8047 case DT_POSFLAG_1:
8048 if (do_dynamic)
8049 {
8050 printf (_("Flags:"));
8051
8052 if (entry->d_un.d_val == 0)
8053 printf (_(" None\n"));
8054 else
8055 {
8056 unsigned long int val = entry->d_un.d_val;
8057
8058 if (val & DF_P1_LAZYLOAD)
8059 {
8060 printf (" LAZYLOAD");
8061 val ^= DF_P1_LAZYLOAD;
8062 }
8063 if (val & DF_P1_GROUPPERM)
8064 {
8065 printf (" GROUPPERM");
8066 val ^= DF_P1_GROUPPERM;
8067 }
8068 if (val != 0)
8069 printf (" %lx", val);
8070 puts ("");
8071 }
8072 }
8073 break;
8074
8075 case DT_FLAGS_1:
8076 if (do_dynamic)
8077 {
8078 printf (_("Flags:"));
8079 if (entry->d_un.d_val == 0)
8080 printf (_(" None\n"));
8081 else
8082 {
8083 unsigned long int val = entry->d_un.d_val;
8084
8085 if (val & DF_1_NOW)
8086 {
8087 printf (" NOW");
8088 val ^= DF_1_NOW;
8089 }
8090 if (val & DF_1_GLOBAL)
8091 {
8092 printf (" GLOBAL");
8093 val ^= DF_1_GLOBAL;
8094 }
8095 if (val & DF_1_GROUP)
8096 {
8097 printf (" GROUP");
8098 val ^= DF_1_GROUP;
8099 }
8100 if (val & DF_1_NODELETE)
8101 {
8102 printf (" NODELETE");
8103 val ^= DF_1_NODELETE;
8104 }
8105 if (val & DF_1_LOADFLTR)
8106 {
8107 printf (" LOADFLTR");
8108 val ^= DF_1_LOADFLTR;
8109 }
8110 if (val & DF_1_INITFIRST)
8111 {
8112 printf (" INITFIRST");
8113 val ^= DF_1_INITFIRST;
8114 }
8115 if (val & DF_1_NOOPEN)
8116 {
8117 printf (" NOOPEN");
8118 val ^= DF_1_NOOPEN;
8119 }
8120 if (val & DF_1_ORIGIN)
8121 {
8122 printf (" ORIGIN");
8123 val ^= DF_1_ORIGIN;
8124 }
8125 if (val & DF_1_DIRECT)
8126 {
8127 printf (" DIRECT");
8128 val ^= DF_1_DIRECT;
8129 }
8130 if (val & DF_1_TRANS)
8131 {
8132 printf (" TRANS");
8133 val ^= DF_1_TRANS;
8134 }
8135 if (val & DF_1_INTERPOSE)
8136 {
8137 printf (" INTERPOSE");
8138 val ^= DF_1_INTERPOSE;
8139 }
8140 if (val & DF_1_NODEFLIB)
8141 {
8142 printf (" NODEFLIB");
8143 val ^= DF_1_NODEFLIB;
8144 }
8145 if (val & DF_1_NODUMP)
8146 {
8147 printf (" NODUMP");
8148 val ^= DF_1_NODUMP;
8149 }
8150 if (val & DF_1_CONFALT)
8151 {
8152 printf (" CONFALT");
8153 val ^= DF_1_CONFALT;
8154 }
8155 if (val & DF_1_ENDFILTEE)
8156 {
8157 printf (" ENDFILTEE");
8158 val ^= DF_1_ENDFILTEE;
8159 }
8160 if (val & DF_1_DISPRELDNE)
8161 {
8162 printf (" DISPRELDNE");
8163 val ^= DF_1_DISPRELDNE;
8164 }
8165 if (val & DF_1_DISPRELPND)
8166 {
8167 printf (" DISPRELPND");
8168 val ^= DF_1_DISPRELPND;
8169 }
8170 if (val & DF_1_NODIRECT)
8171 {
8172 printf (" NODIRECT");
8173 val ^= DF_1_NODIRECT;
8174 }
8175 if (val & DF_1_IGNMULDEF)
8176 {
8177 printf (" IGNMULDEF");
8178 val ^= DF_1_IGNMULDEF;
8179 }
8180 if (val & DF_1_NOKSYMS)
8181 {
8182 printf (" NOKSYMS");
8183 val ^= DF_1_NOKSYMS;
8184 }
8185 if (val & DF_1_NOHDR)
8186 {
8187 printf (" NOHDR");
8188 val ^= DF_1_NOHDR;
8189 }
8190 if (val & DF_1_EDITED)
8191 {
8192 printf (" EDITED");
8193 val ^= DF_1_EDITED;
8194 }
8195 if (val & DF_1_NORELOC)
8196 {
8197 printf (" NORELOC");
8198 val ^= DF_1_NORELOC;
8199 }
8200 if (val & DF_1_SYMINTPOSE)
8201 {
8202 printf (" SYMINTPOSE");
8203 val ^= DF_1_SYMINTPOSE;
8204 }
8205 if (val & DF_1_GLOBAUDIT)
8206 {
8207 printf (" GLOBAUDIT");
8208 val ^= DF_1_GLOBAUDIT;
8209 }
8210 if (val & DF_1_SINGLETON)
8211 {
8212 printf (" SINGLETON");
8213 val ^= DF_1_SINGLETON;
8214 }
8215 if (val != 0)
8216 printf (" %lx", val);
8217 puts ("");
8218 }
8219 }
8220 break;
8221
8222 case DT_PLTREL:
8223 dynamic_info[entry->d_tag] = entry->d_un.d_val;
8224 if (do_dynamic)
8225 puts (get_dynamic_type (entry->d_un.d_val));
8226 break;
8227
8228 case DT_NULL :
8229 case DT_NEEDED :
8230 case DT_PLTGOT :
8231 case DT_HASH :
8232 case DT_STRTAB :
8233 case DT_SYMTAB :
8234 case DT_RELA :
8235 case DT_INIT :
8236 case DT_FINI :
8237 case DT_SONAME :
8238 case DT_RPATH :
8239 case DT_SYMBOLIC:
8240 case DT_REL :
8241 case DT_DEBUG :
8242 case DT_TEXTREL :
8243 case DT_JMPREL :
8244 case DT_RUNPATH :
8245 dynamic_info[entry->d_tag] = entry->d_un.d_val;
8246
8247 if (do_dynamic)
8248 {
8249 char * name;
8250
8251 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
8252 name = GET_DYNAMIC_NAME (entry->d_un.d_val);
8253 else
8254 name = NULL;
8255
8256 if (name)
8257 {
8258 switch (entry->d_tag)
8259 {
8260 case DT_NEEDED:
8261 printf (_("Shared library: [%s]"), name);
8262
8263 if (streq (name, program_interpreter))
8264 printf (_(" program interpreter"));
8265 break;
8266
8267 case DT_SONAME:
8268 printf (_("Library soname: [%s]"), name);
8269 break;
8270
8271 case DT_RPATH:
8272 printf (_("Library rpath: [%s]"), name);
8273 break;
8274
8275 case DT_RUNPATH:
8276 printf (_("Library runpath: [%s]"), name);
8277 break;
8278
8279 default:
8280 print_vma (entry->d_un.d_val, PREFIX_HEX);
8281 break;
8282 }
8283 }
8284 else
8285 print_vma (entry->d_un.d_val, PREFIX_HEX);
8286
8287 putchar ('\n');
8288 }
8289 break;
8290
8291 case DT_PLTRELSZ:
8292 case DT_RELASZ :
8293 case DT_STRSZ :
8294 case DT_RELSZ :
8295 case DT_RELAENT :
8296 case DT_SYMENT :
8297 case DT_RELENT :
8298 dynamic_info[entry->d_tag] = entry->d_un.d_val;
8299 case DT_PLTPADSZ:
8300 case DT_MOVEENT :
8301 case DT_MOVESZ :
8302 case DT_INIT_ARRAYSZ:
8303 case DT_FINI_ARRAYSZ:
8304 case DT_GNU_CONFLICTSZ:
8305 case DT_GNU_LIBLISTSZ:
8306 if (do_dynamic)
8307 {
8308 print_vma (entry->d_un.d_val, UNSIGNED);
8309 printf (_(" (bytes)\n"));
8310 }
8311 break;
8312
8313 case DT_VERDEFNUM:
8314 case DT_VERNEEDNUM:
8315 case DT_RELACOUNT:
8316 case DT_RELCOUNT:
8317 if (do_dynamic)
8318 {
8319 print_vma (entry->d_un.d_val, UNSIGNED);
8320 putchar ('\n');
8321 }
8322 break;
8323
8324 case DT_SYMINSZ:
8325 case DT_SYMINENT:
8326 case DT_SYMINFO:
8327 case DT_USED:
8328 case DT_INIT_ARRAY:
8329 case DT_FINI_ARRAY:
8330 if (do_dynamic)
8331 {
8332 if (entry->d_tag == DT_USED
8333 && VALID_DYNAMIC_NAME (entry->d_un.d_val))
8334 {
8335 char * name = GET_DYNAMIC_NAME (entry->d_un.d_val);
8336
8337 if (*name)
8338 {
8339 printf (_("Not needed object: [%s]\n"), name);
8340 break;
8341 }
8342 }
8343
8344 print_vma (entry->d_un.d_val, PREFIX_HEX);
8345 putchar ('\n');
8346 }
8347 break;
8348
8349 case DT_BIND_NOW:
8350 /* The value of this entry is ignored. */
8351 if (do_dynamic)
8352 putchar ('\n');
8353 break;
8354
8355 case DT_GNU_PRELINKED:
8356 if (do_dynamic)
8357 {
8358 struct tm * tmp;
8359 time_t atime = entry->d_un.d_val;
8360
8361 tmp = gmtime (&atime);
8362 printf ("%04u-%02u-%02uT%02u:%02u:%02u\n",
8363 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
8364 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
8365
8366 }
8367 break;
8368
8369 case DT_GNU_HASH:
8370 dynamic_info_DT_GNU_HASH = entry->d_un.d_val;
8371 if (do_dynamic)
8372 {
8373 print_vma (entry->d_un.d_val, PREFIX_HEX);
8374 putchar ('\n');
8375 }
8376 break;
8377
8378 default:
8379 if ((entry->d_tag >= DT_VERSYM) && (entry->d_tag <= DT_VERNEEDNUM))
8380 version_info[DT_VERSIONTAGIDX (entry->d_tag)] =
8381 entry->d_un.d_val;
8382
8383 if (do_dynamic)
8384 {
8385 switch (elf_header.e_machine)
8386 {
8387 case EM_MIPS:
8388 case EM_MIPS_RS3_LE:
8389 dynamic_section_mips_val (entry);
8390 break;
8391 case EM_PARISC:
8392 dynamic_section_parisc_val (entry);
8393 break;
8394 case EM_IA_64:
8395 dynamic_section_ia64_val (entry);
8396 break;
8397 default:
8398 print_vma (entry->d_un.d_val, PREFIX_HEX);
8399 putchar ('\n');
8400 }
8401 }
8402 break;
8403 }
8404 }
8405
8406 return 1;
8407 }
8408
8409 static char *
8410 get_ver_flags (unsigned int flags)
8411 {
8412 static char buff[32];
8413
8414 buff[0] = 0;
8415
8416 if (flags == 0)
8417 return _("none");
8418
8419 if (flags & VER_FLG_BASE)
8420 strcat (buff, "BASE ");
8421
8422 if (flags & VER_FLG_WEAK)
8423 {
8424 if (flags & VER_FLG_BASE)
8425 strcat (buff, "| ");
8426
8427 strcat (buff, "WEAK ");
8428 }
8429
8430 if (flags & VER_FLG_INFO)
8431 {
8432 if (flags & (VER_FLG_BASE|VER_FLG_WEAK))
8433 strcat (buff, "| ");
8434
8435 strcat (buff, "INFO ");
8436 }
8437
8438 if (flags & ~(VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
8439 strcat (buff, _("| <unknown>"));
8440
8441 return buff;
8442 }
8443
8444 /* Display the contents of the version sections. */
8445
8446 static int
8447 process_version_sections (FILE * file)
8448 {
8449 Elf_Internal_Shdr * section;
8450 unsigned i;
8451 int found = 0;
8452
8453 if (! do_version)
8454 return 1;
8455
8456 for (i = 0, section = section_headers;
8457 i < elf_header.e_shnum;
8458 i++, section++)
8459 {
8460 switch (section->sh_type)
8461 {
8462 case SHT_GNU_verdef:
8463 {
8464 Elf_External_Verdef * edefs;
8465 unsigned int idx;
8466 unsigned int cnt;
8467 char * endbuf;
8468
8469 found = 1;
8470
8471 printf
8472 (_("\nVersion definition section '%s' contains %u entries:\n"),
8473 SECTION_NAME (section), section->sh_info);
8474
8475 printf (_(" Addr: 0x"));
8476 printf_vma (section->sh_addr);
8477 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
8478 (unsigned long) section->sh_offset, section->sh_link,
8479 section->sh_link < elf_header.e_shnum
8480 ? SECTION_NAME (section_headers + section->sh_link)
8481 : _("<corrupt>"));
8482
8483 edefs = (Elf_External_Verdef *)
8484 get_data (NULL, file, section->sh_offset, 1,section->sh_size,
8485 _("version definition section"));
8486 if (!edefs)
8487 break;
8488 endbuf = (char *) edefs + section->sh_size;
8489
8490 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
8491 {
8492 char * vstart;
8493 Elf_External_Verdef * edef;
8494 Elf_Internal_Verdef ent;
8495 Elf_External_Verdaux * eaux;
8496 Elf_Internal_Verdaux aux;
8497 int j;
8498 int isum;
8499
8500 /* Check for very large indicies. */
8501 if (idx > (size_t) (endbuf - (char *) edefs))
8502 break;
8503
8504 vstart = ((char *) edefs) + idx;
8505 if (vstart + sizeof (*edef) > endbuf)
8506 break;
8507
8508 edef = (Elf_External_Verdef *) vstart;
8509
8510 ent.vd_version = BYTE_GET (edef->vd_version);
8511 ent.vd_flags = BYTE_GET (edef->vd_flags);
8512 ent.vd_ndx = BYTE_GET (edef->vd_ndx);
8513 ent.vd_cnt = BYTE_GET (edef->vd_cnt);
8514 ent.vd_hash = BYTE_GET (edef->vd_hash);
8515 ent.vd_aux = BYTE_GET (edef->vd_aux);
8516 ent.vd_next = BYTE_GET (edef->vd_next);
8517
8518 printf (_(" %#06x: Rev: %d Flags: %s"),
8519 idx, ent.vd_version, get_ver_flags (ent.vd_flags));
8520
8521 printf (_(" Index: %d Cnt: %d "),
8522 ent.vd_ndx, ent.vd_cnt);
8523
8524 /* Check for overflow. */
8525 if (ent.vd_aux > (size_t) (endbuf - vstart))
8526 break;
8527
8528 vstart += ent.vd_aux;
8529
8530 eaux = (Elf_External_Verdaux *) vstart;
8531
8532 aux.vda_name = BYTE_GET (eaux->vda_name);
8533 aux.vda_next = BYTE_GET (eaux->vda_next);
8534
8535 if (VALID_DYNAMIC_NAME (aux.vda_name))
8536 printf (_("Name: %s\n"), GET_DYNAMIC_NAME (aux.vda_name));
8537 else
8538 printf (_("Name index: %ld\n"), aux.vda_name);
8539
8540 isum = idx + ent.vd_aux;
8541
8542 for (j = 1; j < ent.vd_cnt; j++)
8543 {
8544 /* Check for overflow. */
8545 if (aux.vda_next > (size_t) (endbuf - vstart))
8546 break;
8547
8548 isum += aux.vda_next;
8549 vstart += aux.vda_next;
8550
8551 eaux = (Elf_External_Verdaux *) vstart;
8552 if (vstart + sizeof (*eaux) > endbuf)
8553 break;
8554
8555 aux.vda_name = BYTE_GET (eaux->vda_name);
8556 aux.vda_next = BYTE_GET (eaux->vda_next);
8557
8558 if (VALID_DYNAMIC_NAME (aux.vda_name))
8559 printf (_(" %#06x: Parent %d: %s\n"),
8560 isum, j, GET_DYNAMIC_NAME (aux.vda_name));
8561 else
8562 printf (_(" %#06x: Parent %d, name index: %ld\n"),
8563 isum, j, aux.vda_name);
8564 }
8565
8566 if (j < ent.vd_cnt)
8567 printf (_(" Version def aux past end of section\n"));
8568
8569 idx += ent.vd_next;
8570 }
8571
8572 if (cnt < section->sh_info)
8573 printf (_(" Version definition past end of section\n"));
8574
8575 free (edefs);
8576 }
8577 break;
8578
8579 case SHT_GNU_verneed:
8580 {
8581 Elf_External_Verneed * eneed;
8582 unsigned int idx;
8583 unsigned int cnt;
8584 char * endbuf;
8585
8586 found = 1;
8587
8588 printf (_("\nVersion needs section '%s' contains %u entries:\n"),
8589 SECTION_NAME (section), section->sh_info);
8590
8591 printf (_(" Addr: 0x"));
8592 printf_vma (section->sh_addr);
8593 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
8594 (unsigned long) section->sh_offset, section->sh_link,
8595 section->sh_link < elf_header.e_shnum
8596 ? SECTION_NAME (section_headers + section->sh_link)
8597 : _("<corrupt>"));
8598
8599 eneed = (Elf_External_Verneed *) get_data (NULL, file,
8600 section->sh_offset, 1,
8601 section->sh_size,
8602 _("Version Needs section"));
8603 if (!eneed)
8604 break;
8605 endbuf = (char *) eneed + section->sh_size;
8606
8607 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
8608 {
8609 Elf_External_Verneed * entry;
8610 Elf_Internal_Verneed ent;
8611 int j;
8612 int isum;
8613 char * vstart;
8614
8615 if (idx > (size_t) (endbuf - (char *) eneed))
8616 break;
8617
8618 vstart = ((char *) eneed) + idx;
8619 if (vstart + sizeof (*entry) > endbuf)
8620 break;
8621
8622 entry = (Elf_External_Verneed *) vstart;
8623
8624 ent.vn_version = BYTE_GET (entry->vn_version);
8625 ent.vn_cnt = BYTE_GET (entry->vn_cnt);
8626 ent.vn_file = BYTE_GET (entry->vn_file);
8627 ent.vn_aux = BYTE_GET (entry->vn_aux);
8628 ent.vn_next = BYTE_GET (entry->vn_next);
8629
8630 printf (_(" %#06x: Version: %d"), idx, ent.vn_version);
8631
8632 if (VALID_DYNAMIC_NAME (ent.vn_file))
8633 printf (_(" File: %s"), GET_DYNAMIC_NAME (ent.vn_file));
8634 else
8635 printf (_(" File: %lx"), ent.vn_file);
8636
8637 printf (_(" Cnt: %d\n"), ent.vn_cnt);
8638
8639 /* Check for overflow. */
8640 if (ent.vn_aux > (size_t) (endbuf - vstart))
8641 break;
8642
8643 vstart += ent.vn_aux;
8644
8645 for (j = 0, isum = idx + ent.vn_aux; j < ent.vn_cnt; ++j)
8646 {
8647 Elf_External_Vernaux * eaux;
8648 Elf_Internal_Vernaux aux;
8649
8650 if (vstart + sizeof (*eaux) > endbuf)
8651 break;
8652 eaux = (Elf_External_Vernaux *) vstart;
8653
8654 aux.vna_hash = BYTE_GET (eaux->vna_hash);
8655 aux.vna_flags = BYTE_GET (eaux->vna_flags);
8656 aux.vna_other = BYTE_GET (eaux->vna_other);
8657 aux.vna_name = BYTE_GET (eaux->vna_name);
8658 aux.vna_next = BYTE_GET (eaux->vna_next);
8659
8660 if (VALID_DYNAMIC_NAME (aux.vna_name))
8661 printf (_(" %#06x: Name: %s"),
8662 isum, GET_DYNAMIC_NAME (aux.vna_name));
8663 else
8664 printf (_(" %#06x: Name index: %lx"),
8665 isum, aux.vna_name);
8666
8667 printf (_(" Flags: %s Version: %d\n"),
8668 get_ver_flags (aux.vna_flags), aux.vna_other);
8669
8670 /* Check for overflow. */
8671 if (aux.vna_next > (size_t) (endbuf - vstart))
8672 break;
8673
8674 isum += aux.vna_next;
8675 vstart += aux.vna_next;
8676 }
8677
8678 if (j < ent.vn_cnt)
8679 warn (_("Missing Version Needs auxillary information\n"));
8680
8681 idx += ent.vn_next;
8682 }
8683
8684 if (cnt < section->sh_info)
8685 warn (_("Missing Version Needs information\n"));
8686
8687 free (eneed);
8688 }
8689 break;
8690
8691 case SHT_GNU_versym:
8692 {
8693 Elf_Internal_Shdr * link_section;
8694 int total;
8695 int cnt;
8696 unsigned char * edata;
8697 unsigned short * data;
8698 char * strtab;
8699 Elf_Internal_Sym * symbols;
8700 Elf_Internal_Shdr * string_sec;
8701 unsigned long num_syms;
8702 long off;
8703
8704 if (section->sh_link >= elf_header.e_shnum)
8705 break;
8706
8707 link_section = section_headers + section->sh_link;
8708 total = section->sh_size / sizeof (Elf_External_Versym);
8709
8710 if (link_section->sh_link >= elf_header.e_shnum)
8711 break;
8712
8713 found = 1;
8714
8715 symbols = GET_ELF_SYMBOLS (file, link_section, & num_syms);
8716 if (symbols == NULL)
8717 break;
8718
8719 string_sec = section_headers + link_section->sh_link;
8720
8721 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
8722 string_sec->sh_size,
8723 _("version string table"));
8724 if (!strtab)
8725 {
8726 free (symbols);
8727 break;
8728 }
8729
8730 printf (_("\nVersion symbols section '%s' contains %d entries:\n"),
8731 SECTION_NAME (section), total);
8732
8733 printf (_(" Addr: "));
8734 printf_vma (section->sh_addr);
8735 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
8736 (unsigned long) section->sh_offset, section->sh_link,
8737 SECTION_NAME (link_section));
8738
8739 off = offset_from_vma (file,
8740 version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
8741 total * sizeof (short));
8742 edata = (unsigned char *) get_data (NULL, file, off, total,
8743 sizeof (short),
8744 _("version symbol data"));
8745 if (!edata)
8746 {
8747 free (strtab);
8748 free (symbols);
8749 break;
8750 }
8751
8752 data = (short unsigned int *) cmalloc (total, sizeof (short));
8753
8754 for (cnt = total; cnt --;)
8755 data[cnt] = byte_get (edata + cnt * sizeof (short),
8756 sizeof (short));
8757
8758 free (edata);
8759
8760 for (cnt = 0; cnt < total; cnt += 4)
8761 {
8762 int j, nn;
8763 int check_def, check_need;
8764 char * name;
8765
8766 printf (" %03x:", cnt);
8767
8768 for (j = 0; (j < 4) && (cnt + j) < total; ++j)
8769 switch (data[cnt + j])
8770 {
8771 case 0:
8772 fputs (_(" 0 (*local*) "), stdout);
8773 break;
8774
8775 case 1:
8776 fputs (_(" 1 (*global*) "), stdout);
8777 break;
8778
8779 default:
8780 nn = printf ("%4x%c", data[cnt + j] & VERSYM_VERSION,
8781 data[cnt + j] & VERSYM_HIDDEN ? 'h' : ' ');
8782
8783 /* If this index value is greater than the size of the symbols
8784 array, break to avoid an out-of-bounds read. */
8785 if ((unsigned long)(cnt + j) >= num_syms)
8786 {
8787 warn (_("invalid index into symbol array\n"));
8788 break;
8789 }
8790
8791 check_def = 1;
8792 check_need = 1;
8793 if (symbols[cnt + j].st_shndx >= elf_header.e_shnum
8794 || section_headers[symbols[cnt + j].st_shndx].sh_type
8795 != SHT_NOBITS)
8796 {
8797 if (symbols[cnt + j].st_shndx == SHN_UNDEF)
8798 check_def = 0;
8799 else
8800 check_need = 0;
8801 }
8802
8803 if (check_need
8804 && version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
8805 {
8806 Elf_Internal_Verneed ivn;
8807 unsigned long offset;
8808
8809 offset = offset_from_vma
8810 (file, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
8811 sizeof (Elf_External_Verneed));
8812
8813 do
8814 {
8815 Elf_Internal_Vernaux ivna;
8816 Elf_External_Verneed evn;
8817 Elf_External_Vernaux evna;
8818 unsigned long a_off;
8819
8820 if (get_data (&evn, file, offset, sizeof (evn), 1,
8821 _("version need")) == NULL)
8822 break;
8823
8824 ivn.vn_aux = BYTE_GET (evn.vn_aux);
8825 ivn.vn_next = BYTE_GET (evn.vn_next);
8826
8827 a_off = offset + ivn.vn_aux;
8828
8829 do
8830 {
8831 if (get_data (&evna, file, a_off, sizeof (evna),
8832 1, _("version need aux (2)")) == NULL)
8833 {
8834 ivna.vna_next = 0;
8835 ivna.vna_other = 0;
8836 }
8837 else
8838 {
8839 ivna.vna_next = BYTE_GET (evna.vna_next);
