[GOLD] PowerPC stub debug
[deliverable/binutils-gdb.git] / binutils / readelf.c
1 /* readelf.c -- display contents of an ELF format file
2 Copyright (C) 1998-2016 Free Software Foundation, Inc.
3
4 Originally developed by Eric Youngdale <eric@andante.jic.com>
5 Modifications by Nick Clifton <nickc@redhat.com>
6
7 This file is part of GNU Binutils.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
22 02110-1301, USA. */
23 \f
24 /* The difference between readelf and objdump:
25
26 Both programs are capable of displaying the contents of ELF format files,
27 so why does the binutils project have two file dumpers ?
28
29 The reason is that objdump sees an ELF file through a BFD filter of the
30 world; if BFD has a bug where, say, it disagrees about a machine constant
31 in e_flags, then the odds are good that it will remain internally
32 consistent. The linker sees it the BFD way, objdump sees it the BFD way,
33 GAS sees it the BFD way. There was need for a tool to go find out what
34 the file actually says.
35
36 This is why the readelf program does not link against the BFD library - it
37 exists as an independent program to help verify the correct working of BFD.
38
39 There is also the case that readelf can provide more information about an
40 ELF file than is provided by objdump. In particular it can display DWARF
41 debugging information which (at the moment) objdump cannot. */
42 \f
43 #include "sysdep.h"
44 #include <assert.h>
45 #include <time.h>
46 #include <zlib.h>
47 #ifdef HAVE_WCHAR_H
48 #include <wchar.h>
49 #endif
50
51 #if __GNUC__ >= 2
52 /* Define BFD64 here, even if our default architecture is 32 bit ELF
53 as this will allow us to read in and parse 64bit and 32bit ELF files.
54 Only do this if we believe that the compiler can support a 64 bit
55 data type. For now we only rely on GCC being able to do this. */
56 #define BFD64
57 #endif
58
59 #include "bfd.h"
60 #include "bucomm.h"
61 #include "elfcomm.h"
62 #include "dwarf.h"
63
64 #include "elf/common.h"
65 #include "elf/external.h"
66 #include "elf/internal.h"
67
68
69 /* Included here, before RELOC_MACROS_GEN_FUNC is defined, so that
70 we can obtain the H8 reloc numbers. We need these for the
71 get_reloc_size() function. We include h8.h again after defining
72 RELOC_MACROS_GEN_FUNC so that we get the naming function as well. */
73
74 #include "elf/h8.h"
75 #undef _ELF_H8_H
76
77 /* Undo the effects of #including reloc-macros.h. */
78
79 #undef START_RELOC_NUMBERS
80 #undef RELOC_NUMBER
81 #undef FAKE_RELOC
82 #undef EMPTY_RELOC
83 #undef END_RELOC_NUMBERS
84 #undef _RELOC_MACROS_H
85
86 /* The following headers use the elf/reloc-macros.h file to
87 automatically generate relocation recognition functions
88 such as elf_mips_reloc_type() */
89
90 #define RELOC_MACROS_GEN_FUNC
91
92 #include "elf/aarch64.h"
93 #include "elf/alpha.h"
94 #include "elf/arc.h"
95 #include "elf/arm.h"
96 #include "elf/avr.h"
97 #include "elf/bfin.h"
98 #include "elf/cr16.h"
99 #include "elf/cris.h"
100 #include "elf/crx.h"
101 #include "elf/d10v.h"
102 #include "elf/d30v.h"
103 #include "elf/dlx.h"
104 #include "elf/epiphany.h"
105 #include "elf/fr30.h"
106 #include "elf/frv.h"
107 #include "elf/ft32.h"
108 #include "elf/h8.h"
109 #include "elf/hppa.h"
110 #include "elf/i386.h"
111 #include "elf/i370.h"
112 #include "elf/i860.h"
113 #include "elf/i960.h"
114 #include "elf/ia64.h"
115 #include "elf/ip2k.h"
116 #include "elf/lm32.h"
117 #include "elf/iq2000.h"
118 #include "elf/m32c.h"
119 #include "elf/m32r.h"
120 #include "elf/m68k.h"
121 #include "elf/m68hc11.h"
122 #include "elf/mcore.h"
123 #include "elf/mep.h"
124 #include "elf/metag.h"
125 #include "elf/microblaze.h"
126 #include "elf/mips.h"
127 #include "elf/riscv.h"
128 #include "elf/mmix.h"
129 #include "elf/mn10200.h"
130 #include "elf/mn10300.h"
131 #include "elf/moxie.h"
132 #include "elf/mt.h"
133 #include "elf/msp430.h"
134 #include "elf/nds32.h"
135 #include "elf/nios2.h"
136 #include "elf/or1k.h"
137 #include "elf/pj.h"
138 #include "elf/ppc.h"
139 #include "elf/ppc64.h"
140 #include "elf/rl78.h"
141 #include "elf/rx.h"
142 #include "elf/s390.h"
143 #include "elf/score.h"
144 #include "elf/sh.h"
145 #include "elf/sparc.h"
146 #include "elf/spu.h"
147 #include "elf/tic6x.h"
148 #include "elf/tilegx.h"
149 #include "elf/tilepro.h"
150 #include "elf/v850.h"
151 #include "elf/vax.h"
152 #include "elf/visium.h"
153 #include "elf/x86-64.h"
154 #include "elf/xc16x.h"
155 #include "elf/xgate.h"
156 #include "elf/xstormy16.h"
157 #include "elf/xtensa.h"
158
159 #include "getopt.h"
160 #include "libiberty.h"
161 #include "safe-ctype.h"
162 #include "filenames.h"
163
164 #ifndef offsetof
165 #define offsetof(TYPE, MEMBER) ((size_t) &(((TYPE *) 0)->MEMBER))
166 #endif
167
168 typedef struct elf_section_list
169 {
170 Elf_Internal_Shdr * hdr;
171 struct elf_section_list * next;
172 } elf_section_list;
173
174 char * program_name = "readelf";
175 static unsigned long archive_file_offset;
176 static unsigned long archive_file_size;
177 static bfd_size_type current_file_size;
178 static unsigned long dynamic_addr;
179 static bfd_size_type dynamic_size;
180 static size_t dynamic_nent;
181 static char * dynamic_strings;
182 static unsigned long dynamic_strings_length;
183 static char * string_table;
184 static unsigned long string_table_length;
185 static unsigned long num_dynamic_syms;
186 static Elf_Internal_Sym * dynamic_symbols;
187 static Elf_Internal_Syminfo * dynamic_syminfo;
188 static unsigned long dynamic_syminfo_offset;
189 static unsigned int dynamic_syminfo_nent;
190 static char program_interpreter[PATH_MAX];
191 static bfd_vma dynamic_info[DT_ENCODING];
192 static bfd_vma dynamic_info_DT_GNU_HASH;
193 static bfd_vma version_info[16];
194 static Elf_Internal_Ehdr elf_header;
195 static Elf_Internal_Shdr * section_headers;
196 static Elf_Internal_Phdr * program_headers;
197 static Elf_Internal_Dyn * dynamic_section;
198 static elf_section_list * symtab_shndx_list;
199 static int show_name;
200 static int do_dynamic;
201 static int do_syms;
202 static int do_dyn_syms;
203 static int do_reloc;
204 static int do_sections;
205 static int do_section_groups;
206 static int do_section_details;
207 static int do_segments;
208 static int do_unwind;
209 static int do_using_dynamic;
210 static int do_header;
211 static int do_dump;
212 static int do_version;
213 static int do_histogram;
214 static int do_debugging;
215 static int do_arch;
216 static int do_notes;
217 static int do_archive_index;
218 static int is_32bit_elf;
219 static int decompress_dumps;
220
221 struct group_list
222 {
223 struct group_list * next;
224 unsigned int section_index;
225 };
226
227 struct group
228 {
229 struct group_list * root;
230 unsigned int group_index;
231 };
232
233 static size_t group_count;
234 static struct group * section_groups;
235 static struct group ** section_headers_groups;
236
237
238 /* Flag bits indicating particular types of dump. */
239 #define HEX_DUMP (1 << 0) /* The -x command line switch. */
240 #define DISASS_DUMP (1 << 1) /* The -i command line switch. */
241 #define DEBUG_DUMP (1 << 2) /* The -w command line switch. */
242 #define STRING_DUMP (1 << 3) /* The -p command line switch. */
243 #define RELOC_DUMP (1 << 4) /* The -R command line switch. */
244
245 typedef unsigned char dump_type;
246
247 /* A linked list of the section names for which dumps were requested. */
248 struct dump_list_entry
249 {
250 char * name;
251 dump_type type;
252 struct dump_list_entry * next;
253 };
254 static struct dump_list_entry * dump_sects_byname;
255
256 /* A dynamic array of flags indicating for which sections a dump
257 has been requested via command line switches. */
258 static dump_type * cmdline_dump_sects = NULL;
259 static unsigned int num_cmdline_dump_sects = 0;
260
261 /* A dynamic array of flags indicating for which sections a dump of
262 some kind has been requested. It is reset on a per-object file
263 basis and then initialised from the cmdline_dump_sects array,
264 the results of interpreting the -w switch, and the
265 dump_sects_byname list. */
266 static dump_type * dump_sects = NULL;
267 static unsigned int num_dump_sects = 0;
268
269
270 /* How to print a vma value. */
271 typedef enum print_mode
272 {
273 HEX,
274 DEC,
275 DEC_5,
276 UNSIGNED,
277 PREFIX_HEX,
278 FULL_HEX,
279 LONG_HEX
280 }
281 print_mode;
282
283 /* Versioned symbol info. */
284 enum versioned_symbol_info
285 {
286 symbol_undefined,
287 symbol_hidden,
288 symbol_public
289 };
290
291 static const char *get_symbol_version_string
292 (FILE *file, int is_dynsym, const char *strtab,
293 unsigned long int strtab_size, unsigned int si,
294 Elf_Internal_Sym *psym, enum versioned_symbol_info *sym_info,
295 unsigned short *vna_other);
296
297 #define UNKNOWN -1
298
299 #define SECTION_NAME(X) \
300 ((X) == NULL ? _("<none>") \
301 : string_table == NULL ? _("<no-name>") \
302 : ((X)->sh_name >= string_table_length ? _("<corrupt>") \
303 : string_table + (X)->sh_name))
304
305 #define DT_VERSIONTAGIDX(tag) (DT_VERNEEDNUM - (tag)) /* Reverse order! */
306
307 #define GET_ELF_SYMBOLS(file, section, sym_count) \
308 (is_32bit_elf ? get_32bit_elf_symbols (file, section, sym_count) \
309 : get_64bit_elf_symbols (file, section, sym_count))
310
311 #define VALID_DYNAMIC_NAME(offset) ((dynamic_strings != NULL) && (offset < dynamic_strings_length))
312 /* GET_DYNAMIC_NAME asssumes that VALID_DYNAMIC_NAME has
313 already been called and verified that the string exists. */
314 #define GET_DYNAMIC_NAME(offset) (dynamic_strings + offset)
315
316 #define REMOVE_ARCH_BITS(ADDR) \
317 do \
318 { \
319 if (elf_header.e_machine == EM_ARM) \
320 (ADDR) &= ~1; \
321 } \
322 while (0)
323 \f
324 /* Retrieve NMEMB structures, each SIZE bytes long from FILE starting at OFFSET +
325 the offset of the current archive member, if we are examining an archive.
326 Put the retrieved data into VAR, if it is not NULL. Otherwise allocate a buffer
327 using malloc and fill that. In either case return the pointer to the start of
328 the retrieved data or NULL if something went wrong. If something does go wrong
329 and REASON is not NULL then emit an error message using REASON as part of the
330 context. */
331
332 static void *
333 get_data (void * var, FILE * file, unsigned long offset, bfd_size_type size,
334 bfd_size_type nmemb, const char * reason)
335 {
336 void * mvar;
337 bfd_size_type amt = size * nmemb;
338
339 if (size == 0 || nmemb == 0)
340 return NULL;
341
342 /* If the size_t type is smaller than the bfd_size_type, eg because
343 you are building a 32-bit tool on a 64-bit host, then make sure
344 that when the sizes are cast to (size_t) no information is lost. */
345 if (sizeof (size_t) < sizeof (bfd_size_type)
346 && ( (bfd_size_type) ((size_t) size) != size
347 || (bfd_size_type) ((size_t) nmemb) != nmemb))
348 {
349 if (reason)
350 error (_("Size truncation prevents reading 0x%" BFD_VMA_FMT "x"
351 " elements of size 0x%" BFD_VMA_FMT "x for %s\n"),
352 nmemb, size, reason);
353 return NULL;
354 }
355
356 /* Check for size overflow. */
357 if (amt < nmemb)
358 {
359 if (reason)
360 error (_("Size overflow prevents reading 0x%" BFD_VMA_FMT "x"
361 " elements of size 0x%" BFD_VMA_FMT "x for %s\n"),
362 nmemb, size, reason);
363 return NULL;
364 }
365
366 /* Be kind to memory chekers (eg valgrind, address sanitizer) by not
367 attempting to allocate memory when the read is bound to fail. */
368 if (amt > current_file_size
369 || offset + archive_file_offset + amt > current_file_size)
370 {
371 if (reason)
372 error (_("Reading 0x%" BFD_VMA_FMT "x"
373 " bytes extends past end of file for %s\n"),
374 amt, reason);
375 return NULL;
376 }
377
378 if (fseek (file, archive_file_offset + offset, SEEK_SET))
379 {
380 if (reason)
381 error (_("Unable to seek to 0x%lx for %s\n"),
382 archive_file_offset + offset, reason);
383 return NULL;
384 }
385
386 mvar = var;
387 if (mvar == NULL)
388 {
389 /* Check for overflow. */
390 if (nmemb < (~(bfd_size_type) 0 - 1) / size)
391 /* + 1 so that we can '\0' terminate invalid string table sections. */
392 mvar = malloc ((size_t) amt + 1);
393
394 if (mvar == NULL)
395 {
396 if (reason)
397 error (_("Out of memory allocating 0x%" BFD_VMA_FMT "x"
398 " bytes for %s\n"),
399 amt, reason);
400 return NULL;
401 }
402
403 ((char *) mvar)[amt] = '\0';
404 }
405
406 if (fread (mvar, (size_t) size, (size_t) nmemb, file) != nmemb)
407 {
408 if (reason)
409 error (_("Unable to read in 0x%" BFD_VMA_FMT "x bytes of %s\n"),
410 amt, reason);
411 if (mvar != var)
412 free (mvar);
413 return NULL;
414 }
415
416 return mvar;
417 }
418
419 /* Print a VMA value. */
420
421 static int
422 print_vma (bfd_vma vma, print_mode mode)
423 {
424 int nc = 0;
425
426 switch (mode)
427 {
428 case FULL_HEX:
429 nc = printf ("0x");
430 /* Fall through. */
431
432 case LONG_HEX:
433 #ifdef BFD64
434 if (is_32bit_elf)
435 return nc + printf ("%8.8" BFD_VMA_FMT "x", vma);
436 #endif
437 printf_vma (vma);
438 return nc + 16;
439
440 case DEC_5:
441 if (vma <= 99999)
442 return printf ("%5" BFD_VMA_FMT "d", vma);
443 /* Fall through. */
444
445 case PREFIX_HEX:
446 nc = printf ("0x");
447 /* Fall through. */
448
449 case HEX:
450 return nc + printf ("%" BFD_VMA_FMT "x", vma);
451
452 case DEC:
453 return printf ("%" BFD_VMA_FMT "d", vma);
454
455 case UNSIGNED:
456 return printf ("%" BFD_VMA_FMT "u", vma);
457 }
458 return 0;
459 }
460
461 /* Display a symbol on stdout. Handles the display of control characters and
462 multibye characters (assuming the host environment supports them).
463
464 Display at most abs(WIDTH) characters, truncating as necessary, unless do_wide is true.
465
466 If WIDTH is negative then ensure that the output is at least (- WIDTH) characters,
467 padding as necessary.
468
469 Returns the number of emitted characters. */
470
471 static unsigned int
472 print_symbol (int width, const char *symbol)
473 {
474 bfd_boolean extra_padding = FALSE;
475 int num_printed = 0;
476 #ifdef HAVE_MBSTATE_T
477 mbstate_t state;
478 #endif
479 int width_remaining;
480
481 if (width < 0)
482 {
483 /* Keep the width positive. This also helps. */
484 width = - width;
485 extra_padding = TRUE;
486 }
487 assert (width != 0);
488
489 if (do_wide)
490 /* Set the remaining width to a very large value.
491 This simplifies the code below. */
492 width_remaining = INT_MAX;
493 else
494 width_remaining = width;
495
496 #ifdef HAVE_MBSTATE_T
497 /* Initialise the multibyte conversion state. */
498 memset (& state, 0, sizeof (state));
499 #endif
500
501 while (width_remaining)
502 {
503 size_t n;
504 const char c = *symbol++;
505
506 if (c == 0)
507 break;
508
509 /* Do not print control characters directly as they can affect terminal
510 settings. Such characters usually appear in the names generated
511 by the assembler for local labels. */
512 if (ISCNTRL (c))
513 {
514 if (width_remaining < 2)
515 break;
516
517 printf ("^%c", c + 0x40);
518 width_remaining -= 2;
519 num_printed += 2;
520 }
521 else if (ISPRINT (c))
522 {
523 putchar (c);
524 width_remaining --;
525 num_printed ++;
526 }
527 else
528 {
529 #ifdef HAVE_MBSTATE_T
530 wchar_t w;
531 #endif
532 /* Let printf do the hard work of displaying multibyte characters. */
533 printf ("%.1s", symbol - 1);
534 width_remaining --;
535 num_printed ++;
536
537 #ifdef HAVE_MBSTATE_T
538 /* Try to find out how many bytes made up the character that was
539 just printed. Advance the symbol pointer past the bytes that
540 were displayed. */
541 n = mbrtowc (& w, symbol - 1, MB_CUR_MAX, & state);
542 #else
543 n = 1;
544 #endif
545 if (n != (size_t) -1 && n != (size_t) -2 && n > 0)
546 symbol += (n - 1);
547 }
548 }
549
550 if (extra_padding && num_printed < width)
551 {
552 /* Fill in the remaining spaces. */
553 printf ("%-*s", width - num_printed, " ");
554 num_printed = width;
555 }
556
557 return num_printed;
558 }
559
560 /* Returns a pointer to a static buffer containing a printable version of
561 the given section's name. Like print_symbol, except that it does not try
562 to print multibyte characters, it just interprets them as hex values. */
563
564 static const char *
565 printable_section_name (const Elf_Internal_Shdr * sec)
566 {
567 #define MAX_PRINT_SEC_NAME_LEN 128
568 static char sec_name_buf [MAX_PRINT_SEC_NAME_LEN + 1];
569 const char * name = SECTION_NAME (sec);
570 char * buf = sec_name_buf;
571 char c;
572 unsigned int remaining = MAX_PRINT_SEC_NAME_LEN;
573
574 while ((c = * name ++) != 0)
575 {
576 if (ISCNTRL (c))
577 {
578 if (remaining < 2)
579 break;
580
581 * buf ++ = '^';
582 * buf ++ = c + 0x40;
583 remaining -= 2;
584 }
585 else if (ISPRINT (c))
586 {
587 * buf ++ = c;
588 remaining -= 1;
589 }
590 else
591 {
592 static char hex[17] = "0123456789ABCDEF";
593
594 if (remaining < 4)
595 break;
596 * buf ++ = '<';
597 * buf ++ = hex[(c & 0xf0) >> 4];
598 * buf ++ = hex[c & 0x0f];
599 * buf ++ = '>';
600 remaining -= 4;
601 }
602
603 if (remaining == 0)
604 break;
605 }
606
607 * buf = 0;
608 return sec_name_buf;
609 }
610
611 static const char *
612 printable_section_name_from_index (unsigned long ndx)
613 {
614 if (ndx >= elf_header.e_shnum)
615 return _("<corrupt>");
616
617 return printable_section_name (section_headers + ndx);
618 }
619
620 /* Return a pointer to section NAME, or NULL if no such section exists. */
621
622 static Elf_Internal_Shdr *
623 find_section (const char * name)
624 {
625 unsigned int i;
626
627 for (i = 0; i < elf_header.e_shnum; i++)
628 if (streq (SECTION_NAME (section_headers + i), name))
629 return section_headers + i;
630
631 return NULL;
632 }
633
634 /* Return a pointer to a section containing ADDR, or NULL if no such
635 section exists. */
636
637 static Elf_Internal_Shdr *
638 find_section_by_address (bfd_vma addr)
639 {
640 unsigned int i;
641
642 for (i = 0; i < elf_header.e_shnum; i++)
643 {
644 Elf_Internal_Shdr *sec = section_headers + i;
645 if (addr >= sec->sh_addr && addr < sec->sh_addr + sec->sh_size)
646 return sec;
647 }
648
649 return NULL;
650 }
651
652 static Elf_Internal_Shdr *
653 find_section_by_type (unsigned int type)
654 {
655 unsigned int i;
656
657 for (i = 0; i < elf_header.e_shnum; i++)
658 {
659 Elf_Internal_Shdr *sec = section_headers + i;
660 if (sec->sh_type == type)
661 return sec;
662 }
663
664 return NULL;
665 }
666
667 /* Return a pointer to section NAME, or NULL if no such section exists,
668 restricted to the list of sections given in SET. */
669
670 static Elf_Internal_Shdr *
671 find_section_in_set (const char * name, unsigned int * set)
672 {
673 unsigned int i;
674
675 if (set != NULL)
676 {
677 while ((i = *set++) > 0)
678 if (streq (SECTION_NAME (section_headers + i), name))
679 return section_headers + i;
680 }
681
682 return find_section (name);
683 }
684
685 /* Read an unsigned LEB128 encoded value from p. Set *PLEN to the number of
686 bytes read. */
687
688 static inline unsigned long
689 read_uleb128 (unsigned char *data,
690 unsigned int *length_return,
691 const unsigned char * const end)
692 {
693 return read_leb128 (data, length_return, FALSE, end);
694 }
695
696 /* Return true if the current file is for IA-64 machine and OpenVMS ABI.
697 This OS has so many departures from the ELF standard that we test it at
698 many places. */
699
700 static inline int
701 is_ia64_vms (void)
702 {
703 return elf_header.e_machine == EM_IA_64
704 && elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS;
705 }
706
707 /* Guess the relocation size commonly used by the specific machines. */
708
709 static int
710 guess_is_rela (unsigned int e_machine)
711 {
712 switch (e_machine)
713 {
714 /* Targets that use REL relocations. */
715 case EM_386:
716 case EM_IAMCU:
717 case EM_960:
718 case EM_ARM:
719 case EM_D10V:
720 case EM_CYGNUS_D10V:
721 case EM_DLX:
722 case EM_MIPS:
723 case EM_MIPS_RS3_LE:
724 case EM_CYGNUS_M32R:
725 case EM_SCORE:
726 case EM_XGATE:
727 return FALSE;
728
729 /* Targets that use RELA relocations. */
730 case EM_68K:
731 case EM_860:
732 case EM_AARCH64:
733 case EM_ADAPTEVA_EPIPHANY:
734 case EM_ALPHA:
735 case EM_ALTERA_NIOS2:
736 case EM_ARC:
737 case EM_ARC_COMPACT:
738 case EM_ARC_COMPACT2:
739 case EM_AVR:
740 case EM_AVR_OLD:
741 case EM_BLACKFIN:
742 case EM_CR16:
743 case EM_CRIS:
744 case EM_CRX:
745 case EM_D30V:
746 case EM_CYGNUS_D30V:
747 case EM_FR30:
748 case EM_FT32:
749 case EM_CYGNUS_FR30:
750 case EM_CYGNUS_FRV:
751 case EM_H8S:
752 case EM_H8_300:
753 case EM_H8_300H:
754 case EM_IA_64:
755 case EM_IP2K:
756 case EM_IP2K_OLD:
757 case EM_IQ2000:
758 case EM_LATTICEMICO32:
759 case EM_M32C_OLD:
760 case EM_M32C:
761 case EM_M32R:
762 case EM_MCORE:
763 case EM_CYGNUS_MEP:
764 case EM_METAG:
765 case EM_MMIX:
766 case EM_MN10200:
767 case EM_CYGNUS_MN10200:
768 case EM_MN10300:
769 case EM_CYGNUS_MN10300:
770 case EM_MOXIE:
771 case EM_MSP430:
772 case EM_MSP430_OLD:
773 case EM_MT:
774 case EM_NDS32:
775 case EM_NIOS32:
776 case EM_OR1K:
777 case EM_PPC64:
778 case EM_PPC:
779 case EM_RISCV:
780 case EM_RL78:
781 case EM_RX:
782 case EM_S390:
783 case EM_S390_OLD:
784 case EM_SH:
785 case EM_SPARC:
786 case EM_SPARC32PLUS:
787 case EM_SPARCV9:
788 case EM_SPU:
789 case EM_TI_C6000:
790 case EM_TILEGX:
791 case EM_TILEPRO:
792 case EM_V800:
793 case EM_V850:
794 case EM_CYGNUS_V850:
795 case EM_VAX:
796 case EM_VISIUM:
797 case EM_X86_64:
798 case EM_L1OM:
799 case EM_K1OM:
800 case EM_XSTORMY16:
801 case EM_XTENSA:
802 case EM_XTENSA_OLD:
803 case EM_MICROBLAZE:
804 case EM_MICROBLAZE_OLD:
805 return TRUE;
806
807 case EM_68HC05:
808 case EM_68HC08:
809 case EM_68HC11:
810 case EM_68HC16:
811 case EM_FX66:
812 case EM_ME16:
813 case EM_MMA:
814 case EM_NCPU:
815 case EM_NDR1:
816 case EM_PCP:
817 case EM_ST100:
818 case EM_ST19:
819 case EM_ST7:
820 case EM_ST9PLUS:
821 case EM_STARCORE:
822 case EM_SVX:
823 case EM_TINYJ:
824 default:
825 warn (_("Don't know about relocations on this machine architecture\n"));
826 return FALSE;
827 }
828 }
829
830 static int
831 slurp_rela_relocs (FILE * file,
832 unsigned long rel_offset,
833 unsigned long rel_size,
834 Elf_Internal_Rela ** relasp,
835 unsigned long * nrelasp)
836 {
837 Elf_Internal_Rela * relas;
838 size_t nrelas;
839 unsigned int i;
840
841 if (is_32bit_elf)
842 {
843 Elf32_External_Rela * erelas;
844
845 erelas = (Elf32_External_Rela *) get_data (NULL, file, rel_offset, 1,
846 rel_size, _("32-bit relocation data"));
847 if (!erelas)
848 return 0;
849
850 nrelas = rel_size / sizeof (Elf32_External_Rela);
851
852 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
853 sizeof (Elf_Internal_Rela));
854
855 if (relas == NULL)
856 {
857 free (erelas);
858 error (_("out of memory parsing relocs\n"));
859 return 0;
860 }
861
862 for (i = 0; i < nrelas; i++)
863 {
864 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
865 relas[i].r_info = BYTE_GET (erelas[i].r_info);
866 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
867 }
868
869 free (erelas);
870 }
871 else
872 {
873 Elf64_External_Rela * erelas;
874
875 erelas = (Elf64_External_Rela *) get_data (NULL, file, rel_offset, 1,
876 rel_size, _("64-bit relocation data"));
877 if (!erelas)
878 return 0;
879
880 nrelas = rel_size / sizeof (Elf64_External_Rela);
881
882 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
883 sizeof (Elf_Internal_Rela));
884
885 if (relas == NULL)
886 {
887 free (erelas);
888 error (_("out of memory parsing relocs\n"));
889 return 0;
890 }
891
892 for (i = 0; i < nrelas; i++)
893 {
894 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
895 relas[i].r_info = BYTE_GET (erelas[i].r_info);
896 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
897
898 /* The #ifdef BFD64 below is to prevent a compile time
899 warning. We know that if we do not have a 64 bit data
900 type that we will never execute this code anyway. */
901 #ifdef BFD64
902 if (elf_header.e_machine == EM_MIPS
903 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
904 {
905 /* In little-endian objects, r_info isn't really a
906 64-bit little-endian value: it has a 32-bit
907 little-endian symbol index followed by four
908 individual byte fields. Reorder INFO
909 accordingly. */
910 bfd_vma inf = relas[i].r_info;
911 inf = (((inf & 0xffffffff) << 32)
912 | ((inf >> 56) & 0xff)
913 | ((inf >> 40) & 0xff00)
914 | ((inf >> 24) & 0xff0000)
915 | ((inf >> 8) & 0xff000000));
916 relas[i].r_info = inf;
917 }
918 #endif /* BFD64 */
919 }
920
921 free (erelas);
922 }
923 *relasp = relas;
924 *nrelasp = nrelas;
925 return 1;
926 }
927
928 static int
929 slurp_rel_relocs (FILE * file,
930 unsigned long rel_offset,
931 unsigned long rel_size,
932 Elf_Internal_Rela ** relsp,
933 unsigned long * nrelsp)
934 {
935 Elf_Internal_Rela * rels;
936 size_t nrels;
937 unsigned int i;
938
939 if (is_32bit_elf)
940 {
941 Elf32_External_Rel * erels;
942
943 erels = (Elf32_External_Rel *) get_data (NULL, file, rel_offset, 1,
944 rel_size, _("32-bit relocation data"));
945 if (!erels)
946 return 0;
947
948 nrels = rel_size / sizeof (Elf32_External_Rel);
949
950 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
951
952 if (rels == NULL)
953 {
954 free (erels);
955 error (_("out of memory parsing relocs\n"));
956 return 0;
957 }
958
959 for (i = 0; i < nrels; i++)
960 {
961 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
962 rels[i].r_info = BYTE_GET (erels[i].r_info);
963 rels[i].r_addend = 0;
964 }
965
966 free (erels);
967 }
968 else
969 {
970 Elf64_External_Rel * erels;
971
972 erels = (Elf64_External_Rel *) get_data (NULL, file, rel_offset, 1,
973 rel_size, _("64-bit relocation data"));
974 if (!erels)
975 return 0;
976
977 nrels = rel_size / sizeof (Elf64_External_Rel);
978
979 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
980
981 if (rels == NULL)
982 {
983 free (erels);
984 error (_("out of memory parsing relocs\n"));
985 return 0;
986 }
987
988 for (i = 0; i < nrels; i++)
989 {
990 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
991 rels[i].r_info = BYTE_GET (erels[i].r_info);
992 rels[i].r_addend = 0;
993
994 /* The #ifdef BFD64 below is to prevent a compile time
995 warning. We know that if we do not have a 64 bit data
996 type that we will never execute this code anyway. */
997 #ifdef BFD64
998 if (elf_header.e_machine == EM_MIPS
999 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
1000 {
1001 /* In little-endian objects, r_info isn't really a
1002 64-bit little-endian value: it has a 32-bit
1003 little-endian symbol index followed by four
1004 individual byte fields. Reorder INFO
1005 accordingly. */
1006 bfd_vma inf = rels[i].r_info;
1007 inf = (((inf & 0xffffffff) << 32)
1008 | ((inf >> 56) & 0xff)
1009 | ((inf >> 40) & 0xff00)
1010 | ((inf >> 24) & 0xff0000)
1011 | ((inf >> 8) & 0xff000000));
1012 rels[i].r_info = inf;
1013 }
1014 #endif /* BFD64 */
1015 }
1016
1017 free (erels);
1018 }
1019 *relsp = rels;
1020 *nrelsp = nrels;
1021 return 1;
1022 }
1023
1024 /* Returns the reloc type extracted from the reloc info field. */
1025
1026 static unsigned int
1027 get_reloc_type (bfd_vma reloc_info)
1028 {
1029 if (is_32bit_elf)
1030 return ELF32_R_TYPE (reloc_info);
1031
1032 switch (elf_header.e_machine)
1033 {
1034 case EM_MIPS:
1035 /* Note: We assume that reloc_info has already been adjusted for us. */
1036 return ELF64_MIPS_R_TYPE (reloc_info);
1037
1038 case EM_SPARCV9:
1039 return ELF64_R_TYPE_ID (reloc_info);
1040
1041 default:
1042 return ELF64_R_TYPE (reloc_info);
1043 }
1044 }
1045
1046 /* Return the symbol index extracted from the reloc info field. */
1047
1048 static bfd_vma
1049 get_reloc_symindex (bfd_vma reloc_info)
1050 {
1051 return is_32bit_elf ? ELF32_R_SYM (reloc_info) : ELF64_R_SYM (reloc_info);
1052 }
1053
1054 static inline bfd_boolean
1055 uses_msp430x_relocs (void)
1056 {
1057 return
1058 elf_header.e_machine == EM_MSP430 /* Paranoia. */
1059 /* GCC uses osabi == ELFOSBI_STANDALONE. */
1060 && (((elf_header.e_flags & EF_MSP430_MACH) == E_MSP430_MACH_MSP430X)
1061 /* TI compiler uses ELFOSABI_NONE. */
1062 || (elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE));
1063 }
1064
1065 /* Display the contents of the relocation data found at the specified
1066 offset. */
1067
1068 static void
1069 dump_relocations (FILE * file,
1070 unsigned long rel_offset,
1071 unsigned long rel_size,
1072 Elf_Internal_Sym * symtab,
1073 unsigned long nsyms,
1074 char * strtab,
1075 unsigned long strtablen,
1076 int is_rela,
1077 int is_dynsym)
1078 {
1079 unsigned int i;
1080 Elf_Internal_Rela * rels;
1081
1082 if (is_rela == UNKNOWN)
1083 is_rela = guess_is_rela (elf_header.e_machine);
1084
1085 if (is_rela)
1086 {
1087 if (!slurp_rela_relocs (file, rel_offset, rel_size, &rels, &rel_size))
1088 return;
1089 }
1090 else
1091 {
1092 if (!slurp_rel_relocs (file, rel_offset, rel_size, &rels, &rel_size))
1093 return;
1094 }
1095
1096 if (is_32bit_elf)
1097 {
1098 if (is_rela)
1099 {
1100 if (do_wide)
1101 printf (_(" Offset Info Type Sym. Value Symbol's Name + Addend\n"));
1102 else
1103 printf (_(" Offset Info Type Sym.Value Sym. Name + Addend\n"));
1104 }
1105 else
1106 {
1107 if (do_wide)
1108 printf (_(" Offset Info Type Sym. Value Symbol's Name\n"));
1109 else
1110 printf (_(" Offset Info Type Sym.Value Sym. Name\n"));
1111 }
1112 }
1113 else
1114 {
1115 if (is_rela)
1116 {
1117 if (do_wide)
1118 printf (_(" Offset Info Type Symbol's Value Symbol's Name + Addend\n"));
1119 else
1120 printf (_(" Offset Info Type Sym. Value Sym. Name + Addend\n"));
1121 }
1122 else
1123 {
1124 if (do_wide)
1125 printf (_(" Offset Info Type Symbol's Value Symbol's Name\n"));
1126 else
1127 printf (_(" Offset Info Type Sym. Value Sym. Name\n"));
1128 }
1129 }
1130
1131 for (i = 0; i < rel_size; i++)
1132 {
1133 const char * rtype;
1134 bfd_vma offset;
1135 bfd_vma inf;
1136 bfd_vma symtab_index;
1137 bfd_vma type;
1138
1139 offset = rels[i].r_offset;
1140 inf = rels[i].r_info;
1141
1142 type = get_reloc_type (inf);
1143 symtab_index = get_reloc_symindex (inf);
1144
1145 if (is_32bit_elf)
1146 {
1147 printf ("%8.8lx %8.8lx ",
1148 (unsigned long) offset & 0xffffffff,
1149 (unsigned long) inf & 0xffffffff);
1150 }
1151 else
1152 {
1153 #if BFD_HOST_64BIT_LONG
1154 printf (do_wide
1155 ? "%16.16lx %16.16lx "
1156 : "%12.12lx %12.12lx ",
1157 offset, inf);
1158 #elif BFD_HOST_64BIT_LONG_LONG
1159 #ifndef __MSVCRT__
1160 printf (do_wide
1161 ? "%16.16llx %16.16llx "
1162 : "%12.12llx %12.12llx ",
1163 offset, inf);
1164 #else
1165 printf (do_wide
1166 ? "%16.16I64x %16.16I64x "
1167 : "%12.12I64x %12.12I64x ",
1168 offset, inf);
1169 #endif
1170 #else
1171 printf (do_wide
1172 ? "%8.8lx%8.8lx %8.8lx%8.8lx "
1173 : "%4.4lx%8.8lx %4.4lx%8.8lx ",
1174 _bfd_int64_high (offset),
1175 _bfd_int64_low (offset),
1176 _bfd_int64_high (inf),
1177 _bfd_int64_low (inf));
1178 #endif
1179 }
1180
1181 switch (elf_header.e_machine)
1182 {
1183 default:
1184 rtype = NULL;
1185 break;
1186
1187 case EM_AARCH64:
1188 rtype = elf_aarch64_reloc_type (type);
1189 break;
1190
1191 case EM_M32R:
1192 case EM_CYGNUS_M32R:
1193 rtype = elf_m32r_reloc_type (type);
1194 break;
1195
1196 case EM_386:
1197 case EM_IAMCU:
1198 rtype = elf_i386_reloc_type (type);
1199 break;
1200
1201 case EM_68HC11:
1202 case EM_68HC12:
1203 rtype = elf_m68hc11_reloc_type (type);
1204 break;
1205
1206 case EM_68K:
1207 rtype = elf_m68k_reloc_type (type);
1208 break;
1209
1210 case EM_960:
1211 rtype = elf_i960_reloc_type (type);
1212 break;
1213
1214 case EM_AVR:
1215 case EM_AVR_OLD:
1216 rtype = elf_avr_reloc_type (type);
1217 break;
1218
1219 case EM_OLD_SPARCV9:
1220 case EM_SPARC32PLUS:
1221 case EM_SPARCV9:
1222 case EM_SPARC:
1223 rtype = elf_sparc_reloc_type (type);
1224 break;
1225
1226 case EM_SPU:
1227 rtype = elf_spu_reloc_type (type);
1228 break;
1229
1230 case EM_V800:
1231 rtype = v800_reloc_type (type);
1232 break;
1233 case EM_V850:
1234 case EM_CYGNUS_V850:
1235 rtype = v850_reloc_type (type);
1236 break;
1237
1238 case EM_D10V:
1239 case EM_CYGNUS_D10V:
1240 rtype = elf_d10v_reloc_type (type);
1241 break;
1242
1243 case EM_D30V:
1244 case EM_CYGNUS_D30V:
1245 rtype = elf_d30v_reloc_type (type);
1246 break;
1247
1248 case EM_DLX:
1249 rtype = elf_dlx_reloc_type (type);
1250 break;
1251
1252 case EM_SH:
1253 rtype = elf_sh_reloc_type (type);
1254 break;
1255
1256 case EM_MN10300:
1257 case EM_CYGNUS_MN10300:
1258 rtype = elf_mn10300_reloc_type (type);
1259 break;
1260
1261 case EM_MN10200:
1262 case EM_CYGNUS_MN10200:
1263 rtype = elf_mn10200_reloc_type (type);
1264 break;
1265
1266 case EM_FR30:
1267 case EM_CYGNUS_FR30:
1268 rtype = elf_fr30_reloc_type (type);
1269 break;
1270
1271 case EM_CYGNUS_FRV:
1272 rtype = elf_frv_reloc_type (type);
1273 break;
1274
1275 case EM_FT32:
1276 rtype = elf_ft32_reloc_type (type);
1277 break;
1278
1279 case EM_MCORE:
1280 rtype = elf_mcore_reloc_type (type);
1281 break;
1282
1283 case EM_MMIX:
1284 rtype = elf_mmix_reloc_type (type);
1285 break;
1286
1287 case EM_MOXIE:
1288 rtype = elf_moxie_reloc_type (type);
1289 break;
1290
1291 case EM_MSP430:
1292 if (uses_msp430x_relocs ())
1293 {
1294 rtype = elf_msp430x_reloc_type (type);
1295 break;
1296 }
1297 /* Fall through. */
1298 case EM_MSP430_OLD:
1299 rtype = elf_msp430_reloc_type (type);
1300 break;
1301
1302 case EM_NDS32:
1303 rtype = elf_nds32_reloc_type (type);
1304 break;
1305
1306 case EM_PPC:
1307 rtype = elf_ppc_reloc_type (type);
1308 break;
1309
1310 case EM_PPC64:
1311 rtype = elf_ppc64_reloc_type (type);
1312 break;
1313
1314 case EM_MIPS:
1315 case EM_MIPS_RS3_LE:
1316 rtype = elf_mips_reloc_type (type);
1317 break;
1318
1319 case EM_RISCV:
1320 rtype = elf_riscv_reloc_type (type);
1321 break;
1322
1323 case EM_ALPHA:
1324 rtype = elf_alpha_reloc_type (type);
1325 break;
1326
1327 case EM_ARM:
1328 rtype = elf_arm_reloc_type (type);
1329 break;
1330
1331 case EM_ARC:
1332 case EM_ARC_COMPACT:
1333 case EM_ARC_COMPACT2:
1334 rtype = elf_arc_reloc_type (type);
1335 break;
1336
1337 case EM_PARISC:
1338 rtype = elf_hppa_reloc_type (type);
1339 break;
1340
1341 case EM_H8_300:
1342 case EM_H8_300H:
1343 case EM_H8S:
1344 rtype = elf_h8_reloc_type (type);
1345 break;
1346
1347 case EM_OR1K:
1348 rtype = elf_or1k_reloc_type (type);
1349 break;
1350
1351 case EM_PJ:
1352 case EM_PJ_OLD:
1353 rtype = elf_pj_reloc_type (type);
1354 break;
1355 case EM_IA_64:
1356 rtype = elf_ia64_reloc_type (type);
1357 break;
1358
1359 case EM_CRIS:
1360 rtype = elf_cris_reloc_type (type);
1361 break;
1362
1363 case EM_860:
1364 rtype = elf_i860_reloc_type (type);
1365 break;
1366
1367 case EM_X86_64:
1368 case EM_L1OM:
1369 case EM_K1OM:
1370 rtype = elf_x86_64_reloc_type (type);
1371 break;
1372
1373 case EM_S370:
1374 rtype = i370_reloc_type (type);
1375 break;
1376
1377 case EM_S390_OLD:
1378 case EM_S390:
1379 rtype = elf_s390_reloc_type (type);
1380 break;
1381
1382 case EM_SCORE:
1383 rtype = elf_score_reloc_type (type);
1384 break;
1385
1386 case EM_XSTORMY16:
1387 rtype = elf_xstormy16_reloc_type (type);
1388 break;
1389
1390 case EM_CRX:
1391 rtype = elf_crx_reloc_type (type);
1392 break;
1393
1394 case EM_VAX:
1395 rtype = elf_vax_reloc_type (type);
1396 break;
1397
1398 case EM_VISIUM:
1399 rtype = elf_visium_reloc_type (type);
1400 break;
1401
1402 case EM_ADAPTEVA_EPIPHANY:
1403 rtype = elf_epiphany_reloc_type (type);
1404 break;
1405
1406 case EM_IP2K:
1407 case EM_IP2K_OLD:
1408 rtype = elf_ip2k_reloc_type (type);
1409 break;
1410
1411 case EM_IQ2000:
1412 rtype = elf_iq2000_reloc_type (type);
1413 break;
1414
1415 case EM_XTENSA_OLD:
1416 case EM_XTENSA:
1417 rtype = elf_xtensa_reloc_type (type);
1418 break;
1419
1420 case EM_LATTICEMICO32:
1421 rtype = elf_lm32_reloc_type (type);
1422 break;
1423
1424 case EM_M32C_OLD:
1425 case EM_M32C:
1426 rtype = elf_m32c_reloc_type (type);
1427 break;
1428
1429 case EM_MT:
1430 rtype = elf_mt_reloc_type (type);
1431 break;
1432
1433 case EM_BLACKFIN:
1434 rtype = elf_bfin_reloc_type (type);
1435 break;
1436
1437 case EM_CYGNUS_MEP:
1438 rtype = elf_mep_reloc_type (type);
1439 break;
1440
1441 case EM_CR16:
1442 rtype = elf_cr16_reloc_type (type);
1443 break;
1444
1445 case EM_MICROBLAZE:
1446 case EM_MICROBLAZE_OLD:
1447 rtype = elf_microblaze_reloc_type (type);
1448 break;
1449
1450 case EM_RL78:
1451 rtype = elf_rl78_reloc_type (type);
1452 break;
1453
1454 case EM_RX:
1455 rtype = elf_rx_reloc_type (type);
1456 break;
1457
1458 case EM_METAG:
1459 rtype = elf_metag_reloc_type (type);
1460 break;
1461
1462 case EM_XC16X:
1463 case EM_C166:
1464 rtype = elf_xc16x_reloc_type (type);
1465 break;
1466
1467 case EM_TI_C6000:
1468 rtype = elf_tic6x_reloc_type (type);
1469 break;
1470
1471 case EM_TILEGX:
1472 rtype = elf_tilegx_reloc_type (type);
1473 break;
1474
1475 case EM_TILEPRO:
1476 rtype = elf_tilepro_reloc_type (type);
1477 break;
1478
1479 case EM_XGATE:
1480 rtype = elf_xgate_reloc_type (type);
1481 break;
1482
1483 case EM_ALTERA_NIOS2:
1484 rtype = elf_nios2_reloc_type (type);
1485 break;
1486 }
1487
1488 if (rtype == NULL)
1489 printf (_("unrecognized: %-7lx"), (unsigned long) type & 0xffffffff);
1490 else
1491 printf (do_wide ? "%-22.22s" : "%-17.17s", rtype);
1492
1493 if (elf_header.e_machine == EM_ALPHA
1494 && rtype != NULL
1495 && streq (rtype, "R_ALPHA_LITUSE")
1496 && is_rela)
1497 {
1498 switch (rels[i].r_addend)
1499 {
1500 case LITUSE_ALPHA_ADDR: rtype = "ADDR"; break;
1501 case LITUSE_ALPHA_BASE: rtype = "BASE"; break;
1502 case LITUSE_ALPHA_BYTOFF: rtype = "BYTOFF"; break;
1503 case LITUSE_ALPHA_JSR: rtype = "JSR"; break;
1504 case LITUSE_ALPHA_TLSGD: rtype = "TLSGD"; break;
1505 case LITUSE_ALPHA_TLSLDM: rtype = "TLSLDM"; break;
1506 case LITUSE_ALPHA_JSRDIRECT: rtype = "JSRDIRECT"; break;
1507 default: rtype = NULL;
1508 }
1509 if (rtype)
1510 printf (" (%s)", rtype);
1511 else
1512 {
1513 putchar (' ');
1514 printf (_("<unknown addend: %lx>"),
1515 (unsigned long) rels[i].r_addend);
1516 }
1517 }
1518 else if (symtab_index)
1519 {
1520 if (symtab == NULL || symtab_index >= nsyms)
1521 printf (_(" bad symbol index: %08lx"), (unsigned long) symtab_index);
1522 else
1523 {
1524 Elf_Internal_Sym * psym;
1525 const char * version_string;
1526 enum versioned_symbol_info sym_info;
1527 unsigned short vna_other;
1528
1529 psym = symtab + symtab_index;
1530
1531 version_string
1532 = get_symbol_version_string (file, is_dynsym,
1533 strtab, strtablen,
1534 symtab_index,
1535 psym,
1536 &sym_info,
1537 &vna_other);
1538
1539 printf (" ");
1540
1541 if (ELF_ST_TYPE (psym->st_info) == STT_GNU_IFUNC)
1542 {
1543 const char * name;
1544 unsigned int len;
1545 unsigned int width = is_32bit_elf ? 8 : 14;
1546
1547 /* Relocations against GNU_IFUNC symbols do not use the value
1548 of the symbol as the address to relocate against. Instead
1549 they invoke the function named by the symbol and use its
1550 result as the address for relocation.
1551
1552 To indicate this to the user, do not display the value of
1553 the symbol in the "Symbols's Value" field. Instead show
1554 its name followed by () as a hint that the symbol is
1555 invoked. */
1556
1557 if (strtab == NULL
1558 || psym->st_name == 0
1559 || psym->st_name >= strtablen)
1560 name = "??";
1561 else
1562 name = strtab + psym->st_name;
1563
1564 len = print_symbol (width, name);
1565 if (version_string)
1566 printf (sym_info == symbol_public ? "@@%s" : "@%s",
1567 version_string);
1568 printf ("()%-*s", len <= width ? (width + 1) - len : 1, " ");
1569 }
1570 else
1571 {
1572 print_vma (psym->st_value, LONG_HEX);
1573
1574 printf (is_32bit_elf ? " " : " ");
1575 }
1576
1577 if (psym->st_name == 0)
1578 {
1579 const char * sec_name = "<null>";
1580 char name_buf[40];
1581
1582 if (ELF_ST_TYPE (psym->st_info) == STT_SECTION)
1583 {
1584 if (psym->st_shndx < elf_header.e_shnum)
1585 sec_name = SECTION_NAME (section_headers + psym->st_shndx);
1586 else if (psym->st_shndx == SHN_ABS)
1587 sec_name = "ABS";
1588 else if (psym->st_shndx == SHN_COMMON)
1589 sec_name = "COMMON";
1590 else if ((elf_header.e_machine == EM_MIPS
1591 && psym->st_shndx == SHN_MIPS_SCOMMON)
1592 || (elf_header.e_machine == EM_TI_C6000
1593 && psym->st_shndx == SHN_TIC6X_SCOMMON))
1594 sec_name = "SCOMMON";
1595 else if (elf_header.e_machine == EM_MIPS
1596 && psym->st_shndx == SHN_MIPS_SUNDEFINED)
1597 sec_name = "SUNDEF";
1598 else if ((elf_header.e_machine == EM_X86_64
1599 || elf_header.e_machine == EM_L1OM
1600 || elf_header.e_machine == EM_K1OM)
1601 && psym->st_shndx == SHN_X86_64_LCOMMON)
1602 sec_name = "LARGE_COMMON";
1603 else if (elf_header.e_machine == EM_IA_64
1604 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX
1605 && psym->st_shndx == SHN_IA_64_ANSI_COMMON)
1606 sec_name = "ANSI_COM";
1607 else if (is_ia64_vms ()
1608 && psym->st_shndx == SHN_IA_64_VMS_SYMVEC)
1609 sec_name = "VMS_SYMVEC";
1610 else
1611 {
1612 sprintf (name_buf, "<section 0x%x>",
1613 (unsigned int) psym->st_shndx);
1614 sec_name = name_buf;
1615 }
1616 }
1617 print_symbol (22, sec_name);
1618 }
1619 else if (strtab == NULL)
1620 printf (_("<string table index: %3ld>"), psym->st_name);
1621 else if (psym->st_name >= strtablen)
1622 printf (_("<corrupt string table index: %3ld>"), psym->st_name);
1623 else
1624 {
1625 print_symbol (22, strtab + psym->st_name);
1626 if (version_string)
1627 printf (sym_info == symbol_public ? "@@%s" : "@%s",
1628 version_string);
1629 }
1630
1631 if (is_rela)
1632 {
1633 bfd_vma off = rels[i].r_addend;
1634
1635 if ((bfd_signed_vma) off < 0)
1636 printf (" - %" BFD_VMA_FMT "x", - off);
1637 else
1638 printf (" + %" BFD_VMA_FMT "x", off);
1639 }
1640 }
1641 }
1642 else if (is_rela)
1643 {
1644 bfd_vma off = rels[i].r_addend;
1645
1646 printf ("%*c", is_32bit_elf ? 12 : 20, ' ');
1647 if ((bfd_signed_vma) off < 0)
1648 printf ("-%" BFD_VMA_FMT "x", - off);
1649 else
1650 printf ("%" BFD_VMA_FMT "x", off);
1651 }
1652
1653 if (elf_header.e_machine == EM_SPARCV9
1654 && rtype != NULL
1655 && streq (rtype, "R_SPARC_OLO10"))
1656 printf (" + %lx", (unsigned long) ELF64_R_TYPE_DATA (inf));
1657
1658 putchar ('\n');
1659
1660 #ifdef BFD64
1661 if (! is_32bit_elf && elf_header.e_machine == EM_MIPS)
1662 {
1663 bfd_vma type2 = ELF64_MIPS_R_TYPE2 (inf);
1664 bfd_vma type3 = ELF64_MIPS_R_TYPE3 (inf);
1665 const char * rtype2 = elf_mips_reloc_type (type2);
1666 const char * rtype3 = elf_mips_reloc_type (type3);
1667
1668 printf (" Type2: ");
1669
1670 if (rtype2 == NULL)
1671 printf (_("unrecognized: %-7lx"),
1672 (unsigned long) type2 & 0xffffffff);
1673 else
1674 printf ("%-17.17s", rtype2);
1675
1676 printf ("\n Type3: ");
1677
1678 if (rtype3 == NULL)
1679 printf (_("unrecognized: %-7lx"),
1680 (unsigned long) type3 & 0xffffffff);
1681 else
1682 printf ("%-17.17s", rtype3);
1683
1684 putchar ('\n');
1685 }
1686 #endif /* BFD64 */
1687 }
1688
1689 free (rels);
1690 }
1691
1692 static const char *
1693 get_mips_dynamic_type (unsigned long type)
1694 {
1695 switch (type)
1696 {
1697 case DT_MIPS_RLD_VERSION: return "MIPS_RLD_VERSION";
1698 case DT_MIPS_TIME_STAMP: return "MIPS_TIME_STAMP";
1699 case DT_MIPS_ICHECKSUM: return "MIPS_ICHECKSUM";
1700 case DT_MIPS_IVERSION: return "MIPS_IVERSION";
1701 case DT_MIPS_FLAGS: return "MIPS_FLAGS";
1702 case DT_MIPS_BASE_ADDRESS: return "MIPS_BASE_ADDRESS";
1703 case DT_MIPS_MSYM: return "MIPS_MSYM";
1704 case DT_MIPS_CONFLICT: return "MIPS_CONFLICT";
1705 case DT_MIPS_LIBLIST: return "MIPS_LIBLIST";
1706 case DT_MIPS_LOCAL_GOTNO: return "MIPS_LOCAL_GOTNO";
1707 case DT_MIPS_CONFLICTNO: return "MIPS_CONFLICTNO";
1708 case DT_MIPS_LIBLISTNO: return "MIPS_LIBLISTNO";
1709 case DT_MIPS_SYMTABNO: return "MIPS_SYMTABNO";
1710 case DT_MIPS_UNREFEXTNO: return "MIPS_UNREFEXTNO";
1711 case DT_MIPS_GOTSYM: return "MIPS_GOTSYM";
1712 case DT_MIPS_HIPAGENO: return "MIPS_HIPAGENO";
1713 case DT_MIPS_RLD_MAP: return "MIPS_RLD_MAP";
1714 case DT_MIPS_RLD_MAP_REL: return "MIPS_RLD_MAP_REL";
1715 case DT_MIPS_DELTA_CLASS: return "MIPS_DELTA_CLASS";
1716 case DT_MIPS_DELTA_CLASS_NO: return "MIPS_DELTA_CLASS_NO";
1717 case DT_MIPS_DELTA_INSTANCE: return "MIPS_DELTA_INSTANCE";
1718 case DT_MIPS_DELTA_INSTANCE_NO: return "MIPS_DELTA_INSTANCE_NO";
1719 case DT_MIPS_DELTA_RELOC: return "MIPS_DELTA_RELOC";
1720 case DT_MIPS_DELTA_RELOC_NO: return "MIPS_DELTA_RELOC_NO";
1721 case DT_MIPS_DELTA_SYM: return "MIPS_DELTA_SYM";
1722 case DT_MIPS_DELTA_SYM_NO: return "MIPS_DELTA_SYM_NO";
1723 case DT_MIPS_DELTA_CLASSSYM: return "MIPS_DELTA_CLASSSYM";
1724 case DT_MIPS_DELTA_CLASSSYM_NO: return "MIPS_DELTA_CLASSSYM_NO";
1725 case DT_MIPS_CXX_FLAGS: return "MIPS_CXX_FLAGS";
1726 case DT_MIPS_PIXIE_INIT: return "MIPS_PIXIE_INIT";
1727 case DT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
1728 case DT_MIPS_LOCALPAGE_GOTIDX: return "MIPS_LOCALPAGE_GOTIDX";
1729 case DT_MIPS_LOCAL_GOTIDX: return "MIPS_LOCAL_GOTIDX";
1730 case DT_MIPS_HIDDEN_GOTIDX: return "MIPS_HIDDEN_GOTIDX";
1731 case DT_MIPS_PROTECTED_GOTIDX: return "MIPS_PROTECTED_GOTIDX";
1732 case DT_MIPS_OPTIONS: return "MIPS_OPTIONS";
1733 case DT_MIPS_INTERFACE: return "MIPS_INTERFACE";
1734 case DT_MIPS_DYNSTR_ALIGN: return "MIPS_DYNSTR_ALIGN";
1735 case DT_MIPS_INTERFACE_SIZE: return "MIPS_INTERFACE_SIZE";
1736 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: return "MIPS_RLD_TEXT_RESOLVE_ADDR";
1737 case DT_MIPS_PERF_SUFFIX: return "MIPS_PERF_SUFFIX";
1738 case DT_MIPS_COMPACT_SIZE: return "MIPS_COMPACT_SIZE";
1739 case DT_MIPS_GP_VALUE: return "MIPS_GP_VALUE";
1740 case DT_MIPS_AUX_DYNAMIC: return "MIPS_AUX_DYNAMIC";
1741 case DT_MIPS_PLTGOT: return "MIPS_PLTGOT";
1742 case DT_MIPS_RWPLT: return "MIPS_RWPLT";
1743 default:
1744 return NULL;
1745 }
1746 }
1747
1748 static const char *
1749 get_sparc64_dynamic_type (unsigned long type)
1750 {
1751 switch (type)
1752 {
1753 case DT_SPARC_REGISTER: return "SPARC_REGISTER";
1754 default:
1755 return NULL;
1756 }
1757 }
1758
1759 static const char *
1760 get_ppc_dynamic_type (unsigned long type)
1761 {
1762 switch (type)
1763 {
1764 case DT_PPC_GOT: return "PPC_GOT";
1765 case DT_PPC_OPT: return "PPC_OPT";
1766 default:
1767 return NULL;
1768 }
1769 }
1770
1771 static const char *
1772 get_ppc64_dynamic_type (unsigned long type)
1773 {
1774 switch (type)
1775 {
1776 case DT_PPC64_GLINK: return "PPC64_GLINK";
1777 case DT_PPC64_OPD: return "PPC64_OPD";
1778 case DT_PPC64_OPDSZ: return "PPC64_OPDSZ";
1779 case DT_PPC64_OPT: return "PPC64_OPT";
1780 default:
1781 return NULL;
1782 }
1783 }
1784
1785 static const char *
1786 get_parisc_dynamic_type (unsigned long type)
1787 {
1788 switch (type)
1789 {
1790 case DT_HP_LOAD_MAP: return "HP_LOAD_MAP";
1791 case DT_HP_DLD_FLAGS: return "HP_DLD_FLAGS";
1792 case DT_HP_DLD_HOOK: return "HP_DLD_HOOK";
1793 case DT_HP_UX10_INIT: return "HP_UX10_INIT";
1794 case DT_HP_UX10_INITSZ: return "HP_UX10_INITSZ";
1795 case DT_HP_PREINIT: return "HP_PREINIT";
1796 case DT_HP_PREINITSZ: return "HP_PREINITSZ";
1797 case DT_HP_NEEDED: return "HP_NEEDED";
1798 case DT_HP_TIME_STAMP: return "HP_TIME_STAMP";
1799 case DT_HP_CHECKSUM: return "HP_CHECKSUM";
1800 case DT_HP_GST_SIZE: return "HP_GST_SIZE";
1801 case DT_HP_GST_VERSION: return "HP_GST_VERSION";
1802 case DT_HP_GST_HASHVAL: return "HP_GST_HASHVAL";
1803 case DT_HP_EPLTREL: return "HP_GST_EPLTREL";
1804 case DT_HP_EPLTRELSZ: return "HP_GST_EPLTRELSZ";
1805 case DT_HP_FILTERED: return "HP_FILTERED";
1806 case DT_HP_FILTER_TLS: return "HP_FILTER_TLS";
1807 case DT_HP_COMPAT_FILTERED: return "HP_COMPAT_FILTERED";
1808 case DT_HP_LAZYLOAD: return "HP_LAZYLOAD";
1809 case DT_HP_BIND_NOW_COUNT: return "HP_BIND_NOW_COUNT";
1810 case DT_PLT: return "PLT";
1811 case DT_PLT_SIZE: return "PLT_SIZE";
1812 case DT_DLT: return "DLT";
1813 case DT_DLT_SIZE: return "DLT_SIZE";
1814 default:
1815 return NULL;
1816 }
1817 }
1818
1819 static const char *
1820 get_ia64_dynamic_type (unsigned long type)
1821 {
1822 switch (type)
1823 {
1824 case DT_IA_64_PLT_RESERVE: return "IA_64_PLT_RESERVE";
1825 case DT_IA_64_VMS_SUBTYPE: return "VMS_SUBTYPE";
1826 case DT_IA_64_VMS_IMGIOCNT: return "VMS_IMGIOCNT";
1827 case DT_IA_64_VMS_LNKFLAGS: return "VMS_LNKFLAGS";
1828 case DT_IA_64_VMS_VIR_MEM_BLK_SIZ: return "VMS_VIR_MEM_BLK_SIZ";
1829 case DT_IA_64_VMS_IDENT: return "VMS_IDENT";
1830 case DT_IA_64_VMS_NEEDED_IDENT: return "VMS_NEEDED_IDENT";
1831 case DT_IA_64_VMS_IMG_RELA_CNT: return "VMS_IMG_RELA_CNT";
1832 case DT_IA_64_VMS_SEG_RELA_CNT: return "VMS_SEG_RELA_CNT";
1833 case DT_IA_64_VMS_FIXUP_RELA_CNT: return "VMS_FIXUP_RELA_CNT";
1834 case DT_IA_64_VMS_FIXUP_NEEDED: return "VMS_FIXUP_NEEDED";
1835 case DT_IA_64_VMS_SYMVEC_CNT: return "VMS_SYMVEC_CNT";
1836 case DT_IA_64_VMS_XLATED: return "VMS_XLATED";
1837 case DT_IA_64_VMS_STACKSIZE: return "VMS_STACKSIZE";
1838 case DT_IA_64_VMS_UNWINDSZ: return "VMS_UNWINDSZ";
1839 case DT_IA_64_VMS_UNWIND_CODSEG: return "VMS_UNWIND_CODSEG";
1840 case DT_IA_64_VMS_UNWIND_INFOSEG: return "VMS_UNWIND_INFOSEG";
1841 case DT_IA_64_VMS_LINKTIME: return "VMS_LINKTIME";
1842 case DT_IA_64_VMS_SEG_NO: return "VMS_SEG_NO";
1843 case DT_IA_64_VMS_SYMVEC_OFFSET: return "VMS_SYMVEC_OFFSET";
1844 case DT_IA_64_VMS_SYMVEC_SEG: return "VMS_SYMVEC_SEG";
1845 case DT_IA_64_VMS_UNWIND_OFFSET: return "VMS_UNWIND_OFFSET";
1846 case DT_IA_64_VMS_UNWIND_SEG: return "VMS_UNWIND_SEG";
1847 case DT_IA_64_VMS_STRTAB_OFFSET: return "VMS_STRTAB_OFFSET";
1848 case DT_IA_64_VMS_SYSVER_OFFSET: return "VMS_SYSVER_OFFSET";
1849 case DT_IA_64_VMS_IMG_RELA_OFF: return "VMS_IMG_RELA_OFF";
1850 case DT_IA_64_VMS_SEG_RELA_OFF: return "VMS_SEG_RELA_OFF";
1851 case DT_IA_64_VMS_FIXUP_RELA_OFF: return "VMS_FIXUP_RELA_OFF";
1852 case DT_IA_64_VMS_PLTGOT_OFFSET: return "VMS_PLTGOT_OFFSET";
1853 case DT_IA_64_VMS_PLTGOT_SEG: return "VMS_PLTGOT_SEG";
1854 case DT_IA_64_VMS_FPMODE: return "VMS_FPMODE";
1855 default:
1856 return NULL;
1857 }
1858 }
1859
1860 static const char *
1861 get_solaris_section_type (unsigned long type)
1862 {
1863 switch (type)
1864 {
1865 case 0x6fffffee: return "SUNW_ancillary";
1866 case 0x6fffffef: return "SUNW_capchain";
1867 case 0x6ffffff0: return "SUNW_capinfo";
1868 case 0x6ffffff1: return "SUNW_symsort";
1869 case 0x6ffffff2: return "SUNW_tlssort";
1870 case 0x6ffffff3: return "SUNW_LDYNSYM";
1871 case 0x6ffffff4: return "SUNW_dof";
1872 case 0x6ffffff5: return "SUNW_cap";
1873 case 0x6ffffff6: return "SUNW_SIGNATURE";
1874 case 0x6ffffff7: return "SUNW_ANNOTATE";
1875 case 0x6ffffff8: return "SUNW_DEBUGSTR";
1876 case 0x6ffffff9: return "SUNW_DEBUG";
1877 case 0x6ffffffa: return "SUNW_move";
1878 case 0x6ffffffb: return "SUNW_COMDAT";
1879 case 0x6ffffffc: return "SUNW_syminfo";
1880 case 0x6ffffffd: return "SUNW_verdef";
1881 case 0x6ffffffe: return "SUNW_verneed";
1882 case 0x6fffffff: return "SUNW_versym";
1883 case 0x70000000: return "SPARC_GOTDATA";
1884 default: return NULL;
1885 }
1886 }
1887
1888 static const char *
1889 get_alpha_dynamic_type (unsigned long type)
1890 {
1891 switch (type)
1892 {
1893 case DT_ALPHA_PLTRO: return "ALPHA_PLTRO";
1894 default:
1895 return NULL;
1896 }
1897 }
1898
1899 static const char *
1900 get_score_dynamic_type (unsigned long type)
1901 {
1902 switch (type)
1903 {
1904 case DT_SCORE_BASE_ADDRESS: return "SCORE_BASE_ADDRESS";
1905 case DT_SCORE_LOCAL_GOTNO: return "SCORE_LOCAL_GOTNO";
1906 case DT_SCORE_SYMTABNO: return "SCORE_SYMTABNO";
1907 case DT_SCORE_GOTSYM: return "SCORE_GOTSYM";
1908 case DT_SCORE_UNREFEXTNO: return "SCORE_UNREFEXTNO";
1909 case DT_SCORE_HIPAGENO: return "SCORE_HIPAGENO";
1910 default:
1911 return NULL;
1912 }
1913 }
1914
1915 static const char *
1916 get_tic6x_dynamic_type (unsigned long type)
1917 {
1918 switch (type)
1919 {
1920 case DT_C6000_GSYM_OFFSET: return "C6000_GSYM_OFFSET";
1921 case DT_C6000_GSTR_OFFSET: return "C6000_GSTR_OFFSET";
1922 case DT_C6000_DSBT_BASE: return "C6000_DSBT_BASE";
1923 case DT_C6000_DSBT_SIZE: return "C6000_DSBT_SIZE";
1924 case DT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
1925 case DT_C6000_DSBT_INDEX: return "C6000_DSBT_INDEX";
1926 default:
1927 return NULL;
1928 }
1929 }
1930
1931 static const char *
1932 get_nios2_dynamic_type (unsigned long type)
1933 {
1934 switch (type)
1935 {
1936 case DT_NIOS2_GP: return "NIOS2_GP";
1937 default:
1938 return NULL;
1939 }
1940 }
1941
1942 static const char *
1943 get_solaris_dynamic_type (unsigned long type)
1944 {
1945 switch (type)
1946 {
1947 case 0x6000000d: return "SUNW_AUXILIARY";
1948 case 0x6000000e: return "SUNW_RTLDINF";
1949 case 0x6000000f: return "SUNW_FILTER";
1950 case 0x60000010: return "SUNW_CAP";
1951 case 0x60000011: return "SUNW_SYMTAB";
1952 case 0x60000012: return "SUNW_SYMSZ";
1953 case 0x60000013: return "SUNW_SORTENT";
1954 case 0x60000014: return "SUNW_SYMSORT";
1955 case 0x60000015: return "SUNW_SYMSORTSZ";
1956 case 0x60000016: return "SUNW_TLSSORT";
1957 case 0x60000017: return "SUNW_TLSSORTSZ";
1958 case 0x60000018: return "SUNW_CAPINFO";
1959 case 0x60000019: return "SUNW_STRPAD";
1960 case 0x6000001a: return "SUNW_CAPCHAIN";
1961 case 0x6000001b: return "SUNW_LDMACH";
1962 case 0x6000001d: return "SUNW_CAPCHAINENT";
1963 case 0x6000001f: return "SUNW_CAPCHAINSZ";
1964 case 0x60000021: return "SUNW_PARENT";
1965 case 0x60000023: return "SUNW_ASLR";
1966 case 0x60000025: return "SUNW_RELAX";
1967 case 0x60000029: return "SUNW_NXHEAP";
1968 case 0x6000002b: return "SUNW_NXSTACK";
1969
1970 case 0x70000001: return "SPARC_REGISTER";
1971 case 0x7ffffffd: return "AUXILIARY";
1972 case 0x7ffffffe: return "USED";
1973 case 0x7fffffff: return "FILTER";
1974
1975 default: return NULL;
1976 }
1977 }
1978
1979 static const char *
1980 get_dynamic_type (unsigned long type)
1981 {
1982 static char buff[64];
1983
1984 switch (type)
1985 {
1986 case DT_NULL: return "NULL";
1987 case DT_NEEDED: return "NEEDED";
1988 case DT_PLTRELSZ: return "PLTRELSZ";
1989 case DT_PLTGOT: return "PLTGOT";
1990 case DT_HASH: return "HASH";
1991 case DT_STRTAB: return "STRTAB";
1992 case DT_SYMTAB: return "SYMTAB";
1993 case DT_RELA: return "RELA";
1994 case DT_RELASZ: return "RELASZ";
1995 case DT_RELAENT: return "RELAENT";
1996 case DT_STRSZ: return "STRSZ";
1997 case DT_SYMENT: return "SYMENT";
1998 case DT_INIT: return "INIT";
1999 case DT_FINI: return "FINI";
2000 case DT_SONAME: return "SONAME";
2001 case DT_RPATH: return "RPATH";
2002 case DT_SYMBOLIC: return "SYMBOLIC";
2003 case DT_REL: return "REL";
2004 case DT_RELSZ: return "RELSZ";
2005 case DT_RELENT: return "RELENT";
2006 case DT_PLTREL: return "PLTREL";
2007 case DT_DEBUG: return "DEBUG";
2008 case DT_TEXTREL: return "TEXTREL";
2009 case DT_JMPREL: return "JMPREL";
2010 case DT_BIND_NOW: return "BIND_NOW";
2011 case DT_INIT_ARRAY: return "INIT_ARRAY";
2012 case DT_FINI_ARRAY: return "FINI_ARRAY";
2013 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ";
2014 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ";
2015 case DT_RUNPATH: return "RUNPATH";
2016 case DT_FLAGS: return "FLAGS";
2017
2018 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY";
2019 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ";
2020 case DT_SYMTAB_SHNDX: return "SYMTAB_SHNDX";
2021
2022 case DT_CHECKSUM: return "CHECKSUM";
2023 case DT_PLTPADSZ: return "PLTPADSZ";
2024 case DT_MOVEENT: return "MOVEENT";
2025 case DT_MOVESZ: return "MOVESZ";
2026 case DT_FEATURE: return "FEATURE";
2027 case DT_POSFLAG_1: return "POSFLAG_1";
2028 case DT_SYMINSZ: return "SYMINSZ";
2029 case DT_SYMINENT: return "SYMINENT"; /* aka VALRNGHI */
2030
2031 case DT_ADDRRNGLO: return "ADDRRNGLO";
2032 case DT_CONFIG: return "CONFIG";
2033 case DT_DEPAUDIT: return "DEPAUDIT";
2034 case DT_AUDIT: return "AUDIT";
2035 case DT_PLTPAD: return "PLTPAD";
2036 case DT_MOVETAB: return "MOVETAB";
2037 case DT_SYMINFO: return "SYMINFO"; /* aka ADDRRNGHI */
2038
2039 case DT_VERSYM: return "VERSYM";
2040
2041 case DT_TLSDESC_GOT: return "TLSDESC_GOT";
2042 case DT_TLSDESC_PLT: return "TLSDESC_PLT";
2043 case DT_RELACOUNT: return "RELACOUNT";
2044 case DT_RELCOUNT: return "RELCOUNT";
2045 case DT_FLAGS_1: return "FLAGS_1";
2046 case DT_VERDEF: return "VERDEF";
2047 case DT_VERDEFNUM: return "VERDEFNUM";
2048 case DT_VERNEED: return "VERNEED";
2049 case DT_VERNEEDNUM: return "VERNEEDNUM";
2050
2051 case DT_AUXILIARY: return "AUXILIARY";
2052 case DT_USED: return "USED";
2053 case DT_FILTER: return "FILTER";
2054
2055 case DT_GNU_PRELINKED: return "GNU_PRELINKED";
2056 case DT_GNU_CONFLICT: return "GNU_CONFLICT";
2057 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ";
2058 case DT_GNU_LIBLIST: return "GNU_LIBLIST";
2059 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ";
2060 case DT_GNU_HASH: return "GNU_HASH";
2061
2062 default:
2063 if ((type >= DT_LOPROC) && (type <= DT_HIPROC))
2064 {
2065 const char * result;
2066
2067 switch (elf_header.e_machine)
2068 {
2069 case EM_MIPS:
2070 case EM_MIPS_RS3_LE:
2071 result = get_mips_dynamic_type (type);
2072 break;
2073 case EM_SPARCV9:
2074 result = get_sparc64_dynamic_type (type);
2075 break;
2076 case EM_PPC:
2077 result = get_ppc_dynamic_type (type);
2078 break;
2079 case EM_PPC64:
2080 result = get_ppc64_dynamic_type (type);
2081 break;
2082 case EM_IA_64:
2083 result = get_ia64_dynamic_type (type);
2084 break;
2085 case EM_ALPHA:
2086 result = get_alpha_dynamic_type (type);
2087 break;
2088 case EM_SCORE:
2089 result = get_score_dynamic_type (type);
2090 break;
2091 case EM_TI_C6000:
2092 result = get_tic6x_dynamic_type (type);
2093 break;
2094 case EM_ALTERA_NIOS2:
2095 result = get_nios2_dynamic_type (type);
2096 break;
2097 default:
2098 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
2099 result = get_solaris_dynamic_type (type);
2100 else
2101 result = NULL;
2102 break;
2103 }
2104
2105 if (result != NULL)
2106 return result;
2107
2108 snprintf (buff, sizeof (buff), _("Processor Specific: %lx"), type);
2109 }
2110 else if (((type >= DT_LOOS) && (type <= DT_HIOS))
2111 || (elf_header.e_machine == EM_PARISC
2112 && (type >= OLD_DT_LOOS) && (type <= OLD_DT_HIOS)))
2113 {
2114 const char * result;
2115
2116 switch (elf_header.e_machine)
2117 {
2118 case EM_PARISC:
2119 result = get_parisc_dynamic_type (type);
2120 break;
2121 case EM_IA_64:
2122 result = get_ia64_dynamic_type (type);
2123 break;
2124 default:
2125 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
2126 result = get_solaris_dynamic_type (type);
2127 else
2128 result = NULL;
2129 break;
2130 }
2131
2132 if (result != NULL)
2133 return result;
2134
2135 snprintf (buff, sizeof (buff), _("Operating System specific: %lx"),
2136 type);
2137 }
2138 else
2139 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), type);
2140
2141 return buff;
2142 }
2143 }
2144
2145 static char *
2146 get_file_type (unsigned e_type)
2147 {
2148 static char buff[32];
2149
2150 switch (e_type)
2151 {
2152 case ET_NONE: return _("NONE (None)");
2153 case ET_REL: return _("REL (Relocatable file)");
2154 case ET_EXEC: return _("EXEC (Executable file)");
2155 case ET_DYN: return _("DYN (Shared object file)");
2156 case ET_CORE: return _("CORE (Core file)");
2157
2158 default:
2159 if ((e_type >= ET_LOPROC) && (e_type <= ET_HIPROC))
2160 snprintf (buff, sizeof (buff), _("Processor Specific: (%x)"), e_type);
2161 else if ((e_type >= ET_LOOS) && (e_type <= ET_HIOS))
2162 snprintf (buff, sizeof (buff), _("OS Specific: (%x)"), e_type);
2163 else
2164 snprintf (buff, sizeof (buff), _("<unknown>: %x"), e_type);
2165 return buff;
2166 }
2167 }
2168
2169 static char *
2170 get_machine_name (unsigned e_machine)
2171 {
2172 static char buff[64]; /* XXX */
2173
2174 switch (e_machine)
2175 {
2176 case EM_NONE: return _("None");
2177 case EM_AARCH64: return "AArch64";
2178 case EM_M32: return "WE32100";
2179 case EM_SPARC: return "Sparc";
2180 case EM_SPU: return "SPU";
2181 case EM_386: return "Intel 80386";
2182 case EM_68K: return "MC68000";
2183 case EM_88K: return "MC88000";
2184 case EM_IAMCU: return "Intel MCU";
2185 case EM_860: return "Intel 80860";
2186 case EM_MIPS: return "MIPS R3000";
2187 case EM_S370: return "IBM System/370";
2188 case EM_MIPS_RS3_LE: return "MIPS R4000 big-endian";
2189 case EM_OLD_SPARCV9: return "Sparc v9 (old)";
2190 case EM_PARISC: return "HPPA";
2191 case EM_PPC_OLD: return "Power PC (old)";
2192 case EM_SPARC32PLUS: return "Sparc v8+" ;
2193 case EM_960: return "Intel 90860";
2194 case EM_PPC: return "PowerPC";
2195 case EM_PPC64: return "PowerPC64";
2196 case EM_FR20: return "Fujitsu FR20";
2197 case EM_FT32: return "FTDI FT32";
2198 case EM_RH32: return "TRW RH32";
2199 case EM_MCORE: return "MCORE";
2200 case EM_ARM: return "ARM";
2201 case EM_OLD_ALPHA: return "Digital Alpha (old)";
2202 case EM_SH: return "Renesas / SuperH SH";
2203 case EM_SPARCV9: return "Sparc v9";
2204 case EM_TRICORE: return "Siemens Tricore";
2205 case EM_ARC: return "ARC";
2206 case EM_ARC_COMPACT: return "ARCompact";
2207 case EM_ARC_COMPACT2: return "ARCv2";
2208 case EM_H8_300: return "Renesas H8/300";
2209 case EM_H8_300H: return "Renesas H8/300H";
2210 case EM_H8S: return "Renesas H8S";
2211 case EM_H8_500: return "Renesas H8/500";
2212 case EM_IA_64: return "Intel IA-64";
2213 case EM_MIPS_X: return "Stanford MIPS-X";
2214 case EM_COLDFIRE: return "Motorola Coldfire";
2215 case EM_ALPHA: return "Alpha";
2216 case EM_CYGNUS_D10V:
2217 case EM_D10V: return "d10v";
2218 case EM_CYGNUS_D30V:
2219 case EM_D30V: return "d30v";
2220 case EM_CYGNUS_M32R:
2221 case EM_M32R: return "Renesas M32R (formerly Mitsubishi M32r)";
2222 case EM_CYGNUS_V850:
2223 case EM_V800: return "Renesas V850 (using RH850 ABI)";
2224 case EM_V850: return "Renesas V850";
2225 case EM_CYGNUS_MN10300:
2226 case EM_MN10300: return "mn10300";
2227 case EM_CYGNUS_MN10200:
2228 case EM_MN10200: return "mn10200";
2229 case EM_MOXIE: return "Moxie";
2230 case EM_CYGNUS_FR30:
2231 case EM_FR30: return "Fujitsu FR30";
2232 case EM_CYGNUS_FRV: return "Fujitsu FR-V";
2233 case EM_PJ_OLD:
2234 case EM_PJ: return "picoJava";
2235 case EM_MMA: return "Fujitsu Multimedia Accelerator";
2236 case EM_PCP: return "Siemens PCP";
2237 case EM_NCPU: return "Sony nCPU embedded RISC processor";
2238 case EM_NDR1: return "Denso NDR1 microprocesspr";
2239 case EM_STARCORE: return "Motorola Star*Core processor";
2240 case EM_ME16: return "Toyota ME16 processor";
2241 case EM_ST100: return "STMicroelectronics ST100 processor";
2242 case EM_TINYJ: return "Advanced Logic Corp. TinyJ embedded processor";
2243 case EM_PDSP: return "Sony DSP processor";
2244 case EM_PDP10: return "Digital Equipment Corp. PDP-10";
2245 case EM_PDP11: return "Digital Equipment Corp. PDP-11";
2246 case EM_FX66: return "Siemens FX66 microcontroller";
2247 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 bit microcontroller";
2248 case EM_ST7: return "STMicroelectronics ST7 8-bit microcontroller";
2249 case EM_68HC16: return "Motorola MC68HC16 Microcontroller";
2250 case EM_68HC12: return "Motorola MC68HC12 Microcontroller";
2251 case EM_68HC11: return "Motorola MC68HC11 Microcontroller";
2252 case EM_68HC08: return "Motorola MC68HC08 Microcontroller";
2253 case EM_68HC05: return "Motorola MC68HC05 Microcontroller";
2254 case EM_SVX: return "Silicon Graphics SVx";
2255 case EM_ST19: return "STMicroelectronics ST19 8-bit microcontroller";
2256 case EM_VAX: return "Digital VAX";
2257 case EM_VISIUM: return "CDS VISIUMcore processor";
2258 case EM_AVR_OLD:
2259 case EM_AVR: return "Atmel AVR 8-bit microcontroller";
2260 case EM_CRIS: return "Axis Communications 32-bit embedded processor";
2261 case EM_JAVELIN: return "Infineon Technologies 32-bit embedded cpu";
2262 case EM_FIREPATH: return "Element 14 64-bit DSP processor";
2263 case EM_ZSP: return "LSI Logic's 16-bit DSP processor";
2264 case EM_MMIX: return "Donald Knuth's educational 64-bit processor";
2265 case EM_HUANY: return "Harvard Universitys's machine-independent object format";
2266 case EM_PRISM: return "Vitesse Prism";
2267 case EM_X86_64: return "Advanced Micro Devices X86-64";
2268 case EM_L1OM: return "Intel L1OM";
2269 case EM_K1OM: return "Intel K1OM";
2270 case EM_S390_OLD:
2271 case EM_S390: return "IBM S/390";
2272 case EM_SCORE: return "SUNPLUS S+Core";
2273 case EM_XSTORMY16: return "Sanyo XStormy16 CPU core";
2274 case EM_OR1K: return "OpenRISC 1000";
2275 case EM_CRX: return "National Semiconductor CRX microprocessor";
2276 case EM_ADAPTEVA_EPIPHANY: return "Adapteva EPIPHANY";
2277 case EM_DLX: return "OpenDLX";
2278 case EM_IP2K_OLD:
2279 case EM_IP2K: return "Ubicom IP2xxx 8-bit microcontrollers";
2280 case EM_IQ2000: return "Vitesse IQ2000";
2281 case EM_XTENSA_OLD:
2282 case EM_XTENSA: return "Tensilica Xtensa Processor";
2283 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor";
2284 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor";
2285 case EM_NS32K: return "National Semiconductor 32000 series";
2286 case EM_TPC: return "Tenor Network TPC processor";
2287 case EM_ST200: return "STMicroelectronics ST200 microcontroller";
2288 case EM_MAX: return "MAX Processor";
2289 case EM_CR: return "National Semiconductor CompactRISC";
2290 case EM_F2MC16: return "Fujitsu F2MC16";
2291 case EM_MSP430: return "Texas Instruments msp430 microcontroller";
2292 case EM_LATTICEMICO32: return "Lattice Mico32";
2293 case EM_M32C_OLD:
2294 case EM_M32C: return "Renesas M32c";
2295 case EM_MT: return "Morpho Techologies MT processor";
2296 case EM_BLACKFIN: return "Analog Devices Blackfin";
2297 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors";
2298 case EM_SEP: return "Sharp embedded microprocessor";
2299 case EM_ARCA: return "Arca RISC microprocessor";
2300 case EM_UNICORE: return "Unicore";
2301 case EM_EXCESS: return "eXcess 16/32/64-bit configurable embedded CPU";
2302 case EM_DXP: return "Icera Semiconductor Inc. Deep Execution Processor";
2303 case EM_NIOS32: return "Altera Nios";
2304 case EM_ALTERA_NIOS2: return "Altera Nios II";
2305 case EM_C166:
2306 case EM_XC16X: return "Infineon Technologies xc16x";
2307 case EM_M16C: return "Renesas M16C series microprocessors";
2308 case EM_DSPIC30F: return "Microchip Technology dsPIC30F Digital Signal Controller";
2309 case EM_CE: return "Freescale Communication Engine RISC core";
2310 case EM_TSK3000: return "Altium TSK3000 core";
2311 case EM_RS08: return "Freescale RS08 embedded processor";
2312 case EM_ECOG2: return "Cyan Technology eCOG2 microprocessor";
2313 case EM_DSP24: return "New Japan Radio (NJR) 24-bit DSP Processor";
2314 case EM_VIDEOCORE3: return "Broadcom VideoCore III processor";
2315 case EM_SE_C17: return "Seiko Epson C17 family";
2316 case EM_TI_C6000: return "Texas Instruments TMS320C6000 DSP family";
2317 case EM_TI_C2000: return "Texas Instruments TMS320C2000 DSP family";
2318 case EM_TI_C5500: return "Texas Instruments TMS320C55x DSP family";
2319 case EM_MMDSP_PLUS: return "STMicroelectronics 64bit VLIW Data Signal Processor";
2320 case EM_CYPRESS_M8C: return "Cypress M8C microprocessor";
2321 case EM_R32C: return "Renesas R32C series microprocessors";
2322 case EM_TRIMEDIA: return "NXP Semiconductors TriMedia architecture family";
2323 case EM_QDSP6: return "QUALCOMM DSP6 Processor";
2324 case EM_8051: return "Intel 8051 and variants";
2325 case EM_STXP7X: return "STMicroelectronics STxP7x family";
2326 case EM_NDS32: return "Andes Technology compact code size embedded RISC processor family";
2327 case EM_ECOG1X: return "Cyan Technology eCOG1X family";
2328 case EM_MAXQ30: return "Dallas Semiconductor MAXQ30 Core microcontrollers";
2329 case EM_XIMO16: return "New Japan Radio (NJR) 16-bit DSP Processor";
2330 case EM_MANIK: return "M2000 Reconfigurable RISC Microprocessor";
2331 case EM_CRAYNV2: return "Cray Inc. NV2 vector architecture";
2332 case EM_CYGNUS_MEP: return "Toshiba MeP Media Engine";
2333 case EM_CR16:
2334 case EM_MICROBLAZE:
2335 case EM_MICROBLAZE_OLD: return "Xilinx MicroBlaze";
2336 case EM_RISCV: return "RISC-V";
2337 case EM_RL78: return "Renesas RL78";
2338 case EM_RX: return "Renesas RX";
2339 case EM_METAG: return "Imagination Technologies Meta processor architecture";
2340 case EM_MCST_ELBRUS: return "MCST Elbrus general purpose hardware architecture";
2341 case EM_ECOG16: return "Cyan Technology eCOG16 family";
2342 case EM_ETPU: return "Freescale Extended Time Processing Unit";
2343 case EM_SLE9X: return "Infineon Technologies SLE9X core";
2344 case EM_AVR32: return "Atmel Corporation 32-bit microprocessor family";
2345 case EM_STM8: return "STMicroeletronics STM8 8-bit microcontroller";
2346 case EM_TILE64: return "Tilera TILE64 multicore architecture family";
2347 case EM_TILEPRO: return "Tilera TILEPro multicore architecture family";
2348 case EM_TILEGX: return "Tilera TILE-Gx multicore architecture family";
2349 case EM_CUDA: return "NVIDIA CUDA architecture";
2350 case EM_XGATE: return "Motorola XGATE embedded processor";
2351 case EM_CLOUDSHIELD: return "CloudShield architecture family";
2352 case EM_COREA_1ST: return "KIPO-KAIST Core-A 1st generation processor family";
2353 case EM_COREA_2ND: return "KIPO-KAIST Core-A 2nd generation processor family";
2354 case EM_OPEN8: return "Open8 8-bit RISC soft processor core";
2355 case EM_VIDEOCORE5: return "Broadcom VideoCore V processor";
2356 case EM_56800EX: return "Freescale 56800EX Digital Signal Controller (DSC)";
2357 case EM_BA1: return "Beyond BA1 CPU architecture";
2358 case EM_BA2: return "Beyond BA2 CPU architecture";
2359 case EM_XCORE: return "XMOS xCORE processor family";
2360 case EM_MCHP_PIC: return "Microchip 8-bit PIC(r) family";
2361 case EM_KM32: return "KM211 KM32 32-bit processor";
2362 case EM_KMX32: return "KM211 KMX32 32-bit processor";
2363 case EM_KMX16: return "KM211 KMX16 16-bit processor";
2364 case EM_KMX8: return "KM211 KMX8 8-bit processor";
2365 case EM_KVARC: return "KM211 KVARC processor";
2366 case EM_CDP: return "Paneve CDP architecture family";
2367 case EM_COGE: return "Cognitive Smart Memory Processor";
2368 case EM_COOL: return "Bluechip Systems CoolEngine";
2369 case EM_NORC: return "Nanoradio Optimized RISC";
2370 case EM_CSR_KALIMBA: return "CSR Kalimba architecture family";
2371 case EM_Z80: return "Zilog Z80";
2372 case EM_AMDGPU: return "AMD GPU architecture";
2373 default:
2374 snprintf (buff, sizeof (buff), _("<unknown>: 0x%x"), e_machine);
2375 return buff;
2376 }
2377 }
2378
2379 static void
2380 decode_ARC_machine_flags (unsigned e_flags, unsigned e_machine, char buf[])
2381 {
2382 /* ARC has two machine types EM_ARC_COMPACT and EM_ARC_COMPACT2. Some
2383 other compilers don't a specific architecture type in the e_flags, and
2384 instead use EM_ARC_COMPACT for old ARC600, ARC601, and ARC700
2385 architectures, and switch to EM_ARC_COMPACT2 for newer ARCEM and ARCHS
2386 architectures.
