Fixes for memory access violations exposed by fuzzinf various binaries.
[deliverable/binutils-gdb.git] / binutils / readelf.c
1 /* readelf.c -- display contents of an ELF format file
2 Copyright (C) 1998-2014 Free Software Foundation, Inc.
3
4 Originally developed by Eric Youngdale <eric@andante.jic.com>
5 Modifications by Nick Clifton <nickc@redhat.com>
6
7 This file is part of GNU Binutils.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
22 02110-1301, USA. */
23 \f
24 /* The difference between readelf and objdump:
25
26 Both programs are capable of displaying the contents of ELF format files,
27 so why does the binutils project have two file dumpers ?
28
29 The reason is that objdump sees an ELF file through a BFD filter of the
30 world; if BFD has a bug where, say, it disagrees about a machine constant
31 in e_flags, then the odds are good that it will remain internally
32 consistent. The linker sees it the BFD way, objdump sees it the BFD way,
33 GAS sees it the BFD way. There was need for a tool to go find out what
34 the file actually says.
35
36 This is why the readelf program does not link against the BFD library - it
37 exists as an independent program to help verify the correct working of BFD.
38
39 There is also the case that readelf can provide more information about an
40 ELF file than is provided by objdump. In particular it can display DWARF
41 debugging information which (at the moment) objdump cannot. */
42 \f
43 #include "sysdep.h"
44 #include <assert.h>
45 #include <time.h>
46 #ifdef HAVE_ZLIB_H
47 #include <zlib.h>
48 #endif
49 #ifdef HAVE_WCHAR_H
50 #include <wchar.h>
51 #endif
52
53 #if __GNUC__ >= 2
54 /* Define BFD64 here, even if our default architecture is 32 bit ELF
55 as this will allow us to read in and parse 64bit and 32bit ELF files.
56 Only do this if we believe that the compiler can support a 64 bit
57 data type. For now we only rely on GCC being able to do this. */
58 #define BFD64
59 #endif
60
61 #include "bfd.h"
62 #include "bucomm.h"
63 #include "elfcomm.h"
64 #include "dwarf.h"
65
66 #include "elf/common.h"
67 #include "elf/external.h"
68 #include "elf/internal.h"
69
70
71 /* Included here, before RELOC_MACROS_GEN_FUNC is defined, so that
72 we can obtain the H8 reloc numbers. We need these for the
73 get_reloc_size() function. We include h8.h again after defining
74 RELOC_MACROS_GEN_FUNC so that we get the naming function as well. */
75
76 #include "elf/h8.h"
77 #undef _ELF_H8_H
78
79 /* Undo the effects of #including reloc-macros.h. */
80
81 #undef START_RELOC_NUMBERS
82 #undef RELOC_NUMBER
83 #undef FAKE_RELOC
84 #undef EMPTY_RELOC
85 #undef END_RELOC_NUMBERS
86 #undef _RELOC_MACROS_H
87
88 /* The following headers use the elf/reloc-macros.h file to
89 automatically generate relocation recognition functions
90 such as elf_mips_reloc_type() */
91
92 #define RELOC_MACROS_GEN_FUNC
93
94 #include "elf/aarch64.h"
95 #include "elf/alpha.h"
96 #include "elf/arc.h"
97 #include "elf/arm.h"
98 #include "elf/avr.h"
99 #include "elf/bfin.h"
100 #include "elf/cr16.h"
101 #include "elf/cris.h"
102 #include "elf/crx.h"
103 #include "elf/d10v.h"
104 #include "elf/d30v.h"
105 #include "elf/dlx.h"
106 #include "elf/epiphany.h"
107 #include "elf/fr30.h"
108 #include "elf/frv.h"
109 #include "elf/h8.h"
110 #include "elf/hppa.h"
111 #include "elf/i386.h"
112 #include "elf/i370.h"
113 #include "elf/i860.h"
114 #include "elf/i960.h"
115 #include "elf/ia64.h"
116 #include "elf/ip2k.h"
117 #include "elf/lm32.h"
118 #include "elf/iq2000.h"
119 #include "elf/m32c.h"
120 #include "elf/m32r.h"
121 #include "elf/m68k.h"
122 #include "elf/m68hc11.h"
123 #include "elf/mcore.h"
124 #include "elf/mep.h"
125 #include "elf/metag.h"
126 #include "elf/microblaze.h"
127 #include "elf/mips.h"
128 #include "elf/mmix.h"
129 #include "elf/mn10200.h"
130 #include "elf/mn10300.h"
131 #include "elf/moxie.h"
132 #include "elf/mt.h"
133 #include "elf/msp430.h"
134 #include "elf/nds32.h"
135 #include "elf/nios2.h"
136 #include "elf/or1k.h"
137 #include "elf/pj.h"
138 #include "elf/ppc.h"
139 #include "elf/ppc64.h"
140 #include "elf/rl78.h"
141 #include "elf/rx.h"
142 #include "elf/s390.h"
143 #include "elf/score.h"
144 #include "elf/sh.h"
145 #include "elf/sparc.h"
146 #include "elf/spu.h"
147 #include "elf/tic6x.h"
148 #include "elf/tilegx.h"
149 #include "elf/tilepro.h"
150 #include "elf/v850.h"
151 #include "elf/vax.h"
152 #include "elf/x86-64.h"
153 #include "elf/xc16x.h"
154 #include "elf/xgate.h"
155 #include "elf/xstormy16.h"
156 #include "elf/xtensa.h"
157
158 #include "getopt.h"
159 #include "libiberty.h"
160 #include "safe-ctype.h"
161 #include "filenames.h"
162
163 #ifndef offsetof
164 #define offsetof(TYPE, MEMBER) ((size_t) &(((TYPE *) 0)->MEMBER))
165 #endif
166
167 char * program_name = "readelf";
168 static long archive_file_offset;
169 static unsigned long archive_file_size;
170 static bfd_size_type current_file_size;
171 static unsigned long dynamic_addr;
172 static bfd_size_type dynamic_size;
173 static size_t dynamic_nent;
174 static char * dynamic_strings;
175 static unsigned long dynamic_strings_length;
176 static char * string_table;
177 static unsigned long string_table_length;
178 static unsigned long num_dynamic_syms;
179 static Elf_Internal_Sym * dynamic_symbols;
180 static Elf_Internal_Syminfo * dynamic_syminfo;
181 static unsigned long dynamic_syminfo_offset;
182 static unsigned int dynamic_syminfo_nent;
183 static char program_interpreter[PATH_MAX];
184 static bfd_vma dynamic_info[DT_ENCODING];
185 static bfd_vma dynamic_info_DT_GNU_HASH;
186 static bfd_vma version_info[16];
187 static Elf_Internal_Ehdr elf_header;
188 static Elf_Internal_Shdr * section_headers;
189 static Elf_Internal_Phdr * program_headers;
190 static Elf_Internal_Dyn * dynamic_section;
191 static Elf_Internal_Shdr * symtab_shndx_hdr;
192 static int show_name;
193 static int do_dynamic;
194 static int do_syms;
195 static int do_dyn_syms;
196 static int do_reloc;
197 static int do_sections;
198 static int do_section_groups;
199 static int do_section_details;
200 static int do_segments;
201 static int do_unwind;
202 static int do_using_dynamic;
203 static int do_header;
204 static int do_dump;
205 static int do_version;
206 static int do_histogram;
207 static int do_debugging;
208 static int do_arch;
209 static int do_notes;
210 static int do_archive_index;
211 static int is_32bit_elf;
212
213 struct group_list
214 {
215 struct group_list * next;
216 unsigned int section_index;
217 };
218
219 struct group
220 {
221 struct group_list * root;
222 unsigned int group_index;
223 };
224
225 static size_t group_count;
226 static struct group * section_groups;
227 static struct group ** section_headers_groups;
228
229
230 /* Flag bits indicating particular types of dump. */
231 #define HEX_DUMP (1 << 0) /* The -x command line switch. */
232 #define DISASS_DUMP (1 << 1) /* The -i command line switch. */
233 #define DEBUG_DUMP (1 << 2) /* The -w command line switch. */
234 #define STRING_DUMP (1 << 3) /* The -p command line switch. */
235 #define RELOC_DUMP (1 << 4) /* The -R command line switch. */
236
237 typedef unsigned char dump_type;
238
239 /* A linked list of the section names for which dumps were requested. */
240 struct dump_list_entry
241 {
242 char * name;
243 dump_type type;
244 struct dump_list_entry * next;
245 };
246 static struct dump_list_entry * dump_sects_byname;
247
248 /* A dynamic array of flags indicating for which sections a dump
249 has been requested via command line switches. */
250 static dump_type * cmdline_dump_sects = NULL;
251 static unsigned int num_cmdline_dump_sects = 0;
252
253 /* A dynamic array of flags indicating for which sections a dump of
254 some kind has been requested. It is reset on a per-object file
255 basis and then initialised from the cmdline_dump_sects array,
256 the results of interpreting the -w switch, and the
257 dump_sects_byname list. */
258 static dump_type * dump_sects = NULL;
259 static unsigned int num_dump_sects = 0;
260
261
262 /* How to print a vma value. */
263 typedef enum print_mode
264 {
265 HEX,
266 DEC,
267 DEC_5,
268 UNSIGNED,
269 PREFIX_HEX,
270 FULL_HEX,
271 LONG_HEX
272 }
273 print_mode;
274
275 #define UNKNOWN -1
276
277 #define SECTION_NAME(X) \
278 ((X) == NULL ? _("<none>") \
279 : string_table == NULL ? _("<no-name>") \
280 : ((X)->sh_name >= string_table_length ? _("<corrupt>") \
281 : string_table + (X)->sh_name))
282
283 #define DT_VERSIONTAGIDX(tag) (DT_VERNEEDNUM - (tag)) /* Reverse order! */
284
285 #define GET_ELF_SYMBOLS(file, section, sym_count) \
286 (is_32bit_elf ? get_32bit_elf_symbols (file, section, sym_count) \
287 : get_64bit_elf_symbols (file, section, sym_count))
288
289 #define VALID_DYNAMIC_NAME(offset) ((dynamic_strings != NULL) && (offset < dynamic_strings_length))
290 /* GET_DYNAMIC_NAME asssumes that VALID_DYNAMIC_NAME has
291 already been called and verified that the string exists. */
292 #define GET_DYNAMIC_NAME(offset) (dynamic_strings + offset)
293
294 #define REMOVE_ARCH_BITS(ADDR) \
295 do \
296 { \
297 if (elf_header.e_machine == EM_ARM) \
298 (ADDR) &= ~1; \
299 } \
300 while (0)
301 \f
302 /* Retrieve NMEMB structures, each SIZE bytes long from FILE starting at OFFSET.
303 Put the retrieved data into VAR, if it is not NULL. Otherwise allocate a buffer
304 using malloc and fill that. In either case return the pointer to the start of
305 the retrieved data or NULL if something went wrong. If something does go wrong
306 emit an error message using REASON as part of the context. */
307
308 static void *
309 get_data (void * var, FILE * file, long offset, size_t size, size_t nmemb,
310 const char * reason)
311 {
312 void * mvar;
313
314 if (size == 0 || nmemb == 0)
315 return NULL;
316
317 if (fseek (file, archive_file_offset + offset, SEEK_SET))
318 {
319 if (reason)
320 error (_("Unable to seek to 0x%lx for %s\n"),
321 (unsigned long) archive_file_offset + offset, reason);
322 return NULL;
323 }
324
325 /* Be kind to memory chekers (eg valgrind, address sanitizer) by not
326 attempting to allocate memory when the read is bound to fail. */
327 if (offset + archive_file_offset + size * nmemb > current_file_size)
328 {
329 if (reason)
330 error (_("Reading 0x%lx bytes extends past end of file for %s\n"),
331 (unsigned long) (size * nmemb), reason);
332 return NULL;
333 }
334
335 mvar = var;
336 if (mvar == NULL)
337 {
338 /* Check for overflow. */
339 if (nmemb < (~(size_t) 0 - 1) / size)
340 /* + 1 so that we can '\0' terminate invalid string table sections. */
341 mvar = malloc (size * nmemb + 1);
342
343 if (mvar == NULL)
344 {
345 if (reason)
346 error (_("Out of memory allocating 0x%lx bytes for %s\n"),
347 (unsigned long)(size * nmemb), reason);
348 return NULL;
349 }
350
351 ((char *) mvar)[size * nmemb] = '\0';
352 }
353
354 if (fread (mvar, size, nmemb, file) != nmemb)
355 {
356 if (reason)
357 error (_("Unable to read in 0x%lx bytes of %s\n"),
358 (unsigned long)(size * nmemb), reason);
359 if (mvar != var)
360 free (mvar);
361 return NULL;
362 }
363
364 return mvar;
365 }
366
367 /* Print a VMA value. */
368
369 static int
370 print_vma (bfd_vma vma, print_mode mode)
371 {
372 int nc = 0;
373
374 switch (mode)
375 {
376 case FULL_HEX:
377 nc = printf ("0x");
378 /* Drop through. */
379
380 case LONG_HEX:
381 #ifdef BFD64
382 if (is_32bit_elf)
383 return nc + printf ("%8.8" BFD_VMA_FMT "x", vma);
384 #endif
385 printf_vma (vma);
386 return nc + 16;
387
388 case DEC_5:
389 if (vma <= 99999)
390 return printf ("%5" BFD_VMA_FMT "d", vma);
391 /* Drop through. */
392
393 case PREFIX_HEX:
394 nc = printf ("0x");
395 /* Drop through. */
396
397 case HEX:
398 return nc + printf ("%" BFD_VMA_FMT "x", vma);
399
400 case DEC:
401 return printf ("%" BFD_VMA_FMT "d", vma);
402
403 case UNSIGNED:
404 return printf ("%" BFD_VMA_FMT "u", vma);
405 }
406 return 0;
407 }
408
409 /* Display a symbol on stdout. Handles the display of control characters and
410 multibye characters (assuming the host environment supports them).
411
412 Display at most abs(WIDTH) characters, truncating as necessary, unless do_wide is true.
413
414 If WIDTH is negative then ensure that the output is at least (- WIDTH) characters,
415 padding as necessary.
416
417 Returns the number of emitted characters. */
418
419 static unsigned int
420 print_symbol (int width, const char *symbol)
421 {
422 bfd_boolean extra_padding = FALSE;
423 int num_printed = 0;
424 #ifdef HAVE_MBSTATE_T
425 mbstate_t state;
426 #endif
427 int width_remaining;
428
429 if (width < 0)
430 {
431 /* Keep the width positive. This also helps. */
432 width = - width;
433 extra_padding = TRUE;
434 }
435 assert (width != 0);
436
437 if (do_wide)
438 /* Set the remaining width to a very large value.
439 This simplifies the code below. */
440 width_remaining = INT_MAX;
441 else
442 width_remaining = width;
443
444 #ifdef HAVE_MBSTATE_T
445 /* Initialise the multibyte conversion state. */
446 memset (& state, 0, sizeof (state));
447 #endif
448
449 while (width_remaining)
450 {
451 size_t n;
452 const char c = *symbol++;
453
454 if (c == 0)
455 break;
456
457 /* Do not print control characters directly as they can affect terminal
458 settings. Such characters usually appear in the names generated
459 by the assembler for local labels. */
460 if (ISCNTRL (c))
461 {
462 if (width_remaining < 2)
463 break;
464
465 printf ("^%c", c + 0x40);
466 width_remaining -= 2;
467 num_printed += 2;
468 }
469 else if (ISPRINT (c))
470 {
471 putchar (c);
472 width_remaining --;
473 num_printed ++;
474 }
475 else
476 {
477 #ifdef HAVE_MBSTATE_T
478 wchar_t w;
479 #endif
480 /* Let printf do the hard work of displaying multibyte characters. */
481 printf ("%.1s", symbol - 1);
482 width_remaining --;
483 num_printed ++;
484
485 #ifdef HAVE_MBSTATE_T
486 /* Try to find out how many bytes made up the character that was
487 just printed. Advance the symbol pointer past the bytes that
488 were displayed. */
489 n = mbrtowc (& w, symbol - 1, MB_CUR_MAX, & state);
490 #else
491 n = 1;
492 #endif
493 if (n != (size_t) -1 && n != (size_t) -2 && n > 0)
494 symbol += (n - 1);
495 }
496 }
497
498 if (extra_padding && num_printed < width)
499 {
500 /* Fill in the remaining spaces. */
501 printf ("%-*s", width - num_printed, " ");
502 num_printed = width;
503 }
504
505 return num_printed;
506 }
507
508 /* Returns a pointer to a static buffer containing a printable version of
509 the given section's name. Like print_symbol, except that it does not try
510 to print multibyte characters, it just interprets them as hex values. */
511
512 static const char *
513 printable_section_name (Elf_Internal_Shdr * sec)
514 {
515 #define MAX_PRINT_SEC_NAME_LEN 128
516 static char sec_name_buf [MAX_PRINT_SEC_NAME_LEN + 1];
517 const char * name = SECTION_NAME (sec);
518 char * buf = sec_name_buf;
519 char c;
520 unsigned int remaining = MAX_PRINT_SEC_NAME_LEN;
521
522 while ((c = * name ++) != 0)
523 {
524 if (ISCNTRL (c))
525 {
526 if (remaining < 2)
527 break;
528
529 * buf ++ = '^';
530 * buf ++ = c + 0x40;
531 remaining -= 2;
532 }
533 else if (ISPRINT (c))
534 {
535 * buf ++ = c;
536 remaining -= 1;
537 }
538 else
539 {
540 static char hex[17] = "0123456789ABCDEF";
541
542 if (remaining < 4)
543 break;
544 * buf ++ = '<';
545 * buf ++ = hex[(c & 0xf0) >> 4];
546 * buf ++ = hex[c & 0x0f];
547 * buf ++ = '>';
548 remaining -= 4;
549 }
550
551 if (remaining == 0)
552 break;
553 }
554
555 * buf = 0;
556 return sec_name_buf;
557 }
558
559 static const char *
560 printable_section_name_from_index (unsigned long ndx)
561 {
562 if (ndx >= elf_header.e_shnum)
563 return _("<corrupt>");
564
565 return printable_section_name (section_headers + ndx);
566 }
567
568 /* Return a pointer to section NAME, or NULL if no such section exists. */
569
570 static Elf_Internal_Shdr *
571 find_section (const char * name)
572 {
573 unsigned int i;
574
575 for (i = 0; i < elf_header.e_shnum; i++)
576 if (streq (SECTION_NAME (section_headers + i), name))
577 return section_headers + i;
578
579 return NULL;
580 }
581
582 /* Return a pointer to a section containing ADDR, or NULL if no such
583 section exists. */
584
585 static Elf_Internal_Shdr *
586 find_section_by_address (bfd_vma addr)
587 {
588 unsigned int i;
589
590 for (i = 0; i < elf_header.e_shnum; i++)
591 {
592 Elf_Internal_Shdr *sec = section_headers + i;
593 if (addr >= sec->sh_addr && addr < sec->sh_addr + sec->sh_size)
594 return sec;
595 }
596
597 return NULL;
598 }
599
600 static Elf_Internal_Shdr *
601 find_section_by_type (unsigned int type)
602 {
603 unsigned int i;
604
605 for (i = 0; i < elf_header.e_shnum; i++)
606 {
607 Elf_Internal_Shdr *sec = section_headers + i;
608 if (sec->sh_type == type)
609 return sec;
610 }
611
612 return NULL;
613 }
614
615 /* Return a pointer to section NAME, or NULL if no such section exists,
616 restricted to the list of sections given in SET. */
617
618 static Elf_Internal_Shdr *
619 find_section_in_set (const char * name, unsigned int * set)
620 {
621 unsigned int i;
622
623 if (set != NULL)
624 {
625 while ((i = *set++) > 0)
626 if (streq (SECTION_NAME (section_headers + i), name))
627 return section_headers + i;
628 }
629
630 return find_section (name);
631 }
632
633 /* Read an unsigned LEB128 encoded value from p. Set *PLEN to the number of
634 bytes read. */
635
636 static inline unsigned long
637 read_uleb128 (unsigned char *data,
638 unsigned int *length_return,
639 const unsigned char * const end)
640 {
641 return read_leb128 (data, length_return, FALSE, end);
642 }
643
644 /* Return true if the current file is for IA-64 machine and OpenVMS ABI.
645 This OS has so many departures from the ELF standard that we test it at
646 many places. */
647
648 static inline int
649 is_ia64_vms (void)
650 {
651 return elf_header.e_machine == EM_IA_64
652 && elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS;
653 }
654
655 /* Guess the relocation size commonly used by the specific machines. */
656
657 static int
658 guess_is_rela (unsigned int e_machine)
659 {
660 switch (e_machine)
661 {
662 /* Targets that use REL relocations. */
663 case EM_386:
664 case EM_486:
665 case EM_960:
666 case EM_ARM:
667 case EM_D10V:
668 case EM_CYGNUS_D10V:
669 case EM_DLX:
670 case EM_MIPS:
671 case EM_MIPS_RS3_LE:
672 case EM_CYGNUS_M32R:
673 case EM_SCORE:
674 case EM_XGATE:
675 return FALSE;
676
677 /* Targets that use RELA relocations. */
678 case EM_68K:
679 case EM_860:
680 case EM_AARCH64:
681 case EM_ADAPTEVA_EPIPHANY:
682 case EM_ALPHA:
683 case EM_ALTERA_NIOS2:
684 case EM_AVR:
685 case EM_AVR_OLD:
686 case EM_BLACKFIN:
687 case EM_CR16:
688 case EM_CRIS:
689 case EM_CRX:
690 case EM_D30V:
691 case EM_CYGNUS_D30V:
692 case EM_FR30:
693 case EM_CYGNUS_FR30:
694 case EM_CYGNUS_FRV:
695 case EM_H8S:
696 case EM_H8_300:
697 case EM_H8_300H:
698 case EM_IA_64:
699 case EM_IP2K:
700 case EM_IP2K_OLD:
701 case EM_IQ2000:
702 case EM_LATTICEMICO32:
703 case EM_M32C_OLD:
704 case EM_M32C:
705 case EM_M32R:
706 case EM_MCORE:
707 case EM_CYGNUS_MEP:
708 case EM_METAG:
709 case EM_MMIX:
710 case EM_MN10200:
711 case EM_CYGNUS_MN10200:
712 case EM_MN10300:
713 case EM_CYGNUS_MN10300:
714 case EM_MOXIE:
715 case EM_MSP430:
716 case EM_MSP430_OLD:
717 case EM_MT:
718 case EM_NDS32:
719 case EM_NIOS32:
720 case EM_OR1K:
721 case EM_PPC64:
722 case EM_PPC:
723 case EM_RL78:
724 case EM_RX:
725 case EM_S390:
726 case EM_S390_OLD:
727 case EM_SH:
728 case EM_SPARC:
729 case EM_SPARC32PLUS:
730 case EM_SPARCV9:
731 case EM_SPU:
732 case EM_TI_C6000:
733 case EM_TILEGX:
734 case EM_TILEPRO:
735 case EM_V800:
736 case EM_V850:
737 case EM_CYGNUS_V850:
738 case EM_VAX:
739 case EM_X86_64:
740 case EM_L1OM:
741 case EM_K1OM:
742 case EM_XSTORMY16:
743 case EM_XTENSA:
744 case EM_XTENSA_OLD:
745 case EM_MICROBLAZE:
746 case EM_MICROBLAZE_OLD:
747 return TRUE;
748
749 case EM_68HC05:
750 case EM_68HC08:
751 case EM_68HC11:
752 case EM_68HC16:
753 case EM_FX66:
754 case EM_ME16:
755 case EM_MMA:
756 case EM_NCPU:
757 case EM_NDR1:
758 case EM_PCP:
759 case EM_ST100:
760 case EM_ST19:
761 case EM_ST7:
762 case EM_ST9PLUS:
763 case EM_STARCORE:
764 case EM_SVX:
765 case EM_TINYJ:
766 default:
767 warn (_("Don't know about relocations on this machine architecture\n"));
768 return FALSE;
769 }
770 }
771
772 static int
773 slurp_rela_relocs (FILE * file,
774 unsigned long rel_offset,
775 unsigned long rel_size,
776 Elf_Internal_Rela ** relasp,
777 unsigned long * nrelasp)
778 {
779 Elf_Internal_Rela * relas;
780 size_t nrelas;
781 unsigned int i;
782
783 if (is_32bit_elf)
784 {
785 Elf32_External_Rela * erelas;
786
787 erelas = (Elf32_External_Rela *) get_data (NULL, file, rel_offset, 1,
788 rel_size, _("32-bit relocation data"));
789 if (!erelas)
790 return 0;
791
792 nrelas = rel_size / sizeof (Elf32_External_Rela);
793
794 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
795 sizeof (Elf_Internal_Rela));
796
797 if (relas == NULL)
798 {
799 free (erelas);
800 error (_("out of memory parsing relocs\n"));
801 return 0;
802 }
803
804 for (i = 0; i < nrelas; i++)
805 {
806 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
807 relas[i].r_info = BYTE_GET (erelas[i].r_info);
808 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
809 }
810
811 free (erelas);
812 }
813 else
814 {
815 Elf64_External_Rela * erelas;
816
817 erelas = (Elf64_External_Rela *) get_data (NULL, file, rel_offset, 1,
818 rel_size, _("64-bit relocation data"));
819 if (!erelas)
820 return 0;
821
822 nrelas = rel_size / sizeof (Elf64_External_Rela);
823
824 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
825 sizeof (Elf_Internal_Rela));
826
827 if (relas == NULL)
828 {
829 free (erelas);
830 error (_("out of memory parsing relocs\n"));
831 return 0;
832 }
833
834 for (i = 0; i < nrelas; i++)
835 {
836 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
837 relas[i].r_info = BYTE_GET (erelas[i].r_info);
838 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
839
840 /* The #ifdef BFD64 below is to prevent a compile time
841 warning. We know that if we do not have a 64 bit data
842 type that we will never execute this code anyway. */
843 #ifdef BFD64
844 if (elf_header.e_machine == EM_MIPS
845 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
846 {
847 /* In little-endian objects, r_info isn't really a
848 64-bit little-endian value: it has a 32-bit
849 little-endian symbol index followed by four
850 individual byte fields. Reorder INFO
851 accordingly. */
852 bfd_vma inf = relas[i].r_info;
853 inf = (((inf & 0xffffffff) << 32)
854 | ((inf >> 56) & 0xff)
855 | ((inf >> 40) & 0xff00)
856 | ((inf >> 24) & 0xff0000)
857 | ((inf >> 8) & 0xff000000));
858 relas[i].r_info = inf;
859 }
860 #endif /* BFD64 */
861 }
862
863 free (erelas);
864 }
865 *relasp = relas;
866 *nrelasp = nrelas;
867 return 1;
868 }
869
870 static int
871 slurp_rel_relocs (FILE * file,
872 unsigned long rel_offset,
873 unsigned long rel_size,
874 Elf_Internal_Rela ** relsp,
875 unsigned long * nrelsp)
876 {
877 Elf_Internal_Rela * rels;
878 size_t nrels;
879 unsigned int i;
880
881 if (is_32bit_elf)
882 {
883 Elf32_External_Rel * erels;
884
885 erels = (Elf32_External_Rel *) get_data (NULL, file, rel_offset, 1,
886 rel_size, _("32-bit relocation data"));
887 if (!erels)
888 return 0;
889
890 nrels = rel_size / sizeof (Elf32_External_Rel);
891
892 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
893
894 if (rels == NULL)
895 {
896 free (erels);
897 error (_("out of memory parsing relocs\n"));
898 return 0;
899 }
900
901 for (i = 0; i < nrels; i++)
902 {
903 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
904 rels[i].r_info = BYTE_GET (erels[i].r_info);
905 rels[i].r_addend = 0;
906 }
907
908 free (erels);
909 }
910 else
911 {
912 Elf64_External_Rel * erels;
913
914 erels = (Elf64_External_Rel *) get_data (NULL, file, rel_offset, 1,
915 rel_size, _("64-bit relocation data"));
916 if (!erels)
917 return 0;
918
919 nrels = rel_size / sizeof (Elf64_External_Rel);
920
921 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
922
923 if (rels == NULL)
924 {
925 free (erels);
926 error (_("out of memory parsing relocs\n"));
927 return 0;
928 }
929
930 for (i = 0; i < nrels; i++)
931 {
932 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
933 rels[i].r_info = BYTE_GET (erels[i].r_info);
934 rels[i].r_addend = 0;
935
936 /* The #ifdef BFD64 below is to prevent a compile time
937 warning. We know that if we do not have a 64 bit data
938 type that we will never execute this code anyway. */
939 #ifdef BFD64
940 if (elf_header.e_machine == EM_MIPS
941 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
942 {
943 /* In little-endian objects, r_info isn't really a
944 64-bit little-endian value: it has a 32-bit
945 little-endian symbol index followed by four
946 individual byte fields. Reorder INFO
947 accordingly. */
948 bfd_vma inf = rels[i].r_info;
949 inf = (((inf & 0xffffffff) << 32)
950 | ((inf >> 56) & 0xff)
951 | ((inf >> 40) & 0xff00)
952 | ((inf >> 24) & 0xff0000)
953 | ((inf >> 8) & 0xff000000));
954 rels[i].r_info = inf;
955 }
956 #endif /* BFD64 */
957 }
958
959 free (erels);
960 }
961 *relsp = rels;
962 *nrelsp = nrels;
963 return 1;
964 }
965
966 /* Returns the reloc type extracted from the reloc info field. */
967
968 static unsigned int
969 get_reloc_type (bfd_vma reloc_info)
970 {
971 if (is_32bit_elf)
972 return ELF32_R_TYPE (reloc_info);
973
974 switch (elf_header.e_machine)
975 {
976 case EM_MIPS:
977 /* Note: We assume that reloc_info has already been adjusted for us. */
978 return ELF64_MIPS_R_TYPE (reloc_info);
979
980 case EM_SPARCV9:
981 return ELF64_R_TYPE_ID (reloc_info);
982
983 default:
984 return ELF64_R_TYPE (reloc_info);
985 }
986 }
987
988 /* Return the symbol index extracted from the reloc info field. */
989
990 static bfd_vma
991 get_reloc_symindex (bfd_vma reloc_info)
992 {
993 return is_32bit_elf ? ELF32_R_SYM (reloc_info) : ELF64_R_SYM (reloc_info);
994 }
995
996 static inline bfd_boolean
997 uses_msp430x_relocs (void)
998 {
999 return
1000 elf_header.e_machine == EM_MSP430 /* Paranoia. */
1001 /* GCC uses osabi == ELFOSBI_STANDALONE. */
1002 && (((elf_header.e_flags & EF_MSP430_MACH) == E_MSP430_MACH_MSP430X)
1003 /* TI compiler uses ELFOSABI_NONE. */
1004 || (elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE));
1005 }
1006
1007 /* Display the contents of the relocation data found at the specified
1008 offset. */
1009
1010 static void
1011 dump_relocations (FILE * file,
1012 unsigned long rel_offset,
1013 unsigned long rel_size,
1014 Elf_Internal_Sym * symtab,
1015 unsigned long nsyms,
1016 char * strtab,
1017 unsigned long strtablen,
1018 int is_rela)
1019 {
1020 unsigned int i;
1021 Elf_Internal_Rela * rels;
1022
1023 if (is_rela == UNKNOWN)
1024 is_rela = guess_is_rela (elf_header.e_machine);
1025
1026 if (is_rela)
1027 {
1028 if (!slurp_rela_relocs (file, rel_offset, rel_size, &rels, &rel_size))
1029 return;
1030 }
1031 else
1032 {
1033 if (!slurp_rel_relocs (file, rel_offset, rel_size, &rels, &rel_size))
1034 return;
1035 }
1036
1037 if (is_32bit_elf)
1038 {
1039 if (is_rela)
1040 {
1041 if (do_wide)
1042 printf (_(" Offset Info Type Sym. Value Symbol's Name + Addend\n"));
1043 else
1044 printf (_(" Offset Info Type Sym.Value Sym. Name + Addend\n"));
1045 }
1046 else
1047 {
1048 if (do_wide)
1049 printf (_(" Offset Info Type Sym. Value Symbol's Name\n"));
1050 else
1051 printf (_(" Offset Info Type Sym.Value Sym. Name\n"));
1052 }
1053 }
1054 else
1055 {
1056 if (is_rela)
1057 {
1058 if (do_wide)
1059 printf (_(" Offset Info Type Symbol's Value Symbol's Name + Addend\n"));
1060 else
1061 printf (_(" Offset Info Type Sym. Value Sym. Name + Addend\n"));
1062 }
1063 else
1064 {
1065 if (do_wide)
1066 printf (_(" Offset Info Type Symbol's Value Symbol's Name\n"));
1067 else
1068 printf (_(" Offset Info Type Sym. Value Sym. Name\n"));
1069 }
1070 }
1071
1072 for (i = 0; i < rel_size; i++)
1073 {
1074 const char * rtype;
1075 bfd_vma offset;
1076 bfd_vma inf;
1077 bfd_vma symtab_index;
1078 bfd_vma type;
1079
1080 offset = rels[i].r_offset;
1081 inf = rels[i].r_info;
1082
1083 type = get_reloc_type (inf);
1084 symtab_index = get_reloc_symindex (inf);
1085
1086 if (is_32bit_elf)
1087 {
1088 printf ("%8.8lx %8.8lx ",
1089 (unsigned long) offset & 0xffffffff,
1090 (unsigned long) inf & 0xffffffff);
1091 }
1092 else
1093 {
1094 #if BFD_HOST_64BIT_LONG
1095 printf (do_wide
1096 ? "%16.16lx %16.16lx "
1097 : "%12.12lx %12.12lx ",
1098 offset, inf);
1099 #elif BFD_HOST_64BIT_LONG_LONG
1100 #ifndef __MSVCRT__
1101 printf (do_wide
1102 ? "%16.16llx %16.16llx "
1103 : "%12.12llx %12.12llx ",
1104 offset, inf);
1105 #else
1106 printf (do_wide
1107 ? "%16.16I64x %16.16I64x "
1108 : "%12.12I64x %12.12I64x ",
1109 offset, inf);
1110 #endif
1111 #else
1112 printf (do_wide
1113 ? "%8.8lx%8.8lx %8.8lx%8.8lx "
1114 : "%4.4lx%8.8lx %4.4lx%8.8lx ",
1115 _bfd_int64_high (offset),
1116 _bfd_int64_low (offset),
1117 _bfd_int64_high (inf),
1118 _bfd_int64_low (inf));
1119 #endif
1120 }
1121
1122 switch (elf_header.e_machine)
1123 {
1124 default:
1125 rtype = NULL;
1126 break;
1127
1128 case EM_AARCH64:
1129 rtype = elf_aarch64_reloc_type (type);
1130 break;
1131
1132 case EM_M32R:
1133 case EM_CYGNUS_M32R:
1134 rtype = elf_m32r_reloc_type (type);
1135 break;
1136
1137 case EM_386:
1138 case EM_486:
1139 rtype = elf_i386_reloc_type (type);
1140 break;
1141
1142 case EM_68HC11:
1143 case EM_68HC12:
1144 rtype = elf_m68hc11_reloc_type (type);
1145 break;
1146
1147 case EM_68K:
1148 rtype = elf_m68k_reloc_type (type);
1149 break;
1150
1151 case EM_960:
1152 rtype = elf_i960_reloc_type (type);
1153 break;
1154
1155 case EM_AVR:
1156 case EM_AVR_OLD:
1157 rtype = elf_avr_reloc_type (type);
1158 break;
1159
1160 case EM_OLD_SPARCV9:
1161 case EM_SPARC32PLUS:
1162 case EM_SPARCV9:
1163 case EM_SPARC:
1164 rtype = elf_sparc_reloc_type (type);
1165 break;
1166
1167 case EM_SPU:
1168 rtype = elf_spu_reloc_type (type);
1169 break;
1170
1171 case EM_V800:
1172 rtype = v800_reloc_type (type);
1173 break;
1174 case EM_V850:
1175 case EM_CYGNUS_V850:
1176 rtype = v850_reloc_type (type);
1177 break;
1178
1179 case EM_D10V:
1180 case EM_CYGNUS_D10V:
1181 rtype = elf_d10v_reloc_type (type);
1182 break;
1183
1184 case EM_D30V:
1185 case EM_CYGNUS_D30V:
1186 rtype = elf_d30v_reloc_type (type);
1187 break;
1188
1189 case EM_DLX:
1190 rtype = elf_dlx_reloc_type (type);
1191 break;
1192
1193 case EM_SH:
1194 rtype = elf_sh_reloc_type (type);
1195 break;
1196
1197 case EM_MN10300:
1198 case EM_CYGNUS_MN10300:
1199 rtype = elf_mn10300_reloc_type (type);
1200 break;
1201
1202 case EM_MN10200:
1203 case EM_CYGNUS_MN10200:
1204 rtype = elf_mn10200_reloc_type (type);
1205 break;
1206
1207 case EM_FR30:
1208 case EM_CYGNUS_FR30:
1209 rtype = elf_fr30_reloc_type (type);
1210 break;
1211
1212 case EM_CYGNUS_FRV:
1213 rtype = elf_frv_reloc_type (type);
1214 break;
1215
1216 case EM_MCORE:
1217 rtype = elf_mcore_reloc_type (type);
1218 break;
1219
1220 case EM_MMIX:
1221 rtype = elf_mmix_reloc_type (type);
1222 break;
1223
1224 case EM_MOXIE:
1225 rtype = elf_moxie_reloc_type (type);
1226 break;
1227
1228 case EM_MSP430:
1229 if (uses_msp430x_relocs ())
1230 {
1231 rtype = elf_msp430x_reloc_type (type);
1232 break;
1233 }
1234 case EM_MSP430_OLD:
1235 rtype = elf_msp430_reloc_type (type);
1236 break;
1237
1238 case EM_NDS32:
1239 rtype = elf_nds32_reloc_type (type);
1240 break;
1241
1242 case EM_PPC:
1243 rtype = elf_ppc_reloc_type (type);
1244 break;
1245
1246 case EM_PPC64:
1247 rtype = elf_ppc64_reloc_type (type);
1248 break;
1249
1250 case EM_MIPS:
1251 case EM_MIPS_RS3_LE:
1252 rtype = elf_mips_reloc_type (type);
1253 break;
1254
1255 case EM_ALPHA:
1256 rtype = elf_alpha_reloc_type (type);
1257 break;
1258
1259 case EM_ARM:
1260 rtype = elf_arm_reloc_type (type);
1261 break;
1262
1263 case EM_ARC:
1264 rtype = elf_arc_reloc_type (type);
1265 break;
1266
1267 case EM_PARISC:
1268 rtype = elf_hppa_reloc_type (type);
1269 break;
1270
1271 case EM_H8_300:
1272 case EM_H8_300H:
1273 case EM_H8S:
1274 rtype = elf_h8_reloc_type (type);
1275 break;
1276
1277 case EM_OR1K:
1278 rtype = elf_or1k_reloc_type (type);
1279 break;
1280
1281 case EM_PJ:
1282 case EM_PJ_OLD:
1283 rtype = elf_pj_reloc_type (type);
1284 break;
1285 case EM_IA_64:
1286 rtype = elf_ia64_reloc_type (type);
1287 break;
1288
1289 case EM_CRIS:
1290 rtype = elf_cris_reloc_type (type);
1291 break;
1292
1293 case EM_860:
1294 rtype = elf_i860_reloc_type (type);
1295 break;
1296
1297 case EM_X86_64:
1298 case EM_L1OM:
1299 case EM_K1OM:
1300 rtype = elf_x86_64_reloc_type (type);
1301 break;
1302
1303 case EM_S370:
1304 rtype = i370_reloc_type (type);
1305 break;
1306
1307 case EM_S390_OLD:
1308 case EM_S390:
1309 rtype = elf_s390_reloc_type (type);
1310 break;
1311
1312 case EM_SCORE:
1313 rtype = elf_score_reloc_type (type);
1314 break;
1315
1316 case EM_XSTORMY16:
1317 rtype = elf_xstormy16_reloc_type (type);
1318 break;
1319
1320 case EM_CRX:
1321 rtype = elf_crx_reloc_type (type);
1322 break;
1323
1324 case EM_VAX:
1325 rtype = elf_vax_reloc_type (type);
1326 break;
1327
1328 case EM_ADAPTEVA_EPIPHANY:
1329 rtype = elf_epiphany_reloc_type (type);
1330 break;
1331
1332 case EM_IP2K:
1333 case EM_IP2K_OLD:
1334 rtype = elf_ip2k_reloc_type (type);
1335 break;
1336
1337 case EM_IQ2000:
1338 rtype = elf_iq2000_reloc_type (type);
1339 break;
1340
1341 case EM_XTENSA_OLD:
1342 case EM_XTENSA:
1343 rtype = elf_xtensa_reloc_type (type);
1344 break;
1345
1346 case EM_LATTICEMICO32:
1347 rtype = elf_lm32_reloc_type (type);
1348 break;
1349
1350 case EM_M32C_OLD:
1351 case EM_M32C:
1352 rtype = elf_m32c_reloc_type (type);
1353 break;
1354
1355 case EM_MT:
1356 rtype = elf_mt_reloc_type (type);
1357 break;
1358
1359 case EM_BLACKFIN:
1360 rtype = elf_bfin_reloc_type (type);
1361 break;
1362
1363 case EM_CYGNUS_MEP:
1364 rtype = elf_mep_reloc_type (type);
1365 break;
1366
1367 case EM_CR16:
1368 rtype = elf_cr16_reloc_type (type);
1369 break;
1370
1371 case EM_MICROBLAZE:
1372 case EM_MICROBLAZE_OLD:
1373 rtype = elf_microblaze_reloc_type (type);
1374 break;
1375
1376 case EM_RL78:
1377 rtype = elf_rl78_reloc_type (type);
1378 break;
1379
1380 case EM_RX:
1381 rtype = elf_rx_reloc_type (type);
1382 break;
1383
1384 case EM_METAG:
1385 rtype = elf_metag_reloc_type (type);
1386 break;
1387
1388 case EM_XC16X:
1389 case EM_C166:
1390 rtype = elf_xc16x_reloc_type (type);
1391 break;
1392
1393 case EM_TI_C6000:
1394 rtype = elf_tic6x_reloc_type (type);
1395 break;
1396
1397 case EM_TILEGX:
1398 rtype = elf_tilegx_reloc_type (type);
1399 break;
1400
1401 case EM_TILEPRO:
1402 rtype = elf_tilepro_reloc_type (type);
1403 break;
1404
1405 case EM_XGATE:
1406 rtype = elf_xgate_reloc_type (type);
1407 break;
1408
1409 case EM_ALTERA_NIOS2:
1410 rtype = elf_nios2_reloc_type (type);
1411 break;
1412 }
1413
1414 if (rtype == NULL)
1415 printf (_("unrecognized: %-7lx"), (unsigned long) type & 0xffffffff);
1416 else
1417 printf (do_wide ? "%-22.22s" : "%-17.17s", rtype);
1418
1419 if (elf_header.e_machine == EM_ALPHA
1420 && rtype != NULL
1421 && streq (rtype, "R_ALPHA_LITUSE")
1422 && is_rela)
1423 {
1424 switch (rels[i].r_addend)
1425 {
1426 case LITUSE_ALPHA_ADDR: rtype = "ADDR"; break;
1427 case LITUSE_ALPHA_BASE: rtype = "BASE"; break;
1428 case LITUSE_ALPHA_BYTOFF: rtype = "BYTOFF"; break;
1429 case LITUSE_ALPHA_JSR: rtype = "JSR"; break;
1430 case LITUSE_ALPHA_TLSGD: rtype = "TLSGD"; break;
1431 case LITUSE_ALPHA_TLSLDM: rtype = "TLSLDM"; break;
1432 case LITUSE_ALPHA_JSRDIRECT: rtype = "JSRDIRECT"; break;
1433 default: rtype = NULL;
1434 }
1435 if (rtype)
1436 printf (" (%s)", rtype);
1437 else
1438 {
1439 putchar (' ');
1440 printf (_("<unknown addend: %lx>"),
1441 (unsigned long) rels[i].r_addend);
1442 }
1443 }
1444 else if (symtab_index)
1445 {
1446 if (symtab == NULL || symtab_index >= nsyms)
1447 printf (_(" bad symbol index: %08lx"), (unsigned long) symtab_index);
1448 else
1449 {
1450 Elf_Internal_Sym * psym;
1451
1452 psym = symtab + symtab_index;
1453
1454 printf (" ");
1455
1456 if (ELF_ST_TYPE (psym->st_info) == STT_GNU_IFUNC)
1457 {
1458 const char * name;
1459 unsigned int len;
1460 unsigned int width = is_32bit_elf ? 8 : 14;
1461
1462 /* Relocations against GNU_IFUNC symbols do not use the value
1463 of the symbol as the address to relocate against. Instead
1464 they invoke the function named by the symbol and use its
1465 result as the address for relocation.
1466
1467 To indicate this to the user, do not display the value of
1468 the symbol in the "Symbols's Value" field. Instead show
1469 its name followed by () as a hint that the symbol is
1470 invoked. */
1471
1472 if (strtab == NULL
1473 || psym->st_name == 0
1474 || psym->st_name >= strtablen)
1475 name = "??";
1476 else
1477 name = strtab + psym->st_name;
1478
1479 len = print_symbol (width, name);
1480 printf ("()%-*s", len <= width ? (width + 1) - len : 1, " ");
1481 }
1482 else
1483 {
1484 print_vma (psym->st_value, LONG_HEX);
1485
1486 printf (is_32bit_elf ? " " : " ");
1487 }
1488
1489 if (psym->st_name == 0)
1490 {
1491 const char * sec_name = "<null>";
1492 char name_buf[40];
1493
1494 if (ELF_ST_TYPE (psym->st_info) == STT_SECTION)
1495 {
1496 if (psym->st_shndx < elf_header.e_shnum)
1497 sec_name = SECTION_NAME (section_headers + psym->st_shndx);
1498 else if (psym->st_shndx == SHN_ABS)
1499 sec_name = "ABS";
1500 else if (psym->st_shndx == SHN_COMMON)
1501 sec_name = "COMMON";
1502 else if ((elf_header.e_machine == EM_MIPS
1503 && psym->st_shndx == SHN_MIPS_SCOMMON)
1504 || (elf_header.e_machine == EM_TI_C6000
1505 && psym->st_shndx == SHN_TIC6X_SCOMMON))
1506 sec_name = "SCOMMON";
1507 else if (elf_header.e_machine == EM_MIPS
1508 && psym->st_shndx == SHN_MIPS_SUNDEFINED)
1509 sec_name = "SUNDEF";
1510 else if ((elf_header.e_machine == EM_X86_64
1511 || elf_header.e_machine == EM_L1OM
1512 || elf_header.e_machine == EM_K1OM)
1513 && psym->st_shndx == SHN_X86_64_LCOMMON)
1514 sec_name = "LARGE_COMMON";
1515 else if (elf_header.e_machine == EM_IA_64
1516 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX
1517 && psym->st_shndx == SHN_IA_64_ANSI_COMMON)
1518 sec_name = "ANSI_COM";
1519 else if (is_ia64_vms ()
1520 && psym->st_shndx == SHN_IA_64_VMS_SYMVEC)
1521 sec_name = "VMS_SYMVEC";
1522 else
1523 {
1524 sprintf (name_buf, "<section 0x%x>",
1525 (unsigned int) psym->st_shndx);
1526 sec_name = name_buf;
1527 }
1528 }
1529 print_symbol (22, sec_name);
1530 }
1531 else if (strtab == NULL)
1532 printf (_("<string table index: %3ld>"), psym->st_name);
1533 else if (psym->st_name >= strtablen)
1534 printf (_("<corrupt string table index: %3ld>"), psym->st_name);
1535 else
1536 print_symbol (22, strtab + psym->st_name);
1537
1538 if (is_rela)
1539 {
1540 bfd_signed_vma off = rels[i].r_addend;
1541
1542 if (off < 0)
1543 printf (" - %" BFD_VMA_FMT "x", - off);
1544 else
1545 printf (" + %" BFD_VMA_FMT "x", off);
1546 }
1547 }
1548 }
1549 else if (is_rela)
1550 {
1551 bfd_signed_vma off = rels[i].r_addend;
1552
1553 printf ("%*c", is_32bit_elf ? 12 : 20, ' ');
1554 if (off < 0)
1555 printf ("-%" BFD_VMA_FMT "x", - off);
1556 else
1557 printf ("%" BFD_VMA_FMT "x", off);
1558 }
1559
1560 if (elf_header.e_machine == EM_SPARCV9
1561 && rtype != NULL
1562 && streq (rtype, "R_SPARC_OLO10"))
1563 printf (" + %lx", (unsigned long) ELF64_R_TYPE_DATA (inf));
1564
1565 putchar ('\n');
1566
1567 #ifdef BFD64
1568 if (! is_32bit_elf && elf_header.e_machine == EM_MIPS)
1569 {
1570 bfd_vma type2 = ELF64_MIPS_R_TYPE2 (inf);
1571 bfd_vma type3 = ELF64_MIPS_R_TYPE3 (inf);
1572 const char * rtype2 = elf_mips_reloc_type (type2);
1573 const char * rtype3 = elf_mips_reloc_type (type3);
1574
1575 printf (" Type2: ");
1576
1577 if (rtype2 == NULL)
1578 printf (_("unrecognized: %-7lx"),
1579 (unsigned long) type2 & 0xffffffff);
1580 else
1581 printf ("%-17.17s", rtype2);
1582
1583 printf ("\n Type3: ");
1584
1585 if (rtype3 == NULL)
1586 printf (_("unrecognized: %-7lx"),
1587 (unsigned long) type3 & 0xffffffff);
1588 else
1589 printf ("%-17.17s", rtype3);
1590
1591 putchar ('\n');
1592 }
1593 #endif /* BFD64 */
1594 }
1595
1596 free (rels);
1597 }
1598
1599 static const char *
1600 get_mips_dynamic_type (unsigned long type)
1601 {
1602 switch (type)
1603 {
1604 case DT_MIPS_RLD_VERSION: return "MIPS_RLD_VERSION";
1605 case DT_MIPS_TIME_STAMP: return "MIPS_TIME_STAMP";
1606 case DT_MIPS_ICHECKSUM: return "MIPS_ICHECKSUM";
1607 case DT_MIPS_IVERSION: return "MIPS_IVERSION";
1608 case DT_MIPS_FLAGS: return "MIPS_FLAGS";
1609 case DT_MIPS_BASE_ADDRESS: return "MIPS_BASE_ADDRESS";
1610 case DT_MIPS_MSYM: return "MIPS_MSYM";
1611 case DT_MIPS_CONFLICT: return "MIPS_CONFLICT";
1612 case DT_MIPS_LIBLIST: return "MIPS_LIBLIST";
1613 case DT_MIPS_LOCAL_GOTNO: return "MIPS_LOCAL_GOTNO";
1614 case DT_MIPS_CONFLICTNO: return "MIPS_CONFLICTNO";
1615 case DT_MIPS_LIBLISTNO: return "MIPS_LIBLISTNO";
1616 case DT_MIPS_SYMTABNO: return "MIPS_SYMTABNO";
1617 case DT_MIPS_UNREFEXTNO: return "MIPS_UNREFEXTNO";
1618 case DT_MIPS_GOTSYM: return "MIPS_GOTSYM";
1619 case DT_MIPS_HIPAGENO: return "MIPS_HIPAGENO";
1620 case DT_MIPS_RLD_MAP: return "MIPS_RLD_MAP";
1621 case DT_MIPS_DELTA_CLASS: return "MIPS_DELTA_CLASS";
1622 case DT_MIPS_DELTA_CLASS_NO: return "MIPS_DELTA_CLASS_NO";
1623 case DT_MIPS_DELTA_INSTANCE: return "MIPS_DELTA_INSTANCE";
1624 case DT_MIPS_DELTA_INSTANCE_NO: return "MIPS_DELTA_INSTANCE_NO";
1625 case DT_MIPS_DELTA_RELOC: return "MIPS_DELTA_RELOC";
1626 case DT_MIPS_DELTA_RELOC_NO: return "MIPS_DELTA_RELOC_NO";
1627 case DT_MIPS_DELTA_SYM: return "MIPS_DELTA_SYM";
1628 case DT_MIPS_DELTA_SYM_NO: return "MIPS_DELTA_SYM_NO";
1629 case DT_MIPS_DELTA_CLASSSYM: return "MIPS_DELTA_CLASSSYM";
1630 case DT_MIPS_DELTA_CLASSSYM_NO: return "MIPS_DELTA_CLASSSYM_NO";
1631 case DT_MIPS_CXX_FLAGS: return "MIPS_CXX_FLAGS";
1632 case DT_MIPS_PIXIE_INIT: return "MIPS_PIXIE_INIT";
1633 case DT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
1634 case DT_MIPS_LOCALPAGE_GOTIDX: return "MIPS_LOCALPAGE_GOTIDX";
1635 case DT_MIPS_LOCAL_GOTIDX: return "MIPS_LOCAL_GOTIDX";
1636 case DT_MIPS_HIDDEN_GOTIDX: return "MIPS_HIDDEN_GOTIDX";
1637 case DT_MIPS_PROTECTED_GOTIDX: return "MIPS_PROTECTED_GOTIDX";
1638 case DT_MIPS_OPTIONS: return "MIPS_OPTIONS";
1639 case DT_MIPS_INTERFACE: return "MIPS_INTERFACE";
1640 case DT_MIPS_DYNSTR_ALIGN: return "MIPS_DYNSTR_ALIGN";
1641 case DT_MIPS_INTERFACE_SIZE: return "MIPS_INTERFACE_SIZE";
1642 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: return "MIPS_RLD_TEXT_RESOLVE_ADDR";
1643 case DT_MIPS_PERF_SUFFIX: return "MIPS_PERF_SUFFIX";
1644 case DT_MIPS_COMPACT_SIZE: return "MIPS_COMPACT_SIZE";
1645 case DT_MIPS_GP_VALUE: return "MIPS_GP_VALUE";
1646 case DT_MIPS_AUX_DYNAMIC: return "MIPS_AUX_DYNAMIC";
1647 case DT_MIPS_PLTGOT: return "MIPS_PLTGOT";
1648 case DT_MIPS_RWPLT: return "MIPS_RWPLT";
1649 default:
1650 return NULL;
1651 }
1652 }
1653
1654 static const char *
1655 get_sparc64_dynamic_type (unsigned long type)
1656 {
1657 switch (type)
1658 {
1659 case DT_SPARC_REGISTER: return "SPARC_REGISTER";
1660 default:
1661 return NULL;
1662 }
1663 }
1664
1665 static const char *
1666 get_ppc_dynamic_type (unsigned long type)
1667 {
1668 switch (type)
1669 {
1670 case DT_PPC_GOT: return "PPC_GOT";
1671 case DT_PPC_OPT: return "PPC_OPT";
1672 default:
1673 return NULL;
1674 }
1675 }
1676
1677 static const char *
1678 get_ppc64_dynamic_type (unsigned long type)
1679 {
1680 switch (type)
1681 {
1682 case DT_PPC64_GLINK: return "PPC64_GLINK";
1683 case DT_PPC64_OPD: return "PPC64_OPD";
1684 case DT_PPC64_OPDSZ: return "PPC64_OPDSZ";
1685 case DT_PPC64_OPT: return "PPC64_OPT";
1686 default:
1687 return NULL;
1688 }
1689 }
1690
1691 static const char *
1692 get_parisc_dynamic_type (unsigned long type)
1693 {
1694 switch (type)
1695 {
1696 case DT_HP_LOAD_MAP: return "HP_LOAD_MAP";
1697 case DT_HP_DLD_FLAGS: return "HP_DLD_FLAGS";
1698 case DT_HP_DLD_HOOK: return "HP_DLD_HOOK";
1699 case DT_HP_UX10_INIT: return "HP_UX10_INIT";
1700 case DT_HP_UX10_INITSZ: return "HP_UX10_INITSZ";
1701 case DT_HP_PREINIT: return "HP_PREINIT";
1702 case DT_HP_PREINITSZ: return "HP_PREINITSZ";
1703 case DT_HP_NEEDED: return "HP_NEEDED";
1704 case DT_HP_TIME_STAMP: return "HP_TIME_STAMP";
1705 case DT_HP_CHECKSUM: return "HP_CHECKSUM";
1706 case DT_HP_GST_SIZE: return "HP_GST_SIZE";
1707 case DT_HP_GST_VERSION: return "HP_GST_VERSION";
1708 case DT_HP_GST_HASHVAL: return "HP_GST_HASHVAL";
1709 case DT_HP_EPLTREL: return "HP_GST_EPLTREL";
1710 case DT_HP_EPLTRELSZ: return "HP_GST_EPLTRELSZ";
1711 case DT_HP_FILTERED: return "HP_FILTERED";
1712 case DT_HP_FILTER_TLS: return "HP_FILTER_TLS";
1713 case DT_HP_COMPAT_FILTERED: return "HP_COMPAT_FILTERED";
1714 case DT_HP_LAZYLOAD: return "HP_LAZYLOAD";
1715 case DT_HP_BIND_NOW_COUNT: return "HP_BIND_NOW_COUNT";
1716 case DT_PLT: return "PLT";
1717 case DT_PLT_SIZE: return "PLT_SIZE";
1718 case DT_DLT: return "DLT";
1719 case DT_DLT_SIZE: return "DLT_SIZE";
1720 default:
1721 return NULL;
1722 }
1723 }
1724
1725 static const char *
1726 get_ia64_dynamic_type (unsigned long type)
1727 {
1728 switch (type)
1729 {
1730 case DT_IA_64_PLT_RESERVE: return "IA_64_PLT_RESERVE";
1731 case DT_IA_64_VMS_SUBTYPE: return "VMS_SUBTYPE";
1732 case DT_IA_64_VMS_IMGIOCNT: return "VMS_IMGIOCNT";
1733 case DT_IA_64_VMS_LNKFLAGS: return "VMS_LNKFLAGS";
1734 case DT_IA_64_VMS_VIR_MEM_BLK_SIZ: return "VMS_VIR_MEM_BLK_SIZ";
1735 case DT_IA_64_VMS_IDENT: return "VMS_IDENT";
1736 case DT_IA_64_VMS_NEEDED_IDENT: return "VMS_NEEDED_IDENT";
1737 case DT_IA_64_VMS_IMG_RELA_CNT: return "VMS_IMG_RELA_CNT";
1738 case DT_IA_64_VMS_SEG_RELA_CNT: return "VMS_SEG_RELA_CNT";
1739 case DT_IA_64_VMS_FIXUP_RELA_CNT: return "VMS_FIXUP_RELA_CNT";
1740 case DT_IA_64_VMS_FIXUP_NEEDED: return "VMS_FIXUP_NEEDED";
1741 case DT_IA_64_VMS_SYMVEC_CNT: return "VMS_SYMVEC_CNT";
1742 case DT_IA_64_VMS_XLATED: return "VMS_XLATED";
1743 case DT_IA_64_VMS_STACKSIZE: return "VMS_STACKSIZE";
1744 case DT_IA_64_VMS_UNWINDSZ: return "VMS_UNWINDSZ";
1745 case DT_IA_64_VMS_UNWIND_CODSEG: return "VMS_UNWIND_CODSEG";
1746 case DT_IA_64_VMS_UNWIND_INFOSEG: return "VMS_UNWIND_INFOSEG";
1747 case DT_IA_64_VMS_LINKTIME: return "VMS_LINKTIME";
1748 case DT_IA_64_VMS_SEG_NO: return "VMS_SEG_NO";
1749 case DT_IA_64_VMS_SYMVEC_OFFSET: return "VMS_SYMVEC_OFFSET";
1750 case DT_IA_64_VMS_SYMVEC_SEG: return "VMS_SYMVEC_SEG";
1751 case DT_IA_64_VMS_UNWIND_OFFSET: return "VMS_UNWIND_OFFSET";
1752 case DT_IA_64_VMS_UNWIND_SEG: return "VMS_UNWIND_SEG";
1753 case DT_IA_64_VMS_STRTAB_OFFSET: return "VMS_STRTAB_OFFSET";
1754 case DT_IA_64_VMS_SYSVER_OFFSET: return "VMS_SYSVER_OFFSET";
1755 case DT_IA_64_VMS_IMG_RELA_OFF: return "VMS_IMG_RELA_OFF";
1756 case DT_IA_64_VMS_SEG_RELA_OFF: return "VMS_SEG_RELA_OFF";
1757 case DT_IA_64_VMS_FIXUP_RELA_OFF: return "VMS_FIXUP_RELA_OFF";
1758 case DT_IA_64_VMS_PLTGOT_OFFSET: return "VMS_PLTGOT_OFFSET";
1759 case DT_IA_64_VMS_PLTGOT_SEG: return "VMS_PLTGOT_SEG";
1760 case DT_IA_64_VMS_FPMODE: return "VMS_FPMODE";
1761 default:
1762 return NULL;
1763 }
1764 }
1765
1766 static const char *
1767 get_alpha_dynamic_type (unsigned long type)
1768 {
1769 switch (type)
1770 {
1771 case DT_ALPHA_PLTRO: return "ALPHA_PLTRO";
1772 default:
1773 return NULL;
1774 }
1775 }
1776
1777 static const char *
1778 get_score_dynamic_type (unsigned long type)
1779 {
1780 switch (type)
1781 {
1782 case DT_SCORE_BASE_ADDRESS: return "SCORE_BASE_ADDRESS";
1783 case DT_SCORE_LOCAL_GOTNO: return "SCORE_LOCAL_GOTNO";
1784 case DT_SCORE_SYMTABNO: return "SCORE_SYMTABNO";
1785 case DT_SCORE_GOTSYM: return "SCORE_GOTSYM";
1786 case DT_SCORE_UNREFEXTNO: return "SCORE_UNREFEXTNO";
1787 case DT_SCORE_HIPAGENO: return "SCORE_HIPAGENO";
1788 default:
1789 return NULL;
1790 }
1791 }
1792
1793 static const char *
1794 get_tic6x_dynamic_type (unsigned long type)
1795 {
1796 switch (type)
1797 {
1798 case DT_C6000_GSYM_OFFSET: return "C6000_GSYM_OFFSET";
1799 case DT_C6000_GSTR_OFFSET: return "C6000_GSTR_OFFSET";
1800 case DT_C6000_DSBT_BASE: return "C6000_DSBT_BASE";
1801 case DT_C6000_DSBT_SIZE: return "C6000_DSBT_SIZE";
1802 case DT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
1803 case DT_C6000_DSBT_INDEX: return "C6000_DSBT_INDEX";
1804 default:
1805 return NULL;
1806 }
1807 }
1808
1809 static const char *
1810 get_nios2_dynamic_type (unsigned long type)
1811 {
1812 switch (type)
1813 {
1814 case DT_NIOS2_GP: return "NIOS2_GP";
1815 default:
1816 return NULL;
1817 }
1818 }
1819
1820 static const char *
1821 get_dynamic_type (unsigned long type)
1822 {
1823 static char buff[64];
1824
1825 switch (type)
1826 {
1827 case DT_NULL: return "NULL";
1828 case DT_NEEDED: return "NEEDED";
1829 case DT_PLTRELSZ: return "PLTRELSZ";
1830 case DT_PLTGOT: return "PLTGOT";
1831 case DT_HASH: return "HASH";
1832 case DT_STRTAB: return "STRTAB";
1833 case DT_SYMTAB: return "SYMTAB";
1834 case DT_RELA: return "RELA";
1835 case DT_RELASZ: return "RELASZ";
1836 case DT_RELAENT: return "RELAENT";
1837 case DT_STRSZ: return "STRSZ";
1838 case DT_SYMENT: return "SYMENT";
1839 case DT_INIT: return "INIT";
1840 case DT_FINI: return "FINI";
1841 case DT_SONAME: return "SONAME";
1842 case DT_RPATH: return "RPATH";
1843 case DT_SYMBOLIC: return "SYMBOLIC";
1844 case DT_REL: return "REL";
1845 case DT_RELSZ: return "RELSZ";
1846 case DT_RELENT: return "RELENT";
1847 case DT_PLTREL: return "PLTREL";
1848 case DT_DEBUG: return "DEBUG";
1849 case DT_TEXTREL: return "TEXTREL";
1850 case DT_JMPREL: return "JMPREL";
1851 case DT_BIND_NOW: return "BIND_NOW";
1852 case DT_INIT_ARRAY: return "INIT_ARRAY";
1853 case DT_FINI_ARRAY: return "FINI_ARRAY";
1854 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ";
1855 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ";
1856 case DT_RUNPATH: return "RUNPATH";
1857 case DT_FLAGS: return "FLAGS";
1858
1859 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY";
1860 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ";
1861
1862 case DT_CHECKSUM: return "CHECKSUM";
1863 case DT_PLTPADSZ: return "PLTPADSZ";
1864 case DT_MOVEENT: return "MOVEENT";
1865 case DT_MOVESZ: return "MOVESZ";
1866 case DT_FEATURE: return "FEATURE";
1867 case DT_POSFLAG_1: return "POSFLAG_1";
1868 case DT_SYMINSZ: return "SYMINSZ";
1869 case DT_SYMINENT: return "SYMINENT"; /* aka VALRNGHI */
1870
1871 case DT_ADDRRNGLO: return "ADDRRNGLO";
1872 case DT_CONFIG: return "CONFIG";
1873 case DT_DEPAUDIT: return "DEPAUDIT";
1874 case DT_AUDIT: return "AUDIT";
1875 case DT_PLTPAD: return "PLTPAD";
1876 case DT_MOVETAB: return "MOVETAB";
1877 case DT_SYMINFO: return "SYMINFO"; /* aka ADDRRNGHI */
1878
1879 case DT_VERSYM: return "VERSYM";
1880
1881 case DT_TLSDESC_GOT: return "TLSDESC_GOT";
1882 case DT_TLSDESC_PLT: return "TLSDESC_PLT";
1883 case DT_RELACOUNT: return "RELACOUNT";
1884 case DT_RELCOUNT: return "RELCOUNT";
1885 case DT_FLAGS_1: return "FLAGS_1";
1886 case DT_VERDEF: return "VERDEF";
1887 case DT_VERDEFNUM: return "VERDEFNUM";
1888 case DT_VERNEED: return "VERNEED";