8840 ivna.vna_other = BYTE_GET (evna.vna_other);
8841 }
8842
8843 a_off += ivna.vna_next;
8844 }
8845 while (ivna.vna_other != data[cnt + j]
8846 && ivna.vna_next != 0);
8847
8848 if (ivna.vna_other == data[cnt + j])
8849 {
8850 ivna.vna_name = BYTE_GET (evna.vna_name);
8851
8852 if (ivna.vna_name >= string_sec->sh_size)
8853 name = _("*invalid*");
8854 else
8855 name = strtab + ivna.vna_name;
8856 nn += printf ("(%s%-*s",
8857 name,
8858 12 - (int) strlen (name),
8859 ")");
8860 check_def = 0;
8861 break;
8862 }
8863
8864 offset += ivn.vn_next;
8865 }
8866 while (ivn.vn_next);
8867 }
8868
8869 if (check_def && data[cnt + j] != 0x8001
8870 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
8871 {
8872 Elf_Internal_Verdef ivd;
8873 Elf_External_Verdef evd;
8874 unsigned long offset;
8875
8876 offset = offset_from_vma
8877 (file, version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
8878 sizeof evd);
8879
8880 do
8881 {
8882 if (get_data (&evd, file, offset, sizeof (evd), 1,
8883 _("version def")) == NULL)
8884 {
8885 ivd.vd_next = 0;
8886 ivd.vd_ndx = 0;
8887 }
8888 else
8889 {
8890 ivd.vd_next = BYTE_GET (evd.vd_next);
8891 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
8892 }
8893
8894 offset += ivd.vd_next;
8895 }
8896 while (ivd.vd_ndx != (data[cnt + j] & VERSYM_VERSION)
8897 && ivd.vd_next != 0);
8898
8899 if (ivd.vd_ndx == (data[cnt + j] & VERSYM_VERSION))
8900 {
8901 Elf_External_Verdaux evda;
8902 Elf_Internal_Verdaux ivda;
8903
8904 ivd.vd_aux = BYTE_GET (evd.vd_aux);
8905
8906 if (get_data (&evda, file,
8907 offset - ivd.vd_next + ivd.vd_aux,
8908 sizeof (evda), 1,
8909 _("version def aux")) == NULL)
8910 break;
8911
8912 ivda.vda_name = BYTE_GET (evda.vda_name);
8913
8914 if (ivda.vda_name >= string_sec->sh_size)
8915 name = _("*invalid*");
8916 else
8917 name = strtab + ivda.vda_name;
8918 nn += printf ("(%s%-*s",
8919 name,
8920 12 - (int) strlen (name),
8921 ")");
8922 }
8923 }
8924
8925 if (nn < 18)
8926 printf ("%*c", 18 - nn, ' ');
8927 }
8928
8929 putchar ('\n');
8930 }
8931
8932 free (data);
8933 free (strtab);
8934 free (symbols);
8935 }
8936 break;
8937
8938 default:
8939 break;
8940 }
8941 }
8942
8943 if (! found)
8944 printf (_("\nNo version information found in this file.\n"));
8945
8946 return 1;
8947 }
8948
8949 static const char *
8950 get_symbol_binding (unsigned int binding)
8951 {
8952 static char buff[32];
8953
8954 switch (binding)
8955 {
8956 case STB_LOCAL: return "LOCAL";
8957 case STB_GLOBAL: return "GLOBAL";
8958 case STB_WEAK: return "WEAK";
8959 default:
8960 if (binding >= STB_LOPROC && binding <= STB_HIPROC)
8961 snprintf (buff, sizeof (buff), _("<processor specific>: %d"),
8962 binding);
8963 else if (binding >= STB_LOOS && binding <= STB_HIOS)
8964 {
8965 if (binding == STB_GNU_UNIQUE
8966 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
8967 /* GNU is still using the default value 0. */
8968 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
8969 return "UNIQUE";
8970 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), binding);
8971 }
8972 else
8973 snprintf (buff, sizeof (buff), _("<unknown>: %d"), binding);
8974 return buff;
8975 }
8976 }
8977
8978 static const char *
8979 get_symbol_type (unsigned int type)
8980 {
8981 static char buff[32];
8982
8983 switch (type)
8984 {
8985 case STT_NOTYPE: return "NOTYPE";
8986 case STT_OBJECT: return "OBJECT";
8987 case STT_FUNC: return "FUNC";
8988 case STT_SECTION: return "SECTION";
8989 case STT_FILE: return "FILE";
8990 case STT_COMMON: return "COMMON";
8991 case STT_TLS: return "TLS";
8992 case STT_RELC: return "RELC";
8993 case STT_SRELC: return "SRELC";
8994 default:
8995 if (type >= STT_LOPROC && type <= STT_HIPROC)
8996 {
8997 if (elf_header.e_machine == EM_ARM && type == STT_ARM_TFUNC)
8998 return "THUMB_FUNC";
8999
9000 if (elf_header.e_machine == EM_SPARCV9 && type == STT_REGISTER)
9001 return "REGISTER";
9002
9003 if (elf_header.e_machine == EM_PARISC && type == STT_PARISC_MILLI)
9004 return "PARISC_MILLI";
9005
9006 snprintf (buff, sizeof (buff), _("<processor specific>: %d"), type);
9007 }
9008 else if (type >= STT_LOOS && type <= STT_HIOS)
9009 {
9010 if (elf_header.e_machine == EM_PARISC)
9011 {
9012 if (type == STT_HP_OPAQUE)
9013 return "HP_OPAQUE";
9014 if (type == STT_HP_STUB)
9015 return "HP_STUB";
9016 }
9017
9018 if (type == STT_GNU_IFUNC
9019 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
9020 || elf_header.e_ident[EI_OSABI] == ELFOSABI_FREEBSD
9021 /* GNU is still using the default value 0. */
9022 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
9023 return "IFUNC";
9024
9025 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), type);
9026 }
9027 else
9028 snprintf (buff, sizeof (buff), _("<unknown>: %d"), type);
9029 return buff;
9030 }
9031 }
9032
9033 static const char *
9034 get_symbol_visibility (unsigned int visibility)
9035 {
9036 switch (visibility)
9037 {
9038 case STV_DEFAULT: return "DEFAULT";
9039 case STV_INTERNAL: return "INTERNAL";
9040 case STV_HIDDEN: return "HIDDEN";
9041 case STV_PROTECTED: return "PROTECTED";
9042 default: abort ();
9043 }
9044 }
9045
9046 static const char *
9047 get_mips_symbol_other (unsigned int other)
9048 {
9049 switch (other)
9050 {
9051 case STO_OPTIONAL:
9052 return "OPTIONAL";
9053 case STO_MIPS_PLT:
9054 return "MIPS PLT";
9055 case STO_MIPS_PIC:
9056 return "MIPS PIC";
9057 case STO_MICROMIPS:
9058 return "MICROMIPS";
9059 case STO_MICROMIPS | STO_MIPS_PIC:
9060 return "MICROMIPS, MIPS PIC";
9061 case STO_MIPS16:
9062 return "MIPS16";
9063 default:
9064 return NULL;
9065 }
9066 }
9067
9068 static const char *
9069 get_ia64_symbol_other (unsigned int other)
9070 {
9071 if (is_ia64_vms ())
9072 {
9073 static char res[32];
9074
9075 res[0] = 0;
9076
9077 /* Function types is for images and .STB files only. */
9078 switch (elf_header.e_type)
9079 {
9080 case ET_DYN:
9081 case ET_EXEC:
9082 switch (VMS_ST_FUNC_TYPE (other))
9083 {
9084 case VMS_SFT_CODE_ADDR:
9085 strcat (res, " CA");
9086 break;
9087 case VMS_SFT_SYMV_IDX:
9088 strcat (res, " VEC");
9089 break;
9090 case VMS_SFT_FD:
9091 strcat (res, " FD");
9092 break;
9093 case VMS_SFT_RESERVE:
9094 strcat (res, " RSV");
9095 break;
9096 default:
9097 abort ();
9098 }
9099 break;
9100 default:
9101 break;
9102 }
9103 switch (VMS_ST_LINKAGE (other))
9104 {
9105 case VMS_STL_IGNORE:
9106 strcat (res, " IGN");
9107 break;
9108 case VMS_STL_RESERVE:
9109 strcat (res, " RSV");
9110 break;
9111 case VMS_STL_STD:
9112 strcat (res, " STD");
9113 break;
9114 case VMS_STL_LNK:
9115 strcat (res, " LNK");
9116 break;
9117 default:
9118 abort ();
9119 }
9120
9121 if (res[0] != 0)
9122 return res + 1;
9123 else
9124 return res;
9125 }
9126 return NULL;
9127 }
9128
9129 static const char *
9130 get_symbol_other (unsigned int other)
9131 {
9132 const char * result = NULL;
9133 static char buff [32];
9134
9135 if (other == 0)
9136 return "";
9137
9138 switch (elf_header.e_machine)
9139 {
9140 case EM_MIPS:
9141 result = get_mips_symbol_other (other);
9142 break;
9143 case EM_IA_64:
9144 result = get_ia64_symbol_other (other);
9145 break;
9146 default:
9147 break;
9148 }
9149
9150 if (result)
9151 return result;
9152
9153 snprintf (buff, sizeof buff, _("<other>: %x"), other);
9154 return buff;
9155 }
9156
9157 static const char *
9158 get_symbol_index_type (unsigned int type)
9159 {
9160 static char buff[32];
9161
9162 switch (type)
9163 {
9164 case SHN_UNDEF: return "UND";
9165 case SHN_ABS: return "ABS";
9166 case SHN_COMMON: return "COM";
9167 default:
9168 if (type == SHN_IA_64_ANSI_COMMON
9169 && elf_header.e_machine == EM_IA_64
9170 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX)
9171 return "ANSI_COM";
9172 else if ((elf_header.e_machine == EM_X86_64
9173 || elf_header.e_machine == EM_L1OM
9174 || elf_header.e_machine == EM_K1OM)
9175 && type == SHN_X86_64_LCOMMON)
9176 return "LARGE_COM";
9177 else if ((type == SHN_MIPS_SCOMMON
9178 && elf_header.e_machine == EM_MIPS)
9179 || (type == SHN_TIC6X_SCOMMON
9180 && elf_header.e_machine == EM_TI_C6000))
9181 return "SCOM";
9182 else if (type == SHN_MIPS_SUNDEFINED
9183 && elf_header.e_machine == EM_MIPS)
9184 return "SUND";
9185 else if (type >= SHN_LOPROC && type <= SHN_HIPROC)
9186 sprintf (buff, "PRC[0x%04x]", type & 0xffff);
9187 else if (type >= SHN_LOOS && type <= SHN_HIOS)
9188 sprintf (buff, "OS [0x%04x]", type & 0xffff);
9189 else if (type >= SHN_LORESERVE)
9190 sprintf (buff, "RSV[0x%04x]", type & 0xffff);
9191 else if (type >= elf_header.e_shnum)
9192 sprintf (buff, "bad section index[%3d]", type);
9193 else
9194 sprintf (buff, "%3d", type);
9195 break;
9196 }
9197
9198 return buff;
9199 }
9200
9201 static bfd_vma *
9202 get_dynamic_data (FILE * file, unsigned int number, unsigned int ent_size)
9203 {
9204 unsigned char * e_data;
9205 bfd_vma * i_data;
9206
9207 e_data = (unsigned char *) cmalloc (number, ent_size);
9208
9209 if (e_data == NULL)
9210 {
9211 error (_("Out of memory\n"));
9212 return NULL;
9213 }
9214
9215 if (fread (e_data, ent_size, number, file) != number)
9216 {
9217 error (_("Unable to read in dynamic data\n"));
9218 return NULL;
9219 }
9220
9221 i_data = (bfd_vma *) cmalloc (number, sizeof (*i_data));
9222
9223 if (i_data == NULL)
9224 {
9225 error (_("Out of memory\n"));
9226 free (e_data);
9227 return NULL;
9228 }
9229
9230 while (number--)
9231 i_data[number] = byte_get (e_data + number * ent_size, ent_size);
9232
9233 free (e_data);
9234
9235 return i_data;
9236 }
9237
9238 static void
9239 print_dynamic_symbol (bfd_vma si, unsigned long hn)
9240 {
9241 Elf_Internal_Sym * psym;
9242 int n;
9243
9244 psym = dynamic_symbols + si;
9245
9246 n = print_vma (si, DEC_5);
9247 if (n < 5)
9248 fputs (" " + n, stdout);
9249 printf (" %3lu: ", hn);
9250 print_vma (psym->st_value, LONG_HEX);
9251 putchar (' ');
9252 print_vma (psym->st_size, DEC_5);
9253
9254 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
9255 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
9256 printf (" %-7s", get_symbol_visibility (ELF_ST_VISIBILITY (psym->st_other)));
9257 /* Check to see if any other bits in the st_other field are set.
9258 Note - displaying this information disrupts the layout of the
9259 table being generated, but for the moment this case is very
9260 rare. */
9261 if (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other))
9262 printf (" [%s] ", get_symbol_other (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other)));
9263 printf (" %3.3s ", get_symbol_index_type (psym->st_shndx));
9264 if (VALID_DYNAMIC_NAME (psym->st_name))
9265 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
9266 else
9267 printf (_(" <corrupt: %14ld>"), psym->st_name);
9268 putchar ('\n');
9269 }
9270
9271 /* Dump the symbol table. */
9272 static int
9273 process_symbol_table (FILE * file)
9274 {
9275 Elf_Internal_Shdr * section;
9276 bfd_vma nbuckets = 0;
9277 bfd_vma nchains = 0;
9278 bfd_vma * buckets = NULL;
9279 bfd_vma * chains = NULL;
9280 bfd_vma ngnubuckets = 0;
9281 bfd_vma * gnubuckets = NULL;
9282 bfd_vma * gnuchains = NULL;
9283 bfd_vma gnusymidx = 0;
9284
9285 if (!do_syms && !do_dyn_syms && !do_histogram)
9286 return 1;
9287
9288 if (dynamic_info[DT_HASH]
9289 && (do_histogram
9290 || (do_using_dynamic
9291 && !do_dyn_syms
9292 && dynamic_strings != NULL)))
9293 {
9294 unsigned char nb[8];
9295 unsigned char nc[8];
9296 int hash_ent_size = 4;
9297
9298 if ((elf_header.e_machine == EM_ALPHA
9299 || elf_header.e_machine == EM_S390
9300 || elf_header.e_machine == EM_S390_OLD)
9301 && elf_header.e_ident[EI_CLASS] == ELFCLASS64)
9302 hash_ent_size = 8;
9303
9304 if (fseek (file,
9305 (archive_file_offset
9306 + offset_from_vma (file, dynamic_info[DT_HASH],
9307 sizeof nb + sizeof nc)),
9308 SEEK_SET))
9309 {
9310 error (_("Unable to seek to start of dynamic information\n"));
9311 goto no_hash;
9312 }
9313
9314 if (fread (nb, hash_ent_size, 1, file) != 1)
9315 {
9316 error (_("Failed to read in number of buckets\n"));
9317 goto no_hash;
9318 }
9319
9320 if (fread (nc, hash_ent_size, 1, file) != 1)
9321 {
9322 error (_("Failed to read in number of chains\n"));
9323 goto no_hash;
9324 }
9325
9326 nbuckets = byte_get (nb, hash_ent_size);
9327 nchains = byte_get (nc, hash_ent_size);
9328
9329 buckets = get_dynamic_data (file, nbuckets, hash_ent_size);
9330 chains = get_dynamic_data (file, nchains, hash_ent_size);
9331
9332 no_hash:
9333 if (buckets == NULL || chains == NULL)
9334 {
9335 if (do_using_dynamic)
9336 return 0;
9337 free (buckets);
9338 free (chains);
9339 buckets = NULL;
9340 chains = NULL;
9341 nbuckets = 0;
9342 nchains = 0;
9343 }
9344 }
9345
9346 if (dynamic_info_DT_GNU_HASH
9347 && (do_histogram
9348 || (do_using_dynamic
9349 && !do_dyn_syms
9350 && dynamic_strings != NULL)))
9351 {
9352 unsigned char nb[16];
9353 bfd_vma i, maxchain = 0xffffffff, bitmaskwords;
9354 bfd_vma buckets_vma;
9355
9356 if (fseek (file,
9357 (archive_file_offset
9358 + offset_from_vma (file, dynamic_info_DT_GNU_HASH,
9359 sizeof nb)),
9360 SEEK_SET))
9361 {
9362 error (_("Unable to seek to start of dynamic information\n"));
9363 goto no_gnu_hash;
9364 }
9365
9366 if (fread (nb, 16, 1, file) != 1)
9367 {
9368 error (_("Failed to read in number of buckets\n"));
9369 goto no_gnu_hash;
9370 }
9371
9372 ngnubuckets = byte_get (nb, 4);
9373 gnusymidx = byte_get (nb + 4, 4);
9374 bitmaskwords = byte_get (nb + 8, 4);
9375 buckets_vma = dynamic_info_DT_GNU_HASH + 16;
9376 if (is_32bit_elf)
9377 buckets_vma += bitmaskwords * 4;
9378 else
9379 buckets_vma += bitmaskwords * 8;
9380
9381 if (fseek (file,
9382 (archive_file_offset
9383 + offset_from_vma (file, buckets_vma, 4)),
9384 SEEK_SET))
9385 {
9386 error (_("Unable to seek to start of dynamic information\n"));
9387 goto no_gnu_hash;
9388 }
9389
9390 gnubuckets = get_dynamic_data (file, ngnubuckets, 4);
9391
9392 if (gnubuckets == NULL)
9393 goto no_gnu_hash;
9394
9395 for (i = 0; i < ngnubuckets; i++)
9396 if (gnubuckets[i] != 0)
9397 {
9398 if (gnubuckets[i] < gnusymidx)
9399 return 0;
9400
9401 if (maxchain == 0xffffffff || gnubuckets[i] > maxchain)
9402 maxchain = gnubuckets[i];
9403 }
9404
9405 if (maxchain == 0xffffffff)
9406 goto no_gnu_hash;
9407
9408 maxchain -= gnusymidx;
9409
9410 if (fseek (file,
9411 (archive_file_offset
9412 + offset_from_vma (file, buckets_vma
9413 + 4 * (ngnubuckets + maxchain), 4)),
9414 SEEK_SET))
9415 {
9416 error (_("Unable to seek to start of dynamic information\n"));
9417 goto no_gnu_hash;
9418 }
9419
9420 do
9421 {
9422 if (fread (nb, 4, 1, file) != 1)
9423 {
9424 error (_("Failed to determine last chain length\n"));
9425 goto no_gnu_hash;
9426 }
9427
9428 if (maxchain + 1 == 0)
9429 goto no_gnu_hash;
9430
9431 ++maxchain;
9432 }
9433 while ((byte_get (nb, 4) & 1) == 0);
9434
9435 if (fseek (file,
9436 (archive_file_offset
9437 + offset_from_vma (file, buckets_vma + 4 * ngnubuckets, 4)),
9438 SEEK_SET))
9439 {
9440 error (_("Unable to seek to start of dynamic information\n"));
9441 goto no_gnu_hash;
9442 }
9443
9444 gnuchains = get_dynamic_data (file, maxchain, 4);
9445
9446 no_gnu_hash:
9447 if (gnuchains == NULL)
9448 {
9449 free (gnubuckets);
9450 gnubuckets = NULL;
9451 ngnubuckets = 0;
9452 if (do_using_dynamic)
9453 return 0;
9454 }
9455 }
9456
9457 if ((dynamic_info[DT_HASH] || dynamic_info_DT_GNU_HASH)
9458 && do_syms
9459 && do_using_dynamic
9460 && dynamic_strings != NULL)
9461 {
9462 unsigned long hn;
9463
9464 if (dynamic_info[DT_HASH])
9465 {
9466 bfd_vma si;
9467
9468 printf (_("\nSymbol table for image:\n"));
9469 if (is_32bit_elf)
9470 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
9471 else
9472 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
9473
9474 for (hn = 0; hn < nbuckets; hn++)
9475 {
9476 if (! buckets[hn])
9477 continue;
9478
9479 for (si = buckets[hn]; si < nchains && si > 0; si = chains[si])
9480 print_dynamic_symbol (si, hn);
9481 }
9482 }
9483
9484 if (dynamic_info_DT_GNU_HASH)
9485 {
9486 printf (_("\nSymbol table of `.gnu.hash' for image:\n"));
9487 if (is_32bit_elf)
9488 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
9489 else
9490 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
9491
9492 for (hn = 0; hn < ngnubuckets; ++hn)
9493 if (gnubuckets[hn] != 0)
9494 {
9495 bfd_vma si = gnubuckets[hn];
9496 bfd_vma off = si - gnusymidx;
9497
9498 do
9499 {
9500 print_dynamic_symbol (si, hn);
9501 si++;
9502 }
9503 while ((gnuchains[off++] & 1) == 0);
9504 }
9505 }
9506 }
9507 else if (do_dyn_syms || (do_syms && !do_using_dynamic))
9508 {
9509 unsigned int i;
9510
9511 for (i = 0, section = section_headers;
9512 i < elf_header.e_shnum;
9513 i++, section++)
9514 {
9515 unsigned int si;
9516 char * strtab = NULL;
9517 unsigned long int strtab_size = 0;
9518 Elf_Internal_Sym * symtab;
9519 Elf_Internal_Sym * psym;
9520 unsigned long num_syms;
9521
9522 if ((section->sh_type != SHT_SYMTAB
9523 && section->sh_type != SHT_DYNSYM)
9524 || (!do_syms
9525 && section->sh_type == SHT_SYMTAB))
9526 continue;
9527
9528 if (section->sh_entsize == 0)
9529 {
9530 printf (_("\nSymbol table '%s' has a sh_entsize of zero!\n"),
9531 SECTION_NAME (section));
9532 continue;
9533 }
9534
9535 printf (_("\nSymbol table '%s' contains %lu entries:\n"),
9536 SECTION_NAME (section),
9537 (unsigned long) (section->sh_size / section->sh_entsize));
9538
9539 if (is_32bit_elf)
9540 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
9541 else
9542 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
9543
9544 symtab = GET_ELF_SYMBOLS (file, section, & num_syms);
9545 if (symtab == NULL)
9546 continue;
9547
9548 if (section->sh_link == elf_header.e_shstrndx)
9549 {
9550 strtab = string_table;
9551 strtab_size = string_table_length;
9552 }
9553 else if (section->sh_link < elf_header.e_shnum)
9554 {
9555 Elf_Internal_Shdr * string_sec;
9556
9557 string_sec = section_headers + section->sh_link;
9558
9559 strtab = (char *) get_data (NULL, file, string_sec->sh_offset,
9560 1, string_sec->sh_size,
9561 _("string table"));
9562 strtab_size = strtab != NULL ? string_sec->sh_size : 0;
9563 }
9564
9565 for (si = 0, psym = symtab; si < num_syms; si++, psym++)
9566 {
9567 printf ("%6d: ", si);
9568 print_vma (psym->st_value, LONG_HEX);
9569 putchar (' ');
9570 print_vma (psym->st_size, DEC_5);
9571 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
9572 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
9573 printf (" %-7s", get_symbol_visibility (ELF_ST_VISIBILITY (psym->st_other)));
9574 /* Check to see if any other bits in the st_other field are set.
