Implement support for recording VFP data processing instructions
[deliverable/binutils-gdb.git] / binutils / readelf.c
1 /* readelf.c -- display contents of an ELF format file
2 Copyright (C) 1998-2014 Free Software Foundation, Inc.
3
4 Originally developed by Eric Youngdale <eric@andante.jic.com>
5 Modifications by Nick Clifton <nickc@redhat.com>
6
7 This file is part of GNU Binutils.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
22 02110-1301, USA. */
23 \f
24 /* The difference between readelf and objdump:
25
26 Both programs are capable of displaying the contents of ELF format files,
27 so why does the binutils project have two file dumpers ?
28
29 The reason is that objdump sees an ELF file through a BFD filter of the
30 world; if BFD has a bug where, say, it disagrees about a machine constant
31 in e_flags, then the odds are good that it will remain internally
32 consistent. The linker sees it the BFD way, objdump sees it the BFD way,
33 GAS sees it the BFD way. There was need for a tool to go find out what
34 the file actually says.
35
36 This is why the readelf program does not link against the BFD library - it
37 exists as an independent program to help verify the correct working of BFD.
38
39 There is also the case that readelf can provide more information about an
40 ELF file than is provided by objdump. In particular it can display DWARF
41 debugging information which (at the moment) objdump cannot. */
42 \f
43 #include "sysdep.h"
44 #include <assert.h>
45 #include <time.h>
46 #ifdef HAVE_ZLIB_H
47 #include <zlib.h>
48 #endif
49 #ifdef HAVE_WCHAR_H
50 #include <wchar.h>
51 #endif
52
53 #if __GNUC__ >= 2
54 /* Define BFD64 here, even if our default architecture is 32 bit ELF
55 as this will allow us to read in and parse 64bit and 32bit ELF files.
56 Only do this if we believe that the compiler can support a 64 bit
57 data type. For now we only rely on GCC being able to do this. */
58 #define BFD64
59 #endif
60
61 #include "bfd.h"
62 #include "bucomm.h"
63 #include "elfcomm.h"
64 #include "dwarf.h"
65
66 #include "elf/common.h"
67 #include "elf/external.h"
68 #include "elf/internal.h"
69
70
71 /* Included here, before RELOC_MACROS_GEN_FUNC is defined, so that
72 we can obtain the H8 reloc numbers. We need these for the
73 get_reloc_size() function. We include h8.h again after defining
74 RELOC_MACROS_GEN_FUNC so that we get the naming function as well. */
75
76 #include "elf/h8.h"
77 #undef _ELF_H8_H
78
79 /* Undo the effects of #including reloc-macros.h. */
80
81 #undef START_RELOC_NUMBERS
82 #undef RELOC_NUMBER
83 #undef FAKE_RELOC
84 #undef EMPTY_RELOC
85 #undef END_RELOC_NUMBERS
86 #undef _RELOC_MACROS_H
87
88 /* The following headers use the elf/reloc-macros.h file to
89 automatically generate relocation recognition functions
90 such as elf_mips_reloc_type() */
91
92 #define RELOC_MACROS_GEN_FUNC
93
94 #include "elf/aarch64.h"
95 #include "elf/alpha.h"
96 #include "elf/arc.h"
97 #include "elf/arm.h"
98 #include "elf/avr.h"
99 #include "elf/bfin.h"
100 #include "elf/cr16.h"
101 #include "elf/cris.h"
102 #include "elf/crx.h"
103 #include "elf/d10v.h"
104 #include "elf/d30v.h"
105 #include "elf/dlx.h"
106 #include "elf/epiphany.h"
107 #include "elf/fr30.h"
108 #include "elf/frv.h"
109 #include "elf/h8.h"
110 #include "elf/hppa.h"
111 #include "elf/i386.h"
112 #include "elf/i370.h"
113 #include "elf/i860.h"
114 #include "elf/i960.h"
115 #include "elf/ia64.h"
116 #include "elf/ip2k.h"
117 #include "elf/lm32.h"
118 #include "elf/iq2000.h"
119 #include "elf/m32c.h"
120 #include "elf/m32r.h"
121 #include "elf/m68k.h"
122 #include "elf/m68hc11.h"
123 #include "elf/mcore.h"
124 #include "elf/mep.h"
125 #include "elf/metag.h"
126 #include "elf/microblaze.h"
127 #include "elf/mips.h"
128 #include "elf/mmix.h"
129 #include "elf/mn10200.h"
130 #include "elf/mn10300.h"
131 #include "elf/moxie.h"
132 #include "elf/mt.h"
133 #include "elf/msp430.h"
134 #include "elf/nds32.h"
135 #include "elf/nios2.h"
136 #include "elf/or1k.h"
137 #include "elf/pj.h"
138 #include "elf/ppc.h"
139 #include "elf/ppc64.h"
140 #include "elf/rl78.h"
141 #include "elf/rx.h"
142 #include "elf/s390.h"
143 #include "elf/score.h"
144 #include "elf/sh.h"
145 #include "elf/sparc.h"
146 #include "elf/spu.h"
147 #include "elf/tic6x.h"
148 #include "elf/tilegx.h"
149 #include "elf/tilepro.h"
150 #include "elf/v850.h"
151 #include "elf/vax.h"
152 #include "elf/x86-64.h"
153 #include "elf/xc16x.h"
154 #include "elf/xgate.h"
155 #include "elf/xstormy16.h"
156 #include "elf/xtensa.h"
157
158 #include "getopt.h"
159 #include "libiberty.h"
160 #include "safe-ctype.h"
161 #include "filenames.h"
162
163 #ifndef offsetof
164 #define offsetof(TYPE, MEMBER) ((size_t) &(((TYPE *) 0)->MEMBER))
165 #endif
166
167 char * program_name = "readelf";
168 static long archive_file_offset;
169 static unsigned long archive_file_size;
170 static unsigned long dynamic_addr;
171 static bfd_size_type dynamic_size;
172 static unsigned int dynamic_nent;
173 static char * dynamic_strings;
174 static unsigned long dynamic_strings_length;
175 static char * string_table;
176 static unsigned long string_table_length;
177 static unsigned long num_dynamic_syms;
178 static Elf_Internal_Sym * dynamic_symbols;
179 static Elf_Internal_Syminfo * dynamic_syminfo;
180 static unsigned long dynamic_syminfo_offset;
181 static unsigned int dynamic_syminfo_nent;
182 static char program_interpreter[PATH_MAX];
183 static bfd_vma dynamic_info[DT_ENCODING];
184 static bfd_vma dynamic_info_DT_GNU_HASH;
185 static bfd_vma version_info[16];
186 static Elf_Internal_Ehdr elf_header;
187 static Elf_Internal_Shdr * section_headers;
188 static Elf_Internal_Phdr * program_headers;
189 static Elf_Internal_Dyn * dynamic_section;
190 static Elf_Internal_Shdr * symtab_shndx_hdr;
191 static int show_name;
192 static int do_dynamic;
193 static int do_syms;
194 static int do_dyn_syms;
195 static int do_reloc;
196 static int do_sections;
197 static int do_section_groups;
198 static int do_section_details;
199 static int do_segments;
200 static int do_unwind;
201 static int do_using_dynamic;
202 static int do_header;
203 static int do_dump;
204 static int do_version;
205 static int do_histogram;
206 static int do_debugging;
207 static int do_arch;
208 static int do_notes;
209 static int do_archive_index;
210 static int is_32bit_elf;
211
212 struct group_list
213 {
214 struct group_list * next;
215 unsigned int section_index;
216 };
217
218 struct group
219 {
220 struct group_list * root;
221 unsigned int group_index;
222 };
223
224 static size_t group_count;
225 static struct group * section_groups;
226 static struct group ** section_headers_groups;
227
228
229 /* Flag bits indicating particular types of dump. */
230 #define HEX_DUMP (1 << 0) /* The -x command line switch. */
231 #define DISASS_DUMP (1 << 1) /* The -i command line switch. */
232 #define DEBUG_DUMP (1 << 2) /* The -w command line switch. */
233 #define STRING_DUMP (1 << 3) /* The -p command line switch. */
234 #define RELOC_DUMP (1 << 4) /* The -R command line switch. */
235
236 typedef unsigned char dump_type;
237
238 /* A linked list of the section names for which dumps were requested. */
239 struct dump_list_entry
240 {
241 char * name;
242 dump_type type;
243 struct dump_list_entry * next;
244 };
245 static struct dump_list_entry * dump_sects_byname;
246
247 /* A dynamic array of flags indicating for which sections a dump
248 has been requested via command line switches. */
249 static dump_type * cmdline_dump_sects = NULL;
250 static unsigned int num_cmdline_dump_sects = 0;
251
252 /* A dynamic array of flags indicating for which sections a dump of
253 some kind has been requested. It is reset on a per-object file
254 basis and then initialised from the cmdline_dump_sects array,
255 the results of interpreting the -w switch, and the
256 dump_sects_byname list. */
257 static dump_type * dump_sects = NULL;
258 static unsigned int num_dump_sects = 0;
259
260
261 /* How to print a vma value. */
262 typedef enum print_mode
263 {
264 HEX,
265 DEC,
266 DEC_5,
267 UNSIGNED,
268 PREFIX_HEX,
269 FULL_HEX,
270 LONG_HEX
271 }
272 print_mode;
273
274 #define UNKNOWN -1
275
276 #define SECTION_NAME(X) \
277 ((X) == NULL ? _("<none>") \
278 : string_table == NULL ? _("<no-name>") \
279 : ((X)->sh_name >= string_table_length ? _("<corrupt>") \
280 : string_table + (X)->sh_name))
281
282 #define DT_VERSIONTAGIDX(tag) (DT_VERNEEDNUM - (tag)) /* Reverse order! */
283
284 #define GET_ELF_SYMBOLS(file, section, sym_count) \
285 (is_32bit_elf ? get_32bit_elf_symbols (file, section, sym_count) \
286 : get_64bit_elf_symbols (file, section, sym_count))
287
288 #define VALID_DYNAMIC_NAME(offset) ((dynamic_strings != NULL) && (offset < dynamic_strings_length))
289 /* GET_DYNAMIC_NAME asssumes that VALID_DYNAMIC_NAME has
290 already been called and verified that the string exists. */
291 #define GET_DYNAMIC_NAME(offset) (dynamic_strings + offset)
292
293 #define REMOVE_ARCH_BITS(ADDR) \
294 do \
295 { \
296 if (elf_header.e_machine == EM_ARM) \
297 (ADDR) &= ~1; \
298 } \
299 while (0)
300 \f
301 /* Retrieve NMEMB structures, each SIZE bytes long from FILE starting at OFFSET.
302 Put the retrieved data into VAR, if it is not NULL. Otherwise allocate a buffer
303 using malloc and fill that. In either case return the pointer to the start of
304 the retrieved data or NULL if something went wrong. If something does go wrong
305 emit an error message using REASON as part of the context. */
306
307 static void *
308 get_data (void * var, FILE * file, long offset, size_t size, size_t nmemb,
309 const char * reason)
310 {
311 void * mvar;
312
313 if (size == 0 || nmemb == 0)
314 return NULL;
315
316 if (fseek (file, archive_file_offset + offset, SEEK_SET))
317 {
318 error (_("Unable to seek to 0x%lx for %s\n"),
319 (unsigned long) archive_file_offset + offset, reason);
320 return NULL;
321 }
322
323 mvar = var;
324 if (mvar == NULL)
325 {
326 /* Check for overflow. */
327 if (nmemb < (~(size_t) 0 - 1) / size)
328 /* + 1 so that we can '\0' terminate invalid string table sections. */
329 mvar = malloc (size * nmemb + 1);
330
331 if (mvar == NULL)
332 {
333 error (_("Out of memory allocating 0x%lx bytes for %s\n"),
334 (unsigned long)(size * nmemb), reason);
335 return NULL;
336 }
337
338 ((char *) mvar)[size * nmemb] = '\0';
339 }
340
341 if (fread (mvar, size, nmemb, file) != nmemb)
342 {
343 error (_("Unable to read in 0x%lx bytes of %s\n"),
344 (unsigned long)(size * nmemb), reason);
345 if (mvar != var)
346 free (mvar);
347 return NULL;
348 }
349
350 return mvar;
351 }
352
353 /* Print a VMA value. */
354
355 static int
356 print_vma (bfd_vma vma, print_mode mode)
357 {
358 int nc = 0;
359
360 switch (mode)
361 {
362 case FULL_HEX:
363 nc = printf ("0x");
364 /* Drop through. */
365
366 case LONG_HEX:
367 #ifdef BFD64
368 if (is_32bit_elf)
369 return nc + printf ("%8.8" BFD_VMA_FMT "x", vma);
370 #endif
371 printf_vma (vma);
372 return nc + 16;
373
374 case DEC_5:
375 if (vma <= 99999)
376 return printf ("%5" BFD_VMA_FMT "d", vma);
377 /* Drop through. */
378
379 case PREFIX_HEX:
380 nc = printf ("0x");
381 /* Drop through. */
382
383 case HEX:
384 return nc + printf ("%" BFD_VMA_FMT "x", vma);
385
386 case DEC:
387 return printf ("%" BFD_VMA_FMT "d", vma);
388
389 case UNSIGNED:
390 return printf ("%" BFD_VMA_FMT "u", vma);
391 }
392 return 0;
393 }
394
395 /* Display a symbol on stdout. Handles the display of control characters and
396 multibye characters (assuming the host environment supports them).
397
398 Display at most abs(WIDTH) characters, truncating as necessary, unless do_wide is true.
399
400 If WIDTH is negative then ensure that the output is at least (- WIDTH) characters,
401 padding as necessary.
402
403 Returns the number of emitted characters. */
404
405 static unsigned int
406 print_symbol (int width, const char *symbol)
407 {
408 bfd_boolean extra_padding = FALSE;
409 int num_printed = 0;
410 #ifdef HAVE_MBSTATE_T
411 mbstate_t state;
412 #endif
413 int width_remaining;
414
415 if (width < 0)
416 {
417 /* Keep the width positive. This also helps. */
418 width = - width;
419 extra_padding = TRUE;
420 }
421
422 if (do_wide)
423 /* Set the remaining width to a very large value.
424 This simplifies the code below. */
425 width_remaining = INT_MAX;
426 else
427 width_remaining = width;
428
429 #ifdef HAVE_MBSTATE_T
430 /* Initialise the multibyte conversion state. */
431 memset (& state, 0, sizeof (state));
432 #endif
433
434 while (width_remaining)
435 {
436 size_t n;
437 const char c = *symbol++;
438
439 if (c == 0)
440 break;
441
442 /* Do not print control characters directly as they can affect terminal
443 settings. Such characters usually appear in the names generated
444 by the assembler for local labels. */
445 if (ISCNTRL (c))
446 {
447 if (width_remaining < 2)
448 break;
449
450 printf ("^%c", c + 0x40);
451 width_remaining -= 2;
452 num_printed += 2;
453 }
454 else if (ISPRINT (c))
455 {
456 putchar (c);
457 width_remaining --;
458 num_printed ++;
459 }
460 else
461 {
462 #ifdef HAVE_MBSTATE_T
463 wchar_t w;
464 #endif
465 /* Let printf do the hard work of displaying multibyte characters. */
466 printf ("%.1s", symbol - 1);
467 width_remaining --;
468 num_printed ++;
469
470 #ifdef HAVE_MBSTATE_T
471 /* Try to find out how many bytes made up the character that was
472 just printed. Advance the symbol pointer past the bytes that
473 were displayed. */
474 n = mbrtowc (& w, symbol - 1, MB_CUR_MAX, & state);
475 #else
476 n = 1;
477 #endif
478 if (n != (size_t) -1 && n != (size_t) -2 && n > 0)
479 symbol += (n - 1);
480 }
481 }
482
483 if (extra_padding && num_printed < width)
484 {
485 /* Fill in the remaining spaces. */
486 printf ("%-*s", width - num_printed, " ");
487 num_printed = width;
488 }
489
490 return num_printed;
491 }
492
493 /* Return a pointer to section NAME, or NULL if no such section exists. */
494
495 static Elf_Internal_Shdr *
496 find_section (const char * name)
497 {
498 unsigned int i;
499
500 for (i = 0; i < elf_header.e_shnum; i++)
501 if (streq (SECTION_NAME (section_headers + i), name))
502 return section_headers + i;
503
504 return NULL;
505 }
506
507 /* Return a pointer to a section containing ADDR, or NULL if no such
508 section exists. */
509
510 static Elf_Internal_Shdr *
511 find_section_by_address (bfd_vma addr)
512 {
513 unsigned int i;
514
515 for (i = 0; i < elf_header.e_shnum; i++)
516 {
517 Elf_Internal_Shdr *sec = section_headers + i;
518 if (addr >= sec->sh_addr && addr < sec->sh_addr + sec->sh_size)
519 return sec;
520 }
521
522 return NULL;
523 }
524
525 /* Return a pointer to section NAME, or NULL if no such section exists,
526 restricted to the list of sections given in SET. */
527
528 static Elf_Internal_Shdr *
529 find_section_in_set (const char * name, unsigned int * set)
530 {
531 unsigned int i;
532
533 if (set != NULL)
534 {
535 while ((i = *set++) > 0)
536 if (streq (SECTION_NAME (section_headers + i), name))
537 return section_headers + i;
538 }
539
540 return find_section (name);
541 }
542
543 /* Read an unsigned LEB128 encoded value from p. Set *PLEN to the number of
544 bytes read. */
545
546 static inline unsigned long
547 read_uleb128 (unsigned char *data,
548 unsigned int *length_return,
549 const unsigned char * const end)
550 {
551 return read_leb128 (data, length_return, FALSE, end);
552 }
553
554 /* Return true if the current file is for IA-64 machine and OpenVMS ABI.