2387
2388 Th GNU tools follows this use of EM_ARC_COMPACT and EM_ARC_COMPACT2,
2389 but also sets a specific architecture type in the e_flags field.
2390
2391 However, when decoding the flags we don't worry if we see an
2392 unexpected pairing, for example EM_ARC_COMPACT machine type, with
2393 ARCEM architecture type. */
2394
2395 switch (e_flags & EF_ARC_MACH_MSK)
2396 {
2397 /* We only expect these to occur for EM_ARC_COMPACT2. */
2398 case EF_ARC_CPU_ARCV2EM:
2399 strcat (buf, ", ARC EM");
2400 break;
2401 case EF_ARC_CPU_ARCV2HS:
2402 strcat (buf, ", ARC HS");
2403 break;
2404
2405 /* We only expect these to occur for EM_ARC_COMPACT. */
2406 case E_ARC_MACH_ARC600:
2407 strcat (buf, ", ARC600");
2408 break;
2409 case E_ARC_MACH_ARC601:
2410 strcat (buf, ", ARC601");
2411 break;
2412 case E_ARC_MACH_ARC700:
2413 strcat (buf, ", ARC700");
2414 break;
2415
2416 /* The only times we should end up here are (a) A corrupt ELF, (b) A
2417 new ELF with new architecture being read by an old version of
2418 readelf, or (c) An ELF built with non-GNU compiler that does not
2419 set the architecture in the e_flags. */
2420 default:
2421 if (e_machine == EM_ARC_COMPACT)
2422 strcat (buf, ", Unknown ARCompact");
2423 else
2424 strcat (buf, ", Unknown ARC");
2425 break;
2426 }
2427
2428 switch (e_flags & EF_ARC_OSABI_MSK)
2429 {
2430 case E_ARC_OSABI_ORIG:
2431 strcat (buf, ", (ABI:legacy)");
2432 break;
2433 case E_ARC_OSABI_V2:
2434 strcat (buf, ", (ABI:v2)");
2435 break;
2436 /* Only upstream 3.9+ kernels will support ARCv2 ISA. */
2437 case E_ARC_OSABI_V3:
2438 strcat (buf, ", v3 no-legacy-syscalls ABI");
2439 break;
2440 default:
2441 strcat (buf, ", unrecognised ARC OSABI flag");
2442 break;
2443 }
2444 }
2445
2446 static void
2447 decode_ARM_machine_flags (unsigned e_flags, char buf[])
2448 {
2449 unsigned eabi;
2450 int unknown = 0;
2451
2452 eabi = EF_ARM_EABI_VERSION (e_flags);
2453 e_flags &= ~ EF_ARM_EABIMASK;
2454
2455 /* Handle "generic" ARM flags. */
2456 if (e_flags & EF_ARM_RELEXEC)
2457 {
2458 strcat (buf, ", relocatable executable");
2459 e_flags &= ~ EF_ARM_RELEXEC;
2460 }
2461
2462 /* Now handle EABI specific flags. */
2463 switch (eabi)
2464 {
2465 default:
2466 strcat (buf, ", <unrecognized EABI>");
2467 if (e_flags)
2468 unknown = 1;
2469 break;
2470
2471 case EF_ARM_EABI_VER1:
2472 strcat (buf, ", Version1 EABI");
2473 while (e_flags)
2474 {
2475 unsigned flag;
2476
2477 /* Process flags one bit at a time. */
2478 flag = e_flags & - e_flags;
2479 e_flags &= ~ flag;
2480
2481 switch (flag)
2482 {
2483 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2484 strcat (buf, ", sorted symbol tables");
2485 break;
2486
2487 default:
2488 unknown = 1;
2489 break;
2490 }
2491 }
2492 break;
2493
2494 case EF_ARM_EABI_VER2:
2495 strcat (buf, ", Version2 EABI");
2496 while (e_flags)
2497 {
2498 unsigned flag;
2499
2500 /* Process flags one bit at a time. */
2501 flag = e_flags & - e_flags;
2502 e_flags &= ~ flag;
2503
2504 switch (flag)
2505 {
2506 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2507 strcat (buf, ", sorted symbol tables");
2508 break;
2509
2510 case EF_ARM_DYNSYMSUSESEGIDX:
2511 strcat (buf, ", dynamic symbols use segment index");
2512 break;
2513
2514 case EF_ARM_MAPSYMSFIRST:
2515 strcat (buf, ", mapping symbols precede others");
2516 break;
2517
2518 default:
2519 unknown = 1;
2520 break;
2521 }
2522 }
2523 break;
2524
2525 case EF_ARM_EABI_VER3:
2526 strcat (buf, ", Version3 EABI");
2527 break;
2528
2529 case EF_ARM_EABI_VER4:
2530 strcat (buf, ", Version4 EABI");
2531 while (e_flags)
2532 {
2533 unsigned flag;
2534
2535 /* Process flags one bit at a time. */
2536 flag = e_flags & - e_flags;
2537 e_flags &= ~ flag;
2538
2539 switch (flag)
2540 {
2541 case EF_ARM_BE8:
2542 strcat (buf, ", BE8");
2543 break;
2544
2545 case EF_ARM_LE8:
2546 strcat (buf, ", LE8");
2547 break;
2548
2549 default:
2550 unknown = 1;
2551 break;
2552 }
2553 break;
2554 }
2555 break;
2556
2557 case EF_ARM_EABI_VER5:
2558 strcat (buf, ", Version5 EABI");
2559 while (e_flags)
2560 {
2561 unsigned flag;
2562
2563 /* Process flags one bit at a time. */
2564 flag = e_flags & - e_flags;
2565 e_flags &= ~ flag;
2566
2567 switch (flag)
2568 {
2569 case EF_ARM_BE8:
2570 strcat (buf, ", BE8");
2571 break;
2572
2573 case EF_ARM_LE8:
2574 strcat (buf, ", LE8");
2575 break;
2576
2577 case EF_ARM_ABI_FLOAT_SOFT: /* Conflicts with EF_ARM_SOFT_FLOAT. */
2578 strcat (buf, ", soft-float ABI");
2579 break;
2580
2581 case EF_ARM_ABI_FLOAT_HARD: /* Conflicts with EF_ARM_VFP_FLOAT. */
2582 strcat (buf, ", hard-float ABI");
2583 break;
2584
2585 default:
2586 unknown = 1;
2587 break;
2588 }
2589 }
2590 break;
2591
2592 case EF_ARM_EABI_UNKNOWN:
2593 strcat (buf, ", GNU EABI");
2594 while (e_flags)
2595 {
2596 unsigned flag;
2597
2598 /* Process flags one bit at a time. */
2599 flag = e_flags & - e_flags;
2600 e_flags &= ~ flag;
2601
2602 switch (flag)
2603 {
2604 case EF_ARM_INTERWORK:
2605 strcat (buf, ", interworking enabled");
2606 break;
2607
2608 case EF_ARM_APCS_26:
2609 strcat (buf, ", uses APCS/26");
2610 break;
2611
2612 case EF_ARM_APCS_FLOAT:
2613 strcat (buf, ", uses APCS/float");
2614 break;
2615
2616 case EF_ARM_PIC:
2617 strcat (buf, ", position independent");
2618 break;
2619
2620 case EF_ARM_ALIGN8:
2621 strcat (buf, ", 8 bit structure alignment");
2622 break;
2623
2624 case EF_ARM_NEW_ABI:
2625 strcat (buf, ", uses new ABI");
2626 break;
2627
2628 case EF_ARM_OLD_ABI:
2629 strcat (buf, ", uses old ABI");
2630 break;
2631
2632 case EF_ARM_SOFT_FLOAT:
2633 strcat (buf, ", software FP");
2634 break;
2635
2636 case EF_ARM_VFP_FLOAT:
2637 strcat (buf, ", VFP");
2638 break;
2639
2640 case EF_ARM_MAVERICK_FLOAT:
2641 strcat (buf, ", Maverick FP");
2642 break;
2643
2644 default:
2645 unknown = 1;
2646 break;
2647 }
2648 }
2649 }
2650
2651 if (unknown)
2652 strcat (buf,_(", <unknown>"));
2653 }
2654
2655 static void
2656 decode_AVR_machine_flags (unsigned e_flags, char buf[], size_t size)
2657 {
2658 --size; /* Leave space for null terminator. */
2659
2660 switch (e_flags & EF_AVR_MACH)
2661 {
2662 case E_AVR_MACH_AVR1:
2663 strncat (buf, ", avr:1", size);
2664 break;
2665 case E_AVR_MACH_AVR2:
2666 strncat (buf, ", avr:2", size);
2667 break;
2668 case E_AVR_MACH_AVR25:
2669 strncat (buf, ", avr:25", size);
2670 break;
2671 case E_AVR_MACH_AVR3:
2672 strncat (buf, ", avr:3", size);
2673 break;
2674 case E_AVR_MACH_AVR31:
2675 strncat (buf, ", avr:31", size);
2676 break;
2677 case E_AVR_MACH_AVR35:
2678 strncat (buf, ", avr:35", size);
2679 break;
2680 case E_AVR_MACH_AVR4:
2681 strncat (buf, ", avr:4", size);
2682 break;
2683 case E_AVR_MACH_AVR5:
2684 strncat (buf, ", avr:5", size);
2685 break;
2686 case E_AVR_MACH_AVR51:
2687 strncat (buf, ", avr:51", size);
2688 break;
2689 case E_AVR_MACH_AVR6:
2690 strncat (buf, ", avr:6", size);
2691 break;
2692 case E_AVR_MACH_AVRTINY:
2693 strncat (buf, ", avr:100", size);
2694 break;
2695 case E_AVR_MACH_XMEGA1:
2696 strncat (buf, ", avr:101", size);
2697 break;
2698 case E_AVR_MACH_XMEGA2:
2699 strncat (buf, ", avr:102", size);
2700 break;
2701 case E_AVR_MACH_XMEGA3:
2702 strncat (buf, ", avr:103", size);
2703 break;
2704 case E_AVR_MACH_XMEGA4:
2705 strncat (buf, ", avr:104", size);
2706 break;
2707 case E_AVR_MACH_XMEGA5:
2708 strncat (buf, ", avr:105", size);
2709 break;
2710 case E_AVR_MACH_XMEGA6:
2711 strncat (buf, ", avr:106", size);
2712 break;
2713 case E_AVR_MACH_XMEGA7:
2714 strncat (buf, ", avr:107", size);
2715 break;
2716 default:
2717 strncat (buf, ", avr:<unknown>", size);
2718 break;
2719 }
2720
2721 size -= strlen (buf);
2722 if (e_flags & EF_AVR_LINKRELAX_PREPARED)
2723 strncat (buf, ", link-relax", size);
2724 }
2725
2726 static void
2727 decode_NDS32_machine_flags (unsigned e_flags, char buf[], size_t size)
2728 {
2729 unsigned abi;
2730 unsigned arch;
2731 unsigned config;
2732 unsigned version;
2733 int has_fpu = 0;
2734 int r = 0;
2735
2736 static const char *ABI_STRINGS[] =
2737 {
2738 "ABI v0", /* use r5 as return register; only used in N1213HC */
2739 "ABI v1", /* use r0 as return register */
2740 "ABI v2", /* use r0 as return register and don't reserve 24 bytes for arguments */
2741 "ABI v2fp", /* for FPU */
2742 "AABI",
2743 "ABI2 FP+"
2744 };
2745 static const char *VER_STRINGS[] =
2746 {
2747 "Andes ELF V1.3 or older",
2748 "Andes ELF V1.3.1",
2749 "Andes ELF V1.4"
2750 };
2751 static const char *ARCH_STRINGS[] =
2752 {
2753 "",
2754 "Andes Star v1.0",
2755 "Andes Star v2.0",
2756 "Andes Star v3.0",
2757 "Andes Star v3.0m"
2758 };
2759
2760 abi = EF_NDS_ABI & e_flags;
2761 arch = EF_NDS_ARCH & e_flags;
2762 config = EF_NDS_INST & e_flags;
2763 version = EF_NDS32_ELF_VERSION & e_flags;
2764
2765 memset (buf, 0, size);
2766
2767 switch (abi)
2768 {
2769 case E_NDS_ABI_V0:
2770 case E_NDS_ABI_V1:
2771 case E_NDS_ABI_V2:
2772 case E_NDS_ABI_V2FP:
2773 case E_NDS_ABI_AABI:
2774 case E_NDS_ABI_V2FP_PLUS:
2775 /* In case there are holes in the array. */
2776 r += snprintf (buf + r, size - r, ", %s", ABI_STRINGS[abi >> EF_NDS_ABI_SHIFT]);
2777 break;
2778
2779 default:
2780 r += snprintf (buf + r, size - r, ", <unrecognized ABI>");
2781 break;
2782 }
2783
2784 switch (version)
2785 {
2786 case E_NDS32_ELF_VER_1_2:
2787 case E_NDS32_ELF_VER_1_3:
2788 case E_NDS32_ELF_VER_1_4:
2789 r += snprintf (buf + r, size - r, ", %s", VER_STRINGS[version >> EF_NDS32_ELF_VERSION_SHIFT]);
2790 break;
2791
2792 default:
2793 r += snprintf (buf + r, size - r, ", <unrecognized ELF version number>");
2794 break;
2795 }
2796
2797 if (E_NDS_ABI_V0 == abi)
2798 {
2799 /* OLD ABI; only used in N1213HC, has performance extension 1. */
2800 r += snprintf (buf + r, size - r, ", Andes Star v1.0, N1213HC, MAC, PERF1");
2801 if (arch == E_NDS_ARCH_STAR_V1_0)
2802 r += snprintf (buf + r, size -r, ", 16b"); /* has 16-bit instructions */
2803 return;
2804 }
2805
2806 switch (arch)
2807 {
2808 case E_NDS_ARCH_STAR_V1_0:
2809 case E_NDS_ARCH_STAR_V2_0:
2810 case E_NDS_ARCH_STAR_V3_0:
2811 case E_NDS_ARCH_STAR_V3_M:
2812 r += snprintf (buf + r, size - r, ", %s", ARCH_STRINGS[arch >> EF_NDS_ARCH_SHIFT]);
2813 break;
2814
2815 default:
2816 r += snprintf (buf + r, size - r, ", <unrecognized architecture>");
2817 /* ARCH version determines how the e_flags are interpreted.
2818 If it is unknown, we cannot proceed. */
2819 return;
2820 }
2821
2822 /* Newer ABI; Now handle architecture specific flags. */
2823 if (arch == E_NDS_ARCH_STAR_V1_0)
2824 {
2825 if (config & E_NDS32_HAS_MFUSR_PC_INST)
2826 r += snprintf (buf + r, size -r, ", MFUSR_PC");
2827
2828 if (!(config & E_NDS32_HAS_NO_MAC_INST))
2829 r += snprintf (buf + r, size -r, ", MAC");
2830
2831 if (config & E_NDS32_HAS_DIV_INST)
2832 r += snprintf (buf + r, size -r, ", DIV");
2833
2834 if (config & E_NDS32_HAS_16BIT_INST)
2835 r += snprintf (buf + r, size -r, ", 16b");
2836 }
2837 else
2838 {
2839 if (config & E_NDS32_HAS_MFUSR_PC_INST)
2840 {
2841 if (version <= E_NDS32_ELF_VER_1_3)
2842 r += snprintf (buf + r, size -r, ", [B8]");
2843 else
2844 r += snprintf (buf + r, size -r, ", EX9");
2845 }
2846
2847 if (config & E_NDS32_HAS_MAC_DX_INST)
2848 r += snprintf (buf + r, size -r, ", MAC_DX");
2849
2850 if (config & E_NDS32_HAS_DIV_DX_INST)
2851 r += snprintf (buf + r, size -r, ", DIV_DX");
2852
2853 if (config & E_NDS32_HAS_16BIT_INST)
2854 {
2855 if (version <= E_NDS32_ELF_VER_1_3)
2856 r += snprintf (buf + r, size -r, ", 16b");
2857 else
2858 r += snprintf (buf + r, size -r, ", IFC");
2859 }
2860 }
2861
2862 if (config & E_NDS32_HAS_EXT_INST)
2863 r += snprintf (buf + r, size -r, ", PERF1");
2864
2865 if (config & E_NDS32_HAS_EXT2_INST)
2866 r += snprintf (buf + r, size -r, ", PERF2");
2867
2868 if (config & E_NDS32_HAS_FPU_INST)
2869 {
2870 has_fpu = 1;
2871 r += snprintf (buf + r, size -r, ", FPU_SP");
2872 }
2873
2874 if (config & E_NDS32_HAS_FPU_DP_INST)
2875 {
2876 has_fpu = 1;
2877 r += snprintf (buf + r, size -r, ", FPU_DP");
2878 }
2879
2880 if (config & E_NDS32_HAS_FPU_MAC_INST)
2881 {
2882 has_fpu = 1;
2883 r += snprintf (buf + r, size -r, ", FPU_MAC");
2884 }
2885
2886 if (has_fpu)
2887 {
2888 switch ((config & E_NDS32_FPU_REG_CONF) >> E_NDS32_FPU_REG_CONF_SHIFT)
2889 {
2890 case E_NDS32_FPU_REG_8SP_4DP:
2891 r += snprintf (buf + r, size -r, ", FPU_REG:8/4");
2892 break;
2893 case E_NDS32_FPU_REG_16SP_8DP:
2894 r += snprintf (buf + r, size -r, ", FPU_REG:16/8");
2895 break;
2896 case E_NDS32_FPU_REG_32SP_16DP:
2897 r += snprintf (buf + r, size -r, ", FPU_REG:32/16");
2898 break;
2899 case E_NDS32_FPU_REG_32SP_32DP:
2900 r += snprintf (buf + r, size -r, ", FPU_REG:32/32");
2901 break;
2902 }
2903 }
2904
2905 if (config & E_NDS32_HAS_AUDIO_INST)
2906 r += snprintf (buf + r, size -r, ", AUDIO");
2907
2908 if (config & E_NDS32_HAS_STRING_INST)
2909 r += snprintf (buf + r, size -r, ", STR");
2910
2911 if (config & E_NDS32_HAS_REDUCED_REGS)
2912 r += snprintf (buf + r, size -r, ", 16REG");
2913
2914 if (config & E_NDS32_HAS_VIDEO_INST)
2915 {
2916 if (version <= E_NDS32_ELF_VER_1_3)
2917 r += snprintf (buf + r, size -r, ", VIDEO");
2918 else
2919 r += snprintf (buf + r, size -r, ", SATURATION");
2920 }
2921
2922 if (config & E_NDS32_HAS_ENCRIPT_INST)
2923 r += snprintf (buf + r, size -r, ", ENCRP");
2924
2925 if (config & E_NDS32_HAS_L2C_INST)
2926 r += snprintf (buf + r, size -r, ", L2C");
2927 }
2928
2929 static char *
2930 get_machine_flags (unsigned e_flags, unsigned e_machine)
2931 {
2932 static char buf[1024];
2933
2934 buf[0] = '\0';
2935
2936 if (e_flags)
2937 {
2938 switch (e_machine)
2939 {
2940 default:
2941 break;
2942
2943 case EM_ARC_COMPACT2:
2944 case EM_ARC_COMPACT:
2945 decode_ARC_machine_flags (e_flags, e_machine, buf);
2946 break;
2947
2948 case EM_ARM:
2949 decode_ARM_machine_flags (e_flags, buf);
2950 break;
2951
2952 case EM_AVR:
2953 decode_AVR_machine_flags (e_flags, buf, sizeof buf);
2954 break;
2955
2956 case EM_BLACKFIN:
2957 if (e_flags & EF_BFIN_PIC)
2958 strcat (buf, ", PIC");
2959
2960 if (e_flags & EF_BFIN_FDPIC)
2961 strcat (buf, ", FDPIC");
2962
2963 if (e_flags & EF_BFIN_CODE_IN_L1)
2964 strcat (buf, ", code in L1");
2965
2966 if (e_flags & EF_BFIN_DATA_IN_L1)
2967 strcat (buf, ", data in L1");
2968
2969 break;
2970
2971 case EM_CYGNUS_FRV:
2972 switch (e_flags & EF_FRV_CPU_MASK)
2973 {
2974 case EF_FRV_CPU_GENERIC:
2975 break;
2976
2977 default:
2978 strcat (buf, ", fr???");
2979 break;
2980
2981 case EF_FRV_CPU_FR300:
2982 strcat (buf, ", fr300");
2983 break;
2984
2985 case EF_FRV_CPU_FR400:
2986 strcat (buf, ", fr400");
2987 break;
2988 case EF_FRV_CPU_FR405:
2989 strcat (buf, ", fr405");
2990 break;
2991
2992 case EF_FRV_CPU_FR450:
2993 strcat (buf, ", fr450");
2994 break;
2995
2996 case EF_FRV_CPU_FR500:
2997 strcat (buf, ", fr500");
2998 break;
2999 case EF_FRV_CPU_FR550:
3000 strcat (buf, ", fr550");
3001 break;
3002
3003 case EF_FRV_CPU_SIMPLE:
3004 strcat (buf, ", simple");
3005 break;
3006 case EF_FRV_CPU_TOMCAT:
3007 strcat (buf, ", tomcat");
3008 break;
3009 }
3010 break;
3011
3012 case EM_68K:
3013 if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
3014 strcat (buf, ", m68000");
3015 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
3016 strcat (buf, ", cpu32");
3017 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
3018 strcat (buf, ", fido_a");
3019 else
3020 {
3021 char const * isa = _("unknown");
3022 char const * mac = _("unknown mac");
3023 char const * additional = NULL;
3024
3025 switch (e_flags & EF_M68K_CF_ISA_MASK)
3026 {
3027 case EF_M68K_CF_ISA_A_NODIV:
3028 isa = "A";
3029 additional = ", nodiv";
3030 break;
3031 case EF_M68K_CF_ISA_A:
3032 isa = "A";
3033 break;
3034 case EF_M68K_CF_ISA_A_PLUS:
3035 isa = "A+";
3036 break;
3037 case EF_M68K_CF_ISA_B_NOUSP:
3038 isa = "B";
3039 additional = ", nousp";
3040 break;
3041 case EF_M68K_CF_ISA_B:
3042 isa = "B";
3043 break;
3044 case EF_M68K_CF_ISA_C:
3045 isa = "C";
3046 break;
3047 case EF_M68K_CF_ISA_C_NODIV:
3048 isa = "C";
3049 additional = ", nodiv";
3050 break;
3051 }
3052 strcat (buf, ", cf, isa ");
3053 strcat (buf, isa);
3054 if (additional)
3055 strcat (buf, additional);
3056 if (e_flags & EF_M68K_CF_FLOAT)
3057 strcat (buf, ", float");
3058 switch (e_flags & EF_M68K_CF_MAC_MASK)
3059 {
3060 case 0:
3061 mac = NULL;
3062 break;
3063 case EF_M68K_CF_MAC:
3064 mac = "mac";
3065 break;
3066 case EF_M68K_CF_EMAC:
3067 mac = "emac";
3068 break;
3069 case EF_M68K_CF_EMAC_B:
3070 mac = "emac_b";
3071 break;
3072 }
3073 if (mac)
3074 {
3075 strcat (buf, ", ");
3076 strcat (buf, mac);
3077 }
3078 }
3079 break;
3080
3081 case EM_CYGNUS_MEP:
3082 switch (e_flags & EF_MEP_CPU_MASK)
3083 {
3084 case EF_MEP_CPU_MEP: strcat (buf, ", generic MeP"); break;
3085 case EF_MEP_CPU_C2: strcat (buf, ", MeP C2"); break;
3086 case EF_MEP_CPU_C3: strcat (buf, ", MeP C3"); break;
3087 case EF_MEP_CPU_C4: strcat (buf, ", MeP C4"); break;
3088 case EF_MEP_CPU_C5: strcat (buf, ", MeP C5"); break;
3089 case EF_MEP_CPU_H1: strcat (buf, ", MeP H1"); break;
3090 default: strcat (buf, _(", <unknown MeP cpu type>")); break;
3091 }
3092
3093 switch (e_flags & EF_MEP_COP_MASK)
3094 {
3095 case EF_MEP_COP_NONE: break;
3096 case EF_MEP_COP_AVC: strcat (buf, ", AVC coprocessor"); break;
3097 case EF_MEP_COP_AVC2: strcat (buf, ", AVC2 coprocessor"); break;
3098 case EF_MEP_COP_FMAX: strcat (buf, ", FMAX coprocessor"); break;
3099 case EF_MEP_COP_IVC2: strcat (buf, ", IVC2 coprocessor"); break;
3100 default: strcat (buf, _("<unknown MeP copro type>")); break;
3101 }
3102
3103 if (e_flags & EF_MEP_LIBRARY)
3104 strcat (buf, ", Built for Library");
3105
3106 if (e_flags & EF_MEP_INDEX_MASK)
3107 sprintf (buf + strlen (buf), ", Configuration Index: %#x",
3108 e_flags & EF_MEP_INDEX_MASK);
3109
3110 if (e_flags & ~ EF_MEP_ALL_FLAGS)
3111 sprintf (buf + strlen (buf), _(", unknown flags bits: %#x"),
3112 e_flags & ~ EF_MEP_ALL_FLAGS);
3113 break;
3114
3115 case EM_PPC:
3116 if (e_flags & EF_PPC_EMB)
3117 strcat (buf, ", emb");
3118
3119 if (e_flags & EF_PPC_RELOCATABLE)
3120 strcat (buf, _(", relocatable"));
3121
3122 if (e_flags & EF_PPC_RELOCATABLE_LIB)
3123 strcat (buf, _(", relocatable-lib"));
3124 break;
3125
3126 case EM_PPC64:
3127 if (e_flags & EF_PPC64_ABI)
3128 {
3129 char abi[] = ", abiv0";
3130
3131 abi[6] += e_flags & EF_PPC64_ABI;
3132 strcat (buf, abi);
3133 }
3134 break;
3135
3136 case EM_V800:
3137 if ((e_flags & EF_RH850_ABI) == EF_RH850_ABI)
3138 strcat (buf, ", RH850 ABI");
3139
3140 if (e_flags & EF_V800_850E3)
3141 strcat (buf, ", V3 architecture");
3142
3143 if ((e_flags & (EF_RH850_FPU_DOUBLE | EF_RH850_FPU_SINGLE)) == 0)
3144 strcat (buf, ", FPU not used");
3145
3146 if ((e_flags & (EF_RH850_REGMODE22 | EF_RH850_REGMODE32)) == 0)
3147 strcat (buf, ", regmode: COMMON");
3148
3149 if ((e_flags & (EF_RH850_GP_FIX | EF_RH850_GP_NOFIX)) == 0)
3150 strcat (buf, ", r4 not used");
3151
3152 if ((e_flags & (EF_RH850_EP_FIX | EF_RH850_EP_NOFIX)) == 0)
3153 strcat (buf, ", r30 not used");
3154
3155 if ((e_flags & (EF_RH850_TP_FIX | EF_RH850_TP_NOFIX)) == 0)
3156 strcat (buf, ", r5 not used");
3157
3158 if ((e_flags & (EF_RH850_REG2_RESERVE | EF_RH850_REG2_NORESERVE)) == 0)
3159 strcat (buf, ", r2 not used");
3160
3161 for (e_flags &= 0xFFFF; e_flags; e_flags &= ~ (e_flags & - e_flags))
3162 {
3163 switch (e_flags & - e_flags)
3164 {
3165 case EF_RH850_FPU_DOUBLE: strcat (buf, ", double precision FPU"); break;
3166 case EF_RH850_FPU_SINGLE: strcat (buf, ", single precision FPU"); break;
3167 case EF_RH850_REGMODE22: strcat (buf, ", regmode:22"); break;
3168 case EF_RH850_REGMODE32: strcat (buf, ", regmode:23"); break;
3169 case EF_RH850_GP_FIX: strcat (buf, ", r4 fixed"); break;
3170 case EF_RH850_GP_NOFIX: strcat (buf, ", r4 free"); break;
3171 case EF_RH850_EP_FIX: strcat (buf, ", r30 fixed"); break;
3172 case EF_RH850_EP_NOFIX: strcat (buf, ", r30 free"); break;
3173 case EF_RH850_TP_FIX: strcat (buf, ", r5 fixed"); break;
3174 case EF_RH850_TP_NOFIX: strcat (buf, ", r5 free"); break;
3175 case EF_RH850_REG2_RESERVE: strcat (buf, ", r2 fixed"); break;
3176 case EF_RH850_REG2_NORESERVE: strcat (buf, ", r2 free"); break;
3177 default: break;
3178 }
3179 }
3180 break;
3181
3182 case EM_V850:
3183 case EM_CYGNUS_V850:
3184 switch (e_flags & EF_V850_ARCH)
3185 {
3186 case E_V850E3V5_ARCH:
3187 strcat (buf, ", v850e3v5");
3188 break;
3189 case E_V850E2V3_ARCH:
3190 strcat (buf, ", v850e2v3");
3191 break;
3192 case E_V850E2_ARCH:
3193 strcat (buf, ", v850e2");
3194 break;
3195 case E_V850E1_ARCH:
3196 strcat (buf, ", v850e1");
3197 break;
3198 case E_V850E_ARCH:
3199 strcat (buf, ", v850e");
3200 break;
3201 case E_V850_ARCH:
3202 strcat (buf, ", v850");
3203 break;
3204 default:
3205 strcat (buf, _(", unknown v850 architecture variant"));
3206 break;
3207 }
3208 break;
3209
3210 case EM_M32R:
3211 case EM_CYGNUS_M32R:
3212 if ((e_flags & EF_M32R_ARCH) == E_M32R_ARCH)
3213 strcat (buf, ", m32r");
3214 break;
3215
3216 case EM_MIPS:
3217 case EM_MIPS_RS3_LE:
3218 if (e_flags & EF_MIPS_NOREORDER)
3219 strcat (buf, ", noreorder");
3220
3221 if (e_flags & EF_MIPS_PIC)
3222 strcat (buf, ", pic");
3223
3224 if (e_flags & EF_MIPS_CPIC)
3225 strcat (buf, ", cpic");
3226
3227 if (e_flags & EF_MIPS_UCODE)
3228 strcat (buf, ", ugen_reserved");
3229
3230 if (e_flags & EF_MIPS_ABI2)
3231 strcat (buf, ", abi2");
3232
3233 if (e_flags & EF_MIPS_OPTIONS_FIRST)
3234 strcat (buf, ", odk first");
3235
3236 if (e_flags & EF_MIPS_32BITMODE)
3237 strcat (buf, ", 32bitmode");
3238
3239 if (e_flags & EF_MIPS_NAN2008)
3240 strcat (buf, ", nan2008");
3241
3242 if (e_flags & EF_MIPS_FP64)
3243 strcat (buf, ", fp64");
3244
3245 switch ((e_flags & EF_MIPS_MACH))
3246 {
3247 case E_MIPS_MACH_3900: strcat (buf, ", 3900"); break;
3248 case E_MIPS_MACH_4010: strcat (buf, ", 4010"); break;
3249 case E_MIPS_MACH_4100: strcat (buf, ", 4100"); break;
3250 case E_MIPS_MACH_4111: strcat (buf, ", 4111"); break;
3251 case E_MIPS_MACH_4120: strcat (buf, ", 4120"); break;
3252 case E_MIPS_MACH_4650: strcat (buf, ", 4650"); break;
3253 case E_MIPS_MACH_5400: strcat (buf, ", 5400"); break;
3254 case E_MIPS_MACH_5500: strcat (buf, ", 5500"); break;
3255 case E_MIPS_MACH_SB1: strcat (buf, ", sb1"); break;
3256 case E_MIPS_MACH_9000: strcat (buf, ", 9000"); break;
3257 case E_MIPS_MACH_LS2E: strcat (buf, ", loongson-2e"); break;
3258 case E_MIPS_MACH_LS2F: strcat (buf, ", loongson-2f"); break;
3259 case E_MIPS_MACH_LS3A: strcat (buf, ", loongson-3a"); break;
3260 case E_MIPS_MACH_OCTEON: strcat (buf, ", octeon"); break;
3261 case E_MIPS_MACH_OCTEON2: strcat (buf, ", octeon2"); break;
3262 case E_MIPS_MACH_OCTEON3: strcat (buf, ", octeon3"); break;
3263 case E_MIPS_MACH_XLR: strcat (buf, ", xlr"); break;
3264 case 0:
3265 /* We simply ignore the field in this case to avoid confusion:
3266 MIPS ELF does not specify EF_MIPS_MACH, it is a GNU
3267 extension. */
3268 break;
3269 default: strcat (buf, _(", unknown CPU")); break;
3270 }
3271
3272 switch ((e_flags & EF_MIPS_ABI))
3273 {
3274 case E_MIPS_ABI_O32: strcat (buf, ", o32"); break;
3275 case E_MIPS_ABI_O64: strcat (buf, ", o64"); break;
3276 case E_MIPS_ABI_EABI32: strcat (buf, ", eabi32"); break;
3277 case E_MIPS_ABI_EABI64: strcat (buf, ", eabi64"); break;
3278 case 0:
3279 /* We simply ignore the field in this case to avoid confusion:
3280 MIPS ELF does not specify EF_MIPS_ABI, it is a GNU extension.
3281 This means it is likely to be an o32 file, but not for
3282 sure. */
3283 break;
3284 default: strcat (buf, _(", unknown ABI")); break;
3285 }
3286
3287 if (e_flags & EF_MIPS_ARCH_ASE_MDMX)
3288 strcat (buf, ", mdmx");
3289
3290 if (e_flags & EF_MIPS_ARCH_ASE_M16)
3291 strcat (buf, ", mips16");
3292
3293 if (e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
3294 strcat (buf, ", micromips");
3295
3296 switch ((e_flags & EF_MIPS_ARCH))
3297 {
3298 case E_MIPS_ARCH_1: strcat (buf, ", mips1"); break;
3299 case E_MIPS_ARCH_2: strcat (buf, ", mips2"); break;
3300 case E_MIPS_ARCH_3: strcat (buf, ", mips3"); break;
3301 case E_MIPS_ARCH_4: strcat (buf, ", mips4"); break;
3302 case E_MIPS_ARCH_5: strcat (buf, ", mips5"); break;
3303 case E_MIPS_ARCH_32: strcat (buf, ", mips32"); break;
3304 case E_MIPS_ARCH_32R2: strcat (buf, ", mips32r2"); break;
3305 case E_MIPS_ARCH_32R6: strcat (buf, ", mips32r6"); break;
3306 case E_MIPS_ARCH_64: strcat (buf, ", mips64"); break;
3307 case E_MIPS_ARCH_64R2: strcat (buf, ", mips64r2"); break;
3308 case E_MIPS_ARCH_64R6: strcat (buf, ", mips64r6"); break;
3309 default: strcat (buf, _(", unknown ISA")); break;
3310 }
3311 break;
3312
3313 case EM_NDS32:
3314 decode_NDS32_machine_flags (e_flags, buf, sizeof buf);
3315 break;
3316
3317 case EM_RISCV:
3318 if (e_flags & EF_RISCV_RVC)
3319 strcat (buf, ", RVC");
3320 if (e_flags & EF_RISCV_SOFT_FLOAT)
3321 strcat (buf, ", soft-float ABI");
3322 break;
3323
3324 case EM_SH:
3325 switch ((e_flags & EF_SH_MACH_MASK))
3326 {
3327 case EF_SH1: strcat (buf, ", sh1"); break;
3328 case EF_SH2: strcat (buf, ", sh2"); break;
3329 case EF_SH3: strcat (buf, ", sh3"); break;
3330 case EF_SH_DSP: strcat (buf, ", sh-dsp"); break;
3331 case EF_SH3_DSP: strcat (buf, ", sh3-dsp"); break;
3332 case EF_SH4AL_DSP: strcat (buf, ", sh4al-dsp"); break;
3333 case EF_SH3E: strcat (buf, ", sh3e"); break;
3334 case EF_SH4: strcat (buf, ", sh4"); break;
3335 case EF_SH5: strcat (buf, ", sh5"); break;
3336 case EF_SH2E: strcat (buf, ", sh2e"); break;
3337 case EF_SH4A: strcat (buf, ", sh4a"); break;
3338 case EF_SH2A: strcat (buf, ", sh2a"); break;
3339 case EF_SH4_NOFPU: strcat (buf, ", sh4-nofpu"); break;
3340 case EF_SH4A_NOFPU: strcat (buf, ", sh4a-nofpu"); break;
3341 case EF_SH2A_NOFPU: strcat (buf, ", sh2a-nofpu"); break;
3342 case EF_SH3_NOMMU: strcat (buf, ", sh3-nommu"); break;
3343 case EF_SH4_NOMMU_NOFPU: strcat (buf, ", sh4-nommu-nofpu"); break;
3344 case EF_SH2A_SH4_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh4-nommu-nofpu"); break;
3345 case EF_SH2A_SH3_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh3-nommu"); break;
3346 case EF_SH2A_SH4: strcat (buf, ", sh2a-or-sh4"); break;
3347 case EF_SH2A_SH3E: strcat (buf, ", sh2a-or-sh3e"); break;
3348 default: strcat (buf, _(", unknown ISA")); break;
3349 }
3350
3351 if (e_flags & EF_SH_PIC)
3352 strcat (buf, ", pic");
3353
3354 if (e_flags & EF_SH_FDPIC)
3355 strcat (buf, ", fdpic");
3356 break;
3357
3358 case EM_OR1K:
3359 if (e_flags & EF_OR1K_NODELAY)
3360 strcat (buf, ", no delay");
3361 break;
3362
3363 case EM_SPARCV9:
3364 if (e_flags & EF_SPARC_32PLUS)
3365 strcat (buf, ", v8+");
3366
3367 if (e_flags & EF_SPARC_SUN_US1)
3368 strcat (buf, ", ultrasparcI");
3369
3370 if (e_flags & EF_SPARC_SUN_US3)
3371 strcat (buf, ", ultrasparcIII");
3372
3373 if (e_flags & EF_SPARC_HAL_R1)
3374 strcat (buf, ", halr1");
3375
3376 if (e_flags & EF_SPARC_LEDATA)
3377 strcat (buf, ", ledata");
3378
3379 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_TSO)
3380 strcat (buf, ", tso");
3381
3382 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_PSO)
3383 strcat (buf, ", pso");
3384
3385 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_RMO)
3386 strcat (buf, ", rmo");
3387 break;
3388
3389 case EM_PARISC:
3390 switch (e_flags & EF_PARISC_ARCH)
3391 {
3392 case EFA_PARISC_1_0:
3393 strcpy (buf, ", PA-RISC 1.0");
3394 break;
3395 case EFA_PARISC_1_1:
3396 strcpy (buf, ", PA-RISC 1.1");
3397 break;
3398 case EFA_PARISC_2_0:
3399 strcpy (buf, ", PA-RISC 2.0");
3400 break;
3401 default:
3402 break;
3403 }
3404 if (e_flags & EF_PARISC_TRAPNIL)
3405 strcat (buf, ", trapnil");
3406 if (e_flags & EF_PARISC_EXT)
3407 strcat (buf, ", ext");
3408 if (e_flags & EF_PARISC_LSB)
3409 strcat (buf, ", lsb");
3410 if (e_flags & EF_PARISC_WIDE)
3411 strcat (buf, ", wide");
3412 if (e_flags & EF_PARISC_NO_KABP)
3413 strcat (buf, ", no kabp");
3414 if (e_flags & EF_PARISC_LAZYSWAP)
3415 strcat (buf, ", lazyswap");
3416 break;
3417
3418 case EM_PJ:
3419 case EM_PJ_OLD:
3420 if ((e_flags & EF_PICOJAVA_NEWCALLS) == EF_PICOJAVA_NEWCALLS)
3421 strcat (buf, ", new calling convention");
3422
3423 if ((e_flags & EF_PICOJAVA_GNUCALLS) == EF_PICOJAVA_GNUCALLS)
3424 strcat (buf, ", gnu calling convention");
3425 break;
3426
3427 case EM_IA_64:
3428 if ((e_flags & EF_IA_64_ABI64))
3429 strcat (buf, ", 64-bit");
3430 else
3431 strcat (buf, ", 32-bit");
3432 if ((e_flags & EF_IA_64_REDUCEDFP))
3433 strcat (buf, ", reduced fp model");
3434 if ((e_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
3435 strcat (buf, ", no function descriptors, constant gp");
3436 else if ((e_flags & EF_IA_64_CONS_GP))
3437 strcat (buf, ", constant gp");
3438 if ((e_flags & EF_IA_64_ABSOLUTE))
3439 strcat (buf, ", absolute");
3440 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
3441 {
3442 if ((e_flags & EF_IA_64_VMS_LINKAGES))
3443 strcat (buf, ", vms_linkages");
3444 switch ((e_flags & EF_IA_64_VMS_COMCOD))
3445 {
3446 case EF_IA_64_VMS_COMCOD_SUCCESS:
3447 break;
3448 case EF_IA_64_VMS_COMCOD_WARNING:
3449 strcat (buf, ", warning");
3450 break;
3451 case EF_IA_64_VMS_COMCOD_ERROR:
3452 strcat (buf, ", error");
3453 break;
3454 case EF_IA_64_VMS_COMCOD_ABORT:
3455 strcat (buf, ", abort");
3456 break;
3457 default:
3458 warn (_("Unrecognised IA64 VMS Command Code: %x\n"),
3459 e_flags & EF_IA_64_VMS_COMCOD);
3460 strcat (buf, ", <unknown>");
3461 }
3462 }
3463 break;
3464
3465 case EM_VAX:
3466 if ((e_flags & EF_VAX_NONPIC))
3467 strcat (buf, ", non-PIC");
3468 if ((e_flags & EF_VAX_DFLOAT))
3469 strcat (buf, ", D-Float");
3470 if ((e_flags & EF_VAX_GFLOAT))
3471 strcat (buf, ", G-Float");
3472 break;
3473
3474 case EM_VISIUM:
3475 if (e_flags & EF_VISIUM_ARCH_MCM)
3476 strcat (buf, ", mcm");
3477 else if (e_flags & EF_VISIUM_ARCH_MCM24)
3478 strcat (buf, ", mcm24");
3479 if (e_flags & EF_VISIUM_ARCH_GR6)
3480 strcat (buf, ", gr6");
3481 break;
3482
3483 case EM_RL78:
3484 switch (e_flags & E_FLAG_RL78_CPU_MASK)
3485 {
3486 case E_FLAG_RL78_ANY_CPU: break;
3487 case E_FLAG_RL78_G10: strcat (buf, ", G10"); break;
3488 case E_FLAG_RL78_G13: strcat (buf, ", G13"); break;
3489 case E_FLAG_RL78_G14: strcat (buf, ", G14"); break;
3490 }
3491 if (e_flags & E_FLAG_RL78_64BIT_DOUBLES)
3492 strcat (buf, ", 64-bit doubles");
3493 break;
3494
3495 case EM_RX:
3496 if (e_flags & E_FLAG_RX_64BIT_DOUBLES)
3497 strcat (buf, ", 64-bit doubles");
3498 if (e_flags & E_FLAG_RX_DSP)
3499 strcat (buf, ", dsp");
3500 if (e_flags & E_FLAG_RX_PID)
3501 strcat (buf, ", pid");
3502 if (e_flags & E_FLAG_RX_ABI)
3503 strcat (buf, ", RX ABI");
3504 if (e_flags & E_FLAG_RX_SINSNS_SET)
3505 strcat (buf, e_flags & E_FLAG_RX_SINSNS_YES
3506 ? ", uses String instructions" : ", bans String instructions");
3507 if (e_flags & E_FLAG_RX_V2)
3508 strcat (buf, ", V2");
3509 break;
3510
3511 case EM_S390:
3512 if (e_flags & EF_S390_HIGH_GPRS)
3513 strcat (buf, ", highgprs");
3514 break;
3515
3516 case EM_TI_C6000:
3517 if ((e_flags & EF_C6000_REL))
3518 strcat (buf, ", relocatable module");
3519 break;
3520
3521 case EM_MSP430:
3522 strcat (buf, _(": architecture variant: "));
3523 switch (e_flags & EF_MSP430_MACH)
3524 {
3525 case E_MSP430_MACH_MSP430x11: strcat (buf, "MSP430x11"); break;
3526 case E_MSP430_MACH_MSP430x11x1 : strcat (buf, "MSP430x11x1 "); break;
3527 case E_MSP430_MACH_MSP430x12: strcat (buf, "MSP430x12"); break;
3528 case E_MSP430_MACH_MSP430x13: strcat (buf, "MSP430x13"); break;
3529 case E_MSP430_MACH_MSP430x14: strcat (buf, "MSP430x14"); break;
3530 case E_MSP430_MACH_MSP430x15: strcat (buf, "MSP430x15"); break;
3531 case E_MSP430_MACH_MSP430x16: strcat (buf, "MSP430x16"); break;
3532 case E_MSP430_MACH_MSP430x31: strcat (buf, "MSP430x31"); break;
3533 case E_MSP430_MACH_MSP430x32: strcat (buf, "MSP430x32"); break;
3534 case E_MSP430_MACH_MSP430x33: strcat (buf, "MSP430x33"); break;
3535 case E_MSP430_MACH_MSP430x41: strcat (buf, "MSP430x41"); break;
3536 case E_MSP430_MACH_MSP430x42: strcat (buf, "MSP430x42"); break;
3537 case E_MSP430_MACH_MSP430x43: strcat (buf, "MSP430x43"); break;
3538 case E_MSP430_MACH_MSP430x44: strcat (buf, "MSP430x44"); break;
3539 case E_MSP430_MACH_MSP430X : strcat (buf, "MSP430X"); break;
3540 default:
3541 strcat (buf, _(": unknown")); break;
3542 }
3543
3544 if (e_flags & ~ EF_MSP430_MACH)
3545 strcat (buf, _(": unknown extra flag bits also present"));
3546 }
3547 }
3548
3549 return buf;
3550 }
3551
3552 static const char *
3553 get_osabi_name (unsigned int osabi)
3554 {
3555 static char buff[32];
3556
3557 switch (osabi)
3558 {
3559 case ELFOSABI_NONE: return "UNIX - System V";
3560 case ELFOSABI_HPUX: return "UNIX - HP-UX";
3561 case ELFOSABI_NETBSD: return "UNIX - NetBSD";
3562 case ELFOSABI_GNU: return "UNIX - GNU";
3563 case ELFOSABI_SOLARIS: return "UNIX - Solaris";
3564 case ELFOSABI_AIX: return "UNIX - AIX";
3565 case ELFOSABI_IRIX: return "UNIX - IRIX";
3566 case ELFOSABI_FREEBSD: return "UNIX - FreeBSD";
3567 case ELFOSABI_TRU64: return "UNIX - TRU64";
3568 case ELFOSABI_MODESTO: return "Novell - Modesto";
3569 case ELFOSABI_OPENBSD: return "UNIX - OpenBSD";
3570 case ELFOSABI_OPENVMS: return "VMS - OpenVMS";
3571 case ELFOSABI_NSK: return "HP - Non-Stop Kernel";
3572 case ELFOSABI_AROS: return "AROS";
3573 case ELFOSABI_FENIXOS: return "FenixOS";
3574 case ELFOSABI_CLOUDABI: return "Nuxi CloudABI";
3575 case ELFOSABI_OPENVOS: return "Stratus Technologies OpenVOS";
3576 default:
3577 if (osabi >= 64)
3578 switch (elf_header.e_machine)
3579 {
3580 case EM_ARM:
3581 switch (osabi)
3582 {
3583 case ELFOSABI_ARM: return "ARM";
3584 default:
3585 break;
3586 }
3587 break;
3588
3589 case EM_MSP430:
3590 case EM_MSP430_OLD:
3591 case EM_VISIUM:
3592 switch (osabi)
3593 {
3594 case ELFOSABI_STANDALONE: return _("Standalone App");
3595 default:
3596 break;
3597 }
3598 break;
3599
3600 case EM_TI_C6000:
3601 switch (osabi)
3602 {
3603 case ELFOSABI_C6000_ELFABI: return _("Bare-metal C6000");
3604 case ELFOSABI_C6000_LINUX: return "Linux C6000";
3605 default:
3606 break;
3607 }
3608 break;
3609
3610 default:
3611 break;
3612 }
3613 snprintf (buff, sizeof (buff), _("<unknown: %x>"), osabi);
3614 return buff;
3615 }
3616 }
3617
3618 static const char *
3619 get_aarch64_segment_type (unsigned long type)
3620 {
3621 switch (type)
3622 {
3623 case PT_AARCH64_ARCHEXT:
3624 return "AARCH64_ARCHEXT";
3625 default:
3626 break;
3627 }
3628
3629 return NULL;
3630 }
3631
3632 static const char *
3633 get_arm_segment_type (unsigned long type)
3634 {
3635 switch (type)
3636 {
3637 case PT_ARM_EXIDX:
3638 return "EXIDX";
3639 default:
3640 break;
3641 }
3642
3643 return NULL;
3644 }
3645
3646 static const char *
3647 get_mips_segment_type (unsigned long type)
3648 {
3649 switch (type)
3650 {
3651 case PT_MIPS_REGINFO:
3652 return "REGINFO";
3653 case PT_MIPS_RTPROC:
3654 return "RTPROC";
3655 case PT_MIPS_OPTIONS:
3656 return "OPTIONS";
3657 case PT_MIPS_ABIFLAGS:
3658 return "ABIFLAGS";
3659 default:
3660 break;
3661 }
3662
3663 return NULL;
3664 }
3665
3666 static const char *
3667 get_parisc_segment_type (unsigned long type)
3668 {
3669 switch (type)
3670 {
3671 case PT_HP_TLS: return "HP_TLS";
3672 case PT_HP_CORE_NONE: return "HP_CORE_NONE";
3673 case PT_HP_CORE_VERSION: return "HP_CORE_VERSION";
3674 case PT_HP_CORE_KERNEL: return "HP_CORE_KERNEL";
3675 case PT_HP_CORE_COMM: return "HP_CORE_COMM";
3676 case PT_HP_CORE_PROC: return "HP_CORE_PROC";
3677 case PT_HP_CORE_LOADABLE: return "HP_CORE_LOADABLE";
3678 case PT_HP_CORE_STACK: return "HP_CORE_STACK";
3679 case PT_HP_CORE_SHM: return "HP_CORE_SHM";
3680 case PT_HP_CORE_MMF: return "HP_CORE_MMF";
3681 case PT_HP_PARALLEL: return "HP_PARALLEL";
3682 case PT_HP_FASTBIND: return "HP_FASTBIND";
3683 case PT_HP_OPT_ANNOT: return "HP_OPT_ANNOT";
3684 case PT_HP_HSL_ANNOT: return "HP_HSL_ANNOT";
3685 case PT_HP_STACK: return "HP_STACK";
3686 case PT_HP_CORE_UTSNAME: return "HP_CORE_UTSNAME";
3687 case PT_PARISC_ARCHEXT: return "PARISC_ARCHEXT";
3688 case PT_PARISC_UNWIND: return "PARISC_UNWIND";
3689 case PT_PARISC_WEAKORDER: return "PARISC_WEAKORDER";
3690 default:
3691 break;
3692 }
3693
3694 return NULL;
3695 }
3696
3697 static const char *
3698 get_ia64_segment_type (unsigned long type)
3699 {
3700 switch (type)
3701 {
3702 case PT_IA_64_ARCHEXT: return "IA_64_ARCHEXT";
3703 case PT_IA_64_UNWIND: return "IA_64_UNWIND";
3704 case PT_HP_TLS: return "HP_TLS";
3705 case PT_IA_64_HP_OPT_ANOT: return "HP_OPT_ANNOT";
3706 case PT_IA_64_HP_HSL_ANOT: return "HP_HSL_ANNOT";
3707 case PT_IA_64_HP_STACK: return "HP_STACK";
3708 default:
3709 break;
3710 }
3711
3712 return NULL;
3713 }
3714
3715 static const char *
3716 get_tic6x_segment_type (unsigned long type)
3717 {
3718 switch (type)
3719 {
3720 case PT_C6000_PHATTR: return "C6000_PHATTR";
3721 default:
3722 break;
3723 }
3724
3725 return NULL;
3726 }
3727
3728 static const char *
3729 get_solaris_segment_type (unsigned long type)
3730 {
3731 switch (type)
3732 {
3733 case 0x6464e550: return "PT_SUNW_UNWIND";
3734 case 0x6474e550: return "PT_SUNW_EH_FRAME";
3735 case 0x6ffffff7: return "PT_LOSUNW";
3736 case 0x6ffffffa: return "PT_SUNWBSS";
3737 case 0x6ffffffb: return "PT_SUNWSTACK";
3738 case 0x6ffffffc: return "PT_SUNWDTRACE";
3739 case 0x6ffffffd: return "PT_SUNWCAP";
3740 case 0x6fffffff: return "PT_HISUNW";
3741 default: return NULL;
3742 }
3743 }
3744
3745 static const char *
3746 get_segment_type (unsigned long p_type)
3747 {
3748 static char buff[32];
3749
3750 switch (p_type)
3751 {
3752 case PT_NULL: return "NULL";
3753 case PT_LOAD: return "LOAD";
3754 case PT_DYNAMIC: return "DYNAMIC";
3755 case PT_INTERP: return "INTERP";
3756 case PT_NOTE: return "NOTE";
3757 case PT_SHLIB: return "SHLIB";
3758 case PT_PHDR: return "PHDR";
3759 case PT_TLS: return "TLS";
3760
3761 case PT_GNU_EH_FRAME:
3762 return "GNU_EH_FRAME";
3763 case PT_GNU_STACK: return "GNU_STACK";
3764 case PT_GNU_RELRO: return "GNU_RELRO";
3765
3766 default:
3767 if ((p_type >= PT_LOPROC) && (p_type <= PT_HIPROC))
3768 {
3769 const char * result;
3770
3771 switch (elf_header.e_machine)
3772 {
3773 case EM_AARCH64:
3774 result = get_aarch64_segment_type (p_type);
3775 break;
3776 case EM_ARM:
3777 result = get_arm_segment_type (p_type);
3778 break;
3779 case EM_MIPS:
3780 case EM_MIPS_RS3_LE:
3781 result = get_mips_segment_type (p_type);
3782 break;
3783 case EM_PARISC:
3784 result = get_parisc_segment_type (p_type);
3785 break;
3786 case EM_IA_64:
3787 result = get_ia64_segment_type (p_type);
3788 break;
3789 case EM_TI_C6000:
3790 result = get_tic6x_segment_type (p_type);
3791 break;
3792 default:
3793 result = NULL;
3794 break;
3795 }
3796
3797 if (result != NULL)
3798 return result;
3799
3800 sprintf (buff, "LOPROC+%#lx", p_type - PT_LOPROC);
3801 }
3802 else if ((p_type >= PT_LOOS) && (p_type <= PT_HIOS))
3803 {
3804 const char * result;
3805
3806 switch (elf_header.e_machine)
3807 {
3808 case EM_PARISC:
3809 result = get_parisc_segment_type (p_type);
3810 break;
3811 case EM_IA_64:
3812 result = get_ia64_segment_type (p_type);
3813 break;
3814 default:
3815 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
3816 result = get_solaris_segment_type (p_type);
3817 else
3818 result = NULL;
3819 break;
3820 }
3821
3822 if (result != NULL)
3823 return result;
3824
3825 sprintf (buff, "LOOS+%#lx", p_type - PT_LOOS);
3826 }
3827 else
3828 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), p_type);
3829
3830 return buff;
3831 }
3832 }
3833
3834 static const char *
3835 get_mips_section_type_name (unsigned int sh_type)
3836 {
3837 switch (sh_type)
3838 {
3839 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST";
3840 case SHT_MIPS_MSYM: return "MIPS_MSYM";
3841 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT";
3842 case SHT_MIPS_GPTAB: return "MIPS_GPTAB";
3843 case SHT_MIPS_UCODE: return "MIPS_UCODE";
3844 case SHT_MIPS_DEBUG: return "MIPS_DEBUG";
3845 case SHT_MIPS_REGINFO: return "MIPS_REGINFO";
3846 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE";
3847 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM";
3848 case SHT_MIPS_RELD: return "MIPS_RELD";
3849 case SHT_MIPS_IFACE: return "MIPS_IFACE";
3850 case SHT_MIPS_CONTENT: return "MIPS_CONTENT";
3851 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS";
3852 case SHT_MIPS_SHDR: return "MIPS_SHDR";
3853 case SHT_MIPS_FDESC: return "MIPS_FDESC";
3854 case SHT_MIPS_EXTSYM: return "MIPS_EXTSYM";
3855 case SHT_MIPS_DENSE: return "MIPS_DENSE";
3856 case SHT_MIPS_PDESC: return "MIPS_PDESC";
3857 case SHT_MIPS_LOCSYM: return "MIPS_LOCSYM";
3858 case SHT_MIPS_AUXSYM: return "MIPS_AUXSYM";
3859 case SHT_MIPS_OPTSYM: return "MIPS_OPTSYM";
3860 case SHT_MIPS_LOCSTR: return "MIPS_LOCSTR";
3861 case SHT_MIPS_LINE: return "MIPS_LINE";
3862 case SHT_MIPS_RFDESC: return "MIPS_RFDESC";
3863 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM";
3864 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST";
3865 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS";
3866 case SHT_MIPS_DWARF: return "MIPS_DWARF";
3867 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL";
3868 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
3869 case SHT_MIPS_EVENTS: return "MIPS_EVENTS";
3870 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE";
3871 case SHT_MIPS_PIXIE: return "MIPS_PIXIE";
3872 case SHT_MIPS_XLATE: return "MIPS_XLATE";
3873 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG";
3874 case SHT_MIPS_WHIRL: return "MIPS_WHIRL";
3875 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION";
3876 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD";
3877 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION";
3878 case SHT_MIPS_ABIFLAGS: return "MIPS_ABIFLAGS";
3879 default:
3880 break;
3881 }
3882 return NULL;
3883 }
3884
3885 static const char *
3886 get_parisc_section_type_name (unsigned int sh_type)
3887 {
3888 switch (sh_type)
3889 {
3890 case SHT_PARISC_EXT: return "PARISC_EXT";
3891 case SHT_PARISC_UNWIND: return "PARISC_UNWIND";
3892 case SHT_PARISC_DOC: return "PARISC_DOC";
3893 case SHT_PARISC_ANNOT: return "PARISC_ANNOT";
3894 case SHT_PARISC_SYMEXTN: return "PARISC_SYMEXTN";
3895 case SHT_PARISC_STUBS: return "PARISC_STUBS";
3896 case SHT_PARISC_DLKM: return "PARISC_DLKM";
3897 default:
3898 break;
3899 }
3900 return NULL;
3901 }
3902
3903 static const char *
3904 get_ia64_section_type_name (unsigned int sh_type)
3905 {
3906 /* If the top 8 bits are 0x78 the next 8 are the os/abi ID. */
3907 if ((sh_type & 0xFF000000) == SHT_IA_64_LOPSREG)
3908 return get_osabi_name ((sh_type & 0x00FF0000) >> 16);
3909
3910 switch (sh_type)
3911 {
3912 case SHT_IA_64_EXT: return "IA_64_EXT";
3913 case SHT_IA_64_UNWIND: return "IA_64_UNWIND";
3914 case SHT_IA_64_PRIORITY_INIT: return "IA_64_PRIORITY_INIT";
3915 case SHT_IA_64_VMS_TRACE: return "VMS_TRACE";
3916 case SHT_IA_64_VMS_TIE_SIGNATURES: return "VMS_TIE_SIGNATURES";
3917 case SHT_IA_64_VMS_DEBUG: return "VMS_DEBUG";
3918 case SHT_IA_64_VMS_DEBUG_STR: return "VMS_DEBUG_STR";
3919 case SHT_IA_64_VMS_LINKAGES: return "VMS_LINKAGES";
3920 case SHT_IA_64_VMS_SYMBOL_VECTOR: return "VMS_SYMBOL_VECTOR";
3921 case SHT_IA_64_VMS_FIXUP: return "VMS_FIXUP";
3922 default:
3923 break;
3924 }
3925 return NULL;
3926 }
3927
3928 static const char *
3929 get_x86_64_section_type_name (unsigned int sh_type)
3930 {
3931 switch (sh_type)
3932 {
3933 case SHT_X86_64_UNWIND: return "X86_64_UNWIND";
3934 default:
3935 break;
3936 }
3937 return NULL;
3938 }
3939
3940 static const char *
3941 get_aarch64_section_type_name (unsigned int sh_type)
3942 {
3943 switch (sh_type)
3944 {
3945 case SHT_AARCH64_ATTRIBUTES:
3946 return "AARCH64_ATTRIBUTES";
3947 default:
3948 break;
3949 }
3950 return NULL;
3951 }
3952
3953 static const char *
3954 get_arm_section_type_name (unsigned int sh_type)
3955 {
3956 switch (sh_type)
3957 {
3958 case SHT_ARM_EXIDX: return "ARM_EXIDX";
3959 case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP";
3960 case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES";
3961 case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY";
3962 case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION";
3963 default:
3964 break;
3965 }
3966 return NULL;
3967 }
3968
3969 static const char *
3970 get_tic6x_section_type_name (unsigned int sh_type)
3971 {
3972 switch (sh_type)
3973 {
3974 case SHT_C6000_UNWIND:
3975 return "C6000_UNWIND";
3976 case SHT_C6000_PREEMPTMAP:
3977 return "C6000_PREEMPTMAP";
3978 case SHT_C6000_ATTRIBUTES:
3979 return "C6000_ATTRIBUTES";
3980 case SHT_TI_ICODE:
3981 return "TI_ICODE";
3982 case SHT_TI_XREF:
3983 return "TI_XREF";
3984 case SHT_TI_HANDLER:
3985 return "TI_HANDLER";
3986 case SHT_TI_INITINFO:
3987 return "TI_INITINFO";
3988 case SHT_TI_PHATTRS:
3989 return "TI_PHATTRS";
3990 default:
3991 break;
3992 }
3993 return NULL;
3994 }
3995
3996 static const char *
3997 get_msp430x_section_type_name (unsigned int sh_type)
3998 {
3999 switch (sh_type)
4000 {
4001 case SHT_MSP430_SEC_FLAGS: return "MSP430_SEC_FLAGS";
4002 case SHT_MSP430_SYM_ALIASES: return "MSP430_SYM_ALIASES";
4003 case SHT_MSP430_ATTRIBUTES: return "MSP430_ATTRIBUTES";
4004 default: return NULL;
4005 }
4006 }
4007
4008 static const char *
4009 get_v850_section_type_name (unsigned int sh_type)
4010 {
4011 switch (sh_type)
4012 {
4013 case SHT_V850_SCOMMON: return "V850 Small Common";
4014 case SHT_V850_TCOMMON: return "V850 Tiny Common";
4015 case SHT_V850_ZCOMMON: return "V850 Zero Common";
4016 case SHT_RENESAS_IOP: return "RENESAS IOP";
4017 case SHT_RENESAS_INFO: return "RENESAS INFO";
4018 default: return NULL;
4019 }
4020 }
4021
4022 static const char *
4023 get_section_type_name (unsigned int sh_type)
4024 {
4025 static char buff[32];
4026 const char * result;
4027
4028 switch (sh_type)
4029 {
4030 case SHT_NULL: return "NULL";
4031 case SHT_PROGBITS: return "PROGBITS";
4032 case SHT_SYMTAB: return "SYMTAB";
4033 case SHT_STRTAB: return "STRTAB";
4034 case SHT_RELA: return "RELA";
4035 case SHT_HASH: return "HASH";
4036 case SHT_DYNAMIC: return "DYNAMIC";
4037 case SHT_NOTE: return "NOTE";
4038 case SHT_NOBITS: return "NOBITS";
4039 case SHT_REL: return "REL";
4040 case SHT_SHLIB: return "SHLIB";
4041 case SHT_DYNSYM: return "DYNSYM";
4042 case SHT_INIT_ARRAY: return "INIT_ARRAY";
4043 case SHT_FINI_ARRAY: return "FINI_ARRAY";
4044 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY";
4045 case SHT_GNU_HASH: return "GNU_HASH";
4046 case SHT_GROUP: return "GROUP";
4047 case SHT_SYMTAB_SHNDX: return "SYMTAB SECTION INDICIES";
4048 case SHT_GNU_verdef: return "VERDEF";
4049 case SHT_GNU_verneed: return "VERNEED";
4050 case SHT_GNU_versym: return "VERSYM";
4051 case 0x6ffffff0: return "VERSYM";
4052 case 0x6ffffffc: return "VERDEF";
4053 case 0x7ffffffd: return "AUXILIARY";
4054 case 0x7fffffff: return "FILTER";
4055 case SHT_GNU_LIBLIST: return "GNU_LIBLIST";
4056
4057 default:
4058 if ((sh_type >= SHT_LOPROC) && (sh_type <= SHT_HIPROC))
4059 {
4060 switch (elf_header.e_machine)
4061 {
4062 case EM_MIPS:
4063 case EM_MIPS_RS3_LE:
4064 result = get_mips_section_type_name (sh_type);
4065 break;
4066 case EM_PARISC:
4067 result = get_parisc_section_type_name (sh_type);
4068 break;
4069 case EM_IA_64:
4070 result = get_ia64_section_type_name (sh_type);
4071 break;
4072 case EM_X86_64:
4073 case EM_L1OM:
4074 case EM_K1OM:
4075 result = get_x86_64_section_type_name (sh_type);
4076 break;
4077 case EM_AARCH64:
4078 result = get_aarch64_section_type_name (sh_type);
4079 break;
4080 case EM_ARM:
4081 result = get_arm_section_type_name (sh_type);
4082 break;
4083 case EM_TI_C6000:
4084 result = get_tic6x_section_type_name (sh_type);
4085 break;
4086 case EM_MSP430:
4087 result = get_msp430x_section_type_name (sh_type);
4088 break;
4089 case EM_V800:
4090 case EM_V850:
4091 case EM_CYGNUS_V850:
4092 result = get_v850_section_type_name (sh_type);
4093 break;
4094 default:
4095 result = NULL;
4096 break;
4097 }
4098
4099 if (result != NULL)
4100 return result;
4101
4102 sprintf (buff, "LOPROC+%#x", sh_type - SHT_LOPROC);
4103 }
4104 else if ((sh_type >= SHT_LOOS) && (sh_type <= SHT_HIOS))
4105 {
4106 switch (elf_header.e_machine)
4107 {
4108 case EM_IA_64:
4109 result = get_ia64_section_type_name (sh_type);
4110 break;
4111 default:
4112 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
4113 result = get_solaris_section_type (sh_type);
4114 else
4115 result = NULL;
4116 break;
4117 }
4118
4119 if (result != NULL)
4120 return result;
4121
4122 sprintf (buff, "LOOS+%#x", sh_type - SHT_LOOS);
4123 }
4124 else if ((sh_type >= SHT_LOUSER) && (sh_type <= SHT_HIUSER))
4125 {
4126 switch (elf_header.e_machine)
4127 {
4128 case EM_V800:
4129 case EM_V850:
4130 case EM_CYGNUS_V850:
4131 result = get_v850_section_type_name (sh_type);
4132 break;
4133 default:
4134 result = NULL;
4135 break;
4136 }
4137
4138 if (result != NULL)
4139 return result;
4140
4141 sprintf (buff, "LOUSER+%#x", sh_type - SHT_LOUSER);
4142 }
4143 else
4144 /* This message is probably going to be displayed in a 15
4145 character wide field, so put the hex value first. */
4146 snprintf (buff, sizeof (buff), _("%08x: <unknown>"), sh_type);
4147
4148 return buff;
4149 }
4150 }
4151
4152 #define OPTION_DEBUG_DUMP 512
4153 #define OPTION_DYN_SYMS 513
4154 #define OPTION_DWARF_DEPTH 514
4155 #define OPTION_DWARF_START 515
4156 #define OPTION_DWARF_CHECK 516
4157
4158 static struct option options[] =
4159 {
4160 {"all", no_argument, 0, 'a'},
4161 {"file-header", no_argument, 0, 'h'},
4162 {"program-headers", no_argument, 0, 'l'},
4163 {"headers", no_argument, 0, 'e'},
4164 {"histogram", no_argument, 0, 'I'},
4165 {"segments", no_argument, 0, 'l'},
4166 {"sections", no_argument, 0, 'S'},
4167 {"section-headers", no_argument, 0, 'S'},
4168 {"section-groups", no_argument, 0, 'g'},
4169 {"section-details", no_argument, 0, 't'},
4170 {"full-section-name",no_argument, 0, 'N'},
4171 {"symbols", no_argument, 0, 's'},
4172 {"syms", no_argument, 0, 's'},
4173 {"dyn-syms", no_argument, 0, OPTION_DYN_SYMS},
4174 {"relocs", no_argument, 0, 'r'},
4175 {"notes", no_argument, 0, 'n'},
4176 {"dynamic", no_argument, 0, 'd'},
4177 {"arch-specific", no_argument, 0, 'A'},
4178 {"version-info", no_argument, 0, 'V'},
4179 {"use-dynamic", no_argument, 0, 'D'},
4180 {"unwind", no_argument, 0, 'u'},
4181 {"archive-index", no_argument, 0, 'c'},
4182 {"hex-dump", required_argument, 0, 'x'},
4183 {"relocated-dump", required_argument, 0, 'R'},
4184 {"string-dump", required_argument, 0, 'p'},
4185 {"decompress", no_argument, 0, 'z'},
4186 #ifdef SUPPORT_DISASSEMBLY
4187 {"instruction-dump", required_argument, 0, 'i'},
4188 #endif
4189 {"debug-dump", optional_argument, 0, OPTION_DEBUG_DUMP},
4190
4191 {"dwarf-depth", required_argument, 0, OPTION_DWARF_DEPTH},
4192 {"dwarf-start", required_argument, 0, OPTION_DWARF_START},
4193 {"dwarf-check", no_argument, 0, OPTION_DWARF_CHECK},
4194
4195 {"version", no_argument, 0, 'v'},
4196 {"wide", no_argument, 0, 'W'},
4197 {"help", no_argument, 0, 'H'},
4198 {0, no_argument, 0, 0}
4199 };
4200
4201 static void
4202 usage (FILE * stream)
4203 {
4204 fprintf (stream, _("Usage: readelf <option(s)> elf-file(s)\n"));
4205 fprintf (stream, _(" Display information about the contents of ELF format files\n"));
4206 fprintf (stream, _(" Options are:\n\
4207 -a --all Equivalent to: -h -l -S -s -r -d -V -A -I\n\
4208 -h --file-header Display the ELF file header\n\