9575 Note - displaying this information disrupts the layout of the
9576 table being generated, but for the moment this case is very rare. */
9577 if (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other))
9578 printf (" [%s] ", get_symbol_other (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other)));
9579 printf (" %4s ", get_symbol_index_type (psym->st_shndx));
9580 print_symbol (25, psym->st_name < strtab_size
9581 ? strtab + psym->st_name : _("<corrupt>"));
9582
9583 if (section->sh_type == SHT_DYNSYM
9584 && version_info[DT_VERSIONTAGIDX (DT_VERSYM)] != 0)
9585 {
9586 unsigned char data[2];
9587 unsigned short vers_data;
9588 unsigned long offset;
9589 int is_nobits;
9590 int check_def;
9591
9592 offset = offset_from_vma
9593 (file, version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
9594 sizeof data + si * sizeof (vers_data));
9595
9596 if (get_data (&data, file, offset + si * sizeof (vers_data),
9597 sizeof (data), 1, _("version data")) == NULL)
9598 break;
9599
9600 vers_data = byte_get (data, 2);
9601
9602 is_nobits = (psym->st_shndx < elf_header.e_shnum
9603 && section_headers[psym->st_shndx].sh_type
9604 == SHT_NOBITS);
9605
9606 check_def = (psym->st_shndx != SHN_UNDEF);
9607
9608 if ((vers_data & VERSYM_HIDDEN) || vers_data > 1)
9609 {
9610 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)]
9611 && (is_nobits || ! check_def))
9612 {
9613 Elf_External_Verneed evn;
9614 Elf_Internal_Verneed ivn;
9615 Elf_Internal_Vernaux ivna;
9616
9617 /* We must test both. */
9618 offset = offset_from_vma
9619 (file, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
9620 sizeof evn);
9621
9622 do
9623 {
9624 unsigned long vna_off;
9625
9626 if (get_data (&evn, file, offset, sizeof (evn), 1,
9627 _("version need")) == NULL)
9628 {
9629 ivna.vna_next = 0;
9630 ivna.vna_other = 0;
9631 ivna.vna_name = 0;
9632 break;
9633 }
9634
9635 ivn.vn_aux = BYTE_GET (evn.vn_aux);
9636 ivn.vn_next = BYTE_GET (evn.vn_next);
9637
9638 vna_off = offset + ivn.vn_aux;
9639
9640 do
9641 {
9642 Elf_External_Vernaux evna;
9643
9644 if (get_data (&evna, file, vna_off,
9645 sizeof (evna), 1,
9646 _("version need aux (3)")) == NULL)
9647 {
9648 ivna.vna_next = 0;
9649 ivna.vna_other = 0;
9650 ivna.vna_name = 0;
9651 }
9652 else
9653 {
9654 ivna.vna_other = BYTE_GET (evna.vna_other);
9655 ivna.vna_next = BYTE_GET (evna.vna_next);
9656 ivna.vna_name = BYTE_GET (evna.vna_name);
9657 }
9658
9659 vna_off += ivna.vna_next;
9660 }
9661 while (ivna.vna_other != vers_data
9662 && ivna.vna_next != 0);
9663
9664 if (ivna.vna_other == vers_data)
9665 break;
9666
9667 offset += ivn.vn_next;
9668 }
9669 while (ivn.vn_next != 0);
9670
9671 if (ivna.vna_other == vers_data)
9672 {
9673 printf ("@%s (%d)",
9674 ivna.vna_name < strtab_size
9675 ? strtab + ivna.vna_name : _("<corrupt>"),
9676 ivna.vna_other);
9677 check_def = 0;
9678 }
9679 else if (! is_nobits)
9680 error (_("bad dynamic symbol\n"));
9681 else
9682 check_def = 1;
9683 }
9684
9685 if (check_def)
9686 {
9687 if (vers_data != 0x8001
9688 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
9689 {
9690 Elf_Internal_Verdef ivd;
9691 Elf_Internal_Verdaux ivda;
9692 Elf_External_Verdaux evda;
9693 unsigned long off;
9694
9695 off = offset_from_vma
9696 (file,
9697 version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
9698 sizeof (Elf_External_Verdef));
9699
9700 do
9701 {
9702 Elf_External_Verdef evd;
9703
9704 if (get_data (&evd, file, off, sizeof (evd),
9705 1, _("version def")) == NULL)
9706 {
9707 ivd.vd_ndx = 0;
9708 ivd.vd_aux = 0;
9709 ivd.vd_next = 0;
9710 }
9711 else
9712 {
9713 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
9714 ivd.vd_aux = BYTE_GET (evd.vd_aux);
9715 ivd.vd_next = BYTE_GET (evd.vd_next);
9716 }
9717
9718 off += ivd.vd_next;
9719 }
9720 while (ivd.vd_ndx != (vers_data & VERSYM_VERSION)
9721 && ivd.vd_next != 0);
9722
9723 off -= ivd.vd_next;
9724 off += ivd.vd_aux;
9725
9726 if (get_data (&evda, file, off, sizeof (evda),
9727 1, _("version def aux")) == NULL)
9728 break;
9729
9730 ivda.vda_name = BYTE_GET (evda.vda_name);
9731
9732 if (psym->st_name != ivda.vda_name)
9733 printf ((vers_data & VERSYM_HIDDEN)
9734 ? "@%s" : "@@%s",
9735 ivda.vda_name < strtab_size
9736 ? strtab + ivda.vda_name : _("<corrupt>"));
9737 }
9738 }
9739 }
9740 }
9741
9742 putchar ('\n');
9743 }
9744
9745 free (symtab);
9746 if (strtab != string_table)
9747 free (strtab);
9748 }
9749 }
9750 else if (do_syms)
9751 printf
9752 (_("\nDynamic symbol information is not available for displaying symbols.\n"));
9753
9754 if (do_histogram && buckets != NULL)
9755 {
9756 unsigned long * lengths;
9757 unsigned long * counts;
9758 unsigned long hn;
9759 bfd_vma si;
9760 unsigned long maxlength = 0;
9761 unsigned long nzero_counts = 0;
9762 unsigned long nsyms = 0;
9763
9764 printf (_("\nHistogram for bucket list length (total of %lu buckets):\n"),
9765 (unsigned long) nbuckets);
9766 printf (_(" Length Number %% of total Coverage\n"));
9767
9768 lengths = (unsigned long *) calloc (nbuckets, sizeof (*lengths));
9769 if (lengths == NULL)
9770 {
9771 error (_("Out of memory\n"));
9772 return 0;
9773 }
9774 for (hn = 0; hn < nbuckets; ++hn)
9775 {
9776 for (si = buckets[hn]; si > 0 && si < nchains; si = chains[si])
9777 {
9778 ++nsyms;
9779 if (maxlength < ++lengths[hn])
9780 ++maxlength;
9781 }
9782 }
9783
9784 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
9785 if (counts == NULL)
9786 {
9787 error (_("Out of memory\n"));
9788 return 0;
9789 }
9790
9791 for (hn = 0; hn < nbuckets; ++hn)
9792 ++counts[lengths[hn]];
9793
9794 if (nbuckets > 0)
9795 {
9796 unsigned long i;
9797 printf (" 0 %-10lu (%5.1f%%)\n",
9798 counts[0], (counts[0] * 100.0) / nbuckets);
9799 for (i = 1; i <= maxlength; ++i)
9800 {
9801 nzero_counts += counts[i] * i;
9802 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
9803 i, counts[i], (counts[i] * 100.0) / nbuckets,
9804 (nzero_counts * 100.0) / nsyms);
9805 }
9806 }
9807
9808 free (counts);
9809 free (lengths);
9810 }
9811
9812 if (buckets != NULL)
9813 {
9814 free (buckets);
9815 free (chains);
9816 }
9817
9818 if (do_histogram && gnubuckets != NULL)
9819 {
9820 unsigned long * lengths;
9821 unsigned long * counts;
9822 unsigned long hn;
9823 unsigned long maxlength = 0;
9824 unsigned long nzero_counts = 0;
9825 unsigned long nsyms = 0;
9826
9827 lengths = (unsigned long *) calloc (ngnubuckets, sizeof (*lengths));
9828 if (lengths == NULL)
9829 {
9830 error (_("Out of memory\n"));
9831 return 0;
9832 }
9833
9834 printf (_("\nHistogram for `.gnu.hash' bucket list length (total of %lu buckets):\n"),
9835 (unsigned long) ngnubuckets);
9836 printf (_(" Length Number %% of total Coverage\n"));
9837
9838 for (hn = 0; hn < ngnubuckets; ++hn)
9839 if (gnubuckets[hn] != 0)
9840 {
9841 bfd_vma off, length = 1;
9842
9843 for (off = gnubuckets[hn] - gnusymidx;
9844 (gnuchains[off] & 1) == 0; ++off)
9845 ++length;
9846 lengths[hn] = length;
9847 if (length > maxlength)
9848 maxlength = length;
9849 nsyms += length;
9850 }
9851
9852 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
9853 if (counts == NULL)
9854 {
9855 error (_("Out of memory\n"));
9856 return 0;
9857 }
9858
9859 for (hn = 0; hn < ngnubuckets; ++hn)
9860 ++counts[lengths[hn]];
9861
9862 if (ngnubuckets > 0)
9863 {
9864 unsigned long j;
9865 printf (" 0 %-10lu (%5.1f%%)\n",
9866 counts[0], (counts[0] * 100.0) / ngnubuckets);
9867 for (j = 1; j <= maxlength; ++j)
9868 {
9869 nzero_counts += counts[j] * j;
9870 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
9871 j, counts[j], (counts[j] * 100.0) / ngnubuckets,
9872 (nzero_counts * 100.0) / nsyms);
9873 }
9874 }
9875
9876 free (counts);
9877 free (lengths);
9878 free (gnubuckets);
9879 free (gnuchains);
9880 }
9881
9882 return 1;
9883 }
9884
9885 static int
9886 process_syminfo (FILE * file ATTRIBUTE_UNUSED)
9887 {
9888 unsigned int i;
9889
9890 if (dynamic_syminfo == NULL
9891 || !do_dynamic)
9892 /* No syminfo, this is ok. */
9893 return 1;
9894
9895 /* There better should be a dynamic symbol section. */
9896 if (dynamic_symbols == NULL || dynamic_strings == NULL)
9897 return 0;
9898
9899 if (dynamic_addr)
9900 printf (_("\nDynamic info segment at offset 0x%lx contains %d entries:\n"),
9901 dynamic_syminfo_offset, dynamic_syminfo_nent);
9902
9903 printf (_(" Num: Name BoundTo Flags\n"));
9904 for (i = 0; i < dynamic_syminfo_nent; ++i)
9905 {
9906 unsigned short int flags = dynamic_syminfo[i].si_flags;
9907
9908 printf ("%4d: ", i);
9909 if (VALID_DYNAMIC_NAME (dynamic_symbols[i].st_name))
9910 print_symbol (30, GET_DYNAMIC_NAME (dynamic_symbols[i].st_name));
9911 else
9912 printf (_("<corrupt: %19ld>"), dynamic_symbols[i].st_name);
9913 putchar (' ');
9914
9915 switch (dynamic_syminfo[i].si_boundto)
9916 {
9917 case SYMINFO_BT_SELF:
9918 fputs ("SELF ", stdout);
9919 break;
9920 case SYMINFO_BT_PARENT:
9921 fputs ("PARENT ", stdout);
9922 break;
9923 default:
9924 if (dynamic_syminfo[i].si_boundto > 0
9925 && dynamic_syminfo[i].si_boundto < dynamic_nent
9926 && VALID_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val))
9927 {
9928 print_symbol (10, GET_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val));
9929 putchar (' ' );
9930 }
9931 else
9932 printf ("%-10d ", dynamic_syminfo[i].si_boundto);
9933 break;
9934 }
9935
9936 if (flags & SYMINFO_FLG_DIRECT)
9937 printf (" DIRECT");
9938 if (flags & SYMINFO_FLG_PASSTHRU)
9939 printf (" PASSTHRU");
9940 if (flags & SYMINFO_FLG_COPY)
9941 printf (" COPY");
9942 if (flags & SYMINFO_FLG_LAZYLOAD)
9943 printf (" LAZYLOAD");
9944
9945 puts ("");
9946 }
9947
9948 return 1;
9949 }
9950
9951 /* Check to see if the given reloc needs to be handled in a target specific
9952 manner. If so then process the reloc and return TRUE otherwise return
9953 FALSE. */
9954
9955 static bfd_boolean
9956 target_specific_reloc_handling (Elf_Internal_Rela * reloc,
9957 unsigned char * start,
9958 Elf_Internal_Sym * symtab)
9959 {
9960 unsigned int reloc_type = get_reloc_type (reloc->r_info);
9961
9962 switch (elf_header.e_machine)
9963 {
9964 case EM_MN10300:
9965 case EM_CYGNUS_MN10300:
9966 {
9967 static Elf_Internal_Sym * saved_sym = NULL;
9968
9969 switch (reloc_type)
9970 {
9971 case 34: /* R_MN10300_ALIGN */
9972 return TRUE;
9973 case 33: /* R_MN10300_SYM_DIFF */
9974 saved_sym = symtab + get_reloc_symindex (reloc->r_info);
9975 return TRUE;
9976 case 1: /* R_MN10300_32 */
9977 case 2: /* R_MN10300_16 */
9978 if (saved_sym != NULL)
9979 {
9980 bfd_vma value;
9981
9982 value = reloc->r_addend
9983 + (symtab[get_reloc_symindex (reloc->r_info)].st_value
9984 - saved_sym->st_value);
9985
9986 byte_put (start + reloc->r_offset, value, reloc_type == 1 ? 4 : 2);
9987
9988 saved_sym = NULL;
9989 return TRUE;
9990 }
9991 break;
9992 default:
9993 if (saved_sym != NULL)
9994 error (_("Unhandled MN10300 reloc type found after SYM_DIFF reloc"));
9995 break;
9996 }
9997 break;
9998 }
9999 }
10000
10001 return FALSE;
10002 }
10003
10004 /* Returns TRUE iff RELOC_TYPE is a 32-bit absolute RELA relocation used in
10005 DWARF debug sections. This is a target specific test. Note - we do not
10006 go through the whole including-target-headers-multiple-times route, (as
10007 we have already done with <elf/h8.h>) because this would become very
10008 messy and even then this function would have to contain target specific
10009 information (the names of the relocs instead of their numeric values).
10010 FIXME: This is not the correct way to solve this problem. The proper way
10011 is to have target specific reloc sizing and typing functions created by
10012 the reloc-macros.h header, in the same way that it already creates the
10013 reloc naming functions. */
10014
10015 static bfd_boolean
10016 is_32bit_abs_reloc (unsigned int reloc_type)
10017 {
10018 switch (elf_header.e_machine)
10019 {
10020 case EM_386:
10021 case EM_486:
10022 return reloc_type == 1; /* R_386_32. */
10023 case EM_68K:
10024 return reloc_type == 1; /* R_68K_32. */
10025 case EM_860:
10026 return reloc_type == 1; /* R_860_32. */
10027 case EM_960:
10028 return reloc_type == 2; /* R_960_32. */
10029 case EM_AARCH64:
10030 return reloc_type == 258; /* R_AARCH64_ABS32 */
10031 case EM_ALPHA:
10032 return reloc_type == 1; /* R_ALPHA_REFLONG. */
10033 case EM_ARC:
10034 return reloc_type == 1; /* R_ARC_32. */
10035 case EM_ARM:
10036 return reloc_type == 2; /* R_ARM_ABS32 */
10037 case EM_AVR_OLD:
10038 case EM_AVR:
10039 return reloc_type == 1;
10040 case EM_ADAPTEVA_EPIPHANY:
10041 return reloc_type == 3;
10042 case EM_BLACKFIN:
10043 return reloc_type == 0x12; /* R_byte4_data. */
10044 case EM_CRIS:
10045 return reloc_type == 3; /* R_CRIS_32. */
10046 case EM_CR16:
10047 return reloc_type == 3; /* R_CR16_NUM32. */
10048 case EM_CRX:
10049 return reloc_type == 15; /* R_CRX_NUM32. */
10050 case EM_CYGNUS_FRV:
10051 return reloc_type == 1;
10052 case EM_CYGNUS_D10V:
10053 case EM_D10V:
10054 return reloc_type == 6; /* R_D10V_32. */
10055 case EM_CYGNUS_D30V:
10056 case EM_D30V:
10057 return reloc_type == 12; /* R_D30V_32_NORMAL. */
10058 case EM_DLX:
10059 return reloc_type == 3; /* R_DLX_RELOC_32. */
10060 case EM_CYGNUS_FR30:
10061 case EM_FR30:
10062 return reloc_type == 3; /* R_FR30_32. */
10063 case EM_H8S:
10064 case EM_H8_300:
10065 case EM_H8_300H:
10066 return reloc_type == 1; /* R_H8_DIR32. */
10067 case EM_IA_64:
10068 return reloc_type == 0x65; /* R_IA64_SECREL32LSB. */
10069 case EM_IP2K_OLD:
10070 case EM_IP2K:
10071 return reloc_type == 2; /* R_IP2K_32. */
10072 case EM_IQ2000:
10073 return reloc_type == 2; /* R_IQ2000_32. */
10074 case EM_LATTICEMICO32:
10075 return reloc_type == 3; /* R_LM32_32. */
10076 case EM_M32C_OLD:
10077 case EM_M32C:
10078 return reloc_type == 3; /* R_M32C_32. */
10079 case EM_M32R:
10080 return reloc_type == 34; /* R_M32R_32_RELA. */
10081 case EM_MCORE:
10082 return reloc_type == 1; /* R_MCORE_ADDR32. */
10083 case EM_CYGNUS_MEP:
10084 return reloc_type == 4; /* R_MEP_32. */
10085 case EM_METAG:
10086 return reloc_type == 2; /* R_METAG_ADDR32. */
10087 case EM_MICROBLAZE:
10088 return reloc_type == 1; /* R_MICROBLAZE_32. */
10089 case EM_MIPS:
10090 return reloc_type == 2; /* R_MIPS_32. */
10091 case EM_MMIX:
10092 return reloc_type == 4; /* R_MMIX_32. */
10093 case EM_CYGNUS_MN10200:
10094 case EM_MN10200:
10095 return reloc_type == 1; /* R_MN10200_32. */
10096 case EM_CYGNUS_MN10300:
10097 case EM_MN10300:
10098 return reloc_type == 1; /* R_MN10300_32. */
10099 case EM_MOXIE:
10100 return reloc_type == 1; /* R_MOXIE_32. */
10101 case EM_MSP430_OLD:
10102 case EM_MSP430:
10103 return reloc_type == 1; /* R_MSP43_32. */
10104 case EM_MT:
10105 return reloc_type == 2; /* R_MT_32. */
10106 case EM_ALTERA_NIOS2:
10107 return reloc_type == 12; /* R_NIOS2_BFD_RELOC_32. */
10108 case EM_NIOS32:
10109 return reloc_type == 1; /* R_NIOS_32. */
10110 case EM_OPENRISC:
10111 case EM_OR32:
10112 return reloc_type == 1; /* R_OR32_32. */
10113 case EM_PARISC:
10114 return (reloc_type == 1 /* R_PARISC_DIR32. */
10115 || reloc_type == 41); /* R_PARISC_SECREL32. */
10116 case EM_PJ:
10117 case EM_PJ_OLD:
10118 return reloc_type == 1; /* R_PJ_DATA_DIR32. */
10119 case EM_PPC64:
10120 return reloc_type == 1; /* R_PPC64_ADDR32. */
10121 case EM_PPC:
10122 return reloc_type == 1; /* R_PPC_ADDR32. */
10123 case EM_RL78:
10124 return reloc_type == 1; /* R_RL78_DIR32. */
10125 case EM_RX:
10126 return reloc_type == 1; /* R_RX_DIR32. */
10127 case EM_S370:
10128 return reloc_type == 1; /* R_I370_ADDR31. */
10129 case EM_S390_OLD:
10130 case EM_S390:
10131 return reloc_type == 4; /* R_S390_32. */
10132 case EM_SCORE:
10133 return reloc_type == 8; /* R_SCORE_ABS32. */
10134 case EM_SH:
10135 return reloc_type == 1; /* R_SH_DIR32. */
10136 case EM_SPARC32PLUS:
10137 case EM_SPARCV9:
10138 case EM_SPARC:
10139 return reloc_type == 3 /* R_SPARC_32. */
10140 || reloc_type == 23; /* R_SPARC_UA32. */
10141 case EM_SPU:
10142 return reloc_type == 6; /* R_SPU_ADDR32 */
10143 case EM_TI_C6000:
10144 return reloc_type == 1; /* R_C6000_ABS32. */
10145 case EM_TILEGX:
10146 return reloc_type == 2; /* R_TILEGX_32. */
10147 case EM_TILEPRO:
10148 return reloc_type == 1; /* R_TILEPRO_32. */
10149 case EM_CYGNUS_V850:
10150 case EM_V850:
10151 return reloc_type == 6; /* R_V850_ABS32. */
10152 case EM_V800:
10153 return reloc_type == 0x33; /* R_V810_WORD. */
10154 case EM_VAX:
10155 return reloc_type == 1; /* R_VAX_32. */
10156 case EM_X86_64:
10157 case EM_L1OM:
10158 case EM_K1OM:
10159 return reloc_type == 10; /* R_X86_64_32. */
10160 case EM_XC16X:
10161 case EM_C166:
10162 return reloc_type == 3; /* R_XC16C_ABS_32. */
10163 case EM_XGATE:
10164 return reloc_type == 4; /* R_XGATE_32. */
10165 case EM_XSTORMY16:
10166 return reloc_type == 1; /* R_XSTROMY16_32. */
10167 case EM_XTENSA_OLD:
10168 case EM_XTENSA:
10169 return reloc_type == 1; /* R_XTENSA_32. */
10170 default:
10171 error (_("Missing knowledge of 32-bit reloc types used in DWARF sections of machine number %d\n"),
10172 elf_header.e_machine);
10173 abort ();
10174 }
10175 }
10176
10177 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
10178 a 32-bit pc-relative RELA relocation used in DWARF debug sections. */
10179
10180 static bfd_boolean
10181 is_32bit_pcrel_reloc (unsigned int reloc_type)
10182 {
10183 switch (elf_header.e_machine)
10184 {
10185 case EM_386:
10186 case EM_486:
10187 return reloc_type == 2; /* R_386_PC32. */
10188 case EM_68K:
10189 return reloc_type == 4; /* R_68K_PC32. */
10190 case EM_AARCH64:
10191 return reloc_type == 261; /* R_AARCH64_PREL32 */
10192 case EM_ADAPTEVA_EPIPHANY:
10193 return reloc_type == 6;
10194 case EM_ALPHA:
10195 return reloc_type == 10; /* R_ALPHA_SREL32. */
10196 case EM_ARM:
10197 return reloc_type == 3; /* R_ARM_REL32 */
10198 case EM_MICROBLAZE:
10199 return reloc_type == 2; /* R_MICROBLAZE_32_PCREL. */
10200 case EM_PARISC:
10201 return reloc_type == 9; /* R_PARISC_PCREL32. */
10202 case EM_PPC:
10203 return reloc_type == 26; /* R_PPC_REL32. */
10204 case EM_PPC64:
10205 return reloc_type == 26; /* R_PPC64_REL32. */
10206 case EM_S390_OLD:
10207 case EM_S390:
10208 return reloc_type == 5; /* R_390_PC32. */
10209 case EM_SH:
10210 return reloc_type == 2; /* R_SH_REL32. */
10211 case EM_SPARC32PLUS:
10212 case EM_SPARCV9:
10213 case EM_SPARC:
10214 return reloc_type == 6; /* R_SPARC_DISP32. */
10215 case EM_SPU:
10216 return reloc_type == 13; /* R_SPU_REL32. */
10217 case EM_TILEGX:
10218 return reloc_type == 6; /* R_TILEGX_32_PCREL. */
10219 case EM_TILEPRO:
10220 return reloc_type == 4; /* R_TILEPRO_32_PCREL. */
10221 case EM_X86_64:
10222 case EM_L1OM:
10223 case EM_K1OM:
10224 return reloc_type == 2; /* R_X86_64_PC32. */
10225 case EM_XTENSA_OLD:
10226 case EM_XTENSA:
10227 return reloc_type == 14; /* R_XTENSA_32_PCREL. */
10228 default:
10229 /* Do not abort or issue an error message here. Not all targets use
10230 pc-relative 32-bit relocs in their DWARF debug information and we
10231 have already tested for target coverage in is_32bit_abs_reloc. A
10232 more helpful warning message will be generated by apply_relocations
10233 anyway, so just return. */
10234 return FALSE;
10235 }
10236 }
10237
10238 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
10239 a 64-bit absolute RELA relocation used in DWARF debug sections. */
10240
10241 static bfd_boolean
10242 is_64bit_abs_reloc (unsigned int reloc_type)
10243 {
10244 switch (elf_header.e_machine)
10245 {
10246 case EM_AARCH64:
10247 return reloc_type == 257; /* R_AARCH64_ABS64. */
10248 case EM_ALPHA:
10249 return reloc_type == 2; /* R_ALPHA_REFQUAD. */
10250 case EM_IA_64:
10251 return reloc_type == 0x27; /* R_IA64_DIR64LSB. */
10252 case EM_PARISC:
10253 return reloc_type == 80; /* R_PARISC_DIR64. */
10254 case EM_PPC64:
10255 return reloc_type == 38; /* R_PPC64_ADDR64. */
10256 case EM_SPARC32PLUS:
10257 case EM_SPARCV9:
10258 case EM_SPARC:
10259 return reloc_type == 54; /* R_SPARC_UA64. */
10260 case EM_X86_64:
10261 case EM_L1OM:
10262 case EM_K1OM:
10263 return reloc_type == 1; /* R_X86_64_64. */
10264 case EM_S390_OLD:
10265 case EM_S390:
10266 return reloc_type == 22; /* R_S390_64. */
10267 case EM_TILEGX:
10268 return reloc_type == 1; /* R_TILEGX_64. */
10269 case EM_MIPS:
10270 return reloc_type == 18; /* R_MIPS_64. */
10271 default:
10272 return FALSE;
10273 }
10274 }
10275
10276 /* Like is_32bit_pcrel_reloc except that it returns TRUE iff RELOC_TYPE is
10277 a 64-bit pc-relative RELA relocation used in DWARF debug sections. */
10278
10279 static bfd_boolean
10280 is_64bit_pcrel_reloc (unsigned int reloc_type)
10281 {
10282 switch (elf_header.e_machine)
10283 {
10284 case EM_AARCH64:
10285 return reloc_type == 260; /* R_AARCH64_PREL64. */
10286 case EM_ALPHA:
10287 return reloc_type == 11; /* R_ALPHA_SREL64. */
10288 case EM_IA_64:
10289 return reloc_type == 0x4f; /* R_IA64_PCREL64LSB. */
10290 case EM_PARISC:
10291 return reloc_type == 72; /* R_PARISC_PCREL64. */
10292 case EM_PPC64:
10293 return reloc_type == 44; /* R_PPC64_REL64. */
10294 case EM_SPARC32PLUS:
10295 case EM_SPARCV9:
10296 case EM_SPARC:
10297 return reloc_type == 46; /* R_SPARC_DISP64. */
10298 case EM_X86_64:
10299 case EM_L1OM:
10300 case EM_K1OM:
10301 return reloc_type == 24; /* R_X86_64_PC64. */
10302 case EM_S390_OLD:
10303 case EM_S390:
10304 return reloc_type == 23; /* R_S390_PC64. */
10305 case EM_TILEGX:
10306 return reloc_type == 5; /* R_TILEGX_64_PCREL. */
10307 default:
10308 return FALSE;
10309 }
10310 }
10311
10312 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
10313 a 24-bit absolute RELA relocation used in DWARF debug sections. */
10314
10315 static bfd_boolean
10316 is_24bit_abs_reloc (unsigned int reloc_type)
10317 {
10318 switch (elf_header.e_machine)
10319 {
10320 case EM_CYGNUS_MN10200:
10321 case EM_MN10200:
10322 return reloc_type == 4; /* R_MN10200_24. */
10323 default:
10324 return FALSE;
10325 }
10326 }
10327
10328 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
10329 a 16-bit absolute RELA relocation used in DWARF debug sections. */
10330
10331 static bfd_boolean
10332 is_16bit_abs_reloc (unsigned int reloc_type)
10333 {
10334 switch (elf_header.e_machine)
10335 {
10336 case EM_AVR_OLD:
10337 case EM_AVR:
10338 return reloc_type == 4; /* R_AVR_16. */
10339 case EM_ADAPTEVA_EPIPHANY:
10340 return reloc_type == 5;
10341 case EM_CYGNUS_D10V:
10342 case EM_D10V:
10343 return reloc_type == 3; /* R_D10V_16. */
10344 case EM_H8S:
10345 case EM_H8_300:
10346 case EM_H8_300H:
10347 return reloc_type == R_H8_DIR16;
10348 case EM_IP2K_OLD:
10349 case EM_IP2K:
10350 return reloc_type == 1; /* R_IP2K_16. */
10351 case EM_M32C_OLD:
10352 case EM_M32C:
10353 return reloc_type == 1; /* R_M32C_16 */
10354 case EM_MSP430:
10355 case EM_MSP430_OLD:
10356 return reloc_type == 5; /* R_MSP430_16_BYTE. */
10357 case EM_ALTERA_NIOS2:
10358 return reloc_type == 13; /* R_NIOS2_BFD_RELOC_16. */
10359 case EM_NIOS32:
10360 return reloc_type == 9; /* R_NIOS_16. */
10361 case EM_TI_C6000:
10362 return reloc_type == 2; /* R_C6000_ABS16. */
10363 case EM_XC16X:
10364 case EM_C166:
10365 return reloc_type == 2; /* R_XC16C_ABS_16. */
10366 case EM_CYGNUS_MN10200:
10367 case EM_MN10200:
10368 return reloc_type == 2; /* R_MN10200_16. */
10369 case EM_CYGNUS_MN10300:
10370 case EM_MN10300:
10371 return reloc_type == 2; /* R_MN10300_16. */
10372 case EM_XGATE:
10373 return reloc_type == 3; /* R_XGATE_16. */
10374 default:
10375 return FALSE;
10376 }
10377 }
10378
10379 /* Returns TRUE iff RELOC_TYPE is a NONE relocation used for discarded
10380 relocation entries (possibly formerly used for SHT_GROUP sections). */
10381
10382 static bfd_boolean
10383 is_none_reloc (unsigned int reloc_type)
10384 {
10385 switch (elf_header.e_machine)
10386 {
10387 case EM_68K: /* R_68K_NONE. */
10388 case EM_386: /* R_386_NONE. */
10389 case EM_SPARC32PLUS:
10390 case EM_SPARCV9:
10391 case EM_SPARC: /* R_SPARC_NONE. */
10392 case EM_MIPS: /* R_MIPS_NONE. */
10393 case EM_PARISC: /* R_PARISC_NONE. */
10394 case EM_ALPHA: /* R_ALPHA_NONE. */
10395 case EM_ADAPTEVA_EPIPHANY:
10396 case EM_PPC: /* R_PPC_NONE. */
10397 case EM_PPC64: /* R_PPC64_NONE. */
10398 case EM_ARM: /* R_ARM_NONE. */
10399 case EM_IA_64: /* R_IA64_NONE. */
10400 case EM_SH: /* R_SH_NONE. */
10401 case EM_S390_OLD:
10402 case EM_S390: /* R_390_NONE. */
10403 case EM_CRIS: /* R_CRIS_NONE. */
10404 case EM_X86_64: /* R_X86_64_NONE. */
10405 case EM_L1OM: /* R_X86_64_NONE. */
10406 case EM_K1OM: /* R_X86_64_NONE. */
10407 case EM_MN10300: /* R_MN10300_NONE. */
10408 case EM_MOXIE: /* R_MOXIE_NONE. */
10409 case EM_M32R: /* R_M32R_NONE. */
10410 case EM_TI_C6000:/* R_C6000_NONE. */
10411 case EM_TILEGX: /* R_TILEGX_NONE. */
10412 case EM_TILEPRO: /* R_TILEPRO_NONE. */
10413 case EM_XC16X:
10414 case EM_C166: /* R_XC16X_NONE. */
10415 case EM_ALTERA_NIOS2: /* R_NIOS2_NONE. */
10416 case EM_NIOS32: /* R_NIOS_NONE. */
10417 return reloc_type == 0;
10418 case EM_AARCH64:
10419 return reloc_type == 0 || reloc_type == 256;
10420 case EM_XTENSA_OLD:
10421 case EM_XTENSA:
10422 return (reloc_type == 0 /* R_XTENSA_NONE. */
10423 || reloc_type == 17 /* R_XTENSA_DIFF8. */
10424 || reloc_type == 18 /* R_XTENSA_DIFF16. */
10425 || reloc_type == 19 /* R_XTENSA_DIFF32. */);
10426 case EM_METAG:
10427 return reloc_type == 3; /* R_METAG_NONE. */
10428 }
10429 return FALSE;
10430 }
10431
10432 /* Apply relocations to a section.