555 This OS has so many departures from the ELF standard that we test it at
556 many places. */
557
558 static inline int
559 is_ia64_vms (void)
560 {
561 return elf_header.e_machine == EM_IA_64
562 && elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS;
563 }
564
565 /* Guess the relocation size commonly used by the specific machines. */
566
567 static int
568 guess_is_rela (unsigned int e_machine)
569 {
570 switch (e_machine)
571 {
572 /* Targets that use REL relocations. */
573 case EM_386:
574 case EM_486:
575 case EM_960:
576 case EM_ARM:
577 case EM_D10V:
578 case EM_CYGNUS_D10V:
579 case EM_DLX:
580 case EM_MIPS:
581 case EM_MIPS_RS3_LE:
582 case EM_CYGNUS_M32R:
583 case EM_SCORE:
584 case EM_XGATE:
585 return FALSE;
586
587 /* Targets that use RELA relocations. */
588 case EM_68K:
589 case EM_860:
590 case EM_AARCH64:
591 case EM_ADAPTEVA_EPIPHANY:
592 case EM_ALPHA:
593 case EM_ALTERA_NIOS2:
594 case EM_AVR:
595 case EM_AVR_OLD:
596 case EM_BLACKFIN:
597 case EM_CR16:
598 case EM_CRIS:
599 case EM_CRX:
600 case EM_D30V:
601 case EM_CYGNUS_D30V:
602 case EM_FR30:
603 case EM_CYGNUS_FR30:
604 case EM_CYGNUS_FRV:
605 case EM_H8S:
606 case EM_H8_300:
607 case EM_H8_300H:
608 case EM_IA_64:
609 case EM_IP2K:
610 case EM_IP2K_OLD:
611 case EM_IQ2000:
612 case EM_LATTICEMICO32:
613 case EM_M32C_OLD:
614 case EM_M32C:
615 case EM_M32R:
616 case EM_MCORE:
617 case EM_CYGNUS_MEP:
618 case EM_METAG:
619 case EM_MMIX:
620 case EM_MN10200:
621 case EM_CYGNUS_MN10200:
622 case EM_MN10300:
623 case EM_CYGNUS_MN10300:
624 case EM_MOXIE:
625 case EM_MSP430:
626 case EM_MSP430_OLD:
627 case EM_MT:
628 case EM_NDS32:
629 case EM_NIOS32:
630 case EM_OR1K:
631 case EM_PPC64:
632 case EM_PPC:
633 case EM_RL78:
634 case EM_RX:
635 case EM_S390:
636 case EM_S390_OLD:
637 case EM_SH:
638 case EM_SPARC:
639 case EM_SPARC32PLUS:
640 case EM_SPARCV9:
641 case EM_SPU:
642 case EM_TI_C6000:
643 case EM_TILEGX:
644 case EM_TILEPRO:
645 case EM_V800:
646 case EM_V850:
647 case EM_CYGNUS_V850:
648 case EM_VAX:
649 case EM_X86_64:
650 case EM_L1OM:
651 case EM_K1OM:
652 case EM_XSTORMY16:
653 case EM_XTENSA:
654 case EM_XTENSA_OLD:
655 case EM_MICROBLAZE:
656 case EM_MICROBLAZE_OLD:
657 return TRUE;
658
659 case EM_68HC05:
660 case EM_68HC08:
661 case EM_68HC11:
662 case EM_68HC16:
663 case EM_FX66:
664 case EM_ME16:
665 case EM_MMA:
666 case EM_NCPU:
667 case EM_NDR1:
668 case EM_PCP:
669 case EM_ST100:
670 case EM_ST19:
671 case EM_ST7:
672 case EM_ST9PLUS:
673 case EM_STARCORE:
674 case EM_SVX:
675 case EM_TINYJ:
676 default:
677 warn (_("Don't know about relocations on this machine architecture\n"));
678 return FALSE;
679 }
680 }
681
682 static int
683 slurp_rela_relocs (FILE * file,
684 unsigned long rel_offset,
685 unsigned long rel_size,
686 Elf_Internal_Rela ** relasp,
687 unsigned long * nrelasp)
688 {
689 Elf_Internal_Rela * relas;
690 unsigned long nrelas;
691 unsigned int i;
692
693 if (is_32bit_elf)
694 {
695 Elf32_External_Rela * erelas;
696
697 erelas = (Elf32_External_Rela *) get_data (NULL, file, rel_offset, 1,
698 rel_size, _("32-bit relocation data"));
699 if (!erelas)
700 return 0;
701
702 nrelas = rel_size / sizeof (Elf32_External_Rela);
703
704 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
705 sizeof (Elf_Internal_Rela));
706
707 if (relas == NULL)
708 {
709 free (erelas);
710 error (_("out of memory parsing relocs\n"));
711 return 0;
712 }
713
714 for (i = 0; i < nrelas; i++)
715 {
716 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
717 relas[i].r_info = BYTE_GET (erelas[i].r_info);
718 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
719 }
720
721 free (erelas);
722 }
723 else
724 {
725 Elf64_External_Rela * erelas;
726
727 erelas = (Elf64_External_Rela *) get_data (NULL, file, rel_offset, 1,
728 rel_size, _("64-bit relocation data"));
729 if (!erelas)
730 return 0;
731
732 nrelas = rel_size / sizeof (Elf64_External_Rela);
733
734 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
735 sizeof (Elf_Internal_Rela));
736
737 if (relas == NULL)
738 {
739 free (erelas);
740 error (_("out of memory parsing relocs\n"));
741 return 0;
742 }
743
744 for (i = 0; i < nrelas; i++)
745 {
746 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
747 relas[i].r_info = BYTE_GET (erelas[i].r_info);
748 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
749
750 /* The #ifdef BFD64 below is to prevent a compile time
751 warning. We know that if we do not have a 64 bit data
752 type that we will never execute this code anyway. */
753 #ifdef BFD64
754 if (elf_header.e_machine == EM_MIPS
755 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
756 {
757 /* In little-endian objects, r_info isn't really a
758 64-bit little-endian value: it has a 32-bit
759 little-endian symbol index followed by four
760 individual byte fields. Reorder INFO
761 accordingly. */
762 bfd_vma inf = relas[i].r_info;
763 inf = (((inf & 0xffffffff) << 32)
764 | ((inf >> 56) & 0xff)
765 | ((inf >> 40) & 0xff00)
766 | ((inf >> 24) & 0xff0000)
767 | ((inf >> 8) & 0xff000000));
768 relas[i].r_info = inf;
769 }
770 #endif /* BFD64 */
771 }
772
773 free (erelas);
774 }
775 *relasp = relas;
776 *nrelasp = nrelas;
777 return 1;
778 }
779
780 static int
781 slurp_rel_relocs (FILE * file,
782 unsigned long rel_offset,
783 unsigned long rel_size,
784 Elf_Internal_Rela ** relsp,
785 unsigned long * nrelsp)
786 {
787 Elf_Internal_Rela * rels;
788 unsigned long nrels;
789 unsigned int i;
790
791 if (is_32bit_elf)
792 {
793 Elf32_External_Rel * erels;
794
795 erels = (Elf32_External_Rel *) get_data (NULL, file, rel_offset, 1,
796 rel_size, _("32-bit relocation data"));
797 if (!erels)
798 return 0;
799
800 nrels = rel_size / sizeof (Elf32_External_Rel);
801
802 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
803
804 if (rels == NULL)
805 {
806 free (erels);
807 error (_("out of memory parsing relocs\n"));
808 return 0;
809 }
810
811 for (i = 0; i < nrels; i++)
812 {
813 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
814 rels[i].r_info = BYTE_GET (erels[i].r_info);
815 rels[i].r_addend = 0;
816 }
817
818 free (erels);
819 }
820 else
821 {
822 Elf64_External_Rel * erels;
823
824 erels = (Elf64_External_Rel *) get_data (NULL, file, rel_offset, 1,
825 rel_size, _("64-bit relocation data"));
826 if (!erels)
827 return 0;
828
829 nrels = rel_size / sizeof (Elf64_External_Rel);
830
831 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
832
833 if (rels == NULL)
834 {
835 free (erels);
836 error (_("out of memory parsing relocs\n"));
837 return 0;
838 }
839
840 for (i = 0; i < nrels; i++)
841 {
842 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
843 rels[i].r_info = BYTE_GET (erels[i].r_info);
844 rels[i].r_addend = 0;
845
846 /* The #ifdef BFD64 below is to prevent a compile time
847 warning. We know that if we do not have a 64 bit data
848 type that we will never execute this code anyway. */
849 #ifdef BFD64
850 if (elf_header.e_machine == EM_MIPS
851 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
852 {
853 /* In little-endian objects, r_info isn't really a
854 64-bit little-endian value: it has a 32-bit
855 little-endian symbol index followed by four
856 individual byte fields. Reorder INFO
857 accordingly. */
858 bfd_vma inf = rels[i].r_info;
859 inf = (((inf & 0xffffffff) << 32)
860 | ((inf >> 56) & 0xff)
861 | ((inf >> 40) & 0xff00)
862 | ((inf >> 24) & 0xff0000)
863 | ((inf >> 8) & 0xff000000));
864 rels[i].r_info = inf;
865 }
866 #endif /* BFD64 */
867 }
868
869 free (erels);
870 }
871 *relsp = rels;
872 *nrelsp = nrels;
873 return 1;
874 }
875
876 /* Returns the reloc type extracted from the reloc info field. */
877
878 static unsigned int
879 get_reloc_type (bfd_vma reloc_info)
880 {
881 if (is_32bit_elf)
882 return ELF32_R_TYPE (reloc_info);
883
884 switch (elf_header.e_machine)
885 {
886 case EM_MIPS:
887 /* Note: We assume that reloc_info has already been adjusted for us. */
888 return ELF64_MIPS_R_TYPE (reloc_info);
889
890 case EM_SPARCV9:
891 return ELF64_R_TYPE_ID (reloc_info);
892
893 default:
894 return ELF64_R_TYPE (reloc_info);
895 }
896 }
897
898 /* Return the symbol index extracted from the reloc info field. */
899
900 static bfd_vma
901 get_reloc_symindex (bfd_vma reloc_info)
902 {
903 return is_32bit_elf ? ELF32_R_SYM (reloc_info) : ELF64_R_SYM (reloc_info);
904 }
905
906 static inline bfd_boolean
907 uses_msp430x_relocs (void)
908 {
909 return
910 elf_header.e_machine == EM_MSP430 /* Paranoia. */
911 /* GCC uses osabi == ELFOSBI_STANDALONE. */
912 && (((elf_header.e_flags & EF_MSP430_MACH) == E_MSP430_MACH_MSP430X)
913 /* TI compiler uses ELFOSABI_NONE. */
914 || (elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE));
915 }
916
917 /* Display the contents of the relocation data found at the specified
918 offset. */
919
920 static void
921 dump_relocations (FILE * file,
922 unsigned long rel_offset,
923 unsigned long rel_size,
924 Elf_Internal_Sym * symtab,
925 unsigned long nsyms,
926 char * strtab,
927 unsigned long strtablen,
928 int is_rela)
929 {
930 unsigned int i;
931 Elf_Internal_Rela * rels;
932
933 if (is_rela == UNKNOWN)
934 is_rela = guess_is_rela (elf_header.e_machine);
935
936 if (is_rela)
937 {
938 if (!slurp_rela_relocs (file, rel_offset, rel_size, &rels, &rel_size))
939 return;
940 }
941 else
942 {
943 if (!slurp_rel_relocs (file, rel_offset, rel_size, &rels, &rel_size))
944 return;
945 }
946
947 if (is_32bit_elf)
948 {
949 if (is_rela)
950 {
951 if (do_wide)
952 printf (_(" Offset Info Type Sym. Value Symbol's Name + Addend\n"));
953 else
954 printf (_(" Offset Info Type Sym.Value Sym. Name + Addend\n"));
955 }
956 else
957 {
958 if (do_wide)
959 printf (_(" Offset Info Type Sym. Value Symbol's Name\n"));
960 else
961 printf (_(" Offset Info Type Sym.Value Sym. Name\n"));
962 }
963 }
964 else
965 {
966 if (is_rela)
967 {
968 if (do_wide)
969 printf (_(" Offset Info Type Symbol's Value Symbol's Name + Addend\n"));
970 else
971 printf (_(" Offset Info Type Sym. Value Sym. Name + Addend\n"));
972 }
973 else
974 {
975 if (do_wide)
976 printf (_(" Offset Info Type Symbol's Value Symbol's Name\n"));
977 else
978 printf (_(" Offset Info Type Sym. Value Sym. Name\n"));
979 }
980 }
981
982 for (i = 0; i < rel_size; i++)
983 {
984 const char * rtype;
985 bfd_vma offset;
986 bfd_vma inf;
987 bfd_vma symtab_index;
988 bfd_vma type;
989
990 offset = rels[i].r_offset;
991 inf = rels[i].r_info;
992
993 type = get_reloc_type (inf);
994 symtab_index = get_reloc_symindex (inf);
995
996 if (is_32bit_elf)
997 {
998 printf ("%8.8lx %8.8lx ",
999 (unsigned long) offset & 0xffffffff,
1000 (unsigned long) inf & 0xffffffff);
1001 }
1002 else
1003 {
1004 #if BFD_HOST_64BIT_LONG
1005 printf (do_wide
1006 ? "%16.16lx %16.16lx "
1007 : "%12.12lx %12.12lx ",
1008 offset, inf);
1009 #elif BFD_HOST_64BIT_LONG_LONG
1010 #ifndef __MSVCRT__
1011 printf (do_wide
1012 ? "%16.16llx %16.16llx "
1013 : "%12.12llx %12.12llx ",
1014 offset, inf);
1015 #else
1016 printf (do_wide
1017 ? "%16.16I64x %16.16I64x "
1018 : "%12.12I64x %12.12I64x ",
1019 offset, inf);
1020 #endif
1021 #else
1022 printf (do_wide
1023 ? "%8.8lx%8.8lx %8.8lx%8.8lx "
1024 : "%4.4lx%8.8lx %4.4lx%8.8lx ",
1025 _bfd_int64_high (offset),
1026 _bfd_int64_low (offset),
1027 _bfd_int64_high (inf),
1028 _bfd_int64_low (inf));
1029 #endif
1030 }
1031
1032 switch (elf_header.e_machine)
1033 {
1034 default:
1035 rtype = NULL;
1036 break;
1037
1038 case EM_AARCH64:
1039 rtype = elf_aarch64_reloc_type (type);
1040 break;
1041
1042 case EM_M32R:
1043 case EM_CYGNUS_M32R:
1044 rtype = elf_m32r_reloc_type (type);
1045 break;
1046
1047 case EM_386:
1048 case EM_486:
1049 rtype = elf_i386_reloc_type (type);
1050 break;
1051
1052 case EM_68HC11:
1053 case EM_68HC12:
1054 rtype = elf_m68hc11_reloc_type (type);
1055 break;
1056
1057 case EM_68K:
1058 rtype = elf_m68k_reloc_type (type);
1059 break;
1060
1061 case EM_960:
1062 rtype = elf_i960_reloc_type (type);
1063 break;
1064
1065 case EM_AVR:
1066 case EM_AVR_OLD:
1067 rtype = elf_avr_reloc_type (type);
1068 break;
1069
1070 case EM_OLD_SPARCV9:
1071 case EM_SPARC32PLUS:
1072 case EM_SPARCV9:
1073 case EM_SPARC:
1074 rtype = elf_sparc_reloc_type (type);
1075 break;
1076
1077 case EM_SPU:
1078 rtype = elf_spu_reloc_type (type);
1079 break;
1080
1081 case EM_V800:
1082 rtype = v800_reloc_type (type);
1083 break;
1084 case EM_V850:
1085 case EM_CYGNUS_V850:
1086 rtype = v850_reloc_type (type);
1087 break;
1088
1089 case EM_D10V:
1090 case EM_CYGNUS_D10V:
1091 rtype = elf_d10v_reloc_type (type);
1092 break;
1093
1094 case EM_D30V:
1095 case EM_CYGNUS_D30V:
1096 rtype = elf_d30v_reloc_type (type);
1097 break;
1098
1099 case EM_DLX:
1100 rtype = elf_dlx_reloc_type (type);
1101 break;
1102
1103 case EM_SH:
1104 rtype = elf_sh_reloc_type (type);
1105 break;
1106
1107 case EM_MN10300:
1108 case EM_CYGNUS_MN10300:
1109 rtype = elf_mn10300_reloc_type (type);
1110 break;
1111
1112 case EM_MN10200:
1113 case EM_CYGNUS_MN10200:
1114 rtype = elf_mn10200_reloc_type (type);
1115 break;
1116
1117 case EM_FR30:
1118 case EM_CYGNUS_FR30:
1119 rtype = elf_fr30_reloc_type (type);
1120 break;
1121
1122 case EM_CYGNUS_FRV:
1123 rtype = elf_frv_reloc_type (type);
1124 break;
1125
1126 case EM_MCORE:
1127 rtype = elf_mcore_reloc_type (type);
1128 break;
1129
1130 case EM_MMIX:
1131 rtype = elf_mmix_reloc_type (type);
1132 break;
1133
1134 case EM_MOXIE:
1135 rtype = elf_moxie_reloc_type (type);
1136 break;
1137
1138 case EM_MSP430:
1139 if (uses_msp430x_relocs ())
1140 {
1141 rtype = elf_msp430x_reloc_type (type);
1142 break;
1143 }
1144 case EM_MSP430_OLD:
1145 rtype = elf_msp430_reloc_type (type);
1146 break;
1147
1148 case EM_NDS32:
1149 rtype = elf_nds32_reloc_type (type);
1150 break;
1151
1152 case EM_PPC:
1153 rtype = elf_ppc_reloc_type (type);
1154 break;
1155
1156 case EM_PPC64:
1157 rtype = elf_ppc64_reloc_type (type);
1158 break;
1159
1160 case EM_MIPS:
1161 case EM_MIPS_RS3_LE:
1162 rtype = elf_mips_reloc_type (type);
1163 break;
1164
1165 case EM_ALPHA:
1166 rtype = elf_alpha_reloc_type (type);
1167 break;
1168
1169 case EM_ARM:
1170 rtype = elf_arm_reloc_type (type);
1171 break;
1172
1173 case EM_ARC:
1174 rtype = elf_arc_reloc_type (type);
1175 break;
1176
1177 case EM_PARISC:
1178 rtype = elf_hppa_reloc_type (type);
1179 break;
1180
1181 case EM_H8_300:
1182 case EM_H8_300H:
1183 case EM_H8S:
1184 rtype = elf_h8_reloc_type (type);
1185 break;
1186
1187 case EM_OR1K:
1188 rtype = elf_or1k_reloc_type (type);
1189 break;
1190
1191 case EM_PJ:
1192 case EM_PJ_OLD:
1193 rtype = elf_pj_reloc_type (type);
1194 break;
1195 case EM_IA_64:
1196 rtype = elf_ia64_reloc_type (type);
1197 break;
1198
1199 case EM_CRIS:
1200 rtype = elf_cris_reloc_type (type);
1201 break;
1202
1203 case EM_860:
1204 rtype = elf_i860_reloc_type (type);
1205 break;
1206
1207 case EM_X86_64:
1208 case EM_L1OM:
1209 case EM_K1OM:
1210 rtype = elf_x86_64_reloc_type (type);
1211 break;
1212
1213 case EM_S370:
1214 rtype = i370_reloc_type (type);
1215 break;
1216
1217 case EM_S390_OLD:
1218 case EM_S390:
1219 rtype = elf_s390_reloc_type (type);
1220 break;
1221
1222 case EM_SCORE:
1223 rtype = elf_score_reloc_type (type);
1224 break;
1225
1226 case EM_XSTORMY16:
1227 rtype = elf_xstormy16_reloc_type (type);
1228 break;
1229
1230 case EM_CRX:
1231 rtype = elf_crx_reloc_type (type);
1232 break;
1233
1234 case EM_VAX:
1235 rtype = elf_vax_reloc_type (type);
1236 break;
1237
1238 case EM_ADAPTEVA_EPIPHANY:
1239 rtype = elf_epiphany_reloc_type (type);
1240 break;
1241
1242 case EM_IP2K:
1243 case EM_IP2K_OLD:
1244 rtype = elf_ip2k_reloc_type (type);
1245 break;
1246
1247 case EM_IQ2000:
1248 rtype = elf_iq2000_reloc_type (type);
1249 break;
1250
1251 case EM_XTENSA_OLD:
1252 case EM_XTENSA:
1253 rtype = elf_xtensa_reloc_type (type);
1254 break;
1255
1256 case EM_LATTICEMICO32:
1257 rtype = elf_lm32_reloc_type (type);
1258 break;
1259
1260 case EM_M32C_OLD:
1261 case EM_M32C:
1262 rtype = elf_m32c_reloc_type (type);
1263 break;
1264
1265 case EM_MT:
1266 rtype = elf_mt_reloc_type (type);
1267 break;
1268
1269 case EM_BLACKFIN:
1270 rtype = elf_bfin_reloc_type (type);
1271 break;
1272
1273 case EM_CYGNUS_MEP:
1274 rtype = elf_mep_reloc_type (type);
1275 break;
1276
1277 case EM_CR16:
1278 rtype = elf_cr16_reloc_type (type);
1279 break;
1280
1281 case EM_MICROBLAZE:
1282 case EM_MICROBLAZE_OLD:
1283 rtype = elf_microblaze_reloc_type (type);
1284 break;
1285
1286 case EM_RL78:
1287 rtype = elf_rl78_reloc_type (type);
1288 break;
1289
1290 case EM_RX:
1291 rtype = elf_rx_reloc_type (type);
1292 break;
1293
1294 case EM_METAG:
1295 rtype = elf_metag_reloc_type (type);
1296 break;
1297
1298 case EM_XC16X:
1299 case EM_C166:
1300 rtype = elf_xc16x_reloc_type (type);
1301 break;
1302
1303 case EM_TI_C6000:
1304 rtype = elf_tic6x_reloc_type (type);
1305 break;
1306
1307 case EM_TILEGX:
1308 rtype = elf_tilegx_reloc_type (type);
1309 break;
1310
1311 case EM_TILEPRO:
1312 rtype = elf_tilepro_reloc_type (type);
1313 break;
1314
1315 case EM_XGATE:
1316 rtype = elf_xgate_reloc_type (type);
1317 break;
1318
1319 case EM_ALTERA_NIOS2:
1320 rtype = elf_nios2_reloc_type (type);
1321 break;
1322 }
1323
1324 if (rtype == NULL)
1325 printf (_("unrecognized: %-7lx"), (unsigned long) type & 0xffffffff);
1326 else
1327 printf (do_wide ? "%-22.22s" : "%-17.17s", rtype);
1328
1329 if (elf_header.e_machine == EM_ALPHA
1330 && rtype != NULL
1331 && streq (rtype, "R_ALPHA_LITUSE")
1332 && is_rela)
1333 {
1334 switch (rels[i].r_addend)
1335 {
1336 case LITUSE_ALPHA_ADDR: rtype = "ADDR"; break;
1337 case LITUSE_ALPHA_BASE: rtype = "BASE"; break;
1338 case LITUSE_ALPHA_BYTOFF: rtype = "BYTOFF"; break;
1339 case LITUSE_ALPHA_JSR: rtype = "JSR"; break;
1340 case LITUSE_ALPHA_TLSGD: rtype = "TLSGD"; break;
1341 case LITUSE_ALPHA_TLSLDM: rtype = "TLSLDM"; break;
1342 case LITUSE_ALPHA_JSRDIRECT: rtype = "JSRDIRECT"; break;
1343 default: rtype = NULL;
1344 }
1345 if (rtype)
1346 printf (" (%s)", rtype);
1347 else
1348 {
1349 putchar (' ');
1350 printf (_("<unknown addend: %lx>"),
1351 (unsigned long) rels[i].r_addend);
1352 }
1353 }
1354 else if (symtab_index)
1355 {
1356 if (symtab == NULL || symtab_index >= nsyms)
1357 printf (_(" bad symbol index: %08lx"), (unsigned long) symtab_index);
1358 else
1359 {
1360 Elf_Internal_Sym * psym;
1361
1362 psym = symtab + symtab_index;
1363
1364 printf (" ");
1365
1366 if (ELF_ST_TYPE (psym->st_info) == STT_GNU_IFUNC)
1367 {
1368 const char * name;
1369 unsigned int len;
1370 unsigned int width = is_32bit_elf ? 8 : 14;
1371
1372 /* Relocations against GNU_IFUNC symbols do not use the value
1373 of the symbol as the address to relocate against. Instead
1374 they invoke the function named by the symbol and use its
1375 result as the address for relocation.
1376
1377 To indicate this to the user, do not display the value of
1378 the symbol in the "Symbols's Value" field. Instead show
1379 its name followed by () as a hint that the symbol is
1380 invoked. */
1381
1382 if (strtab == NULL
1383 || psym->st_name == 0
1384 || psym->st_name >= strtablen)
1385 name = "??";
1386 else
1387 name = strtab + psym->st_name;
1388
1389 len = print_symbol (width, name);
1390 printf ("()%-*s", len <= width ? (width + 1) - len : 1, " ");
1391 }
1392 else
1393 {
1394 print_vma (psym->st_value, LONG_HEX);
1395
1396 printf (is_32bit_elf ? " " : " ");
1397 }
1398
1399 if (psym->st_name == 0)
1400 {
1401 const char * sec_name = "<null>";
1402 char name_buf[40];
1403
1404 if (ELF_ST_TYPE (psym->st_info) == STT_SECTION)
1405 {
1406 if (psym->st_shndx < elf_header.e_shnum)
1407 sec_name
1408 = SECTION_NAME (section_headers + psym->st_shndx);
1409 else if (psym->st_shndx == SHN_ABS)
1410 sec_name = "ABS";
1411 else if (psym->st_shndx == SHN_COMMON)
1412 sec_name = "COMMON";
1413 else if ((elf_header.e_machine == EM_MIPS
1414 && psym->st_shndx == SHN_MIPS_SCOMMON)
1415 || (elf_header.e_machine == EM_TI_C6000
1416 && psym->st_shndx == SHN_TIC6X_SCOMMON))
1417 sec_name = "SCOMMON";
1418 else if (elf_header.e_machine == EM_MIPS
1419 && psym->st_shndx == SHN_MIPS_SUNDEFINED)
1420 sec_name = "SUNDEF";
1421 else if ((elf_header.e_machine == EM_X86_64
1422 || elf_header.e_machine == EM_L1OM
1423 || elf_header.e_machine == EM_K1OM)
1424 && psym->st_shndx == SHN_X86_64_LCOMMON)
1425 sec_name = "LARGE_COMMON";
1426 else if (elf_header.e_machine == EM_IA_64
1427 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX
1428 && psym->st_shndx == SHN_IA_64_ANSI_COMMON)
1429 sec_name = "ANSI_COM";
1430 else if (is_ia64_vms ()
1431 && psym->st_shndx == SHN_IA_64_VMS_SYMVEC)
1432 sec_name = "VMS_SYMVEC";
1433 else
1434 {
1435 sprintf (name_buf, "<section 0x%x>",
1436 (unsigned int) psym->st_shndx);
1437 sec_name = name_buf;
1438 }
1439 }
1440 print_symbol (22, sec_name);
1441 }
1442 else if (strtab == NULL)
1443 printf (_("<string table index: %3ld>"), psym->st_name);
1444 else if (psym->st_name >= strtablen)
1445 printf (_("<corrupt string table index: %3ld>"), psym->st_name);
1446 else
1447 print_symbol (22, strtab + psym->st_name);
1448
1449 if (is_rela)
1450 {
1451 bfd_signed_vma off = rels[i].r_addend;
1452
1453 if (off < 0)
1454 printf (" - %" BFD_VMA_FMT "x", - off);
1455 else
1456 printf (" + %" BFD_VMA_FMT "x", off);
1457 }
1458 }
1459 }
1460 else if (is_rela)
1461 {
1462 bfd_signed_vma off = rels[i].r_addend;
1463
1464 printf ("%*c", is_32bit_elf ? 12 : 20, ' ');
1465 if (off < 0)
1466 printf ("-%" BFD_VMA_FMT "x", - off);
1467 else
1468 printf ("%" BFD_VMA_FMT "x", off);
1469 }
1470
1471 if (elf_header.e_machine == EM_SPARCV9
1472 && rtype != NULL
1473 && streq (rtype, "R_SPARC_OLO10"))
1474 printf (" + %lx", (unsigned long) ELF64_R_TYPE_DATA (inf));
1475
1476 putchar ('\n');
1477
1478 #ifdef BFD64
1479 if (! is_32bit_elf && elf_header.e_machine == EM_MIPS)
1480 {
1481 bfd_vma type2 = ELF64_MIPS_R_TYPE2 (inf);
1482 bfd_vma type3 = ELF64_MIPS_R_TYPE3 (inf);
1483 const char * rtype2 = elf_mips_reloc_type (type2);
1484 const char * rtype3 = elf_mips_reloc_type (type3);
1485
1486 printf (" Type2: ");
1487
1488 if (rtype2 == NULL)
1489 printf (_("unrecognized: %-7lx"),
1490 (unsigned long) type2 & 0xffffffff);
1491 else
1492 printf ("%-17.17s", rtype2);
1493
1494 printf ("\n Type3: ");
1495
1496 if (rtype3 == NULL)
1497 printf (_("unrecognized: %-7lx"),
1498 (unsigned long) type3 & 0xffffffff);
1499 else
1500 printf ("%-17.17s", rtype3);
1501
1502 putchar ('\n');
1503 }
1504 #endif /* BFD64 */
1505 }
1506
1507 free (rels);
1508 }
1509
1510 static const char *
1511 get_mips_dynamic_type (unsigned long type)
1512 {
1513 switch (type)
1514 {
1515 case DT_MIPS_RLD_VERSION: return "MIPS_RLD_VERSION";
1516 case DT_MIPS_TIME_STAMP: return "MIPS_TIME_STAMP";
1517 case DT_MIPS_ICHECKSUM: return "MIPS_ICHECKSUM";
1518 case DT_MIPS_IVERSION: return "MIPS_IVERSION";
1519 case DT_MIPS_FLAGS: return "MIPS_FLAGS";
1520 case DT_MIPS_BASE_ADDRESS: return "MIPS_BASE_ADDRESS";
1521 case DT_MIPS_MSYM: return "MIPS_MSYM";
1522 case DT_MIPS_CONFLICT: return "MIPS_CONFLICT";
1523 case DT_MIPS_LIBLIST: return "MIPS_LIBLIST";
1524 case DT_MIPS_LOCAL_GOTNO: return "MIPS_LOCAL_GOTNO";
1525 case DT_MIPS_CONFLICTNO: return "MIPS_CONFLICTNO";
1526 case DT_MIPS_LIBLISTNO: return "MIPS_LIBLISTNO";
1527 case DT_MIPS_SYMTABNO: return "MIPS_SYMTABNO";
1528 case DT_MIPS_UNREFEXTNO: return "MIPS_UNREFEXTNO";
1529 case DT_MIPS_GOTSYM: return "MIPS_GOTSYM";
1530 case DT_MIPS_HIPAGENO: return "MIPS_HIPAGENO";
1531 case DT_MIPS_RLD_MAP: return "MIPS_RLD_MAP";
1532 case DT_MIPS_DELTA_CLASS: return "MIPS_DELTA_CLASS";
1533 case DT_MIPS_DELTA_CLASS_NO: return "MIPS_DELTA_CLASS_NO";
1534 case DT_MIPS_DELTA_INSTANCE: return "MIPS_DELTA_INSTANCE";
1535 case DT_MIPS_DELTA_INSTANCE_NO: return "MIPS_DELTA_INSTANCE_NO";
1536 case DT_MIPS_DELTA_RELOC: return "MIPS_DELTA_RELOC";
1537 case DT_MIPS_DELTA_RELOC_NO: return "MIPS_DELTA_RELOC_NO";
1538 case DT_MIPS_DELTA_SYM: return "MIPS_DELTA_SYM";
1539 case DT_MIPS_DELTA_SYM_NO: return "MIPS_DELTA_SYM_NO";
1540 case DT_MIPS_DELTA_CLASSSYM: return "MIPS_DELTA_CLASSSYM";
1541 case DT_MIPS_DELTA_CLASSSYM_NO: return "MIPS_DELTA_CLASSSYM_NO";
1542 case DT_MIPS_CXX_FLAGS: return "MIPS_CXX_FLAGS";
1543 case DT_MIPS_PIXIE_INIT: return "MIPS_PIXIE_INIT";
1544 case DT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
1545 case DT_MIPS_LOCALPAGE_GOTIDX: return "MIPS_LOCALPAGE_GOTIDX";
1546 case DT_MIPS_LOCAL_GOTIDX: return "MIPS_LOCAL_GOTIDX";
1547 case DT_MIPS_HIDDEN_GOTIDX: return "MIPS_HIDDEN_GOTIDX";
1548 case DT_MIPS_PROTECTED_GOTIDX: return "MIPS_PROTECTED_GOTIDX";
1549 case DT_MIPS_OPTIONS: return "MIPS_OPTIONS";
1550 case DT_MIPS_INTERFACE: return "MIPS_INTERFACE";
1551 case DT_MIPS_DYNSTR_ALIGN: return "MIPS_DYNSTR_ALIGN";
1552 case DT_MIPS_INTERFACE_SIZE: return "MIPS_INTERFACE_SIZE";
1553 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: return "MIPS_RLD_TEXT_RESOLVE_ADDR";
1554 case DT_MIPS_PERF_SUFFIX: return "MIPS_PERF_SUFFIX";
1555 case DT_MIPS_COMPACT_SIZE: return "MIPS_COMPACT_SIZE";
1556 case DT_MIPS_GP_VALUE: return "MIPS_GP_VALUE";
1557 case DT_MIPS_AUX_DYNAMIC: return "MIPS_AUX_DYNAMIC";
1558 case DT_MIPS_PLTGOT: return "MIPS_PLTGOT";
1559 case DT_MIPS_RWPLT: return "MIPS_RWPLT";
1560 default:
1561 return NULL;
1562 }
1563 }
1564
1565 static const char *
1566 get_sparc64_dynamic_type (unsigned long type)
1567 {
1568 switch (type)
1569 {
1570 case DT_SPARC_REGISTER: return "SPARC_REGISTER";
1571 default:
1572 return NULL;
1573 }
1574 }
1575
1576 static const char *
1577 get_ppc_dynamic_type (unsigned long type)
1578 {
1579 switch (type)
1580 {
1581 case DT_PPC_GOT: return "PPC_GOT";
1582 case DT_PPC_OPT: return "PPC_OPT";
1583 default:
1584 return NULL;
1585 }
1586 }
1587
1588 static const char *
1589 get_ppc64_dynamic_type (unsigned long type)
1590 {
1591 switch (type)
1592 {
1593 case DT_PPC64_GLINK: return "PPC64_GLINK";
1594 case DT_PPC64_OPD: return "PPC64_OPD";
1595 case DT_PPC64_OPDSZ: return "PPC64_OPDSZ";
1596 case DT_PPC64_OPT: return "PPC64_OPT";
1597 default:
1598 return NULL;
1599 }
1600 }
1601
1602 static const char *
1603 get_parisc_dynamic_type (unsigned long type)
1604 {
1605 switch (type)
1606 {
1607 case DT_HP_LOAD_MAP: return "HP_LOAD_MAP";
1608 case DT_HP_DLD_FLAGS: return "HP_DLD_FLAGS";
1609 case DT_HP_DLD_HOOK: return "HP_DLD_HOOK";