1889 case DT_VERNEEDNUM: return "VERNEEDNUM";
1890
1891 case DT_AUXILIARY: return "AUXILIARY";
1892 case DT_USED: return "USED";
1893 case DT_FILTER: return "FILTER";
1894
1895 case DT_GNU_PRELINKED: return "GNU_PRELINKED";
1896 case DT_GNU_CONFLICT: return "GNU_CONFLICT";
1897 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ";
1898 case DT_GNU_LIBLIST: return "GNU_LIBLIST";
1899 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ";
1900 case DT_GNU_HASH: return "GNU_HASH";
1901
1902 default:
1903 if ((type >= DT_LOPROC) && (type <= DT_HIPROC))
1904 {
1905 const char * result;
1906
1907 switch (elf_header.e_machine)
1908 {
1909 case EM_MIPS:
1910 case EM_MIPS_RS3_LE:
1911 result = get_mips_dynamic_type (type);
1912 break;
1913 case EM_SPARCV9:
1914 result = get_sparc64_dynamic_type (type);
1915 break;
1916 case EM_PPC:
1917 result = get_ppc_dynamic_type (type);
1918 break;
1919 case EM_PPC64:
1920 result = get_ppc64_dynamic_type (type);
1921 break;
1922 case EM_IA_64:
1923 result = get_ia64_dynamic_type (type);
1924 break;
1925 case EM_ALPHA:
1926 result = get_alpha_dynamic_type (type);
1927 break;
1928 case EM_SCORE:
1929 result = get_score_dynamic_type (type);
1930 break;
1931 case EM_TI_C6000:
1932 result = get_tic6x_dynamic_type (type);
1933 break;
1934 case EM_ALTERA_NIOS2:
1935 result = get_nios2_dynamic_type (type);
1936 break;
1937 default:
1938 result = NULL;
1939 break;
1940 }
1941
1942 if (result != NULL)
1943 return result;
1944
1945 snprintf (buff, sizeof (buff), _("Processor Specific: %lx"), type);
1946 }
1947 else if (((type >= DT_LOOS) && (type <= DT_HIOS))
1948 || (elf_header.e_machine == EM_PARISC
1949 && (type >= OLD_DT_LOOS) && (type <= OLD_DT_HIOS)))
1950 {
1951 const char * result;
1952
1953 switch (elf_header.e_machine)
1954 {
1955 case EM_PARISC:
1956 result = get_parisc_dynamic_type (type);
1957 break;
1958 case EM_IA_64:
1959 result = get_ia64_dynamic_type (type);
1960 break;
1961 default:
1962 result = NULL;
1963 break;
1964 }
1965
1966 if (result != NULL)
1967 return result;
1968
1969 snprintf (buff, sizeof (buff), _("Operating System specific: %lx"),
1970 type);
1971 }
1972 else
1973 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), type);
1974
1975 return buff;
1976 }
1977 }
1978
1979 static char *
1980 get_file_type (unsigned e_type)
1981 {
1982 static char buff[32];
1983
1984 switch (e_type)
1985 {
1986 case ET_NONE: return _("NONE (None)");
1987 case ET_REL: return _("REL (Relocatable file)");
1988 case ET_EXEC: return _("EXEC (Executable file)");
1989 case ET_DYN: return _("DYN (Shared object file)");
1990 case ET_CORE: return _("CORE (Core file)");
1991
1992 default:
1993 if ((e_type >= ET_LOPROC) && (e_type <= ET_HIPROC))
1994 snprintf (buff, sizeof (buff), _("Processor Specific: (%x)"), e_type);
1995 else if ((e_type >= ET_LOOS) && (e_type <= ET_HIOS))
1996 snprintf (buff, sizeof (buff), _("OS Specific: (%x)"), e_type);
1997 else
1998 snprintf (buff, sizeof (buff), _("<unknown>: %x"), e_type);
1999 return buff;
2000 }
2001 }
2002
2003 static char *
2004 get_machine_name (unsigned e_machine)
2005 {
2006 static char buff[64]; /* XXX */
2007
2008 switch (e_machine)
2009 {
2010 case EM_NONE: return _("None");
2011 case EM_AARCH64: return "AArch64";
2012 case EM_M32: return "WE32100";
2013 case EM_SPARC: return "Sparc";
2014 case EM_SPU: return "SPU";
2015 case EM_386: return "Intel 80386";
2016 case EM_68K: return "MC68000";
2017 case EM_88K: return "MC88000";
2018 case EM_486: return "Intel 80486";
2019 case EM_860: return "Intel 80860";
2020 case EM_MIPS: return "MIPS R3000";
2021 case EM_S370: return "IBM System/370";
2022 case EM_MIPS_RS3_LE: return "MIPS R4000 big-endian";
2023 case EM_OLD_SPARCV9: return "Sparc v9 (old)";
2024 case EM_PARISC: return "HPPA";
2025 case EM_PPC_OLD: return "Power PC (old)";
2026 case EM_SPARC32PLUS: return "Sparc v8+" ;
2027 case EM_960: return "Intel 90860";
2028 case EM_PPC: return "PowerPC";
2029 case EM_PPC64: return "PowerPC64";
2030 case EM_FR20: return "Fujitsu FR20";
2031 case EM_RH32: return "TRW RH32";
2032 case EM_MCORE: return "MCORE";
2033 case EM_ARM: return "ARM";
2034 case EM_OLD_ALPHA: return "Digital Alpha (old)";
2035 case EM_SH: return "Renesas / SuperH SH";
2036 case EM_SPARCV9: return "Sparc v9";
2037 case EM_TRICORE: return "Siemens Tricore";
2038 case EM_ARC: return "ARC";
2039 case EM_H8_300: return "Renesas H8/300";
2040 case EM_H8_300H: return "Renesas H8/300H";
2041 case EM_H8S: return "Renesas H8S";
2042 case EM_H8_500: return "Renesas H8/500";
2043 case EM_IA_64: return "Intel IA-64";
2044 case EM_MIPS_X: return "Stanford MIPS-X";
2045 case EM_COLDFIRE: return "Motorola Coldfire";
2046 case EM_ALPHA: return "Alpha";
2047 case EM_CYGNUS_D10V:
2048 case EM_D10V: return "d10v";
2049 case EM_CYGNUS_D30V:
2050 case EM_D30V: return "d30v";
2051 case EM_CYGNUS_M32R:
2052 case EM_M32R: return "Renesas M32R (formerly Mitsubishi M32r)";
2053 case EM_CYGNUS_V850:
2054 case EM_V800: return "Renesas V850 (using RH850 ABI)";
2055 case EM_V850: return "Renesas V850";
2056 case EM_CYGNUS_MN10300:
2057 case EM_MN10300: return "mn10300";
2058 case EM_CYGNUS_MN10200:
2059 case EM_MN10200: return "mn10200";
2060 case EM_MOXIE: return "Moxie";
2061 case EM_CYGNUS_FR30:
2062 case EM_FR30: return "Fujitsu FR30";
2063 case EM_CYGNUS_FRV: return "Fujitsu FR-V";
2064 case EM_PJ_OLD:
2065 case EM_PJ: return "picoJava";
2066 case EM_MMA: return "Fujitsu Multimedia Accelerator";
2067 case EM_PCP: return "Siemens PCP";
2068 case EM_NCPU: return "Sony nCPU embedded RISC processor";
2069 case EM_NDR1: return "Denso NDR1 microprocesspr";
2070 case EM_STARCORE: return "Motorola Star*Core processor";
2071 case EM_ME16: return "Toyota ME16 processor";
2072 case EM_ST100: return "STMicroelectronics ST100 processor";
2073 case EM_TINYJ: return "Advanced Logic Corp. TinyJ embedded processor";
2074 case EM_PDSP: return "Sony DSP processor";
2075 case EM_PDP10: return "Digital Equipment Corp. PDP-10";
2076 case EM_PDP11: return "Digital Equipment Corp. PDP-11";
2077 case EM_FX66: return "Siemens FX66 microcontroller";
2078 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 bit microcontroller";
2079 case EM_ST7: return "STMicroelectronics ST7 8-bit microcontroller";
2080 case EM_68HC16: return "Motorola MC68HC16 Microcontroller";
2081 case EM_68HC12: return "Motorola MC68HC12 Microcontroller";
2082 case EM_68HC11: return "Motorola MC68HC11 Microcontroller";
2083 case EM_68HC08: return "Motorola MC68HC08 Microcontroller";
2084 case EM_68HC05: return "Motorola MC68HC05 Microcontroller";
2085 case EM_SVX: return "Silicon Graphics SVx";
2086 case EM_ST19: return "STMicroelectronics ST19 8-bit microcontroller";
2087 case EM_VAX: return "Digital VAX";
2088 case EM_AVR_OLD:
2089 case EM_AVR: return "Atmel AVR 8-bit microcontroller";
2090 case EM_CRIS: return "Axis Communications 32-bit embedded processor";
2091 case EM_JAVELIN: return "Infineon Technologies 32-bit embedded cpu";
2092 case EM_FIREPATH: return "Element 14 64-bit DSP processor";
2093 case EM_ZSP: return "LSI Logic's 16-bit DSP processor";
2094 case EM_MMIX: return "Donald Knuth's educational 64-bit processor";
2095 case EM_HUANY: return "Harvard Universitys's machine-independent object format";
2096 case EM_PRISM: return "Vitesse Prism";
2097 case EM_X86_64: return "Advanced Micro Devices X86-64";
2098 case EM_L1OM: return "Intel L1OM";
2099 case EM_K1OM: return "Intel K1OM";
2100 case EM_S390_OLD:
2101 case EM_S390: return "IBM S/390";
2102 case EM_SCORE: return "SUNPLUS S+Core";
2103 case EM_XSTORMY16: return "Sanyo XStormy16 CPU core";
2104 case EM_OR1K: return "OpenRISC 1000";
2105 case EM_ARC_A5: return "ARC International ARCompact processor";
2106 case EM_CRX: return "National Semiconductor CRX microprocessor";
2107 case EM_ADAPTEVA_EPIPHANY: return "Adapteva EPIPHANY";
2108 case EM_DLX: return "OpenDLX";
2109 case EM_IP2K_OLD:
2110 case EM_IP2K: return "Ubicom IP2xxx 8-bit microcontrollers";
2111 case EM_IQ2000: return "Vitesse IQ2000";
2112 case EM_XTENSA_OLD:
2113 case EM_XTENSA: return "Tensilica Xtensa Processor";
2114 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor";
2115 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor";
2116 case EM_NS32K: return "National Semiconductor 32000 series";
2117 case EM_TPC: return "Tenor Network TPC processor";
2118 case EM_ST200: return "STMicroelectronics ST200 microcontroller";
2119 case EM_MAX: return "MAX Processor";
2120 case EM_CR: return "National Semiconductor CompactRISC";
2121 case EM_F2MC16: return "Fujitsu F2MC16";
2122 case EM_MSP430: return "Texas Instruments msp430 microcontroller";
2123 case EM_LATTICEMICO32: return "Lattice Mico32";
2124 case EM_M32C_OLD:
2125 case EM_M32C: return "Renesas M32c";
2126 case EM_MT: return "Morpho Techologies MT processor";
2127 case EM_BLACKFIN: return "Analog Devices Blackfin";
2128 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors";
2129 case EM_SEP: return "Sharp embedded microprocessor";
2130 case EM_ARCA: return "Arca RISC microprocessor";
2131 case EM_UNICORE: return "Unicore";
2132 case EM_EXCESS: return "eXcess 16/32/64-bit configurable embedded CPU";
2133 case EM_DXP: return "Icera Semiconductor Inc. Deep Execution Processor";
2134 case EM_NIOS32: return "Altera Nios";
2135 case EM_ALTERA_NIOS2: return "Altera Nios II";
2136 case EM_C166:
2137 case EM_XC16X: return "Infineon Technologies xc16x";
2138 case EM_M16C: return "Renesas M16C series microprocessors";
2139 case EM_DSPIC30F: return "Microchip Technology dsPIC30F Digital Signal Controller";
2140 case EM_CE: return "Freescale Communication Engine RISC core";
2141 case EM_TSK3000: return "Altium TSK3000 core";
2142 case EM_RS08: return "Freescale RS08 embedded processor";
2143 case EM_ECOG2: return "Cyan Technology eCOG2 microprocessor";
2144 case EM_DSP24: return "New Japan Radio (NJR) 24-bit DSP Processor";
2145 case EM_VIDEOCORE3: return "Broadcom VideoCore III processor";
2146 case EM_SE_C17: return "Seiko Epson C17 family";
2147 case EM_TI_C6000: return "Texas Instruments TMS320C6000 DSP family";
2148 case EM_TI_C2000: return "Texas Instruments TMS320C2000 DSP family";
2149 case EM_TI_C5500: return "Texas Instruments TMS320C55x DSP family";
2150 case EM_MMDSP_PLUS: return "STMicroelectronics 64bit VLIW Data Signal Processor";
2151 case EM_CYPRESS_M8C: return "Cypress M8C microprocessor";
2152 case EM_R32C: return "Renesas R32C series microprocessors";
2153 case EM_TRIMEDIA: return "NXP Semiconductors TriMedia architecture family";
2154 case EM_QDSP6: return "QUALCOMM DSP6 Processor";
2155 case EM_8051: return "Intel 8051 and variants";
2156 case EM_STXP7X: return "STMicroelectronics STxP7x family";
2157 case EM_NDS32: return "Andes Technology compact code size embedded RISC processor family";
2158 case EM_ECOG1X: return "Cyan Technology eCOG1X family";
2159 case EM_MAXQ30: return "Dallas Semiconductor MAXQ30 Core microcontrollers";
2160 case EM_XIMO16: return "New Japan Radio (NJR) 16-bit DSP Processor";
2161 case EM_MANIK: return "M2000 Reconfigurable RISC Microprocessor";
2162 case EM_CRAYNV2: return "Cray Inc. NV2 vector architecture";
2163 case EM_CYGNUS_MEP: return "Toshiba MeP Media Engine";
2164 case EM_CR16:
2165 case EM_MICROBLAZE:
2166 case EM_MICROBLAZE_OLD: return "Xilinx MicroBlaze";
2167 case EM_RL78: return "Renesas RL78";
2168 case EM_RX: return "Renesas RX";
2169 case EM_METAG: return "Imagination Technologies Meta processor architecture";
2170 case EM_MCST_ELBRUS: return "MCST Elbrus general purpose hardware architecture";
2171 case EM_ECOG16: return "Cyan Technology eCOG16 family";
2172 case EM_ETPU: return "Freescale Extended Time Processing Unit";
2173 case EM_SLE9X: return "Infineon Technologies SLE9X core";
2174 case EM_AVR32: return "Atmel Corporation 32-bit microprocessor family";
2175 case EM_STM8: return "STMicroeletronics STM8 8-bit microcontroller";
2176 case EM_TILE64: return "Tilera TILE64 multicore architecture family";
2177 case EM_TILEPRO: return "Tilera TILEPro multicore architecture family";
2178 case EM_TILEGX: return "Tilera TILE-Gx multicore architecture family";
2179 case EM_CUDA: return "NVIDIA CUDA architecture";
2180 case EM_XGATE: return "Motorola XGATE embedded processor";
2181 default:
2182 snprintf (buff, sizeof (buff), _("<unknown>: 0x%x"), e_machine);
2183 return buff;
2184 }
2185 }
2186
2187 static void
2188 decode_ARM_machine_flags (unsigned e_flags, char buf[])
2189 {
2190 unsigned eabi;
2191 int unknown = 0;
2192
2193 eabi = EF_ARM_EABI_VERSION (e_flags);
2194 e_flags &= ~ EF_ARM_EABIMASK;
2195
2196 /* Handle "generic" ARM flags. */
2197 if (e_flags & EF_ARM_RELEXEC)
2198 {
2199 strcat (buf, ", relocatable executable");
2200 e_flags &= ~ EF_ARM_RELEXEC;
2201 }
2202
2203 if (e_flags & EF_ARM_HASENTRY)
2204 {
2205 strcat (buf, ", has entry point");
2206 e_flags &= ~ EF_ARM_HASENTRY;
2207 }
2208
2209 /* Now handle EABI specific flags. */
2210 switch (eabi)
2211 {
2212 default:
2213 strcat (buf, ", <unrecognized EABI>");
2214 if (e_flags)
2215 unknown = 1;
2216 break;
2217
2218 case EF_ARM_EABI_VER1:
2219 strcat (buf, ", Version1 EABI");
2220 while (e_flags)
2221 {
2222 unsigned flag;
2223
2224 /* Process flags one bit at a time. */
2225 flag = e_flags & - e_flags;
2226 e_flags &= ~ flag;
2227
2228 switch (flag)
2229 {
2230 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2231 strcat (buf, ", sorted symbol tables");
2232 break;
2233
2234 default:
2235 unknown = 1;
2236 break;
2237 }
2238 }
2239 break;
2240
2241 case EF_ARM_EABI_VER2:
2242 strcat (buf, ", Version2 EABI");
2243 while (e_flags)
2244 {
2245 unsigned flag;
2246
2247 /* Process flags one bit at a time. */
2248 flag = e_flags & - e_flags;
2249 e_flags &= ~ flag;
2250
2251 switch (flag)
2252 {
2253 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2254 strcat (buf, ", sorted symbol tables");
2255 break;
2256
2257 case EF_ARM_DYNSYMSUSESEGIDX:
2258 strcat (buf, ", dynamic symbols use segment index");
2259 break;
2260
2261 case EF_ARM_MAPSYMSFIRST:
2262 strcat (buf, ", mapping symbols precede others");
2263 break;
2264
2265 default:
2266 unknown = 1;
2267 break;
2268 }
2269 }
2270 break;
2271
2272 case EF_ARM_EABI_VER3:
2273 strcat (buf, ", Version3 EABI");
2274 break;
2275
2276 case EF_ARM_EABI_VER4:
2277 strcat (buf, ", Version4 EABI");
2278 while (e_flags)
2279 {
2280 unsigned flag;
2281
2282 /* Process flags one bit at a time. */
2283 flag = e_flags & - e_flags;
2284 e_flags &= ~ flag;
2285
2286 switch (flag)
2287 {
2288 case EF_ARM_BE8:
2289 strcat (buf, ", BE8");
2290 break;
2291
2292 case EF_ARM_LE8:
2293 strcat (buf, ", LE8");
2294 break;
2295
2296 default:
2297 unknown = 1;
2298 break;
2299 }
2300 break;
2301 }
2302 break;
2303
2304 case EF_ARM_EABI_VER5:
2305 strcat (buf, ", Version5 EABI");
2306 while (e_flags)
2307 {
2308 unsigned flag;
2309
2310 /* Process flags one bit at a time. */
2311 flag = e_flags & - e_flags;
2312 e_flags &= ~ flag;
2313
2314 switch (flag)
2315 {
2316 case EF_ARM_BE8:
2317 strcat (buf, ", BE8");
2318 break;
2319
2320 case EF_ARM_LE8:
2321 strcat (buf, ", LE8");
2322 break;
2323
2324 case EF_ARM_ABI_FLOAT_SOFT: /* Conflicts with EF_ARM_SOFT_FLOAT. */
2325 strcat (buf, ", soft-float ABI");
2326 break;
2327
2328 case EF_ARM_ABI_FLOAT_HARD: /* Conflicts with EF_ARM_VFP_FLOAT. */
2329 strcat (buf, ", hard-float ABI");
2330 break;
2331
2332 default:
2333 unknown = 1;
2334 break;
2335 }
2336 }
2337 break;
2338
2339 case EF_ARM_EABI_UNKNOWN:
2340 strcat (buf, ", GNU EABI");
2341 while (e_flags)
2342 {
2343 unsigned flag;
2344
2345 /* Process flags one bit at a time. */
2346 flag = e_flags & - e_flags;
2347 e_flags &= ~ flag;
2348
2349 switch (flag)
2350 {
2351 case EF_ARM_INTERWORK:
2352 strcat (buf, ", interworking enabled");
2353 break;
2354
2355 case EF_ARM_APCS_26:
2356 strcat (buf, ", uses APCS/26");
2357 break;
2358
2359 case EF_ARM_APCS_FLOAT:
2360 strcat (buf, ", uses APCS/float");
2361 break;
2362
2363 case EF_ARM_PIC:
2364 strcat (buf, ", position independent");
2365 break;
2366
2367 case EF_ARM_ALIGN8:
2368 strcat (buf, ", 8 bit structure alignment");
2369 break;
2370
2371 case EF_ARM_NEW_ABI:
2372 strcat (buf, ", uses new ABI");
2373 break;
2374
2375 case EF_ARM_OLD_ABI:
2376 strcat (buf, ", uses old ABI");
2377 break;
2378
2379 case EF_ARM_SOFT_FLOAT:
2380 strcat (buf, ", software FP");
2381 break;
2382
2383 case EF_ARM_VFP_FLOAT:
2384 strcat (buf, ", VFP");
2385 break;
2386
2387 case EF_ARM_MAVERICK_FLOAT:
2388 strcat (buf, ", Maverick FP");
2389 break;
2390
2391 default:
2392 unknown = 1;
2393 break;
2394 }
2395 }
2396 }
2397
2398 if (unknown)
2399 strcat (buf,_(", <unknown>"));
2400 }
2401
2402 static void
2403 decode_NDS32_machine_flags (unsigned e_flags, char buf[], size_t size)
2404 {
2405 unsigned abi;
2406 unsigned arch;
2407 unsigned config;
2408 unsigned version;
2409 int has_fpu = 0;
2410 int r = 0;
2411
2412 static const char *ABI_STRINGS[] =
2413 {
2414 "ABI v0", /* use r5 as return register; only used in N1213HC */
2415 "ABI v1", /* use r0 as return register */
2416 "ABI v2", /* use r0 as return register and don't reserve 24 bytes for arguments */
2417 "ABI v2fp", /* for FPU */
2418 "AABI",
2419 "ABI2 FP+"
2420 };
2421 static const char *VER_STRINGS[] =
2422 {
2423 "Andes ELF V1.3 or older",
2424 "Andes ELF V1.3.1",
2425 "Andes ELF V1.4"
2426 };
2427 static const char *ARCH_STRINGS[] =
2428 {
2429 "",
2430 "Andes Star v1.0",
2431 "Andes Star v2.0",
2432 "Andes Star v3.0",
2433 "Andes Star v3.0m"
2434 };
2435
2436 abi = EF_NDS_ABI & e_flags;
2437 arch = EF_NDS_ARCH & e_flags;
2438 config = EF_NDS_INST & e_flags;
2439 version = EF_NDS32_ELF_VERSION & e_flags;
2440
2441 memset (buf, 0, size);
2442
2443 switch (abi)
2444 {
2445 case E_NDS_ABI_V0:
2446 case E_NDS_ABI_V1:
2447 case E_NDS_ABI_V2:
2448 case E_NDS_ABI_V2FP:
2449 case E_NDS_ABI_AABI:
2450 case E_NDS_ABI_V2FP_PLUS:
2451 /* In case there are holes in the array. */
2452 r += snprintf (buf + r, size - r, ", %s", ABI_STRINGS[abi >> EF_NDS_ABI_SHIFT]);
2453 break;
2454
2455 default:
2456 r += snprintf (buf + r, size - r, ", <unrecognized ABI>");
2457 break;
2458 }
2459
2460 switch (version)
2461 {
2462 case E_NDS32_ELF_VER_1_2:
2463 case E_NDS32_ELF_VER_1_3:
2464 case E_NDS32_ELF_VER_1_4:
2465 r += snprintf (buf + r, size - r, ", %s", VER_STRINGS[version >> EF_NDS32_ELF_VERSION_SHIFT]);
2466 break;
2467
2468 default:
2469 r += snprintf (buf + r, size - r, ", <unrecognized ELF version number>");
2470 break;
2471 }
2472
2473 if (E_NDS_ABI_V0 == abi)
2474 {
2475 /* OLD ABI; only used in N1213HC, has performance extension 1. */
2476 r += snprintf (buf + r, size - r, ", Andes Star v1.0, N1213HC, MAC, PERF1");
2477 if (arch == E_NDS_ARCH_STAR_V1_0)
2478 r += snprintf (buf + r, size -r, ", 16b"); /* has 16-bit instructions */
2479 return;
2480 }
2481
2482 switch (arch)
2483 {
2484 case E_NDS_ARCH_STAR_V1_0:
2485 case E_NDS_ARCH_STAR_V2_0:
2486 case E_NDS_ARCH_STAR_V3_0:
2487 case E_NDS_ARCH_STAR_V3_M:
2488 r += snprintf (buf + r, size - r, ", %s", ARCH_STRINGS[arch >> EF_NDS_ARCH_SHIFT]);
2489 break;
2490
2491 default:
2492 r += snprintf (buf + r, size - r, ", <unrecognized architecture>");
2493 /* ARCH version determines how the e_flags are interpreted.
2494 If it is unknown, we cannot proceed. */
2495 return;
2496 }
2497
2498 /* Newer ABI; Now handle architecture specific flags. */
2499 if (arch == E_NDS_ARCH_STAR_V1_0)
2500 {
2501 if (config & E_NDS32_HAS_MFUSR_PC_INST)
2502 r += snprintf (buf + r, size -r, ", MFUSR_PC");
2503
2504 if (!(config & E_NDS32_HAS_NO_MAC_INST))
2505 r += snprintf (buf + r, size -r, ", MAC");
2506
2507 if (config & E_NDS32_HAS_DIV_INST)
2508 r += snprintf (buf + r, size -r, ", DIV");
2509
2510 if (config & E_NDS32_HAS_16BIT_INST)
2511 r += snprintf (buf + r, size -r, ", 16b");
2512 }
2513 else
2514 {
2515 if (config & E_NDS32_HAS_MFUSR_PC_INST)
2516 {
2517 if (version <= E_NDS32_ELF_VER_1_3)
2518 r += snprintf (buf + r, size -r, ", [B8]");
2519 else
2520 r += snprintf (buf + r, size -r, ", EX9");
2521 }
2522
2523 if (config & E_NDS32_HAS_MAC_DX_INST)
2524 r += snprintf (buf + r, size -r, ", MAC_DX");
2525
2526 if (config & E_NDS32_HAS_DIV_DX_INST)
2527 r += snprintf (buf + r, size -r, ", DIV_DX");
2528
2529 if (config & E_NDS32_HAS_16BIT_INST)
2530 {
2531 if (version <= E_NDS32_ELF_VER_1_3)
2532 r += snprintf (buf + r, size -r, ", 16b");
2533 else
2534 r += snprintf (buf + r, size -r, ", IFC");
2535 }
2536 }
2537
2538 if (config & E_NDS32_HAS_EXT_INST)
2539 r += snprintf (buf + r, size -r, ", PERF1");
2540
2541 if (config & E_NDS32_HAS_EXT2_INST)
2542 r += snprintf (buf + r, size -r, ", PERF2");
2543
2544 if (config & E_NDS32_HAS_FPU_INST)
2545 {
2546 has_fpu = 1;
2547 r += snprintf (buf + r, size -r, ", FPU_SP");
2548 }
2549
2550 if (config & E_NDS32_HAS_FPU_DP_INST)
2551 {
2552 has_fpu = 1;
2553 r += snprintf (buf + r, size -r, ", FPU_DP");
2554 }
2555
2556 if (config & E_NDS32_HAS_FPU_MAC_INST)
2557 {
2558 has_fpu = 1;
2559 r += snprintf (buf + r, size -r, ", FPU_MAC");
2560 }
2561
2562 if (has_fpu)
2563 {
2564 switch ((config & E_NDS32_FPU_REG_CONF) >> E_NDS32_FPU_REG_CONF_SHIFT)
2565 {
2566 case E_NDS32_FPU_REG_8SP_4DP:
2567 r += snprintf (buf + r, size -r, ", FPU_REG:8/4");
2568 break;
2569 case E_NDS32_FPU_REG_16SP_8DP:
2570 r += snprintf (buf + r, size -r, ", FPU_REG:16/8");
2571 break;
2572 case E_NDS32_FPU_REG_32SP_16DP:
2573 r += snprintf (buf + r, size -r, ", FPU_REG:32/16");
2574 break;
2575 case E_NDS32_FPU_REG_32SP_32DP:
2576 r += snprintf (buf + r, size -r, ", FPU_REG:32/32");
2577 break;
2578 }
2579 }
2580
2581 if (config & E_NDS32_HAS_AUDIO_INST)
2582 r += snprintf (buf + r, size -r, ", AUDIO");
2583
2584 if (config & E_NDS32_HAS_STRING_INST)
2585 r += snprintf (buf + r, size -r, ", STR");
2586
2587 if (config & E_NDS32_HAS_REDUCED_REGS)
2588 r += snprintf (buf + r, size -r, ", 16REG");
2589
2590 if (config & E_NDS32_HAS_VIDEO_INST)
2591 {
2592 if (version <= E_NDS32_ELF_VER_1_3)
2593 r += snprintf (buf + r, size -r, ", VIDEO");
2594 else
2595 r += snprintf (buf + r, size -r, ", SATURATION");
2596 }
2597
2598 if (config & E_NDS32_HAS_ENCRIPT_INST)
2599 r += snprintf (buf + r, size -r, ", ENCRP");
2600
2601 if (config & E_NDS32_HAS_L2C_INST)
2602 r += snprintf (buf + r, size -r, ", L2C");
2603 }
2604
2605 static char *
2606 get_machine_flags (unsigned e_flags, unsigned e_machine)
2607 {
2608 static char buf[1024];
2609
2610 buf[0] = '\0';
2611
2612 if (e_flags)
2613 {
2614 switch (e_machine)
2615 {
2616 default:
2617 break;
2618
2619 case EM_ARM:
2620 decode_ARM_machine_flags (e_flags, buf);
2621 break;
2622
2623 case EM_BLACKFIN:
2624 if (e_flags & EF_BFIN_PIC)
2625 strcat (buf, ", PIC");
2626
2627 if (e_flags & EF_BFIN_FDPIC)
2628 strcat (buf, ", FDPIC");
2629
2630 if (e_flags & EF_BFIN_CODE_IN_L1)
2631 strcat (buf, ", code in L1");
2632
2633 if (e_flags & EF_BFIN_DATA_IN_L1)
2634 strcat (buf, ", data in L1");
2635
2636 break;
2637
2638 case EM_CYGNUS_FRV:
2639 switch (e_flags & EF_FRV_CPU_MASK)
2640 {
2641 case EF_FRV_CPU_GENERIC:
2642 break;
2643
2644 default:
2645 strcat (buf, ", fr???");
2646 break;
2647
2648 case EF_FRV_CPU_FR300:
2649 strcat (buf, ", fr300");
2650 break;
2651
2652 case EF_FRV_CPU_FR400:
2653 strcat (buf, ", fr400");
2654 break;
2655 case EF_FRV_CPU_FR405:
2656 strcat (buf, ", fr405");
2657 break;
2658
2659 case EF_FRV_CPU_FR450:
2660 strcat (buf, ", fr450");
2661 break;
2662
2663 case EF_FRV_CPU_FR500:
2664 strcat (buf, ", fr500");
2665 break;
2666 case EF_FRV_CPU_FR550:
2667 strcat (buf, ", fr550");
2668 break;
2669
2670 case EF_FRV_CPU_SIMPLE:
2671 strcat (buf, ", simple");
2672 break;
2673 case EF_FRV_CPU_TOMCAT:
2674 strcat (buf, ", tomcat");
2675 break;
2676 }
2677 break;
2678
2679 case EM_68K:
2680 if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
2681 strcat (buf, ", m68000");
2682 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
2683 strcat (buf, ", cpu32");
2684 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
2685 strcat (buf, ", fido_a");
2686 else
2687 {
2688 char const * isa = _("unknown");
2689 char const * mac = _("unknown mac");
2690 char const * additional = NULL;
2691
2692 switch (e_flags & EF_M68K_CF_ISA_MASK)
2693 {
2694 case EF_M68K_CF_ISA_A_NODIV:
2695 isa = "A";
2696 additional = ", nodiv";
2697 break;
2698 case EF_M68K_CF_ISA_A:
2699 isa = "A";
2700 break;
2701 case EF_M68K_CF_ISA_A_PLUS:
2702 isa = "A+";
2703 break;
2704 case EF_M68K_CF_ISA_B_NOUSP:
2705 isa = "B";
2706 additional = ", nousp";
2707 break;
2708 case EF_M68K_CF_ISA_B:
2709 isa = "B";
2710 break;
2711 case EF_M68K_CF_ISA_C:
2712 isa = "C";
2713 break;
2714 case EF_M68K_CF_ISA_C_NODIV:
2715 isa = "C";
2716 additional = ", nodiv";
2717 break;
2718 }
2719 strcat (buf, ", cf, isa ");
2720 strcat (buf, isa);
2721 if (additional)
2722 strcat (buf, additional);
2723 if (e_flags & EF_M68K_CF_FLOAT)
2724 strcat (buf, ", float");
2725 switch (e_flags & EF_M68K_CF_MAC_MASK)
2726 {
2727 case 0:
2728 mac = NULL;
2729 break;
2730 case EF_M68K_CF_MAC:
2731 mac = "mac";
2732 break;
2733 case EF_M68K_CF_EMAC:
2734 mac = "emac";
2735 break;
2736 case EF_M68K_CF_EMAC_B:
2737 mac = "emac_b";
2738 break;
2739 }
2740 if (mac)
2741 {
2742 strcat (buf, ", ");
2743 strcat (buf, mac);
2744 }
2745 }
2746 break;
2747
2748 case EM_PPC:
2749 if (e_flags & EF_PPC_EMB)
2750 strcat (buf, ", emb");
2751
2752 if (e_flags & EF_PPC_RELOCATABLE)
2753 strcat (buf, _(", relocatable"));
2754
2755 if (e_flags & EF_PPC_RELOCATABLE_LIB)
2756 strcat (buf, _(", relocatable-lib"));
2757 break;
2758
2759 case EM_PPC64:
2760 if (e_flags & EF_PPC64_ABI)
2761 {
2762 char abi[] = ", abiv0";
2763
2764 abi[6] += e_flags & EF_PPC64_ABI;
2765 strcat (buf, abi);
2766 }
2767 break;
2768
2769 case EM_V800:
2770 if ((e_flags & EF_RH850_ABI) == EF_RH850_ABI)
2771 strcat (buf, ", RH850 ABI");
2772
2773 if (e_flags & EF_V800_850E3)
2774 strcat (buf, ", V3 architecture");
2775
2776 if ((e_flags & (EF_RH850_FPU_DOUBLE | EF_RH850_FPU_SINGLE)) == 0)
2777 strcat (buf, ", FPU not used");
2778
2779 if ((e_flags & (EF_RH850_REGMODE22 | EF_RH850_REGMODE32)) == 0)
2780 strcat (buf, ", regmode: COMMON");
2781
2782 if ((e_flags & (EF_RH850_GP_FIX | EF_RH850_GP_NOFIX)) == 0)
2783 strcat (buf, ", r4 not used");
2784
2785 if ((e_flags & (EF_RH850_EP_FIX | EF_RH850_EP_NOFIX)) == 0)
2786 strcat (buf, ", r30 not used");
2787
2788 if ((e_flags & (EF_RH850_TP_FIX | EF_RH850_TP_NOFIX)) == 0)
2789 strcat (buf, ", r5 not used");
2790
2791 if ((e_flags & (EF_RH850_REG2_RESERVE | EF_RH850_REG2_NORESERVE)) == 0)
2792 strcat (buf, ", r2 not used");
2793
2794 for (e_flags &= 0xFFFF; e_flags; e_flags &= ~ (e_flags & - e_flags))
2795 {
2796 switch (e_flags & - e_flags)
2797 {
2798 case EF_RH850_FPU_DOUBLE: strcat (buf, ", double precision FPU"); break;
2799 case EF_RH850_FPU_SINGLE: strcat (buf, ", single precision FPU"); break;
2800 case EF_RH850_SIMD: strcat (buf, ", SIMD"); break;
2801 case EF_RH850_CACHE: strcat (buf, ", CACHE"); break;
2802 case EF_RH850_MMU: strcat (buf, ", MMU"); break;
2803 case EF_RH850_REGMODE22: strcat (buf, ", regmode:22"); break;
2804 case EF_RH850_REGMODE32: strcat (buf, ", regmode:23"); break;
2805 case EF_RH850_DATA_ALIGN8: strcat (buf, ", 8-byte alignment"); break;
2806 case EF_RH850_GP_FIX: strcat (buf, ", r4 fixed"); break;
2807 case EF_RH850_GP_NOFIX: strcat (buf, ", r4 free"); break;
2808 case EF_RH850_EP_FIX: strcat (buf, ", r30 fixed"); break;
2809 case EF_RH850_EP_NOFIX: strcat (buf, ", r30 free"); break;
2810 case EF_RH850_TP_FIX: strcat (buf, ", r5 fixed"); break;
2811 case EF_RH850_TP_NOFIX: strcat (buf, ", r5 free"); break;
2812 case EF_RH850_REG2_RESERVE: strcat (buf, ", r2 fixed"); break;
2813 case EF_RH850_REG2_NORESERVE: strcat (buf, ", r2 free"); break;
2814 default: break;
2815 }
2816 }
2817 break;
2818
2819 case EM_V850:
2820 case EM_CYGNUS_V850:
2821 switch (e_flags & EF_V850_ARCH)
2822 {
2823 case E_V850E3V5_ARCH:
2824 strcat (buf, ", v850e3v5");
2825 break;
2826 case E_V850E2V3_ARCH:
2827 strcat (buf, ", v850e2v3");
2828 break;
2829 case E_V850E2_ARCH:
2830 strcat (buf, ", v850e2");
2831 break;
2832 case E_V850E1_ARCH:
2833 strcat (buf, ", v850e1");
2834 break;
2835 case E_V850E_ARCH:
2836 strcat (buf, ", v850e");
2837 break;
2838 case E_V850_ARCH:
2839 strcat (buf, ", v850");
2840 break;
2841 default:
2842 strcat (buf, _(", unknown v850 architecture variant"));
2843 break;
2844 }
2845 break;
2846
2847 case EM_M32R:
2848 case EM_CYGNUS_M32R:
2849 if ((e_flags & EF_M32R_ARCH) == E_M32R_ARCH)
2850 strcat (buf, ", m32r");
2851 break;
2852
2853 case EM_MIPS:
2854 case EM_MIPS_RS3_LE:
2855 if (e_flags & EF_MIPS_NOREORDER)
2856 strcat (buf, ", noreorder");
2857
2858 if (e_flags & EF_MIPS_PIC)
2859 strcat (buf, ", pic");
2860
2861 if (e_flags & EF_MIPS_CPIC)
2862 strcat (buf, ", cpic");
2863
2864 if (e_flags & EF_MIPS_UCODE)
2865 strcat (buf, ", ugen_reserved");
2866
2867 if (e_flags & EF_MIPS_ABI2)
2868 strcat (buf, ", abi2");
2869
2870 if (e_flags & EF_MIPS_OPTIONS_FIRST)
2871 strcat (buf, ", odk first");
2872
2873 if (e_flags & EF_MIPS_32BITMODE)
2874 strcat (buf, ", 32bitmode");
2875
2876 if (e_flags & EF_MIPS_NAN2008)
2877 strcat (buf, ", nan2008");
2878
2879 if (e_flags & EF_MIPS_FP64)
2880 strcat (buf, ", fp64");
2881
2882 switch ((e_flags & EF_MIPS_MACH))
2883 {
2884 case E_MIPS_MACH_3900: strcat (buf, ", 3900"); break;
2885 case E_MIPS_MACH_4010: strcat (buf, ", 4010"); break;
2886 case E_MIPS_MACH_4100: strcat (buf, ", 4100"); break;
2887 case E_MIPS_MACH_4111: strcat (buf, ", 4111"); break;
2888 case E_MIPS_MACH_4120: strcat (buf, ", 4120"); break;
2889 case E_MIPS_MACH_4650: strcat (buf, ", 4650"); break;
2890 case E_MIPS_MACH_5400: strcat (buf, ", 5400"); break;
2891 case E_MIPS_MACH_5500: strcat (buf, ", 5500"); break;
2892 case E_MIPS_MACH_SB1: strcat (buf, ", sb1"); break;
2893 case E_MIPS_MACH_9000: strcat (buf, ", 9000"); break;
2894 case E_MIPS_MACH_LS2E: strcat (buf, ", loongson-2e"); break;
2895 case E_MIPS_MACH_LS2F: strcat (buf, ", loongson-2f"); break;
2896 case E_MIPS_MACH_LS3A: strcat (buf, ", loongson-3a"); break;
2897 case E_MIPS_MACH_OCTEON: strcat (buf, ", octeon"); break;
2898 case E_MIPS_MACH_OCTEON2: strcat (buf, ", octeon2"); break;
2899 case E_MIPS_MACH_OCTEON3: strcat (buf, ", octeon3"); break;
2900 case E_MIPS_MACH_XLR: strcat (buf, ", xlr"); break;
2901 case 0:
2902 /* We simply ignore the field in this case to avoid confusion:
2903 MIPS ELF does not specify EF_MIPS_MACH, it is a GNU
2904 extension. */
2905 break;
2906 default: strcat (buf, _(", unknown CPU")); break;
2907 }
2908
2909 switch ((e_flags & EF_MIPS_ABI))
2910 {
2911 case E_MIPS_ABI_O32: strcat (buf, ", o32"); break;
2912 case E_MIPS_ABI_O64: strcat (buf, ", o64"); break;
2913 case E_MIPS_ABI_EABI32: strcat (buf, ", eabi32"); break;
2914 case E_MIPS_ABI_EABI64: strcat (buf, ", eabi64"); break;
2915 case 0:
2916 /* We simply ignore the field in this case to avoid confusion:
2917 MIPS ELF does not specify EF_MIPS_ABI, it is a GNU extension.
2918 This means it is likely to be an o32 file, but not for
2919 sure. */
2920 break;
2921 default: strcat (buf, _(", unknown ABI")); break;
2922 }
2923
2924 if (e_flags & EF_MIPS_ARCH_ASE_MDMX)
2925 strcat (buf, ", mdmx");
2926
2927 if (e_flags & EF_MIPS_ARCH_ASE_M16)
2928 strcat (buf, ", mips16");
2929
2930 if (e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
2931 strcat (buf, ", micromips");
2932
2933 switch ((e_flags & EF_MIPS_ARCH))
2934 {
2935 case E_MIPS_ARCH_1: strcat (buf, ", mips1"); break;
2936 case E_MIPS_ARCH_2: strcat (buf, ", mips2"); break;
2937 case E_MIPS_ARCH_3: strcat (buf, ", mips3"); break;
2938 case E_MIPS_ARCH_4: strcat (buf, ", mips4"); break;
2939 case E_MIPS_ARCH_5: strcat (buf, ", mips5"); break;
2940 case E_MIPS_ARCH_32: strcat (buf, ", mips32"); break;
2941 case E_MIPS_ARCH_32R2: strcat (buf, ", mips32r2"); break;
2942 case E_MIPS_ARCH_32R6: strcat (buf, ", mips32r6"); break;
2943 case E_MIPS_ARCH_64: strcat (buf, ", mips64"); break;
2944 case E_MIPS_ARCH_64R2: strcat (buf, ", mips64r2"); break;
2945 case E_MIPS_ARCH_64R6: strcat (buf, ", mips64r6"); break;
2946 default: strcat (buf, _(", unknown ISA")); break;
2947 }
2948 break;
2949
2950 case EM_NDS32:
2951 decode_NDS32_machine_flags (e_flags, buf, sizeof buf);
2952 break;
2953
2954 case EM_SH:
2955 switch ((e_flags & EF_SH_MACH_MASK))
2956 {
2957 case EF_SH1: strcat (buf, ", sh1"); break;
2958 case EF_SH2: strcat (buf, ", sh2"); break;
2959 case EF_SH3: strcat (buf, ", sh3"); break;
2960 case EF_SH_DSP: strcat (buf, ", sh-dsp"); break;
2961 case EF_SH3_DSP: strcat (buf, ", sh3-dsp"); break;
2962 case EF_SH4AL_DSP: strcat (buf, ", sh4al-dsp"); break;
2963 case EF_SH3E: strcat (buf, ", sh3e"); break;
2964 case EF_SH4: strcat (buf, ", sh4"); break;
2965 case EF_SH5: strcat (buf, ", sh5"); break;
2966 case EF_SH2E: strcat (buf, ", sh2e"); break;
2967 case EF_SH4A: strcat (buf, ", sh4a"); break;
2968 case EF_SH2A: strcat (buf, ", sh2a"); break;
2969 case EF_SH4_NOFPU: strcat (buf, ", sh4-nofpu"); break;
2970 case EF_SH4A_NOFPU: strcat (buf, ", sh4a-nofpu"); break;
2971 case EF_SH2A_NOFPU: strcat (buf, ", sh2a-nofpu"); break;
2972 case EF_SH3_NOMMU: strcat (buf, ", sh3-nommu"); break;
2973 case EF_SH4_NOMMU_NOFPU: strcat (buf, ", sh4-nommu-nofpu"); break;
2974 case EF_SH2A_SH4_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh4-nommu-nofpu"); break;
2975 case EF_SH2A_SH3_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh3-nommu"); break;
2976 case EF_SH2A_SH4: strcat (buf, ", sh2a-or-sh4"); break;
2977 case EF_SH2A_SH3E: strcat (buf, ", sh2a-or-sh3e"); break;
2978 default: strcat (buf, _(", unknown ISA")); break;
2979 }
2980
2981 if (e_flags & EF_SH_PIC)
2982 strcat (buf, ", pic");
2983
2984 if (e_flags & EF_SH_FDPIC)
2985 strcat (buf, ", fdpic");
2986 break;
2987
2988 case EM_OR1K:
2989 if (e_flags & EF_OR1K_NODELAY)
2990 strcat (buf, ", no delay");
2991 break;
2992
2993 case EM_SPARCV9:
2994 if (e_flags & EF_SPARC_32PLUS)
2995 strcat (buf, ", v8+");
2996
2997 if (e_flags & EF_SPARC_SUN_US1)
2998 strcat (buf, ", ultrasparcI");
2999
3000 if (e_flags & EF_SPARC_SUN_US3)
3001 strcat (buf, ", ultrasparcIII");
3002
3003 if (e_flags & EF_SPARC_HAL_R1)
3004 strcat (buf, ", halr1");
3005
3006 if (e_flags & EF_SPARC_LEDATA)
3007 strcat (buf, ", ledata");
3008
3009 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_TSO)
3010 strcat (buf, ", tso");
3011
3012 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_PSO)
3013 strcat (buf, ", pso");
3014
3015 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_RMO)
3016 strcat (buf, ", rmo");
3017 break;
3018
3019 case EM_PARISC:
3020 switch (e_flags & EF_PARISC_ARCH)
3021 {
3022 case EFA_PARISC_1_0:
3023 strcpy (buf, ", PA-RISC 1.0");
3024 break;
3025 case EFA_PARISC_1_1:
3026 strcpy (buf, ", PA-RISC 1.1");
3027 break;
3028 case EFA_PARISC_2_0:
3029 strcpy (buf, ", PA-RISC 2.0");
3030 break;
3031 default:
3032 break;
3033 }
3034 if (e_flags & EF_PARISC_TRAPNIL)
3035 strcat (buf, ", trapnil");
3036 if (e_flags & EF_PARISC_EXT)
3037 strcat (buf, ", ext");
3038 if (e_flags & EF_PARISC_LSB)
3039 strcat (buf, ", lsb");
3040 if (e_flags & EF_PARISC_WIDE)
3041 strcat (buf, ", wide");
3042 if (e_flags & EF_PARISC_NO_KABP)
3043 strcat (buf, ", no kabp");
3044 if (e_flags & EF_PARISC_LAZYSWAP)
3045 strcat (buf, ", lazyswap");
3046 break;
3047
3048 case EM_PJ:
3049 case EM_PJ_OLD:
3050 if ((e_flags & EF_PICOJAVA_NEWCALLS) == EF_PICOJAVA_NEWCALLS)
3051 strcat (buf, ", new calling convention");
3052
3053 if ((e_flags & EF_PICOJAVA_GNUCALLS) == EF_PICOJAVA_GNUCALLS)
3054 strcat (buf, ", gnu calling convention");
3055 break;
3056
3057 case EM_IA_64:
3058 if ((e_flags & EF_IA_64_ABI64))
3059 strcat (buf, ", 64-bit");
3060 else
3061 strcat (buf, ", 32-bit");
3062 if ((e_flags & EF_IA_64_REDUCEDFP))
3063 strcat (buf, ", reduced fp model");
3064 if ((e_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
3065 strcat (buf, ", no function descriptors, constant gp");
3066 else if ((e_flags & EF_IA_64_CONS_GP))
3067 strcat (buf, ", constant gp");
3068 if ((e_flags & EF_IA_64_ABSOLUTE))
3069 strcat (buf, ", absolute");
3070 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
3071 {
3072 if ((e_flags & EF_IA_64_VMS_LINKAGES))
3073 strcat (buf, ", vms_linkages");
3074 switch ((e_flags & EF_IA_64_VMS_COMCOD))
3075 {
3076 case EF_IA_64_VMS_COMCOD_SUCCESS:
3077 break;
3078 case EF_IA_64_VMS_COMCOD_WARNING:
3079 strcat (buf, ", warning");
3080 break;
3081 case EF_IA_64_VMS_COMCOD_ERROR:
3082 strcat (buf, ", error");
3083 break;
3084 case EF_IA_64_VMS_COMCOD_ABORT:
3085 strcat (buf, ", abort");
3086 break;
3087 default:
3088 abort ();
3089 }
3090 }
3091 break;
3092
3093 case EM_VAX:
3094 if ((e_flags & EF_VAX_NONPIC))
3095 strcat (buf, ", non-PIC");
3096 if ((e_flags & EF_VAX_DFLOAT))
3097 strcat (buf, ", D-Float");
3098 if ((e_flags & EF_VAX_GFLOAT))
3099 strcat (buf, ", G-Float");
3100 break;
3101
3102 case EM_RL78:
3103 if (e_flags & E_FLAG_RL78_G10)
3104 strcat (buf, ", G10");
3105 if (e_flags & E_FLAG_RL78_64BIT_DOUBLES)
3106 strcat (buf, ", 64-bit doubles");
3107 break;
3108
3109 case EM_RX:
3110 if (e_flags & E_FLAG_RX_64BIT_DOUBLES)
3111 strcat (buf, ", 64-bit doubles");
3112 if (e_flags & E_FLAG_RX_DSP)
3113 strcat (buf, ", dsp");
3114 if (e_flags & E_FLAG_RX_PID)
3115 strcat (buf, ", pid");
3116 if (e_flags & E_FLAG_RX_ABI)
3117 strcat (buf, ", RX ABI");
3118 break;
3119
3120 case EM_S390:
3121 if (e_flags & EF_S390_HIGH_GPRS)
3122 strcat (buf, ", highgprs");
3123 break;
3124
3125 case EM_TI_C6000:
3126 if ((e_flags & EF_C6000_REL))
3127 strcat (buf, ", relocatable module");
3128 break;
3129
3130 case EM_MSP430:
3131 strcat (buf, _(": architecture variant: "));
3132 switch (e_flags & EF_MSP430_MACH)
3133 {
3134 case E_MSP430_MACH_MSP430x11: strcat (buf, "MSP430x11"); break;
3135 case E_MSP430_MACH_MSP430x11x1 : strcat (buf, "MSP430x11x1 "); break;
3136 case E_MSP430_MACH_MSP430x12: strcat (buf, "MSP430x12"); break;
3137 case E_MSP430_MACH_MSP430x13: strcat (buf, "MSP430x13"); break;
3138 case E_MSP430_MACH_MSP430x14: strcat (buf, "MSP430x14"); break;
3139 case E_MSP430_MACH_MSP430x15: strcat (buf, "MSP430x15"); break;
3140 case E_MSP430_MACH_MSP430x16: strcat (buf, "MSP430x16"); break;
3141 case E_MSP430_MACH_MSP430x31: strcat (buf, "MSP430x31"); break;
3142 case E_MSP430_MACH_MSP430x32: strcat (buf, "MSP430x32"); break;
3143 case E_MSP430_MACH_MSP430x33: strcat (buf, "MSP430x33"); break;
3144 case E_MSP430_MACH_MSP430x41: strcat (buf, "MSP430x41"); break;
3145 case E_MSP430_MACH_MSP430x42: strcat (buf, "MSP430x42"); break;
3146 case E_MSP430_MACH_MSP430x43: strcat (buf, "MSP430x43"); break;
3147 case E_MSP430_MACH_MSP430x44: strcat (buf, "MSP430x44"); break;
3148 case E_MSP430_MACH_MSP430X : strcat (buf, "MSP430X"); break;
3149 default:
3150 strcat (buf, _(": unknown")); break;
3151 }
3152
3153 if (e_flags & ~ EF_MSP430_MACH)
3154 strcat (buf, _(": unknown extra flag bits also present"));
3155 }
3156 }
3157
3158 return buf;
3159 }
3160
3161 static const char *
3162 get_osabi_name (unsigned int osabi)
3163 {
3164 static char buff[32];
3165
3166 switch (osabi)
3167 {
3168 case ELFOSABI_NONE: return "UNIX - System V";
3169 case ELFOSABI_HPUX: return "UNIX - HP-UX";
3170 case ELFOSABI_NETBSD: return "UNIX - NetBSD";
3171 case ELFOSABI_GNU: return "UNIX - GNU";
3172 case ELFOSABI_SOLARIS: return "UNIX - Solaris";
3173 case ELFOSABI_AIX: return "UNIX - AIX";
3174 case ELFOSABI_IRIX: return "UNIX - IRIX";
3175 case ELFOSABI_FREEBSD: return "UNIX - FreeBSD";
3176 case ELFOSABI_TRU64: return "UNIX - TRU64";
3177 case ELFOSABI_MODESTO: return "Novell - Modesto";
3178 case ELFOSABI_OPENBSD: return "UNIX - OpenBSD";
3179 case ELFOSABI_OPENVMS: return "VMS - OpenVMS";
3180 case ELFOSABI_NSK: return "HP - Non-Stop Kernel";
3181 case ELFOSABI_AROS: return "AROS";
3182 case ELFOSABI_FENIXOS: return "FenixOS";
3183 default:
3184 if (osabi >= 64)
3185 switch (elf_header.e_machine)
3186 {
3187 case EM_ARM:
3188 switch (osabi)
3189 {
3190 case ELFOSABI_ARM: return "ARM";
3191 default:
3192 break;
3193 }
3194 break;
3195
3196 case EM_MSP430:
3197 case EM_MSP430_OLD:
3198 switch (osabi)
3199 {
3200 case ELFOSABI_STANDALONE: return _("Standalone App");
3201 default:
3202 break;
3203 }
3204 break;
3205
3206 case EM_TI_C6000:
3207 switch (osabi)
3208 {
3209 case ELFOSABI_C6000_ELFABI: return _("Bare-metal C6000");
3210 case ELFOSABI_C6000_LINUX: return "Linux C6000";
3211 default:
3212 break;
3213 }
3214 break;
3215
3216 default:
3217 break;
3218 }
3219 snprintf (buff, sizeof (buff), _("<unknown: %x>"), osabi);
3220 return buff;
3221 }
3222 }
3223
3224 static const char *
3225 get_aarch64_segment_type (unsigned long type)
3226 {
3227 switch (type)
3228 {
3229 case PT_AARCH64_ARCHEXT:
3230 return "AARCH64_ARCHEXT";
3231 default:
3232 break;
3233 }
3234
3235 return NULL;
3236 }
3237
3238 static const char *
3239 get_arm_segment_type (unsigned long type)
3240 {
3241 switch (type)
3242 {
3243 case PT_ARM_EXIDX:
3244 return "EXIDX";
3245 default:
3246 break;
3247 }
3248
3249 return NULL;
3250 }
3251
3252 static const char *
3253 get_mips_segment_type (unsigned long type)
3254 {
3255 switch (type)
3256 {
3257 case PT_MIPS_REGINFO:
3258 return "REGINFO";
3259 case PT_MIPS_RTPROC:
3260 return "RTPROC";
3261 case PT_MIPS_OPTIONS:
3262 return "OPTIONS";
3263 case PT_MIPS_ABIFLAGS:
3264 return "ABIFLAGS";
3265 default:
3266 break;
3267 }
3268
3269 return NULL;
3270 }
3271
3272 static const char *
3273 get_parisc_segment_type (unsigned long type)
3274 {
3275 switch (type)
3276 {
3277 case PT_HP_TLS: return "HP_TLS";
3278 case PT_HP_CORE_NONE: return "HP_CORE_NONE";
3279 case PT_HP_CORE_VERSION: return "HP_CORE_VERSION";
3280 case PT_HP_CORE_KERNEL: return "HP_CORE_KERNEL";
3281 case PT_HP_CORE_COMM: return "HP_CORE_COMM";
3282 case PT_HP_CORE_PROC: return "HP_CORE_PROC";
3283 case PT_HP_CORE_LOADABLE: return "HP_CORE_LOADABLE";
3284 case PT_HP_CORE_STACK: return "HP_CORE_STACK";
3285 case PT_HP_CORE_SHM: return "HP_CORE_SHM";
3286 case PT_HP_CORE_MMF: return "HP_CORE_MMF";
3287 case PT_HP_PARALLEL: return "HP_PARALLEL";
3288 case PT_HP_FASTBIND: return "HP_FASTBIND";
3289 case PT_HP_OPT_ANNOT: return "HP_OPT_ANNOT";
3290 case PT_HP_HSL_ANNOT: return "HP_HSL_ANNOT";
3291 case PT_HP_STACK: return "HP_STACK";
3292 case PT_HP_CORE_UTSNAME: return "HP_CORE_UTSNAME";
3293 case PT_PARISC_ARCHEXT: return "PARISC_ARCHEXT";
3294 case PT_PARISC_UNWIND: return "PARISC_UNWIND";
3295 case PT_PARISC_WEAKORDER: return "PARISC_WEAKORDER";
3296 default:
3297 break;
3298 }
3299
3300 return NULL;
3301 }
3302
3303 static const char *
3304 get_ia64_segment_type (unsigned long type)
3305 {
3306 switch (type)
3307 {
3308 case PT_IA_64_ARCHEXT: return "IA_64_ARCHEXT";
3309 case PT_IA_64_UNWIND: return "IA_64_UNWIND";
3310 case PT_HP_TLS: return "HP_TLS";
3311 case PT_IA_64_HP_OPT_ANOT: return "HP_OPT_ANNOT";
3312 case PT_IA_64_HP_HSL_ANOT: return "HP_HSL_ANNOT";
3313 case PT_IA_64_HP_STACK: return "HP_STACK";
3314 default:
3315 break;
3316 }
3317
3318 return NULL;
3319 }
3320
3321 static const char *
3322 get_tic6x_segment_type (unsigned long type)
3323 {
3324 switch (type)
3325 {
3326 case PT_C6000_PHATTR: return "C6000_PHATTR";
3327 default:
3328 break;
3329 }
3330
3331 return NULL;
3332 }
3333
3334 static const char *
3335 get_segment_type (unsigned long p_type)
3336 {
3337 static char buff[32];
3338
3339 switch (p_type)
3340 {
3341 case PT_NULL: return "NULL";
3342 case PT_LOAD: return "LOAD";
3343 case PT_DYNAMIC: return "DYNAMIC";
3344 case PT_INTERP: return "INTERP";
3345 case PT_NOTE: return "NOTE";
3346 case PT_SHLIB: return "SHLIB";
3347 case PT_PHDR: return "PHDR";
3348 case PT_TLS: return "TLS";
3349
3350 case PT_GNU_EH_FRAME:
3351 return "GNU_EH_FRAME";
3352 case PT_GNU_STACK: return "GNU_STACK";
3353 case PT_GNU_RELRO: return "GNU_RELRO";
3354
3355 default:
3356 if ((p_type >= PT_LOPROC) && (p_type <= PT_HIPROC))
3357 {
3358 const char * result;
3359
3360 switch (elf_header.e_machine)
3361 {
3362 case EM_AARCH64:
3363 result = get_aarch64_segment_type (p_type);
3364 break;
3365 case EM_ARM:
3366 result = get_arm_segment_type (p_type);
3367 break;
3368 case EM_MIPS:
3369 case EM_MIPS_RS3_LE:
3370 result = get_mips_segment_type (p_type);
3371 break;
3372 case EM_PARISC:
3373 result = get_parisc_segment_type (p_type);
3374 break;
3375 case EM_IA_64:
3376 result = get_ia64_segment_type (p_type);
3377 break;
3378 case EM_TI_C6000:
3379 result = get_tic6x_segment_type (p_type);
3380 break;
3381 default:
3382 result = NULL;
3383 break;
3384 }
3385
3386 if (result != NULL)
3387 return result;
3388
3389 sprintf (buff, "LOPROC+%lx", p_type - PT_LOPROC);
3390 }
3391 else if ((p_type >= PT_LOOS) && (p_type <= PT_HIOS))
3392 {
3393 const char * result;
3394
3395 switch (elf_header.e_machine)
3396 {
3397 case EM_PARISC:
3398 result = get_parisc_segment_type (p_type);
3399 break;
3400 case EM_IA_64:
3401 result = get_ia64_segment_type (p_type);
3402 break;
3403 default:
3404 result = NULL;
3405 break;
3406 }
3407
3408 if (result != NULL)
3409 return result;
3410
3411 sprintf (buff, "LOOS+%lx", p_type - PT_LOOS);
3412 }
3413 else
3414 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), p_type);
3415
3416 return buff;
3417 }
3418 }
3419
3420 static const char *
3421 get_mips_section_type_name (unsigned int sh_type)
3422 {
3423 switch (sh_type)
3424 {
3425 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST";
3426 case SHT_MIPS_MSYM: return "MIPS_MSYM";
3427 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT";
3428 case SHT_MIPS_GPTAB: return "MIPS_GPTAB";
3429 case SHT_MIPS_UCODE: return "MIPS_UCODE";
3430 case SHT_MIPS_DEBUG: return "MIPS_DEBUG";
3431 case SHT_MIPS_REGINFO: return "MIPS_REGINFO";
3432 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE";
3433 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM";
3434 case SHT_MIPS_RELD: return "MIPS_RELD";
3435 case SHT_MIPS_IFACE: return "MIPS_IFACE";
3436 case SHT_MIPS_CONTENT: return "MIPS_CONTENT";
3437 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS";
3438 case SHT_MIPS_SHDR: return "MIPS_SHDR";
3439 case SHT_MIPS_FDESC: return "MIPS_FDESC";
3440 case SHT_MIPS_EXTSYM: return "MIPS_EXTSYM";
3441 case SHT_MIPS_DENSE: return "MIPS_DENSE";
3442 case SHT_MIPS_PDESC: return "MIPS_PDESC";
3443 case SHT_MIPS_LOCSYM: return "MIPS_LOCSYM";
3444 case SHT_MIPS_AUXSYM: return "MIPS_AUXSYM";
3445 case SHT_MIPS_OPTSYM: return "MIPS_OPTSYM";
3446 case SHT_MIPS_LOCSTR: return "MIPS_LOCSTR";
3447 case SHT_MIPS_LINE: return "MIPS_LINE";
3448 case SHT_MIPS_RFDESC: return "MIPS_RFDESC";
3449 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM";
3450 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST";
3451 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS";
3452 case SHT_MIPS_DWARF: return "MIPS_DWARF";
3453 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL";
3454 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
3455 case SHT_MIPS_EVENTS: return "MIPS_EVENTS";
3456 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE";
3457 case SHT_MIPS_PIXIE: return "MIPS_PIXIE";
3458 case SHT_MIPS_XLATE: return "MIPS_XLATE";
3459 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG";
3460 case SHT_MIPS_WHIRL: return "MIPS_WHIRL";
3461 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION";
3462 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD";
3463 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION";
3464 case SHT_MIPS_ABIFLAGS: return "MIPS_ABIFLAGS";
3465 default:
3466 break;
3467 }
3468 return NULL;
3469 }
3470
3471 static const char *
3472 get_parisc_section_type_name (unsigned int sh_type)
3473 {
3474 switch (sh_type)
3475 {
3476 case SHT_PARISC_EXT: return "PARISC_EXT";
3477 case SHT_PARISC_UNWIND: return "PARISC_UNWIND";
3478 case SHT_PARISC_DOC: return "PARISC_DOC";
3479 case SHT_PARISC_ANNOT: return "PARISC_ANNOT";
3480 case SHT_PARISC_SYMEXTN: return "PARISC_SYMEXTN";
3481 case SHT_PARISC_STUBS: return "PARISC_STUBS";
3482 case SHT_PARISC_DLKM: return "PARISC_DLKM";
3483 default:
3484 break;
3485 }
3486 return NULL;
3487 }
3488
3489 static const char *
3490 get_ia64_section_type_name (unsigned int sh_type)
3491 {
3492 /* If the top 8 bits are 0x78 the next 8 are the os/abi ID. */
3493 if ((sh_type & 0xFF000000) == SHT_IA_64_LOPSREG)
3494 return get_osabi_name ((sh_type & 0x00FF0000) >> 16);
3495
3496 switch (sh_type)
3497 {
3498 case SHT_IA_64_EXT: return "IA_64_EXT";
3499 case SHT_IA_64_UNWIND: return "IA_64_UNWIND";
3500 case SHT_IA_64_PRIORITY_INIT: return "IA_64_PRIORITY_INIT";
3501 case SHT_IA_64_VMS_TRACE: return "VMS_TRACE";
3502 case SHT_IA_64_VMS_TIE_SIGNATURES: return "VMS_TIE_SIGNATURES";
3503 case SHT_IA_64_VMS_DEBUG: return "VMS_DEBUG";
3504 case SHT_IA_64_VMS_DEBUG_STR: return "VMS_DEBUG_STR";
3505 case SHT_IA_64_VMS_LINKAGES: return "VMS_LINKAGES";
3506 case SHT_IA_64_VMS_SYMBOL_VECTOR: return "VMS_SYMBOL_VECTOR";
3507 case SHT_IA_64_VMS_FIXUP: return "VMS_FIXUP";
3508 default:
3509 break;
3510 }
3511 return NULL;
3512 }
3513
3514 static const char *
3515 get_x86_64_section_type_name (unsigned int sh_type)
3516 {
3517 switch (sh_type)
3518 {
3519 case SHT_X86_64_UNWIND: return "X86_64_UNWIND";
3520 default:
3521 break;
3522 }
3523 return NULL;
3524 }
3525
3526 static const char *
3527 get_aarch64_section_type_name (unsigned int sh_type)
3528 {
3529 switch (sh_type)
3530 {
3531 case SHT_AARCH64_ATTRIBUTES:
3532 return "AARCH64_ATTRIBUTES";
3533 default:
3534 break;
3535 }
3536 return NULL;
3537 }
3538
3539 static const char *
3540 get_arm_section_type_name (unsigned int sh_type)
3541 {
3542 switch (sh_type)
3543 {
3544 case SHT_ARM_EXIDX: return "ARM_EXIDX";
3545 case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP";
3546 case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES";
3547 case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY";
3548 case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION";
3549 default:
3550 break;
3551 }
3552 return NULL;
3553 }
3554
3555 static const char *
3556 get_tic6x_section_type_name (unsigned int sh_type)
3557 {
3558 switch (sh_type)
3559 {
3560 case SHT_C6000_UNWIND:
3561 return "C6000_UNWIND";
3562 case SHT_C6000_PREEMPTMAP:
3563 return "C6000_PREEMPTMAP";
3564 case SHT_C6000_ATTRIBUTES:
3565 return "C6000_ATTRIBUTES";
3566 case SHT_TI_ICODE:
3567 return "TI_ICODE";
3568 case SHT_TI_XREF:
3569 return "TI_XREF";
3570 case SHT_TI_HANDLER:
3571 return "TI_HANDLER";
3572 case SHT_TI_INITINFO:
3573 return "TI_INITINFO";
3574 case SHT_TI_PHATTRS:
3575 return "TI_PHATTRS";
3576 default:
3577 break;
3578 }
3579 return NULL;
3580 }
3581
3582 static const char *
3583 get_msp430x_section_type_name (unsigned int sh_type)
3584 {
3585 switch (sh_type)
3586 {
3587 case SHT_MSP430_SEC_FLAGS: return "MSP430_SEC_FLAGS";
3588 case SHT_MSP430_SYM_ALIASES: return "MSP430_SYM_ALIASES";
3589 case SHT_MSP430_ATTRIBUTES: return "MSP430_ATTRIBUTES";
3590 default: return NULL;
3591 }
3592 }
3593
3594 static const char *
3595 get_section_type_name (unsigned int sh_type)
3596 {
3597 static char buff[32];
3598
3599 switch (sh_type)