10433 Note: So far support has been added only for those relocations
10434 which can be found in debug sections.
10435 FIXME: Add support for more relocations ? */
10436
10437 static void
10438 apply_relocations (void * file,
10439 Elf_Internal_Shdr * section,
10440 unsigned char * start)
10441 {
10442 Elf_Internal_Shdr * relsec;
10443 unsigned char * end = start + section->sh_size;
10444
10445 if (elf_header.e_type != ET_REL)
10446 return;
10447
10448 /* Find the reloc section associated with the section. */
10449 for (relsec = section_headers;
10450 relsec < section_headers + elf_header.e_shnum;
10451 ++relsec)
10452 {
10453 bfd_boolean is_rela;
10454 unsigned long num_relocs;
10455 Elf_Internal_Rela * relocs;
10456 Elf_Internal_Rela * rp;
10457 Elf_Internal_Shdr * symsec;
10458 Elf_Internal_Sym * symtab;
10459 unsigned long num_syms;
10460 Elf_Internal_Sym * sym;
10461
10462 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
10463 || relsec->sh_info >= elf_header.e_shnum
10464 || section_headers + relsec->sh_info != section
10465 || relsec->sh_size == 0
10466 || relsec->sh_link >= elf_header.e_shnum)
10467 continue;
10468
10469 is_rela = relsec->sh_type == SHT_RELA;
10470
10471 if (is_rela)
10472 {
10473 if (!slurp_rela_relocs ((FILE *) file, relsec->sh_offset,
10474 relsec->sh_size, & relocs, & num_relocs))
10475 return;
10476 }
10477 else
10478 {
10479 if (!slurp_rel_relocs ((FILE *) file, relsec->sh_offset,
10480 relsec->sh_size, & relocs, & num_relocs))
10481 return;
10482 }
10483
10484 /* SH uses RELA but uses in place value instead of the addend field. */
10485 if (elf_header.e_machine == EM_SH)
10486 is_rela = FALSE;
10487
10488 symsec = section_headers + relsec->sh_link;
10489 symtab = GET_ELF_SYMBOLS ((FILE *) file, symsec, & num_syms);
10490
10491 for (rp = relocs; rp < relocs + num_relocs; ++rp)
10492 {
10493 bfd_vma addend;
10494 unsigned int reloc_type;
10495 unsigned int reloc_size;
10496 unsigned char * rloc;
10497 unsigned long sym_index;
10498
10499 reloc_type = get_reloc_type (rp->r_info);
10500
10501 if (target_specific_reloc_handling (rp, start, symtab))
10502 continue;
10503 else if (is_none_reloc (reloc_type))
10504 continue;
10505 else if (is_32bit_abs_reloc (reloc_type)
10506 || is_32bit_pcrel_reloc (reloc_type))
10507 reloc_size = 4;
10508 else if (is_64bit_abs_reloc (reloc_type)
10509 || is_64bit_pcrel_reloc (reloc_type))
10510 reloc_size = 8;
10511 else if (is_24bit_abs_reloc (reloc_type))
10512 reloc_size = 3;
10513 else if (is_16bit_abs_reloc (reloc_type))
10514 reloc_size = 2;
10515 else
10516 {
10517 warn (_("unable to apply unsupported reloc type %d to section %s\n"),
10518 reloc_type, SECTION_NAME (section));
10519 continue;
10520 }
10521
10522 rloc = start + rp->r_offset;
10523 if ((rloc + reloc_size) > end || (rloc < start))
10524 {
10525 warn (_("skipping invalid relocation offset 0x%lx in section %s\n"),
10526 (unsigned long) rp->r_offset,
10527 SECTION_NAME (section));
10528 continue;
10529 }
10530
10531 sym_index = (unsigned long) get_reloc_symindex (rp->r_info);
10532 if (sym_index >= num_syms)
10533 {
10534 warn (_("skipping invalid relocation symbol index 0x%lx in section %s\n"),
10535 sym_index, SECTION_NAME (section));
10536 continue;
10537 }
10538 sym = symtab + sym_index;
10539
10540 /* If the reloc has a symbol associated with it,
10541 make sure that it is of an appropriate type.
10542
10543 Relocations against symbols without type can happen.
10544 Gcc -feliminate-dwarf2-dups may generate symbols
10545 without type for debug info.
10546
10547 Icc generates relocations against function symbols
10548 instead of local labels.
10549
10550 Relocations against object symbols can happen, eg when
10551 referencing a global array. For an example of this see
10552 the _clz.o binary in libgcc.a. */
10553 if (sym != symtab
10554 && ELF_ST_TYPE (sym->st_info) > STT_SECTION)
10555 {
10556 warn (_("skipping unexpected symbol type %s in %ld'th relocation in section %s\n"),
10557 get_symbol_type (ELF_ST_TYPE (sym->st_info)),
10558 (long int)(rp - relocs),
10559 SECTION_NAME (relsec));
10560 continue;
10561 }
10562
10563 addend = 0;
10564 if (is_rela)
10565 addend += rp->r_addend;
10566 /* R_XTENSA_32, R_PJ_DATA_DIR32 and R_D30V_32_NORMAL are
10567 partial_inplace. */
10568 if (!is_rela
10569 || (elf_header.e_machine == EM_XTENSA
10570 && reloc_type == 1)
10571 || ((elf_header.e_machine == EM_PJ
10572 || elf_header.e_machine == EM_PJ_OLD)
10573 && reloc_type == 1)
10574 || ((elf_header.e_machine == EM_D30V
10575 || elf_header.e_machine == EM_CYGNUS_D30V)
10576 && reloc_type == 12))
10577 addend += byte_get (rloc, reloc_size);
10578
10579 if (is_32bit_pcrel_reloc (reloc_type)
10580 || is_64bit_pcrel_reloc (reloc_type))
10581 {
10582 /* On HPPA, all pc-relative relocations are biased by 8. */
10583 if (elf_header.e_machine == EM_PARISC)
10584 addend -= 8;
10585 byte_put (rloc, (addend + sym->st_value) - rp->r_offset,
10586 reloc_size);
10587 }
10588 else
10589 byte_put (rloc, addend + sym->st_value, reloc_size);
10590 }
10591
10592 free (symtab);
10593 free (relocs);
10594 break;
10595 }
10596 }
10597
10598 #ifdef SUPPORT_DISASSEMBLY
10599 static int
10600 disassemble_section (Elf_Internal_Shdr * section, FILE * file)
10601 {
10602 printf (_("\nAssembly dump of section %s\n"),
10603 SECTION_NAME (section));
10604
10605 /* XXX -- to be done --- XXX */
10606
10607 return 1;
10608 }
10609 #endif
10610
10611 /* Reads in the contents of SECTION from FILE, returning a pointer
10612 to a malloc'ed buffer or NULL if something went wrong. */
10613
10614 static char *
10615 get_section_contents (Elf_Internal_Shdr * section, FILE * file)
10616 {
10617 bfd_size_type num_bytes;
10618
10619 num_bytes = section->sh_size;
10620
10621 if (num_bytes == 0 || section->sh_type == SHT_NOBITS)
10622 {
10623 printf (_("\nSection '%s' has no data to dump.\n"),
10624 SECTION_NAME (section));
10625 return NULL;
10626 }
10627
10628 return (char *) get_data (NULL, file, section->sh_offset, 1, num_bytes,
10629 _("section contents"));
10630 }
10631
10632
10633 static void
10634 dump_section_as_strings (Elf_Internal_Shdr * section, FILE * file)
10635 {
10636 Elf_Internal_Shdr * relsec;
10637 bfd_size_type num_bytes;
10638 char * data;
10639 char * end;
10640 char * start;
10641 char * name = SECTION_NAME (section);
10642 bfd_boolean some_strings_shown;
10643
10644 start = get_section_contents (section, file);
10645 if (start == NULL)
10646 return;
10647
10648 printf (_("\nString dump of section '%s':\n"), name);
10649
10650 /* If the section being dumped has relocations against it the user might
10651 be expecting these relocations to have been applied. Check for this
10652 case and issue a warning message in order to avoid confusion.
10653 FIXME: Maybe we ought to have an option that dumps a section with
10654 relocs applied ? */
10655 for (relsec = section_headers;
10656 relsec < section_headers + elf_header.e_shnum;
10657 ++relsec)
10658 {
10659 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
10660 || relsec->sh_info >= elf_header.e_shnum
10661 || section_headers + relsec->sh_info != section
10662 || relsec->sh_size == 0
10663 || relsec->sh_link >= elf_header.e_shnum)
10664 continue;
10665
10666 printf (_(" Note: This section has relocations against it, but these have NOT been applied to this dump.\n"));
10667 break;
10668 }
10669
10670 num_bytes = section->sh_size;
10671 data = start;
10672 end = start + num_bytes;
10673 some_strings_shown = FALSE;
10674
10675 while (data < end)
10676 {
10677 while (!ISPRINT (* data))
10678 if (++ data >= end)
10679 break;
10680
10681 if (data < end)
10682 {
10683 #ifndef __MSVCRT__
10684 /* PR 11128: Use two separate invocations in order to work
10685 around bugs in the Solaris 8 implementation of printf. */
10686 printf (" [%6tx] ", data - start);
10687 printf ("%s\n", data);
10688 #else
10689 printf (" [%6Ix] %s\n", (size_t) (data - start), data);
10690 #endif
10691 data += strlen (data);
10692 some_strings_shown = TRUE;
10693 }
10694 }
10695
10696 if (! some_strings_shown)
10697 printf (_(" No strings found in this section."));
10698
10699 free (start);
10700
10701 putchar ('\n');
10702 }
10703
10704 static void
10705 dump_section_as_bytes (Elf_Internal_Shdr * section,
10706 FILE * file,
10707 bfd_boolean relocate)
10708 {
10709 Elf_Internal_Shdr * relsec;
10710 bfd_size_type bytes;
10711 bfd_vma addr;
10712 unsigned char * data;
10713 unsigned char * start;
10714
10715 start = (unsigned char *) get_section_contents (section, file);
10716 if (start == NULL)
10717 return;
10718
10719 printf (_("\nHex dump of section '%s':\n"), SECTION_NAME (section));
10720
10721 if (relocate)
10722 {
10723 apply_relocations (file, section, start);
10724 }
10725 else
10726 {
10727 /* If the section being dumped has relocations against it the user might
10728 be expecting these relocations to have been applied. Check for this
10729 case and issue a warning message in order to avoid confusion.
10730 FIXME: Maybe we ought to have an option that dumps a section with
10731 relocs applied ? */
10732 for (relsec = section_headers;
10733 relsec < section_headers + elf_header.e_shnum;
10734 ++relsec)
10735 {
10736 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
10737 || relsec->sh_info >= elf_header.e_shnum
10738 || section_headers + relsec->sh_info != section
10739 || relsec->sh_size == 0
10740 || relsec->sh_link >= elf_header.e_shnum)
10741 continue;
10742
10743 printf (_(" NOTE: This section has relocations against it, but these have NOT been applied to this dump.\n"));
10744 break;
10745 }
10746 }
10747
10748 addr = section->sh_addr;
10749 bytes = section->sh_size;
10750 data = start;
10751
10752 while (bytes)
10753 {
10754 int j;
10755 int k;
10756 int lbytes;
10757
10758 lbytes = (bytes > 16 ? 16 : bytes);
10759
10760 printf (" 0x%8.8lx ", (unsigned long) addr);
10761
10762 for (j = 0; j < 16; j++)
10763 {
10764 if (j < lbytes)
10765 printf ("%2.2x", data[j]);
10766 else
10767 printf (" ");
10768
10769 if ((j & 3) == 3)
10770 printf (" ");
10771 }
10772
10773 for (j = 0; j < lbytes; j++)
10774 {
10775 k = data[j];
10776 if (k >= ' ' && k < 0x7f)
10777 printf ("%c", k);
10778 else
10779 printf (".");
10780 }
10781
10782 putchar ('\n');
10783
10784 data += lbytes;
10785 addr += lbytes;
10786 bytes -= lbytes;
10787 }
10788
10789 free (start);
10790
10791 putchar ('\n');
10792 }
10793
10794 /* Uncompresses a section that was compressed using zlib, in place. */
10795
10796 static int
10797 uncompress_section_contents (unsigned char **buffer ATTRIBUTE_UNUSED,
10798 dwarf_size_type *size ATTRIBUTE_UNUSED)
10799 {
10800 #ifndef HAVE_ZLIB_H
10801 return FALSE;
10802 #else
10803 dwarf_size_type compressed_size = *size;
10804 unsigned char * compressed_buffer = *buffer;
10805 dwarf_size_type uncompressed_size;
10806 unsigned char * uncompressed_buffer;
10807 z_stream strm;
10808 int rc;
10809 dwarf_size_type header_size = 12;
10810
10811 /* Read the zlib header. In this case, it should be "ZLIB" followed
10812 by the uncompressed section size, 8 bytes in big-endian order. */
10813 if (compressed_size < header_size
10814 || ! streq ((char *) compressed_buffer, "ZLIB"))
10815 return 0;
10816
10817 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
10818 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
10819 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
10820 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
10821 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
10822 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
10823 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
10824 uncompressed_size += compressed_buffer[11];
10825
10826 /* It is possible the section consists of several compressed
10827 buffers concatenated together, so we uncompress in a loop. */
10828 strm.zalloc = NULL;
10829 strm.zfree = NULL;
10830 strm.opaque = NULL;
10831 strm.avail_in = compressed_size - header_size;
10832 strm.next_in = (Bytef *) compressed_buffer + header_size;
10833 strm.avail_out = uncompressed_size;
10834 uncompressed_buffer = (unsigned char *) xmalloc (uncompressed_size);
10835
10836 rc = inflateInit (& strm);
10837 while (strm.avail_in > 0)
10838 {
10839 if (rc != Z_OK)
10840 goto fail;
10841 strm.next_out = ((Bytef *) uncompressed_buffer
10842 + (uncompressed_size - strm.avail_out));
10843 rc = inflate (&strm, Z_FINISH);
10844 if (rc != Z_STREAM_END)
10845 goto fail;
10846 rc = inflateReset (& strm);
10847 }
10848 rc = inflateEnd (& strm);
10849 if (rc != Z_OK
10850 || strm.avail_out != 0)
10851 goto fail;
10852
10853 free (compressed_buffer);
10854 *buffer = uncompressed_buffer;
10855 *size = uncompressed_size;
10856 return 1;
10857
10858 fail:
10859 free (uncompressed_buffer);
10860 /* Indicate decompression failure. */
10861 *buffer = NULL;
10862 return 0;
10863 #endif /* HAVE_ZLIB_H */
10864 }
10865
10866 static int
10867 load_specific_debug_section (enum dwarf_section_display_enum debug,
10868 Elf_Internal_Shdr * sec, void * file)
10869 {
10870 struct dwarf_section * section = &debug_displays [debug].section;
10871 char buf [64];
10872
10873 /* If it is already loaded, do nothing. */
10874 if (section->start != NULL)
10875 return 1;
10876
10877 snprintf (buf, sizeof (buf), _("%s section data"), section->name);
10878 section->address = sec->sh_addr;
10879 section->start = (unsigned char *) get_data (NULL, (FILE *) file,
10880 sec->sh_offset, 1,
10881 sec->sh_size, buf);
10882 if (section->start == NULL)
10883 section->size = 0;
10884 else
10885 {
10886 section->size = sec->sh_size;
10887 if (uncompress_section_contents (&section->start, &section->size))
10888 sec->sh_size = section->size;
10889 }
10890
10891 if (section->start == NULL)
10892 return 0;
10893
10894 if (debug_displays [debug].relocate)
10895 apply_relocations ((FILE *) file, sec, section->start);
10896
10897 return 1;
10898 }
10899
10900 /* If this is not NULL, load_debug_section will only look for sections
10901 within the list of sections given here. */
10902 unsigned int *section_subset = NULL;
10903
10904 int
10905 load_debug_section (enum dwarf_section_display_enum debug, void * file)
10906 {
10907 struct dwarf_section * section = &debug_displays [debug].section;
10908 Elf_Internal_Shdr * sec;
10909
10910 /* Locate the debug section. */
10911 sec = find_section_in_set (section->uncompressed_name, section_subset);
10912 if (sec != NULL)
10913 section->name = section->uncompressed_name;
10914 else
10915 {
10916 sec = find_section_in_set (section->compressed_name, section_subset);
10917 if (sec != NULL)
10918 section->name = section->compressed_name;
10919 }
10920 if (sec == NULL)
10921 return 0;
10922
10923 /* If we're loading from a subset of sections, and we've loaded
10924 a section matching this name before, it's likely that it's a
10925 different one. */
10926 if (section_subset != NULL)
10927 free_debug_section (debug);
10928
10929 return load_specific_debug_section (debug, sec, (FILE *) file);
10930 }
10931
10932 void
10933 free_debug_section (enum dwarf_section_display_enum debug)
10934 {
10935 struct dwarf_section * section = &debug_displays [debug].section;
10936
10937 if (section->start == NULL)
10938 return;
10939
10940 free ((char *) section->start);
10941 section->start = NULL;
10942 section->address = 0;
10943 section->size = 0;
10944 }
10945
10946 static int
10947 display_debug_section (int shndx, Elf_Internal_Shdr * section, FILE * file)
10948 {
10949 char * name = SECTION_NAME (section);
10950 bfd_size_type length;
10951 int result = 1;
10952 int i;
10953
10954 length = section->sh_size;
10955 if (length == 0)
10956 {
10957 printf (_("\nSection '%s' has no debugging data.\n"), name);
10958 return 0;
10959 }
10960 if (section->sh_type == SHT_NOBITS)
10961 {
10962 /* There is no point in dumping the contents of a debugging section
10963 which has the NOBITS type - the bits in the file will be random.
10964 This can happen when a file containing a .eh_frame section is
10965 stripped with the --only-keep-debug command line option. */
10966 printf (_("section '%s' has the NOBITS type - its contents are unreliable.\n"), name);
10967 return 0;
10968 }
10969
10970 if (const_strneq (name, ".gnu.linkonce.wi."))
10971 name = ".debug_info";
10972
10973 /* See if we know how to display the contents of this section. */
10974 for (i = 0; i < max; i++)
10975 if (streq (debug_displays[i].section.uncompressed_name, name)
10976 || (i == line && const_strneq (name, ".debug_line."))
10977 || streq (debug_displays[i].section.compressed_name, name))
10978 {
10979 struct dwarf_section * sec = &debug_displays [i].section;
10980 int secondary = (section != find_section (name));
10981
10982 if (secondary)
10983 free_debug_section ((enum dwarf_section_display_enum) i);
10984
10985 if (i == line && const_strneq (name, ".debug_line."))
10986 sec->name = name;
10987 else if (streq (sec->uncompressed_name, name))
10988 sec->name = sec->uncompressed_name;
10989 else
10990 sec->name = sec->compressed_name;
10991 if (load_specific_debug_section ((enum dwarf_section_display_enum) i,
10992 section, file))
10993 {
10994 /* If this debug section is part of a CU/TU set in a .dwp file,
10995 restrict load_debug_section to the sections in that set. */
10996 section_subset = find_cu_tu_set (file, shndx);
10997
10998 result &= debug_displays[i].display (sec, file);
10999
11000 section_subset = NULL;
11001
11002 if (secondary || (i != info && i != abbrev))
11003 free_debug_section ((enum dwarf_section_display_enum) i);
11004 }
11005
11006 break;
11007 }
11008
11009 if (i == max)
11010 {
11011 printf (_("Unrecognized debug section: %s\n"), name);
11012 result = 0;
11013 }
11014
11015 return result;
11016 }
11017
11018 /* Set DUMP_SECTS for all sections where dumps were requested
11019 based on section name. */
11020
11021 static void
11022 initialise_dumps_byname (void)
11023 {
11024 struct dump_list_entry * cur;
11025
11026 for (cur = dump_sects_byname; cur; cur = cur->next)
11027 {
11028 unsigned int i;
11029 int any;
11030
11031 for (i = 0, any = 0; i < elf_header.e_shnum; i++)
11032 if (streq (SECTION_NAME (section_headers + i), cur->name))
11033 {
11034 request_dump_bynumber (i, cur->type);
11035 any = 1;
11036 }
11037
11038 if (!any)
11039 warn (_("Section '%s' was not dumped because it does not exist!\n"),
11040 cur->name);
11041 }
11042 }
11043
11044 static void
11045 process_section_contents (FILE * file)
11046 {
11047 Elf_Internal_Shdr * section;
11048 unsigned int i;
11049
11050 if (! do_dump)
11051 return;
11052
11053 initialise_dumps_byname ();
11054
11055 for (i = 0, section = section_headers;
11056 i < elf_header.e_shnum && i < num_dump_sects;
11057 i++, section++)
11058 {
11059 #ifdef SUPPORT_DISASSEMBLY
11060 if (dump_sects[i] & DISASS_DUMP)
11061 disassemble_section (section, file);
11062 #endif
11063 if (dump_sects[i] & HEX_DUMP)
11064 dump_section_as_bytes (section, file, FALSE);
11065
11066 if (dump_sects[i] & RELOC_DUMP)
11067 dump_section_as_bytes (section, file, TRUE);
11068
11069 if (dump_sects[i] & STRING_DUMP)
11070 dump_section_as_strings (section, file);
11071
11072 if (dump_sects[i] & DEBUG_DUMP)
11073 display_debug_section (i, section, file);
11074 }
11075
11076 /* Check to see if the user requested a
11077 dump of a section that does not exist. */
11078 while (i++ < num_dump_sects)
11079 if (dump_sects[i])
11080 warn (_("Section %d was not dumped because it does not exist!\n"), i);
11081 }
11082
11083 static void
11084 process_mips_fpe_exception (int mask)
11085 {
11086 if (mask)
11087 {
11088 int first = 1;
11089 if (mask & OEX_FPU_INEX)
11090 fputs ("INEX", stdout), first = 0;
11091 if (mask & OEX_FPU_UFLO)
11092 printf ("%sUFLO", first ? "" : "|"), first = 0;
11093 if (mask & OEX_FPU_OFLO)
11094 printf ("%sOFLO", first ? "" : "|"), first = 0;
11095 if (mask & OEX_FPU_DIV0)
11096 printf ("%sDIV0", first ? "" : "|"), first = 0;
11097 if (mask & OEX_FPU_INVAL)
11098 printf ("%sINVAL", first ? "" : "|");
11099 }
11100 else
11101 fputs ("0", stdout);
11102 }
11103
11104 /* Display's the value of TAG at location P. If TAG is
11105 greater than 0 it is assumed to be an unknown tag, and
11106 a message is printed to this effect. Otherwise it is
11107 assumed that a message has already been printed.
11108
11109 If the bottom bit of TAG is set it assumed to have a
11110 string value, otherwise it is assumed to have an integer
11111 value.
11112
11113 Returns an updated P pointing to the first unread byte
11114 beyond the end of TAG's value.