1610 case DT_HP_UX10_INIT: return "HP_UX10_INIT";
1611 case DT_HP_UX10_INITSZ: return "HP_UX10_INITSZ";
1612 case DT_HP_PREINIT: return "HP_PREINIT";
1613 case DT_HP_PREINITSZ: return "HP_PREINITSZ";
1614 case DT_HP_NEEDED: return "HP_NEEDED";
1615 case DT_HP_TIME_STAMP: return "HP_TIME_STAMP";
1616 case DT_HP_CHECKSUM: return "HP_CHECKSUM";
1617 case DT_HP_GST_SIZE: return "HP_GST_SIZE";
1618 case DT_HP_GST_VERSION: return "HP_GST_VERSION";
1619 case DT_HP_GST_HASHVAL: return "HP_GST_HASHVAL";
1620 case DT_HP_EPLTREL: return "HP_GST_EPLTREL";
1621 case DT_HP_EPLTRELSZ: return "HP_GST_EPLTRELSZ";
1622 case DT_HP_FILTERED: return "HP_FILTERED";
1623 case DT_HP_FILTER_TLS: return "HP_FILTER_TLS";
1624 case DT_HP_COMPAT_FILTERED: return "HP_COMPAT_FILTERED";
1625 case DT_HP_LAZYLOAD: return "HP_LAZYLOAD";
1626 case DT_HP_BIND_NOW_COUNT: return "HP_BIND_NOW_COUNT";
1627 case DT_PLT: return "PLT";
1628 case DT_PLT_SIZE: return "PLT_SIZE";
1629 case DT_DLT: return "DLT";
1630 case DT_DLT_SIZE: return "DLT_SIZE";
1631 default:
1632 return NULL;
1633 }
1634 }
1635
1636 static const char *
1637 get_ia64_dynamic_type (unsigned long type)
1638 {
1639 switch (type)
1640 {
1641 case DT_IA_64_PLT_RESERVE: return "IA_64_PLT_RESERVE";
1642 case DT_IA_64_VMS_SUBTYPE: return "VMS_SUBTYPE";
1643 case DT_IA_64_VMS_IMGIOCNT: return "VMS_IMGIOCNT";
1644 case DT_IA_64_VMS_LNKFLAGS: return "VMS_LNKFLAGS";
1645 case DT_IA_64_VMS_VIR_MEM_BLK_SIZ: return "VMS_VIR_MEM_BLK_SIZ";
1646 case DT_IA_64_VMS_IDENT: return "VMS_IDENT";
1647 case DT_IA_64_VMS_NEEDED_IDENT: return "VMS_NEEDED_IDENT";
1648 case DT_IA_64_VMS_IMG_RELA_CNT: return "VMS_IMG_RELA_CNT";
1649 case DT_IA_64_VMS_SEG_RELA_CNT: return "VMS_SEG_RELA_CNT";
1650 case DT_IA_64_VMS_FIXUP_RELA_CNT: return "VMS_FIXUP_RELA_CNT";
1651 case DT_IA_64_VMS_FIXUP_NEEDED: return "VMS_FIXUP_NEEDED";
1652 case DT_IA_64_VMS_SYMVEC_CNT: return "VMS_SYMVEC_CNT";
1653 case DT_IA_64_VMS_XLATED: return "VMS_XLATED";
1654 case DT_IA_64_VMS_STACKSIZE: return "VMS_STACKSIZE";
1655 case DT_IA_64_VMS_UNWINDSZ: return "VMS_UNWINDSZ";
1656 case DT_IA_64_VMS_UNWIND_CODSEG: return "VMS_UNWIND_CODSEG";
1657 case DT_IA_64_VMS_UNWIND_INFOSEG: return "VMS_UNWIND_INFOSEG";
1658 case DT_IA_64_VMS_LINKTIME: return "VMS_LINKTIME";
1659 case DT_IA_64_VMS_SEG_NO: return "VMS_SEG_NO";
1660 case DT_IA_64_VMS_SYMVEC_OFFSET: return "VMS_SYMVEC_OFFSET";
1661 case DT_IA_64_VMS_SYMVEC_SEG: return "VMS_SYMVEC_SEG";
1662 case DT_IA_64_VMS_UNWIND_OFFSET: return "VMS_UNWIND_OFFSET";
1663 case DT_IA_64_VMS_UNWIND_SEG: return "VMS_UNWIND_SEG";
1664 case DT_IA_64_VMS_STRTAB_OFFSET: return "VMS_STRTAB_OFFSET";
1665 case DT_IA_64_VMS_SYSVER_OFFSET: return "VMS_SYSVER_OFFSET";
1666 case DT_IA_64_VMS_IMG_RELA_OFF: return "VMS_IMG_RELA_OFF";
1667 case DT_IA_64_VMS_SEG_RELA_OFF: return "VMS_SEG_RELA_OFF";
1668 case DT_IA_64_VMS_FIXUP_RELA_OFF: return "VMS_FIXUP_RELA_OFF";
1669 case DT_IA_64_VMS_PLTGOT_OFFSET: return "VMS_PLTGOT_OFFSET";
1670 case DT_IA_64_VMS_PLTGOT_SEG: return "VMS_PLTGOT_SEG";
1671 case DT_IA_64_VMS_FPMODE: return "VMS_FPMODE";
1672 default:
1673 return NULL;
1674 }
1675 }
1676
1677 static const char *
1678 get_alpha_dynamic_type (unsigned long type)
1679 {
1680 switch (type)
1681 {
1682 case DT_ALPHA_PLTRO: return "ALPHA_PLTRO";
1683 default:
1684 return NULL;
1685 }
1686 }
1687
1688 static const char *
1689 get_score_dynamic_type (unsigned long type)
1690 {
1691 switch (type)
1692 {
1693 case DT_SCORE_BASE_ADDRESS: return "SCORE_BASE_ADDRESS";
1694 case DT_SCORE_LOCAL_GOTNO: return "SCORE_LOCAL_GOTNO";
1695 case DT_SCORE_SYMTABNO: return "SCORE_SYMTABNO";
1696 case DT_SCORE_GOTSYM: return "SCORE_GOTSYM";
1697 case DT_SCORE_UNREFEXTNO: return "SCORE_UNREFEXTNO";
1698 case DT_SCORE_HIPAGENO: return "SCORE_HIPAGENO";
1699 default:
1700 return NULL;
1701 }
1702 }
1703
1704 static const char *
1705 get_tic6x_dynamic_type (unsigned long type)
1706 {
1707 switch (type)
1708 {
1709 case DT_C6000_GSYM_OFFSET: return "C6000_GSYM_OFFSET";
1710 case DT_C6000_GSTR_OFFSET: return "C6000_GSTR_OFFSET";
1711 case DT_C6000_DSBT_BASE: return "C6000_DSBT_BASE";
1712 case DT_C6000_DSBT_SIZE: return "C6000_DSBT_SIZE";
1713 case DT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
1714 case DT_C6000_DSBT_INDEX: return "C6000_DSBT_INDEX";
1715 default:
1716 return NULL;
1717 }
1718 }
1719
1720 static const char *
1721 get_nios2_dynamic_type (unsigned long type)
1722 {
1723 switch (type)
1724 {
1725 case DT_NIOS2_GP: return "NIOS2_GP";
1726 default:
1727 return NULL;
1728 }
1729 }
1730
1731 static const char *
1732 get_dynamic_type (unsigned long type)
1733 {
1734 static char buff[64];
1735
1736 switch (type)
1737 {
1738 case DT_NULL: return "NULL";
1739 case DT_NEEDED: return "NEEDED";
1740 case DT_PLTRELSZ: return "PLTRELSZ";
1741 case DT_PLTGOT: return "PLTGOT";
1742 case DT_HASH: return "HASH";
1743 case DT_STRTAB: return "STRTAB";
1744 case DT_SYMTAB: return "SYMTAB";
1745 case DT_RELA: return "RELA";
1746 case DT_RELASZ: return "RELASZ";
1747 case DT_RELAENT: return "RELAENT";
1748 case DT_STRSZ: return "STRSZ";
1749 case DT_SYMENT: return "SYMENT";
1750 case DT_INIT: return "INIT";
1751 case DT_FINI: return "FINI";
1752 case DT_SONAME: return "SONAME";
1753 case DT_RPATH: return "RPATH";
1754 case DT_SYMBOLIC: return "SYMBOLIC";
1755 case DT_REL: return "REL";
1756 case DT_RELSZ: return "RELSZ";
1757 case DT_RELENT: return "RELENT";
1758 case DT_PLTREL: return "PLTREL";
1759 case DT_DEBUG: return "DEBUG";
1760 case DT_TEXTREL: return "TEXTREL";
1761 case DT_JMPREL: return "JMPREL";
1762 case DT_BIND_NOW: return "BIND_NOW";
1763 case DT_INIT_ARRAY: return "INIT_ARRAY";
1764 case DT_FINI_ARRAY: return "FINI_ARRAY";
1765 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ";
1766 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ";
1767 case DT_RUNPATH: return "RUNPATH";
1768 case DT_FLAGS: return "FLAGS";
1769
1770 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY";
1771 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ";
1772
1773 case DT_CHECKSUM: return "CHECKSUM";
1774 case DT_PLTPADSZ: return "PLTPADSZ";
1775 case DT_MOVEENT: return "MOVEENT";
1776 case DT_MOVESZ: return "MOVESZ";
1777 case DT_FEATURE: return "FEATURE";
1778 case DT_POSFLAG_1: return "POSFLAG_1";
1779 case DT_SYMINSZ: return "SYMINSZ";
1780 case DT_SYMINENT: return "SYMINENT"; /* aka VALRNGHI */
1781
1782 case DT_ADDRRNGLO: return "ADDRRNGLO";
1783 case DT_CONFIG: return "CONFIG";
1784 case DT_DEPAUDIT: return "DEPAUDIT";
1785 case DT_AUDIT: return "AUDIT";
1786 case DT_PLTPAD: return "PLTPAD";
1787 case DT_MOVETAB: return "MOVETAB";
1788 case DT_SYMINFO: return "SYMINFO"; /* aka ADDRRNGHI */
1789
1790 case DT_VERSYM: return "VERSYM";
1791
1792 case DT_TLSDESC_GOT: return "TLSDESC_GOT";
1793 case DT_TLSDESC_PLT: return "TLSDESC_PLT";
1794 case DT_RELACOUNT: return "RELACOUNT";
1795 case DT_RELCOUNT: return "RELCOUNT";
1796 case DT_FLAGS_1: return "FLAGS_1";
1797 case DT_VERDEF: return "VERDEF";
1798 case DT_VERDEFNUM: return "VERDEFNUM";
1799 case DT_VERNEED: return "VERNEED";
1800 case DT_VERNEEDNUM: return "VERNEEDNUM";
1801
1802 case DT_AUXILIARY: return "AUXILIARY";
1803 case DT_USED: return "USED";
1804 case DT_FILTER: return "FILTER";
1805
1806 case DT_GNU_PRELINKED: return "GNU_PRELINKED";
1807 case DT_GNU_CONFLICT: return "GNU_CONFLICT";
1808 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ";
1809 case DT_GNU_LIBLIST: return "GNU_LIBLIST";
1810 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ";
1811 case DT_GNU_HASH: return "GNU_HASH";
1812
1813 default:
1814 if ((type >= DT_LOPROC) && (type <= DT_HIPROC))
1815 {
1816 const char * result;
1817
1818 switch (elf_header.e_machine)
1819 {
1820 case EM_MIPS:
1821 case EM_MIPS_RS3_LE:
1822 result = get_mips_dynamic_type (type);
1823 break;
1824 case EM_SPARCV9:
1825 result = get_sparc64_dynamic_type (type);
1826 break;
1827 case EM_PPC:
1828 result = get_ppc_dynamic_type (type);
1829 break;
1830 case EM_PPC64:
1831 result = get_ppc64_dynamic_type (type);
1832 break;
1833 case EM_IA_64:
1834 result = get_ia64_dynamic_type (type);
1835 break;
1836 case EM_ALPHA:
1837 result = get_alpha_dynamic_type (type);
1838 break;
1839 case EM_SCORE:
1840 result = get_score_dynamic_type (type);
1841 break;
1842 case EM_TI_C6000:
1843 result = get_tic6x_dynamic_type (type);
1844 break;
1845 case EM_ALTERA_NIOS2:
1846 result = get_nios2_dynamic_type (type);
1847 break;
1848 default:
1849 result = NULL;
1850 break;
1851 }
1852
1853 if (result != NULL)
1854 return result;
1855
1856 snprintf (buff, sizeof (buff), _("Processor Specific: %lx"), type);
1857 }
1858 else if (((type >= DT_LOOS) && (type <= DT_HIOS))
1859 || (elf_header.e_machine == EM_PARISC
1860 && (type >= OLD_DT_LOOS) && (type <= OLD_DT_HIOS)))
1861 {
1862 const char * result;
1863
1864 switch (elf_header.e_machine)
1865 {
1866 case EM_PARISC:
1867 result = get_parisc_dynamic_type (type);
1868 break;
1869 case EM_IA_64:
1870 result = get_ia64_dynamic_type (type);
1871 break;
1872 default:
1873 result = NULL;
1874 break;
1875 }
1876
1877 if (result != NULL)
1878 return result;
1879
1880 snprintf (buff, sizeof (buff), _("Operating System specific: %lx"),
1881 type);
1882 }
1883 else
1884 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), type);
1885
1886 return buff;
1887 }
1888 }
1889
1890 static char *
1891 get_file_type (unsigned e_type)
1892 {
1893 static char buff[32];
1894
1895 switch (e_type)
1896 {
1897 case ET_NONE: return _("NONE (None)");
1898 case ET_REL: return _("REL (Relocatable file)");
1899 case ET_EXEC: return _("EXEC (Executable file)");
1900 case ET_DYN: return _("DYN (Shared object file)");
1901 case ET_CORE: return _("CORE (Core file)");
1902
1903 default:
1904 if ((e_type >= ET_LOPROC) && (e_type <= ET_HIPROC))
1905 snprintf (buff, sizeof (buff), _("Processor Specific: (%x)"), e_type);
1906 else if ((e_type >= ET_LOOS) && (e_type <= ET_HIOS))
1907 snprintf (buff, sizeof (buff), _("OS Specific: (%x)"), e_type);
1908 else
1909 snprintf (buff, sizeof (buff), _("<unknown>: %x"), e_type);
1910 return buff;
1911 }
1912 }
1913
1914 static char *
1915 get_machine_name (unsigned e_machine)
1916 {
1917 static char buff[64]; /* XXX */
1918
1919 switch (e_machine)
1920 {
1921 case EM_NONE: return _("None");
1922 case EM_AARCH64: return "AArch64";
1923 case EM_M32: return "WE32100";
1924 case EM_SPARC: return "Sparc";
1925 case EM_SPU: return "SPU";
1926 case EM_386: return "Intel 80386";
1927 case EM_68K: return "MC68000";
1928 case EM_88K: return "MC88000";
1929 case EM_486: return "Intel 80486";
1930 case EM_860: return "Intel 80860";
1931 case EM_MIPS: return "MIPS R3000";
1932 case EM_S370: return "IBM System/370";
1933 case EM_MIPS_RS3_LE: return "MIPS R4000 big-endian";
1934 case EM_OLD_SPARCV9: return "Sparc v9 (old)";
1935 case EM_PARISC: return "HPPA";
1936 case EM_PPC_OLD: return "Power PC (old)";
1937 case EM_SPARC32PLUS: return "Sparc v8+" ;
1938 case EM_960: return "Intel 90860";
1939 case EM_PPC: return "PowerPC";
1940 case EM_PPC64: return "PowerPC64";
1941 case EM_FR20: return "Fujitsu FR20";
1942 case EM_RH32: return "TRW RH32";
1943 case EM_MCORE: return "MCORE";
1944 case EM_ARM: return "ARM";
1945 case EM_OLD_ALPHA: return "Digital Alpha (old)";
1946 case EM_SH: return "Renesas / SuperH SH";
1947 case EM_SPARCV9: return "Sparc v9";
1948 case EM_TRICORE: return "Siemens Tricore";
1949 case EM_ARC: return "ARC";
1950 case EM_H8_300: return "Renesas H8/300";
1951 case EM_H8_300H: return "Renesas H8/300H";
1952 case EM_H8S: return "Renesas H8S";
1953 case EM_H8_500: return "Renesas H8/500";
1954 case EM_IA_64: return "Intel IA-64";
1955 case EM_MIPS_X: return "Stanford MIPS-X";
1956 case EM_COLDFIRE: return "Motorola Coldfire";
1957 case EM_ALPHA: return "Alpha";
1958 case EM_CYGNUS_D10V:
1959 case EM_D10V: return "d10v";
1960 case EM_CYGNUS_D30V:
1961 case EM_D30V: return "d30v";
1962 case EM_CYGNUS_M32R:
1963 case EM_M32R: return "Renesas M32R (formerly Mitsubishi M32r)";
1964 case EM_CYGNUS_V850:
1965 case EM_V800: return "Renesas V850 (using RH850 ABI)";
1966 case EM_V850: return "Renesas V850";
1967 case EM_CYGNUS_MN10300:
1968 case EM_MN10300: return "mn10300";
1969 case EM_CYGNUS_MN10200:
1970 case EM_MN10200: return "mn10200";
1971 case EM_MOXIE: return "Moxie";
1972 case EM_CYGNUS_FR30:
1973 case EM_FR30: return "Fujitsu FR30";
1974 case EM_CYGNUS_FRV: return "Fujitsu FR-V";
1975 case EM_PJ_OLD:
1976 case EM_PJ: return "picoJava";
1977 case EM_MMA: return "Fujitsu Multimedia Accelerator";
1978 case EM_PCP: return "Siemens PCP";
1979 case EM_NCPU: return "Sony nCPU embedded RISC processor";
1980 case EM_NDR1: return "Denso NDR1 microprocesspr";
1981 case EM_STARCORE: return "Motorola Star*Core processor";
1982 case EM_ME16: return "Toyota ME16 processor";
1983 case EM_ST100: return "STMicroelectronics ST100 processor";
1984 case EM_TINYJ: return "Advanced Logic Corp. TinyJ embedded processor";
1985 case EM_PDSP: return "Sony DSP processor";
1986 case EM_PDP10: return "Digital Equipment Corp. PDP-10";
1987 case EM_PDP11: return "Digital Equipment Corp. PDP-11";