4209 -l --program-headers Display the program headers\n\
4210 --segments An alias for --program-headers\n\
4211 -S --section-headers Display the sections' header\n\
4212 --sections An alias for --section-headers\n\
4213 -g --section-groups Display the section groups\n\
4214 -t --section-details Display the section details\n\
4215 -e --headers Equivalent to: -h -l -S\n\
4216 -s --syms Display the symbol table\n\
4217 --symbols An alias for --syms\n\
4218 --dyn-syms Display the dynamic symbol table\n\
4219 -n --notes Display the core notes (if present)\n\
4220 -r --relocs Display the relocations (if present)\n\
4221 -u --unwind Display the unwind info (if present)\n\
4222 -d --dynamic Display the dynamic section (if present)\n\
4223 -V --version-info Display the version sections (if present)\n\
4224 -A --arch-specific Display architecture specific information (if any)\n\
4225 -c --archive-index Display the symbol/file index in an archive\n\
4226 -D --use-dynamic Use the dynamic section info when displaying symbols\n\
4227 -x --hex-dump=<number|name>\n\
4228 Dump the contents of section <number|name> as bytes\n\
4229 -p --string-dump=<number|name>\n\
4230 Dump the contents of section <number|name> as strings\n\
4231 -R --relocated-dump=<number|name>\n\
4232 Dump the contents of section <number|name> as relocated bytes\n\
4233 -z --decompress Decompress section before dumping it\n\
4234 -w[lLiaprmfFsoRt] or\n\
4235 --debug-dump[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,\n\
4236 =frames-interp,=str,=loc,=Ranges,=pubtypes,\n\
4237 =gdb_index,=trace_info,=trace_abbrev,=trace_aranges,\n\
4238 =addr,=cu_index]\n\
4239 Display the contents of DWARF2 debug sections\n"));
4240 fprintf (stream, _("\
4241 --dwarf-depth=N Do not display DIEs at depth N or greater\n\
4242 --dwarf-start=N Display DIEs starting with N, at the same depth\n\
4243 or deeper\n"));
4244 #ifdef SUPPORT_DISASSEMBLY
4245 fprintf (stream, _("\
4246 -i --instruction-dump=<number|name>\n\
4247 Disassemble the contents of section <number|name>\n"));
4248 #endif
4249 fprintf (stream, _("\
4250 -I --histogram Display histogram of bucket list lengths\n\
4251 -W --wide Allow output width to exceed 80 characters\n\
4252 @<file> Read options from <file>\n\
4253 -H --help Display this information\n\
4254 -v --version Display the version number of readelf\n"));
4255
4256 if (REPORT_BUGS_TO[0] && stream == stdout)
4257 fprintf (stdout, _("Report bugs to %s\n"), REPORT_BUGS_TO);
4258
4259 exit (stream == stdout ? 0 : 1);
4260 }
4261
4262 /* Record the fact that the user wants the contents of section number
4263 SECTION to be displayed using the method(s) encoded as flags bits
4264 in TYPE. Note, TYPE can be zero if we are creating the array for
4265 the first time. */
4266
4267 static void
4268 request_dump_bynumber (unsigned int section, dump_type type)
4269 {
4270 if (section >= num_dump_sects)
4271 {
4272 dump_type * new_dump_sects;
4273
4274 new_dump_sects = (dump_type *) calloc (section + 1,
4275 sizeof (* dump_sects));
4276
4277 if (new_dump_sects == NULL)
4278 error (_("Out of memory allocating dump request table.\n"));
4279 else
4280 {
4281 if (dump_sects)
4282 {
4283 /* Copy current flag settings. */
4284 memcpy (new_dump_sects, dump_sects, num_dump_sects * sizeof (* dump_sects));
4285
4286 free (dump_sects);
4287 }
4288
4289 dump_sects = new_dump_sects;
4290 num_dump_sects = section + 1;
4291 }
4292 }
4293
4294 if (dump_sects)
4295 dump_sects[section] |= type;
4296
4297 return;
4298 }
4299
4300 /* Request a dump by section name. */
4301
4302 static void
4303 request_dump_byname (const char * section, dump_type type)
4304 {
4305 struct dump_list_entry * new_request;
4306
4307 new_request = (struct dump_list_entry *)
4308 malloc (sizeof (struct dump_list_entry));
4309 if (!new_request)
4310 error (_("Out of memory allocating dump request table.\n"));
4311
4312 new_request->name = strdup (section);
4313 if (!new_request->name)
4314 error (_("Out of memory allocating dump request table.\n"));
4315
4316 new_request->type = type;
4317
4318 new_request->next = dump_sects_byname;
4319 dump_sects_byname = new_request;
4320 }
4321
4322 static inline void
4323 request_dump (dump_type type)
4324 {
4325 int section;
4326 char * cp;
4327
4328 do_dump++;
4329 section = strtoul (optarg, & cp, 0);
4330
4331 if (! *cp && section >= 0)
4332 request_dump_bynumber (section, type);
4333 else
4334 request_dump_byname (optarg, type);
4335 }
4336
4337
4338 static void
4339 parse_args (int argc, char ** argv)
4340 {
4341 int c;
4342
4343 if (argc < 2)
4344 usage (stderr);
4345
4346 while ((c = getopt_long
4347 (argc, argv, "ADHINR:SVWacdeghi:lnp:rstuvw::x:z", options, NULL)) != EOF)
4348 {
4349 switch (c)
4350 {
4351 case 0:
4352 /* Long options. */
4353 break;
4354 case 'H':
4355 usage (stdout);
4356 break;
4357
4358 case 'a':
4359 do_syms++;
4360 do_reloc++;
4361 do_unwind++;
4362 do_dynamic++;
4363 do_header++;
4364 do_sections++;
4365 do_section_groups++;
4366 do_segments++;
4367 do_version++;
4368 do_histogram++;
4369 do_arch++;
4370 do_notes++;
4371 break;
4372 case 'g':
4373 do_section_groups++;
4374 break;
4375 case 't':
4376 case 'N':
4377 do_sections++;
4378 do_section_details++;
4379 break;
4380 case 'e':
4381 do_header++;
4382 do_sections++;
4383 do_segments++;
4384 break;
4385 case 'A':
4386 do_arch++;
4387 break;
4388 case 'D':
4389 do_using_dynamic++;
4390 break;
4391 case 'r':
4392 do_reloc++;
4393 break;
4394 case 'u':
4395 do_unwind++;
4396 break;
4397 case 'h':
4398 do_header++;
4399 break;
4400 case 'l':
4401 do_segments++;
4402 break;
4403 case 's':
4404 do_syms++;
4405 break;
4406 case 'S':
4407 do_sections++;
4408 break;
4409 case 'd':
4410 do_dynamic++;
4411 break;
4412 case 'I':
4413 do_histogram++;
4414 break;
4415 case 'n':
4416 do_notes++;
4417 break;
4418 case 'c':
4419 do_archive_index++;
4420 break;
4421 case 'x':
4422 request_dump (HEX_DUMP);
4423 break;
4424 case 'p':
4425 request_dump (STRING_DUMP);
4426 break;
4427 case 'R':
4428 request_dump (RELOC_DUMP);
4429 break;
4430 case 'z':
4431 decompress_dumps++;
4432 break;
4433 case 'w':
4434 do_dump++;
4435 if (optarg == 0)
4436 {
4437 do_debugging = 1;
4438 dwarf_select_sections_all ();
4439 }
4440 else
4441 {
4442 do_debugging = 0;
4443 dwarf_select_sections_by_letters (optarg);
4444 }
4445 break;
4446 case OPTION_DEBUG_DUMP:
4447 do_dump++;
4448 if (optarg == 0)
4449 do_debugging = 1;
4450 else
4451 {
4452 do_debugging = 0;
4453 dwarf_select_sections_by_names (optarg);
4454 }
4455 break;
4456 case OPTION_DWARF_DEPTH:
4457 {
4458 char *cp;
4459
4460 dwarf_cutoff_level = strtoul (optarg, & cp, 0);
4461 }
4462 break;
4463 case OPTION_DWARF_START:
4464 {
4465 char *cp;
4466
4467 dwarf_start_die = strtoul (optarg, & cp, 0);
4468 }
4469 break;
4470 case OPTION_DWARF_CHECK:
4471 dwarf_check = 1;
4472 break;
4473 case OPTION_DYN_SYMS:
4474 do_dyn_syms++;
4475 break;
4476 #ifdef SUPPORT_DISASSEMBLY
4477 case 'i':
4478 request_dump (DISASS_DUMP);
4479 break;
4480 #endif
4481 case 'v':
4482 print_version (program_name);
4483 break;
4484 case 'V':
4485 do_version++;
4486 break;
4487 case 'W':
4488 do_wide++;
4489 break;
4490 default:
4491 /* xgettext:c-format */
4492 error (_("Invalid option '-%c'\n"), c);
4493 /* Fall through. */
4494 case '?':
4495 usage (stderr);
4496 }
4497 }
4498
4499 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
4500 && !do_segments && !do_header && !do_dump && !do_version
4501 && !do_histogram && !do_debugging && !do_arch && !do_notes
4502 && !do_section_groups && !do_archive_index
4503 && !do_dyn_syms)
4504 usage (stderr);
4505 }
4506
4507 static const char *
4508 get_elf_class (unsigned int elf_class)
4509 {
4510 static char buff[32];
4511
4512 switch (elf_class)
4513 {
4514 case ELFCLASSNONE: return _("none");
4515 case ELFCLASS32: return "ELF32";
4516 case ELFCLASS64: return "ELF64";
4517 default:
4518 snprintf (buff, sizeof (buff), _("<unknown: %x>"), elf_class);
4519 return buff;
4520 }
4521 }
4522
4523 static const char *
4524 get_data_encoding (unsigned int encoding)
4525 {
4526 static char buff[32];
4527
4528 switch (encoding)
4529 {
4530 case ELFDATANONE: return _("none");
4531 case ELFDATA2LSB: return _("2's complement, little endian");
4532 case ELFDATA2MSB: return _("2's complement, big endian");
4533 default:
4534 snprintf (buff, sizeof (buff), _("<unknown: %x>"), encoding);
4535 return buff;
4536 }
4537 }
4538
4539 /* Decode the data held in 'elf_header'. */
4540
4541 static int
4542 process_file_header (void)
4543 {
4544 if ( elf_header.e_ident[EI_MAG0] != ELFMAG0
4545 || elf_header.e_ident[EI_MAG1] != ELFMAG1
4546 || elf_header.e_ident[EI_MAG2] != ELFMAG2
4547 || elf_header.e_ident[EI_MAG3] != ELFMAG3)
4548 {
4549 error
4550 (_("Not an ELF file - it has the wrong magic bytes at the start\n"));
4551 return 0;
4552 }
4553
4554 init_dwarf_regnames (elf_header.e_machine);
4555
4556 if (do_header)
4557 {
4558 int i;
4559
4560 printf (_("ELF Header:\n"));
4561 printf (_(" Magic: "));
4562 for (i = 0; i < EI_NIDENT; i++)
4563 printf ("%2.2x ", elf_header.e_ident[i]);
4564 printf ("\n");
4565 printf (_(" Class: %s\n"),
4566 get_elf_class (elf_header.e_ident[EI_CLASS]));
4567 printf (_(" Data: %s\n"),
4568 get_data_encoding (elf_header.e_ident[EI_DATA]));
4569 printf (_(" Version: %d %s\n"),
4570 elf_header.e_ident[EI_VERSION],
4571 (elf_header.e_ident[EI_VERSION] == EV_CURRENT
4572 ? "(current)"
4573 : (elf_header.e_ident[EI_VERSION] != EV_NONE
4574 ? _("<unknown: %lx>")
4575 : "")));
4576 printf (_(" OS/ABI: %s\n"),
4577 get_osabi_name (elf_header.e_ident[EI_OSABI]));
4578 printf (_(" ABI Version: %d\n"),
4579 elf_header.e_ident[EI_ABIVERSION]);
4580 printf (_(" Type: %s\n"),
4581 get_file_type (elf_header.e_type));
4582 printf (_(" Machine: %s\n"),
4583 get_machine_name (elf_header.e_machine));
4584 printf (_(" Version: 0x%lx\n"),
4585 (unsigned long) elf_header.e_version);
4586
4587 printf (_(" Entry point address: "));
4588 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
4589 printf (_("\n Start of program headers: "));
4590 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
4591 printf (_(" (bytes into file)\n Start of section headers: "));
4592 print_vma ((bfd_vma) elf_header.e_shoff, DEC);
4593 printf (_(" (bytes into file)\n"));
4594
4595 printf (_(" Flags: 0x%lx%s\n"),
4596 (unsigned long) elf_header.e_flags,
4597 get_machine_flags (elf_header.e_flags, elf_header.e_machine));
4598 printf (_(" Size of this header: %ld (bytes)\n"),
4599 (long) elf_header.e_ehsize);
4600 printf (_(" Size of program headers: %ld (bytes)\n"),
4601 (long) elf_header.e_phentsize);
4602 printf (_(" Number of program headers: %ld"),
4603 (long) elf_header.e_phnum);
4604 if (section_headers != NULL
4605 && elf_header.e_phnum == PN_XNUM
4606 && section_headers[0].sh_info != 0)
4607 printf (" (%ld)", (long) section_headers[0].sh_info);
4608 putc ('\n', stdout);
4609 printf (_(" Size of section headers: %ld (bytes)\n"),
4610 (long) elf_header.e_shentsize);
4611 printf (_(" Number of section headers: %ld"),
4612 (long) elf_header.e_shnum);
4613 if (section_headers != NULL && elf_header.e_shnum == SHN_UNDEF)
4614 printf (" (%ld)", (long) section_headers[0].sh_size);
4615 putc ('\n', stdout);
4616 printf (_(" Section header string table index: %ld"),
4617 (long) elf_header.e_shstrndx);
4618 if (section_headers != NULL
4619 && elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
4620 printf (" (%u)", section_headers[0].sh_link);
4621 else if (elf_header.e_shstrndx != SHN_UNDEF
4622 && elf_header.e_shstrndx >= elf_header.e_shnum)
4623 printf (_(" <corrupt: out of range>"));
4624 putc ('\n', stdout);
4625 }
4626
4627 if (section_headers != NULL)
4628 {
4629 if (elf_header.e_phnum == PN_XNUM
4630 && section_headers[0].sh_info != 0)
4631 elf_header.e_phnum = section_headers[0].sh_info;
4632 if (elf_header.e_shnum == SHN_UNDEF)
4633 elf_header.e_shnum = section_headers[0].sh_size;
4634 if (elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
4635 elf_header.e_shstrndx = section_headers[0].sh_link;
4636 else if (elf_header.e_shstrndx >= elf_header.e_shnum)
4637 elf_header.e_shstrndx = SHN_UNDEF;
4638 free (section_headers);
4639 section_headers = NULL;
4640 }
4641
4642 return 1;
4643 }
4644
4645 static bfd_boolean
4646 get_32bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
4647 {
4648 Elf32_External_Phdr * phdrs;
4649 Elf32_External_Phdr * external;
4650 Elf_Internal_Phdr * internal;
4651 unsigned int i;
4652 unsigned int size = elf_header.e_phentsize;
4653 unsigned int num = elf_header.e_phnum;
4654
4655 /* PR binutils/17531: Cope with unexpected section header sizes. */
4656 if (size == 0 || num == 0)
4657 return FALSE;
4658 if (size < sizeof * phdrs)
4659 {
4660 error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
4661 return FALSE;
4662 }
4663 if (size > sizeof * phdrs)
4664 warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
4665
4666 phdrs = (Elf32_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
4667 size, num, _("program headers"));
4668 if (phdrs == NULL)
4669 return FALSE;
4670
4671 for (i = 0, internal = pheaders, external = phdrs;
4672 i < elf_header.e_phnum;
4673 i++, internal++, external++)
4674 {
4675 internal->p_type = BYTE_GET (external->p_type);
4676 internal->p_offset = BYTE_GET (external->p_offset);
4677 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4678 internal->p_paddr = BYTE_GET (external->p_paddr);
4679 internal->p_filesz = BYTE_GET (external->p_filesz);
4680 internal->p_memsz = BYTE_GET (external->p_memsz);
4681 internal->p_flags = BYTE_GET (external->p_flags);
4682 internal->p_align = BYTE_GET (external->p_align);
4683 }
4684
4685 free (phdrs);
4686 return TRUE;
4687 }
4688
4689 static bfd_boolean
4690 get_64bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
4691 {
4692 Elf64_External_Phdr * phdrs;
4693 Elf64_External_Phdr * external;
4694 Elf_Internal_Phdr * internal;
4695 unsigned int i;
4696 unsigned int size = elf_header.e_phentsize;
4697 unsigned int num = elf_header.e_phnum;
4698
4699 /* PR binutils/17531: Cope with unexpected section header sizes. */
4700 if (size == 0 || num == 0)
4701 return FALSE;
4702 if (size < sizeof * phdrs)
4703 {
4704 error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
4705 return FALSE;
4706 }
4707 if (size > sizeof * phdrs)
4708 warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
4709
4710 phdrs = (Elf64_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
4711 size, num, _("program headers"));
4712 if (!phdrs)
4713 return FALSE;
4714
4715 for (i = 0, internal = pheaders, external = phdrs;
4716 i < elf_header.e_phnum;
4717 i++, internal++, external++)
4718 {
4719 internal->p_type = BYTE_GET (external->p_type);
4720 internal->p_flags = BYTE_GET (external->p_flags);
4721 internal->p_offset = BYTE_GET (external->p_offset);
4722 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4723 internal->p_paddr = BYTE_GET (external->p_paddr);
4724 internal->p_filesz = BYTE_GET (external->p_filesz);
4725 internal->p_memsz = BYTE_GET (external->p_memsz);
4726 internal->p_align = BYTE_GET (external->p_align);
4727 }
4728
4729 free (phdrs);
4730 return TRUE;
4731 }
4732
4733 /* Returns 1 if the program headers were read into `program_headers'. */
4734
4735 static int
4736 get_program_headers (FILE * file)
4737 {
4738 Elf_Internal_Phdr * phdrs;
4739
4740 /* Check cache of prior read. */
4741 if (program_headers != NULL)
4742 return 1;
4743
4744 phdrs = (Elf_Internal_Phdr *) cmalloc (elf_header.e_phnum,
4745 sizeof (Elf_Internal_Phdr));
4746
4747 if (phdrs == NULL)
4748 {
4749 error (_("Out of memory reading %u program headers\n"),
4750 elf_header.e_phnum);
4751 return 0;
4752 }
4753
4754 if (is_32bit_elf
4755 ? get_32bit_program_headers (file, phdrs)
4756 : get_64bit_program_headers (file, phdrs))
4757 {
4758 program_headers = phdrs;
4759 return 1;
4760 }
4761
4762 free (phdrs);
4763 return 0;
4764 }
4765
4766 /* Returns 1 if the program headers were loaded. */
4767
4768 static int
4769 process_program_headers (FILE * file)
4770 {
4771 Elf_Internal_Phdr * segment;
4772 unsigned int i;
4773 Elf_Internal_Phdr * previous_load = NULL;
4774
4775 if (elf_header.e_phnum == 0)
4776 {
4777 /* PR binutils/12467. */
4778 if (elf_header.e_phoff != 0)
4779 warn (_("possibly corrupt ELF header - it has a non-zero program"
4780 " header offset, but no program headers\n"));
4781 else if (do_segments)
4782 printf (_("\nThere are no program headers in this file.\n"));
4783 return 0;
4784 }
4785
4786 if (do_segments && !do_header)
4787 {
4788 printf (_("\nElf file type is %s\n"), get_file_type (elf_header.e_type));
4789 printf (_("Entry point "));
4790 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
4791 printf (_("\nThere are %d program headers, starting at offset "),
4792 elf_header.e_phnum);
4793 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
4794 printf ("\n");
4795 }
4796
4797 if (! get_program_headers (file))
4798 return 0;
4799
4800 if (do_segments)
4801 {
4802 if (elf_header.e_phnum > 1)
4803 printf (_("\nProgram Headers:\n"));
4804 else
4805 printf (_("\nProgram Headers:\n"));
4806
4807 if (is_32bit_elf)
4808 printf
4809 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4810 else if (do_wide)
4811 printf
4812 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4813 else
4814 {
4815 printf
4816 (_(" Type Offset VirtAddr PhysAddr\n"));
4817 printf
4818 (_(" FileSiz MemSiz Flags Align\n"));
4819 }
4820 }
4821
4822 dynamic_addr = 0;
4823 dynamic_size = 0;
4824
4825 for (i = 0, segment = program_headers;
4826 i < elf_header.e_phnum;
4827 i++, segment++)
4828 {
4829 if (do_segments)
4830 {
4831 printf (" %-14.14s ", get_segment_type (segment->p_type));
4832
4833 if (is_32bit_elf)
4834 {
4835 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4836 printf ("0x%8.8lx ", (unsigned long) segment->p_vaddr);
4837 printf ("0x%8.8lx ", (unsigned long) segment->p_paddr);
4838 printf ("0x%5.5lx ", (unsigned long) segment->p_filesz);
4839 printf ("0x%5.5lx ", (unsigned long) segment->p_memsz);
4840 printf ("%c%c%c ",
4841 (segment->p_flags & PF_R ? 'R' : ' '),
4842 (segment->p_flags & PF_W ? 'W' : ' '),
4843 (segment->p_flags & PF_X ? 'E' : ' '));
4844 printf ("%#lx", (unsigned long) segment->p_align);
4845 }
4846 else if (do_wide)
4847 {
4848 if ((unsigned long) segment->p_offset == segment->p_offset)
4849 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4850 else
4851 {
4852 print_vma (segment->p_offset, FULL_HEX);
4853 putchar (' ');
4854 }
4855
4856 print_vma (segment->p_vaddr, FULL_HEX);
4857 putchar (' ');
4858 print_vma (segment->p_paddr, FULL_HEX);
4859 putchar (' ');
4860
4861 if ((unsigned long) segment->p_filesz == segment->p_filesz)
4862 printf ("0x%6.6lx ", (unsigned long) segment->p_filesz);
4863 else
4864 {
4865 print_vma (segment->p_filesz, FULL_HEX);
4866 putchar (' ');
4867 }
4868
4869 if ((unsigned long) segment->p_memsz == segment->p_memsz)
4870 printf ("0x%6.6lx", (unsigned long) segment->p_memsz);
4871 else
4872 {
4873 print_vma (segment->p_memsz, FULL_HEX);
4874 }
4875
4876 printf (" %c%c%c ",
4877 (segment->p_flags & PF_R ? 'R' : ' '),
4878 (segment->p_flags & PF_W ? 'W' : ' '),
4879 (segment->p_flags & PF_X ? 'E' : ' '));
4880
4881 if ((unsigned long) segment->p_align == segment->p_align)
4882 printf ("%#lx", (unsigned long) segment->p_align);
4883 else
4884 {
4885 print_vma (segment->p_align, PREFIX_HEX);
4886 }
4887 }
4888 else
4889 {
4890 print_vma (segment->p_offset, FULL_HEX);
4891 putchar (' ');
4892 print_vma (segment->p_vaddr, FULL_HEX);
4893 putchar (' ');
4894 print_vma (segment->p_paddr, FULL_HEX);
4895 printf ("\n ");
4896 print_vma (segment->p_filesz, FULL_HEX);
4897 putchar (' ');
4898 print_vma (segment->p_memsz, FULL_HEX);
4899 printf (" %c%c%c ",
4900 (segment->p_flags & PF_R ? 'R' : ' '),
4901 (segment->p_flags & PF_W ? 'W' : ' '),
4902 (segment->p_flags & PF_X ? 'E' : ' '));
4903 print_vma (segment->p_align, HEX);
4904 }
4905
4906 putc ('\n', stdout);
4907 }
4908
4909 switch (segment->p_type)
4910 {
4911 case PT_LOAD:
4912 #if 0 /* Do not warn about out of order PT_LOAD segments. Although officially
4913 required by the ELF standard, several programs, including the Linux
4914 kernel, make use of non-ordered segments. */
4915 if (previous_load
4916 && previous_load->p_vaddr > segment->p_vaddr)
4917 error (_("LOAD segments must be sorted in order of increasing VirtAddr\n"));
4918 #endif
4919 if (segment->p_memsz < segment->p_filesz)
4920 error (_("the segment's file size is larger than its memory size\n"));
4921 previous_load = segment;
4922 break;
4923
4924 case PT_PHDR:
4925 /* PR 20815 - Verify that the program header is loaded into memory. */
4926 if (i > 0 && previous_load != NULL)
4927 error (_("the PHDR segment must occur before any LOAD segment\n"));
4928 if (elf_header.e_machine != EM_PARISC)
4929 {
4930 unsigned int j;
4931
4932 for (j = 1; j < elf_header.e_phnum; j++)
4933 if (program_headers[j].p_vaddr <= segment->p_vaddr
4934 && (program_headers[j].p_vaddr + program_headers[j].p_memsz)
4935 >= (segment->p_vaddr + segment->p_filesz))
4936 break;
4937 if (j == elf_header.e_phnum)
4938 error (_("the PHDR segment is not covered by a LOAD segment\n"));
4939 }
4940 break;
4941
4942 case PT_DYNAMIC:
4943 if (dynamic_addr)
4944 error (_("more than one dynamic segment\n"));
4945
4946 /* By default, assume that the .dynamic section is the first
4947 section in the DYNAMIC segment. */
4948 dynamic_addr = segment->p_offset;
4949 dynamic_size = segment->p_filesz;
4950 /* PR binutils/17512: Avoid corrupt dynamic section info in the segment. */
4951 if (dynamic_addr + dynamic_size >= current_file_size)
4952 {
4953 error (_("the dynamic segment offset + size exceeds the size of the file\n"));
4954 dynamic_addr = dynamic_size = 0;
4955 }
4956
4957 /* Try to locate the .dynamic section. If there is
4958 a section header table, we can easily locate it. */
4959 if (section_headers != NULL)
4960 {
4961 Elf_Internal_Shdr * sec;
4962
4963 sec = find_section (".dynamic");
4964 if (sec == NULL || sec->sh_size == 0)
4965 {
4966 /* A corresponding .dynamic section is expected, but on
4967 IA-64/OpenVMS it is OK for it to be missing. */
4968 if (!is_ia64_vms ())
4969 error (_("no .dynamic section in the dynamic segment\n"));
4970 break;
4971 }
4972
4973 if (sec->sh_type == SHT_NOBITS)
4974 {
4975 dynamic_size = 0;
4976 break;
4977 }
4978
4979 dynamic_addr = sec->sh_offset;
4980 dynamic_size = sec->sh_size;
4981
4982 if (dynamic_addr < segment->p_offset
4983 || dynamic_addr > segment->p_offset + segment->p_filesz)
4984 warn (_("the .dynamic section is not contained"
4985 " within the dynamic segment\n"));
4986 else if (dynamic_addr > segment->p_offset)
4987 warn (_("the .dynamic section is not the first section"
4988 " in the dynamic segment.\n"));
4989 }
4990 break;
4991
4992 case PT_INTERP:
4993 if (fseek (file, archive_file_offset + (long) segment->p_offset,
4994 SEEK_SET))
4995 error (_("Unable to find program interpreter name\n"));
4996 else
4997 {
4998 char fmt [32];
4999 int ret = snprintf (fmt, sizeof (fmt), "%%%ds", PATH_MAX - 1);
5000
5001 if (ret >= (int) sizeof (fmt) || ret < 0)
5002 error (_("Internal error: failed to create format string to display program interpreter\n"));
5003
5004 program_interpreter[0] = 0;
5005 if (fscanf (file, fmt, program_interpreter) <= 0)
5006 error (_("Unable to read program interpreter name\n"));
5007
5008 if (do_segments)
5009 printf (_(" [Requesting program interpreter: %s]\n"),
5010 program_interpreter);
5011 }
5012 break;
5013 }
5014 }
5015
5016 if (do_segments && section_headers != NULL && string_table != NULL)
5017 {
5018 printf (_("\n Section to Segment mapping:\n"));
5019 printf (_(" Segment Sections...\n"));
5020
5021 for (i = 0; i < elf_header.e_phnum; i++)
5022 {
5023 unsigned int j;
5024 Elf_Internal_Shdr * section;
5025
5026 segment = program_headers + i;
5027 section = section_headers + 1;
5028
5029 printf (" %2.2d ", i);
5030
5031 for (j = 1; j < elf_header.e_shnum; j++, section++)
5032 {
5033 if (!ELF_TBSS_SPECIAL (section, segment)
5034 && ELF_SECTION_IN_SEGMENT_STRICT (section, segment))
5035 printf ("%s ", printable_section_name (section));
5036 }
5037
5038 putc ('\n',stdout);
5039 }
5040 }
5041
5042 return 1;
5043 }
5044
5045
5046 /* Find the file offset corresponding to VMA by using the program headers. */
5047
5048 static long
5049 offset_from_vma (FILE * file, bfd_vma vma, bfd_size_type size)
5050 {
5051 Elf_Internal_Phdr * seg;
5052
5053 if (! get_program_headers (file))
5054 {
5055 warn (_("Cannot interpret virtual addresses without program headers.\n"));
5056 return (long) vma;
5057 }
5058
5059 for (seg = program_headers;
5060 seg < program_headers + elf_header.e_phnum;
5061 ++seg)
5062 {
5063 if (seg->p_type != PT_LOAD)
5064 continue;
5065
5066 if (vma >= (seg->p_vaddr & -seg->p_align)
5067 && vma + size <= seg->p_vaddr + seg->p_filesz)
5068 return vma - seg->p_vaddr + seg->p_offset;
5069 }
5070
5071 warn (_("Virtual address 0x%lx not located in any PT_LOAD segment.\n"),
5072 (unsigned long) vma);
5073 return (long) vma;
5074 }
5075
5076
5077 /* Allocate memory and load the sections headers into the global pointer
5078 SECTION_HEADERS. If PROBE is true, this is just a probe and we do not
5079 generate any error messages if the load fails. */
5080
5081 static bfd_boolean
5082 get_32bit_section_headers (FILE * file, bfd_boolean probe)
5083 {
5084 Elf32_External_Shdr * shdrs;
5085 Elf_Internal_Shdr * internal;
5086 unsigned int i;
5087 unsigned int size = elf_header.e_shentsize;
5088 unsigned int num = probe ? 1 : elf_header.e_shnum;
5089
5090 /* PR binutils/17531: Cope with unexpected section header sizes. */
5091 if (size == 0 || num == 0)
5092 return FALSE;
5093 if (size < sizeof * shdrs)
5094 {
5095 if (! probe)
5096 error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
5097 return FALSE;
5098 }
5099 if (!probe && size > sizeof * shdrs)
5100 warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
5101
5102 shdrs = (Elf32_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
5103 size, num,
5104 probe ? NULL : _("section headers"));
5105 if (shdrs == NULL)
5106 return FALSE;
5107
5108 if (section_headers != NULL)
5109 free (section_headers);
5110 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
5111 sizeof (Elf_Internal_Shdr));
5112 if (section_headers == NULL)
5113 {
5114 if (!probe)
5115 error (_("Out of memory reading %u section headers\n"), num);
5116 return FALSE;
5117 }
5118
5119 for (i = 0, internal = section_headers;
5120 i < num;
5121 i++, internal++)
5122 {
5123 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
5124 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
5125 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
5126 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
5127 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
5128 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
5129 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
5130 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
5131 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
5132 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
5133 if (!probe && internal->sh_link > num)
5134 warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link);
5135 if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num)
5136 warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info);
5137 }
5138
5139 free (shdrs);
5140 return TRUE;
5141 }
5142
5143 static bfd_boolean
5144 get_64bit_section_headers (FILE * file, bfd_boolean probe)
5145 {
5146 Elf64_External_Shdr * shdrs;
5147 Elf_Internal_Shdr * internal;
5148 unsigned int i;
5149 unsigned int size = elf_header.e_shentsize;
5150 unsigned int num = probe ? 1 : elf_header.e_shnum;
5151
5152 /* PR binutils/17531: Cope with unexpected section header sizes. */
5153 if (size == 0 || num == 0)
5154 return FALSE;
5155 if (size < sizeof * shdrs)
5156 {
5157 if (! probe)
5158 error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
5159 return FALSE;
5160 }
5161 if (! probe && size > sizeof * shdrs)
5162 warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
5163
5164 shdrs = (Elf64_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
5165 size, num,
5166 probe ? NULL : _("section headers"));
5167 if (shdrs == NULL)
5168 return FALSE;
5169
5170 if (section_headers != NULL)
5171 free (section_headers);
5172 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
5173 sizeof (Elf_Internal_Shdr));
5174 if (section_headers == NULL)
5175 {
5176 if (! probe)
5177 error (_("Out of memory reading %u section headers\n"), num);
5178 return FALSE;
5179 }
5180
5181 for (i = 0, internal = section_headers;
5182 i < num;
5183 i++, internal++)
5184 {
5185 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
5186 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
5187 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
5188 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
5189 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
5190 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
5191 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
5192 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
5193 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
5194 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
5195 if (!probe && internal->sh_link > num)
5196 warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link);
5197 if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num)
5198 warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info);
5199 }
5200
5201 free (shdrs);
5202 return TRUE;
5203 }
5204
5205 static Elf_Internal_Sym *
5206 get_32bit_elf_symbols (FILE * file,
5207 Elf_Internal_Shdr * section,
5208 unsigned long * num_syms_return)
5209 {
5210 unsigned long number = 0;
5211 Elf32_External_Sym * esyms = NULL;
5212 Elf_External_Sym_Shndx * shndx = NULL;
5213 Elf_Internal_Sym * isyms = NULL;
5214 Elf_Internal_Sym * psym;
5215 unsigned int j;
5216
5217 if (section->sh_size == 0)
5218 {
5219 if (num_syms_return != NULL)
5220 * num_syms_return = 0;
5221 return NULL;
5222 }
5223
5224 /* Run some sanity checks first. */
5225 if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size)
5226 {
5227 error (_("Section %s has an invalid sh_entsize of 0x%lx\n"),
5228 printable_section_name (section), (unsigned long) section->sh_entsize);
5229 goto exit_point;
5230 }
5231
5232 if (section->sh_size > current_file_size)
5233 {
5234 error (_("Section %s has an invalid sh_size of 0x%lx\n"),
5235 printable_section_name (section), (unsigned long) section->sh_size);
5236 goto exit_point;
5237 }
5238
5239 number = section->sh_size / section->sh_entsize;
5240
5241 if (number * sizeof (Elf32_External_Sym) > section->sh_size + 1)
5242 {
5243 error (_("Size (0x%lx) of section %s is not a multiple of its sh_entsize (0x%lx)\n"),
5244 (unsigned long) section->sh_size,
5245 printable_section_name (section),
5246 (unsigned long) section->sh_entsize);
5247 goto exit_point;
5248 }
5249
5250 esyms = (Elf32_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
5251 section->sh_size, _("symbols"));
5252 if (esyms == NULL)
5253 goto exit_point;
5254
5255 {
5256 elf_section_list * entry;
5257
5258 shndx = NULL;
5259 for (entry = symtab_shndx_list; entry != NULL; entry = entry->next)
5260 if (entry->hdr->sh_link == (unsigned long) (section - section_headers))
5261 {
5262 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
5263 entry->hdr->sh_offset,
5264 1, entry->hdr->sh_size,
5265 _("symbol table section indicies"));
5266 if (shndx == NULL)
5267 goto exit_point;
5268 /* PR17531: file: heap-buffer-overflow */
5269 else if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number)
5270 {
5271 error (_("Index section %s has an sh_size of 0x%lx - expected 0x%lx\n"),
5272 printable_section_name (entry->hdr),
5273 (unsigned long) entry->hdr->sh_size,
5274 (unsigned long) section->sh_size);
5275 goto exit_point;
5276 }
5277 }
5278 }
5279
5280 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
5281
5282 if (isyms == NULL)
5283 {
5284 error (_("Out of memory reading %lu symbols\n"),
5285 (unsigned long) number);
5286 goto exit_point;
5287 }
5288
5289 for (j = 0, psym = isyms; j < number; j++, psym++)
5290 {
5291 psym->st_name = BYTE_GET (esyms[j].st_name);
5292 psym->st_value = BYTE_GET (esyms[j].st_value);
5293 psym->st_size = BYTE_GET (esyms[j].st_size);
5294 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
5295 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
5296 psym->st_shndx
5297 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
5298 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
5299 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
5300 psym->st_info = BYTE_GET (esyms[j].st_info);
5301 psym->st_other = BYTE_GET (esyms[j].st_other);
5302 }
5303
5304 exit_point:
5305 if (shndx != NULL)
5306 free (shndx);
5307 if (esyms != NULL)
5308 free (esyms);
5309
5310 if (num_syms_return != NULL)
5311 * num_syms_return = isyms == NULL ? 0 : number;
5312
5313 return isyms;
5314 }
5315
5316 static Elf_Internal_Sym *
5317 get_64bit_elf_symbols (FILE * file,
5318 Elf_Internal_Shdr * section,
5319 unsigned long * num_syms_return)
5320 {
5321 unsigned long number = 0;
5322 Elf64_External_Sym * esyms = NULL;
5323 Elf_External_Sym_Shndx * shndx = NULL;
5324 Elf_Internal_Sym * isyms = NULL;
5325 Elf_Internal_Sym * psym;
5326 unsigned int j;
5327
5328 if (section->sh_size == 0)
5329 {
5330 if (num_syms_return != NULL)
5331 * num_syms_return = 0;
5332 return NULL;
5333 }
5334
5335 /* Run some sanity checks first. */
5336 if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size)
5337 {
5338 error (_("Section %s has an invalid sh_entsize of 0x%lx\n"),
5339 printable_section_name (section),
5340 (unsigned long) section->sh_entsize);
5341 goto exit_point;
5342 }
5343
5344 if (section->sh_size > current_file_size)
5345 {
5346 error (_("Section %s has an invalid sh_size of 0x%lx\n"),
5347 printable_section_name (section),
5348 (unsigned long) section->sh_size);
5349 goto exit_point;
5350 }
5351
5352 number = section->sh_size / section->sh_entsize;
5353
5354 if (number * sizeof (Elf64_External_Sym) > section->sh_size + 1)
5355 {
5356 error (_("Size (0x%lx) of section %s is not a multiple of its sh_entsize (0x%lx)\n"),
5357 (unsigned long) section->sh_size,
5358 printable_section_name (section),
5359 (unsigned long) section->sh_entsize);
5360 goto exit_point;
5361 }
5362
5363 esyms = (Elf64_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
5364 section->sh_size, _("symbols"));
5365 if (!esyms)
5366 goto exit_point;
5367
5368 {
5369 elf_section_list * entry;
5370
5371 shndx = NULL;
5372 for (entry = symtab_shndx_list; entry != NULL; entry = entry->next)
5373 if (entry->hdr->sh_link == (unsigned long) (section - section_headers))
5374 {
5375 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
5376 entry->hdr->sh_offset,
5377 1, entry->hdr->sh_size,
5378 _("symbol table section indicies"));
5379 if (shndx == NULL)
5380 goto exit_point;
5381 /* PR17531: file: heap-buffer-overflow */
5382 else if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number)
5383 {
5384 error (_("Index section %s has an sh_size of 0x%lx - expected 0x%lx\n"),
5385 printable_section_name (entry->hdr),
5386 (unsigned long) entry->hdr->sh_size,
5387 (unsigned long) section->sh_size);
5388 goto exit_point;
5389 }
5390 }
5391 }
5392
5393 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
5394
5395 if (isyms == NULL)
5396 {
5397 error (_("Out of memory reading %lu symbols\n"),
5398 (unsigned long) number);
5399 goto exit_point;
5400 }
5401
5402 for (j = 0, psym = isyms; j < number; j++, psym++)
5403 {
5404 psym->st_name = BYTE_GET (esyms[j].st_name);
5405 psym->st_info = BYTE_GET (esyms[j].st_info);
5406 psym->st_other = BYTE_GET (esyms[j].st_other);
5407 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
5408
5409 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
5410 psym->st_shndx
5411 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
5412 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
5413 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
5414
5415 psym->st_value = BYTE_GET (esyms[j].st_value);
5416 psym->st_size = BYTE_GET (esyms[j].st_size);
5417 }
5418
5419 exit_point:
5420 if (shndx != NULL)
5421 free (shndx);
5422 if (esyms != NULL)
5423 free (esyms);
5424
5425 if (num_syms_return != NULL)
5426 * num_syms_return = isyms == NULL ? 0 : number;
5427
5428 return isyms;
5429 }
5430
5431 static const char *
5432 get_elf_section_flags (bfd_vma sh_flags)
5433 {
5434 static char buff[1024];
5435 char * p = buff;
5436 int field_size = is_32bit_elf ? 8 : 16;
5437 int sindex;
5438 int size = sizeof (buff) - (field_size + 4 + 1);
5439 bfd_vma os_flags = 0;
5440 bfd_vma proc_flags = 0;
5441 bfd_vma unknown_flags = 0;
5442 static const struct
5443 {
5444 const char * str;
5445 int len;
5446 }
5447 flags [] =
5448 {
5449 /* 0 */ { STRING_COMMA_LEN ("WRITE") },
5450 /* 1 */ { STRING_COMMA_LEN ("ALLOC") },
5451 /* 2 */ { STRING_COMMA_LEN ("EXEC") },
5452 /* 3 */ { STRING_COMMA_LEN ("MERGE") },
5453 /* 4 */ { STRING_COMMA_LEN ("STRINGS") },
5454 /* 5 */ { STRING_COMMA_LEN ("INFO LINK") },
5455 /* 6 */ { STRING_COMMA_LEN ("LINK ORDER") },
5456 /* 7 */ { STRING_COMMA_LEN ("OS NONCONF") },
5457 /* 8 */ { STRING_COMMA_LEN ("GROUP") },
5458 /* 9 */ { STRING_COMMA_LEN ("TLS") },
5459 /* IA-64 specific. */
5460 /* 10 */ { STRING_COMMA_LEN ("SHORT") },
5461 /* 11 */ { STRING_COMMA_LEN ("NORECOV") },
5462 /* IA-64 OpenVMS specific. */
5463 /* 12 */ { STRING_COMMA_LEN ("VMS_GLOBAL") },
5464 /* 13 */ { STRING_COMMA_LEN ("VMS_OVERLAID") },
5465 /* 14 */ { STRING_COMMA_LEN ("VMS_SHARED") },
5466 /* 15 */ { STRING_COMMA_LEN ("VMS_VECTOR") },
5467 /* 16 */ { STRING_COMMA_LEN ("VMS_ALLOC_64BIT") },
5468 /* 17 */ { STRING_COMMA_LEN ("VMS_PROTECTED") },
5469 /* Generic. */
5470 /* 18 */ { STRING_COMMA_LEN ("EXCLUDE") },
5471 /* SPARC specific. */
5472 /* 19 */ { STRING_COMMA_LEN ("ORDERED") },
5473 /* 20 */ { STRING_COMMA_LEN ("COMPRESSED") },
5474 /* ARM specific. */
5475 /* 21 */ { STRING_COMMA_LEN ("ENTRYSECT") },
5476 /* 22 */ { STRING_COMMA_LEN ("ARM_PURECODE") },
5477 /* 23 */ { STRING_COMMA_LEN ("COMDEF") }
5478 };
5479
5480 if (do_section_details)
5481 {
5482 sprintf (buff, "[%*.*lx]: ",
5483 field_size, field_size, (unsigned long) sh_flags);
5484 p += field_size + 4;
5485 }
5486
5487 while (sh_flags)
5488 {
5489 bfd_vma flag;
5490
5491 flag = sh_flags & - sh_flags;
5492 sh_flags &= ~ flag;
5493
5494 if (do_section_details)
5495 {
5496 switch (flag)
5497 {
5498 case SHF_WRITE: sindex = 0; break;
5499 case SHF_ALLOC: sindex = 1; break;
5500 case SHF_EXECINSTR: sindex = 2; break;
5501 case SHF_MERGE: sindex = 3; break;
5502 case SHF_STRINGS: sindex = 4; break;
5503 case SHF_INFO_LINK: sindex = 5; break;
5504 case SHF_LINK_ORDER: sindex = 6; break;
5505 case SHF_OS_NONCONFORMING: sindex = 7; break;
5506 case SHF_GROUP: sindex = 8; break;
5507 case SHF_TLS: sindex = 9; break;
5508 case SHF_EXCLUDE: sindex = 18; break;
5509 case SHF_COMPRESSED: sindex = 20; break;
5510
5511 default:
5512 sindex = -1;
5513 switch (elf_header.e_machine)
5514 {
5515 case EM_IA_64:
5516 if (flag == SHF_IA_64_SHORT)
5517 sindex = 10;
5518 else if (flag == SHF_IA_64_NORECOV)
5519 sindex = 11;
5520 #ifdef BFD64
5521 else if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
5522 switch (flag)
5523 {
5524 case SHF_IA_64_VMS_GLOBAL: sindex = 12; break;
5525 case SHF_IA_64_VMS_OVERLAID: sindex = 13; break;
5526 case SHF_IA_64_VMS_SHARED: sindex = 14; break;
5527 case SHF_IA_64_VMS_VECTOR: sindex = 15; break;
5528 case SHF_IA_64_VMS_ALLOC_64BIT: sindex = 16; break;
5529 case SHF_IA_64_VMS_PROTECTED: sindex = 17; break;
5530 default: break;
5531 }
5532 #endif
5533 break;
5534
5535 case EM_386:
5536 case EM_IAMCU:
5537 case EM_X86_64:
5538 case EM_L1OM:
5539 case EM_K1OM:
5540 case EM_OLD_SPARCV9:
5541 case EM_SPARC32PLUS:
5542 case EM_SPARCV9:
5543 case EM_SPARC:
5544 if (flag == SHF_ORDERED)
5545 sindex = 19;
5546 break;
5547
5548 case EM_ARM:
5549 switch (flag)
5550 {
5551 case SHF_ENTRYSECT: sindex = 21; break;
5552 case SHF_ARM_PURECODE: sindex = 22; break;
5553 case SHF_COMDEF: sindex = 23; break;
5554 default: break;
5555 }
5556 break;
5557
5558 default:
5559 break;
5560 }
5561 }
5562
5563 if (sindex != -1)
5564 {
5565 if (p != buff + field_size + 4)
5566 {
5567 if (size < (10 + 2))
5568 {
5569 warn (_("Internal error: not enough buffer room for section flag info"));
5570 return _("<unknown>");
5571 }
5572 size -= 2;
5573 *p++ = ',';
5574 *p++ = ' ';
5575 }
5576
5577 size -= flags [sindex].len;
5578 p = stpcpy (p, flags [sindex].str);
5579 }
5580 else if (flag & SHF_MASKOS)
5581 os_flags |= flag;
5582 else if (flag & SHF_MASKPROC)
5583 proc_flags |= flag;
5584 else
5585 unknown_flags |= flag;
5586 }
5587 else
5588 {
5589 switch (flag)
5590 {
5591 case SHF_WRITE: *p = 'W'; break;
5592 case SHF_ALLOC: *p = 'A'; break;
5593 case SHF_EXECINSTR: *p = 'X'; break;
5594 case SHF_MERGE: *p = 'M'; break;
5595 case SHF_STRINGS: *p = 'S'; break;
5596 case SHF_INFO_LINK: *p = 'I'; break;
5597 case SHF_LINK_ORDER: *p = 'L'; break;
5598 case SHF_OS_NONCONFORMING: *p = 'O'; break;
5599 case SHF_GROUP: *p = 'G'; break;
5600 case SHF_TLS: *p = 'T'; break;
5601 case SHF_EXCLUDE: *p = 'E'; break;
5602 case SHF_COMPRESSED: *p = 'C'; break;
5603
5604 default:
5605 if ((elf_header.e_machine == EM_X86_64
5606 || elf_header.e_machine == EM_L1OM
5607 || elf_header.e_machine == EM_K1OM)
5608 && flag == SHF_X86_64_LARGE)
5609 *p = 'l';
5610 else if (elf_header.e_machine == EM_ARM
5611 && flag == SHF_ARM_PURECODE)
5612 *p = 'y';
5613 else if (flag & SHF_MASKOS)
5614 {
5615 *p = 'o';
5616 sh_flags &= ~ SHF_MASKOS;
5617 }
5618 else if (flag & SHF_MASKPROC)
5619 {
5620 *p = 'p';
5621 sh_flags &= ~ SHF_MASKPROC;
5622 }
5623 else
5624 *p = 'x';
5625 break;
5626 }
5627 p++;
5628 }
5629 }
5630
5631 if (do_section_details)
5632 {
5633 if (os_flags)
5634 {
5635 size -= 5 + field_size;
5636 if (p != buff + field_size + 4)
5637 {
5638 if (size < (2 + 1))
5639 {
5640 warn (_("Internal error: not enough buffer room for section flag info"));
5641 return _("<unknown>");
5642 }
5643 size -= 2;
5644 *p++ = ',';
5645 *p++ = ' ';
5646 }
5647 sprintf (p, "OS (%*.*lx)", field_size, field_size,
5648 (unsigned long) os_flags);
5649 p += 5 + field_size;
5650 }
5651 if (proc_flags)
5652 {
5653 size -= 7 + field_size;
5654 if (p != buff + field_size + 4)
5655 {
5656 if (size < (2 + 1))
5657 {
5658 warn (_("Internal error: not enough buffer room for section flag info"));
5659 return _("<unknown>");
5660 }
5661 size -= 2;
5662 *p++ = ',';
5663 *p++ = ' ';
5664 }
5665 sprintf (p, "PROC (%*.*lx)", field_size, field_size,
5666 (unsigned long) proc_flags);
5667 p += 7 + field_size;
5668 }
5669 if (unknown_flags)
5670 {
5671 size -= 10 + field_size;
5672 if (p != buff + field_size + 4)
5673 {
5674 if (size < (2 + 1))
5675 {
5676 warn (_("Internal error: not enough buffer room for section flag info"));
5677 return _("<unknown>");
5678 }
5679 size -= 2;
5680 *p++ = ',';
5681 *p++ = ' ';
5682 }
5683 sprintf (p, _("UNKNOWN (%*.*lx)"), field_size, field_size,
5684 (unsigned long) unknown_flags);
5685 p += 10 + field_size;
5686 }
5687 }
5688
5689 *p = '\0';
5690 return buff;
5691 }
5692
5693 static unsigned int
5694 get_compression_header (Elf_Internal_Chdr *chdr, unsigned char *buf)
5695 {
5696 if (is_32bit_elf)
5697 {
5698 Elf32_External_Chdr *echdr = (Elf32_External_Chdr *) buf;
5699
5700 chdr->ch_type = BYTE_GET (echdr->ch_type);
5701 chdr->ch_size = BYTE_GET (echdr->ch_size);
5702 chdr->ch_addralign = BYTE_GET (echdr->ch_addralign);
5703 return sizeof (*echdr);
5704 }
5705 else
5706 {
5707 Elf64_External_Chdr *echdr = (Elf64_External_Chdr *) buf;
5708
5709 chdr->ch_type = BYTE_GET (echdr->ch_type);
5710 chdr->ch_size = BYTE_GET (echdr->ch_size);
5711 chdr->ch_addralign = BYTE_GET (echdr->ch_addralign);
5712 return sizeof (*echdr);
5713 }
5714 }
5715
5716 static int
5717 process_section_headers (FILE * file)
5718 {
5719 Elf_Internal_Shdr * section;
5720 unsigned int i;
5721
5722 section_headers = NULL;
5723
5724 if (elf_header.e_shnum == 0)
5725 {
5726 /* PR binutils/12467. */
5727 if (elf_header.e_shoff != 0)
5728 warn (_("possibly corrupt ELF file header - it has a non-zero"
5729 " section header offset, but no section headers\n"));
5730 else if (do_sections)
5731 printf (_("\nThere are no sections in this file.\n"));
5732
5733 return 1;
5734 }
5735
5736 if (do_sections && !do_header)
5737 printf (_("There are %d section headers, starting at offset 0x%lx:\n"),
5738 elf_header.e_shnum, (unsigned long) elf_header.e_shoff);
5739
5740 if (is_32bit_elf)
5741 {
5742 if (! get_32bit_section_headers (file, FALSE))
5743 return 0;
5744 }
5745 else if (! get_64bit_section_headers (file, FALSE))
5746 return 0;
5747
5748 /* Read in the string table, so that we have names to display. */
5749 if (elf_header.e_shstrndx != SHN_UNDEF
5750 && elf_header.e_shstrndx < elf_header.e_shnum)
5751 {
5752 section = section_headers + elf_header.e_shstrndx;
5753
5754 if (section->sh_size != 0)
5755 {
5756 string_table = (char *) get_data (NULL, file, section->sh_offset,
5757 1, section->sh_size,
5758 _("string table"));
5759
5760 string_table_length = string_table != NULL ? section->sh_size : 0;
5761 }
5762 }
5763
5764 /* Scan the sections for the dynamic symbol table
5765 and dynamic string table and debug sections. */
5766 dynamic_symbols = NULL;
5767 dynamic_strings = NULL;
5768 dynamic_syminfo = NULL;
5769 symtab_shndx_list = NULL;
5770
5771 eh_addr_size = is_32bit_elf ? 4 : 8;
5772 switch (elf_header.e_machine)
5773 {
5774 case EM_MIPS:
5775 case EM_MIPS_RS3_LE:
5776 /* The 64-bit MIPS EABI uses a combination of 32-bit ELF and 64-bit
5777 FDE addresses. However, the ABI also has a semi-official ILP32
5778 variant for which the normal FDE address size rules apply.
5779
5780 GCC 4.0 marks EABI64 objects with a dummy .gcc_compiled_longXX
5781 section, where XX is the size of longs in bits. Unfortunately,
5782 earlier compilers provided no way of distinguishing ILP32 objects
5783 from LP64 objects, so if there's any doubt, we should assume that
5784 the official LP64 form is being used. */
5785 if ((elf_header.e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64
5786 && find_section (".gcc_compiled_long32") == NULL)
5787 eh_addr_size = 8;
5788 break;
5789
5790 case EM_H8_300:
5791 case EM_H8_300H:
5792 switch (elf_header.e_flags & EF_H8_MACH)
5793 {
5794 case E_H8_MACH_H8300:
5795 case E_H8_MACH_H8300HN:
5796 case E_H8_MACH_H8300SN:
5797 case E_H8_MACH_H8300SXN:
5798 eh_addr_size = 2;
5799 break;
5800 case E_H8_MACH_H8300H:
5801 case E_H8_MACH_H8300S:
5802 case E_H8_MACH_H8300SX:
5803 eh_addr_size = 4;
5804 break;
5805 }
5806 break;
5807
5808 case EM_M32C_OLD:
5809 case EM_M32C:
5810 switch (elf_header.e_flags & EF_M32C_CPU_MASK)
5811 {
5812 case EF_M32C_CPU_M16C:
5813 eh_addr_size = 2;
5814 break;
5815 }
5816 break;
5817 }
5818
5819 #define CHECK_ENTSIZE_VALUES(section, i, size32, size64) \
5820 do \
5821 { \
5822 bfd_size_type expected_entsize = is_32bit_elf ? size32 : size64; \
5823 if (section->sh_entsize != expected_entsize) \
5824 { \
5825 char buf[40]; \
5826 sprintf_vma (buf, section->sh_entsize); \
5827 /* Note: coded this way so that there is a single string for \
5828 translation. */ \
5829 error (_("Section %d has invalid sh_entsize of %s\n"), i, buf); \
5830 error (_("(Using the expected size of %u for the rest of this dump)\n"), \
5831 (unsigned) expected_entsize); \
5832 section->sh_entsize = expected_entsize; \
5833 } \
5834 } \
5835 while (0)
5836
5837 #define CHECK_ENTSIZE(section, i, type) \
5838 CHECK_ENTSIZE_VALUES (section, i, sizeof (Elf32_External_##type), \
5839 sizeof (Elf64_External_##type))
5840
5841 for (i = 0, section = section_headers;
5842 i < elf_header.e_shnum;
5843 i++, section++)
5844 {
5845 char * name = SECTION_NAME (section);
5846
5847 if (section->sh_type == SHT_DYNSYM)
5848 {
5849 if (dynamic_symbols != NULL)
5850 {
5851 error (_("File contains multiple dynamic symbol tables\n"));
5852 continue;
5853 }
5854
5855 CHECK_ENTSIZE (section, i, Sym);
5856 dynamic_symbols = GET_ELF_SYMBOLS (file, section, & num_dynamic_syms);
5857 }
5858 else if (section->sh_type == SHT_STRTAB
5859 && streq (name, ".dynstr"))
5860 {
5861 if (dynamic_strings != NULL)
5862 {
5863 error (_("File contains multiple dynamic string tables\n"));
5864 continue;
5865 }
5866
5867 dynamic_strings = (char *) get_data (NULL, file, section->sh_offset,
5868 1, section->sh_size,
5869 _("dynamic strings"));
5870 dynamic_strings_length = dynamic_strings == NULL ? 0 : section->sh_size;
5871 }
5872 else if (section->sh_type == SHT_SYMTAB_SHNDX)
5873 {
5874 elf_section_list * entry = xmalloc (sizeof * entry);
5875 entry->hdr = section;
5876 entry->next = symtab_shndx_list;
5877 symtab_shndx_list = entry;
5878 }
5879 else if (section->sh_type == SHT_SYMTAB)
5880 CHECK_ENTSIZE (section, i, Sym);
5881 else if (section->sh_type == SHT_GROUP)
5882 CHECK_ENTSIZE_VALUES (section, i, GRP_ENTRY_SIZE, GRP_ENTRY_SIZE);
5883 else if (section->sh_type == SHT_REL)
5884 CHECK_ENTSIZE (section, i, Rel);
5885 else if (section->sh_type == SHT_RELA)
5886 CHECK_ENTSIZE (section, i, Rela);
5887 else if ((do_debugging || do_debug_info || do_debug_abbrevs
5888 || do_debug_lines || do_debug_pubnames || do_debug_pubtypes
5889 || do_debug_aranges || do_debug_frames || do_debug_macinfo
5890 || do_debug_str || do_debug_loc || do_debug_ranges
5891 || do_debug_addr || do_debug_cu_index)
5892 && (const_strneq (name, ".debug_")
5893 || const_strneq (name, ".zdebug_")))
5894 {
5895 if (name[1] == 'z')
5896 name += sizeof (".zdebug_") - 1;
5897 else
5898 name += sizeof (".debug_") - 1;
5899
5900 if (do_debugging
5901 || (do_debug_info && const_strneq (name, "info"))
5902 || (do_debug_info && const_strneq (name, "types"))
5903 || (do_debug_abbrevs && const_strneq (name, "abbrev"))
5904 || (do_debug_lines && strcmp (name, "line") == 0)
5905 || (do_debug_lines && const_strneq (name, "line."))
5906 || (do_debug_pubnames && const_strneq (name, "pubnames"))
5907 || (do_debug_pubtypes && const_strneq (name, "pubtypes"))
5908 || (do_debug_pubnames && const_strneq (name, "gnu_pubnames"))
5909 || (do_debug_pubtypes && const_strneq (name, "gnu_pubtypes"))
5910 || (do_debug_aranges && const_strneq (name, "aranges"))
5911 || (do_debug_ranges && const_strneq (name, "ranges"))
5912 || (do_debug_frames && const_strneq (name, "frame"))
5913 || (do_debug_macinfo && const_strneq (name, "macinfo"))
5914 || (do_debug_macinfo && const_strneq (name, "macro"))
5915 || (do_debug_str && const_strneq (name, "str"))
5916 || (do_debug_loc && const_strneq (name, "loc"))
5917 || (do_debug_addr && const_strneq (name, "addr"))
5918 || (do_debug_cu_index && const_strneq (name, "cu_index"))
5919 || (do_debug_cu_index && const_strneq (name, "tu_index"))
5920 )
5921 request_dump_bynumber (i, DEBUG_DUMP);
5922 }
5923 /* Linkonce section to be combined with .debug_info at link time. */
5924 else if ((do_debugging || do_debug_info)
5925 && const_strneq (name, ".gnu.linkonce.wi."))