11115
11116 Reads at or beyond END will not be made. */
11117
11118 static unsigned char *
11119 display_tag_value (int tag,
11120 unsigned char * p,
11121 const unsigned char * const end)
11122 {
11123 unsigned long val;
11124
11125 if (tag > 0)
11126 printf (" Tag_unknown_%d: ", tag);
11127
11128 if (p >= end)
11129 {
11130 warn (_("corrupt tag\n"));
11131 }
11132 else if (tag & 1)
11133 {
11134 /* FIXME: we could read beyond END here. */
11135 printf ("\"%s\"\n", p);
11136 p += strlen ((char *) p) + 1;
11137 }
11138 else
11139 {
11140 unsigned int len;
11141
11142 val = read_uleb128 (p, &len, end);
11143 p += len;
11144 printf ("%ld (0x%lx)\n", val, val);
11145 }
11146
11147 return p;
11148 }
11149
11150 /* ARM EABI attributes section. */
11151 typedef struct
11152 {
11153 int tag;
11154 const char * name;
11155 /* 0 = special, 1 = string, 2 = uleb123, > 0x80 == table lookup. */
11156 int type;
11157 const char ** table;
11158 } arm_attr_public_tag;
11159
11160 static const char * arm_attr_tag_CPU_arch[] =
11161 {"Pre-v4", "v4", "v4T", "v5T", "v5TE", "v5TEJ", "v6", "v6KZ", "v6T2",
11162 "v6K", "v7", "v6-M", "v6S-M", "v7E-M", "v8"};
11163 static const char * arm_attr_tag_ARM_ISA_use[] = {"No", "Yes"};
11164 static const char * arm_attr_tag_THUMB_ISA_use[] =
11165 {"No", "Thumb-1", "Thumb-2"};
11166 static const char * arm_attr_tag_FP_arch[] =
11167 {"No", "VFPv1", "VFPv2", "VFPv3", "VFPv3-D16", "VFPv4", "VFPv4-D16",
11168 "FP for ARMv8"};
11169 static const char * arm_attr_tag_WMMX_arch[] = {"No", "WMMXv1", "WMMXv2"};
11170 static const char * arm_attr_tag_Advanced_SIMD_arch[] =
11171 {"No", "NEONv1", "NEONv1 with Fused-MAC", "NEON for ARMv8"};
11172 static const char * arm_attr_tag_PCS_config[] =
11173 {"None", "Bare platform", "Linux application", "Linux DSO", "PalmOS 2004",
11174 "PalmOS (reserved)", "SymbianOS 2004", "SymbianOS (reserved)"};
11175 static const char * arm_attr_tag_ABI_PCS_R9_use[] =
11176 {"V6", "SB", "TLS", "Unused"};
11177 static const char * arm_attr_tag_ABI_PCS_RW_data[] =
11178 {"Absolute", "PC-relative", "SB-relative", "None"};
11179 static const char * arm_attr_tag_ABI_PCS_RO_data[] =
11180 {"Absolute", "PC-relative", "None"};
11181 static const char * arm_attr_tag_ABI_PCS_GOT_use[] =
11182 {"None", "direct", "GOT-indirect"};
11183 static const char * arm_attr_tag_ABI_PCS_wchar_t[] =
11184 {"None", "??? 1", "2", "??? 3", "4"};
11185 static const char * arm_attr_tag_ABI_FP_rounding[] = {"Unused", "Needed"};
11186 static const char * arm_attr_tag_ABI_FP_denormal[] =
11187 {"Unused", "Needed", "Sign only"};
11188 static const char * arm_attr_tag_ABI_FP_exceptions[] = {"Unused", "Needed"};
11189 static const char * arm_attr_tag_ABI_FP_user_exceptions[] = {"Unused", "Needed"};
11190 static const char * arm_attr_tag_ABI_FP_number_model[] =
11191 {"Unused", "Finite", "RTABI", "IEEE 754"};
11192 static const char * arm_attr_tag_ABI_enum_size[] =
11193 {"Unused", "small", "int", "forced to int"};
11194 static const char * arm_attr_tag_ABI_HardFP_use[] =
11195 {"As Tag_FP_arch", "SP only", "DP only", "SP and DP"};
11196 static const char * arm_attr_tag_ABI_VFP_args[] =
11197 {"AAPCS", "VFP registers", "custom"};
11198 static const char * arm_attr_tag_ABI_WMMX_args[] =
11199 {"AAPCS", "WMMX registers", "custom"};
11200 static const char * arm_attr_tag_ABI_optimization_goals[] =
11201 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
11202 "Aggressive Size", "Prefer Debug", "Aggressive Debug"};
11203 static const char * arm_attr_tag_ABI_FP_optimization_goals[] =
11204 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
11205 "Aggressive Size", "Prefer Accuracy", "Aggressive Accuracy"};
11206 static const char * arm_attr_tag_CPU_unaligned_access[] = {"None", "v6"};
11207 static const char * arm_attr_tag_FP_HP_extension[] =
11208 {"Not Allowed", "Allowed"};
11209 static const char * arm_attr_tag_ABI_FP_16bit_format[] =
11210 {"None", "IEEE 754", "Alternative Format"};
11211 static const char * arm_attr_tag_MPextension_use[] =
11212 {"Not Allowed", "Allowed"};
11213 static const char * arm_attr_tag_DIV_use[] =
11214 {"Allowed in Thumb-ISA, v7-R or v7-M", "Not allowed",
11215 "Allowed in v7-A with integer division extension"};
11216 static const char * arm_attr_tag_T2EE_use[] = {"Not Allowed", "Allowed"};
11217 static const char * arm_attr_tag_Virtualization_use[] =
11218 {"Not Allowed", "TrustZone", "Virtualization Extensions",
11219 "TrustZone and Virtualization Extensions"};
11220 static const char * arm_attr_tag_MPextension_use_legacy[] =
11221 {"Not Allowed", "Allowed"};
11222
11223 #define LOOKUP(id, name) \
11224 {id, #name, 0x80 | ARRAY_SIZE(arm_attr_tag_##name), arm_attr_tag_##name}
11225 static arm_attr_public_tag arm_attr_public_tags[] =
11226 {
11227 {4, "CPU_raw_name", 1, NULL},
11228 {5, "CPU_name", 1, NULL},
11229 LOOKUP(6, CPU_arch),
11230 {7, "CPU_arch_profile", 0, NULL},
11231 LOOKUP(8, ARM_ISA_use),
11232 LOOKUP(9, THUMB_ISA_use),
11233 LOOKUP(10, FP_arch),
11234 LOOKUP(11, WMMX_arch),
11235 LOOKUP(12, Advanced_SIMD_arch),
11236 LOOKUP(13, PCS_config),
11237 LOOKUP(14, ABI_PCS_R9_use),
11238 LOOKUP(15, ABI_PCS_RW_data),
11239 LOOKUP(16, ABI_PCS_RO_data),
11240 LOOKUP(17, ABI_PCS_GOT_use),
11241 LOOKUP(18, ABI_PCS_wchar_t),
11242 LOOKUP(19, ABI_FP_rounding),
11243 LOOKUP(20, ABI_FP_denormal),
11244 LOOKUP(21, ABI_FP_exceptions),
11245 LOOKUP(22, ABI_FP_user_exceptions),
11246 LOOKUP(23, ABI_FP_number_model),
11247 {24, "ABI_align_needed", 0, NULL},
11248 {25, "ABI_align_preserved", 0, NULL},
11249 LOOKUP(26, ABI_enum_size),
11250 LOOKUP(27, ABI_HardFP_use),
11251 LOOKUP(28, ABI_VFP_args),
11252 LOOKUP(29, ABI_WMMX_args),
11253 LOOKUP(30, ABI_optimization_goals),
11254 LOOKUP(31, ABI_FP_optimization_goals),
11255 {32, "compatibility", 0, NULL},
11256 LOOKUP(34, CPU_unaligned_access),
11257 LOOKUP(36, FP_HP_extension),
11258 LOOKUP(38, ABI_FP_16bit_format),
11259 LOOKUP(42, MPextension_use),
11260 LOOKUP(44, DIV_use),
11261 {64, "nodefaults", 0, NULL},
11262 {65, "also_compatible_with", 0, NULL},
11263 LOOKUP(66, T2EE_use),
11264 {67, "conformance", 1, NULL},
11265 LOOKUP(68, Virtualization_use),
11266 LOOKUP(70, MPextension_use_legacy)
11267 };
11268 #undef LOOKUP
11269
11270 static unsigned char *
11271 display_arm_attribute (unsigned char * p,
11272 const unsigned char * const end)
11273 {
11274 int tag;
11275 unsigned int len;
11276 int val;
11277 arm_attr_public_tag * attr;
11278 unsigned i;
11279 int type;
11280
11281 tag = read_uleb128 (p, &len, end);
11282 p += len;
11283 attr = NULL;
11284 for (i = 0; i < ARRAY_SIZE (arm_attr_public_tags); i++)
11285 {
11286 if (arm_attr_public_tags[i].tag == tag)
11287 {
11288 attr = &arm_attr_public_tags[i];
11289 break;
11290 }
11291 }
11292
11293 if (attr)
11294 {
11295 printf (" Tag_%s: ", attr->name);
11296 switch (attr->type)
11297 {
11298 case 0:
11299 switch (tag)
11300 {
11301 case 7: /* Tag_CPU_arch_profile. */
11302 val = read_uleb128 (p, &len, end);
11303 p += len;
11304 switch (val)
11305 {
11306 case 0: printf (_("None\n")); break;
11307 case 'A': printf (_("Application\n")); break;
11308 case 'R': printf (_("Realtime\n")); break;
11309 case 'M': printf (_("Microcontroller\n")); break;
11310 case 'S': printf (_("Application or Realtime\n")); break;
11311 default: printf ("??? (%d)\n", val); break;
11312 }
11313 break;
11314
11315 case 24: /* Tag_align_needed. */
11316 val = read_uleb128 (p, &len, end);
11317 p += len;
11318 switch (val)
11319 {
11320 case 0: printf (_("None\n")); break;
11321 case 1: printf (_("8-byte\n")); break;
11322 case 2: printf (_("4-byte\n")); break;
11323 case 3: printf ("??? 3\n"); break;
11324 default:
11325 if (val <= 12)
11326 printf (_("8-byte and up to %d-byte extended\n"),
11327 1 << val);
11328 else
11329 printf ("??? (%d)\n", val);
11330 break;
11331 }
11332 break;
11333
11334 case 25: /* Tag_align_preserved. */
11335 val = read_uleb128 (p, &len, end);
11336 p += len;
11337 switch (val)
11338 {
11339 case 0: printf (_("None\n")); break;
11340 case 1: printf (_("8-byte, except leaf SP\n")); break;
11341 case 2: printf (_("8-byte\n")); break;
11342 case 3: printf ("??? 3\n"); break;
11343 default:
11344 if (val <= 12)
11345 printf (_("8-byte and up to %d-byte extended\n"),
11346 1 << val);
11347 else
11348 printf ("??? (%d)\n", val);
11349 break;
11350 }
11351 break;
11352
11353 case 32: /* Tag_compatibility. */
11354 val = read_uleb128 (p, &len, end);
11355 p += len;
11356 printf (_("flag = %d, vendor = %s\n"), val, p);
11357 p += strlen ((char *) p) + 1;
11358 break;
11359
11360 case 64: /* Tag_nodefaults. */
11361 p++;
11362 printf (_("True\n"));
11363 break;
11364
11365 case 65: /* Tag_also_compatible_with. */
11366 val = read_uleb128 (p, &len, end);
11367 p += len;
11368 if (val == 6 /* Tag_CPU_arch. */)
11369 {
11370 val = read_uleb128 (p, &len, end);
11371 p += len;
11372 if ((unsigned int)val >= ARRAY_SIZE (arm_attr_tag_CPU_arch))
11373 printf ("??? (%d)\n", val);
11374 else
11375 printf ("%s\n", arm_attr_tag_CPU_arch[val]);
11376 }
11377 else
11378 printf ("???\n");
11379 while (*(p++) != '\0' /* NUL terminator. */);
11380 break;
11381
11382 default:
11383 abort ();
11384 }
11385 return p;
11386
11387 case 1:
11388 return display_tag_value (-1, p, end);
11389 case 2:
11390 return display_tag_value (0, p, end);
11391
11392 default:
11393 assert (attr->type & 0x80);
11394 val = read_uleb128 (p, &len, end);
11395 p += len;
11396 type = attr->type & 0x7f;
11397 if (val >= type)
11398 printf ("??? (%d)\n", val);
11399 else
11400 printf ("%s\n", attr->table[val]);
11401 return p;
11402 }
11403 }
11404
11405 return display_tag_value (tag, p, end);
11406 }
11407
11408 static unsigned char *
11409 display_gnu_attribute (unsigned char * p,
11410 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, int, const unsigned char * const),
11411 const unsigned char * const end)
11412 {
11413 int tag;
11414 unsigned int len;
11415 int val;
11416
11417 tag = read_uleb128 (p, &len, end);
11418 p += len;
11419
11420 /* Tag_compatibility is the only generic GNU attribute defined at
11421 present. */
11422 if (tag == 32)
11423 {
11424 val = read_uleb128 (p, &len, end);
11425 p += len;
11426 if (p == end)
11427 {
11428 printf (_("flag = %d, vendor = <corrupt>\n"), val);
11429 warn (_("corrupt vendor attribute\n"));
11430 }
11431 else
11432 {
11433 printf (_("flag = %d, vendor = %s\n"), val, p);
11434 p += strlen ((char *) p) + 1;
11435 }
11436 return p;
11437 }
11438
11439 if ((tag & 2) == 0 && display_proc_gnu_attribute)
11440 return display_proc_gnu_attribute (p, tag, end);
11441
11442 return display_tag_value (tag, p, end);
11443 }
11444
11445 static unsigned char *
11446 display_power_gnu_attribute (unsigned char * p,
11447 int tag,
11448 const unsigned char * const end)
11449 {
11450 unsigned int len;
11451 int val;
11452
11453 if (tag == Tag_GNU_Power_ABI_FP)
11454 {
11455 val = read_uleb128 (p, &len, end);
11456 p += len;
11457 printf (" Tag_GNU_Power_ABI_FP: ");
11458
11459 switch (val)
11460 {
11461 case 0:
11462 printf (_("Hard or soft float\n"));
11463 break;
11464 case 1:
11465 printf (_("Hard float\n"));
11466 break;
11467 case 2:
11468 printf (_("Soft float\n"));
11469 break;
11470 case 3:
11471 printf (_("Single-precision hard float\n"));
11472 break;
11473 default:
11474 printf ("??? (%d)\n", val);
11475 break;
11476 }
11477 return p;
11478 }
11479
11480 if (tag == Tag_GNU_Power_ABI_Vector)
11481 {
11482 val = read_uleb128 (p, &len, end);
11483 p += len;
11484 printf (" Tag_GNU_Power_ABI_Vector: ");
11485 switch (val)
11486 {
11487 case 0:
11488 printf (_("Any\n"));
11489 break;
11490 case 1:
11491 printf (_("Generic\n"));
11492 break;
11493 case 2:
11494 printf ("AltiVec\n");
11495 break;
11496 case 3:
11497 printf ("SPE\n");
11498 break;
11499 default:
11500 printf ("??? (%d)\n", val);
11501 break;
11502 }
11503 return p;
11504 }
11505
11506 if (tag == Tag_GNU_Power_ABI_Struct_Return)
11507 {
11508 if (p == end)
11509 {
11510 warn (_("corrupt Tag_GNU_Power_ABI_Struct_Return"));
11511 return p;
11512 }
11513
11514 val = read_uleb128 (p, &len, end);
11515 p += len;
11516 printf (" Tag_GNU_Power_ABI_Struct_Return: ");
11517 switch (val)
11518 {
11519 case 0:
11520 printf (_("Any\n"));
11521 break;
11522 case 1:
11523 printf ("r3/r4\n");
11524 break;
11525 case 2:
11526 printf (_("Memory\n"));
11527 break;
11528 default:
11529 printf ("??? (%d)\n", val);
11530 break;
11531 }
11532 return p;
11533 }
11534
11535 return display_tag_value (tag & 1, p, end);
11536 }
11537
11538 static void
11539 display_sparc_hwcaps (int mask)
11540 {
11541 if (mask)
11542 {
11543 int first = 1;
11544 if (mask & ELF_SPARC_HWCAP_MUL32)
11545 fputs ("mul32", stdout), first = 0;
11546 if (mask & ELF_SPARC_HWCAP_DIV32)
11547 printf ("%sdiv32", first ? "" : "|"), first = 0;
11548 if (mask & ELF_SPARC_HWCAP_FSMULD)
11549 printf ("%sfsmuld", first ? "" : "|"), first = 0;
11550 if (mask & ELF_SPARC_HWCAP_V8PLUS)
11551 printf ("%sv8plus", first ? "" : "|"), first = 0;
11552 if (mask & ELF_SPARC_HWCAP_POPC)
11553 printf ("%spopc", first ? "" : "|"), first = 0;
11554 if (mask & ELF_SPARC_HWCAP_VIS)
11555 printf ("%svis", first ? "" : "|"), first = 0;
11556 if (mask & ELF_SPARC_HWCAP_VIS2)
11557 printf ("%svis2", first ? "" : "|"), first = 0;
11558 if (mask & ELF_SPARC_HWCAP_ASI_BLK_INIT)
11559 printf ("%sASIBlkInit", first ? "" : "|"), first = 0;
11560 if (mask & ELF_SPARC_HWCAP_FMAF)
11561 printf ("%sfmaf", first ? "" : "|"), first = 0;
11562 if (mask & ELF_SPARC_HWCAP_VIS3)
11563 printf ("%svis3", first ? "" : "|"), first = 0;
11564 if (mask & ELF_SPARC_HWCAP_HPC)
11565 printf ("%shpc", first ? "" : "|"), first = 0;
11566 if (mask & ELF_SPARC_HWCAP_RANDOM)
11567 printf ("%srandom", first ? "" : "|"), first = 0;
11568 if (mask & ELF_SPARC_HWCAP_TRANS)
11569 printf ("%strans", first ? "" : "|"), first = 0;
11570 if (mask & ELF_SPARC_HWCAP_FJFMAU)
11571 printf ("%sfjfmau", first ? "" : "|"), first = 0;
11572 if (mask & ELF_SPARC_HWCAP_IMA)
11573 printf ("%sima", first ? "" : "|"), first = 0;
11574 if (mask & ELF_SPARC_HWCAP_ASI_CACHE_SPARING)
11575 printf ("%scspare", first ? "" : "|"), first = 0;
11576 }
11577 else
11578 fputc('0', stdout);
11579 fputc('\n', stdout);
11580 }
11581
11582 static unsigned char *
11583 display_sparc_gnu_attribute (unsigned char * p,
11584 int tag,
11585 const unsigned char * const end)
11586 {
11587 if (tag == Tag_GNU_Sparc_HWCAPS)
11588 {
11589 unsigned int len;
11590 int val;
11591
11592 val = read_uleb128 (p, &len, end);
11593 p += len;
11594 printf (" Tag_GNU_Sparc_HWCAPS: ");
11595 display_sparc_hwcaps (val);
11596 return p;
11597 }
11598
11599 return display_tag_value (tag, p, end);
11600 }
11601
11602 static unsigned char *
11603 display_mips_gnu_attribute (unsigned char * p,
11604 int tag,
11605 const unsigned char * const end)
11606 {
11607 if (tag == Tag_GNU_MIPS_ABI_FP)
11608 {
11609 unsigned int len;
11610 int val;
11611
11612 val = read_uleb128 (p, &len, end);
11613 p += len;
11614 printf (" Tag_GNU_MIPS_ABI_FP: ");
11615
11616 switch (val)
11617 {
11618 case 0:
11619 printf (_("Hard or soft float\n"));
11620 break;
11621 case 1:
11622 printf (_("Hard float (double precision)\n"));
11623 break;
11624 case 2:
11625 printf (_("Hard float (single precision)\n"));
11626 break;
11627 case 3:
11628 printf (_("Soft float\n"));
11629 break;
11630 case 4:
11631 printf (_("Hard float (MIPS32r2 64-bit FPU)\n"));
11632 break;
11633 default:
11634 printf ("??? (%d)\n", val);
11635 break;
11636 }
11637 return p;
11638 }
11639
11640 return display_tag_value (tag & 1, p, end);
11641 }
11642
11643 static unsigned char *
11644 display_tic6x_attribute (unsigned char * p,
11645 const unsigned char * const end)
11646 {
11647 int tag;
11648 unsigned int len;
11649 int val;
11650
11651 tag = read_uleb128 (p, &len, end);
11652 p += len;
11653
11654 switch (tag)
11655 {
11656 case Tag_ISA:
11657 val = read_uleb128 (p, &len, end);
11658 p += len;
11659 printf (" Tag_ISA: ");
11660
11661 switch (val)
11662 {
11663 case C6XABI_Tag_ISA_none:
11664 printf (_("None\n"));
11665 break;
11666 case C6XABI_Tag_ISA_C62X:
11667 printf ("C62x\n");
11668 break;
11669 case C6XABI_Tag_ISA_C67X:
11670 printf ("C67x\n");
11671 break;
11672 case C6XABI_Tag_ISA_C67XP:
11673 printf ("C67x+\n");
11674 break;
11675 case C6XABI_Tag_ISA_C64X:
11676 printf ("C64x\n");
11677 break;
11678 case C6XABI_Tag_ISA_C64XP:
11679 printf ("C64x+\n");
11680 break;
11681 case C6XABI_Tag_ISA_C674X:
11682 printf ("C674x\n");
11683 break;
11684 default:
11685 printf ("??? (%d)\n", val);
11686 break;
11687 }
11688 return p;
11689
11690 case Tag_ABI_wchar_t:
11691 val = read_uleb128 (p, &len, end);
11692 p += len;
11693 printf (" Tag_ABI_wchar_t: ");
11694 switch (val)
11695 {
11696 case 0:
11697 printf (_("Not used\n"));
11698 break;
11699 case 1:
11700 printf (_("2 bytes\n"));
11701 break;
11702 case 2:
11703 printf (_("4 bytes\n"));
11704 break;
11705 default:
11706 printf ("??? (%d)\n", val);
11707 break;
11708 }
11709 return p;
11710
11711 case Tag_ABI_stack_align_needed:
11712 val = read_uleb128 (p, &len, end);
11713 p += len;
11714 printf (" Tag_ABI_stack_align_needed: ");
11715 switch (val)
11716 {
11717 case 0:
11718 printf (_("8-byte\n"));
11719 break;
11720 case 1:
11721 printf (_("16-byte\n"));
11722 break;
11723 default:
11724 printf ("??? (%d)\n", val);
11725 break;
11726 }
11727 return p;
11728
11729 case Tag_ABI_stack_align_preserved:
11730 val = read_uleb128 (p, &len, end);
11731 p += len;
11732 printf (" Tag_ABI_stack_align_preserved: ");
11733 switch (val)
11734 {
11735 case 0:
11736 printf (_("8-byte\n"));
11737 break;
11738 case 1:
11739 printf (_("16-byte\n"));
11740 break;
11741 default:
11742 printf ("??? (%d)\n", val);
11743 break;
11744 }
11745 return p;
11746
11747 case Tag_ABI_DSBT:
11748 val = read_uleb128 (p, &len, end);
11749 p += len;
11750 printf (" Tag_ABI_DSBT: ");
11751 switch (val)
11752 {
11753 case 0:
11754 printf (_("DSBT addressing not used\n"));
11755 break;
11756 case 1:
11757 printf (_("DSBT addressing used\n"));
11758 break;
11759 default:
11760 printf ("??? (%d)\n", val);
11761 break;
11762 }
11763 return p;
11764
11765 case Tag_ABI_PID:
11766 val = read_uleb128 (p, &len, end);
11767 p += len;
11768 printf (" Tag_ABI_PID: ");
11769 switch (val)
11770 {
11771 case 0:
11772 printf (_("Data addressing position-dependent\n"));
11773 break;
11774 case 1:
11775 printf (_("Data addressing position-independent, GOT near DP\n"));
11776 break;
11777 case 2:
11778 printf (_("Data addressing position-independent, GOT far from DP\n"));
11779 break;
11780 default:
11781 printf ("??? (%d)\n", val);
11782 break;
11783 }
11784 return p;
11785
11786 case Tag_ABI_PIC:
11787 val = read_uleb128 (p, &len, end);
11788 p += len;
11789 printf (" Tag_ABI_PIC: ");
11790 switch (val)
11791 {
11792 case 0:
11793 printf (_("Code addressing position-dependent\n"));
11794 break;
11795 case 1:
11796 printf (_("Code addressing position-independent\n"));
11797 break;
11798 default:
11799 printf ("??? (%d)\n", val);
11800 break;
11801 }
11802 return p;
11803
11804 case Tag_ABI_array_object_alignment:
11805 val = read_uleb128 (p, &len, end);
11806 p += len;
11807 printf (" Tag_ABI_array_object_alignment: ");
11808 switch (val)
11809 {
11810 case 0:
11811 printf (_("8-byte\n"));
11812 break;
11813 case 1:
11814 printf (_("4-byte\n"));
11815 break;
11816 case 2:
11817 printf (_("16-byte\n"));
11818 break;
11819 default:
11820 printf ("??? (%d)\n", val);
11821 break;
11822 }
11823 return p;
11824
11825 case Tag_ABI_array_object_align_expected:
11826 val = read_uleb128 (p, &len, end);
11827 p += len;
11828 printf (" Tag_ABI_array_object_align_expected: ");
11829 switch (val)
11830 {
11831 case 0:
11832 printf (_("8-byte\n"));
11833 break;
11834 case 1:
11835 printf (_("4-byte\n"));
11836 break;
11837 case 2:
11838 printf (_("16-byte\n"));
11839 break;
11840 default:
11841 printf ("??? (%d)\n", val);
11842 break;
11843 }
11844 return p;
11845
11846 case Tag_ABI_compatibility:
11847 val = read_uleb128 (p, &len, end);
11848 p += len;
11849 printf (" Tag_ABI_compatibility: ");
11850 printf (_("flag = %d, vendor = %s\n"), val, p);
11851 p += strlen ((char *) p) + 1;
11852 return p;
11853
11854 case Tag_ABI_conformance:
11855 printf (" Tag_ABI_conformance: ");
11856 printf ("\"%s\"\n", p);
11857 p += strlen ((char *) p) + 1;
11858 return p;
11859 }
11860
11861 return display_tag_value (tag, p, end);
11862 }
11863
11864 static void
11865 display_raw_attribute (unsigned char * p, unsigned char * end)
11866 {
11867 unsigned long addr = 0;
11868 size_t bytes = end - p;
11869
11870 while (bytes)
11871 {
11872 int j;
11873 int k;
11874 int lbytes = (bytes > 16 ? 16 : bytes);
11875
11876 printf (" 0x%8.8lx ", addr);
11877
11878 for (j = 0; j < 16; j++)
11879 {
11880 if (j < lbytes)
11881 printf ("%2.2x", p[j]);
11882 else
11883 printf (" ");
11884
11885 if ((j & 3) == 3)
11886 printf (" ");
11887 }
11888
11889 for (j = 0; j < lbytes; j++)
11890 {
11891 k = p[j];
11892 if (k >= ' ' && k < 0x7f)
11893 printf ("%c", k);
11894 else
11895 printf (".");
11896 }
11897
11898 putchar ('\n');
11899
11900 p += lbytes;
11901 bytes -= lbytes;
11902 addr += lbytes;
11903 }
11904
11905 putchar ('\n');
11906 }
11907
11908 static int
11909 process_attributes (FILE * file,
11910 const char * public_name,
11911 unsigned int proc_type,
11912 unsigned char * (* display_pub_attribute) (unsigned char *, const unsigned char * const),
11913 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, int, const unsigned char * const))
11914 {
11915 Elf_Internal_Shdr * sect;
11916 unsigned char * contents;
11917 unsigned char * p;
11918 unsigned char * end;
11919 bfd_vma section_len;
11920 bfd_vma len;
11921 unsigned i;
11922
11923 /* Find the section header so that we get the size. */
11924 for (i = 0, sect = section_headers;
11925 i < elf_header.e_shnum;
11926 i++, sect++)
11927 {
11928 if (sect->sh_type != proc_type && sect->sh_type != SHT_GNU_ATTRIBUTES)
11929 continue;
11930
11931 contents = (unsigned char *) get_data (NULL, file, sect->sh_offset, 1,
11932 sect->sh_size, _("attributes"));
11933 if (contents == NULL)
11934 continue;
11935
11936 p = contents;
11937 if (*p == 'A')
11938 {
11939 len = sect->sh_size - 1;
11940 p++;
11941
11942 while (len > 0)
11943 {
11944 int namelen;
11945 bfd_boolean public_section;
11946 bfd_boolean gnu_section;
11947
11948 section_len = byte_get (p, 4);
11949 p += 4;
11950
11951 if (section_len > len)
11952 {
11953 printf (_("ERROR: Bad section length (%d > %d)\n"),
11954 (int) section_len, (int) len);
11955 section_len = len;
11956 }
11957
11958 len -= section_len;
11959 printf (_("Attribute Section: %s\n"), p);
11960
11961 if (public_name && streq ((char *) p, public_name))
11962 public_section = TRUE;
11963 else
11964 public_section = FALSE;
11965
11966 if (streq ((char *) p, "gnu"))
11967 gnu_section = TRUE;
11968 else
11969 gnu_section = FALSE;
11970
11971 namelen = strlen ((char *) p) + 1;
11972 p += namelen;
11973 section_len -= namelen + 4;
11974
11975 while (section_len > 0)
11976 {
11977 int tag = *(p++);
11978 int val;
11979 bfd_vma size;
11980
11981 size = byte_get (p, 4);
11982 if (size > section_len)
11983 {
11984 printf (_("ERROR: Bad subsection length (%d > %d)\n"),
11985 (int) size, (int) section_len);
11986 size = section_len;
11987 }
11988
11989 section_len -= size;
11990 end = p + size - 1;
11991 p += 4;
11992
11993 switch (tag)
11994 {
11995 case 1:
11996 printf (_("File Attributes\n"));
11997 break;
11998 case 2:
11999 printf (_("Section Attributes:"));
12000 goto do_numlist;
12001 case 3:
12002 printf (_("Symbol Attributes:"));
12003 do_numlist:
12004 for (;;)
12005 {
12006 unsigned int j;
12007
12008 val = read_uleb128 (p, &j, end);
12009 p += j;
12010 if (val == 0)
12011 break;
12012 printf (" %d", val);
12013 }
12014 printf ("\n");
12015 break;
12016 default:
12017 printf (_("Unknown tag: %d\n"), tag);
12018 public_section = FALSE;
12019 break;
12020 }
12021
12022 if (public_section)
12023 {
12024 while (p < end)
12025 p = display_pub_attribute (p, end);
12026 }
12027 else if (gnu_section)
12028 {
12029 while (p < end)
12030 p = display_gnu_attribute (p,
12031 display_proc_gnu_attribute,
12032 end);
12033 }
12034 else
12035 {
12036 printf (_(" Unknown section contexts\n"));
12037 display_raw_attribute (p, end);
12038 p = end;
12039 }
12040 }
12041 }
12042 }
12043 else
12044 printf (_("Unknown format '%c'\n"), *p);
12045
12046 free (contents);
12047 }
12048 return 1;
12049 }
12050
12051 static int
12052 process_arm_specific (FILE * file)
12053 {
12054 return process_attributes (file, "aeabi", SHT_ARM_ATTRIBUTES,
12055 display_arm_attribute, NULL);
12056 }
12057
12058 static int
12059 process_power_specific (FILE * file)
12060 {
12061 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
12062 display_power_gnu_attribute);
12063 }
12064
12065 static int
12066 process_sparc_specific (FILE * file)
12067 {
12068 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
12069 display_sparc_gnu_attribute);
12070 }
12071
12072 static int
12073 process_tic6x_specific (FILE * file)
12074 {
12075 return process_attributes (file, "c6xabi", SHT_C6000_ATTRIBUTES,
12076 display_tic6x_attribute, NULL);
12077 }
12078
12079 /* DATA points to the contents of a MIPS GOT that starts at VMA PLTGOT.