3600 {
3601 case SHT_NULL: return "NULL";
3602 case SHT_PROGBITS: return "PROGBITS";
3603 case SHT_SYMTAB: return "SYMTAB";
3604 case SHT_STRTAB: return "STRTAB";
3605 case SHT_RELA: return "RELA";
3606 case SHT_HASH: return "HASH";
3607 case SHT_DYNAMIC: return "DYNAMIC";
3608 case SHT_NOTE: return "NOTE";
3609 case SHT_NOBITS: return "NOBITS";
3610 case SHT_REL: return "REL";
3611 case SHT_SHLIB: return "SHLIB";
3612 case SHT_DYNSYM: return "DYNSYM";
3613 case SHT_INIT_ARRAY: return "INIT_ARRAY";
3614 case SHT_FINI_ARRAY: return "FINI_ARRAY";
3615 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY";
3616 case SHT_GNU_HASH: return "GNU_HASH";
3617 case SHT_GROUP: return "GROUP";
3618 case SHT_SYMTAB_SHNDX: return "SYMTAB SECTION INDICIES";
3619 case SHT_GNU_verdef: return "VERDEF";
3620 case SHT_GNU_verneed: return "VERNEED";
3621 case SHT_GNU_versym: return "VERSYM";
3622 case 0x6ffffff0: return "VERSYM";
3623 case 0x6ffffffc: return "VERDEF";
3624 case 0x7ffffffd: return "AUXILIARY";
3625 case 0x7fffffff: return "FILTER";
3626 case SHT_GNU_LIBLIST: return "GNU_LIBLIST";
3627
3628 default:
3629 if ((sh_type >= SHT_LOPROC) && (sh_type <= SHT_HIPROC))
3630 {
3631 const char * result;
3632
3633 switch (elf_header.e_machine)
3634 {
3635 case EM_MIPS:
3636 case EM_MIPS_RS3_LE:
3637 result = get_mips_section_type_name (sh_type);
3638 break;
3639 case EM_PARISC:
3640 result = get_parisc_section_type_name (sh_type);
3641 break;
3642 case EM_IA_64:
3643 result = get_ia64_section_type_name (sh_type);
3644 break;
3645 case EM_X86_64:
3646 case EM_L1OM:
3647 case EM_K1OM:
3648 result = get_x86_64_section_type_name (sh_type);
3649 break;
3650 case EM_AARCH64:
3651 result = get_aarch64_section_type_name (sh_type);
3652 break;
3653 case EM_ARM:
3654 result = get_arm_section_type_name (sh_type);
3655 break;
3656 case EM_TI_C6000:
3657 result = get_tic6x_section_type_name (sh_type);
3658 break;
3659 case EM_MSP430:
3660 result = get_msp430x_section_type_name (sh_type);
3661 break;
3662 default:
3663 result = NULL;
3664 break;
3665 }
3666
3667 if (result != NULL)
3668 return result;
3669
3670 sprintf (buff, "LOPROC+%x", sh_type - SHT_LOPROC);
3671 }
3672 else if ((sh_type >= SHT_LOOS) && (sh_type <= SHT_HIOS))
3673 {
3674 const char * result;
3675
3676 switch (elf_header.e_machine)
3677 {
3678 case EM_IA_64:
3679 result = get_ia64_section_type_name (sh_type);
3680 break;
3681 default:
3682 result = NULL;
3683 break;
3684 }
3685
3686 if (result != NULL)
3687 return result;
3688
3689 sprintf (buff, "LOOS+%x", sh_type - SHT_LOOS);
3690 }
3691 else if ((sh_type >= SHT_LOUSER) && (sh_type <= SHT_HIUSER))
3692 sprintf (buff, "LOUSER+%x", sh_type - SHT_LOUSER);
3693 else
3694 /* This message is probably going to be displayed in a 15
3695 character wide field, so put the hex value first. */
3696 snprintf (buff, sizeof (buff), _("%08x: <unknown>"), sh_type);
3697
3698 return buff;
3699 }
3700 }
3701
3702 #define OPTION_DEBUG_DUMP 512
3703 #define OPTION_DYN_SYMS 513
3704 #define OPTION_DWARF_DEPTH 514
3705 #define OPTION_DWARF_START 515
3706 #define OPTION_DWARF_CHECK 516
3707
3708 static struct option options[] =
3709 {
3710 {"all", no_argument, 0, 'a'},
3711 {"file-header", no_argument, 0, 'h'},
3712 {"program-headers", no_argument, 0, 'l'},
3713 {"headers", no_argument, 0, 'e'},
3714 {"histogram", no_argument, 0, 'I'},
3715 {"segments", no_argument, 0, 'l'},
3716 {"sections", no_argument, 0, 'S'},
3717 {"section-headers", no_argument, 0, 'S'},
3718 {"section-groups", no_argument, 0, 'g'},
3719 {"section-details", no_argument, 0, 't'},
3720 {"full-section-name",no_argument, 0, 'N'},
3721 {"symbols", no_argument, 0, 's'},
3722 {"syms", no_argument, 0, 's'},
3723 {"dyn-syms", no_argument, 0, OPTION_DYN_SYMS},
3724 {"relocs", no_argument, 0, 'r'},
3725 {"notes", no_argument, 0, 'n'},
3726 {"dynamic", no_argument, 0, 'd'},
3727 {"arch-specific", no_argument, 0, 'A'},
3728 {"version-info", no_argument, 0, 'V'},
3729 {"use-dynamic", no_argument, 0, 'D'},
3730 {"unwind", no_argument, 0, 'u'},
3731 {"archive-index", no_argument, 0, 'c'},
3732 {"hex-dump", required_argument, 0, 'x'},
3733 {"relocated-dump", required_argument, 0, 'R'},
3734 {"string-dump", required_argument, 0, 'p'},
3735 #ifdef SUPPORT_DISASSEMBLY
3736 {"instruction-dump", required_argument, 0, 'i'},
3737 #endif
3738 {"debug-dump", optional_argument, 0, OPTION_DEBUG_DUMP},
3739
3740 {"dwarf-depth", required_argument, 0, OPTION_DWARF_DEPTH},
3741 {"dwarf-start", required_argument, 0, OPTION_DWARF_START},
3742 {"dwarf-check", no_argument, 0, OPTION_DWARF_CHECK},
3743
3744 {"version", no_argument, 0, 'v'},
3745 {"wide", no_argument, 0, 'W'},
3746 {"help", no_argument, 0, 'H'},
3747 {0, no_argument, 0, 0}
3748 };
3749
3750 static void
3751 usage (FILE * stream)
3752 {
3753 fprintf (stream, _("Usage: readelf <option(s)> elf-file(s)\n"));
3754 fprintf (stream, _(" Display information about the contents of ELF format files\n"));
3755 fprintf (stream, _(" Options are:\n\
3756 -a --all Equivalent to: -h -l -S -s -r -d -V -A -I\n\
3757 -h --file-header Display the ELF file header\n\
3758 -l --program-headers Display the program headers\n\
3759 --segments An alias for --program-headers\n\
3760 -S --section-headers Display the sections' header\n\
3761 --sections An alias for --section-headers\n\
3762 -g --section-groups Display the section groups\n\
3763 -t --section-details Display the section details\n\
3764 -e --headers Equivalent to: -h -l -S\n\
3765 -s --syms Display the symbol table\n\
3766 --symbols An alias for --syms\n\
3767 --dyn-syms Display the dynamic symbol table\n\
3768 -n --notes Display the core notes (if present)\n\
3769 -r --relocs Display the relocations (if present)\n\
3770 -u --unwind Display the unwind info (if present)\n\
3771 -d --dynamic Display the dynamic section (if present)\n\
3772 -V --version-info Display the version sections (if present)\n\
3773 -A --arch-specific Display architecture specific information (if any)\n\
3774 -c --archive-index Display the symbol/file index in an archive\n\
3775 -D --use-dynamic Use the dynamic section info when displaying symbols\n\
3776 -x --hex-dump=<number|name>\n\
3777 Dump the contents of section <number|name> as bytes\n\
3778 -p --string-dump=<number|name>\n\
3779 Dump the contents of section <number|name> as strings\n\
3780 -R --relocated-dump=<number|name>\n\
3781 Dump the contents of section <number|name> as relocated bytes\n\
3782 -w[lLiaprmfFsoRt] or\n\
3783 --debug-dump[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,\n\
3784 =frames-interp,=str,=loc,=Ranges,=pubtypes,\n\
3785 =gdb_index,=trace_info,=trace_abbrev,=trace_aranges,\n\
3786 =addr,=cu_index]\n\
3787 Display the contents of DWARF2 debug sections\n"));
3788 fprintf (stream, _("\
3789 --dwarf-depth=N Do not display DIEs at depth N or greater\n\
3790 --dwarf-start=N Display DIEs starting with N, at the same depth\n\
3791 or deeper\n"));
3792 #ifdef SUPPORT_DISASSEMBLY
3793 fprintf (stream, _("\
3794 -i --instruction-dump=<number|name>\n\
3795 Disassemble the contents of section <number|name>\n"));
3796 #endif
3797 fprintf (stream, _("\
3798 -I --histogram Display histogram of bucket list lengths\n\
3799 -W --wide Allow output width to exceed 80 characters\n\
3800 @<file> Read options from <file>\n\
3801 -H --help Display this information\n\
3802 -v --version Display the version number of readelf\n"));
3803
3804 if (REPORT_BUGS_TO[0] && stream == stdout)
3805 fprintf (stdout, _("Report bugs to %s\n"), REPORT_BUGS_TO);
3806
3807 exit (stream == stdout ? 0 : 1);
3808 }
3809
3810 /* Record the fact that the user wants the contents of section number
3811 SECTION to be displayed using the method(s) encoded as flags bits
3812 in TYPE. Note, TYPE can be zero if we are creating the array for
3813 the first time. */
3814
3815 static void
3816 request_dump_bynumber (unsigned int section, dump_type type)
3817 {
3818 if (section >= num_dump_sects)
3819 {
3820 dump_type * new_dump_sects;
3821
3822 new_dump_sects = (dump_type *) calloc (section + 1,
3823 sizeof (* dump_sects));
3824
3825 if (new_dump_sects == NULL)
3826 error (_("Out of memory allocating dump request table.\n"));
3827 else
3828 {
3829 /* Copy current flag settings. */
3830 memcpy (new_dump_sects, dump_sects, num_dump_sects * sizeof (* dump_sects));
3831
3832 free (dump_sects);
3833
3834 dump_sects = new_dump_sects;
3835 num_dump_sects = section + 1;
3836 }
3837 }
3838
3839 if (dump_sects)
3840 dump_sects[section] |= type;
3841
3842 return;
3843 }
3844
3845 /* Request a dump by section name. */
3846
3847 static void
3848 request_dump_byname (const char * section, dump_type type)
3849 {
3850 struct dump_list_entry * new_request;
3851
3852 new_request = (struct dump_list_entry *)
3853 malloc (sizeof (struct dump_list_entry));
3854 if (!new_request)
3855 error (_("Out of memory allocating dump request table.\n"));
3856
3857 new_request->name = strdup (section);
3858 if (!new_request->name)
3859 error (_("Out of memory allocating dump request table.\n"));
3860
3861 new_request->type = type;
3862
3863 new_request->next = dump_sects_byname;
3864 dump_sects_byname = new_request;
3865 }
3866
3867 static inline void
3868 request_dump (dump_type type)
3869 {
3870 int section;
3871 char * cp;
3872
3873 do_dump++;
3874 section = strtoul (optarg, & cp, 0);
3875
3876 if (! *cp && section >= 0)
3877 request_dump_bynumber (section, type);
3878 else
3879 request_dump_byname (optarg, type);
3880 }
3881
3882
3883 static void
3884 parse_args (int argc, char ** argv)
3885 {
3886 int c;
3887
3888 if (argc < 2)
3889 usage (stderr);
3890
3891 while ((c = getopt_long
3892 (argc, argv, "ADHINR:SVWacdeghi:lnp:rstuvw::x:", options, NULL)) != EOF)
3893 {
3894 switch (c)
3895 {
3896 case 0:
3897 /* Long options. */
3898 break;
3899 case 'H':
3900 usage (stdout);
3901 break;
3902
3903 case 'a':
3904 do_syms++;
3905 do_reloc++;
3906 do_unwind++;
3907 do_dynamic++;
3908 do_header++;
3909 do_sections++;
3910 do_section_groups++;
3911 do_segments++;
3912 do_version++;
3913 do_histogram++;
3914 do_arch++;
3915 do_notes++;
3916 break;
3917 case 'g':
3918 do_section_groups++;
3919 break;
3920 case 't':
3921 case 'N':
3922 do_sections++;
3923 do_section_details++;
3924 break;
3925 case 'e':
3926 do_header++;
3927 do_sections++;
3928 do_segments++;
3929 break;
3930 case 'A':
3931 do_arch++;
3932 break;
3933 case 'D':
3934 do_using_dynamic++;
3935 break;
3936 case 'r':
3937 do_reloc++;
3938 break;
3939 case 'u':
3940 do_unwind++;
3941 break;
3942 case 'h':
3943 do_header++;
3944 break;
3945 case 'l':
3946 do_segments++;
3947 break;
3948 case 's':
3949 do_syms++;
3950 break;
3951 case 'S':
3952 do_sections++;
3953 break;
3954 case 'd':
3955 do_dynamic++;
3956 break;
3957 case 'I':
3958 do_histogram++;
3959 break;
3960 case 'n':
3961 do_notes++;
3962 break;
3963 case 'c':
3964 do_archive_index++;
3965 break;
3966 case 'x':
3967 request_dump (HEX_DUMP);
3968 break;
3969 case 'p':
3970 request_dump (STRING_DUMP);
3971 break;
3972 case 'R':
3973 request_dump (RELOC_DUMP);
3974 break;
3975 case 'w':
3976 do_dump++;
3977 if (optarg == 0)
3978 {
3979 do_debugging = 1;
3980 dwarf_select_sections_all ();
3981 }
3982 else
3983 {
3984 do_debugging = 0;
3985 dwarf_select_sections_by_letters (optarg);
3986 }
3987 break;
3988 case OPTION_DEBUG_DUMP:
3989 do_dump++;
3990 if (optarg == 0)
3991 do_debugging = 1;
3992 else
3993 {
3994 do_debugging = 0;
3995 dwarf_select_sections_by_names (optarg);
3996 }
3997 break;
3998 case OPTION_DWARF_DEPTH:
3999 {
4000 char *cp;
4001
4002 dwarf_cutoff_level = strtoul (optarg, & cp, 0);
4003 }
4004 break;
4005 case OPTION_DWARF_START:
4006 {
4007 char *cp;
4008
4009 dwarf_start_die = strtoul (optarg, & cp, 0);
4010 }
4011 break;
4012 case OPTION_DWARF_CHECK:
4013 dwarf_check = 1;
4014 break;
4015 case OPTION_DYN_SYMS:
4016 do_dyn_syms++;
4017 break;
4018 #ifdef SUPPORT_DISASSEMBLY
4019 case 'i':
4020 request_dump (DISASS_DUMP);
4021 break;
4022 #endif
4023 case 'v':
4024 print_version (program_name);
4025 break;
4026 case 'V':
4027 do_version++;
4028 break;
4029 case 'W':
4030 do_wide++;
4031 break;
4032 default:
4033 /* xgettext:c-format */
4034 error (_("Invalid option '-%c'\n"), c);
4035 /* Drop through. */
4036 case '?':
4037 usage (stderr);
4038 }
4039 }
4040
4041 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
4042 && !do_segments && !do_header && !do_dump && !do_version
4043 && !do_histogram && !do_debugging && !do_arch && !do_notes
4044 && !do_section_groups && !do_archive_index
4045 && !do_dyn_syms)
4046 usage (stderr);
4047 else if (argc < 3)
4048 {
4049 warn (_("Nothing to do.\n"));
4050 usage (stderr);
4051 }
4052 }
4053
4054 static const char *
4055 get_elf_class (unsigned int elf_class)
4056 {
4057 static char buff[32];
4058
4059 switch (elf_class)
4060 {
4061 case ELFCLASSNONE: return _("none");
4062 case ELFCLASS32: return "ELF32";
4063 case ELFCLASS64: return "ELF64";
4064 default:
4065 snprintf (buff, sizeof (buff), _("<unknown: %x>"), elf_class);
4066 return buff;
4067 }
4068 }
4069
4070 static const char *
4071 get_data_encoding (unsigned int encoding)
4072 {
4073 static char buff[32];
4074
4075 switch (encoding)
4076 {
4077 case ELFDATANONE: return _("none");
4078 case ELFDATA2LSB: return _("2's complement, little endian");
4079 case ELFDATA2MSB: return _("2's complement, big endian");
4080 default:
4081 snprintf (buff, sizeof (buff), _("<unknown: %x>"), encoding);
4082 return buff;
4083 }
4084 }
4085
4086 /* Decode the data held in 'elf_header'. */
4087
4088 static int
4089 process_file_header (void)
4090 {
4091 if ( elf_header.e_ident[EI_MAG0] != ELFMAG0
4092 || elf_header.e_ident[EI_MAG1] != ELFMAG1
4093 || elf_header.e_ident[EI_MAG2] != ELFMAG2
4094 || elf_header.e_ident[EI_MAG3] != ELFMAG3)
4095 {
4096 error
4097 (_("Not an ELF file - it has the wrong magic bytes at the start\n"));
4098 return 0;
4099 }
4100
4101 init_dwarf_regnames (elf_header.e_machine);
4102
4103 if (do_header)
4104 {
4105 int i;
4106
4107 printf (_("ELF Header:\n"));
4108 printf (_(" Magic: "));
4109 for (i = 0; i < EI_NIDENT; i++)
4110 printf ("%2.2x ", elf_header.e_ident[i]);
4111 printf ("\n");
4112 printf (_(" Class: %s\n"),
4113 get_elf_class (elf_header.e_ident[EI_CLASS]));
4114 printf (_(" Data: %s\n"),
4115 get_data_encoding (elf_header.e_ident[EI_DATA]));
4116 printf (_(" Version: %d %s\n"),
4117 elf_header.e_ident[EI_VERSION],
4118 (elf_header.e_ident[EI_VERSION] == EV_CURRENT
4119 ? "(current)"
4120 : (elf_header.e_ident[EI_VERSION] != EV_NONE
4121 ? _("<unknown: %lx>")
4122 : "")));
4123 printf (_(" OS/ABI: %s\n"),
4124 get_osabi_name (elf_header.e_ident[EI_OSABI]));
4125 printf (_(" ABI Version: %d\n"),
4126 elf_header.e_ident[EI_ABIVERSION]);
4127 printf (_(" Type: %s\n"),
4128 get_file_type (elf_header.e_type));
4129 printf (_(" Machine: %s\n"),
4130 get_machine_name (elf_header.e_machine));
4131 printf (_(" Version: 0x%lx\n"),
4132 (unsigned long) elf_header.e_version);
4133
4134 printf (_(" Entry point address: "));
4135 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
4136 printf (_("\n Start of program headers: "));
4137 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
4138 printf (_(" (bytes into file)\n Start of section headers: "));
4139 print_vma ((bfd_vma) elf_header.e_shoff, DEC);
4140 printf (_(" (bytes into file)\n"));
4141
4142 printf (_(" Flags: 0x%lx%s\n"),
4143 (unsigned long) elf_header.e_flags,
4144 get_machine_flags (elf_header.e_flags, elf_header.e_machine));
4145 printf (_(" Size of this header: %ld (bytes)\n"),
4146 (long) elf_header.e_ehsize);
4147 printf (_(" Size of program headers: %ld (bytes)\n"),
4148 (long) elf_header.e_phentsize);
4149 printf (_(" Number of program headers: %ld"),
4150 (long) elf_header.e_phnum);
4151 if (section_headers != NULL
4152 && elf_header.e_phnum == PN_XNUM
4153 && section_headers[0].sh_info != 0)
4154 printf (" (%ld)", (long) section_headers[0].sh_info);
4155 putc ('\n', stdout);
4156 printf (_(" Size of section headers: %ld (bytes)\n"),
4157 (long) elf_header.e_shentsize);
4158 printf (_(" Number of section headers: %ld"),
4159 (long) elf_header.e_shnum);
4160 if (section_headers != NULL && elf_header.e_shnum == SHN_UNDEF)
4161 printf (" (%ld)", (long) section_headers[0].sh_size);
4162 putc ('\n', stdout);
4163 printf (_(" Section header string table index: %ld"),
4164 (long) elf_header.e_shstrndx);
4165 if (section_headers != NULL
4166 && elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
4167 printf (" (%u)", section_headers[0].sh_link);
4168 else if (elf_header.e_shstrndx != SHN_UNDEF
4169 && elf_header.e_shstrndx >= elf_header.e_shnum)
4170 printf (_(" <corrupt: out of range>"));
4171 putc ('\n', stdout);
4172 }
4173
4174 if (section_headers != NULL)
4175 {
4176 if (elf_header.e_phnum == PN_XNUM
4177 && section_headers[0].sh_info != 0)
4178 elf_header.e_phnum = section_headers[0].sh_info;
4179 if (elf_header.e_shnum == SHN_UNDEF)
4180 elf_header.e_shnum = section_headers[0].sh_size;
4181 if (elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
4182 elf_header.e_shstrndx = section_headers[0].sh_link;
4183 else if (elf_header.e_shstrndx >= elf_header.e_shnum)
4184 elf_header.e_shstrndx = SHN_UNDEF;
4185 free (section_headers);
4186 section_headers = NULL;
4187 }
4188
4189 return 1;
4190 }
4191
4192 static bfd_boolean
4193 get_32bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
4194 {
4195 Elf32_External_Phdr * phdrs;
4196 Elf32_External_Phdr * external;
4197 Elf_Internal_Phdr * internal;
4198 unsigned int i;
4199 unsigned int size = elf_header.e_phentsize;
4200 unsigned int num = elf_header.e_phnum;
4201
4202 /* PR binutils/17531: Cope with unexpected section header sizes. */
4203 if (size == 0 || num == 0)
4204 return FALSE;
4205 if (size < sizeof * phdrs)
4206 {
4207 error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
4208 return FALSE;
4209 }
4210 if (size > sizeof * phdrs)
4211 warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
4212
4213 phdrs = (Elf32_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
4214 size, num, _("program headers"));
4215 if (phdrs == NULL)
4216 return FALSE;
4217
4218 for (i = 0, internal = pheaders, external = phdrs;
4219 i < elf_header.e_phnum;
4220 i++, internal++, external++)
4221 {
4222 internal->p_type = BYTE_GET (external->p_type);
4223 internal->p_offset = BYTE_GET (external->p_offset);
4224 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4225 internal->p_paddr = BYTE_GET (external->p_paddr);
4226 internal->p_filesz = BYTE_GET (external->p_filesz);
4227 internal->p_memsz = BYTE_GET (external->p_memsz);
4228 internal->p_flags = BYTE_GET (external->p_flags);
4229 internal->p_align = BYTE_GET (external->p_align);
4230 }
4231
4232 free (phdrs);
4233 return TRUE;
4234 }
4235
4236 static bfd_boolean
4237 get_64bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
4238 {
4239 Elf64_External_Phdr * phdrs;
4240 Elf64_External_Phdr * external;
4241 Elf_Internal_Phdr * internal;
4242 unsigned int i;
4243 unsigned int size = elf_header.e_phentsize;
4244 unsigned int num = elf_header.e_phnum;
4245
4246 /* PR binutils/17531: Cope with unexpected section header sizes. */
4247 if (size == 0 || num == 0)
4248 return FALSE;
4249 if (size < sizeof * phdrs)
4250 {
4251 error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
4252 return FALSE;
4253 }
4254 if (size > sizeof * phdrs)
4255 warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
4256
4257 phdrs = (Elf64_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
4258 size, num, _("program headers"));
4259 if (!phdrs)
4260 return FALSE;
4261
4262 for (i = 0, internal = pheaders, external = phdrs;
4263 i < elf_header.e_phnum;
4264 i++, internal++, external++)
4265 {
4266 internal->p_type = BYTE_GET (external->p_type);
4267 internal->p_flags = BYTE_GET (external->p_flags);
4268 internal->p_offset = BYTE_GET (external->p_offset);
4269 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4270 internal->p_paddr = BYTE_GET (external->p_paddr);
4271 internal->p_filesz = BYTE_GET (external->p_filesz);
4272 internal->p_memsz = BYTE_GET (external->p_memsz);
4273 internal->p_align = BYTE_GET (external->p_align);
4274 }
4275
4276 free (phdrs);
4277 return TRUE;
4278 }
4279
4280 /* Returns 1 if the program headers were read into `program_headers'. */
4281
4282 static int
4283 get_program_headers (FILE * file)
4284 {
4285 Elf_Internal_Phdr * phdrs;
4286
4287 /* Check cache of prior read. */
4288 if (program_headers != NULL)
4289 return 1;
4290
4291 phdrs = (Elf_Internal_Phdr *) cmalloc (elf_header.e_phnum,
4292 sizeof (Elf_Internal_Phdr));
4293
4294 if (phdrs == NULL)
4295 {
4296 error (_("Out of memory reading %u program headers\n"),
4297 elf_header.e_phnum);
4298 return 0;
4299 }
4300
4301 if (is_32bit_elf
4302 ? get_32bit_program_headers (file, phdrs)
4303 : get_64bit_program_headers (file, phdrs))
4304 {
4305 program_headers = phdrs;
4306 return 1;
4307 }
4308
4309 free (phdrs);
4310 return 0;
4311 }
4312
4313 /* Returns 1 if the program headers were loaded. */
4314
4315 static int
4316 process_program_headers (FILE * file)
4317 {
4318 Elf_Internal_Phdr * segment;
4319 unsigned int i;
4320
4321 if (elf_header.e_phnum == 0)
4322 {
4323 /* PR binutils/12467. */
4324 if (elf_header.e_phoff != 0)
4325 warn (_("possibly corrupt ELF header - it has a non-zero program"
4326 " header offset, but no program headers"));
4327 else if (do_segments)
4328 printf (_("\nThere are no program headers in this file.\n"));
4329 return 0;
4330 }
4331
4332 if (do_segments && !do_header)
4333 {
4334 printf (_("\nElf file type is %s\n"), get_file_type (elf_header.e_type));
4335 printf (_("Entry point "));
4336 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
4337 printf (_("\nThere are %d program headers, starting at offset "),
4338 elf_header.e_phnum);
4339 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
4340 printf ("\n");
4341 }
4342
4343 if (! get_program_headers (file))
4344 return 0;
4345
4346 if (do_segments)
4347 {
4348 if (elf_header.e_phnum > 1)
4349 printf (_("\nProgram Headers:\n"));
4350 else
4351 printf (_("\nProgram Headers:\n"));
4352
4353 if (is_32bit_elf)
4354 printf
4355 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4356 else if (do_wide)
4357 printf
4358 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4359 else
4360 {
4361 printf
4362 (_(" Type Offset VirtAddr PhysAddr\n"));
4363 printf
4364 (_(" FileSiz MemSiz Flags Align\n"));
4365 }
4366 }
4367
4368 dynamic_addr = 0;
4369 dynamic_size = 0;
4370
4371 for (i = 0, segment = program_headers;
4372 i < elf_header.e_phnum;
4373 i++, segment++)
4374 {
4375 if (do_segments)
4376 {
4377 printf (" %-14.14s ", get_segment_type (segment->p_type));
4378
4379 if (is_32bit_elf)
4380 {
4381 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4382 printf ("0x%8.8lx ", (unsigned long) segment->p_vaddr);
4383 printf ("0x%8.8lx ", (unsigned long) segment->p_paddr);
4384 printf ("0x%5.5lx ", (unsigned long) segment->p_filesz);
4385 printf ("0x%5.5lx ", (unsigned long) segment->p_memsz);
4386 printf ("%c%c%c ",
4387 (segment->p_flags & PF_R ? 'R' : ' '),
4388 (segment->p_flags & PF_W ? 'W' : ' '),
4389 (segment->p_flags & PF_X ? 'E' : ' '));
4390 printf ("%#lx", (unsigned long) segment->p_align);
4391 }
4392 else if (do_wide)
4393 {
4394 if ((unsigned long) segment->p_offset == segment->p_offset)
4395 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4396 else
4397 {
4398 print_vma (segment->p_offset, FULL_HEX);
4399 putchar (' ');
4400 }
4401
4402 print_vma (segment->p_vaddr, FULL_HEX);
4403 putchar (' ');
4404 print_vma (segment->p_paddr, FULL_HEX);
4405 putchar (' ');
4406
4407 if ((unsigned long) segment->p_filesz == segment->p_filesz)
4408 printf ("0x%6.6lx ", (unsigned long) segment->p_filesz);
4409 else
4410 {
4411 print_vma (segment->p_filesz, FULL_HEX);
4412 putchar (' ');
4413 }
4414
4415 if ((unsigned long) segment->p_memsz == segment->p_memsz)
4416 printf ("0x%6.6lx", (unsigned long) segment->p_memsz);
4417 else
4418 {
4419 print_vma (segment->p_memsz, FULL_HEX);
4420 }
4421
4422 printf (" %c%c%c ",
4423 (segment->p_flags & PF_R ? 'R' : ' '),
4424 (segment->p_flags & PF_W ? 'W' : ' '),
4425 (segment->p_flags & PF_X ? 'E' : ' '));
4426
4427 if ((unsigned long) segment->p_align == segment->p_align)
4428 printf ("%#lx", (unsigned long) segment->p_align);
4429 else
4430 {
4431 print_vma (segment->p_align, PREFIX_HEX);
4432 }
4433 }
4434 else
4435 {
4436 print_vma (segment->p_offset, FULL_HEX);
4437 putchar (' ');
4438 print_vma (segment->p_vaddr, FULL_HEX);
4439 putchar (' ');
4440 print_vma (segment->p_paddr, FULL_HEX);
4441 printf ("\n ");
4442 print_vma (segment->p_filesz, FULL_HEX);
4443 putchar (' ');
4444 print_vma (segment->p_memsz, FULL_HEX);
4445 printf (" %c%c%c ",
4446 (segment->p_flags & PF_R ? 'R' : ' '),
4447 (segment->p_flags & PF_W ? 'W' : ' '),
4448 (segment->p_flags & PF_X ? 'E' : ' '));
4449 print_vma (segment->p_align, HEX);
4450 }
4451 }
4452
4453 if (do_segments)
4454 putc ('\n', stdout);
4455
4456 switch (segment->p_type)
4457 {
4458 case PT_DYNAMIC:
4459 if (dynamic_addr)
4460 error (_("more than one dynamic segment\n"));
4461
4462 /* By default, assume that the .dynamic section is the first
4463 section in the DYNAMIC segment. */
4464 dynamic_addr = segment->p_offset;
4465 dynamic_size = segment->p_filesz;
4466 /* PR binutils/17512: Avoid corrupt dynamic section info in the segment. */
4467 if (dynamic_addr + dynamic_size >= current_file_size)
4468 {
4469 error (_("the dynamic segment offset + size exceeds the size of the file\n"));
4470 dynamic_addr = dynamic_size = 0;
4471 }
4472
4473 /* Try to locate the .dynamic section. If there is
4474 a section header table, we can easily locate it. */
4475 if (section_headers != NULL)
4476 {
4477 Elf_Internal_Shdr * sec;
4478
4479 sec = find_section (".dynamic");
4480 if (sec == NULL || sec->sh_size == 0)
4481 {
4482 /* A corresponding .dynamic section is expected, but on
4483 IA-64/OpenVMS it is OK for it to be missing. */
4484 if (!is_ia64_vms ())
4485 error (_("no .dynamic section in the dynamic segment\n"));
4486 break;
4487 }
4488
4489 if (sec->sh_type == SHT_NOBITS)
4490 {
4491 dynamic_size = 0;
4492 break;
4493 }
4494
4495 dynamic_addr = sec->sh_offset;
4496 dynamic_size = sec->sh_size;
4497
4498 if (dynamic_addr < segment->p_offset
4499 || dynamic_addr > segment->p_offset + segment->p_filesz)
4500 warn (_("the .dynamic section is not contained"
4501 " within the dynamic segment\n"));
4502 else if (dynamic_addr > segment->p_offset)
4503 warn (_("the .dynamic section is not the first section"
4504 " in the dynamic segment.\n"));
4505 }
4506 break;
4507
4508 case PT_INTERP:
4509 if (fseek (file, archive_file_offset + (long) segment->p_offset,
4510 SEEK_SET))
4511 error (_("Unable to find program interpreter name\n"));
4512 else
4513 {
4514 char fmt [32];
4515 int ret = snprintf (fmt, sizeof (fmt), "%%%ds", PATH_MAX - 1);
4516
4517 if (ret >= (int) sizeof (fmt) || ret < 0)
4518 error (_("Internal error: failed to create format string to display program interpreter\n"));
4519
4520 program_interpreter[0] = 0;
4521 if (fscanf (file, fmt, program_interpreter) <= 0)
4522 error (_("Unable to read program interpreter name\n"));
4523
4524 if (do_segments)
4525 printf (_(" [Requesting program interpreter: %s]\n"),
4526 program_interpreter);
4527 }
4528 break;
4529 }
4530 }
4531
4532 if (do_segments && section_headers != NULL && string_table != NULL)
4533 {
4534 printf (_("\n Section to Segment mapping:\n"));
4535 printf (_(" Segment Sections...\n"));
4536
4537 for (i = 0; i < elf_header.e_phnum; i++)
4538 {
4539 unsigned int j;
4540 Elf_Internal_Shdr * section;
4541
4542 segment = program_headers + i;
4543 section = section_headers + 1;
4544
4545 printf (" %2.2d ", i);
4546
4547 for (j = 1; j < elf_header.e_shnum; j++, section++)
4548 {
4549 if (!ELF_TBSS_SPECIAL (section, segment)
4550 && ELF_SECTION_IN_SEGMENT_STRICT (section, segment))
4551 printf ("%s ", printable_section_name (section));
4552 }
4553
4554 putc ('\n',stdout);
4555 }
4556 }
4557
4558 return 1;
4559 }
4560
4561
4562 /* Find the file offset corresponding to VMA by using the program headers. */
4563
4564 static long
4565 offset_from_vma (FILE * file, bfd_vma vma, bfd_size_type size)
4566 {
4567 Elf_Internal_Phdr * seg;
4568
4569 if (! get_program_headers (file))
4570 {
4571 warn (_("Cannot interpret virtual addresses without program headers.\n"));
4572 return (long) vma;
4573 }
4574
4575 for (seg = program_headers;
4576 seg < program_headers + elf_header.e_phnum;
4577 ++seg)
4578 {
4579 if (seg->p_type != PT_LOAD)
4580 continue;
4581
4582 if (vma >= (seg->p_vaddr & -seg->p_align)
4583 && vma + size <= seg->p_vaddr + seg->p_filesz)
4584 return vma - seg->p_vaddr + seg->p_offset;
4585 }
4586
4587 warn (_("Virtual address 0x%lx not located in any PT_LOAD segment.\n"),
4588 (unsigned long) vma);
4589 return (long) vma;
4590 }
4591
4592
4593 /* Allocate memory and load the sections headers into the global pointer
4594 SECTION_HEADERS. If PROBE is true, this is just a probe and we do not
4595 generate any error messages if the load fails. */
4596
4597 static bfd_boolean
4598 get_32bit_section_headers (FILE * file, bfd_boolean probe)
4599 {
4600 Elf32_External_Shdr * shdrs;
4601 Elf_Internal_Shdr * internal;
4602 unsigned int i;
4603 unsigned int size = elf_header.e_shentsize;
4604 unsigned int num = probe ? 1 : elf_header.e_shnum;
4605
4606 /* PR binutils/17531: Cope with unexpected section header sizes. */
4607 if (size == 0 || num == 0)
4608 return FALSE;
4609 if (size < sizeof * shdrs)
4610 {
4611 if (! probe)
4612 error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
4613 return FALSE;
4614 }
4615 if (!probe && size > sizeof * shdrs)
4616 warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
4617
4618 shdrs = (Elf32_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
4619 size, num,
4620 probe ? NULL : _("section headers"));
4621 if (shdrs == NULL)
4622 return FALSE;
4623
4624 if (section_headers != NULL)
4625 free (section_headers);
4626 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
4627 sizeof (Elf_Internal_Shdr));
4628 if (section_headers == NULL)
4629 {
4630 if (!probe)
4631 error (_("Out of memory reading %u section headers\n"), num);
4632 return FALSE;
4633 }
4634
4635 for (i = 0, internal = section_headers;
4636 i < num;
4637 i++, internal++)
4638 {
4639 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
4640 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
4641 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
4642 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
4643 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
4644 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
4645 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
4646 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
4647 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
4648 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
4649 }
4650
4651 free (shdrs);
4652 return TRUE;
4653 }
4654
4655 static bfd_boolean
4656 get_64bit_section_headers (FILE * file, bfd_boolean probe)
4657 {
4658 Elf64_External_Shdr * shdrs;
4659 Elf_Internal_Shdr * internal;
4660 unsigned int i;
4661 unsigned int size = elf_header.e_shentsize;
4662 unsigned int num = probe ? 1 : elf_header.e_shnum;
4663
4664 /* PR binutils/17531: Cope with unexpected section header sizes. */
4665 if (size == 0 || num == 0)
4666 return FALSE;
4667 if (size < sizeof * shdrs)
4668 {
4669 if (! probe)
4670 error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
4671 return FALSE;
4672 }
4673 if (! probe && size > sizeof * shdrs)
4674 warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
4675
4676 shdrs = (Elf64_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
4677 size, num,
4678 probe ? NULL : _("section headers"));
4679 if (shdrs == NULL)
4680 return FALSE;
4681
4682 if (section_headers != NULL)
4683 free (section_headers);
4684 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
4685 sizeof (Elf_Internal_Shdr));
4686 if (section_headers == NULL)
4687 {
4688 if (! probe)
4689 error (_("Out of memory reading %u section headers\n"), num);
4690 return FALSE;
4691 }
4692
4693 for (i = 0, internal = section_headers;
4694 i < num;
4695 i++, internal++)
4696 {
4697 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
4698 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
4699 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
4700 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
4701 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
4702 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
4703 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
4704 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
4705 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
4706 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
4707 }
4708
4709 free (shdrs);
4710 return TRUE;
4711 }
4712
4713 static Elf_Internal_Sym *
4714 get_32bit_elf_symbols (FILE * file,
4715 Elf_Internal_Shdr * section,
4716 unsigned long * num_syms_return)
4717 {
4718 unsigned long number = 0;
4719 Elf32_External_Sym * esyms = NULL;
4720 Elf_External_Sym_Shndx * shndx = NULL;
4721 Elf_Internal_Sym * isyms = NULL;
4722 Elf_Internal_Sym * psym;
4723 unsigned int j;
4724
4725 /* Run some sanity checks first. */
4726 if (section->sh_entsize == 0)
4727 {
4728 error (_("sh_entsize is zero\n"));
4729 goto exit_point;
4730 }
4731
4732 if (section->sh_size > current_file_size)
4733 {
4734 error (_("Section %s has an invalid sh_size of 0x%lx\n"),
4735 printable_section_name (section), (unsigned long) section->sh_size);
4736 goto exit_point;
4737 }
4738
4739 number = section->sh_size / section->sh_entsize;
4740
4741 if (number * sizeof (Elf32_External_Sym) > section->sh_size + 1)
4742 {
4743 error (_("Invalid sh_entsize\n"));
4744 goto exit_point;
4745 }
4746
4747 esyms = (Elf32_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
4748 section->sh_size, _("symbols"));
4749 if (esyms == NULL)
4750 goto exit_point;
4751
4752 shndx = NULL;
4753 if (symtab_shndx_hdr != NULL
4754 && (symtab_shndx_hdr->sh_link
4755 == (unsigned long) (section - section_headers)))
4756 {
4757 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
4758 symtab_shndx_hdr->sh_offset,
4759 1, symtab_shndx_hdr->sh_size,
4760 _("symbol table section indicies"));
4761 if (shndx == NULL)
4762 goto exit_point;
4763 }
4764
4765 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
4766
4767 if (isyms == NULL)
4768 {
4769 error (_("Out of memory reading %lu symbols\n"),
4770 (unsigned long) number);
4771 goto exit_point;
4772 }
4773
4774 for (j = 0, psym = isyms; j < number; j++, psym++)
4775 {
4776 psym->st_name = BYTE_GET (esyms[j].st_name);
4777 psym->st_value = BYTE_GET (esyms[j].st_value);
4778 psym->st_size = BYTE_GET (esyms[j].st_size);
4779 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
4780 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
4781 psym->st_shndx
4782 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
4783 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
4784 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
4785 psym->st_info = BYTE_GET (esyms[j].st_info);
4786 psym->st_other = BYTE_GET (esyms[j].st_other);
4787 }
4788
4789 exit_point:
4790 if (shndx != NULL)
4791 free (shndx);
4792 if (esyms != NULL)
4793 free (esyms);
4794
4795 if (num_syms_return != NULL)
4796 * num_syms_return = isyms == NULL ? 0 : number;
4797
4798 return isyms;
4799 }
4800
4801 static Elf_Internal_Sym *
4802 get_64bit_elf_symbols (FILE * file,
4803 Elf_Internal_Shdr * section,
4804 unsigned long * num_syms_return)
4805 {
4806 unsigned long number = 0;
4807 Elf64_External_Sym * esyms = NULL;
4808 Elf_External_Sym_Shndx * shndx = NULL;
4809 Elf_Internal_Sym * isyms = NULL;
4810 Elf_Internal_Sym * psym;
4811 unsigned int j;
4812
4813 /* Run some sanity checks first. */
4814 if (section->sh_entsize == 0)
4815 {
4816 error (_("sh_entsize is zero\n"));
4817 goto exit_point;
4818 }
4819
4820 if (section->sh_size > current_file_size)
4821 {
4822 error (_("Section %s has an invalid sh_size of 0x%lx\n"),
4823 printable_section_name (section), (unsigned long) section->sh_size);
4824 goto exit_point;
4825 }
4826
4827 number = section->sh_size / section->sh_entsize;
4828
4829 if (number * sizeof (Elf64_External_Sym) > section->sh_size + 1)
4830 {
4831 error (_("Invalid sh_entsize\n"));
4832 goto exit_point;
4833 }
4834
4835 esyms = (Elf64_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
4836 section->sh_size, _("symbols"));
4837 if (!esyms)
4838 goto exit_point;
4839
4840 if (symtab_shndx_hdr != NULL
4841 && (symtab_shndx_hdr->sh_link
4842 == (unsigned long) (section - section_headers)))
4843 {
4844 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
4845 symtab_shndx_hdr->sh_offset,
4846 1, symtab_shndx_hdr->sh_size,
4847 _("symbol table section indicies"));
4848 if (shndx == NULL)
4849 goto exit_point;
4850 }
4851
4852 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
4853
4854 if (isyms == NULL)
4855 {
4856 error (_("Out of memory reading %lu symbols\n"),
4857 (unsigned long) number);
4858 goto exit_point;
4859 }
4860
4861 for (j = 0, psym = isyms; j < number; j++, psym++)
4862 {
4863 psym->st_name = BYTE_GET (esyms[j].st_name);
4864 psym->st_info = BYTE_GET (esyms[j].st_info);
4865 psym->st_other = BYTE_GET (esyms[j].st_other);
4866 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
4867
4868 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
4869 psym->st_shndx
4870 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
4871 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
4872 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
4873
4874 psym->st_value = BYTE_GET (esyms[j].st_value);
4875 psym->st_size = BYTE_GET (esyms[j].st_size);
4876 }
4877
4878 exit_point:
4879 if (shndx != NULL)
4880 free (shndx);
4881 if (esyms != NULL)
4882 free (esyms);
4883
4884 if (num_syms_return != NULL)
4885 * num_syms_return = isyms == NULL ? 0 : number;
4886
4887 return isyms;
4888 }
4889
4890 static const char *
4891 get_elf_section_flags (bfd_vma sh_flags)
4892 {
4893 static char buff[1024];
4894 char * p = buff;
4895 int field_size = is_32bit_elf ? 8 : 16;
4896 int sindex;
4897 int size = sizeof (buff) - (field_size + 4 + 1);
4898 bfd_vma os_flags = 0;
4899 bfd_vma proc_flags = 0;
4900 bfd_vma unknown_flags = 0;
4901 static const struct
4902 {
4903 const char * str;
4904 int len;
4905 }
4906 flags [] =
4907 {
4908 /* 0 */ { STRING_COMMA_LEN ("WRITE") },
4909 /* 1 */ { STRING_COMMA_LEN ("ALLOC") },
4910 /* 2 */ { STRING_COMMA_LEN ("EXEC") },
4911 /* 3 */ { STRING_COMMA_LEN ("MERGE") },
4912 /* 4 */ { STRING_COMMA_LEN ("STRINGS") },
4913 /* 5 */ { STRING_COMMA_LEN ("INFO LINK") },
4914 /* 6 */ { STRING_COMMA_LEN ("LINK ORDER") },
4915 /* 7 */ { STRING_COMMA_LEN ("OS NONCONF") },
4916 /* 8 */ { STRING_COMMA_LEN ("GROUP") },
4917 /* 9 */ { STRING_COMMA_LEN ("TLS") },
4918 /* IA-64 specific. */
4919 /* 10 */ { STRING_COMMA_LEN ("SHORT") },
4920 /* 11 */ { STRING_COMMA_LEN ("NORECOV") },
4921 /* IA-64 OpenVMS specific. */
4922 /* 12 */ { STRING_COMMA_LEN ("VMS_GLOBAL") },
4923 /* 13 */ { STRING_COMMA_LEN ("VMS_OVERLAID") },
4924 /* 14 */ { STRING_COMMA_LEN ("VMS_SHARED") },
4925 /* 15 */ { STRING_COMMA_LEN ("VMS_VECTOR") },
4926 /* 16 */ { STRING_COMMA_LEN ("VMS_ALLOC_64BIT") },
4927 /* 17 */ { STRING_COMMA_LEN ("VMS_PROTECTED") },
4928 /* Generic. */
4929 /* 18 */ { STRING_COMMA_LEN ("EXCLUDE") },
4930 /* SPARC specific. */
4931 /* 19 */ { STRING_COMMA_LEN ("ORDERED") }
4932 };
4933
4934 if (do_section_details)
4935 {
4936 sprintf (buff, "[%*.*lx]: ",
4937 field_size, field_size, (unsigned long) sh_flags);
4938 p += field_size + 4;
4939 }
4940
4941 while (sh_flags)
4942 {
4943 bfd_vma flag;
4944
4945 flag = sh_flags & - sh_flags;
4946 sh_flags &= ~ flag;
4947
4948 if (do_section_details)
4949 {
4950 switch (flag)
4951 {
4952 case SHF_WRITE: sindex = 0; break;
4953 case SHF_ALLOC: sindex = 1; break;
4954 case SHF_EXECINSTR: sindex = 2; break;
4955 case SHF_MERGE: sindex = 3; break;
4956 case SHF_STRINGS: sindex = 4; break;
4957 case SHF_INFO_LINK: sindex = 5; break;
4958 case SHF_LINK_ORDER: sindex = 6; break;
4959 case SHF_OS_NONCONFORMING: sindex = 7; break;
4960 case SHF_GROUP: sindex = 8; break;
4961 case SHF_TLS: sindex = 9; break;
4962 case SHF_EXCLUDE: sindex = 18; break;
4963
4964 default:
4965 sindex = -1;
4966 switch (elf_header.e_machine)
4967 {
4968 case EM_IA_64:
4969 if (flag == SHF_IA_64_SHORT)
4970 sindex = 10;
4971 else if (flag == SHF_IA_64_NORECOV)
4972 sindex = 11;
4973 #ifdef BFD64
4974 else if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
4975 switch (flag)
4976 {
4977 case SHF_IA_64_VMS_GLOBAL: sindex = 12; break;
4978 case SHF_IA_64_VMS_OVERLAID: sindex = 13; break;
4979 case SHF_IA_64_VMS_SHARED: sindex = 14; break;
4980 case SHF_IA_64_VMS_VECTOR: sindex = 15; break;
4981 case SHF_IA_64_VMS_ALLOC_64BIT: sindex = 16; break;
4982 case SHF_IA_64_VMS_PROTECTED: sindex = 17; break;
4983 default: break;
4984 }
4985 #endif
4986 break;
4987
4988 case EM_386:
4989 case EM_486:
4990 case EM_X86_64:
4991 case EM_L1OM:
4992 case EM_K1OM:
4993 case EM_OLD_SPARCV9:
4994 case EM_SPARC32PLUS:
4995 case EM_SPARCV9:
4996 case EM_SPARC:
4997 if (flag == SHF_ORDERED)
4998 sindex = 19;
4999 break;
5000 default:
5001 break;
5002 }
5003 }
5004
5005 if (sindex != -1)
5006 {
5007 if (p != buff + field_size + 4)
5008 {
5009 if (size < (10 + 2))
5010 abort ();
5011 size -= 2;
5012 *p++ = ',';
5013 *p++ = ' ';
5014 }
5015
5016 size -= flags [sindex].len;
5017 p = stpcpy (p, flags [sindex].str);
5018 }
5019 else if (flag & SHF_MASKOS)
5020 os_flags |= flag;
5021 else if (flag & SHF_MASKPROC)
5022 proc_flags |= flag;
5023 else
5024 unknown_flags |= flag;
5025 }
5026 else
5027 {
5028 switch (flag)
5029 {
5030 case SHF_WRITE: *p = 'W'; break;
5031 case SHF_ALLOC: *p = 'A'; break;
5032 case SHF_EXECINSTR: *p = 'X'; break;
5033 case SHF_MERGE: *p = 'M'; break;
5034 case SHF_STRINGS: *p = 'S'; break;
5035 case SHF_INFO_LINK: *p = 'I'; break;
5036 case SHF_LINK_ORDER: *p = 'L'; break;
5037 case SHF_OS_NONCONFORMING: *p = 'O'; break;
5038 case SHF_GROUP: *p = 'G'; break;
5039 case SHF_TLS: *p = 'T'; break;
5040 case SHF_EXCLUDE: *p = 'E'; break;
5041
5042 default:
5043 if ((elf_header.e_machine == EM_X86_64
5044 || elf_header.e_machine == EM_L1OM
5045 || elf_header.e_machine == EM_K1OM)
5046 && flag == SHF_X86_64_LARGE)
5047 *p = 'l';
5048 else if (flag & SHF_MASKOS)
5049 {
5050 *p = 'o';
5051 sh_flags &= ~ SHF_MASKOS;
5052 }
5053 else if (flag & SHF_MASKPROC)
5054 {
5055 *p = 'p';
5056 sh_flags &= ~ SHF_MASKPROC;
5057 }
5058 else
5059 *p = 'x';
5060 break;
5061 }
5062 p++;
5063 }
5064 }
5065
5066 if (do_section_details)
5067 {
5068 if (os_flags)
5069 {
5070 size -= 5 + field_size;
5071 if (p != buff + field_size + 4)
5072 {
5073 if (size < (2 + 1))
5074 abort ();
5075 size -= 2;
5076 *p++ = ',';
5077 *p++ = ' ';
5078 }
5079 sprintf (p, "OS (%*.*lx)", field_size, field_size,
5080 (unsigned long) os_flags);
5081 p += 5 + field_size;
5082 }
5083 if (proc_flags)
5084 {
5085 size -= 7 + field_size;
5086 if (p != buff + field_size + 4)
5087 {
5088 if (size < (2 + 1))
5089 abort ();
5090 size -= 2;
5091 *p++ = ',';
5092 *p++ = ' ';
5093 }
5094 sprintf (p, "PROC (%*.*lx)", field_size, field_size,
5095 (unsigned long) proc_flags);
5096 p += 7 + field_size;
5097 }
5098 if (unknown_flags)
5099 {
5100 size -= 10 + field_size;
5101 if (p != buff + field_size + 4)
5102 {
5103 if (size < (2 + 1))
5104 abort ();
5105 size -= 2;
5106 *p++ = ',';
5107 *p++ = ' ';
5108 }
5109 sprintf (p, _("UNKNOWN (%*.*lx)"), field_size, field_size,
5110 (unsigned long) unknown_flags);
5111 p += 10 + field_size;
5112 }
5113 }
5114
5115 *p = '\0';
5116 return buff;
5117 }
5118
5119 static int
5120 process_section_headers (FILE * file)
5121 {
5122 Elf_Internal_Shdr * section;
5123 unsigned int i;
5124
5125 section_headers = NULL;
5126
5127 if (elf_header.e_shnum == 0)
5128 {
5129 /* PR binutils/12467. */
5130 if (elf_header.e_shoff != 0)
5131 warn (_("possibly corrupt ELF file header - it has a non-zero"
5132 " section header offset, but no section headers\n"));
5133 else if (do_sections)
5134 printf (_("\nThere are no sections in this file.\n"));
5135
5136 return 1;
5137 }
5138
5139 if (do_sections && !do_header)
5140 printf (_("There are %d section headers, starting at offset 0x%lx:\n"),
5141 elf_header.e_shnum, (unsigned long) elf_header.e_shoff);
5142
5143 if (is_32bit_elf)
5144 {
5145 if (! get_32bit_section_headers (file, FALSE))
5146 return 0;
5147 }
5148 else if (! get_64bit_section_headers (file, FALSE))
5149 return 0;
5150
5151 /* Read in the string table, so that we have names to display. */
5152 if (elf_header.e_shstrndx != SHN_UNDEF
5153 && elf_header.e_shstrndx < elf_header.e_shnum)
5154 {
5155 section = section_headers + elf_header.e_shstrndx;
5156
5157 if (section->sh_size != 0)
5158 {
5159 string_table = (char *) get_data (NULL, file, section->sh_offset,
5160 1, section->sh_size,
5161 _("string table"));
5162
5163 string_table_length = string_table != NULL ? section->sh_size : 0;
5164 }
5165 }
5166
5167 /* Scan the sections for the dynamic symbol table
5168 and dynamic string table and debug sections. */
5169 dynamic_symbols = NULL;
5170 dynamic_strings = NULL;
5171 dynamic_syminfo = NULL;
5172 symtab_shndx_hdr = NULL;
5173
5174 eh_addr_size = is_32bit_elf ? 4 : 8;
5175 switch (elf_header.e_machine)
5176 {
5177 case EM_MIPS:
5178 case EM_MIPS_RS3_LE:
5179 /* The 64-bit MIPS EABI uses a combination of 32-bit ELF and 64-bit
5180 FDE addresses. However, the ABI also has a semi-official ILP32
5181 variant for which the normal FDE address size rules apply.
5182
5183 GCC 4.0 marks EABI64 objects with a dummy .gcc_compiled_longXX
5184 section, where XX is the size of longs in bits. Unfortunately,
5185 earlier compilers provided no way of distinguishing ILP32 objects
5186 from LP64 objects, so if there's any doubt, we should assume that
5187 the official LP64 form is being used. */
5188 if ((elf_header.e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64
5189 && find_section (".gcc_compiled_long32") == NULL)
5190 eh_addr_size = 8;
5191 break;
5192
5193 case EM_H8_300:
5194 case EM_H8_300H:
5195 switch (elf_header.e_flags & EF_H8_MACH)
5196 {
5197 case E_H8_MACH_H8300:
5198 case E_H8_MACH_H8300HN:
5199 case E_H8_MACH_H8300SN:
5200 case E_H8_MACH_H8300SXN:
5201 eh_addr_size = 2;
5202 break;
5203 case E_H8_MACH_H8300H:
5204 case E_H8_MACH_H8300S:
5205 case E_H8_MACH_H8300SX:
5206 eh_addr_size = 4;
5207 break;
5208 }
5209 break;
5210
5211 case EM_M32C_OLD:
5212 case EM_M32C:
5213 switch (elf_header.e_flags & EF_M32C_CPU_MASK)
5214 {
5215 case EF_M32C_CPU_M16C:
5216 eh_addr_size = 2;
5217 break;
5218 }
5219 break;
5220 }
5221
5222 #define CHECK_ENTSIZE_VALUES(section, i, size32, size64) \
5223 do \
5224 { \
5225 bfd_size_type expected_entsize = is_32bit_elf ? size32 : size64; \
5226 if (section->sh_entsize != expected_entsize) \
5227 { \
5228 char buf[40]; \
5229 sprintf_vma (buf, section->sh_entsize); \
5230 /* Note: coded this way so that there is a single string for \
5231 translation. */ \
5232 error (_("Section %d has invalid sh_entsize of %s\n"), i, buf); \
5233 error (_("(Using the expected size of %u for the rest of this dump)\n"), \
5234 (unsigned) expected_entsize); \
5235 section->sh_entsize = expected_entsize; \
5236 } \
5237 } \
5238 while (0)
5239
5240 #define CHECK_ENTSIZE(section, i, type) \
5241 CHECK_ENTSIZE_VALUES (section, i, sizeof (Elf32_External_##type), \
5242 sizeof (Elf64_External_##type))
5243
5244 for (i = 0, section = section_headers;
5245 i < elf_header.e_shnum;
5246 i++, section++)
5247 {
5248 char * name = SECTION_NAME (section);
5249
5250 if (section->sh_type == SHT_DYNSYM)
5251 {
5252 if (dynamic_symbols != NULL)
5253 {
5254 error (_("File contains multiple dynamic symbol tables\n"));
5255 continue;
5256 }
5257
5258 CHECK_ENTSIZE (section, i, Sym);
5259 dynamic_symbols = GET_ELF_SYMBOLS (file, section, & num_dynamic_syms);
5260 }
5261 else if (section->sh_type == SHT_STRTAB
5262 && streq (name, ".dynstr"))
5263 {
5264 if (dynamic_strings != NULL)
5265 {
5266 error (_("File contains multiple dynamic string tables\n"));
5267 continue;
5268 }
5269
5270 dynamic_strings = (char *) get_data (NULL, file, section->sh_offset,
5271 1, section->sh_size,
5272 _("dynamic strings"));
5273 dynamic_strings_length = dynamic_strings == NULL ? 0 : section->sh_size;
5274 }
5275 else if (section->sh_type == SHT_SYMTAB_SHNDX)
5276 {
5277 if (symtab_shndx_hdr != NULL)
5278 {
5279 error (_("File contains multiple symtab shndx tables\n"));
5280 continue;
5281 }
5282 symtab_shndx_hdr = section;
5283 }
5284 else if (section->sh_type == SHT_SYMTAB)
5285 CHECK_ENTSIZE (section, i, Sym);
5286 else if (section->sh_type == SHT_GROUP)
5287 CHECK_ENTSIZE_VALUES (section, i, GRP_ENTRY_SIZE, GRP_ENTRY_SIZE);
5288 else if (section->sh_type == SHT_REL)
5289 CHECK_ENTSIZE (section, i, Rel);
5290 else if (section->sh_type == SHT_RELA)
5291 CHECK_ENTSIZE (section, i, Rela);
5292 else if ((do_debugging || do_debug_info || do_debug_abbrevs
5293 || do_debug_lines || do_debug_pubnames || do_debug_pubtypes
5294 || do_debug_aranges || do_debug_frames || do_debug_macinfo
5295 || do_debug_str || do_debug_loc || do_debug_ranges
5296 || do_debug_addr || do_debug_cu_index)
5297 && (const_strneq (name, ".debug_")
5298 || const_strneq (name, ".zdebug_")))
5299 {
5300 if (name[1] == 'z')
5301 name += sizeof (".zdebug_") - 1;
5302 else
5303 name += sizeof (".debug_") - 1;
5304
5305 if (do_debugging
5306 || (do_debug_info && const_strneq (name, "info"))
5307 || (do_debug_info && const_strneq (name, "types"))
5308 || (do_debug_abbrevs && const_strneq (name, "abbrev"))
5309 || (do_debug_lines && strcmp (name, "line") == 0)
5310 || (do_debug_lines && const_strneq (name, "line."))
5311 || (do_debug_pubnames && const_strneq (name, "pubnames"))
5312 || (do_debug_pubtypes && const_strneq (name, "pubtypes"))
5313 || (do_debug_pubnames && const_strneq (name, "gnu_pubnames"))
5314 || (do_debug_pubtypes && const_strneq (name, "gnu_pubtypes"))
5315 || (do_debug_aranges && const_strneq (name, "aranges"))
5316 || (do_debug_ranges && const_strneq (name, "ranges"))
5317 || (do_debug_frames && const_strneq (name, "frame"))
5318 || (do_debug_macinfo && const_strneq (name, "macinfo"))
5319 || (do_debug_macinfo && const_strneq (name, "macro"))
5320 || (do_debug_str && const_strneq (name, "str"))
5321 || (do_debug_loc && const_strneq (name, "loc"))
5322 || (do_debug_addr && const_strneq (name, "addr"))
5323 || (do_debug_cu_index && const_strneq (name, "cu_index"))
5324 || (do_debug_cu_index && const_strneq (name, "tu_index"))
5325 )
5326 request_dump_bynumber (i, DEBUG_DUMP);
5327 }
5328 /* Linkonce section to be combined with .debug_info at link time. */
5329 else if ((do_debugging || do_debug_info)
5330 && const_strneq (name, ".gnu.linkonce.wi."))