1988 case EM_FX66: return "Siemens FX66 microcontroller";
1989 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 bit microcontroller";
1990 case EM_ST7: return "STMicroelectronics ST7 8-bit microcontroller";
1991 case EM_68HC16: return "Motorola MC68HC16 Microcontroller";
1992 case EM_68HC12: return "Motorola MC68HC12 Microcontroller";
1993 case EM_68HC11: return "Motorola MC68HC11 Microcontroller";
1994 case EM_68HC08: return "Motorola MC68HC08 Microcontroller";
1995 case EM_68HC05: return "Motorola MC68HC05 Microcontroller";
1996 case EM_SVX: return "Silicon Graphics SVx";
1997 case EM_ST19: return "STMicroelectronics ST19 8-bit microcontroller";
1998 case EM_VAX: return "Digital VAX";
1999 case EM_AVR_OLD:
2000 case EM_AVR: return "Atmel AVR 8-bit microcontroller";
2001 case EM_CRIS: return "Axis Communications 32-bit embedded processor";
2002 case EM_JAVELIN: return "Infineon Technologies 32-bit embedded cpu";
2003 case EM_FIREPATH: return "Element 14 64-bit DSP processor";
2004 case EM_ZSP: return "LSI Logic's 16-bit DSP processor";
2005 case EM_MMIX: return "Donald Knuth's educational 64-bit processor";
2006 case EM_HUANY: return "Harvard Universitys's machine-independent object format";
2007 case EM_PRISM: return "Vitesse Prism";
2008 case EM_X86_64: return "Advanced Micro Devices X86-64";
2009 case EM_L1OM: return "Intel L1OM";
2010 case EM_K1OM: return "Intel K1OM";
2011 case EM_S390_OLD:
2012 case EM_S390: return "IBM S/390";
2013 case EM_SCORE: return "SUNPLUS S+Core";
2014 case EM_XSTORMY16: return "Sanyo XStormy16 CPU core";
2015 case EM_OR1K: return "OpenRISC 1000";
2016 case EM_ARC_A5: return "ARC International ARCompact processor";
2017 case EM_CRX: return "National Semiconductor CRX microprocessor";
2018 case EM_ADAPTEVA_EPIPHANY: return "Adapteva EPIPHANY";
2019 case EM_DLX: return "OpenDLX";
2020 case EM_IP2K_OLD:
2021 case EM_IP2K: return "Ubicom IP2xxx 8-bit microcontrollers";
2022 case EM_IQ2000: return "Vitesse IQ2000";
2023 case EM_XTENSA_OLD:
2024 case EM_XTENSA: return "Tensilica Xtensa Processor";
2025 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor";
2026 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor";
2027 case EM_NS32K: return "National Semiconductor 32000 series";
2028 case EM_TPC: return "Tenor Network TPC processor";
2029 case EM_ST200: return "STMicroelectronics ST200 microcontroller";
2030 case EM_MAX: return "MAX Processor";
2031 case EM_CR: return "National Semiconductor CompactRISC";
2032 case EM_F2MC16: return "Fujitsu F2MC16";
2033 case EM_MSP430: return "Texas Instruments msp430 microcontroller";
2034 case EM_LATTICEMICO32: return "Lattice Mico32";
2035 case EM_M32C_OLD:
2036 case EM_M32C: return "Renesas M32c";
2037 case EM_MT: return "Morpho Techologies MT processor";
2038 case EM_BLACKFIN: return "Analog Devices Blackfin";
2039 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors";
2040 case EM_SEP: return "Sharp embedded microprocessor";
2041 case EM_ARCA: return "Arca RISC microprocessor";
2042 case EM_UNICORE: return "Unicore";
2043 case EM_EXCESS: return "eXcess 16/32/64-bit configurable embedded CPU";
2044 case EM_DXP: return "Icera Semiconductor Inc. Deep Execution Processor";
2045 case EM_NIOS32: return "Altera Nios";
2046 case EM_ALTERA_NIOS2: return "Altera Nios II";
2047 case EM_C166:
2048 case EM_XC16X: return "Infineon Technologies xc16x";
2049 case EM_M16C: return "Renesas M16C series microprocessors";
2050 case EM_DSPIC30F: return "Microchip Technology dsPIC30F Digital Signal Controller";
2051 case EM_CE: return "Freescale Communication Engine RISC core";
2052 case EM_TSK3000: return "Altium TSK3000 core";
2053 case EM_RS08: return "Freescale RS08 embedded processor";
2054 case EM_ECOG2: return "Cyan Technology eCOG2 microprocessor";
2055 case EM_DSP24: return "New Japan Radio (NJR) 24-bit DSP Processor";
2056 case EM_VIDEOCORE3: return "Broadcom VideoCore III processor";
2057 case EM_SE_C17: return "Seiko Epson C17 family";
2058 case EM_TI_C6000: return "Texas Instruments TMS320C6000 DSP family";
2059 case EM_TI_C2000: return "Texas Instruments TMS320C2000 DSP family";
2060 case EM_TI_C5500: return "Texas Instruments TMS320C55x DSP family";
2061 case EM_MMDSP_PLUS: return "STMicroelectronics 64bit VLIW Data Signal Processor";
2062 case EM_CYPRESS_M8C: return "Cypress M8C microprocessor";
2063 case EM_R32C: return "Renesas R32C series microprocessors";
2064 case EM_TRIMEDIA: return "NXP Semiconductors TriMedia architecture family";
2065 case EM_QDSP6: return "QUALCOMM DSP6 Processor";
2066 case EM_8051: return "Intel 8051 and variants";
2067 case EM_STXP7X: return "STMicroelectronics STxP7x family";
2068 case EM_NDS32: return "Andes Technology compact code size embedded RISC processor family";
2069 case EM_ECOG1X: return "Cyan Technology eCOG1X family";
2070 case EM_MAXQ30: return "Dallas Semiconductor MAXQ30 Core microcontrollers";
2071 case EM_XIMO16: return "New Japan Radio (NJR) 16-bit DSP Processor";
2072 case EM_MANIK: return "M2000 Reconfigurable RISC Microprocessor";
2073 case EM_CRAYNV2: return "Cray Inc. NV2 vector architecture";
2074 case EM_CYGNUS_MEP: return "Toshiba MeP Media Engine";
2075 case EM_CR16:
2076 case EM_MICROBLAZE:
2077 case EM_MICROBLAZE_OLD: return "Xilinx MicroBlaze";
2078 case EM_RL78: return "Renesas RL78";
2079 case EM_RX: return "Renesas RX";
2080 case EM_METAG: return "Imagination Technologies Meta processor architecture";
2081 case EM_MCST_ELBRUS: return "MCST Elbrus general purpose hardware architecture";
2082 case EM_ECOG16: return "Cyan Technology eCOG16 family";
2083 case EM_ETPU: return "Freescale Extended Time Processing Unit";
2084 case EM_SLE9X: return "Infineon Technologies SLE9X core";
2085 case EM_AVR32: return "Atmel Corporation 32-bit microprocessor family";
2086 case EM_STM8: return "STMicroeletronics STM8 8-bit microcontroller";
2087 case EM_TILE64: return "Tilera TILE64 multicore architecture family";
2088 case EM_TILEPRO: return "Tilera TILEPro multicore architecture family";
2089 case EM_TILEGX: return "Tilera TILE-Gx multicore architecture family";
2090 case EM_CUDA: return "NVIDIA CUDA architecture";
2091 case EM_XGATE: return "Motorola XGATE embedded processor";
2092 default:
2093 snprintf (buff, sizeof (buff), _("<unknown>: 0x%x"), e_machine);
2094 return buff;
2095 }
2096 }
2097
2098 static void
2099 decode_ARM_machine_flags (unsigned e_flags, char buf[])
2100 {
2101 unsigned eabi;
2102 int unknown = 0;
2103
2104 eabi = EF_ARM_EABI_VERSION (e_flags);
2105 e_flags &= ~ EF_ARM_EABIMASK;
2106
2107 /* Handle "generic" ARM flags. */
2108 if (e_flags & EF_ARM_RELEXEC)
2109 {
2110 strcat (buf, ", relocatable executable");
2111 e_flags &= ~ EF_ARM_RELEXEC;
2112 }
2113
2114 if (e_flags & EF_ARM_HASENTRY)
2115 {
2116 strcat (buf, ", has entry point");
2117 e_flags &= ~ EF_ARM_HASENTRY;
2118 }
2119
2120 /* Now handle EABI specific flags. */
2121 switch (eabi)
2122 {
2123 default:
2124 strcat (buf, ", <unrecognized EABI>");
2125 if (e_flags)
2126 unknown = 1;
2127 break;
2128
2129 case EF_ARM_EABI_VER1:
2130 strcat (buf, ", Version1 EABI");
2131 while (e_flags)
2132 {
2133 unsigned flag;
2134
2135 /* Process flags one bit at a time. */
2136 flag = e_flags & - e_flags;
2137 e_flags &= ~ flag;
2138
2139 switch (flag)
2140 {
2141 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2142 strcat (buf, ", sorted symbol tables");
2143 break;
2144
2145 default:
2146 unknown = 1;
2147 break;
2148 }
2149 }
2150 break;
2151
2152 case EF_ARM_EABI_VER2:
2153 strcat (buf, ", Version2 EABI");
2154 while (e_flags)
2155 {
2156 unsigned flag;
2157
2158 /* Process flags one bit at a time. */
2159 flag = e_flags & - e_flags;
2160 e_flags &= ~ flag;
2161
2162 switch (flag)
2163 {
2164 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2165 strcat (buf, ", sorted symbol tables");
2166 break;
2167
2168 case EF_ARM_DYNSYMSUSESEGIDX:
2169 strcat (buf, ", dynamic symbols use segment index");
2170 break;
2171
2172 case EF_ARM_MAPSYMSFIRST:
2173 strcat (buf, ", mapping symbols precede others");
2174 break;
2175
2176 default:
2177 unknown = 1;
2178 break;
2179 }
2180 }
2181 break;
2182
2183 case EF_ARM_EABI_VER3:
2184 strcat (buf, ", Version3 EABI");
2185 break;
2186
2187 case EF_ARM_EABI_VER4:
2188 strcat (buf, ", Version4 EABI");
2189 while (e_flags)
2190 {
2191 unsigned flag;
2192
2193 /* Process flags one bit at a time. */
2194 flag = e_flags & - e_flags;
2195 e_flags &= ~ flag;
2196
2197 switch (flag)
2198 {
2199 case EF_ARM_BE8:
2200 strcat (buf, ", BE8");
2201 break;
2202
2203 case EF_ARM_LE8:
2204 strcat (buf, ", LE8");
2205 break;
2206
2207 default:
2208 unknown = 1;
2209 break;
2210 }
2211 break;
2212 }
2213 break;
2214
2215 case EF_ARM_EABI_VER5:
2216 strcat (buf, ", Version5 EABI");
2217 while (e_flags)
2218 {
2219 unsigned flag;
2220
2221 /* Process flags one bit at a time. */
2222 flag = e_flags & - e_flags;
2223 e_flags &= ~ flag;
2224
2225 switch (flag)
2226 {
2227 case EF_ARM_BE8:
2228 strcat (buf, ", BE8");
2229 break;
2230
2231 case EF_ARM_LE8:
2232 strcat (buf, ", LE8");
2233 break;
2234
2235 case EF_ARM_ABI_FLOAT_SOFT: /* Conflicts with EF_ARM_SOFT_FLOAT. */
2236 strcat (buf, ", soft-float ABI");
2237 break;
2238
2239 case EF_ARM_ABI_FLOAT_HARD: /* Conflicts with EF_ARM_VFP_FLOAT. */
2240 strcat (buf, ", hard-float ABI");
2241 break;
2242
2243 default:
2244 unknown = 1;
2245 break;
2246 }
2247 }
2248 break;
2249
2250 case EF_ARM_EABI_UNKNOWN:
2251 strcat (buf, ", GNU EABI");
2252 while (e_flags)
2253 {
2254 unsigned flag;
2255
2256 /* Process flags one bit at a time. */
2257 flag = e_flags & - e_flags;
2258 e_flags &= ~ flag;
2259
2260 switch (flag)
2261 {
2262 case EF_ARM_INTERWORK:
2263 strcat (buf, ", interworking enabled");
2264 break;
2265
2266 case EF_ARM_APCS_26:
2267 strcat (buf, ", uses APCS/26");
2268 break;
2269
2270 case EF_ARM_APCS_FLOAT:
2271 strcat (buf, ", uses APCS/float");
2272 break;
2273
2274 case EF_ARM_PIC:
2275 strcat (buf, ", position independent");
2276 break;
2277
2278 case EF_ARM_ALIGN8:
2279 strcat (buf, ", 8 bit structure alignment");
2280 break;
2281
2282 case EF_ARM_NEW_ABI:
2283 strcat (buf, ", uses new ABI");
2284 break;
2285
2286 case EF_ARM_OLD_ABI:
2287 strcat (buf, ", uses old ABI");
2288 break;
2289
2290 case EF_ARM_SOFT_FLOAT:
2291 strcat (buf, ", software FP");
2292 break;
2293
2294 case EF_ARM_VFP_FLOAT:
2295 strcat (buf, ", VFP");
2296 break;
2297
2298 case EF_ARM_MAVERICK_FLOAT:
2299 strcat (buf, ", Maverick FP");
2300 break;
2301
2302 default:
2303 unknown = 1;
2304 break;
2305 }
2306 }
2307 }
2308
2309 if (unknown)
2310 strcat (buf,_(", <unknown>"));
2311 }
2312
2313 static void
2314 decode_NDS32_machine_flags (unsigned e_flags, char buf[], size_t size)
2315 {
2316 unsigned abi;
2317 unsigned arch;
2318 unsigned config;
2319 unsigned version;
2320 int has_fpu = 0;
2321 int r = 0;
2322
2323 static const char *ABI_STRINGS[] =
2324 {
2325 "ABI v0", /* use r5 as return register; only used in N1213HC */
2326 "ABI v1", /* use r0 as return register */
2327 "ABI v2", /* use r0 as return register and don't reserve 24 bytes for arguments */
2328 "ABI v2fp", /* for FPU */
2329 "AABI"
2330 };
2331 static const char *VER_STRINGS[] =
2332 {
2333 "Andes ELF V1.3 or older",
2334 "Andes ELF V1.3.1",
2335 "Andes ELF V1.4"
2336 };
2337 static const char *ARCH_STRINGS[] =
2338 {
2339 "",
2340 "Andes Star v1.0",
2341 "Andes Star v2.0",
2342 "Andes Star v3.0",
2343 "Andes Star v3.0m"
2344 };
2345
2346 abi = EF_NDS_ABI & e_flags;
2347 arch = EF_NDS_ARCH & e_flags;
2348 config = EF_NDS_INST & e_flags;
2349 version = EF_NDS32_ELF_VERSION & e_flags;
2350
2351 memset (buf, 0, size);
2352
2353 switch (abi)
2354 {
2355 case E_NDS_ABI_V0:
2356 case E_NDS_ABI_V1:
2357 case E_NDS_ABI_V2:
2358 case E_NDS_ABI_V2FP:
2359 case E_NDS_ABI_AABI:
2360 /* In case there are holes in the array. */
2361 r += snprintf (buf + r, size - r, ", %s", ABI_STRINGS[abi >> EF_NDS_ABI_SHIFT]);
2362 break;
2363
2364 default:
2365 r += snprintf (buf + r, size - r, ", <unrecognized ABI>");
2366 break;
2367 }
2368
2369 switch (version)
2370 {
2371 case E_NDS32_ELF_VER_1_2:
2372 case E_NDS32_ELF_VER_1_3:
2373 case E_NDS32_ELF_VER_1_4:
2374 r += snprintf (buf + r, size - r, ", %s", VER_STRINGS[version >> EF_NDS32_ELF_VERSION_SHIFT]);
2375 break;
2376
2377 default:
2378 r += snprintf (buf + r, size - r, ", <unrecognized ELF version number>");
2379 break;
2380 }
2381
2382 if (E_NDS_ABI_V0 == abi)
2383 {
2384 /* OLD ABI; only used in N1213HC, has performance extension 1. */
2385 r += snprintf (buf + r, size - r, ", Andes Star v1.0, N1213HC, MAC, PERF1");
2386 if (arch == E_NDS_ARCH_STAR_V1_0)
2387 r += snprintf (buf + r, size -r, ", 16b"); /* has 16-bit instructions */
2388 return;
2389 }
2390
2391 switch (arch)
2392 {
2393 case E_NDS_ARCH_STAR_V1_0:
2394 case E_NDS_ARCH_STAR_V2_0:
2395 case E_NDS_ARCH_STAR_V3_0:
2396 case E_NDS_ARCH_STAR_V3_M:
2397 r += snprintf (buf + r, size - r, ", %s", ARCH_STRINGS[arch >> EF_NDS_ARCH_SHIFT]);
2398 break;
2399
2400 default:
2401 r += snprintf (buf + r, size - r, ", <unrecognized architecture>");
2402 /* ARCH version determines how the e_flags are interpreted.