12080 Print the Address, Access and Initial fields of an entry at VMA ADDR
12081 and return the VMA of the next entry. */
12082
12083 static bfd_vma
12084 print_mips_got_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
12085 {
12086 printf (" ");
12087 print_vma (addr, LONG_HEX);
12088 printf (" ");
12089 if (addr < pltgot + 0xfff0)
12090 printf ("%6d(gp)", (int) (addr - pltgot - 0x7ff0));
12091 else
12092 printf ("%10s", "");
12093 printf (" ");
12094 if (data == NULL)
12095 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
12096 else
12097 {
12098 bfd_vma entry;
12099
12100 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
12101 print_vma (entry, LONG_HEX);
12102 }
12103 return addr + (is_32bit_elf ? 4 : 8);
12104 }
12105
12106 /* DATA points to the contents of a MIPS PLT GOT that starts at VMA
12107 PLTGOT. Print the Address and Initial fields of an entry at VMA
12108 ADDR and return the VMA of the next entry. */
12109
12110 static bfd_vma
12111 print_mips_pltgot_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
12112 {
12113 printf (" ");
12114 print_vma (addr, LONG_HEX);
12115 printf (" ");
12116 if (data == NULL)
12117 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
12118 else
12119 {
12120 bfd_vma entry;
12121
12122 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
12123 print_vma (entry, LONG_HEX);
12124 }
12125 return addr + (is_32bit_elf ? 4 : 8);
12126 }
12127
12128 static int
12129 process_mips_specific (FILE * file)
12130 {
12131 Elf_Internal_Dyn * entry;
12132 size_t liblist_offset = 0;
12133 size_t liblistno = 0;
12134 size_t conflictsno = 0;
12135 size_t options_offset = 0;
12136 size_t conflicts_offset = 0;
12137 size_t pltrelsz = 0;
12138 size_t pltrel = 0;
12139 bfd_vma pltgot = 0;
12140 bfd_vma mips_pltgot = 0;
12141 bfd_vma jmprel = 0;
12142 bfd_vma local_gotno = 0;
12143 bfd_vma gotsym = 0;
12144 bfd_vma symtabno = 0;
12145
12146 process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
12147 display_mips_gnu_attribute);
12148
12149 /* We have a lot of special sections. Thanks SGI! */
12150 if (dynamic_section == NULL)
12151 /* No information available. */
12152 return 0;
12153
12154 for (entry = dynamic_section; entry->d_tag != DT_NULL; ++entry)
12155 switch (entry->d_tag)
12156 {
12157 case DT_MIPS_LIBLIST:
12158 liblist_offset
12159 = offset_from_vma (file, entry->d_un.d_val,
12160 liblistno * sizeof (Elf32_External_Lib));
12161 break;
12162 case DT_MIPS_LIBLISTNO:
12163 liblistno = entry->d_un.d_val;
12164 break;
12165 case DT_MIPS_OPTIONS:
12166 options_offset = offset_from_vma (file, entry->d_un.d_val, 0);
12167 break;
12168 case DT_MIPS_CONFLICT:
12169 conflicts_offset
12170 = offset_from_vma (file, entry->d_un.d_val,
12171 conflictsno * sizeof (Elf32_External_Conflict));
12172 break;
12173 case DT_MIPS_CONFLICTNO:
12174 conflictsno = entry->d_un.d_val;
12175 break;
12176 case DT_PLTGOT:
12177 pltgot = entry->d_un.d_ptr;
12178 break;
12179 case DT_MIPS_LOCAL_GOTNO:
12180 local_gotno = entry->d_un.d_val;
12181 break;
12182 case DT_MIPS_GOTSYM:
12183 gotsym = entry->d_un.d_val;
12184 break;
12185 case DT_MIPS_SYMTABNO:
12186 symtabno = entry->d_un.d_val;
12187 break;
12188 case DT_MIPS_PLTGOT:
12189 mips_pltgot = entry->d_un.d_ptr;
12190 break;
12191 case DT_PLTREL:
12192 pltrel = entry->d_un.d_val;
12193 break;
12194 case DT_PLTRELSZ:
12195 pltrelsz = entry->d_un.d_val;
12196 break;
12197 case DT_JMPREL:
12198 jmprel = entry->d_un.d_ptr;
12199 break;
12200 default:
12201 break;
12202 }
12203
12204 if (liblist_offset != 0 && liblistno != 0 && do_dynamic)
12205 {
12206 Elf32_External_Lib * elib;
12207 size_t cnt;
12208
12209 elib = (Elf32_External_Lib *) get_data (NULL, file, liblist_offset,
12210 liblistno,
12211 sizeof (Elf32_External_Lib),
12212 _("liblist section data"));
12213 if (elib)
12214 {
12215 printf (_("\nSection '.liblist' contains %lu entries:\n"),
12216 (unsigned long) liblistno);
12217 fputs (_(" Library Time Stamp Checksum Version Flags\n"),
12218 stdout);
12219
12220 for (cnt = 0; cnt < liblistno; ++cnt)
12221 {
12222 Elf32_Lib liblist;
12223 time_t atime;
12224 char timebuf[20];
12225 struct tm * tmp;
12226
12227 liblist.l_name = BYTE_GET (elib[cnt].l_name);
12228 atime = BYTE_GET (elib[cnt].l_time_stamp);
12229 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
12230 liblist.l_version = BYTE_GET (elib[cnt].l_version);
12231 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
12232
12233 tmp = gmtime (&atime);
12234 snprintf (timebuf, sizeof (timebuf),
12235 "%04u-%02u-%02uT%02u:%02u:%02u",
12236 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
12237 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
12238
12239 printf ("%3lu: ", (unsigned long) cnt);
12240 if (VALID_DYNAMIC_NAME (liblist.l_name))
12241 print_symbol (20, GET_DYNAMIC_NAME (liblist.l_name));
12242 else
12243 printf (_("<corrupt: %9ld>"), liblist.l_name);
12244 printf (" %s %#10lx %-7ld", timebuf, liblist.l_checksum,
12245 liblist.l_version);
12246
12247 if (liblist.l_flags == 0)
12248 puts (_(" NONE"));
12249 else
12250 {
12251 static const struct
12252 {
12253 const char * name;
12254 int bit;
12255 }
12256 l_flags_vals[] =
12257 {
12258 { " EXACT_MATCH", LL_EXACT_MATCH },
12259 { " IGNORE_INT_VER", LL_IGNORE_INT_VER },
12260 { " REQUIRE_MINOR", LL_REQUIRE_MINOR },
12261 { " EXPORTS", LL_EXPORTS },
12262 { " DELAY_LOAD", LL_DELAY_LOAD },
12263 { " DELTA", LL_DELTA }
12264 };
12265 int flags = liblist.l_flags;
12266 size_t fcnt;
12267
12268 for (fcnt = 0; fcnt < ARRAY_SIZE (l_flags_vals); ++fcnt)
12269 if ((flags & l_flags_vals[fcnt].bit) != 0)
12270 {
12271 fputs (l_flags_vals[fcnt].name, stdout);
12272 flags ^= l_flags_vals[fcnt].bit;
12273 }
12274 if (flags != 0)
12275 printf (" %#x", (unsigned int) flags);
12276
12277 puts ("");
12278 }
12279 }
12280
12281 free (elib);
12282 }
12283 }
12284
12285 if (options_offset != 0)
12286 {
12287 Elf_External_Options * eopt;
12288 Elf_Internal_Shdr * sect = section_headers;
12289 Elf_Internal_Options * iopt;
12290 Elf_Internal_Options * option;
12291 size_t offset;
12292 int cnt;
12293
12294 /* Find the section header so that we get the size. */
12295 while (sect->sh_type != SHT_MIPS_OPTIONS)
12296 ++sect;
12297
12298 eopt = (Elf_External_Options *) get_data (NULL, file, options_offset, 1,
12299 sect->sh_size, _("options"));
12300 if (eopt)
12301 {
12302 iopt = (Elf_Internal_Options *)
12303 cmalloc ((sect->sh_size / sizeof (eopt)), sizeof (* iopt));
12304 if (iopt == NULL)
12305 {
12306 error (_("Out of memory\n"));
12307 return 0;
12308 }
12309
12310 offset = cnt = 0;
12311 option = iopt;
12312
12313 while (offset < sect->sh_size)
12314 {
12315 Elf_External_Options * eoption;
12316
12317 eoption = (Elf_External_Options *) ((char *) eopt + offset);
12318
12319 option->kind = BYTE_GET (eoption->kind);
12320 option->size = BYTE_GET (eoption->size);
12321 option->section = BYTE_GET (eoption->section);
12322 option->info = BYTE_GET (eoption->info);
12323
12324 offset += option->size;
12325
12326 ++option;
12327 ++cnt;
12328 }
12329
12330 printf (_("\nSection '%s' contains %d entries:\n"),
12331 SECTION_NAME (sect), cnt);
12332
12333 option = iopt;
12334
12335 while (cnt-- > 0)
12336 {
12337 size_t len;
12338
12339 switch (option->kind)
12340 {
12341 case ODK_NULL:
12342 /* This shouldn't happen. */
12343 printf (" NULL %d %lx", option->section, option->info);
12344 break;
12345 case ODK_REGINFO:
12346 printf (" REGINFO ");
12347 if (elf_header.e_machine == EM_MIPS)
12348 {
12349 /* 32bit form. */
12350 Elf32_External_RegInfo * ereg;
12351 Elf32_RegInfo reginfo;
12352
12353 ereg = (Elf32_External_RegInfo *) (option + 1);
12354 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
12355 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
12356 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
12357 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
12358 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
12359 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
12360
12361 printf ("GPR %08lx GP 0x%lx\n",
12362 reginfo.ri_gprmask,
12363 (unsigned long) reginfo.ri_gp_value);
12364 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
12365 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
12366 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
12367 }
12368 else
12369 {
12370 /* 64 bit form. */
12371 Elf64_External_RegInfo * ereg;
12372 Elf64_Internal_RegInfo reginfo;
12373
12374 ereg = (Elf64_External_RegInfo *) (option + 1);
12375 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
12376 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
12377 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
12378 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
12379 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
12380 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
12381
12382 printf ("GPR %08lx GP 0x",
12383 reginfo.ri_gprmask);
12384 printf_vma (reginfo.ri_gp_value);
12385 printf ("\n");
12386
12387 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
12388 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
12389 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
12390 }
12391 ++option;
12392 continue;
12393 case ODK_EXCEPTIONS:
12394 fputs (" EXCEPTIONS fpe_min(", stdout);
12395 process_mips_fpe_exception (option->info & OEX_FPU_MIN);
12396 fputs (") fpe_max(", stdout);
12397 process_mips_fpe_exception ((option->info & OEX_FPU_MAX) >> 8);
12398 fputs (")", stdout);
12399
12400 if (option->info & OEX_PAGE0)
12401 fputs (" PAGE0", stdout);
12402 if (option->info & OEX_SMM)
12403 fputs (" SMM", stdout);
12404 if (option->info & OEX_FPDBUG)
12405 fputs (" FPDBUG", stdout);
12406 if (option->info & OEX_DISMISS)
12407 fputs (" DISMISS", stdout);
12408 break;
12409 case ODK_PAD:
12410 fputs (" PAD ", stdout);
12411 if (option->info & OPAD_PREFIX)
12412 fputs (" PREFIX", stdout);
12413 if (option->info & OPAD_POSTFIX)
12414 fputs (" POSTFIX", stdout);
12415 if (option->info & OPAD_SYMBOL)
12416 fputs (" SYMBOL", stdout);
12417 break;
12418 case ODK_HWPATCH:
12419 fputs (" HWPATCH ", stdout);
12420 if (option->info & OHW_R4KEOP)
12421 fputs (" R4KEOP", stdout);
12422 if (option->info & OHW_R8KPFETCH)
12423 fputs (" R8KPFETCH", stdout);
12424 if (option->info & OHW_R5KEOP)
12425 fputs (" R5KEOP", stdout);
12426 if (option->info & OHW_R5KCVTL)
12427 fputs (" R5KCVTL", stdout);
12428 break;
12429 case ODK_FILL:
12430 fputs (" FILL ", stdout);
12431 /* XXX Print content of info word? */
12432 break;
12433 case ODK_TAGS:
12434 fputs (" TAGS ", stdout);
12435 /* XXX Print content of info word? */
12436 break;
12437 case ODK_HWAND:
12438 fputs (" HWAND ", stdout);
12439 if (option->info & OHWA0_R4KEOP_CHECKED)
12440 fputs (" R4KEOP_CHECKED", stdout);
12441 if (option->info & OHWA0_R4KEOP_CLEAN)
12442 fputs (" R4KEOP_CLEAN", stdout);
12443 break;
12444 case ODK_HWOR:
12445 fputs (" HWOR ", stdout);
12446 if (option->info & OHWA0_R4KEOP_CHECKED)
12447 fputs (" R4KEOP_CHECKED", stdout);
12448 if (option->info & OHWA0_R4KEOP_CLEAN)
12449 fputs (" R4KEOP_CLEAN", stdout);
12450 break;
12451 case ODK_GP_GROUP:
12452 printf (" GP_GROUP %#06lx self-contained %#06lx",
12453 option->info & OGP_GROUP,
12454 (option->info & OGP_SELF) >> 16);
12455 break;
12456 case ODK_IDENT:
12457 printf (" IDENT %#06lx self-contained %#06lx",
12458 option->info & OGP_GROUP,
12459 (option->info & OGP_SELF) >> 16);
12460 break;
12461 default:
12462 /* This shouldn't happen. */
12463 printf (" %3d ??? %d %lx",
12464 option->kind, option->section, option->info);
12465 break;
12466 }
12467
12468 len = sizeof (* eopt);
12469 while (len < option->size)
12470 if (((char *) option)[len] >= ' '
12471 && ((char *) option)[len] < 0x7f)
12472 printf ("%c", ((char *) option)[len++]);
12473 else
12474 printf ("\\%03o", ((char *) option)[len++]);
12475
12476 fputs ("\n", stdout);
12477 ++option;
12478 }
12479
12480 free (eopt);
12481 }
12482 }
12483
12484 if (conflicts_offset != 0 && conflictsno != 0)
12485 {
12486 Elf32_Conflict * iconf;
12487 size_t cnt;
12488
12489 if (dynamic_symbols == NULL)
12490 {
12491 error (_("conflict list found without a dynamic symbol table\n"));
12492 return 0;
12493 }
12494
12495 iconf = (Elf32_Conflict *) cmalloc (conflictsno, sizeof (* iconf));
12496 if (iconf == NULL)
12497 {
12498 error (_("Out of memory\n"));
12499 return 0;
12500 }
12501
12502 if (is_32bit_elf)
12503 {
12504 Elf32_External_Conflict * econf32;
12505
12506 econf32 = (Elf32_External_Conflict *)
12507 get_data (NULL, file, conflicts_offset, conflictsno,
12508 sizeof (* econf32), _("conflict"));
12509 if (!econf32)
12510 return 0;
12511
12512 for (cnt = 0; cnt < conflictsno; ++cnt)
12513 iconf[cnt] = BYTE_GET (econf32[cnt]);
12514
12515 free (econf32);
12516 }
12517 else
12518 {
12519 Elf64_External_Conflict * econf64;
12520
12521 econf64 = (Elf64_External_Conflict *)
12522 get_data (NULL, file, conflicts_offset, conflictsno,
12523 sizeof (* econf64), _("conflict"));
12524 if (!econf64)
12525 return 0;
12526
12527 for (cnt = 0; cnt < conflictsno; ++cnt)
12528 iconf[cnt] = BYTE_GET (econf64[cnt]);
12529
12530 free (econf64);
12531 }
12532
12533 printf (_("\nSection '.conflict' contains %lu entries:\n"),
12534 (unsigned long) conflictsno);
12535 puts (_(" Num: Index Value Name"));
12536
12537 for (cnt = 0; cnt < conflictsno; ++cnt)
12538 {
12539 Elf_Internal_Sym * psym = & dynamic_symbols[iconf[cnt]];
12540
12541 printf ("%5lu: %8lu ", (unsigned long) cnt, iconf[cnt]);
12542 print_vma (psym->st_value, FULL_HEX);
12543 putchar (' ');
12544 if (VALID_DYNAMIC_NAME (psym->st_name))
12545 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
12546 else
12547 printf (_("<corrupt: %14ld>"), psym->st_name);
12548 putchar ('\n');
12549 }
12550
12551 free (iconf);
12552 }
12553
12554 if (pltgot != 0 && local_gotno != 0)
12555 {
12556 bfd_vma ent, local_end, global_end;
12557 size_t i, offset;
12558 unsigned char * data;
12559 int addr_size;
12560
12561 ent = pltgot;
12562 addr_size = (is_32bit_elf ? 4 : 8);
12563 local_end = pltgot + local_gotno * addr_size;
12564 global_end = local_end + (symtabno - gotsym) * addr_size;
12565
12566 offset = offset_from_vma (file, pltgot, global_end - pltgot);
12567 data = (unsigned char *) get_data (NULL, file, offset,
12568 global_end - pltgot, 1,
12569 _("Global Offset Table data"));
12570 if (data == NULL)
12571 return 0;
12572
12573 printf (_("\nPrimary GOT:\n"));
12574 printf (_(" Canonical gp value: "));
12575 print_vma (pltgot + 0x7ff0, LONG_HEX);
12576 printf ("\n\n");
12577
12578 printf (_(" Reserved entries:\n"));
12579 printf (_(" %*s %10s %*s Purpose\n"),
12580 addr_size * 2, _("Address"), _("Access"),
12581 addr_size * 2, _("Initial"));
12582 ent = print_mips_got_entry (data, pltgot, ent);
12583 printf (_(" Lazy resolver\n"));
12584 if (data
12585 && (byte_get (data + ent - pltgot, addr_size)
12586 >> (addr_size * 8 - 1)) != 0)
12587 {
12588 ent = print_mips_got_entry (data, pltgot, ent);
12589 printf (_(" Module pointer (GNU extension)\n"));
12590 }
12591 printf ("\n");
12592
12593 if (ent < local_end)
12594 {
12595 printf (_(" Local entries:\n"));
12596 printf (" %*s %10s %*s\n",
12597 addr_size * 2, _("Address"), _("Access"),
12598 addr_size * 2, _("Initial"));
12599 while (ent < local_end)
12600 {
12601 ent = print_mips_got_entry (data, pltgot, ent);
12602 printf ("\n");
12603 }
12604 printf ("\n");
12605 }
12606
12607 if (gotsym < symtabno)
12608 {
12609 int sym_width;
12610
12611 printf (_(" Global entries:\n"));
12612 printf (" %*s %10s %*s %*s %-7s %3s %s\n",
12613 addr_size * 2, _("Address"),
12614 _("Access"),
12615 addr_size * 2, _("Initial"),
12616 addr_size * 2, _("Sym.Val."),
12617 _("Type"),
12618 /* Note for translators: "Ndx" = abbreviated form of "Index". */
12619 _("Ndx"), _("Name"));
12620
12621 sym_width = (is_32bit_elf ? 80 : 160) - 28 - addr_size * 6 - 1;
12622 for (i = gotsym; i < symtabno; i++)
12623 {
12624 Elf_Internal_Sym * psym;
12625
12626 psym = dynamic_symbols + i;
12627 ent = print_mips_got_entry (data, pltgot, ent);
12628 printf (" ");
12629 print_vma (psym->st_value, LONG_HEX);
12630 printf (" %-7s %3s ",
12631 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
12632 get_symbol_index_type (psym->st_shndx));
12633 if (VALID_DYNAMIC_NAME (psym->st_name))
12634 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
12635 else
12636 printf (_("<corrupt: %14ld>"), psym->st_name);
12637 printf ("\n");
12638 }
12639 printf ("\n");
12640 }
12641
12642 if (data)
12643 free (data);
12644 }
12645
12646 if (mips_pltgot != 0 && jmprel != 0 && pltrel != 0 && pltrelsz != 0)
12647 {
12648 bfd_vma ent, end;
12649 size_t offset, rel_offset;
12650 unsigned long count, i;
12651 unsigned char * data;
12652 int addr_size, sym_width;
12653 Elf_Internal_Rela * rels;
12654
12655 rel_offset = offset_from_vma (file, jmprel, pltrelsz);
12656 if (pltrel == DT_RELA)
12657 {
12658 if (!slurp_rela_relocs (file, rel_offset, pltrelsz, &rels, &count))
12659 return 0;
12660 }
12661 else
12662 {
12663 if (!slurp_rel_relocs (file, rel_offset, pltrelsz, &rels, &count))
12664 return 0;
12665 }
12666
12667 ent = mips_pltgot;
12668 addr_size = (is_32bit_elf ? 4 : 8);
12669 end = mips_pltgot + (2 + count) * addr_size;
12670
12671 offset = offset_from_vma (file, mips_pltgot, end - mips_pltgot);
12672 data = (unsigned char *) get_data (NULL, file, offset, end - mips_pltgot,
12673 1, _("Procedure Linkage Table data"));
12674 if (data == NULL)
12675 return 0;
12676
12677 printf ("\nPLT GOT:\n\n");
12678 printf (_(" Reserved entries:\n"));
12679 printf (_(" %*s %*s Purpose\n"),
12680 addr_size * 2, _("Address"), addr_size * 2, _("Initial"));
12681 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
12682 printf (_(" PLT lazy resolver\n"));
12683 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
12684 printf (_(" Module pointer\n"));