5926 request_dump_bynumber (i, DEBUG_DUMP);
5927 else if (do_debug_frames && streq (name, ".eh_frame"))
5928 request_dump_bynumber (i, DEBUG_DUMP);
5929 else if (do_gdb_index && streq (name, ".gdb_index"))
5930 request_dump_bynumber (i, DEBUG_DUMP);
5931 /* Trace sections for Itanium VMS. */
5932 else if ((do_debugging || do_trace_info || do_trace_abbrevs
5933 || do_trace_aranges)
5934 && const_strneq (name, ".trace_"))
5935 {
5936 name += sizeof (".trace_") - 1;
5937
5938 if (do_debugging
5939 || (do_trace_info && streq (name, "info"))
5940 || (do_trace_abbrevs && streq (name, "abbrev"))
5941 || (do_trace_aranges && streq (name, "aranges"))
5942 )
5943 request_dump_bynumber (i, DEBUG_DUMP);
5944 }
5945 }
5946
5947 if (! do_sections)
5948 return 1;
5949
5950 if (elf_header.e_shnum > 1)
5951 printf (_("\nSection Headers:\n"));
5952 else
5953 printf (_("\nSection Header:\n"));
5954
5955 if (is_32bit_elf)
5956 {
5957 if (do_section_details)
5958 {
5959 printf (_(" [Nr] Name\n"));
5960 printf (_(" Type Addr Off Size ES Lk Inf Al\n"));
5961 }
5962 else
5963 printf
5964 (_(" [Nr] Name Type Addr Off Size ES Flg Lk Inf Al\n"));
5965 }
5966 else if (do_wide)
5967 {
5968 if (do_section_details)
5969 {
5970 printf (_(" [Nr] Name\n"));
5971 printf (_(" Type Address Off Size ES Lk Inf Al\n"));
5972 }
5973 else
5974 printf
5975 (_(" [Nr] Name Type Address Off Size ES Flg Lk Inf Al\n"));
5976 }
5977 else
5978 {
5979 if (do_section_details)
5980 {
5981 printf (_(" [Nr] Name\n"));
5982 printf (_(" Type Address Offset Link\n"));
5983 printf (_(" Size EntSize Info Align\n"));
5984 }
5985 else
5986 {
5987 printf (_(" [Nr] Name Type Address Offset\n"));
5988 printf (_(" Size EntSize Flags Link Info Align\n"));
5989 }
5990 }
5991
5992 if (do_section_details)
5993 printf (_(" Flags\n"));
5994
5995 for (i = 0, section = section_headers;
5996 i < elf_header.e_shnum;
5997 i++, section++)
5998 {
5999 /* Run some sanity checks on the section header. */
6000
6001 /* Check the sh_link field. */
6002 switch (section->sh_type)
6003 {
6004 case SHT_SYMTAB_SHNDX:
6005 case SHT_GROUP:
6006 case SHT_HASH:
6007 case SHT_GNU_HASH:
6008 case SHT_GNU_versym:
6009 case SHT_REL:
6010 case SHT_RELA:
6011 if (section->sh_link < 1
6012 || section->sh_link >= elf_header.e_shnum
6013 || (section_headers[section->sh_link].sh_type != SHT_SYMTAB
6014 && section_headers[section->sh_link].sh_type != SHT_DYNSYM))
6015 warn (_("[%2u]: Link field (%u) should index a symtab section.\n"),
6016 i, section->sh_link);
6017 break;
6018
6019 case SHT_DYNAMIC:
6020 case SHT_SYMTAB:
6021 case SHT_DYNSYM:
6022 case SHT_GNU_verneed:
6023 case SHT_GNU_verdef:
6024 case SHT_GNU_LIBLIST:
6025 if (section->sh_link < 1
6026 || section->sh_link >= elf_header.e_shnum
6027 || section_headers[section->sh_link].sh_type != SHT_STRTAB)
6028 warn (_("[%2u]: Link field (%u) should index a string section.\n"),
6029 i, section->sh_link);
6030 break;
6031
6032 case SHT_INIT_ARRAY:
6033 case SHT_FINI_ARRAY:
6034 case SHT_PREINIT_ARRAY:
6035 if (section->sh_type < SHT_LOOS && section->sh_link != 0)
6036 warn (_("[%2u]: Unexpected value (%u) in link field.\n"),
6037 i, section->sh_link);
6038 break;
6039
6040 default:
6041 /* FIXME: Add support for target specific section types. */
6042 #if 0 /* Currently we do not check other section types as there are too
6043 many special cases. Stab sections for example have a type
6044 of SHT_PROGBITS but an sh_link field that links to the .stabstr
6045 section. */
6046 if (section->sh_type < SHT_LOOS && section->sh_link != 0)
6047 warn (_("[%2u]: Unexpected value (%u) in link field.\n"),
6048 i, section->sh_link);
6049 #endif
6050 break;
6051 }
6052
6053 /* Check the sh_info field. */
6054 switch (section->sh_type)
6055 {
6056 case SHT_REL:
6057 case SHT_RELA:
6058 if (section->sh_info < 1
6059 || section->sh_info >= elf_header.e_shnum
6060 || (section_headers[section->sh_info].sh_type != SHT_PROGBITS
6061 && section_headers[section->sh_info].sh_type != SHT_NOBITS
6062 && section_headers[section->sh_info].sh_type != SHT_NOTE
6063 && section_headers[section->sh_info].sh_type != SHT_INIT_ARRAY
6064 /* FIXME: Are other section types valid ? */
6065 && section_headers[section->sh_info].sh_type < SHT_LOOS))
6066 {
6067 if (section->sh_info == 0
6068 && (streq (SECTION_NAME (section), ".rel.dyn")
6069 || streq (SECTION_NAME (section), ".rela.dyn")))
6070 /* The .rel.dyn and .rela.dyn sections have an sh_info field
6071 of zero. No idea why. I would have expected the index
6072 of the .plt section. */
6073 ;
6074 else
6075 warn (_("[%2u]: Info field (%u) should index a relocatable section.\n"),
6076 i, section->sh_info);
6077 }
6078 break;
6079
6080 case SHT_DYNAMIC:
6081 case SHT_HASH:
6082 case SHT_SYMTAB_SHNDX:
6083 case SHT_INIT_ARRAY:
6084 case SHT_FINI_ARRAY:
6085 case SHT_PREINIT_ARRAY:
6086 if (section->sh_info != 0)
6087 warn (_("[%2u]: Unexpected value (%u) in info field.\n"),
6088 i, section->sh_info);
6089 break;
6090
6091 case SHT_GROUP:
6092 case SHT_SYMTAB:
6093 case SHT_DYNSYM:
6094 /* A symbol index - we assume that it is valid. */
6095 break;
6096
6097 default:
6098 /* FIXME: Add support for target specific section types. */
6099 if (section->sh_type == SHT_NOBITS)
6100 /* NOBITS section headers with non-zero sh_info fields can be
6101 created when a binary is stripped of everything but its debug
6102 information. The stripped sections have their headers
6103 preserved but their types set to SHT_NOBITS. So do not check
6104 this type of section. */
6105 ;
6106 else if (section->sh_flags & SHF_INFO_LINK)
6107 {
6108 if (section->sh_info < 1 || section->sh_info >= elf_header.e_shnum)
6109 warn (_("[%2u]: Expected link to another section in info field"), i);
6110 }
6111 else if (section->sh_type < SHT_LOOS && section->sh_info != 0)
6112 warn (_("[%2u]: Unexpected value (%u) in info field.\n"),
6113 i, section->sh_info);
6114 break;
6115 }
6116
6117 printf (" [%2u] ", i);
6118 if (do_section_details)
6119 printf ("%s\n ", printable_section_name (section));
6120 else
6121 print_symbol (-17, SECTION_NAME (section));
6122
6123 printf (do_wide ? " %-15s " : " %-15.15s ",
6124 get_section_type_name (section->sh_type));
6125
6126 if (is_32bit_elf)
6127 {
6128 const char * link_too_big = NULL;
6129
6130 print_vma (section->sh_addr, LONG_HEX);
6131
6132 printf ( " %6.6lx %6.6lx %2.2lx",
6133 (unsigned long) section->sh_offset,
6134 (unsigned long) section->sh_size,
6135 (unsigned long) section->sh_entsize);
6136
6137 if (do_section_details)
6138 fputs (" ", stdout);
6139 else
6140 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6141
6142 if (section->sh_link >= elf_header.e_shnum)
6143 {
6144 link_too_big = "";
6145 /* The sh_link value is out of range. Normally this indicates
6146 an error but it can have special values in Solaris binaries. */
6147 switch (elf_header.e_machine)
6148 {
6149 case EM_386:
6150 case EM_IAMCU:
6151 case EM_X86_64:
6152 case EM_L1OM:
6153 case EM_K1OM:
6154 case EM_OLD_SPARCV9:
6155 case EM_SPARC32PLUS:
6156 case EM_SPARCV9:
6157 case EM_SPARC:
6158 if (section->sh_link == (SHN_BEFORE & 0xffff))
6159 link_too_big = "BEFORE";
6160 else if (section->sh_link == (SHN_AFTER & 0xffff))
6161 link_too_big = "AFTER";
6162 break;
6163 default:
6164 break;
6165 }
6166 }
6167
6168 if (do_section_details)
6169 {
6170 if (link_too_big != NULL && * link_too_big)
6171 printf ("<%s> ", link_too_big);
6172 else
6173 printf ("%2u ", section->sh_link);
6174 printf ("%3u %2lu\n", section->sh_info,
6175 (unsigned long) section->sh_addralign);
6176 }
6177 else
6178 printf ("%2u %3u %2lu\n",
6179 section->sh_link,
6180 section->sh_info,
6181 (unsigned long) section->sh_addralign);
6182
6183 if (link_too_big && ! * link_too_big)
6184 warn (_("section %u: sh_link value of %u is larger than the number of sections\n"),
6185 i, section->sh_link);
6186 }
6187 else if (do_wide)
6188 {
6189 print_vma (section->sh_addr, LONG_HEX);
6190
6191 if ((long) section->sh_offset == section->sh_offset)
6192 printf (" %6.6lx", (unsigned long) section->sh_offset);
6193 else
6194 {
6195 putchar (' ');
6196 print_vma (section->sh_offset, LONG_HEX);
6197 }
6198
6199 if ((unsigned long) section->sh_size == section->sh_size)
6200 printf (" %6.6lx", (unsigned long) section->sh_size);
6201 else
6202 {
6203 putchar (' ');
6204 print_vma (section->sh_size, LONG_HEX);
6205 }
6206
6207 if ((unsigned long) section->sh_entsize == section->sh_entsize)
6208 printf (" %2.2lx", (unsigned long) section->sh_entsize);
6209 else
6210 {
6211 putchar (' ');
6212 print_vma (section->sh_entsize, LONG_HEX);
6213 }
6214
6215 if (do_section_details)
6216 fputs (" ", stdout);
6217 else
6218 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6219
6220 printf ("%2u %3u ", section->sh_link, section->sh_info);
6221
6222 if ((unsigned long) section->sh_addralign == section->sh_addralign)
6223 printf ("%2lu\n", (unsigned long) section->sh_addralign);
6224 else
6225 {
6226 print_vma (section->sh_addralign, DEC);
6227 putchar ('\n');
6228 }
6229 }
6230 else if (do_section_details)
6231 {
6232 printf (" %-15.15s ",
6233 get_section_type_name (section->sh_type));
6234 print_vma (section->sh_addr, LONG_HEX);
6235 if ((long) section->sh_offset == section->sh_offset)
6236 printf (" %16.16lx", (unsigned long) section->sh_offset);
6237 else
6238 {
6239 printf (" ");
6240 print_vma (section->sh_offset, LONG_HEX);
6241 }
6242 printf (" %u\n ", section->sh_link);
6243 print_vma (section->sh_size, LONG_HEX);
6244 putchar (' ');
6245 print_vma (section->sh_entsize, LONG_HEX);
6246
6247 printf (" %-16u %lu\n",
6248 section->sh_info,
6249 (unsigned long) section->sh_addralign);
6250 }
6251 else
6252 {
6253 putchar (' ');
6254 print_vma (section->sh_addr, LONG_HEX);
6255 if ((long) section->sh_offset == section->sh_offset)
6256 printf (" %8.8lx", (unsigned long) section->sh_offset);
6257 else
6258 {
6259 printf (" ");
6260 print_vma (section->sh_offset, LONG_HEX);
6261 }
6262 printf ("\n ");
6263 print_vma (section->sh_size, LONG_HEX);
6264 printf (" ");
6265 print_vma (section->sh_entsize, LONG_HEX);
6266
6267 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6268
6269 printf (" %2u %3u %lu\n",
6270 section->sh_link,
6271 section->sh_info,
6272 (unsigned long) section->sh_addralign);
6273 }
6274
6275 if (do_section_details)
6276 {
6277 printf (" %s\n", get_elf_section_flags (section->sh_flags));
6278 if ((section->sh_flags & SHF_COMPRESSED) != 0)
6279 {
6280 /* Minimum section size is 12 bytes for 32-bit compression
6281 header + 12 bytes for compressed data header. */
6282 unsigned char buf[24];
6283
6284 assert (sizeof (buf) >= sizeof (Elf64_External_Chdr));
6285 if (get_data (&buf, (FILE *) file, section->sh_offset, 1,
6286 sizeof (buf), _("compression header")))
6287 {
6288 Elf_Internal_Chdr chdr;
6289
6290 (void) get_compression_header (&chdr, buf);
6291
6292 if (chdr.ch_type == ELFCOMPRESS_ZLIB)
6293 printf (" ZLIB, ");
6294 else
6295 printf (_(" [<unknown>: 0x%x], "),
6296 chdr.ch_type);
6297 print_vma (chdr.ch_size, LONG_HEX);
6298 printf (", %lu\n", (unsigned long) chdr.ch_addralign);
6299 }
6300 }
6301 }
6302 }
6303
6304 if (!do_section_details)
6305 {
6306 /* The ordering of the letters shown here matches the ordering of the
6307 corresponding SHF_xxx values, and hence the order in which these
6308 letters will be displayed to the user. */
6309 printf (_("Key to Flags:\n\
6310 W (write), A (alloc), X (execute), M (merge), S (strings), I (info),\n\
6311 L (link order), O (extra OS processing required), G (group), T (TLS),\n\
6312 C (compressed), x (unknown), o (OS specific), E (exclude),\n "));
6313 if (elf_header.e_machine == EM_X86_64
6314 || elf_header.e_machine == EM_L1OM
6315 || elf_header.e_machine == EM_K1OM)
6316 printf (_("l (large), "));
6317 else if (elf_header.e_machine == EM_ARM)
6318 printf (_("y (purecode), "));
6319 printf ("p (processor specific)\n");
6320 }
6321
6322 return 1;
6323 }
6324
6325 static const char *
6326 get_group_flags (unsigned int flags)
6327 {
6328 static char buff[128];
6329
6330 if (flags == 0)
6331 return "";
6332 else if (flags == GRP_COMDAT)
6333 return "COMDAT ";
6334
6335 snprintf (buff, 14, _("[0x%x: "), flags);
6336
6337 flags &= ~ GRP_COMDAT;
6338 if (flags & GRP_MASKOS)
6339 {
6340 strcat (buff, "<OS specific>");
6341 flags &= ~ GRP_MASKOS;
6342 }
6343
6344 if (flags & GRP_MASKPROC)
6345 {
6346 strcat (buff, "<PROC specific>");
6347 flags &= ~ GRP_MASKPROC;
6348 }
6349
6350 if (flags)
6351 strcat (buff, "<unknown>");
6352
6353 strcat (buff, "]");
6354 return buff;
6355 }
6356
6357 static int
6358 process_section_groups (FILE * file)
6359 {
6360 Elf_Internal_Shdr * section;
6361 unsigned int i;
6362 struct group * group;
6363 Elf_Internal_Shdr * symtab_sec;
6364 Elf_Internal_Shdr * strtab_sec;
6365 Elf_Internal_Sym * symtab;
6366 unsigned long num_syms;
6367 char * strtab;
6368 size_t strtab_size;
6369
6370 /* Don't process section groups unless needed. */
6371 if (!do_unwind && !do_section_groups)
6372 return 1;
6373
6374 if (elf_header.e_shnum == 0)
6375 {
6376 if (do_section_groups)
6377 printf (_("\nThere are no sections to group in this file.\n"));
6378
6379 return 1;
6380 }
6381
6382 if (section_headers == NULL)
6383 {
6384 error (_("Section headers are not available!\n"));
6385 /* PR 13622: This can happen with a corrupt ELF header. */
6386 return 0;
6387 }
6388
6389 section_headers_groups = (struct group **) calloc (elf_header.e_shnum,
6390 sizeof (struct group *));
6391
6392 if (section_headers_groups == NULL)
6393 {
6394 error (_("Out of memory reading %u section group headers\n"),
6395 elf_header.e_shnum);
6396 return 0;
6397 }
6398
6399 /* Scan the sections for the group section. */
6400 group_count = 0;
6401 for (i = 0, section = section_headers;
6402 i < elf_header.e_shnum;
6403 i++, section++)
6404 if (section->sh_type == SHT_GROUP)
6405 group_count++;
6406
6407 if (group_count == 0)
6408 {
6409 if (do_section_groups)
6410 printf (_("\nThere are no section groups in this file.\n"));
6411
6412 return 1;
6413 }
6414
6415 section_groups = (struct group *) calloc (group_count, sizeof (struct group));
6416
6417 if (section_groups == NULL)
6418 {
6419 error (_("Out of memory reading %lu groups\n"),
6420 (unsigned long) group_count);
6421 return 0;
6422 }
6423
6424 symtab_sec = NULL;
6425 strtab_sec = NULL;
6426 symtab = NULL;
6427 num_syms = 0;
6428 strtab = NULL;
6429 strtab_size = 0;
6430 for (i = 0, section = section_headers, group = section_groups;
6431 i < elf_header.e_shnum;
6432 i++, section++)
6433 {
6434 if (section->sh_type == SHT_GROUP)
6435 {
6436 const char * name = printable_section_name (section);
6437 const char * group_name;
6438 unsigned char * start;
6439 unsigned char * indices;
6440 unsigned int entry, j, size;
6441 Elf_Internal_Shdr * sec;
6442 Elf_Internal_Sym * sym;
6443
6444 /* Get the symbol table. */
6445 if (section->sh_link >= elf_header.e_shnum
6446 || ((sec = section_headers + section->sh_link)->sh_type
6447 != SHT_SYMTAB))
6448 {
6449 error (_("Bad sh_link in group section `%s'\n"), name);
6450 continue;
6451 }
6452
6453 if (symtab_sec != sec)
6454 {
6455 symtab_sec = sec;
6456 if (symtab)
6457 free (symtab);
6458 symtab = GET_ELF_SYMBOLS (file, symtab_sec, & num_syms);
6459 }
6460
6461 if (symtab == NULL)
6462 {
6463 error (_("Corrupt header in group section `%s'\n"), name);
6464 continue;
6465 }
6466
6467 if (section->sh_info >= num_syms)
6468 {
6469 error (_("Bad sh_info in group section `%s'\n"), name);
6470 continue;
6471 }
6472
6473 sym = symtab + section->sh_info;
6474
6475 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6476 {
6477 if (sym->st_shndx == 0
6478 || sym->st_shndx >= elf_header.e_shnum)
6479 {
6480 error (_("Bad sh_info in group section `%s'\n"), name);
6481 continue;
6482 }
6483
6484 group_name = SECTION_NAME (section_headers + sym->st_shndx);
6485 strtab_sec = NULL;
6486 if (strtab)
6487 free (strtab);
6488 strtab = NULL;
6489 strtab_size = 0;
6490 }
6491 else
6492 {
6493 /* Get the string table. */
6494 if (symtab_sec->sh_link >= elf_header.e_shnum)
6495 {
6496 strtab_sec = NULL;
6497 if (strtab)
6498 free (strtab);
6499 strtab = NULL;
6500 strtab_size = 0;
6501 }
6502 else if (strtab_sec
6503 != (sec = section_headers + symtab_sec->sh_link))
6504 {
6505 strtab_sec = sec;
6506 if (strtab)
6507 free (strtab);
6508
6509 strtab = (char *) get_data (NULL, file, strtab_sec->sh_offset,
6510 1, strtab_sec->sh_size,
6511 _("string table"));
6512 strtab_size = strtab != NULL ? strtab_sec->sh_size : 0;
6513 }
6514 group_name = sym->st_name < strtab_size
6515 ? strtab + sym->st_name : _("<corrupt>");
6516 }
6517
6518 /* PR 17531: file: loop. */
6519 if (section->sh_entsize > section->sh_size)
6520 {
6521 error (_("Section %s has sh_entsize (0x%lx) which is larger than its size (0x%lx)\n"),
6522 printable_section_name (section),
6523 (unsigned long) section->sh_entsize,
6524 (unsigned long) section->sh_size);
6525 break;
6526 }
6527
6528 start = (unsigned char *) get_data (NULL, file, section->sh_offset,
6529 1, section->sh_size,
6530 _("section data"));
6531 if (start == NULL)
6532 continue;
6533
6534 indices = start;
6535 size = (section->sh_size / section->sh_entsize) - 1;
6536 entry = byte_get (indices, 4);
6537 indices += 4;
6538
6539 if (do_section_groups)
6540 {
6541 printf (_("\n%sgroup section [%5u] `%s' [%s] contains %u sections:\n"),
6542 get_group_flags (entry), i, name, group_name, size);
6543
6544 printf (_(" [Index] Name\n"));
6545 }
6546
6547 group->group_index = i;
6548
6549 for (j = 0; j < size; j++)
6550 {
6551 struct group_list * g;
6552
6553 entry = byte_get (indices, 4);
6554 indices += 4;
6555
6556 if (entry >= elf_header.e_shnum)
6557 {
6558 static unsigned num_group_errors = 0;
6559
6560 if (num_group_errors ++ < 10)
6561 {
6562 error (_("section [%5u] in group section [%5u] > maximum section [%5u]\n"),
6563 entry, i, elf_header.e_shnum - 1);
6564 if (num_group_errors == 10)
6565 warn (_("Futher error messages about overlarge group section indicies suppressed\n"));
6566 }
6567 continue;
6568 }
6569
6570 if (section_headers_groups [entry] != NULL)
6571 {
6572 if (entry)
6573 {
6574 static unsigned num_errs = 0;
6575
6576 if (num_errs ++ < 10)
6577 {
6578 error (_("section [%5u] in group section [%5u] already in group section [%5u]\n"),
6579 entry, i,
6580 section_headers_groups [entry]->group_index);
6581 if (num_errs == 10)
6582 warn (_("Further error messages about already contained group sections suppressed\n"));
6583 }
6584 continue;
6585 }
6586 else
6587 {
6588 /* Intel C/C++ compiler may put section 0 in a
6589 section group. We just warn it the first time
6590 and ignore it afterwards. */
6591 static int warned = 0;
6592 if (!warned)
6593 {
6594 error (_("section 0 in group section [%5u]\n"),
6595 section_headers_groups [entry]->group_index);
6596 warned++;
6597 }
6598 }
6599 }
6600
6601 section_headers_groups [entry] = group;
6602
6603 if (do_section_groups)
6604 {
6605 sec = section_headers + entry;
6606 printf (" [%5u] %s\n", entry, printable_section_name (sec));
6607 }
6608
6609 g = (struct group_list *) xmalloc (sizeof (struct group_list));
6610 g->section_index = entry;
6611 g->next = group->root;
6612 group->root = g;
6613 }
6614
6615 if (start)
6616 free (start);
6617
6618 group++;
6619 }
6620 }
6621
6622 if (symtab)
6623 free (symtab);
6624 if (strtab)
6625 free (strtab);
6626 return 1;
6627 }
6628
6629 /* Data used to display dynamic fixups. */
6630
6631 struct ia64_vms_dynfixup
6632 {
6633 bfd_vma needed_ident; /* Library ident number. */
6634 bfd_vma needed; /* Index in the dstrtab of the library name. */
6635 bfd_vma fixup_needed; /* Index of the library. */
6636 bfd_vma fixup_rela_cnt; /* Number of fixups. */
6637 bfd_vma fixup_rela_off; /* Fixups offset in the dynamic segment. */
6638 };
6639
6640 /* Data used to display dynamic relocations. */
6641
6642 struct ia64_vms_dynimgrela
6643 {
6644 bfd_vma img_rela_cnt; /* Number of relocations. */
6645 bfd_vma img_rela_off; /* Reloc offset in the dynamic segment. */
6646 };
6647
6648 /* Display IA-64 OpenVMS dynamic fixups (used to dynamically link a shared
6649 library). */
6650
6651 static void
6652 dump_ia64_vms_dynamic_fixups (FILE *file, struct ia64_vms_dynfixup *fixup,
6653 const char *strtab, unsigned int strtab_sz)
6654 {
6655 Elf64_External_VMS_IMAGE_FIXUP *imfs;
6656 long i;
6657 const char *lib_name;
6658
6659 imfs = get_data (NULL, file, dynamic_addr + fixup->fixup_rela_off,
6660 1, fixup->fixup_rela_cnt * sizeof (*imfs),
6661 _("dynamic section image fixups"));
6662 if (!imfs)
6663 return;
6664
6665 if (fixup->needed < strtab_sz)
6666 lib_name = strtab + fixup->needed;
6667 else
6668 {
6669 warn ("corrupt library name index of 0x%lx found in dynamic entry",
6670 (unsigned long) fixup->needed);
6671 lib_name = "???";
6672 }
6673 printf (_("\nImage fixups for needed library #%d: %s - ident: %lx\n"),
6674 (int) fixup->fixup_needed, lib_name, (long) fixup->needed_ident);
6675 printf
6676 (_("Seg Offset Type SymVec DataType\n"));
6677
6678 for (i = 0; i < (long) fixup->fixup_rela_cnt; i++)
6679 {
6680 unsigned int type;
6681 const char *rtype;
6682
6683 printf ("%3u ", (unsigned) BYTE_GET (imfs [i].fixup_seg));
6684 printf_vma ((bfd_vma) BYTE_GET (imfs [i].fixup_offset));
6685 type = BYTE_GET (imfs [i].type);
6686 rtype = elf_ia64_reloc_type (type);
6687 if (rtype == NULL)
6688 printf (" 0x%08x ", type);
6689 else
6690 printf (" %-32s ", rtype);
6691 printf ("%6u ", (unsigned) BYTE_GET (imfs [i].symvec_index));
6692 printf ("0x%08x\n", (unsigned) BYTE_GET (imfs [i].data_type));
6693 }
6694
6695 free (imfs);
6696 }
6697
6698 /* Display IA-64 OpenVMS dynamic relocations (used to relocate an image). */
6699
6700 static void
6701 dump_ia64_vms_dynamic_relocs (FILE *file, struct ia64_vms_dynimgrela *imgrela)
6702 {
6703 Elf64_External_VMS_IMAGE_RELA *imrs;
6704 long i;
6705
6706 imrs = get_data (NULL, file, dynamic_addr + imgrela->img_rela_off,
6707 1, imgrela->img_rela_cnt * sizeof (*imrs),
6708 _("dynamic section image relocations"));
6709 if (!imrs)
6710 return;
6711
6712 printf (_("\nImage relocs\n"));
6713 printf
6714 (_("Seg Offset Type Addend Seg Sym Off\n"));
6715
6716 for (i = 0; i < (long) imgrela->img_rela_cnt; i++)
6717 {
6718 unsigned int type;
6719 const char *rtype;
6720
6721 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].rela_seg));
6722 printf ("%08" BFD_VMA_FMT "x ",
6723 (bfd_vma) BYTE_GET (imrs [i].rela_offset));
6724 type = BYTE_GET (imrs [i].type);
6725 rtype = elf_ia64_reloc_type (type);
6726 if (rtype == NULL)
6727 printf ("0x%08x ", type);
6728 else
6729 printf ("%-31s ", rtype);
6730 print_vma (BYTE_GET (imrs [i].addend), FULL_HEX);
6731 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].sym_seg));
6732 printf ("%08" BFD_VMA_FMT "x\n",
6733 (bfd_vma) BYTE_GET (imrs [i].sym_offset));
6734 }
6735
6736 free (imrs);
6737 }
6738
6739 /* Display IA-64 OpenVMS dynamic relocations and fixups. */
6740
6741 static int
6742 process_ia64_vms_dynamic_relocs (FILE *file)
6743 {
6744 struct ia64_vms_dynfixup fixup;
6745 struct ia64_vms_dynimgrela imgrela;
6746 Elf_Internal_Dyn *entry;
6747 int res = 0;
6748 bfd_vma strtab_off = 0;
6749 bfd_vma strtab_sz = 0;
6750 char *strtab = NULL;
6751
6752 memset (&fixup, 0, sizeof (fixup));
6753 memset (&imgrela, 0, sizeof (imgrela));
6754
6755 /* Note: the order of the entries is specified by the OpenVMS specs. */
6756 for (entry = dynamic_section;
6757 entry < dynamic_section + dynamic_nent;
6758 entry++)
6759 {
6760 switch (entry->d_tag)
6761 {
6762 case DT_IA_64_VMS_STRTAB_OFFSET:
6763 strtab_off = entry->d_un.d_val;
6764 break;
6765 case DT_STRSZ:
6766 strtab_sz = entry->d_un.d_val;
6767 if (strtab == NULL)
6768 strtab = get_data (NULL, file, dynamic_addr + strtab_off,
6769 1, strtab_sz, _("dynamic string section"));
6770 break;
6771
6772 case DT_IA_64_VMS_NEEDED_IDENT:
6773 fixup.needed_ident = entry->d_un.d_val;
6774 break;
6775 case DT_NEEDED:
6776 fixup.needed = entry->d_un.d_val;
6777 break;
6778 case DT_IA_64_VMS_FIXUP_NEEDED:
6779 fixup.fixup_needed = entry->d_un.d_val;
6780 break;
6781 case DT_IA_64_VMS_FIXUP_RELA_CNT:
6782 fixup.fixup_rela_cnt = entry->d_un.d_val;
6783 break;
6784 case DT_IA_64_VMS_FIXUP_RELA_OFF:
6785 fixup.fixup_rela_off = entry->d_un.d_val;
6786 res++;
6787 dump_ia64_vms_dynamic_fixups (file, &fixup, strtab, strtab_sz);
6788 break;
6789
6790 case DT_IA_64_VMS_IMG_RELA_CNT:
6791 imgrela.img_rela_cnt = entry->d_un.d_val;
6792 break;
6793 case DT_IA_64_VMS_IMG_RELA_OFF:
6794 imgrela.img_rela_off = entry->d_un.d_val;
6795 res++;
6796 dump_ia64_vms_dynamic_relocs (file, &imgrela);
6797 break;
6798
6799 default:
6800 break;
6801 }
6802 }
6803
6804 if (strtab != NULL)
6805 free (strtab);
6806
6807 return res;
6808 }
6809
6810 static struct
6811 {
6812 const char * name;
6813 int reloc;
6814 int size;
6815 int rela;
6816 } dynamic_relocations [] =
6817 {
6818 { "REL", DT_REL, DT_RELSZ, FALSE },
6819 { "RELA", DT_RELA, DT_RELASZ, TRUE },
6820 { "PLT", DT_JMPREL, DT_PLTRELSZ, UNKNOWN }
6821 };
6822
6823 /* Process the reloc section. */
6824
6825 static int
6826 process_relocs (FILE * file)
6827 {
6828 unsigned long rel_size;
6829 unsigned long rel_offset;
6830
6831
6832 if (!do_reloc)
6833 return 1;
6834
6835 if (do_using_dynamic)
6836 {
6837 int is_rela;
6838 const char * name;
6839 int has_dynamic_reloc;
6840 unsigned int i;
6841
6842 has_dynamic_reloc = 0;
6843
6844 for (i = 0; i < ARRAY_SIZE (dynamic_relocations); i++)
6845 {
6846 is_rela = dynamic_relocations [i].rela;
6847 name = dynamic_relocations [i].name;
6848 rel_size = dynamic_info [dynamic_relocations [i].size];
6849 rel_offset = dynamic_info [dynamic_relocations [i].reloc];
6850
6851 has_dynamic_reloc |= rel_size;
6852
6853 if (is_rela == UNKNOWN)
6854 {
6855 if (dynamic_relocations [i].reloc == DT_JMPREL)
6856 switch (dynamic_info[DT_PLTREL])
6857 {
6858 case DT_REL:
6859 is_rela = FALSE;
6860 break;
6861 case DT_RELA:
6862 is_rela = TRUE;
6863 break;
6864 }
6865 }
6866
6867 if (rel_size)
6868 {
6869 printf
6870 (_("\n'%s' relocation section at offset 0x%lx contains %ld bytes:\n"),
6871 name, rel_offset, rel_size);
6872
6873 dump_relocations (file,
6874 offset_from_vma (file, rel_offset, rel_size),
6875 rel_size,
6876 dynamic_symbols, num_dynamic_syms,
6877 dynamic_strings, dynamic_strings_length,
6878 is_rela, 1);
6879 }
6880 }
6881
6882 if (is_ia64_vms ())
6883 has_dynamic_reloc |= process_ia64_vms_dynamic_relocs (file);
6884
6885 if (! has_dynamic_reloc)
6886 printf (_("\nThere are no dynamic relocations in this file.\n"));
6887 }
6888 else
6889 {
6890 Elf_Internal_Shdr * section;
6891 unsigned long i;
6892 int found = 0;
6893
6894 for (i = 0, section = section_headers;
6895 i < elf_header.e_shnum;
6896 i++, section++)
6897 {
6898 if ( section->sh_type != SHT_RELA
6899 && section->sh_type != SHT_REL)
6900 continue;
6901
6902 rel_offset = section->sh_offset;
6903 rel_size = section->sh_size;
6904
6905 if (rel_size)
6906 {
6907 Elf_Internal_Shdr * strsec;
6908 int is_rela;
6909
6910 printf (_("\nRelocation section "));
6911
6912 if (string_table == NULL)
6913 printf ("%d", section->sh_name);
6914 else
6915 printf ("'%s'", printable_section_name (section));
6916
6917 printf (_(" at offset 0x%lx contains %lu entries:\n"),
6918 rel_offset, (unsigned long) (rel_size / section->sh_entsize));
6919
6920 is_rela = section->sh_type == SHT_RELA;
6921
6922 if (section->sh_link != 0
6923 && section->sh_link < elf_header.e_shnum)
6924 {
6925 Elf_Internal_Shdr * symsec;
6926 Elf_Internal_Sym * symtab;
6927 unsigned long nsyms;
6928 unsigned long strtablen = 0;
6929 char * strtab = NULL;
6930
6931 symsec = section_headers + section->sh_link;
6932 if (symsec->sh_type != SHT_SYMTAB
6933 && symsec->sh_type != SHT_DYNSYM)
6934 continue;
6935
6936 symtab = GET_ELF_SYMBOLS (file, symsec, & nsyms);
6937
6938 if (symtab == NULL)
6939 continue;
6940
6941 if (symsec->sh_link != 0
6942 && symsec->sh_link < elf_header.e_shnum)
6943 {
6944 strsec = section_headers + symsec->sh_link;
6945
6946 strtab = (char *) get_data (NULL, file, strsec->sh_offset,
6947 1, strsec->sh_size,
6948 _("string table"));
6949 strtablen = strtab == NULL ? 0 : strsec->sh_size;
6950 }
6951
6952 dump_relocations (file, rel_offset, rel_size,
6953 symtab, nsyms, strtab, strtablen,
6954 is_rela,
6955 symsec->sh_type == SHT_DYNSYM);
6956 if (strtab)
6957 free (strtab);
6958 free (symtab);
6959 }
6960 else
6961 dump_relocations (file, rel_offset, rel_size,
6962 NULL, 0, NULL, 0, is_rela, 0);
6963
6964 found = 1;
6965 }
6966 }
6967
6968 if (! found)
6969 printf (_("\nThere are no relocations in this file.\n"));
6970 }
6971
6972 return 1;
6973 }
6974
6975 /* An absolute address consists of a section and an offset. If the
6976 section is NULL, the offset itself is the address, otherwise, the
6977 address equals to LOAD_ADDRESS(section) + offset. */
6978
6979 struct absaddr
6980 {
6981 unsigned short section;
6982 bfd_vma offset;
6983 };
6984
6985 #define ABSADDR(a) \
6986 ((a).section \
6987 ? section_headers [(a).section].sh_addr + (a).offset \
6988 : (a).offset)
6989
6990 /* Find the nearest symbol at or below ADDR. Returns the symbol
6991 name, if found, and the offset from the symbol to ADDR. */
6992
6993 static void
6994 find_symbol_for_address (Elf_Internal_Sym * symtab,
6995 unsigned long nsyms,
6996 const char * strtab,
6997 unsigned long strtab_size,
6998 struct absaddr addr,
6999 const char ** symname,
7000 bfd_vma * offset)
7001 {
7002 bfd_vma dist = 0x100000;
7003 Elf_Internal_Sym * sym;
7004 Elf_Internal_Sym * beg;
7005 Elf_Internal_Sym * end;
7006 Elf_Internal_Sym * best = NULL;
7007
7008 REMOVE_ARCH_BITS (addr.offset);
7009 beg = symtab;
7010 end = symtab + nsyms;
7011
7012 while (beg < end)
7013 {
7014 bfd_vma value;
7015
7016 sym = beg + (end - beg) / 2;
7017
7018 value = sym->st_value;
7019 REMOVE_ARCH_BITS (value);
7020
7021 if (sym->st_name != 0
7022 && (addr.section == SHN_UNDEF || addr.section == sym->st_shndx)
7023 && addr.offset >= value
7024 && addr.offset - value < dist)
7025 {
7026 best = sym;
7027 dist = addr.offset - value;
7028 if (!dist)
7029 break;
7030 }
7031
7032 if (addr.offset < value)
7033 end = sym;
7034 else
7035 beg = sym + 1;
7036 }
7037
7038 if (best)
7039 {
7040 *symname = (best->st_name >= strtab_size
7041 ? _("<corrupt>") : strtab + best->st_name);
7042 *offset = dist;
7043 return;
7044 }
7045
7046 *symname = NULL;
7047 *offset = addr.offset;
7048 }
7049
7050 static int
7051 symcmp (const void *p, const void *q)
7052 {
7053 Elf_Internal_Sym *sp = (Elf_Internal_Sym *) p;
7054 Elf_Internal_Sym *sq = (Elf_Internal_Sym *) q;
7055
7056 return sp->st_value > sq->st_value ? 1 : (sp->st_value < sq->st_value ? -1 : 0);
7057 }
7058
7059 /* Process the unwind section. */
7060
7061 #include "unwind-ia64.h"
7062
7063 struct ia64_unw_table_entry
7064 {
7065 struct absaddr start;
7066 struct absaddr end;
7067 struct absaddr info;
7068 };
7069
7070 struct ia64_unw_aux_info
7071 {
7072 struct ia64_unw_table_entry *table; /* Unwind table. */
7073 unsigned long table_len; /* Length of unwind table. */
7074 unsigned char * info; /* Unwind info. */
7075 unsigned long info_size; /* Size of unwind info. */
7076 bfd_vma info_addr; /* Starting address of unwind info. */
7077 bfd_vma seg_base; /* Starting address of segment. */
7078 Elf_Internal_Sym * symtab; /* The symbol table. */
7079 unsigned long nsyms; /* Number of symbols. */
7080 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7081 unsigned long nfuns; /* Number of entries in funtab. */
7082 char * strtab; /* The string table. */
7083 unsigned long strtab_size; /* Size of string table. */
7084 };
7085
7086 static void
7087 dump_ia64_unwind (struct ia64_unw_aux_info * aux)
7088 {
7089 struct ia64_unw_table_entry * tp;
7090 unsigned long j, nfuns;
7091 int in_body;
7092
7093 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
7094 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
7095 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
7096 aux->funtab[nfuns++] = aux->symtab[j];
7097 aux->nfuns = nfuns;
7098 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
7099
7100 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
7101 {
7102 bfd_vma stamp;
7103 bfd_vma offset;
7104 const unsigned char * dp;
7105 const unsigned char * head;
7106 const unsigned char * end;
7107 const char * procname;
7108
7109 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
7110 aux->strtab_size, tp->start, &procname, &offset);
7111
7112 fputs ("\n<", stdout);
7113
7114 if (procname)
7115 {
7116 fputs (procname, stdout);
7117
7118 if (offset)
7119 printf ("+%lx", (unsigned long) offset);
7120 }
7121
7122 fputs (">: [", stdout);
7123 print_vma (tp->start.offset, PREFIX_HEX);
7124 fputc ('-', stdout);
7125 print_vma (tp->end.offset, PREFIX_HEX);
7126 printf ("], info at +0x%lx\n",
7127 (unsigned long) (tp->info.offset - aux->seg_base));
7128
7129 /* PR 17531: file: 86232b32. */
7130 if (aux->info == NULL)
7131 continue;
7132
7133 /* PR 17531: file: 0997b4d1. */
7134 if ((ABSADDR (tp->info) - aux->info_addr) >= aux->info_size)
7135 {
7136 warn (_("Invalid offset %lx in table entry %ld\n"),
7137 (long) tp->info.offset, (long) (tp - aux->table));
7138 continue;
7139 }
7140
7141 head = aux->info + (ABSADDR (tp->info) - aux->info_addr);
7142 stamp = byte_get ((unsigned char *) head, sizeof (stamp));
7143
7144 printf (" v%u, flags=0x%lx (%s%s), len=%lu bytes\n",
7145 (unsigned) UNW_VER (stamp),
7146 (unsigned long) ((stamp & UNW_FLAG_MASK) >> 32),
7147 UNW_FLAG_EHANDLER (stamp) ? " ehandler" : "",
7148 UNW_FLAG_UHANDLER (stamp) ? " uhandler" : "",
7149 (unsigned long) (eh_addr_size * UNW_LENGTH (stamp)));
7150
7151 if (UNW_VER (stamp) != 1)
7152 {
7153 printf (_("\tUnknown version.\n"));
7154 continue;
7155 }
7156
7157 in_body = 0;
7158 end = head + 8 + eh_addr_size * UNW_LENGTH (stamp);
7159 /* PR 17531: file: 16ceda89. */
7160 if (end > aux->info + aux->info_size)
7161 end = aux->info + aux->info_size;
7162 for (dp = head + 8; dp < end;)
7163 dp = unw_decode (dp, in_body, & in_body, end);
7164 }
7165
7166 free (aux->funtab);
7167 }
7168
7169 static bfd_boolean
7170 slurp_ia64_unwind_table (FILE * file,
7171 struct ia64_unw_aux_info * aux,
7172 Elf_Internal_Shdr * sec)
7173 {
7174 unsigned long size, nrelas, i;
7175 Elf_Internal_Phdr * seg;
7176 struct ia64_unw_table_entry * tep;
7177 Elf_Internal_Shdr * relsec;
7178 Elf_Internal_Rela * rela;
7179 Elf_Internal_Rela * rp;
7180 unsigned char * table;
7181 unsigned char * tp;
7182 Elf_Internal_Sym * sym;
7183 const char * relname;
7184
7185 aux->table_len = 0;
7186
7187 /* First, find the starting address of the segment that includes
7188 this section: */
7189
7190 if (elf_header.e_phnum)
7191 {
7192 if (! get_program_headers (file))
7193 return FALSE;
7194
7195 for (seg = program_headers;
7196 seg < program_headers + elf_header.e_phnum;
7197 ++seg)
7198 {
7199 if (seg->p_type != PT_LOAD)
7200 continue;
7201
7202 if (sec->sh_addr >= seg->p_vaddr
7203 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
7204 {
7205 aux->seg_base = seg->p_vaddr;
7206 break;
7207 }
7208 }
7209 }
7210
7211 /* Second, build the unwind table from the contents of the unwind section: */
7212 size = sec->sh_size;
7213 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
7214 _("unwind table"));
7215 if (!table)
7216 return FALSE;
7217
7218 aux->table_len = size / (3 * eh_addr_size);
7219 aux->table = (struct ia64_unw_table_entry *)
7220 xcmalloc (aux->table_len, sizeof (aux->table[0]));
7221 tep = aux->table;
7222
7223 for (tp = table; tp <= table + size - (3 * eh_addr_size); ++tep)
7224 {
7225 tep->start.section = SHN_UNDEF;
7226 tep->end.section = SHN_UNDEF;
7227 tep->info.section = SHN_UNDEF;
7228 tep->start.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7229 tep->end.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7230 tep->info.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7231 tep->start.offset += aux->seg_base;
7232 tep->end.offset += aux->seg_base;
7233 tep->info.offset += aux->seg_base;
7234 }
7235 free (table);
7236
7237 /* Third, apply any relocations to the unwind table: */
7238 for (relsec = section_headers;
7239 relsec < section_headers + elf_header.e_shnum;
7240 ++relsec)
7241 {
7242 if (relsec->sh_type != SHT_RELA
7243 || relsec->sh_info >= elf_header.e_shnum
7244 || section_headers + relsec->sh_info != sec)
7245 continue;
7246
7247 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
7248 & rela, & nrelas))
7249 {
7250 free (aux->table);
7251 aux->table = NULL;
7252 aux->table_len = 0;
7253 return FALSE;
7254 }
7255
7256 for (rp = rela; rp < rela + nrelas; ++rp)
7257 {
7258 relname = elf_ia64_reloc_type (get_reloc_type (rp->r_info));
7259 sym = aux->symtab + get_reloc_symindex (rp->r_info);
7260
7261 /* PR 17531: file: 9fa67536. */
7262 if (relname == NULL)
7263 {
7264 warn (_("Skipping unknown relocation type: %u\n"), get_reloc_type (rp->r_info));
7265 continue;
7266 }
7267
7268 if (! const_strneq (relname, "R_IA64_SEGREL"))
7269 {
7270 warn (_("Skipping unexpected relocation type: %s\n"), relname);
7271 continue;
7272 }
7273
7274 i = rp->r_offset / (3 * eh_addr_size);
7275
7276 /* PR 17531: file: 5bc8d9bf. */
7277 if (i >= aux->table_len)
7278 {
7279 warn (_("Skipping reloc with overlarge offset: %lx\n"), i);
7280 continue;
7281 }
7282
7283 switch (rp->r_offset / eh_addr_size % 3)
7284 {
7285 case 0:
7286 aux->table[i].start.section = sym->st_shndx;
7287 aux->table[i].start.offset = rp->r_addend + sym->st_value;
7288 break;
7289 case 1:
7290 aux->table[i].end.section = sym->st_shndx;
7291 aux->table[i].end.offset = rp->r_addend + sym->st_value;
7292 break;
7293 case 2:
7294 aux->table[i].info.section = sym->st_shndx;
7295 aux->table[i].info.offset = rp->r_addend + sym->st_value;
7296 break;
7297 default:
7298 break;
7299 }
7300 }
7301
7302 free (rela);
7303 }
7304
7305 return TRUE;
7306 }
7307
7308 static void
7309 ia64_process_unwind (FILE * file)
7310 {
7311 Elf_Internal_Shdr * sec;
7312 Elf_Internal_Shdr * unwsec = NULL;
7313 Elf_Internal_Shdr * strsec;
7314 unsigned long i, unwcount = 0, unwstart = 0;
7315 struct ia64_unw_aux_info aux;
7316
7317 memset (& aux, 0, sizeof (aux));
7318
7319 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7320 {
7321 if (sec->sh_type == SHT_SYMTAB
7322 && sec->sh_link < elf_header.e_shnum)
7323 {
7324 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
7325
7326 strsec = section_headers + sec->sh_link;
7327 if (aux.strtab != NULL)
7328 {
7329 error (_("Multiple auxillary string tables encountered\n"));
7330 free (aux.strtab);
7331 }
7332 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
7333 1, strsec->sh_size,
7334 _("string table"));
7335 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7336 }
7337 else if (sec->sh_type == SHT_IA_64_UNWIND)
7338 unwcount++;
7339 }
7340
7341 if (!unwcount)
7342 printf (_("\nThere are no unwind sections in this file.\n"));
7343
7344 while (unwcount-- > 0)
7345 {
7346 char * suffix;
7347 size_t len, len2;
7348
7349 for (i = unwstart, sec = section_headers + unwstart, unwsec = NULL;
7350 i < elf_header.e_shnum; ++i, ++sec)
7351 if (sec->sh_type == SHT_IA_64_UNWIND)
7352 {
7353 unwsec = sec;
7354 break;
7355 }
7356 /* We have already counted the number of SHT_IA64_UNWIND
7357 sections so the loop above should never fail. */
7358 assert (unwsec != NULL);
7359
7360 unwstart = i + 1;
7361 len = sizeof (ELF_STRING_ia64_unwind_once) - 1;
7362
7363 if ((unwsec->sh_flags & SHF_GROUP) != 0)
7364 {
7365 /* We need to find which section group it is in. */
7366 struct group_list * g;
7367
7368 if (section_headers_groups == NULL
7369 || section_headers_groups [i] == NULL)
7370 i = elf_header.e_shnum;
7371 else
7372 {
7373 g = section_headers_groups [i]->root;
7374
7375 for (; g != NULL; g = g->next)
7376 {
7377 sec = section_headers + g->section_index;
7378
7379 if (streq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info))
7380 break;
7381 }
7382
7383 if (g == NULL)
7384 i = elf_header.e_shnum;
7385 }
7386 }
7387 else if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind_once, len))
7388 {
7389 /* .gnu.linkonce.ia64unw.FOO -> .gnu.linkonce.ia64unwi.FOO. */
7390 len2 = sizeof (ELF_STRING_ia64_unwind_info_once) - 1;
7391 suffix = SECTION_NAME (unwsec) + len;
7392 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
7393 ++i, ++sec)
7394 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info_once, len2)
7395 && streq (SECTION_NAME (sec) + len2, suffix))
7396 break;
7397 }
7398 else
7399 {
7400 /* .IA_64.unwindFOO -> .IA_64.unwind_infoFOO
7401 .IA_64.unwind or BAR -> .IA_64.unwind_info. */
7402 len = sizeof (ELF_STRING_ia64_unwind) - 1;
7403 len2 = sizeof (ELF_STRING_ia64_unwind_info) - 1;
7404 suffix = "";
7405 if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind, len))
7406 suffix = SECTION_NAME (unwsec) + len;
7407 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
7408 ++i, ++sec)
7409 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info, len2)
7410 && streq (SECTION_NAME (sec) + len2, suffix))
7411 break;
7412 }
7413
7414 if (i == elf_header.e_shnum)
7415 {
7416 printf (_("\nCould not find unwind info section for "));
7417
7418 if (string_table == NULL)
7419 printf ("%d", unwsec->sh_name);
7420 else
7421 printf ("'%s'", printable_section_name (unwsec));
7422 }
7423 else
7424 {
7425 aux.info_addr = sec->sh_addr;
7426 aux.info = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1,
7427 sec->sh_size,
7428 _("unwind info"));
7429 aux.info_size = aux.info == NULL ? 0 : sec->sh_size;
7430
7431 printf (_("\nUnwind section "));
7432
7433 if (string_table == NULL)
7434 printf ("%d", unwsec->sh_name);
7435 else
7436 printf ("'%s'", printable_section_name (unwsec));
7437
7438 printf (_(" at offset 0x%lx contains %lu entries:\n"),
7439 (unsigned long) unwsec->sh_offset,
7440 (unsigned long) (unwsec->sh_size / (3 * eh_addr_size)));
7441
7442 if (slurp_ia64_unwind_table (file, & aux, unwsec)
7443 && aux.table_len > 0)
7444 dump_ia64_unwind (& aux);
7445
7446 if (aux.table)
7447 free ((char *) aux.table);
7448 if (aux.info)
7449 free ((char *) aux.info);
7450 aux.table = NULL;
7451 aux.info = NULL;
7452 }
7453 }
7454
7455 if (aux.symtab)
7456 free (aux.symtab);
7457 if (aux.strtab)
7458 free ((char *) aux.strtab);
7459 }
7460
7461 struct hppa_unw_table_entry
7462 {
7463 struct absaddr start;
7464 struct absaddr end;
7465 unsigned int Cannot_unwind:1; /* 0 */
7466 unsigned int Millicode:1; /* 1 */
7467 unsigned int Millicode_save_sr0:1; /* 2 */
7468 unsigned int Region_description:2; /* 3..4 */
7469 unsigned int reserved1:1; /* 5 */
7470 unsigned int Entry_SR:1; /* 6 */
7471 unsigned int Entry_FR:4; /* number saved */ /* 7..10 */
7472 unsigned int Entry_GR:5; /* number saved */ /* 11..15 */
7473 unsigned int Args_stored:1; /* 16 */
7474 unsigned int Variable_Frame:1; /* 17 */
7475 unsigned int Separate_Package_Body:1; /* 18 */
7476 unsigned int Frame_Extension_Millicode:1; /* 19 */
7477 unsigned int Stack_Overflow_Check:1; /* 20 */
7478 unsigned int Two_Instruction_SP_Increment:1;/* 21 */
7479 unsigned int Ada_Region:1; /* 22 */
7480 unsigned int cxx_info:1; /* 23 */
7481 unsigned int cxx_try_catch:1; /* 24 */
7482 unsigned int sched_entry_seq:1; /* 25 */
7483 unsigned int reserved2:1; /* 26 */
7484 unsigned int Save_SP:1; /* 27 */
7485 unsigned int Save_RP:1; /* 28 */
7486 unsigned int Save_MRP_in_frame:1; /* 29 */
7487 unsigned int extn_ptr_defined:1; /* 30 */
7488 unsigned int Cleanup_defined:1; /* 31 */
7489
7490 unsigned int MPE_XL_interrupt_marker:1; /* 0 */
7491 unsigned int HP_UX_interrupt_marker:1; /* 1 */
7492 unsigned int Large_frame:1; /* 2 */
7493 unsigned int Pseudo_SP_Set:1; /* 3 */
7494 unsigned int reserved4:1; /* 4 */
7495 unsigned int Total_frame_size:27; /* 5..31 */
7496 };
7497
7498 struct hppa_unw_aux_info
7499 {
7500 struct hppa_unw_table_entry * table; /* Unwind table. */
7501 unsigned long table_len; /* Length of unwind table. */
7502 bfd_vma seg_base; /* Starting address of segment. */
7503 Elf_Internal_Sym * symtab; /* The symbol table. */
7504 unsigned long nsyms; /* Number of symbols. */
7505 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7506 unsigned long nfuns; /* Number of entries in funtab. */
7507 char * strtab; /* The string table. */
7508 unsigned long strtab_size; /* Size of string table. */
7509 };
7510
7511 static void
7512 dump_hppa_unwind (struct hppa_unw_aux_info * aux)
7513 {
7514 struct hppa_unw_table_entry * tp;
7515 unsigned long j, nfuns;
7516
7517 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
7518 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
7519 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
7520 aux->funtab[nfuns++] = aux->symtab[j];
7521 aux->nfuns = nfuns;
7522 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
7523
7524 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
7525 {
7526 bfd_vma offset;
7527 const char * procname;
7528
7529 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
7530 aux->strtab_size, tp->start, &procname,
7531 &offset);
7532
7533 fputs ("\n<", stdout);
7534
7535 if (procname)
7536 {
7537 fputs (procname, stdout);
7538
7539 if (offset)
7540 printf ("+%lx", (unsigned long) offset);
7541 }
7542
7543 fputs (">: [", stdout);
7544 print_vma (tp->start.offset, PREFIX_HEX);
7545 fputc ('-', stdout);
7546 print_vma (tp->end.offset, PREFIX_HEX);
7547 printf ("]\n\t");
7548
7549 #define PF(_m) if (tp->_m) printf (#_m " ");
7550 #define PV(_m) if (tp->_m) printf (#_m "=%d ", tp->_m);
7551 PF(Cannot_unwind);
7552 PF(Millicode);
7553 PF(Millicode_save_sr0);
7554 /* PV(Region_description); */
7555 PF(Entry_SR);
7556 PV(Entry_FR);
7557 PV(Entry_GR);
7558 PF(Args_stored);
7559 PF(Variable_Frame);
7560 PF(Separate_Package_Body);
7561 PF(Frame_Extension_Millicode);
7562 PF(Stack_Overflow_Check);
7563 PF(Two_Instruction_SP_Increment);
7564 PF(Ada_Region);
7565 PF(cxx_info);
7566 PF(cxx_try_catch);
7567 PF(sched_entry_seq);
7568 PF(Save_SP);
7569 PF(Save_RP);
7570 PF(Save_MRP_in_frame);
7571 PF(extn_ptr_defined);
7572 PF(Cleanup_defined);
7573 PF(MPE_XL_interrupt_marker);
7574 PF(HP_UX_interrupt_marker);
7575 PF(Large_frame);
7576 PF(Pseudo_SP_Set);
7577 PV(Total_frame_size);
7578 #undef PF
7579 #undef PV
7580 }
7581
7582 printf ("\n");
7583
7584 free (aux->funtab);
7585 }
7586
7587 static int
7588 slurp_hppa_unwind_table (FILE * file,
7589 struct hppa_unw_aux_info * aux,
7590 Elf_Internal_Shdr * sec)
7591 {
7592 unsigned long size, unw_ent_size, nentries, nrelas, i;
7593 Elf_Internal_Phdr * seg;
7594 struct hppa_unw_table_entry * tep;
7595 Elf_Internal_Shdr * relsec;
7596 Elf_Internal_Rela * rela;
7597 Elf_Internal_Rela * rp;
7598 unsigned char * table;
7599 unsigned char * tp;
7600 Elf_Internal_Sym * sym;
7601 const char * relname;
7602
7603 /* First, find the starting address of the segment that includes
7604 this section. */
7605
7606 if (elf_header.e_phnum)
7607 {
7608 if (! get_program_headers (file))
7609 return 0;
7610
7611 for (seg = program_headers;
7612 seg < program_headers + elf_header.e_phnum;
7613 ++seg)
7614 {
7615 if (seg->p_type != PT_LOAD)
7616 continue;
7617
7618 if (sec->sh_addr >= seg->p_vaddr
7619 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
7620 {
7621 aux->seg_base = seg->p_vaddr;
7622 break;
7623 }
7624 }
7625 }
7626
7627 /* Second, build the unwind table from the contents of the unwind
7628 section. */
7629 size = sec->sh_size;
7630 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
7631 _("unwind table"));
7632 if (!table)
7633 return 0;
7634
7635 unw_ent_size = 16;
7636 nentries = size / unw_ent_size;
7637 size = unw_ent_size * nentries;
7638
7639 tep = aux->table = (struct hppa_unw_table_entry *)
7640 xcmalloc (nentries, sizeof (aux->table[0]));
7641
7642 for (tp = table; tp < table + size; tp += unw_ent_size, ++tep)
7643 {
7644 unsigned int tmp1, tmp2;
7645
7646 tep->start.section = SHN_UNDEF;
7647 tep->end.section = SHN_UNDEF;
7648
7649 tep->start.offset = byte_get ((unsigned char *) tp + 0, 4);
7650 tep->end.offset = byte_get ((unsigned char *) tp + 4, 4);
7651 tmp1 = byte_get ((unsigned char *) tp + 8, 4);
7652 tmp2 = byte_get ((unsigned char *) tp + 12, 4);
7653
7654 tep->start.offset += aux->seg_base;
7655 tep->end.offset += aux->seg_base;
7656
7657 tep->Cannot_unwind = (tmp1 >> 31) & 0x1;
7658 tep->Millicode = (tmp1 >> 30) & 0x1;
7659 tep->Millicode_save_sr0 = (tmp1 >> 29) & 0x1;
7660 tep->Region_description = (tmp1 >> 27) & 0x3;
7661 tep->reserved1 = (tmp1 >> 26) & 0x1;
7662 tep->Entry_SR = (tmp1 >> 25) & 0x1;
7663 tep->Entry_FR = (tmp1 >> 21) & 0xf;
7664 tep->Entry_GR = (tmp1 >> 16) & 0x1f;
7665 tep->Args_stored = (tmp1 >> 15) & 0x1;
7666 tep->Variable_Frame = (tmp1 >> 14) & 0x1;
7667 tep->Separate_Package_Body = (tmp1 >> 13) & 0x1;
7668 tep->Frame_Extension_Millicode = (tmp1 >> 12) & 0x1;
7669 tep->Stack_Overflow_Check = (tmp1 >> 11) & 0x1;
7670 tep->Two_Instruction_SP_Increment = (tmp1 >> 10) & 0x1;
7671 tep->Ada_Region = (tmp1 >> 9) & 0x1;
7672 tep->cxx_info = (tmp1 >> 8) & 0x1;
7673 tep->cxx_try_catch = (tmp1 >> 7) & 0x1;
7674 tep->sched_entry_seq = (tmp1 >> 6) & 0x1;
7675 tep->reserved2 = (tmp1 >> 5) & 0x1;
7676 tep->Save_SP = (tmp1 >> 4) & 0x1;
7677 tep->Save_RP = (tmp1 >> 3) & 0x1;
7678 tep->Save_MRP_in_frame = (tmp1 >> 2) & 0x1;
7679 tep->extn_ptr_defined = (tmp1 >> 1) & 0x1;
7680 tep->Cleanup_defined = tmp1 & 0x1;
7681
7682 tep->MPE_XL_interrupt_marker = (tmp2 >> 31) & 0x1;
7683 tep->HP_UX_interrupt_marker = (tmp2 >> 30) & 0x1;
7684 tep->Large_frame = (tmp2 >> 29) & 0x1;
7685 tep->Pseudo_SP_Set = (tmp2 >> 28) & 0x1;
7686 tep->reserved4 = (tmp2 >> 27) & 0x1;
7687 tep->Total_frame_size = tmp2 & 0x7ffffff;
7688 }
7689 free (table);
7690
7691 /* Third, apply any relocations to the unwind table. */
7692 for (relsec = section_headers;
7693 relsec < section_headers + elf_header.e_shnum;
7694 ++relsec)
7695 {
7696 if (relsec->sh_type != SHT_RELA
7697 || relsec->sh_info >= elf_header.e_shnum
7698 || section_headers + relsec->sh_info != sec)
7699 continue;
7700
7701 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
7702 & rela, & nrelas))
7703 return 0;
7704
7705 for (rp = rela; rp < rela + nrelas; ++rp)
7706 {
7707 relname = elf_hppa_reloc_type (get_reloc_type (rp->r_info));
7708 sym = aux->symtab + get_reloc_symindex (rp->r_info);
7709
7710 /* R_PARISC_SEGREL32 or R_PARISC_SEGREL64. */
7711 if (! const_strneq (relname, "R_PARISC_SEGREL"))
7712 {
7713 warn (_("Skipping unexpected relocation type %s\n"), relname);
7714 continue;
7715 }
7716
7717 i = rp->r_offset / unw_ent_size;
7718
7719 switch ((rp->r_offset % unw_ent_size) / eh_addr_size)
7720 {
7721 case 0:
7722 aux->table[i].start.section = sym->st_shndx;
7723 aux->table[i].start.offset = sym->st_value + rp->r_addend;
7724 break;
7725 case 1:
7726 aux->table[i].end.section = sym->st_shndx;
7727 aux->table[i].end.offset = sym->st_value + rp->r_addend;
7728 break;
7729 default:
7730 break;
7731 }
7732 }
7733
7734 free (rela);
7735 }
7736
7737 aux->table_len = nentries;
7738
7739 return 1;
7740 }
7741
7742 static void
7743 hppa_process_unwind (FILE * file)
7744 {
7745 struct hppa_unw_aux_info aux;
7746 Elf_Internal_Shdr * unwsec = NULL;
7747 Elf_Internal_Shdr * strsec;
7748 Elf_Internal_Shdr * sec;
7749 unsigned long i;
7750
7751 if (string_table == NULL)
7752 return;
7753
7754 memset (& aux, 0, sizeof (aux));
7755
7756 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7757 {
7758 if (sec->sh_type == SHT_SYMTAB
7759 && sec->sh_link < elf_header.e_shnum)
7760 {
7761 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
7762
7763 strsec = section_headers + sec->sh_link;
7764 if (aux.strtab != NULL)
7765 {
7766 error (_("Multiple auxillary string tables encountered\n"));
7767 free (aux.strtab);
7768 }
7769 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
7770 1, strsec->sh_size,
7771 _("string table"));
7772 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7773 }
7774 else if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
7775 unwsec = sec;
7776 }
7777
7778 if (!unwsec)
7779 printf (_("\nThere are no unwind sections in this file.\n"));
7780
7781 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7782 {
7783 if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
7784 {
7785 printf (_("\nUnwind section '%s' at offset 0x%lx contains %lu entries:\n"),
7786 printable_section_name (sec),
7787 (unsigned long) sec->sh_offset,
7788 (unsigned long) (sec->sh_size / (2 * eh_addr_size + 8)));
7789
7790 slurp_hppa_unwind_table (file, &aux, sec);
7791 if (aux.table_len > 0)
7792 dump_hppa_unwind (&aux);
7793
7794 if (aux.table)
7795 free ((char *) aux.table);
7796 aux.table = NULL;
7797 }
7798 }
7799
7800 if (aux.symtab)
7801 free (aux.symtab);
7802 if (aux.strtab)
7803 free ((char *) aux.strtab);
7804 }
7805
7806 struct arm_section
7807 {
7808 unsigned char * data; /* The unwind data. */
7809 Elf_Internal_Shdr * sec; /* The cached unwind section header. */
7810 Elf_Internal_Rela * rela; /* The cached relocations for this section. */
7811 unsigned long nrelas; /* The number of relocations. */
7812 unsigned int rel_type; /* REL or RELA ? */
7813 Elf_Internal_Rela * next_rela; /* Cyclic pointer to the next reloc to process. */
7814 };
7815
7816 struct arm_unw_aux_info
7817 {
7818 FILE * file; /* The file containing the unwind sections. */
7819 Elf_Internal_Sym * symtab; /* The file's symbol table. */
7820 unsigned long nsyms; /* Number of symbols. */
7821 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7822 unsigned long nfuns; /* Number of these symbols. */
7823 char * strtab; /* The file's string table. */
7824 unsigned long strtab_size; /* Size of string table. */
7825 };
7826
7827 static const char *
7828 arm_print_vma_and_name (struct arm_unw_aux_info *aux,
7829 bfd_vma fn, struct absaddr addr)
7830 {
7831 const char *procname;
7832 bfd_vma sym_offset;
7833
7834 if (addr.section == SHN_UNDEF)
7835 addr.offset = fn;
7836
7837 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
7838 aux->strtab_size, addr, &procname,
7839 &sym_offset);
7840
7841 print_vma (fn, PREFIX_HEX);
7842
7843 if (procname)
7844 {
7845 fputs (" <", stdout);
7846 fputs (procname, stdout);
7847
7848 if (sym_offset)
7849 printf ("+0x%lx", (unsigned long) sym_offset);
7850 fputc ('>', stdout);
7851 }
7852
7853 return procname;
7854 }
7855
7856 static void
7857 arm_free_section (struct arm_section *arm_sec)
7858 {
7859 if (arm_sec->data != NULL)
7860 free (arm_sec->data);
7861
7862 if (arm_sec->rela != NULL)
7863 free (arm_sec->rela);
7864 }
7865
7866 /* 1) If SEC does not match the one cached in ARM_SEC, then free the current
7867 cached section and install SEC instead.
7868 2) Locate the 32-bit word at WORD_OFFSET in unwind section SEC
7869 and return its valued in * WORDP, relocating if necessary.
7870 3) Update the NEXT_RELA field in ARM_SEC and store the section index and
7871 relocation's offset in ADDR.
7872 4) If SYM_NAME is non-NULL and a relocation was applied, record the offset
7873 into the string table of the symbol associated with the reloc. If no
7874 reloc was applied store -1 there.
7875 5) Return TRUE upon success, FALSE otherwise. */
7876
7877 static bfd_boolean
7878 get_unwind_section_word (struct arm_unw_aux_info * aux,
7879 struct arm_section * arm_sec,
7880 Elf_Internal_Shdr * sec,
7881 bfd_vma word_offset,
7882 unsigned int * wordp,
7883 struct absaddr * addr,
7884 bfd_vma * sym_name)
7885 {
7886 Elf_Internal_Rela *rp;
7887 Elf_Internal_Sym *sym;
7888 const char * relname;
7889 unsigned int word;
7890 bfd_boolean wrapped;
7891
7892 if (sec == NULL || arm_sec == NULL)
7893 return FALSE;
7894
7895 addr->section = SHN_UNDEF;
7896 addr->offset = 0;
7897
7898 if (sym_name != NULL)
7899 *sym_name = (bfd_vma) -1;
7900
7901 /* If necessary, update the section cache. */
7902 if (sec != arm_sec->sec)
7903 {
7904 Elf_Internal_Shdr *relsec;
7905
7906 arm_free_section (arm_sec);
7907
7908 arm_sec->sec = sec;
7909 arm_sec->data = get_data (NULL, aux->file, sec->sh_offset, 1,
7910 sec->sh_size, _("unwind data"));
7911 arm_sec->rela = NULL;
7912 arm_sec->nrelas = 0;
7913
7914 for (relsec = section_headers;
7915 relsec < section_headers + elf_header.e_shnum;
7916 ++relsec)
7917 {
7918 if (relsec->sh_info >= elf_header.e_shnum
7919 || section_headers + relsec->sh_info != sec
7920 /* PR 15745: Check the section type as well. */
7921 || (relsec->sh_type != SHT_REL
7922 && relsec->sh_type != SHT_RELA))
7923 continue;
7924
7925 arm_sec->rel_type = relsec->sh_type;
7926 if (relsec->sh_type == SHT_REL)
7927 {
7928 if (!slurp_rel_relocs (aux->file, relsec->sh_offset,
7929 relsec->sh_size,
7930 & arm_sec->rela, & arm_sec->nrelas))
7931 return FALSE;
7932 }
7933 else /* relsec->sh_type == SHT_RELA */
7934 {
7935 if (!slurp_rela_relocs (aux->file, relsec->sh_offset,
7936 relsec->sh_size,
7937 & arm_sec->rela, & arm_sec->nrelas))
7938 return FALSE;
7939 }
7940 break;
7941 }
7942
7943 arm_sec->next_rela = arm_sec->rela;
7944 }
7945
7946 /* If there is no unwind data we can do nothing. */
7947 if (arm_sec->data == NULL)
7948 return FALSE;
7949
7950 /* If the offset is invalid then fail. */
7951 if (word_offset > (sec->sh_size - 4)
7952 /* PR 18879 */
7953 || (sec->sh_size < 5 && word_offset >= sec->sh_size)
7954 || ((bfd_signed_vma) word_offset) < 0)
7955 return FALSE;
7956
7957 /* Get the word at the required offset. */
7958 word = byte_get (arm_sec->data + word_offset, 4);
7959
7960 /* PR 17531: file: id:000001,src:001266+003044,op:splice,rep:128. */
7961 if (arm_sec->rela == NULL)
7962 {
7963 * wordp = word;
7964 return TRUE;
7965 }
7966
7967 /* Look through the relocs to find the one that applies to the provided offset. */
7968 wrapped = FALSE;
7969 for (rp = arm_sec->next_rela; rp != arm_sec->rela + arm_sec->nrelas; rp++)
7970 {
7971 bfd_vma prelval, offset;
7972
7973 if (rp->r_offset > word_offset && !wrapped)
7974 {
7975 rp = arm_sec->rela;
7976 wrapped = TRUE;
7977 }
7978 if (rp->r_offset > word_offset)
7979 break;
7980
7981 if (rp->r_offset & 3)
7982 {
7983 warn (_("Skipping unexpected relocation at offset 0x%lx\n"),
7984 (unsigned long) rp->r_offset);
7985 continue;
7986 }
7987
7988 if (rp->r_offset < word_offset)
7989 continue;
7990
7991 /* PR 17531: file: 027-161405-0.004 */
7992 if (aux->symtab == NULL)
7993 continue;
7994
7995 if (arm_sec->rel_type == SHT_REL)
7996 {
7997 offset = word & 0x7fffffff;
7998 if (offset & 0x40000000)
7999 offset |= ~ (bfd_vma) 0x7fffffff;
8000 }
8001 else if (arm_sec->rel_type == SHT_RELA)
8002 offset = rp->r_addend;
8003 else
8004 {
8005 error (_("Unknown section relocation type %d encountered\n"),
8006 arm_sec->rel_type);
8007 break;
8008 }
8009
8010 /* PR 17531 file: 027-1241568-0.004. */
8011 if (ELF32_R_SYM (rp->r_info) >= aux->nsyms)
8012 {
8013 error (_("Bad symbol index in unwind relocation (%lu > %lu)\n"),
8014 (unsigned long) ELF32_R_SYM (rp->r_info), aux->nsyms);
8015 break;
8016 }
8017
8018 sym = aux->symtab + ELF32_R_SYM (rp->r_info);
8019 offset += sym->st_value;
8020 prelval = offset - (arm_sec->sec->sh_addr + rp->r_offset);
8021
8022 /* Check that we are processing the expected reloc type. */
8023 if (elf_header.e_machine == EM_ARM)
8024 {
8025 relname = elf_arm_reloc_type (ELF32_R_TYPE (rp->r_info));
8026 if (relname == NULL)
8027 {
8028 warn (_("Skipping unknown ARM relocation type: %d\n"),
8029 (int) ELF32_R_TYPE (rp->r_info));
8030 continue;
8031 }
8032
8033 if (streq (relname, "R_ARM_NONE"))
8034 continue;
8035
8036 if (! streq (relname, "R_ARM_PREL31"))
8037 {
8038 warn (_("Skipping unexpected ARM relocation type %s\n"), relname);
8039 continue;
8040 }
8041 }
8042 else if (elf_header.e_machine == EM_TI_C6000)
8043 {
8044 relname = elf_tic6x_reloc_type (ELF32_R_TYPE (rp->r_info));
8045 if (relname == NULL)
8046 {
8047 warn (_("Skipping unknown C6000 relocation type: %d\n"),
8048 (int) ELF32_R_TYPE (rp->r_info));
8049 continue;
8050 }
8051
8052 if (streq (relname, "R_C6000_NONE"))
8053 continue;
8054
8055 if (! streq (relname, "R_C6000_PREL31"))
8056 {
8057 warn (_("Skipping unexpected C6000 relocation type %s\n"), relname);
8058 continue;
8059 }
8060
8061 prelval >>= 1;
8062 }
8063 else
8064 {
8065 /* This function currently only supports ARM and TI unwinders. */
8066 warn (_("Only TI and ARM unwinders are currently supported\n"));
8067 break;
8068 }
8069
8070 word = (word & ~ (bfd_vma) 0x7fffffff) | (prelval & 0x7fffffff);
8071 addr->section = sym->st_shndx;
8072 addr->offset = offset;
8073
8074 if (sym_name)
8075 * sym_name = sym->st_name;
8076 break;
8077 }
8078
8079 *wordp = word;
8080 arm_sec->next_rela = rp;
8081
8082 return TRUE;
8083 }
8084
8085 static const char *tic6x_unwind_regnames[16] =
8086 {
8087 "A15", "B15", "B14", "B13", "B12", "B11", "B10", "B3",
8088 "A14", "A13", "A12", "A11", "A10",
8089 "[invalid reg 13]", "[invalid reg 14]", "[invalid reg 15]"
8090 };
8091
8092 static void
8093 decode_tic6x_unwind_regmask (unsigned int mask)
8094 {
8095 int i;
8096
8097 for (i = 12; mask; mask >>= 1, i--)
8098 {
8099 if (mask & 1)
8100 {
8101 fputs (tic6x_unwind_regnames[i], stdout);
8102 if (mask > 1)
8103 fputs (", ", stdout);
8104 }
8105 }
8106 }
8107
8108 #define ADVANCE \
8109 if (remaining == 0 && more_words) \
8110 { \
8111 data_offset += 4; \
8112 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, \
8113 data_offset, & word, & addr, NULL)) \
8114 return; \
8115 remaining = 4; \
8116 more_words--; \
8117 } \
8118
8119 #define GET_OP(OP) \
8120 ADVANCE; \
8121 if (remaining) \
8122 { \
8123 remaining--; \
8124 (OP) = word >> 24; \
8125 word <<= 8; \
8126 } \
8127 else \
8128 { \
8129 printf (_("[Truncated opcode]\n")); \
8130 return; \
8131 } \
8132 printf ("0x%02x ", OP)
8133
8134 static void
8135 decode_arm_unwind_bytecode (struct arm_unw_aux_info * aux,
8136 unsigned int word,
8137 unsigned int remaining,
8138 unsigned int more_words,
8139 bfd_vma data_offset,
8140 Elf_Internal_Shdr * data_sec,
8141 struct arm_section * data_arm_sec)
8142 {
8143 struct absaddr addr;
8144
8145 /* Decode the unwinding instructions. */
8146 while (1)
8147 {
8148 unsigned int op, op2;
8149
8150 ADVANCE;
8151 if (remaining == 0)
8152 break;
8153 remaining--;
8154 op = word >> 24;
8155 word <<= 8;
8156
8157 printf (" 0x%02x ", op);
8158
8159 if ((op & 0xc0) == 0x00)
8160 {
8161 int offset = ((op & 0x3f) << 2) + 4;
8162
8163 printf (" vsp = vsp + %d", offset);
8164 }
8165 else if ((op & 0xc0) == 0x40)
8166 {
8167 int offset = ((op & 0x3f) << 2) + 4;
8168
8169 printf (" vsp = vsp - %d", offset);
8170 }
8171 else if ((op & 0xf0) == 0x80)
8172 {
8173 GET_OP (op2);
8174 if (op == 0x80 && op2 == 0)
8175 printf (_("Refuse to unwind"));
8176 else
8177 {
8178 unsigned int mask = ((op & 0x0f) << 8) | op2;
8179 int first = 1;
8180 int i;
8181
8182 printf ("pop {");
8183 for (i = 0; i < 12; i++)
8184 if (mask & (1 << i))
8185 {
8186 if (first)
8187 first = 0;
8188 else
8189 printf (", ");
8190 printf ("r%d", 4 + i);
8191 }
8192 printf ("}");
8193 }
8194 }
8195 else if ((op & 0xf0) == 0x90)
8196 {
8197 if (op == 0x9d || op == 0x9f)
8198 printf (_(" [Reserved]"));
8199 else
8200 printf (" vsp = r%d", op & 0x0f);
8201 }
8202 else if ((op & 0xf0) == 0xa0)
8203 {
8204 int end = 4 + (op & 0x07);
8205 int first = 1;
8206 int i;
8207
8208 printf (" pop {");
8209 for (i = 4; i <= end; i++)
8210 {
8211 if (first)
8212 first = 0;
8213 else
8214 printf (", ");
8215 printf ("r%d", i);
8216 }
8217 if (op & 0x08)
8218 {
8219 if (!first)
8220 printf (", ");
8221 printf ("r14");
8222 }
8223 printf ("}");
8224 }
8225 else if (op == 0xb0)
8226 printf (_(" finish"));
8227 else if (op == 0xb1)
8228 {
8229 GET_OP (op2);
8230 if (op2 == 0 || (op2 & 0xf0) != 0)
8231 printf (_("[Spare]"));
8232 else
8233 {
8234 unsigned int mask = op2 & 0x0f;
8235 int first = 1;
8236 int i;
8237
8238 printf ("pop {");
8239 for (i = 0; i < 12; i++)
8240 if (mask & (1 << i))
8241 {
8242 if (first)
8243 first = 0;
8244 else
8245 printf (", ");
8246 printf ("r%d", i);
8247 }
8248 printf ("}");
8249 }
8250 }
8251 else if (op == 0xb2)
8252 {
8253 unsigned char buf[9];
8254 unsigned int i, len;
8255 unsigned long offset;
8256
8257 for (i = 0; i < sizeof (buf); i++)
8258 {
8259 GET_OP (buf[i]);
8260 if ((buf[i] & 0x80) == 0)
8261 break;
8262 }
8263 if (i == sizeof (buf))
8264 printf (_("corrupt change to vsp"));
8265 else
8266 {
8267 offset = read_uleb128 (buf, &len, buf + i + 1);
8268 assert (len == i + 1);
8269 offset = offset * 4 + 0x204;
8270 printf ("vsp = vsp + %ld", offset);
8271 }
8272 }
8273 else if (op == 0xb3 || op == 0xc8 || op == 0xc9)
8274 {
8275 unsigned int first, last;
8276
8277 GET_OP (op2);
8278 first = op2 >> 4;
8279 last = op2 & 0x0f;
8280 if (op == 0xc8)
8281 first = first + 16;
8282 printf ("pop {D%d", first);
8283 if (last)
8284 printf ("-D%d", first + last);
8285 printf ("}");
8286 }
8287 else if ((op & 0xf8) == 0xb8 || (op & 0xf8) == 0xd0)
8288 {
8289 unsigned int count = op & 0x07;
8290
8291 printf ("pop {D8");
8292 if (count)
8293 printf ("-D%d", 8 + count);
8294 printf ("}");
8295 }
8296 else if (op >= 0xc0 && op <= 0xc5)
8297 {
8298 unsigned int count = op & 0x07;
8299
8300 printf (" pop {wR10");
8301 if (count)
8302 printf ("-wR%d", 10 + count);
8303 printf ("}");
8304 }
8305 else if (op == 0xc6)
8306 {
8307 unsigned int first, last;
8308
8309 GET_OP (op2);
8310 first = op2 >> 4;
8311 last = op2 & 0x0f;
8312 printf ("pop {wR%d", first);
8313 if (last)
8314 printf ("-wR%d", first + last);
8315 printf ("}");
8316 }
8317 else if (op == 0xc7)
8318 {
8319 GET_OP (op2);
8320 if (op2 == 0 || (op2 & 0xf0) != 0)
8321 printf (_("[Spare]"));
8322 else
8323 {
8324 unsigned int mask = op2 & 0x0f;
8325 int first = 1;
8326 int i;
8327
8328 printf ("pop {");
8329 for (i = 0; i < 4; i++)
8330 if (mask & (1 << i))
8331 {
8332 if (first)
8333 first = 0;
8334 else
8335 printf (", ");
8336 printf ("wCGR%d", i);
8337 }
8338 printf ("}");
8339 }
8340 }
8341 else
8342 printf (_(" [unsupported opcode]"));
8343 printf ("\n");
8344 }
8345 }
8346
8347 static void
8348 decode_tic6x_unwind_bytecode (struct arm_unw_aux_info * aux,
8349 unsigned int word,
8350 unsigned int remaining,
8351 unsigned int more_words,
8352 bfd_vma data_offset,
8353 Elf_Internal_Shdr * data_sec,
8354 struct arm_section * data_arm_sec)
8355 {
8356 struct absaddr addr;
8357
8358 /* Decode the unwinding instructions. */
8359 while (1)
8360 {
8361 unsigned int op, op2;
8362
8363 ADVANCE;
8364 if (remaining == 0)
8365 break;
8366 remaining--;
8367 op = word >> 24;
8368 word <<= 8;
8369
8370 printf (" 0x%02x ", op);
8371
8372 if ((op & 0xc0) == 0x00)
8373 {
8374 int offset = ((op & 0x3f) << 3) + 8;
8375 printf (" sp = sp + %d", offset);
8376 }
8377 else if ((op & 0xc0) == 0x80)
8378 {
8379 GET_OP (op2);
8380 if (op == 0x80 && op2 == 0)
8381 printf (_("Refuse to unwind"));
8382 else
8383 {
8384 unsigned int mask = ((op & 0x1f) << 8) | op2;
8385 if (op & 0x20)
8386 printf ("pop compact {");
8387 else
8388 printf ("pop {");
8389
8390 decode_tic6x_unwind_regmask (mask);
8391 printf("}");
8392 }
8393 }
8394 else if ((op & 0xf0) == 0xc0)
8395 {
8396 unsigned int reg;
8397 unsigned int nregs;
8398 unsigned int i;
8399 const char *name;
8400 struct
8401 {
8402 unsigned int offset;
8403 unsigned int reg;
8404 } regpos[16];
8405
8406 /* Scan entire instruction first so that GET_OP output is not
8407 interleaved with disassembly. */
8408 nregs = 0;
8409 for (i = 0; nregs < (op & 0xf); i++)
8410 {
8411 GET_OP (op2);
8412 reg = op2 >> 4;
8413 if (reg != 0xf)
8414 {
8415 regpos[nregs].offset = i * 2;
8416 regpos[nregs].reg = reg;
8417 nregs++;
8418 }
8419
8420 reg = op2 & 0xf;
8421 if (reg != 0xf)
8422 {
8423 regpos[nregs].offset = i * 2 + 1;
8424 regpos[nregs].reg = reg;
8425 nregs++;
8426 }
8427 }
8428
8429 printf (_("pop frame {"));
8430 reg = nregs - 1;
8431 for (i = i * 2; i > 0; i--)
8432 {
8433 if (regpos[reg].offset == i - 1)
8434 {
8435 name = tic6x_unwind_regnames[regpos[reg].reg];
8436 if (reg > 0)
8437 reg--;
8438 }
8439 else
8440 name = _("[pad]");
8441
8442 fputs (name, stdout);
8443 if (i > 1)
8444 printf (", ");
8445 }
8446
8447 printf ("}");
8448 }
8449 else if (op == 0xd0)
8450 printf (" MOV FP, SP");
8451 else if (op == 0xd1)
8452 printf (" __c6xabi_pop_rts");
8453 else if (op == 0xd2)
8454 {
8455 unsigned char buf[9];
8456 unsigned int i, len;
8457 unsigned long offset;
8458
8459 for (i = 0; i < sizeof (buf); i++)
8460 {
8461 GET_OP (buf[i]);
8462 if ((buf[i] & 0x80) == 0)
8463 break;
8464 }
8465 /* PR 17531: file: id:000001,src:001906+004739,op:splice,rep:2. */
8466 if (i == sizeof (buf))
8467 {
8468 printf ("<corrupt sp adjust>\n");
8469 warn (_("Corrupt stack pointer adjustment detected\n"));
8470 return;
8471 }
8472
8473 offset = read_uleb128 (buf, &len, buf + i + 1);
8474 assert (len == i + 1);
8475 offset = offset * 8 + 0x408;
8476 printf (_("sp = sp + %ld"), offset);
8477 }
8478 else if ((op & 0xf0) == 0xe0)
8479 {
8480 if ((op & 0x0f) == 7)
8481 printf (" RETURN");
8482 else
8483 printf (" MV %s, B3", tic6x_unwind_regnames[op & 0x0f]);
8484 }
8485 else
8486 {
8487 printf (_(" [unsupported opcode]"));
8488 }
8489 putchar ('\n');
8490 }
8491 }
8492
8493 static bfd_vma
8494 arm_expand_prel31 (bfd_vma word, bfd_vma where)
8495 {
8496 bfd_vma offset;
8497
8498 offset = word & 0x7fffffff;
8499 if (offset & 0x40000000)
8500 offset |= ~ (bfd_vma) 0x7fffffff;
8501
8502 if (elf_header.e_machine == EM_TI_C6000)
8503 offset <<= 1;
8504
8505 return offset + where;
8506 }
8507
8508 static void
8509 decode_arm_unwind (struct arm_unw_aux_info * aux,
8510 unsigned int word,
8511 unsigned int remaining,
8512 bfd_vma data_offset,
8513 Elf_Internal_Shdr * data_sec,
8514 struct arm_section * data_arm_sec)
8515 {
8516 int per_index;
8517 unsigned int more_words = 0;
8518 struct absaddr addr;
8519 bfd_vma sym_name = (bfd_vma) -1;
8520
8521 if (remaining == 0)
8522 {
8523 /* Fetch the first word.