5331 request_dump_bynumber (i, DEBUG_DUMP);
5332 else if (do_debug_frames && streq (name, ".eh_frame"))
5333 request_dump_bynumber (i, DEBUG_DUMP);
5334 else if (do_gdb_index && streq (name, ".gdb_index"))
5335 request_dump_bynumber (i, DEBUG_DUMP);
5336 /* Trace sections for Itanium VMS. */
5337 else if ((do_debugging || do_trace_info || do_trace_abbrevs
5338 || do_trace_aranges)
5339 && const_strneq (name, ".trace_"))
5340 {
5341 name += sizeof (".trace_") - 1;
5342
5343 if (do_debugging
5344 || (do_trace_info && streq (name, "info"))
5345 || (do_trace_abbrevs && streq (name, "abbrev"))
5346 || (do_trace_aranges && streq (name, "aranges"))
5347 )
5348 request_dump_bynumber (i, DEBUG_DUMP);
5349 }
5350 }
5351
5352 if (! do_sections)
5353 return 1;
5354
5355 if (elf_header.e_shnum > 1)
5356 printf (_("\nSection Headers:\n"));
5357 else
5358 printf (_("\nSection Header:\n"));
5359
5360 if (is_32bit_elf)
5361 {
5362 if (do_section_details)
5363 {
5364 printf (_(" [Nr] Name\n"));
5365 printf (_(" Type Addr Off Size ES Lk Inf Al\n"));
5366 }
5367 else
5368 printf
5369 (_(" [Nr] Name Type Addr Off Size ES Flg Lk Inf Al\n"));
5370 }
5371 else if (do_wide)
5372 {
5373 if (do_section_details)
5374 {
5375 printf (_(" [Nr] Name\n"));
5376 printf (_(" Type Address Off Size ES Lk Inf Al\n"));
5377 }
5378 else
5379 printf
5380 (_(" [Nr] Name Type Address Off Size ES Flg Lk Inf Al\n"));
5381 }
5382 else
5383 {
5384 if (do_section_details)
5385 {
5386 printf (_(" [Nr] Name\n"));
5387 printf (_(" Type Address Offset Link\n"));
5388 printf (_(" Size EntSize Info Align\n"));
5389 }
5390 else
5391 {
5392 printf (_(" [Nr] Name Type Address Offset\n"));
5393 printf (_(" Size EntSize Flags Link Info Align\n"));
5394 }
5395 }
5396
5397 if (do_section_details)
5398 printf (_(" Flags\n"));
5399
5400 for (i = 0, section = section_headers;
5401 i < elf_header.e_shnum;
5402 i++, section++)
5403 {
5404 printf (" [%2u] ", i);
5405 if (do_section_details)
5406 printf ("%s\n ", printable_section_name (section));
5407 else
5408 print_symbol (-17, SECTION_NAME (section));
5409
5410 printf (do_wide ? " %-15s " : " %-15.15s ",
5411 get_section_type_name (section->sh_type));
5412
5413 if (is_32bit_elf)
5414 {
5415 const char * link_too_big = NULL;
5416
5417 print_vma (section->sh_addr, LONG_HEX);
5418
5419 printf ( " %6.6lx %6.6lx %2.2lx",
5420 (unsigned long) section->sh_offset,
5421 (unsigned long) section->sh_size,
5422 (unsigned long) section->sh_entsize);
5423
5424 if (do_section_details)
5425 fputs (" ", stdout);
5426 else
5427 printf (" %3s ", get_elf_section_flags (section->sh_flags));
5428
5429 if (section->sh_link >= elf_header.e_shnum)
5430 {
5431 link_too_big = "";
5432 /* The sh_link value is out of range. Normally this indicates
5433 an error but it can have special values in Solaris binaries. */
5434 switch (elf_header.e_machine)
5435 {
5436 case EM_386:
5437 case EM_486:
5438 case EM_X86_64:
5439 case EM_L1OM:
5440 case EM_K1OM:
5441 case EM_OLD_SPARCV9:
5442 case EM_SPARC32PLUS:
5443 case EM_SPARCV9:
5444 case EM_SPARC:
5445 if (section->sh_link == (SHN_BEFORE & 0xffff))
5446 link_too_big = "BEFORE";
5447 else if (section->sh_link == (SHN_AFTER & 0xffff))
5448 link_too_big = "AFTER";
5449 break;
5450 default:
5451 break;
5452 }
5453 }
5454
5455 if (do_section_details)
5456 {
5457 if (link_too_big != NULL && * link_too_big)
5458 printf ("<%s> ", link_too_big);
5459 else
5460 printf ("%2u ", section->sh_link);
5461 printf ("%3u %2lu\n", section->sh_info,
5462 (unsigned long) section->sh_addralign);
5463 }
5464 else
5465 printf ("%2u %3u %2lu\n",
5466 section->sh_link,
5467 section->sh_info,
5468 (unsigned long) section->sh_addralign);
5469
5470 if (link_too_big && ! * link_too_big)
5471 warn (_("section %u: sh_link value of %u is larger than the number of sections\n"),
5472 i, section->sh_link);
5473 }
5474 else if (do_wide)
5475 {
5476 print_vma (section->sh_addr, LONG_HEX);
5477
5478 if ((long) section->sh_offset == section->sh_offset)
5479 printf (" %6.6lx", (unsigned long) section->sh_offset);
5480 else
5481 {
5482 putchar (' ');
5483 print_vma (section->sh_offset, LONG_HEX);
5484 }
5485
5486 if ((unsigned long) section->sh_size == section->sh_size)
5487 printf (" %6.6lx", (unsigned long) section->sh_size);
5488 else
5489 {
5490 putchar (' ');
5491 print_vma (section->sh_size, LONG_HEX);
5492 }
5493
5494 if ((unsigned long) section->sh_entsize == section->sh_entsize)
5495 printf (" %2.2lx", (unsigned long) section->sh_entsize);
5496 else
5497 {
5498 putchar (' ');
5499 print_vma (section->sh_entsize, LONG_HEX);
5500 }
5501
5502 if (do_section_details)
5503 fputs (" ", stdout);
5504 else
5505 printf (" %3s ", get_elf_section_flags (section->sh_flags));
5506
5507 printf ("%2u %3u ", section->sh_link, section->sh_info);
5508
5509 if ((unsigned long) section->sh_addralign == section->sh_addralign)
5510 printf ("%2lu\n", (unsigned long) section->sh_addralign);
5511 else
5512 {
5513 print_vma (section->sh_addralign, DEC);
5514 putchar ('\n');
5515 }
5516 }
5517 else if (do_section_details)
5518 {
5519 printf (" %-15.15s ",
5520 get_section_type_name (section->sh_type));
5521 print_vma (section->sh_addr, LONG_HEX);
5522 if ((long) section->sh_offset == section->sh_offset)
5523 printf (" %16.16lx", (unsigned long) section->sh_offset);
5524 else
5525 {
5526 printf (" ");
5527 print_vma (section->sh_offset, LONG_HEX);
5528 }
5529 printf (" %u\n ", section->sh_link);
5530 print_vma (section->sh_size, LONG_HEX);
5531 putchar (' ');
5532 print_vma (section->sh_entsize, LONG_HEX);
5533
5534 printf (" %-16u %lu\n",
5535 section->sh_info,
5536 (unsigned long) section->sh_addralign);
5537 }
5538 else
5539 {
5540 putchar (' ');
5541 print_vma (section->sh_addr, LONG_HEX);
5542 if ((long) section->sh_offset == section->sh_offset)
5543 printf (" %8.8lx", (unsigned long) section->sh_offset);
5544 else
5545 {
5546 printf (" ");
5547 print_vma (section->sh_offset, LONG_HEX);
5548 }
5549 printf ("\n ");
5550 print_vma (section->sh_size, LONG_HEX);
5551 printf (" ");
5552 print_vma (section->sh_entsize, LONG_HEX);
5553
5554 printf (" %3s ", get_elf_section_flags (section->sh_flags));
5555
5556 printf (" %2u %3u %lu\n",
5557 section->sh_link,
5558 section->sh_info,
5559 (unsigned long) section->sh_addralign);
5560 }
5561
5562 if (do_section_details)
5563 printf (" %s\n", get_elf_section_flags (section->sh_flags));
5564 }
5565
5566 if (!do_section_details)
5567 {
5568 if (elf_header.e_machine == EM_X86_64
5569 || elf_header.e_machine == EM_L1OM
5570 || elf_header.e_machine == EM_K1OM)
5571 printf (_("Key to Flags:\n\
5572 W (write), A (alloc), X (execute), M (merge), S (strings), l (large)\n\
5573 I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)\n\
5574 O (extra OS processing required) o (OS specific), p (processor specific)\n"));
5575 else
5576 printf (_("Key to Flags:\n\
5577 W (write), A (alloc), X (execute), M (merge), S (strings)\n\
5578 I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)\n\
5579 O (extra OS processing required) o (OS specific), p (processor specific)\n"));
5580 }
5581
5582 return 1;
5583 }
5584
5585 static const char *
5586 get_group_flags (unsigned int flags)
5587 {
5588 static char buff[32];
5589 switch (flags)
5590 {
5591 case 0:
5592 return "";
5593
5594 case GRP_COMDAT:
5595 return "COMDAT ";
5596
5597 default:
5598 snprintf (buff, sizeof (buff), _("[<unknown>: 0x%x] "), flags);
5599 break;
5600 }
5601 return buff;
5602 }
5603
5604 static int
5605 process_section_groups (FILE * file)
5606 {
5607 Elf_Internal_Shdr * section;
5608 unsigned int i;
5609 struct group * group;
5610 Elf_Internal_Shdr * symtab_sec;
5611 Elf_Internal_Shdr * strtab_sec;
5612 Elf_Internal_Sym * symtab;
5613 unsigned long num_syms;
5614 char * strtab;
5615 size_t strtab_size;
5616
5617 /* Don't process section groups unless needed. */
5618 if (!do_unwind && !do_section_groups)
5619 return 1;
5620
5621 if (elf_header.e_shnum == 0)
5622 {
5623 if (do_section_groups)
5624 printf (_("\nThere are no sections to group in this file.\n"));
5625
5626 return 1;
5627 }
5628
5629 if (section_headers == NULL)
5630 {
5631 error (_("Section headers are not available!\n"));
5632 /* PR 13622: This can happen with a corrupt ELF header. */
5633 return 0;
5634 }
5635
5636 section_headers_groups = (struct group **) calloc (elf_header.e_shnum,
5637 sizeof (struct group *));
5638
5639 if (section_headers_groups == NULL)
5640 {
5641 error (_("Out of memory reading %u section group headers\n"),
5642 elf_header.e_shnum);
5643 return 0;
5644 }
5645
5646 /* Scan the sections for the group section. */
5647 group_count = 0;
5648 for (i = 0, section = section_headers;
5649 i < elf_header.e_shnum;
5650 i++, section++)
5651 if (section->sh_type == SHT_GROUP)
5652 group_count++;
5653
5654 if (group_count == 0)
5655 {
5656 if (do_section_groups)
5657 printf (_("\nThere are no section groups in this file.\n"));
5658
5659 return 1;
5660 }
5661
5662 section_groups = (struct group *) calloc (group_count, sizeof (struct group));
5663
5664 if (section_groups == NULL)
5665 {
5666 error (_("Out of memory reading %lu groups\n"),
5667 (unsigned long) group_count);
5668 return 0;
5669 }
5670
5671 symtab_sec = NULL;
5672 strtab_sec = NULL;
5673 symtab = NULL;
5674 num_syms = 0;
5675 strtab = NULL;
5676 strtab_size = 0;
5677 for (i = 0, section = section_headers, group = section_groups;
5678 i < elf_header.e_shnum;
5679 i++, section++)
5680 {
5681 if (section->sh_type == SHT_GROUP)
5682 {
5683 const char * name = printable_section_name (section);
5684 const char * group_name;
5685 unsigned char * start;
5686 unsigned char * indices;
5687 unsigned int entry, j, size;
5688 Elf_Internal_Shdr * sec;
5689 Elf_Internal_Sym * sym;
5690
5691 /* Get the symbol table. */
5692 if (section->sh_link >= elf_header.e_shnum
5693 || ((sec = section_headers + section->sh_link)->sh_type
5694 != SHT_SYMTAB))
5695 {
5696 error (_("Bad sh_link in group section `%s'\n"), name);
5697 continue;
5698 }
5699
5700 if (symtab_sec != sec)
5701 {
5702 symtab_sec = sec;
5703 if (symtab)
5704 free (symtab);
5705 symtab = GET_ELF_SYMBOLS (file, symtab_sec, & num_syms);
5706 }
5707
5708 if (symtab == NULL)
5709 {
5710 error (_("Corrupt header in group section `%s'\n"), name);
5711 continue;
5712 }
5713
5714 if (section->sh_info >= num_syms)
5715 {
5716 error (_("Bad sh_info in group section `%s'\n"), name);
5717 continue;
5718 }
5719
5720 sym = symtab + section->sh_info;
5721
5722 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5723 {
5724 if (sym->st_shndx == 0
5725 || sym->st_shndx >= elf_header.e_shnum)
5726 {
5727 error (_("Bad sh_info in group section `%s'\n"), name);
5728 continue;
5729 }
5730
5731 group_name = SECTION_NAME (section_headers + sym->st_shndx);
5732 strtab_sec = NULL;
5733 if (strtab)
5734 free (strtab);
5735 strtab = NULL;
5736 strtab_size = 0;
5737 }
5738 else
5739 {
5740 /* Get the string table. */
5741 if (symtab_sec->sh_link >= elf_header.e_shnum)
5742 {
5743 strtab_sec = NULL;
5744 if (strtab)
5745 free (strtab);
5746 strtab = NULL;
5747 strtab_size = 0;
5748 }
5749 else if (strtab_sec
5750 != (sec = section_headers + symtab_sec->sh_link))
5751 {
5752 strtab_sec = sec;
5753 if (strtab)
5754 free (strtab);
5755
5756 strtab = (char *) get_data (NULL, file, strtab_sec->sh_offset,
5757 1, strtab_sec->sh_size,
5758 _("string table"));
5759 strtab_size = strtab != NULL ? strtab_sec->sh_size : 0;
5760 }
5761 group_name = sym->st_name < strtab_size
5762 ? strtab + sym->st_name : _("<corrupt>");
5763 }
5764
5765 start = (unsigned char *) get_data (NULL, file, section->sh_offset,
5766 1, section->sh_size,
5767 _("section data"));
5768 if (start == NULL)
5769 continue;
5770
5771 indices = start;
5772 size = (section->sh_size / section->sh_entsize) - 1;
5773 entry = byte_get (indices, 4);
5774 indices += 4;
5775
5776 if (do_section_groups)
5777 {
5778 printf (_("\n%sgroup section [%5u] `%s' [%s] contains %u sections:\n"),
5779 get_group_flags (entry), i, name, group_name, size);
5780
5781 printf (_(" [Index] Name\n"));
5782 }
5783
5784 group->group_index = i;
5785
5786 for (j = 0; j < size; j++)
5787 {
5788 struct group_list * g;
5789
5790 entry = byte_get (indices, 4);
5791 indices += 4;
5792
5793 if (entry >= elf_header.e_shnum)
5794 {
5795 error (_("section [%5u] in group section [%5u] > maximum section [%5u]\n"),
5796 entry, i, elf_header.e_shnum - 1);
5797 continue;
5798 }
5799
5800 if (section_headers_groups [entry] != NULL)
5801 {
5802 if (entry)
5803 {
5804 error (_("section [%5u] in group section [%5u] already in group section [%5u]\n"),
5805 entry, i,
5806 section_headers_groups [entry]->group_index);
5807 continue;
5808 }
5809 else
5810 {
5811 /* Intel C/C++ compiler may put section 0 in a
5812 section group. We just warn it the first time
5813 and ignore it afterwards. */
5814 static int warned = 0;
5815 if (!warned)
5816 {
5817 error (_("section 0 in group section [%5u]\n"),
5818 section_headers_groups [entry]->group_index);
5819 warned++;
5820 }
5821 }
5822 }
5823
5824 section_headers_groups [entry] = group;
5825
5826 if (do_section_groups)
5827 {
5828 sec = section_headers + entry;
5829 printf (" [%5u] %s\n", entry, printable_section_name (sec));
5830 }
5831
5832 g = (struct group_list *) xmalloc (sizeof (struct group_list));
5833 g->section_index = entry;
5834 g->next = group->root;
5835 group->root = g;
5836 }
5837
5838 if (start)
5839 free (start);
5840
5841 group++;
5842 }
5843 }
5844
5845 if (symtab)
5846 free (symtab);
5847 if (strtab)
5848 free (strtab);
5849 return 1;
5850 }
5851
5852 /* Data used to display dynamic fixups. */
5853
5854 struct ia64_vms_dynfixup
5855 {
5856 bfd_vma needed_ident; /* Library ident number. */
5857 bfd_vma needed; /* Index in the dstrtab of the library name. */
5858 bfd_vma fixup_needed; /* Index of the library. */
5859 bfd_vma fixup_rela_cnt; /* Number of fixups. */
5860 bfd_vma fixup_rela_off; /* Fixups offset in the dynamic segment. */
5861 };
5862
5863 /* Data used to display dynamic relocations. */
5864
5865 struct ia64_vms_dynimgrela
5866 {
5867 bfd_vma img_rela_cnt; /* Number of relocations. */
5868 bfd_vma img_rela_off; /* Reloc offset in the dynamic segment. */
5869 };
5870
5871 /* Display IA-64 OpenVMS dynamic fixups (used to dynamically link a shared
5872 library). */
5873
5874 static void
5875 dump_ia64_vms_dynamic_fixups (FILE *file, struct ia64_vms_dynfixup *fixup,
5876 const char *strtab, unsigned int strtab_sz)
5877 {
5878 Elf64_External_VMS_IMAGE_FIXUP *imfs;
5879 long i;
5880 const char *lib_name;
5881
5882 imfs = get_data (NULL, file, dynamic_addr + fixup->fixup_rela_off,
5883 1, fixup->fixup_rela_cnt * sizeof (*imfs),
5884 _("dynamic section image fixups"));
5885 if (!imfs)
5886 return;
5887
5888 if (fixup->needed < strtab_sz)
5889 lib_name = strtab + fixup->needed;
5890 else
5891 {
5892 warn ("corrupt library name index of 0x%lx found in dynamic entry",
5893 (unsigned long) fixup->needed);
5894 lib_name = "???";
5895 }
5896 printf (_("\nImage fixups for needed library #%d: %s - ident: %lx\n"),
5897 (int) fixup->fixup_needed, lib_name, (long) fixup->needed_ident);
5898 printf
5899 (_("Seg Offset Type SymVec DataType\n"));
5900
5901 for (i = 0; i < (long) fixup->fixup_rela_cnt; i++)
5902 {
5903 unsigned int type;
5904 const char *rtype;
5905
5906 printf ("%3u ", (unsigned) BYTE_GET (imfs [i].fixup_seg));
5907 printf_vma ((bfd_vma) BYTE_GET (imfs [i].fixup_offset));
5908 type = BYTE_GET (imfs [i].type);
5909 rtype = elf_ia64_reloc_type (type);
5910 if (rtype == NULL)
5911 printf (" 0x%08x ", type);
5912 else
5913 printf (" %-32s ", rtype);
5914 printf ("%6u ", (unsigned) BYTE_GET (imfs [i].symvec_index));
5915 printf ("0x%08x\n", (unsigned) BYTE_GET (imfs [i].data_type));
5916 }
5917
5918 free (imfs);
5919 }
5920
5921 /* Display IA-64 OpenVMS dynamic relocations (used to relocate an image). */
5922
5923 static void
5924 dump_ia64_vms_dynamic_relocs (FILE *file, struct ia64_vms_dynimgrela *imgrela)
5925 {
5926 Elf64_External_VMS_IMAGE_RELA *imrs;
5927 long i;
5928
5929 imrs = get_data (NULL, file, dynamic_addr + imgrela->img_rela_off,
5930 1, imgrela->img_rela_cnt * sizeof (*imrs),
5931 _("dynamic section image relocations"));
5932 if (!imrs)
5933 return;
5934
5935 printf (_("\nImage relocs\n"));
5936 printf
5937 (_("Seg Offset Type Addend Seg Sym Off\n"));
5938
5939 for (i = 0; i < (long) imgrela->img_rela_cnt; i++)
5940 {
5941 unsigned int type;
5942 const char *rtype;
5943
5944 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].rela_seg));
5945 printf ("%08" BFD_VMA_FMT "x ",
5946 (bfd_vma) BYTE_GET (imrs [i].rela_offset));
5947 type = BYTE_GET (imrs [i].type);
5948 rtype = elf_ia64_reloc_type (type);
5949 if (rtype == NULL)
5950 printf ("0x%08x ", type);
5951 else
5952 printf ("%-31s ", rtype);
5953 print_vma (BYTE_GET (imrs [i].addend), FULL_HEX);
5954 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].sym_seg));
5955 printf ("%08" BFD_VMA_FMT "x\n",
5956 (bfd_vma) BYTE_GET (imrs [i].sym_offset));
5957 }
5958
5959 free (imrs);
5960 }
5961
5962 /* Display IA-64 OpenVMS dynamic relocations and fixups. */
5963
5964 static int
5965 process_ia64_vms_dynamic_relocs (FILE *file)
5966 {
5967 struct ia64_vms_dynfixup fixup;
5968 struct ia64_vms_dynimgrela imgrela;
5969 Elf_Internal_Dyn *entry;
5970 int res = 0;
5971 bfd_vma strtab_off = 0;
5972 bfd_vma strtab_sz = 0;
5973 char *strtab = NULL;
5974
5975 memset (&fixup, 0, sizeof (fixup));
5976 memset (&imgrela, 0, sizeof (imgrela));
5977
5978 /* Note: the order of the entries is specified by the OpenVMS specs. */
5979 for (entry = dynamic_section;
5980 entry < dynamic_section + dynamic_nent;
5981 entry++)
5982 {
5983 switch (entry->d_tag)
5984 {
5985 case DT_IA_64_VMS_STRTAB_OFFSET:
5986 strtab_off = entry->d_un.d_val;
5987 break;
5988 case DT_STRSZ:
5989 strtab_sz = entry->d_un.d_val;
5990 if (strtab == NULL)
5991 strtab = get_data (NULL, file, dynamic_addr + strtab_off,
5992 1, strtab_sz, _("dynamic string section"));
5993 break;
5994
5995 case DT_IA_64_VMS_NEEDED_IDENT:
5996 fixup.needed_ident = entry->d_un.d_val;
5997 break;
5998 case DT_NEEDED:
5999 fixup.needed = entry->d_un.d_val;
6000 break;
6001 case DT_IA_64_VMS_FIXUP_NEEDED:
6002 fixup.fixup_needed = entry->d_un.d_val;
6003 break;
6004 case DT_IA_64_VMS_FIXUP_RELA_CNT:
6005 fixup.fixup_rela_cnt = entry->d_un.d_val;
6006 break;
6007 case DT_IA_64_VMS_FIXUP_RELA_OFF:
6008 fixup.fixup_rela_off = entry->d_un.d_val;
6009 res++;
6010 dump_ia64_vms_dynamic_fixups (file, &fixup, strtab, strtab_sz);
6011 break;
6012
6013 case DT_IA_64_VMS_IMG_RELA_CNT:
6014 imgrela.img_rela_cnt = entry->d_un.d_val;
6015 break;
6016 case DT_IA_64_VMS_IMG_RELA_OFF:
6017 imgrela.img_rela_off = entry->d_un.d_val;
6018 res++;
6019 dump_ia64_vms_dynamic_relocs (file, &imgrela);
6020 break;
6021
6022 default:
6023 break;
6024 }
6025 }
6026
6027 if (strtab != NULL)
6028 free (strtab);
6029
6030 return res;
6031 }
6032
6033 static struct
6034 {
6035 const char * name;
6036 int reloc;
6037 int size;
6038 int rela;
6039 } dynamic_relocations [] =
6040 {
6041 { "REL", DT_REL, DT_RELSZ, FALSE },
6042 { "RELA", DT_RELA, DT_RELASZ, TRUE },
6043 { "PLT", DT_JMPREL, DT_PLTRELSZ, UNKNOWN }
6044 };
6045
6046 /* Process the reloc section. */
6047
6048 static int
6049 process_relocs (FILE * file)
6050 {
6051 unsigned long rel_size;
6052 unsigned long rel_offset;
6053
6054
6055 if (!do_reloc)
6056 return 1;
6057
6058 if (do_using_dynamic)
6059 {
6060 int is_rela;
6061 const char * name;
6062 int has_dynamic_reloc;
6063 unsigned int i;
6064
6065 has_dynamic_reloc = 0;
6066
6067 for (i = 0; i < ARRAY_SIZE (dynamic_relocations); i++)
6068 {
6069 is_rela = dynamic_relocations [i].rela;
6070 name = dynamic_relocations [i].name;
6071 rel_size = dynamic_info [dynamic_relocations [i].size];
6072 rel_offset = dynamic_info [dynamic_relocations [i].reloc];
6073
6074 has_dynamic_reloc |= rel_size;
6075
6076 if (is_rela == UNKNOWN)
6077 {
6078 if (dynamic_relocations [i].reloc == DT_JMPREL)
6079 switch (dynamic_info[DT_PLTREL])
6080 {
6081 case DT_REL:
6082 is_rela = FALSE;
6083 break;
6084 case DT_RELA:
6085 is_rela = TRUE;
6086 break;
6087 }
6088 }
6089
6090 if (rel_size)
6091 {
6092 printf
6093 (_("\n'%s' relocation section at offset 0x%lx contains %ld bytes:\n"),
6094 name, rel_offset, rel_size);
6095
6096 dump_relocations (file,
6097 offset_from_vma (file, rel_offset, rel_size),
6098 rel_size,
6099 dynamic_symbols, num_dynamic_syms,
6100 dynamic_strings, dynamic_strings_length, is_rela);
6101 }
6102 }
6103
6104 if (is_ia64_vms ())
6105 has_dynamic_reloc |= process_ia64_vms_dynamic_relocs (file);
6106
6107 if (! has_dynamic_reloc)
6108 printf (_("\nThere are no dynamic relocations in this file.\n"));
6109 }
6110 else
6111 {
6112 Elf_Internal_Shdr * section;
6113 unsigned long i;
6114 int found = 0;
6115
6116 for (i = 0, section = section_headers;
6117 i < elf_header.e_shnum;
6118 i++, section++)
6119 {
6120 if ( section->sh_type != SHT_RELA
6121 && section->sh_type != SHT_REL)
6122 continue;
6123
6124 rel_offset = section->sh_offset;
6125 rel_size = section->sh_size;
6126
6127 if (rel_size)
6128 {
6129 Elf_Internal_Shdr * strsec;
6130 int is_rela;
6131
6132 printf (_("\nRelocation section "));
6133
6134 if (string_table == NULL)
6135 printf ("%d", section->sh_name);
6136 else
6137 printf ("'%s'", printable_section_name (section));
6138
6139 printf (_(" at offset 0x%lx contains %lu entries:\n"),
6140 rel_offset, (unsigned long) (rel_size / section->sh_entsize));
6141
6142 is_rela = section->sh_type == SHT_RELA;
6143
6144 if (section->sh_link != 0
6145 && section->sh_link < elf_header.e_shnum)
6146 {
6147 Elf_Internal_Shdr * symsec;
6148 Elf_Internal_Sym * symtab;
6149 unsigned long nsyms;
6150 unsigned long strtablen = 0;
6151 char * strtab = NULL;
6152
6153 symsec = section_headers + section->sh_link;
6154 if (symsec->sh_type != SHT_SYMTAB
6155 && symsec->sh_type != SHT_DYNSYM)
6156 continue;
6157
6158 symtab = GET_ELF_SYMBOLS (file, symsec, & nsyms);
6159
6160 if (symtab == NULL)
6161 continue;
6162
6163 if (symsec->sh_link != 0
6164 && symsec->sh_link < elf_header.e_shnum)
6165 {
6166 strsec = section_headers + symsec->sh_link;
6167
6168 strtab = (char *) get_data (NULL, file, strsec->sh_offset,
6169 1, strsec->sh_size,
6170 _("string table"));
6171 strtablen = strtab == NULL ? 0 : strsec->sh_size;
6172 }
6173
6174 dump_relocations (file, rel_offset, rel_size,
6175 symtab, nsyms, strtab, strtablen, is_rela);
6176 if (strtab)
6177 free (strtab);
6178 free (symtab);
6179 }
6180 else
6181 dump_relocations (file, rel_offset, rel_size,
6182 NULL, 0, NULL, 0, is_rela);
6183
6184 found = 1;
6185 }
6186 }
6187
6188 if (! found)
6189 printf (_("\nThere are no relocations in this file.\n"));
6190 }
6191
6192 return 1;
6193 }
6194
6195 /* Process the unwind section. */
6196
6197 #include "unwind-ia64.h"
6198
6199 /* An absolute address consists of a section and an offset. If the
6200 section is NULL, the offset itself is the address, otherwise, the
6201 address equals to LOAD_ADDRESS(section) + offset. */
6202
6203 struct absaddr
6204 {
6205 unsigned short section;
6206 bfd_vma offset;
6207 };
6208
6209 #define ABSADDR(a) \
6210 ((a).section \
6211 ? section_headers [(a).section].sh_addr + (a).offset \
6212 : (a).offset)
6213
6214 struct ia64_unw_table_entry
6215 {
6216 struct absaddr start;
6217 struct absaddr end;
6218 struct absaddr info;
6219 };
6220
6221 struct ia64_unw_aux_info
6222 {
6223
6224 struct ia64_unw_table_entry *table; /* Unwind table. */
6225 unsigned long table_len; /* Length of unwind table. */
6226 unsigned char * info; /* Unwind info. */
6227 unsigned long info_size; /* Size of unwind info. */
6228 bfd_vma info_addr; /* starting address of unwind info. */
6229 bfd_vma seg_base; /* Starting address of segment. */
6230 Elf_Internal_Sym * symtab; /* The symbol table. */
6231 unsigned long nsyms; /* Number of symbols. */
6232 char * strtab; /* The string table. */
6233 unsigned long strtab_size; /* Size of string table. */
6234 };
6235
6236 static void
6237 find_symbol_for_address (Elf_Internal_Sym * symtab,
6238 unsigned long nsyms,
6239 const char * strtab,
6240 unsigned long strtab_size,
6241 struct absaddr addr,
6242 const char ** symname,
6243 bfd_vma * offset)
6244 {
6245 bfd_vma dist = 0x100000;
6246 Elf_Internal_Sym * sym;
6247 Elf_Internal_Sym * best = NULL;
6248 unsigned long i;
6249
6250 REMOVE_ARCH_BITS (addr.offset);
6251
6252 for (i = 0, sym = symtab; i < nsyms; ++i, ++sym)
6253 {
6254 bfd_vma value = sym->st_value;
6255
6256 REMOVE_ARCH_BITS (value);
6257
6258 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC
6259 && sym->st_name != 0
6260 && (addr.section == SHN_UNDEF || addr.section == sym->st_shndx)
6261 && addr.offset >= value
6262 && addr.offset - value < dist)
6263 {
6264 best = sym;
6265 dist = addr.offset - value;
6266 if (!dist)
6267 break;
6268 }
6269 }
6270
6271 if (best)
6272 {
6273 *symname = (best->st_name >= strtab_size
6274 ? _("<corrupt>") : strtab + best->st_name);
6275 *offset = dist;
6276 return;
6277 }
6278
6279 *symname = NULL;
6280 *offset = addr.offset;
6281 }
6282
6283 static void
6284 dump_ia64_unwind (struct ia64_unw_aux_info * aux)
6285 {
6286 struct ia64_unw_table_entry * tp;
6287 int in_body;
6288
6289 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
6290 {
6291 bfd_vma stamp;
6292 bfd_vma offset;
6293 const unsigned char * dp;
6294 const unsigned char * head;
6295 const char * procname;
6296
6297 find_symbol_for_address (aux->symtab, aux->nsyms, aux->strtab,
6298 aux->strtab_size, tp->start, &procname, &offset);
6299
6300 fputs ("\n<", stdout);
6301
6302 if (procname)
6303 {
6304 fputs (procname, stdout);
6305
6306 if (offset)
6307 printf ("+%lx", (unsigned long) offset);
6308 }
6309
6310 fputs (">: [", stdout);
6311 print_vma (tp->start.offset, PREFIX_HEX);
6312 fputc ('-', stdout);
6313 print_vma (tp->end.offset, PREFIX_HEX);
6314 printf ("], info at +0x%lx\n",
6315 (unsigned long) (tp->info.offset - aux->seg_base));
6316
6317 head = aux->info + (ABSADDR (tp->info) - aux->info_addr);
6318 stamp = byte_get ((unsigned char *) head, sizeof (stamp));
6319
6320 printf (" v%u, flags=0x%lx (%s%s), len=%lu bytes\n",
6321 (unsigned) UNW_VER (stamp),
6322 (unsigned long) ((stamp & UNW_FLAG_MASK) >> 32),
6323 UNW_FLAG_EHANDLER (stamp) ? " ehandler" : "",
6324 UNW_FLAG_UHANDLER (stamp) ? " uhandler" : "",
6325 (unsigned long) (eh_addr_size * UNW_LENGTH (stamp)));
6326
6327 if (UNW_VER (stamp) != 1)
6328 {
6329 printf (_("\tUnknown version.\n"));
6330 continue;
6331 }
6332
6333 in_body = 0;
6334 for (dp = head + 8; dp < head + 8 + eh_addr_size * UNW_LENGTH (stamp);)
6335 dp = unw_decode (dp, in_body, & in_body);
6336 }
6337 }
6338
6339 static int
6340 slurp_ia64_unwind_table (FILE * file,
6341 struct ia64_unw_aux_info * aux,
6342 Elf_Internal_Shdr * sec)
6343 {
6344 unsigned long size, nrelas, i;
6345 Elf_Internal_Phdr * seg;
6346 struct ia64_unw_table_entry * tep;
6347 Elf_Internal_Shdr * relsec;
6348 Elf_Internal_Rela * rela;
6349 Elf_Internal_Rela * rp;
6350 unsigned char * table;
6351 unsigned char * tp;
6352 Elf_Internal_Sym * sym;
6353 const char * relname;
6354
6355 /* First, find the starting address of the segment that includes
6356 this section: */
6357
6358 if (elf_header.e_phnum)
6359 {
6360 if (! get_program_headers (file))
6361 return 0;
6362
6363 for (seg = program_headers;
6364 seg < program_headers + elf_header.e_phnum;
6365 ++seg)
6366 {
6367 if (seg->p_type != PT_LOAD)
6368 continue;
6369
6370 if (sec->sh_addr >= seg->p_vaddr
6371 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
6372 {
6373 aux->seg_base = seg->p_vaddr;
6374 break;
6375 }
6376 }
6377 }
6378
6379 /* Second, build the unwind table from the contents of the unwind section: */
6380 size = sec->sh_size;
6381 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
6382 _("unwind table"));
6383 if (!table)
6384 return 0;
6385
6386 aux->table = (struct ia64_unw_table_entry *)
6387 xcmalloc (size / (3 * eh_addr_size), sizeof (aux->table[0]));
6388 tep = aux->table;
6389 for (tp = table; tp < table + size; ++tep)
6390 {
6391 tep->start.section = SHN_UNDEF;
6392 tep->end.section = SHN_UNDEF;
6393 tep->info.section = SHN_UNDEF;
6394 tep->start.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
6395 tep->end.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
6396 tep->info.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
6397 tep->start.offset += aux->seg_base;
6398 tep->end.offset += aux->seg_base;
6399 tep->info.offset += aux->seg_base;
6400 }
6401 free (table);
6402
6403 /* Third, apply any relocations to the unwind table: */
6404 for (relsec = section_headers;
6405 relsec < section_headers + elf_header.e_shnum;
6406 ++relsec)
6407 {
6408 if (relsec->sh_type != SHT_RELA
6409 || relsec->sh_info >= elf_header.e_shnum
6410 || section_headers + relsec->sh_info != sec)
6411 continue;
6412
6413 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
6414 & rela, & nrelas))
6415 return 0;
6416
6417 for (rp = rela; rp < rela + nrelas; ++rp)
6418 {
6419 relname = elf_ia64_reloc_type (get_reloc_type (rp->r_info));
6420 sym = aux->symtab + get_reloc_symindex (rp->r_info);
6421
6422 if (! const_strneq (relname, "R_IA64_SEGREL"))
6423 {
6424 warn (_("Skipping unexpected relocation type %s\n"), relname);
6425 continue;
6426 }
6427
6428 i = rp->r_offset / (3 * eh_addr_size);
6429
6430 switch (rp->r_offset/eh_addr_size % 3)
6431 {
6432 case 0:
6433 aux->table[i].start.section = sym->st_shndx;
6434 aux->table[i].start.offset = rp->r_addend + sym->st_value;
6435 break;
6436 case 1:
6437 aux->table[i].end.section = sym->st_shndx;
6438 aux->table[i].end.offset = rp->r_addend + sym->st_value;
6439 break;
6440 case 2:
6441 aux->table[i].info.section = sym->st_shndx;
6442 aux->table[i].info.offset = rp->r_addend + sym->st_value;
6443 break;
6444 default:
6445 break;
6446 }
6447 }
6448
6449 free (rela);
6450 }
6451
6452 aux->table_len = size / (3 * eh_addr_size);
6453 return 1;
6454 }
6455
6456 static void
6457 ia64_process_unwind (FILE * file)
6458 {
6459 Elf_Internal_Shdr * sec;
6460 Elf_Internal_Shdr * unwsec = NULL;
6461 Elf_Internal_Shdr * strsec;
6462 unsigned long i, unwcount = 0, unwstart = 0;
6463 struct ia64_unw_aux_info aux;
6464
6465 memset (& aux, 0, sizeof (aux));
6466
6467 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
6468 {
6469 if (sec->sh_type == SHT_SYMTAB
6470 && sec->sh_link < elf_header.e_shnum)
6471 {
6472 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
6473
6474 strsec = section_headers + sec->sh_link;
6475 if (aux.strtab != NULL)
6476 {
6477 error (_("Multiple auxillary string tables encountered\n"));
6478 free (aux.strtab);
6479 }
6480 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
6481 1, strsec->sh_size,
6482 _("string table"));
6483 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
6484 }
6485 else if (sec->sh_type == SHT_IA_64_UNWIND)
6486 unwcount++;
6487 }
6488
6489 if (!unwcount)
6490 printf (_("\nThere are no unwind sections in this file.\n"));
6491
6492 while (unwcount-- > 0)
6493 {
6494 char * suffix;
6495 size_t len, len2;
6496
6497 for (i = unwstart, sec = section_headers + unwstart, unwsec = NULL;
6498 i < elf_header.e_shnum; ++i, ++sec)
6499 if (sec->sh_type == SHT_IA_64_UNWIND)
6500 {
6501 unwsec = sec;
6502 break;
6503 }
6504 /* We have already counted the number of SHT_IA64_UNWIND
6505 sections so the loop above should never fail. */
6506 assert (unwsec != NULL);
6507
6508 unwstart = i + 1;
6509 len = sizeof (ELF_STRING_ia64_unwind_once) - 1;
6510
6511 if ((unwsec->sh_flags & SHF_GROUP) != 0)
6512 {
6513 /* We need to find which section group it is in. */
6514 struct group_list * g;
6515
6516 if (section_headers_groups == NULL
6517 || section_headers_groups [i] == NULL)
6518 i = elf_header.e_shnum;
6519 else
6520 {
6521 g = section_headers_groups [i]->root;
6522
6523 for (; g != NULL; g = g->next)
6524 {
6525 sec = section_headers + g->section_index;
6526
6527 if (streq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info))
6528 break;
6529 }
6530
6531 if (g == NULL)
6532 i = elf_header.e_shnum;
6533 }
6534 }
6535 else if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind_once, len))
6536 {
6537 /* .gnu.linkonce.ia64unw.FOO -> .gnu.linkonce.ia64unwi.FOO. */
6538 len2 = sizeof (ELF_STRING_ia64_unwind_info_once) - 1;
6539 suffix = SECTION_NAME (unwsec) + len;
6540 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
6541 ++i, ++sec)
6542 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info_once, len2)
6543 && streq (SECTION_NAME (sec) + len2, suffix))
6544 break;
6545 }
6546 else
6547 {
6548 /* .IA_64.unwindFOO -> .IA_64.unwind_infoFOO
6549 .IA_64.unwind or BAR -> .IA_64.unwind_info. */
6550 len = sizeof (ELF_STRING_ia64_unwind) - 1;
6551 len2 = sizeof (ELF_STRING_ia64_unwind_info) - 1;
6552 suffix = "";
6553 if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind, len))
6554 suffix = SECTION_NAME (unwsec) + len;
6555 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
6556 ++i, ++sec)
6557 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info, len2)
6558 && streq (SECTION_NAME (sec) + len2, suffix))
6559 break;
6560 }
6561
6562 if (i == elf_header.e_shnum)
6563 {
6564 printf (_("\nCould not find unwind info section for "));
6565
6566 if (string_table == NULL)
6567 printf ("%d", unwsec->sh_name);
6568 else
6569 printf ("'%s'", printable_section_name (unwsec));
6570 }
6571 else
6572 {
6573 aux.info_addr = sec->sh_addr;
6574 aux.info = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1,
6575 sec->sh_size,
6576 _("unwind info"));
6577 aux.info_size = aux.info == NULL ? 0 : sec->sh_size;
6578
6579 printf (_("\nUnwind section "));
6580
6581 if (string_table == NULL)
6582 printf ("%d", unwsec->sh_name);
6583 else
6584 printf ("'%s'", printable_section_name (unwsec));
6585
6586 printf (_(" at offset 0x%lx contains %lu entries:\n"),
6587 (unsigned long) unwsec->sh_offset,
6588 (unsigned long) (unwsec->sh_size / (3 * eh_addr_size)));
6589
6590 (void) slurp_ia64_unwind_table (file, & aux, unwsec);
6591
6592 if (aux.table_len > 0)
6593 dump_ia64_unwind (& aux);
6594
6595 if (aux.table)
6596 free ((char *) aux.table);
6597 if (aux.info)
6598 free ((char *) aux.info);
6599 aux.table = NULL;
6600 aux.info = NULL;
6601 }
6602 }
6603
6604 if (aux.symtab)
6605 free (aux.symtab);
6606 if (aux.strtab)
6607 free ((char *) aux.strtab);
6608 }
6609
6610 struct hppa_unw_table_entry
6611 {
6612 struct absaddr start;
6613 struct absaddr end;
6614 unsigned int Cannot_unwind:1; /* 0 */
6615 unsigned int Millicode:1; /* 1 */
6616 unsigned int Millicode_save_sr0:1; /* 2 */
6617 unsigned int Region_description:2; /* 3..4 */
6618 unsigned int reserved1:1; /* 5 */
6619 unsigned int Entry_SR:1; /* 6 */
6620 unsigned int Entry_FR:4; /* number saved */ /* 7..10 */
6621 unsigned int Entry_GR:5; /* number saved */ /* 11..15 */
6622 unsigned int Args_stored:1; /* 16 */
6623 unsigned int Variable_Frame:1; /* 17 */
6624 unsigned int Separate_Package_Body:1; /* 18 */
6625 unsigned int Frame_Extension_Millicode:1; /* 19 */
6626 unsigned int Stack_Overflow_Check:1; /* 20 */
6627 unsigned int Two_Instruction_SP_Increment:1; /* 21 */
6628 unsigned int Ada_Region:1; /* 22 */
6629 unsigned int cxx_info:1; /* 23 */
6630 unsigned int cxx_try_catch:1; /* 24 */
6631 unsigned int sched_entry_seq:1; /* 25 */
6632 unsigned int reserved2:1; /* 26 */
6633 unsigned int Save_SP:1; /* 27 */
6634 unsigned int Save_RP:1; /* 28 */
6635 unsigned int Save_MRP_in_frame:1; /* 29 */
6636 unsigned int extn_ptr_defined:1; /* 30 */
6637 unsigned int Cleanup_defined:1; /* 31 */
6638
6639 unsigned int MPE_XL_interrupt_marker:1; /* 0 */
6640 unsigned int HP_UX_interrupt_marker:1; /* 1 */
6641 unsigned int Large_frame:1; /* 2 */
6642 unsigned int Pseudo_SP_Set:1; /* 3 */
6643 unsigned int reserved4:1; /* 4 */
6644 unsigned int Total_frame_size:27; /* 5..31 */
6645 };
6646
6647 struct hppa_unw_aux_info
6648 {
6649 struct hppa_unw_table_entry *table; /* Unwind table. */
6650 unsigned long table_len; /* Length of unwind table. */
6651 bfd_vma seg_base; /* Starting address of segment. */
6652 Elf_Internal_Sym * symtab; /* The symbol table. */
6653 unsigned long nsyms; /* Number of symbols. */
6654 char * strtab; /* The string table. */
6655 unsigned long strtab_size; /* Size of string table. */
6656 };
6657
6658 static void
6659 dump_hppa_unwind (struct hppa_unw_aux_info * aux)
6660 {
6661 struct hppa_unw_table_entry * tp;
6662
6663 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
6664 {
6665 bfd_vma offset;
6666 const char * procname;
6667
6668 find_symbol_for_address (aux->symtab, aux->nsyms, aux->strtab,
6669 aux->strtab_size, tp->start, &procname,
6670 &offset);
6671
6672 fputs ("\n<", stdout);
6673
6674 if (procname)
6675 {
6676 fputs (procname, stdout);
6677
6678 if (offset)
6679 printf ("+%lx", (unsigned long) offset);
6680 }
6681
6682 fputs (">: [", stdout);
6683 print_vma (tp->start.offset, PREFIX_HEX);
6684 fputc ('-', stdout);
6685 print_vma (tp->end.offset, PREFIX_HEX);
6686 printf ("]\n\t");
6687
6688 #define PF(_m) if (tp->_m) printf (#_m " ");
6689 #define PV(_m) if (tp->_m) printf (#_m "=%d ", tp->_m);
6690 PF(Cannot_unwind);
6691 PF(Millicode);
6692 PF(Millicode_save_sr0);
6693 /* PV(Region_description); */
6694 PF(Entry_SR);
6695 PV(Entry_FR);
6696 PV(Entry_GR);
6697 PF(Args_stored);
6698 PF(Variable_Frame);
6699 PF(Separate_Package_Body);
6700 PF(Frame_Extension_Millicode);
6701 PF(Stack_Overflow_Check);
6702 PF(Two_Instruction_SP_Increment);
6703 PF(Ada_Region);
6704 PF(cxx_info);
6705 PF(cxx_try_catch);
6706 PF(sched_entry_seq);
6707 PF(Save_SP);
6708 PF(Save_RP);
6709 PF(Save_MRP_in_frame);
6710 PF(extn_ptr_defined);
6711 PF(Cleanup_defined);
6712 PF(MPE_XL_interrupt_marker);
6713 PF(HP_UX_interrupt_marker);
6714 PF(Large_frame);
6715 PF(Pseudo_SP_Set);
6716 PV(Total_frame_size);
6717 #undef PF
6718 #undef PV
6719 }
6720
6721 printf ("\n");
6722 }
6723
6724 static int
6725 slurp_hppa_unwind_table (FILE * file,
6726 struct hppa_unw_aux_info * aux,
6727 Elf_Internal_Shdr * sec)
6728 {
6729 unsigned long size, unw_ent_size, nentries, nrelas, i;
6730 Elf_Internal_Phdr * seg;
6731 struct hppa_unw_table_entry * tep;
6732 Elf_Internal_Shdr * relsec;
6733 Elf_Internal_Rela * rela;
6734 Elf_Internal_Rela * rp;
6735 unsigned char * table;
6736 unsigned char * tp;
6737 Elf_Internal_Sym * sym;
6738 const char * relname;
6739
6740 /* First, find the starting address of the segment that includes
6741 this section. */
6742
6743 if (elf_header.e_phnum)
6744 {
6745 if (! get_program_headers (file))
6746 return 0;
6747
6748 for (seg = program_headers;
6749 seg < program_headers + elf_header.e_phnum;
6750 ++seg)
6751 {
6752 if (seg->p_type != PT_LOAD)
6753 continue;
6754
6755 if (sec->sh_addr >= seg->p_vaddr
6756 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
6757 {
6758 aux->seg_base = seg->p_vaddr;
6759 break;
6760 }
6761 }
6762 }
6763
6764 /* Second, build the unwind table from the contents of the unwind
6765 section. */
6766 size = sec->sh_size;
6767 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
6768 _("unwind table"));
6769 if (!table)
6770 return 0;
6771
6772 unw_ent_size = 16;
6773 nentries = size / unw_ent_size;
6774 size = unw_ent_size * nentries;
6775
6776 tep = aux->table = (struct hppa_unw_table_entry *)
6777 xcmalloc (nentries, sizeof (aux->table[0]));
6778
6779 for (tp = table; tp < table + size; tp += unw_ent_size, ++tep)
6780 {
6781 unsigned int tmp1, tmp2;
6782
6783 tep->start.section = SHN_UNDEF;
6784 tep->end.section = SHN_UNDEF;
6785
6786 tep->start.offset = byte_get ((unsigned char *) tp + 0, 4);
6787 tep->end.offset = byte_get ((unsigned char *) tp + 4, 4);
6788 tmp1 = byte_get ((unsigned char *) tp + 8, 4);
6789 tmp2 = byte_get ((unsigned char *) tp + 12, 4);
6790
6791 tep->start.offset += aux->seg_base;
6792 tep->end.offset += aux->seg_base;
6793
6794 tep->Cannot_unwind = (tmp1 >> 31) & 0x1;
6795 tep->Millicode = (tmp1 >> 30) & 0x1;
6796 tep->Millicode_save_sr0 = (tmp1 >> 29) & 0x1;
6797 tep->Region_description = (tmp1 >> 27) & 0x3;
6798 tep->reserved1 = (tmp1 >> 26) & 0x1;
6799 tep->Entry_SR = (tmp1 >> 25) & 0x1;
6800 tep->Entry_FR = (tmp1 >> 21) & 0xf;
6801 tep->Entry_GR = (tmp1 >> 16) & 0x1f;
6802 tep->Args_stored = (tmp1 >> 15) & 0x1;
6803 tep->Variable_Frame = (tmp1 >> 14) & 0x1;
6804 tep->Separate_Package_Body = (tmp1 >> 13) & 0x1;
6805 tep->Frame_Extension_Millicode = (tmp1 >> 12) & 0x1;
6806 tep->Stack_Overflow_Check = (tmp1 >> 11) & 0x1;
6807 tep->Two_Instruction_SP_Increment = (tmp1 >> 10) & 0x1;
6808 tep->Ada_Region = (tmp1 >> 9) & 0x1;
6809 tep->cxx_info = (tmp1 >> 8) & 0x1;
6810 tep->cxx_try_catch = (tmp1 >> 7) & 0x1;
6811 tep->sched_entry_seq = (tmp1 >> 6) & 0x1;
6812 tep->reserved2 = (tmp1 >> 5) & 0x1;
6813 tep->Save_SP = (tmp1 >> 4) & 0x1;
6814 tep->Save_RP = (tmp1 >> 3) & 0x1;
6815 tep->Save_MRP_in_frame = (tmp1 >> 2) & 0x1;
6816 tep->extn_ptr_defined = (tmp1 >> 1) & 0x1;
6817 tep->Cleanup_defined = tmp1 & 0x1;
6818
6819 tep->MPE_XL_interrupt_marker = (tmp2 >> 31) & 0x1;
6820 tep->HP_UX_interrupt_marker = (tmp2 >> 30) & 0x1;
6821 tep->Large_frame = (tmp2 >> 29) & 0x1;
6822 tep->Pseudo_SP_Set = (tmp2 >> 28) & 0x1;
6823 tep->reserved4 = (tmp2 >> 27) & 0x1;
6824 tep->Total_frame_size = tmp2 & 0x7ffffff;
6825 }
6826 free (table);
6827
6828 /* Third, apply any relocations to the unwind table. */
6829 for (relsec = section_headers;
6830 relsec < section_headers + elf_header.e_shnum;
6831 ++relsec)
6832 {
6833 if (relsec->sh_type != SHT_RELA
6834 || relsec->sh_info >= elf_header.e_shnum
6835 || section_headers + relsec->sh_info != sec)
6836 continue;
6837
6838 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
6839 & rela, & nrelas))
6840 return 0;
6841
6842 for (rp = rela; rp < rela + nrelas; ++rp)
6843 {
6844 relname = elf_hppa_reloc_type (get_reloc_type (rp->r_info));
6845 sym = aux->symtab + get_reloc_symindex (rp->r_info);
6846
6847 /* R_PARISC_SEGREL32 or R_PARISC_SEGREL64. */
6848 if (! const_strneq (relname, "R_PARISC_SEGREL"))
6849 {
6850 warn (_("Skipping unexpected relocation type %s\n"), relname);
6851 continue;
6852 }
6853
6854 i = rp->r_offset / unw_ent_size;
6855
6856 switch ((rp->r_offset % unw_ent_size) / eh_addr_size)
6857 {
6858 case 0:
6859 aux->table[i].start.section = sym->st_shndx;
6860 aux->table[i].start.offset = sym->st_value + rp->r_addend;
6861 break;
6862 case 1:
6863 aux->table[i].end.section = sym->st_shndx;
6864 aux->table[i].end.offset = sym->st_value + rp->r_addend;
6865 break;
6866 default:
6867 break;
6868 }
6869 }
6870
6871 free (rela);
6872 }
6873
6874 aux->table_len = nentries;
6875
6876 return 1;
6877 }
6878
6879 static void
6880 hppa_process_unwind (FILE * file)
6881 {
6882 struct hppa_unw_aux_info aux;
6883 Elf_Internal_Shdr * unwsec = NULL;
6884 Elf_Internal_Shdr * strsec;
6885 Elf_Internal_Shdr * sec;
6886 unsigned long i;
6887
6888 if (string_table == NULL)
6889 return;
6890
6891 memset (& aux, 0, sizeof (aux));
6892
6893 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
6894 {
6895 if (sec->sh_type == SHT_SYMTAB
6896 && sec->sh_link < elf_header.e_shnum)
6897 {
6898 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
6899
6900 strsec = section_headers + sec->sh_link;
6901 if (aux.strtab != NULL)
6902 {
6903 error (_("Multiple auxillary string tables encountered\n"));
6904 free (aux.strtab);
6905 }
6906 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
6907 1, strsec->sh_size,
6908 _("string table"));
6909 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
6910 }
6911 else if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
6912 unwsec = sec;
6913 }
6914
6915 if (!unwsec)
6916 printf (_("\nThere are no unwind sections in this file.\n"));
6917
6918 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
6919 {
6920 if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
6921 {
6922 printf (_("\nUnwind section '%s' at offset 0x%lx contains %lu entries:\n"),
6923 printable_section_name (sec),
6924 (unsigned long) sec->sh_offset,
6925 (unsigned long) (sec->sh_size / (2 * eh_addr_size + 8)));
6926
6927 slurp_hppa_unwind_table (file, &aux, sec);
6928 if (aux.table_len > 0)
6929 dump_hppa_unwind (&aux);
6930
6931 if (aux.table)
6932 free ((char *) aux.table);
6933 aux.table = NULL;
6934 }
6935 }
6936
6937 if (aux.symtab)
6938 free (aux.symtab);
6939 if (aux.strtab)
6940 free ((char *) aux.strtab);
6941 }
6942
6943 struct arm_section
6944 {
6945 unsigned char * data; /* The unwind data. */
6946 Elf_Internal_Shdr * sec; /* The cached unwind section header. */
6947 Elf_Internal_Rela * rela; /* The cached relocations for this section. */
6948 unsigned long nrelas; /* The number of relocations. */
6949 unsigned int rel_type; /* REL or RELA ? */
6950 Elf_Internal_Rela * next_rela; /* Cyclic pointer to the next reloc to process. */
6951 };
6952
6953 struct arm_unw_aux_info
6954 {
6955 FILE * file; /* The file containing the unwind sections. */
6956 Elf_Internal_Sym * symtab; /* The file's symbol table. */
6957 unsigned long nsyms; /* Number of symbols. */
6958 char * strtab; /* The file's string table. */
6959 unsigned long strtab_size; /* Size of string table. */
6960 };
6961
6962 static const char *
6963 arm_print_vma_and_name (struct arm_unw_aux_info *aux,
6964 bfd_vma fn, struct absaddr addr)
6965 {
6966 const char *procname;
6967 bfd_vma sym_offset;
6968
6969 if (addr.section == SHN_UNDEF)
6970 addr.offset = fn;
6971
6972 find_symbol_for_address (aux->symtab, aux->nsyms, aux->strtab,
6973 aux->strtab_size, addr, &procname,
6974 &sym_offset);
6975
6976 print_vma (fn, PREFIX_HEX);
6977
6978 if (procname)
6979 {
6980 fputs (" <", stdout);
6981 fputs (procname, stdout);
6982
6983 if (sym_offset)
6984 printf ("+0x%lx", (unsigned long) sym_offset);
6985 fputc ('>', stdout);
6986 }
6987
6988 return procname;
6989 }
6990
6991 static void
6992 arm_free_section (struct arm_section *arm_sec)
6993 {
6994 if (arm_sec->data != NULL)
6995 free (arm_sec->data);
6996
6997 if (arm_sec->rela != NULL)
6998 free (arm_sec->rela);
6999 }
7000
7001 /* 1) If SEC does not match the one cached in ARM_SEC, then free the current
7002 cached section and install SEC instead.
7003 2) Locate the 32-bit word at WORD_OFFSET in unwind section SEC
7004 and return its valued in * WORDP, relocating if necessary.
7005 3) Update the NEXT_RELA field in ARM_SEC and store the section index and
7006 relocation's offset in ADDR.
7007 4) If SYM_NAME is non-NULL and a relocation was applied, record the offset
7008 into the string table of the symbol associated with the reloc. If no
7009 reloc was applied store -1 there.
7010 5) Return TRUE upon success, FALSE otherwise. */
7011
7012 static bfd_boolean
7013 get_unwind_section_word (struct arm_unw_aux_info * aux,
7014 struct arm_section * arm_sec,
7015 Elf_Internal_Shdr * sec,
7016 bfd_vma word_offset,
7017 unsigned int * wordp,
7018 struct absaddr * addr,
7019 bfd_vma * sym_name)
7020 {
7021 Elf_Internal_Rela *rp;
7022 Elf_Internal_Sym *sym;
7023 const char * relname;
7024 unsigned int word;
7025 bfd_boolean wrapped;
7026
7027 if (sec == NULL || arm_sec == NULL)
7028 return FALSE;
7029
7030 addr->section = SHN_UNDEF;
7031 addr->offset = 0;
7032
7033 if (sym_name != NULL)
7034 *sym_name = (bfd_vma) -1;
7035
7036 /* If necessary, update the section cache. */
7037 if (sec != arm_sec->sec)
7038 {
7039 Elf_Internal_Shdr *relsec;
7040
7041 arm_free_section (arm_sec);
7042
7043 arm_sec->sec = sec;
7044 arm_sec->data = get_data (NULL, aux->file, sec->sh_offset, 1,
7045 sec->sh_size, _("unwind data"));
7046 arm_sec->rela = NULL;
7047 arm_sec->nrelas = 0;
7048
7049 for (relsec = section_headers;
7050 relsec < section_headers + elf_header.e_shnum;
7051 ++relsec)
7052 {
7053 if (relsec->sh_info >= elf_header.e_shnum
7054 || section_headers + relsec->sh_info != sec
7055 /* PR 15745: Check the section type as well. */
7056 || (relsec->sh_type != SHT_REL
7057 && relsec->sh_type != SHT_RELA))
7058 continue;
7059
7060 arm_sec->rel_type = relsec->sh_type;
7061 if (relsec->sh_type == SHT_REL)
7062 {
7063 if (!slurp_rel_relocs (aux->file, relsec->sh_offset,
7064 relsec->sh_size,
7065 & arm_sec->rela, & arm_sec->nrelas))
7066 return FALSE;
7067 }
7068 else /* relsec->sh_type == SHT_RELA */
7069 {
7070 if (!slurp_rela_relocs (aux->file, relsec->sh_offset,
7071 relsec->sh_size,
7072 & arm_sec->rela, & arm_sec->nrelas))
7073 return FALSE;
7074 }
7075 break;
7076 }
7077
7078 arm_sec->next_rela = arm_sec->rela;
7079 }
7080
7081 /* If there is no unwind data we can do nothing. */
7082 if (arm_sec->data == NULL)
7083 return FALSE;
7084
7085 /* If the offset is invalid then fail. */
7086 if (word_offset > sec->sh_size - 4)
7087 return FALSE;
7088
7089 /* Get the word at the required offset. */
7090 word = byte_get (arm_sec->data + word_offset, 4);
7091
7092 /* PR 17531: file: id:000001,src:001266+003044,op:splice,rep:128. */
7093 if (arm_sec->rela == NULL)
7094 {
7095 * wordp = word;
7096 return TRUE;
7097 }
7098
7099 /* Look through the relocs to find the one that applies to the provided offset. */
7100 wrapped = FALSE;
7101 for (rp = arm_sec->next_rela; rp != arm_sec->rela + arm_sec->nrelas; rp++)
7102 {
7103 bfd_vma prelval, offset;
7104
7105 if (rp->r_offset > word_offset && !wrapped)
7106 {
7107 rp = arm_sec->rela;
7108 wrapped = TRUE;
7109 }
7110 if (rp->r_offset > word_offset)
7111 break;
7112
7113 if (rp->r_offset & 3)
7114 {
7115 warn (_("Skipping unexpected relocation at offset 0x%lx\n"),
7116 (unsigned long) rp->r_offset);
7117 continue;
7118 }
7119
7120 if (rp->r_offset < word_offset)
7121 continue;
7122
7123 /* PR 17531: file: 027-161405-0.004 */
7124 if (aux->symtab == NULL)
7125 continue;
7126
7127 if (arm_sec->rel_type == SHT_REL)
7128 {
7129 offset = word & 0x7fffffff;
7130 if (offset & 0x40000000)
7131 offset |= ~ (bfd_vma) 0x7fffffff;
7132 }
7133 else if (arm_sec->rel_type == SHT_RELA)
7134 offset = rp->r_addend;
7135 else
7136 {
7137 error (_("Unknown section relocation type %d encountered\n"),
7138 arm_sec->rel_type);
7139 break;
7140 }
7141
7142 /* PR 17531 file: 027-1241568-0.004. */
7143 if (ELF32_R_SYM (rp->r_info) >= aux->nsyms)
7144 {
7145 error (_("Bad symbol index in unwind relocation (%lu > %lu)\n"),
7146 (unsigned long) ELF32_R_SYM (rp->r_info), aux->nsyms);
7147 break;
7148 }
7149
7150 sym = aux->symtab + ELF32_R_SYM (rp->r_info);
7151 offset += sym->st_value;
7152 prelval = offset - (arm_sec->sec->sh_addr + rp->r_offset);
7153
7154 /* Check that we are processing the expected reloc type. */
7155 if (elf_header.e_machine == EM_ARM)
7156 {
7157 relname = elf_arm_reloc_type (ELF32_R_TYPE (rp->r_info));
7158 if (relname == NULL)
7159 {
7160 warn (_("Skipping unknown ARM relocation type: %d\n"),
7161 (int) ELF32_R_TYPE (rp->r_info));
7162 continue;
7163 }
7164
7165 if (streq (relname, "R_ARM_NONE"))
7166 continue;
7167
7168 if (! streq (relname, "R_ARM_PREL31"))
7169 {
7170 warn (_("Skipping unexpected ARM relocation type %s\n"), relname);
7171 continue;
7172 }
7173 }
7174 else if (elf_header.e_machine == EM_TI_C6000)
7175 {
7176 relname = elf_tic6x_reloc_type (ELF32_R_TYPE (rp->r_info));
7177 if (relname == NULL)
7178 {
7179 warn (_("Skipping unknown C6000 relocation type: %d\n"),
7180 (int) ELF32_R_TYPE (rp->r_info));
7181 continue;
7182 }
7183
7184 if (streq (relname, "R_C6000_NONE"))
7185 continue;
7186
7187 if (! streq (relname, "R_C6000_PREL31"))
7188 {
7189 warn (_("Skipping unexpected C6000 relocation type %s\n"), relname);
7190 continue;
7191 }
7192
7193 prelval >>= 1;
7194 }
7195 else
7196 {
7197 /* This function currently only supports ARM and TI unwinders. */
7198 warn (_("Only TI and ARM unwinders are currently supported\n"));
7199 break;
7200 }
7201
7202 word = (word & ~ (bfd_vma) 0x7fffffff) | (prelval & 0x7fffffff);
7203 addr->section = sym->st_shndx;
7204 addr->offset = offset;
7205
7206 if (sym_name)
7207 * sym_name = sym->st_name;
7208 break;
7209 }
7210
7211 *wordp = word;
7212 arm_sec->next_rela = rp;
7213
7214 return TRUE;
7215 }
7216
7217 static const char *tic6x_unwind_regnames[16] =
7218 {
7219 "A15", "B15", "B14", "B13", "B12", "B11", "B10", "B3",
7220 "A14", "A13", "A12", "A11", "A10",
7221 "[invalid reg 13]", "[invalid reg 14]", "[invalid reg 15]"
7222 };
7223
7224 static void
7225 decode_tic6x_unwind_regmask (unsigned int mask)
7226 {
7227 int i;
7228
7229 for (i = 12; mask; mask >>= 1, i--)
7230 {
7231 if (mask & 1)
7232 {
7233 fputs (tic6x_unwind_regnames[i], stdout);
7234 if (mask > 1)
7235 fputs (", ", stdout);
7236 }
7237 }
7238 }
7239
7240 #define ADVANCE \
7241 if (remaining == 0 && more_words) \
7242 { \
7243 data_offset += 4; \
7244 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, \
7245 data_offset, & word, & addr, NULL)) \
7246 return; \
7247 remaining = 4; \
7248 more_words--; \
7249 } \
7250
7251 #define GET_OP(OP) \
7252 ADVANCE; \
7253 if (remaining) \
7254 { \
7255 remaining--; \
7256 (OP) = word >> 24; \
7257 word <<= 8; \
7258 } \
7259 else \
7260 { \
7261 printf (_("[Truncated opcode]\n")); \
7262 return; \
7263 } \
7264 printf ("0x%02x ", OP)
7265
7266 static void
7267 decode_arm_unwind_bytecode (struct arm_unw_aux_info *aux,
7268 unsigned int word, unsigned int remaining,
7269 unsigned int more_words,
7270 bfd_vma data_offset, Elf_Internal_Shdr *data_sec,
7271 struct arm_section *data_arm_sec)
7272 {
7273 struct absaddr addr;
7274
7275 /* Decode the unwinding instructions. */
7276 while (1)
7277 {
7278 unsigned int op, op2;
7279
7280 ADVANCE;
7281 if (remaining == 0)
7282 break;
7283 remaining--;
7284 op = word >> 24;
7285 word <<= 8;
7286
7287 printf (" 0x%02x ", op);
7288
7289 if ((op & 0xc0) == 0x00)
7290 {
7291 int offset = ((op & 0x3f) << 2) + 4;
7292
7293 printf (" vsp = vsp + %d", offset);
7294 }
7295 else if ((op & 0xc0) == 0x40)
7296 {
7297 int offset = ((op & 0x3f) << 2) + 4;
7298
7299 printf (" vsp = vsp - %d", offset);
7300 }
7301 else if ((op & 0xf0) == 0x80)
7302 {
7303 GET_OP (op2);
7304 if (op == 0x80 && op2 == 0)
7305 printf (_("Refuse to unwind"));
7306 else
7307 {
7308 unsigned int mask = ((op & 0x0f) << 8) | op2;
7309 int first = 1;
7310 int i;
7311
7312 printf ("pop {");
7313 for (i = 0; i < 12; i++)
7314 if (mask & (1 << i))
7315 {
7316 if (first)
7317 first = 0;
7318 else
7319 printf (", ");
7320 printf ("r%d", 4 + i);
7321 }
7322 printf ("}");
7323 }
7324 }
7325 else if ((op & 0xf0) == 0x90)
7326 {
7327 if (op == 0x9d || op == 0x9f)
7328 printf (_(" [Reserved]"));
7329 else
7330 printf (" vsp = r%d", op & 0x0f);
7331 }
7332 else if ((op & 0xf0) == 0xa0)
7333 {
7334 int end = 4 + (op & 0x07);
7335 int first = 1;
7336 int i;
7337
7338 printf (" pop {");
7339 for (i = 4; i <= end; i++)
7340 {
7341 if (first)
7342 first = 0;
7343 else
7344 printf (", ");
7345 printf ("r%d", i);
7346 }
7347 if (op & 0x08)
7348 {
7349 if (!first)
7350 printf (", ");
7351 printf ("r14");
7352 }
7353 printf ("}");
7354 }
7355 else if (op == 0xb0)
7356 printf (_(" finish"));
7357 else if (op == 0xb1)
7358 {
7359 GET_OP (op2);
7360 if (op2 == 0 || (op2 & 0xf0) != 0)
7361 printf (_("[Spare]"));
7362 else
7363 {
7364 unsigned int mask = op2 & 0x0f;
7365 int first = 1;
7366 int i;
7367
7368 printf ("pop {");
7369 for (i = 0; i < 12; i++)
7370 if (mask & (1 << i))
7371 {
7372 if (first)
7373 first = 0;
7374 else
7375 printf (", ");
7376 printf ("r%d", i);
7377 }
7378 printf ("}");
7379 }
7380 }
7381 else if (op == 0xb2)
7382 {
7383 unsigned char buf[9];
7384 unsigned int i, len;
7385 unsigned long offset;
7386
7387 for (i = 0; i < sizeof (buf); i++)
7388 {
7389 GET_OP (buf[i]);
7390 if ((buf[i] & 0x80) == 0)
7391 break;
7392 }
7393 if (i == sizeof (buf))
7394 printf (_("corrupt change to vsp"));
7395 else
7396 {
7397 offset = read_uleb128 (buf, &len, buf + i + 1);
7398 assert (len == i + 1);
7399 offset = offset * 4 + 0x204;
7400 printf ("vsp = vsp + %ld", offset);
7401 }
7402 }
7403 else if (op == 0xb3 || op == 0xc8 || op == 0xc9)
7404 {
7405 unsigned int first, last;
7406
7407 GET_OP (op2);
7408 first = op2 >> 4;
7409 last = op2 & 0x0f;
7410 if (op == 0xc8)
7411 first = first + 16;
7412 printf ("pop {D%d", first);
7413 if (last)
7414 printf ("-D%d", first + last);
7415 printf ("}");
7416 }
7417 else if ((op & 0xf8) == 0xb8 || (op & 0xf8) == 0xd0)
7418 {
7419 unsigned int count = op & 0x07;
7420
7421 printf ("pop {D8");
7422 if (count)
7423 printf ("-D%d", 8 + count);
7424 printf ("}");
7425 }
7426 else if (op >= 0xc0 && op <= 0xc5)
7427 {
7428 unsigned int count = op & 0x07;
7429
7430 printf (" pop {wR10");
7431 if (count)
7432 printf ("-wR%d", 10 + count);
7433 printf ("}");
7434 }
7435 else if (op == 0xc6)
7436 {
7437 unsigned int first, last;
7438
7439 GET_OP (op2);
7440 first = op2 >> 4;
7441 last = op2 & 0x0f;
7442 printf ("pop {wR%d", first);
7443 if (last)
7444 printf ("-wR%d", first + last);
7445 printf ("}");
7446 }
7447 else if (op == 0xc7)
7448 {
7449 GET_OP (op2);
7450 if (op2 == 0 || (op2 & 0xf0) != 0)
7451 printf (_("[Spare]"));
7452 else
7453 {
7454 unsigned int mask = op2 & 0x0f;
7455 int first = 1;
7456 int i;
7457
7458 printf ("pop {");
7459 for (i = 0; i < 4; i++)
7460 if (mask & (1 << i))
7461 {
7462 if (first)
7463 first = 0;
7464 else
7465 printf (", ");
7466 printf ("wCGR%d", i);
7467 }
7468 printf ("}");
7469 }
7470 }
7471 else
7472 printf (_(" [unsupported opcode]"));
7473 printf ("\n");
7474 }
7475 }
7476
7477 static void
7478 decode_tic6x_unwind_bytecode (struct arm_unw_aux_info *aux,
7479 unsigned int word, unsigned int remaining,
7480 unsigned int more_words,
7481 bfd_vma data_offset, Elf_Internal_Shdr *data_sec,
7482 struct arm_section *data_arm_sec)
7483 {
7484 struct absaddr addr;
7485
7486 /* Decode the unwinding instructions. */
7487 while (1)
7488 {
7489 unsigned int op, op2;
7490
7491 ADVANCE;
7492 if (remaining == 0)
7493 break;
7494 remaining--;
7495 op = word >> 24;
7496 word <<= 8;
7497
7498 printf (" 0x%02x ", op);
7499
7500 if ((op & 0xc0) == 0x00)
7501 {
7502 int offset = ((op & 0x3f) << 3) + 8;
7503 printf (" sp = sp + %d", offset);
7504 }
7505 else if ((op & 0xc0) == 0x80)
7506 {
7507 GET_OP (op2);
7508 if (op == 0x80 && op2 == 0)
7509 printf (_("Refuse to unwind"));
7510 else
7511 {
7512 unsigned int mask = ((op & 0x1f) << 8) | op2;
7513 if (op & 0x20)
7514 printf ("pop compact {");
7515 else
7516 printf ("pop {");
7517
7518 decode_tic6x_unwind_regmask (mask);
7519 printf("}");
7520 }
7521 }
7522 else if ((op & 0xf0) == 0xc0)
7523 {
7524 unsigned int reg;
7525 unsigned int nregs;
7526 unsigned int i;
7527 const char *name;
7528 struct
7529 {
7530 unsigned int offset;
7531 unsigned int reg;
7532 } regpos[16];
7533
7534 /* Scan entire instruction first so that GET_OP output is not
7535 interleaved with disassembly. */
7536 nregs = 0;
7537 for (i = 0; nregs < (op & 0xf); i++)
7538 {
7539 GET_OP (op2);
7540 reg = op2 >> 4;
7541 if (reg != 0xf)
7542 {
7543 regpos[nregs].offset = i * 2;
7544 regpos[nregs].reg = reg;
7545 nregs++;
7546 }
7547
7548 reg = op2 & 0xf;
7549 if (reg != 0xf)
7550 {
7551 regpos[nregs].offset = i * 2 + 1;
7552 regpos[nregs].reg = reg;
7553 nregs++;
7554 }
7555 }
7556
7557 printf (_("pop frame {"));
7558 reg = nregs - 1;
7559 for (i = i * 2; i > 0; i--)
7560 {
7561 if (regpos[reg].offset == i - 1)
7562 {
7563 name = tic6x_unwind_regnames[regpos[reg].reg];
7564 if (reg > 0)
7565 reg--;
7566 }
7567 else
7568 name = _("[pad]");
7569
7570 fputs (name, stdout);
7571 if (i > 1)
7572 printf (", ");
7573 }
7574
7575 printf ("}");
7576 }
7577 else if (op == 0xd0)
7578 printf (" MOV FP, SP");
7579 else if (op == 0xd1)
7580 printf (" __c6xabi_pop_rts");
7581 else if (op == 0xd2)
7582 {
7583 unsigned char buf[9];
7584 unsigned int i, len;
7585 unsigned long offset;
7586
7587 for (i = 0; i < sizeof (buf); i++)
7588 {
7589 GET_OP (buf[i]);
7590 if ((buf[i] & 0x80) == 0)
7591 break;
7592 }
7593 /* PR 17531: file: id:000001,src:001906+004739,op:splice,rep:2. */
7594 if (i == sizeof (buf))
7595 {
7596 printf ("<corrupt sp adjust>\n");
7597 warn (_("Corrupt stack pointer adjustment detected\n"));
7598 return;
7599 }
7600
7601 offset = read_uleb128 (buf, &len, buf + i + 1);
7602 assert (len == i + 1);
7603 offset = offset * 8 + 0x408;
7604 printf (_("sp = sp + %ld"), offset);
7605 }
7606 else if ((op & 0xf0) == 0xe0)
7607 {
7608 if ((op & 0x0f) == 7)
7609 printf (" RETURN");
7610 else
7611 printf (" MV %s, B3", tic6x_unwind_regnames[op & 0x0f]);
7612 }
7613 else
7614 {
7615 printf (_(" [unsupported opcode]"));
7616 }
7617 putchar ('\n');
7618 }
7619 }
7620
7621 static bfd_vma
7622 arm_expand_prel31 (bfd_vma word, bfd_vma where)
7623 {
7624 bfd_vma offset;
7625
7626 offset = word & 0x7fffffff;
7627 if (offset & 0x40000000)
7628 offset |= ~ (bfd_vma) 0x7fffffff;
7629
7630 if (elf_header.e_machine == EM_TI_C6000)
7631 offset <<= 1;
7632
7633 return offset + where;
7634 }
7635
7636 static void
7637 decode_arm_unwind (struct arm_unw_aux_info * aux,
7638 unsigned int word,
7639 unsigned int remaining,
7640 bfd_vma data_offset,
7641 Elf_Internal_Shdr * data_sec,
7642 struct arm_section * data_arm_sec)
7643 {
7644 int per_index;
7645 unsigned int more_words = 0;
7646 struct absaddr addr;
7647 bfd_vma sym_name = (bfd_vma) -1;
7648
7649 if (remaining == 0)
7650 {
7651 /* Fetch the first word.