12685 printf ("\n");
12686
12687 printf (_(" Entries:\n"));
12688 printf (" %*s %*s %*s %-7s %3s %s\n",
12689 addr_size * 2, _("Address"),
12690 addr_size * 2, _("Initial"),
12691 addr_size * 2, _("Sym.Val."), _("Type"), _("Ndx"), _("Name"));
12692 sym_width = (is_32bit_elf ? 80 : 160) - 17 - addr_size * 6 - 1;
12693 for (i = 0; i < count; i++)
12694 {
12695 Elf_Internal_Sym * psym;
12696
12697 psym = dynamic_symbols + get_reloc_symindex (rels[i].r_info);
12698 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
12699 printf (" ");
12700 print_vma (psym->st_value, LONG_HEX);
12701 printf (" %-7s %3s ",
12702 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
12703 get_symbol_index_type (psym->st_shndx));
12704 if (VALID_DYNAMIC_NAME (psym->st_name))
12705 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
12706 else
12707 printf (_("<corrupt: %14ld>"), psym->st_name);
12708 printf ("\n");
12709 }
12710 printf ("\n");
12711
12712 if (data)
12713 free (data);
12714 free (rels);
12715 }
12716
12717 return 1;
12718 }
12719
12720 static int
12721 process_gnu_liblist (FILE * file)
12722 {
12723 Elf_Internal_Shdr * section;
12724 Elf_Internal_Shdr * string_sec;
12725 Elf32_External_Lib * elib;
12726 char * strtab;
12727 size_t strtab_size;
12728 size_t cnt;
12729 unsigned i;
12730
12731 if (! do_arch)
12732 return 0;
12733
12734 for (i = 0, section = section_headers;
12735 i < elf_header.e_shnum;
12736 i++, section++)
12737 {
12738 switch (section->sh_type)
12739 {
12740 case SHT_GNU_LIBLIST:
12741 if (section->sh_link >= elf_header.e_shnum)
12742 break;
12743
12744 elib = (Elf32_External_Lib *)
12745 get_data (NULL, file, section->sh_offset, 1, section->sh_size,
12746 _("liblist section data"));
12747
12748 if (elib == NULL)
12749 break;
12750 string_sec = section_headers + section->sh_link;
12751
12752 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
12753 string_sec->sh_size,
12754 _("liblist string table"));
12755 if (strtab == NULL
12756 || section->sh_entsize != sizeof (Elf32_External_Lib))
12757 {
12758 free (elib);
12759 free (strtab);
12760 break;
12761 }
12762 strtab_size = string_sec->sh_size;
12763
12764 printf (_("\nLibrary list section '%s' contains %lu entries:\n"),
12765 SECTION_NAME (section),
12766 (unsigned long) (section->sh_size / sizeof (Elf32_External_Lib)));
12767
12768 puts (_(" Library Time Stamp Checksum Version Flags"));
12769
12770 for (cnt = 0; cnt < section->sh_size / sizeof (Elf32_External_Lib);
12771 ++cnt)
12772 {
12773 Elf32_Lib liblist;
12774 time_t atime;
12775 char timebuf[20];
12776 struct tm * tmp;
12777
12778 liblist.l_name = BYTE_GET (elib[cnt].l_name);
12779 atime = BYTE_GET (elib[cnt].l_time_stamp);
12780 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
12781 liblist.l_version = BYTE_GET (elib[cnt].l_version);
12782 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
12783
12784 tmp = gmtime (&atime);
12785 snprintf (timebuf, sizeof (timebuf),
12786 "%04u-%02u-%02uT%02u:%02u:%02u",
12787 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
12788 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
12789
12790 printf ("%3lu: ", (unsigned long) cnt);
12791 if (do_wide)
12792 printf ("%-20s", liblist.l_name < strtab_size
12793 ? strtab + liblist.l_name : _("<corrupt>"));
12794 else
12795 printf ("%-20.20s", liblist.l_name < strtab_size
12796 ? strtab + liblist.l_name : _("<corrupt>"));
12797 printf (" %s %#010lx %-7ld %-7ld\n", timebuf, liblist.l_checksum,
12798 liblist.l_version, liblist.l_flags);
12799 }
12800
12801 free (elib);
12802 free (strtab);
12803 }
12804 }
12805
12806 return 1;
12807 }
12808
12809 static const char *
12810 get_note_type (unsigned e_type)
12811 {
12812 static char buff[64];
12813
12814 if (elf_header.e_type == ET_CORE)
12815 switch (e_type)
12816 {
12817 case NT_AUXV:
12818 return _("NT_AUXV (auxiliary vector)");
12819 case NT_PRSTATUS:
12820 return _("NT_PRSTATUS (prstatus structure)");
12821 case NT_FPREGSET:
12822 return _("NT_FPREGSET (floating point registers)");
12823 case NT_PRPSINFO:
12824 return _("NT_PRPSINFO (prpsinfo structure)");
12825 case NT_TASKSTRUCT:
12826 return _("NT_TASKSTRUCT (task structure)");
12827 case NT_PRXFPREG:
12828 return _("NT_PRXFPREG (user_xfpregs structure)");
12829 case NT_PPC_VMX:
12830 return _("NT_PPC_VMX (ppc Altivec registers)");
12831 case NT_PPC_VSX:
12832 return _("NT_PPC_VSX (ppc VSX registers)");
12833 case NT_386_TLS:
12834 return _("NT_386_TLS (x86 TLS information)");
12835 case NT_386_IOPERM:
12836 return _("NT_386_IOPERM (x86 I/O permissions)");
12837 case NT_X86_XSTATE:
12838 return _("NT_X86_XSTATE (x86 XSAVE extended state)");
12839 case NT_S390_HIGH_GPRS:
12840 return _("NT_S390_HIGH_GPRS (s390 upper register halves)");
12841 case NT_S390_TIMER:
12842 return _("NT_S390_TIMER (s390 timer register)");
12843 case NT_S390_TODCMP:
12844 return _("NT_S390_TODCMP (s390 TOD comparator register)");
12845 case NT_S390_TODPREG:
12846 return _("NT_S390_TODPREG (s390 TOD programmable register)");
12847 case NT_S390_CTRS:
12848 return _("NT_S390_CTRS (s390 control registers)");
12849 case NT_S390_PREFIX:
12850 return _("NT_S390_PREFIX (s390 prefix register)");
12851 case NT_S390_LAST_BREAK:
12852 return _("NT_S390_LAST_BREAK (s390 last breaking event address)");
12853 case NT_S390_SYSTEM_CALL:
12854 return _("NT_S390_SYSTEM_CALL (s390 system call restart data)");
12855 case NT_S390_TDB:
12856 return _("NT_S390_TDB (s390 transaction diagnostic block)");
12857 case NT_ARM_VFP:
12858 return _("NT_ARM_VFP (arm VFP registers)");
12859 case NT_ARM_TLS:
12860 return _("NT_ARM_TLS (AArch TLS registers)");
12861 case NT_ARM_HW_BREAK:
12862 return _("NT_ARM_HW_BREAK (AArch hardware breakpoint registers)");
12863 case NT_ARM_HW_WATCH:
12864 return _("NT_ARM_HW_WATCH (AArch hardware watchpoint registers)");
12865 case NT_PSTATUS:
12866 return _("NT_PSTATUS (pstatus structure)");
12867 case NT_FPREGS:
12868 return _("NT_FPREGS (floating point registers)");
12869 case NT_PSINFO:
12870 return _("NT_PSINFO (psinfo structure)");
12871 case NT_LWPSTATUS:
12872 return _("NT_LWPSTATUS (lwpstatus_t structure)");
12873 case NT_LWPSINFO:
12874 return _("NT_LWPSINFO (lwpsinfo_t structure)");
12875 case NT_WIN32PSTATUS:
12876 return _("NT_WIN32PSTATUS (win32_pstatus structure)");
12877 case NT_SIGINFO:
12878 return _("NT_SIGINFO (siginfo_t data)");
12879 case NT_FILE:
12880 return _("NT_FILE (mapped files)");
12881 default:
12882 break;
12883 }
12884 else
12885 switch (e_type)
12886 {
12887 case NT_VERSION:
12888 return _("NT_VERSION (version)");
12889 case NT_ARCH:
12890 return _("NT_ARCH (architecture)");
12891 default:
12892 break;
12893 }
12894
12895 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
12896 return buff;
12897 }
12898
12899 static int
12900 print_core_note (Elf_Internal_Note *pnote)
12901 {
12902 unsigned int addr_size = is_32bit_elf ? 4 : 8;
12903 bfd_vma count, page_size;
12904 unsigned char *descdata, *filenames, *descend;
12905
12906 if (pnote->type != NT_FILE)
12907 return 1;
12908
12909 #ifndef BFD64
12910 if (!is_32bit_elf)
12911 {
12912 printf (_(" Cannot decode 64-bit note in 32-bit build\n"));
12913 /* Still "successful". */
12914 return 1;
12915 }
12916 #endif
12917
12918 if (pnote->descsz < 2 * addr_size)
12919 {
12920 printf (_(" Malformed note - too short for header\n"));
12921 return 0;
12922 }
12923
12924 descdata = (unsigned char *) pnote->descdata;
12925 descend = descdata + pnote->descsz;
12926
12927 if (descdata[pnote->descsz - 1] != '\0')
12928 {
12929 printf (_(" Malformed note - does not end with \\0\n"));
12930 return 0;
12931 }
12932
12933 count = byte_get (descdata, addr_size);
12934 descdata += addr_size;
12935
12936 page_size = byte_get (descdata, addr_size);
12937 descdata += addr_size;
12938
12939 if (pnote->descsz < 2 * addr_size + count * 3 * addr_size)
12940 {
12941 printf (_(" Malformed note - too short for supplied file count\n"));
12942 return 0;
12943 }
12944
12945 printf (_(" Page size: "));
12946 print_vma (page_size, DEC);
12947 printf ("\n");
12948
12949 printf (_(" %*s%*s%*s\n"),
12950 (int) (2 + 2 * addr_size), _("Start"),
12951 (int) (4 + 2 * addr_size), _("End"),
12952 (int) (4 + 2 * addr_size), _("Page Offset"));
12953 filenames = descdata + count * 3 * addr_size;
12954 while (--count > 0)
12955 {
12956 bfd_vma start, end, file_ofs;
12957
12958 if (filenames == descend)
12959 {
12960 printf (_(" Malformed note - filenames end too early\n"));
12961 return 0;
12962 }
12963
12964 start = byte_get (descdata, addr_size);
12965 descdata += addr_size;
12966 end = byte_get (descdata, addr_size);
12967 descdata += addr_size;
12968 file_ofs = byte_get (descdata, addr_size);
12969 descdata += addr_size;
12970
12971 printf (" ");
12972 print_vma (start, FULL_HEX);
12973 printf (" ");
12974 print_vma (end, FULL_HEX);
12975 printf (" ");
12976 print_vma (file_ofs, FULL_HEX);
12977 printf ("\n %s\n", filenames);
12978
12979 filenames += 1 + strlen ((char *) filenames);
12980 }
12981
12982 return 1;
12983 }
12984
12985 static const char *
12986 get_gnu_elf_note_type (unsigned e_type)
12987 {
12988 static char buff[64];
12989
12990 switch (e_type)
12991 {
12992 case NT_GNU_ABI_TAG:
12993 return _("NT_GNU_ABI_TAG (ABI version tag)");
12994 case NT_GNU_HWCAP:
12995 return _("NT_GNU_HWCAP (DSO-supplied software HWCAP info)");
12996 case NT_GNU_BUILD_ID:
12997 return _("NT_GNU_BUILD_ID (unique build ID bitstring)");
12998 case NT_GNU_GOLD_VERSION:
12999 return _("NT_GNU_GOLD_VERSION (gold version)");
13000 default:
13001 break;
13002 }
13003
13004 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
13005 return buff;
13006 }
13007
13008 static int
13009 print_gnu_note (Elf_Internal_Note *pnote)
13010 {
13011 switch (pnote->type)
13012 {
13013 case NT_GNU_BUILD_ID:
13014 {
13015 unsigned long i;
13016
13017 printf (_(" Build ID: "));
13018 for (i = 0; i < pnote->descsz; ++i)
13019 printf ("%02x", pnote->descdata[i] & 0xff);
13020 printf ("\n");
13021 }
13022 break;
13023
13024 case NT_GNU_ABI_TAG:
13025 {
13026 unsigned long os, major, minor, subminor;
13027 const char *osname;
13028
13029 os = byte_get ((unsigned char *) pnote->descdata, 4);
13030 major = byte_get ((unsigned char *) pnote->descdata + 4, 4);
13031 minor = byte_get ((unsigned char *) pnote->descdata + 8, 4);
13032 subminor = byte_get ((unsigned char *) pnote->descdata + 12, 4);
13033
13034 switch (os)
13035 {
13036 case GNU_ABI_TAG_LINUX:
13037 osname = "Linux";
13038 break;
13039 case GNU_ABI_TAG_HURD:
13040 osname = "Hurd";
13041 break;
13042 case GNU_ABI_TAG_SOLARIS:
13043 osname = "Solaris";
13044 break;
13045 case GNU_ABI_TAG_FREEBSD:
13046 osname = "FreeBSD";
13047 break;
13048 case GNU_ABI_TAG_NETBSD:
13049 osname = "NetBSD";
13050 break;
13051 default:
13052 osname = "Unknown";
13053 break;
13054 }
13055
13056 printf (_(" OS: %s, ABI: %ld.%ld.%ld\n"), osname,
13057 major, minor, subminor);
13058 }
13059 break;
13060 }
13061
13062 return 1;
13063 }
13064
13065 static const char *
13066 get_netbsd_elfcore_note_type (unsigned e_type)
13067 {
13068 static char buff[64];
13069
13070 if (e_type == NT_NETBSDCORE_PROCINFO)
13071 {
13072 /* NetBSD core "procinfo" structure. */
13073 return _("NetBSD procinfo structure");
13074 }
13075
13076 /* As of Jan 2002 there are no other machine-independent notes
13077 defined for NetBSD core files. If the note type is less
13078 than the start of the machine-dependent note types, we don't
13079 understand it. */
13080
13081 if (e_type < NT_NETBSDCORE_FIRSTMACH)
13082 {
13083 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
13084 return buff;
13085 }
13086
13087 switch (elf_header.e_machine)
13088 {
13089 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0
13090 and PT_GETFPREGS == mach+2. */
13091
13092 case EM_OLD_ALPHA:
13093 case EM_ALPHA:
13094 case EM_SPARC:
13095 case EM_SPARC32PLUS:
13096 case EM_SPARCV9:
13097 switch (e_type)
13098 {
13099 case NT_NETBSDCORE_FIRSTMACH + 0:
13100 return _("PT_GETREGS (reg structure)");
13101 case NT_NETBSDCORE_FIRSTMACH + 2:
13102 return _("PT_GETFPREGS (fpreg structure)");
13103 default:
13104 break;
13105 }
13106 break;
13107
13108 /* On all other arch's, PT_GETREGS == mach+1 and
13109 PT_GETFPREGS == mach+3. */
13110 default:
13111 switch (e_type)
13112 {
13113 case NT_NETBSDCORE_FIRSTMACH + 1:
13114 return _("PT_GETREGS (reg structure)");
13115 case NT_NETBSDCORE_FIRSTMACH + 3:
13116 return _("PT_GETFPREGS (fpreg structure)");
13117 default:
13118 break;
13119 }
13120 }
13121
13122 snprintf (buff, sizeof (buff), "PT_FIRSTMACH+%d",
13123 e_type - NT_NETBSDCORE_FIRSTMACH);
13124 return buff;
13125 }
13126
13127 static const char *
13128 get_stapsdt_note_type (unsigned e_type)
13129 {
13130 static char buff[64];
13131
13132 switch (e_type)
13133 {
13134 case NT_STAPSDT:
13135 return _("NT_STAPSDT (SystemTap probe descriptors)");
13136
13137 default:
13138 break;
13139 }
13140
13141 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
13142 return buff;
13143 }
13144
13145 static int
13146 print_stapsdt_note (Elf_Internal_Note *pnote)
13147 {
13148 int addr_size = is_32bit_elf ? 4 : 8;
13149 char *data = pnote->descdata;
13150 char *data_end = pnote->descdata + pnote->descsz;
13151 bfd_vma pc, base_addr, semaphore;
13152 char *provider, *probe, *arg_fmt;
13153
13154 pc = byte_get ((unsigned char *) data, addr_size);
13155 data += addr_size;
13156 base_addr = byte_get ((unsigned char *) data, addr_size);
13157 data += addr_size;
13158 semaphore = byte_get ((unsigned char *) data, addr_size);
13159 data += addr_size;
13160
13161 provider = data;
13162 data += strlen (data) + 1;
13163 probe = data;
13164 data += strlen (data) + 1;
13165 arg_fmt = data;
13166 data += strlen (data) + 1;
13167
13168 printf (_(" Provider: %s\n"), provider);
13169 printf (_(" Name: %s\n"), probe);
13170 printf (_(" Location: "));
13171 print_vma (pc, FULL_HEX);
13172 printf (_(", Base: "));
13173 print_vma (base_addr, FULL_HEX);
13174 printf (_(", Semaphore: "));
13175 print_vma (semaphore, FULL_HEX);
13176 printf ("\n");
13177 printf (_(" Arguments: %s\n"), arg_fmt);
13178
13179 return data == data_end;
13180 }
13181
13182 static const char *
13183 get_ia64_vms_note_type (unsigned e_type)
13184 {
13185 static char buff[64];
13186
13187 switch (e_type)
13188 {
13189 case NT_VMS_MHD:
13190 return _("NT_VMS_MHD (module header)");
13191 case NT_VMS_LNM:
13192 return _("NT_VMS_LNM (language name)");
13193 case NT_VMS_SRC:
13194 return _("NT_VMS_SRC (source files)");
13195 case NT_VMS_TITLE:
13196 return "NT_VMS_TITLE";
13197 case NT_VMS_EIDC:
13198 return _("NT_VMS_EIDC (consistency check)");
13199 case NT_VMS_FPMODE:
13200 return _("NT_VMS_FPMODE (FP mode)");
13201 case NT_VMS_LINKTIME:
13202 return "NT_VMS_LINKTIME";
13203 case NT_VMS_IMGNAM:
13204 return _("NT_VMS_IMGNAM (image name)");
13205 case NT_VMS_IMGID:
13206 return _("NT_VMS_IMGID (image id)");
13207 case NT_VMS_LINKID:
13208 return _("NT_VMS_LINKID (link id)");
13209 case NT_VMS_IMGBID:
13210 return _("NT_VMS_IMGBID (build id)");
13211 case NT_VMS_GSTNAM:
13212 return _("NT_VMS_GSTNAM (sym table name)");
13213 case NT_VMS_ORIG_DYN:
13214 return "NT_VMS_ORIG_DYN";
13215 case NT_VMS_PATCHTIME:
13216 return "NT_VMS_PATCHTIME";
13217 default:
13218 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
13219 return buff;
13220 }
13221 }
13222
13223 static int
13224 print_ia64_vms_note (Elf_Internal_Note * pnote)
13225 {
13226 switch (pnote->type)
13227 {
13228 case NT_VMS_MHD:
13229 if (pnote->descsz > 36)
13230 {
13231 size_t l = strlen (pnote->descdata + 34);
13232 printf (_(" Creation date : %.17s\n"), pnote->descdata);
13233 printf (_(" Last patch date: %.17s\n"), pnote->descdata + 17);
13234 printf (_(" Module name : %s\n"), pnote->descdata + 34);
13235 printf (_(" Module version : %s\n"), pnote->descdata + 34 + l + 1);
13236 }
13237 else
13238 printf (_(" Invalid size\n"));
13239 break;
13240 case NT_VMS_LNM:
13241 printf (_(" Language: %s\n"), pnote->descdata);
13242 break;
13243 #ifdef BFD64
13244 case NT_VMS_FPMODE:
13245 printf (_(" Floating Point mode: "));
13246 printf ("0x%016" BFD_VMA_FMT "x\n",
13247 (bfd_vma)byte_get ((unsigned char *)pnote->descdata, 8));
13248 break;
13249 case NT_VMS_LINKTIME:
13250 printf (_(" Link time: "));
13251 print_vms_time
13252 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
13253 printf ("\n");
13254 break;
13255 case NT_VMS_PATCHTIME:
13256 printf (_(" Patch time: "));
13257 print_vms_time
13258 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
13259 printf ("\n");
13260 break;
13261 case NT_VMS_ORIG_DYN:
13262 printf (_(" Major id: %u, minor id: %u\n"),
13263 (unsigned) byte_get ((unsigned char *)pnote->descdata, 4),
13264 (unsigned) byte_get ((unsigned char *)pnote->descdata + 4, 4));
13265 printf (_(" Last modified : "));
13266 print_vms_time
13267 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata + 8, 8));
13268 printf (_("\n Link flags : "));
13269 printf ("0x%016" BFD_VMA_FMT "x\n",
13270 (bfd_vma)byte_get ((unsigned char *)pnote->descdata + 16, 8));
13271 printf (_(" Header flags: 0x%08x\n"),
13272 (unsigned)byte_get ((unsigned char *)pnote->descdata + 24, 4));
13273 printf (_(" Image id : %s\n"), pnote->descdata + 32);
13274 break;
13275 #endif
13276 case NT_VMS_IMGNAM:
13277 printf (_(" Image name: %s\n"), pnote->descdata);
13278 break;
13279 case NT_VMS_GSTNAM:
13280 printf (_(" Global symbol table name: %s\n"), pnote->descdata);
13281 break;
13282 case NT_VMS_IMGID:
13283 printf (_(" Image id: %s\n"), pnote->descdata);
13284 break;
13285 case NT_VMS_LINKID:
13286 printf (_(" Linker id: %s\n"), pnote->descdata);
13287 break;
13288 default:
13289 break;
13290 }
13291 return 1;
13292 }
13293
13294 /* Note that by the ELF standard, the name field is already null byte
13295 terminated, and namesz includes the terminating null byte.