8524 Note - when decoding an object file the address extracted
8525 here will always be 0. So we also pass in the sym_name
8526 parameter so that we can find the symbol associated with
8527 the personality routine. */
8528 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, data_offset,
8529 & word, & addr, & sym_name))
8530 return;
8531
8532 remaining = 4;
8533 }
8534
8535 if ((word & 0x80000000) == 0)
8536 {
8537 /* Expand prel31 for personality routine. */
8538 bfd_vma fn;
8539 const char *procname;
8540
8541 fn = arm_expand_prel31 (word, data_sec->sh_addr + data_offset);
8542 printf (_(" Personality routine: "));
8543 if (fn == 0
8544 && addr.section == SHN_UNDEF && addr.offset == 0
8545 && sym_name != (bfd_vma) -1 && sym_name < aux->strtab_size)
8546 {
8547 procname = aux->strtab + sym_name;
8548 print_vma (fn, PREFIX_HEX);
8549 if (procname)
8550 {
8551 fputs (" <", stdout);
8552 fputs (procname, stdout);
8553 fputc ('>', stdout);
8554 }
8555 }
8556 else
8557 procname = arm_print_vma_and_name (aux, fn, addr);
8558 fputc ('\n', stdout);
8559
8560 /* The GCC personality routines use the standard compact
8561 encoding, starting with one byte giving the number of
8562 words. */
8563 if (procname != NULL
8564 && (const_strneq (procname, "__gcc_personality_v0")
8565 || const_strneq (procname, "__gxx_personality_v0")
8566 || const_strneq (procname, "__gcj_personality_v0")
8567 || const_strneq (procname, "__gnu_objc_personality_v0")))
8568 {
8569 remaining = 0;
8570 more_words = 1;
8571 ADVANCE;
8572 if (!remaining)
8573 {
8574 printf (_(" [Truncated data]\n"));
8575 return;
8576 }
8577 more_words = word >> 24;
8578 word <<= 8;
8579 remaining--;
8580 per_index = -1;
8581 }
8582 else
8583 return;
8584 }
8585 else
8586 {
8587 /* ARM EHABI Section 6.3:
8588
8589 An exception-handling table entry for the compact model looks like:
8590
8591 31 30-28 27-24 23-0
8592 -- ----- ----- ----
8593 1 0 index Data for personalityRoutine[index] */
8594
8595 if (elf_header.e_machine == EM_ARM
8596 && (word & 0x70000000))
8597 warn (_("Corrupt ARM compact model table entry: %x \n"), word);
8598
8599 per_index = (word >> 24) & 0x7f;
8600 printf (_(" Compact model index: %d\n"), per_index);
8601 if (per_index == 0)
8602 {
8603 more_words = 0;
8604 word <<= 8;
8605 remaining--;
8606 }
8607 else if (per_index < 3)
8608 {
8609 more_words = (word >> 16) & 0xff;
8610 word <<= 16;
8611 remaining -= 2;
8612 }
8613 }
8614
8615 switch (elf_header.e_machine)
8616 {
8617 case EM_ARM:
8618 if (per_index < 3)
8619 {
8620 decode_arm_unwind_bytecode (aux, word, remaining, more_words,
8621 data_offset, data_sec, data_arm_sec);
8622 }
8623 else
8624 {
8625 warn (_("Unknown ARM compact model index encountered\n"));
8626 printf (_(" [reserved]\n"));
8627 }
8628 break;
8629
8630 case EM_TI_C6000:
8631 if (per_index < 3)
8632 {
8633 decode_tic6x_unwind_bytecode (aux, word, remaining, more_words,
8634 data_offset, data_sec, data_arm_sec);
8635 }
8636 else if (per_index < 5)
8637 {
8638 if (((word >> 17) & 0x7f) == 0x7f)
8639 printf (_(" Restore stack from frame pointer\n"));
8640 else
8641 printf (_(" Stack increment %d\n"), (word >> 14) & 0x1fc);
8642 printf (_(" Registers restored: "));
8643 if (per_index == 4)
8644 printf (" (compact) ");
8645 decode_tic6x_unwind_regmask ((word >> 4) & 0x1fff);
8646 putchar ('\n');
8647 printf (_(" Return register: %s\n"),
8648 tic6x_unwind_regnames[word & 0xf]);
8649 }
8650 else
8651 printf (_(" [reserved (%d)]\n"), per_index);
8652 break;
8653
8654 default:
8655 error (_("Unsupported architecture type %d encountered when decoding unwind table\n"),
8656 elf_header.e_machine);
8657 }
8658
8659 /* Decode the descriptors. Not implemented. */
8660 }
8661
8662 static void
8663 dump_arm_unwind (struct arm_unw_aux_info *aux, Elf_Internal_Shdr *exidx_sec)
8664 {
8665 struct arm_section exidx_arm_sec, extab_arm_sec;
8666 unsigned int i, exidx_len;
8667 unsigned long j, nfuns;
8668
8669 memset (&exidx_arm_sec, 0, sizeof (exidx_arm_sec));
8670 memset (&extab_arm_sec, 0, sizeof (extab_arm_sec));
8671 exidx_len = exidx_sec->sh_size / 8;
8672
8673 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
8674 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
8675 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
8676 aux->funtab[nfuns++] = aux->symtab[j];
8677 aux->nfuns = nfuns;
8678 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
8679
8680 for (i = 0; i < exidx_len; i++)
8681 {
8682 unsigned int exidx_fn, exidx_entry;
8683 struct absaddr fn_addr, entry_addr;
8684 bfd_vma fn;
8685
8686 fputc ('\n', stdout);
8687
8688 if (! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
8689 8 * i, & exidx_fn, & fn_addr, NULL)
8690 || ! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
8691 8 * i + 4, & exidx_entry, & entry_addr, NULL))
8692 {
8693 free (aux->funtab);
8694 arm_free_section (& exidx_arm_sec);
8695 arm_free_section (& extab_arm_sec);
8696 return;
8697 }
8698
8699 /* ARM EHABI, Section 5:
8700 An index table entry consists of 2 words.
8701 The first word contains a prel31 offset to the start of a function, with bit 31 clear. */
8702 if (exidx_fn & 0x80000000)
8703 warn (_("corrupt index table entry: %x\n"), exidx_fn);
8704
8705 fn = arm_expand_prel31 (exidx_fn, exidx_sec->sh_addr + 8 * i);
8706
8707 arm_print_vma_and_name (aux, fn, fn_addr);
8708 fputs (": ", stdout);
8709
8710 if (exidx_entry == 1)
8711 {
8712 print_vma (exidx_entry, PREFIX_HEX);
8713 fputs (" [cantunwind]\n", stdout);
8714 }
8715 else if (exidx_entry & 0x80000000)
8716 {
8717 print_vma (exidx_entry, PREFIX_HEX);
8718 fputc ('\n', stdout);
8719 decode_arm_unwind (aux, exidx_entry, 4, 0, NULL, NULL);
8720 }
8721 else
8722 {
8723 bfd_vma table, table_offset = 0;
8724 Elf_Internal_Shdr *table_sec;
8725
8726 fputs ("@", stdout);
8727 table = arm_expand_prel31 (exidx_entry, exidx_sec->sh_addr + 8 * i + 4);
8728 print_vma (table, PREFIX_HEX);
8729 printf ("\n");
8730
8731 /* Locate the matching .ARM.extab. */
8732 if (entry_addr.section != SHN_UNDEF
8733 && entry_addr.section < elf_header.e_shnum)
8734 {
8735 table_sec = section_headers + entry_addr.section;
8736 table_offset = entry_addr.offset;
8737 /* PR 18879 */
8738 if (table_offset > table_sec->sh_size
8739 || ((bfd_signed_vma) table_offset) < 0)
8740 {
8741 warn (_("Unwind entry contains corrupt offset (0x%lx) into section %s\n"),
8742 (unsigned long) table_offset,
8743 printable_section_name (table_sec));
8744 continue;
8745 }
8746 }
8747 else
8748 {
8749 table_sec = find_section_by_address (table);
8750 if (table_sec != NULL)
8751 table_offset = table - table_sec->sh_addr;
8752 }
8753 if (table_sec == NULL)
8754 {
8755 warn (_("Could not locate .ARM.extab section containing 0x%lx.\n"),
8756 (unsigned long) table);
8757 continue;
8758 }
8759 decode_arm_unwind (aux, 0, 0, table_offset, table_sec,
8760 &extab_arm_sec);
8761 }
8762 }
8763
8764 printf ("\n");
8765
8766 free (aux->funtab);
8767 arm_free_section (&exidx_arm_sec);
8768 arm_free_section (&extab_arm_sec);
8769 }
8770
8771 /* Used for both ARM and C6X unwinding tables. */
8772
8773 static void
8774 arm_process_unwind (FILE *file)
8775 {
8776 struct arm_unw_aux_info aux;
8777 Elf_Internal_Shdr *unwsec = NULL;
8778 Elf_Internal_Shdr *strsec;
8779 Elf_Internal_Shdr *sec;
8780 unsigned long i;
8781 unsigned int sec_type;
8782
8783 switch (elf_header.e_machine)
8784 {
8785 case EM_ARM:
8786 sec_type = SHT_ARM_EXIDX;
8787 break;
8788
8789 case EM_TI_C6000:
8790 sec_type = SHT_C6000_UNWIND;
8791 break;
8792
8793 default:
8794 error (_("Unsupported architecture type %d encountered when processing unwind table\n"),
8795 elf_header.e_machine);
8796 return;
8797 }
8798
8799 if (string_table == NULL)
8800 return;
8801
8802 memset (& aux, 0, sizeof (aux));
8803 aux.file = file;
8804
8805 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
8806 {
8807 if (sec->sh_type == SHT_SYMTAB && sec->sh_link < elf_header.e_shnum)
8808 {
8809 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
8810
8811 strsec = section_headers + sec->sh_link;
8812
8813 /* PR binutils/17531 file: 011-12666-0.004. */
8814 if (aux.strtab != NULL)
8815 {
8816 error (_("Multiple string tables found in file.\n"));
8817 free (aux.strtab);
8818 }
8819 aux.strtab = get_data (NULL, file, strsec->sh_offset,
8820 1, strsec->sh_size, _("string table"));
8821 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
8822 }
8823 else if (sec->sh_type == sec_type)
8824 unwsec = sec;
8825 }
8826
8827 if (unwsec == NULL)
8828 printf (_("\nThere are no unwind sections in this file.\n"));
8829 else
8830 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
8831 {
8832 if (sec->sh_type == sec_type)
8833 {
8834 printf (_("\nUnwind table index '%s' at offset 0x%lx contains %lu entries:\n"),
8835 printable_section_name (sec),
8836 (unsigned long) sec->sh_offset,
8837 (unsigned long) (sec->sh_size / (2 * eh_addr_size)));
8838
8839 dump_arm_unwind (&aux, sec);
8840 }
8841 }
8842
8843 if (aux.symtab)
8844 free (aux.symtab);
8845 if (aux.strtab)
8846 free ((char *) aux.strtab);
8847 }
8848
8849 static void
8850 process_unwind (FILE * file)
8851 {
8852 struct unwind_handler
8853 {
8854 int machtype;
8855 void (* handler)(FILE *);
8856 } handlers[] =
8857 {
8858 { EM_ARM, arm_process_unwind },
8859 { EM_IA_64, ia64_process_unwind },
8860 { EM_PARISC, hppa_process_unwind },
8861 { EM_TI_C6000, arm_process_unwind },
8862 { 0, 0 }
8863 };
8864 int i;
8865
8866 if (!do_unwind)
8867 return;
8868
8869 for (i = 0; handlers[i].handler != NULL; i++)
8870 if (elf_header.e_machine == handlers[i].machtype)
8871 {
8872 handlers[i].handler (file);
8873 return;
8874 }
8875
8876 printf (_("\nThe decoding of unwind sections for machine type %s is not currently supported.\n"),
8877 get_machine_name (elf_header.e_machine));
8878 }
8879
8880 static void
8881 dynamic_section_mips_val (Elf_Internal_Dyn * entry)
8882 {
8883 switch (entry->d_tag)
8884 {
8885 case DT_MIPS_FLAGS:
8886 if (entry->d_un.d_val == 0)
8887 printf (_("NONE"));
8888 else
8889 {
8890 static const char * opts[] =
8891 {
8892 "QUICKSTART", "NOTPOT", "NO_LIBRARY_REPLACEMENT",
8893 "NO_MOVE", "SGI_ONLY", "GUARANTEE_INIT", "DELTA_C_PLUS_PLUS",
8894 "GUARANTEE_START_INIT", "PIXIE", "DEFAULT_DELAY_LOAD",
8895 "REQUICKSTART", "REQUICKSTARTED", "CORD", "NO_UNRES_UNDEF",
8896 "RLD_ORDER_SAFE"
8897 };
8898 unsigned int cnt;
8899 int first = 1;
8900
8901 for (cnt = 0; cnt < ARRAY_SIZE (opts); ++cnt)
8902 if (entry->d_un.d_val & (1 << cnt))
8903 {
8904 printf ("%s%s", first ? "" : " ", opts[cnt]);
8905 first = 0;
8906 }
8907 }
8908 break;
8909
8910 case DT_MIPS_IVERSION:
8911 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
8912 printf (_("Interface Version: %s"), GET_DYNAMIC_NAME (entry->d_un.d_val));
8913 else
8914 {
8915 char buf[40];
8916 sprintf_vma (buf, entry->d_un.d_ptr);
8917 /* Note: coded this way so that there is a single string for translation. */
8918 printf (_("<corrupt: %s>"), buf);
8919 }
8920 break;
8921
8922 case DT_MIPS_TIME_STAMP:
8923 {
8924 char timebuf[128];
8925 struct tm * tmp;
8926 time_t atime = entry->d_un.d_val;
8927
8928 tmp = gmtime (&atime);
8929 /* PR 17531: file: 6accc532. */
8930 if (tmp == NULL)
8931 snprintf (timebuf, sizeof (timebuf), _("<corrupt>"));
8932 else
8933 snprintf (timebuf, sizeof (timebuf), "%04u-%02u-%02uT%02u:%02u:%02u",
8934 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
8935 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
8936 printf (_("Time Stamp: %s"), timebuf);
8937 }
8938 break;
8939
8940 case DT_MIPS_RLD_VERSION:
8941 case DT_MIPS_LOCAL_GOTNO:
8942 case DT_MIPS_CONFLICTNO:
8943 case DT_MIPS_LIBLISTNO:
8944 case DT_MIPS_SYMTABNO:
8945 case DT_MIPS_UNREFEXTNO:
8946 case DT_MIPS_HIPAGENO:
8947 case DT_MIPS_DELTA_CLASS_NO:
8948 case DT_MIPS_DELTA_INSTANCE_NO:
8949 case DT_MIPS_DELTA_RELOC_NO:
8950 case DT_MIPS_DELTA_SYM_NO:
8951 case DT_MIPS_DELTA_CLASSSYM_NO:
8952 case DT_MIPS_COMPACT_SIZE:
8953 print_vma (entry->d_un.d_val, DEC);
8954 break;
8955
8956 default:
8957 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
8958 }
8959 putchar ('\n');
8960 }
8961
8962 static void
8963 dynamic_section_parisc_val (Elf_Internal_Dyn * entry)
8964 {
8965 switch (entry->d_tag)
8966 {
8967 case DT_HP_DLD_FLAGS:
8968 {
8969 static struct
8970 {
8971 long int bit;
8972 const char * str;
8973 }
8974 flags[] =
8975 {
8976 { DT_HP_DEBUG_PRIVATE, "HP_DEBUG_PRIVATE" },
8977 { DT_HP_DEBUG_CALLBACK, "HP_DEBUG_CALLBACK" },
8978 { DT_HP_DEBUG_CALLBACK_BOR, "HP_DEBUG_CALLBACK_BOR" },
8979 { DT_HP_NO_ENVVAR, "HP_NO_ENVVAR" },
8980 { DT_HP_BIND_NOW, "HP_BIND_NOW" },
8981 { DT_HP_BIND_NONFATAL, "HP_BIND_NONFATAL" },
8982 { DT_HP_BIND_VERBOSE, "HP_BIND_VERBOSE" },
8983 { DT_HP_BIND_RESTRICTED, "HP_BIND_RESTRICTED" },
8984 { DT_HP_BIND_SYMBOLIC, "HP_BIND_SYMBOLIC" },
8985 { DT_HP_RPATH_FIRST, "HP_RPATH_FIRST" },
8986 { DT_HP_BIND_DEPTH_FIRST, "HP_BIND_DEPTH_FIRST" },
8987 { DT_HP_GST, "HP_GST" },
8988 { DT_HP_SHLIB_FIXED, "HP_SHLIB_FIXED" },
8989 { DT_HP_MERGE_SHLIB_SEG, "HP_MERGE_SHLIB_SEG" },
8990 { DT_HP_NODELETE, "HP_NODELETE" },
8991 { DT_HP_GROUP, "HP_GROUP" },
8992 { DT_HP_PROTECT_LINKAGE_TABLE, "HP_PROTECT_LINKAGE_TABLE" }
8993 };
8994 int first = 1;
8995 size_t cnt;
8996 bfd_vma val = entry->d_un.d_val;
8997
8998 for (cnt = 0; cnt < ARRAY_SIZE (flags); ++cnt)
8999 if (val & flags[cnt].bit)
9000 {
9001 if (! first)
9002 putchar (' ');
9003 fputs (flags[cnt].str, stdout);
9004 first = 0;
9005 val ^= flags[cnt].bit;
9006 }
9007
9008 if (val != 0 || first)
9009 {
9010 if (! first)
9011 putchar (' ');
9012 print_vma (val, HEX);
9013 }
9014 }
9015 break;
9016
9017 default:
9018 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9019 break;
9020 }
9021 putchar ('\n');
9022 }
9023
9024 #ifdef BFD64
9025
9026 /* VMS vs Unix time offset and factor. */
9027
9028 #define VMS_EPOCH_OFFSET 35067168000000000LL
9029 #define VMS_GRANULARITY_FACTOR 10000000
9030
9031 /* Display a VMS time in a human readable format. */
9032
9033 static void
9034 print_vms_time (bfd_int64_t vmstime)
9035 {
9036 struct tm *tm;
9037 time_t unxtime;
9038
9039 unxtime = (vmstime - VMS_EPOCH_OFFSET) / VMS_GRANULARITY_FACTOR;
9040 tm = gmtime (&unxtime);
9041 printf ("%04u-%02u-%02uT%02u:%02u:%02u",
9042 tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
9043 tm->tm_hour, tm->tm_min, tm->tm_sec);
9044 }
9045 #endif /* BFD64 */
9046
9047 static void
9048 dynamic_section_ia64_val (Elf_Internal_Dyn * entry)
9049 {
9050 switch (entry->d_tag)
9051 {
9052 case DT_IA_64_PLT_RESERVE:
9053 /* First 3 slots reserved. */
9054 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9055 printf (" -- ");
9056 print_vma (entry->d_un.d_ptr + (3 * 8), PREFIX_HEX);
9057 break;
9058
9059 case DT_IA_64_VMS_LINKTIME:
9060 #ifdef BFD64
9061 print_vms_time (entry->d_un.d_val);
9062 #endif
9063 break;
9064
9065 case DT_IA_64_VMS_LNKFLAGS:
9066 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9067 if (entry->d_un.d_val & VMS_LF_CALL_DEBUG)
9068 printf (" CALL_DEBUG");
9069 if (entry->d_un.d_val & VMS_LF_NOP0BUFS)
9070 printf (" NOP0BUFS");
9071 if (entry->d_un.d_val & VMS_LF_P0IMAGE)
9072 printf (" P0IMAGE");
9073 if (entry->d_un.d_val & VMS_LF_MKTHREADS)
9074 printf (" MKTHREADS");
9075 if (entry->d_un.d_val & VMS_LF_UPCALLS)
9076 printf (" UPCALLS");
9077 if (entry->d_un.d_val & VMS_LF_IMGSTA)
9078 printf (" IMGSTA");
9079 if (entry->d_un.d_val & VMS_LF_INITIALIZE)
9080 printf (" INITIALIZE");
9081 if (entry->d_un.d_val & VMS_LF_MAIN)
9082 printf (" MAIN");
9083 if (entry->d_un.d_val & VMS_LF_EXE_INIT)
9084 printf (" EXE_INIT");
9085 if (entry->d_un.d_val & VMS_LF_TBK_IN_IMG)
9086 printf (" TBK_IN_IMG");
9087 if (entry->d_un.d_val & VMS_LF_DBG_IN_IMG)
9088 printf (" DBG_IN_IMG");
9089 if (entry->d_un.d_val & VMS_LF_TBK_IN_DSF)
9090 printf (" TBK_IN_DSF");
9091 if (entry->d_un.d_val & VMS_LF_DBG_IN_DSF)
9092 printf (" DBG_IN_DSF");
9093 if (entry->d_un.d_val & VMS_LF_SIGNATURES)
9094 printf (" SIGNATURES");
9095 if (entry->d_un.d_val & VMS_LF_REL_SEG_OFF)
9096 printf (" REL_SEG_OFF");
9097 break;
9098
9099 default:
9100 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9101 break;
9102 }
9103 putchar ('\n');
9104 }
9105
9106 static int
9107 get_32bit_dynamic_section (FILE * file)
9108 {
9109 Elf32_External_Dyn * edyn;
9110 Elf32_External_Dyn * ext;
9111 Elf_Internal_Dyn * entry;
9112
9113 edyn = (Elf32_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
9114 dynamic_size, _("dynamic section"));
9115 if (!edyn)
9116 return 0;
9117
9118 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
9119 might not have the luxury of section headers. Look for the DT_NULL
9120 terminator to determine the number of entries. */
9121 for (ext = edyn, dynamic_nent = 0;
9122 (char *) (ext + 1) <= (char *) edyn + dynamic_size;
9123 ext++)
9124 {
9125 dynamic_nent++;
9126 if (BYTE_GET (ext->d_tag) == DT_NULL)
9127 break;
9128 }
9129
9130 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
9131 sizeof (* entry));
9132 if (dynamic_section == NULL)
9133 {
9134 error (_("Out of memory allocating space for %lu dynamic entries\n"),
9135 (unsigned long) dynamic_nent);
9136 free (edyn);
9137 return 0;
9138 }
9139
9140 for (ext = edyn, entry = dynamic_section;
9141 entry < dynamic_section + dynamic_nent;
9142 ext++, entry++)
9143 {
9144 entry->d_tag = BYTE_GET (ext->d_tag);
9145 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
9146 }
9147
9148 free (edyn);
9149
9150 return 1;
9151 }
9152
9153 static int
9154 get_64bit_dynamic_section (FILE * file)
9155 {
9156 Elf64_External_Dyn * edyn;
9157 Elf64_External_Dyn * ext;
9158 Elf_Internal_Dyn * entry;
9159
9160 /* Read in the data. */
9161 edyn = (Elf64_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
9162 dynamic_size, _("dynamic section"));
9163 if (!edyn)
9164 return 0;
9165
9166 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
9167 might not have the luxury of section headers. Look for the DT_NULL
9168 terminator to determine the number of entries. */
9169 for (ext = edyn, dynamic_nent = 0;
9170 /* PR 17533 file: 033-67080-0.004 - do not read past end of buffer. */
9171 (char *) (ext + 1) <= (char *) edyn + dynamic_size;
9172 ext++)
9173 {
9174 dynamic_nent++;
9175 if (BYTE_GET (ext->d_tag) == DT_NULL)
9176 break;
9177 }
9178
9179 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
9180 sizeof (* entry));
9181 if (dynamic_section == NULL)
9182 {
9183 error (_("Out of memory allocating space for %lu dynamic entries\n"),
9184 (unsigned long) dynamic_nent);
9185 free (edyn);
9186 return 0;
9187 }
9188
9189 /* Convert from external to internal formats. */
9190 for (ext = edyn, entry = dynamic_section;
9191 entry < dynamic_section + dynamic_nent;
9192 ext++, entry++)
9193 {
9194 entry->d_tag = BYTE_GET (ext->d_tag);
9195 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
9196 }
9197
9198 free (edyn);
9199
9200 return 1;
9201 }
9202
9203 static void
9204 print_dynamic_flags (bfd_vma flags)
9205 {
9206 int first = 1;
9207
9208 while (flags)
9209 {
9210 bfd_vma flag;
9211
9212 flag = flags & - flags;
9213 flags &= ~ flag;
9214
9215 if (first)
9216 first = 0;
9217 else
9218 putc (' ', stdout);
9219
9220 switch (flag)
9221 {
9222 case DF_ORIGIN: fputs ("ORIGIN", stdout); break;
9223 case DF_SYMBOLIC: fputs ("SYMBOLIC", stdout); break;
9224 case DF_TEXTREL: fputs ("TEXTREL", stdout); break;
9225 case DF_BIND_NOW: fputs ("BIND_NOW", stdout); break;
9226 case DF_STATIC_TLS: fputs ("STATIC_TLS", stdout); break;
9227 default: fputs (_("unknown"), stdout); break;
9228 }
9229 }
9230 puts ("");
9231 }
9232
9233 /* Parse and display the contents of the dynamic section. */
9234
9235 static int
9236 process_dynamic_section (FILE * file)
9237 {
9238 Elf_Internal_Dyn * entry;
9239
9240 if (dynamic_size == 0)
9241 {
9242 if (do_dynamic)
9243 printf (_("\nThere is no dynamic section in this file.\n"));
9244
9245 return 1;
9246 }
9247
9248 if (is_32bit_elf)
9249 {
9250 if (! get_32bit_dynamic_section (file))
9251 return 0;
9252 }
9253 else if (! get_64bit_dynamic_section (file))
9254 return 0;
9255
9256 /* Find the appropriate symbol table. */
9257 if (dynamic_symbols == NULL)
9258 {
9259 for (entry = dynamic_section;
9260 entry < dynamic_section + dynamic_nent;
9261 ++entry)
9262 {
9263 Elf_Internal_Shdr section;
9264
9265 if (entry->d_tag != DT_SYMTAB)
9266 continue;
9267
9268 dynamic_info[DT_SYMTAB] = entry->d_un.d_val;
9269
9270 /* Since we do not know how big the symbol table is,
9271 we default to reading in the entire file (!) and
9272 processing that. This is overkill, I know, but it
9273 should work. */
9274 section.sh_offset = offset_from_vma (file, entry->d_un.d_val, 0);
9275
9276 if (archive_file_offset != 0)
9277 section.sh_size = archive_file_size - section.sh_offset;
9278 else
9279 {
9280 if (fseek (file, 0, SEEK_END))
9281 error (_("Unable to seek to end of file!\n"));
9282
9283 section.sh_size = ftell (file) - section.sh_offset;
9284 }
9285
9286 if (is_32bit_elf)
9287 section.sh_entsize = sizeof (Elf32_External_Sym);
9288 else
9289 section.sh_entsize = sizeof (Elf64_External_Sym);
9290 section.sh_name = string_table_length;
9291
9292 dynamic_symbols = GET_ELF_SYMBOLS (file, &section, & num_dynamic_syms);
9293 if (num_dynamic_syms < 1)
9294 {
9295 error (_("Unable to determine the number of symbols to load\n"));
9296 continue;
9297 }
9298 }
9299 }
9300
9301 /* Similarly find a string table. */
9302 if (dynamic_strings == NULL)
9303 {
9304 for (entry = dynamic_section;
9305 entry < dynamic_section + dynamic_nent;
9306 ++entry)
9307 {
9308 unsigned long offset;
9309 long str_tab_len;
9310
9311 if (entry->d_tag != DT_STRTAB)
9312 continue;
9313
9314 dynamic_info[DT_STRTAB] = entry->d_un.d_val;
9315
9316 /* Since we do not know how big the string table is,
9317 we default to reading in the entire file (!) and
9318 processing that. This is overkill, I know, but it
9319 should work. */
9320
9321 offset = offset_from_vma (file, entry->d_un.d_val, 0);
9322
9323 if (archive_file_offset != 0)
9324 str_tab_len = archive_file_size - offset;
9325 else
9326 {
9327 if (fseek (file, 0, SEEK_END))
9328 error (_("Unable to seek to end of file\n"));
9329 str_tab_len = ftell (file) - offset;
9330 }
9331
9332 if (str_tab_len < 1)
9333 {
9334 error
9335 (_("Unable to determine the length of the dynamic string table\n"));
9336 continue;
9337 }
9338
9339 dynamic_strings = (char *) get_data (NULL, file, offset, 1,
9340 str_tab_len,
9341 _("dynamic string table"));
9342 dynamic_strings_length = dynamic_strings == NULL ? 0 : str_tab_len;
9343 break;
9344 }
9345 }
9346
9347 /* And find the syminfo section if available. */
9348 if (dynamic_syminfo == NULL)
9349 {
9350 unsigned long syminsz = 0;
9351
9352 for (entry = dynamic_section;
9353 entry < dynamic_section + dynamic_nent;
9354 ++entry)
9355 {
9356 if (entry->d_tag == DT_SYMINENT)
9357 {
9358 /* Note: these braces are necessary to avoid a syntax
9359 error from the SunOS4 C compiler. */
9360 /* PR binutils/17531: A corrupt file can trigger this test.
9361 So do not use an assert, instead generate an error message. */
9362 if (sizeof (Elf_External_Syminfo) != entry->d_un.d_val)
9363 error (_("Bad value (%d) for SYMINENT entry\n"),
9364 (int) entry->d_un.d_val);
9365 }
9366 else if (entry->d_tag == DT_SYMINSZ)
9367 syminsz = entry->d_un.d_val;
9368 else if (entry->d_tag == DT_SYMINFO)
9369 dynamic_syminfo_offset = offset_from_vma (file, entry->d_un.d_val,
9370 syminsz);
9371 }
9372
9373 if (dynamic_syminfo_offset != 0 && syminsz != 0)
9374 {
9375 Elf_External_Syminfo * extsyminfo;
9376 Elf_External_Syminfo * extsym;
9377 Elf_Internal_Syminfo * syminfo;
9378
9379 /* There is a syminfo section. Read the data. */
9380 extsyminfo = (Elf_External_Syminfo *)
9381 get_data (NULL, file, dynamic_syminfo_offset, 1, syminsz,
9382 _("symbol information"));
9383 if (!extsyminfo)
9384 return 0;
9385
9386 dynamic_syminfo = (Elf_Internal_Syminfo *) malloc (syminsz);
9387 if (dynamic_syminfo == NULL)
9388 {
9389 error (_("Out of memory allocating %lu byte for dynamic symbol info\n"),
9390 (unsigned long) syminsz);
9391 return 0;
9392 }
9393
9394 dynamic_syminfo_nent = syminsz / sizeof (Elf_External_Syminfo);
9395 for (syminfo = dynamic_syminfo, extsym = extsyminfo;
9396 syminfo < dynamic_syminfo + dynamic_syminfo_nent;
9397 ++syminfo, ++extsym)
9398 {
9399 syminfo->si_boundto = BYTE_GET (extsym->si_boundto);
9400 syminfo->si_flags = BYTE_GET (extsym->si_flags);
9401 }
9402
9403 free (extsyminfo);
9404 }
9405 }
9406
9407 if (do_dynamic && dynamic_addr)
9408 printf (_("\nDynamic section at offset 0x%lx contains %lu entries:\n"),
9409 dynamic_addr, (unsigned long) dynamic_nent);
9410 if (do_dynamic)
9411 printf (_(" Tag Type Name/Value\n"));
9412
9413 for (entry = dynamic_section;
9414 entry < dynamic_section + dynamic_nent;
9415 entry++)
9416 {
9417 if (do_dynamic)
9418 {
9419 const char * dtype;
9420
9421 putchar (' ');
9422 print_vma (entry->d_tag, FULL_HEX);
9423 dtype = get_dynamic_type (entry->d_tag);
9424 printf (" (%s)%*s", dtype,
9425 ((is_32bit_elf ? 27 : 19)
9426 - (int) strlen (dtype)),
9427 " ");
9428 }
9429
9430 switch (entry->d_tag)
9431 {
9432 case DT_FLAGS:
9433 if (do_dynamic)
9434 print_dynamic_flags (entry->d_un.d_val);
9435 break;
9436
9437 case DT_AUXILIARY:
9438 case DT_FILTER:
9439 case DT_CONFIG:
9440 case DT_DEPAUDIT:
9441 case DT_AUDIT:
9442 if (do_dynamic)
9443 {
9444 switch (entry->d_tag)
9445 {
9446 case DT_AUXILIARY:
9447 printf (_("Auxiliary library"));
9448 break;
9449
9450 case DT_FILTER:
9451 printf (_("Filter library"));
9452 break;
9453
9454 case DT_CONFIG:
9455 printf (_("Configuration file"));
9456 break;
9457
9458 case DT_DEPAUDIT:
9459 printf (_("Dependency audit library"));
9460 break;
9461
9462 case DT_AUDIT:
9463 printf (_("Audit library"));
9464 break;
9465 }
9466
9467 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
9468 printf (": [%s]\n", GET_DYNAMIC_NAME (entry->d_un.d_val));
9469 else
9470 {
9471 printf (": ");
9472 print_vma (entry->d_un.d_val, PREFIX_HEX);
9473 putchar ('\n');
9474 }
9475 }
9476 break;
9477
9478 case DT_FEATURE:
9479 if (do_dynamic)
9480 {
9481 printf (_("Flags:"));
9482
9483 if (entry->d_un.d_val == 0)
9484 printf (_(" None\n"));
9485 else
9486 {
9487 unsigned long int val = entry->d_un.d_val;
9488
9489 if (val & DTF_1_PARINIT)
9490 {
9491 printf (" PARINIT");
9492 val ^= DTF_1_PARINIT;
9493 }
9494 if (val & DTF_1_CONFEXP)
9495 {
9496 printf (" CONFEXP");
9497 val ^= DTF_1_CONFEXP;
9498 }
9499 if (val != 0)
9500 printf (" %lx", val);
9501 puts ("");
9502 }
9503 }
9504 break;
9505
9506 case DT_POSFLAG_1:
9507 if (do_dynamic)
9508 {
9509 printf (_("Flags:"));
9510
9511 if (entry->d_un.d_val == 0)
9512 printf (_(" None\n"));
9513 else
9514 {
9515 unsigned long int val = entry->d_un.d_val;
9516
9517 if (val & DF_P1_LAZYLOAD)
9518 {
9519 printf (" LAZYLOAD");
9520 val ^= DF_P1_LAZYLOAD;
9521 }
9522 if (val & DF_P1_GROUPPERM)
9523 {
9524 printf (" GROUPPERM");
9525 val ^= DF_P1_GROUPPERM;
9526 }
9527 if (val != 0)
9528 printf (" %lx", val);
9529 puts ("");
9530 }
9531 }
9532 break;
9533
9534 case DT_FLAGS_1:
9535 if (do_dynamic)
9536 {
9537 printf (_("Flags:"));
9538 if (entry->d_un.d_val == 0)
9539 printf (_(" None\n"));
9540 else
9541 {
9542 unsigned long int val = entry->d_un.d_val;
9543
9544 if (val & DF_1_NOW)
9545 {
9546 printf (" NOW");
9547 val ^= DF_1_NOW;
9548 }
9549 if (val & DF_1_GLOBAL)
9550 {
9551 printf (" GLOBAL");
9552 val ^= DF_1_GLOBAL;
9553 }
9554 if (val & DF_1_GROUP)
9555 {
9556 printf (" GROUP");
9557 val ^= DF_1_GROUP;
9558 }
9559 if (val & DF_1_NODELETE)
9560 {
9561 printf (" NODELETE");
9562 val ^= DF_1_NODELETE;
9563 }
9564 if (val & DF_1_LOADFLTR)
9565 {
9566 printf (" LOADFLTR");
9567 val ^= DF_1_LOADFLTR;
9568 }
9569 if (val & DF_1_INITFIRST)
9570 {
9571 printf (" INITFIRST");
9572 val ^= DF_1_INITFIRST;
9573 }
9574 if (val & DF_1_NOOPEN)
9575 {
9576 printf (" NOOPEN");
9577 val ^= DF_1_NOOPEN;
9578 }
9579 if (val & DF_1_ORIGIN)
9580 {
9581 printf (" ORIGIN");
9582 val ^= DF_1_ORIGIN;
9583 }
9584 if (val & DF_1_DIRECT)
9585 {
9586 printf (" DIRECT");
9587 val ^= DF_1_DIRECT;
9588 }
9589 if (val & DF_1_TRANS)
9590 {
9591 printf (" TRANS");
9592 val ^= DF_1_TRANS;
9593 }
9594 if (val & DF_1_INTERPOSE)
9595 {
9596 printf (" INTERPOSE");
9597 val ^= DF_1_INTERPOSE;
9598 }
9599 if (val & DF_1_NODEFLIB)
9600 {
9601 printf (" NODEFLIB");
9602 val ^= DF_1_NODEFLIB;
9603 }
9604 if (val & DF_1_NODUMP)
9605 {
9606 printf (" NODUMP");
9607 val ^= DF_1_NODUMP;
9608 }
9609 if (val & DF_1_CONFALT)
9610 {
9611 printf (" CONFALT");
9612 val ^= DF_1_CONFALT;
9613 }
9614 if (val & DF_1_ENDFILTEE)
9615 {
9616 printf (" ENDFILTEE");
9617 val ^= DF_1_ENDFILTEE;
9618 }
9619 if (val & DF_1_DISPRELDNE)
9620 {
9621 printf (" DISPRELDNE");
9622 val ^= DF_1_DISPRELDNE;
9623 }
9624 if (val & DF_1_DISPRELPND)
9625 {
9626 printf (" DISPRELPND");
9627 val ^= DF_1_DISPRELPND;
9628 }
9629 if (val & DF_1_NODIRECT)
9630 {
9631 printf (" NODIRECT");
9632 val ^= DF_1_NODIRECT;
9633 }
9634 if (val & DF_1_IGNMULDEF)
9635 {
9636 printf (" IGNMULDEF");
9637 val ^= DF_1_IGNMULDEF;
9638 }
9639 if (val & DF_1_NOKSYMS)
9640 {
9641 printf (" NOKSYMS");
9642 val ^= DF_1_NOKSYMS;
9643 }
9644 if (val & DF_1_NOHDR)
9645 {
9646 printf (" NOHDR");
9647 val ^= DF_1_NOHDR;
9648 }
9649 if (val & DF_1_EDITED)
9650 {
9651 printf (" EDITED");
9652 val ^= DF_1_EDITED;
9653 }
9654 if (val & DF_1_NORELOC)
9655 {
9656 printf (" NORELOC");
9657 val ^= DF_1_NORELOC;
9658 }
9659 if (val & DF_1_SYMINTPOSE)
9660 {
9661 printf (" SYMINTPOSE");
9662 val ^= DF_1_SYMINTPOSE;
9663 }
9664 if (val & DF_1_GLOBAUDIT)
9665 {
9666 printf (" GLOBAUDIT");
9667 val ^= DF_1_GLOBAUDIT;
9668 }
9669 if (val & DF_1_SINGLETON)
9670 {
9671 printf (" SINGLETON");
9672 val ^= DF_1_SINGLETON;
9673 }
9674 if (val & DF_1_STUB)
9675 {
9676 printf (" STUB");
9677 val ^= DF_1_STUB;
9678 }
9679 if (val & DF_1_PIE)
9680 {
9681 printf (" PIE");
9682 val ^= DF_1_PIE;
9683 }
9684 if (val != 0)
9685 printf (" %lx", val);
9686 puts ("");
9687 }
9688 }
9689 break;
9690
9691 case DT_PLTREL:
9692 dynamic_info[entry->d_tag] = entry->d_un.d_val;
9693 if (do_dynamic)
9694 puts (get_dynamic_type (entry->d_un.d_val));
9695 break;
9696
9697 case DT_NULL :
9698 case DT_NEEDED :
9699 case DT_PLTGOT :
9700 case DT_HASH :
9701 case DT_STRTAB :
9702 case DT_SYMTAB :
9703 case DT_RELA :
9704 case DT_INIT :
9705 case DT_FINI :
9706 case DT_SONAME :
9707 case DT_RPATH :
9708 case DT_SYMBOLIC:
9709 case DT_REL :
9710 case DT_DEBUG :
9711 case DT_TEXTREL :
9712 case DT_JMPREL :
9713 case DT_RUNPATH :
9714 dynamic_info[entry->d_tag] = entry->d_un.d_val;
9715
9716 if (do_dynamic)
9717 {
9718 char * name;
9719
9720 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
9721 name = GET_DYNAMIC_NAME (entry->d_un.d_val);
9722 else
9723 name = NULL;
9724
9725 if (name)
9726 {
9727 switch (entry->d_tag)
9728 {
9729 case DT_NEEDED:
9730 printf (_("Shared library: [%s]"), name);
9731
9732 if (streq (name, program_interpreter))
9733 printf (_(" program interpreter"));
9734 break;
9735
9736 case DT_SONAME:
9737 printf (_("Library soname: [%s]"), name);
9738 break;
9739
9740 case DT_RPATH:
9741 printf (_("Library rpath: [%s]"), name);
9742 break;
9743
9744 case DT_RUNPATH:
9745 printf (_("Library runpath: [%s]"), name);
9746 break;
9747
9748 default:
9749 print_vma (entry->d_un.d_val, PREFIX_HEX);
9750 break;
9751 }
9752 }
9753 else
9754 print_vma (entry->d_un.d_val, PREFIX_HEX);
9755
9756 putchar ('\n');
9757 }
9758 break;
9759
9760 case DT_PLTRELSZ:
9761 case DT_RELASZ :
9762 case DT_STRSZ :
9763 case DT_RELSZ :
9764 case DT_RELAENT :
9765 case DT_SYMENT :
9766 case DT_RELENT :
9767 dynamic_info[entry->d_tag] = entry->d_un.d_val;
9768 /* Fall through. */
9769 case DT_PLTPADSZ:
9770 case DT_MOVEENT :
9771 case DT_MOVESZ :
9772 case DT_INIT_ARRAYSZ:
9773 case DT_FINI_ARRAYSZ:
9774 case DT_GNU_CONFLICTSZ:
9775 case DT_GNU_LIBLISTSZ:
9776 if (do_dynamic)
9777 {
9778 print_vma (entry->d_un.d_val, UNSIGNED);
9779 printf (_(" (bytes)\n"));
9780 }
9781 break;
9782
9783 case DT_VERDEFNUM:
9784 case DT_VERNEEDNUM:
9785 case DT_RELACOUNT:
9786 case DT_RELCOUNT:
9787 if (do_dynamic)
9788 {
9789 print_vma (entry->d_un.d_val, UNSIGNED);
9790 putchar ('\n');
9791 }
9792 break;
9793
9794 case DT_SYMINSZ:
9795 case DT_SYMINENT:
9796 case DT_SYMINFO:
9797 case DT_USED:
9798 case DT_INIT_ARRAY:
9799 case DT_FINI_ARRAY:
9800 if (do_dynamic)
9801 {
9802 if (entry->d_tag == DT_USED
9803 && VALID_DYNAMIC_NAME (entry->d_un.d_val))
9804 {
9805 char * name = GET_DYNAMIC_NAME (entry->d_un.d_val);
9806
9807 if (*name)
9808 {
9809 printf (_("Not needed object: [%s]\n"), name);
9810 break;
9811 }
9812 }
9813
9814 print_vma (entry->d_un.d_val, PREFIX_HEX);
9815 putchar ('\n');
9816 }
9817 break;
9818
9819 case DT_BIND_NOW:
9820 /* The value of this entry is ignored. */
9821 if (do_dynamic)
9822 putchar ('\n');
9823 break;
9824
9825 case DT_GNU_PRELINKED:
9826 if (do_dynamic)
9827 {
9828 struct tm * tmp;
9829 time_t atime = entry->d_un.d_val;
9830
9831 tmp = gmtime (&atime);
9832 /* PR 17533 file: 041-1244816-0.004. */
9833 if (tmp == NULL)
9834 printf (_("<corrupt time val: %lx"),
9835 (unsigned long) atime);
9836 else
9837 printf ("%04u-%02u-%02uT%02u:%02u:%02u\n",
9838 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
9839 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
9840
9841 }
9842 break;
9843
9844 case DT_GNU_HASH:
9845 dynamic_info_DT_GNU_HASH = entry->d_un.d_val;
9846 if (do_dynamic)
9847 {
9848 print_vma (entry->d_un.d_val, PREFIX_HEX);
9849 putchar ('\n');
9850 }
9851 break;
9852
9853 default:
9854 if ((entry->d_tag >= DT_VERSYM) && (entry->d_tag <= DT_VERNEEDNUM))
9855 version_info[DT_VERSIONTAGIDX (entry->d_tag)] =
9856 entry->d_un.d_val;
9857
9858 if (do_dynamic)
9859 {
9860 switch (elf_header.e_machine)
9861 {
9862 case EM_MIPS:
9863 case EM_MIPS_RS3_LE:
9864 dynamic_section_mips_val (entry);
9865 break;
9866 case EM_PARISC:
9867 dynamic_section_parisc_val (entry);
9868 break;
9869 case EM_IA_64:
9870 dynamic_section_ia64_val (entry);
9871 break;
9872 default:
9873 print_vma (entry->d_un.d_val, PREFIX_HEX);
9874 putchar ('\n');
9875 }
9876 }
9877 break;
9878 }
9879 }
9880
9881 return 1;
9882 }
9883
9884 static char *
9885 get_ver_flags (unsigned int flags)
9886 {
9887 static char buff[32];
9888
9889 buff[0] = 0;
9890
9891 if (flags == 0)
9892 return _("none");
9893
9894 if (flags & VER_FLG_BASE)
9895 strcat (buff, "BASE ");
9896
9897 if (flags & VER_FLG_WEAK)
9898 {
9899 if (flags & VER_FLG_BASE)
9900 strcat (buff, "| ");
9901
9902 strcat (buff, "WEAK ");
9903 }
9904
9905 if (flags & VER_FLG_INFO)
9906 {
9907 if (flags & (VER_FLG_BASE|VER_FLG_WEAK))
9908 strcat (buff, "| ");
9909
9910 strcat (buff, "INFO ");
9911 }
9912
9913 if (flags & ~(VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
9914 strcat (buff, _("| <unknown>"));
9915
9916 return buff;
9917 }
9918
9919 /* Display the contents of the version sections. */
9920
9921 static int
9922 process_version_sections (FILE * file)
9923 {
9924 Elf_Internal_Shdr * section;
9925 unsigned i;
9926 int found = 0;
9927
9928 if (! do_version)
9929 return 1;
9930
9931 for (i = 0, section = section_headers;
9932 i < elf_header.e_shnum;
9933 i++, section++)
9934 {
9935 switch (section->sh_type)
9936 {
9937 case SHT_GNU_verdef:
9938 {
9939 Elf_External_Verdef * edefs;
9940 unsigned int idx;
9941 unsigned int cnt;
9942 char * endbuf;
9943
9944 found = 1;
9945
9946 printf (_("\nVersion definition section '%s' contains %u entries:\n"),
9947 printable_section_name (section),
9948 section->sh_info);
9949
9950 printf (_(" Addr: 0x"));
9951 printf_vma (section->sh_addr);
9952 printf (_(" Offset: %#08lx Link: %u (%s)"),
9953 (unsigned long) section->sh_offset, section->sh_link,
9954 printable_section_name_from_index (section->sh_link));
9955
9956 edefs = (Elf_External_Verdef *)
9957 get_data (NULL, file, section->sh_offset, 1,section->sh_size,
9958 _("version definition section"));
9959 if (!edefs)
9960 break;
9961 endbuf = (char *) edefs + section->sh_size;
9962
9963 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
9964 {
9965 char * vstart;
9966 Elf_External_Verdef * edef;
9967 Elf_Internal_Verdef ent;
9968 Elf_External_Verdaux * eaux;
9969 Elf_Internal_Verdaux aux;
9970 int j;
9971 int isum;
9972
9973 /* Check for very large indices. */
9974 if (idx > (size_t) (endbuf - (char *) edefs))
9975 break;
9976
9977 vstart = ((char *) edefs) + idx;
9978 if (vstart + sizeof (*edef) > endbuf)
9979 break;
9980
9981 edef = (Elf_External_Verdef *) vstart;
9982
9983 ent.vd_version = BYTE_GET (edef->vd_version);
9984 ent.vd_flags = BYTE_GET (edef->vd_flags);
9985 ent.vd_ndx = BYTE_GET (edef->vd_ndx);
9986 ent.vd_cnt = BYTE_GET (edef->vd_cnt);
9987 ent.vd_hash = BYTE_GET (edef->vd_hash);
9988 ent.vd_aux = BYTE_GET (edef->vd_aux);
9989 ent.vd_next = BYTE_GET (edef->vd_next);
9990
9991 printf (_(" %#06x: Rev: %d Flags: %s"),
9992 idx, ent.vd_version, get_ver_flags (ent.vd_flags));
9993
9994 printf (_(" Index: %d Cnt: %d "),
9995 ent.vd_ndx, ent.vd_cnt);
9996
9997 /* Check for overflow. */
9998 if (ent.vd_aux > (size_t) (endbuf - vstart))
9999 break;
10000
10001 vstart += ent.vd_aux;
10002
10003 eaux = (Elf_External_Verdaux *) vstart;
10004
10005 aux.vda_name = BYTE_GET (eaux->vda_name);
10006 aux.vda_next = BYTE_GET (eaux->vda_next);
10007
10008 if (VALID_DYNAMIC_NAME (aux.vda_name))
10009 printf (_("Name: %s\n"), GET_DYNAMIC_NAME (aux.vda_name));
10010 else
10011 printf (_("Name index: %ld\n"), aux.vda_name);
10012
10013 isum = idx + ent.vd_aux;
10014
10015 for (j = 1; j < ent.vd_cnt; j++)
10016 {
10017 /* Check for overflow. */
10018 if (aux.vda_next > (size_t) (endbuf - vstart))
10019 break;
10020
10021 isum += aux.vda_next;
10022 vstart += aux.vda_next;
10023
10024 eaux = (Elf_External_Verdaux *) vstart;
10025 if (vstart + sizeof (*eaux) > endbuf)
10026 break;
10027
10028 aux.vda_name = BYTE_GET (eaux->vda_name);
10029 aux.vda_next = BYTE_GET (eaux->vda_next);
10030
10031 if (VALID_DYNAMIC_NAME (aux.vda_name))
10032 printf (_(" %#06x: Parent %d: %s\n"),
10033 isum, j, GET_DYNAMIC_NAME (aux.vda_name));
10034 else
10035 printf (_(" %#06x: Parent %d, name index: %ld\n"),
10036 isum, j, aux.vda_name);
10037 }
10038
10039 if (j < ent.vd_cnt)
10040 printf (_(" Version def aux past end of section\n"));
10041
10042 /* PR 17531: file: id:000001,src:000172+005151,op:splice,rep:2. */
10043 if (idx + ent.vd_next <= idx)
10044 break;
10045
10046 idx += ent.vd_next;
10047 }
10048
10049 if (cnt < section->sh_info)
10050 printf (_(" Version definition past end of section\n"));
10051
10052 free (edefs);
10053 }
10054 break;
10055
10056 case SHT_GNU_verneed:
10057 {
10058 Elf_External_Verneed * eneed;
10059 unsigned int idx;
10060 unsigned int cnt;
10061 char * endbuf;
10062
10063 found = 1;
10064
10065 printf (_("\nVersion needs section '%s' contains %u entries:\n"),
10066 printable_section_name (section), section->sh_info);
10067
10068 printf (_(" Addr: 0x"));
10069 printf_vma (section->sh_addr);
10070 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10071 (unsigned long) section->sh_offset, section->sh_link,
10072 printable_section_name_from_index (section->sh_link));
10073
10074 eneed = (Elf_External_Verneed *) get_data (NULL, file,
10075 section->sh_offset, 1,
10076 section->sh_size,
10077 _("Version Needs section"));
10078 if (!eneed)
10079 break;
10080 endbuf = (char *) eneed + section->sh_size;
10081
10082 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
10083 {
10084 Elf_External_Verneed * entry;
10085 Elf_Internal_Verneed ent;
10086 int j;
10087 int isum;
10088 char * vstart;
10089
10090 if (idx > (size_t) (endbuf - (char *) eneed))
10091 break;
10092
10093 vstart = ((char *) eneed) + idx;
10094 if (vstart + sizeof (*entry) > endbuf)
10095 break;
10096
10097 entry = (Elf_External_Verneed *) vstart;
10098
10099 ent.vn_version = BYTE_GET (entry->vn_version);
10100 ent.vn_cnt = BYTE_GET (entry->vn_cnt);
10101 ent.vn_file = BYTE_GET (entry->vn_file);
10102 ent.vn_aux = BYTE_GET (entry->vn_aux);
10103 ent.vn_next = BYTE_GET (entry->vn_next);
10104
10105 printf (_(" %#06x: Version: %d"), idx, ent.vn_version);
10106
10107 if (VALID_DYNAMIC_NAME (ent.vn_file))
10108 printf (_(" File: %s"), GET_DYNAMIC_NAME (ent.vn_file));
10109 else
10110 printf (_(" File: %lx"), ent.vn_file);
10111
10112 printf (_(" Cnt: %d\n"), ent.vn_cnt);
10113
10114 /* Check for overflow. */
10115 if (ent.vn_aux > (size_t) (endbuf - vstart))
10116 break;
10117 vstart += ent.vn_aux;
10118
10119 for (j = 0, isum = idx + ent.vn_aux; j < ent.vn_cnt; ++j)
10120 {
10121 Elf_External_Vernaux * eaux;
10122 Elf_Internal_Vernaux aux;
10123
10124 if (vstart + sizeof (*eaux) > endbuf)
10125 break;
10126 eaux = (Elf_External_Vernaux *) vstart;
10127
10128 aux.vna_hash = BYTE_GET (eaux->vna_hash);
10129 aux.vna_flags = BYTE_GET (eaux->vna_flags);
10130 aux.vna_other = BYTE_GET (eaux->vna_other);
10131 aux.vna_name = BYTE_GET (eaux->vna_name);
10132 aux.vna_next = BYTE_GET (eaux->vna_next);
10133
10134 if (VALID_DYNAMIC_NAME (aux.vna_name))
10135 printf (_(" %#06x: Name: %s"),
10136 isum, GET_DYNAMIC_NAME (aux.vna_name));
10137 else
10138 printf (_(" %#06x: Name index: %lx"),
10139 isum, aux.vna_name);
10140
10141 printf (_(" Flags: %s Version: %d\n"),
10142 get_ver_flags (aux.vna_flags), aux.vna_other);
10143
10144 /* Check for overflow. */
10145 if (aux.vna_next > (size_t) (endbuf - vstart)
10146 || (aux.vna_next == 0 && j < ent.vn_cnt - 1))
10147 {
10148 warn (_("Invalid vna_next field of %lx\n"),
10149 aux.vna_next);
10150 j = ent.vn_cnt;
10151 break;
10152 }
10153 isum += aux.vna_next;
10154 vstart += aux.vna_next;
10155 }
10156
10157 if (j < ent.vn_cnt)
10158 warn (_("Missing Version Needs auxillary information\n"));
10159
10160 if (ent.vn_next == 0 && cnt < section->sh_info - 1)
10161 {
10162 warn (_("Corrupt Version Needs structure - offset to next structure is zero with entries still left to be processed\n"));
10163 cnt = section->sh_info;
10164 break;
10165 }
10166 idx += ent.vn_next;
10167 }
10168
10169 if (cnt < section->sh_info)
10170 warn (_("Missing Version Needs information\n"));
10171
10172 free (eneed);
10173 }
10174 break;
10175
10176 case SHT_GNU_versym:
10177 {
10178 Elf_Internal_Shdr * link_section;
10179 size_t total;
10180 unsigned int cnt;
10181 unsigned char * edata;
10182 unsigned short * data;
10183 char * strtab;
10184 Elf_Internal_Sym * symbols;
10185 Elf_Internal_Shdr * string_sec;
10186 unsigned long num_syms;
10187 long off;
10188
10189 if (section->sh_link >= elf_header.e_shnum)
10190 break;
10191
10192 link_section = section_headers + section->sh_link;
10193 total = section->sh_size / sizeof (Elf_External_Versym);
10194
10195 if (link_section->sh_link >= elf_header.e_shnum)
10196 break;
10197
10198 found = 1;
10199
10200 symbols = GET_ELF_SYMBOLS (file, link_section, & num_syms);
10201 if (symbols == NULL)
10202 break;
10203
10204 string_sec = section_headers + link_section->sh_link;
10205
10206 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
10207 string_sec->sh_size,
10208 _("version string table"));
10209 if (!strtab)
10210 {
10211 free (symbols);
10212 break;
10213 }
10214
10215 printf (_("\nVersion symbols section '%s' contains %lu entries:\n"),
10216 printable_section_name (section), (unsigned long) total);
10217
10218 printf (_(" Addr: "));
10219 printf_vma (section->sh_addr);
10220 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10221 (unsigned long) section->sh_offset, section->sh_link,
10222 printable_section_name (link_section));
10223
10224 off = offset_from_vma (file,
10225 version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
10226 total * sizeof (short));
10227 edata = (unsigned char *) get_data (NULL, file, off, total,
10228 sizeof (short),
10229 _("version symbol data"));
10230 if (!edata)
10231 {
10232 free (strtab);
10233 free (symbols);
10234 break;
10235 }
10236
10237 data = (short unsigned int *) cmalloc (total, sizeof (short));
10238
10239 for (cnt = total; cnt --;)
10240 data[cnt] = byte_get (edata + cnt * sizeof (short),
10241 sizeof (short));
10242
10243 free (edata);
10244
10245 for (cnt = 0; cnt < total; cnt += 4)
10246 {
10247 int j, nn;
10248 char *name;
10249 char *invalid = _("*invalid*");
10250
10251 printf (" %03x:", cnt);
10252
10253 for (j = 0; (j < 4) && (cnt + j) < total; ++j)
10254 switch (data[cnt + j])
10255 {
10256 case 0:
10257 fputs (_(" 0 (*local*) "), stdout);
10258 break;
10259
10260 case 1:
10261 fputs (_(" 1 (*global*) "), stdout);
10262 break;
10263
10264 default:
10265 nn = printf ("%4x%c", data[cnt + j] & VERSYM_VERSION,
10266 data[cnt + j] & VERSYM_HIDDEN ? 'h' : ' ');
10267
10268 /* If this index value is greater than the size of the symbols
10269 array, break to avoid an out-of-bounds read. */
10270 if ((unsigned long)(cnt + j) >= num_syms)
10271 {
10272 warn (_("invalid index into symbol array\n"));
10273 break;
10274 }
10275
10276 name = NULL;
10277 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
10278 {
10279 Elf_Internal_Verneed ivn;
10280 unsigned long offset;
10281
10282 offset = offset_from_vma
10283 (file, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
10284 sizeof (Elf_External_Verneed));
10285
10286 do
10287 {
10288 Elf_Internal_Vernaux ivna;
10289 Elf_External_Verneed evn;
10290 Elf_External_Vernaux evna;
10291 unsigned long a_off;
10292
10293 if (get_data (&evn, file, offset, sizeof (evn), 1,
10294 _("version need")) == NULL)
10295 break;
10296
10297 ivn.vn_aux = BYTE_GET (evn.vn_aux);
10298 ivn.vn_next = BYTE_GET (evn.vn_next);
10299
10300 a_off = offset + ivn.vn_aux;
10301
10302 do
10303 {
10304 if (get_data (&evna, file, a_off, sizeof (evna),
10305 1, _("version need aux (2)")) == NULL)
10306 {
10307 ivna.vna_next = 0;
10308 ivna.vna_other = 0;
10309 }
10310 else
10311 {
10312 ivna.vna_next = BYTE_GET (evna.vna_next);
10313 ivna.vna_other = BYTE_GET (evna.vna_other);
10314 }
10315
10316 a_off += ivna.vna_next;
10317 }
10318 while (ivna.vna_other != data[cnt + j]
10319 && ivna.vna_next != 0);
10320
10321 if (ivna.vna_other == data[cnt + j])
10322 {
10323 ivna.vna_name = BYTE_GET (evna.vna_name);
10324
10325 if (ivna.vna_name >= string_sec->sh_size)
10326 name = invalid;
10327 else
10328 name = strtab + ivna.vna_name;
10329 break;
10330 }
10331
10332 offset += ivn.vn_next;
10333 }
10334 while (ivn.vn_next);
10335 }
10336
10337 if (data[cnt + j] != 0x8001
10338 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
10339 {
10340 Elf_Internal_Verdef ivd;
10341 Elf_External_Verdef evd;
10342 unsigned long offset;
10343
10344 offset = offset_from_vma
10345 (file, version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
10346 sizeof evd);
10347
10348 do
10349 {
10350 if (get_data (&evd, file, offset, sizeof (evd), 1,
10351 _("version def")) == NULL)
10352 {
10353 ivd.vd_next = 0;
10354 /* PR 17531: file: 046-1082287-0.004. */
10355 ivd.vd_ndx = (data[cnt + j] & VERSYM_VERSION) + 1;
10356 break;
10357 }
10358 else
10359 {
10360 ivd.vd_next = BYTE_GET (evd.vd_next);
10361 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
10362 }
10363
10364 offset += ivd.vd_next;
10365 }
10366 while (ivd.vd_ndx != (data[cnt + j] & VERSYM_VERSION)
10367 && ivd.vd_next != 0);
10368
10369 if (ivd.vd_ndx == (data[cnt + j] & VERSYM_VERSION))
10370 {
10371 Elf_External_Verdaux evda;
10372 Elf_Internal_Verdaux ivda;
10373
10374 ivd.vd_aux = BYTE_GET (evd.vd_aux);
10375
10376 if (get_data (&evda, file,
10377 offset - ivd.vd_next + ivd.vd_aux,
10378 sizeof (evda), 1,
10379 _("version def aux")) == NULL)
10380 break;
10381
10382 ivda.vda_name = BYTE_GET (evda.vda_name);
10383
10384 if (ivda.vda_name >= string_sec->sh_size)
10385 name = invalid;
10386 else if (name != NULL && name != invalid)
10387 name = _("*both*");
10388 else
10389 name = strtab + ivda.vda_name;
10390 }
10391 }
10392 if (name != NULL)
10393 nn += printf ("(%s%-*s",
10394 name,
10395 12 - (int) strlen (name),
10396 ")");
10397
10398 if (nn < 18)
10399 printf ("%*c", 18 - nn, ' ');
10400 }
10401
10402 putchar ('\n');
10403 }
10404
10405 free (data);
10406 free (strtab);
10407 free (symbols);
10408 }
10409 break;
10410
10411 default:
10412 break;
10413 }
10414 }
10415
10416 if (! found)
10417 printf (_("\nNo version information found in this file.\n"));
10418
10419 return 1;
10420 }
10421
10422 static const char *
10423 get_symbol_binding (unsigned int binding)
10424 {
10425 static char buff[32];
10426
10427 switch (binding)
10428 {
10429 case STB_LOCAL: return "LOCAL";
10430 case STB_GLOBAL: return "GLOBAL";
10431 case STB_WEAK: return "WEAK";
10432 default:
10433 if (binding >= STB_LOPROC && binding <= STB_HIPROC)
10434 snprintf (buff, sizeof (buff), _("<processor specific>: %d"),
10435 binding);
10436 else if (binding >= STB_LOOS && binding <= STB_HIOS)
10437 {
10438 if (binding == STB_GNU_UNIQUE
10439 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
10440 /* GNU is still using the default value 0. */
10441 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
10442 return "UNIQUE";
10443 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), binding);
10444 }
10445 else
10446 snprintf (buff, sizeof (buff), _("<unknown>: %d"), binding);
10447 return buff;
10448 }
10449 }
10450
10451 static const char *
10452 get_symbol_type (unsigned int type)
10453 {
10454 static char buff[32];
10455
10456 switch (type)
10457 {
10458 case STT_NOTYPE: return "NOTYPE";
10459 case STT_OBJECT: return "OBJECT";
10460 case STT_FUNC: return "FUNC";
10461 case STT_SECTION: return "SECTION";
10462 case STT_FILE: return "FILE";
10463 case STT_COMMON: return "COMMON";
10464 case STT_TLS: return "TLS";
10465 case STT_RELC: return "RELC";
10466 case STT_SRELC: return "SRELC";
10467 default:
10468 if (type >= STT_LOPROC && type <= STT_HIPROC)
10469 {
10470 if (elf_header.e_machine == EM_ARM && type == STT_ARM_TFUNC)
10471 return "THUMB_FUNC";
10472
10473 if (elf_header.e_machine == EM_SPARCV9 && type == STT_REGISTER)
10474 return "REGISTER";
10475
10476 if (elf_header.e_machine == EM_PARISC && type == STT_PARISC_MILLI)
10477 return "PARISC_MILLI";
10478
10479 snprintf (buff, sizeof (buff), _("<processor specific>: %d"), type);
10480 }
10481 else if (type >= STT_LOOS && type <= STT_HIOS)
10482 {
10483 if (elf_header.e_machine == EM_PARISC)
10484 {
10485 if (type == STT_HP_OPAQUE)
10486 return "HP_OPAQUE";
10487 if (type == STT_HP_STUB)
10488 return "HP_STUB";
10489 }
10490
10491 if (type == STT_GNU_IFUNC
10492 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
10493 || elf_header.e_ident[EI_OSABI] == ELFOSABI_FREEBSD
10494 /* GNU is still using the default value 0. */
10495 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
10496 return "IFUNC";
10497
10498 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), type);
10499 }
10500 else
10501 snprintf (buff, sizeof (buff), _("<unknown>: %d"), type);
10502 return buff;
10503 }
10504 }
10505
10506 static const char *
10507 get_symbol_visibility (unsigned int visibility)
10508 {
10509 switch (visibility)
10510 {
10511 case STV_DEFAULT: return "DEFAULT";
10512 case STV_INTERNAL: return "INTERNAL";
10513 case STV_HIDDEN: return "HIDDEN";
10514 case STV_PROTECTED: return "PROTECTED";
10515 default:
10516 error (_("Unrecognized visibility value: %u"), visibility);
10517 return _("<unknown>");
10518 }
10519 }
10520
10521 static const char *
10522 get_solaris_symbol_visibility (unsigned int visibility)
10523 {
10524 switch (visibility)
10525 {
10526 case 4: return "EXPORTED";
10527 case 5: return "SINGLETON";
10528 case 6: return "ELIMINATE";
10529 default: return get_symbol_visibility (visibility);
10530 }
10531 }
10532
10533 static const char *
10534 get_mips_symbol_other (unsigned int other)
10535 {
10536 switch (other)
10537 {
10538 case STO_OPTIONAL:
10539 return "OPTIONAL";
10540 case STO_MIPS_PLT:
10541 return "MIPS PLT";
10542 case STO_MIPS_PIC:
10543 return "MIPS PIC";
10544 case STO_MICROMIPS:
10545 return "MICROMIPS";
10546 case STO_MICROMIPS | STO_MIPS_PIC:
10547 return "MICROMIPS, MIPS PIC";
10548 case STO_MIPS16:
10549 return "MIPS16";
10550 default:
10551 return NULL;
10552 }
10553 }
10554
10555 static const char *
10556 get_ia64_symbol_other (unsigned int other)
10557 {
10558 if (is_ia64_vms ())
10559 {
10560 static char res[32];
10561
10562 res[0] = 0;
10563
10564 /* Function types is for images and .STB files only. */
10565 switch (elf_header.e_type)
10566 {
10567 case ET_DYN:
10568 case ET_EXEC:
10569 switch (VMS_ST_FUNC_TYPE (other))
10570 {
10571 case VMS_SFT_CODE_ADDR:
10572 strcat (res, " CA");
10573 break;
10574 case VMS_SFT_SYMV_IDX:
10575 strcat (res, " VEC");
10576 break;
10577 case VMS_SFT_FD:
10578 strcat (res, " FD");
10579 break;
10580 case VMS_SFT_RESERVE:
10581 strcat (res, " RSV");
10582 break;
10583 default:
10584 warn (_("Unrecognized IA64 VMS ST Function type: %d\n"),
10585 VMS_ST_FUNC_TYPE (other));
10586 strcat (res, " <unknown>");
10587 break;
10588 }
10589 break;
10590 default:
10591 break;
10592 }
10593 switch (VMS_ST_LINKAGE (other))
10594 {
10595 case VMS_STL_IGNORE:
10596 strcat (res, " IGN");
10597 break;
10598 case VMS_STL_RESERVE:
10599 strcat (res, " RSV");
10600 break;
10601 case VMS_STL_STD:
10602 strcat (res, " STD");
10603 break;
10604 case VMS_STL_LNK:
10605 strcat (res, " LNK");
10606 break;
10607 default:
10608 warn (_("Unrecognized IA64 VMS ST Linkage: %d\n"),
10609 VMS_ST_LINKAGE (other));
10610 strcat (res, " <unknown>");
10611 break;
10612 }
10613
10614 if (res[0] != 0)
10615 return res + 1;
10616 else
10617 return res;
10618 }
10619 return NULL;
10620 }
10621
10622 static const char *
10623 get_ppc64_symbol_other (unsigned int other)
10624 {
10625 if (PPC64_LOCAL_ENTRY_OFFSET (other) != 0)
10626 {
10627 static char buf[32];
10628 snprintf (buf, sizeof buf, _("<localentry>: %d"),
10629 PPC64_LOCAL_ENTRY_OFFSET (other));
10630 return buf;
10631 }
10632 return NULL;
10633 }
10634
10635 static const char *
10636 get_symbol_other (unsigned int other)
10637 {
10638 const char * result = NULL;
10639 static char buff [32];
10640
10641 if (other == 0)
10642 return "";
10643
10644 switch (elf_header.e_machine)
10645 {
10646 case EM_MIPS:
10647 result = get_mips_symbol_other (other);
10648 break;
10649 case EM_IA_64:
10650 result = get_ia64_symbol_other (other);
10651 break;
10652 case EM_PPC64:
10653 result = get_ppc64_symbol_other (other);
10654 break;
10655 default:
10656 result = NULL;
10657 break;
10658 }
10659
10660 if (result)
10661 return result;
10662
10663 snprintf (buff, sizeof buff, _("<other>: %x"), other);
10664 return buff;
10665 }
10666
10667 static const char *
10668 get_symbol_index_type (unsigned int type)
10669 {
10670 static char buff[32];
10671
10672 switch (type)
10673 {
10674 case SHN_UNDEF: return "UND";
10675 case SHN_ABS: return "ABS";
10676 case SHN_COMMON: return "COM";
10677 default:
10678 if (type == SHN_IA_64_ANSI_COMMON
10679 && elf_header.e_machine == EM_IA_64
10680 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX)
10681 return "ANSI_COM";
10682 else if ((elf_header.e_machine == EM_X86_64
10683 || elf_header.e_machine == EM_L1OM
10684 || elf_header.e_machine == EM_K1OM)
10685 && type == SHN_X86_64_LCOMMON)
10686 return "LARGE_COM";
10687 else if ((type == SHN_MIPS_SCOMMON
10688 && elf_header.e_machine == EM_MIPS)
10689 || (type == SHN_TIC6X_SCOMMON
10690 && elf_header.e_machine == EM_TI_C6000))
10691 return "SCOM";
10692 else if (type == SHN_MIPS_SUNDEFINED
10693 && elf_header.e_machine == EM_MIPS)
10694 return "SUND";
10695 else if (type >= SHN_LOPROC && type <= SHN_HIPROC)
10696 sprintf (buff, "PRC[0x%04x]", type & 0xffff);
10697 else if (type >= SHN_LOOS && type <= SHN_HIOS)
10698 sprintf (buff, "OS [0x%04x]", type & 0xffff);
10699 else if (type >= SHN_LORESERVE)
10700 sprintf (buff, "RSV[0x%04x]", type & 0xffff);
10701 else if (type >= elf_header.e_shnum)
10702 sprintf (buff, _("bad section index[%3d]"), type);
10703 else
10704 sprintf (buff, "%3d", type);
10705 break;
10706 }
10707
10708 return buff;
10709 }
10710
10711 static bfd_vma *
10712 get_dynamic_data (FILE * file, bfd_size_type number, unsigned int ent_size)
10713 {
10714 unsigned char * e_data;
10715 bfd_vma * i_data;
10716
10717 /* If the size_t type is smaller than the bfd_size_type, eg because
10718 you are building a 32-bit tool on a 64-bit host, then make sure
10719 that when (number) is cast to (size_t) no information is lost. */
10720 if (sizeof (size_t) < sizeof (bfd_size_type)
10721 && (bfd_size_type) ((size_t) number) != number)
10722 {
10723 error (_("Size truncation prevents reading %" BFD_VMA_FMT "u"
10724 " elements of size %u\n"),
10725 number, ent_size);
10726 return NULL;
10727 }
10728
10729 /* Be kind to memory chekers (eg valgrind, address sanitizer) by not
10730 attempting to allocate memory when the read is bound to fail. */
10731 if (ent_size * number > current_file_size)
10732 {
10733 error (_("Invalid number of dynamic entries: %" BFD_VMA_FMT "u\n"),
10734 number);
10735 return NULL;
10736 }
10737
10738 e_data = (unsigned char *) cmalloc ((size_t) number, ent_size);
10739 if (e_data == NULL)
10740 {
10741 error (_("Out of memory reading %" BFD_VMA_FMT "u dynamic entries\n"),
10742 number);
10743 return NULL;
10744 }
10745
10746 if (fread (e_data, ent_size, (size_t) number, file) != number)
10747 {
10748 error (_("Unable to read in %" BFD_VMA_FMT "u bytes of dynamic data\n"),
10749 number * ent_size);
10750 free (e_data);
10751 return NULL;
10752 }
10753
10754 i_data = (bfd_vma *) cmalloc ((size_t) number, sizeof (*i_data));
10755 if (i_data == NULL)
10756 {
10757 error (_("Out of memory allocating space for %" BFD_VMA_FMT "u"
10758 " dynamic entries\n"),
10759 number);
10760 free (e_data);
10761 return NULL;
10762 }
10763
10764 while (number--)
10765 i_data[number] = byte_get (e_data + number * ent_size, ent_size);
10766
10767 free (e_data);
10768
10769 return i_data;
10770 }
10771
10772 static void
10773 print_dynamic_symbol (bfd_vma si, unsigned long hn)
10774 {
10775 Elf_Internal_Sym * psym;
10776 int n;
10777
10778 n = print_vma (si, DEC_5);
10779 if (n < 5)
10780 fputs (&" "[n], stdout);
10781 printf (" %3lu: ", hn);
10782
10783 if (dynamic_symbols == NULL || si >= num_dynamic_syms)
10784 {
10785 printf (_("<No info available for dynamic symbol number %lu>\n"),
10786 (unsigned long) si);
10787 return;
10788 }
10789
10790 psym = dynamic_symbols + si;
10791 print_vma (psym->st_value, LONG_HEX);
10792 putchar (' ');
10793 print_vma (psym->st_size, DEC_5);
10794
10795 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
10796 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
10797
10798 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
10799 printf (" %-7s", get_solaris_symbol_visibility (psym->st_other));
10800 else
10801 {
10802 unsigned int vis = ELF_ST_VISIBILITY (psym->st_other);
10803
10804 printf (" %-7s", get_symbol_visibility (vis));
10805 /* Check to see if any other bits in the st_other field are set.