2403 If it is unknown, we cannot proceed. */
2404 return;
2405 }
2406
2407 /* Newer ABI; Now handle architecture specific flags. */
2408 if (arch == E_NDS_ARCH_STAR_V1_0)
2409 {
2410 if (config & E_NDS32_HAS_MFUSR_PC_INST)
2411 r += snprintf (buf + r, size -r, ", MFUSR_PC");
2412
2413 if (!(config & E_NDS32_HAS_NO_MAC_INST))
2414 r += snprintf (buf + r, size -r, ", MAC");
2415
2416 if (config & E_NDS32_HAS_DIV_INST)
2417 r += snprintf (buf + r, size -r, ", DIV");
2418
2419 if (config & E_NDS32_HAS_16BIT_INST)
2420 r += snprintf (buf + r, size -r, ", 16b");
2421 }
2422 else
2423 {
2424 if (config & E_NDS32_HAS_MFUSR_PC_INST)
2425 {
2426 if (version <= E_NDS32_ELF_VER_1_3)
2427 r += snprintf (buf + r, size -r, ", [B8]");
2428 else
2429 r += snprintf (buf + r, size -r, ", EX9");
2430 }
2431
2432 if (config & E_NDS32_HAS_MAC_DX_INST)
2433 r += snprintf (buf + r, size -r, ", MAC_DX");
2434
2435 if (config & E_NDS32_HAS_DIV_DX_INST)
2436 r += snprintf (buf + r, size -r, ", DIV_DX");
2437
2438 if (config & E_NDS32_HAS_16BIT_INST)
2439 {
2440 if (version <= E_NDS32_ELF_VER_1_3)
2441 r += snprintf (buf + r, size -r, ", 16b");
2442 else
2443 r += snprintf (buf + r, size -r, ", IFC");
2444 }
2445 }
2446
2447 if (config & E_NDS32_HAS_EXT_INST)
2448 r += snprintf (buf + r, size -r, ", PERF1");
2449
2450 if (config & E_NDS32_HAS_EXT2_INST)
2451 r += snprintf (buf + r, size -r, ", PERF2");
2452
2453 if (config & E_NDS32_HAS_FPU_INST)
2454 {
2455 has_fpu = 1;
2456 r += snprintf (buf + r, size -r, ", FPU_SP");
2457 }
2458
2459 if (config & E_NDS32_HAS_FPU_DP_INST)
2460 {
2461 has_fpu = 1;
2462 r += snprintf (buf + r, size -r, ", FPU_DP");
2463 }
2464
2465 if (config & E_NDS32_HAS_FPU_MAC_INST)
2466 {
2467 has_fpu = 1;
2468 r += snprintf (buf + r, size -r, ", FPU_MAC");
2469 }
2470
2471 if (has_fpu)
2472 {
2473 switch ((config & E_NDS32_FPU_REG_CONF) >> E_NDS32_FPU_REG_CONF_SHIFT)
2474 {
2475 case E_NDS32_FPU_REG_8SP_4DP:
2476 r += snprintf (buf + r, size -r, ", FPU_REG:8/4");
2477 break;
2478 case E_NDS32_FPU_REG_16SP_8DP:
2479 r += snprintf (buf + r, size -r, ", FPU_REG:16/8");
2480 break;
2481 case E_NDS32_FPU_REG_32SP_16DP:
2482 r += snprintf (buf + r, size -r, ", FPU_REG:32/16");
2483 break;
2484 case E_NDS32_FPU_REG_32SP_32DP:
2485 r += snprintf (buf + r, size -r, ", FPU_REG:32/32");
2486 break;
2487 }
2488 }
2489
2490 if (config & E_NDS32_HAS_AUDIO_INST)
2491 r += snprintf (buf + r, size -r, ", AUDIO");
2492
2493 if (config & E_NDS32_HAS_STRING_INST)
2494 r += snprintf (buf + r, size -r, ", STR");
2495
2496 if (config & E_NDS32_HAS_REDUCED_REGS)
2497 r += snprintf (buf + r, size -r, ", 16REG");
2498
2499 if (config & E_NDS32_HAS_VIDEO_INST)
2500 {
2501 if (version <= E_NDS32_ELF_VER_1_3)
2502 r += snprintf (buf + r, size -r, ", VIDEO");
2503 else
2504 r += snprintf (buf + r, size -r, ", SATURATION");
2505 }
2506
2507 if (config & E_NDS32_HAS_ENCRIPT_INST)
2508 r += snprintf (buf + r, size -r, ", ENCRP");
2509
2510 if (config & E_NDS32_HAS_L2C_INST)
2511 r += snprintf (buf + r, size -r, ", L2C");
2512 }
2513
2514 static char *
2515 get_machine_flags (unsigned e_flags, unsigned e_machine)
2516 {
2517 static char buf[1024];
2518
2519 buf[0] = '\0';
2520
2521 if (e_flags)
2522 {
2523 switch (e_machine)
2524 {
2525 default:
2526 break;
2527
2528 case EM_ARM:
2529 decode_ARM_machine_flags (e_flags, buf);
2530 break;
2531
2532 case EM_BLACKFIN:
2533 if (e_flags & EF_BFIN_PIC)
2534 strcat (buf, ", PIC");
2535
2536 if (e_flags & EF_BFIN_FDPIC)
2537 strcat (buf, ", FDPIC");
2538
2539 if (e_flags & EF_BFIN_CODE_IN_L1)
2540 strcat (buf, ", code in L1");
2541
2542 if (e_flags & EF_BFIN_DATA_IN_L1)
2543 strcat (buf, ", data in L1");
2544
2545 break;
2546
2547 case EM_CYGNUS_FRV:
2548 switch (e_flags & EF_FRV_CPU_MASK)
2549 {
2550 case EF_FRV_CPU_GENERIC:
2551 break;
2552
2553 default:
2554 strcat (buf, ", fr???");
2555 break;
2556
2557 case EF_FRV_CPU_FR300:
2558 strcat (buf, ", fr300");
2559 break;
2560
2561 case EF_FRV_CPU_FR400:
2562 strcat (buf, ", fr400");
2563 break;
2564 case EF_FRV_CPU_FR405:
2565 strcat (buf, ", fr405");
2566 break;
2567
2568 case EF_FRV_CPU_FR450:
2569 strcat (buf, ", fr450");
2570 break;
2571
2572 case EF_FRV_CPU_FR500:
2573 strcat (buf, ", fr500");
2574 break;
2575 case EF_FRV_CPU_FR550:
2576 strcat (buf, ", fr550");
2577 break;
2578
2579 case EF_FRV_CPU_SIMPLE:
2580 strcat (buf, ", simple");
2581 break;
2582 case EF_FRV_CPU_TOMCAT:
2583 strcat (buf, ", tomcat");
2584 break;
2585 }
2586 break;
2587
2588 case EM_68K:
2589 if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
2590 strcat (buf, ", m68000");
2591 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
2592 strcat (buf, ", cpu32");
2593 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
2594 strcat (buf, ", fido_a");
2595 else
2596 {
2597 char const * isa = _("unknown");
2598 char const * mac = _("unknown mac");
2599 char const * additional = NULL;
2600
2601 switch (e_flags & EF_M68K_CF_ISA_MASK)
2602 {
2603 case EF_M68K_CF_ISA_A_NODIV:
2604 isa = "A";
2605 additional = ", nodiv";
2606 break;
2607 case EF_M68K_CF_ISA_A:
2608 isa = "A";
2609 break;
2610 case EF_M68K_CF_ISA_A_PLUS:
2611 isa = "A+";
2612 break;
2613 case EF_M68K_CF_ISA_B_NOUSP:
2614 isa = "B";
2615 additional = ", nousp";
2616 break;
2617 case EF_M68K_CF_ISA_B:
2618 isa = "B";
2619 break;
2620 case EF_M68K_CF_ISA_C:
2621 isa = "C";
2622 break;
2623 case EF_M68K_CF_ISA_C_NODIV:
2624 isa = "C";
2625 additional = ", nodiv";
2626 break;
2627 }
2628 strcat (buf, ", cf, isa ");
2629 strcat (buf, isa);
2630 if (additional)
2631 strcat (buf, additional);
2632 if (e_flags & EF_M68K_CF_FLOAT)
2633 strcat (buf, ", float");
2634 switch (e_flags & EF_M68K_CF_MAC_MASK)
2635 {
2636 case 0:
2637 mac = NULL;
2638 break;
2639 case EF_M68K_CF_MAC:
2640 mac = "mac";
2641 break;
2642 case EF_M68K_CF_EMAC:
2643 mac = "emac";
2644 break;
2645 case EF_M68K_CF_EMAC_B:
2646 mac = "emac_b";
2647 break;
2648 }
2649 if (mac)
2650 {
2651 strcat (buf, ", ");
2652 strcat (buf, mac);
2653 }
2654 }
2655 break;
2656
2657 case EM_PPC:
2658 if (e_flags & EF_PPC_EMB)
2659 strcat (buf, ", emb");
2660
2661 if (e_flags & EF_PPC_RELOCATABLE)
2662 strcat (buf, _(", relocatable"));
2663
2664 if (e_flags & EF_PPC_RELOCATABLE_LIB)
2665 strcat (buf, _(", relocatable-lib"));
2666 break;
2667
2668 case EM_PPC64:
2669 if (e_flags & EF_PPC64_ABI)
2670 {
2671 char abi[] = ", abiv0";
2672
2673 abi[6] += e_flags & EF_PPC64_ABI;
2674 strcat (buf, abi);
2675 }
2676 break;
2677
2678 case EM_V800:
2679 if ((e_flags & EF_RH850_ABI) == EF_RH850_ABI)
2680 strcat (buf, ", RH850 ABI");
2681
2682 if (e_flags & EF_V800_850E3)
2683 strcat (buf, ", V3 architecture");
2684
2685 if ((e_flags & (EF_RH850_FPU_DOUBLE | EF_RH850_FPU_SINGLE)) == 0)
2686 strcat (buf, ", FPU not used");
2687
2688 if ((e_flags & (EF_RH850_REGMODE22 | EF_RH850_REGMODE32)) == 0)
2689 strcat (buf, ", regmode: COMMON");
2690
2691 if ((e_flags & (EF_RH850_GP_FIX | EF_RH850_GP_NOFIX)) == 0)
2692 strcat (buf, ", r4 not used");
2693
2694 if ((e_flags & (EF_RH850_EP_FIX | EF_RH850_EP_NOFIX)) == 0)
2695 strcat (buf, ", r30 not used");
2696
2697 if ((e_flags & (EF_RH850_TP_FIX | EF_RH850_TP_NOFIX)) == 0)
2698 strcat (buf, ", r5 not used");
2699
2700 if ((e_flags & (EF_RH850_REG2_RESERVE | EF_RH850_REG2_NORESERVE)) == 0)
2701 strcat (buf, ", r2 not used");
2702
2703 for (e_flags &= 0xFFFF; e_flags; e_flags &= ~ (e_flags & - e_flags))
2704 {
2705 switch (e_flags & - e_flags)
2706 {
2707 case EF_RH850_FPU_DOUBLE: strcat (buf, ", double precision FPU"); break;
2708 case EF_RH850_FPU_SINGLE: strcat (buf, ", single precision FPU"); break;
2709 case EF_RH850_SIMD: strcat (buf, ", SIMD"); break;
2710 case EF_RH850_CACHE: strcat (buf, ", CACHE"); break;
2711 case EF_RH850_MMU: strcat (buf, ", MMU"); break;
2712 case EF_RH850_REGMODE22: strcat (buf, ", regmode:22"); break;
2713 case EF_RH850_REGMODE32: strcat (buf, ", regmode:23"); break;
2714 case EF_RH850_DATA_ALIGN8: strcat (buf, ", 8-byte alignment"); break;
2715 case EF_RH850_GP_FIX: strcat (buf, ", r4 fixed"); break;
2716 case EF_RH850_GP_NOFIX: strcat (buf, ", r4 free"); break;
2717 case EF_RH850_EP_FIX: strcat (buf, ", r30 fixed"); break;
2718 case EF_RH850_EP_NOFIX: strcat (buf, ", r30 free"); break;
2719 case EF_RH850_TP_FIX: strcat (buf, ", r5 fixed"); break;
2720 case EF_RH850_TP_NOFIX: strcat (buf, ", r5 free"); break;
2721 case EF_RH850_REG2_RESERVE: strcat (buf, ", r2 fixed"); break;
2722 case EF_RH850_REG2_NORESERVE: strcat (buf, ", r2 free"); break;
2723 default: break;
2724 }
2725 }
2726 break;
2727
2728 case EM_V850:
2729 case EM_CYGNUS_V850:
2730 switch (e_flags & EF_V850_ARCH)
2731 {
2732 case E_V850E3V5_ARCH:
2733 strcat (buf, ", v850e3v5");
2734 break;
2735 case E_V850E2V3_ARCH:
2736 strcat (buf, ", v850e2v3");
2737 break;
2738 case E_V850E2_ARCH:
2739 strcat (buf, ", v850e2");
2740 break;
2741 case E_V850E1_ARCH:
2742 strcat (buf, ", v850e1");
2743 break;
2744 case E_V850E_ARCH:
2745 strcat (buf, ", v850e");
2746 break;
2747 case E_V850_ARCH:
2748 strcat (buf, ", v850");
2749 break;
2750 default:
2751 strcat (buf, _(", unknown v850 architecture variant"));
2752 break;
2753 }
2754 break;
2755
2756 case EM_M32R:
2757 case EM_CYGNUS_M32R:
2758 if ((e_flags & EF_M32R_ARCH) == E_M32R_ARCH)
2759 strcat (buf, ", m32r");
2760 break;
2761
2762 case EM_MIPS:
2763 case EM_MIPS_RS3_LE:
2764 if (e_flags & EF_MIPS_NOREORDER)
2765 strcat (buf, ", noreorder");
2766
2767 if (e_flags & EF_MIPS_PIC)
2768 strcat (buf, ", pic");
2769
2770 if (e_flags & EF_MIPS_CPIC)
2771 strcat (buf, ", cpic");
2772
2773 if (e_flags & EF_MIPS_UCODE)
2774 strcat (buf, ", ugen_reserved");
2775
2776 if (e_flags & EF_MIPS_ABI2)
2777 strcat (buf, ", abi2");
2778
2779 if (e_flags & EF_MIPS_OPTIONS_FIRST)
2780 strcat (buf, ", odk first");
2781
2782 if (e_flags & EF_MIPS_32BITMODE)
2783 strcat (buf, ", 32bitmode");
2784
2785 if (e_flags & EF_MIPS_NAN2008)
2786 strcat (buf, ", nan2008");
2787
2788 if (e_flags & EF_MIPS_FP64)
2789 strcat (buf, ", fp64");
2790
2791 switch ((e_flags & EF_MIPS_MACH))
2792 {
2793 case E_MIPS_MACH_3900: strcat (buf, ", 3900"); break;
2794 case E_MIPS_MACH_4010: strcat (buf, ", 4010"); break;
2795 case E_MIPS_MACH_4100: strcat (buf, ", 4100"); break;
2796 case E_MIPS_MACH_4111: strcat (buf, ", 4111"); break;
2797 case E_MIPS_MACH_4120: strcat (buf, ", 4120"); break;
2798 case E_MIPS_MACH_4650: strcat (buf, ", 4650"); break;
2799 case E_MIPS_MACH_5400: strcat (buf, ", 5400"); break;
2800 case E_MIPS_MACH_5500: strcat (buf, ", 5500"); break;
2801 case E_MIPS_MACH_SB1: strcat (buf, ", sb1"); break;
2802 case E_MIPS_MACH_9000: strcat (buf, ", 9000"); break;
2803 case E_MIPS_MACH_LS2E: strcat (buf, ", loongson-2e"); break;
2804 case E_MIPS_MACH_LS2F: strcat (buf, ", loongson-2f"); break;
2805 case E_MIPS_MACH_LS3A: strcat (buf, ", loongson-3a"); break;
2806 case E_MIPS_MACH_OCTEON: strcat (buf, ", octeon"); break;
2807 case E_MIPS_MACH_OCTEON2: strcat (buf, ", octeon2"); break;
2808 case E_MIPS_MACH_OCTEON3: strcat (buf, ", octeon3"); break;
2809 case E_MIPS_MACH_XLR: strcat (buf, ", xlr"); break;
2810 case 0:
2811 /* We simply ignore the field in this case to avoid confusion:
2812 MIPS ELF does not specify EF_MIPS_MACH, it is a GNU
2813 extension. */
2814 break;
2815 default: strcat (buf, _(", unknown CPU")); break;
2816 }
2817
2818 switch ((e_flags & EF_MIPS_ABI))
2819 {
2820 case E_MIPS_ABI_O32: strcat (buf, ", o32"); break;
2821 case E_MIPS_ABI_O64: strcat (buf, ", o64"); break;
2822 case E_MIPS_ABI_EABI32: strcat (buf, ", eabi32"); break;
2823 case E_MIPS_ABI_EABI64: strcat (buf, ", eabi64"); break;
2824 case 0:
2825 /* We simply ignore the field in this case to avoid confusion:
2826 MIPS ELF does not specify EF_MIPS_ABI, it is a GNU extension.
2827 This means it is likely to be an o32 file, but not for
2828 sure. */
2829 break;
2830 default: strcat (buf, _(", unknown ABI")); break;
2831 }
2832
2833 if (e_flags & EF_MIPS_ARCH_ASE_MDMX)
2834 strcat (buf, ", mdmx");
2835
2836 if (e_flags & EF_MIPS_ARCH_ASE_M16)
2837 strcat (buf, ", mips16");
2838
2839 if (e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
2840 strcat (buf, ", micromips");
2841
2842 switch ((e_flags & EF_MIPS_ARCH))
2843 {
2844 case E_MIPS_ARCH_1: strcat (buf, ", mips1"); break;
2845 case E_MIPS_ARCH_2: strcat (buf, ", mips2"); break;
2846 case E_MIPS_ARCH_3: strcat (buf, ", mips3"); break;
2847 case E_MIPS_ARCH_4: strcat (buf, ", mips4"); break;
2848 case E_MIPS_ARCH_5: strcat (buf, ", mips5"); break;
2849 case E_MIPS_ARCH_32: strcat (buf, ", mips32"); break;
2850 case E_MIPS_ARCH_32R2: strcat (buf, ", mips32r2"); break;
2851 case E_MIPS_ARCH_32R6: strcat (buf, ", mips32r6"); break;
2852 case E_MIPS_ARCH_64: strcat (buf, ", mips64"); break;
2853 case E_MIPS_ARCH_64R2: strcat (buf, ", mips64r2"); break;
2854 case E_MIPS_ARCH_64R6: strcat (buf, ", mips64r6"); break;
2855 default: strcat (buf, _(", unknown ISA")); break;
2856 }
2857 break;
2858
2859 case EM_NDS32:
2860 decode_NDS32_machine_flags (e_flags, buf, sizeof buf);
2861 break;
2862
2863 case EM_SH:
2864 switch ((e_flags & EF_SH_MACH_MASK))
2865 {
2866 case EF_SH1: strcat (buf, ", sh1"); break;
2867 case EF_SH2: strcat (buf, ", sh2"); break;
2868 case EF_SH3: strcat (buf, ", sh3"); break;
2869 case EF_SH_DSP: strcat (buf, ", sh-dsp"); break;
2870 case EF_SH3_DSP: strcat (buf, ", sh3-dsp"); break;
2871 case EF_SH4AL_DSP: strcat (buf, ", sh4al-dsp"); break;
2872 case EF_SH3E: strcat (buf, ", sh3e"); break;
2873 case EF_SH4: strcat (buf, ", sh4"); break;
2874 case EF_SH5: strcat (buf, ", sh5"); break;
2875 case EF_SH2E: strcat (buf, ", sh2e"); break;
2876 case EF_SH4A: strcat (buf, ", sh4a"); break;
2877 case EF_SH2A: strcat (buf, ", sh2a"); break;
2878 case EF_SH4_NOFPU: strcat (buf, ", sh4-nofpu"); break;
2879 case EF_SH4A_NOFPU: strcat (buf, ", sh4a-nofpu"); break;
2880 case EF_SH2A_NOFPU: strcat (buf, ", sh2a-nofpu"); break;
2881 case EF_SH3_NOMMU: strcat (buf, ", sh3-nommu"); break;
2882 case EF_SH4_NOMMU_NOFPU: strcat (buf, ", sh4-nommu-nofpu"); break;
2883 case EF_SH2A_SH4_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh4-nommu-nofpu"); break;
2884 case EF_SH2A_SH3_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh3-nommu"); break;
2885 case EF_SH2A_SH4: strcat (buf, ", sh2a-or-sh4"); break;
2886 case EF_SH2A_SH3E: strcat (buf, ", sh2a-or-sh3e"); break;
2887 default: strcat (buf, _(", unknown ISA")); break;
2888 }
2889
2890 if (e_flags & EF_SH_PIC)
2891 strcat (buf, ", pic");
2892
2893 if (e_flags & EF_SH_FDPIC)
2894 strcat (buf, ", fdpic");
2895 break;
2896
2897 case EM_OR1K:
2898 if (e_flags & EF_OR1K_NODELAY)
2899 strcat (buf, ", no delay");
2900 break;
2901
2902 case EM_SPARCV9:
2903 if (e_flags & EF_SPARC_32PLUS)
2904 strcat (buf, ", v8+");
2905
2906 if (e_flags & EF_SPARC_SUN_US1)
2907 strcat (buf, ", ultrasparcI");
2908
2909 if (e_flags & EF_SPARC_SUN_US3)
2910 strcat (buf, ", ultrasparcIII");
2911
2912 if (e_flags & EF_SPARC_HAL_R1)
2913 strcat (buf, ", halr1");
2914
2915 if (e_flags & EF_SPARC_LEDATA)
2916 strcat (buf, ", ledata");
2917
2918 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_TSO)
2919 strcat (buf, ", tso");
2920
2921 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_PSO)
2922 strcat (buf, ", pso");
2923
2924 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_RMO)
2925 strcat (buf, ", rmo");
2926 break;
2927
2928 case EM_PARISC:
2929 switch (e_flags & EF_PARISC_ARCH)
2930 {
2931 case EFA_PARISC_1_0:
2932 strcpy (buf, ", PA-RISC 1.0");
2933 break;
2934 case EFA_PARISC_1_1:
2935 strcpy (buf, ", PA-RISC 1.1");
2936 break;
2937 case EFA_PARISC_2_0:
2938 strcpy (buf, ", PA-RISC 2.0");
2939 break;
2940 default:
2941 break;
2942 }
2943 if (e_flags & EF_PARISC_TRAPNIL)
2944 strcat (buf, ", trapnil");
2945 if (e_flags & EF_PARISC_EXT)
2946 strcat (buf, ", ext");
2947 if (e_flags & EF_PARISC_LSB)
2948 strcat (buf, ", lsb");
2949 if (e_flags & EF_PARISC_WIDE)
2950 strcat (buf, ", wide");
2951 if (e_flags & EF_PARISC_NO_KABP)
2952 strcat (buf, ", no kabp");
2953 if (e_flags & EF_PARISC_LAZYSWAP)
2954 strcat (buf, ", lazyswap");
2955 break;
2956
2957 case EM_PJ:
2958 case EM_PJ_OLD:
2959 if ((e_flags & EF_PICOJAVA_NEWCALLS) == EF_PICOJAVA_NEWCALLS)
2960 strcat (buf, ", new calling convention");
2961
2962 if ((e_flags & EF_PICOJAVA_GNUCALLS) == EF_PICOJAVA_GNUCALLS)
2963 strcat (buf, ", gnu calling convention");
2964 break;
2965
2966 case EM_IA_64:
2967 if ((e_flags & EF_IA_64_ABI64))
2968 strcat (buf, ", 64-bit");
2969 else
2970 strcat (buf, ", 32-bit");
2971 if ((e_flags & EF_IA_64_REDUCEDFP))
2972 strcat (buf, ", reduced fp model");
2973 if ((e_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
2974 strcat (buf, ", no function descriptors, constant gp");
2975 else if ((e_flags & EF_IA_64_CONS_GP))
2976 strcat (buf, ", constant gp");
2977 if ((e_flags & EF_IA_64_ABSOLUTE))
2978 strcat (buf, ", absolute");
2979 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
2980 {
2981 if ((e_flags & EF_IA_64_VMS_LINKAGES))
2982 strcat (buf, ", vms_linkages");
2983 switch ((e_flags & EF_IA_64_VMS_COMCOD))
2984 {
2985 case EF_IA_64_VMS_COMCOD_SUCCESS:
2986 break;
2987 case EF_IA_64_VMS_COMCOD_WARNING:
2988 strcat (buf, ", warning");
2989 break;
2990 case EF_IA_64_VMS_COMCOD_ERROR:
2991 strcat (buf, ", error");
2992 break;
2993 case EF_IA_64_VMS_COMCOD_ABORT:
2994 strcat (buf, ", abort");
2995 break;
2996 default:
2997 abort ();
2998 }
2999 }
3000 break;
3001
3002 case EM_VAX:
3003 if ((e_flags & EF_VAX_NONPIC))
3004 strcat (buf, ", non-PIC");
3005 if ((e_flags & EF_VAX_DFLOAT))
3006 strcat (buf, ", D-Float");
3007 if ((e_flags & EF_VAX_GFLOAT))
3008 strcat (buf, ", G-Float");
3009 break;
3010
3011 case EM_RL78:
3012 if (e_flags & E_FLAG_RL78_G10)
3013 strcat (buf, ", G10");
3014 if (e_flags & E_FLAG_RL78_64BIT_DOUBLES)
3015 strcat (buf, ", 64-bit doubles");
3016 break;
3017
3018 case EM_RX:
3019 if (e_flags & E_FLAG_RX_64BIT_DOUBLES)
3020 strcat (buf, ", 64-bit doubles");
3021 if (e_flags & E_FLAG_RX_DSP)
3022 strcat (buf, ", dsp");
3023 if (e_flags & E_FLAG_RX_PID)
3024 strcat (buf, ", pid");
3025 if (e_flags & E_FLAG_RX_ABI)
3026 strcat (buf, ", RX ABI");
3027 break;
3028
3029 case EM_S390:
3030 if (e_flags & EF_S390_HIGH_GPRS)
3031 strcat (buf, ", highgprs");
3032 break;
3033
3034 case EM_TI_C6000:
3035 if ((e_flags & EF_C6000_REL))
3036 strcat (buf, ", relocatable module");
3037 break;
3038
3039 case EM_MSP430:
3040 strcat (buf, _(": architecture variant: "));
3041 switch (e_flags & EF_MSP430_MACH)
3042 {
3043 case E_MSP430_MACH_MSP430x11: strcat (buf, "MSP430x11"); break;
3044 case E_MSP430_MACH_MSP430x11x1 : strcat (buf, "MSP430x11x1 "); break;
3045 case E_MSP430_MACH_MSP430x12: strcat (buf, "MSP430x12"); break;
3046 case E_MSP430_MACH_MSP430x13: strcat (buf, "MSP430x13"); break;
3047 case E_MSP430_MACH_MSP430x14: strcat (buf, "MSP430x14"); break;
3048 case E_MSP430_MACH_MSP430x15: strcat (buf, "MSP430x15"); break;
3049 case E_MSP430_MACH_MSP430x16: strcat (buf, "MSP430x16"); break;
3050 case E_MSP430_MACH_MSP430x31: strcat (buf, "MSP430x31"); break;
3051 case E_MSP430_MACH_MSP430x32: strcat (buf, "MSP430x32"); break;
3052 case E_MSP430_MACH_MSP430x33: strcat (buf, "MSP430x33"); break;
3053 case E_MSP430_MACH_MSP430x41: strcat (buf, "MSP430x41"); break;
3054 case E_MSP430_MACH_MSP430x42: strcat (buf, "MSP430x42"); break;
3055 case E_MSP430_MACH_MSP430x43: strcat (buf, "MSP430x43"); break;
3056 case E_MSP430_MACH_MSP430x44: strcat (buf, "MSP430x44"); break;
3057 case E_MSP430_MACH_MSP430X : strcat (buf, "MSP430X"); break;
3058 default:
3059 strcat (buf, _(": unknown")); break;
3060 }
3061
3062 if (e_flags & ~ EF_MSP430_MACH)
3063 strcat (buf, _(": unknown extra flag bits also present"));
3064 }
3065 }
3066
3067 return buf;
3068 }
3069
3070 static const char *
3071 get_osabi_name (unsigned int osabi)
3072 {
3073 static char buff[32];
3074
3075 switch (osabi)
3076 {
3077 case ELFOSABI_NONE: return "UNIX - System V";
3078 case ELFOSABI_HPUX: return "UNIX - HP-UX";
3079 case ELFOSABI_NETBSD: return "UNIX - NetBSD";
3080 case ELFOSABI_GNU: return "UNIX - GNU";
3081 case ELFOSABI_SOLARIS: return "UNIX - Solaris";
3082 case ELFOSABI_AIX: return "UNIX - AIX";
3083 case ELFOSABI_IRIX: return "UNIX - IRIX";
3084 case ELFOSABI_FREEBSD: return "UNIX - FreeBSD";
3085 case ELFOSABI_TRU64: return "UNIX - TRU64";
3086 case ELFOSABI_MODESTO: return "Novell - Modesto";
3087 case ELFOSABI_OPENBSD: return "UNIX - OpenBSD";
3088 case ELFOSABI_OPENVMS: return "VMS - OpenVMS";
3089 case ELFOSABI_NSK: return "HP - Non-Stop Kernel";
3090 case ELFOSABI_AROS: return "AROS";
3091 case ELFOSABI_FENIXOS: return "FenixOS";
3092 default:
3093 if (osabi >= 64)
3094 switch (elf_header.e_machine)
3095 {
3096 case EM_ARM:
3097 switch (osabi)
3098 {
3099 case ELFOSABI_ARM: return "ARM";
3100 default:
3101 break;
3102 }
3103 break;
3104
3105 case EM_MSP430:
3106 case EM_MSP430_OLD:
3107 switch (osabi)
3108 {
3109 case ELFOSABI_STANDALONE: return _("Standalone App");
3110 default:
3111 break;
3112 }
3113 break;
3114
3115 case EM_TI_C6000:
3116 switch (osabi)
3117 {
3118 case ELFOSABI_C6000_ELFABI: return _("Bare-metal C6000");
3119 case ELFOSABI_C6000_LINUX: return "Linux C6000";
3120 default:
3121 break;
3122 }
3123 break;
3124
3125 default:
3126 break;
3127 }
3128 snprintf (buff, sizeof (buff), _("<unknown: %x>"), osabi);
3129 return buff;
3130 }
3131 }
3132
3133 static const char *
3134 get_aarch64_segment_type (unsigned long type)
3135 {
3136 switch (type)
3137 {
3138 case PT_AARCH64_ARCHEXT:
3139 return "AARCH64_ARCHEXT";
3140 default:
3141 break;
3142 }
3143
3144 return NULL;
3145 }
3146
3147 static const char *
3148 get_arm_segment_type (unsigned long type)
3149 {
3150 switch (type)
3151 {
3152 case PT_ARM_EXIDX:
3153 return "EXIDX";
3154 default:
3155 break;
3156 }
3157
3158 return NULL;
3159 }
3160
3161 static const char *
3162 get_mips_segment_type (unsigned long type)
3163 {
3164 switch (type)
3165 {
3166 case PT_MIPS_REGINFO:
3167 return "REGINFO";
3168 case PT_MIPS_RTPROC:
3169 return "RTPROC";
3170 case PT_MIPS_OPTIONS:
3171 return "OPTIONS";
3172 case PT_MIPS_ABIFLAGS:
3173 return "ABIFLAGS";
3174 default:
3175 break;
3176 }
3177
3178 return NULL;
3179 }
3180
3181 static const char *
3182 get_parisc_segment_type (unsigned long type)
3183 {
3184 switch (type)
3185 {
3186 case PT_HP_TLS: return "HP_TLS";
3187 case PT_HP_CORE_NONE: return "HP_CORE_NONE";
3188 case PT_HP_CORE_VERSION: return "HP_CORE_VERSION";
3189 case PT_HP_CORE_KERNEL: return "HP_CORE_KERNEL";
3190 case PT_HP_CORE_COMM: return "HP_CORE_COMM";
3191 case PT_HP_CORE_PROC: return "HP_CORE_PROC";
3192 case PT_HP_CORE_LOADABLE: return "HP_CORE_LOADABLE";
3193 case PT_HP_CORE_STACK: return "HP_CORE_STACK";
3194 case PT_HP_CORE_SHM: return "HP_CORE_SHM";
3195 case PT_HP_CORE_MMF: return "HP_CORE_MMF";
3196 case PT_HP_PARALLEL: return "HP_PARALLEL";
3197 case PT_HP_FASTBIND: return "HP_FASTBIND";
3198 case PT_HP_OPT_ANNOT: return "HP_OPT_ANNOT";
3199 case PT_HP_HSL_ANNOT: return "HP_HSL_ANNOT";
3200 case PT_HP_STACK: return "HP_STACK";