7652 Note - when decoding an object file the address extracted
7653 here will always be 0. So we also pass in the sym_name
7654 parameter so that we can find the symbol associated with
7655 the personality routine. */
7656 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, data_offset,
7657 & word, & addr, & sym_name))
7658 return;
7659
7660 remaining = 4;
7661 }
7662
7663 if ((word & 0x80000000) == 0)
7664 {
7665 /* Expand prel31 for personality routine. */
7666 bfd_vma fn;
7667 const char *procname;
7668
7669 fn = arm_expand_prel31 (word, data_sec->sh_addr + data_offset);
7670 printf (_(" Personality routine: "));
7671 if (fn == 0
7672 && addr.section == SHN_UNDEF && addr.offset == 0
7673 && sym_name != (bfd_vma) -1 && sym_name < aux->strtab_size)
7674 {
7675 procname = aux->strtab + sym_name;
7676 print_vma (fn, PREFIX_HEX);
7677 if (procname)
7678 {
7679 fputs (" <", stdout);
7680 fputs (procname, stdout);
7681 fputc ('>', stdout);
7682 }
7683 }
7684 else
7685 procname = arm_print_vma_and_name (aux, fn, addr);
7686 fputc ('\n', stdout);
7687
7688 /* The GCC personality routines use the standard compact
7689 encoding, starting with one byte giving the number of
7690 words. */
7691 if (procname != NULL
7692 && (const_strneq (procname, "__gcc_personality_v0")
7693 || const_strneq (procname, "__gxx_personality_v0")
7694 || const_strneq (procname, "__gcj_personality_v0")
7695 || const_strneq (procname, "__gnu_objc_personality_v0")))
7696 {
7697 remaining = 0;
7698 more_words = 1;
7699 ADVANCE;
7700 if (!remaining)
7701 {
7702 printf (_(" [Truncated data]\n"));
7703 return;
7704 }
7705 more_words = word >> 24;
7706 word <<= 8;
7707 remaining--;
7708 per_index = -1;
7709 }
7710 else
7711 return;
7712 }
7713 else
7714 {
7715 /* ARM EHABI Section 6.3:
7716
7717 An exception-handling table entry for the compact model looks like:
7718
7719 31 30-28 27-24 23-0
7720 -- ----- ----- ----
7721 1 0 index Data for personalityRoutine[index] */
7722
7723 if (elf_header.e_machine == EM_ARM
7724 && (word & 0x70000000))
7725 warn (_("Corrupt ARM compact model table entry: %x \n"), word);
7726
7727 per_index = (word >> 24) & 0x7f;
7728 printf (_(" Compact model index: %d\n"), per_index);
7729 if (per_index == 0)
7730 {
7731 more_words = 0;
7732 word <<= 8;
7733 remaining--;
7734 }
7735 else if (per_index < 3)
7736 {
7737 more_words = (word >> 16) & 0xff;
7738 word <<= 16;
7739 remaining -= 2;
7740 }
7741 }
7742
7743 switch (elf_header.e_machine)
7744 {
7745 case EM_ARM:
7746 if (per_index < 3)
7747 {
7748 decode_arm_unwind_bytecode (aux, word, remaining, more_words,
7749 data_offset, data_sec, data_arm_sec);
7750 }
7751 else
7752 {
7753 warn (_("Unknown ARM compact model index encountered\n"));
7754 printf (_(" [reserved]\n"));
7755 }
7756 break;
7757
7758 case EM_TI_C6000:
7759 if (per_index < 3)
7760 {
7761 decode_tic6x_unwind_bytecode (aux, word, remaining, more_words,
7762 data_offset, data_sec, data_arm_sec);
7763 }
7764 else if (per_index < 5)
7765 {
7766 if (((word >> 17) & 0x7f) == 0x7f)
7767 printf (_(" Restore stack from frame pointer\n"));
7768 else
7769 printf (_(" Stack increment %d\n"), (word >> 14) & 0x1fc);
7770 printf (_(" Registers restored: "));
7771 if (per_index == 4)
7772 printf (" (compact) ");
7773 decode_tic6x_unwind_regmask ((word >> 4) & 0x1fff);
7774 putchar ('\n');
7775 printf (_(" Return register: %s\n"),
7776 tic6x_unwind_regnames[word & 0xf]);
7777 }
7778 else
7779 printf (_(" [reserved (%d)]\n"), per_index);
7780 break;
7781
7782 default:
7783 error (_("Unsupported architecture type %d encountered when decoding unwind table\n"),
7784 elf_header.e_machine);
7785 }
7786
7787 /* Decode the descriptors. Not implemented. */
7788 }
7789
7790 static void
7791 dump_arm_unwind (struct arm_unw_aux_info *aux, Elf_Internal_Shdr *exidx_sec)
7792 {
7793 struct arm_section exidx_arm_sec, extab_arm_sec;
7794 unsigned int i, exidx_len;
7795
7796 memset (&exidx_arm_sec, 0, sizeof (exidx_arm_sec));
7797 memset (&extab_arm_sec, 0, sizeof (extab_arm_sec));
7798 exidx_len = exidx_sec->sh_size / 8;
7799
7800 for (i = 0; i < exidx_len; i++)
7801 {
7802 unsigned int exidx_fn, exidx_entry;
7803 struct absaddr fn_addr, entry_addr;
7804 bfd_vma fn;
7805
7806 fputc ('\n', stdout);
7807
7808 if (! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
7809 8 * i, & exidx_fn, & fn_addr, NULL)
7810 || ! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
7811 8 * i + 4, & exidx_entry, & entry_addr, NULL))
7812 {
7813 arm_free_section (& exidx_arm_sec);
7814 arm_free_section (& extab_arm_sec);
7815 return;
7816 }
7817
7818 /* ARM EHABI, Section 5:
7819 An index table entry consists of 2 words.
7820 The first word contains a prel31 offset to the start of a function, with bit 31 clear. */
7821 if (exidx_fn & 0x80000000)
7822 warn (_("corrupt index table entry: %x\n"), exidx_fn);
7823
7824 fn = arm_expand_prel31 (exidx_fn, exidx_sec->sh_addr + 8 * i);
7825
7826 arm_print_vma_and_name (aux, fn, fn_addr);
7827 fputs (": ", stdout);
7828
7829 if (exidx_entry == 1)
7830 {
7831 print_vma (exidx_entry, PREFIX_HEX);
7832 fputs (" [cantunwind]\n", stdout);
7833 }
7834 else if (exidx_entry & 0x80000000)
7835 {
7836 print_vma (exidx_entry, PREFIX_HEX);
7837 fputc ('\n', stdout);
7838 decode_arm_unwind (aux, exidx_entry, 4, 0, NULL, NULL);
7839 }
7840 else
7841 {
7842 bfd_vma table, table_offset = 0;
7843 Elf_Internal_Shdr *table_sec;
7844
7845 fputs ("@", stdout);
7846 table = arm_expand_prel31 (exidx_entry, exidx_sec->sh_addr + 8 * i + 4);
7847 print_vma (table, PREFIX_HEX);
7848 printf ("\n");
7849
7850 /* Locate the matching .ARM.extab. */
7851 if (entry_addr.section != SHN_UNDEF
7852 && entry_addr.section < elf_header.e_shnum)
7853 {
7854 table_sec = section_headers + entry_addr.section;
7855 table_offset = entry_addr.offset;
7856 }
7857 else
7858 {
7859 table_sec = find_section_by_address (table);
7860 if (table_sec != NULL)
7861 table_offset = table - table_sec->sh_addr;
7862 }
7863 if (table_sec == NULL)
7864 {
7865 warn (_("Could not locate .ARM.extab section containing 0x%lx.\n"),
7866 (unsigned long) table);
7867 continue;
7868 }
7869 decode_arm_unwind (aux, 0, 0, table_offset, table_sec,
7870 &extab_arm_sec);
7871 }
7872 }
7873
7874 printf ("\n");
7875
7876 arm_free_section (&exidx_arm_sec);
7877 arm_free_section (&extab_arm_sec);
7878 }
7879
7880 /* Used for both ARM and C6X unwinding tables. */
7881
7882 static void
7883 arm_process_unwind (FILE *file)
7884 {
7885 struct arm_unw_aux_info aux;
7886 Elf_Internal_Shdr *unwsec = NULL;
7887 Elf_Internal_Shdr *strsec;
7888 Elf_Internal_Shdr *sec;
7889 unsigned long i;
7890 unsigned int sec_type;
7891
7892 switch (elf_header.e_machine)
7893 {
7894 case EM_ARM:
7895 sec_type = SHT_ARM_EXIDX;
7896 break;
7897
7898 case EM_TI_C6000:
7899 sec_type = SHT_C6000_UNWIND;
7900 break;
7901
7902 default:
7903 error (_("Unsupported architecture type %d encountered when processing unwind table\n"),
7904 elf_header.e_machine);
7905 return;
7906 }
7907
7908 if (string_table == NULL)
7909 return;
7910
7911 memset (& aux, 0, sizeof (aux));
7912 aux.file = file;
7913
7914 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7915 {
7916 if (sec->sh_type == SHT_SYMTAB && sec->sh_link < elf_header.e_shnum)
7917 {
7918 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
7919
7920 strsec = section_headers + sec->sh_link;
7921
7922 /* PR binutils/17531 file: 011-12666-0.004. */
7923 if (aux.strtab != NULL)
7924 {
7925 error (_("Multiple string tables found in file.\n"));
7926 free (aux.strtab);
7927 }
7928 aux.strtab = get_data (NULL, file, strsec->sh_offset,
7929 1, strsec->sh_size, _("string table"));
7930 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7931 }
7932 else if (sec->sh_type == sec_type)
7933 unwsec = sec;
7934 }
7935
7936 if (unwsec == NULL)
7937 printf (_("\nThere are no unwind sections in this file.\n"));
7938 else
7939 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7940 {
7941 if (sec->sh_type == sec_type)
7942 {
7943 printf (_("\nUnwind table index '%s' at offset 0x%lx contains %lu entries:\n"),
7944 printable_section_name (sec),
7945 (unsigned long) sec->sh_offset,
7946 (unsigned long) (sec->sh_size / (2 * eh_addr_size)));
7947
7948 dump_arm_unwind (&aux, sec);
7949 }
7950 }
7951
7952 if (aux.symtab)
7953 free (aux.symtab);
7954 if (aux.strtab)
7955 free ((char *) aux.strtab);
7956 }
7957
7958 static void
7959 process_unwind (FILE * file)
7960 {
7961 struct unwind_handler
7962 {
7963 int machtype;
7964 void (* handler)(FILE *);
7965 } handlers[] =
7966 {
7967 { EM_ARM, arm_process_unwind },
7968 { EM_IA_64, ia64_process_unwind },
7969 { EM_PARISC, hppa_process_unwind },
7970 { EM_TI_C6000, arm_process_unwind },
7971 { 0, 0 }
7972 };
7973 int i;
7974
7975 if (!do_unwind)
7976 return;
7977
7978 for (i = 0; handlers[i].handler != NULL; i++)
7979 if (elf_header.e_machine == handlers[i].machtype)
7980 {
7981 handlers[i].handler (file);
7982 return;
7983 }
7984
7985 printf (_("\nThe decoding of unwind sections for machine type %s is not currently supported.\n"),
7986 get_machine_name (elf_header.e_machine));
7987 }
7988
7989 static void
7990 dynamic_section_mips_val (Elf_Internal_Dyn * entry)
7991 {
7992 switch (entry->d_tag)
7993 {
7994 case DT_MIPS_FLAGS:
7995 if (entry->d_un.d_val == 0)
7996 printf (_("NONE"));
7997 else
7998 {
7999 static const char * opts[] =
8000 {
8001 "QUICKSTART", "NOTPOT", "NO_LIBRARY_REPLACEMENT",
8002 "NO_MOVE", "SGI_ONLY", "GUARANTEE_INIT", "DELTA_C_PLUS_PLUS",
8003 "GUARANTEE_START_INIT", "PIXIE", "DEFAULT_DELAY_LOAD",
8004 "REQUICKSTART", "REQUICKSTARTED", "CORD", "NO_UNRES_UNDEF",
8005 "RLD_ORDER_SAFE"
8006 };
8007 unsigned int cnt;
8008 int first = 1;
8009
8010 for (cnt = 0; cnt < ARRAY_SIZE (opts); ++cnt)
8011 if (entry->d_un.d_val & (1 << cnt))
8012 {
8013 printf ("%s%s", first ? "" : " ", opts[cnt]);
8014 first = 0;
8015 }
8016 }
8017 break;
8018
8019 case DT_MIPS_IVERSION:
8020 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
8021 printf (_("Interface Version: %s"), GET_DYNAMIC_NAME (entry->d_un.d_val));
8022 else
8023 {
8024 char buf[40];
8025 sprintf_vma (buf, entry->d_un.d_ptr);
8026 /* Note: coded this way so that there is a single string for translation. */
8027 printf (_("<corrupt: %s>"), buf);
8028 }
8029 break;
8030
8031 case DT_MIPS_TIME_STAMP:
8032 {
8033 char timebuf[20];
8034 struct tm * tmp;
8035
8036 time_t atime = entry->d_un.d_val;
8037 tmp = gmtime (&atime);
8038 snprintf (timebuf, sizeof (timebuf), "%04u-%02u-%02uT%02u:%02u:%02u",
8039 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
8040 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
8041 printf (_("Time Stamp: %s"), timebuf);
8042 }
8043 break;
8044
8045 case DT_MIPS_RLD_VERSION:
8046 case DT_MIPS_LOCAL_GOTNO:
8047 case DT_MIPS_CONFLICTNO:
8048 case DT_MIPS_LIBLISTNO:
8049 case DT_MIPS_SYMTABNO:
8050 case DT_MIPS_UNREFEXTNO:
8051 case DT_MIPS_HIPAGENO:
8052 case DT_MIPS_DELTA_CLASS_NO:
8053 case DT_MIPS_DELTA_INSTANCE_NO:
8054 case DT_MIPS_DELTA_RELOC_NO:
8055 case DT_MIPS_DELTA_SYM_NO:
8056 case DT_MIPS_DELTA_CLASSSYM_NO:
8057 case DT_MIPS_COMPACT_SIZE:
8058 print_vma (entry->d_un.d_ptr, DEC);
8059 break;
8060
8061 default:
8062 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
8063 }
8064 putchar ('\n');
8065 }
8066
8067 static void
8068 dynamic_section_parisc_val (Elf_Internal_Dyn * entry)
8069 {
8070 switch (entry->d_tag)
8071 {
8072 case DT_HP_DLD_FLAGS:
8073 {
8074 static struct
8075 {
8076 long int bit;
8077 const char * str;
8078 }
8079 flags[] =
8080 {
8081 { DT_HP_DEBUG_PRIVATE, "HP_DEBUG_PRIVATE" },
8082 { DT_HP_DEBUG_CALLBACK, "HP_DEBUG_CALLBACK" },
8083 { DT_HP_DEBUG_CALLBACK_BOR, "HP_DEBUG_CALLBACK_BOR" },
8084 { DT_HP_NO_ENVVAR, "HP_NO_ENVVAR" },
8085 { DT_HP_BIND_NOW, "HP_BIND_NOW" },
8086 { DT_HP_BIND_NONFATAL, "HP_BIND_NONFATAL" },
8087 { DT_HP_BIND_VERBOSE, "HP_BIND_VERBOSE" },
8088 { DT_HP_BIND_RESTRICTED, "HP_BIND_RESTRICTED" },
8089 { DT_HP_BIND_SYMBOLIC, "HP_BIND_SYMBOLIC" },
8090 { DT_HP_RPATH_FIRST, "HP_RPATH_FIRST" },
8091 { DT_HP_BIND_DEPTH_FIRST, "HP_BIND_DEPTH_FIRST" },
8092 { DT_HP_GST, "HP_GST" },
8093 { DT_HP_SHLIB_FIXED, "HP_SHLIB_FIXED" },
8094 { DT_HP_MERGE_SHLIB_SEG, "HP_MERGE_SHLIB_SEG" },
8095 { DT_HP_NODELETE, "HP_NODELETE" },
8096 { DT_HP_GROUP, "HP_GROUP" },
8097 { DT_HP_PROTECT_LINKAGE_TABLE, "HP_PROTECT_LINKAGE_TABLE" }
8098 };
8099 int first = 1;
8100 size_t cnt;
8101 bfd_vma val = entry->d_un.d_val;
8102
8103 for (cnt = 0; cnt < ARRAY_SIZE (flags); ++cnt)
8104 if (val & flags[cnt].bit)
8105 {
8106 if (! first)
8107 putchar (' ');
8108 fputs (flags[cnt].str, stdout);
8109 first = 0;
8110 val ^= flags[cnt].bit;
8111 }
8112
8113 if (val != 0 || first)
8114 {
8115 if (! first)
8116 putchar (' ');
8117 print_vma (val, HEX);
8118 }
8119 }
8120 break;
8121
8122 default:
8123 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
8124 break;
8125 }
8126 putchar ('\n');
8127 }
8128
8129 #ifdef BFD64
8130
8131 /* VMS vs Unix time offset and factor. */
8132
8133 #define VMS_EPOCH_OFFSET 35067168000000000LL
8134 #define VMS_GRANULARITY_FACTOR 10000000
8135
8136 /* Display a VMS time in a human readable format. */
8137
8138 static void
8139 print_vms_time (bfd_int64_t vmstime)
8140 {
8141 struct tm *tm;
8142 time_t unxtime;
8143
8144 unxtime = (vmstime - VMS_EPOCH_OFFSET) / VMS_GRANULARITY_FACTOR;
8145 tm = gmtime (&unxtime);
8146 printf ("%04u-%02u-%02uT%02u:%02u:%02u",
8147 tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
8148 tm->tm_hour, tm->tm_min, tm->tm_sec);
8149 }
8150 #endif /* BFD64 */
8151
8152 static void
8153 dynamic_section_ia64_val (Elf_Internal_Dyn * entry)
8154 {
8155 switch (entry->d_tag)
8156 {
8157 case DT_IA_64_PLT_RESERVE:
8158 /* First 3 slots reserved. */
8159 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
8160 printf (" -- ");
8161 print_vma (entry->d_un.d_ptr + (3 * 8), PREFIX_HEX);
8162 break;
8163
8164 case DT_IA_64_VMS_LINKTIME:
8165 #ifdef BFD64
8166 print_vms_time (entry->d_un.d_val);
8167 #endif
8168 break;
8169
8170 case DT_IA_64_VMS_LNKFLAGS:
8171 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
8172 if (entry->d_un.d_val & VMS_LF_CALL_DEBUG)
8173 printf (" CALL_DEBUG");
8174 if (entry->d_un.d_val & VMS_LF_NOP0BUFS)
8175 printf (" NOP0BUFS");
8176 if (entry->d_un.d_val & VMS_LF_P0IMAGE)
8177 printf (" P0IMAGE");
8178 if (entry->d_un.d_val & VMS_LF_MKTHREADS)
8179 printf (" MKTHREADS");
8180 if (entry->d_un.d_val & VMS_LF_UPCALLS)
8181 printf (" UPCALLS");
8182 if (entry->d_un.d_val & VMS_LF_IMGSTA)
8183 printf (" IMGSTA");
8184 if (entry->d_un.d_val & VMS_LF_INITIALIZE)
8185 printf (" INITIALIZE");
8186 if (entry->d_un.d_val & VMS_LF_MAIN)
8187 printf (" MAIN");
8188 if (entry->d_un.d_val & VMS_LF_EXE_INIT)
8189 printf (" EXE_INIT");
8190 if (entry->d_un.d_val & VMS_LF_TBK_IN_IMG)
8191 printf (" TBK_IN_IMG");
8192 if (entry->d_un.d_val & VMS_LF_DBG_IN_IMG)
8193 printf (" DBG_IN_IMG");
8194 if (entry->d_un.d_val & VMS_LF_TBK_IN_DSF)
8195 printf (" TBK_IN_DSF");
8196 if (entry->d_un.d_val & VMS_LF_DBG_IN_DSF)
8197 printf (" DBG_IN_DSF");
8198 if (entry->d_un.d_val & VMS_LF_SIGNATURES)
8199 printf (" SIGNATURES");
8200 if (entry->d_un.d_val & VMS_LF_REL_SEG_OFF)
8201 printf (" REL_SEG_OFF");
8202 break;
8203
8204 default:
8205 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
8206 break;
8207 }
8208 putchar ('\n');
8209 }
8210
8211 static int
8212 get_32bit_dynamic_section (FILE * file)
8213 {
8214 Elf32_External_Dyn * edyn;
8215 Elf32_External_Dyn * ext;
8216 Elf_Internal_Dyn * entry;
8217
8218 edyn = (Elf32_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
8219 dynamic_size, _("dynamic section"));
8220 if (!edyn)
8221 return 0;
8222
8223 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
8224 might not have the luxury of section headers. Look for the DT_NULL
8225 terminator to determine the number of entries. */
8226 for (ext = edyn, dynamic_nent = 0;
8227 (char *) ext < (char *) edyn + dynamic_size - sizeof (* entry);
8228 ext++)
8229 {
8230 dynamic_nent++;
8231 if (BYTE_GET (ext->d_tag) == DT_NULL)
8232 break;
8233 }
8234
8235 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
8236 sizeof (* entry));
8237 if (dynamic_section == NULL)
8238 {
8239 error (_("Out of memory allocating space for %lu dynamic entries\n"),
8240 (unsigned long) dynamic_nent);
8241 free (edyn);
8242 return 0;
8243 }
8244
8245 for (ext = edyn, entry = dynamic_section;
8246 entry < dynamic_section + dynamic_nent;
8247 ext++, entry++)
8248 {
8249 entry->d_tag = BYTE_GET (ext->d_tag);
8250 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
8251 }
8252
8253 free (edyn);
8254
8255 return 1;
8256 }
8257
8258 static int
8259 get_64bit_dynamic_section (FILE * file)
8260 {
8261 Elf64_External_Dyn * edyn;
8262 Elf64_External_Dyn * ext;
8263 Elf_Internal_Dyn * entry;
8264
8265 /* Read in the data. */
8266 edyn = (Elf64_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
8267 dynamic_size, _("dynamic section"));
8268 if (!edyn)
8269 return 0;
8270
8271 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
8272 might not have the luxury of section headers. Look for the DT_NULL
8273 terminator to determine the number of entries. */
8274 for (ext = edyn, dynamic_nent = 0;
8275 /* PR 17533 file: 033-67080-0.004 - do not read off the end of the buffer. */
8276 (char *) ext < ((char *) edyn) + dynamic_size - sizeof (* ext);
8277 ext++)
8278 {
8279 dynamic_nent++;
8280 if (BYTE_GET (ext->d_tag) == DT_NULL)
8281 break;
8282 }
8283
8284 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
8285 sizeof (* entry));
8286 if (dynamic_section == NULL)
8287 {
8288 error (_("Out of memory allocating space for %lu dynamic entries\n"),
8289 (unsigned long) dynamic_nent);
8290 free (edyn);
8291 return 0;
8292 }
8293
8294 /* Convert from external to internal formats. */
8295 for (ext = edyn, entry = dynamic_section;
8296 entry < dynamic_section + dynamic_nent;
8297 ext++, entry++)
8298 {
8299 entry->d_tag = BYTE_GET (ext->d_tag);
8300 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
8301 }
8302
8303 free (edyn);
8304
8305 return 1;
8306 }
8307
8308 static void
8309 print_dynamic_flags (bfd_vma flags)
8310 {
8311 int first = 1;
8312
8313 while (flags)
8314 {
8315 bfd_vma flag;
8316
8317 flag = flags & - flags;
8318 flags &= ~ flag;
8319
8320 if (first)
8321 first = 0;
8322 else
8323 putc (' ', stdout);
8324
8325 switch (flag)
8326 {
8327 case DF_ORIGIN: fputs ("ORIGIN", stdout); break;
8328 case DF_SYMBOLIC: fputs ("SYMBOLIC", stdout); break;
8329 case DF_TEXTREL: fputs ("TEXTREL", stdout); break;
8330 case DF_BIND_NOW: fputs ("BIND_NOW", stdout); break;
8331 case DF_STATIC_TLS: fputs ("STATIC_TLS", stdout); break;
8332 default: fputs (_("unknown"), stdout); break;
8333 }
8334 }
8335 puts ("");
8336 }
8337
8338 /* Parse and display the contents of the dynamic section. */
8339
8340 static int
8341 process_dynamic_section (FILE * file)
8342 {
8343 Elf_Internal_Dyn * entry;
8344
8345 if (dynamic_size == 0)
8346 {
8347 if (do_dynamic)
8348 printf (_("\nThere is no dynamic section in this file.\n"));
8349
8350 return 1;
8351 }
8352
8353 if (is_32bit_elf)
8354 {
8355 if (! get_32bit_dynamic_section (file))
8356 return 0;
8357 }
8358 else if (! get_64bit_dynamic_section (file))
8359 return 0;
8360
8361 /* Find the appropriate symbol table. */
8362 if (dynamic_symbols == NULL)
8363 {
8364 for (entry = dynamic_section;
8365 entry < dynamic_section + dynamic_nent;
8366 ++entry)
8367 {
8368 Elf_Internal_Shdr section;
8369
8370 if (entry->d_tag != DT_SYMTAB)
8371 continue;
8372
8373 dynamic_info[DT_SYMTAB] = entry->d_un.d_val;
8374
8375 /* Since we do not know how big the symbol table is,
8376 we default to reading in the entire file (!) and
8377 processing that. This is overkill, I know, but it
8378 should work. */
8379 section.sh_offset = offset_from_vma (file, entry->d_un.d_val, 0);
8380
8381 if (archive_file_offset != 0)
8382 section.sh_size = archive_file_size - section.sh_offset;
8383 else
8384 {
8385 if (fseek (file, 0, SEEK_END))
8386 error (_("Unable to seek to end of file!\n"));
8387
8388 section.sh_size = ftell (file) - section.sh_offset;
8389 }
8390
8391 if (is_32bit_elf)
8392 section.sh_entsize = sizeof (Elf32_External_Sym);
8393 else
8394 section.sh_entsize = sizeof (Elf64_External_Sym);
8395 section.sh_name = string_table_length;
8396
8397 dynamic_symbols = GET_ELF_SYMBOLS (file, &section, & num_dynamic_syms);
8398 if (num_dynamic_syms < 1)
8399 {
8400 error (_("Unable to determine the number of symbols to load\n"));
8401 continue;
8402 }
8403 }
8404 }
8405
8406 /* Similarly find a string table. */
8407 if (dynamic_strings == NULL)
8408 {
8409 for (entry = dynamic_section;
8410 entry < dynamic_section + dynamic_nent;
8411 ++entry)
8412 {
8413 unsigned long offset;
8414 long str_tab_len;
8415
8416 if (entry->d_tag != DT_STRTAB)
8417 continue;
8418
8419 dynamic_info[DT_STRTAB] = entry->d_un.d_val;
8420
8421 /* Since we do not know how big the string table is,
8422 we default to reading in the entire file (!) and
8423 processing that. This is overkill, I know, but it
8424 should work. */
8425
8426 offset = offset_from_vma (file, entry->d_un.d_val, 0);
8427
8428 if (archive_file_offset != 0)
8429 str_tab_len = archive_file_size - offset;
8430 else
8431 {
8432 if (fseek (file, 0, SEEK_END))
8433 error (_("Unable to seek to end of file\n"));
8434 str_tab_len = ftell (file) - offset;
8435 }
8436
8437 if (str_tab_len < 1)
8438 {
8439 error
8440 (_("Unable to determine the length of the dynamic string table\n"));
8441 continue;
8442 }
8443
8444 dynamic_strings = (char *) get_data (NULL, file, offset, 1,
8445 str_tab_len,
8446 _("dynamic string table"));
8447 dynamic_strings_length = dynamic_strings == NULL ? 0 : str_tab_len;
8448 break;
8449 }
8450 }
8451
8452 /* And find the syminfo section if available. */
8453 if (dynamic_syminfo == NULL)
8454 {
8455 unsigned long syminsz = 0;
8456
8457 for (entry = dynamic_section;
8458 entry < dynamic_section + dynamic_nent;
8459 ++entry)
8460 {
8461 if (entry->d_tag == DT_SYMINENT)
8462 {
8463 /* Note: these braces are necessary to avoid a syntax
8464 error from the SunOS4 C compiler. */
8465 /* PR binutils/17531: A corrupt file can trigger this test.
8466 So do not use an assert, instead generate an error message. */
8467 if (sizeof (Elf_External_Syminfo) != entry->d_un.d_val)
8468 error (_("Bad value (%d) for SYMINENT entry\n"),
8469 (int) entry->d_un.d_val);
8470 }
8471 else if (entry->d_tag == DT_SYMINSZ)
8472 syminsz = entry->d_un.d_val;
8473 else if (entry->d_tag == DT_SYMINFO)
8474 dynamic_syminfo_offset = offset_from_vma (file, entry->d_un.d_val,
8475 syminsz);
8476 }
8477
8478 if (dynamic_syminfo_offset != 0 && syminsz != 0)
8479 {
8480 Elf_External_Syminfo * extsyminfo;
8481 Elf_External_Syminfo * extsym;
8482 Elf_Internal_Syminfo * syminfo;
8483
8484 /* There is a syminfo section. Read the data. */
8485 extsyminfo = (Elf_External_Syminfo *)
8486 get_data (NULL, file, dynamic_syminfo_offset, 1, syminsz,
8487 _("symbol information"));
8488 if (!extsyminfo)
8489 return 0;
8490
8491 dynamic_syminfo = (Elf_Internal_Syminfo *) malloc (syminsz);
8492 if (dynamic_syminfo == NULL)
8493 {
8494 error (_("Out of memory allocating %lu byte for dynamic symbol info\n"),
8495 (unsigned long) syminsz);
8496 return 0;
8497 }
8498
8499 dynamic_syminfo_nent = syminsz / sizeof (Elf_External_Syminfo);
8500 for (syminfo = dynamic_syminfo, extsym = extsyminfo;
8501 syminfo < dynamic_syminfo + dynamic_syminfo_nent;
8502 ++syminfo, ++extsym)
8503 {
8504 syminfo->si_boundto = BYTE_GET (extsym->si_boundto);
8505 syminfo->si_flags = BYTE_GET (extsym->si_flags);
8506 }
8507
8508 free (extsyminfo);
8509 }
8510 }
8511
8512 if (do_dynamic && dynamic_addr)
8513 printf (_("\nDynamic section at offset 0x%lx contains %lu entries:\n"),
8514 dynamic_addr, (unsigned long) dynamic_nent);
8515 if (do_dynamic)
8516 printf (_(" Tag Type Name/Value\n"));
8517
8518 for (entry = dynamic_section;
8519 entry < dynamic_section + dynamic_nent;
8520 entry++)
8521 {
8522 if (do_dynamic)
8523 {
8524 const char * dtype;
8525
8526 putchar (' ');
8527 print_vma (entry->d_tag, FULL_HEX);
8528 dtype = get_dynamic_type (entry->d_tag);
8529 printf (" (%s)%*s", dtype,
8530 ((is_32bit_elf ? 27 : 19)
8531 - (int) strlen (dtype)),
8532 " ");
8533 }
8534
8535 switch (entry->d_tag)
8536 {
8537 case DT_FLAGS:
8538 if (do_dynamic)
8539 print_dynamic_flags (entry->d_un.d_val);
8540 break;
8541
8542 case DT_AUXILIARY:
8543 case DT_FILTER:
8544 case DT_CONFIG:
8545 case DT_DEPAUDIT:
8546 case DT_AUDIT:
8547 if (do_dynamic)
8548 {
8549 switch (entry->d_tag)
8550 {
8551 case DT_AUXILIARY:
8552 printf (_("Auxiliary library"));
8553 break;
8554
8555 case DT_FILTER:
8556 printf (_("Filter library"));
8557 break;
8558
8559 case DT_CONFIG:
8560 printf (_("Configuration file"));
8561 break;
8562
8563 case DT_DEPAUDIT:
8564 printf (_("Dependency audit library"));
8565 break;
8566
8567 case DT_AUDIT:
8568 printf (_("Audit library"));
8569 break;
8570 }
8571
8572 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
8573 printf (": [%s]\n", GET_DYNAMIC_NAME (entry->d_un.d_val));
8574 else
8575 {
8576 printf (": ");
8577 print_vma (entry->d_un.d_val, PREFIX_HEX);
8578 putchar ('\n');
8579 }
8580 }
8581 break;
8582
8583 case DT_FEATURE:
8584 if (do_dynamic)
8585 {
8586 printf (_("Flags:"));
8587
8588 if (entry->d_un.d_val == 0)
8589 printf (_(" None\n"));
8590 else
8591 {
8592 unsigned long int val = entry->d_un.d_val;
8593
8594 if (val & DTF_1_PARINIT)
8595 {
8596 printf (" PARINIT");
8597 val ^= DTF_1_PARINIT;
8598 }
8599 if (val & DTF_1_CONFEXP)
8600 {
8601 printf (" CONFEXP");
8602 val ^= DTF_1_CONFEXP;
8603 }
8604 if (val != 0)
8605 printf (" %lx", val);
8606 puts ("");
8607 }
8608 }
8609 break;
8610
8611 case DT_POSFLAG_1:
8612 if (do_dynamic)
8613 {
8614 printf (_("Flags:"));
8615
8616 if (entry->d_un.d_val == 0)
8617 printf (_(" None\n"));
8618 else
8619 {
8620 unsigned long int val = entry->d_un.d_val;
8621
8622 if (val & DF_P1_LAZYLOAD)
8623 {
8624 printf (" LAZYLOAD");
8625 val ^= DF_P1_LAZYLOAD;
8626 }
8627 if (val & DF_P1_GROUPPERM)
8628 {
8629 printf (" GROUPPERM");
8630 val ^= DF_P1_GROUPPERM;
8631 }
8632 if (val != 0)
8633 printf (" %lx", val);
8634 puts ("");
8635 }
8636 }
8637 break;
8638
8639 case DT_FLAGS_1:
8640 if (do_dynamic)
8641 {
8642 printf (_("Flags:"));
8643 if (entry->d_un.d_val == 0)
8644 printf (_(" None\n"));
8645 else
8646 {
8647 unsigned long int val = entry->d_un.d_val;
8648
8649 if (val & DF_1_NOW)
8650 {
8651 printf (" NOW");
8652 val ^= DF_1_NOW;
8653 }
8654 if (val & DF_1_GLOBAL)
8655 {
8656 printf (" GLOBAL");
8657 val ^= DF_1_GLOBAL;
8658 }
8659 if (val & DF_1_GROUP)
8660 {
8661 printf (" GROUP");
8662 val ^= DF_1_GROUP;
8663 }
8664 if (val & DF_1_NODELETE)
8665 {
8666 printf (" NODELETE");
8667 val ^= DF_1_NODELETE;
8668 }
8669 if (val & DF_1_LOADFLTR)
8670 {
8671 printf (" LOADFLTR");
8672 val ^= DF_1_LOADFLTR;
8673 }
8674 if (val & DF_1_INITFIRST)
8675 {
8676 printf (" INITFIRST");
8677 val ^= DF_1_INITFIRST;
8678 }
8679 if (val & DF_1_NOOPEN)
8680 {
8681 printf (" NOOPEN");
8682 val ^= DF_1_NOOPEN;
8683 }
8684 if (val & DF_1_ORIGIN)
8685 {
8686 printf (" ORIGIN");
8687 val ^= DF_1_ORIGIN;
8688 }
8689 if (val & DF_1_DIRECT)
8690 {
8691 printf (" DIRECT");
8692 val ^= DF_1_DIRECT;
8693 }
8694 if (val & DF_1_TRANS)
8695 {
8696 printf (" TRANS");
8697 val ^= DF_1_TRANS;
8698 }
8699 if (val & DF_1_INTERPOSE)
8700 {
8701 printf (" INTERPOSE");
8702 val ^= DF_1_INTERPOSE;
8703 }
8704 if (val & DF_1_NODEFLIB)
8705 {
8706 printf (" NODEFLIB");
8707 val ^= DF_1_NODEFLIB;
8708 }
8709 if (val & DF_1_NODUMP)
8710 {
8711 printf (" NODUMP");
8712 val ^= DF_1_NODUMP;
8713 }
8714 if (val & DF_1_CONFALT)
8715 {
8716 printf (" CONFALT");
8717 val ^= DF_1_CONFALT;
8718 }
8719 if (val & DF_1_ENDFILTEE)
8720 {
8721 printf (" ENDFILTEE");
8722 val ^= DF_1_ENDFILTEE;
8723 }
8724 if (val & DF_1_DISPRELDNE)
8725 {
8726 printf (" DISPRELDNE");
8727 val ^= DF_1_DISPRELDNE;
8728 }
8729 if (val & DF_1_DISPRELPND)
8730 {
8731 printf (" DISPRELPND");
8732 val ^= DF_1_DISPRELPND;
8733 }
8734 if (val & DF_1_NODIRECT)
8735 {
8736 printf (" NODIRECT");
8737 val ^= DF_1_NODIRECT;
8738 }
8739 if (val & DF_1_IGNMULDEF)
8740 {
8741 printf (" IGNMULDEF");
8742 val ^= DF_1_IGNMULDEF;
8743 }
8744 if (val & DF_1_NOKSYMS)
8745 {
8746 printf (" NOKSYMS");
8747 val ^= DF_1_NOKSYMS;
8748 }
8749 if (val & DF_1_NOHDR)
8750 {
8751 printf (" NOHDR");
8752 val ^= DF_1_NOHDR;
8753 }
8754 if (val & DF_1_EDITED)
8755 {
8756 printf (" EDITED");
8757 val ^= DF_1_EDITED;
8758 }
8759 if (val & DF_1_NORELOC)
8760 {
8761 printf (" NORELOC");
8762 val ^= DF_1_NORELOC;
8763 }
8764 if (val & DF_1_SYMINTPOSE)
8765 {
8766 printf (" SYMINTPOSE");
8767 val ^= DF_1_SYMINTPOSE;
8768 }
8769 if (val & DF_1_GLOBAUDIT)
8770 {
8771 printf (" GLOBAUDIT");
8772 val ^= DF_1_GLOBAUDIT;
8773 }
8774 if (val & DF_1_SINGLETON)
8775 {
8776 printf (" SINGLETON");
8777 val ^= DF_1_SINGLETON;
8778 }
8779 if (val != 0)
8780 printf (" %lx", val);
8781 puts ("");
8782 }
8783 }
8784 break;
8785
8786 case DT_PLTREL:
8787 dynamic_info[entry->d_tag] = entry->d_un.d_val;
8788 if (do_dynamic)
8789 puts (get_dynamic_type (entry->d_un.d_val));
8790 break;
8791
8792 case DT_NULL :
8793 case DT_NEEDED :
8794 case DT_PLTGOT :
8795 case DT_HASH :
8796 case DT_STRTAB :
8797 case DT_SYMTAB :
8798 case DT_RELA :
8799 case DT_INIT :
8800 case DT_FINI :
8801 case DT_SONAME :
8802 case DT_RPATH :
8803 case DT_SYMBOLIC:
8804 case DT_REL :
8805 case DT_DEBUG :
8806 case DT_TEXTREL :
8807 case DT_JMPREL :
8808 case DT_RUNPATH :
8809 dynamic_info[entry->d_tag] = entry->d_un.d_val;
8810
8811 if (do_dynamic)
8812 {
8813 char * name;
8814
8815 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
8816 name = GET_DYNAMIC_NAME (entry->d_un.d_val);
8817 else
8818 name = NULL;
8819
8820 if (name)
8821 {
8822 switch (entry->d_tag)
8823 {
8824 case DT_NEEDED:
8825 printf (_("Shared library: [%s]"), name);
8826
8827 if (streq (name, program_interpreter))
8828 printf (_(" program interpreter"));
8829 break;
8830
8831 case DT_SONAME:
8832 printf (_("Library soname: [%s]"), name);
8833 break;
8834
8835 case DT_RPATH:
8836 printf (_("Library rpath: [%s]"), name);
8837 break;
8838
8839 case DT_RUNPATH:
8840 printf (_("Library runpath: [%s]"), name);
8841 break;
8842
8843 default:
8844 print_vma (entry->d_un.d_val, PREFIX_HEX);
8845 break;
8846 }
8847 }
8848 else
8849 print_vma (entry->d_un.d_val, PREFIX_HEX);
8850
8851 putchar ('\n');
8852 }
8853 break;
8854
8855 case DT_PLTRELSZ:
8856 case DT_RELASZ :
8857 case DT_STRSZ :
8858 case DT_RELSZ :
8859 case DT_RELAENT :
8860 case DT_SYMENT :
8861 case DT_RELENT :
8862 dynamic_info[entry->d_tag] = entry->d_un.d_val;
8863 case DT_PLTPADSZ:
8864 case DT_MOVEENT :
8865 case DT_MOVESZ :
8866 case DT_INIT_ARRAYSZ:
8867 case DT_FINI_ARRAYSZ:
8868 case DT_GNU_CONFLICTSZ:
8869 case DT_GNU_LIBLISTSZ:
8870 if (do_dynamic)
8871 {
8872 print_vma (entry->d_un.d_val, UNSIGNED);
8873 printf (_(" (bytes)\n"));
8874 }
8875 break;
8876
8877 case DT_VERDEFNUM:
8878 case DT_VERNEEDNUM:
8879 case DT_RELACOUNT:
8880 case DT_RELCOUNT:
8881 if (do_dynamic)
8882 {
8883 print_vma (entry->d_un.d_val, UNSIGNED);
8884 putchar ('\n');
8885 }
8886 break;
8887
8888 case DT_SYMINSZ:
8889 case DT_SYMINENT:
8890 case DT_SYMINFO:
8891 case DT_USED:
8892 case DT_INIT_ARRAY:
8893 case DT_FINI_ARRAY:
8894 if (do_dynamic)
8895 {
8896 if (entry->d_tag == DT_USED
8897 && VALID_DYNAMIC_NAME (entry->d_un.d_val))
8898 {
8899 char * name = GET_DYNAMIC_NAME (entry->d_un.d_val);
8900
8901 if (*name)
8902 {
8903 printf (_("Not needed object: [%s]\n"), name);
8904 break;
8905 }
8906 }
8907
8908 print_vma (entry->d_un.d_val, PREFIX_HEX);
8909 putchar ('\n');
8910 }
8911 break;
8912
8913 case DT_BIND_NOW:
8914 /* The value of this entry is ignored. */
8915 if (do_dynamic)
8916 putchar ('\n');
8917 break;
8918
8919 case DT_GNU_PRELINKED:
8920 if (do_dynamic)
8921 {
8922 struct tm * tmp;
8923 time_t atime = entry->d_un.d_val;
8924
8925 tmp = gmtime (&atime);
8926 /* PR 17533 file: 041-1244816-0.004. */
8927 if (tmp == NULL)
8928 printf (_("<corrupt time val: %lx"),
8929 (unsigned long) atime);
8930 else
8931 printf ("%04u-%02u-%02uT%02u:%02u:%02u\n",
8932 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
8933 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
8934
8935 }
8936 break;
8937
8938 case DT_GNU_HASH:
8939 dynamic_info_DT_GNU_HASH = entry->d_un.d_val;
8940 if (do_dynamic)
8941 {
8942 print_vma (entry->d_un.d_val, PREFIX_HEX);
8943 putchar ('\n');
8944 }
8945 break;
8946
8947 default:
8948 if ((entry->d_tag >= DT_VERSYM) && (entry->d_tag <= DT_VERNEEDNUM))
8949 version_info[DT_VERSIONTAGIDX (entry->d_tag)] =
8950 entry->d_un.d_val;
8951
8952 if (do_dynamic)
8953 {
8954 switch (elf_header.e_machine)
8955 {
8956 case EM_MIPS:
8957 case EM_MIPS_RS3_LE:
8958 dynamic_section_mips_val (entry);
8959 break;
8960 case EM_PARISC:
8961 dynamic_section_parisc_val (entry);
8962 break;
8963 case EM_IA_64:
8964 dynamic_section_ia64_val (entry);
8965 break;
8966 default:
8967 print_vma (entry->d_un.d_val, PREFIX_HEX);
8968 putchar ('\n');
8969 }
8970 }
8971 break;
8972 }
8973 }
8974
8975 return 1;
8976 }
8977
8978 static char *
8979 get_ver_flags (unsigned int flags)
8980 {
8981 static char buff[32];
8982
8983 buff[0] = 0;
8984
8985 if (flags == 0)
8986 return _("none");
8987
8988 if (flags & VER_FLG_BASE)
8989 strcat (buff, "BASE ");
8990
8991 if (flags & VER_FLG_WEAK)
8992 {
8993 if (flags & VER_FLG_BASE)
8994 strcat (buff, "| ");
8995
8996 strcat (buff, "WEAK ");
8997 }
8998
8999 if (flags & VER_FLG_INFO)
9000 {
9001 if (flags & (VER_FLG_BASE|VER_FLG_WEAK))
9002 strcat (buff, "| ");
9003
9004 strcat (buff, "INFO ");
9005 }
9006
9007 if (flags & ~(VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
9008 strcat (buff, _("| <unknown>"));
9009
9010 return buff;
9011 }
9012
9013 /* Display the contents of the version sections. */
9014
9015 static int
9016 process_version_sections (FILE * file)
9017 {
9018 Elf_Internal_Shdr * section;
9019 unsigned i;
9020 int found = 0;
9021
9022 if (! do_version)
9023 return 1;
9024
9025 for (i = 0, section = section_headers;
9026 i < elf_header.e_shnum;
9027 i++, section++)
9028 {
9029 switch (section->sh_type)
9030 {
9031 case SHT_GNU_verdef:
9032 {
9033 Elf_External_Verdef * edefs;
9034 unsigned int idx;
9035 unsigned int cnt;
9036 char * endbuf;
9037
9038 found = 1;
9039
9040 printf (_("\nVersion definition section '%s' contains %u entries:\n"),
9041 printable_section_name (section),
9042 section->sh_info);
9043
9044 printf (_(" Addr: 0x"));
9045 printf_vma (section->sh_addr);
9046 printf (_(" Offset: %#08lx Link: %u (%s)"),
9047 (unsigned long) section->sh_offset, section->sh_link,
9048 printable_section_name_from_index (section->sh_link));
9049
9050 edefs = (Elf_External_Verdef *)
9051 get_data (NULL, file, section->sh_offset, 1,section->sh_size,
9052 _("version definition section"));
9053 if (!edefs)
9054 break;
9055 endbuf = (char *) edefs + section->sh_size;
9056
9057 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
9058 {
9059 char * vstart;
9060 Elf_External_Verdef * edef;
9061 Elf_Internal_Verdef ent;
9062 Elf_External_Verdaux * eaux;
9063 Elf_Internal_Verdaux aux;
9064 int j;
9065 int isum;
9066
9067 /* Check for very large indicies. */
9068 if (idx > (size_t) (endbuf - (char *) edefs))
9069 break;
9070
9071 vstart = ((char *) edefs) + idx;
9072 if (vstart + sizeof (*edef) > endbuf)
9073 break;
9074
9075 edef = (Elf_External_Verdef *) vstart;
9076
9077 ent.vd_version = BYTE_GET (edef->vd_version);
9078 ent.vd_flags = BYTE_GET (edef->vd_flags);
9079 ent.vd_ndx = BYTE_GET (edef->vd_ndx);
9080 ent.vd_cnt = BYTE_GET (edef->vd_cnt);
9081 ent.vd_hash = BYTE_GET (edef->vd_hash);
9082 ent.vd_aux = BYTE_GET (edef->vd_aux);
9083 ent.vd_next = BYTE_GET (edef->vd_next);
9084
9085 printf (_(" %#06x: Rev: %d Flags: %s"),
9086 idx, ent.vd_version, get_ver_flags (ent.vd_flags));
9087
9088 printf (_(" Index: %d Cnt: %d "),
9089 ent.vd_ndx, ent.vd_cnt);
9090
9091 /* Check for overflow. */
9092 if (ent.vd_aux > (size_t) (endbuf - vstart))
9093 break;
9094
9095 vstart += ent.vd_aux;
9096
9097 eaux = (Elf_External_Verdaux *) vstart;
9098
9099 aux.vda_name = BYTE_GET (eaux->vda_name);
9100 aux.vda_next = BYTE_GET (eaux->vda_next);
9101
9102 if (VALID_DYNAMIC_NAME (aux.vda_name))
9103 printf (_("Name: %s\n"), GET_DYNAMIC_NAME (aux.vda_name));
9104 else
9105 printf (_("Name index: %ld\n"), aux.vda_name);
9106
9107 isum = idx + ent.vd_aux;
9108
9109 for (j = 1; j < ent.vd_cnt; j++)
9110 {
9111 /* Check for overflow. */
9112 if (aux.vda_next > (size_t) (endbuf - vstart))
9113 break;
9114
9115 isum += aux.vda_next;
9116 vstart += aux.vda_next;
9117
9118 eaux = (Elf_External_Verdaux *) vstart;
9119 if (vstart + sizeof (*eaux) > endbuf)
9120 break;
9121
9122 aux.vda_name = BYTE_GET (eaux->vda_name);
9123 aux.vda_next = BYTE_GET (eaux->vda_next);
9124
9125 if (VALID_DYNAMIC_NAME (aux.vda_name))
9126 printf (_(" %#06x: Parent %d: %s\n"),
9127 isum, j, GET_DYNAMIC_NAME (aux.vda_name));
9128 else
9129 printf (_(" %#06x: Parent %d, name index: %ld\n"),
9130 isum, j, aux.vda_name);
9131 }
9132
9133 if (j < ent.vd_cnt)
9134 printf (_(" Version def aux past end of section\n"));
9135
9136 /* PR 17531: file: id:000001,src:000172+005151,op:splice,rep:2. */
9137 if (idx + ent.vd_next <= idx)
9138 break;
9139
9140 idx += ent.vd_next;
9141 }
9142
9143 if (cnt < section->sh_info)
9144 printf (_(" Version definition past end of section\n"));
9145
9146 free (edefs);
9147 }
9148 break;
9149
9150 case SHT_GNU_verneed:
9151 {
9152 Elf_External_Verneed * eneed;
9153 unsigned int idx;
9154 unsigned int cnt;
9155 char * endbuf;
9156
9157 found = 1;
9158
9159 printf (_("\nVersion needs section '%s' contains %u entries:\n"),
9160 printable_section_name (section), section->sh_info);
9161
9162 printf (_(" Addr: 0x"));
9163 printf_vma (section->sh_addr);
9164 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
9165 (unsigned long) section->sh_offset, section->sh_link,
9166 printable_section_name_from_index (section->sh_link));
9167
9168 eneed = (Elf_External_Verneed *) get_data (NULL, file,
9169 section->sh_offset, 1,
9170 section->sh_size,
9171 _("Version Needs section"));
9172 if (!eneed)
9173 break;
9174 endbuf = (char *) eneed + section->sh_size;
9175
9176 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
9177 {
9178 Elf_External_Verneed * entry;
9179 Elf_Internal_Verneed ent;
9180 int j;
9181 int isum;
9182 char * vstart;
9183
9184 if (idx > (size_t) (endbuf - (char *) eneed))
9185 break;
9186
9187 vstart = ((char *) eneed) + idx;
9188 if (vstart + sizeof (*entry) > endbuf)
9189 break;
9190
9191 entry = (Elf_External_Verneed *) vstart;
9192
9193 ent.vn_version = BYTE_GET (entry->vn_version);
9194 ent.vn_cnt = BYTE_GET (entry->vn_cnt);
9195 ent.vn_file = BYTE_GET (entry->vn_file);
9196 ent.vn_aux = BYTE_GET (entry->vn_aux);
9197 ent.vn_next = BYTE_GET (entry->vn_next);
9198
9199 printf (_(" %#06x: Version: %d"), idx, ent.vn_version);
9200
9201 if (VALID_DYNAMIC_NAME (ent.vn_file))
9202 printf (_(" File: %s"), GET_DYNAMIC_NAME (ent.vn_file));
9203 else
9204 printf (_(" File: %lx"), ent.vn_file);
9205
9206 printf (_(" Cnt: %d\n"), ent.vn_cnt);
9207
9208 /* Check for overflow. */
9209 if (ent.vn_aux > (size_t) (endbuf - vstart))
9210 break;
9211
9212 vstart += ent.vn_aux;
9213
9214 for (j = 0, isum = idx + ent.vn_aux; j < ent.vn_cnt; ++j)
9215 {
9216 Elf_External_Vernaux * eaux;
9217 Elf_Internal_Vernaux aux;
9218
9219 if (vstart + sizeof (*eaux) > endbuf)
9220 break;
9221 eaux = (Elf_External_Vernaux *) vstart;
9222
9223 aux.vna_hash = BYTE_GET (eaux->vna_hash);
9224 aux.vna_flags = BYTE_GET (eaux->vna_flags);
9225 aux.vna_other = BYTE_GET (eaux->vna_other);
9226 aux.vna_name = BYTE_GET (eaux->vna_name);
9227 aux.vna_next = BYTE_GET (eaux->vna_next);
9228
9229 if (VALID_DYNAMIC_NAME (aux.vna_name))
9230 printf (_(" %#06x: Name: %s"),
9231 isum, GET_DYNAMIC_NAME (aux.vna_name));
9232 else
9233 printf (_(" %#06x: Name index: %lx"),
9234 isum, aux.vna_name);
9235
9236 printf (_(" Flags: %s Version: %d\n"),
9237 get_ver_flags (aux.vna_flags), aux.vna_other);
9238
9239 /* Check for overflow. */
9240 if (aux.vna_next > (size_t) (endbuf - vstart))
9241 break;
9242
9243 isum += aux.vna_next;
9244 vstart += aux.vna_next;
9245 }
9246
9247 if (j < ent.vn_cnt)
9248 warn (_("Missing Version Needs auxillary information\n"));
9249
9250 if (ent.vn_next == 0 && cnt < section->sh_info - 1)
9251 {
9252 warn (_("Corrupt Version Needs structure - offset to next structure is zero with entries still left to be processed\n"));
9253 cnt = section->sh_info;
9254 break;
9255 }
9256 idx += ent.vn_next;
9257 }
9258
9259 if (cnt < section->sh_info)
9260 warn (_("Missing Version Needs information\n"));
9261
9262 free (eneed);
9263 }
9264 break;
9265
9266 case SHT_GNU_versym:
9267 {
9268 Elf_Internal_Shdr * link_section;
9269 size_t total;
9270 unsigned int cnt;
9271 unsigned char * edata;
9272 unsigned short * data;
9273 char * strtab;
9274 Elf_Internal_Sym * symbols;
9275 Elf_Internal_Shdr * string_sec;
9276 unsigned long num_syms;
9277 long off;
9278
9279 if (section->sh_link >= elf_header.e_shnum)
9280 break;
9281
9282 link_section = section_headers + section->sh_link;
9283 total = section->sh_size / sizeof (Elf_External_Versym);
9284
9285 if (link_section->sh_link >= elf_header.e_shnum)
9286 break;
9287
9288 found = 1;
9289
9290 symbols = GET_ELF_SYMBOLS (file, link_section, & num_syms);
9291 if (symbols == NULL)
9292 break;
9293
9294 string_sec = section_headers + link_section->sh_link;
9295
9296 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
9297 string_sec->sh_size,
9298 _("version string table"));
9299 if (!strtab)
9300 {
9301 free (symbols);
9302 break;
9303 }
9304
9305 printf (_("\nVersion symbols section '%s' contains %lu entries:\n"),
9306 printable_section_name (section), (unsigned long) total);
9307
9308 printf (_(" Addr: "));
9309 printf_vma (section->sh_addr);
9310 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
9311 (unsigned long) section->sh_offset, section->sh_link,
9312 printable_section_name (link_section));
9313
9314 off = offset_from_vma (file,
9315 version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
9316 total * sizeof (short));
9317 edata = (unsigned char *) get_data (NULL, file, off, total,
9318 sizeof (short),
9319 _("version symbol data"));
9320 if (!edata)
9321 {
9322 free (strtab);
9323 free (symbols);
9324 break;
9325 }
9326
9327 data = (short unsigned int *) cmalloc (total, sizeof (short));
9328
9329 for (cnt = total; cnt --;)
9330 data[cnt] = byte_get (edata + cnt * sizeof (short),
9331 sizeof (short));
9332
9333 free (edata);
9334
9335 for (cnt = 0; cnt < total; cnt += 4)
9336 {
9337 int j, nn;
9338 int check_def, check_need;
9339 char * name;
9340
9341 printf (" %03x:", cnt);
9342
9343 for (j = 0; (j < 4) && (cnt + j) < total; ++j)
9344 switch (data[cnt + j])
9345 {
9346 case 0:
9347 fputs (_(" 0 (*local*) "), stdout);
9348 break;
9349
9350 case 1:
9351 fputs (_(" 1 (*global*) "), stdout);
9352 break;
9353
9354 default:
9355 nn = printf ("%4x%c", data[cnt + j] & VERSYM_VERSION,
9356 data[cnt + j] & VERSYM_HIDDEN ? 'h' : ' ');
9357
9358 /* If this index value is greater than the size of the symbols
9359 array, break to avoid an out-of-bounds read. */
9360 if ((unsigned long)(cnt + j) >= num_syms)
9361 {
9362 warn (_("invalid index into symbol array\n"));
9363 break;
9364 }
9365
9366 check_def = 1;
9367 check_need = 1;
9368 if (symbols[cnt + j].st_shndx >= elf_header.e_shnum
9369 || section_headers[symbols[cnt + j].st_shndx].sh_type
9370 != SHT_NOBITS)
9371 {
9372 if (symbols[cnt + j].st_shndx == SHN_UNDEF)
9373 check_def = 0;
9374 else
9375 check_need = 0;
9376 }
9377
9378 if (check_need
9379 && version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
9380 {
9381 Elf_Internal_Verneed ivn;
9382 unsigned long offset;
9383
9384 offset = offset_from_vma
9385 (file, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
9386 sizeof (Elf_External_Verneed));
9387
9388 do
9389 {
9390 Elf_Internal_Vernaux ivna;
9391 Elf_External_Verneed evn;
9392 Elf_External_Vernaux evna;
9393 unsigned long a_off;
9394
9395 if (get_data (&evn, file, offset, sizeof (evn), 1,
9396 _("version need")) == NULL)
9397 break;
9398
9399 ivn.vn_aux = BYTE_GET (evn.vn_aux);
9400 ivn.vn_next = BYTE_GET (evn.vn_next);
9401
9402 a_off = offset + ivn.vn_aux;
9403
9404 do
9405 {
9406 if (get_data (&evna, file, a_off, sizeof (evna),
9407 1, _("version need aux (2)")) == NULL)
9408 {
9409 ivna.vna_next = 0;
9410 ivna.vna_other = 0;
9411 }
9412 else
9413 {
9414 ivna.vna_next = BYTE_GET (evna.vna_next);
9415 ivna.vna_other = BYTE_GET (evna.vna_other);
9416 }
9417
9418 a_off += ivna.vna_next;
9419 }
9420 while (ivna.vna_other != data[cnt + j]
9421 && ivna.vna_next != 0);
9422
9423 if (ivna.vna_other == data[cnt + j])
9424 {
9425 ivna.vna_name = BYTE_GET (evna.vna_name);
9426
9427 if (ivna.vna_name >= string_sec->sh_size)
9428 name = _("*invalid*");
9429 else
9430 name = strtab + ivna.vna_name;
9431 nn += printf ("(%s%-*s",
9432 name,
9433 12 - (int) strlen (name),
9434 ")");
9435 check_def = 0;
9436 break;
9437 }
9438
9439 offset += ivn.vn_next;
9440 }
9441 while (ivn.vn_next);
9442 }
9443
9444 if (check_def && data[cnt + j] != 0x8001
9445 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
9446 {
9447 Elf_Internal_Verdef ivd;
9448 Elf_External_Verdef evd;
9449 unsigned long offset;
9450
9451 offset = offset_from_vma
9452 (file, version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
9453 sizeof evd);
9454
9455 do
9456 {
9457 if (get_data (&evd, file, offset, sizeof (evd), 1,
9458 _("version def")) == NULL)
9459 {
9460 ivd.vd_next = 0;
9461 /* PR 17531: file: 046-1082287-0.004. */
9462 ivd.vd_ndx = (data[cnt + j] & VERSYM_VERSION) + 1;
9463 break;
9464 }
9465 else
9466 {
9467 ivd.vd_next = BYTE_GET (evd.vd_next);
9468 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
9469 }
9470
9471 offset += ivd.vd_next;
9472 }
9473 while (ivd.vd_ndx != (data[cnt + j] & VERSYM_VERSION)
9474 && ivd.vd_next != 0);
9475
9476 if (ivd.vd_ndx == (data[cnt + j] & VERSYM_VERSION))
9477 {
9478 Elf_External_Verdaux evda;
9479 Elf_Internal_Verdaux ivda;
9480
9481 ivd.vd_aux = BYTE_GET (evd.vd_aux);
9482
9483 if (get_data (&evda, file,
9484 offset - ivd.vd_next + ivd.vd_aux,
9485 sizeof (evda), 1,
9486 _("version def aux")) == NULL)
9487 break;
9488
9489 ivda.vda_name = BYTE_GET (evda.vda_name);
9490
9491 if (ivda.vda_name >= string_sec->sh_size)
9492 name = _("*invalid*");
9493 else
9494 name = strtab + ivda.vda_name;
9495 nn += printf ("(%s%-*s",
9496 name,
9497 12 - (int) strlen (name),
9498 ")");
9499 }
9500 }
9501
9502 if (nn < 18)
9503 printf ("%*c", 18 - nn, ' ');
9504 }
9505
9506 putchar ('\n');
9507 }
9508
9509 free (data);
9510 free (strtab);
9511 free (symbols);
9512 }
9513 break;
9514
9515 default:
9516 break;
9517 }
9518 }
9519
9520 if (! found)
9521 printf (_("\nNo version information found in this file.\n"));
9522
9523 return 1;
9524 }
9525
9526 static const char *
9527 get_symbol_binding (unsigned int binding)
9528 {
9529 static char buff[32];
9530
9531 switch (binding)
9532 {
9533 case STB_LOCAL: return "LOCAL";
9534 case STB_GLOBAL: return "GLOBAL";
9535 case STB_WEAK: return "WEAK";
9536 default:
9537 if (binding >= STB_LOPROC && binding <= STB_HIPROC)
9538 snprintf (buff, sizeof (buff), _("<processor specific>: %d"),
9539 binding);
9540 else if (binding >= STB_LOOS && binding <= STB_HIOS)
9541 {
9542 if (binding == STB_GNU_UNIQUE
9543 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
9544 /* GNU is still using the default value 0. */
9545 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
9546 return "UNIQUE";
9547 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), binding);
9548 }
9549 else
9550 snprintf (buff, sizeof (buff), _("<unknown>: %d"), binding);
9551 return buff;
9552 }
9553 }
9554
9555 static const char *
9556 get_symbol_type (unsigned int type)
9557 {
9558 static char buff[32];
9559
9560 switch (type)
9561 {
9562 case STT_NOTYPE: return "NOTYPE";
9563 case STT_OBJECT: return "OBJECT";
9564 case STT_FUNC: return "FUNC";
9565 case STT_SECTION: return "SECTION";
9566 case STT_FILE: return "FILE";
9567 case STT_COMMON: return "COMMON";
9568 case STT_TLS: return "TLS";
9569 case STT_RELC: return "RELC";
9570 case STT_SRELC: return "SRELC";
9571 default:
9572 if (type >= STT_LOPROC && type <= STT_HIPROC)
9573 {
9574 if (elf_header.e_machine == EM_ARM && type == STT_ARM_TFUNC)
9575 return "THUMB_FUNC";
9576
9577 if (elf_header.e_machine == EM_SPARCV9 && type == STT_REGISTER)
9578 return "REGISTER";
9579
9580 if (elf_header.e_machine == EM_PARISC && type == STT_PARISC_MILLI)
9581 return "PARISC_MILLI";
9582
9583 snprintf (buff, sizeof (buff), _("<processor specific>: %d"), type);
9584 }
9585 else if (type >= STT_LOOS && type <= STT_HIOS)
9586 {
9587 if (elf_header.e_machine == EM_PARISC)
9588 {
9589 if (type == STT_HP_OPAQUE)
9590 return "HP_OPAQUE";
9591 if (type == STT_HP_STUB)
9592 return "HP_STUB";
9593 }
9594
9595 if (type == STT_GNU_IFUNC
9596 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
9597 || elf_header.e_ident[EI_OSABI] == ELFOSABI_FREEBSD
9598 /* GNU is still using the default value 0. */
9599 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
9600 return "IFUNC";
9601
9602 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), type);
9603 }
9604 else
9605 snprintf (buff, sizeof (buff), _("<unknown>: %d"), type);
9606 return buff;
9607 }
9608 }
9609
9610 static const char *
9611 get_symbol_visibility (unsigned int visibility)
9612 {
9613 switch (visibility)
9614 {
9615 case STV_DEFAULT: return "DEFAULT";
9616 case STV_INTERNAL: return "INTERNAL";
9617 case STV_HIDDEN: return "HIDDEN";
9618 case STV_PROTECTED: return "PROTECTED";
9619 default: abort ();
9620 }
9621 }
9622
9623 static const char *
9624 get_mips_symbol_other (unsigned int other)
9625 {
9626 switch (other)
9627 {
9628 case STO_OPTIONAL:
9629 return "OPTIONAL";
9630 case STO_MIPS_PLT:
9631 return "MIPS PLT";
9632 case STO_MIPS_PIC:
9633 return "MIPS PIC";
9634 case STO_MICROMIPS:
9635 return "MICROMIPS";
9636 case STO_MICROMIPS | STO_MIPS_PIC:
9637 return "MICROMIPS, MIPS PIC";
9638 case STO_MIPS16:
9639 return "MIPS16";
9640 default:
9641 return NULL;
9642 }
9643 }
9644
9645 static const char *
9646 get_ia64_symbol_other (unsigned int other)
9647 {
9648 if (is_ia64_vms ())
9649 {
9650 static char res[32];
9651
9652 res[0] = 0;
9653
9654 /* Function types is for images and .STB files only. */
9655 switch (elf_header.e_type)
9656 {
9657 case ET_DYN:
9658 case ET_EXEC:
9659 switch (VMS_ST_FUNC_TYPE (other))
9660 {
9661 case VMS_SFT_CODE_ADDR:
9662 strcat (res, " CA");
9663 break;
9664 case VMS_SFT_SYMV_IDX:
9665 strcat (res, " VEC");
9666 break;
9667 case VMS_SFT_FD:
9668 strcat (res, " FD");
9669 break;
9670 case VMS_SFT_RESERVE:
9671 strcat (res, " RSV");
9672 break;
9673 default:
9674 abort ();
9675 }
9676 break;
9677 default:
9678 break;
9679 }
9680 switch (VMS_ST_LINKAGE (other))
9681 {
9682 case VMS_STL_IGNORE:
9683 strcat (res, " IGN");
9684 break;
9685 case VMS_STL_RESERVE:
9686 strcat (res, " RSV");
9687 break;
9688 case VMS_STL_STD:
9689 strcat (res, " STD");
9690 break;
9691 case VMS_STL_LNK:
9692 strcat (res, " LNK");
9693 break;
9694 default:
9695 abort ();
9696 }
9697
9698 if (res[0] != 0)
9699 return res + 1;
9700 else
9701 return res;
9702 }
9703 return NULL;
9704 }
9705
9706 static const char *
9707 get_ppc64_symbol_other (unsigned int other)
9708 {
9709 if (PPC64_LOCAL_ENTRY_OFFSET (other) != 0)
9710 {
9711 static char buf[32];
9712 snprintf (buf, sizeof buf, _("<localentry>: %d"),
9713 PPC64_LOCAL_ENTRY_OFFSET (other));
9714 return buf;
9715 }
9716 return NULL;
9717 }
9718
9719 static const char *
9720 get_symbol_other (unsigned int other)
9721 {
9722 const char * result = NULL;
9723 static char buff [32];
9724
9725 if (other == 0)
9726 return "";
9727
9728 switch (elf_header.e_machine)
9729 {
9730 case EM_MIPS:
9731 result = get_mips_symbol_other (other);
9732 break;
9733 case EM_IA_64:
9734 result = get_ia64_symbol_other (other);
9735 break;
9736 case EM_PPC64:
9737 result = get_ppc64_symbol_other (other);
9738 break;
9739 default:
9740 break;
9741 }
9742
9743 if (result)
9744 return result;
9745
9746 snprintf (buff, sizeof buff, _("<other>: %x"), other);
9747 return buff;
9748 }
9749
9750 static const char *
9751 get_symbol_index_type (unsigned int type)
9752 {
9753 static char buff[32];
9754
9755 switch (type)
9756 {
9757 case SHN_UNDEF: return "UND";
9758 case SHN_ABS: return "ABS";
9759 case SHN_COMMON: return "COM";
9760 default:
9761 if (type == SHN_IA_64_ANSI_COMMON
9762 && elf_header.e_machine == EM_IA_64
9763 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX)
9764 return "ANSI_COM";
9765 else if ((elf_header.e_machine == EM_X86_64
9766 || elf_header.e_machine == EM_L1OM
9767 || elf_header.e_machine == EM_K1OM)
9768 && type == SHN_X86_64_LCOMMON)
9769 return "LARGE_COM";
9770 else if ((type == SHN_MIPS_SCOMMON
9771 && elf_header.e_machine == EM_MIPS)
9772 || (type == SHN_TIC6X_SCOMMON
9773 && elf_header.e_machine == EM_TI_C6000))
9774 return "SCOM";
9775 else if (type == SHN_MIPS_SUNDEFINED
9776 && elf_header.e_machine == EM_MIPS)
9777 return "SUND";
9778 else if (type >= SHN_LOPROC && type <= SHN_HIPROC)
9779 sprintf (buff, "PRC[0x%04x]", type & 0xffff);
9780 else if (type >= SHN_LOOS && type <= SHN_HIOS)
9781 sprintf (buff, "OS [0x%04x]", type & 0xffff);
9782 else if (type >= SHN_LORESERVE)
9783 sprintf (buff, "RSV[0x%04x]", type & 0xffff);
9784 else if (type >= elf_header.e_shnum)
9785 sprintf (buff, _("bad section index[%3d]"), type);
9786 else
9787 sprintf (buff, "%3d", type);
9788 break;
9789 }
9790
9791 return buff;
9792 }
9793
9794 static bfd_vma *
9795 get_dynamic_data (FILE * file, size_t number, unsigned int ent_size)
9796 {
9797 unsigned char * e_data;
9798 bfd_vma * i_data;
9799
9800 /* Be kind to memory chekers (eg valgrind, address sanitizer) by not
9801 attempting to allocate memory when the read is bound to fail. */
9802 if (ent_size * number > current_file_size)
9803 {
9804 error (_("Invalid number of dynamic entries: %lu\n"),
9805 (unsigned long) number);
9806 return NULL;
9807 }
9808
9809 e_data = (unsigned char *) cmalloc (number, ent_size);
9810 if (e_data == NULL)
9811 {
9812 error (_("Out of memory reading %lu dynamic entries\n"),
9813 (unsigned long) number);
9814 return NULL;
9815 }
9816
9817 if (fread (e_data, ent_size, number, file) != number)
9818 {
9819 error (_("Unable to read in %lu bytes of dynamic data\n"),
9820 (unsigned long) (number * ent_size));
9821 free (e_data);
9822 return NULL;
9823 }
9824
9825 i_data = (bfd_vma *) cmalloc (number, sizeof (*i_data));
9826 if (i_data == NULL)
9827 {
9828 error (_("Out of memory allocating space for %lu dynamic entries\n"),
9829 (unsigned long) number);
9830 free (e_data);
9831 return NULL;
9832 }
9833
9834 while (number--)
9835 i_data[number] = byte_get (e_data + number * ent_size, ent_size);
9836
9837 free (e_data);
9838
9839 return i_data;
9840 }
9841
9842 static void
9843 print_dynamic_symbol (bfd_vma si, unsigned long hn)
9844 {
9845 Elf_Internal_Sym * psym;
9846 int n;
9847
9848 n = print_vma (si, DEC_5);
9849 if (n < 5)
9850 fputs (&" "[n], stdout);
9851 printf (" %3lu: ", hn);
9852
9853 if (dynamic_symbols == NULL || si >= num_dynamic_syms)
9854 {
9855 printf (_("<No info available for dynamic symbol number %lu>\n"),
9856 (unsigned long) si);
9857 return;
9858 }
9859
9860 psym = dynamic_symbols + si;
9861 print_vma (psym->st_value, LONG_HEX);
9862 putchar (' ');
9863 print_vma (psym->st_size, DEC_5);
9864
9865 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
9866 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
9867 printf (" %-7s", get_symbol_visibility (ELF_ST_VISIBILITY (psym->st_other)));
9868 /* Check to see if any other bits in the st_other field are set.