10806 Note - displaying this information disrupts the layout of the
10807 table being generated, but for the moment this case is very
10808 rare. */
10809 if (psym->st_other ^ vis)
10810 printf (" [%s] ", get_symbol_other (psym->st_other ^ vis));
10811 }
10812
10813 printf (" %3.3s ", get_symbol_index_type (psym->st_shndx));
10814 if (VALID_DYNAMIC_NAME (psym->st_name))
10815 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
10816 else
10817 printf (_(" <corrupt: %14ld>"), psym->st_name);
10818 putchar ('\n');
10819 }
10820
10821 static const char *
10822 get_symbol_version_string (FILE * file,
10823 bfd_boolean is_dynsym,
10824 const char * strtab,
10825 unsigned long int strtab_size,
10826 unsigned int si,
10827 Elf_Internal_Sym * psym,
10828 enum versioned_symbol_info * sym_info,
10829 unsigned short * vna_other)
10830 {
10831 unsigned char data[2];
10832 unsigned short vers_data;
10833 unsigned long offset;
10834
10835 if (!is_dynsym
10836 || version_info[DT_VERSIONTAGIDX (DT_VERSYM)] == 0)
10837 return NULL;
10838
10839 offset = offset_from_vma (file, version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
10840 sizeof data + si * sizeof (vers_data));
10841
10842 if (get_data (&data, file, offset + si * sizeof (vers_data),
10843 sizeof (data), 1, _("version data")) == NULL)
10844 return NULL;
10845
10846 vers_data = byte_get (data, 2);
10847
10848 if ((vers_data & VERSYM_HIDDEN) == 0 && vers_data <= 1)
10849 return NULL;
10850
10851 /* Usually we'd only see verdef for defined symbols, and verneed for
10852 undefined symbols. However, symbols defined by the linker in
10853 .dynbss for variables copied from a shared library in order to
10854 avoid text relocations are defined yet have verneed. We could
10855 use a heuristic to detect the special case, for example, check
10856 for verneed first on symbols defined in SHT_NOBITS sections, but
10857 it is simpler and more reliable to just look for both verdef and
10858 verneed. .dynbss might not be mapped to a SHT_NOBITS section. */
10859
10860 if (psym->st_shndx != SHN_UNDEF
10861 && vers_data != 0x8001
10862 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
10863 {
10864 Elf_Internal_Verdef ivd;
10865 Elf_Internal_Verdaux ivda;
10866 Elf_External_Verdaux evda;
10867 unsigned long off;
10868
10869 off = offset_from_vma (file,
10870 version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
10871 sizeof (Elf_External_Verdef));
10872
10873 do
10874 {
10875 Elf_External_Verdef evd;
10876
10877 if (get_data (&evd, file, off, sizeof (evd), 1,
10878 _("version def")) == NULL)
10879 {
10880 ivd.vd_ndx = 0;
10881 ivd.vd_aux = 0;
10882 ivd.vd_next = 0;
10883 }
10884 else
10885 {
10886 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
10887 ivd.vd_aux = BYTE_GET (evd.vd_aux);
10888 ivd.vd_next = BYTE_GET (evd.vd_next);
10889 }
10890
10891 off += ivd.vd_next;
10892 }
10893 while (ivd.vd_ndx != (vers_data & VERSYM_VERSION) && ivd.vd_next != 0);
10894
10895 if (ivd.vd_ndx == (vers_data & VERSYM_VERSION))
10896 {
10897 off -= ivd.vd_next;
10898 off += ivd.vd_aux;
10899
10900 if (get_data (&evda, file, off, sizeof (evda), 1,
10901 _("version def aux")) != NULL)
10902 {
10903 ivda.vda_name = BYTE_GET (evda.vda_name);
10904
10905 if (psym->st_name != ivda.vda_name)
10906 {
10907 *sym_info = ((vers_data & VERSYM_HIDDEN) != 0
10908 ? symbol_hidden : symbol_public);
10909 return (ivda.vda_name < strtab_size
10910 ? strtab + ivda.vda_name : _("<corrupt>"));
10911 }
10912 }
10913 }
10914 }
10915
10916 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
10917 {
10918 Elf_External_Verneed evn;
10919 Elf_Internal_Verneed ivn;
10920 Elf_Internal_Vernaux ivna;
10921
10922 offset = offset_from_vma (file,
10923 version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
10924 sizeof evn);
10925 do
10926 {
10927 unsigned long vna_off;
10928
10929 if (get_data (&evn, file, offset, sizeof (evn), 1,
10930 _("version need")) == NULL)
10931 {
10932 ivna.vna_next = 0;
10933 ivna.vna_other = 0;
10934 ivna.vna_name = 0;
10935 break;
10936 }
10937
10938 ivn.vn_aux = BYTE_GET (evn.vn_aux);
10939 ivn.vn_next = BYTE_GET (evn.vn_next);
10940
10941 vna_off = offset + ivn.vn_aux;
10942
10943 do
10944 {
10945 Elf_External_Vernaux evna;
10946
10947 if (get_data (&evna, file, vna_off, sizeof (evna), 1,
10948 _("version need aux (3)")) == NULL)
10949 {
10950 ivna.vna_next = 0;
10951 ivna.vna_other = 0;
10952 ivna.vna_name = 0;
10953 }
10954 else
10955 {
10956 ivna.vna_other = BYTE_GET (evna.vna_other);
10957 ivna.vna_next = BYTE_GET (evna.vna_next);
10958 ivna.vna_name = BYTE_GET (evna.vna_name);
10959 }
10960
10961 vna_off += ivna.vna_next;
10962 }
10963 while (ivna.vna_other != vers_data && ivna.vna_next != 0);
10964
10965 if (ivna.vna_other == vers_data)
10966 break;
10967
10968 offset += ivn.vn_next;
10969 }
10970 while (ivn.vn_next != 0);
10971
10972 if (ivna.vna_other == vers_data)
10973 {
10974 *sym_info = symbol_undefined;
10975 *vna_other = ivna.vna_other;
10976 return (ivna.vna_name < strtab_size
10977 ? strtab + ivna.vna_name : _("<corrupt>"));
10978 }
10979 }
10980 return NULL;
10981 }
10982
10983 /* Dump the symbol table. */
10984 static int
10985 process_symbol_table (FILE * file)
10986 {
10987 Elf_Internal_Shdr * section;
10988 bfd_size_type nbuckets = 0;
10989 bfd_size_type nchains = 0;
10990 bfd_vma * buckets = NULL;
10991 bfd_vma * chains = NULL;
10992 bfd_vma ngnubuckets = 0;
10993 bfd_vma * gnubuckets = NULL;
10994 bfd_vma * gnuchains = NULL;
10995 bfd_vma gnusymidx = 0;
10996 bfd_size_type ngnuchains = 0;
10997
10998 if (!do_syms && !do_dyn_syms && !do_histogram)
10999 return 1;
11000
11001 if (dynamic_info[DT_HASH]
11002 && (do_histogram
11003 || (do_using_dynamic
11004 && !do_dyn_syms
11005 && dynamic_strings != NULL)))
11006 {
11007 unsigned char nb[8];
11008 unsigned char nc[8];
11009 unsigned int hash_ent_size = 4;
11010
11011 if ((elf_header.e_machine == EM_ALPHA
11012 || elf_header.e_machine == EM_S390
11013 || elf_header.e_machine == EM_S390_OLD)
11014 && elf_header.e_ident[EI_CLASS] == ELFCLASS64)
11015 hash_ent_size = 8;
11016
11017 if (fseek (file,
11018 (archive_file_offset
11019 + offset_from_vma (file, dynamic_info[DT_HASH],
11020 sizeof nb + sizeof nc)),
11021 SEEK_SET))
11022 {
11023 error (_("Unable to seek to start of dynamic information\n"));
11024 goto no_hash;
11025 }
11026
11027 if (fread (nb, hash_ent_size, 1, file) != 1)
11028 {
11029 error (_("Failed to read in number of buckets\n"));
11030 goto no_hash;
11031 }
11032
11033 if (fread (nc, hash_ent_size, 1, file) != 1)
11034 {
11035 error (_("Failed to read in number of chains\n"));
11036 goto no_hash;
11037 }
11038
11039 nbuckets = byte_get (nb, hash_ent_size);
11040 nchains = byte_get (nc, hash_ent_size);
11041
11042 buckets = get_dynamic_data (file, nbuckets, hash_ent_size);
11043 chains = get_dynamic_data (file, nchains, hash_ent_size);
11044
11045 no_hash:
11046 if (buckets == NULL || chains == NULL)
11047 {
11048 if (do_using_dynamic)
11049 return 0;
11050 free (buckets);
11051 free (chains);
11052 buckets = NULL;
11053 chains = NULL;
11054 nbuckets = 0;
11055 nchains = 0;
11056 }
11057 }
11058
11059 if (dynamic_info_DT_GNU_HASH
11060 && (do_histogram
11061 || (do_using_dynamic
11062 && !do_dyn_syms
11063 && dynamic_strings != NULL)))
11064 {
11065 unsigned char nb[16];
11066 bfd_vma i, maxchain = 0xffffffff, bitmaskwords;
11067 bfd_vma buckets_vma;
11068
11069 if (fseek (file,
11070 (archive_file_offset
11071 + offset_from_vma (file, dynamic_info_DT_GNU_HASH,
11072 sizeof nb)),
11073 SEEK_SET))
11074 {
11075 error (_("Unable to seek to start of dynamic information\n"));
11076 goto no_gnu_hash;
11077 }
11078
11079 if (fread (nb, 16, 1, file) != 1)
11080 {
11081 error (_("Failed to read in number of buckets\n"));
11082 goto no_gnu_hash;
11083 }
11084
11085 ngnubuckets = byte_get (nb, 4);
11086 gnusymidx = byte_get (nb + 4, 4);
11087 bitmaskwords = byte_get (nb + 8, 4);
11088 buckets_vma = dynamic_info_DT_GNU_HASH + 16;
11089 if (is_32bit_elf)
11090 buckets_vma += bitmaskwords * 4;
11091 else
11092 buckets_vma += bitmaskwords * 8;
11093
11094 if (fseek (file,
11095 (archive_file_offset
11096 + offset_from_vma (file, buckets_vma, 4)),
11097 SEEK_SET))
11098 {
11099 error (_("Unable to seek to start of dynamic information\n"));
11100 goto no_gnu_hash;
11101 }
11102
11103 gnubuckets = get_dynamic_data (file, ngnubuckets, 4);
11104
11105 if (gnubuckets == NULL)
11106 goto no_gnu_hash;
11107
11108 for (i = 0; i < ngnubuckets; i++)
11109 if (gnubuckets[i] != 0)
11110 {
11111 if (gnubuckets[i] < gnusymidx)
11112 return 0;
11113
11114 if (maxchain == 0xffffffff || gnubuckets[i] > maxchain)
11115 maxchain = gnubuckets[i];
11116 }
11117
11118 if (maxchain == 0xffffffff)
11119 goto no_gnu_hash;
11120
11121 maxchain -= gnusymidx;
11122
11123 if (fseek (file,
11124 (archive_file_offset
11125 + offset_from_vma (file, buckets_vma
11126 + 4 * (ngnubuckets + maxchain), 4)),
11127 SEEK_SET))
11128 {
11129 error (_("Unable to seek to start of dynamic information\n"));
11130 goto no_gnu_hash;
11131 }
11132
11133 do
11134 {
11135 if (fread (nb, 4, 1, file) != 1)
11136 {
11137 error (_("Failed to determine last chain length\n"));
11138 goto no_gnu_hash;
11139 }
11140
11141 if (maxchain + 1 == 0)
11142 goto no_gnu_hash;
11143
11144 ++maxchain;
11145 }
11146 while ((byte_get (nb, 4) & 1) == 0);
11147
11148 if (fseek (file,
11149 (archive_file_offset
11150 + offset_from_vma (file, buckets_vma + 4 * ngnubuckets, 4)),
11151 SEEK_SET))
11152 {
11153 error (_("Unable to seek to start of dynamic information\n"));
11154 goto no_gnu_hash;
11155 }
11156
11157 gnuchains = get_dynamic_data (file, maxchain, 4);
11158 ngnuchains = maxchain;
11159
11160 no_gnu_hash:
11161 if (gnuchains == NULL)
11162 {
11163 free (gnubuckets);
11164 gnubuckets = NULL;
11165 ngnubuckets = 0;
11166 if (do_using_dynamic)
11167 return 0;
11168 }
11169 }
11170
11171 if ((dynamic_info[DT_HASH] || dynamic_info_DT_GNU_HASH)
11172 && do_syms
11173 && do_using_dynamic
11174 && dynamic_strings != NULL
11175 && dynamic_symbols != NULL)
11176 {
11177 unsigned long hn;
11178
11179 if (dynamic_info[DT_HASH])
11180 {
11181 bfd_vma si;
11182
11183 printf (_("\nSymbol table for image:\n"));
11184 if (is_32bit_elf)
11185 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11186 else
11187 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11188
11189 for (hn = 0; hn < nbuckets; hn++)
11190 {
11191 if (! buckets[hn])
11192 continue;
11193
11194 for (si = buckets[hn]; si < nchains && si > 0; si = chains[si])
11195 print_dynamic_symbol (si, hn);
11196 }
11197 }
11198
11199 if (dynamic_info_DT_GNU_HASH)
11200 {
11201 printf (_("\nSymbol table of `.gnu.hash' for image:\n"));
11202 if (is_32bit_elf)
11203 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11204 else
11205 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11206
11207 for (hn = 0; hn < ngnubuckets; ++hn)
11208 if (gnubuckets[hn] != 0)
11209 {
11210 bfd_vma si = gnubuckets[hn];
11211 bfd_vma off = si - gnusymidx;
11212
11213 do
11214 {
11215 print_dynamic_symbol (si, hn);
11216 si++;
11217 }
11218 while (off < ngnuchains && (gnuchains[off++] & 1) == 0);
11219 }
11220 }
11221 }
11222 else if ((do_dyn_syms || (do_syms && !do_using_dynamic))
11223 && section_headers != NULL)
11224 {
11225 unsigned int i;
11226
11227 for (i = 0, section = section_headers;
11228 i < elf_header.e_shnum;
11229 i++, section++)
11230 {
11231 unsigned int si;
11232 char * strtab = NULL;
11233 unsigned long int strtab_size = 0;
11234 Elf_Internal_Sym * symtab;
11235 Elf_Internal_Sym * psym;
11236 unsigned long num_syms;
11237
11238 if ((section->sh_type != SHT_SYMTAB
11239 && section->sh_type != SHT_DYNSYM)
11240 || (!do_syms
11241 && section->sh_type == SHT_SYMTAB))
11242 continue;
11243
11244 if (section->sh_entsize == 0)
11245 {
11246 printf (_("\nSymbol table '%s' has a sh_entsize of zero!\n"),
11247 printable_section_name (section));
11248 continue;
11249 }
11250
11251 printf (_("\nSymbol table '%s' contains %lu entries:\n"),
11252 printable_section_name (section),
11253 (unsigned long) (section->sh_size / section->sh_entsize));
11254
11255 if (is_32bit_elf)
11256 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
11257 else
11258 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
11259
11260 symtab = GET_ELF_SYMBOLS (file, section, & num_syms);
11261 if (symtab == NULL)
11262 continue;
11263
11264 if (section->sh_link == elf_header.e_shstrndx)
11265 {
11266 strtab = string_table;
11267 strtab_size = string_table_length;
11268 }
11269 else if (section->sh_link < elf_header.e_shnum)
11270 {
11271 Elf_Internal_Shdr * string_sec;
11272
11273 string_sec = section_headers + section->sh_link;
11274
11275 strtab = (char *) get_data (NULL, file, string_sec->sh_offset,
11276 1, string_sec->sh_size,
11277 _("string table"));
11278 strtab_size = strtab != NULL ? string_sec->sh_size : 0;
11279 }
11280
11281 for (si = 0, psym = symtab; si < num_syms; si++, psym++)
11282 {
11283 const char *version_string;
11284 enum versioned_symbol_info sym_info;
11285 unsigned short vna_other;
11286
11287 printf ("%6d: ", si);
11288 print_vma (psym->st_value, LONG_HEX);
11289 putchar (' ');
11290 print_vma (psym->st_size, DEC_5);
11291 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
11292 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
11293 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
11294 printf (" %-7s", get_solaris_symbol_visibility (psym->st_other));
11295 else
11296 {
11297 unsigned int vis = ELF_ST_VISIBILITY (psym->st_other);
11298
11299 printf (" %-7s", get_symbol_visibility (vis));
11300 /* Check to see if any other bits in the st_other field are set.
11301 Note - displaying this information disrupts the layout of the
11302 table being generated, but for the moment this case is very rare. */
11303 if (psym->st_other ^ vis)
11304 printf (" [%s] ", get_symbol_other (psym->st_other ^ vis));
11305 }
11306 printf (" %4s ", get_symbol_index_type (psym->st_shndx));
11307 print_symbol (25, psym->st_name < strtab_size
11308 ? strtab + psym->st_name : _("<corrupt>"));
11309
11310 version_string
11311 = get_symbol_version_string (file,
11312 section->sh_type == SHT_DYNSYM,
11313 strtab, strtab_size, si,
11314 psym, &sym_info, &vna_other);
11315 if (version_string)
11316 {
11317 if (sym_info == symbol_undefined)
11318 printf ("@%s (%d)", version_string, vna_other);
11319 else
11320 printf (sym_info == symbol_hidden ? "@%s" : "@@%s",
11321 version_string);
11322 }
11323
11324 putchar ('\n');
11325
11326 if (ELF_ST_BIND (psym->st_info) == STB_LOCAL
11327 && si >= section->sh_info
11328 /* Irix 5 and 6 MIPS binaries are known to ignore this requirement. */
11329 && elf_header.e_machine != EM_MIPS
11330 /* Solaris binaries have been found to violate this requirement as
11331 well. Not sure if this is a bug or an ABI requirement. */
11332 && elf_header.e_ident[EI_OSABI] != ELFOSABI_SOLARIS)
11333 warn (_("local symbol %u found at index >= %s's sh_info value of %u\n"),
11334 si, printable_section_name (section), section->sh_info);
11335 }
11336
11337 free (symtab);
11338 if (strtab != string_table)
11339 free (strtab);
11340 }
11341 }
11342 else if (do_syms)
11343 printf
11344 (_("\nDynamic symbol information is not available for displaying symbols.\n"));
11345
11346 if (do_histogram && buckets != NULL)
11347 {
11348 unsigned long * lengths;
11349 unsigned long * counts;
11350 unsigned long hn;
11351 bfd_vma si;
11352 unsigned long maxlength = 0;
11353 unsigned long nzero_counts = 0;
11354 unsigned long nsyms = 0;
11355 unsigned long chained;
11356
11357 printf (_("\nHistogram for bucket list length (total of %lu buckets):\n"),
11358 (unsigned long) nbuckets);
11359
11360 lengths = (unsigned long *) calloc (nbuckets, sizeof (*lengths));
11361 if (lengths == NULL)
11362 {
11363 error (_("Out of memory allocating space for histogram buckets\n"));
11364 return 0;
11365 }
11366
11367 printf (_(" Length Number %% of total Coverage\n"));
11368 for (hn = 0; hn < nbuckets; ++hn)
11369 {
11370 for (si = buckets[hn], chained = 0;
11371 si > 0 && si < nchains && si < nbuckets && chained <= nchains;
11372 si = chains[si], ++chained)
11373 {
11374 ++nsyms;
11375 if (maxlength < ++lengths[hn])
11376 ++maxlength;
11377 }
11378
11379 /* PR binutils/17531: A corrupt binary could contain broken
11380 histogram data. Do not go into an infinite loop trying
11381 to process it. */
11382 if (chained > nchains)
11383 {
11384 error (_("histogram chain is corrupt\n"));
11385 break;
11386 }
11387 }
11388
11389 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
11390 if (counts == NULL)
11391 {
11392 free (lengths);
11393 error (_("Out of memory allocating space for histogram counts\n"));
11394 return 0;
11395 }
11396
11397 for (hn = 0; hn < nbuckets; ++hn)
11398 ++counts[lengths[hn]];
11399
11400 if (nbuckets > 0)
11401 {
11402 unsigned long i;
11403 printf (" 0 %-10lu (%5.1f%%)\n",
11404 counts[0], (counts[0] * 100.0) / nbuckets);
11405 for (i = 1; i <= maxlength; ++i)
11406 {
11407 nzero_counts += counts[i] * i;
11408 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
11409 i, counts[i], (counts[i] * 100.0) / nbuckets,
11410 (nzero_counts * 100.0) / nsyms);
11411 }
11412 }
11413
11414 free (counts);
11415 free (lengths);
11416 }
11417
11418 if (buckets != NULL)
11419 {
11420 free (buckets);
11421 free (chains);
11422 }
11423
11424 if (do_histogram && gnubuckets != NULL)
11425 {
11426 unsigned long * lengths;
11427 unsigned long * counts;
11428 unsigned long hn;
11429 unsigned long maxlength = 0;
11430 unsigned long nzero_counts = 0;
11431 unsigned long nsyms = 0;
11432
11433 printf (_("\nHistogram for `.gnu.hash' bucket list length (total of %lu buckets):\n"),
11434 (unsigned long) ngnubuckets);
11435
11436 lengths = (unsigned long *) calloc (ngnubuckets, sizeof (*lengths));
11437 if (lengths == NULL)
11438 {
11439 error (_("Out of memory allocating space for gnu histogram buckets\n"));
11440 return 0;
11441 }
11442
11443 printf (_(" Length Number %% of total Coverage\n"));
11444
11445 for (hn = 0; hn < ngnubuckets; ++hn)
11446 if (gnubuckets[hn] != 0)
11447 {
11448 bfd_vma off, length = 1;
11449
11450 for (off = gnubuckets[hn] - gnusymidx;
11451 /* PR 17531 file: 010-77222-0.004. */
11452 off < ngnuchains && (gnuchains[off] & 1) == 0;
11453 ++off)
11454 ++length;
11455 lengths[hn] = length;
11456 if (length > maxlength)
11457 maxlength = length;
11458 nsyms += length;
11459 }
11460
11461 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
11462 if (counts == NULL)
11463 {
11464 free (lengths);
11465 error (_("Out of memory allocating space for gnu histogram counts\n"));
11466 return 0;
11467 }
11468
11469 for (hn = 0; hn < ngnubuckets; ++hn)
11470 ++counts[lengths[hn]];
11471
11472 if (ngnubuckets > 0)
11473 {
11474 unsigned long j;
11475 printf (" 0 %-10lu (%5.1f%%)\n",
11476 counts[0], (counts[0] * 100.0) / ngnubuckets);
11477 for (j = 1; j <= maxlength; ++j)
11478 {
11479 nzero_counts += counts[j] * j;
11480 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
11481 j, counts[j], (counts[j] * 100.0) / ngnubuckets,
11482 (nzero_counts * 100.0) / nsyms);
11483 }
11484 }
11485
11486 free (counts);
11487 free (lengths);
11488 free (gnubuckets);
11489 free (gnuchains);
11490 }
11491
11492 return 1;
11493 }
11494
11495 static int
11496 process_syminfo (FILE * file ATTRIBUTE_UNUSED)
11497 {
11498 unsigned int i;
11499
11500 if (dynamic_syminfo == NULL
11501 || !do_dynamic)
11502 /* No syminfo, this is ok. */
11503 return 1;
11504
11505 /* There better should be a dynamic symbol section. */
11506 if (dynamic_symbols == NULL || dynamic_strings == NULL)
11507 return 0;
11508
11509 if (dynamic_addr)
11510 printf (_("\nDynamic info segment at offset 0x%lx contains %d entries:\n"),
11511 dynamic_syminfo_offset, dynamic_syminfo_nent);
11512
11513 printf (_(" Num: Name BoundTo Flags\n"));
11514 for (i = 0; i < dynamic_syminfo_nent; ++i)
11515 {
11516 unsigned short int flags = dynamic_syminfo[i].si_flags;
11517
11518 printf ("%4d: ", i);
11519 if (i >= num_dynamic_syms)
11520 printf (_("<corrupt index>"));
11521 else if (VALID_DYNAMIC_NAME (dynamic_symbols[i].st_name))
11522 print_symbol (30, GET_DYNAMIC_NAME (dynamic_symbols[i].st_name));
11523 else
11524 printf (_("<corrupt: %19ld>"), dynamic_symbols[i].st_name);
11525 putchar (' ');
11526
11527 switch (dynamic_syminfo[i].si_boundto)
11528 {
11529 case SYMINFO_BT_SELF:
11530 fputs ("SELF ", stdout);
11531 break;
11532 case SYMINFO_BT_PARENT:
11533 fputs ("PARENT ", stdout);
11534 break;
11535 default:
11536 if (dynamic_syminfo[i].si_boundto > 0
11537 && dynamic_syminfo[i].si_boundto < dynamic_nent
11538 && VALID_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val))
11539 {
11540 print_symbol (10, GET_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val));
11541 putchar (' ' );
11542 }
11543 else
11544 printf ("%-10d ", dynamic_syminfo[i].si_boundto);
11545 break;
11546 }
11547
11548 if (flags & SYMINFO_FLG_DIRECT)
11549 printf (" DIRECT");
11550 if (flags & SYMINFO_FLG_PASSTHRU)
11551 printf (" PASSTHRU");
11552 if (flags & SYMINFO_FLG_COPY)
11553 printf (" COPY");
11554 if (flags & SYMINFO_FLG_LAZYLOAD)
11555 printf (" LAZYLOAD");
11556
11557 puts ("");
11558 }
11559
11560 return 1;
11561 }
11562
11563 /* Check to see if the given reloc needs to be handled in a target specific
11564 manner. If so then process the reloc and return TRUE otherwise return
11565 FALSE. */
11566
11567 static bfd_boolean
11568 target_specific_reloc_handling (Elf_Internal_Rela * reloc,
11569 unsigned char * start,
11570 Elf_Internal_Sym * symtab)
11571 {
11572 unsigned int reloc_type = get_reloc_type (reloc->r_info);
11573
11574 switch (elf_header.e_machine)
11575 {
11576 case EM_MSP430:
11577 case EM_MSP430_OLD:
11578 {
11579 static Elf_Internal_Sym * saved_sym = NULL;
11580
11581 switch (reloc_type)
11582 {
11583 case 10: /* R_MSP430_SYM_DIFF */
11584 if (uses_msp430x_relocs ())
11585 break;
11586 /* Fall through. */
11587 case 21: /* R_MSP430X_SYM_DIFF */
11588 saved_sym = symtab + get_reloc_symindex (reloc->r_info);
11589 return TRUE;
11590
11591 case 1: /* R_MSP430_32 or R_MSP430_ABS32 */
11592 case 3: /* R_MSP430_16 or R_MSP430_ABS8 */
11593 goto handle_sym_diff;
11594
11595 case 5: /* R_MSP430_16_BYTE */
11596 case 9: /* R_MSP430_8 */
11597 if (uses_msp430x_relocs ())
11598 break;
11599 goto handle_sym_diff;
11600
11601 case 2: /* R_MSP430_ABS16 */
11602 case 15: /* R_MSP430X_ABS16 */
11603 if (! uses_msp430x_relocs ())
11604 break;
11605 goto handle_sym_diff;
11606
11607 handle_sym_diff:
11608 if (saved_sym != NULL)
11609 {
11610 bfd_vma value;
11611
11612 value = reloc->r_addend
11613 + (symtab[get_reloc_symindex (reloc->r_info)].st_value
11614 - saved_sym->st_value);
11615
11616 byte_put (start + reloc->r_offset, value, reloc_type == 1 ? 4 : 2);
11617
11618 saved_sym = NULL;
11619 return TRUE;
11620 }
11621 break;
11622
11623 default:
11624 if (saved_sym != NULL)
11625 error (_("Unhandled MSP430 reloc type found after SYM_DIFF reloc\n"));
11626 break;
11627 }
11628 break;
11629 }
11630
11631 case EM_MN10300:
11632 case EM_CYGNUS_MN10300:
11633 {
11634 static Elf_Internal_Sym * saved_sym = NULL;
11635
11636 switch (reloc_type)
11637 {
11638 case 34: /* R_MN10300_ALIGN */
11639 return TRUE;
11640 case 33: /* R_MN10300_SYM_DIFF */
11641 saved_sym = symtab + get_reloc_symindex (reloc->r_info);
11642 return TRUE;
11643 case 1: /* R_MN10300_32 */
11644 case 2: /* R_MN10300_16 */
11645 if (saved_sym != NULL)
11646 {
11647 bfd_vma value;
11648
11649 value = reloc->r_addend
11650 + (symtab[get_reloc_symindex (reloc->r_info)].st_value
11651 - saved_sym->st_value);
11652
11653 byte_put (start + reloc->r_offset, value, reloc_type == 1 ? 4 : 2);
11654
11655 saved_sym = NULL;
11656 return TRUE;
11657 }
11658 break;
11659 default:
11660 if (saved_sym != NULL)
11661 error (_("Unhandled MN10300 reloc type found after SYM_DIFF reloc\n"));
11662 break;
11663 }
11664 break;
11665 }
11666
11667 case EM_RL78:
11668 {
11669 static bfd_vma saved_sym1 = 0;
11670 static bfd_vma saved_sym2 = 0;
11671 static bfd_vma value;
11672
11673 switch (reloc_type)
11674 {
11675 case 0x80: /* R_RL78_SYM. */
11676 saved_sym1 = saved_sym2;
11677 saved_sym2 = symtab[get_reloc_symindex (reloc->r_info)].st_value;
11678 saved_sym2 += reloc->r_addend;
11679 return TRUE;
11680
11681 case 0x83: /* R_RL78_OPsub. */
11682 value = saved_sym1 - saved_sym2;
11683 saved_sym2 = saved_sym1 = 0;
11684 return TRUE;
11685 break;
11686
11687 case 0x41: /* R_RL78_ABS32. */
11688 byte_put (start + reloc->r_offset, value, 4);
11689 value = 0;
11690 return TRUE;
11691
11692 case 0x43: /* R_RL78_ABS16. */
11693 byte_put (start + reloc->r_offset, value, 2);
11694 value = 0;
11695 return TRUE;
11696
11697 default:
11698 break;
11699 }
11700 break;
11701 }
11702 }
11703
11704 return FALSE;
11705 }
11706
11707 /* Returns TRUE iff RELOC_TYPE is a 32-bit absolute RELA relocation used in
11708 DWARF debug sections. This is a target specific test. Note - we do not
11709 go through the whole including-target-headers-multiple-times route, (as
11710 we have already done with <elf/h8.h>) because this would become very
11711 messy and even then this function would have to contain target specific
11712 information (the names of the relocs instead of their numeric values).
11713 FIXME: This is not the correct way to solve this problem. The proper way
11714 is to have target specific reloc sizing and typing functions created by
11715 the reloc-macros.h header, in the same way that it already creates the
11716 reloc naming functions. */
11717
11718 static bfd_boolean
11719 is_32bit_abs_reloc (unsigned int reloc_type)
11720 {
11721 /* Please keep this table alpha-sorted for ease of visual lookup. */
11722 switch (elf_header.e_machine)
11723 {
11724 case EM_386:
11725 case EM_IAMCU:
11726 return reloc_type == 1; /* R_386_32. */
11727 case EM_68K:
11728 return reloc_type == 1; /* R_68K_32. */
11729 case EM_860:
11730 return reloc_type == 1; /* R_860_32. */
11731 case EM_960:
11732 return reloc_type == 2; /* R_960_32. */
11733 case EM_AARCH64:
11734 return reloc_type == 258; /* R_AARCH64_ABS32 */
11735 case EM_ADAPTEVA_EPIPHANY:
11736 return reloc_type == 3;
11737 case EM_ALPHA:
11738 return reloc_type == 1; /* R_ALPHA_REFLONG. */
11739 case EM_ARC:
11740 return reloc_type == 1; /* R_ARC_32. */
11741 case EM_ARC_COMPACT:
11742 case EM_ARC_COMPACT2:
11743 return reloc_type == 4; /* R_ARC_32. */
11744 case EM_ARM:
11745 return reloc_type == 2; /* R_ARM_ABS32 */
11746 case EM_AVR_OLD:
11747 case EM_AVR:
11748 return reloc_type == 1;
11749 case EM_BLACKFIN:
11750 return reloc_type == 0x12; /* R_byte4_data. */
11751 case EM_CRIS:
11752 return reloc_type == 3; /* R_CRIS_32. */
11753 case EM_CR16:
11754 return reloc_type == 3; /* R_CR16_NUM32. */
11755 case EM_CRX:
11756 return reloc_type == 15; /* R_CRX_NUM32. */
11757 case EM_CYGNUS_FRV:
11758 return reloc_type == 1;
11759 case EM_CYGNUS_D10V:
11760 case EM_D10V:
11761 return reloc_type == 6; /* R_D10V_32. */
11762 case EM_CYGNUS_D30V:
11763 case EM_D30V:
11764 return reloc_type == 12; /* R_D30V_32_NORMAL. */
11765 case EM_DLX:
11766 return reloc_type == 3; /* R_DLX_RELOC_32. */
11767 case EM_CYGNUS_FR30:
11768 case EM_FR30:
11769 return reloc_type == 3; /* R_FR30_32. */
11770 case EM_FT32:
11771 return reloc_type == 1; /* R_FT32_32. */
11772 case EM_H8S:
11773 case EM_H8_300:
11774 case EM_H8_300H:
11775 return reloc_type == 1; /* R_H8_DIR32. */
11776 case EM_IA_64:
11777 return reloc_type == 0x65 /* R_IA64_SECREL32LSB. */
11778 || reloc_type == 0x25; /* R_IA64_DIR32LSB. */
11779 case EM_IP2K_OLD:
11780 case EM_IP2K:
11781 return reloc_type == 2; /* R_IP2K_32. */
11782 case EM_IQ2000:
11783 return reloc_type == 2; /* R_IQ2000_32. */
11784 case EM_LATTICEMICO32:
11785 return reloc_type == 3; /* R_LM32_32. */
11786 case EM_M32C_OLD:
11787 case EM_M32C:
11788 return reloc_type == 3; /* R_M32C_32. */
11789 case EM_M32R:
11790 return reloc_type == 34; /* R_M32R_32_RELA. */
11791 case EM_68HC11:
11792 case EM_68HC12:
11793 return reloc_type == 6; /* R_M68HC11_32. */
11794 case EM_MCORE:
11795 return reloc_type == 1; /* R_MCORE_ADDR32. */
11796 case EM_CYGNUS_MEP:
11797 return reloc_type == 4; /* R_MEP_32. */
11798 case EM_METAG:
11799 return reloc_type == 2; /* R_METAG_ADDR32. */
11800 case EM_MICROBLAZE:
11801 return reloc_type == 1; /* R_MICROBLAZE_32. */
11802 case EM_MIPS:
11803 return reloc_type == 2; /* R_MIPS_32. */
11804 case EM_MMIX:
11805 return reloc_type == 4; /* R_MMIX_32. */
11806 case EM_CYGNUS_MN10200:
11807 case EM_MN10200:
11808 return reloc_type == 1; /* R_MN10200_32. */
11809 case EM_CYGNUS_MN10300:
11810 case EM_MN10300:
11811 return reloc_type == 1; /* R_MN10300_32. */
11812 case EM_MOXIE:
11813 return reloc_type == 1; /* R_MOXIE_32. */
11814 case EM_MSP430_OLD:
11815 case EM_MSP430:
11816 return reloc_type == 1; /* R_MSP430_32 or R_MSP320_ABS32. */
11817 case EM_MT:
11818 return reloc_type == 2; /* R_MT_32. */
11819 case EM_NDS32:
11820 return reloc_type == 20; /* R_NDS32_RELA. */
11821 case EM_ALTERA_NIOS2:
11822 return reloc_type == 12; /* R_NIOS2_BFD_RELOC_32. */
11823 case EM_NIOS32:
11824 return reloc_type == 1; /* R_NIOS_32. */
11825 case EM_OR1K:
11826 return reloc_type == 1; /* R_OR1K_32. */
11827 case EM_PARISC:
11828 return (reloc_type == 1 /* R_PARISC_DIR32. */
11829 || reloc_type == 41); /* R_PARISC_SECREL32. */
11830 case EM_PJ:
11831 case EM_PJ_OLD:
11832 return reloc_type == 1; /* R_PJ_DATA_DIR32. */
11833 case EM_PPC64:
11834 return reloc_type == 1; /* R_PPC64_ADDR32. */
11835 case EM_PPC:
11836 return reloc_type == 1; /* R_PPC_ADDR32. */
11837 case EM_RISCV:
11838 return reloc_type == 1; /* R_RISCV_32. */
11839 case EM_RL78:
11840 return reloc_type == 1; /* R_RL78_DIR32. */
11841 case EM_RX:
11842 return reloc_type == 1; /* R_RX_DIR32. */
11843 case EM_S370:
11844 return reloc_type == 1; /* R_I370_ADDR31. */
11845 case EM_S390_OLD:
11846 case EM_S390:
11847 return reloc_type == 4; /* R_S390_32. */
11848 case EM_SCORE:
11849 return reloc_type == 8; /* R_SCORE_ABS32. */
11850 case EM_SH:
11851 return reloc_type == 1; /* R_SH_DIR32. */
11852 case EM_SPARC32PLUS:
11853 case EM_SPARCV9:
11854 case EM_SPARC:
11855 return reloc_type == 3 /* R_SPARC_32. */
11856 || reloc_type == 23; /* R_SPARC_UA32. */
11857 case EM_SPU:
11858 return reloc_type == 6; /* R_SPU_ADDR32 */
11859 case EM_TI_C6000:
11860 return reloc_type == 1; /* R_C6000_ABS32. */
11861 case EM_TILEGX:
11862 return reloc_type == 2; /* R_TILEGX_32. */
11863 case EM_TILEPRO:
11864 return reloc_type == 1; /* R_TILEPRO_32. */
11865 case EM_CYGNUS_V850:
11866 case EM_V850:
11867 return reloc_type == 6; /* R_V850_ABS32. */
11868 case EM_V800:
11869 return reloc_type == 0x33; /* R_V810_WORD. */
11870 case EM_VAX:
11871 return reloc_type == 1; /* R_VAX_32. */
11872 case EM_VISIUM:
11873 return reloc_type == 3; /* R_VISIUM_32. */
11874 case EM_X86_64:
11875 case EM_L1OM:
11876 case EM_K1OM:
11877 return reloc_type == 10; /* R_X86_64_32. */
11878 case EM_XC16X:
11879 case EM_C166:
11880 return reloc_type == 3; /* R_XC16C_ABS_32. */
11881 case EM_XGATE:
11882 return reloc_type == 4; /* R_XGATE_32. */
11883 case EM_XSTORMY16:
11884 return reloc_type == 1; /* R_XSTROMY16_32. */
11885 case EM_XTENSA_OLD:
11886 case EM_XTENSA:
11887 return reloc_type == 1; /* R_XTENSA_32. */
11888 default:
11889 {
11890 static unsigned int prev_warn = 0;
11891
11892 /* Avoid repeating the same warning multiple times. */
11893 if (prev_warn != elf_header.e_machine)
11894 error (_("Missing knowledge of 32-bit reloc types used in DWARF sections of machine number %d\n"),
11895 elf_header.e_machine);
11896 prev_warn = elf_header.e_machine;
11897 return FALSE;
11898 }
11899 }
11900 }
11901
11902 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
11903 a 32-bit pc-relative RELA relocation used in DWARF debug sections. */
11904
11905 static bfd_boolean
11906 is_32bit_pcrel_reloc (unsigned int reloc_type)
11907 {
11908 switch (elf_header.e_machine)
11909 /* Please keep this table alpha-sorted for ease of visual lookup. */
11910 {
11911 case EM_386:
11912 case EM_IAMCU:
11913 return reloc_type == 2; /* R_386_PC32. */
11914 case EM_68K:
11915 return reloc_type == 4; /* R_68K_PC32. */
11916 case EM_AARCH64:
11917 return reloc_type == 261; /* R_AARCH64_PREL32 */
11918 case EM_ADAPTEVA_EPIPHANY:
11919 return reloc_type == 6;
11920 case EM_ALPHA:
11921 return reloc_type == 10; /* R_ALPHA_SREL32. */
11922 case EM_ARC_COMPACT:
11923 case EM_ARC_COMPACT2:
11924 return reloc_type == 49; /* R_ARC_32_PCREL. */
11925 case EM_ARM:
11926 return reloc_type == 3; /* R_ARM_REL32 */
11927 case EM_AVR_OLD:
11928 case EM_AVR:
11929 return reloc_type == 36; /* R_AVR_32_PCREL. */
11930 case EM_MICROBLAZE:
11931 return reloc_type == 2; /* R_MICROBLAZE_32_PCREL. */
11932 case EM_OR1K:
11933 return reloc_type == 9; /* R_OR1K_32_PCREL. */
11934 case EM_PARISC:
11935 return reloc_type == 9; /* R_PARISC_PCREL32. */
11936 case EM_PPC:
11937 return reloc_type == 26; /* R_PPC_REL32. */
11938 case EM_PPC64:
11939 return reloc_type == 26; /* R_PPC64_REL32. */
11940 case EM_S390_OLD:
11941 case EM_S390:
11942 return reloc_type == 5; /* R_390_PC32. */
11943 case EM_SH:
11944 return reloc_type == 2; /* R_SH_REL32. */
11945 case EM_SPARC32PLUS:
11946 case EM_SPARCV9:
11947 case EM_SPARC:
11948 return reloc_type == 6; /* R_SPARC_DISP32. */
11949 case EM_SPU:
11950 return reloc_type == 13; /* R_SPU_REL32. */
11951 case EM_TILEGX:
11952 return reloc_type == 6; /* R_TILEGX_32_PCREL. */
11953 case EM_TILEPRO:
11954 return reloc_type == 4; /* R_TILEPRO_32_PCREL. */
11955 case EM_VISIUM:
11956 return reloc_type == 6; /* R_VISIUM_32_PCREL */
11957 case EM_X86_64:
11958 case EM_L1OM:
11959 case EM_K1OM:
11960 return reloc_type == 2; /* R_X86_64_PC32. */
11961 case EM_XTENSA_OLD:
11962 case EM_XTENSA:
11963 return reloc_type == 14; /* R_XTENSA_32_PCREL. */
11964 default:
11965 /* Do not abort or issue an error message here. Not all targets use
11966 pc-relative 32-bit relocs in their DWARF debug information and we
11967 have already tested for target coverage in is_32bit_abs_reloc. A
11968 more helpful warning message will be generated by apply_relocations
11969 anyway, so just return. */
11970 return FALSE;
11971 }
11972 }
11973
11974 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
11975 a 64-bit absolute RELA relocation used in DWARF debug sections. */
11976
11977 static bfd_boolean
11978 is_64bit_abs_reloc (unsigned int reloc_type)
11979 {
11980 switch (elf_header.e_machine)
11981 {
11982 case EM_AARCH64:
11983 return reloc_type == 257; /* R_AARCH64_ABS64. */
11984 case EM_ALPHA:
11985 return reloc_type == 2; /* R_ALPHA_REFQUAD. */
11986 case EM_IA_64:
11987 return reloc_type == 0x27; /* R_IA64_DIR64LSB. */
11988 case EM_PARISC:
11989 return reloc_type == 80; /* R_PARISC_DIR64. */
11990 case EM_PPC64:
11991 return reloc_type == 38; /* R_PPC64_ADDR64. */
11992 case EM_RISCV:
11993 return reloc_type == 2; /* R_RISCV_64. */
11994 case EM_SPARC32PLUS:
11995 case EM_SPARCV9:
11996 case EM_SPARC:
11997 return reloc_type == 54; /* R_SPARC_UA64. */
11998 case EM_X86_64:
11999 case EM_L1OM:
12000 case EM_K1OM:
12001 return reloc_type == 1; /* R_X86_64_64. */
12002 case EM_S390_OLD:
12003 case EM_S390:
12004 return reloc_type == 22; /* R_S390_64. */
12005 case EM_TILEGX:
12006 return reloc_type == 1; /* R_TILEGX_64. */
12007 case EM_MIPS:
12008 return reloc_type == 18; /* R_MIPS_64. */
12009 default:
12010 return FALSE;
12011 }
12012 }
12013
12014 /* Like is_32bit_pcrel_reloc except that it returns TRUE iff RELOC_TYPE is
12015 a 64-bit pc-relative RELA relocation used in DWARF debug sections. */
12016
12017 static bfd_boolean
12018 is_64bit_pcrel_reloc (unsigned int reloc_type)
12019 {
12020 switch (elf_header.e_machine)
12021 {
12022 case EM_AARCH64:
12023 return reloc_type == 260; /* R_AARCH64_PREL64. */
12024 case EM_ALPHA:
12025 return reloc_type == 11; /* R_ALPHA_SREL64. */
12026 case EM_IA_64:
12027 return reloc_type == 0x4f; /* R_IA64_PCREL64LSB. */
12028 case EM_PARISC:
12029 return reloc_type == 72; /* R_PARISC_PCREL64. */
12030 case EM_PPC64:
12031 return reloc_type == 44; /* R_PPC64_REL64. */
12032 case EM_SPARC32PLUS:
12033 case EM_SPARCV9:
12034 case EM_SPARC:
12035 return reloc_type == 46; /* R_SPARC_DISP64. */
12036 case EM_X86_64:
12037 case EM_L1OM:
12038 case EM_K1OM:
12039 return reloc_type == 24; /* R_X86_64_PC64. */
12040 case EM_S390_OLD:
12041 case EM_S390:
12042 return reloc_type == 23; /* R_S390_PC64. */
12043 case EM_TILEGX:
12044 return reloc_type == 5; /* R_TILEGX_64_PCREL. */
12045 default:
12046 return FALSE;
12047 }
12048 }
12049
12050 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12051 a 24-bit absolute RELA relocation used in DWARF debug sections. */
12052
12053 static bfd_boolean
12054 is_24bit_abs_reloc (unsigned int reloc_type)
12055 {
12056 switch (elf_header.e_machine)
12057 {
12058 case EM_CYGNUS_MN10200:
12059 case EM_MN10200:
12060 return reloc_type == 4; /* R_MN10200_24. */
12061 case EM_FT32:
12062 return reloc_type == 5; /* R_FT32_20. */
12063 default:
12064 return FALSE;
12065 }
12066 }
12067
12068 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12069 a 16-bit absolute RELA relocation used in DWARF debug sections. */
12070
12071 static bfd_boolean
12072 is_16bit_abs_reloc (unsigned int reloc_type)
12073 {
12074 /* Please keep this table alpha-sorted for ease of visual lookup. */
12075 switch (elf_header.e_machine)
12076 {
12077 case EM_ARC:
12078 case EM_ARC_COMPACT:
12079 case EM_ARC_COMPACT2:
12080 return reloc_type == 2; /* R_ARC_16. */
12081 case EM_ADAPTEVA_EPIPHANY:
12082 return reloc_type == 5;
12083 case EM_AVR_OLD:
12084 case EM_AVR:
12085 return reloc_type == 4; /* R_AVR_16. */
12086 case EM_CYGNUS_D10V:
12087 case EM_D10V:
12088 return reloc_type == 3; /* R_D10V_16. */
12089 case EM_H8S:
12090 case EM_H8_300:
12091 case EM_H8_300H:
12092 return reloc_type == R_H8_DIR16;
12093 case EM_IP2K_OLD:
12094 case EM_IP2K:
12095 return reloc_type == 1; /* R_IP2K_16. */
12096 case EM_M32C_OLD:
12097 case EM_M32C:
12098 return reloc_type == 1; /* R_M32C_16 */
12099 case EM_CYGNUS_MN10200:
12100 case EM_MN10200:
12101 return reloc_type == 2; /* R_MN10200_16. */
12102 case EM_CYGNUS_MN10300:
12103 case EM_MN10300:
12104 return reloc_type == 2; /* R_MN10300_16. */
12105 case EM_MSP430:
12106 if (uses_msp430x_relocs ())
12107 return reloc_type == 2; /* R_MSP430_ABS16. */
12108 /* Fall through. */
12109 case EM_MSP430_OLD:
12110 return reloc_type == 5; /* R_MSP430_16_BYTE. */
12111 case EM_NDS32:
12112 return reloc_type == 19; /* R_NDS32_RELA. */
12113 case EM_ALTERA_NIOS2:
12114 return reloc_type == 13; /* R_NIOS2_BFD_RELOC_16. */
12115 case EM_NIOS32:
12116 return reloc_type == 9; /* R_NIOS_16. */
12117 case EM_OR1K:
12118 return reloc_type == 2; /* R_OR1K_16. */
12119 case EM_TI_C6000:
12120 return reloc_type == 2; /* R_C6000_ABS16. */
12121 case EM_VISIUM:
12122 return reloc_type == 2; /* R_VISIUM_16. */
12123 case EM_XC16X:
12124 case EM_C166:
12125 return reloc_type == 2; /* R_XC16C_ABS_16. */
12126 case EM_XGATE:
12127 return reloc_type == 3; /* R_XGATE_16. */
12128 default:
12129 return FALSE;
12130 }
12131 }
12132
12133 /* Returns TRUE iff RELOC_TYPE is a NONE relocation used for discarded
12134 relocation entries (possibly formerly used for SHT_GROUP sections). */
12135
12136 static bfd_boolean
12137 is_none_reloc (unsigned int reloc_type)
12138 {
12139 switch (elf_header.e_machine)
12140 {
12141 case EM_386: /* R_386_NONE. */
12142 case EM_68K: /* R_68K_NONE. */
12143 case EM_ADAPTEVA_EPIPHANY:
12144 case EM_ALPHA: /* R_ALPHA_NONE. */
12145 case EM_ALTERA_NIOS2: /* R_NIOS2_NONE. */
12146 case EM_ARC: /* R_ARC_NONE. */
12147 case EM_ARC_COMPACT2: /* R_ARC_NONE. */
12148 case EM_ARC_COMPACT: /* R_ARC_NONE. */
12149 case EM_ARM: /* R_ARM_NONE. */
12150 case EM_C166: /* R_XC16X_NONE. */
12151 case EM_CRIS: /* R_CRIS_NONE. */
12152 case EM_FT32: /* R_FT32_NONE. */
12153 case EM_IA_64: /* R_IA64_NONE. */
12154 case EM_K1OM: /* R_X86_64_NONE. */
12155 case EM_L1OM: /* R_X86_64_NONE. */
12156 case EM_M32R: /* R_M32R_NONE. */
12157 case EM_MIPS: /* R_MIPS_NONE. */
12158 case EM_MN10300: /* R_MN10300_NONE. */
12159 case EM_MOXIE: /* R_MOXIE_NONE. */
12160 case EM_NIOS32: /* R_NIOS_NONE. */
12161 case EM_OR1K: /* R_OR1K_NONE. */
12162 case EM_PARISC: /* R_PARISC_NONE. */
12163 case EM_PPC64: /* R_PPC64_NONE. */
12164 case EM_PPC: /* R_PPC_NONE. */
12165 case EM_RISCV: /* R_RISCV_NONE. */
12166 case EM_S390: /* R_390_NONE. */
12167 case EM_S390_OLD:
12168 case EM_SH: /* R_SH_NONE. */
12169 case EM_SPARC32PLUS:
12170 case EM_SPARC: /* R_SPARC_NONE. */
12171 case EM_SPARCV9:
12172 case EM_TILEGX: /* R_TILEGX_NONE. */
12173 case EM_TILEPRO: /* R_TILEPRO_NONE. */
12174 case EM_TI_C6000:/* R_C6000_NONE. */
12175 case EM_X86_64: /* R_X86_64_NONE. */
12176 case EM_XC16X:
12177 return reloc_type == 0;
12178
12179 case EM_AARCH64:
12180 return reloc_type == 0 || reloc_type == 256;
12181 case EM_AVR_OLD:
12182 case EM_AVR:
12183 return (reloc_type == 0 /* R_AVR_NONE. */
12184 || reloc_type == 30 /* R_AVR_DIFF8. */
12185 || reloc_type == 31 /* R_AVR_DIFF16. */
12186 || reloc_type == 32 /* R_AVR_DIFF32. */);
12187 case EM_METAG:
12188 return reloc_type == 3; /* R_METAG_NONE. */
12189 case EM_NDS32:
12190 return (reloc_type == 0 /* R_XTENSA_NONE. */
12191 || reloc_type == 204 /* R_NDS32_DIFF8. */
12192 || reloc_type == 205 /* R_NDS32_DIFF16. */
12193 || reloc_type == 206 /* R_NDS32_DIFF32. */
12194 || reloc_type == 207 /* R_NDS32_ULEB128. */);
12195 case EM_XTENSA_OLD:
12196 case EM_XTENSA:
12197 return (reloc_type == 0 /* R_XTENSA_NONE. */
12198 || reloc_type == 17 /* R_XTENSA_DIFF8. */
12199 || reloc_type == 18 /* R_XTENSA_DIFF16. */
12200 || reloc_type == 19 /* R_XTENSA_DIFF32. */);
12201 }
12202 return FALSE;
12203 }
12204
12205 /* Returns TRUE if there is a relocation against
12206 section NAME at OFFSET bytes. */
12207
12208 bfd_boolean
12209 reloc_at (struct dwarf_section * dsec, dwarf_vma offset)
12210 {
12211 Elf_Internal_Rela * relocs;
12212 Elf_Internal_Rela * rp;
12213
12214 if (dsec == NULL || dsec->reloc_info == NULL)
12215 return FALSE;
12216
12217 relocs = (Elf_Internal_Rela *) dsec->reloc_info;
12218
12219 for (rp = relocs; rp < relocs + dsec->num_relocs; ++rp)
12220 if (rp->r_offset == offset)
12221 return TRUE;
12222
12223 return FALSE;
12224 }
12225
12226 /* Apply relocations to a section.
12227 Note: So far support has been added only for those relocations
12228 which can be found in debug sections.
12229 If RELOCS_RETURN is non-NULL then returns in it a pointer to the
12230 loaded relocs. It is then the caller's responsibility to free them.
12231 FIXME: Add support for more relocations ? */
12232
12233 static void
12234 apply_relocations (void * file,
12235 const Elf_Internal_Shdr * section,
12236 unsigned char * start,
12237 bfd_size_type size,
12238 void ** relocs_return,
12239 unsigned long * num_relocs_return)
12240 {
12241 Elf_Internal_Shdr * relsec;
12242 unsigned char * end = start + size;
12243
12244 if (relocs_return != NULL)
12245 {
12246 * (Elf_Internal_Rela **) relocs_return = NULL;
12247 * num_relocs_return = 0;
12248 }
12249
12250 if (elf_header.e_type != ET_REL)
12251 return;
12252
12253 /* Find the reloc section associated with the section. */
12254 for (relsec = section_headers;
12255 relsec < section_headers + elf_header.e_shnum;
12256 ++relsec)
12257 {
12258 bfd_boolean is_rela;
12259 unsigned long num_relocs;
12260 Elf_Internal_Rela * relocs;
12261 Elf_Internal_Rela * rp;
12262 Elf_Internal_Shdr * symsec;
12263 Elf_Internal_Sym * symtab;
12264 unsigned long num_syms;
12265 Elf_Internal_Sym * sym;
12266
12267 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
12268 || relsec->sh_info >= elf_header.e_shnum
12269 || section_headers + relsec->sh_info != section
12270 || relsec->sh_size == 0
12271 || relsec->sh_link >= elf_header.e_shnum)
12272 continue;
12273
12274 is_rela = relsec->sh_type == SHT_RELA;
12275
12276 if (is_rela)
12277 {
12278 if (!slurp_rela_relocs ((FILE *) file, relsec->sh_offset,
12279 relsec->sh_size, & relocs, & num_relocs))
12280 return;
12281 }
12282 else
12283 {
12284 if (!slurp_rel_relocs ((FILE *) file, relsec->sh_offset,
12285 relsec->sh_size, & relocs, & num_relocs))
12286 return;
12287 }
12288
12289 /* SH uses RELA but uses in place value instead of the addend field. */
12290 if (elf_header.e_machine == EM_SH)
12291 is_rela = FALSE;
12292
12293 symsec = section_headers + relsec->sh_link;
12294 if (symsec->sh_type != SHT_SYMTAB
12295 && symsec->sh_type != SHT_DYNSYM)
12296 return;
12297 symtab = GET_ELF_SYMBOLS ((FILE *) file, symsec, & num_syms);
12298
12299 for (rp = relocs; rp < relocs + num_relocs; ++rp)
12300 {
12301 bfd_vma addend;
12302 unsigned int reloc_type;
12303 unsigned int reloc_size;
12304 unsigned char * rloc;
12305 unsigned long sym_index;
12306
12307 reloc_type = get_reloc_type (rp->r_info);
12308
12309 if (target_specific_reloc_handling (rp, start, symtab))
12310 continue;
12311 else if (is_none_reloc (reloc_type))
12312 continue;
12313 else if (is_32bit_abs_reloc (reloc_type)
12314 || is_32bit_pcrel_reloc (reloc_type))
12315 reloc_size = 4;
12316 else if (is_64bit_abs_reloc (reloc_type)
12317 || is_64bit_pcrel_reloc (reloc_type))
12318 reloc_size = 8;
12319 else if (is_24bit_abs_reloc (reloc_type))
12320 reloc_size = 3;
12321 else if (is_16bit_abs_reloc (reloc_type))
12322 reloc_size = 2;
12323 else
12324 {
12325 static unsigned int prev_reloc = 0;
12326 if (reloc_type != prev_reloc)
12327 warn (_("unable to apply unsupported reloc type %d to section %s\n"),
12328 reloc_type, printable_section_name (section));
12329 prev_reloc = reloc_type;
12330 continue;
12331 }
12332
12333 rloc = start + rp->r_offset;
12334 if ((rloc + reloc_size) > end || (rloc < start))
12335 {
12336 warn (_("skipping invalid relocation offset 0x%lx in section %s\n"),
12337 (unsigned long) rp->r_offset,
12338 printable_section_name (section));
12339 continue;
12340 }
12341
12342 sym_index = (unsigned long) get_reloc_symindex (rp->r_info);
12343 if (sym_index >= num_syms)
12344 {
12345 warn (_("skipping invalid relocation symbol index 0x%lx in section %s\n"),
12346 sym_index, printable_section_name (section));
12347 continue;
12348 }
12349 sym = symtab + sym_index;
12350
12351 /* If the reloc has a symbol associated with it,
12352 make sure that it is of an appropriate type.
12353
12354 Relocations against symbols without type can happen.
12355 Gcc -feliminate-dwarf2-dups may generate symbols
12356 without type for debug info.
12357
12358 Icc generates relocations against function symbols
12359 instead of local labels.
12360
12361 Relocations against object symbols can happen, eg when
12362 referencing a global array. For an example of this see
12363 the _clz.o binary in libgcc.a. */
12364 if (sym != symtab
12365 && ELF_ST_TYPE (sym->st_info) != STT_COMMON
12366 && ELF_ST_TYPE (sym->st_info) > STT_SECTION)
12367 {
12368 warn (_("skipping unexpected symbol type %s in %ld'th relocation in section %s\n"),
12369 get_symbol_type (ELF_ST_TYPE (sym->st_info)),
12370 (long int)(rp - relocs),
12371 printable_section_name (relsec));
12372 continue;
12373 }
12374
12375 addend = 0;
12376 if (is_rela)
12377 addend += rp->r_addend;
12378 /* R_XTENSA_32, R_PJ_DATA_DIR32 and R_D30V_32_NORMAL are
12379 partial_inplace. */
12380 if (!is_rela
12381 || (elf_header.e_machine == EM_XTENSA
12382 && reloc_type == 1)
12383 || ((elf_header.e_machine == EM_PJ
12384 || elf_header.e_machine == EM_PJ_OLD)
12385 && reloc_type == 1)
12386 || ((elf_header.e_machine == EM_D30V
12387 || elf_header.e_machine == EM_CYGNUS_D30V)
12388 && reloc_type == 12))
12389 addend += byte_get (rloc, reloc_size);
12390
12391 if (is_32bit_pcrel_reloc (reloc_type)
12392 || is_64bit_pcrel_reloc (reloc_type))
12393 {
12394 /* On HPPA, all pc-relative relocations are biased by 8. */
12395 if (elf_header.e_machine == EM_PARISC)
12396 addend -= 8;
12397 byte_put (rloc, (addend + sym->st_value) - rp->r_offset,
12398 reloc_size);
12399 }
12400 else
12401 byte_put (rloc, addend + sym->st_value, reloc_size);
12402 }
12403
12404 free (symtab);
12405
12406 if (relocs_return)
12407 {
12408 * (Elf_Internal_Rela **) relocs_return = relocs;
12409 * num_relocs_return = num_relocs;
12410 }
12411 else
12412 free (relocs);
12413
12414 break;
12415 }
12416 }
12417
12418 #ifdef SUPPORT_DISASSEMBLY
12419 static int
12420 disassemble_section (Elf_Internal_Shdr * section, FILE * file)
12421 {
12422 printf (_("\nAssembly dump of section %s\n"), printable_section_name (section));
12423
12424 /* FIXME: XXX -- to be done --- XXX */
12425
12426 return 1;
12427 }
12428 #endif
12429
12430 /* Reads in the contents of SECTION from FILE, returning a pointer
12431 to a malloc'ed buffer or NULL if something went wrong. */
12432
12433 static char *
12434 get_section_contents (Elf_Internal_Shdr * section, FILE * file)
12435 {
12436 bfd_size_type num_bytes;
12437
12438 num_bytes = section->sh_size;
12439
12440 if (num_bytes == 0 || section->sh_type == SHT_NOBITS)
12441 {
12442 printf (_("\nSection '%s' has no data to dump.\n"),
12443 printable_section_name (section));
12444 return NULL;
12445 }
12446
12447 return (char *) get_data (NULL, file, section->sh_offset, 1, num_bytes,
12448 _("section contents"));
12449 }
12450
12451 /* Uncompresses a section that was compressed using zlib, in place. */
12452
12453 static bfd_boolean
12454 uncompress_section_contents (unsigned char **buffer,
12455 dwarf_size_type uncompressed_size,
12456 dwarf_size_type *size)
12457 {
12458 dwarf_size_type compressed_size = *size;
12459 unsigned char * compressed_buffer = *buffer;
12460 unsigned char * uncompressed_buffer;
12461 z_stream strm;
12462 int rc;
12463
12464 /* It is possible the section consists of several compressed
12465 buffers concatenated together, so we uncompress in a loop. */
12466 /* PR 18313: The state field in the z_stream structure is supposed
12467 to be invisible to the user (ie us), but some compilers will
12468 still complain about it being used without initialisation. So
12469 we first zero the entire z_stream structure and then set the fields
12470 that we need. */
12471 memset (& strm, 0, sizeof strm);
12472 strm.avail_in = compressed_size;
12473 strm.next_in = (Bytef *) compressed_buffer;
12474 strm.avail_out = uncompressed_size;
12475 uncompressed_buffer = (unsigned char *) xmalloc (uncompressed_size);
12476
12477 rc = inflateInit (& strm);
12478 while (strm.avail_in > 0)
12479 {
12480 if (rc != Z_OK)
12481 goto fail;
12482 strm.next_out = ((Bytef *) uncompressed_buffer
12483 + (uncompressed_size - strm.avail_out));
12484 rc = inflate (&strm, Z_FINISH);
12485 if (rc != Z_STREAM_END)
12486 goto fail;
12487 rc = inflateReset (& strm);
12488 }
12489 rc = inflateEnd (& strm);
12490 if (rc != Z_OK
12491 || strm.avail_out != 0)
12492 goto fail;
12493
12494 *buffer = uncompressed_buffer;
12495 *size = uncompressed_size;
12496 return TRUE;
12497
12498 fail:
12499 free (uncompressed_buffer);
12500 /* Indicate decompression failure. */
12501 *buffer = NULL;
12502 return FALSE;
12503 }
12504
12505 static void
12506 dump_section_as_strings (Elf_Internal_Shdr * section, FILE * file)
12507 {
12508 Elf_Internal_Shdr * relsec;
12509 bfd_size_type num_bytes;
12510 unsigned char * data;
12511 unsigned char * end;
12512 unsigned char * real_start;
12513 unsigned char * start;
12514 bfd_boolean some_strings_shown;
12515
12516 real_start = start = (unsigned char *) get_section_contents (section,
12517 file);
12518 if (start == NULL)
12519 return;
12520 num_bytes = section->sh_size;
12521
12522 printf (_("\nString dump of section '%s':\n"), printable_section_name (section));
12523
12524 if (decompress_dumps)
12525 {
12526 dwarf_size_type new_size = num_bytes;
12527 dwarf_size_type uncompressed_size = 0;
12528
12529 if ((section->sh_flags & SHF_COMPRESSED) != 0)
12530 {
12531 Elf_Internal_Chdr chdr;
12532 unsigned int compression_header_size
12533 = get_compression_header (& chdr, (unsigned char *) start);
12534
12535 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
12536 {
12537 warn (_("section '%s' has unsupported compress type: %d\n"),
12538 printable_section_name (section), chdr.ch_type);
12539 return;
12540 }
12541 else if (chdr.ch_addralign != section->sh_addralign)
12542 {
12543 warn (_("compressed section '%s' is corrupted\n"),
12544 printable_section_name (section));
12545 return;
12546 }
12547 uncompressed_size = chdr.ch_size;
12548 start += compression_header_size;
12549 new_size -= compression_header_size;
12550 }
12551 else if (new_size > 12 && streq ((char *) start, "ZLIB"))
12552 {
12553 /* Read the zlib header. In this case, it should be "ZLIB"
12554 followed by the uncompressed section size, 8 bytes in
12555 big-endian order. */
12556 uncompressed_size = start[4]; uncompressed_size <<= 8;
12557 uncompressed_size += start[5]; uncompressed_size <<= 8;
12558 uncompressed_size += start[6]; uncompressed_size <<= 8;
12559 uncompressed_size += start[7]; uncompressed_size <<= 8;
12560 uncompressed_size += start[8]; uncompressed_size <<= 8;
12561 uncompressed_size += start[9]; uncompressed_size <<= 8;
12562 uncompressed_size += start[10]; uncompressed_size <<= 8;
12563 uncompressed_size += start[11];
12564 start += 12;
12565 new_size -= 12;
12566 }
12567
12568 if (uncompressed_size
12569 && uncompress_section_contents (& start,
12570 uncompressed_size, & new_size))
12571 num_bytes = new_size;
12572 }
12573
12574 /* If the section being dumped has relocations against it the user might
12575 be expecting these relocations to have been applied. Check for this
12576 case and issue a warning message in order to avoid confusion.
12577 FIXME: Maybe we ought to have an option that dumps a section with
12578 relocs applied ? */
12579 for (relsec = section_headers;
12580 relsec < section_headers + elf_header.e_shnum;
12581 ++relsec)
12582 {
12583 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
12584 || relsec->sh_info >= elf_header.e_shnum
12585 || section_headers + relsec->sh_info != section
12586 || relsec->sh_size == 0
12587 || relsec->sh_link >= elf_header.e_shnum)
12588 continue;
12589
12590 printf (_(" Note: This section has relocations against it, but these have NOT been applied to this dump.\n"));
12591 break;
12592 }
12593
12594 data = start;
12595 end = start + num_bytes;
12596 some_strings_shown = FALSE;
12597
12598 while (data < end)
12599 {
12600 while (!ISPRINT (* data))
12601 if (++ data >= end)
12602 break;
12603
12604 if (data < end)
12605 {
12606 size_t maxlen = end - data;
12607
12608 #ifndef __MSVCRT__
12609 /* PR 11128: Use two separate invocations in order to work
12610 around bugs in the Solaris 8 implementation of printf. */
12611 printf (" [%6tx] ", data - start);
12612 #else
12613 printf (" [%6Ix] ", (size_t) (data - start));
12614 #endif
12615 if (maxlen > 0)
12616 {
12617 print_symbol ((int) maxlen, (const char *) data);
12618 putchar ('\n');
12619 data += strnlen ((const char *) data, maxlen);
12620 }
12621 else
12622 {
12623 printf (_("<corrupt>\n"));
12624 data = end;
12625 }
12626 some_strings_shown = TRUE;
12627 }
12628 }
12629
12630 if (! some_strings_shown)
12631 printf (_(" No strings found in this section."));
12632
12633 free (real_start);
12634
12635 putchar ('\n');
12636 }
12637
12638 static void
12639 dump_section_as_bytes (Elf_Internal_Shdr * section,
12640 FILE * file,
12641 bfd_boolean relocate)
12642 {
12643 Elf_Internal_Shdr * relsec;
12644 bfd_size_type bytes;
12645 bfd_size_type section_size;
12646 bfd_vma addr;
12647 unsigned char * data;
12648 unsigned char * real_start;
12649 unsigned char * start;
12650
12651 real_start = start = (unsigned char *) get_section_contents (section, file);
12652 if (start == NULL)
12653 return;
12654 section_size = section->sh_size;
12655
12656 printf (_("\nHex dump of section '%s':\n"), printable_section_name (section));
12657
12658 if (decompress_dumps)
12659 {
12660 dwarf_size_type new_size = section_size;
12661 dwarf_size_type uncompressed_size = 0;
12662
12663 if ((section->sh_flags & SHF_COMPRESSED) != 0)
12664 {
12665 Elf_Internal_Chdr chdr;
12666 unsigned int compression_header_size
12667 = get_compression_header (& chdr, start);
12668
12669 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
12670 {
12671 warn (_("section '%s' has unsupported compress type: %d\n"),
12672 printable_section_name (section), chdr.ch_type);
12673 return;
12674 }
12675 else if (chdr.ch_addralign != section->sh_addralign)
12676 {
12677 warn (_("compressed section '%s' is corrupted\n"),
12678 printable_section_name (section));
12679 return;
12680 }
12681 uncompressed_size = chdr.ch_size;
12682 start += compression_header_size;
12683 new_size -= compression_header_size;
12684 }
12685 else if (new_size > 12 && streq ((char *) start, "ZLIB"))
12686 {
12687 /* Read the zlib header. In this case, it should be "ZLIB"
12688 followed by the uncompressed section size, 8 bytes in
12689 big-endian order. */
12690 uncompressed_size = start[4]; uncompressed_size <<= 8;
12691 uncompressed_size += start[5]; uncompressed_size <<= 8;
12692 uncompressed_size += start[6]; uncompressed_size <<= 8;
12693 uncompressed_size += start[7]; uncompressed_size <<= 8;
12694 uncompressed_size += start[8]; uncompressed_size <<= 8;
12695 uncompressed_size += start[9]; uncompressed_size <<= 8;
12696 uncompressed_size += start[10]; uncompressed_size <<= 8;
12697 uncompressed_size += start[11];
12698 start += 12;
12699 new_size -= 12;
12700 }
12701
12702 if (uncompressed_size
12703 && uncompress_section_contents (& start, uncompressed_size,
12704 & new_size))
12705 section_size = new_size;
12706 }
12707
12708 if (relocate)
12709 {
12710 apply_relocations (file, section, start, section_size, NULL, NULL);
12711 }
12712 else
12713 {
12714 /* If the section being dumped has relocations against it the user might
12715 be expecting these relocations to have been applied. Check for this
12716 case and issue a warning message in order to avoid confusion.