13296 I.E. the value of namesz for the name "FSF" is 4.
13297
13298 If the value of namesz is zero, there is no name present. */
13299 static int
13300 process_note (Elf_Internal_Note * pnote)
13301 {
13302 const char * name = pnote->namesz ? pnote->namedata : "(NONE)";
13303 const char * nt;
13304
13305 if (pnote->namesz == 0)
13306 /* If there is no note name, then use the default set of
13307 note type strings. */
13308 nt = get_note_type (pnote->type);
13309
13310 else if (const_strneq (pnote->namedata, "GNU"))
13311 /* GNU-specific object file notes. */
13312 nt = get_gnu_elf_note_type (pnote->type);
13313
13314 else if (const_strneq (pnote->namedata, "NetBSD-CORE"))
13315 /* NetBSD-specific core file notes. */
13316 nt = get_netbsd_elfcore_note_type (pnote->type);
13317
13318 else if (strneq (pnote->namedata, "SPU/", 4))
13319 {
13320 /* SPU-specific core file notes. */
13321 nt = pnote->namedata + 4;
13322 name = "SPU";
13323 }
13324
13325 else if (const_strneq (pnote->namedata, "IPF/VMS"))
13326 /* VMS/ia64-specific file notes. */
13327 nt = get_ia64_vms_note_type (pnote->type);
13328
13329 else if (const_strneq (pnote->namedata, "stapsdt"))
13330 nt = get_stapsdt_note_type (pnote->type);
13331
13332 else
13333 /* Don't recognize this note name; just use the default set of
13334 note type strings. */
13335 nt = get_note_type (pnote->type);
13336
13337 printf (" %-20s 0x%08lx\t%s\n", name, pnote->descsz, nt);
13338
13339 if (const_strneq (pnote->namedata, "IPF/VMS"))
13340 return print_ia64_vms_note (pnote);
13341 else if (const_strneq (pnote->namedata, "GNU"))
13342 return print_gnu_note (pnote);
13343 else if (const_strneq (pnote->namedata, "stapsdt"))
13344 return print_stapsdt_note (pnote);
13345 else if (const_strneq (pnote->namedata, "CORE"))
13346 return print_core_note (pnote);
13347 else
13348 return 1;
13349 }
13350
13351
13352 static int
13353 process_corefile_note_segment (FILE * file, bfd_vma offset, bfd_vma length)
13354 {
13355 Elf_External_Note * pnotes;
13356 Elf_External_Note * external;
13357 int res = 1;
13358
13359 if (length <= 0)
13360 return 0;
13361
13362 pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
13363 _("notes"));
13364 if (pnotes == NULL)
13365 return 0;
13366
13367 external = pnotes;
13368
13369 printf (_("\nDisplaying notes found at file offset 0x%08lx with length 0x%08lx:\n"),
13370 (unsigned long) offset, (unsigned long) length);
13371 printf (_(" %-20s %10s\tDescription\n"), _("Owner"), _("Data size"));
13372
13373 while ((char *) external < (char *) pnotes + length)
13374 {
13375 Elf_Internal_Note inote;
13376 size_t min_notesz;
13377 char *next;
13378 char * temp = NULL;
13379 size_t data_remaining = ((char *) pnotes + length) - (char *) external;
13380
13381 if (!is_ia64_vms ())
13382 {
13383 /* PR binutils/15191
13384 Make sure that there is enough data to read. */
13385 min_notesz = offsetof (Elf_External_Note, name);
13386 if (data_remaining < min_notesz)
13387 {
13388 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
13389 (int) data_remaining);
13390 break;
13391 }
13392 inote.type = BYTE_GET (external->type);
13393 inote.namesz = BYTE_GET (external->namesz);
13394 inote.namedata = external->name;
13395 inote.descsz = BYTE_GET (external->descsz);
13396 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
13397 inote.descpos = offset + (inote.descdata - (char *) pnotes);
13398 next = inote.descdata + align_power (inote.descsz, 2);
13399 }
13400 else
13401 {
13402 Elf64_External_VMS_Note *vms_external;
13403
13404 /* PR binutils/15191
13405 Make sure that there is enough data to read. */
13406 min_notesz = offsetof (Elf64_External_VMS_Note, name);
13407 if (data_remaining < min_notesz)
13408 {
13409 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
13410 (int) data_remaining);
13411 break;
13412 }
13413
13414 vms_external = (Elf64_External_VMS_Note *) external;
13415 inote.type = BYTE_GET (vms_external->type);
13416 inote.namesz = BYTE_GET (vms_external->namesz);
13417 inote.namedata = vms_external->name;
13418 inote.descsz = BYTE_GET (vms_external->descsz);
13419 inote.descdata = inote.namedata + align_power (inote.namesz, 3);
13420 inote.descpos = offset + (inote.descdata - (char *) pnotes);
13421 next = inote.descdata + align_power (inote.descsz, 3);
13422 }
13423
13424 if (inote.descdata < (char *) external + min_notesz
13425 || next < (char *) external + min_notesz
13426 || data_remaining < (size_t)(next - (char *) external))
13427 {
13428 warn (_("note with invalid namesz and/or descsz found at offset 0x%lx\n"),
13429 (unsigned long) ((char *) external - (char *) pnotes));
13430 warn (_(" type: 0x%lx, namesize: 0x%08lx, descsize: 0x%08lx\n"),
13431 inote.type, inote.namesz, inote.descsz);
13432 break;
13433 }
13434
13435 external = (Elf_External_Note *) next;
13436
13437 /* Verify that name is null terminated. It appears that at least
13438 one version of Linux (RedHat 6.0) generates corefiles that don't
13439 comply with the ELF spec by failing to include the null byte in
13440 namesz. */
13441 if (inote.namedata[inote.namesz - 1] != '\0')
13442 {
13443 temp = (char *) malloc (inote.namesz + 1);
13444
13445 if (temp == NULL)
13446 {
13447 error (_("Out of memory\n"));
13448 res = 0;
13449 break;
13450 }
13451
13452 strncpy (temp, inote.namedata, inote.namesz);
13453 temp[inote.namesz] = 0;
13454
13455 /* warn (_("'%s' NOTE name not properly null terminated\n"), temp); */
13456 inote.namedata = temp;
13457 }
13458
13459 res &= process_note (& inote);
13460
13461 if (temp != NULL)
13462 {
13463 free (temp);
13464 temp = NULL;
13465 }
13466 }
13467
13468 free (pnotes);
13469
13470 return res;
13471 }
13472
13473 static int
13474 process_corefile_note_segments (FILE * file)
13475 {
13476 Elf_Internal_Phdr * segment;
13477 unsigned int i;
13478 int res = 1;
13479
13480 if (! get_program_headers (file))
13481 return 0;
13482
13483 for (i = 0, segment = program_headers;
13484 i < elf_header.e_phnum;
13485 i++, segment++)
13486 {
13487 if (segment->p_type == PT_NOTE)
13488 res &= process_corefile_note_segment (file,
13489 (bfd_vma) segment->p_offset,
13490 (bfd_vma) segment->p_filesz);
13491 }
13492
13493 return res;
13494 }
13495
13496 static int
13497 process_note_sections (FILE * file)
13498 {
13499 Elf_Internal_Shdr * section;
13500 unsigned long i;
13501 int res = 1;
13502
13503 for (i = 0, section = section_headers;
13504 i < elf_header.e_shnum && section != NULL;
13505 i++, section++)
13506 if (section->sh_type == SHT_NOTE)
13507 res &= process_corefile_note_segment (file,
13508 (bfd_vma) section->sh_offset,
13509 (bfd_vma) section->sh_size);
13510
13511 return res;
13512 }
13513
13514 static int
13515 process_notes (FILE * file)
13516 {
13517 /* If we have not been asked to display the notes then do nothing. */
13518 if (! do_notes)
13519 return 1;
13520
13521 if (elf_header.e_type != ET_CORE)
13522 return process_note_sections (file);
13523
13524 /* No program headers means no NOTE segment. */
13525 if (elf_header.e_phnum > 0)
13526 return process_corefile_note_segments (file);
13527
13528 printf (_("No note segments present in the core file.\n"));
13529 return 1;
13530 }
13531
13532 static int
13533 process_arch_specific (FILE * file)
13534 {
13535 if (! do_arch)
13536 return 1;
13537
13538 switch (elf_header.e_machine)
13539 {
13540 case EM_ARM:
13541 return process_arm_specific (file);
13542 case EM_MIPS:
13543 case EM_MIPS_RS3_LE:
13544 return process_mips_specific (file);
13545 break;
13546 case EM_PPC:
13547 return process_power_specific (file);
13548 break;
13549 case EM_SPARC:
13550 case EM_SPARC32PLUS:
13551 case EM_SPARCV9:
13552 return process_sparc_specific (file);
13553 break;
13554 case EM_TI_C6000:
13555 return process_tic6x_specific (file);
13556 break;
13557 default:
13558 break;
13559 }
13560 return 1;
13561 }
13562
13563 static int
13564 get_file_header (FILE * file)
13565 {
13566 /* Read in the identity array. */
13567 if (fread (elf_header.e_ident, EI_NIDENT, 1, file) != 1)
13568 return 0;
13569
13570 /* Determine how to read the rest of the header. */
13571 switch (elf_header.e_ident[EI_DATA])
13572 {
13573 default: /* fall through */
13574 case ELFDATANONE: /* fall through */
13575 case ELFDATA2LSB:
13576 byte_get = byte_get_little_endian;
13577 byte_put = byte_put_little_endian;
13578 break;
13579 case ELFDATA2MSB:
13580 byte_get = byte_get_big_endian;
13581 byte_put = byte_put_big_endian;
13582 break;
13583 }
13584
13585 /* For now we only support 32 bit and 64 bit ELF files. */
13586 is_32bit_elf = (elf_header.e_ident[EI_CLASS] != ELFCLASS64);
13587
13588 /* Read in the rest of the header. */
13589 if (is_32bit_elf)
13590 {
13591 Elf32_External_Ehdr ehdr32;
13592
13593 if (fread (ehdr32.e_type, sizeof (ehdr32) - EI_NIDENT, 1, file) != 1)
13594 return 0;
13595
13596 elf_header.e_type = BYTE_GET (ehdr32.e_type);
13597 elf_header.e_machine = BYTE_GET (ehdr32.e_machine);
13598 elf_header.e_version = BYTE_GET (ehdr32.e_version);
13599 elf_header.e_entry = BYTE_GET (ehdr32.e_entry);
13600 elf_header.e_phoff = BYTE_GET (ehdr32.e_phoff);
13601 elf_header.e_shoff = BYTE_GET (ehdr32.e_shoff);
13602 elf_header.e_flags = BYTE_GET (ehdr32.e_flags);
13603 elf_header.e_ehsize = BYTE_GET (ehdr32.e_ehsize);
13604 elf_header.e_phentsize = BYTE_GET (ehdr32.e_phentsize);
13605 elf_header.e_phnum = BYTE_GET (ehdr32.e_phnum);
13606 elf_header.e_shentsize = BYTE_GET (ehdr32.e_shentsize);
13607 elf_header.e_shnum = BYTE_GET (ehdr32.e_shnum);
13608 elf_header.e_shstrndx = BYTE_GET (ehdr32.e_shstrndx);
13609 }
13610 else
13611 {
13612 Elf64_External_Ehdr ehdr64;
13613
13614 /* If we have been compiled with sizeof (bfd_vma) == 4, then
13615 we will not be able to cope with the 64bit data found in
13616 64 ELF files. Detect this now and abort before we start
13617 overwriting things. */
13618 if (sizeof (bfd_vma) < 8)
13619 {
13620 error (_("This instance of readelf has been built without support for a\n\
13621 64 bit data type and so it cannot read 64 bit ELF files.\n"));
13622 return 0;
13623 }
13624
13625 if (fread (ehdr64.e_type, sizeof (ehdr64) - EI_NIDENT, 1, file) != 1)
13626 return 0;
13627
13628 elf_header.e_type = BYTE_GET (ehdr64.e_type);
13629 elf_header.e_machine = BYTE_GET (ehdr64.e_machine);
13630 elf_header.e_version = BYTE_GET (ehdr64.e_version);
13631 elf_header.e_entry = BYTE_GET (ehdr64.e_entry);
13632 elf_header.e_phoff = BYTE_GET (ehdr64.e_phoff);
13633 elf_header.e_shoff = BYTE_GET (ehdr64.e_shoff);
13634 elf_header.e_flags = BYTE_GET (ehdr64.e_flags);
13635 elf_header.e_ehsize = BYTE_GET (ehdr64.e_ehsize);
13636 elf_header.e_phentsize = BYTE_GET (ehdr64.e_phentsize);
13637 elf_header.e_phnum = BYTE_GET (ehdr64.e_phnum);
13638 elf_header.e_shentsize = BYTE_GET (ehdr64.e_shentsize);
13639 elf_header.e_shnum = BYTE_GET (ehdr64.e_shnum);
13640 elf_header.e_shstrndx = BYTE_GET (ehdr64.e_shstrndx);
13641 }
13642
13643 if (elf_header.e_shoff)
13644 {
13645 /* There may be some extensions in the first section header. Don't
13646 bomb if we can't read it. */
13647 if (is_32bit_elf)
13648 get_32bit_section_headers (file, 1);
13649 else
13650 get_64bit_section_headers (file, 1);
13651 }
13652
13653 return 1;
13654 }
13655
13656 /* Process one ELF object file according to the command line options.
13657 This file may actually be stored in an archive. The file is
13658 positioned at the start of the ELF object. */
13659
13660 static int
13661 process_object (char * file_name, FILE * file)
13662 {
13663 unsigned int i;
13664
13665 if (! get_file_header (file))
13666 {
13667 error (_("%s: Failed to read file header\n"), file_name);
13668 return 1;
13669 }
13670
13671 /* Initialise per file variables. */
13672 for (i = ARRAY_SIZE (version_info); i--;)
13673 version_info[i] = 0;
13674
13675 for (i = ARRAY_SIZE (dynamic_info); i--;)
13676 dynamic_info[i] = 0;
13677 dynamic_info_DT_GNU_HASH = 0;
13678
13679 /* Process the file. */
13680 if (show_name)
13681 printf (_("\nFile: %s\n"), file_name);
13682
13683 /* Initialise the dump_sects array from the cmdline_dump_sects array.
13684 Note we do this even if cmdline_dump_sects is empty because we
13685 must make sure that the dump_sets array is zeroed out before each
13686 object file is processed. */
13687 if (num_dump_sects > num_cmdline_dump_sects)
13688 memset (dump_sects, 0, num_dump_sects * sizeof (* dump_sects));
13689
13690 if (num_cmdline_dump_sects > 0)
13691 {
13692 if (num_dump_sects == 0)
13693 /* A sneaky way of allocating the dump_sects array. */
13694 request_dump_bynumber (num_cmdline_dump_sects, 0);
13695
13696 assert (num_dump_sects >= num_cmdline_dump_sects);
13697 memcpy (dump_sects, cmdline_dump_sects,
13698 num_cmdline_dump_sects * sizeof (* dump_sects));
13699 }
13700
13701 if (! process_file_header ())
13702 return 1;
13703
13704 if (! process_section_headers (file))
13705 {
13706 /* Without loaded section headers we cannot process lots of
13707 things. */
13708 do_unwind = do_version = do_dump = do_arch = 0;
13709
13710 if (! do_using_dynamic)
13711 do_syms = do_dyn_syms = do_reloc = 0;
13712 }
13713
13714 if (! process_section_groups (file))
13715 {
13716 /* Without loaded section groups we cannot process unwind. */
13717 do_unwind = 0;
13718 }
13719
13720 if (process_program_headers (file))
13721 process_dynamic_section (file);
13722
13723 process_relocs (file);
13724
13725 process_unwind (file);
13726
13727 process_symbol_table (file);
13728
13729 process_syminfo (file);
13730
13731 process_version_sections (file);
13732
13733 process_section_contents (file);
13734
13735 process_notes (file);
13736
13737 process_gnu_liblist (file);
13738
13739 process_arch_specific (file);
13740
13741 if (program_headers)
13742 {
13743 free (program_headers);
13744 program_headers = NULL;
13745 }
13746
13747 if (section_headers)
13748 {
13749 free (section_headers);
13750 section_headers = NULL;
13751 }
13752
13753 if (string_table)
13754 {
13755 free (string_table);
13756 string_table = NULL;
13757 string_table_length = 0;
13758 }
13759
13760 if (dynamic_strings)
13761 {
13762 free (dynamic_strings);
13763 dynamic_strings = NULL;
13764 dynamic_strings_length = 0;
13765 }
13766
13767 if (dynamic_symbols)
13768 {
13769 free (dynamic_symbols);
13770 dynamic_symbols = NULL;
13771 num_dynamic_syms = 0;
13772 }
13773
13774 if (dynamic_syminfo)
13775 {
13776 free (dynamic_syminfo);
13777 dynamic_syminfo = NULL;
13778 }
13779
13780 if (dynamic_section)
13781 {
13782 free (dynamic_section);
13783 dynamic_section = NULL;
13784 }
13785
13786 if (section_headers_groups)
13787 {
13788 free (section_headers_groups);
13789 section_headers_groups = NULL;
13790 }
13791
13792 if (section_groups)
13793 {
13794 struct group_list * g;
13795 struct group_list * next;
13796
13797 for (i = 0; i < group_count; i++)
13798 {
13799 for (g = section_groups [i].root; g != NULL; g = next)
13800 {
13801 next = g->next;
13802 free (g);
13803 }
13804 }
13805
13806 free (section_groups);
13807 section_groups = NULL;
13808 }
13809
13810 free_debug_memory ();
13811
13812 return 0;
13813 }
13814
13815 /* Process an ELF archive.
13816 On entry the file is positioned just after the ARMAG string. */
13817
13818 static int
13819 process_archive (char * file_name, FILE * file, bfd_boolean is_thin_archive)
13820 {
13821 struct archive_info arch;
13822 struct archive_info nested_arch;
13823 size_t got;
13824 int ret;
13825
13826 show_name = 1;
13827
13828 /* The ARCH structure is used to hold information about this archive. */
13829 arch.file_name = NULL;
13830 arch.file = NULL;
13831 arch.index_array = NULL;
13832 arch.sym_table = NULL;
13833 arch.longnames = NULL;
13834
13835 /* The NESTED_ARCH structure is used as a single-item cache of information
13836 about a nested archive (when members of a thin archive reside within
13837 another regular archive file). */
13838 nested_arch.file_name = NULL;
13839 nested_arch.file = NULL;
13840 nested_arch.index_array = NULL;
13841 nested_arch.sym_table = NULL;
13842 nested_arch.longnames = NULL;
13843
13844 if (setup_archive (&arch, file_name, file, is_thin_archive, do_archive_index) != 0)
13845 {
13846 ret = 1;
13847 goto out;
13848 }
13849
13850 if (do_archive_index)
13851 {
13852 if (arch.sym_table == NULL)
13853 error (_("%s: unable to dump the index as none was found\n"), file_name);
13854 else
13855 {
13856 unsigned int i, l;
13857 unsigned long current_pos;
13858
13859 printf (_("Index of archive %s: (%ld entries, 0x%lx bytes in the symbol table)\n"),
13860 file_name, (long) arch.index_num, arch.sym_size);
13861 current_pos = ftell (file);
13862
13863 for (i = l = 0; i < arch.index_num; i++)
13864 {
13865 if ((i == 0) || ((i > 0) && (arch.index_array[i] != arch.index_array[i - 1])))
13866 {
13867 char * member_name;
13868
13869 member_name = get_archive_member_name_at (&arch, arch.index_array[i], &nested_arch);
13870
13871 if (member_name != NULL)
13872 {
13873 char * qualified_name = make_qualified_name (&arch, &nested_arch, member_name);
13874
13875 if (qualified_name != NULL)
13876 {
13877 printf (_("Contents of binary %s at offset "), qualified_name);
13878 (void) print_vma (arch.index_array[i], PREFIX_HEX);
13879 putchar ('\n');
13880 free (qualified_name);
13881 }
13882 }
13883 }
13884
13885 if (l >= arch.sym_size)
13886 {
13887 error (_("%s: end of the symbol table reached before the end of the index\n"),
13888 file_name);
13889 break;
13890 }
13891 printf ("\t%s\n", arch.sym_table + l);
13892 l += strlen (arch.sym_table + l) + 1;
13893 }
13894
13895 if (arch.uses_64bit_indicies)
13896 l = (l + 7) & ~ 7;
13897 else
13898 l += l & 1;
13899
13900 if (l < arch.sym_size)
13901 error (_("%s: %ld bytes remain in the symbol table, but without corresponding entries in the index table\n"),
13902 file_name, arch.sym_size - l);
13903
13904 if (fseek (file, current_pos, SEEK_SET) != 0)
13905 {
13906 error (_("%s: failed to seek back to start of object files in the archive\n"), file_name);
13907 ret = 1;
13908 goto out;
13909 }
13910 }
13911
13912 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
13913 && !do_segments && !do_header && !do_dump && !do_version
13914 && !do_histogram && !do_debugging && !do_arch && !do_notes
13915 && !do_section_groups && !do_dyn_syms)
13916 {
13917 ret = 0; /* Archive index only. */
13918 goto out;
13919 }
13920 }
13921
13922 ret = 0;
13923
13924 while (1)
13925 {
13926 char * name;
13927 size_t namelen;
13928 char * qualified_name;
13929
13930 /* Read the next archive header. */
13931 if (fseek (file, arch.next_arhdr_offset, SEEK_SET) != 0)
13932 {
13933 error (_("%s: failed to seek to next archive header\n"), file_name);
13934 return 1;
13935 }
13936 got = fread (&arch.arhdr, 1, sizeof arch.arhdr, file);
13937 if (got != sizeof arch.arhdr)
13938 {
13939 if (got == 0)
13940 break;
13941 error (_("%s: failed to read archive header\n"), file_name);
13942 ret = 1;
13943 break;
13944 }
13945 if (memcmp (arch.arhdr.ar_fmag, ARFMAG, 2) != 0)
13946 {
13947 error (_("%s: did not find a valid archive header\n"), arch.file_name);
13948 ret = 1;
13949 break;
13950 }
13951
13952 arch.next_arhdr_offset += sizeof arch.arhdr;
13953
13954 archive_file_size = strtoul (arch.arhdr.ar_size, NULL, 10);
13955 if (archive_file_size & 01)
13956 ++archive_file_size;
13957
13958 name = get_archive_member_name (&arch, &nested_arch);
13959 if (name == NULL)
13960 {
13961 error (_("%s: bad archive file name\n"), file_name);
13962 ret = 1;
13963 break;
13964 }
13965 namelen = strlen (name);
13966
13967 qualified_name = make_qualified_name (&arch, &nested_arch, name);
13968 if (qualified_name == NULL)
13969 {
13970 error (_("%s: bad archive file name\n"), file_name);
13971 ret = 1;
13972 break;
13973 }
13974
13975 if (is_thin_archive && arch.nested_member_origin == 0)
13976 {
13977 /* This is a proxy for an external member of a thin archive. */
13978 FILE * member_file;
13979 char * member_file_name = adjust_relative_path (file_name, name, namelen);
13980 if (member_file_name == NULL)
13981 {
13982 ret = 1;
13983 break;
13984 }
13985
13986 member_file = fopen (member_file_name, "rb");
13987 if (member_file == NULL)
13988 {
13989 error (_("Input file '%s' is not readable.\n"), member_file_name);
13990 free (member_file_name);
13991 ret = 1;
13992 break;
13993 }
13994
13995 archive_file_offset = arch.nested_member_origin;
13996
13997 ret |= process_object (qualified_name, member_file);
13998
13999 fclose (member_file);
14000 free (member_file_name);
14001 }
14002 else if (is_thin_archive)
14003 {
14004 /* PR 15140: Allow for corrupt thin archives. */
14005 if (nested_arch.file == NULL)
14006 {
14007 error (_("%s: contains corrupt thin archive: %s\n"),
14008 file_name, name);
14009 ret = 1;
14010 break;
14011 }
14012
14013 /* This is a proxy for a member of a nested archive. */
14014 archive_file_offset = arch.nested_member_origin + sizeof arch.arhdr;
14015
14016 /* The nested archive file will have been opened and setup by
14017 get_archive_member_name. */
14018 if (fseek (nested_arch.file, archive_file_offset, SEEK_SET) != 0)
14019 {
14020 error (_("%s: failed to seek to archive member.\n"), nested_arch.file_name);
14021 ret = 1;
14022 break;
14023 }
14024
14025 ret |= process_object (qualified_name, nested_arch.file);
14026 }
14027 else
14028 {
14029 archive_file_offset = arch.next_arhdr_offset;
14030 arch.next_arhdr_offset += archive_file_size;
14031
14032 ret |= process_object (qualified_name, file);
14033 }
14034
14035 if (dump_sects != NULL)
14036 {
14037 free (dump_sects);
14038 dump_sects = NULL;
14039 num_dump_sects = 0;
14040 }
14041
14042 free (qualified_name);
14043 }
14044
14045 out:
14046 if (nested_arch.file != NULL)
14047 fclose (nested_arch.file);
14048 release_archive (&nested_arch);
14049 release_archive (&arch);
14050
14051 return ret;
14052 }
14053
14054 static int
14055 process_file (char * file_name)
14056 {
14057 FILE * file;
14058 struct stat statbuf;
14059 char armag[SARMAG];
14060 int ret;
14061
14062 if (stat (file_name, &statbuf) < 0)
14063 {
14064 if (errno == ENOENT)
14065 error (_("'%s': No such file\n"), file_name);
14066 else
14067 error (_("Could not locate '%s'. System error message: %s\n"),
14068 file_name, strerror (errno));
14069 return 1;
14070 }
14071
14072 if (! S_ISREG (statbuf.st_mode))
14073 {
14074 error (_("'%s' is not an ordinary file\n"), file_name);
14075 return 1;
14076 }
14077
14078 file = fopen (file_name, "rb");
14079 if (file == NULL)
14080 {
14081 error (_("Input file '%s' is not readable.\n"), file_name);
14082 return 1;
14083 }
14084
14085 if (fread (armag, SARMAG, 1, file) != 1)
14086 {
14087 error (_("%s: Failed to read file's magic number\n"), file_name);
14088 fclose (file);
14089 return 1;
14090 }
14091
14092 if (memcmp (armag, ARMAG, SARMAG) == 0)
14093 ret = process_archive (file_name, file, FALSE);
14094 else if (memcmp (armag, ARMAGT, SARMAG) == 0)
14095 ret = process_archive (file_name, file, TRUE);
14096 else
14097 {
14098 if (do_archive_index)
14099 error (_("File %s is not an archive so its index cannot be displayed.\n"),
14100 file_name);
14101
14102 rewind (file);
14103 archive_file_size = archive_file_offset = 0;
14104 ret = process_object (file_name, file);
14105 }
14106
14107 fclose (file);
14108
14109 return ret;
14110 }
14111
14112 #ifdef SUPPORT_DISASSEMBLY
14113 /* Needed by the i386 disassembler. For extra credit, someone could
14114 fix this so that we insert symbolic addresses here, esp for GOT/PLT
14115 symbols. */
14116
14117 void
14118 print_address (unsigned int addr, FILE * outfile)
14119 {
14120 fprintf (outfile,"0x%8.8x", addr);
14121 }
14122
14123 /* Needed by the i386 disassembler. */
14124 void
14125 db_task_printsym (unsigned int addr)
14126 {
14127 print_address (addr, stderr);
14128 }
14129 #endif
14130
14131 int
14132 main (int argc, char ** argv)
14133 {
14134 int err;
14135
14136 #if defined (HAVE_SETLOCALE) && defined (HAVE_LC_MESSAGES)
14137 setlocale (LC_MESSAGES, "");
14138 #endif
14139 #if defined (HAVE_SETLOCALE)
14140 setlocale (LC_CTYPE, "");
14141 #endif
14142 bindtextdomain (PACKAGE, LOCALEDIR);
14143 textdomain (PACKAGE);
14144
14145 expandargv (&argc, &argv);
14146
14147 parse_args (argc, argv);
14148
14149 if (num_dump_sects > 0)
14150 {
14151 /* Make a copy of the dump_sects array. */
14152 cmdline_dump_sects = (dump_type *)
14153 malloc (num_dump_sects * sizeof (* dump_sects));
14154 if (cmdline_dump_sects == NULL)
14155 error (_("Out of memory allocating dump request table.\n"));
14156 else
14157 {
14158 memcpy (cmdline_dump_sects, dump_sects,
14159 num_dump_sects * sizeof (* dump_sects));
14160 num_cmdline_dump_sects = num_dump_sects;
14161 }
14162 }
14163
14164 if (optind < (argc - 1))
14165 show_name = 1;
14166
14167 err = 0;
14168 while (optind < argc)
14169 err |= process_file (argv[optind++]);
14170
14171 if (dump_sects != NULL)
14172 free (dump_sects);
14173 if (cmdline_dump_sects != NULL)
14174 free (cmdline_dump_sects);
14175
14176 return err;
14177 }
This page took 0.354534 seconds and 3 git commands to generate.