9869 Note - displaying this information disrupts the layout of the
9870 table being generated, but for the moment this case is very
9871 rare. */
9872 if (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other))
9873 printf (" [%s] ", get_symbol_other (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other)));
9874 printf (" %3.3s ", get_symbol_index_type (psym->st_shndx));
9875 if (VALID_DYNAMIC_NAME (psym->st_name))
9876 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
9877 else
9878 printf (_(" <corrupt: %14ld>"), psym->st_name);
9879 putchar ('\n');
9880 }
9881
9882 /* Dump the symbol table. */
9883 static int
9884 process_symbol_table (FILE * file)
9885 {
9886 Elf_Internal_Shdr * section;
9887 bfd_size_type nbuckets = 0;
9888 bfd_size_type nchains = 0;
9889 bfd_vma * buckets = NULL;
9890 bfd_vma * chains = NULL;
9891 bfd_vma ngnubuckets = 0;
9892 bfd_vma * gnubuckets = NULL;
9893 bfd_vma * gnuchains = NULL;
9894 bfd_vma gnusymidx = 0;
9895 bfd_size_type ngnuchains = 0;
9896
9897 if (!do_syms && !do_dyn_syms && !do_histogram)
9898 return 1;
9899
9900 if (dynamic_info[DT_HASH]
9901 && (do_histogram
9902 || (do_using_dynamic
9903 && !do_dyn_syms
9904 && dynamic_strings != NULL)))
9905 {
9906 unsigned char nb[8];
9907 unsigned char nc[8];
9908 unsigned int hash_ent_size = 4;
9909
9910 if ((elf_header.e_machine == EM_ALPHA
9911 || elf_header.e_machine == EM_S390
9912 || elf_header.e_machine == EM_S390_OLD)
9913 && elf_header.e_ident[EI_CLASS] == ELFCLASS64)
9914 hash_ent_size = 8;
9915
9916 if (fseek (file,
9917 (archive_file_offset
9918 + offset_from_vma (file, dynamic_info[DT_HASH],
9919 sizeof nb + sizeof nc)),
9920 SEEK_SET))
9921 {
9922 error (_("Unable to seek to start of dynamic information\n"));
9923 goto no_hash;
9924 }
9925
9926 if (fread (nb, hash_ent_size, 1, file) != 1)
9927 {
9928 error (_("Failed to read in number of buckets\n"));
9929 goto no_hash;
9930 }
9931
9932 if (fread (nc, hash_ent_size, 1, file) != 1)
9933 {
9934 error (_("Failed to read in number of chains\n"));
9935 goto no_hash;
9936 }
9937
9938 nbuckets = byte_get (nb, hash_ent_size);
9939 nchains = byte_get (nc, hash_ent_size);
9940
9941 buckets = get_dynamic_data (file, nbuckets, hash_ent_size);
9942 chains = get_dynamic_data (file, nchains, hash_ent_size);
9943
9944 no_hash:
9945 if (buckets == NULL || chains == NULL)
9946 {
9947 if (do_using_dynamic)
9948 return 0;
9949 free (buckets);
9950 free (chains);
9951 buckets = NULL;
9952 chains = NULL;
9953 nbuckets = 0;
9954 nchains = 0;
9955 }
9956 }
9957
9958 if (dynamic_info_DT_GNU_HASH
9959 && (do_histogram
9960 || (do_using_dynamic
9961 && !do_dyn_syms
9962 && dynamic_strings != NULL)))
9963 {
9964 unsigned char nb[16];
9965 bfd_vma i, maxchain = 0xffffffff, bitmaskwords;
9966 bfd_vma buckets_vma;
9967
9968 if (fseek (file,
9969 (archive_file_offset
9970 + offset_from_vma (file, dynamic_info_DT_GNU_HASH,
9971 sizeof nb)),
9972 SEEK_SET))
9973 {
9974 error (_("Unable to seek to start of dynamic information\n"));
9975 goto no_gnu_hash;
9976 }
9977
9978 if (fread (nb, 16, 1, file) != 1)
9979 {
9980 error (_("Failed to read in number of buckets\n"));
9981 goto no_gnu_hash;
9982 }
9983
9984 ngnubuckets = byte_get (nb, 4);
9985 gnusymidx = byte_get (nb + 4, 4);
9986 bitmaskwords = byte_get (nb + 8, 4);
9987 buckets_vma = dynamic_info_DT_GNU_HASH + 16;
9988 if (is_32bit_elf)
9989 buckets_vma += bitmaskwords * 4;
9990 else
9991 buckets_vma += bitmaskwords * 8;
9992
9993 if (fseek (file,
9994 (archive_file_offset
9995 + offset_from_vma (file, buckets_vma, 4)),
9996 SEEK_SET))
9997 {
9998 error (_("Unable to seek to start of dynamic information\n"));
9999 goto no_gnu_hash;
10000 }
10001
10002 gnubuckets = get_dynamic_data (file, ngnubuckets, 4);
10003
10004 if (gnubuckets == NULL)
10005 goto no_gnu_hash;
10006
10007 for (i = 0; i < ngnubuckets; i++)
10008 if (gnubuckets[i] != 0)
10009 {
10010 if (gnubuckets[i] < gnusymidx)
10011 return 0;
10012
10013 if (maxchain == 0xffffffff || gnubuckets[i] > maxchain)
10014 maxchain = gnubuckets[i];
10015 }
10016
10017 if (maxchain == 0xffffffff)
10018 goto no_gnu_hash;
10019
10020 maxchain -= gnusymidx;
10021
10022 if (fseek (file,
10023 (archive_file_offset
10024 + offset_from_vma (file, buckets_vma
10025 + 4 * (ngnubuckets + maxchain), 4)),
10026 SEEK_SET))
10027 {
10028 error (_("Unable to seek to start of dynamic information\n"));
10029 goto no_gnu_hash;
10030 }
10031
10032 do
10033 {
10034 if (fread (nb, 4, 1, file) != 1)
10035 {
10036 error (_("Failed to determine last chain length\n"));
10037 goto no_gnu_hash;
10038 }
10039
10040 if (maxchain + 1 == 0)
10041 goto no_gnu_hash;
10042
10043 ++maxchain;
10044 }
10045 while ((byte_get (nb, 4) & 1) == 0);
10046
10047 if (fseek (file,
10048 (archive_file_offset
10049 + offset_from_vma (file, buckets_vma + 4 * ngnubuckets, 4)),
10050 SEEK_SET))
10051 {
10052 error (_("Unable to seek to start of dynamic information\n"));
10053 goto no_gnu_hash;
10054 }
10055
10056 gnuchains = get_dynamic_data (file, maxchain, 4);
10057 ngnuchains = maxchain;
10058
10059 no_gnu_hash:
10060 if (gnuchains == NULL)
10061 {
10062 free (gnubuckets);
10063 gnubuckets = NULL;
10064 ngnubuckets = 0;
10065 if (do_using_dynamic)
10066 return 0;
10067 }
10068 }
10069
10070 if ((dynamic_info[DT_HASH] || dynamic_info_DT_GNU_HASH)
10071 && do_syms
10072 && do_using_dynamic
10073 && dynamic_strings != NULL
10074 && dynamic_symbols != NULL)
10075 {
10076 unsigned long hn;
10077
10078 if (dynamic_info[DT_HASH])
10079 {
10080 bfd_vma si;
10081
10082 printf (_("\nSymbol table for image:\n"));
10083 if (is_32bit_elf)
10084 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
10085 else
10086 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
10087
10088 for (hn = 0; hn < nbuckets; hn++)
10089 {
10090 if (! buckets[hn])
10091 continue;
10092
10093 for (si = buckets[hn]; si < nchains && si > 0; si = chains[si])
10094 print_dynamic_symbol (si, hn);
10095 }
10096 }
10097
10098 if (dynamic_info_DT_GNU_HASH)
10099 {
10100 printf (_("\nSymbol table of `.gnu.hash' for image:\n"));
10101 if (is_32bit_elf)
10102 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
10103 else
10104 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
10105
10106 for (hn = 0; hn < ngnubuckets; ++hn)
10107 if (gnubuckets[hn] != 0)
10108 {
10109 bfd_vma si = gnubuckets[hn];
10110 bfd_vma off = si - gnusymidx;
10111
10112 do
10113 {
10114 print_dynamic_symbol (si, hn);
10115 si++;
10116 }
10117 while (off < ngnuchains && (gnuchains[off++] & 1) == 0);
10118 }
10119 }
10120 }
10121 else if ((do_dyn_syms || (do_syms && !do_using_dynamic))
10122 && section_headers != NULL)
10123 {
10124 unsigned int i;
10125
10126 for (i = 0, section = section_headers;
10127 i < elf_header.e_shnum;
10128 i++, section++)
10129 {
10130 unsigned int si;
10131 char * strtab = NULL;
10132 unsigned long int strtab_size = 0;
10133 Elf_Internal_Sym * symtab;
10134 Elf_Internal_Sym * psym;
10135 unsigned long num_syms;
10136
10137 if ((section->sh_type != SHT_SYMTAB
10138 && section->sh_type != SHT_DYNSYM)
10139 || (!do_syms
10140 && section->sh_type == SHT_SYMTAB))
10141 continue;
10142
10143 if (section->sh_entsize == 0)
10144 {
10145 printf (_("\nSymbol table '%s' has a sh_entsize of zero!\n"),
10146 printable_section_name (section));
10147 continue;
10148 }
10149
10150 printf (_("\nSymbol table '%s' contains %lu entries:\n"),
10151 printable_section_name (section),
10152 (unsigned long) (section->sh_size / section->sh_entsize));
10153
10154 if (is_32bit_elf)
10155 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
10156 else
10157 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
10158
10159 symtab = GET_ELF_SYMBOLS (file, section, & num_syms);
10160 if (symtab == NULL)
10161 continue;
10162
10163 if (section->sh_link == elf_header.e_shstrndx)
10164 {
10165 strtab = string_table;
10166 strtab_size = string_table_length;
10167 }
10168 else if (section->sh_link < elf_header.e_shnum)
10169 {
10170 Elf_Internal_Shdr * string_sec;
10171
10172 string_sec = section_headers + section->sh_link;
10173
10174 strtab = (char *) get_data (NULL, file, string_sec->sh_offset,
10175 1, string_sec->sh_size,
10176 _("string table"));
10177 strtab_size = strtab != NULL ? string_sec->sh_size : 0;
10178 }
10179
10180 for (si = 0, psym = symtab; si < num_syms; si++, psym++)
10181 {
10182 printf ("%6d: ", si);
10183 print_vma (psym->st_value, LONG_HEX);
10184 putchar (' ');
10185 print_vma (psym->st_size, DEC_5);
10186 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
10187 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
10188 printf (" %-7s", get_symbol_visibility (ELF_ST_VISIBILITY (psym->st_other)));
10189 /* Check to see if any other bits in the st_other field are set.
10190 Note - displaying this information disrupts the layout of the
10191 table being generated, but for the moment this case is very rare. */
10192 if (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other))
10193 printf (" [%s] ", get_symbol_other (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other)));
10194 printf (" %4s ", get_symbol_index_type (psym->st_shndx));
10195 print_symbol (25, psym->st_name < strtab_size
10196 ? strtab + psym->st_name : _("<corrupt>"));
10197
10198 if (section->sh_type == SHT_DYNSYM
10199 && version_info[DT_VERSIONTAGIDX (DT_VERSYM)] != 0)
10200 {
10201 unsigned char data[2];
10202 unsigned short vers_data;
10203 unsigned long offset;
10204 int is_nobits;
10205 int check_def;
10206
10207 offset = offset_from_vma
10208 (file, version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
10209 sizeof data + si * sizeof (vers_data));
10210
10211 if (get_data (&data, file, offset + si * sizeof (vers_data),
10212 sizeof (data), 1, _("version data")) == NULL)
10213 break;
10214
10215 vers_data = byte_get (data, 2);
10216
10217 is_nobits = (psym->st_shndx < elf_header.e_shnum
10218 && section_headers[psym->st_shndx].sh_type
10219 == SHT_NOBITS);
10220
10221 check_def = (psym->st_shndx != SHN_UNDEF);
10222
10223 if ((vers_data & VERSYM_HIDDEN) || vers_data > 1)
10224 {
10225 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)]
10226 && (is_nobits || ! check_def))
10227 {
10228 Elf_External_Verneed evn;
10229 Elf_Internal_Verneed ivn;
10230 Elf_Internal_Vernaux ivna;
10231
10232 /* We must test both. */
10233 offset = offset_from_vma
10234 (file, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
10235 sizeof evn);
10236
10237 do
10238 {
10239 unsigned long vna_off;
10240
10241 if (get_data (&evn, file, offset, sizeof (evn), 1,
10242 _("version need")) == NULL)
10243 {
10244 ivna.vna_next = 0;
10245 ivna.vna_other = 0;
10246 ivna.vna_name = 0;
10247 break;
10248 }
10249
10250 ivn.vn_aux = BYTE_GET (evn.vn_aux);
10251 ivn.vn_next = BYTE_GET (evn.vn_next);
10252
10253 vna_off = offset + ivn.vn_aux;
10254
10255 do
10256 {
10257 Elf_External_Vernaux evna;
10258
10259 if (get_data (&evna, file, vna_off,
10260 sizeof (evna), 1,
10261 _("version need aux (3)")) == NULL)
10262 {
10263 ivna.vna_next = 0;
10264 ivna.vna_other = 0;
10265 ivna.vna_name = 0;
10266 }
10267 else
10268 {
10269 ivna.vna_other = BYTE_GET (evna.vna_other);
10270 ivna.vna_next = BYTE_GET (evna.vna_next);
10271 ivna.vna_name = BYTE_GET (evna.vna_name);
10272 }
10273
10274 vna_off += ivna.vna_next;
10275 }
10276 while (ivna.vna_other != vers_data
10277 && ivna.vna_next != 0);
10278
10279 if (ivna.vna_other == vers_data)
10280 break;
10281
10282 offset += ivn.vn_next;
10283 }
10284 while (ivn.vn_next != 0);
10285
10286 if (ivna.vna_other == vers_data)
10287 {
10288 printf ("@%s (%d)",
10289 ivna.vna_name < strtab_size
10290 ? strtab + ivna.vna_name : _("<corrupt>"),
10291 ivna.vna_other);
10292 check_def = 0;
10293 }
10294 else if (! is_nobits)
10295 error (_("bad dynamic symbol\n"));
10296 else
10297 check_def = 1;
10298 }
10299
10300 if (check_def)
10301 {
10302 if (vers_data != 0x8001
10303 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
10304 {
10305 Elf_Internal_Verdef ivd;
10306 Elf_Internal_Verdaux ivda;
10307 Elf_External_Verdaux evda;
10308 unsigned long off;
10309
10310 off = offset_from_vma
10311 (file,
10312 version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
10313 sizeof (Elf_External_Verdef));
10314
10315 do
10316 {
10317 Elf_External_Verdef evd;
10318
10319 if (get_data (&evd, file, off, sizeof (evd),
10320 1, _("version def")) == NULL)
10321 {
10322 ivd.vd_ndx = 0;
10323 ivd.vd_aux = 0;
10324 ivd.vd_next = 0;
10325 }
10326 else
10327 {
10328 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
10329 ivd.vd_aux = BYTE_GET (evd.vd_aux);
10330 ivd.vd_next = BYTE_GET (evd.vd_next);
10331 }
10332
10333 off += ivd.vd_next;
10334 }
10335 while (ivd.vd_ndx != (vers_data & VERSYM_VERSION)
10336 && ivd.vd_next != 0);
10337
10338 off -= ivd.vd_next;
10339 off += ivd.vd_aux;
10340
10341 if (get_data (&evda, file, off, sizeof (evda),
10342 1, _("version def aux")) == NULL)
10343 break;
10344
10345 ivda.vda_name = BYTE_GET (evda.vda_name);
10346
10347 if (psym->st_name != ivda.vda_name)
10348 printf ((vers_data & VERSYM_HIDDEN)
10349 ? "@%s" : "@@%s",
10350 ivda.vda_name < strtab_size
10351 ? strtab + ivda.vda_name : _("<corrupt>"));
10352 }
10353 }
10354 }
10355 }
10356
10357 putchar ('\n');
10358 }
10359
10360 free (symtab);
10361 if (strtab != string_table)
10362 free (strtab);
10363 }
10364 }
10365 else if (do_syms)
10366 printf
10367 (_("\nDynamic symbol information is not available for displaying symbols.\n"));
10368
10369 if (do_histogram && buckets != NULL)
10370 {
10371 unsigned long * lengths;
10372 unsigned long * counts;
10373 unsigned long hn;
10374 bfd_vma si;
10375 unsigned long maxlength = 0;
10376 unsigned long nzero_counts = 0;
10377 unsigned long nsyms = 0;
10378
10379 printf (_("\nHistogram for bucket list length (total of %lu buckets):\n"),
10380 (unsigned long) nbuckets);
10381
10382 lengths = (unsigned long *) calloc (nbuckets, sizeof (*lengths));
10383 if (lengths == NULL)
10384 {
10385 error (_("Out of memory allocating space for histogram buckets\n"));
10386 return 0;
10387 }
10388
10389 printf (_(" Length Number %% of total Coverage\n"));
10390 for (hn = 0; hn < nbuckets; ++hn)
10391 {
10392 for (si = buckets[hn]; si > 0 && si < nchains; si = chains[si])
10393 {
10394 ++nsyms;
10395 if (maxlength < ++lengths[hn])
10396 ++maxlength;
10397
10398 /* PR binutils/17531: A corrupt binary could contain broken
10399 histogram data. Do not go into an infinite loop trying
10400 to process it. */
10401 if (chains[si] == si)
10402 {
10403 error (_("histogram chain links to itself\n"));
10404 break;
10405 }
10406 }
10407 }
10408
10409 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
10410 if (counts == NULL)
10411 {
10412 free (lengths);
10413 error (_("Out of memory allocating space for histogram counts\n"));
10414 return 0;
10415 }
10416
10417 for (hn = 0; hn < nbuckets; ++hn)
10418 ++counts[lengths[hn]];
10419
10420 if (nbuckets > 0)
10421 {
10422 unsigned long i;
10423 printf (" 0 %-10lu (%5.1f%%)\n",
10424 counts[0], (counts[0] * 100.0) / nbuckets);
10425 for (i = 1; i <= maxlength; ++i)
10426 {
10427 nzero_counts += counts[i] * i;
10428 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
10429 i, counts[i], (counts[i] * 100.0) / nbuckets,
10430 (nzero_counts * 100.0) / nsyms);
10431 }
10432 }
10433
10434 free (counts);
10435 free (lengths);
10436 }
10437
10438 if (buckets != NULL)
10439 {
10440 free (buckets);
10441 free (chains);
10442 }
10443
10444 if (do_histogram && gnubuckets != NULL)
10445 {
10446 unsigned long * lengths;
10447 unsigned long * counts;
10448 unsigned long hn;
10449 unsigned long maxlength = 0;
10450 unsigned long nzero_counts = 0;
10451 unsigned long nsyms = 0;
10452
10453 printf (_("\nHistogram for `.gnu.hash' bucket list length (total of %lu buckets):\n"),
10454 (unsigned long) ngnubuckets);
10455
10456 lengths = (unsigned long *) calloc (ngnubuckets, sizeof (*lengths));
10457 if (lengths == NULL)
10458 {
10459 error (_("Out of memory allocating space for gnu histogram buckets\n"));
10460 return 0;
10461 }
10462
10463 printf (_(" Length Number %% of total Coverage\n"));
10464
10465 for (hn = 0; hn < ngnubuckets; ++hn)
10466 if (gnubuckets[hn] != 0)
10467 {
10468 bfd_vma off, length = 1;
10469
10470 for (off = gnubuckets[hn] - gnusymidx;
10471 /* PR 17531 file: 010-77222-0.004. */
10472 off < ngnuchains && (gnuchains[off] & 1) == 0;
10473 ++off)
10474 ++length;
10475 lengths[hn] = length;
10476 if (length > maxlength)
10477 maxlength = length;
10478 nsyms += length;
10479 }
10480
10481 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
10482 if (counts == NULL)
10483 {
10484 free (lengths);
10485 error (_("Out of memory allocating space for gnu histogram counts\n"));
10486 return 0;
10487 }
10488
10489 for (hn = 0; hn < ngnubuckets; ++hn)
10490 ++counts[lengths[hn]];
10491
10492 if (ngnubuckets > 0)
10493 {
10494 unsigned long j;
10495 printf (" 0 %-10lu (%5.1f%%)\n",
10496 counts[0], (counts[0] * 100.0) / ngnubuckets);
10497 for (j = 1; j <= maxlength; ++j)
10498 {
10499 nzero_counts += counts[j] * j;
10500 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
10501 j, counts[j], (counts[j] * 100.0) / ngnubuckets,
10502 (nzero_counts * 100.0) / nsyms);
10503 }
10504 }
10505
10506 free (counts);
10507 free (lengths);
10508 free (gnubuckets);
10509 free (gnuchains);
10510 }
10511
10512 return 1;
10513 }
10514
10515 static int
10516 process_syminfo (FILE * file ATTRIBUTE_UNUSED)
10517 {
10518 unsigned int i;
10519
10520 if (dynamic_syminfo == NULL
10521 || !do_dynamic)
10522 /* No syminfo, this is ok. */
10523 return 1;
10524
10525 /* There better should be a dynamic symbol section. */
10526 if (dynamic_symbols == NULL || dynamic_strings == NULL)
10527 return 0;
10528
10529 if (dynamic_addr)
10530 printf (_("\nDynamic info segment at offset 0x%lx contains %d entries:\n"),
10531 dynamic_syminfo_offset, dynamic_syminfo_nent);
10532
10533 printf (_(" Num: Name BoundTo Flags\n"));
10534 for (i = 0; i < dynamic_syminfo_nent; ++i)
10535 {
10536 unsigned short int flags = dynamic_syminfo[i].si_flags;
10537
10538 printf ("%4d: ", i);
10539 if (i >= num_dynamic_syms)
10540 printf (_("<corrupt index>"));
10541 else if (VALID_DYNAMIC_NAME (dynamic_symbols[i].st_name))
10542 print_symbol (30, GET_DYNAMIC_NAME (dynamic_symbols[i].st_name));
10543 else
10544 printf (_("<corrupt: %19ld>"), dynamic_symbols[i].st_name);
10545 putchar (' ');
10546
10547 switch (dynamic_syminfo[i].si_boundto)
10548 {
10549 case SYMINFO_BT_SELF:
10550 fputs ("SELF ", stdout);
10551 break;
10552 case SYMINFO_BT_PARENT:
10553 fputs ("PARENT ", stdout);
10554 break;
10555 default:
10556 if (dynamic_syminfo[i].si_boundto > 0
10557 && dynamic_syminfo[i].si_boundto < dynamic_nent
10558 && VALID_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val))
10559 {
10560 print_symbol (10, GET_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val));
10561 putchar (' ' );
10562 }
10563 else
10564 printf ("%-10d ", dynamic_syminfo[i].si_boundto);
10565 break;
10566 }
10567
10568 if (flags & SYMINFO_FLG_DIRECT)
10569 printf (" DIRECT");
10570 if (flags & SYMINFO_FLG_PASSTHRU)
10571 printf (" PASSTHRU");
10572 if (flags & SYMINFO_FLG_COPY)
10573 printf (" COPY");
10574 if (flags & SYMINFO_FLG_LAZYLOAD)
10575 printf (" LAZYLOAD");
10576
10577 puts ("");
10578 }
10579
10580 return 1;
10581 }
10582
10583 /* Check to see if the given reloc needs to be handled in a target specific
10584 manner. If so then process the reloc and return TRUE otherwise return
10585 FALSE. */
10586
10587 static bfd_boolean
10588 target_specific_reloc_handling (Elf_Internal_Rela * reloc,
10589 unsigned char * start,
10590 Elf_Internal_Sym * symtab)
10591 {
10592 unsigned int reloc_type = get_reloc_type (reloc->r_info);
10593
10594 switch (elf_header.e_machine)
10595 {
10596 case EM_MSP430:
10597 case EM_MSP430_OLD:
10598 {
10599 static Elf_Internal_Sym * saved_sym = NULL;
10600
10601 switch (reloc_type)
10602 {
10603 case 10: /* R_MSP430_SYM_DIFF */
10604 if (uses_msp430x_relocs ())
10605 break;
10606 case 21: /* R_MSP430X_SYM_DIFF */
10607 saved_sym = symtab + get_reloc_symindex (reloc->r_info);
10608 return TRUE;
10609
10610 case 1: /* R_MSP430_32 or R_MSP430_ABS32 */
10611 case 3: /* R_MSP430_16 or R_MSP430_ABS8 */
10612 goto handle_sym_diff;
10613
10614 case 5: /* R_MSP430_16_BYTE */
10615 case 9: /* R_MSP430_8 */
10616 if (uses_msp430x_relocs ())
10617 break;
10618 goto handle_sym_diff;
10619
10620 case 2: /* R_MSP430_ABS16 */
10621 case 15: /* R_MSP430X_ABS16 */
10622 if (! uses_msp430x_relocs ())
10623 break;
10624 goto handle_sym_diff;
10625
10626 handle_sym_diff:
10627 if (saved_sym != NULL)
10628 {
10629 bfd_vma value;
10630
10631 value = reloc->r_addend
10632 + (symtab[get_reloc_symindex (reloc->r_info)].st_value
10633 - saved_sym->st_value);
10634
10635 byte_put (start + reloc->r_offset, value, reloc_type == 1 ? 4 : 2);
10636
10637 saved_sym = NULL;
10638 return TRUE;
10639 }
10640 break;
10641
10642 default:
10643 if (saved_sym != NULL)
10644 error (_("Unhandled MSP430 reloc type found after SYM_DIFF reloc\n"));
10645 break;
10646 }
10647 break;
10648 }
10649
10650 case EM_MN10300:
10651 case EM_CYGNUS_MN10300:
10652 {
10653 static Elf_Internal_Sym * saved_sym = NULL;
10654
10655 switch (reloc_type)
10656 {
10657 case 34: /* R_MN10300_ALIGN */
10658 return TRUE;
10659 case 33: /* R_MN10300_SYM_DIFF */
10660 saved_sym = symtab + get_reloc_symindex (reloc->r_info);
10661 return TRUE;
10662 case 1: /* R_MN10300_32 */
10663 case 2: /* R_MN10300_16 */
10664 if (saved_sym != NULL)
10665 {
10666 bfd_vma value;
10667
10668 value = reloc->r_addend
10669 + (symtab[get_reloc_symindex (reloc->r_info)].st_value
10670 - saved_sym->st_value);
10671
10672 byte_put (start + reloc->r_offset, value, reloc_type == 1 ? 4 : 2);
10673
10674 saved_sym = NULL;
10675 return TRUE;
10676 }
10677 break;
10678 default:
10679 if (saved_sym != NULL)
10680 error (_("Unhandled MN10300 reloc type found after SYM_DIFF reloc\n"));
10681 break;
10682 }
10683 break;
10684 }
10685 }
10686
10687 return FALSE;
10688 }
10689
10690 /* Returns TRUE iff RELOC_TYPE is a 32-bit absolute RELA relocation used in
10691 DWARF debug sections. This is a target specific test. Note - we do not
10692 go through the whole including-target-headers-multiple-times route, (as
10693 we have already done with <elf/h8.h>) because this would become very
10694 messy and even then this function would have to contain target specific
10695 information (the names of the relocs instead of their numeric values).
10696 FIXME: This is not the correct way to solve this problem. The proper way
10697 is to have target specific reloc sizing and typing functions created by
10698 the reloc-macros.h header, in the same way that it already creates the
10699 reloc naming functions. */
10700
10701 static bfd_boolean
10702 is_32bit_abs_reloc (unsigned int reloc_type)
10703 {
10704 switch (elf_header.e_machine)
10705 {
10706 case EM_386:
10707 case EM_486:
10708 return reloc_type == 1; /* R_386_32. */
10709 case EM_68K:
10710 return reloc_type == 1; /* R_68K_32. */
10711 case EM_860:
10712 return reloc_type == 1; /* R_860_32. */
10713 case EM_960:
10714 return reloc_type == 2; /* R_960_32. */
10715 case EM_AARCH64:
10716 return reloc_type == 258; /* R_AARCH64_ABS32 */
10717 case EM_ALPHA:
10718 return reloc_type == 1; /* R_ALPHA_REFLONG. */
10719 case EM_ARC:
10720 return reloc_type == 1; /* R_ARC_32. */
10721 case EM_ARM:
10722 return reloc_type == 2; /* R_ARM_ABS32 */
10723 case EM_AVR_OLD:
10724 case EM_AVR:
10725 return reloc_type == 1;
10726 case EM_ADAPTEVA_EPIPHANY:
10727 return reloc_type == 3;
10728 case EM_BLACKFIN:
10729 return reloc_type == 0x12; /* R_byte4_data. */
10730 case EM_CRIS:
10731 return reloc_type == 3; /* R_CRIS_32. */
10732 case EM_CR16:
10733 return reloc_type == 3; /* R_CR16_NUM32. */
10734 case EM_CRX:
10735 return reloc_type == 15; /* R_CRX_NUM32. */
10736 case EM_CYGNUS_FRV:
10737 return reloc_type == 1;
10738 case EM_CYGNUS_D10V:
10739 case EM_D10V:
10740 return reloc_type == 6; /* R_D10V_32. */
10741 case EM_CYGNUS_D30V:
10742 case EM_D30V:
10743 return reloc_type == 12; /* R_D30V_32_NORMAL. */
10744 case EM_DLX:
10745 return reloc_type == 3; /* R_DLX_RELOC_32. */
10746 case EM_CYGNUS_FR30:
10747 case EM_FR30:
10748 return reloc_type == 3; /* R_FR30_32. */
10749 case EM_H8S:
10750 case EM_H8_300:
10751 case EM_H8_300H:
10752 return reloc_type == 1; /* R_H8_DIR32. */
10753 case EM_IA_64:
10754 return reloc_type == 0x65; /* R_IA64_SECREL32LSB. */
10755 case EM_IP2K_OLD:
10756 case EM_IP2K:
10757 return reloc_type == 2; /* R_IP2K_32. */
10758 case EM_IQ2000:
10759 return reloc_type == 2; /* R_IQ2000_32. */
10760 case EM_LATTICEMICO32:
10761 return reloc_type == 3; /* R_LM32_32. */
10762 case EM_M32C_OLD:
10763 case EM_M32C:
10764 return reloc_type == 3; /* R_M32C_32. */
10765 case EM_M32R:
10766 return reloc_type == 34; /* R_M32R_32_RELA. */
10767 case EM_MCORE:
10768 return reloc_type == 1; /* R_MCORE_ADDR32. */
10769 case EM_CYGNUS_MEP:
10770 return reloc_type == 4; /* R_MEP_32. */
10771 case EM_METAG:
10772 return reloc_type == 2; /* R_METAG_ADDR32. */
10773 case EM_MICROBLAZE:
10774 return reloc_type == 1; /* R_MICROBLAZE_32. */
10775 case EM_MIPS:
10776 return reloc_type == 2; /* R_MIPS_32. */
10777 case EM_MMIX:
10778 return reloc_type == 4; /* R_MMIX_32. */
10779 case EM_CYGNUS_MN10200:
10780 case EM_MN10200:
10781 return reloc_type == 1; /* R_MN10200_32. */
10782 case EM_CYGNUS_MN10300:
10783 case EM_MN10300:
10784 return reloc_type == 1; /* R_MN10300_32. */
10785 case EM_MOXIE:
10786 return reloc_type == 1; /* R_MOXIE_32. */
10787 case EM_MSP430_OLD:
10788 case EM_MSP430:
10789 return reloc_type == 1; /* R_MSP430_32 or R_MSP320_ABS32. */
10790 case EM_MT:
10791 return reloc_type == 2; /* R_MT_32. */
10792 case EM_NDS32:
10793 return reloc_type == 20; /* R_NDS32_RELA. */
10794 case EM_ALTERA_NIOS2:
10795 return reloc_type == 12; /* R_NIOS2_BFD_RELOC_32. */
10796 case EM_NIOS32:
10797 return reloc_type == 1; /* R_NIOS_32. */
10798 case EM_OR1K:
10799 return reloc_type == 1; /* R_OR1K_32. */
10800 case EM_PARISC:
10801 return (reloc_type == 1 /* R_PARISC_DIR32. */
10802 || reloc_type == 41); /* R_PARISC_SECREL32. */
10803 case EM_PJ:
10804 case EM_PJ_OLD:
10805 return reloc_type == 1; /* R_PJ_DATA_DIR32. */
10806 case EM_PPC64:
10807 return reloc_type == 1; /* R_PPC64_ADDR32. */
10808 case EM_PPC:
10809 return reloc_type == 1; /* R_PPC_ADDR32. */
10810 case EM_RL78:
10811 return reloc_type == 1; /* R_RL78_DIR32. */
10812 case EM_RX:
10813 return reloc_type == 1; /* R_RX_DIR32. */
10814 case EM_S370:
10815 return reloc_type == 1; /* R_I370_ADDR31. */
10816 case EM_S390_OLD:
10817 case EM_S390:
10818 return reloc_type == 4; /* R_S390_32. */
10819 case EM_SCORE:
10820 return reloc_type == 8; /* R_SCORE_ABS32. */
10821 case EM_SH:
10822 return reloc_type == 1; /* R_SH_DIR32. */
10823 case EM_SPARC32PLUS:
10824 case EM_SPARCV9:
10825 case EM_SPARC:
10826 return reloc_type == 3 /* R_SPARC_32. */
10827 || reloc_type == 23; /* R_SPARC_UA32. */
10828 case EM_SPU:
10829 return reloc_type == 6; /* R_SPU_ADDR32 */
10830 case EM_TI_C6000:
10831 return reloc_type == 1; /* R_C6000_ABS32. */
10832 case EM_TILEGX:
10833 return reloc_type == 2; /* R_TILEGX_32. */
10834 case EM_TILEPRO:
10835 return reloc_type == 1; /* R_TILEPRO_32. */
10836 case EM_CYGNUS_V850:
10837 case EM_V850:
10838 return reloc_type == 6; /* R_V850_ABS32. */
10839 case EM_V800:
10840 return reloc_type == 0x33; /* R_V810_WORD. */
10841 case EM_VAX:
10842 return reloc_type == 1; /* R_VAX_32. */
10843 case EM_X86_64:
10844 case EM_L1OM:
10845 case EM_K1OM:
10846 return reloc_type == 10; /* R_X86_64_32. */
10847 case EM_XC16X:
10848 case EM_C166:
10849 return reloc_type == 3; /* R_XC16C_ABS_32. */
10850 case EM_XGATE:
10851 return reloc_type == 4; /* R_XGATE_32. */
10852 case EM_XSTORMY16:
10853 return reloc_type == 1; /* R_XSTROMY16_32. */
10854 case EM_XTENSA_OLD:
10855 case EM_XTENSA:
10856 return reloc_type == 1; /* R_XTENSA_32. */
10857 default:
10858 error (_("Missing knowledge of 32-bit reloc types used in DWARF sections of machine number %d\n"),
10859 elf_header.e_machine);
10860 abort ();
10861 }
10862 }
10863
10864 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
10865 a 32-bit pc-relative RELA relocation used in DWARF debug sections. */
10866
10867 static bfd_boolean
10868 is_32bit_pcrel_reloc (unsigned int reloc_type)
10869 {
10870 switch (elf_header.e_machine)
10871 {
10872 case EM_386:
10873 case EM_486:
10874 return reloc_type == 2; /* R_386_PC32. */
10875 case EM_68K:
10876 return reloc_type == 4; /* R_68K_PC32. */
10877 case EM_AARCH64:
10878 return reloc_type == 261; /* R_AARCH64_PREL32 */
10879 case EM_ADAPTEVA_EPIPHANY:
10880 return reloc_type == 6;
10881 case EM_ALPHA:
10882 return reloc_type == 10; /* R_ALPHA_SREL32. */
10883 case EM_ARM:
10884 return reloc_type == 3; /* R_ARM_REL32 */
10885 case EM_MICROBLAZE:
10886 return reloc_type == 2; /* R_MICROBLAZE_32_PCREL. */
10887 case EM_OR1K:
10888 return reloc_type == 9; /* R_OR1K_32_PCREL. */
10889 case EM_PARISC:
10890 return reloc_type == 9; /* R_PARISC_PCREL32. */
10891 case EM_PPC:
10892 return reloc_type == 26; /* R_PPC_REL32. */
10893 case EM_PPC64:
10894 return reloc_type == 26; /* R_PPC64_REL32. */
10895 case EM_S390_OLD:
10896 case EM_S390:
10897 return reloc_type == 5; /* R_390_PC32. */
10898 case EM_SH:
10899 return reloc_type == 2; /* R_SH_REL32. */
10900 case EM_SPARC32PLUS:
10901 case EM_SPARCV9:
10902 case EM_SPARC:
10903 return reloc_type == 6; /* R_SPARC_DISP32. */
10904 case EM_SPU:
10905 return reloc_type == 13; /* R_SPU_REL32. */
10906 case EM_TILEGX:
10907 return reloc_type == 6; /* R_TILEGX_32_PCREL. */
10908 case EM_TILEPRO:
10909 return reloc_type == 4; /* R_TILEPRO_32_PCREL. */
10910 case EM_X86_64:
10911 case EM_L1OM:
10912 case EM_K1OM:
10913 return reloc_type == 2; /* R_X86_64_PC32. */
10914 case EM_XTENSA_OLD:
10915 case EM_XTENSA:
10916 return reloc_type == 14; /* R_XTENSA_32_PCREL. */
10917 default:
10918 /* Do not abort or issue an error message here. Not all targets use
10919 pc-relative 32-bit relocs in their DWARF debug information and we
10920 have already tested for target coverage in is_32bit_abs_reloc. A
10921 more helpful warning message will be generated by apply_relocations
10922 anyway, so just return. */
10923 return FALSE;
10924 }
10925 }
10926
10927 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
10928 a 64-bit absolute RELA relocation used in DWARF debug sections. */
10929
10930 static bfd_boolean
10931 is_64bit_abs_reloc (unsigned int reloc_type)
10932 {
10933 switch (elf_header.e_machine)
10934 {
10935 case EM_AARCH64:
10936 return reloc_type == 257; /* R_AARCH64_ABS64. */
10937 case EM_ALPHA:
10938 return reloc_type == 2; /* R_ALPHA_REFQUAD. */
10939 case EM_IA_64:
10940 return reloc_type == 0x27; /* R_IA64_DIR64LSB. */
10941 case EM_PARISC:
10942 return reloc_type == 80; /* R_PARISC_DIR64. */
10943 case EM_PPC64:
10944 return reloc_type == 38; /* R_PPC64_ADDR64. */
10945 case EM_SPARC32PLUS:
10946 case EM_SPARCV9:
10947 case EM_SPARC:
10948 return reloc_type == 54; /* R_SPARC_UA64. */
10949 case EM_X86_64:
10950 case EM_L1OM:
10951 case EM_K1OM:
10952 return reloc_type == 1; /* R_X86_64_64. */
10953 case EM_S390_OLD:
10954 case EM_S390:
10955 return reloc_type == 22; /* R_S390_64. */
10956 case EM_TILEGX:
10957 return reloc_type == 1; /* R_TILEGX_64. */
10958 case EM_MIPS:
10959 return reloc_type == 18; /* R_MIPS_64. */
10960 default:
10961 return FALSE;
10962 }
10963 }
10964
10965 /* Like is_32bit_pcrel_reloc except that it returns TRUE iff RELOC_TYPE is
10966 a 64-bit pc-relative RELA relocation used in DWARF debug sections. */
10967
10968 static bfd_boolean
10969 is_64bit_pcrel_reloc (unsigned int reloc_type)
10970 {
10971 switch (elf_header.e_machine)
10972 {
10973 case EM_AARCH64:
10974 return reloc_type == 260; /* R_AARCH64_PREL64. */
10975 case EM_ALPHA:
10976 return reloc_type == 11; /* R_ALPHA_SREL64. */
10977 case EM_IA_64:
10978 return reloc_type == 0x4f; /* R_IA64_PCREL64LSB. */
10979 case EM_PARISC:
10980 return reloc_type == 72; /* R_PARISC_PCREL64. */
10981 case EM_PPC64:
10982 return reloc_type == 44; /* R_PPC64_REL64. */
10983 case EM_SPARC32PLUS:
10984 case EM_SPARCV9:
10985 case EM_SPARC:
10986 return reloc_type == 46; /* R_SPARC_DISP64. */
10987 case EM_X86_64:
10988 case EM_L1OM:
10989 case EM_K1OM:
10990 return reloc_type == 24; /* R_X86_64_PC64. */
10991 case EM_S390_OLD:
10992 case EM_S390:
10993 return reloc_type == 23; /* R_S390_PC64. */
10994 case EM_TILEGX:
10995 return reloc_type == 5; /* R_TILEGX_64_PCREL. */
10996 default:
10997 return FALSE;
10998 }
10999 }
11000
11001 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
11002 a 24-bit absolute RELA relocation used in DWARF debug sections. */
11003
11004 static bfd_boolean
11005 is_24bit_abs_reloc (unsigned int reloc_type)
11006 {
11007 switch (elf_header.e_machine)
11008 {
11009 case EM_CYGNUS_MN10200:
11010 case EM_MN10200:
11011 return reloc_type == 4; /* R_MN10200_24. */
11012 default:
11013 return FALSE;
11014 }
11015 }
11016
11017 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
11018 a 16-bit absolute RELA relocation used in DWARF debug sections. */
11019
11020 static bfd_boolean
11021 is_16bit_abs_reloc (unsigned int reloc_type)
11022 {
11023 switch (elf_header.e_machine)
11024 {
11025 case EM_AVR_OLD:
11026 case EM_AVR:
11027 return reloc_type == 4; /* R_AVR_16. */
11028 case EM_ADAPTEVA_EPIPHANY:
11029 return reloc_type == 5;
11030 case EM_CYGNUS_D10V:
11031 case EM_D10V:
11032 return reloc_type == 3; /* R_D10V_16. */
11033 case EM_H8S:
11034 case EM_H8_300:
11035 case EM_H8_300H:
11036 return reloc_type == R_H8_DIR16;
11037 case EM_IP2K_OLD:
11038 case EM_IP2K:
11039 return reloc_type == 1; /* R_IP2K_16. */
11040 case EM_M32C_OLD:
11041 case EM_M32C:
11042 return reloc_type == 1; /* R_M32C_16 */
11043 case EM_MSP430:
11044 if (uses_msp430x_relocs ())
11045 return reloc_type == 2; /* R_MSP430_ABS16. */
11046 case EM_MSP430_OLD:
11047 return reloc_type == 5; /* R_MSP430_16_BYTE. */
11048 case EM_NDS32:
11049 return reloc_type == 19; /* R_NDS32_RELA. */
11050 case EM_ALTERA_NIOS2:
11051 return reloc_type == 13; /* R_NIOS2_BFD_RELOC_16. */
11052 case EM_NIOS32:
11053 return reloc_type == 9; /* R_NIOS_16. */
11054 case EM_OR1K:
11055 return reloc_type == 2; /* R_OR1K_16. */
11056 case EM_TI_C6000:
11057 return reloc_type == 2; /* R_C6000_ABS16. */
11058 case EM_XC16X:
11059 case EM_C166:
11060 return reloc_type == 2; /* R_XC16C_ABS_16. */
11061 case EM_CYGNUS_MN10200:
11062 case EM_MN10200:
11063 return reloc_type == 2; /* R_MN10200_16. */
11064 case EM_CYGNUS_MN10300:
11065 case EM_MN10300:
11066 return reloc_type == 2; /* R_MN10300_16. */
11067 case EM_XGATE:
11068 return reloc_type == 3; /* R_XGATE_16. */
11069 default:
11070 return FALSE;
11071 }
11072 }
11073
11074 /* Returns TRUE iff RELOC_TYPE is a NONE relocation used for discarded
11075 relocation entries (possibly formerly used for SHT_GROUP sections). */
11076
11077 static bfd_boolean
11078 is_none_reloc (unsigned int reloc_type)
11079 {
11080 switch (elf_header.e_machine)
11081 {
11082 case EM_68K: /* R_68K_NONE. */
11083 case EM_386: /* R_386_NONE. */
11084 case EM_SPARC32PLUS:
11085 case EM_SPARCV9:
11086 case EM_SPARC: /* R_SPARC_NONE. */
11087 case EM_MIPS: /* R_MIPS_NONE. */
11088 case EM_PARISC: /* R_PARISC_NONE. */
11089 case EM_ALPHA: /* R_ALPHA_NONE. */
11090 case EM_ADAPTEVA_EPIPHANY:
11091 case EM_PPC: /* R_PPC_NONE. */
11092 case EM_PPC64: /* R_PPC64_NONE. */
11093 case EM_ARM: /* R_ARM_NONE. */
11094 case EM_IA_64: /* R_IA64_NONE. */
11095 case EM_SH: /* R_SH_NONE. */
11096 case EM_S390_OLD:
11097 case EM_S390: /* R_390_NONE. */
11098 case EM_CRIS: /* R_CRIS_NONE. */
11099 case EM_X86_64: /* R_X86_64_NONE. */
11100 case EM_L1OM: /* R_X86_64_NONE. */
11101 case EM_K1OM: /* R_X86_64_NONE. */
11102 case EM_MN10300: /* R_MN10300_NONE. */
11103 case EM_MOXIE: /* R_MOXIE_NONE. */
11104 case EM_M32R: /* R_M32R_NONE. */
11105 case EM_TI_C6000:/* R_C6000_NONE. */
11106 case EM_TILEGX: /* R_TILEGX_NONE. */
11107 case EM_TILEPRO: /* R_TILEPRO_NONE. */
11108 case EM_XC16X:
11109 case EM_C166: /* R_XC16X_NONE. */
11110 case EM_ALTERA_NIOS2: /* R_NIOS2_NONE. */
11111 case EM_NIOS32: /* R_NIOS_NONE. */
11112 case EM_OR1K: /* R_OR1K_NONE. */
11113 return reloc_type == 0;
11114 case EM_AARCH64:
11115 return reloc_type == 0 || reloc_type == 256;
11116 case EM_NDS32:
11117 return (reloc_type == 0 /* R_XTENSA_NONE. */
11118 || reloc_type == 204 /* R_NDS32_DIFF8. */
11119 || reloc_type == 205 /* R_NDS32_DIFF16. */
11120 || reloc_type == 206 /* R_NDS32_DIFF32. */
11121 || reloc_type == 207 /* R_NDS32_ULEB128. */);
11122 case EM_XTENSA_OLD:
11123 case EM_XTENSA:
11124 return (reloc_type == 0 /* R_XTENSA_NONE. */
11125 || reloc_type == 17 /* R_XTENSA_DIFF8. */
11126 || reloc_type == 18 /* R_XTENSA_DIFF16. */
11127 || reloc_type == 19 /* R_XTENSA_DIFF32. */);
11128 case EM_METAG:
11129 return reloc_type == 3; /* R_METAG_NONE. */
11130 }
11131 return FALSE;
11132 }
11133
11134 /* Apply relocations to a section.
11135 Note: So far support has been added only for those relocations
11136 which can be found in debug sections.
11137 FIXME: Add support for more relocations ? */
11138
11139 static void
11140 apply_relocations (void * file,
11141 Elf_Internal_Shdr * section,
11142 unsigned char * start)
11143 {
11144 Elf_Internal_Shdr * relsec;
11145 unsigned char * end = start + section->sh_size;
11146
11147 if (elf_header.e_type != ET_REL)
11148 return;
11149
11150 /* Find the reloc section associated with the section. */
11151 for (relsec = section_headers;
11152 relsec < section_headers + elf_header.e_shnum;
11153 ++relsec)
11154 {
11155 bfd_boolean is_rela;
11156 unsigned long num_relocs;
11157 Elf_Internal_Rela * relocs;
11158 Elf_Internal_Rela * rp;
11159 Elf_Internal_Shdr * symsec;
11160 Elf_Internal_Sym * symtab;
11161 unsigned long num_syms;
11162 Elf_Internal_Sym * sym;
11163
11164 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
11165 || relsec->sh_info >= elf_header.e_shnum
11166 || section_headers + relsec->sh_info != section
11167 || relsec->sh_size == 0
11168 || relsec->sh_link >= elf_header.e_shnum)
11169 continue;
11170
11171 is_rela = relsec->sh_type == SHT_RELA;
11172
11173 if (is_rela)
11174 {
11175 if (!slurp_rela_relocs ((FILE *) file, relsec->sh_offset,
11176 relsec->sh_size, & relocs, & num_relocs))
11177 return;
11178 }
11179 else
11180 {
11181 if (!slurp_rel_relocs ((FILE *) file, relsec->sh_offset,
11182 relsec->sh_size, & relocs, & num_relocs))
11183 return;
11184 }
11185
11186 /* SH uses RELA but uses in place value instead of the addend field. */
11187 if (elf_header.e_machine == EM_SH)
11188 is_rela = FALSE;
11189
11190 symsec = section_headers + relsec->sh_link;
11191 symtab = GET_ELF_SYMBOLS ((FILE *) file, symsec, & num_syms);
11192
11193 for (rp = relocs; rp < relocs + num_relocs; ++rp)
11194 {
11195 bfd_vma addend;
11196 unsigned int reloc_type;
11197 unsigned int reloc_size;
11198 unsigned char * rloc;
11199 unsigned long sym_index;
11200
11201 reloc_type = get_reloc_type (rp->r_info);
11202
11203 if (target_specific_reloc_handling (rp, start, symtab))
11204 continue;
11205 else if (is_none_reloc (reloc_type))
11206 continue;
11207 else if (is_32bit_abs_reloc (reloc_type)
11208 || is_32bit_pcrel_reloc (reloc_type))
11209 reloc_size = 4;
11210 else if (is_64bit_abs_reloc (reloc_type)
11211 || is_64bit_pcrel_reloc (reloc_type))
11212 reloc_size = 8;
11213 else if (is_24bit_abs_reloc (reloc_type))
11214 reloc_size = 3;
11215 else if (is_16bit_abs_reloc (reloc_type))
11216 reloc_size = 2;
11217 else
11218 {
11219 warn (_("unable to apply unsupported reloc type %d to section %s\n"),
11220 reloc_type, printable_section_name (section));
11221 continue;
11222 }
11223
11224 rloc = start + rp->r_offset;
11225 if ((rloc + reloc_size) > end || (rloc < start))
11226 {
11227 warn (_("skipping invalid relocation offset 0x%lx in section %s\n"),
11228 (unsigned long) rp->r_offset,
11229 printable_section_name (section));
11230 continue;
11231 }
11232
11233 sym_index = (unsigned long) get_reloc_symindex (rp->r_info);
11234 if (sym_index >= num_syms)
11235 {
11236 warn (_("skipping invalid relocation symbol index 0x%lx in section %s\n"),
11237 sym_index, printable_section_name (section));
11238 continue;
11239 }
11240 sym = symtab + sym_index;
11241
11242 /* If the reloc has a symbol associated with it,
11243 make sure that it is of an appropriate type.
11244
11245 Relocations against symbols without type can happen.
11246 Gcc -feliminate-dwarf2-dups may generate symbols
11247 without type for debug info.
11248
11249 Icc generates relocations against function symbols
11250 instead of local labels.
11251
11252 Relocations against object symbols can happen, eg when
11253 referencing a global array. For an example of this see
11254 the _clz.o binary in libgcc.a. */
11255 if (sym != symtab
11256 && ELF_ST_TYPE (sym->st_info) > STT_SECTION)
11257 {
11258 warn (_("skipping unexpected symbol type %s in %ld'th relocation in section %s\n"),
11259 get_symbol_type (ELF_ST_TYPE (sym->st_info)),
11260 (long int)(rp - relocs),
11261 printable_section_name (relsec));
11262 continue;
11263 }
11264
11265 addend = 0;
11266 if (is_rela)
11267 addend += rp->r_addend;
11268 /* R_XTENSA_32, R_PJ_DATA_DIR32 and R_D30V_32_NORMAL are
11269 partial_inplace. */
11270 if (!is_rela
11271 || (elf_header.e_machine == EM_XTENSA
11272 && reloc_type == 1)
11273 || ((elf_header.e_machine == EM_PJ
11274 || elf_header.e_machine == EM_PJ_OLD)
11275 && reloc_type == 1)
11276 || ((elf_header.e_machine == EM_D30V
11277 || elf_header.e_machine == EM_CYGNUS_D30V)
11278 && reloc_type == 12))
11279 addend += byte_get (rloc, reloc_size);
11280
11281 if (is_32bit_pcrel_reloc (reloc_type)
11282 || is_64bit_pcrel_reloc (reloc_type))
11283 {
11284 /* On HPPA, all pc-relative relocations are biased by 8. */
11285 if (elf_header.e_machine == EM_PARISC)
11286 addend -= 8;
11287 byte_put (rloc, (addend + sym->st_value) - rp->r_offset,
11288 reloc_size);
11289 }
11290 else
11291 byte_put (rloc, addend + sym->st_value, reloc_size);
11292 }
11293
11294 free (symtab);
11295 free (relocs);
11296 break;
11297 }
11298 }
11299
11300 #ifdef SUPPORT_DISASSEMBLY
11301 static int
11302 disassemble_section (Elf_Internal_Shdr * section, FILE * file)
11303 {
11304 printf (_("\nAssembly dump of section %s\n"), printable_section_name (section));
11305
11306 /* FIXME: XXX -- to be done --- XXX */
11307
11308 return 1;
11309 }
11310 #endif
11311
11312 /* Reads in the contents of SECTION from FILE, returning a pointer
11313 to a malloc'ed buffer or NULL if something went wrong. */
11314
11315 static char *
11316 get_section_contents (Elf_Internal_Shdr * section, FILE * file)
11317 {
11318 bfd_size_type num_bytes;
11319
11320 num_bytes = section->sh_size;
11321
11322 if (num_bytes == 0 || section->sh_type == SHT_NOBITS)
11323 {
11324 printf (_("\nSection '%s' has no data to dump.\n"),
11325 printable_section_name (section));
11326 return NULL;
11327 }
11328
11329 return (char *) get_data (NULL, file, section->sh_offset, 1, num_bytes,
11330 _("section contents"));
11331 }
11332
11333
11334 static void
11335 dump_section_as_strings (Elf_Internal_Shdr * section, FILE * file)
11336 {
11337 Elf_Internal_Shdr * relsec;
11338 bfd_size_type num_bytes;
11339 char * data;
11340 char * end;
11341 char * start;
11342 bfd_boolean some_strings_shown;
11343
11344 start = get_section_contents (section, file);
11345 if (start == NULL)
11346 return;
11347
11348 printf (_("\nString dump of section '%s':\n"), printable_section_name (section));
11349
11350 /* If the section being dumped has relocations against it the user might
11351 be expecting these relocations to have been applied. Check for this
11352 case and issue a warning message in order to avoid confusion.
11353 FIXME: Maybe we ought to have an option that dumps a section with
11354 relocs applied ? */
11355 for (relsec = section_headers;
11356 relsec < section_headers + elf_header.e_shnum;
11357 ++relsec)
11358 {
11359 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
11360 || relsec->sh_info >= elf_header.e_shnum
11361 || section_headers + relsec->sh_info != section
11362 || relsec->sh_size == 0
11363 || relsec->sh_link >= elf_header.e_shnum)
11364 continue;
11365
11366 printf (_(" Note: This section has relocations against it, but these have NOT been applied to this dump.\n"));
11367 break;
11368 }
11369
11370 num_bytes = section->sh_size;
11371 data = start;
11372 end = start + num_bytes;
11373 some_strings_shown = FALSE;
11374
11375 while (data < end)
11376 {
11377 while (!ISPRINT (* data))
11378 if (++ data >= end)
11379 break;
11380
11381 if (data < end)
11382 {
11383 size_t maxlen = end - data;
11384
11385 #ifndef __MSVCRT__
11386 /* PR 11128: Use two separate invocations in order to work
11387 around bugs in the Solaris 8 implementation of printf. */
11388 printf (" [%6tx] ", data - start);
11389 #else
11390 printf (" [%6Ix] ", (size_t) (data - start));
11391 #endif
11392 if (maxlen > 0)
11393 {
11394 print_symbol ((int) maxlen, data);
11395 putchar ('\n');
11396 data += strnlen (data, maxlen);
11397 }
11398 else
11399 {
11400 printf (_("<corrupt>\n"));
11401 data = end;
11402 }
11403 some_strings_shown = TRUE;
11404 }
11405 }
11406
11407 if (! some_strings_shown)
11408 printf (_(" No strings found in this section."));
11409
11410 free (start);
11411
11412 putchar ('\n');
11413 }
11414
11415 static void
11416 dump_section_as_bytes (Elf_Internal_Shdr * section,
11417 FILE * file,
11418 bfd_boolean relocate)
11419 {
11420 Elf_Internal_Shdr * relsec;
11421 bfd_size_type bytes;
11422 bfd_vma addr;
11423 unsigned char * data;
11424 unsigned char * start;
11425
11426 start = (unsigned char *) get_section_contents (section, file);
11427 if (start == NULL)
11428 return;
11429
11430 printf (_("\nHex dump of section '%s':\n"), printable_section_name (section));
11431
11432 if (relocate)
11433 {
11434 apply_relocations (file, section, start);
11435 }
11436 else
11437 {
11438 /* If the section being dumped has relocations against it the user might
11439 be expecting these relocations to have been applied. Check for this
11440 case and issue a warning message in order to avoid confusion.