12717 FIXME: Maybe we ought to have an option that dumps a section with
12718 relocs applied ? */
12719 for (relsec = section_headers;
12720 relsec < section_headers + elf_header.e_shnum;
12721 ++relsec)
12722 {
12723 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
12724 || relsec->sh_info >= elf_header.e_shnum
12725 || section_headers + relsec->sh_info != section
12726 || relsec->sh_size == 0
12727 || relsec->sh_link >= elf_header.e_shnum)
12728 continue;
12729
12730 printf (_(" NOTE: This section has relocations against it, but these have NOT been applied to this dump.\n"));
12731 break;
12732 }
12733 }
12734
12735 addr = section->sh_addr;
12736 bytes = section_size;
12737 data = start;
12738
12739 while (bytes)
12740 {
12741 int j;
12742 int k;
12743 int lbytes;
12744
12745 lbytes = (bytes > 16 ? 16 : bytes);
12746
12747 printf (" 0x%8.8lx ", (unsigned long) addr);
12748
12749 for (j = 0; j < 16; j++)
12750 {
12751 if (j < lbytes)
12752 printf ("%2.2x", data[j]);
12753 else
12754 printf (" ");
12755
12756 if ((j & 3) == 3)
12757 printf (" ");
12758 }
12759
12760 for (j = 0; j < lbytes; j++)
12761 {
12762 k = data[j];
12763 if (k >= ' ' && k < 0x7f)
12764 printf ("%c", k);
12765 else
12766 printf (".");
12767 }
12768
12769 putchar ('\n');
12770
12771 data += lbytes;
12772 addr += lbytes;
12773 bytes -= lbytes;
12774 }
12775
12776 free (real_start);
12777
12778 putchar ('\n');
12779 }
12780
12781 static int
12782 load_specific_debug_section (enum dwarf_section_display_enum debug,
12783 const Elf_Internal_Shdr * sec, void * file)
12784 {
12785 struct dwarf_section * section = &debug_displays [debug].section;
12786 char buf [64];
12787
12788 /* If it is already loaded, do nothing. */
12789 if (section->start != NULL)
12790 return 1;
12791
12792 snprintf (buf, sizeof (buf), _("%s section data"), section->name);
12793 section->address = sec->sh_addr;
12794 section->user_data = NULL;
12795 section->start = (unsigned char *) get_data (NULL, (FILE *) file,
12796 sec->sh_offset, 1,
12797 sec->sh_size, buf);
12798 if (section->start == NULL)
12799 section->size = 0;
12800 else
12801 {
12802 unsigned char *start = section->start;
12803 dwarf_size_type size = sec->sh_size;
12804 dwarf_size_type uncompressed_size = 0;
12805
12806 if ((sec->sh_flags & SHF_COMPRESSED) != 0)
12807 {
12808 Elf_Internal_Chdr chdr;
12809 unsigned int compression_header_size;
12810
12811 if (size < (is_32bit_elf
12812 ? sizeof (Elf32_External_Chdr)
12813 : sizeof (Elf64_External_Chdr)))
12814 {
12815 warn (_("compressed section %s is too small to contain a compression header"),
12816 section->name);
12817 return 0;
12818 }
12819
12820 compression_header_size = get_compression_header (&chdr, start);
12821
12822 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
12823 {
12824 warn (_("section '%s' has unsupported compress type: %d\n"),
12825 section->name, chdr.ch_type);
12826 return 0;
12827 }
12828 else if (chdr.ch_addralign != sec->sh_addralign)
12829 {
12830 warn (_("compressed section '%s' is corrupted\n"),
12831 section->name);
12832 return 0;
12833 }
12834 uncompressed_size = chdr.ch_size;
12835 start += compression_header_size;
12836 size -= compression_header_size;
12837 }
12838 else if (size > 12 && streq ((char *) start, "ZLIB"))
12839 {
12840 /* Read the zlib header. In this case, it should be "ZLIB"
12841 followed by the uncompressed section size, 8 bytes in
12842 big-endian order. */
12843 uncompressed_size = start[4]; uncompressed_size <<= 8;
12844 uncompressed_size += start[5]; uncompressed_size <<= 8;
12845 uncompressed_size += start[6]; uncompressed_size <<= 8;
12846 uncompressed_size += start[7]; uncompressed_size <<= 8;
12847 uncompressed_size += start[8]; uncompressed_size <<= 8;
12848 uncompressed_size += start[9]; uncompressed_size <<= 8;
12849 uncompressed_size += start[10]; uncompressed_size <<= 8;
12850 uncompressed_size += start[11];
12851 start += 12;
12852 size -= 12;
12853 }
12854
12855 if (uncompressed_size
12856 && uncompress_section_contents (&start, uncompressed_size,
12857 &size))
12858 {
12859 /* Free the compressed buffer, update the section buffer
12860 and the section size if uncompress is successful. */
12861 free (section->start);
12862 section->start = start;
12863 }
12864 section->size = size;
12865 }
12866
12867 if (section->start == NULL)
12868 return 0;
12869
12870 if (debug_displays [debug].relocate)
12871 apply_relocations ((FILE *) file, sec, section->start, section->size,
12872 & section->reloc_info, & section->num_relocs);
12873 else
12874 {
12875 section->reloc_info = NULL;
12876 section->num_relocs = 0;
12877 }
12878
12879 return 1;
12880 }
12881
12882 /* If this is not NULL, load_debug_section will only look for sections
12883 within the list of sections given here. */
12884 unsigned int *section_subset = NULL;
12885
12886 int
12887 load_debug_section (enum dwarf_section_display_enum debug, void * file)
12888 {
12889 struct dwarf_section * section = &debug_displays [debug].section;
12890 Elf_Internal_Shdr * sec;
12891
12892 /* Locate the debug section. */
12893 sec = find_section_in_set (section->uncompressed_name, section_subset);
12894 if (sec != NULL)
12895 section->name = section->uncompressed_name;
12896 else
12897 {
12898 sec = find_section_in_set (section->compressed_name, section_subset);
12899 if (sec != NULL)
12900 section->name = section->compressed_name;
12901 }
12902 if (sec == NULL)
12903 return 0;
12904
12905 /* If we're loading from a subset of sections, and we've loaded
12906 a section matching this name before, it's likely that it's a
12907 different one. */
12908 if (section_subset != NULL)
12909 free_debug_section (debug);
12910
12911 return load_specific_debug_section (debug, sec, (FILE *) file);
12912 }
12913
12914 void
12915 free_debug_section (enum dwarf_section_display_enum debug)
12916 {
12917 struct dwarf_section * section = &debug_displays [debug].section;
12918
12919 if (section->start == NULL)
12920 return;
12921
12922 free ((char *) section->start);
12923 section->start = NULL;
12924 section->address = 0;
12925 section->size = 0;
12926 }
12927
12928 static int
12929 display_debug_section (int shndx, Elf_Internal_Shdr * section, FILE * file)
12930 {
12931 char * name = SECTION_NAME (section);
12932 const char * print_name = printable_section_name (section);
12933 bfd_size_type length;
12934 int result = 1;
12935 int i;
12936
12937 length = section->sh_size;
12938 if (length == 0)
12939 {
12940 printf (_("\nSection '%s' has no debugging data.\n"), print_name);
12941 return 0;
12942 }
12943 if (section->sh_type == SHT_NOBITS)
12944 {
12945 /* There is no point in dumping the contents of a debugging section
12946 which has the NOBITS type - the bits in the file will be random.
12947 This can happen when a file containing a .eh_frame section is
12948 stripped with the --only-keep-debug command line option. */
12949 printf (_("section '%s' has the NOBITS type - its contents are unreliable.\n"),
12950 print_name);
12951 return 0;
12952 }
12953
12954 if (const_strneq (name, ".gnu.linkonce.wi."))
12955 name = ".debug_info";
12956
12957 /* See if we know how to display the contents of this section. */
12958 for (i = 0; i < max; i++)
12959 if (streq (debug_displays[i].section.uncompressed_name, name)
12960 || (i == line && const_strneq (name, ".debug_line."))
12961 || streq (debug_displays[i].section.compressed_name, name))
12962 {
12963 struct dwarf_section * sec = &debug_displays [i].section;
12964 int secondary = (section != find_section (name));
12965
12966 if (secondary)
12967 free_debug_section ((enum dwarf_section_display_enum) i);
12968
12969 if (i == line && const_strneq (name, ".debug_line."))
12970 sec->name = name;
12971 else if (streq (sec->uncompressed_name, name))
12972 sec->name = sec->uncompressed_name;
12973 else
12974 sec->name = sec->compressed_name;
12975 if (load_specific_debug_section ((enum dwarf_section_display_enum) i,
12976 section, file))
12977 {
12978 /* If this debug section is part of a CU/TU set in a .dwp file,
12979 restrict load_debug_section to the sections in that set. */
12980 section_subset = find_cu_tu_set (file, shndx);
12981
12982 result &= debug_displays[i].display (sec, file);
12983
12984 section_subset = NULL;
12985
12986 if (secondary || (i != info && i != abbrev))
12987 free_debug_section ((enum dwarf_section_display_enum) i);
12988 }
12989
12990 break;
12991 }
12992
12993 if (i == max)
12994 {
12995 printf (_("Unrecognized debug section: %s\n"), print_name);
12996 result = 0;
12997 }
12998
12999 return result;
13000 }
13001
13002 /* Set DUMP_SECTS for all sections where dumps were requested
13003 based on section name. */
13004
13005 static void
13006 initialise_dumps_byname (void)
13007 {
13008 struct dump_list_entry * cur;
13009
13010 for (cur = dump_sects_byname; cur; cur = cur->next)
13011 {
13012 unsigned int i;
13013 int any;
13014
13015 for (i = 0, any = 0; i < elf_header.e_shnum; i++)
13016 if (streq (SECTION_NAME (section_headers + i), cur->name))
13017 {
13018 request_dump_bynumber (i, cur->type);
13019 any = 1;
13020 }
13021
13022 if (!any)
13023 warn (_("Section '%s' was not dumped because it does not exist!\n"),
13024 cur->name);
13025 }
13026 }
13027
13028 static void
13029 process_section_contents (FILE * file)
13030 {
13031 Elf_Internal_Shdr * section;
13032 unsigned int i;
13033
13034 if (! do_dump)
13035 return;
13036
13037 initialise_dumps_byname ();
13038
13039 for (i = 0, section = section_headers;
13040 i < elf_header.e_shnum && i < num_dump_sects;
13041 i++, section++)
13042 {
13043 #ifdef SUPPORT_DISASSEMBLY
13044 if (dump_sects[i] & DISASS_DUMP)
13045 disassemble_section (section, file);
13046 #endif
13047 if (dump_sects[i] & HEX_DUMP)
13048 dump_section_as_bytes (section, file, FALSE);
13049
13050 if (dump_sects[i] & RELOC_DUMP)
13051 dump_section_as_bytes (section, file, TRUE);
13052
13053 if (dump_sects[i] & STRING_DUMP)
13054 dump_section_as_strings (section, file);
13055
13056 if (dump_sects[i] & DEBUG_DUMP)
13057 display_debug_section (i, section, file);
13058 }
13059
13060 /* Check to see if the user requested a
13061 dump of a section that does not exist. */
13062 while (i++ < num_dump_sects)
13063 if (dump_sects[i])
13064 warn (_("Section %d was not dumped because it does not exist!\n"), i);
13065 }
13066
13067 static void
13068 process_mips_fpe_exception (int mask)
13069 {
13070 if (mask)
13071 {
13072 int first = 1;
13073 if (mask & OEX_FPU_INEX)
13074 fputs ("INEX", stdout), first = 0;
13075 if (mask & OEX_FPU_UFLO)
13076 printf ("%sUFLO", first ? "" : "|"), first = 0;
13077 if (mask & OEX_FPU_OFLO)
13078 printf ("%sOFLO", first ? "" : "|"), first = 0;
13079 if (mask & OEX_FPU_DIV0)
13080 printf ("%sDIV0", first ? "" : "|"), first = 0;
13081 if (mask & OEX_FPU_INVAL)
13082 printf ("%sINVAL", first ? "" : "|");
13083 }
13084 else
13085 fputs ("0", stdout);
13086 }
13087
13088 /* Display's the value of TAG at location P. If TAG is
13089 greater than 0 it is assumed to be an unknown tag, and
13090 a message is printed to this effect. Otherwise it is
13091 assumed that a message has already been printed.
13092
13093 If the bottom bit of TAG is set it assumed to have a
13094 string value, otherwise it is assumed to have an integer
13095 value.
13096
13097 Returns an updated P pointing to the first unread byte
13098 beyond the end of TAG's value.
13099
13100 Reads at or beyond END will not be made. */
13101
13102 static unsigned char *
13103 display_tag_value (int tag,
13104 unsigned char * p,
13105 const unsigned char * const end)
13106 {
13107 unsigned long val;
13108
13109 if (tag > 0)
13110 printf (" Tag_unknown_%d: ", tag);
13111
13112 if (p >= end)
13113 {
13114 warn (_("<corrupt tag>\n"));
13115 }
13116 else if (tag & 1)
13117 {
13118 /* PR 17531 file: 027-19978-0.004. */
13119 size_t maxlen = (end - p) - 1;
13120
13121 putchar ('"');
13122 if (maxlen > 0)
13123 {
13124 print_symbol ((int) maxlen, (const char *) p);
13125 p += strnlen ((char *) p, maxlen) + 1;
13126 }
13127 else
13128 {
13129 printf (_("<corrupt string tag>"));
13130 p = (unsigned char *) end;
13131 }
13132 printf ("\"\n");
13133 }
13134 else
13135 {
13136 unsigned int len;
13137
13138 val = read_uleb128 (p, &len, end);
13139 p += len;
13140 printf ("%ld (0x%lx)\n", val, val);
13141 }
13142
13143 assert (p <= end);
13144 return p;
13145 }
13146
13147 /* ARM EABI attributes section. */
13148 typedef struct
13149 {
13150 unsigned int tag;
13151 const char * name;
13152 /* 0 = special, 1 = string, 2 = uleb123, > 0x80 == table lookup. */
13153 unsigned int type;
13154 const char ** table;
13155 } arm_attr_public_tag;
13156
13157 static const char * arm_attr_tag_CPU_arch[] =
13158 {"Pre-v4", "v4", "v4T", "v5T", "v5TE", "v5TEJ", "v6", "v6KZ", "v6T2",
13159 "v6K", "v7", "v6-M", "v6S-M", "v7E-M", "v8", "", "v8-M.baseline",
13160 "v8-M.mainline"};
13161 static const char * arm_attr_tag_ARM_ISA_use[] = {"No", "Yes"};
13162 static const char * arm_attr_tag_THUMB_ISA_use[] =
13163 {"No", "Thumb-1", "Thumb-2", "Yes"};
13164 static const char * arm_attr_tag_FP_arch[] =
13165 {"No", "VFPv1", "VFPv2", "VFPv3", "VFPv3-D16", "VFPv4", "VFPv4-D16",
13166 "FP for ARMv8", "FPv5/FP-D16 for ARMv8"};
13167 static const char * arm_attr_tag_WMMX_arch[] = {"No", "WMMXv1", "WMMXv2"};
13168 static const char * arm_attr_tag_Advanced_SIMD_arch[] =
13169 {"No", "NEONv1", "NEONv1 with Fused-MAC", "NEON for ARMv8",
13170 "NEON for ARMv8.1"};
13171 static const char * arm_attr_tag_PCS_config[] =
13172 {"None", "Bare platform", "Linux application", "Linux DSO", "PalmOS 2004",
13173 "PalmOS (reserved)", "SymbianOS 2004", "SymbianOS (reserved)"};
13174 static const char * arm_attr_tag_ABI_PCS_R9_use[] =
13175 {"V6", "SB", "TLS", "Unused"};
13176 static const char * arm_attr_tag_ABI_PCS_RW_data[] =
13177 {"Absolute", "PC-relative", "SB-relative", "None"};
13178 static const char * arm_attr_tag_ABI_PCS_RO_data[] =
13179 {"Absolute", "PC-relative", "None"};
13180 static const char * arm_attr_tag_ABI_PCS_GOT_use[] =
13181 {"None", "direct", "GOT-indirect"};
13182 static const char * arm_attr_tag_ABI_PCS_wchar_t[] =
13183 {"None", "??? 1", "2", "??? 3", "4"};
13184 static const char * arm_attr_tag_ABI_FP_rounding[] = {"Unused", "Needed"};
13185 static const char * arm_attr_tag_ABI_FP_denormal[] =
13186 {"Unused", "Needed", "Sign only"};
13187 static const char * arm_attr_tag_ABI_FP_exceptions[] = {"Unused", "Needed"};
13188 static const char * arm_attr_tag_ABI_FP_user_exceptions[] = {"Unused", "Needed"};
13189 static const char * arm_attr_tag_ABI_FP_number_model[] =
13190 {"Unused", "Finite", "RTABI", "IEEE 754"};
13191 static const char * arm_attr_tag_ABI_enum_size[] =
13192 {"Unused", "small", "int", "forced to int"};
13193 static const char * arm_attr_tag_ABI_HardFP_use[] =
13194 {"As Tag_FP_arch", "SP only", "Reserved", "Deprecated"};
13195 static const char * arm_attr_tag_ABI_VFP_args[] =
13196 {"AAPCS", "VFP registers", "custom", "compatible"};
13197 static const char * arm_attr_tag_ABI_WMMX_args[] =
13198 {"AAPCS", "WMMX registers", "custom"};
13199 static const char * arm_attr_tag_ABI_optimization_goals[] =
13200 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
13201 "Aggressive Size", "Prefer Debug", "Aggressive Debug"};
13202 static const char * arm_attr_tag_ABI_FP_optimization_goals[] =
13203 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
13204 "Aggressive Size", "Prefer Accuracy", "Aggressive Accuracy"};
13205 static const char * arm_attr_tag_CPU_unaligned_access[] = {"None", "v6"};
13206 static const char * arm_attr_tag_FP_HP_extension[] =
13207 {"Not Allowed", "Allowed"};
13208 static const char * arm_attr_tag_ABI_FP_16bit_format[] =
13209 {"None", "IEEE 754", "Alternative Format"};
13210 static const char * arm_attr_tag_DSP_extension[] =
13211 {"Follow architecture", "Allowed"};
13212 static const char * arm_attr_tag_MPextension_use[] =
13213 {"Not Allowed", "Allowed"};
13214 static const char * arm_attr_tag_DIV_use[] =
13215 {"Allowed in Thumb-ISA, v7-R or v7-M", "Not allowed",
13216 "Allowed in v7-A with integer division extension"};
13217 static const char * arm_attr_tag_T2EE_use[] = {"Not Allowed", "Allowed"};
13218 static const char * arm_attr_tag_Virtualization_use[] =
13219 {"Not Allowed", "TrustZone", "Virtualization Extensions",
13220 "TrustZone and Virtualization Extensions"};
13221 static const char * arm_attr_tag_MPextension_use_legacy[] =
13222 {"Not Allowed", "Allowed"};
13223
13224 #define LOOKUP(id, name) \
13225 {id, #name, 0x80 | ARRAY_SIZE(arm_attr_tag_##name), arm_attr_tag_##name}
13226 static arm_attr_public_tag arm_attr_public_tags[] =
13227 {
13228 {4, "CPU_raw_name", 1, NULL},
13229 {5, "CPU_name", 1, NULL},
13230 LOOKUP(6, CPU_arch),
13231 {7, "CPU_arch_profile", 0, NULL},
13232 LOOKUP(8, ARM_ISA_use),
13233 LOOKUP(9, THUMB_ISA_use),
13234 LOOKUP(10, FP_arch),
13235 LOOKUP(11, WMMX_arch),
13236 LOOKUP(12, Advanced_SIMD_arch),
13237 LOOKUP(13, PCS_config),
13238 LOOKUP(14, ABI_PCS_R9_use),
13239 LOOKUP(15, ABI_PCS_RW_data),
13240 LOOKUP(16, ABI_PCS_RO_data),
13241 LOOKUP(17, ABI_PCS_GOT_use),
13242 LOOKUP(18, ABI_PCS_wchar_t),
13243 LOOKUP(19, ABI_FP_rounding),
13244 LOOKUP(20, ABI_FP_denormal),
13245 LOOKUP(21, ABI_FP_exceptions),
13246 LOOKUP(22, ABI_FP_user_exceptions),
13247 LOOKUP(23, ABI_FP_number_model),
13248 {24, "ABI_align_needed", 0, NULL},
13249 {25, "ABI_align_preserved", 0, NULL},
13250 LOOKUP(26, ABI_enum_size),
13251 LOOKUP(27, ABI_HardFP_use),
13252 LOOKUP(28, ABI_VFP_args),
13253 LOOKUP(29, ABI_WMMX_args),
13254 LOOKUP(30, ABI_optimization_goals),
13255 LOOKUP(31, ABI_FP_optimization_goals),
13256 {32, "compatibility", 0, NULL},
13257 LOOKUP(34, CPU_unaligned_access),
13258 LOOKUP(36, FP_HP_extension),
13259 LOOKUP(38, ABI_FP_16bit_format),
13260 LOOKUP(42, MPextension_use),
13261 LOOKUP(44, DIV_use),
13262 LOOKUP(46, DSP_extension),
13263 {64, "nodefaults", 0, NULL},
13264 {65, "also_compatible_with", 0, NULL},
13265 LOOKUP(66, T2EE_use),
13266 {67, "conformance", 1, NULL},
13267 LOOKUP(68, Virtualization_use),
13268 LOOKUP(70, MPextension_use_legacy)
13269 };
13270 #undef LOOKUP
13271
13272 static unsigned char *
13273 display_arm_attribute (unsigned char * p,
13274 const unsigned char * const end)
13275 {
13276 unsigned int tag;
13277 unsigned int len;
13278 unsigned int val;
13279 arm_attr_public_tag * attr;
13280 unsigned i;
13281 unsigned int type;
13282
13283 tag = read_uleb128 (p, &len, end);
13284 p += len;
13285 attr = NULL;
13286 for (i = 0; i < ARRAY_SIZE (arm_attr_public_tags); i++)
13287 {
13288 if (arm_attr_public_tags[i].tag == tag)
13289 {
13290 attr = &arm_attr_public_tags[i];
13291 break;
13292 }
13293 }
13294
13295 if (attr)
13296 {
13297 printf (" Tag_%s: ", attr->name);
13298 switch (attr->type)
13299 {
13300 case 0:
13301 switch (tag)
13302 {
13303 case 7: /* Tag_CPU_arch_profile. */
13304 val = read_uleb128 (p, &len, end);
13305 p += len;
13306 switch (val)
13307 {
13308 case 0: printf (_("None\n")); break;
13309 case 'A': printf (_("Application\n")); break;
13310 case 'R': printf (_("Realtime\n")); break;
13311 case 'M': printf (_("Microcontroller\n")); break;
13312 case 'S': printf (_("Application or Realtime\n")); break;
13313 default: printf ("??? (%d)\n", val); break;
13314 }
13315 break;
13316
13317 case 24: /* Tag_align_needed. */
13318 val = read_uleb128 (p, &len, end);
13319 p += len;
13320 switch (val)
13321 {
13322 case 0: printf (_("None\n")); break;
13323 case 1: printf (_("8-byte\n")); break;
13324 case 2: printf (_("4-byte\n")); break;
13325 case 3: printf ("??? 3\n"); break;
13326 default:
13327 if (val <= 12)
13328 printf (_("8-byte and up to %d-byte extended\n"),
13329 1 << val);
13330 else
13331 printf ("??? (%d)\n", val);
13332 break;
13333 }
13334 break;
13335
13336 case 25: /* Tag_align_preserved. */
13337 val = read_uleb128 (p, &len, end);
13338 p += len;
13339 switch (val)
13340 {
13341 case 0: printf (_("None\n")); break;
13342 case 1: printf (_("8-byte, except leaf SP\n")); break;
13343 case 2: printf (_("8-byte\n")); break;
13344 case 3: printf ("??? 3\n"); break;
13345 default:
13346 if (val <= 12)
13347 printf (_("8-byte and up to %d-byte extended\n"),
13348 1 << val);
13349 else
13350 printf ("??? (%d)\n", val);
13351 break;
13352 }
13353 break;
13354
13355 case 32: /* Tag_compatibility. */
13356 {
13357 val = read_uleb128 (p, &len, end);
13358 p += len;
13359 printf (_("flag = %d, vendor = "), val);
13360 if (p < end - 1)
13361 {
13362 size_t maxlen = (end - p) - 1;
13363
13364 print_symbol ((int) maxlen, (const char *) p);
13365 p += strnlen ((char *) p, maxlen) + 1;
13366 }
13367 else
13368 {
13369 printf (_("<corrupt>"));
13370 p = (unsigned char *) end;
13371 }
13372 putchar ('\n');
13373 }
13374 break;
13375
13376 case 64: /* Tag_nodefaults. */
13377 /* PR 17531: file: 001-505008-0.01. */
13378 if (p < end)
13379 p++;
13380 printf (_("True\n"));
13381 break;
13382
13383 case 65: /* Tag_also_compatible_with. */
13384 val = read_uleb128 (p, &len, end);
13385 p += len;
13386 if (val == 6 /* Tag_CPU_arch. */)
13387 {
13388 val = read_uleb128 (p, &len, end);
13389 p += len;
13390 if ((unsigned int) val >= ARRAY_SIZE (arm_attr_tag_CPU_arch))
13391 printf ("??? (%d)\n", val);
13392 else
13393 printf ("%s\n", arm_attr_tag_CPU_arch[val]);
13394 }
13395 else
13396 printf ("???\n");
13397 while (p < end && *(p++) != '\0' /* NUL terminator. */)
13398 ;
13399 break;
13400
13401 default:
13402 printf (_("<unknown: %d>\n"), tag);
13403 break;
13404 }
13405 return p;
13406
13407 case 1:
13408 return display_tag_value (-1, p, end);
13409 case 2:
13410 return display_tag_value (0, p, end);
13411
13412 default:
13413 assert (attr->type & 0x80);
13414 val = read_uleb128 (p, &len, end);
13415 p += len;
13416 type = attr->type & 0x7f;
13417 if (val >= type)
13418 printf ("??? (%d)\n", val);
13419 else
13420 printf ("%s\n", attr->table[val]);
13421 return p;
13422 }
13423 }
13424
13425 return display_tag_value (tag, p, end);
13426 }
13427
13428 static unsigned char *
13429 display_gnu_attribute (unsigned char * p,
13430 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, int, const unsigned char * const),
13431 const unsigned char * const end)
13432 {
13433 int tag;
13434 unsigned int len;
13435 int val;
13436
13437 tag = read_uleb128 (p, &len, end);
13438 p += len;
13439
13440 /* Tag_compatibility is the only generic GNU attribute defined at
13441 present. */
13442 if (tag == 32)
13443 {
13444 val = read_uleb128 (p, &len, end);
13445 p += len;
13446
13447 printf (_("flag = %d, vendor = "), val);
13448 if (p == end)
13449 {
13450 printf (_("<corrupt>\n"));
13451 warn (_("corrupt vendor attribute\n"));
13452 }
13453 else
13454 {
13455 if (p < end - 1)
13456 {
13457 size_t maxlen = (end - p) - 1;
13458
13459 print_symbol ((int) maxlen, (const char *) p);
13460 p += strnlen ((char *) p, maxlen) + 1;
13461 }
13462 else
13463 {
13464 printf (_("<corrupt>"));
13465 p = (unsigned char *) end;
13466 }
13467 putchar ('\n');
13468 }
13469 return p;
13470 }
13471
13472 if ((tag & 2) == 0 && display_proc_gnu_attribute)
13473 return display_proc_gnu_attribute (p, tag, end);
13474
13475 return display_tag_value (tag, p, end);
13476 }
13477
13478 static unsigned char *
13479 display_power_gnu_attribute (unsigned char * p,
13480 int tag,
13481 const unsigned char * const end)
13482 {
13483 unsigned int len;
13484 unsigned int val;
13485
13486 if (tag == Tag_GNU_Power_ABI_FP)
13487 {
13488 val = read_uleb128 (p, &len, end);
13489 p += len;
13490 printf (" Tag_GNU_Power_ABI_FP: ");
13491 if (len == 0)
13492 {
13493 printf (_("<corrupt>\n"));
13494 return p;
13495 }
13496
13497 if (val > 15)
13498 printf ("(%#x), ", val);
13499
13500 switch (val & 3)
13501 {
13502 case 0:
13503 printf (_("unspecified hard/soft float, "));
13504 break;
13505 case 1:
13506 printf (_("hard float, "));
13507 break;
13508 case 2:
13509 printf (_("soft float, "));
13510 break;
13511 case 3:
13512 printf (_("single-precision hard float, "));
13513 break;
13514 }
13515
13516 switch (val & 0xC)
13517 {
13518 case 0:
13519 printf (_("unspecified long double\n"));
13520 break;
13521 case 4:
13522 printf (_("128-bit IBM long double\n"));
13523 break;
13524 case 8:
13525 printf (_("64-bit long double\n"));
13526 break;
13527 case 12:
13528 printf (_("128-bit IEEE long double\n"));
13529 break;
13530 }
13531 return p;
13532 }
13533
13534 if (tag == Tag_GNU_Power_ABI_Vector)
13535 {
13536 val = read_uleb128 (p, &len, end);
13537 p += len;
13538 printf (" Tag_GNU_Power_ABI_Vector: ");
13539 if (len == 0)
13540 {
13541 printf (_("<corrupt>\n"));
13542 return p;
13543 }
13544
13545 if (val > 3)
13546 printf ("(%#x), ", val);
13547
13548 switch (val & 3)
13549 {
13550 case 0:
13551 printf (_("unspecified\n"));
13552 break;
13553 case 1:
13554 printf (_("generic\n"));
13555 break;
13556 case 2:
13557 printf ("AltiVec\n");
13558 break;
13559 case 3:
13560 printf ("SPE\n");
13561 break;
13562 }
13563 return p;
13564 }
13565
13566 if (tag == Tag_GNU_Power_ABI_Struct_Return)
13567 {
13568 val = read_uleb128 (p, &len, end);
13569 p += len;
13570 printf (" Tag_GNU_Power_ABI_Struct_Return: ");
13571 if (len == 0)
13572 {
13573 printf (_("<corrupt>\n"));
13574 return p;
13575 }
13576
13577 if (val > 2)
13578 printf ("(%#x), ", val);
13579
13580 switch (val & 3)
13581 {
13582 case 0:
13583 printf (_("unspecified\n"));
13584 break;
13585 case 1:
13586 printf ("r3/r4\n");
13587 break;
13588 case 2:
13589 printf (_("memory\n"));
13590 break;
13591 case 3:
13592 printf ("???\n");
13593 break;
13594 }
13595 return p;
13596 }
13597
13598 return display_tag_value (tag & 1, p, end);
13599 }
13600
13601 static unsigned char *
13602 display_s390_gnu_attribute (unsigned char * p,
13603 int tag,
13604 const unsigned char * const end)
13605 {
13606 unsigned int len;
13607 int val;
13608
13609 if (tag == Tag_GNU_S390_ABI_Vector)
13610 {
13611 val = read_uleb128 (p, &len, end);
13612 p += len;
13613 printf (" Tag_GNU_S390_ABI_Vector: ");
13614
13615 switch (val)
13616 {
13617 case 0:
13618 printf (_("any\n"));
13619 break;
13620 case 1:
13621 printf (_("software\n"));
13622 break;
13623 case 2:
13624 printf (_("hardware\n"));
13625 break;
13626 default:
13627 printf ("??? (%d)\n", val);
13628 break;
13629 }
13630 return p;
13631 }
13632
13633 return display_tag_value (tag & 1, p, end);
13634 }
13635
13636 static void
13637 display_sparc_hwcaps (int mask)
13638 {
13639 if (mask)
13640 {
13641 int first = 1;
13642
13643 if (mask & ELF_SPARC_HWCAP_MUL32)
13644 fputs ("mul32", stdout), first = 0;
13645 if (mask & ELF_SPARC_HWCAP_DIV32)
13646 printf ("%sdiv32", first ? "" : "|"), first = 0;
13647 if (mask & ELF_SPARC_HWCAP_FSMULD)
13648 printf ("%sfsmuld", first ? "" : "|"), first = 0;
13649 if (mask & ELF_SPARC_HWCAP_V8PLUS)
13650 printf ("%sv8plus", first ? "" : "|"), first = 0;
13651 if (mask & ELF_SPARC_HWCAP_POPC)
13652 printf ("%spopc", first ? "" : "|"), first = 0;
13653 if (mask & ELF_SPARC_HWCAP_VIS)
13654 printf ("%svis", first ? "" : "|"), first = 0;
13655 if (mask & ELF_SPARC_HWCAP_VIS2)
13656 printf ("%svis2", first ? "" : "|"), first = 0;
13657 if (mask & ELF_SPARC_HWCAP_ASI_BLK_INIT)
13658 printf ("%sASIBlkInit", first ? "" : "|"), first = 0;
13659 if (mask & ELF_SPARC_HWCAP_FMAF)
13660 printf ("%sfmaf", first ? "" : "|"), first = 0;
13661 if (mask & ELF_SPARC_HWCAP_VIS3)
13662 printf ("%svis3", first ? "" : "|"), first = 0;
13663 if (mask & ELF_SPARC_HWCAP_HPC)
13664 printf ("%shpc", first ? "" : "|"), first = 0;
13665 if (mask & ELF_SPARC_HWCAP_RANDOM)
13666 printf ("%srandom", first ? "" : "|"), first = 0;
13667 if (mask & ELF_SPARC_HWCAP_TRANS)
13668 printf ("%strans", first ? "" : "|"), first = 0;
13669 if (mask & ELF_SPARC_HWCAP_FJFMAU)
13670 printf ("%sfjfmau", first ? "" : "|"), first = 0;
13671 if (mask & ELF_SPARC_HWCAP_IMA)
13672 printf ("%sima", first ? "" : "|"), first = 0;
13673 if (mask & ELF_SPARC_HWCAP_ASI_CACHE_SPARING)
13674 printf ("%scspare", first ? "" : "|"), first = 0;
13675 }
13676 else
13677 fputc ('0', stdout);
13678 fputc ('\n', stdout);
13679 }
13680
13681 static void
13682 display_sparc_hwcaps2 (int mask)
13683 {
13684 if (mask)
13685 {
13686 int first = 1;
13687
13688 if (mask & ELF_SPARC_HWCAP2_FJATHPLUS)
13689 fputs ("fjathplus", stdout), first = 0;
13690 if (mask & ELF_SPARC_HWCAP2_VIS3B)
13691 printf ("%svis3b", first ? "" : "|"), first = 0;
13692 if (mask & ELF_SPARC_HWCAP2_ADP)
13693 printf ("%sadp", first ? "" : "|"), first = 0;
13694 if (mask & ELF_SPARC_HWCAP2_SPARC5)
13695 printf ("%ssparc5", first ? "" : "|"), first = 0;
13696 if (mask & ELF_SPARC_HWCAP2_MWAIT)
13697 printf ("%smwait", first ? "" : "|"), first = 0;
13698 if (mask & ELF_SPARC_HWCAP2_XMPMUL)
13699 printf ("%sxmpmul", first ? "" : "|"), first = 0;
13700 if (mask & ELF_SPARC_HWCAP2_XMONT)
13701 printf ("%sxmont2", first ? "" : "|"), first = 0;
13702 if (mask & ELF_SPARC_HWCAP2_NSEC)
13703 printf ("%snsec", first ? "" : "|"), first = 0;
13704 if (mask & ELF_SPARC_HWCAP2_FJATHHPC)
13705 printf ("%sfjathhpc", first ? "" : "|"), first = 0;
13706 if (mask & ELF_SPARC_HWCAP2_FJDES)
13707 printf ("%sfjdes", first ? "" : "|"), first = 0;
13708 if (mask & ELF_SPARC_HWCAP2_FJAES)
13709 printf ("%sfjaes", first ? "" : "|"), first = 0;
13710 }
13711 else
13712 fputc ('0', stdout);
13713 fputc ('\n', stdout);
13714 }
13715
13716 static unsigned char *
13717 display_sparc_gnu_attribute (unsigned char * p,
13718 int tag,
13719 const unsigned char * const end)
13720 {
13721 unsigned int len;
13722 int val;
13723
13724 if (tag == Tag_GNU_Sparc_HWCAPS)
13725 {
13726 val = read_uleb128 (p, &len, end);
13727 p += len;
13728 printf (" Tag_GNU_Sparc_HWCAPS: ");
13729 display_sparc_hwcaps (val);
13730 return p;
13731 }
13732 if (tag == Tag_GNU_Sparc_HWCAPS2)
13733 {
13734 val = read_uleb128 (p, &len, end);
13735 p += len;
13736 printf (" Tag_GNU_Sparc_HWCAPS2: ");
13737 display_sparc_hwcaps2 (val);
13738 return p;
13739 }
13740
13741 return display_tag_value (tag, p, end);
13742 }
13743
13744 static void
13745 print_mips_fp_abi_value (int val)
13746 {
13747 switch (val)
13748 {
13749 case Val_GNU_MIPS_ABI_FP_ANY:
13750 printf (_("Hard or soft float\n"));
13751 break;
13752 case Val_GNU_MIPS_ABI_FP_DOUBLE:
13753 printf (_("Hard float (double precision)\n"));
13754 break;
13755 case Val_GNU_MIPS_ABI_FP_SINGLE:
13756 printf (_("Hard float (single precision)\n"));
13757 break;
13758 case Val_GNU_MIPS_ABI_FP_SOFT:
13759 printf (_("Soft float\n"));
13760 break;
13761 case Val_GNU_MIPS_ABI_FP_OLD_64:
13762 printf (_("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
13763 break;
13764 case Val_GNU_MIPS_ABI_FP_XX:
13765 printf (_("Hard float (32-bit CPU, Any FPU)\n"));
13766 break;
13767 case Val_GNU_MIPS_ABI_FP_64:
13768 printf (_("Hard float (32-bit CPU, 64-bit FPU)\n"));
13769 break;
13770 case Val_GNU_MIPS_ABI_FP_64A:
13771 printf (_("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
13772 break;
13773 case Val_GNU_MIPS_ABI_FP_NAN2008:
13774 printf (_("NaN 2008 compatibility\n"));
13775 break;
13776 default:
13777 printf ("??? (%d)\n", val);
13778 break;
13779 }
13780 }
13781
13782 static unsigned char *
13783 display_mips_gnu_attribute (unsigned char * p,
13784 int tag,
13785 const unsigned char * const end)
13786 {
13787 if (tag == Tag_GNU_MIPS_ABI_FP)
13788 {
13789 unsigned int len;
13790 int val;
13791
13792 val = read_uleb128 (p, &len, end);
13793 p += len;
13794 printf (" Tag_GNU_MIPS_ABI_FP: ");
13795
13796 print_mips_fp_abi_value (val);
13797
13798 return p;
13799 }
13800
13801 if (tag == Tag_GNU_MIPS_ABI_MSA)
13802 {
13803 unsigned int len;
13804 int val;
13805
13806 val = read_uleb128 (p, &len, end);
13807 p += len;
13808 printf (" Tag_GNU_MIPS_ABI_MSA: ");
13809
13810 switch (val)
13811 {
13812 case Val_GNU_MIPS_ABI_MSA_ANY:
13813 printf (_("Any MSA or not\n"));
13814 break;
13815 case Val_GNU_MIPS_ABI_MSA_128:
13816 printf (_("128-bit MSA\n"));
13817 break;
13818 default:
13819 printf ("??? (%d)\n", val);
13820 break;
13821 }
13822 return p;
13823 }
13824
13825 return display_tag_value (tag & 1, p, end);
13826 }
13827
13828 static unsigned char *
13829 display_tic6x_attribute (unsigned char * p,
13830 const unsigned char * const end)
13831 {
13832 int tag;
13833 unsigned int len;
13834 int val;
13835
13836 tag = read_uleb128 (p, &len, end);
13837 p += len;
13838
13839 switch (tag)
13840 {
13841 case Tag_ISA:
13842 val = read_uleb128 (p, &len, end);
13843 p += len;
13844 printf (" Tag_ISA: ");
13845
13846 switch (val)
13847 {
13848 case C6XABI_Tag_ISA_none:
13849 printf (_("None\n"));
13850 break;
13851 case C6XABI_Tag_ISA_C62X:
13852 printf ("C62x\n");
13853 break;
13854 case C6XABI_Tag_ISA_C67X:
13855 printf ("C67x\n");
13856 break;
13857 case C6XABI_Tag_ISA_C67XP:
13858 printf ("C67x+\n");
13859 break;
13860 case C6XABI_Tag_ISA_C64X:
13861 printf ("C64x\n");
13862 break;
13863 case C6XABI_Tag_ISA_C64XP:
13864 printf ("C64x+\n");
13865 break;
13866 case C6XABI_Tag_ISA_C674X:
13867 printf ("C674x\n");
13868 break;
13869 default:
13870 printf ("??? (%d)\n", val);
13871 break;
13872 }
13873 return p;
13874
13875 case Tag_ABI_wchar_t:
13876 val = read_uleb128 (p, &len, end);
13877 p += len;
13878 printf (" Tag_ABI_wchar_t: ");
13879 switch (val)
13880 {
13881 case 0:
13882 printf (_("Not used\n"));
13883 break;
13884 case 1:
13885 printf (_("2 bytes\n"));
13886 break;
13887 case 2:
13888 printf (_("4 bytes\n"));
13889 break;
13890 default:
13891 printf ("??? (%d)\n", val);
13892 break;
13893 }
13894 return p;
13895
13896 case Tag_ABI_stack_align_needed:
13897 val = read_uleb128 (p, &len, end);
13898 p += len;
13899 printf (" Tag_ABI_stack_align_needed: ");
13900 switch (val)
13901 {
13902 case 0:
13903 printf (_("8-byte\n"));
13904 break;
13905 case 1:
13906 printf (_("16-byte\n"));
13907 break;
13908 default:
13909 printf ("??? (%d)\n", val);
13910 break;
13911 }
13912 return p;
13913
13914 case Tag_ABI_stack_align_preserved:
13915 val = read_uleb128 (p, &len, end);
13916 p += len;
13917 printf (" Tag_ABI_stack_align_preserved: ");
13918 switch (val)
13919 {
13920 case 0:
13921 printf (_("8-byte\n"));
13922 break;
13923 case 1:
13924 printf (_("16-byte\n"));
13925 break;
13926 default:
13927 printf ("??? (%d)\n", val);
13928 break;
13929 }
13930 return p;
13931
13932 case Tag_ABI_DSBT:
13933 val = read_uleb128 (p, &len, end);
13934 p += len;
13935 printf (" Tag_ABI_DSBT: ");
13936 switch (val)
13937 {
13938 case 0:
13939 printf (_("DSBT addressing not used\n"));
13940 break;
13941 case 1:
13942 printf (_("DSBT addressing used\n"));
13943 break;
13944 default:
13945 printf ("??? (%d)\n", val);
13946 break;
13947 }
13948 return p;
13949
13950 case Tag_ABI_PID:
13951 val = read_uleb128 (p, &len, end);
13952 p += len;
13953 printf (" Tag_ABI_PID: ");
13954 switch (val)
13955 {
13956 case 0:
13957 printf (_("Data addressing position-dependent\n"));
13958 break;
13959 case 1:
13960 printf (_("Data addressing position-independent, GOT near DP\n"));
13961 break;
13962 case 2:
13963 printf (_("Data addressing position-independent, GOT far from DP\n"));
13964 break;
13965 default:
13966 printf ("??? (%d)\n", val);
13967 break;
13968 }
13969 return p;
13970
13971 case Tag_ABI_PIC:
13972 val = read_uleb128 (p, &len, end);
13973 p += len;
13974 printf (" Tag_ABI_PIC: ");
13975 switch (val)
13976 {
13977 case 0:
13978 printf (_("Code addressing position-dependent\n"));
13979 break;
13980 case 1:
13981 printf (_("Code addressing position-independent\n"));
13982 break;
13983 default:
13984 printf ("??? (%d)\n", val);
13985 break;
13986 }
13987 return p;
13988
13989 case Tag_ABI_array_object_alignment:
13990 val = read_uleb128 (p, &len, end);
13991 p += len;
13992 printf (" Tag_ABI_array_object_alignment: ");
13993 switch (val)
13994 {
13995 case 0:
13996 printf (_("8-byte\n"));
13997 break;
13998 case 1:
13999 printf (_("4-byte\n"));
14000 break;
14001 case 2:
14002 printf (_("16-byte\n"));
14003 break;
14004 default:
14005 printf ("??? (%d)\n", val);
14006 break;
14007 }
14008 return p;
14009
14010 case Tag_ABI_array_object_align_expected:
14011 val = read_uleb128 (p, &len, end);
14012 p += len;
14013 printf (" Tag_ABI_array_object_align_expected: ");
14014 switch (val)
14015 {
14016 case 0:
14017 printf (_("8-byte\n"));
14018 break;
14019 case 1:
14020 printf (_("4-byte\n"));
14021 break;
14022 case 2:
14023 printf (_("16-byte\n"));
14024 break;
14025 default:
14026 printf ("??? (%d)\n", val);
14027 break;
14028 }
14029 return p;
14030
14031 case Tag_ABI_compatibility:
14032 {
14033 val = read_uleb128 (p, &len, end);
14034 p += len;
14035 printf (" Tag_ABI_compatibility: ");
14036 printf (_("flag = %d, vendor = "), val);
14037 if (p < end - 1)
14038 {
14039 size_t maxlen = (end - p) - 1;
14040
14041 print_symbol ((int) maxlen, (const char *) p);
14042 p += strnlen ((char *) p, maxlen) + 1;
14043 }
14044 else
14045 {
14046 printf (_("<corrupt>"));
14047 p = (unsigned char *) end;
14048 }
14049 putchar ('\n');
14050 return p;
14051 }
14052
14053 case Tag_ABI_conformance:
14054 {
14055 printf (" Tag_ABI_conformance: \"");
14056 if (p < end - 1)
14057 {
14058 size_t maxlen = (end - p) - 1;
14059
14060 print_symbol ((int) maxlen, (const char *) p);
14061 p += strnlen ((char *) p, maxlen) + 1;
14062 }
14063 else
14064 {
14065 printf (_("<corrupt>"));
14066 p = (unsigned char *) end;
14067 }
14068 printf ("\"\n");
14069 return p;
14070 }
14071 }
14072
14073 return display_tag_value (tag, p, end);
14074 }
14075
14076 static void
14077 display_raw_attribute (unsigned char * p, unsigned char * end)
14078 {
14079 unsigned long addr = 0;
14080 size_t bytes = end - p;
14081
14082 assert (end > p);
14083 while (bytes)
14084 {
14085 int j;
14086 int k;
14087 int lbytes = (bytes > 16 ? 16 : bytes);
14088
14089 printf (" 0x%8.8lx ", addr);
14090
14091 for (j = 0; j < 16; j++)
14092 {
14093 if (j < lbytes)
14094 printf ("%2.2x", p[j]);
14095 else
14096 printf (" ");
14097
14098 if ((j & 3) == 3)
14099 printf (" ");
14100 }
14101
14102 for (j = 0; j < lbytes; j++)
14103 {
14104 k = p[j];
14105 if (k >= ' ' && k < 0x7f)
14106 printf ("%c", k);
14107 else
14108 printf (".");
14109 }
14110
14111 putchar ('\n');
14112
14113 p += lbytes;
14114 bytes -= lbytes;
14115 addr += lbytes;
14116 }
14117
14118 putchar ('\n');
14119 }
14120
14121 static unsigned char *
14122 display_msp430x_attribute (unsigned char * p,
14123 const unsigned char * const end)
14124 {
14125 unsigned int len;
14126 int val;
14127 int tag;
14128
14129 tag = read_uleb128 (p, & len, end);
14130 p += len;
14131
14132 switch (tag)
14133 {
14134 case OFBA_MSPABI_Tag_ISA:
14135 val = read_uleb128 (p, &len, end);
14136 p += len;
14137 printf (" Tag_ISA: ");
14138 switch (val)
14139 {
14140 case 0: printf (_("None\n")); break;
14141 case 1: printf (_("MSP430\n")); break;
14142 case 2: printf (_("MSP430X\n")); break;
14143 default: printf ("??? (%d)\n", val); break;
14144 }
14145 break;
14146
14147 case OFBA_MSPABI_Tag_Code_Model:
14148 val = read_uleb128 (p, &len, end);
14149 p += len;
14150 printf (" Tag_Code_Model: ");
14151 switch (val)
14152 {
14153 case 0: printf (_("None\n")); break;
14154 case 1: printf (_("Small\n")); break;
14155 case 2: printf (_("Large\n")); break;
14156 default: printf ("??? (%d)\n", val); break;
14157 }
14158 break;
14159
14160 case OFBA_MSPABI_Tag_Data_Model:
14161 val = read_uleb128 (p, &len, end);
14162 p += len;
14163 printf (" Tag_Data_Model: ");
14164 switch (val)
14165 {
14166 case 0: printf (_("None\n")); break;
14167 case 1: printf (_("Small\n")); break;
14168 case 2: printf (_("Large\n")); break;
14169 case 3: printf (_("Restricted Large\n")); break;
14170 default: printf ("??? (%d)\n", val); break;
14171 }
14172 break;
14173
14174 default:
14175 printf (_(" <unknown tag %d>: "), tag);
14176
14177 if (tag & 1)
14178 {
14179 putchar ('"');
14180 if (p < end - 1)
14181 {
14182 size_t maxlen = (end - p) - 1;
14183
14184 print_symbol ((int) maxlen, (const char *) p);
14185 p += strnlen ((char *) p, maxlen) + 1;
14186 }
14187 else
14188 {
14189 printf (_("<corrupt>"));
14190 p = (unsigned char *) end;
14191 }
14192 printf ("\"\n");
14193 }
14194 else
14195 {
14196 val = read_uleb128 (p, &len, end);
14197 p += len;
14198 printf ("%d (0x%x)\n", val, val);
14199 }
14200 break;
14201 }
14202
14203 assert (p <= end);
14204 return p;
14205 }
14206
14207 static int
14208 process_attributes (FILE * file,
14209 const char * public_name,
14210 unsigned int proc_type,
14211 unsigned char * (* display_pub_attribute) (unsigned char *, const unsigned char * const),
14212 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, int, const unsigned char * const))
14213 {
14214 Elf_Internal_Shdr * sect;
14215 unsigned i;
14216
14217 /* Find the section header so that we get the size. */
14218 for (i = 0, sect = section_headers;
14219 i < elf_header.e_shnum;
14220 i++, sect++)
14221 {
14222 unsigned char * contents;
14223 unsigned char * p;
14224
14225 if (sect->sh_type != proc_type && sect->sh_type != SHT_GNU_ATTRIBUTES)
14226 continue;
14227
14228 contents = (unsigned char *) get_data (NULL, file, sect->sh_offset, 1,
14229 sect->sh_size, _("attributes"));
14230 if (contents == NULL)
14231 continue;
14232
14233 p = contents;
14234 if (*p == 'A')
14235 {
14236 bfd_vma section_len;
14237
14238 section_len = sect->sh_size - 1;
14239 p++;
14240
14241 while (section_len > 0)
14242 {
14243 bfd_vma attr_len;
14244 unsigned int namelen;
14245 bfd_boolean public_section;
14246 bfd_boolean gnu_section;
14247
14248 if (section_len <= 4)
14249 {
14250 error (_("Tag section ends prematurely\n"));
14251 break;
14252 }
14253 attr_len = byte_get (p, 4);
14254 p += 4;
14255
14256 if (attr_len > section_len)
14257 {
14258 error (_("Bad attribute length (%u > %u)\n"),
14259 (unsigned) attr_len, (unsigned) section_len);
14260 attr_len = section_len;
14261 }
14262 /* PR 17531: file: 001-101425-0.004 */
14263 else if (attr_len < 5)
14264 {
14265 error (_("Attribute length of %u is too small\n"), (unsigned) attr_len);
14266 break;
14267 }
14268
14269 section_len -= attr_len;
14270 attr_len -= 4;
14271
14272 namelen = strnlen ((char *) p, attr_len) + 1;
14273 if (namelen == 0 || namelen >= attr_len)
14274 {
14275 error (_("Corrupt attribute section name\n"));
14276 break;
14277 }
14278
14279 printf (_("Attribute Section: "));
14280 print_symbol (INT_MAX, (const char *) p);
14281 putchar ('\n');
14282
14283 if (public_name && streq ((char *) p, public_name))
14284 public_section = TRUE;
14285 else
14286 public_section = FALSE;
14287
14288 if (streq ((char *) p, "gnu"))
14289 gnu_section = TRUE;
14290 else
14291 gnu_section = FALSE;
14292
14293 p += namelen;
14294 attr_len -= namelen;
14295
14296 while (attr_len > 0 && p < contents + sect->sh_size)
14297 {
14298 int tag;
14299 int val;
14300 bfd_vma size;
14301 unsigned char * end;
14302
14303 /* PR binutils/17531: Safe handling of corrupt files. */
14304 if (attr_len < 6)
14305 {
14306 error (_("Unused bytes at end of section\n"));
14307 section_len = 0;
14308 break;
14309 }
14310
14311 tag = *(p++);
14312 size = byte_get (p, 4);
14313 if (size > attr_len)
14314 {
14315 error (_("Bad subsection length (%u > %u)\n"),
14316 (unsigned) size, (unsigned) attr_len);
14317 size = attr_len;
14318 }
14319 /* PR binutils/17531: Safe handling of corrupt files. */
14320 if (size < 6)
14321 {
14322 error (_("Bad subsection length (%u < 6)\n"),
14323 (unsigned) size);
14324 section_len = 0;
14325 break;
14326 }
14327
14328 attr_len -= size;
14329 end = p + size - 1;
14330 assert (end <= contents + sect->sh_size);
14331 p += 4;
14332
14333 switch (tag)
14334 {
14335 case 1:
14336 printf (_("File Attributes\n"));
14337 break;
14338 case 2:
14339 printf (_("Section Attributes:"));
14340 goto do_numlist;
14341 case 3:
14342 printf (_("Symbol Attributes:"));
14343 /* Fall through. */
14344 do_numlist:
14345 for (;;)
14346 {
14347 unsigned int j;
14348
14349 val = read_uleb128 (p, &j, end);
14350 p += j;
14351 if (val == 0)
14352 break;
14353 printf (" %d", val);
14354 }
14355 printf ("\n");
14356 break;
14357 default:
14358 printf (_("Unknown tag: %d\n"), tag);
14359 public_section = FALSE;
14360 break;
14361 }
14362
14363 if (public_section && display_pub_attribute != NULL)
14364 {
14365 while (p < end)
14366 p = display_pub_attribute (p, end);
14367 assert (p <= end);
14368 }
14369 else if (gnu_section && display_proc_gnu_attribute != NULL)
14370 {
14371 while (p < end)
14372 p = display_gnu_attribute (p,
14373 display_proc_gnu_attribute,
14374 end);
14375 assert (p <= end);
14376 }
14377 else if (p < end)
14378 {
14379 printf (_(" Unknown attribute:\n"));
14380 display_raw_attribute (p, end);
14381 p = end;
14382 }
14383 else
14384 attr_len = 0;
14385 }
14386 }
14387 }
14388 else
14389 printf (_("Unknown format '%c' (%d)\n"), *p, *p);
14390
14391 free (contents);
14392 }
14393 return 1;
14394 }
14395
14396 static int
14397 process_arm_specific (FILE * file)
14398 {
14399 return process_attributes (file, "aeabi", SHT_ARM_ATTRIBUTES,
14400 display_arm_attribute, NULL);
14401 }
14402
14403 static int
14404 process_power_specific (FILE * file)
14405 {
14406 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
14407 display_power_gnu_attribute);
14408 }
14409
14410 static int
14411 process_s390_specific (FILE * file)
14412 {
14413 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
14414 display_s390_gnu_attribute);
14415 }
14416
14417 static int
14418 process_sparc_specific (FILE * file)
14419 {
14420 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
14421 display_sparc_gnu_attribute);
14422 }
14423
14424 static int
14425 process_tic6x_specific (FILE * file)
14426 {
14427 return process_attributes (file, "c6xabi", SHT_C6000_ATTRIBUTES,
14428 display_tic6x_attribute, NULL);
14429 }
14430
14431 static int
14432 process_msp430x_specific (FILE * file)
14433 {
14434 return process_attributes (file, "mspabi", SHT_MSP430_ATTRIBUTES,
14435 display_msp430x_attribute, NULL);
14436 }
14437
14438 /* DATA points to the contents of a MIPS GOT that starts at VMA PLTGOT.
14439 Print the Address, Access and Initial fields of an entry at VMA ADDR
14440 and return the VMA of the next entry, or -1 if there was a problem.