11441 FIXME: Maybe we ought to have an option that dumps a section with
11442 relocs applied ? */
11443 for (relsec = section_headers;
11444 relsec < section_headers + elf_header.e_shnum;
11445 ++relsec)
11446 {
11447 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
11448 || relsec->sh_info >= elf_header.e_shnum
11449 || section_headers + relsec->sh_info != section
11450 || relsec->sh_size == 0
11451 || relsec->sh_link >= elf_header.e_shnum)
11452 continue;
11453
11454 printf (_(" NOTE: This section has relocations against it, but these have NOT been applied to this dump.\n"));
11455 break;
11456 }
11457 }
11458
11459 addr = section->sh_addr;
11460 bytes = section->sh_size;
11461 data = start;
11462
11463 while (bytes)
11464 {
11465 int j;
11466 int k;
11467 int lbytes;
11468
11469 lbytes = (bytes > 16 ? 16 : bytes);
11470
11471 printf (" 0x%8.8lx ", (unsigned long) addr);
11472
11473 for (j = 0; j < 16; j++)
11474 {
11475 if (j < lbytes)
11476 printf ("%2.2x", data[j]);
11477 else
11478 printf (" ");
11479
11480 if ((j & 3) == 3)
11481 printf (" ");
11482 }
11483
11484 for (j = 0; j < lbytes; j++)
11485 {
11486 k = data[j];
11487 if (k >= ' ' && k < 0x7f)
11488 printf ("%c", k);
11489 else
11490 printf (".");
11491 }
11492
11493 putchar ('\n');
11494
11495 data += lbytes;
11496 addr += lbytes;
11497 bytes -= lbytes;
11498 }
11499
11500 free (start);
11501
11502 putchar ('\n');
11503 }
11504
11505 /* Uncompresses a section that was compressed using zlib, in place. */
11506
11507 static int
11508 uncompress_section_contents (unsigned char **buffer ATTRIBUTE_UNUSED,
11509 dwarf_size_type *size ATTRIBUTE_UNUSED)
11510 {
11511 #ifndef HAVE_ZLIB_H
11512 return FALSE;
11513 #else
11514 dwarf_size_type compressed_size = *size;
11515 unsigned char * compressed_buffer = *buffer;
11516 dwarf_size_type uncompressed_size;
11517 unsigned char * uncompressed_buffer;
11518 z_stream strm;
11519 int rc;
11520 dwarf_size_type header_size = 12;
11521
11522 /* Read the zlib header. In this case, it should be "ZLIB" followed
11523 by the uncompressed section size, 8 bytes in big-endian order. */
11524 if (compressed_size < header_size
11525 || ! streq ((char *) compressed_buffer, "ZLIB"))
11526 return 0;
11527
11528 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
11529 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
11530 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
11531 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
11532 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
11533 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
11534 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
11535 uncompressed_size += compressed_buffer[11];
11536
11537 /* It is possible the section consists of several compressed
11538 buffers concatenated together, so we uncompress in a loop. */
11539 strm.zalloc = NULL;
11540 strm.zfree = NULL;
11541 strm.opaque = NULL;
11542 strm.avail_in = compressed_size - header_size;
11543 strm.next_in = (Bytef *) compressed_buffer + header_size;
11544 strm.avail_out = uncompressed_size;
11545 uncompressed_buffer = (unsigned char *) xmalloc (uncompressed_size);
11546
11547 rc = inflateInit (& strm);
11548 while (strm.avail_in > 0)
11549 {
11550 if (rc != Z_OK)
11551 goto fail;
11552 strm.next_out = ((Bytef *) uncompressed_buffer
11553 + (uncompressed_size - strm.avail_out));
11554 rc = inflate (&strm, Z_FINISH);
11555 if (rc != Z_STREAM_END)
11556 goto fail;
11557 rc = inflateReset (& strm);
11558 }
11559 rc = inflateEnd (& strm);
11560 if (rc != Z_OK
11561 || strm.avail_out != 0)
11562 goto fail;
11563
11564 free (compressed_buffer);
11565 *buffer = uncompressed_buffer;
11566 *size = uncompressed_size;
11567 return 1;
11568
11569 fail:
11570 free (uncompressed_buffer);
11571 /* Indicate decompression failure. */
11572 *buffer = NULL;
11573 return 0;
11574 #endif /* HAVE_ZLIB_H */
11575 }
11576
11577 static int
11578 load_specific_debug_section (enum dwarf_section_display_enum debug,
11579 Elf_Internal_Shdr * sec, void * file)
11580 {
11581 struct dwarf_section * section = &debug_displays [debug].section;
11582 char buf [64];
11583
11584 /* If it is already loaded, do nothing. */
11585 if (section->start != NULL)
11586 return 1;
11587
11588 snprintf (buf, sizeof (buf), _("%s section data"), section->name);
11589 section->address = sec->sh_addr;
11590 section->start = (unsigned char *) get_data (NULL, (FILE *) file,
11591 sec->sh_offset, 1,
11592 sec->sh_size, buf);
11593 if (section->start == NULL)
11594 section->size = 0;
11595 else
11596 {
11597 section->size = sec->sh_size;
11598 if (uncompress_section_contents (&section->start, &section->size))
11599 sec->sh_size = section->size;
11600 }
11601
11602 if (section->start == NULL)
11603 return 0;
11604
11605 if (debug_displays [debug].relocate)
11606 apply_relocations ((FILE *) file, sec, section->start);
11607
11608 return 1;
11609 }
11610
11611 /* If this is not NULL, load_debug_section will only look for sections
11612 within the list of sections given here. */
11613 unsigned int *section_subset = NULL;
11614
11615 int
11616 load_debug_section (enum dwarf_section_display_enum debug, void * file)
11617 {
11618 struct dwarf_section * section = &debug_displays [debug].section;
11619 Elf_Internal_Shdr * sec;
11620
11621 /* Locate the debug section. */
11622 sec = find_section_in_set (section->uncompressed_name, section_subset);
11623 if (sec != NULL)
11624 section->name = section->uncompressed_name;
11625 else
11626 {
11627 sec = find_section_in_set (section->compressed_name, section_subset);
11628 if (sec != NULL)
11629 section->name = section->compressed_name;
11630 }
11631 if (sec == NULL)
11632 return 0;
11633
11634 /* If we're loading from a subset of sections, and we've loaded
11635 a section matching this name before, it's likely that it's a
11636 different one. */
11637 if (section_subset != NULL)
11638 free_debug_section (debug);
11639
11640 return load_specific_debug_section (debug, sec, (FILE *) file);
11641 }
11642
11643 void
11644 free_debug_section (enum dwarf_section_display_enum debug)
11645 {
11646 struct dwarf_section * section = &debug_displays [debug].section;
11647
11648 if (section->start == NULL)
11649 return;
11650
11651 free ((char *) section->start);
11652 section->start = NULL;
11653 section->address = 0;
11654 section->size = 0;
11655 }
11656
11657 static int
11658 display_debug_section (int shndx, Elf_Internal_Shdr * section, FILE * file)
11659 {
11660 char * name = SECTION_NAME (section);
11661 const char * print_name = printable_section_name (section);
11662 bfd_size_type length;
11663 int result = 1;
11664 int i;
11665
11666 length = section->sh_size;
11667 if (length == 0)
11668 {
11669 printf (_("\nSection '%s' has no debugging data.\n"), print_name);
11670 return 0;
11671 }
11672 if (section->sh_type == SHT_NOBITS)
11673 {
11674 /* There is no point in dumping the contents of a debugging section
11675 which has the NOBITS type - the bits in the file will be random.
11676 This can happen when a file containing a .eh_frame section is
11677 stripped with the --only-keep-debug command line option. */
11678 printf (_("section '%s' has the NOBITS type - its contents are unreliable.\n"),
11679 print_name);
11680 return 0;
11681 }
11682
11683 if (const_strneq (name, ".gnu.linkonce.wi."))
11684 name = ".debug_info";
11685
11686 /* See if we know how to display the contents of this section. */
11687 for (i = 0; i < max; i++)
11688 if (streq (debug_displays[i].section.uncompressed_name, name)
11689 || (i == line && const_strneq (name, ".debug_line."))
11690 || streq (debug_displays[i].section.compressed_name, name))
11691 {
11692 struct dwarf_section * sec = &debug_displays [i].section;
11693 int secondary = (section != find_section (name));
11694
11695 if (secondary)
11696 free_debug_section ((enum dwarf_section_display_enum) i);
11697
11698 if (i == line && const_strneq (name, ".debug_line."))
11699 sec->name = name;
11700 else if (streq (sec->uncompressed_name, name))
11701 sec->name = sec->uncompressed_name;
11702 else
11703 sec->name = sec->compressed_name;
11704 if (load_specific_debug_section ((enum dwarf_section_display_enum) i,
11705 section, file))
11706 {
11707 /* If this debug section is part of a CU/TU set in a .dwp file,
11708 restrict load_debug_section to the sections in that set. */
11709 section_subset = find_cu_tu_set (file, shndx);
11710
11711 result &= debug_displays[i].display (sec, file);
11712
11713 section_subset = NULL;
11714
11715 if (secondary || (i != info && i != abbrev))
11716 free_debug_section ((enum dwarf_section_display_enum) i);
11717 }
11718
11719 break;
11720 }
11721
11722 if (i == max)
11723 {
11724 printf (_("Unrecognized debug section: %s\n"), print_name);
11725 result = 0;
11726 }
11727
11728 return result;
11729 }
11730
11731 /* Set DUMP_SECTS for all sections where dumps were requested
11732 based on section name. */
11733
11734 static void
11735 initialise_dumps_byname (void)
11736 {
11737 struct dump_list_entry * cur;
11738
11739 for (cur = dump_sects_byname; cur; cur = cur->next)
11740 {
11741 unsigned int i;
11742 int any;
11743
11744 for (i = 0, any = 0; i < elf_header.e_shnum; i++)
11745 if (streq (SECTION_NAME (section_headers + i), cur->name))
11746 {
11747 request_dump_bynumber (i, cur->type);
11748 any = 1;
11749 }
11750
11751 if (!any)
11752 warn (_("Section '%s' was not dumped because it does not exist!\n"),
11753 cur->name);
11754 }
11755 }
11756
11757 static void
11758 process_section_contents (FILE * file)
11759 {
11760 Elf_Internal_Shdr * section;
11761 unsigned int i;
11762
11763 if (! do_dump)
11764 return;
11765
11766 initialise_dumps_byname ();
11767
11768 for (i = 0, section = section_headers;
11769 i < elf_header.e_shnum && i < num_dump_sects;
11770 i++, section++)
11771 {
11772 #ifdef SUPPORT_DISASSEMBLY
11773 if (dump_sects[i] & DISASS_DUMP)
11774 disassemble_section (section, file);
11775 #endif
11776 if (dump_sects[i] & HEX_DUMP)
11777 dump_section_as_bytes (section, file, FALSE);
11778
11779 if (dump_sects[i] & RELOC_DUMP)
11780 dump_section_as_bytes (section, file, TRUE);
11781
11782 if (dump_sects[i] & STRING_DUMP)
11783 dump_section_as_strings (section, file);
11784
11785 if (dump_sects[i] & DEBUG_DUMP)
11786 display_debug_section (i, section, file);
11787 }
11788
11789 /* Check to see if the user requested a
11790 dump of a section that does not exist. */
11791 while (i++ < num_dump_sects)
11792 if (dump_sects[i])
11793 warn (_("Section %d was not dumped because it does not exist!\n"), i);
11794 }
11795
11796 static void
11797 process_mips_fpe_exception (int mask)
11798 {
11799 if (mask)
11800 {
11801 int first = 1;
11802 if (mask & OEX_FPU_INEX)
11803 fputs ("INEX", stdout), first = 0;
11804 if (mask & OEX_FPU_UFLO)
11805 printf ("%sUFLO", first ? "" : "|"), first = 0;
11806 if (mask & OEX_FPU_OFLO)
11807 printf ("%sOFLO", first ? "" : "|"), first = 0;
11808 if (mask & OEX_FPU_DIV0)
11809 printf ("%sDIV0", first ? "" : "|"), first = 0;
11810 if (mask & OEX_FPU_INVAL)
11811 printf ("%sINVAL", first ? "" : "|");
11812 }
11813 else
11814 fputs ("0", stdout);
11815 }
11816
11817 /* Display's the value of TAG at location P. If TAG is
11818 greater than 0 it is assumed to be an unknown tag, and
11819 a message is printed to this effect. Otherwise it is
11820 assumed that a message has already been printed.
11821
11822 If the bottom bit of TAG is set it assumed to have a
11823 string value, otherwise it is assumed to have an integer
11824 value.
11825
11826 Returns an updated P pointing to the first unread byte
11827 beyond the end of TAG's value.
11828
11829 Reads at or beyond END will not be made. */
11830
11831 static unsigned char *
11832 display_tag_value (int tag,
11833 unsigned char * p,
11834 const unsigned char * const end)
11835 {
11836 unsigned long val;
11837
11838 if (tag > 0)
11839 printf (" Tag_unknown_%d: ", tag);
11840
11841 if (p >= end)
11842 {
11843 warn (_("<corrupt tag>\n"));
11844 }
11845 else if (tag & 1)
11846 {
11847 /* PR 17531 file: 027-19978-0.004. */
11848 size_t maxlen = (end - p) - 1;
11849
11850 putchar ('"');
11851 if (maxlen > 0)
11852 {
11853 print_symbol ((int) maxlen, (const char *) p);
11854 p += strnlen ((char *) p, maxlen) + 1;
11855 }
11856 else
11857 {
11858 printf (_("<corrupt string tag>"));
11859 p = (unsigned char *) end;
11860 }
11861 printf ("\"\n");
11862 }
11863 else
11864 {
11865 unsigned int len;
11866
11867 val = read_uleb128 (p, &len, end);
11868 p += len;
11869 printf ("%ld (0x%lx)\n", val, val);
11870 }
11871
11872 assert (p <= end);
11873 return p;
11874 }
11875
11876 /* ARM EABI attributes section. */
11877 typedef struct
11878 {
11879 unsigned int tag;
11880 const char * name;
11881 /* 0 = special, 1 = string, 2 = uleb123, > 0x80 == table lookup. */
11882 unsigned int type;
11883 const char ** table;
11884 } arm_attr_public_tag;
11885
11886 static const char * arm_attr_tag_CPU_arch[] =
11887 {"Pre-v4", "v4", "v4T", "v5T", "v5TE", "v5TEJ", "v6", "v6KZ", "v6T2",
11888 "v6K", "v7", "v6-M", "v6S-M", "v7E-M", "v8"};
11889 static const char * arm_attr_tag_ARM_ISA_use[] = {"No", "Yes"};
11890 static const char * arm_attr_tag_THUMB_ISA_use[] =
11891 {"No", "Thumb-1", "Thumb-2"};
11892 static const char * arm_attr_tag_FP_arch[] =
11893 {"No", "VFPv1", "VFPv2", "VFPv3", "VFPv3-D16", "VFPv4", "VFPv4-D16",
11894 "FP for ARMv8", "FPv5/FP-D16 for ARMv8"};
11895 static const char * arm_attr_tag_WMMX_arch[] = {"No", "WMMXv1", "WMMXv2"};
11896 static const char * arm_attr_tag_Advanced_SIMD_arch[] =
11897 {"No", "NEONv1", "NEONv1 with Fused-MAC", "NEON for ARMv8"};
11898 static const char * arm_attr_tag_PCS_config[] =
11899 {"None", "Bare platform", "Linux application", "Linux DSO", "PalmOS 2004",
11900 "PalmOS (reserved)", "SymbianOS 2004", "SymbianOS (reserved)"};
11901 static const char * arm_attr_tag_ABI_PCS_R9_use[] =
11902 {"V6", "SB", "TLS", "Unused"};
11903 static const char * arm_attr_tag_ABI_PCS_RW_data[] =
11904 {"Absolute", "PC-relative", "SB-relative", "None"};
11905 static const char * arm_attr_tag_ABI_PCS_RO_data[] =
11906 {"Absolute", "PC-relative", "None"};
11907 static const char * arm_attr_tag_ABI_PCS_GOT_use[] =
11908 {"None", "direct", "GOT-indirect"};
11909 static const char * arm_attr_tag_ABI_PCS_wchar_t[] =
11910 {"None", "??? 1", "2", "??? 3", "4"};
11911 static const char * arm_attr_tag_ABI_FP_rounding[] = {"Unused", "Needed"};
11912 static const char * arm_attr_tag_ABI_FP_denormal[] =
11913 {"Unused", "Needed", "Sign only"};
11914 static const char * arm_attr_tag_ABI_FP_exceptions[] = {"Unused", "Needed"};
11915 static const char * arm_attr_tag_ABI_FP_user_exceptions[] = {"Unused", "Needed"};
11916 static const char * arm_attr_tag_ABI_FP_number_model[] =
11917 {"Unused", "Finite", "RTABI", "IEEE 754"};
11918 static const char * arm_attr_tag_ABI_enum_size[] =
11919 {"Unused", "small", "int", "forced to int"};
11920 static const char * arm_attr_tag_ABI_HardFP_use[] =
11921 {"As Tag_FP_arch", "SP only", "DP only", "SP and DP"};
11922 static const char * arm_attr_tag_ABI_VFP_args[] =
11923 {"AAPCS", "VFP registers", "custom"};
11924 static const char * arm_attr_tag_ABI_WMMX_args[] =
11925 {"AAPCS", "WMMX registers", "custom"};
11926 static const char * arm_attr_tag_ABI_optimization_goals[] =
11927 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
11928 "Aggressive Size", "Prefer Debug", "Aggressive Debug"};
11929 static const char * arm_attr_tag_ABI_FP_optimization_goals[] =
11930 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
11931 "Aggressive Size", "Prefer Accuracy", "Aggressive Accuracy"};
11932 static const char * arm_attr_tag_CPU_unaligned_access[] = {"None", "v6"};
11933 static const char * arm_attr_tag_FP_HP_extension[] =
11934 {"Not Allowed", "Allowed"};
11935 static const char * arm_attr_tag_ABI_FP_16bit_format[] =
11936 {"None", "IEEE 754", "Alternative Format"};
11937 static const char * arm_attr_tag_MPextension_use[] =
11938 {"Not Allowed", "Allowed"};
11939 static const char * arm_attr_tag_DIV_use[] =
11940 {"Allowed in Thumb-ISA, v7-R or v7-M", "Not allowed",
11941 "Allowed in v7-A with integer division extension"};
11942 static const char * arm_attr_tag_T2EE_use[] = {"Not Allowed", "Allowed"};
11943 static const char * arm_attr_tag_Virtualization_use[] =
11944 {"Not Allowed", "TrustZone", "Virtualization Extensions",
11945 "TrustZone and Virtualization Extensions"};
11946 static const char * arm_attr_tag_MPextension_use_legacy[] =
11947 {"Not Allowed", "Allowed"};
11948
11949 #define LOOKUP(id, name) \
11950 {id, #name, 0x80 | ARRAY_SIZE(arm_attr_tag_##name), arm_attr_tag_##name}
11951 static arm_attr_public_tag arm_attr_public_tags[] =
11952 {
11953 {4, "CPU_raw_name", 1, NULL},
11954 {5, "CPU_name", 1, NULL},
11955 LOOKUP(6, CPU_arch),
11956 {7, "CPU_arch_profile", 0, NULL},
11957 LOOKUP(8, ARM_ISA_use),
11958 LOOKUP(9, THUMB_ISA_use),
11959 LOOKUP(10, FP_arch),
11960 LOOKUP(11, WMMX_arch),
11961 LOOKUP(12, Advanced_SIMD_arch),
11962 LOOKUP(13, PCS_config),
11963 LOOKUP(14, ABI_PCS_R9_use),
11964 LOOKUP(15, ABI_PCS_RW_data),
11965 LOOKUP(16, ABI_PCS_RO_data),
11966 LOOKUP(17, ABI_PCS_GOT_use),
11967 LOOKUP(18, ABI_PCS_wchar_t),
11968 LOOKUP(19, ABI_FP_rounding),
11969 LOOKUP(20, ABI_FP_denormal),
11970 LOOKUP(21, ABI_FP_exceptions),
11971 LOOKUP(22, ABI_FP_user_exceptions),
11972 LOOKUP(23, ABI_FP_number_model),
11973 {24, "ABI_align_needed", 0, NULL},
11974 {25, "ABI_align_preserved", 0, NULL},
11975 LOOKUP(26, ABI_enum_size),
11976 LOOKUP(27, ABI_HardFP_use),
11977 LOOKUP(28, ABI_VFP_args),
11978 LOOKUP(29, ABI_WMMX_args),
11979 LOOKUP(30, ABI_optimization_goals),
11980 LOOKUP(31, ABI_FP_optimization_goals),
11981 {32, "compatibility", 0, NULL},
11982 LOOKUP(34, CPU_unaligned_access),
11983 LOOKUP(36, FP_HP_extension),
11984 LOOKUP(38, ABI_FP_16bit_format),
11985 LOOKUP(42, MPextension_use),
11986 LOOKUP(44, DIV_use),
11987 {64, "nodefaults", 0, NULL},
11988 {65, "also_compatible_with", 0, NULL},
11989 LOOKUP(66, T2EE_use),
11990 {67, "conformance", 1, NULL},
11991 LOOKUP(68, Virtualization_use),
11992 LOOKUP(70, MPextension_use_legacy)
11993 };
11994 #undef LOOKUP
11995
11996 static unsigned char *
11997 display_arm_attribute (unsigned char * p,
11998 const unsigned char * const end)
11999 {
12000 unsigned int tag;
12001 unsigned int len;
12002 unsigned int val;
12003 arm_attr_public_tag * attr;
12004 unsigned i;
12005 unsigned int type;
12006
12007 tag = read_uleb128 (p, &len, end);
12008 p += len;
12009 attr = NULL;
12010 for (i = 0; i < ARRAY_SIZE (arm_attr_public_tags); i++)
12011 {
12012 if (arm_attr_public_tags[i].tag == tag)
12013 {
12014 attr = &arm_attr_public_tags[i];
12015 break;
12016 }
12017 }
12018
12019 if (attr)
12020 {
12021 printf (" Tag_%s: ", attr->name);
12022 switch (attr->type)
12023 {
12024 case 0:
12025 switch (tag)
12026 {
12027 case 7: /* Tag_CPU_arch_profile. */
12028 val = read_uleb128 (p, &len, end);
12029 p += len;
12030 switch (val)
12031 {
12032 case 0: printf (_("None\n")); break;
12033 case 'A': printf (_("Application\n")); break;
12034 case 'R': printf (_("Realtime\n")); break;
12035 case 'M': printf (_("Microcontroller\n")); break;
12036 case 'S': printf (_("Application or Realtime\n")); break;
12037 default: printf ("??? (%d)\n", val); break;
12038 }
12039 break;
12040
12041 case 24: /* Tag_align_needed. */
12042 val = read_uleb128 (p, &len, end);
12043 p += len;
12044 switch (val)
12045 {
12046 case 0: printf (_("None\n")); break;
12047 case 1: printf (_("8-byte\n")); break;
12048 case 2: printf (_("4-byte\n")); break;
12049 case 3: printf ("??? 3\n"); break;
12050 default:
12051 if (val <= 12)
12052 printf (_("8-byte and up to %d-byte extended\n"),
12053 1 << val);
12054 else
12055 printf ("??? (%d)\n", val);
12056 break;
12057 }
12058 break;
12059
12060 case 25: /* Tag_align_preserved. */
12061 val = read_uleb128 (p, &len, end);
12062 p += len;
12063 switch (val)
12064 {
12065 case 0: printf (_("None\n")); break;
12066 case 1: printf (_("8-byte, except leaf SP\n")); break;
12067 case 2: printf (_("8-byte\n")); break;
12068 case 3: printf ("??? 3\n"); break;
12069 default:
12070 if (val <= 12)
12071 printf (_("8-byte and up to %d-byte extended\n"),
12072 1 << val);
12073 else
12074 printf ("??? (%d)\n", val);
12075 break;
12076 }
12077 break;
12078
12079 case 32: /* Tag_compatibility. */
12080 {
12081 val = read_uleb128 (p, &len, end);
12082 p += len;
12083 printf (_("flag = %d, vendor = "), val);
12084 if (p < end - 1)
12085 {
12086 size_t maxlen = (end - p) - 1;
12087
12088 print_symbol ((int) maxlen, (const char *) p);
12089 p += strnlen ((char *) p, maxlen) + 1;
12090 }
12091 else
12092 {
12093 printf (_("<corrupt>"));
12094 p = (unsigned char *) end;
12095 }
12096 putchar ('\n');
12097 }
12098 break;
12099
12100 case 64: /* Tag_nodefaults. */
12101 /* PR 17531: file: 001-505008-0.01. */
12102 if (p < end)
12103 p++;
12104 printf (_("True\n"));
12105 break;
12106
12107 case 65: /* Tag_also_compatible_with. */
12108 val = read_uleb128 (p, &len, end);
12109 p += len;
12110 if (val == 6 /* Tag_CPU_arch. */)
12111 {
12112 val = read_uleb128 (p, &len, end);
12113 p += len;
12114 if ((unsigned int) val >= ARRAY_SIZE (arm_attr_tag_CPU_arch))
12115 printf ("??? (%d)\n", val);
12116 else
12117 printf ("%s\n", arm_attr_tag_CPU_arch[val]);
12118 }
12119 else
12120 printf ("???\n");
12121 while (p < end && *(p++) != '\0' /* NUL terminator. */)
12122 ;
12123 break;
12124
12125 default:
12126 abort ();
12127 }
12128 return p;
12129
12130 case 1:
12131 return display_tag_value (-1, p, end);
12132 case 2:
12133 return display_tag_value (0, p, end);
12134
12135 default:
12136 assert (attr->type & 0x80);
12137 val = read_uleb128 (p, &len, end);
12138 p += len;
12139 type = attr->type & 0x7f;
12140 if (val >= type)
12141 printf ("??? (%d)\n", val);
12142 else
12143 printf ("%s\n", attr->table[val]);
12144 return p;
12145 }
12146 }
12147
12148 return display_tag_value (tag, p, end);
12149 }
12150
12151 static unsigned char *
12152 display_gnu_attribute (unsigned char * p,
12153 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, int, const unsigned char * const),
12154 const unsigned char * const end)
12155 {
12156 int tag;
12157 unsigned int len;
12158 int val;
12159
12160 tag = read_uleb128 (p, &len, end);
12161 p += len;
12162
12163 /* Tag_compatibility is the only generic GNU attribute defined at
12164 present. */
12165 if (tag == 32)
12166 {
12167 val = read_uleb128 (p, &len, end);
12168 p += len;
12169
12170 printf (_("flag = %d, vendor = "), val);
12171 if (p == end)
12172 {
12173 printf (_("<corrupt>\n"));
12174 warn (_("corrupt vendor attribute\n"));
12175 }
12176 else
12177 {
12178 if (p < end - 1)
12179 {
12180 size_t maxlen = (end - p) - 1;
12181
12182 print_symbol ((int) maxlen, (const char *) p);
12183 p += strnlen ((char *) p, maxlen) + 1;
12184 }
12185 else
12186 {
12187 printf (_("<corrupt>"));
12188 p = (unsigned char *) end;
12189 }
12190 putchar ('\n');
12191 }
12192 return p;
12193 }
12194
12195 if ((tag & 2) == 0 && display_proc_gnu_attribute)
12196 return display_proc_gnu_attribute (p, tag, end);
12197
12198 return display_tag_value (tag, p, end);
12199 }
12200
12201 static unsigned char *
12202 display_power_gnu_attribute (unsigned char * p,
12203 int tag,
12204 const unsigned char * const end)
12205 {
12206 unsigned int len;
12207 int val;
12208
12209 if (tag == Tag_GNU_Power_ABI_FP)
12210 {
12211 val = read_uleb128 (p, &len, end);
12212 p += len;
12213 printf (" Tag_GNU_Power_ABI_FP: ");
12214
12215 switch (val)
12216 {
12217 case 0:
12218 printf (_("Hard or soft float\n"));
12219 break;
12220 case 1:
12221 printf (_("Hard float\n"));
12222 break;
12223 case 2:
12224 printf (_("Soft float\n"));
12225 break;
12226 case 3:
12227 printf (_("Single-precision hard float\n"));
12228 break;
12229 default:
12230 printf ("??? (%d)\n", val);
12231 break;
12232 }
12233 return p;
12234 }
12235
12236 if (tag == Tag_GNU_Power_ABI_Vector)
12237 {
12238 val = read_uleb128 (p, &len, end);
12239 p += len;
12240 printf (" Tag_GNU_Power_ABI_Vector: ");
12241 switch (val)
12242 {
12243 case 0:
12244 printf (_("Any\n"));
12245 break;
12246 case 1:
12247 printf (_("Generic\n"));
12248 break;
12249 case 2:
12250 printf ("AltiVec\n");
12251 break;
12252 case 3:
12253 printf ("SPE\n");
12254 break;
12255 default:
12256 printf ("??? (%d)\n", val);
12257 break;
12258 }
12259 return p;
12260 }
12261
12262 if (tag == Tag_GNU_Power_ABI_Struct_Return)
12263 {
12264 if (p == end)
12265 {
12266 warn (_("corrupt Tag_GNU_Power_ABI_Struct_Return\n"));
12267 return p;
12268 }
12269
12270 val = read_uleb128 (p, &len, end);
12271 p += len;
12272 printf (" Tag_GNU_Power_ABI_Struct_Return: ");
12273 switch (val)
12274 {
12275 case 0:
12276 printf (_("Any\n"));
12277 break;
12278 case 1:
12279 printf ("r3/r4\n");
12280 break;
12281 case 2:
12282 printf (_("Memory\n"));
12283 break;
12284 default:
12285 printf ("??? (%d)\n", val);
12286 break;
12287 }
12288 return p;
12289 }
12290
12291 return display_tag_value (tag & 1, p, end);
12292 }
12293
12294 static void
12295 display_sparc_hwcaps (int mask)
12296 {
12297 if (mask)
12298 {
12299 int first = 1;
12300
12301 if (mask & ELF_SPARC_HWCAP_MUL32)
12302 fputs ("mul32", stdout), first = 0;
12303 if (mask & ELF_SPARC_HWCAP_DIV32)
12304 printf ("%sdiv32", first ? "" : "|"), first = 0;
12305 if (mask & ELF_SPARC_HWCAP_FSMULD)
12306 printf ("%sfsmuld", first ? "" : "|"), first = 0;
12307 if (mask & ELF_SPARC_HWCAP_V8PLUS)
12308 printf ("%sv8plus", first ? "" : "|"), first = 0;
12309 if (mask & ELF_SPARC_HWCAP_POPC)
12310 printf ("%spopc", first ? "" : "|"), first = 0;
12311 if (mask & ELF_SPARC_HWCAP_VIS)
12312 printf ("%svis", first ? "" : "|"), first = 0;
12313 if (mask & ELF_SPARC_HWCAP_VIS2)
12314 printf ("%svis2", first ? "" : "|"), first = 0;
12315 if (mask & ELF_SPARC_HWCAP_ASI_BLK_INIT)
12316 printf ("%sASIBlkInit", first ? "" : "|"), first = 0;
12317 if (mask & ELF_SPARC_HWCAP_FMAF)
12318 printf ("%sfmaf", first ? "" : "|"), first = 0;
12319 if (mask & ELF_SPARC_HWCAP_VIS3)
12320 printf ("%svis3", first ? "" : "|"), first = 0;
12321 if (mask & ELF_SPARC_HWCAP_HPC)
12322 printf ("%shpc", first ? "" : "|"), first = 0;
12323 if (mask & ELF_SPARC_HWCAP_RANDOM)
12324 printf ("%srandom", first ? "" : "|"), first = 0;
12325 if (mask & ELF_SPARC_HWCAP_TRANS)
12326 printf ("%strans", first ? "" : "|"), first = 0;
12327 if (mask & ELF_SPARC_HWCAP_FJFMAU)
12328 printf ("%sfjfmau", first ? "" : "|"), first = 0;
12329 if (mask & ELF_SPARC_HWCAP_IMA)
12330 printf ("%sima", first ? "" : "|"), first = 0;
12331 if (mask & ELF_SPARC_HWCAP_ASI_CACHE_SPARING)
12332 printf ("%scspare", first ? "" : "|"), first = 0;
12333 }
12334 else
12335 fputc ('0', stdout);
12336 fputc ('\n', stdout);
12337 }
12338
12339 static void
12340 display_sparc_hwcaps2 (int mask)
12341 {
12342 if (mask)
12343 {
12344 int first = 1;
12345
12346 if (mask & ELF_SPARC_HWCAP2_FJATHPLUS)
12347 fputs ("fjathplus", stdout), first = 0;
12348 if (mask & ELF_SPARC_HWCAP2_VIS3B)
12349 printf ("%svis3b", first ? "" : "|"), first = 0;
12350 if (mask & ELF_SPARC_HWCAP2_ADP)
12351 printf ("%sadp", first ? "" : "|"), first = 0;
12352 if (mask & ELF_SPARC_HWCAP2_SPARC5)
12353 printf ("%ssparc5", first ? "" : "|"), first = 0;
12354 if (mask & ELF_SPARC_HWCAP2_MWAIT)
12355 printf ("%smwait", first ? "" : "|"), first = 0;
12356 if (mask & ELF_SPARC_HWCAP2_XMPMUL)
12357 printf ("%sxmpmul", first ? "" : "|"), first = 0;
12358 if (mask & ELF_SPARC_HWCAP2_XMONT)
12359 printf ("%sxmont2", first ? "" : "|"), first = 0;
12360 if (mask & ELF_SPARC_HWCAP2_NSEC)
12361 printf ("%snsec", first ? "" : "|"), first = 0;
12362 if (mask & ELF_SPARC_HWCAP2_FJATHHPC)
12363 printf ("%sfjathhpc", first ? "" : "|"), first = 0;
12364 if (mask & ELF_SPARC_HWCAP2_FJDES)
12365 printf ("%sfjdes", first ? "" : "|"), first = 0;
12366 if (mask & ELF_SPARC_HWCAP2_FJAES)
12367 printf ("%sfjaes", first ? "" : "|"), first = 0;
12368 }
12369 else
12370 fputc ('0', stdout);
12371 fputc ('\n', stdout);
12372 }
12373
12374 static unsigned char *
12375 display_sparc_gnu_attribute (unsigned char * p,
12376 int tag,
12377 const unsigned char * const end)
12378 {
12379 unsigned int len;
12380 int val;
12381
12382 if (tag == Tag_GNU_Sparc_HWCAPS)
12383 {
12384 val = read_uleb128 (p, &len, end);
12385 p += len;
12386 printf (" Tag_GNU_Sparc_HWCAPS: ");
12387 display_sparc_hwcaps (val);
12388 return p;
12389 }
12390 if (tag == Tag_GNU_Sparc_HWCAPS2)
12391 {
12392 val = read_uleb128 (p, &len, end);
12393 p += len;
12394 printf (" Tag_GNU_Sparc_HWCAPS2: ");
12395 display_sparc_hwcaps2 (val);
12396 return p;
12397 }
12398
12399 return display_tag_value (tag, p, end);
12400 }
12401
12402 static void
12403 print_mips_fp_abi_value (int val)
12404 {
12405 switch (val)
12406 {
12407 case Val_GNU_MIPS_ABI_FP_ANY:
12408 printf (_("Hard or soft float\n"));
12409 break;
12410 case Val_GNU_MIPS_ABI_FP_DOUBLE:
12411 printf (_("Hard float (double precision)\n"));
12412 break;
12413 case Val_GNU_MIPS_ABI_FP_SINGLE:
12414 printf (_("Hard float (single precision)\n"));
12415 break;
12416 case Val_GNU_MIPS_ABI_FP_SOFT:
12417 printf (_("Soft float\n"));
12418 break;
12419 case Val_GNU_MIPS_ABI_FP_OLD_64:
12420 printf (_("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
12421 break;
12422 case Val_GNU_MIPS_ABI_FP_XX:
12423 printf (_("Hard float (32-bit CPU, Any FPU)\n"));
12424 break;
12425 case Val_GNU_MIPS_ABI_FP_64:
12426 printf (_("Hard float (32-bit CPU, 64-bit FPU)\n"));
12427 break;
12428 case Val_GNU_MIPS_ABI_FP_64A:
12429 printf (_("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
12430 break;
12431 default:
12432 printf ("??? (%d)\n", val);
12433 break;
12434 }
12435 }
12436
12437 static unsigned char *
12438 display_mips_gnu_attribute (unsigned char * p,
12439 int tag,
12440 const unsigned char * const end)
12441 {
12442 if (tag == Tag_GNU_MIPS_ABI_FP)
12443 {
12444 unsigned int len;
12445 int val;
12446
12447 val = read_uleb128 (p, &len, end);
12448 p += len;
12449 printf (" Tag_GNU_MIPS_ABI_FP: ");
12450
12451 print_mips_fp_abi_value (val);
12452
12453 return p;
12454 }
12455
12456 if (tag == Tag_GNU_MIPS_ABI_MSA)
12457 {
12458 unsigned int len;
12459 int val;
12460
12461 val = read_uleb128 (p, &len, end);
12462 p += len;
12463 printf (" Tag_GNU_MIPS_ABI_MSA: ");
12464
12465 switch (val)
12466 {
12467 case Val_GNU_MIPS_ABI_MSA_ANY:
12468 printf (_("Any MSA or not\n"));
12469 break;
12470 case Val_GNU_MIPS_ABI_MSA_128:
12471 printf (_("128-bit MSA\n"));
12472 break;
12473 default:
12474 printf ("??? (%d)\n", val);
12475 break;
12476 }
12477 return p;
12478 }
12479
12480 return display_tag_value (tag & 1, p, end);
12481 }
12482
12483 static unsigned char *
12484 display_tic6x_attribute (unsigned char * p,
12485 const unsigned char * const end)
12486 {
12487 int tag;
12488 unsigned int len;
12489 int val;
12490
12491 tag = read_uleb128 (p, &len, end);
12492 p += len;
12493
12494 switch (tag)
12495 {
12496 case Tag_ISA:
12497 val = read_uleb128 (p, &len, end);
12498 p += len;
12499 printf (" Tag_ISA: ");
12500
12501 switch (val)
12502 {
12503 case C6XABI_Tag_ISA_none:
12504 printf (_("None\n"));
12505 break;
12506 case C6XABI_Tag_ISA_C62X:
12507 printf ("C62x\n");
12508 break;
12509 case C6XABI_Tag_ISA_C67X:
12510 printf ("C67x\n");
12511 break;
12512 case C6XABI_Tag_ISA_C67XP:
12513 printf ("C67x+\n");
12514 break;
12515 case C6XABI_Tag_ISA_C64X:
12516 printf ("C64x\n");
12517 break;
12518 case C6XABI_Tag_ISA_C64XP:
12519 printf ("C64x+\n");
12520 break;
12521 case C6XABI_Tag_ISA_C674X:
12522 printf ("C674x\n");
12523 break;
12524 default:
12525 printf ("??? (%d)\n", val);
12526 break;
12527 }
12528 return p;
12529
12530 case Tag_ABI_wchar_t:
12531 val = read_uleb128 (p, &len, end);
12532 p += len;
12533 printf (" Tag_ABI_wchar_t: ");
12534 switch (val)
12535 {
12536 case 0:
12537 printf (_("Not used\n"));
12538 break;
12539 case 1:
12540 printf (_("2 bytes\n"));
12541 break;
12542 case 2:
12543 printf (_("4 bytes\n"));
12544 break;
12545 default:
12546 printf ("??? (%d)\n", val);
12547 break;
12548 }
12549 return p;
12550
12551 case Tag_ABI_stack_align_needed:
12552 val = read_uleb128 (p, &len, end);
12553 p += len;
12554 printf (" Tag_ABI_stack_align_needed: ");
12555 switch (val)
12556 {
12557 case 0:
12558 printf (_("8-byte\n"));
12559 break;
12560 case 1:
12561 printf (_("16-byte\n"));
12562 break;
12563 default:
12564 printf ("??? (%d)\n", val);
12565 break;
12566 }
12567 return p;
12568
12569 case Tag_ABI_stack_align_preserved:
12570 val = read_uleb128 (p, &len, end);
12571 p += len;
12572 printf (" Tag_ABI_stack_align_preserved: ");
12573 switch (val)
12574 {
12575 case 0:
12576 printf (_("8-byte\n"));
12577 break;
12578 case 1:
12579 printf (_("16-byte\n"));
12580 break;
12581 default:
12582 printf ("??? (%d)\n", val);
12583 break;
12584 }
12585 return p;
12586
12587 case Tag_ABI_DSBT:
12588 val = read_uleb128 (p, &len, end);
12589 p += len;
12590 printf (" Tag_ABI_DSBT: ");
12591 switch (val)
12592 {
12593 case 0:
12594 printf (_("DSBT addressing not used\n"));
12595 break;
12596 case 1:
12597 printf (_("DSBT addressing used\n"));
12598 break;
12599 default:
12600 printf ("??? (%d)\n", val);
12601 break;
12602 }
12603 return p;
12604
12605 case Tag_ABI_PID:
12606 val = read_uleb128 (p, &len, end);
12607 p += len;
12608 printf (" Tag_ABI_PID: ");
12609 switch (val)
12610 {
12611 case 0:
12612 printf (_("Data addressing position-dependent\n"));
12613 break;
12614 case 1:
12615 printf (_("Data addressing position-independent, GOT near DP\n"));
12616 break;
12617 case 2:
12618 printf (_("Data addressing position-independent, GOT far from DP\n"));
12619 break;
12620 default:
12621 printf ("??? (%d)\n", val);
12622 break;
12623 }
12624 return p;
12625
12626 case Tag_ABI_PIC:
12627 val = read_uleb128 (p, &len, end);
12628 p += len;
12629 printf (" Tag_ABI_PIC: ");
12630 switch (val)
12631 {
12632 case 0:
12633 printf (_("Code addressing position-dependent\n"));
12634 break;
12635 case 1:
12636 printf (_("Code addressing position-independent\n"));
12637 break;
12638 default:
12639 printf ("??? (%d)\n", val);
12640 break;
12641 }
12642 return p;
12643
12644 case Tag_ABI_array_object_alignment:
12645 val = read_uleb128 (p, &len, end);
12646 p += len;
12647 printf (" Tag_ABI_array_object_alignment: ");
12648 switch (val)
12649 {
12650 case 0:
12651 printf (_("8-byte\n"));
12652 break;
12653 case 1:
12654 printf (_("4-byte\n"));
12655 break;
12656 case 2:
12657 printf (_("16-byte\n"));
12658 break;
12659 default:
12660 printf ("??? (%d)\n", val);
12661 break;
12662 }
12663 return p;
12664
12665 case Tag_ABI_array_object_align_expected:
12666 val = read_uleb128 (p, &len, end);
12667 p += len;
12668 printf (" Tag_ABI_array_object_align_expected: ");
12669 switch (val)
12670 {
12671 case 0:
12672 printf (_("8-byte\n"));
12673 break;
12674 case 1:
12675 printf (_("4-byte\n"));
12676 break;
12677 case 2:
12678 printf (_("16-byte\n"));
12679 break;
12680 default:
12681 printf ("??? (%d)\n", val);
12682 break;
12683 }
12684 return p;
12685
12686 case Tag_ABI_compatibility:
12687 {
12688 val = read_uleb128 (p, &len, end);
12689 p += len;
12690 printf (" Tag_ABI_compatibility: ");
12691 printf (_("flag = %d, vendor = "), val);
12692 if (p < end - 1)
12693 {
12694 size_t maxlen = (end - p) - 1;
12695
12696 print_symbol ((int) maxlen, (const char *) p);
12697 p += strnlen ((char *) p, maxlen) + 1;
12698 }
12699 else
12700 {
12701 printf (_("<corrupt>"));
12702 p = (unsigned char *) end;
12703 }
12704 putchar ('\n');
12705 return p;
12706 }
12707
12708 case Tag_ABI_conformance:
12709 {
12710 printf (" Tag_ABI_conformance: \"");
12711 if (p < end - 1)
12712 {
12713 size_t maxlen = (end - p) - 1;
12714
12715 print_symbol ((int) maxlen, (const char *) p);
12716 p += strnlen ((char *) p, maxlen) + 1;
12717 }
12718 else
12719 {
12720 printf (_("<corrupt>"));
12721 p = (unsigned char *) end;
12722 }
12723 printf ("\"\n");
12724 return p;
12725 }
12726 }
12727
12728 return display_tag_value (tag, p, end);
12729 }
12730
12731 static void
12732 display_raw_attribute (unsigned char * p, unsigned char * end)
12733 {
12734 unsigned long addr = 0;
12735 size_t bytes = end - p;
12736
12737 assert (end > p);
12738 while (bytes)
12739 {
12740 int j;
12741 int k;
12742 int lbytes = (bytes > 16 ? 16 : bytes);
12743
12744 printf (" 0x%8.8lx ", addr);
12745
12746 for (j = 0; j < 16; j++)
12747 {
12748 if (j < lbytes)
12749 printf ("%2.2x", p[j]);
12750 else
12751 printf (" ");
12752
12753 if ((j & 3) == 3)
12754 printf (" ");
12755 }
12756
12757 for (j = 0; j < lbytes; j++)
12758 {
12759 k = p[j];
12760 if (k >= ' ' && k < 0x7f)
12761 printf ("%c", k);
12762 else
12763 printf (".");
12764 }
12765
12766 putchar ('\n');
12767
12768 p += lbytes;
12769 bytes -= lbytes;
12770 addr += lbytes;
12771 }
12772
12773 putchar ('\n');
12774 }
12775
12776 static unsigned char *
12777 display_msp430x_attribute (unsigned char * p,
12778 const unsigned char * const end)
12779 {
12780 unsigned int len;
12781 int val;
12782 int tag;
12783
12784 tag = read_uleb128 (p, & len, end);
12785 p += len;
12786
12787 switch (tag)
12788 {
12789 case OFBA_MSPABI_Tag_ISA:
12790 val = read_uleb128 (p, &len, end);
12791 p += len;
12792 printf (" Tag_ISA: ");
12793 switch (val)
12794 {
12795 case 0: printf (_("None\n")); break;
12796 case 1: printf (_("MSP430\n")); break;
12797 case 2: printf (_("MSP430X\n")); break;
12798 default: printf ("??? (%d)\n", val); break;
12799 }
12800 break;
12801
12802 case OFBA_MSPABI_Tag_Code_Model:
12803 val = read_uleb128 (p, &len, end);
12804 p += len;
12805 printf (" Tag_Code_Model: ");
12806 switch (val)
12807 {
12808 case 0: printf (_("None\n")); break;
12809 case 1: printf (_("Small\n")); break;
12810 case 2: printf (_("Large\n")); break;
12811 default: printf ("??? (%d)\n", val); break;
12812 }
12813 break;
12814
12815 case OFBA_MSPABI_Tag_Data_Model:
12816 val = read_uleb128 (p, &len, end);
12817 p += len;
12818 printf (" Tag_Data_Model: ");
12819 switch (val)
12820 {
12821 case 0: printf (_("None\n")); break;
12822 case 1: printf (_("Small\n")); break;
12823 case 2: printf (_("Large\n")); break;
12824 case 3: printf (_("Restricted Large\n")); break;
12825 default: printf ("??? (%d)\n", val); break;
12826 }
12827 break;
12828
12829 default:
12830 printf (_(" <unknown tag %d>: "), tag);
12831
12832 if (tag & 1)
12833 {
12834 putchar ('"');
12835 if (p < end - 1)
12836 {
12837 size_t maxlen = (end - p) - 1;
12838
12839 print_symbol ((int) maxlen, (const char *) p);
12840 p += strnlen ((char *) p, maxlen) + 1;
12841 }
12842 else
12843 {
12844 printf (_("<corrupt>"));
12845 p = (unsigned char *) end;
12846 }
12847 printf ("\"\n");
12848 }
12849 else
12850 {
12851 val = read_uleb128 (p, &len, end);
12852 p += len;
12853 printf ("%d (0x%x)\n", val, val);
12854 }
12855 break;
12856 }
12857
12858 assert (p <= end);
12859 return p;
12860 }
12861
12862 static int
12863 process_attributes (FILE * file,
12864 const char * public_name,
12865 unsigned int proc_type,
12866 unsigned char * (* display_pub_attribute) (unsigned char *, const unsigned char * const),
12867 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, int, const unsigned char * const))
12868 {
12869 Elf_Internal_Shdr * sect;
12870 unsigned i;
12871
12872 /* Find the section header so that we get the size. */
12873 for (i = 0, sect = section_headers;
12874 i < elf_header.e_shnum;
12875 i++, sect++)
12876 {
12877 unsigned char * contents;
12878 unsigned char * p;
12879
12880 if (sect->sh_type != proc_type && sect->sh_type != SHT_GNU_ATTRIBUTES)
12881 continue;
12882
12883 contents = (unsigned char *) get_data (NULL, file, sect->sh_offset, 1,
12884 sect->sh_size, _("attributes"));
12885 if (contents == NULL)
12886 continue;
12887
12888 p = contents;
12889 if (*p == 'A')
12890 {
12891 bfd_vma section_len;
12892
12893 section_len = sect->sh_size - 1;
12894 p++;
12895
12896 while (section_len > 0)
12897 {
12898 bfd_vma attr_len;
12899 unsigned int namelen;
12900 bfd_boolean public_section;
12901 bfd_boolean gnu_section;
12902
12903 if (section_len <= 4)
12904 {
12905 error (_("Tag section ends prematurely\n"));
12906 break;
12907 }
12908 attr_len = byte_get (p, 4);
12909 p += 4;
12910
12911 if (attr_len > section_len)
12912 {
12913 error (_("Bad attribute length (%u > %u)\n"),
12914 (unsigned) attr_len, (unsigned) section_len);
12915 attr_len = section_len;
12916 }
12917 /* PR 17531: file: 001-101425-0.004 */
12918 else if (attr_len < 5)
12919 {
12920 error (_("Attribute length of %u is too small\n"), (unsigned) attr_len);
12921 break;
12922 }
12923
12924 section_len -= attr_len;
12925 attr_len -= 4;
12926
12927 namelen = strnlen ((char *) p, attr_len) + 1;
12928 if (namelen == 0 || namelen >= attr_len)
12929 {
12930 error (_("Corrupt attribute section name\n"));
12931 break;
12932 }
12933
12934 printf (_("Attribute Section: "));
12935 print_symbol (INT_MAX, (const char *) p);
12936 putchar ('\n');
12937
12938 if (public_name && streq ((char *) p, public_name))
12939 public_section = TRUE;
12940 else
12941 public_section = FALSE;
12942
12943 if (streq ((char *) p, "gnu"))
12944 gnu_section = TRUE;
12945 else
12946 gnu_section = FALSE;
12947
12948 p += namelen;
12949 attr_len -= namelen;
12950
12951 while (attr_len > 0 && p < contents + sect->sh_size)
12952 {
12953 int tag;
12954 int val;
12955 bfd_vma size;
12956 unsigned char * end;
12957
12958 /* PR binutils/17531: Safe handling of corrupt files. */
12959 if (attr_len < 6)
12960 {
12961 error (_("Unused bytes at end of section\n"));
12962 section_len = 0;
12963 break;
12964 }
12965
12966 tag = *(p++);
12967 size = byte_get (p, 4);
12968 if (size > attr_len)
12969 {
12970 error (_("Bad subsection length (%u > %u)\n"),
12971 (unsigned) size, (unsigned) attr_len);
12972 size = attr_len;
12973 }
12974 /* PR binutils/17531: Safe handling of corrupt files. */
12975 if (size < 6)
12976 {
12977 error (_("Bad subsection length (%u < 6)\n"),
12978 (unsigned) size);
12979 section_len = 0;
12980 break;
12981 }
12982
12983 attr_len -= size;
12984 end = p + size - 1;
12985 assert (end <= contents + sect->sh_size);
12986 p += 4;
12987
12988 switch (tag)
12989 {
12990 case 1:
12991 printf (_("File Attributes\n"));
12992 break;
12993 case 2:
12994 printf (_("Section Attributes:"));
12995 goto do_numlist;
12996 case 3:
12997 printf (_("Symbol Attributes:"));
12998 do_numlist:
12999 for (;;)
13000 {
13001 unsigned int j;
13002
13003 val = read_uleb128 (p, &j, end);
13004 p += j;
13005 if (val == 0)
13006 break;
13007 printf (" %d", val);
13008 }
13009 printf ("\n");
13010 break;
13011 default:
13012 printf (_("Unknown tag: %d\n"), tag);
13013 public_section = FALSE;
13014 break;
13015 }
13016
13017 if (public_section && display_pub_attribute != NULL)
13018 {
13019 while (p < end)
13020 p = display_pub_attribute (p, end);
13021 assert (p <= end);
13022 }
13023 else if (gnu_section && display_proc_gnu_attribute != NULL)
13024 {
13025 while (p < end)
13026 p = display_gnu_attribute (p,
13027 display_proc_gnu_attribute,
13028 end);
13029 assert (p <= end);
13030 }
13031 else if (p < end)
13032 {
13033 printf (_(" Unknown attribute:\n"));
13034 display_raw_attribute (p, end);
13035 p = end;
13036 }
13037 else
13038 attr_len = 0;
13039 }
13040 }
13041 }
13042 else
13043 printf (_("Unknown format '%c' (%d)\n"), *p, *p);
13044
13045 free (contents);
13046 }
13047 return 1;
13048 }
13049
13050 static int
13051 process_arm_specific (FILE * file)
13052 {
13053 return process_attributes (file, "aeabi", SHT_ARM_ATTRIBUTES,
13054 display_arm_attribute, NULL);
13055 }
13056
13057 static int
13058 process_power_specific (FILE * file)
13059 {
13060 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
13061 display_power_gnu_attribute);
13062 }
13063
13064 static int
13065 process_sparc_specific (FILE * file)
13066 {
13067 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
13068 display_sparc_gnu_attribute);
13069 }
13070
13071 static int
13072 process_tic6x_specific (FILE * file)
13073 {
13074 return process_attributes (file, "c6xabi", SHT_C6000_ATTRIBUTES,
13075 display_tic6x_attribute, NULL);
13076 }
13077
13078 static int
13079 process_msp430x_specific (FILE * file)
13080 {
13081 return process_attributes (file, "mspabi", SHT_MSP430_ATTRIBUTES,
13082 display_msp430x_attribute, NULL);
13083 }
13084
13085 /* DATA points to the contents of a MIPS GOT that starts at VMA PLTGOT.