14441 Does not read from DATA_END or beyond. */
14442
14443 static bfd_vma
14444 print_mips_got_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr,
14445 unsigned char * data_end)
14446 {
14447 printf (" ");
14448 print_vma (addr, LONG_HEX);
14449 printf (" ");
14450 if (addr < pltgot + 0xfff0)
14451 printf ("%6d(gp)", (int) (addr - pltgot - 0x7ff0));
14452 else
14453 printf ("%10s", "");
14454 printf (" ");
14455 if (data == NULL)
14456 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
14457 else
14458 {
14459 bfd_vma entry;
14460 unsigned char * from = data + addr - pltgot;
14461
14462 if (from + (is_32bit_elf ? 4 : 8) > data_end)
14463 {
14464 warn (_("MIPS GOT entry extends beyond the end of available data\n"));
14465 printf ("%*s", is_32bit_elf ? 8 : 16, _("<corrupt>"));
14466 return (bfd_vma) -1;
14467 }
14468 else
14469 {
14470 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
14471 print_vma (entry, LONG_HEX);
14472 }
14473 }
14474 return addr + (is_32bit_elf ? 4 : 8);
14475 }
14476
14477 /* DATA points to the contents of a MIPS PLT GOT that starts at VMA
14478 PLTGOT. Print the Address and Initial fields of an entry at VMA
14479 ADDR and return the VMA of the next entry. */
14480
14481 static bfd_vma
14482 print_mips_pltgot_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
14483 {
14484 printf (" ");
14485 print_vma (addr, LONG_HEX);
14486 printf (" ");
14487 if (data == NULL)
14488 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
14489 else
14490 {
14491 bfd_vma entry;
14492
14493 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
14494 print_vma (entry, LONG_HEX);
14495 }
14496 return addr + (is_32bit_elf ? 4 : 8);
14497 }
14498
14499 static void
14500 print_mips_ases (unsigned int mask)
14501 {
14502 if (mask & AFL_ASE_DSP)
14503 fputs ("\n\tDSP ASE", stdout);
14504 if (mask & AFL_ASE_DSPR2)
14505 fputs ("\n\tDSP R2 ASE", stdout);
14506 if (mask & AFL_ASE_DSPR3)
14507 fputs ("\n\tDSP R3 ASE", stdout);
14508 if (mask & AFL_ASE_EVA)
14509 fputs ("\n\tEnhanced VA Scheme", stdout);
14510 if (mask & AFL_ASE_MCU)
14511 fputs ("\n\tMCU (MicroController) ASE", stdout);
14512 if (mask & AFL_ASE_MDMX)
14513 fputs ("\n\tMDMX ASE", stdout);
14514 if (mask & AFL_ASE_MIPS3D)
14515 fputs ("\n\tMIPS-3D ASE", stdout);
14516 if (mask & AFL_ASE_MT)
14517 fputs ("\n\tMT ASE", stdout);
14518 if (mask & AFL_ASE_SMARTMIPS)
14519 fputs ("\n\tSmartMIPS ASE", stdout);
14520 if (mask & AFL_ASE_VIRT)
14521 fputs ("\n\tVZ ASE", stdout);
14522 if (mask & AFL_ASE_MSA)
14523 fputs ("\n\tMSA ASE", stdout);
14524 if (mask & AFL_ASE_MIPS16)
14525 fputs ("\n\tMIPS16 ASE", stdout);
14526 if (mask & AFL_ASE_MICROMIPS)
14527 fputs ("\n\tMICROMIPS ASE", stdout);
14528 if (mask & AFL_ASE_XPA)
14529 fputs ("\n\tXPA ASE", stdout);
14530 if (mask == 0)
14531 fprintf (stdout, "\n\t%s", _("None"));
14532 else if ((mask & ~AFL_ASE_MASK) != 0)
14533 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
14534 }
14535
14536 static void
14537 print_mips_isa_ext (unsigned int isa_ext)
14538 {
14539 switch (isa_ext)
14540 {
14541 case 0:
14542 fputs (_("None"), stdout);
14543 break;
14544 case AFL_EXT_XLR:
14545 fputs ("RMI XLR", stdout);
14546 break;
14547 case AFL_EXT_OCTEON3:
14548 fputs ("Cavium Networks Octeon3", stdout);
14549 break;
14550 case AFL_EXT_OCTEON2:
14551 fputs ("Cavium Networks Octeon2", stdout);
14552 break;
14553 case AFL_EXT_OCTEONP:
14554 fputs ("Cavium Networks OcteonP", stdout);
14555 break;
14556 case AFL_EXT_LOONGSON_3A:
14557 fputs ("Loongson 3A", stdout);
14558 break;
14559 case AFL_EXT_OCTEON:
14560 fputs ("Cavium Networks Octeon", stdout);
14561 break;
14562 case AFL_EXT_5900:
14563 fputs ("Toshiba R5900", stdout);
14564 break;
14565 case AFL_EXT_4650:
14566 fputs ("MIPS R4650", stdout);
14567 break;
14568 case AFL_EXT_4010:
14569 fputs ("LSI R4010", stdout);
14570 break;
14571 case AFL_EXT_4100:
14572 fputs ("NEC VR4100", stdout);
14573 break;
14574 case AFL_EXT_3900:
14575 fputs ("Toshiba R3900", stdout);
14576 break;
14577 case AFL_EXT_10000:
14578 fputs ("MIPS R10000", stdout);
14579 break;
14580 case AFL_EXT_SB1:
14581 fputs ("Broadcom SB-1", stdout);
14582 break;
14583 case AFL_EXT_4111:
14584 fputs ("NEC VR4111/VR4181", stdout);
14585 break;
14586 case AFL_EXT_4120:
14587 fputs ("NEC VR4120", stdout);
14588 break;
14589 case AFL_EXT_5400:
14590 fputs ("NEC VR5400", stdout);
14591 break;
14592 case AFL_EXT_5500:
14593 fputs ("NEC VR5500", stdout);
14594 break;
14595 case AFL_EXT_LOONGSON_2E:
14596 fputs ("ST Microelectronics Loongson 2E", stdout);
14597 break;
14598 case AFL_EXT_LOONGSON_2F:
14599 fputs ("ST Microelectronics Loongson 2F", stdout);
14600 break;
14601 default:
14602 fprintf (stdout, "%s (%d)", _("Unknown"), isa_ext);
14603 }
14604 }
14605
14606 static int
14607 get_mips_reg_size (int reg_size)
14608 {
14609 return (reg_size == AFL_REG_NONE) ? 0
14610 : (reg_size == AFL_REG_32) ? 32
14611 : (reg_size == AFL_REG_64) ? 64
14612 : (reg_size == AFL_REG_128) ? 128
14613 : -1;
14614 }
14615
14616 static int
14617 process_mips_specific (FILE * file)
14618 {
14619 Elf_Internal_Dyn * entry;
14620 Elf_Internal_Shdr *sect = NULL;
14621 size_t liblist_offset = 0;
14622 size_t liblistno = 0;
14623 size_t conflictsno = 0;
14624 size_t options_offset = 0;
14625 size_t conflicts_offset = 0;
14626 size_t pltrelsz = 0;
14627 size_t pltrel = 0;
14628 bfd_vma pltgot = 0;
14629 bfd_vma mips_pltgot = 0;
14630 bfd_vma jmprel = 0;
14631 bfd_vma local_gotno = 0;
14632 bfd_vma gotsym = 0;
14633 bfd_vma symtabno = 0;
14634
14635 process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
14636 display_mips_gnu_attribute);
14637
14638 sect = find_section (".MIPS.abiflags");
14639
14640 if (sect != NULL)
14641 {
14642 Elf_External_ABIFlags_v0 *abiflags_ext;
14643 Elf_Internal_ABIFlags_v0 abiflags_in;
14644
14645 if (sizeof (Elf_External_ABIFlags_v0) != sect->sh_size)
14646 fputs ("\nCorrupt ABI Flags section.\n", stdout);
14647 else
14648 {
14649 abiflags_ext = get_data (NULL, file, sect->sh_offset, 1,
14650 sect->sh_size, _("MIPS ABI Flags section"));
14651 if (abiflags_ext)
14652 {
14653 abiflags_in.version = BYTE_GET (abiflags_ext->version);
14654 abiflags_in.isa_level = BYTE_GET (abiflags_ext->isa_level);
14655 abiflags_in.isa_rev = BYTE_GET (abiflags_ext->isa_rev);
14656 abiflags_in.gpr_size = BYTE_GET (abiflags_ext->gpr_size);
14657 abiflags_in.cpr1_size = BYTE_GET (abiflags_ext->cpr1_size);
14658 abiflags_in.cpr2_size = BYTE_GET (abiflags_ext->cpr2_size);
14659 abiflags_in.fp_abi = BYTE_GET (abiflags_ext->fp_abi);
14660 abiflags_in.isa_ext = BYTE_GET (abiflags_ext->isa_ext);
14661 abiflags_in.ases = BYTE_GET (abiflags_ext->ases);
14662 abiflags_in.flags1 = BYTE_GET (abiflags_ext->flags1);
14663 abiflags_in.flags2 = BYTE_GET (abiflags_ext->flags2);
14664
14665 printf ("\nMIPS ABI Flags Version: %d\n", abiflags_in.version);
14666 printf ("\nISA: MIPS%d", abiflags_in.isa_level);
14667 if (abiflags_in.isa_rev > 1)
14668 printf ("r%d", abiflags_in.isa_rev);
14669 printf ("\nGPR size: %d",
14670 get_mips_reg_size (abiflags_in.gpr_size));
14671 printf ("\nCPR1 size: %d",
14672 get_mips_reg_size (abiflags_in.cpr1_size));
14673 printf ("\nCPR2 size: %d",
14674 get_mips_reg_size (abiflags_in.cpr2_size));
14675 fputs ("\nFP ABI: ", stdout);
14676 print_mips_fp_abi_value (abiflags_in.fp_abi);
14677 fputs ("ISA Extension: ", stdout);
14678 print_mips_isa_ext (abiflags_in.isa_ext);
14679 fputs ("\nASEs:", stdout);
14680 print_mips_ases (abiflags_in.ases);
14681 printf ("\nFLAGS 1: %8.8lx", abiflags_in.flags1);
14682 printf ("\nFLAGS 2: %8.8lx", abiflags_in.flags2);
14683 fputc ('\n', stdout);
14684 free (abiflags_ext);
14685 }
14686 }
14687 }
14688
14689 /* We have a lot of special sections. Thanks SGI! */
14690 if (dynamic_section == NULL)
14691 /* No information available. */
14692 return 0;
14693
14694 for (entry = dynamic_section;
14695 /* PR 17531 file: 012-50589-0.004. */
14696 entry < dynamic_section + dynamic_nent && entry->d_tag != DT_NULL;
14697 ++entry)
14698 switch (entry->d_tag)
14699 {
14700 case DT_MIPS_LIBLIST:
14701 liblist_offset
14702 = offset_from_vma (file, entry->d_un.d_val,
14703 liblistno * sizeof (Elf32_External_Lib));
14704 break;
14705 case DT_MIPS_LIBLISTNO:
14706 liblistno = entry->d_un.d_val;
14707 break;
14708 case DT_MIPS_OPTIONS:
14709 options_offset = offset_from_vma (file, entry->d_un.d_val, 0);
14710 break;
14711 case DT_MIPS_CONFLICT:
14712 conflicts_offset
14713 = offset_from_vma (file, entry->d_un.d_val,
14714 conflictsno * sizeof (Elf32_External_Conflict));
14715 break;
14716 case DT_MIPS_CONFLICTNO:
14717 conflictsno = entry->d_un.d_val;
14718 break;
14719 case DT_PLTGOT:
14720 pltgot = entry->d_un.d_ptr;
14721 break;
14722 case DT_MIPS_LOCAL_GOTNO:
14723 local_gotno = entry->d_un.d_val;
14724 break;
14725 case DT_MIPS_GOTSYM:
14726 gotsym = entry->d_un.d_val;
14727 break;
14728 case DT_MIPS_SYMTABNO:
14729 symtabno = entry->d_un.d_val;
14730 break;
14731 case DT_MIPS_PLTGOT:
14732 mips_pltgot = entry->d_un.d_ptr;
14733 break;
14734 case DT_PLTREL:
14735 pltrel = entry->d_un.d_val;
14736 break;
14737 case DT_PLTRELSZ:
14738 pltrelsz = entry->d_un.d_val;
14739 break;
14740 case DT_JMPREL:
14741 jmprel = entry->d_un.d_ptr;
14742 break;
14743 default:
14744 break;
14745 }
14746
14747 if (liblist_offset != 0 && liblistno != 0 && do_dynamic)
14748 {
14749 Elf32_External_Lib * elib;
14750 size_t cnt;
14751
14752 elib = (Elf32_External_Lib *) get_data (NULL, file, liblist_offset,
14753 liblistno,
14754 sizeof (Elf32_External_Lib),
14755 _("liblist section data"));
14756 if (elib)
14757 {
14758 printf (_("\nSection '.liblist' contains %lu entries:\n"),
14759 (unsigned long) liblistno);
14760 fputs (_(" Library Time Stamp Checksum Version Flags\n"),
14761 stdout);
14762
14763 for (cnt = 0; cnt < liblistno; ++cnt)
14764 {
14765 Elf32_Lib liblist;
14766 time_t atime;
14767 char timebuf[128];
14768 struct tm * tmp;
14769
14770 liblist.l_name = BYTE_GET (elib[cnt].l_name);
14771 atime = BYTE_GET (elib[cnt].l_time_stamp);
14772 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
14773 liblist.l_version = BYTE_GET (elib[cnt].l_version);
14774 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
14775
14776 tmp = gmtime (&atime);
14777 snprintf (timebuf, sizeof (timebuf),
14778 "%04u-%02u-%02uT%02u:%02u:%02u",
14779 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
14780 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
14781
14782 printf ("%3lu: ", (unsigned long) cnt);
14783 if (VALID_DYNAMIC_NAME (liblist.l_name))
14784 print_symbol (20, GET_DYNAMIC_NAME (liblist.l_name));
14785 else
14786 printf (_("<corrupt: %9ld>"), liblist.l_name);
14787 printf (" %s %#10lx %-7ld", timebuf, liblist.l_checksum,
14788 liblist.l_version);
14789
14790 if (liblist.l_flags == 0)
14791 puts (_(" NONE"));
14792 else
14793 {
14794 static const struct
14795 {
14796 const char * name;
14797 int bit;
14798 }
14799 l_flags_vals[] =
14800 {
14801 { " EXACT_MATCH", LL_EXACT_MATCH },
14802 { " IGNORE_INT_VER", LL_IGNORE_INT_VER },
14803 { " REQUIRE_MINOR", LL_REQUIRE_MINOR },
14804 { " EXPORTS", LL_EXPORTS },
14805 { " DELAY_LOAD", LL_DELAY_LOAD },
14806 { " DELTA", LL_DELTA }
14807 };
14808 int flags = liblist.l_flags;
14809 size_t fcnt;
14810
14811 for (fcnt = 0; fcnt < ARRAY_SIZE (l_flags_vals); ++fcnt)
14812 if ((flags & l_flags_vals[fcnt].bit) != 0)
14813 {
14814 fputs (l_flags_vals[fcnt].name, stdout);
14815 flags ^= l_flags_vals[fcnt].bit;
14816 }
14817 if (flags != 0)
14818 printf (" %#x", (unsigned int) flags);
14819
14820 puts ("");
14821 }
14822 }
14823
14824 free (elib);
14825 }
14826 }
14827
14828 if (options_offset != 0)
14829 {
14830 Elf_External_Options * eopt;
14831 Elf_Internal_Options * iopt;
14832 Elf_Internal_Options * option;
14833 size_t offset;
14834 int cnt;
14835 sect = section_headers;
14836
14837 /* Find the section header so that we get the size. */
14838 sect = find_section_by_type (SHT_MIPS_OPTIONS);
14839 /* PR 17533 file: 012-277276-0.004. */
14840 if (sect == NULL)
14841 {
14842 error (_("No MIPS_OPTIONS header found\n"));
14843 return 0;
14844 }
14845
14846 eopt = (Elf_External_Options *) get_data (NULL, file, options_offset, 1,
14847 sect->sh_size, _("options"));
14848 if (eopt)
14849 {
14850 iopt = (Elf_Internal_Options *)
14851 cmalloc ((sect->sh_size / sizeof (eopt)), sizeof (* iopt));
14852 if (iopt == NULL)
14853 {
14854 error (_("Out of memory allocating space for MIPS options\n"));
14855 return 0;
14856 }
14857
14858 offset = cnt = 0;
14859 option = iopt;
14860
14861 while (offset <= sect->sh_size - sizeof (* eopt))
14862 {
14863 Elf_External_Options * eoption;
14864
14865 eoption = (Elf_External_Options *) ((char *) eopt + offset);
14866
14867 option->kind = BYTE_GET (eoption->kind);
14868 option->size = BYTE_GET (eoption->size);
14869 option->section = BYTE_GET (eoption->section);
14870 option->info = BYTE_GET (eoption->info);
14871
14872 /* PR 17531: file: ffa0fa3b. */
14873 if (option->size < sizeof (* eopt)
14874 || offset + option->size > sect->sh_size)
14875 {
14876 error (_("Invalid size (%u) for MIPS option\n"), option->size);
14877 return 0;
14878 }
14879 offset += option->size;
14880
14881 ++option;
14882 ++cnt;
14883 }
14884
14885 printf (_("\nSection '%s' contains %d entries:\n"),
14886 printable_section_name (sect), cnt);
14887
14888 option = iopt;
14889 offset = 0;
14890
14891 while (cnt-- > 0)
14892 {
14893 size_t len;
14894
14895 switch (option->kind)
14896 {
14897 case ODK_NULL:
14898 /* This shouldn't happen. */
14899 printf (" NULL %d %lx", option->section, option->info);
14900 break;
14901 case ODK_REGINFO:
14902 printf (" REGINFO ");
14903 if (elf_header.e_machine == EM_MIPS)
14904 {
14905 /* 32bit form. */
14906 Elf32_External_RegInfo * ereg;
14907 Elf32_RegInfo reginfo;
14908
14909 ereg = (Elf32_External_RegInfo *) (option + 1);
14910 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
14911 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
14912 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
14913 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
14914 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
14915 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
14916
14917 printf ("GPR %08lx GP 0x%lx\n",
14918 reginfo.ri_gprmask,
14919 (unsigned long) reginfo.ri_gp_value);
14920 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
14921 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
14922 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
14923 }
14924 else
14925 {
14926 /* 64 bit form. */
14927 Elf64_External_RegInfo * ereg;
14928 Elf64_Internal_RegInfo reginfo;
14929
14930 ereg = (Elf64_External_RegInfo *) (option + 1);
14931 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
14932 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
14933 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
14934 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
14935 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
14936 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
14937
14938 printf ("GPR %08lx GP 0x",
14939 reginfo.ri_gprmask);
14940 printf_vma (reginfo.ri_gp_value);
14941 printf ("\n");
14942
14943 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
14944 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
14945 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
14946 }
14947 ++option;
14948 continue;
14949 case ODK_EXCEPTIONS:
14950 fputs (" EXCEPTIONS fpe_min(", stdout);
14951 process_mips_fpe_exception (option->info & OEX_FPU_MIN);
14952 fputs (") fpe_max(", stdout);
14953 process_mips_fpe_exception ((option->info & OEX_FPU_MAX) >> 8);
14954 fputs (")", stdout);
14955
14956 if (option->info & OEX_PAGE0)
14957 fputs (" PAGE0", stdout);
14958 if (option->info & OEX_SMM)
14959 fputs (" SMM", stdout);
14960 if (option->info & OEX_FPDBUG)
14961 fputs (" FPDBUG", stdout);
14962 if (option->info & OEX_DISMISS)
14963 fputs (" DISMISS", stdout);
14964 break;
14965 case ODK_PAD:
14966 fputs (" PAD ", stdout);
14967 if (option->info & OPAD_PREFIX)
14968 fputs (" PREFIX", stdout);
14969 if (option->info & OPAD_POSTFIX)
14970 fputs (" POSTFIX", stdout);
14971 if (option->info & OPAD_SYMBOL)
14972 fputs (" SYMBOL", stdout);
14973 break;
14974 case ODK_HWPATCH:
14975 fputs (" HWPATCH ", stdout);
14976 if (option->info & OHW_R4KEOP)
14977 fputs (" R4KEOP", stdout);
14978 if (option->info & OHW_R8KPFETCH)
14979 fputs (" R8KPFETCH", stdout);
14980 if (option->info & OHW_R5KEOP)
14981 fputs (" R5KEOP", stdout);
14982 if (option->info & OHW_R5KCVTL)
14983 fputs (" R5KCVTL", stdout);
14984 break;
14985 case ODK_FILL:
14986 fputs (" FILL ", stdout);
14987 /* XXX Print content of info word? */
14988 break;
14989 case ODK_TAGS:
14990 fputs (" TAGS ", stdout);
14991 /* XXX Print content of info word? */
14992 break;
14993 case ODK_HWAND:
14994 fputs (" HWAND ", stdout);
14995 if (option->info & OHWA0_R4KEOP_CHECKED)
14996 fputs (" R4KEOP_CHECKED", stdout);
14997 if (option->info & OHWA0_R4KEOP_CLEAN)
14998 fputs (" R4KEOP_CLEAN", stdout);
14999 break;
15000 case ODK_HWOR:
15001 fputs (" HWOR ", stdout);
15002 if (option->info & OHWA0_R4KEOP_CHECKED)
15003 fputs (" R4KEOP_CHECKED", stdout);
15004 if (option->info & OHWA0_R4KEOP_CLEAN)
15005 fputs (" R4KEOP_CLEAN", stdout);
15006 break;
15007 case ODK_GP_GROUP:
15008 printf (" GP_GROUP %#06lx self-contained %#06lx",
15009 option->info & OGP_GROUP,
15010 (option->info & OGP_SELF) >> 16);
15011 break;
15012 case ODK_IDENT:
15013 printf (" IDENT %#06lx self-contained %#06lx",
15014 option->info & OGP_GROUP,
15015 (option->info & OGP_SELF) >> 16);
15016 break;
15017 default:
15018 /* This shouldn't happen. */
15019 printf (" %3d ??? %d %lx",
15020 option->kind, option->section, option->info);
15021 break;
15022 }
15023
15024 len = sizeof (* eopt);
15025 while (len < option->size)
15026 {
15027 unsigned char datum = * ((unsigned char *) eopt + offset + len);
15028
15029 if (ISPRINT (datum))
15030 printf ("%c", datum);
15031 else
15032 printf ("\\%03o", datum);
15033 len ++;
15034 }
15035 fputs ("\n", stdout);
15036
15037 offset += option->size;
15038 ++option;
15039 }
15040
15041 free (eopt);
15042 }
15043 }
15044
15045 if (conflicts_offset != 0 && conflictsno != 0)
15046 {
15047 Elf32_Conflict * iconf;
15048 size_t cnt;
15049
15050 if (dynamic_symbols == NULL)
15051 {
15052 error (_("conflict list found without a dynamic symbol table\n"));
15053 return 0;
15054 }
15055
15056 iconf = (Elf32_Conflict *) cmalloc (conflictsno, sizeof (* iconf));
15057 if (iconf == NULL)
15058 {
15059 error (_("Out of memory allocating space for dynamic conflicts\n"));
15060 return 0;
15061 }
15062
15063 if (is_32bit_elf)
15064 {
15065 Elf32_External_Conflict * econf32;
15066
15067 econf32 = (Elf32_External_Conflict *)
15068 get_data (NULL, file, conflicts_offset, conflictsno,
15069 sizeof (* econf32), _("conflict"));
15070 if (!econf32)
15071 return 0;
15072
15073 for (cnt = 0; cnt < conflictsno; ++cnt)
15074 iconf[cnt] = BYTE_GET (econf32[cnt]);
15075
15076 free (econf32);
15077 }
15078 else
15079 {
15080 Elf64_External_Conflict * econf64;
15081
15082 econf64 = (Elf64_External_Conflict *)
15083 get_data (NULL, file, conflicts_offset, conflictsno,
15084 sizeof (* econf64), _("conflict"));
15085 if (!econf64)
15086 return 0;
15087
15088 for (cnt = 0; cnt < conflictsno; ++cnt)
15089 iconf[cnt] = BYTE_GET (econf64[cnt]);
15090
15091 free (econf64);
15092 }
15093
15094 printf (_("\nSection '.conflict' contains %lu entries:\n"),
15095 (unsigned long) conflictsno);
15096 puts (_(" Num: Index Value Name"));
15097
15098 for (cnt = 0; cnt < conflictsno; ++cnt)
15099 {
15100 printf ("%5lu: %8lu ", (unsigned long) cnt, iconf[cnt]);
15101
15102 if (iconf[cnt] >= num_dynamic_syms)
15103 printf (_("<corrupt symbol index>"));
15104 else
15105 {
15106 Elf_Internal_Sym * psym;
15107
15108 psym = & dynamic_symbols[iconf[cnt]];
15109 print_vma (psym->st_value, FULL_HEX);
15110 putchar (' ');
15111 if (VALID_DYNAMIC_NAME (psym->st_name))
15112 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
15113 else
15114 printf (_("<corrupt: %14ld>"), psym->st_name);
15115 }
15116 putchar ('\n');
15117 }
15118
15119 free (iconf);
15120 }
15121
15122 if (pltgot != 0 && local_gotno != 0)
15123 {
15124 bfd_vma ent, local_end, global_end;
15125 size_t i, offset;
15126 unsigned char * data;
15127 unsigned char * data_end;
15128 int addr_size;
15129
15130 ent = pltgot;
15131 addr_size = (is_32bit_elf ? 4 : 8);
15132 local_end = pltgot + local_gotno * addr_size;
15133
15134 /* PR binutils/17533 file: 012-111227-0.004 */
15135 if (symtabno < gotsym)
15136 {
15137 error (_("The GOT symbol offset (%lu) is greater than the symbol table size (%lu)\n"),
15138 (unsigned long) gotsym, (unsigned long) symtabno);
15139 return 0;
15140 }
15141
15142 global_end = local_end + (symtabno - gotsym) * addr_size;
15143 /* PR 17531: file: 54c91a34. */
15144 if (global_end < local_end)
15145 {
15146 error (_("Too many GOT symbols: %lu\n"), (unsigned long) symtabno);
15147 return 0;
15148 }
15149
15150 offset = offset_from_vma (file, pltgot, global_end - pltgot);
15151 data = (unsigned char *) get_data (NULL, file, offset,
15152 global_end - pltgot, 1,
15153 _("Global Offset Table data"));
15154 if (data == NULL)
15155 return 0;
15156 data_end = data + (global_end - pltgot);
15157
15158 printf (_("\nPrimary GOT:\n"));
15159 printf (_(" Canonical gp value: "));
15160 print_vma (pltgot + 0x7ff0, LONG_HEX);
15161 printf ("\n\n");
15162
15163 printf (_(" Reserved entries:\n"));
15164 printf (_(" %*s %10s %*s Purpose\n"),
15165 addr_size * 2, _("Address"), _("Access"),
15166 addr_size * 2, _("Initial"));
15167 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15168 printf (_(" Lazy resolver\n"));
15169 if (ent == (bfd_vma) -1)
15170 goto got_print_fail;
15171 if (data
15172 && (byte_get (data + ent - pltgot, addr_size)
15173 >> (addr_size * 8 - 1)) != 0)
15174 {
15175 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15176 printf (_(" Module pointer (GNU extension)\n"));
15177 if (ent == (bfd_vma) -1)
15178 goto got_print_fail;
15179 }
15180 printf ("\n");
15181
15182 if (ent < local_end)
15183 {
15184 printf (_(" Local entries:\n"));
15185 printf (" %*s %10s %*s\n",
15186 addr_size * 2, _("Address"), _("Access"),
15187 addr_size * 2, _("Initial"));
15188 while (ent < local_end)
15189 {
15190 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15191 printf ("\n");
15192 if (ent == (bfd_vma) -1)
15193 goto got_print_fail;
15194 }
15195 printf ("\n");
15196 }
15197
15198 if (gotsym < symtabno)
15199 {
15200 int sym_width;
15201
15202 printf (_(" Global entries:\n"));
15203 printf (" %*s %10s %*s %*s %-7s %3s %s\n",
15204 addr_size * 2, _("Address"),
15205 _("Access"),
15206 addr_size * 2, _("Initial"),
15207 addr_size * 2, _("Sym.Val."),
15208 _("Type"),
15209 /* Note for translators: "Ndx" = abbreviated form of "Index". */
15210 _("Ndx"), _("Name"));
15211
15212 sym_width = (is_32bit_elf ? 80 : 160) - 28 - addr_size * 6 - 1;
15213
15214 for (i = gotsym; i < symtabno; i++)
15215 {
15216 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15217 printf (" ");
15218
15219 if (dynamic_symbols == NULL)
15220 printf (_("<no dynamic symbols>"));
15221 else if (i < num_dynamic_syms)
15222 {
15223 Elf_Internal_Sym * psym = dynamic_symbols + i;
15224
15225 print_vma (psym->st_value, LONG_HEX);
15226 printf (" %-7s %3s ",
15227 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
15228 get_symbol_index_type (psym->st_shndx));
15229
15230 if (VALID_DYNAMIC_NAME (psym->st_name))
15231 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
15232 else
15233 printf (_("<corrupt: %14ld>"), psym->st_name);
15234 }
15235 else
15236 printf (_("<symbol index %lu exceeds number of dynamic symbols>"),
15237 (unsigned long) i);
15238
15239 printf ("\n");
15240 if (ent == (bfd_vma) -1)
15241 break;
15242 }
15243 printf ("\n");
15244 }
15245
15246 got_print_fail:
15247 if (data)
15248 free (data);
15249 }
15250
15251 if (mips_pltgot != 0 && jmprel != 0 && pltrel != 0 && pltrelsz != 0)
15252 {
15253 bfd_vma ent, end;
15254 size_t offset, rel_offset;
15255 unsigned long count, i;
15256 unsigned char * data;
15257 int addr_size, sym_width;
15258 Elf_Internal_Rela * rels;
15259
15260 rel_offset = offset_from_vma (file, jmprel, pltrelsz);
15261 if (pltrel == DT_RELA)
15262 {
15263 if (!slurp_rela_relocs (file, rel_offset, pltrelsz, &rels, &count))
15264 return 0;
15265 }
15266 else
15267 {
15268 if (!slurp_rel_relocs (file, rel_offset, pltrelsz, &rels, &count))
15269 return 0;
15270 }
15271
15272 ent = mips_pltgot;
15273 addr_size = (is_32bit_elf ? 4 : 8);
15274 end = mips_pltgot + (2 + count) * addr_size;
15275
15276 offset = offset_from_vma (file, mips_pltgot, end - mips_pltgot);
15277 data = (unsigned char *) get_data (NULL, file, offset, end - mips_pltgot,
15278 1, _("Procedure Linkage Table data"));
15279 if (data == NULL)
15280 return 0;
15281
15282 printf ("\nPLT GOT:\n\n");
15283 printf (_(" Reserved entries:\n"));
15284 printf (_(" %*s %*s Purpose\n"),
15285 addr_size * 2, _("Address"), addr_size * 2, _("Initial"));
15286 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
15287 printf (_(" PLT lazy resolver\n"));
15288 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
15289 printf (_(" Module pointer\n"));
15290 printf ("\n");
15291
15292 printf (_(" Entries:\n"));
15293 printf (" %*s %*s %*s %-7s %3s %s\n",
15294 addr_size * 2, _("Address"),
15295 addr_size * 2, _("Initial"),
15296 addr_size * 2, _("Sym.Val."), _("Type"), _("Ndx"), _("Name"));
15297 sym_width = (is_32bit_elf ? 80 : 160) - 17 - addr_size * 6 - 1;
15298 for (i = 0; i < count; i++)
15299 {
15300 unsigned long idx = get_reloc_symindex (rels[i].r_info);
15301
15302 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
15303 printf (" ");
15304
15305 if (idx >= num_dynamic_syms)
15306 printf (_("<corrupt symbol index: %lu>"), idx);
15307 else
15308 {
15309 Elf_Internal_Sym * psym = dynamic_symbols + idx;
15310
15311 print_vma (psym->st_value, LONG_HEX);
15312 printf (" %-7s %3s ",
15313 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
15314 get_symbol_index_type (psym->st_shndx));
15315 if (VALID_DYNAMIC_NAME (psym->st_name))
15316 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
15317 else
15318 printf (_("<corrupt: %14ld>"), psym->st_name);
15319 }
15320 printf ("\n");
15321 }
15322 printf ("\n");
15323
15324 if (data)
15325 free (data);
15326 free (rels);
15327 }
15328
15329 return 1;
15330 }
15331
15332 static int
15333 process_nds32_specific (FILE * file)
15334 {
15335 Elf_Internal_Shdr *sect = NULL;
15336
15337 sect = find_section (".nds32_e_flags");
15338 if (sect != NULL)
15339 {
15340 unsigned int *flag;
15341
15342 printf ("\nNDS32 elf flags section:\n");
15343 flag = get_data (NULL, file, sect->sh_offset, 1,
15344 sect->sh_size, _("NDS32 elf flags section"));
15345
15346 switch ((*flag) & 0x3)
15347 {
15348 case 0:
15349 printf ("(VEC_SIZE):\tNo entry.\n");
15350 break;
15351 case 1:
15352 printf ("(VEC_SIZE):\t4 bytes\n");
15353 break;
15354 case 2:
15355 printf ("(VEC_SIZE):\t16 bytes\n");
15356 break;
15357 case 3:
15358 printf ("(VEC_SIZE):\treserved\n");
15359 break;
15360 }
15361 }
15362
15363 return TRUE;
15364 }
15365
15366 static int
15367 process_gnu_liblist (FILE * file)
15368 {
15369 Elf_Internal_Shdr * section;
15370 Elf_Internal_Shdr * string_sec;
15371 Elf32_External_Lib * elib;
15372 char * strtab;
15373 size_t strtab_size;
15374 size_t cnt;
15375 unsigned i;
15376
15377 if (! do_arch)
15378 return 0;
15379
15380 for (i = 0, section = section_headers;
15381 i < elf_header.e_shnum;
15382 i++, section++)
15383 {
15384 switch (section->sh_type)
15385 {
15386 case SHT_GNU_LIBLIST:
15387 if (section->sh_link >= elf_header.e_shnum)
15388 break;
15389
15390 elib = (Elf32_External_Lib *)
15391 get_data (NULL, file, section->sh_offset, 1, section->sh_size,
15392 _("liblist section data"));
15393
15394 if (elib == NULL)
15395 break;
15396 string_sec = section_headers + section->sh_link;
15397
15398 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
15399 string_sec->sh_size,
15400 _("liblist string table"));
15401 if (strtab == NULL
15402 || section->sh_entsize != sizeof (Elf32_External_Lib))
15403 {
15404 free (elib);
15405 free (strtab);
15406 break;
15407 }
15408 strtab_size = string_sec->sh_size;
15409
15410 printf (_("\nLibrary list section '%s' contains %lu entries:\n"),
15411 printable_section_name (section),
15412 (unsigned long) (section->sh_size / sizeof (Elf32_External_Lib)));
15413
15414 puts (_(" Library Time Stamp Checksum Version Flags"));
15415
15416 for (cnt = 0; cnt < section->sh_size / sizeof (Elf32_External_Lib);
15417 ++cnt)
15418 {
15419 Elf32_Lib liblist;
15420 time_t atime;
15421 char timebuf[128];
15422 struct tm * tmp;
15423
15424 liblist.l_name = BYTE_GET (elib[cnt].l_name);
15425 atime = BYTE_GET (elib[cnt].l_time_stamp);
15426 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
15427 liblist.l_version = BYTE_GET (elib[cnt].l_version);
15428 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
15429
15430 tmp = gmtime (&atime);
15431 snprintf (timebuf, sizeof (timebuf),
15432 "%04u-%02u-%02uT%02u:%02u:%02u",
15433 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
15434 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
15435
15436 printf ("%3lu: ", (unsigned long) cnt);
15437 if (do_wide)
15438 printf ("%-20s", liblist.l_name < strtab_size
15439 ? strtab + liblist.l_name : _("<corrupt>"));
15440 else
15441 printf ("%-20.20s", liblist.l_name < strtab_size
15442 ? strtab + liblist.l_name : _("<corrupt>"));
15443 printf (" %s %#010lx %-7ld %-7ld\n", timebuf, liblist.l_checksum,
15444 liblist.l_version, liblist.l_flags);
15445 }
15446
15447 free (elib);
15448 free (strtab);
15449 }
15450 }
15451
15452 return 1;
15453 }
15454
15455 static const char *
15456 get_note_type (unsigned e_type)
15457 {
15458 static char buff[64];
15459
15460 if (elf_header.e_type == ET_CORE)
15461 switch (e_type)
15462 {
15463 case NT_AUXV:
15464 return _("NT_AUXV (auxiliary vector)");
15465 case NT_PRSTATUS:
15466 return _("NT_PRSTATUS (prstatus structure)");
15467 case NT_FPREGSET:
15468 return _("NT_FPREGSET (floating point registers)");
15469 case NT_PRPSINFO:
15470 return _("NT_PRPSINFO (prpsinfo structure)");
15471 case NT_TASKSTRUCT:
15472 return _("NT_TASKSTRUCT (task structure)");
15473 case NT_PRXFPREG:
15474 return _("NT_PRXFPREG (user_xfpregs structure)");
15475 case NT_PPC_VMX:
15476 return _("NT_PPC_VMX (ppc Altivec registers)");
15477 case NT_PPC_VSX:
15478 return _("NT_PPC_VSX (ppc VSX registers)");
15479 case NT_386_TLS:
15480 return _("NT_386_TLS (x86 TLS information)");
15481 case NT_386_IOPERM:
15482 return _("NT_386_IOPERM (x86 I/O permissions)");
15483 case NT_X86_XSTATE:
15484 return _("NT_X86_XSTATE (x86 XSAVE extended state)");
15485 case NT_S390_HIGH_GPRS:
15486 return _("NT_S390_HIGH_GPRS (s390 upper register halves)");
15487 case NT_S390_TIMER:
15488 return _("NT_S390_TIMER (s390 timer register)");
15489 case NT_S390_TODCMP:
15490 return _("NT_S390_TODCMP (s390 TOD comparator register)");
15491 case NT_S390_TODPREG:
15492 return _("NT_S390_TODPREG (s390 TOD programmable register)");
15493 case NT_S390_CTRS:
15494 return _("NT_S390_CTRS (s390 control registers)");
15495 case NT_S390_PREFIX:
15496 return _("NT_S390_PREFIX (s390 prefix register)");
15497 case NT_S390_LAST_BREAK:
15498 return _("NT_S390_LAST_BREAK (s390 last breaking event address)");
15499 case NT_S390_SYSTEM_CALL:
15500 return _("NT_S390_SYSTEM_CALL (s390 system call restart data)");
15501 case NT_S390_TDB:
15502 return _("NT_S390_TDB (s390 transaction diagnostic block)");
15503 case NT_S390_VXRS_LOW:
15504 return _("NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)");
15505 case NT_S390_VXRS_HIGH:
15506 return _("NT_S390_VXRS_HIGH (s390 vector registers 16-31)");
15507 case NT_ARM_VFP:
15508 return _("NT_ARM_VFP (arm VFP registers)");
15509 case NT_ARM_TLS:
15510 return _("NT_ARM_TLS (AArch TLS registers)");
15511 case NT_ARM_HW_BREAK:
15512 return _("NT_ARM_HW_BREAK (AArch hardware breakpoint registers)");
15513 case NT_ARM_HW_WATCH:
15514 return _("NT_ARM_HW_WATCH (AArch hardware watchpoint registers)");
15515 case NT_PSTATUS:
15516 return _("NT_PSTATUS (pstatus structure)");
15517 case NT_FPREGS:
15518 return _("NT_FPREGS (floating point registers)");
15519 case NT_PSINFO:
15520 return _("NT_PSINFO (psinfo structure)");
15521 case NT_LWPSTATUS:
15522 return _("NT_LWPSTATUS (lwpstatus_t structure)");
15523 case NT_LWPSINFO:
15524 return _("NT_LWPSINFO (lwpsinfo_t structure)");
15525 case NT_WIN32PSTATUS:
15526 return _("NT_WIN32PSTATUS (win32_pstatus structure)");
15527 case NT_SIGINFO:
15528 return _("NT_SIGINFO (siginfo_t data)");
15529 case NT_FILE:
15530 return _("NT_FILE (mapped files)");
15531 default:
15532 break;
15533 }
15534 else
15535 switch (e_type)
15536 {
15537 case NT_VERSION:
15538 return _("NT_VERSION (version)");
15539 case NT_ARCH:
15540 return _("NT_ARCH (architecture)");
15541 default:
15542 break;
15543 }
15544
15545 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
15546 return buff;
15547 }
15548
15549 static int
15550 print_core_note (Elf_Internal_Note *pnote)
15551 {
15552 unsigned int addr_size = is_32bit_elf ? 4 : 8;
15553 bfd_vma count, page_size;
15554 unsigned char *descdata, *filenames, *descend;
15555
15556 if (pnote->type != NT_FILE)
15557 return 1;
15558
15559 #ifndef BFD64
15560 if (!is_32bit_elf)
15561 {
15562 printf (_(" Cannot decode 64-bit note in 32-bit build\n"));
15563 /* Still "successful". */
15564 return 1;
15565 }
15566 #endif
15567
15568 if (pnote->descsz < 2 * addr_size)
15569 {
15570 printf (_(" Malformed note - too short for header\n"));
15571 return 0;
15572 }
15573
15574 descdata = (unsigned char *) pnote->descdata;
15575 descend = descdata + pnote->descsz;
15576
15577 if (descdata[pnote->descsz - 1] != '\0')
15578 {
15579 printf (_(" Malformed note - does not end with \\0\n"));
15580 return 0;
15581 }
15582
15583 count = byte_get (descdata, addr_size);
15584 descdata += addr_size;
15585
15586 page_size = byte_get (descdata, addr_size);
15587 descdata += addr_size;
15588
15589 if (pnote->descsz < 2 * addr_size + count * 3 * addr_size)
15590 {
15591 printf (_(" Malformed note - too short for supplied file count\n"));
15592 return 0;
15593 }
15594
15595 printf (_(" Page size: "));
15596 print_vma (page_size, DEC);
15597 printf ("\n");
15598
15599 printf (_(" %*s%*s%*s\n"),
15600 (int) (2 + 2 * addr_size), _("Start"),
15601 (int) (4 + 2 * addr_size), _("End"),
15602 (int) (4 + 2 * addr_size), _("Page Offset"));
15603 filenames = descdata + count * 3 * addr_size;
15604 while (count-- > 0)
15605 {
15606 bfd_vma start, end, file_ofs;
15607
15608 if (filenames == descend)
15609 {
15610 printf (_(" Malformed note - filenames end too early\n"));
15611 return 0;
15612 }
15613
15614 start = byte_get (descdata, addr_size);
15615 descdata += addr_size;
15616 end = byte_get (descdata, addr_size);
15617 descdata += addr_size;
15618 file_ofs = byte_get (descdata, addr_size);
15619 descdata += addr_size;
15620
15621 printf (" ");
15622 print_vma (start, FULL_HEX);
15623 printf (" ");
15624 print_vma (end, FULL_HEX);
15625 printf (" ");
15626 print_vma (file_ofs, FULL_HEX);
15627 printf ("\n %s\n", filenames);
15628
15629 filenames += 1 + strlen ((char *) filenames);
15630 }
15631
15632 return 1;
15633 }
15634
15635 static const char *
15636 get_gnu_elf_note_type (unsigned e_type)
15637 {
15638 /* NB/ Keep this switch statement in sync with print_gnu_note (). */
15639 switch (e_type)
15640 {
15641 case NT_GNU_ABI_TAG:
15642 return _("NT_GNU_ABI_TAG (ABI version tag)");
15643 case NT_GNU_HWCAP:
15644 return _("NT_GNU_HWCAP (DSO-supplied software HWCAP info)");
15645 case NT_GNU_BUILD_ID:
15646 return _("NT_GNU_BUILD_ID (unique build ID bitstring)");
15647 case NT_GNU_GOLD_VERSION:
15648 return _("NT_GNU_GOLD_VERSION (gold version)");
15649 default:
15650 {
15651 static char buff[64];
15652
15653 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
15654 return buff;
15655 }
15656 }
15657 }
15658
15659 static int
15660 print_gnu_note (Elf_Internal_Note *pnote)
15661 {
15662 /* NB/ Keep this switch statement in sync with get_gnu_elf_note_type (). */
15663 switch (pnote->type)
15664 {
15665 case NT_GNU_BUILD_ID:
15666 {
15667 unsigned long i;
15668
15669 printf (_(" Build ID: "));
15670 for (i = 0; i < pnote->descsz; ++i)
15671 printf ("%02x", pnote->descdata[i] & 0xff);
15672 printf ("\n");
15673 }
15674 break;
15675
15676 case NT_GNU_ABI_TAG:
15677 {
15678 unsigned long os, major, minor, subminor;
15679 const char *osname;
15680
15681 /* PR 17531: file: 030-599401-0.004. */
15682 if (pnote->descsz < 16)
15683 {
15684 printf (_(" <corrupt GNU_ABI_TAG>\n"));
15685 break;
15686 }
15687
15688 os = byte_get ((unsigned char *) pnote->descdata, 4);
15689 major = byte_get ((unsigned char *) pnote->descdata + 4, 4);
15690 minor = byte_get ((unsigned char *) pnote->descdata + 8, 4);
15691 subminor = byte_get ((unsigned char *) pnote->descdata + 12, 4);
15692
15693 switch (os)
15694 {
15695 case GNU_ABI_TAG_LINUX:
15696 osname = "Linux";
15697 break;
15698 case GNU_ABI_TAG_HURD:
15699 osname = "Hurd";
15700 break;
15701 case GNU_ABI_TAG_SOLARIS:
15702 osname = "Solaris";
15703 break;
15704 case GNU_ABI_TAG_FREEBSD:
15705 osname = "FreeBSD";
15706 break;
15707 case GNU_ABI_TAG_NETBSD:
15708 osname = "NetBSD";
15709 break;
15710 case GNU_ABI_TAG_SYLLABLE:
15711 osname = "Syllable";
15712 break;
15713 case GNU_ABI_TAG_NACL:
15714 osname = "NaCl";
15715 break;
15716 default:
15717 osname = "Unknown";
15718 break;
15719 }
15720
15721 printf (_(" OS: %s, ABI: %ld.%ld.%ld\n"), osname,
15722 major, minor, subminor);
15723 }
15724 break;
15725
15726 case NT_GNU_GOLD_VERSION:
15727 {
15728 unsigned long i;
15729
15730 printf (_(" Version: "));
15731 for (i = 0; i < pnote->descsz && pnote->descdata[i] != '\0'; ++i)
15732 printf ("%c", pnote->descdata[i]);
15733 printf ("\n");
15734 }
15735 break;
15736
15737 case NT_GNU_HWCAP:
15738 {
15739 unsigned long num_entries, mask;
15740
15741 /* Hardware capabilities information. Word 0 is the number of entries.
15742 Word 1 is a bitmask of enabled entries. The rest of the descriptor
15743 is a series of entries, where each entry is a single byte followed
15744 by a nul terminated string. The byte gives the bit number to test
15745 if enabled in the bitmask. */
15746 printf (_(" Hardware Capabilities: "));
15747 if (pnote->descsz < 8)
15748 {
15749 printf (_("<corrupt GNU_HWCAP>\n"));
15750 break;
15751 }
15752 num_entries = byte_get ((unsigned char *) pnote->descdata, 4);
15753 mask = byte_get ((unsigned char *) pnote->descdata + 4, 4);
15754 printf (_("num entries: %ld, enabled mask: %lx\n"), num_entries, mask);
15755 /* FIXME: Add code to display the entries... */
15756 }
15757 break;
15758
15759 default:
15760 /* Handle unrecognised types. An error message should have already been
15761 created by get_gnu_elf_note_type(), so all that we need to do is to
15762 display the data. */
15763 {
15764 unsigned long i;
15765
15766 printf (_(" Description data: "));
15767 for (i = 0; i < pnote->descsz; ++i)
15768 printf ("%02x ", pnote->descdata[i] & 0xff);
15769 printf ("\n");
15770 }
15771 break;
15772 }
15773
15774 return 1;
15775 }
15776
15777 static const char *
15778 get_v850_elf_note_type (enum v850_notes n_type)
15779 {
15780 static char buff[64];
15781
15782 switch (n_type)
15783 {
15784 case V850_NOTE_ALIGNMENT: return _("Alignment of 8-byte objects");
15785 case V850_NOTE_DATA_SIZE: return _("Sizeof double and long double");
15786 case V850_NOTE_FPU_INFO: return _("Type of FPU support needed");
15787 case V850_NOTE_SIMD_INFO: return _("Use of SIMD instructions");
15788 case V850_NOTE_CACHE_INFO: return _("Use of cache");
15789 case V850_NOTE_MMU_INFO: return _("Use of MMU");
15790 default:
15791 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), n_type);
15792 return buff;
15793 }
15794 }
15795
15796 static int
15797 print_v850_note (Elf_Internal_Note * pnote)
15798 {
15799 unsigned int val;
15800
15801 if (pnote->descsz != 4)
15802 return 0;
15803 val = byte_get ((unsigned char *) pnote->descdata, pnote->descsz);
15804
15805 if (val == 0)
15806 {
15807 printf (_("not set\n"));
15808 return 1;
15809 }
15810
15811 switch (pnote->type)
15812 {
15813 case V850_NOTE_ALIGNMENT:
15814 switch (val)
15815 {
15816 case EF_RH850_DATA_ALIGN4: printf (_("4-byte\n")); return 1;
15817 case EF_RH850_DATA_ALIGN8: printf (_("8-byte\n")); return 1;
15818 }
15819 break;
15820
15821 case V850_NOTE_DATA_SIZE:
15822 switch (val)
15823 {
15824 case EF_RH850_DOUBLE32: printf (_("4-bytes\n")); return 1;
15825 case EF_RH850_DOUBLE64: printf (_("8-bytes\n")); return 1;
15826 }
15827 break;
15828
15829 case V850_NOTE_FPU_INFO:
15830 switch (val)
15831 {
15832 case EF_RH850_FPU20: printf (_("FPU-2.0\n")); return 1;
15833 case EF_RH850_FPU30: printf (_("FPU-3.0\n")); return 1;
15834 }
15835 break;
15836
15837 case V850_NOTE_MMU_INFO:
15838 case V850_NOTE_CACHE_INFO:
15839 case V850_NOTE_SIMD_INFO:
15840 if (val == EF_RH850_SIMD)
15841 {
15842 printf (_("yes\n"));
15843 return 1;
15844 }
15845 break;
15846
15847 default:
15848 /* An 'unknown note type' message will already have been displayed. */
15849 break;
15850 }
15851
15852 printf (_("unknown value: %x\n"), val);
15853 return 0;
15854 }
15855
15856 static int
15857 process_netbsd_elf_note (Elf_Internal_Note * pnote)
15858 {
15859 unsigned int version;
15860
15861 switch (pnote->type)
15862 {
15863 case NT_NETBSD_IDENT:
15864 version = byte_get ((unsigned char *) pnote->descdata, sizeof (version));
15865 if ((version / 10000) % 100)
15866 printf (" NetBSD\t\t0x%08lx\tIDENT %u (%u.%u%s%c)\n", pnote->descsz,
15867 version, version / 100000000, (version / 1000000) % 100,
15868 (version / 10000) % 100 > 26 ? "Z" : "",
15869 'A' + (version / 10000) % 26);
15870 else
15871 printf (" NetBSD\t\t0x%08lx\tIDENT %u (%u.%u.%u)\n", pnote->descsz,
15872 version, version / 100000000, (version / 1000000) % 100,
15873 (version / 100) % 100);
15874 return 1;
15875
15876 case NT_NETBSD_MARCH:
15877 printf (" NetBSD\t0x%08lx\tMARCH <%s>\n", pnote->descsz,
15878 pnote->descdata);
15879 return 1;
15880
15881 default:
15882 break;
15883 }
15884
15885 printf (" NetBSD\t0x%08lx\tUnknown note type: (0x%08lx)\n", pnote->descsz,
15886 pnote->type);
15887 return 1;
15888 }
15889
15890 static const char *
15891 get_freebsd_elfcore_note_type (unsigned e_type)
15892 {
15893 switch (e_type)
15894 {
15895 case NT_FREEBSD_THRMISC:
15896 return _("NT_THRMISC (thrmisc structure)");
15897 case NT_FREEBSD_PROCSTAT_PROC:
15898 return _("NT_PROCSTAT_PROC (proc data)");
15899 case NT_FREEBSD_PROCSTAT_FILES:
15900 return _("NT_PROCSTAT_FILES (files data)");
15901 case NT_FREEBSD_PROCSTAT_VMMAP:
15902 return _("NT_PROCSTAT_VMMAP (vmmap data)");
15903 case NT_FREEBSD_PROCSTAT_GROUPS:
15904 return _("NT_PROCSTAT_GROUPS (groups data)");
15905 case NT_FREEBSD_PROCSTAT_UMASK:
15906 return _("NT_PROCSTAT_UMASK (umask data)");
15907 case NT_FREEBSD_PROCSTAT_RLIMIT:
15908 return _("NT_PROCSTAT_RLIMIT (rlimit data)");
15909 case NT_FREEBSD_PROCSTAT_OSREL:
15910 return _("NT_PROCSTAT_OSREL (osreldate data)");
15911 case NT_FREEBSD_PROCSTAT_PSSTRINGS:
15912 return _("NT_PROCSTAT_PSSTRINGS (ps_strings data)");
15913 case NT_FREEBSD_PROCSTAT_AUXV:
15914 return _("NT_PROCSTAT_AUXV (auxv data)");
15915 }
15916 return get_note_type (e_type);
15917 }
15918
15919 static const char *
15920 get_netbsd_elfcore_note_type (unsigned e_type)
15921 {
15922 static char buff[64];
15923
15924 if (e_type == NT_NETBSDCORE_PROCINFO)
15925 {
15926 /* NetBSD core "procinfo" structure. */
15927 return _("NetBSD procinfo structure");
15928 }
15929
15930 /* As of Jan 2002 there are no other machine-independent notes
15931 defined for NetBSD core files. If the note type is less
15932 than the start of the machine-dependent note types, we don't
15933 understand it. */
15934
15935 if (e_type < NT_NETBSDCORE_FIRSTMACH)
15936 {
15937 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
15938 return buff;
15939 }
15940
15941 switch (elf_header.e_machine)
15942 {
15943 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0
15944 and PT_GETFPREGS == mach+2. */
15945
15946 case EM_OLD_ALPHA:
15947 case EM_ALPHA:
15948 case EM_SPARC:
15949 case EM_SPARC32PLUS:
15950 case EM_SPARCV9:
15951 switch (e_type)
15952 {
15953 case NT_NETBSDCORE_FIRSTMACH + 0:
15954 return _("PT_GETREGS (reg structure)");
15955 case NT_NETBSDCORE_FIRSTMACH + 2:
15956 return _("PT_GETFPREGS (fpreg structure)");
15957 default:
15958 break;
15959 }
15960 break;
15961
15962 /* On all other arch's, PT_GETREGS == mach+1 and
15963 PT_GETFPREGS == mach+3. */
15964 default:
15965 switch (e_type)
15966 {
15967 case NT_NETBSDCORE_FIRSTMACH + 1:
15968 return _("PT_GETREGS (reg structure)");
15969 case NT_NETBSDCORE_FIRSTMACH + 3:
15970 return _("PT_GETFPREGS (fpreg structure)");
15971 default:
15972 break;
15973 }
15974 }
15975
15976 snprintf (buff, sizeof (buff), "PT_FIRSTMACH+%d",
15977 e_type - NT_NETBSDCORE_FIRSTMACH);
15978 return buff;
15979 }
15980
15981 static const char *
15982 get_stapsdt_note_type (unsigned e_type)
15983 {
15984 static char buff[64];
15985
15986 switch (e_type)
15987 {
15988 case NT_STAPSDT:
15989 return _("NT_STAPSDT (SystemTap probe descriptors)");
15990
15991 default:
15992 break;
15993 }
15994
15995 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
15996 return buff;
15997 }
15998
15999 static int
16000 print_stapsdt_note (Elf_Internal_Note *pnote)
16001 {
16002 int addr_size = is_32bit_elf ? 4 : 8;
16003 char *data = pnote->descdata;
16004 char *data_end = pnote->descdata + pnote->descsz;
16005 bfd_vma pc, base_addr, semaphore;
16006 char *provider, *probe, *arg_fmt;
16007
16008 pc = byte_get ((unsigned char *) data, addr_size);
16009 data += addr_size;
16010 base_addr = byte_get ((unsigned char *) data, addr_size);
16011 data += addr_size;
16012 semaphore = byte_get ((unsigned char *) data, addr_size);
16013 data += addr_size;
16014
16015 provider = data;
16016 data += strlen (data) + 1;
16017 probe = data;
16018 data += strlen (data) + 1;
16019 arg_fmt = data;
16020 data += strlen (data) + 1;
16021
16022 printf (_(" Provider: %s\n"), provider);
16023 printf (_(" Name: %s\n"), probe);
16024 printf (_(" Location: "));
16025 print_vma (pc, FULL_HEX);
16026 printf (_(", Base: "));
16027 print_vma (base_addr, FULL_HEX);
16028 printf (_(", Semaphore: "));
16029 print_vma (semaphore, FULL_HEX);
16030 printf ("\n");
16031 printf (_(" Arguments: %s\n"), arg_fmt);
16032
16033 return data == data_end;
16034 }
16035
16036 static const char *
16037 get_ia64_vms_note_type (unsigned e_type)
16038 {
16039 static char buff[64];
16040
16041 switch (e_type)
16042 {
16043 case NT_VMS_MHD:
16044 return _("NT_VMS_MHD (module header)");
16045 case NT_VMS_LNM:
16046 return _("NT_VMS_LNM (language name)");
16047 case NT_VMS_SRC:
16048 return _("NT_VMS_SRC (source files)");
16049 case NT_VMS_TITLE:
16050 return "NT_VMS_TITLE";
16051 case NT_VMS_EIDC:
16052 return _("NT_VMS_EIDC (consistency check)");
16053 case NT_VMS_FPMODE:
16054 return _("NT_VMS_FPMODE (FP mode)");
16055 case NT_VMS_LINKTIME:
16056 return "NT_VMS_LINKTIME";
16057 case NT_VMS_IMGNAM:
16058 return _("NT_VMS_IMGNAM (image name)");
16059 case NT_VMS_IMGID:
16060 return _("NT_VMS_IMGID (image id)");
16061 case NT_VMS_LINKID:
16062 return _("NT_VMS_LINKID (link id)");
16063 case NT_VMS_IMGBID:
16064 return _("NT_VMS_IMGBID (build id)");
16065 case NT_VMS_GSTNAM:
16066 return _("NT_VMS_GSTNAM (sym table name)");
16067 case NT_VMS_ORIG_DYN:
16068 return "NT_VMS_ORIG_DYN";
16069 case NT_VMS_PATCHTIME:
16070 return "NT_VMS_PATCHTIME";
16071 default:
16072 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16073 return buff;
16074 }
16075 }
16076
16077 static int
16078 print_ia64_vms_note (Elf_Internal_Note * pnote)
16079 {
16080 switch (pnote->type)
16081 {
16082 case NT_VMS_MHD:
16083 if (pnote->descsz > 36)
16084 {
16085 size_t l = strlen (pnote->descdata + 34);
16086 printf (_(" Creation date : %.17s\n"), pnote->descdata);
16087 printf (_(" Last patch date: %.17s\n"), pnote->descdata + 17);
16088 printf (_(" Module name : %s\n"), pnote->descdata + 34);
16089 printf (_(" Module version : %s\n"), pnote->descdata + 34 + l + 1);
16090 }
16091 else
16092 printf (_(" Invalid size\n"));
16093 break;
16094 case NT_VMS_LNM:
16095 printf (_(" Language: %s\n"), pnote->descdata);
16096 break;
16097 #ifdef BFD64
16098 case NT_VMS_FPMODE:
16099 printf (_(" Floating Point mode: "));
16100 printf ("0x%016" BFD_VMA_FMT "x\n",
16101 (bfd_vma) byte_get ((unsigned char *)pnote->descdata, 8));
16102 break;
16103 case NT_VMS_LINKTIME:
16104 printf (_(" Link time: "));
16105 print_vms_time
16106 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
16107 printf ("\n");
16108 break;
16109 case NT_VMS_PATCHTIME:
16110 printf (_(" Patch time: "));
16111 print_vms_time
16112 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
16113 printf ("\n");
16114 break;
16115 case NT_VMS_ORIG_DYN:
16116 printf (_(" Major id: %u, minor id: %u\n"),
16117 (unsigned) byte_get ((unsigned char *)pnote->descdata, 4),
16118 (unsigned) byte_get ((unsigned char *)pnote->descdata + 4, 4));
16119 printf (_(" Last modified : "));
16120 print_vms_time
16121 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata + 8, 8));
16122 printf (_("\n Link flags : "));
16123 printf ("0x%016" BFD_VMA_FMT "x\n",
16124 (bfd_vma) byte_get ((unsigned char *)pnote->descdata + 16, 8));
16125 printf (_(" Header flags: 0x%08x\n"),
16126 (unsigned) byte_get ((unsigned char *)pnote->descdata + 24, 4));
16127 printf (_(" Image id : %s\n"), pnote->descdata + 32);
16128 break;
16129 #endif
16130 case NT_VMS_IMGNAM:
16131 printf (_(" Image name: %s\n"), pnote->descdata);
16132 break;
16133 case NT_VMS_GSTNAM:
16134 printf (_(" Global symbol table name: %s\n"), pnote->descdata);
16135 break;
16136 case NT_VMS_IMGID:
16137 printf (_(" Image id: %s\n"), pnote->descdata);
16138 break;
16139 case NT_VMS_LINKID:
16140 printf (_(" Linker id: %s\n"), pnote->descdata);
16141 break;
16142 default:
16143 break;
16144 }
16145 return 1;
16146 }
16147
16148 /* Note that by the ELF standard, the name field is already null byte
16149 terminated, and namesz includes the terminating null byte.
16150 I.E. the value of namesz for the name "FSF" is 4.
16151
16152 If the value of namesz is zero, there is no name present. */
16153 static int
16154 process_note (Elf_Internal_Note * pnote,
16155 FILE * file ATTRIBUTE_UNUSED,
16156 Elf_Internal_Shdr * section ATTRIBUTE_UNUSED)
16157 {
16158 const char * name = pnote->namesz ? pnote->namedata : "(NONE)";
16159 const char * nt;
16160
16161 if (pnote->namesz == 0)
16162 /* If there is no note name, then use the default set of
16163 note type strings. */
16164 nt = get_note_type (pnote->type);
16165
16166 else if (const_strneq (pnote->namedata, "GNU"))
16167 /* GNU-specific object file notes. */
16168 nt = get_gnu_elf_note_type (pnote->type);
16169
16170 else if (const_strneq (pnote->namedata, "FreeBSD"))
16171 /* FreeBSD-specific core file notes. */
16172 nt = get_freebsd_elfcore_note_type (pnote->type);
16173
16174 else if (const_strneq (pnote->namedata, "NetBSD-CORE"))
16175 /* NetBSD-specific core file notes. */
16176 nt = get_netbsd_elfcore_note_type (pnote->type);
16177
16178 else if (const_strneq (pnote->namedata, "NetBSD"))
16179 /* NetBSD-specific core file notes. */
16180 return process_netbsd_elf_note (pnote);
16181
16182 else if (strneq (pnote->namedata, "SPU/", 4))
16183 {
16184 /* SPU-specific core file notes. */
16185 nt = pnote->namedata + 4;
16186 name = "SPU";
16187 }
16188
16189 else if (const_strneq (pnote->namedata, "IPF/VMS"))
16190 /* VMS/ia64-specific file notes. */
16191 nt = get_ia64_vms_note_type (pnote->type);
16192
16193 else if (const_strneq (pnote->namedata, "stapsdt"))
16194 nt = get_stapsdt_note_type (pnote->type);
16195
16196 else
16197 /* Don't recognize this note name; just use the default set of
16198 note type strings. */
16199 nt = get_note_type (pnote->type);
16200
16201 printf (" ");
16202 print_symbol (-20, name);
16203 printf (" 0x%08lx\t%s\n", pnote->descsz, nt);
16204
16205 if (const_strneq (pnote->namedata, "IPF/VMS"))
16206 return print_ia64_vms_note (pnote);
16207 else if (const_strneq (pnote->namedata, "GNU"))
16208 return print_gnu_note (pnote);
16209 else if (const_strneq (pnote->namedata, "stapsdt"))
16210 return print_stapsdt_note (pnote);
16211 else if (const_strneq (pnote->namedata, "CORE"))
16212 return print_core_note (pnote);
16213
16214 else if (pnote->descsz)
16215 {
16216 unsigned long i;
16217
16218 printf (_(" description data: "));
16219 for (i = 0; i < pnote->descsz; i++)
16220 printf ("%02x ", pnote->descdata[i]);
16221 printf ("\n");
16222 }
16223
16224 return 1;
16225 }
16226
16227 static int
16228 process_notes_at (FILE * file,
16229 Elf_Internal_Shdr * section,
16230 bfd_vma offset,
16231 bfd_vma length)
16232 {
16233 Elf_External_Note * pnotes;
16234 Elf_External_Note * external;
16235 char * end;
16236 int res = 1;
16237
16238 if (length <= 0)
16239 return 0;
16240
16241 if (section)
16242 {
16243 pnotes = (Elf_External_Note *) get_section_contents (section, file);
16244 if (pnotes)
16245 apply_relocations (file, section, (unsigned char *) pnotes, length, NULL, NULL);
16246 }
16247 else
16248 pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
16249 _("notes"));
16250 if (pnotes == NULL)
16251 return 0;
16252
16253 external = pnotes;
16254
16255 if (section)
16256 printf (_("\nDisplaying notes found in: %s\n"), printable_section_name (section));
16257 else
16258 printf (_("\nDisplaying notes found at file offset 0x%08lx with length 0x%08lx:\n"),
16259 (unsigned long) offset, (unsigned long) length);
16260
16261 printf (_(" %-20s %10s\tDescription\n"), _("Owner"), _("Data size"));
16262
16263 end = (char *) pnotes + length;
16264 while ((char *) external < end)
16265 {
16266 Elf_Internal_Note inote;
16267 size_t min_notesz;
16268 char *next;
16269 char * temp = NULL;
16270 size_t data_remaining = end - (char *) external;
16271
16272 if (!is_ia64_vms ())
16273 {
16274 /* PR binutils/15191
16275 Make sure that there is enough data to read. */
16276 min_notesz = offsetof (Elf_External_Note, name);
16277 if (data_remaining < min_notesz)
16278 {
16279 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
16280 (int) data_remaining);
16281 break;
16282 }
16283 inote.type = BYTE_GET (external->type);
16284 inote.namesz = BYTE_GET (external->namesz);
16285 inote.namedata = external->name;
16286 inote.descsz = BYTE_GET (external->descsz);
16287 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
16288 /* PR 17531: file: 3443835e. */
16289 if (inote.descdata < (char *) pnotes || inote.descdata > end)
16290 {
16291 warn (_("Corrupt note: name size is too big: %lx\n"), inote.namesz);
16292 inote.descdata = inote.namedata;
16293 inote.namesz = 0;
16294 }
16295
16296 inote.descpos = offset + (inote.descdata - (char *) pnotes);
16297 next = inote.descdata + align_power (inote.descsz, 2);
16298 }
16299 else
16300 {
16301 Elf64_External_VMS_Note *vms_external;
16302
16303 /* PR binutils/15191
16304 Make sure that there is enough data to read. */
16305 min_notesz = offsetof (Elf64_External_VMS_Note, name);
16306 if (data_remaining < min_notesz)
16307 {
16308 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
16309 (int) data_remaining);
16310 break;
16311 }
16312
16313 vms_external = (Elf64_External_VMS_Note *) external;
16314 inote.type = BYTE_GET (vms_external->type);
16315 inote.namesz = BYTE_GET (vms_external->namesz);
16316 inote.namedata = vms_external->name;
16317 inote.descsz = BYTE_GET (vms_external->descsz);
16318 inote.descdata = inote.namedata + align_power (inote.namesz, 3);
16319 inote.descpos = offset + (inote.descdata - (char *) pnotes);
16320 next = inote.descdata + align_power (inote.descsz, 3);
16321 }
16322
16323 if (inote.descdata < (char *) external + min_notesz
16324 || next < (char *) external + min_notesz
16325 /* PR binutils/17531: file: id:000000,sig:11,src:006986,op:havoc,rep:4. */
16326 || inote.namedata + inote.namesz < inote.namedata
16327 || inote.descdata + inote.descsz < inote.descdata
16328 || data_remaining < (size_t)(next - (char *) external))
16329 {
16330 warn (_("note with invalid namesz and/or descsz found at offset 0x%lx\n"),
16331 (unsigned long) ((char *) external - (char *) pnotes));
16332 warn (_(" type: 0x%lx, namesize: 0x%08lx, descsize: 0x%08lx\n"),
16333 inote.type, inote.namesz, inote.descsz);
16334 break;
16335 }
16336
16337 external = (Elf_External_Note *) next;
16338
16339 /* Verify that name is null terminated. It appears that at least
16340 one version of Linux (RedHat 6.0) generates corefiles that don't
16341 comply with the ELF spec by failing to include the null byte in
16342 namesz. */
16343 if (inote.namedata[inote.namesz - 1] != '\0')
16344 {
16345 temp = (char *) malloc (inote.namesz + 1);
16346 if (temp == NULL)
16347 {
16348 error (_("Out of memory allocating space for inote name\n"));
16349 res = 0;
16350 break;
16351 }
16352
16353 strncpy (temp, inote.namedata, inote.namesz);
16354 temp[inote.namesz] = 0;
16355
16356 /* warn (_("'%s' NOTE name not properly null terminated\n"), temp); */
16357 inote.namedata = temp;
16358 }
16359
16360 res &= process_note (& inote, file, section);
16361
16362 if (temp != NULL)
16363 {
16364 free (temp);
16365 temp = NULL;
16366 }
16367 }
16368
16369 free (pnotes);
16370
16371 return res;
16372 }
16373
16374 static int
16375 process_corefile_note_segments (FILE * file)
16376 {
16377 Elf_Internal_Phdr * segment;
16378 unsigned int i;
16379 int res = 1;
16380
16381 if (! get_program_headers (file))
16382 return 0;
16383
16384 for (i = 0, segment = program_headers;
16385 i < elf_header.e_phnum;
16386 i++, segment++)
16387 {
16388 if (segment->p_type == PT_NOTE)
16389 res &= process_notes_at (file, NULL,
16390 (bfd_vma) segment->p_offset,
16391 (bfd_vma) segment->p_filesz);
16392 }
16393
16394 return res;
16395 }
16396
16397 static int
16398 process_v850_notes (FILE * file, bfd_vma offset, bfd_vma length)
16399 {
16400 Elf_External_Note * pnotes;
16401 Elf_External_Note * external;
16402 char * end;
16403 int res = 1;
16404
16405 if (length <= 0)
16406 return 0;
16407
16408 pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
16409 _("v850 notes"));
16410 if (pnotes == NULL)
16411 return 0;
16412
16413 external = pnotes;
16414 end = (char*) pnotes + length;
16415
16416 printf (_("\nDisplaying contents of Renesas V850 notes section at offset 0x%lx with length 0x%lx:\n"),
16417 (unsigned long) offset, (unsigned long) length);
16418
16419 while ((char *) external + sizeof (Elf_External_Note) < end)
16420 {
16421 Elf_External_Note * next;
16422 Elf_Internal_Note inote;
16423
16424 inote.type = BYTE_GET (external->type);
16425 inote.namesz = BYTE_GET (external->namesz);
16426 inote.namedata = external->name;
16427 inote.descsz = BYTE_GET (external->descsz);
16428 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
16429 inote.descpos = offset + (inote.descdata - (char *) pnotes);
16430
16431 if (inote.descdata < (char *) pnotes || inote.descdata >= end)
16432 {
16433 warn (_("Corrupt note: name size is too big: %lx\n"), inote.namesz);
16434 inote.descdata = inote.namedata;
16435 inote.namesz = 0;
16436 }
16437
16438 next = (Elf_External_Note *) (inote.descdata + align_power (inote.descsz, 2));
16439
16440 if ( ((char *) next > end)
16441 || ((char *) next < (char *) pnotes))
16442 {
16443 warn (_("corrupt descsz found in note at offset 0x%lx\n"),
16444 (unsigned long) ((char *) external - (char *) pnotes));
16445 warn (_(" type: 0x%lx, namesize: 0x%lx, descsize: 0x%lx\n"),
16446 inote.type, inote.namesz, inote.descsz);
16447 break;
16448 }
16449
16450 external = next;
16451
16452 /* Prevent out-of-bounds indexing. */
16453 if ( inote.namedata + inote.namesz > end
16454 || inote.namedata + inote.namesz < inote.namedata)
16455 {
16456 warn (_("corrupt namesz found in note at offset 0x%lx\n"),
16457 (unsigned long) ((char *) external - (char *) pnotes));
16458 warn (_(" type: 0x%lx, namesize: 0x%lx, descsize: 0x%lx\n"),
16459 inote.type, inote.namesz, inote.descsz);
16460 break;
16461 }
16462
16463 printf (" %s: ", get_v850_elf_note_type (inote.type));
16464
16465 if (! print_v850_note (& inote))
16466 {
16467 res = 0;
16468 printf ("<corrupt sizes: namesz: %lx, descsz: %lx>\n",
16469 inote.namesz, inote.descsz);
16470 }
16471 }
16472
16473 free (pnotes);
16474
16475 return res;
16476 }
16477
16478 static int
16479 process_note_sections (FILE * file)
16480 {
16481 Elf_Internal_Shdr * section;
16482 unsigned long i;
16483 int n = 0;
16484 int res = 1;
16485
16486 for (i = 0, section = section_headers;
16487 i < elf_header.e_shnum && section != NULL;
16488 i++, section++)
16489 {
16490 if (section->sh_type == SHT_NOTE)
16491 {
16492 res &= process_notes_at (file, section,
16493 (bfd_vma) section->sh_offset,
16494 (bfd_vma) section->sh_size);
16495 n++;
16496 }
16497
16498 if (( elf_header.e_machine == EM_V800
16499 || elf_header.e_machine == EM_V850
16500 || elf_header.e_machine == EM_CYGNUS_V850)
16501 && section->sh_type == SHT_RENESAS_INFO)
16502 {
16503 res &= process_v850_notes (file,
16504 (bfd_vma) section->sh_offset,
16505 (bfd_vma) section->sh_size);
16506 n++;
16507 }
16508 }
16509
16510 if (n == 0)
16511 /* Try processing NOTE segments instead. */
16512 return process_corefile_note_segments (file);
16513
16514 return res;
16515 }
16516
16517 static int
16518 process_notes (FILE * file)
16519 {
16520 /* If we have not been asked to display the notes then do nothing. */
16521 if (! do_notes)
16522 return 1;
16523
16524 if (elf_header.e_type != ET_CORE)
16525 return process_note_sections (file);
16526
16527 /* No program headers means no NOTE segment. */
16528 if (elf_header.e_phnum > 0)
16529 return process_corefile_note_segments (file);
16530
16531 printf (_("No note segments present in the core file.\n"));
16532 return 1;
16533 }
16534
16535 static int
16536 process_arch_specific (FILE * file)
16537 {
16538 if (! do_arch)
16539 return 1;
16540
16541 switch (elf_header.e_machine)
16542 {
16543 case EM_ARM:
16544 return process_arm_specific (file);
16545 case EM_MIPS:
16546 case EM_MIPS_RS3_LE:
16547 return process_mips_specific (file);
16548 break;
16549 case EM_NDS32:
16550 return process_nds32_specific (file);
16551 break;
16552 case EM_PPC:
16553 case EM_PPC64:
16554 return process_power_specific (file);
16555 break;
16556 case EM_S390:
16557 case EM_S390_OLD:
16558 return process_s390_specific (file);
16559 break;
16560 case EM_SPARC:
16561 case EM_SPARC32PLUS:
16562 case EM_SPARCV9:
16563 return process_sparc_specific (file);
16564 break;
16565 case EM_TI_C6000:
16566 return process_tic6x_specific (file);
16567 break;
16568 case EM_MSP430:
16569 return process_msp430x_specific (file);
16570 default:
16571 break;
16572 }
16573 return 1;
16574 }
16575
16576 static int
16577 get_file_header (FILE * file)
16578 {
16579 /* Read in the identity array. */
16580 if (fread (elf_header.e_ident, EI_NIDENT, 1, file) != 1)
16581 return 0;
16582
16583 /* Determine how to read the rest of the header. */
16584 switch (elf_header.e_ident[EI_DATA])
16585 {
16586 default:
16587 case ELFDATANONE:
16588 case ELFDATA2LSB:
16589 byte_get = byte_get_little_endian;
16590 byte_put = byte_put_little_endian;
16591 break;
16592 case ELFDATA2MSB:
16593 byte_get = byte_get_big_endian;
16594 byte_put = byte_put_big_endian;
16595 break;
16596 }
16597
16598 /* For now we only support 32 bit and 64 bit ELF files. */
16599 is_32bit_elf = (elf_header.e_ident[EI_CLASS] != ELFCLASS64);
16600
16601 /* Read in the rest of the header. */
16602 if (is_32bit_elf)
16603 {
16604 Elf32_External_Ehdr ehdr32;
16605
16606 if (fread (ehdr32.e_type, sizeof (ehdr32) - EI_NIDENT, 1, file) != 1)
16607 return 0;
16608
16609 elf_header.e_type = BYTE_GET (ehdr32.e_type);
16610 elf_header.e_machine = BYTE_GET (ehdr32.e_machine);
16611 elf_header.e_version = BYTE_GET (ehdr32.e_version);
16612 elf_header.e_entry = BYTE_GET (ehdr32.e_entry);
16613 elf_header.e_phoff = BYTE_GET (ehdr32.e_phoff);
16614 elf_header.e_shoff = BYTE_GET (ehdr32.e_shoff);
16615 elf_header.e_flags = BYTE_GET (ehdr32.e_flags);
16616 elf_header.e_ehsize = BYTE_GET (ehdr32.e_ehsize);
16617 elf_header.e_phentsize = BYTE_GET (ehdr32.e_phentsize);
16618 elf_header.e_phnum = BYTE_GET (ehdr32.e_phnum);
16619 elf_header.e_shentsize = BYTE_GET (ehdr32.e_shentsize);
16620 elf_header.e_shnum = BYTE_GET (ehdr32.e_shnum);
16621 elf_header.e_shstrndx = BYTE_GET (ehdr32.e_shstrndx);
16622 }
16623 else
16624 {
16625 Elf64_External_Ehdr ehdr64;
16626
16627 /* If we have been compiled with sizeof (bfd_vma) == 4, then
16628 we will not be able to cope with the 64bit data found in
16629 64 ELF files. Detect this now and abort before we start
16630 overwriting things. */
16631 if (sizeof (bfd_vma) < 8)
16632 {
16633 error (_("This instance of readelf has been built without support for a\n\
16634 64 bit data type and so it cannot read 64 bit ELF files.\n"));
16635 return 0;
16636 }
16637
16638 if (fread (ehdr64.e_type, sizeof (ehdr64) - EI_NIDENT, 1, file) != 1)
16639 return 0;
16640
16641 elf_header.e_type = BYTE_GET (ehdr64.e_type);
16642 elf_header.e_machine = BYTE_GET (ehdr64.e_machine);
16643 elf_header.e_version = BYTE_GET (ehdr64.e_version);
16644 elf_header.e_entry = BYTE_GET (ehdr64.e_entry);
16645 elf_header.e_phoff = BYTE_GET (ehdr64.e_phoff);
16646 elf_header.e_shoff = BYTE_GET (ehdr64.e_shoff);
16647 elf_header.e_flags = BYTE_GET (ehdr64.e_flags);
16648 elf_header.e_ehsize = BYTE_GET (ehdr64.e_ehsize);
16649 elf_header.e_phentsize = BYTE_GET (ehdr64.e_phentsize);
16650 elf_header.e_phnum = BYTE_GET (ehdr64.e_phnum);
16651 elf_header.e_shentsize = BYTE_GET (ehdr64.e_shentsize);
16652 elf_header.e_shnum = BYTE_GET (ehdr64.e_shnum);
16653 elf_header.e_shstrndx = BYTE_GET (ehdr64.e_shstrndx);
16654 }
16655
16656 if (elf_header.e_shoff)
16657 {
16658 /* There may be some extensions in the first section header. Don't
16659 bomb if we can't read it. */
16660 if (is_32bit_elf)
16661 get_32bit_section_headers (file, TRUE);
16662 else
16663 get_64bit_section_headers (file, TRUE);
16664 }
16665
16666 return 1;
16667 }
16668
16669 /* Process one ELF object file according to the command line options.
16670 This file may actually be stored in an archive. The file is
16671 positioned at the start of the ELF object. */
16672
16673 static int
16674 process_object (char * file_name, FILE * file)
16675 {
16676 unsigned int i;
16677
16678 if (! get_file_header (file))
16679 {
16680 error (_("%s: Failed to read file header\n"), file_name);
16681 return 1;
16682 }
16683
16684 /* Initialise per file variables. */
16685 for (i = ARRAY_SIZE (version_info); i--;)
16686 version_info[i] = 0;
16687
16688 for (i = ARRAY_SIZE (dynamic_info); i--;)
16689 dynamic_info[i] = 0;
16690 dynamic_info_DT_GNU_HASH = 0;
16691
16692 /* Process the file. */
16693 if (show_name)
16694 printf (_("\nFile: %s\n"), file_name);
16695
16696 /* Initialise the dump_sects array from the cmdline_dump_sects array.
16697 Note we do this even if cmdline_dump_sects is empty because we
16698 must make sure that the dump_sets array is zeroed out before each
16699 object file is processed. */
16700 if (num_dump_sects > num_cmdline_dump_sects)
16701 memset (dump_sects, 0, num_dump_sects * sizeof (* dump_sects));
16702
16703 if (num_cmdline_dump_sects > 0)
16704 {
16705 if (num_dump_sects == 0)
16706 /* A sneaky way of allocating the dump_sects array. */
16707 request_dump_bynumber (num_cmdline_dump_sects, 0);
16708
16709 assert (num_dump_sects >= num_cmdline_dump_sects);
16710 memcpy (dump_sects, cmdline_dump_sects,
16711 num_cmdline_dump_sects * sizeof (* dump_sects));
16712 }
16713
16714 if (! process_file_header ())
16715 return 1;
16716
16717 if (! process_section_headers (file))
16718 {
16719 /* Without loaded section headers we cannot process lots of
16720 things. */
16721 do_unwind = do_version = do_dump = do_arch = 0;
16722
16723 if (! do_using_dynamic)
16724 do_syms = do_dyn_syms = do_reloc = 0;
16725 }
16726
16727 if (! process_section_groups (file))
16728 {
16729 /* Without loaded section groups we cannot process unwind. */
16730 do_unwind = 0;
16731 }
16732
16733 if (process_program_headers (file))
16734 process_dynamic_section (file);
16735
16736 process_relocs (file);
16737
16738 process_unwind (file);
16739
16740 process_symbol_table (file);
16741
16742 process_syminfo (file);
16743
16744 process_version_sections (file);
16745
16746 process_section_contents (file);
16747
16748 process_notes (file);
16749
16750 process_gnu_liblist (file);
16751
16752 process_arch_specific (file);
16753
16754 if (program_headers)
16755 {
16756 free (program_headers);
16757 program_headers = NULL;
16758 }
16759
16760 if (section_headers)
16761 {
16762 free (section_headers);
16763 section_headers = NULL;
16764 }
16765
16766 if (string_table)
16767 {
16768 free (string_table);
16769 string_table = NULL;
16770 string_table_length = 0;
16771 }
16772
16773 if (dynamic_strings)
16774 {
16775 free (dynamic_strings);
16776 dynamic_strings = NULL;
16777 dynamic_strings_length = 0;
16778 }
16779
16780 if (dynamic_symbols)
16781 {
16782 free (dynamic_symbols);
16783 dynamic_symbols = NULL;
16784 num_dynamic_syms = 0;
16785 }
16786
16787 if (dynamic_syminfo)
16788 {
16789 free (dynamic_syminfo);
16790 dynamic_syminfo = NULL;
16791 }
16792
16793 if (dynamic_section)
16794 {
16795 free (dynamic_section);
16796 dynamic_section = NULL;
16797 }
16798
16799 if (section_headers_groups)
16800 {
16801 free (section_headers_groups);
16802 section_headers_groups = NULL;
16803 }
16804
16805 if (section_groups)
16806 {
16807 struct group_list * g;
16808 struct group_list * next;
16809
16810 for (i = 0; i < group_count; i++)
16811 {
16812 for (g = section_groups [i].root; g != NULL; g = next)
16813 {
16814 next = g->next;
16815 free (g);
16816 }
16817 }
16818
16819 free (section_groups);
16820 section_groups = NULL;
16821 }
16822
16823 free_debug_memory ();
16824
16825 return 0;
16826 }
16827
16828 /* Process an ELF archive.
16829 On entry the file is positioned just after the ARMAG string. */
16830
16831 static int
16832 process_archive (char * file_name, FILE * file, bfd_boolean is_thin_archive)
16833 {
16834 struct archive_info arch;
16835 struct archive_info nested_arch;
16836 size_t got;
16837 int ret;
16838
16839 show_name = 1;
16840
16841 /* The ARCH structure is used to hold information about this archive. */
16842 arch.file_name = NULL;
16843 arch.file = NULL;
16844 arch.index_array = NULL;
16845 arch.sym_table = NULL;
16846 arch.longnames = NULL;
16847
16848 /* The NESTED_ARCH structure is used as a single-item cache of information
16849 about a nested archive (when members of a thin archive reside within
16850 another regular archive file). */
16851 nested_arch.file_name = NULL;
16852 nested_arch.file = NULL;
16853 nested_arch.index_array = NULL;
16854 nested_arch.sym_table = NULL;
16855 nested_arch.longnames = NULL;
16856
16857 if (setup_archive (&arch, file_name, file, is_thin_archive, do_archive_index) != 0)
16858 {
16859 ret = 1;
16860 goto out;
16861 }
16862
16863 if (do_archive_index)
16864 {
16865 if (arch.sym_table == NULL)
16866 error (_("%s: unable to dump the index as none was found\n"), file_name);
16867 else
16868 {
16869 unsigned long i, l;
16870 unsigned long current_pos;
16871
16872 printf (_("Index of archive %s: (%lu entries, 0x%lx bytes in the symbol table)\n"),
16873 file_name, (unsigned long) arch.index_num, arch.sym_size);
16874 current_pos = ftell (file);
16875
16876 for (i = l = 0; i < arch.index_num; i++)
16877 {
16878 if ((i == 0) || ((i > 0) && (arch.index_array[i] != arch.index_array[i - 1])))
16879 {
16880 char * member_name;
16881
16882 member_name = get_archive_member_name_at (&arch, arch.index_array[i], &nested_arch);
16883
16884 if (member_name != NULL)
16885 {
16886 char * qualified_name = make_qualified_name (&arch, &nested_arch, member_name);
16887
16888 if (qualified_name != NULL)
16889 {
16890 printf (_("Contents of binary %s at offset "), qualified_name);
16891 (void) print_vma (arch.index_array[i], PREFIX_HEX);
16892 putchar ('\n');
16893 free (qualified_name);
16894 }
16895 }
16896 }
16897
16898 if (l >= arch.sym_size)
16899 {
16900 error (_("%s: end of the symbol table reached before the end of the index\n"),
16901 file_name);
16902 break;
16903 }
16904 /* PR 17531: file: 0b6630b2. */
16905 printf ("\t%.*s\n", (int) (arch.sym_size - l), arch.sym_table + l);
16906 l += strnlen (arch.sym_table + l, arch.sym_size - l) + 1;
16907 }
16908
16909 if (arch.uses_64bit_indicies)
16910 l = (l + 7) & ~ 7;
16911 else
16912 l += l & 1;
16913
16914 if (l < arch.sym_size)
16915 error (_("%s: %ld bytes remain in the symbol table, but without corresponding entries in the index table\n"),
16916 file_name, arch.sym_size - l);
16917
16918 if (fseek (file, current_pos, SEEK_SET) != 0)
16919 {
16920 error (_("%s: failed to seek back to start of object files in the archive\n"), file_name);
16921 ret = 1;
16922 goto out;
16923 }
16924 }
16925
16926 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
16927 && !do_segments && !do_header && !do_dump && !do_version
16928 && !do_histogram && !do_debugging && !do_arch && !do_notes
16929 && !do_section_groups && !do_dyn_syms)
16930 {
16931 ret = 0; /* Archive index only. */
16932 goto out;
16933 }
16934 }
16935
16936 ret = 0;
16937
16938 while (1)
16939 {
16940 char * name;
16941 size_t namelen;
16942 char * qualified_name;
16943
16944 /* Read the next archive header. */
16945 if (fseek (file, arch.next_arhdr_offset, SEEK_SET) != 0)
16946 {
16947 error (_("%s: failed to seek to next archive header\n"), file_name);
16948 return 1;
16949 }
16950 got = fread (&arch.arhdr, 1, sizeof arch.arhdr, file);
16951 if (got != sizeof arch.arhdr)
16952 {
16953 if (got == 0)
16954 break;
16955 error (_("%s: failed to read archive header\n"), file_name);
16956 ret = 1;
16957 break;
16958 }
16959 if (memcmp (arch.arhdr.ar_fmag, ARFMAG, 2) != 0)
16960 {
16961 error (_("%s: did not find a valid archive header\n"), arch.file_name);
16962 ret = 1;
16963 break;
16964 }
16965
16966 arch.next_arhdr_offset += sizeof arch.arhdr;
16967
16968 archive_file_size = strtoul (arch.arhdr.ar_size, NULL, 10);
16969 if (archive_file_size & 01)
16970 ++archive_file_size;
16971
16972 name = get_archive_member_name (&arch, &nested_arch);
16973 if (name == NULL)
16974 {
16975 error (_("%s: bad archive file name\n"), file_name);
16976 ret = 1;
16977 break;
16978 }
16979 namelen = strlen (name);
16980
16981 qualified_name = make_qualified_name (&arch, &nested_arch, name);
16982 if (qualified_name == NULL)
16983 {
16984 error (_("%s: bad archive file name\n"), file_name);
16985 ret = 1;
16986 break;
16987 }
16988
16989 if (is_thin_archive && arch.nested_member_origin == 0)
16990 {
16991 /* This is a proxy for an external member of a thin archive. */
16992 FILE * member_file;
16993 char * member_file_name = adjust_relative_path (file_name, name, namelen);
16994 if (member_file_name == NULL)
16995 {
16996 ret = 1;
16997 break;
16998 }
16999
17000 member_file = fopen (member_file_name, "rb");
17001 if (member_file == NULL)
17002 {
17003 error (_("Input file '%s' is not readable.\n"), member_file_name);
17004 free (member_file_name);
17005 ret = 1;
17006 break;
17007 }
17008
17009 archive_file_offset = arch.nested_member_origin;
17010
17011 ret |= process_object (qualified_name, member_file);
17012
17013 fclose (member_file);
17014 free (member_file_name);
17015 }
17016 else if (is_thin_archive)
17017 {
17018 /* PR 15140: Allow for corrupt thin archives. */
17019 if (nested_arch.file == NULL)
17020 {
17021 error (_("%s: contains corrupt thin archive: %s\n"),
17022 file_name, name);
17023 ret = 1;
17024 break;
17025 }
17026
17027 /* This is a proxy for a member of a nested archive. */
17028 archive_file_offset = arch.nested_member_origin + sizeof arch.arhdr;
17029
17030 /* The nested archive file will have been opened and setup by
17031 get_archive_member_name. */
17032 if (fseek (nested_arch.file, archive_file_offset, SEEK_SET) != 0)
17033 {
17034 error (_("%s: failed to seek to archive member.\n"), nested_arch.file_name);
17035 ret = 1;
17036 break;
17037 }
17038
17039 ret |= process_object (qualified_name, nested_arch.file);
17040 }
17041 else
17042 {
17043 archive_file_offset = arch.next_arhdr_offset;
17044 arch.next_arhdr_offset += archive_file_size;
17045
17046 ret |= process_object (qualified_name, file);
17047 }
17048
17049 if (dump_sects != NULL)
17050 {
17051 free (dump_sects);
17052 dump_sects = NULL;
17053 num_dump_sects = 0;
17054 }
17055
17056 free (qualified_name);
17057 }
17058
17059 out:
17060 if (nested_arch.file != NULL)
17061 fclose (nested_arch.file);
17062 release_archive (&nested_arch);
17063 release_archive (&arch);
17064
17065 return ret;
17066 }
17067
17068 static int
17069 process_file (char * file_name)
17070 {
17071 FILE * file;
17072 struct stat statbuf;
17073 char armag[SARMAG];
17074 int ret;
17075
17076 if (stat (file_name, &statbuf) < 0)
17077 {
17078 if (errno == ENOENT)
17079 error (_("'%s': No such file\n"), file_name);
17080 else
17081 error (_("Could not locate '%s'. System error message: %s\n"),
17082 file_name, strerror (errno));
17083 return 1;
17084 }
17085
17086 if (! S_ISREG (statbuf.st_mode))
17087 {
17088 error (_("'%s' is not an ordinary file\n"), file_name);
17089 return 1;
17090 }
17091
17092 file = fopen (file_name, "rb");
17093 if (file == NULL)
17094 {
17095 error (_("Input file '%s' is not readable.\n"), file_name);
17096 return 1;
17097 }
17098
17099 if (fread (armag, SARMAG, 1, file) != 1)
17100 {
17101 error (_("%s: Failed to read file's magic number\n"), file_name);
17102 fclose (file);
17103 return 1;
17104 }
17105
17106 current_file_size = (bfd_size_type) statbuf.st_size;
17107
17108 if (memcmp (armag, ARMAG, SARMAG) == 0)
17109 ret = process_archive (file_name, file, FALSE);
17110 else if (memcmp (armag, ARMAGT, SARMAG) == 0)
17111 ret = process_archive (file_name, file, TRUE);
17112 else
17113 {
17114 if (do_archive_index)
17115 error (_("File %s is not an archive so its index cannot be displayed.\n"),
17116 file_name);
17117
17118 rewind (file);
17119 archive_file_size = archive_file_offset = 0;
17120 ret = process_object (file_name, file);
17121 }
17122
17123 fclose (file);
17124
17125 current_file_size = 0;
17126 return ret;
17127 }
17128
17129 #ifdef SUPPORT_DISASSEMBLY
17130 /* Needed by the i386 disassembler. For extra credit, someone could
17131 fix this so that we insert symbolic addresses here, esp for GOT/PLT
17132 symbols. */
17133
17134 void
17135 print_address (unsigned int addr, FILE * outfile)
17136 {
17137 fprintf (outfile,"0x%8.8x", addr);
17138 }
17139
17140 /* Needed by the i386 disassembler. */
17141 void
17142 db_task_printsym (unsigned int addr)
17143 {
17144 print_address (addr, stderr);
17145 }
17146 #endif
17147
17148 int
17149 main (int argc, char ** argv)
17150 {
17151 int err;
17152
17153 #if defined (HAVE_SETLOCALE) && defined (HAVE_LC_MESSAGES)
17154 setlocale (LC_MESSAGES, "");
17155 #endif
17156 #if defined (HAVE_SETLOCALE)
17157 setlocale (LC_CTYPE, "");
17158 #endif
17159 bindtextdomain (PACKAGE, LOCALEDIR);
17160 textdomain (PACKAGE);
17161
17162 expandargv (&argc, &argv);
17163
17164 parse_args (argc, argv);
17165
17166 if (num_dump_sects > 0)
17167 {
17168 /* Make a copy of the dump_sects array. */
17169 cmdline_dump_sects = (dump_type *)
17170 malloc (num_dump_sects * sizeof (* dump_sects));
17171 if (cmdline_dump_sects == NULL)
17172 error (_("Out of memory allocating dump request table.\n"));
17173 else
17174 {
17175 memcpy (cmdline_dump_sects, dump_sects,
17176 num_dump_sects * sizeof (* dump_sects));
17177 num_cmdline_dump_sects = num_dump_sects;
17178 }
17179 }
17180
17181 if (optind < (argc - 1))
17182 show_name = 1;
17183 else if (optind >= argc)
17184 {
17185 warn (_("Nothing to do.\n"));
17186 usage (stderr);
17187 }
17188
17189 err = 0;
17190 while (optind < argc)
17191 err |= process_file (argv[optind++]);
17192
17193 if (dump_sects != NULL)
17194 free (dump_sects);
17195 if (cmdline_dump_sects != NULL)
17196 free (cmdline_dump_sects);
17197
17198 return err;
17199 }
This page took 0.518477 seconds and 4 git commands to generate.