13086 Print the Address, Access and Initial fields of an entry at VMA ADDR
13087 and return the VMA of the next entry. */
13088
13089 static bfd_vma
13090 print_mips_got_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
13091 {
13092 printf (" ");
13093 print_vma (addr, LONG_HEX);
13094 printf (" ");
13095 if (addr < pltgot + 0xfff0)
13096 printf ("%6d(gp)", (int) (addr - pltgot - 0x7ff0));
13097 else
13098 printf ("%10s", "");
13099 printf (" ");
13100 if (data == NULL)
13101 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
13102 else
13103 {
13104 bfd_vma entry;
13105
13106 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
13107 print_vma (entry, LONG_HEX);
13108 }
13109 return addr + (is_32bit_elf ? 4 : 8);
13110 }
13111
13112 /* DATA points to the contents of a MIPS PLT GOT that starts at VMA
13113 PLTGOT. Print the Address and Initial fields of an entry at VMA
13114 ADDR and return the VMA of the next entry. */
13115
13116 static bfd_vma
13117 print_mips_pltgot_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
13118 {
13119 printf (" ");
13120 print_vma (addr, LONG_HEX);
13121 printf (" ");
13122 if (data == NULL)
13123 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
13124 else
13125 {
13126 bfd_vma entry;
13127
13128 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
13129 print_vma (entry, LONG_HEX);
13130 }
13131 return addr + (is_32bit_elf ? 4 : 8);
13132 }
13133
13134 static void
13135 print_mips_ases (unsigned int mask)
13136 {
13137 if (mask & AFL_ASE_DSP)
13138 fputs ("\n\tDSP ASE", stdout);
13139 if (mask & AFL_ASE_DSPR2)
13140 fputs ("\n\tDSP R2 ASE", stdout);
13141 if (mask & AFL_ASE_EVA)
13142 fputs ("\n\tEnhanced VA Scheme", stdout);
13143 if (mask & AFL_ASE_MCU)
13144 fputs ("\n\tMCU (MicroController) ASE", stdout);
13145 if (mask & AFL_ASE_MDMX)
13146 fputs ("\n\tMDMX ASE", stdout);
13147 if (mask & AFL_ASE_MIPS3D)
13148 fputs ("\n\tMIPS-3D ASE", stdout);
13149 if (mask & AFL_ASE_MT)
13150 fputs ("\n\tMT ASE", stdout);
13151 if (mask & AFL_ASE_SMARTMIPS)
13152 fputs ("\n\tSmartMIPS ASE", stdout);
13153 if (mask & AFL_ASE_VIRT)
13154 fputs ("\n\tVZ ASE", stdout);
13155 if (mask & AFL_ASE_MSA)
13156 fputs ("\n\tMSA ASE", stdout);
13157 if (mask & AFL_ASE_MIPS16)
13158 fputs ("\n\tMIPS16 ASE", stdout);
13159 if (mask & AFL_ASE_MICROMIPS)
13160 fputs ("\n\tMICROMIPS ASE", stdout);
13161 if (mask & AFL_ASE_XPA)
13162 fputs ("\n\tXPA ASE", stdout);
13163 if (mask == 0)
13164 fprintf (stdout, "\n\t%s", _("None"));
13165 else if ((mask & ~AFL_ASE_MASK) != 0)
13166 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
13167 }
13168
13169 static void
13170 print_mips_isa_ext (unsigned int isa_ext)
13171 {
13172 switch (isa_ext)
13173 {
13174 case 0:
13175 fputs (_("None"), stdout);
13176 break;
13177 case AFL_EXT_XLR:
13178 fputs ("RMI XLR", stdout);
13179 break;
13180 case AFL_EXT_OCTEON3:
13181 fputs ("Cavium Networks Octeon3", stdout);
13182 break;
13183 case AFL_EXT_OCTEON2:
13184 fputs ("Cavium Networks Octeon2", stdout);
13185 break;
13186 case AFL_EXT_OCTEONP:
13187 fputs ("Cavium Networks OcteonP", stdout);
13188 break;
13189 case AFL_EXT_LOONGSON_3A:
13190 fputs ("Loongson 3A", stdout);
13191 break;
13192 case AFL_EXT_OCTEON:
13193 fputs ("Cavium Networks Octeon", stdout);
13194 break;
13195 case AFL_EXT_5900:
13196 fputs ("Toshiba R5900", stdout);
13197 break;
13198 case AFL_EXT_4650:
13199 fputs ("MIPS R4650", stdout);
13200 break;
13201 case AFL_EXT_4010:
13202 fputs ("LSI R4010", stdout);
13203 break;
13204 case AFL_EXT_4100:
13205 fputs ("NEC VR4100", stdout);
13206 break;
13207 case AFL_EXT_3900:
13208 fputs ("Toshiba R3900", stdout);
13209 break;
13210 case AFL_EXT_10000:
13211 fputs ("MIPS R10000", stdout);
13212 break;
13213 case AFL_EXT_SB1:
13214 fputs ("Broadcom SB-1", stdout);
13215 break;
13216 case AFL_EXT_4111:
13217 fputs ("NEC VR4111/VR4181", stdout);
13218 break;
13219 case AFL_EXT_4120:
13220 fputs ("NEC VR4120", stdout);
13221 break;
13222 case AFL_EXT_5400:
13223 fputs ("NEC VR5400", stdout);
13224 break;
13225 case AFL_EXT_5500:
13226 fputs ("NEC VR5500", stdout);
13227 break;
13228 case AFL_EXT_LOONGSON_2E:
13229 fputs ("ST Microelectronics Loongson 2E", stdout);
13230 break;
13231 case AFL_EXT_LOONGSON_2F:
13232 fputs ("ST Microelectronics Loongson 2F", stdout);
13233 break;
13234 default:
13235 fprintf (stdout, "%s (%d)", _("Unknown"), isa_ext);
13236 }
13237 }
13238
13239 static int
13240 get_mips_reg_size (int reg_size)
13241 {
13242 return (reg_size == AFL_REG_NONE) ? 0
13243 : (reg_size == AFL_REG_32) ? 32
13244 : (reg_size == AFL_REG_64) ? 64
13245 : (reg_size == AFL_REG_128) ? 128
13246 : -1;
13247 }
13248
13249 static int
13250 process_mips_specific (FILE * file)
13251 {
13252 Elf_Internal_Dyn * entry;
13253 Elf_Internal_Shdr *sect = NULL;
13254 size_t liblist_offset = 0;
13255 size_t liblistno = 0;
13256 size_t conflictsno = 0;
13257 size_t options_offset = 0;
13258 size_t conflicts_offset = 0;
13259 size_t pltrelsz = 0;
13260 size_t pltrel = 0;
13261 bfd_vma pltgot = 0;
13262 bfd_vma mips_pltgot = 0;
13263 bfd_vma jmprel = 0;
13264 bfd_vma local_gotno = 0;
13265 bfd_vma gotsym = 0;
13266 bfd_vma symtabno = 0;
13267
13268 process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
13269 display_mips_gnu_attribute);
13270
13271 sect = find_section (".MIPS.abiflags");
13272
13273 if (sect != NULL)
13274 {
13275 Elf_External_ABIFlags_v0 *abiflags_ext;
13276 Elf_Internal_ABIFlags_v0 abiflags_in;
13277
13278 if (sizeof (Elf_External_ABIFlags_v0) != sect->sh_size)
13279 fputs ("\nCorrupt ABI Flags section.\n", stdout);
13280 else
13281 {
13282 abiflags_ext = get_data (NULL, file, sect->sh_offset, 1,
13283 sect->sh_size, _("MIPS ABI Flags section"));
13284 if (abiflags_ext)
13285 {
13286 abiflags_in.version = BYTE_GET (abiflags_ext->version);
13287 abiflags_in.isa_level = BYTE_GET (abiflags_ext->isa_level);
13288 abiflags_in.isa_rev = BYTE_GET (abiflags_ext->isa_rev);
13289 abiflags_in.gpr_size = BYTE_GET (abiflags_ext->gpr_size);
13290 abiflags_in.cpr1_size = BYTE_GET (abiflags_ext->cpr1_size);
13291 abiflags_in.cpr2_size = BYTE_GET (abiflags_ext->cpr2_size);
13292 abiflags_in.fp_abi = BYTE_GET (abiflags_ext->fp_abi);
13293 abiflags_in.isa_ext = BYTE_GET (abiflags_ext->isa_ext);
13294 abiflags_in.ases = BYTE_GET (abiflags_ext->ases);
13295 abiflags_in.flags1 = BYTE_GET (abiflags_ext->flags1);
13296 abiflags_in.flags2 = BYTE_GET (abiflags_ext->flags2);
13297
13298 printf ("\nMIPS ABI Flags Version: %d\n", abiflags_in.version);
13299 printf ("\nISA: MIPS%d", abiflags_in.isa_level);
13300 if (abiflags_in.isa_rev > 1)
13301 printf ("r%d", abiflags_in.isa_rev);
13302 printf ("\nGPR size: %d",
13303 get_mips_reg_size (abiflags_in.gpr_size));
13304 printf ("\nCPR1 size: %d",
13305 get_mips_reg_size (abiflags_in.cpr1_size));
13306 printf ("\nCPR2 size: %d",
13307 get_mips_reg_size (abiflags_in.cpr2_size));
13308 fputs ("\nFP ABI: ", stdout);
13309 print_mips_fp_abi_value (abiflags_in.fp_abi);
13310 fputs ("ISA Extension: ", stdout);
13311 print_mips_isa_ext (abiflags_in.isa_ext);
13312 fputs ("\nASEs:", stdout);
13313 print_mips_ases (abiflags_in.ases);
13314 printf ("\nFLAGS 1: %8.8lx", abiflags_in.flags1);
13315 printf ("\nFLAGS 2: %8.8lx", abiflags_in.flags2);
13316 fputc ('\n', stdout);
13317 free (abiflags_ext);
13318 }
13319 }
13320 }
13321
13322 /* We have a lot of special sections. Thanks SGI! */
13323 if (dynamic_section == NULL)
13324 /* No information available. */
13325 return 0;
13326
13327 for (entry = dynamic_section;
13328 /* PR 17531 file: 012-50589-0.004. */
13329 entry < dynamic_section + dynamic_nent && entry->d_tag != DT_NULL;
13330 ++entry)
13331 switch (entry->d_tag)
13332 {
13333 case DT_MIPS_LIBLIST:
13334 liblist_offset
13335 = offset_from_vma (file, entry->d_un.d_val,
13336 liblistno * sizeof (Elf32_External_Lib));
13337 break;
13338 case DT_MIPS_LIBLISTNO:
13339 liblistno = entry->d_un.d_val;
13340 break;
13341 case DT_MIPS_OPTIONS:
13342 options_offset = offset_from_vma (file, entry->d_un.d_val, 0);
13343 break;
13344 case DT_MIPS_CONFLICT:
13345 conflicts_offset
13346 = offset_from_vma (file, entry->d_un.d_val,
13347 conflictsno * sizeof (Elf32_External_Conflict));
13348 break;
13349 case DT_MIPS_CONFLICTNO:
13350 conflictsno = entry->d_un.d_val;
13351 break;
13352 case DT_PLTGOT:
13353 pltgot = entry->d_un.d_ptr;
13354 break;
13355 case DT_MIPS_LOCAL_GOTNO:
13356 local_gotno = entry->d_un.d_val;
13357 break;
13358 case DT_MIPS_GOTSYM:
13359 gotsym = entry->d_un.d_val;
13360 break;
13361 case DT_MIPS_SYMTABNO:
13362 symtabno = entry->d_un.d_val;
13363 break;
13364 case DT_MIPS_PLTGOT:
13365 mips_pltgot = entry->d_un.d_ptr;
13366 break;
13367 case DT_PLTREL:
13368 pltrel = entry->d_un.d_val;
13369 break;
13370 case DT_PLTRELSZ:
13371 pltrelsz = entry->d_un.d_val;
13372 break;
13373 case DT_JMPREL:
13374 jmprel = entry->d_un.d_ptr;
13375 break;
13376 default:
13377 break;
13378 }
13379
13380 if (liblist_offset != 0 && liblistno != 0 && do_dynamic)
13381 {
13382 Elf32_External_Lib * elib;
13383 size_t cnt;
13384
13385 elib = (Elf32_External_Lib *) get_data (NULL, file, liblist_offset,
13386 liblistno,
13387 sizeof (Elf32_External_Lib),
13388 _("liblist section data"));
13389 if (elib)
13390 {
13391 printf (_("\nSection '.liblist' contains %lu entries:\n"),
13392 (unsigned long) liblistno);
13393 fputs (_(" Library Time Stamp Checksum Version Flags\n"),
13394 stdout);
13395
13396 for (cnt = 0; cnt < liblistno; ++cnt)
13397 {
13398 Elf32_Lib liblist;
13399 time_t atime;
13400 char timebuf[20];
13401 struct tm * tmp;
13402
13403 liblist.l_name = BYTE_GET (elib[cnt].l_name);
13404 atime = BYTE_GET (elib[cnt].l_time_stamp);
13405 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
13406 liblist.l_version = BYTE_GET (elib[cnt].l_version);
13407 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
13408
13409 tmp = gmtime (&atime);
13410 snprintf (timebuf, sizeof (timebuf),
13411 "%04u-%02u-%02uT%02u:%02u:%02u",
13412 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
13413 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
13414
13415 printf ("%3lu: ", (unsigned long) cnt);
13416 if (VALID_DYNAMIC_NAME (liblist.l_name))
13417 print_symbol (20, GET_DYNAMIC_NAME (liblist.l_name));
13418 else
13419 printf (_("<corrupt: %9ld>"), liblist.l_name);
13420 printf (" %s %#10lx %-7ld", timebuf, liblist.l_checksum,
13421 liblist.l_version);
13422
13423 if (liblist.l_flags == 0)
13424 puts (_(" NONE"));
13425 else
13426 {
13427 static const struct
13428 {
13429 const char * name;
13430 int bit;
13431 }
13432 l_flags_vals[] =
13433 {
13434 { " EXACT_MATCH", LL_EXACT_MATCH },
13435 { " IGNORE_INT_VER", LL_IGNORE_INT_VER },
13436 { " REQUIRE_MINOR", LL_REQUIRE_MINOR },
13437 { " EXPORTS", LL_EXPORTS },
13438 { " DELAY_LOAD", LL_DELAY_LOAD },
13439 { " DELTA", LL_DELTA }
13440 };
13441 int flags = liblist.l_flags;
13442 size_t fcnt;
13443
13444 for (fcnt = 0; fcnt < ARRAY_SIZE (l_flags_vals); ++fcnt)
13445 if ((flags & l_flags_vals[fcnt].bit) != 0)
13446 {
13447 fputs (l_flags_vals[fcnt].name, stdout);
13448 flags ^= l_flags_vals[fcnt].bit;
13449 }
13450 if (flags != 0)
13451 printf (" %#x", (unsigned int) flags);
13452
13453 puts ("");
13454 }
13455 }
13456
13457 free (elib);
13458 }
13459 }
13460
13461 if (options_offset != 0)
13462 {
13463 Elf_External_Options * eopt;
13464 Elf_Internal_Options * iopt;
13465 Elf_Internal_Options * option;
13466 size_t offset;
13467 int cnt;
13468 sect = section_headers;
13469
13470 /* Find the section header so that we get the size. */
13471 sect = find_section_by_type (SHT_MIPS_OPTIONS);
13472 /* PR 17533 file: 012-277276-0.004. */
13473 if (sect == NULL)
13474 {
13475 error (_("No MIPS_OPTIONS header found\n"));
13476 return 0;
13477 }
13478
13479 eopt = (Elf_External_Options *) get_data (NULL, file, options_offset, 1,
13480 sect->sh_size, _("options"));
13481 if (eopt)
13482 {
13483 iopt = (Elf_Internal_Options *)
13484 cmalloc ((sect->sh_size / sizeof (eopt)), sizeof (* iopt));
13485 if (iopt == NULL)
13486 {
13487 error (_("Out of memory allocatinf space for MIPS options\n"));
13488 return 0;
13489 }
13490
13491 offset = cnt = 0;
13492 option = iopt;
13493
13494 while (offset < sect->sh_size)
13495 {
13496 Elf_External_Options * eoption;
13497
13498 eoption = (Elf_External_Options *) ((char *) eopt + offset);
13499
13500 option->kind = BYTE_GET (eoption->kind);
13501 option->size = BYTE_GET (eoption->size);
13502 option->section = BYTE_GET (eoption->section);
13503 option->info = BYTE_GET (eoption->info);
13504
13505 offset += option->size;
13506
13507 ++option;
13508 ++cnt;
13509 }
13510
13511 printf (_("\nSection '%s' contains %d entries:\n"),
13512 printable_section_name (sect), cnt);
13513
13514 option = iopt;
13515
13516 while (cnt-- > 0)
13517 {
13518 size_t len;
13519
13520 switch (option->kind)
13521 {
13522 case ODK_NULL:
13523 /* This shouldn't happen. */
13524 printf (" NULL %d %lx", option->section, option->info);
13525 break;
13526 case ODK_REGINFO:
13527 printf (" REGINFO ");
13528 if (elf_header.e_machine == EM_MIPS)
13529 {
13530 /* 32bit form. */
13531 Elf32_External_RegInfo * ereg;
13532 Elf32_RegInfo reginfo;
13533
13534 ereg = (Elf32_External_RegInfo *) (option + 1);
13535 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
13536 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
13537 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
13538 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
13539 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
13540 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
13541
13542 printf ("GPR %08lx GP 0x%lx\n",
13543 reginfo.ri_gprmask,
13544 (unsigned long) reginfo.ri_gp_value);
13545 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
13546 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
13547 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
13548 }
13549 else
13550 {
13551 /* 64 bit form. */
13552 Elf64_External_RegInfo * ereg;
13553 Elf64_Internal_RegInfo reginfo;
13554
13555 ereg = (Elf64_External_RegInfo *) (option + 1);
13556 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
13557 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
13558 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
13559 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
13560 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
13561 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
13562
13563 printf ("GPR %08lx GP 0x",
13564 reginfo.ri_gprmask);
13565 printf_vma (reginfo.ri_gp_value);
13566 printf ("\n");
13567
13568 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
13569 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
13570 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
13571 }
13572 ++option;
13573 continue;
13574 case ODK_EXCEPTIONS:
13575 fputs (" EXCEPTIONS fpe_min(", stdout);
13576 process_mips_fpe_exception (option->info & OEX_FPU_MIN);
13577 fputs (") fpe_max(", stdout);
13578 process_mips_fpe_exception ((option->info & OEX_FPU_MAX) >> 8);
13579 fputs (")", stdout);
13580
13581 if (option->info & OEX_PAGE0)
13582 fputs (" PAGE0", stdout);
13583 if (option->info & OEX_SMM)
13584 fputs (" SMM", stdout);
13585 if (option->info & OEX_FPDBUG)
13586 fputs (" FPDBUG", stdout);
13587 if (option->info & OEX_DISMISS)
13588 fputs (" DISMISS", stdout);
13589 break;
13590 case ODK_PAD:
13591 fputs (" PAD ", stdout);
13592 if (option->info & OPAD_PREFIX)
13593 fputs (" PREFIX", stdout);
13594 if (option->info & OPAD_POSTFIX)
13595 fputs (" POSTFIX", stdout);
13596 if (option->info & OPAD_SYMBOL)
13597 fputs (" SYMBOL", stdout);
13598 break;
13599 case ODK_HWPATCH:
13600 fputs (" HWPATCH ", stdout);
13601 if (option->info & OHW_R4KEOP)
13602 fputs (" R4KEOP", stdout);
13603 if (option->info & OHW_R8KPFETCH)
13604 fputs (" R8KPFETCH", stdout);
13605 if (option->info & OHW_R5KEOP)
13606 fputs (" R5KEOP", stdout);
13607 if (option->info & OHW_R5KCVTL)
13608 fputs (" R5KCVTL", stdout);
13609 break;
13610 case ODK_FILL:
13611 fputs (" FILL ", stdout);
13612 /* XXX Print content of info word? */
13613 break;
13614 case ODK_TAGS:
13615 fputs (" TAGS ", stdout);
13616 /* XXX Print content of info word? */
13617 break;
13618 case ODK_HWAND:
13619 fputs (" HWAND ", stdout);
13620 if (option->info & OHWA0_R4KEOP_CHECKED)
13621 fputs (" R4KEOP_CHECKED", stdout);
13622 if (option->info & OHWA0_R4KEOP_CLEAN)
13623 fputs (" R4KEOP_CLEAN", stdout);
13624 break;
13625 case ODK_HWOR:
13626 fputs (" HWOR ", stdout);
13627 if (option->info & OHWA0_R4KEOP_CHECKED)
13628 fputs (" R4KEOP_CHECKED", stdout);
13629 if (option->info & OHWA0_R4KEOP_CLEAN)
13630 fputs (" R4KEOP_CLEAN", stdout);
13631 break;
13632 case ODK_GP_GROUP:
13633 printf (" GP_GROUP %#06lx self-contained %#06lx",
13634 option->info & OGP_GROUP,
13635 (option->info & OGP_SELF) >> 16);
13636 break;
13637 case ODK_IDENT:
13638 printf (" IDENT %#06lx self-contained %#06lx",
13639 option->info & OGP_GROUP,
13640 (option->info & OGP_SELF) >> 16);
13641 break;
13642 default:
13643 /* This shouldn't happen. */
13644 printf (" %3d ??? %d %lx",
13645 option->kind, option->section, option->info);
13646 break;
13647 }
13648
13649 len = sizeof (* eopt);
13650 while (len < option->size)
13651 if (((char *) option)[len] >= ' '
13652 && ((char *) option)[len] < 0x7f)
13653 printf ("%c", ((char *) option)[len++]);
13654 else
13655 printf ("\\%03o", ((char *) option)[len++]);
13656
13657 fputs ("\n", stdout);
13658 ++option;
13659 }
13660
13661 free (eopt);
13662 }
13663 }
13664
13665 if (conflicts_offset != 0 && conflictsno != 0)
13666 {
13667 Elf32_Conflict * iconf;
13668 size_t cnt;
13669
13670 if (dynamic_symbols == NULL)
13671 {
13672 error (_("conflict list found without a dynamic symbol table\n"));
13673 return 0;
13674 }
13675
13676 iconf = (Elf32_Conflict *) cmalloc (conflictsno, sizeof (* iconf));
13677 if (iconf == NULL)
13678 {
13679 error (_("Out of memory allocating space for dynamic conflicts\n"));
13680 return 0;
13681 }
13682
13683 if (is_32bit_elf)
13684 {
13685 Elf32_External_Conflict * econf32;
13686
13687 econf32 = (Elf32_External_Conflict *)
13688 get_data (NULL, file, conflicts_offset, conflictsno,
13689 sizeof (* econf32), _("conflict"));
13690 if (!econf32)
13691 return 0;
13692
13693 for (cnt = 0; cnt < conflictsno; ++cnt)
13694 iconf[cnt] = BYTE_GET (econf32[cnt]);
13695
13696 free (econf32);
13697 }
13698 else
13699 {
13700 Elf64_External_Conflict * econf64;
13701
13702 econf64 = (Elf64_External_Conflict *)
13703 get_data (NULL, file, conflicts_offset, conflictsno,
13704 sizeof (* econf64), _("conflict"));
13705 if (!econf64)
13706 return 0;
13707
13708 for (cnt = 0; cnt < conflictsno; ++cnt)
13709 iconf[cnt] = BYTE_GET (econf64[cnt]);
13710
13711 free (econf64);
13712 }
13713
13714 printf (_("\nSection '.conflict' contains %lu entries:\n"),
13715 (unsigned long) conflictsno);
13716 puts (_(" Num: Index Value Name"));
13717
13718 for (cnt = 0; cnt < conflictsno; ++cnt)
13719 {
13720 printf ("%5lu: %8lu ", (unsigned long) cnt, iconf[cnt]);
13721
13722 if (iconf[cnt] >= num_dynamic_syms)
13723 printf (_("<corrupt symbol index>"));
13724 else
13725 {
13726 Elf_Internal_Sym * psym;
13727
13728 psym = & dynamic_symbols[iconf[cnt]];
13729 print_vma (psym->st_value, FULL_HEX);
13730 putchar (' ');
13731 if (VALID_DYNAMIC_NAME (psym->st_name))
13732 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
13733 else
13734 printf (_("<corrupt: %14ld>"), psym->st_name);
13735 }
13736 putchar ('\n');
13737 }
13738
13739 free (iconf);
13740 }
13741
13742 if (pltgot != 0 && local_gotno != 0)
13743 {
13744 bfd_vma ent, local_end, global_end;
13745 size_t i, offset;
13746 unsigned char * data;
13747 int addr_size;
13748
13749 ent = pltgot;
13750 addr_size = (is_32bit_elf ? 4 : 8);
13751 local_end = pltgot + local_gotno * addr_size;
13752
13753 /* PR binutils/17533 file: 012-111227-0.004 */
13754 if (symtabno < gotsym)
13755 {
13756 error (_("The GOT symbol offset (%lu) is greater than the symbol table size (%lu)\n"),
13757 (long) gotsym, (long) symtabno);
13758 return 0;
13759 }
13760
13761 global_end = local_end + (symtabno - gotsym) * addr_size;
13762 assert (global_end >= local_end);
13763 offset = offset_from_vma (file, pltgot, global_end - pltgot);
13764 data = (unsigned char *) get_data (NULL, file, offset,
13765 global_end - pltgot, 1,
13766 _("Global Offset Table data"));
13767 if (data == NULL)
13768 return 0;
13769
13770 printf (_("\nPrimary GOT:\n"));
13771 printf (_(" Canonical gp value: "));
13772 print_vma (pltgot + 0x7ff0, LONG_HEX);
13773 printf ("\n\n");
13774
13775 printf (_(" Reserved entries:\n"));
13776 printf (_(" %*s %10s %*s Purpose\n"),
13777 addr_size * 2, _("Address"), _("Access"),
13778 addr_size * 2, _("Initial"));
13779 ent = print_mips_got_entry (data, pltgot, ent);
13780 printf (_(" Lazy resolver\n"));
13781 if (data
13782 && (byte_get (data + ent - pltgot, addr_size)
13783 >> (addr_size * 8 - 1)) != 0)
13784 {
13785 ent = print_mips_got_entry (data, pltgot, ent);
13786 printf (_(" Module pointer (GNU extension)\n"));
13787 }
13788 printf ("\n");
13789
13790 if (ent < local_end)
13791 {
13792 printf (_(" Local entries:\n"));
13793 printf (" %*s %10s %*s\n",
13794 addr_size * 2, _("Address"), _("Access"),
13795 addr_size * 2, _("Initial"));
13796 while (ent < local_end)
13797 {
13798 ent = print_mips_got_entry (data, pltgot, ent);
13799 printf ("\n");
13800 }
13801 printf ("\n");
13802 }
13803
13804 if (gotsym < symtabno)
13805 {
13806 int sym_width;
13807
13808 printf (_(" Global entries:\n"));
13809 printf (" %*s %10s %*s %*s %-7s %3s %s\n",
13810 addr_size * 2, _("Address"),
13811 _("Access"),
13812 addr_size * 2, _("Initial"),
13813 addr_size * 2, _("Sym.Val."),
13814 _("Type"),
13815 /* Note for translators: "Ndx" = abbreviated form of "Index". */
13816 _("Ndx"), _("Name"));
13817
13818 sym_width = (is_32bit_elf ? 80 : 160) - 28 - addr_size * 6 - 1;
13819
13820 for (i = gotsym; i < symtabno; i++)
13821 {
13822 ent = print_mips_got_entry (data, pltgot, ent);
13823 printf (" ");
13824
13825 if (dynamic_symbols == NULL)
13826 printf (_("<no dynamic symbols>"));
13827 else if (i < num_dynamic_syms)
13828 {
13829 Elf_Internal_Sym * psym = dynamic_symbols + i;
13830
13831 print_vma (psym->st_value, LONG_HEX);
13832 printf (" %-7s %3s ",
13833 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
13834 get_symbol_index_type (psym->st_shndx));
13835
13836 if (VALID_DYNAMIC_NAME (psym->st_name))
13837 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
13838 else
13839 printf (_("<corrupt: %14ld>"), psym->st_name);
13840 }
13841 else
13842 printf (_("<symbol index %lu exceeds number of dynamic symbols>"),
13843 (unsigned long) i);
13844
13845 printf ("\n");
13846 }
13847 printf ("\n");
13848 }
13849
13850 if (data)
13851 free (data);
13852 }
13853
13854 if (mips_pltgot != 0 && jmprel != 0 && pltrel != 0 && pltrelsz != 0)
13855 {
13856 bfd_vma ent, end;
13857 size_t offset, rel_offset;
13858 unsigned long count, i;
13859 unsigned char * data;
13860 int addr_size, sym_width;
13861 Elf_Internal_Rela * rels;
13862
13863 rel_offset = offset_from_vma (file, jmprel, pltrelsz);
13864 if (pltrel == DT_RELA)
13865 {
13866 if (!slurp_rela_relocs (file, rel_offset, pltrelsz, &rels, &count))
13867 return 0;
13868 }
13869 else
13870 {
13871 if (!slurp_rel_relocs (file, rel_offset, pltrelsz, &rels, &count))
13872 return 0;
13873 }
13874
13875 ent = mips_pltgot;
13876 addr_size = (is_32bit_elf ? 4 : 8);
13877 end = mips_pltgot + (2 + count) * addr_size;
13878
13879 offset = offset_from_vma (file, mips_pltgot, end - mips_pltgot);
13880 data = (unsigned char *) get_data (NULL, file, offset, end - mips_pltgot,
13881 1, _("Procedure Linkage Table data"));
13882 if (data == NULL)
13883 return 0;
13884
13885 printf ("\nPLT GOT:\n\n");
13886 printf (_(" Reserved entries:\n"));
13887 printf (_(" %*s %*s Purpose\n"),
13888 addr_size * 2, _("Address"), addr_size * 2, _("Initial"));
13889 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
13890 printf (_(" PLT lazy resolver\n"));
13891 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
13892 printf (_(" Module pointer\n"));
13893 printf ("\n");
13894
13895 printf (_(" Entries:\n"));
13896 printf (" %*s %*s %*s %-7s %3s %s\n",
13897 addr_size * 2, _("Address"),
13898 addr_size * 2, _("Initial"),
13899 addr_size * 2, _("Sym.Val."), _("Type"), _("Ndx"), _("Name"));
13900 sym_width = (is_32bit_elf ? 80 : 160) - 17 - addr_size * 6 - 1;
13901 for (i = 0; i < count; i++)
13902 {
13903 unsigned long idx = get_reloc_symindex (rels[i].r_info);
13904
13905 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
13906 printf (" ");
13907
13908 if (idx >= num_dynamic_syms)
13909 printf (_("<corrupt symbol index: %lu>"), idx);
13910 else
13911 {
13912 Elf_Internal_Sym * psym = dynamic_symbols + idx;
13913
13914 print_vma (psym->st_value, LONG_HEX);
13915 printf (" %-7s %3s ",
13916 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
13917 get_symbol_index_type (psym->st_shndx));
13918 if (VALID_DYNAMIC_NAME (psym->st_name))
13919 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
13920 else
13921 printf (_("<corrupt: %14ld>"), psym->st_name);
13922 }
13923 printf ("\n");
13924 }
13925 printf ("\n");
13926
13927 if (data)
13928 free (data);
13929 free (rels);
13930 }
13931
13932 return 1;
13933 }
13934
13935 static int
13936 process_nds32_specific (FILE * file)
13937 {
13938 Elf_Internal_Shdr *sect = NULL;
13939
13940 sect = find_section (".nds32_e_flags");
13941 if (sect != NULL)
13942 {
13943 unsigned int *flag;
13944
13945 printf ("\nNDS32 elf flags section:\n");
13946 flag = get_data (NULL, file, sect->sh_offset, 1,
13947 sect->sh_size, _("NDS32 elf flags section"));
13948
13949 switch ((*flag) & 0x3)
13950 {
13951 case 0:
13952 printf ("(VEC_SIZE):\tNo entry.\n");
13953 break;
13954 case 1:
13955 printf ("(VEC_SIZE):\t4 bytes\n");
13956 break;
13957 case 2:
13958 printf ("(VEC_SIZE):\t16 bytes\n");
13959 break;
13960 case 3:
13961 printf ("(VEC_SIZE):\treserved\n");
13962 break;
13963 }
13964 }
13965
13966 return TRUE;
13967 }
13968
13969 static int
13970 process_gnu_liblist (FILE * file)
13971 {
13972 Elf_Internal_Shdr * section;
13973 Elf_Internal_Shdr * string_sec;
13974 Elf32_External_Lib * elib;
13975 char * strtab;
13976 size_t strtab_size;
13977 size_t cnt;
13978 unsigned i;
13979
13980 if (! do_arch)
13981 return 0;
13982
13983 for (i = 0, section = section_headers;
13984 i < elf_header.e_shnum;
13985 i++, section++)
13986 {
13987 switch (section->sh_type)
13988 {
13989 case SHT_GNU_LIBLIST:
13990 if (section->sh_link >= elf_header.e_shnum)
13991 break;
13992
13993 elib = (Elf32_External_Lib *)
13994 get_data (NULL, file, section->sh_offset, 1, section->sh_size,
13995 _("liblist section data"));
13996
13997 if (elib == NULL)
13998 break;
13999 string_sec = section_headers + section->sh_link;
14000
14001 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
14002 string_sec->sh_size,
14003 _("liblist string table"));
14004 if (strtab == NULL
14005 || section->sh_entsize != sizeof (Elf32_External_Lib))
14006 {
14007 free (elib);
14008 free (strtab);
14009 break;
14010 }
14011 strtab_size = string_sec->sh_size;
14012
14013 printf (_("\nLibrary list section '%s' contains %lu entries:\n"),
14014 printable_section_name (section),
14015 (unsigned long) (section->sh_size / sizeof (Elf32_External_Lib)));
14016
14017 puts (_(" Library Time Stamp Checksum Version Flags"));
14018
14019 for (cnt = 0; cnt < section->sh_size / sizeof (Elf32_External_Lib);
14020 ++cnt)
14021 {
14022 Elf32_Lib liblist;
14023 time_t atime;
14024 char timebuf[20];
14025 struct tm * tmp;
14026
14027 liblist.l_name = BYTE_GET (elib[cnt].l_name);
14028 atime = BYTE_GET (elib[cnt].l_time_stamp);
14029 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
14030 liblist.l_version = BYTE_GET (elib[cnt].l_version);
14031 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
14032
14033 tmp = gmtime (&atime);
14034 snprintf (timebuf, sizeof (timebuf),
14035 "%04u-%02u-%02uT%02u:%02u:%02u",
14036 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
14037 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
14038
14039 printf ("%3lu: ", (unsigned long) cnt);
14040 if (do_wide)
14041 printf ("%-20s", liblist.l_name < strtab_size
14042 ? strtab + liblist.l_name : _("<corrupt>"));
14043 else
14044 printf ("%-20.20s", liblist.l_name < strtab_size
14045 ? strtab + liblist.l_name : _("<corrupt>"));
14046 printf (" %s %#010lx %-7ld %-7ld\n", timebuf, liblist.l_checksum,
14047 liblist.l_version, liblist.l_flags);
14048 }
14049
14050 free (elib);
14051 free (strtab);
14052 }
14053 }
14054
14055 return 1;
14056 }
14057
14058 static const char *
14059 get_note_type (unsigned e_type)
14060 {
14061 static char buff[64];
14062
14063 if (elf_header.e_type == ET_CORE)
14064 switch (e_type)
14065 {
14066 case NT_AUXV:
14067 return _("NT_AUXV (auxiliary vector)");
14068 case NT_PRSTATUS:
14069 return _("NT_PRSTATUS (prstatus structure)");
14070 case NT_FPREGSET:
14071 return _("NT_FPREGSET (floating point registers)");
14072 case NT_PRPSINFO:
14073 return _("NT_PRPSINFO (prpsinfo structure)");
14074 case NT_TASKSTRUCT:
14075 return _("NT_TASKSTRUCT (task structure)");
14076 case NT_PRXFPREG:
14077 return _("NT_PRXFPREG (user_xfpregs structure)");
14078 case NT_PPC_VMX:
14079 return _("NT_PPC_VMX (ppc Altivec registers)");
14080 case NT_PPC_VSX:
14081 return _("NT_PPC_VSX (ppc VSX registers)");
14082 case NT_386_TLS:
14083 return _("NT_386_TLS (x86 TLS information)");
14084 case NT_386_IOPERM:
14085 return _("NT_386_IOPERM (x86 I/O permissions)");
14086 case NT_X86_XSTATE:
14087 return _("NT_X86_XSTATE (x86 XSAVE extended state)");
14088 case NT_S390_HIGH_GPRS:
14089 return _("NT_S390_HIGH_GPRS (s390 upper register halves)");
14090 case NT_S390_TIMER:
14091 return _("NT_S390_TIMER (s390 timer register)");
14092 case NT_S390_TODCMP:
14093 return _("NT_S390_TODCMP (s390 TOD comparator register)");
14094 case NT_S390_TODPREG:
14095 return _("NT_S390_TODPREG (s390 TOD programmable register)");
14096 case NT_S390_CTRS:
14097 return _("NT_S390_CTRS (s390 control registers)");
14098 case NT_S390_PREFIX:
14099 return _("NT_S390_PREFIX (s390 prefix register)");
14100 case NT_S390_LAST_BREAK:
14101 return _("NT_S390_LAST_BREAK (s390 last breaking event address)");
14102 case NT_S390_SYSTEM_CALL:
14103 return _("NT_S390_SYSTEM_CALL (s390 system call restart data)");
14104 case NT_S390_TDB:
14105 return _("NT_S390_TDB (s390 transaction diagnostic block)");
14106 case NT_ARM_VFP:
14107 return _("NT_ARM_VFP (arm VFP registers)");
14108 case NT_ARM_TLS:
14109 return _("NT_ARM_TLS (AArch TLS registers)");
14110 case NT_ARM_HW_BREAK:
14111 return _("NT_ARM_HW_BREAK (AArch hardware breakpoint registers)");
14112 case NT_ARM_HW_WATCH:
14113 return _("NT_ARM_HW_WATCH (AArch hardware watchpoint registers)");
14114 case NT_PSTATUS:
14115 return _("NT_PSTATUS (pstatus structure)");
14116 case NT_FPREGS:
14117 return _("NT_FPREGS (floating point registers)");
14118 case NT_PSINFO:
14119 return _("NT_PSINFO (psinfo structure)");
14120 case NT_LWPSTATUS:
14121 return _("NT_LWPSTATUS (lwpstatus_t structure)");
14122 case NT_LWPSINFO:
14123 return _("NT_LWPSINFO (lwpsinfo_t structure)");
14124 case NT_WIN32PSTATUS:
14125 return _("NT_WIN32PSTATUS (win32_pstatus structure)");
14126 case NT_SIGINFO:
14127 return _("NT_SIGINFO (siginfo_t data)");
14128 case NT_FILE:
14129 return _("NT_FILE (mapped files)");
14130 default:
14131 break;
14132 }
14133 else
14134 switch (e_type)
14135 {
14136 case NT_VERSION:
14137 return _("NT_VERSION (version)");
14138 case NT_ARCH:
14139 return _("NT_ARCH (architecture)");
14140 default:
14141 break;
14142 }
14143
14144 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
14145 return buff;
14146 }
14147
14148 static int
14149 print_core_note (Elf_Internal_Note *pnote)
14150 {
14151 unsigned int addr_size = is_32bit_elf ? 4 : 8;
14152 bfd_vma count, page_size;
14153 unsigned char *descdata, *filenames, *descend;
14154
14155 if (pnote->type != NT_FILE)
14156 return 1;
14157
14158 #ifndef BFD64
14159 if (!is_32bit_elf)
14160 {
14161 printf (_(" Cannot decode 64-bit note in 32-bit build\n"));
14162 /* Still "successful". */
14163 return 1;
14164 }
14165 #endif
14166
14167 if (pnote->descsz < 2 * addr_size)
14168 {
14169 printf (_(" Malformed note - too short for header\n"));
14170 return 0;
14171 }
14172
14173 descdata = (unsigned char *) pnote->descdata;
14174 descend = descdata + pnote->descsz;
14175
14176 if (descdata[pnote->descsz - 1] != '\0')
14177 {
14178 printf (_(" Malformed note - does not end with \\0\n"));
14179 return 0;
14180 }
14181
14182 count = byte_get (descdata, addr_size);
14183 descdata += addr_size;
14184
14185 page_size = byte_get (descdata, addr_size);
14186 descdata += addr_size;
14187
14188 if (pnote->descsz < 2 * addr_size + count * 3 * addr_size)
14189 {
14190 printf (_(" Malformed note - too short for supplied file count\n"));
14191 return 0;
14192 }
14193
14194 printf (_(" Page size: "));
14195 print_vma (page_size, DEC);
14196 printf ("\n");
14197
14198 printf (_(" %*s%*s%*s\n"),
14199 (int) (2 + 2 * addr_size), _("Start"),
14200 (int) (4 + 2 * addr_size), _("End"),
14201 (int) (4 + 2 * addr_size), _("Page Offset"));
14202 filenames = descdata + count * 3 * addr_size;
14203 while (--count > 0)
14204 {
14205 bfd_vma start, end, file_ofs;
14206
14207 if (filenames == descend)
14208 {
14209 printf (_(" Malformed note - filenames end too early\n"));
14210 return 0;
14211 }
14212
14213 start = byte_get (descdata, addr_size);
14214 descdata += addr_size;
14215 end = byte_get (descdata, addr_size);
14216 descdata += addr_size;
14217 file_ofs = byte_get (descdata, addr_size);
14218 descdata += addr_size;
14219
14220 printf (" ");
14221 print_vma (start, FULL_HEX);
14222 printf (" ");
14223 print_vma (end, FULL_HEX);
14224 printf (" ");
14225 print_vma (file_ofs, FULL_HEX);
14226 printf ("\n %s\n", filenames);
14227
14228 filenames += 1 + strlen ((char *) filenames);
14229 }
14230
14231 return 1;
14232 }
14233
14234 static const char *
14235 get_gnu_elf_note_type (unsigned e_type)
14236 {
14237 static char buff[64];
14238
14239 switch (e_type)
14240 {
14241 case NT_GNU_ABI_TAG:
14242 return _("NT_GNU_ABI_TAG (ABI version tag)");
14243 case NT_GNU_HWCAP:
14244 return _("NT_GNU_HWCAP (DSO-supplied software HWCAP info)");
14245 case NT_GNU_BUILD_ID:
14246 return _("NT_GNU_BUILD_ID (unique build ID bitstring)");
14247 case NT_GNU_GOLD_VERSION:
14248 return _("NT_GNU_GOLD_VERSION (gold version)");
14249 default:
14250 break;
14251 }
14252
14253 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
14254 return buff;
14255 }
14256
14257 static int
14258 print_gnu_note (Elf_Internal_Note *pnote)
14259 {
14260 switch (pnote->type)
14261 {
14262 case NT_GNU_BUILD_ID:
14263 {
14264 unsigned long i;
14265
14266 printf (_(" Build ID: "));
14267 for (i = 0; i < pnote->descsz; ++i)
14268 printf ("%02x", pnote->descdata[i] & 0xff);
14269 printf ("\n");
14270 }
14271 break;
14272
14273 case NT_GNU_ABI_TAG:
14274 {
14275 unsigned long os, major, minor, subminor;
14276 const char *osname;
14277
14278 /* PR 17531: file: 030-599401-0.004. */
14279 if (pnote->descsz < 16)
14280 {
14281 printf (_(" <corrupt GNU_ABI_TAG>\n"));
14282 break;
14283 }
14284
14285 os = byte_get ((unsigned char *) pnote->descdata, 4);
14286 major = byte_get ((unsigned char *) pnote->descdata + 4, 4);
14287 minor = byte_get ((unsigned char *) pnote->descdata + 8, 4);
14288 subminor = byte_get ((unsigned char *) pnote->descdata + 12, 4);
14289
14290 switch (os)
14291 {
14292 case GNU_ABI_TAG_LINUX:
14293 osname = "Linux";
14294 break;
14295 case GNU_ABI_TAG_HURD:
14296 osname = "Hurd";
14297 break;
14298 case GNU_ABI_TAG_SOLARIS:
14299 osname = "Solaris";
14300 break;
14301 case GNU_ABI_TAG_FREEBSD:
14302 osname = "FreeBSD";
14303 break;
14304 case GNU_ABI_TAG_NETBSD:
14305 osname = "NetBSD";
14306 break;
14307 default:
14308 osname = "Unknown";
14309 break;
14310 }
14311
14312 printf (_(" OS: %s, ABI: %ld.%ld.%ld\n"), osname,
14313 major, minor, subminor);
14314 }
14315 break;
14316
14317 case NT_GNU_GOLD_VERSION:
14318 {
14319 unsigned long i;
14320
14321 printf (_(" Version: "));
14322 for (i = 0; i < pnote->descsz && pnote->descdata[i] != '\0'; ++i)
14323 printf ("%c", pnote->descdata[i]);
14324 printf ("\n");
14325 }
14326 break;
14327 }
14328
14329 return 1;
14330 }
14331
14332 static const char *
14333 get_netbsd_elfcore_note_type (unsigned e_type)
14334 {
14335 static char buff[64];
14336
14337 if (e_type == NT_NETBSDCORE_PROCINFO)
14338 {
14339 /* NetBSD core "procinfo" structure. */
14340 return _("NetBSD procinfo structure");
14341 }
14342
14343 /* As of Jan 2002 there are no other machine-independent notes
14344 defined for NetBSD core files. If the note type is less
14345 than the start of the machine-dependent note types, we don't
14346 understand it. */
14347
14348 if (e_type < NT_NETBSDCORE_FIRSTMACH)
14349 {
14350 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
14351 return buff;
14352 }
14353
14354 switch (elf_header.e_machine)
14355 {
14356 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0
14357 and PT_GETFPREGS == mach+2. */
14358
14359 case EM_OLD_ALPHA:
14360 case EM_ALPHA:
14361 case EM_SPARC:
14362 case EM_SPARC32PLUS:
14363 case EM_SPARCV9:
14364 switch (e_type)
14365 {
14366 case NT_NETBSDCORE_FIRSTMACH + 0:
14367 return _("PT_GETREGS (reg structure)");
14368 case NT_NETBSDCORE_FIRSTMACH + 2:
14369 return _("PT_GETFPREGS (fpreg structure)");
14370 default:
14371 break;
14372 }
14373 break;
14374
14375 /* On all other arch's, PT_GETREGS == mach+1 and
14376 PT_GETFPREGS == mach+3. */
14377 default:
14378 switch (e_type)
14379 {
14380 case NT_NETBSDCORE_FIRSTMACH + 1:
14381 return _("PT_GETREGS (reg structure)");
14382 case NT_NETBSDCORE_FIRSTMACH + 3:
14383 return _("PT_GETFPREGS (fpreg structure)");
14384 default:
14385 break;
14386 }
14387 }
14388
14389 snprintf (buff, sizeof (buff), "PT_FIRSTMACH+%d",
14390 e_type - NT_NETBSDCORE_FIRSTMACH);
14391 return buff;
14392 }
14393
14394 static const char *
14395 get_stapsdt_note_type (unsigned e_type)
14396 {
14397 static char buff[64];
14398
14399 switch (e_type)
14400 {
14401 case NT_STAPSDT:
14402 return _("NT_STAPSDT (SystemTap probe descriptors)");
14403
14404 default:
14405 break;
14406 }
14407
14408 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
14409 return buff;
14410 }
14411
14412 static int
14413 print_stapsdt_note (Elf_Internal_Note *pnote)
14414 {
14415 int addr_size = is_32bit_elf ? 4 : 8;
14416 char *data = pnote->descdata;
14417 char *data_end = pnote->descdata + pnote->descsz;
14418 bfd_vma pc, base_addr, semaphore;
14419 char *provider, *probe, *arg_fmt;
14420
14421 pc = byte_get ((unsigned char *) data, addr_size);
14422 data += addr_size;
14423 base_addr = byte_get ((unsigned char *) data, addr_size);
14424 data += addr_size;
14425 semaphore = byte_get ((unsigned char *) data, addr_size);
14426 data += addr_size;
14427
14428 provider = data;
14429 data += strlen (data) + 1;
14430 probe = data;
14431 data += strlen (data) + 1;
14432 arg_fmt = data;
14433 data += strlen (data) + 1;
14434
14435 printf (_(" Provider: %s\n"), provider);
14436 printf (_(" Name: %s\n"), probe);
14437 printf (_(" Location: "));
14438 print_vma (pc, FULL_HEX);
14439 printf (_(", Base: "));
14440 print_vma (base_addr, FULL_HEX);
14441 printf (_(", Semaphore: "));
14442 print_vma (semaphore, FULL_HEX);
14443 printf ("\n");
14444 printf (_(" Arguments: %s\n"), arg_fmt);
14445
14446 return data == data_end;
14447 }
14448
14449 static const char *
14450 get_ia64_vms_note_type (unsigned e_type)
14451 {
14452 static char buff[64];
14453
14454 switch (e_type)
14455 {
14456 case NT_VMS_MHD:
14457 return _("NT_VMS_MHD (module header)");
14458 case NT_VMS_LNM:
14459 return _("NT_VMS_LNM (language name)");
14460 case NT_VMS_SRC:
14461 return _("NT_VMS_SRC (source files)");
14462 case NT_VMS_TITLE:
14463 return "NT_VMS_TITLE";
14464 case NT_VMS_EIDC:
14465 return _("NT_VMS_EIDC (consistency check)");
14466 case NT_VMS_FPMODE:
14467 return _("NT_VMS_FPMODE (FP mode)");
14468 case NT_VMS_LINKTIME:
14469 return "NT_VMS_LINKTIME";
14470 case NT_VMS_IMGNAM:
14471 return _("NT_VMS_IMGNAM (image name)");
14472 case NT_VMS_IMGID:
14473 return _("NT_VMS_IMGID (image id)");
14474 case NT_VMS_LINKID:
14475 return _("NT_VMS_LINKID (link id)");
14476 case NT_VMS_IMGBID:
14477 return _("NT_VMS_IMGBID (build id)");
14478 case NT_VMS_GSTNAM:
14479 return _("NT_VMS_GSTNAM (sym table name)");
14480 case NT_VMS_ORIG_DYN:
14481 return "NT_VMS_ORIG_DYN";
14482 case NT_VMS_PATCHTIME:
14483 return "NT_VMS_PATCHTIME";
14484 default:
14485 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
14486 return buff;
14487 }
14488 }
14489
14490 static int
14491 print_ia64_vms_note (Elf_Internal_Note * pnote)
14492 {
14493 switch (pnote->type)
14494 {
14495 case NT_VMS_MHD:
14496 if (pnote->descsz > 36)
14497 {
14498 size_t l = strlen (pnote->descdata + 34);
14499 printf (_(" Creation date : %.17s\n"), pnote->descdata);
14500 printf (_(" Last patch date: %.17s\n"), pnote->descdata + 17);
14501 printf (_(" Module name : %s\n"), pnote->descdata + 34);
14502 printf (_(" Module version : %s\n"), pnote->descdata + 34 + l + 1);
14503 }
14504 else
14505 printf (_(" Invalid size\n"));
14506 break;
14507 case NT_VMS_LNM:
14508 printf (_(" Language: %s\n"), pnote->descdata);
14509 break;
14510 #ifdef BFD64
14511 case NT_VMS_FPMODE:
14512 printf (_(" Floating Point mode: "));
14513 printf ("0x%016" BFD_VMA_FMT "x\n",
14514 (bfd_vma)byte_get ((unsigned char *)pnote->descdata, 8));
14515 break;
14516 case NT_VMS_LINKTIME:
14517 printf (_(" Link time: "));
14518 print_vms_time
14519 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
14520 printf ("\n");
14521 break;
14522 case NT_VMS_PATCHTIME:
14523 printf (_(" Patch time: "));
14524 print_vms_time
14525 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
14526 printf ("\n");
14527 break;
14528 case NT_VMS_ORIG_DYN:
14529 printf (_(" Major id: %u, minor id: %u\n"),
14530 (unsigned) byte_get ((unsigned char *)pnote->descdata, 4),
14531 (unsigned) byte_get ((unsigned char *)pnote->descdata + 4, 4));
14532 printf (_(" Last modified : "));
14533 print_vms_time
14534 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata + 8, 8));
14535 printf (_("\n Link flags : "));
14536 printf ("0x%016" BFD_VMA_FMT "x\n",
14537 (bfd_vma)byte_get ((unsigned char *)pnote->descdata + 16, 8));
14538 printf (_(" Header flags: 0x%08x\n"),
14539 (unsigned)byte_get ((unsigned char *)pnote->descdata + 24, 4));
14540 printf (_(" Image id : %s\n"), pnote->descdata + 32);
14541 break;
14542 #endif
14543 case NT_VMS_IMGNAM:
14544 printf (_(" Image name: %s\n"), pnote->descdata);
14545 break;
14546 case NT_VMS_GSTNAM:
14547 printf (_(" Global symbol table name: %s\n"), pnote->descdata);
14548 break;
14549 case NT_VMS_IMGID:
14550 printf (_(" Image id: %s\n"), pnote->descdata);
14551 break;
14552 case NT_VMS_LINKID:
14553 printf (_(" Linker id: %s\n"), pnote->descdata);
14554 break;
14555 default:
14556 break;
14557 }
14558 return 1;
14559 }
14560
14561 /* Note that by the ELF standard, the name field is already null byte
14562 terminated, and namesz includes the terminating null byte.
14563 I.E. the value of namesz for the name "FSF" is 4.
14564
14565 If the value of namesz is zero, there is no name present. */
14566 static int
14567 process_note (Elf_Internal_Note * pnote)
14568 {
14569 const char * name = pnote->namesz ? pnote->namedata : "(NONE)";
14570 const char * nt;
14571
14572 if (pnote->namesz == 0)
14573 /* If there is no note name, then use the default set of
14574 note type strings. */
14575 nt = get_note_type (pnote->type);
14576
14577 else if (const_strneq (pnote->namedata, "GNU"))
14578 /* GNU-specific object file notes. */
14579 nt = get_gnu_elf_note_type (pnote->type);
14580
14581 else if (const_strneq (pnote->namedata, "NetBSD-CORE"))
14582 /* NetBSD-specific core file notes. */
14583 nt = get_netbsd_elfcore_note_type (pnote->type);
14584
14585 else if (strneq (pnote->namedata, "SPU/", 4))
14586 {
14587 /* SPU-specific core file notes. */
14588 nt = pnote->namedata + 4;
14589 name = "SPU";
14590 }
14591
14592 else if (const_strneq (pnote->namedata, "IPF/VMS"))
14593 /* VMS/ia64-specific file notes. */
14594 nt = get_ia64_vms_note_type (pnote->type);
14595
14596 else if (const_strneq (pnote->namedata, "stapsdt"))
14597 nt = get_stapsdt_note_type (pnote->type);
14598
14599 else
14600 /* Don't recognize this note name; just use the default set of
14601 note type strings. */
14602 nt = get_note_type (pnote->type);
14603
14604 printf (" %-20s 0x%08lx\t%s\n", name, pnote->descsz, nt);
14605
14606 if (const_strneq (pnote->namedata, "IPF/VMS"))
14607 return print_ia64_vms_note (pnote);
14608 else if (const_strneq (pnote->namedata, "GNU"))
14609 return print_gnu_note (pnote);
14610 else if (const_strneq (pnote->namedata, "stapsdt"))
14611 return print_stapsdt_note (pnote);
14612 else if (const_strneq (pnote->namedata, "CORE"))
14613 return print_core_note (pnote);
14614 else
14615 return 1;
14616 }
14617
14618
14619 static int
14620 process_corefile_note_segment (FILE * file, bfd_vma offset, bfd_vma length)
14621 {
14622 Elf_External_Note * pnotes;
14623 Elf_External_Note * external;
14624 int res = 1;
14625
14626 if (length <= 0)
14627 return 0;
14628
14629 pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
14630 _("notes"));
14631 if (pnotes == NULL)
14632 return 0;
14633
14634 external = pnotes;
14635
14636 printf (_("\nDisplaying notes found at file offset 0x%08lx with length 0x%08lx:\n"),
14637 (unsigned long) offset, (unsigned long) length);
14638 printf (_(" %-20s %10s\tDescription\n"), _("Owner"), _("Data size"));
14639
14640 while ((char *) external < (char *) pnotes + length)
14641 {
14642 Elf_Internal_Note inote;
14643 size_t min_notesz;
14644 char *next;
14645 char * temp = NULL;
14646 size_t data_remaining = ((char *) pnotes + length) - (char *) external;
14647
14648 if (!is_ia64_vms ())
14649 {
14650 /* PR binutils/15191
14651 Make sure that there is enough data to read. */
14652 min_notesz = offsetof (Elf_External_Note, name);
14653 if (data_remaining < min_notesz)
14654 {
14655 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
14656 (int) data_remaining);
14657 break;
14658 }
14659 inote.type = BYTE_GET (external->type);
14660 inote.namesz = BYTE_GET (external->namesz);
14661 inote.namedata = external->name;
14662 inote.descsz = BYTE_GET (external->descsz);
14663 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
14664 inote.descpos = offset + (inote.descdata - (char *) pnotes);
14665 next = inote.descdata + align_power (inote.descsz, 2);
14666 }
14667 else
14668 {
14669 Elf64_External_VMS_Note *vms_external;
14670
14671 /* PR binutils/15191
14672 Make sure that there is enough data to read. */
14673 min_notesz = offsetof (Elf64_External_VMS_Note, name);
14674 if (data_remaining < min_notesz)
14675 {
14676 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
14677 (int) data_remaining);
14678 break;
14679 }
14680
14681 vms_external = (Elf64_External_VMS_Note *) external;
14682 inote.type = BYTE_GET (vms_external->type);
14683 inote.namesz = BYTE_GET (vms_external->namesz);
14684 inote.namedata = vms_external->name;
14685 inote.descsz = BYTE_GET (vms_external->descsz);
14686 inote.descdata = inote.namedata + align_power (inote.namesz, 3);
14687 inote.descpos = offset + (inote.descdata - (char *) pnotes);
14688 next = inote.descdata + align_power (inote.descsz, 3);
14689 }
14690
14691 if (inote.descdata < (char *) external + min_notesz
14692 || next < (char *) external + min_notesz
14693 /* PR binutils/17531: file: id:000000,sig:11,src:006986,op:havoc,rep:4. */
14694 || inote.namedata + inote.namesz < inote.namedata
14695 || inote.descdata + inote.descsz < inote.descdata
14696 || data_remaining < (size_t)(next - (char *) external))
14697 {
14698 warn (_("note with invalid namesz and/or descsz found at offset 0x%lx\n"),
14699 (unsigned long) ((char *) external - (char *) pnotes));
14700 warn (_(" type: 0x%lx, namesize: 0x%08lx, descsize: 0x%08lx\n"),
14701 inote.type, inote.namesz, inote.descsz);
14702 break;
14703 }
14704
14705 external = (Elf_External_Note *) next;
14706
14707 /* Verify that name is null terminated. It appears that at least
14708 one version of Linux (RedHat 6.0) generates corefiles that don't
14709 comply with the ELF spec by failing to include the null byte in
14710 namesz. */
14711 if (inote.namedata[inote.namesz - 1] != '\0')
14712 {
14713 temp = (char *) malloc (inote.namesz + 1);
14714 if (temp == NULL)
14715 {
14716 error (_("Out of memory allocating space for inote name\n"));
14717 res = 0;
14718 break;
14719 }
14720
14721 strncpy (temp, inote.namedata, inote.namesz);
14722 temp[inote.namesz] = 0;
14723
14724 /* warn (_("'%s' NOTE name not properly null terminated\n"), temp); */
14725 inote.namedata = temp;
14726 }
14727
14728 res &= process_note (& inote);
14729
14730 if (temp != NULL)
14731 {
14732 free (temp);
14733 temp = NULL;
14734 }
14735 }
14736
14737 free (pnotes);
14738
14739 return res;
14740 }
14741
14742 static int
14743 process_corefile_note_segments (FILE * file)
14744 {
14745 Elf_Internal_Phdr * segment;
14746 unsigned int i;
14747 int res = 1;
14748
14749 if (! get_program_headers (file))
14750 return 0;
14751
14752 for (i = 0, segment = program_headers;
14753 i < elf_header.e_phnum;
14754 i++, segment++)
14755 {
14756 if (segment->p_type == PT_NOTE)
14757 res &= process_corefile_note_segment (file,
14758 (bfd_vma) segment->p_offset,
14759 (bfd_vma) segment->p_filesz);
14760 }
14761
14762 return res;
14763 }
14764
14765 static int
14766 process_note_sections (FILE * file)
14767 {
14768 Elf_Internal_Shdr * section;
14769 unsigned long i;
14770 int n = 0;
14771 int res = 1;
14772
14773 for (i = 0, section = section_headers;
14774 i < elf_header.e_shnum && section != NULL;
14775 i++, section++)
14776 if (section->sh_type == SHT_NOTE)
14777 {
14778 res &= process_corefile_note_segment (file,
14779 (bfd_vma) section->sh_offset,
14780 (bfd_vma) section->sh_size);
14781 n++;
14782 }
14783
14784 if (n == 0)
14785 /* Try processing NOTE segments instead. */
14786 return process_corefile_note_segments (file);
14787
14788 return res;
14789 }
14790
14791 static int
14792 process_notes (FILE * file)
14793 {
14794 /* If we have not been asked to display the notes then do nothing. */
14795 if (! do_notes)
14796 return 1;
14797
14798 if (elf_header.e_type != ET_CORE)
14799 return process_note_sections (file);
14800
14801 /* No program headers means no NOTE segment. */
14802 if (elf_header.e_phnum > 0)
14803 return process_corefile_note_segments (file);
14804
14805 printf (_("No note segments present in the core file.\n"));
14806 return 1;
14807 }
14808
14809 static int
14810 process_arch_specific (FILE * file)
14811 {
14812 if (! do_arch)
14813 return 1;
14814
14815 switch (elf_header.e_machine)
14816 {
14817 case EM_ARM:
14818 return process_arm_specific (file);
14819 case EM_MIPS:
14820 case EM_MIPS_RS3_LE:
14821 return process_mips_specific (file);
14822 break;
14823 case EM_NDS32:
14824 return process_nds32_specific (file);
14825 break;
14826 case EM_PPC:
14827 return process_power_specific (file);
14828 break;
14829 case EM_SPARC:
14830 case EM_SPARC32PLUS:
14831 case EM_SPARCV9:
14832 return process_sparc_specific (file);
14833 break;
14834 case EM_TI_C6000:
14835 return process_tic6x_specific (file);
14836 break;
14837 case EM_MSP430:
14838 return process_msp430x_specific (file);
14839 default:
14840 break;
14841 }
14842 return 1;
14843 }
14844
14845 static int
14846 get_file_header (FILE * file)
14847 {
14848 /* Read in the identity array. */
14849 if (fread (elf_header.e_ident, EI_NIDENT, 1, file) != 1)
14850 return 0;
14851
14852 /* Determine how to read the rest of the header. */
14853 switch (elf_header.e_ident[EI_DATA])
14854 {
14855 default: /* fall through */
14856 case ELFDATANONE: /* fall through */
14857 case ELFDATA2LSB:
14858 byte_get = byte_get_little_endian;
14859 byte_put = byte_put_little_endian;
14860 break;
14861 case ELFDATA2MSB:
14862 byte_get = byte_get_big_endian;
14863 byte_put = byte_put_big_endian;
14864 break;
14865 }
14866
14867 /* For now we only support 32 bit and 64 bit ELF files. */
14868 is_32bit_elf = (elf_header.e_ident[EI_CLASS] != ELFCLASS64);
14869
14870 /* Read in the rest of the header. */
14871 if (is_32bit_elf)
14872 {
14873 Elf32_External_Ehdr ehdr32;
14874
14875 if (fread (ehdr32.e_type, sizeof (ehdr32) - EI_NIDENT, 1, file) != 1)
14876 return 0;
14877
14878 elf_header.e_type = BYTE_GET (ehdr32.e_type);
14879 elf_header.e_machine = BYTE_GET (ehdr32.e_machine);
14880 elf_header.e_version = BYTE_GET (ehdr32.e_version);
14881 elf_header.e_entry = BYTE_GET (ehdr32.e_entry);
14882 elf_header.e_phoff = BYTE_GET (ehdr32.e_phoff);
14883 elf_header.e_shoff = BYTE_GET (ehdr32.e_shoff);
14884 elf_header.e_flags = BYTE_GET (ehdr32.e_flags);
14885 elf_header.e_ehsize = BYTE_GET (ehdr32.e_ehsize);
14886 elf_header.e_phentsize = BYTE_GET (ehdr32.e_phentsize);
14887 elf_header.e_phnum = BYTE_GET (ehdr32.e_phnum);
14888 elf_header.e_shentsize = BYTE_GET (ehdr32.e_shentsize);
14889 elf_header.e_shnum = BYTE_GET (ehdr32.e_shnum);
14890 elf_header.e_shstrndx = BYTE_GET (ehdr32.e_shstrndx);
14891 }
14892 else
14893 {
14894 Elf64_External_Ehdr ehdr64;
14895
14896 /* If we have been compiled with sizeof (bfd_vma) == 4, then
14897 we will not be able to cope with the 64bit data found in
14898 64 ELF files. Detect this now and abort before we start
14899 overwriting things. */
14900 if (sizeof (bfd_vma) < 8)
14901 {
14902 error (_("This instance of readelf has been built without support for a\n\
14903 64 bit data type and so it cannot read 64 bit ELF files.\n"));
14904 return 0;
14905 }
14906
14907 if (fread (ehdr64.e_type, sizeof (ehdr64) - EI_NIDENT, 1, file) != 1)
14908 return 0;
14909
14910 elf_header.e_type = BYTE_GET (ehdr64.e_type);
14911 elf_header.e_machine = BYTE_GET (ehdr64.e_machine);
14912 elf_header.e_version = BYTE_GET (ehdr64.e_version);
14913 elf_header.e_entry = BYTE_GET (ehdr64.e_entry);
14914 elf_header.e_phoff = BYTE_GET (ehdr64.e_phoff);
14915 elf_header.e_shoff = BYTE_GET (ehdr64.e_shoff);
14916 elf_header.e_flags = BYTE_GET (ehdr64.e_flags);
14917 elf_header.e_ehsize = BYTE_GET (ehdr64.e_ehsize);
14918 elf_header.e_phentsize = BYTE_GET (ehdr64.e_phentsize);
14919 elf_header.e_phnum = BYTE_GET (ehdr64.e_phnum);
14920 elf_header.e_shentsize = BYTE_GET (ehdr64.e_shentsize);
14921 elf_header.e_shnum = BYTE_GET (ehdr64.e_shnum);
14922 elf_header.e_shstrndx = BYTE_GET (ehdr64.e_shstrndx);
14923 }
14924
14925 if (elf_header.e_shoff)
14926 {
14927 /* There may be some extensions in the first section header. Don't
14928 bomb if we can't read it. */
14929 if (is_32bit_elf)
14930 get_32bit_section_headers (file, TRUE);
14931 else
14932 get_64bit_section_headers (file, TRUE);
14933 }
14934
14935 return 1;
14936 }
14937
14938 /* Process one ELF object file according to the command line options.
14939 This file may actually be stored in an archive. The file is
14940 positioned at the start of the ELF object. */
14941
14942 static int
14943 process_object (char * file_name, FILE * file)
14944 {
14945 unsigned int i;
14946
14947 if (! get_file_header (file))
14948 {
14949 error (_("%s: Failed to read file header\n"), file_name);
14950 return 1;
14951 }
14952
14953 /* Initialise per file variables. */
14954 for (i = ARRAY_SIZE (version_info); i--;)
14955 version_info[i] = 0;
14956
14957 for (i = ARRAY_SIZE (dynamic_info); i--;)
14958 dynamic_info[i] = 0;
14959 dynamic_info_DT_GNU_HASH = 0;
14960
14961 /* Process the file. */
14962 if (show_name)
14963 printf (_("\nFile: %s\n"), file_name);
14964
14965 /* Initialise the dump_sects array from the cmdline_dump_sects array.
14966 Note we do this even if cmdline_dump_sects is empty because we
14967 must make sure that the dump_sets array is zeroed out before each
14968 object file is processed. */
14969 if (num_dump_sects > num_cmdline_dump_sects)
14970 memset (dump_sects, 0, num_dump_sects * sizeof (* dump_sects));
14971
14972 if (num_cmdline_dump_sects > 0)
14973 {
14974 if (num_dump_sects == 0)
14975 /* A sneaky way of allocating the dump_sects array. */
14976 request_dump_bynumber (num_cmdline_dump_sects, 0);
14977
14978 assert (num_dump_sects >= num_cmdline_dump_sects);
14979 memcpy (dump_sects, cmdline_dump_sects,
14980 num_cmdline_dump_sects * sizeof (* dump_sects));
14981 }
14982
14983 if (! process_file_header ())
14984 return 1;
14985
14986 if (! process_section_headers (file))
14987 {
14988 /* Without loaded section headers we cannot process lots of
14989 things. */
14990 do_unwind = do_version = do_dump = do_arch = 0;
14991
14992 if (! do_using_dynamic)
14993 do_syms = do_dyn_syms = do_reloc = 0;
14994 }
14995
14996 if (! process_section_groups (file))
14997 {
14998 /* Without loaded section groups we cannot process unwind. */
14999 do_unwind = 0;
15000 }
15001
15002 if (process_program_headers (file))
15003 process_dynamic_section (file);
15004
15005 process_relocs (file);
15006
15007 process_unwind (file);
15008
15009 process_symbol_table (file);
15010
15011 process_syminfo (file);
15012
15013 process_version_sections (file);
15014
15015 process_section_contents (file);
15016
15017 process_notes (file);
15018
15019 process_gnu_liblist (file);
15020
15021 process_arch_specific (file);
15022
15023 if (program_headers)
15024 {
15025 free (program_headers);
15026 program_headers = NULL;
15027 }
15028
15029 if (section_headers)
15030 {
15031 free (section_headers);
15032 section_headers = NULL;
15033 }
15034
15035 if (string_table)
15036 {
15037 free (string_table);
15038 string_table = NULL;
15039 string_table_length = 0;
15040 }
15041
15042 if (dynamic_strings)
15043 {
15044 free (dynamic_strings);
15045 dynamic_strings = NULL;
15046 dynamic_strings_length = 0;
15047 }
15048
15049 if (dynamic_symbols)
15050 {
15051 free (dynamic_symbols);
15052 dynamic_symbols = NULL;
15053 num_dynamic_syms = 0;
15054 }
15055
15056 if (dynamic_syminfo)
15057 {
15058 free (dynamic_syminfo);
15059 dynamic_syminfo = NULL;
15060 }
15061
15062 if (dynamic_section)
15063 {
15064 free (dynamic_section);
15065 dynamic_section = NULL;
15066 }
15067
15068 if (section_headers_groups)
15069 {
15070 free (section_headers_groups);
15071 section_headers_groups = NULL;
15072 }
15073
15074 if (section_groups)
15075 {
15076 struct group_list * g;
15077 struct group_list * next;
15078
15079 for (i = 0; i < group_count; i++)
15080 {
15081 for (g = section_groups [i].root; g != NULL; g = next)
15082 {
15083 next = g->next;
15084 free (g);
15085 }
15086 }
15087
15088 free (section_groups);
15089 section_groups = NULL;
15090 }
15091
15092 free_debug_memory ();
15093
15094 return 0;
15095 }
15096
15097 /* Process an ELF archive.
15098 On entry the file is positioned just after the ARMAG string. */
15099
15100 static int
15101 process_archive (char * file_name, FILE * file, bfd_boolean is_thin_archive)
15102 {
15103 struct archive_info arch;
15104 struct archive_info nested_arch;
15105 size_t got;
15106 int ret;
15107
15108 show_name = 1;
15109
15110 /* The ARCH structure is used to hold information about this archive. */
15111 arch.file_name = NULL;
15112 arch.file = NULL;
15113 arch.index_array = NULL;
15114 arch.sym_table = NULL;
15115 arch.longnames = NULL;
15116
15117 /* The NESTED_ARCH structure is used as a single-item cache of information
15118 about a nested archive (when members of a thin archive reside within
15119 another regular archive file). */
15120 nested_arch.file_name = NULL;
15121 nested_arch.file = NULL;
15122 nested_arch.index_array = NULL;
15123 nested_arch.sym_table = NULL;
15124 nested_arch.longnames = NULL;
15125
15126 if (setup_archive (&arch, file_name, file, is_thin_archive, do_archive_index) != 0)
15127 {
15128 ret = 1;
15129 goto out;
15130 }
15131
15132 if (do_archive_index)
15133 {
15134 if (arch.sym_table == NULL)
15135 error (_("%s: unable to dump the index as none was found\n"), file_name);
15136 else
15137 {
15138 unsigned int i, l;
15139 unsigned long current_pos;
15140
15141 printf (_("Index of archive %s: (%ld entries, 0x%lx bytes in the symbol table)\n"),
15142 file_name, (long) arch.index_num, arch.sym_size);
15143 current_pos = ftell (file);
15144
15145 for (i = l = 0; i < arch.index_num; i++)
15146 {
15147 if ((i == 0) || ((i > 0) && (arch.index_array[i] != arch.index_array[i - 1])))
15148 {
15149 char * member_name;
15150
15151 member_name = get_archive_member_name_at (&arch, arch.index_array[i], &nested_arch);
15152
15153 if (member_name != NULL)
15154 {
15155 char * qualified_name = make_qualified_name (&arch, &nested_arch, member_name);
15156
15157 if (qualified_name != NULL)
15158 {
15159 printf (_("Contents of binary %s at offset "), qualified_name);
15160 (void) print_vma (arch.index_array[i], PREFIX_HEX);
15161 putchar ('\n');
15162 free (qualified_name);
15163 }
15164 }
15165 }
15166
15167 if (l >= arch.sym_size)
15168 {
15169 error (_("%s: end of the symbol table reached before the end of the index\n"),
15170 file_name);
15171 break;
15172 }
15173 printf ("\t%s\n", arch.sym_table + l);
15174 l += strlen (arch.sym_table + l) + 1;
15175 }
15176
15177 if (arch.uses_64bit_indicies)
15178 l = (l + 7) & ~ 7;
15179 else
15180 l += l & 1;
15181
15182 if (l < arch.sym_size)
15183 error (_("%s: %ld bytes remain in the symbol table, but without corresponding entries in the index table\n"),
15184 file_name, arch.sym_size - l);
15185
15186 if (fseek (file, current_pos, SEEK_SET) != 0)
15187 {
15188 error (_("%s: failed to seek back to start of object files in the archive\n"), file_name);
15189 ret = 1;
15190 goto out;
15191 }
15192 }
15193
15194 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
15195 && !do_segments && !do_header && !do_dump && !do_version
15196 && !do_histogram && !do_debugging && !do_arch && !do_notes
15197 && !do_section_groups && !do_dyn_syms)
15198 {
15199 ret = 0; /* Archive index only. */
15200 goto out;
15201 }
15202 }
15203
15204 ret = 0;
15205
15206 while (1)
15207 {
15208 char * name;
15209 size_t namelen;
15210 char * qualified_name;
15211
15212 /* Read the next archive header. */
15213 if (fseek (file, arch.next_arhdr_offset, SEEK_SET) != 0)
15214 {
15215 error (_("%s: failed to seek to next archive header\n"), file_name);
15216 return 1;
15217 }
15218 got = fread (&arch.arhdr, 1, sizeof arch.arhdr, file);
15219 if (got != sizeof arch.arhdr)
15220 {
15221 if (got == 0)
15222 break;
15223 error (_("%s: failed to read archive header\n"), file_name);
15224 ret = 1;
15225 break;
15226 }
15227 if (memcmp (arch.arhdr.ar_fmag, ARFMAG, 2) != 0)
15228 {
15229 error (_("%s: did not find a valid archive header\n"), arch.file_name);
15230 ret = 1;
15231 break;
15232 }
15233
15234 arch.next_arhdr_offset += sizeof arch.arhdr;
15235
15236 archive_file_size = strtoul (arch.arhdr.ar_size, NULL, 10);
15237 if (archive_file_size & 01)
15238 ++archive_file_size;
15239
15240 name = get_archive_member_name (&arch, &nested_arch);
15241 if (name == NULL)
15242 {
15243 error (_("%s: bad archive file name\n"), file_name);
15244 ret = 1;
15245 break;
15246 }
15247 namelen = strlen (name);
15248
15249 qualified_name = make_qualified_name (&arch, &nested_arch, name);
15250 if (qualified_name == NULL)
15251 {
15252 error (_("%s: bad archive file name\n"), file_name);
15253 ret = 1;
15254 break;
15255 }
15256
15257 if (is_thin_archive && arch.nested_member_origin == 0)
15258 {
15259 /* This is a proxy for an external member of a thin archive. */
15260 FILE * member_file;
15261 char * member_file_name = adjust_relative_path (file_name, name, namelen);
15262 if (member_file_name == NULL)
15263 {
15264 ret = 1;
15265 break;
15266 }
15267
15268 member_file = fopen (member_file_name, "rb");
15269 if (member_file == NULL)
15270 {
15271 error (_("Input file '%s' is not readable.\n"), member_file_name);
15272 free (member_file_name);
15273 ret = 1;
15274 break;
15275 }
15276
15277 archive_file_offset = arch.nested_member_origin;
15278
15279 ret |= process_object (qualified_name, member_file);
15280
15281 fclose (member_file);
15282 free (member_file_name);
15283 }
15284 else if (is_thin_archive)
15285 {
15286 /* PR 15140: Allow for corrupt thin archives. */
15287 if (nested_arch.file == NULL)
15288 {
15289 error (_("%s: contains corrupt thin archive: %s\n"),
15290 file_name, name);
15291 ret = 1;
15292 break;
15293 }
15294
15295 /* This is a proxy for a member of a nested archive. */
15296 archive_file_offset = arch.nested_member_origin + sizeof arch.arhdr;
15297
15298 /* The nested archive file will have been opened and setup by
15299 get_archive_member_name. */
15300 if (fseek (nested_arch.file, archive_file_offset, SEEK_SET) != 0)
15301 {
15302 error (_("%s: failed to seek to archive member.\n"), nested_arch.file_name);
15303 ret = 1;
15304 break;
15305 }
15306
15307 ret |= process_object (qualified_name, nested_arch.file);
15308 }
15309 else
15310 {
15311 archive_file_offset = arch.next_arhdr_offset;
15312 arch.next_arhdr_offset += archive_file_size;
15313
15314 ret |= process_object (qualified_name, file);
15315 }
15316
15317 if (dump_sects != NULL)
15318 {
15319 free (dump_sects);
15320 dump_sects = NULL;
15321 num_dump_sects = 0;
15322 }
15323
15324 free (qualified_name);
15325 }
15326
15327 out:
15328 if (nested_arch.file != NULL)
15329 fclose (nested_arch.file);
15330 release_archive (&nested_arch);
15331 release_archive (&arch);
15332
15333 return ret;
15334 }
15335
15336 static int
15337 process_file (char * file_name)
15338 {
15339 FILE * file;
15340 struct stat statbuf;
15341 char armag[SARMAG];
15342 int ret;
15343
15344 if (stat (file_name, &statbuf) < 0)
15345 {
15346 if (errno == ENOENT)
15347 error (_("'%s': No such file\n"), file_name);
15348 else
15349 error (_("Could not locate '%s'. System error message: %s\n"),
15350 file_name, strerror (errno));
15351 return 1;
15352 }
15353
15354 if (! S_ISREG (statbuf.st_mode))
15355 {
15356 error (_("'%s' is not an ordinary file\n"), file_name);
15357 return 1;
15358 }
15359
15360 file = fopen (file_name, "rb");
15361 if (file == NULL)
15362 {
15363 error (_("Input file '%s' is not readable.\n"), file_name);
15364 return 1;
15365 }
15366
15367 if (fread (armag, SARMAG, 1, file) != 1)
15368 {
15369 error (_("%s: Failed to read file's magic number\n"), file_name);
15370 fclose (file);
15371 return 1;
15372 }
15373
15374 current_file_size = (bfd_size_type) statbuf.st_size;
15375
15376 if (memcmp (armag, ARMAG, SARMAG) == 0)
15377 ret = process_archive (file_name, file, FALSE);
15378 else if (memcmp (armag, ARMAGT, SARMAG) == 0)
15379 ret = process_archive (file_name, file, TRUE);
15380 else
15381 {
15382 if (do_archive_index)
15383 error (_("File %s is not an archive so its index cannot be displayed.\n"),
15384 file_name);
15385
15386 rewind (file);
15387 archive_file_size = archive_file_offset = 0;
15388 ret = process_object (file_name, file);
15389 }
15390
15391 fclose (file);
15392
15393 current_file_size = 0;
15394 return ret;
15395 }
15396
15397 #ifdef SUPPORT_DISASSEMBLY
15398 /* Needed by the i386 disassembler. For extra credit, someone could
15399 fix this so that we insert symbolic addresses here, esp for GOT/PLT
15400 symbols. */
15401
15402 void
15403 print_address (unsigned int addr, FILE * outfile)
15404 {
15405 fprintf (outfile,"0x%8.8x", addr);
15406 }
15407
15408 /* Needed by the i386 disassembler. */
15409 void
15410 db_task_printsym (unsigned int addr)
15411 {
15412 print_address (addr, stderr);
15413 }
15414 #endif
15415
15416 int
15417 main (int argc, char ** argv)
15418 {
15419 int err;
15420
15421 #if defined (HAVE_SETLOCALE) && defined (HAVE_LC_MESSAGES)
15422 setlocale (LC_MESSAGES, "");
15423 #endif
15424 #if defined (HAVE_SETLOCALE)
15425 setlocale (LC_CTYPE, "");
15426 #endif
15427 bindtextdomain (PACKAGE, LOCALEDIR);
15428 textdomain (PACKAGE);
15429
15430 expandargv (&argc, &argv);
15431
15432 parse_args (argc, argv);
15433
15434 if (num_dump_sects > 0)
15435 {
15436 /* Make a copy of the dump_sects array. */
15437 cmdline_dump_sects = (dump_type *)
15438 malloc (num_dump_sects * sizeof (* dump_sects));
15439 if (cmdline_dump_sects == NULL)
15440 error (_("Out of memory allocating dump request table.\n"));
15441 else
15442 {
15443 memcpy (cmdline_dump_sects, dump_sects,
15444 num_dump_sects * sizeof (* dump_sects));
15445 num_cmdline_dump_sects = num_dump_sects;
15446 }
15447 }
15448
15449 if (optind < (argc - 1))
15450 show_name = 1;
15451
15452 err = 0;
15453 while (optind < argc)
15454 err |= process_file (argv[optind++]);
15455
15456 if (dump_sects != NULL)
15457 free (dump_sects);
15458 if (cmdline_dump_sects != NULL)
15459 free (cmdline_dump_sects);
15460
15461 return err;
15462 }
This page took 0.365402 seconds and 4 git commands to generate.