3201 case PT_HP_CORE_UTSNAME: return "HP_CORE_UTSNAME";
3202 case PT_PARISC_ARCHEXT: return "PARISC_ARCHEXT";
3203 case PT_PARISC_UNWIND: return "PARISC_UNWIND";
3204 case PT_PARISC_WEAKORDER: return "PARISC_WEAKORDER";
3205 default:
3206 break;
3207 }
3208
3209 return NULL;
3210 }
3211
3212 static const char *
3213 get_ia64_segment_type (unsigned long type)
3214 {
3215 switch (type)
3216 {
3217 case PT_IA_64_ARCHEXT: return "IA_64_ARCHEXT";
3218 case PT_IA_64_UNWIND: return "IA_64_UNWIND";
3219 case PT_HP_TLS: return "HP_TLS";
3220 case PT_IA_64_HP_OPT_ANOT: return "HP_OPT_ANNOT";
3221 case PT_IA_64_HP_HSL_ANOT: return "HP_HSL_ANNOT";
3222 case PT_IA_64_HP_STACK: return "HP_STACK";
3223 default:
3224 break;
3225 }
3226
3227 return NULL;
3228 }
3229
3230 static const char *
3231 get_tic6x_segment_type (unsigned long type)
3232 {
3233 switch (type)
3234 {
3235 case PT_C6000_PHATTR: return "C6000_PHATTR";
3236 default:
3237 break;
3238 }
3239
3240 return NULL;
3241 }
3242
3243 static const char *
3244 get_segment_type (unsigned long p_type)
3245 {
3246 static char buff[32];
3247
3248 switch (p_type)
3249 {
3250 case PT_NULL: return "NULL";
3251 case PT_LOAD: return "LOAD";
3252 case PT_DYNAMIC: return "DYNAMIC";
3253 case PT_INTERP: return "INTERP";
3254 case PT_NOTE: return "NOTE";
3255 case PT_SHLIB: return "SHLIB";
3256 case PT_PHDR: return "PHDR";
3257 case PT_TLS: return "TLS";
3258
3259 case PT_GNU_EH_FRAME:
3260 return "GNU_EH_FRAME";
3261 case PT_GNU_STACK: return "GNU_STACK";
3262 case PT_GNU_RELRO: return "GNU_RELRO";
3263
3264 default:
3265 if ((p_type >= PT_LOPROC) && (p_type <= PT_HIPROC))
3266 {
3267 const char * result;
3268
3269 switch (elf_header.e_machine)
3270 {
3271 case EM_AARCH64:
3272 result = get_aarch64_segment_type (p_type);
3273 break;
3274 case EM_ARM:
3275 result = get_arm_segment_type (p_type);
3276 break;
3277 case EM_MIPS:
3278 case EM_MIPS_RS3_LE:
3279 result = get_mips_segment_type (p_type);
3280 break;
3281 case EM_PARISC:
3282 result = get_parisc_segment_type (p_type);
3283 break;
3284 case EM_IA_64:
3285 result = get_ia64_segment_type (p_type);
3286 break;
3287 case EM_TI_C6000:
3288 result = get_tic6x_segment_type (p_type);
3289 break;
3290 default:
3291 result = NULL;
3292 break;
3293 }
3294
3295 if (result != NULL)
3296 return result;
3297
3298 sprintf (buff, "LOPROC+%lx", p_type - PT_LOPROC);
3299 }
3300 else if ((p_type >= PT_LOOS) && (p_type <= PT_HIOS))
3301 {
3302 const char * result;
3303
3304 switch (elf_header.e_machine)
3305 {
3306 case EM_PARISC:
3307 result = get_parisc_segment_type (p_type);
3308 break;
3309 case EM_IA_64:
3310 result = get_ia64_segment_type (p_type);
3311 break;
3312 default:
3313 result = NULL;
3314 break;
3315 }
3316
3317 if (result != NULL)
3318 return result;
3319
3320 sprintf (buff, "LOOS+%lx", p_type - PT_LOOS);
3321 }
3322 else
3323 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), p_type);
3324
3325 return buff;
3326 }
3327 }
3328
3329 static const char *
3330 get_mips_section_type_name (unsigned int sh_type)
3331 {
3332 switch (sh_type)
3333 {
3334 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST";
3335 case SHT_MIPS_MSYM: return "MIPS_MSYM";
3336 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT";
3337 case SHT_MIPS_GPTAB: return "MIPS_GPTAB";
3338 case SHT_MIPS_UCODE: return "MIPS_UCODE";
3339 case SHT_MIPS_DEBUG: return "MIPS_DEBUG";
3340 case SHT_MIPS_REGINFO: return "MIPS_REGINFO";
3341 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE";
3342 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM";
3343 case SHT_MIPS_RELD: return "MIPS_RELD";
3344 case SHT_MIPS_IFACE: return "MIPS_IFACE";
3345 case SHT_MIPS_CONTENT: return "MIPS_CONTENT";
3346 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS";
3347 case SHT_MIPS_SHDR: return "MIPS_SHDR";
3348 case SHT_MIPS_FDESC: return "MIPS_FDESC";
3349 case SHT_MIPS_EXTSYM: return "MIPS_EXTSYM";
3350 case SHT_MIPS_DENSE: return "MIPS_DENSE";
3351 case SHT_MIPS_PDESC: return "MIPS_PDESC";
3352 case SHT_MIPS_LOCSYM: return "MIPS_LOCSYM";
3353 case SHT_MIPS_AUXSYM: return "MIPS_AUXSYM";
3354 case SHT_MIPS_OPTSYM: return "MIPS_OPTSYM";
3355 case SHT_MIPS_LOCSTR: return "MIPS_LOCSTR";
3356 case SHT_MIPS_LINE: return "MIPS_LINE";
3357 case SHT_MIPS_RFDESC: return "MIPS_RFDESC";
3358 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM";
3359 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST";
3360 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS";
3361 case SHT_MIPS_DWARF: return "MIPS_DWARF";
3362 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL";
3363 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
3364 case SHT_MIPS_EVENTS: return "MIPS_EVENTS";
3365 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE";
3366 case SHT_MIPS_PIXIE: return "MIPS_PIXIE";
3367 case SHT_MIPS_XLATE: return "MIPS_XLATE";
3368 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG";
3369 case SHT_MIPS_WHIRL: return "MIPS_WHIRL";
3370 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION";
3371 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD";
3372 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION";
3373 case SHT_MIPS_ABIFLAGS: return "MIPS_ABIFLAGS";
3374 default:
3375 break;
3376 }
3377 return NULL;
3378 }
3379
3380 static const char *
3381 get_parisc_section_type_name (unsigned int sh_type)
3382 {
3383 switch (sh_type)
3384 {
3385 case SHT_PARISC_EXT: return "PARISC_EXT";
3386 case SHT_PARISC_UNWIND: return "PARISC_UNWIND";
3387 case SHT_PARISC_DOC: return "PARISC_DOC";
3388 case SHT_PARISC_ANNOT: return "PARISC_ANNOT";
3389 case SHT_PARISC_SYMEXTN: return "PARISC_SYMEXTN";
3390 case SHT_PARISC_STUBS: return "PARISC_STUBS";
3391 case SHT_PARISC_DLKM: return "PARISC_DLKM";
3392 default:
3393 break;
3394 }
3395 return NULL;
3396 }
3397
3398 static const char *
3399 get_ia64_section_type_name (unsigned int sh_type)
3400 {
3401 /* If the top 8 bits are 0x78 the next 8 are the os/abi ID. */
3402 if ((sh_type & 0xFF000000) == SHT_IA_64_LOPSREG)
3403 return get_osabi_name ((sh_type & 0x00FF0000) >> 16);
3404
3405 switch (sh_type)
3406 {
3407 case SHT_IA_64_EXT: return "IA_64_EXT";
3408 case SHT_IA_64_UNWIND: return "IA_64_UNWIND";
3409 case SHT_IA_64_PRIORITY_INIT: return "IA_64_PRIORITY_INIT";
3410 case SHT_IA_64_VMS_TRACE: return "VMS_TRACE";
3411 case SHT_IA_64_VMS_TIE_SIGNATURES: return "VMS_TIE_SIGNATURES";
3412 case SHT_IA_64_VMS_DEBUG: return "VMS_DEBUG";
3413 case SHT_IA_64_VMS_DEBUG_STR: return "VMS_DEBUG_STR";
3414 case SHT_IA_64_VMS_LINKAGES: return "VMS_LINKAGES";
3415 case SHT_IA_64_VMS_SYMBOL_VECTOR: return "VMS_SYMBOL_VECTOR";
3416 case SHT_IA_64_VMS_FIXUP: return "VMS_FIXUP";
3417 default:
3418 break;
3419 }
3420 return NULL;
3421 }
3422
3423 static const char *
3424 get_x86_64_section_type_name (unsigned int sh_type)
3425 {
3426 switch (sh_type)
3427 {
3428 case SHT_X86_64_UNWIND: return "X86_64_UNWIND";
3429 default:
3430 break;
3431 }
3432 return NULL;
3433 }
3434
3435 static const char *
3436 get_aarch64_section_type_name (unsigned int sh_type)
3437 {
3438 switch (sh_type)
3439 {
3440 case SHT_AARCH64_ATTRIBUTES:
3441 return "AARCH64_ATTRIBUTES";
3442 default:
3443 break;
3444 }
3445 return NULL;
3446 }
3447
3448 static const char *
3449 get_arm_section_type_name (unsigned int sh_type)
3450 {
3451 switch (sh_type)
3452 {
3453 case SHT_ARM_EXIDX: return "ARM_EXIDX";
3454 case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP";
3455 case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES";
3456 case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY";
3457 case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION";
3458 default:
3459 break;
3460 }
3461 return NULL;
3462 }
3463
3464 static const char *
3465 get_tic6x_section_type_name (unsigned int sh_type)
3466 {
3467 switch (sh_type)
3468 {
3469 case SHT_C6000_UNWIND:
3470 return "C6000_UNWIND";
3471 case SHT_C6000_PREEMPTMAP:
3472 return "C6000_PREEMPTMAP";
3473 case SHT_C6000_ATTRIBUTES:
3474 return "C6000_ATTRIBUTES";
3475 case SHT_TI_ICODE:
3476 return "TI_ICODE";
3477 case SHT_TI_XREF:
3478 return "TI_XREF";
3479 case SHT_TI_HANDLER:
3480 return "TI_HANDLER";
3481 case SHT_TI_INITINFO:
3482 return "TI_INITINFO";
3483 case SHT_TI_PHATTRS:
3484 return "TI_PHATTRS";
3485 default:
3486 break;
3487 }
3488 return NULL;
3489 }
3490
3491 static const char *
3492 get_msp430x_section_type_name (unsigned int sh_type)
3493 {
3494 switch (sh_type)
3495 {
3496 case SHT_MSP430_SEC_FLAGS: return "MSP430_SEC_FLAGS";
3497 case SHT_MSP430_SYM_ALIASES: return "MSP430_SYM_ALIASES";
3498 case SHT_MSP430_ATTRIBUTES: return "MSP430_ATTRIBUTES";
3499 default: return NULL;
3500 }
3501 }
3502
3503 static const char *
3504 get_section_type_name (unsigned int sh_type)
3505 {
3506 static char buff[32];
3507
3508 switch (sh_type)
3509 {
3510 case SHT_NULL: return "NULL";
3511 case SHT_PROGBITS: return "PROGBITS";
3512 case SHT_SYMTAB: return "SYMTAB";
3513 case SHT_STRTAB: return "STRTAB";
3514 case SHT_RELA: return "RELA";
3515 case SHT_HASH: return "HASH";
3516 case SHT_DYNAMIC: return "DYNAMIC";
3517 case SHT_NOTE: return "NOTE";
3518 case SHT_NOBITS: return "NOBITS";
3519 case SHT_REL: return "REL";
3520 case SHT_SHLIB: return "SHLIB";
3521 case SHT_DYNSYM: return "DYNSYM";
3522 case SHT_INIT_ARRAY: return "INIT_ARRAY";
3523 case SHT_FINI_ARRAY: return "FINI_ARRAY";
3524 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY";
3525 case SHT_GNU_HASH: return "GNU_HASH";
3526 case SHT_GROUP: return "GROUP";
3527 case SHT_SYMTAB_SHNDX: return "SYMTAB SECTION INDICIES";
3528 case SHT_GNU_verdef: return "VERDEF";
3529 case SHT_GNU_verneed: return "VERNEED";
3530 case SHT_GNU_versym: return "VERSYM";
3531 case 0x6ffffff0: return "VERSYM";
3532 case 0x6ffffffc: return "VERDEF";
3533 case 0x7ffffffd: return "AUXILIARY";
3534 case 0x7fffffff: return "FILTER";
3535 case SHT_GNU_LIBLIST: return "GNU_LIBLIST";
3536
3537 default:
3538 if ((sh_type >= SHT_LOPROC) && (sh_type <= SHT_HIPROC))
3539 {
3540 const char * result;
3541
3542 switch (elf_header.e_machine)
3543 {
3544 case EM_MIPS:
3545 case EM_MIPS_RS3_LE:
3546 result = get_mips_section_type_name (sh_type);
3547 break;
3548 case EM_PARISC:
3549 result = get_parisc_section_type_name (sh_type);
3550 break;
3551 case EM_IA_64:
3552 result = get_ia64_section_type_name (sh_type);
3553 break;
3554 case EM_X86_64:
3555 case EM_L1OM:
3556 case EM_K1OM:
3557 result = get_x86_64_section_type_name (sh_type);
3558 break;
3559 case EM_AARCH64:
3560 result = get_aarch64_section_type_name (sh_type);
3561 break;
3562 case EM_ARM:
3563 result = get_arm_section_type_name (sh_type);
3564 break;
3565 case EM_TI_C6000:
3566 result = get_tic6x_section_type_name (sh_type);
3567 break;
3568 case EM_MSP430:
3569 result = get_msp430x_section_type_name (sh_type);
3570 break;
3571 default:
3572 result = NULL;
3573 break;
3574 }
3575
3576 if (result != NULL)
3577 return result;
3578
3579 sprintf (buff, "LOPROC+%x", sh_type - SHT_LOPROC);
3580 }
3581 else if ((sh_type >= SHT_LOOS) && (sh_type <= SHT_HIOS))
3582 {
3583 const char * result;
3584
3585 switch (elf_header.e_machine)
3586 {
3587 case EM_IA_64:
3588 result = get_ia64_section_type_name (sh_type);
3589 break;
3590 default:
3591 result = NULL;
3592 break;
3593 }
3594
3595 if (result != NULL)
3596 return result;
3597
3598 sprintf (buff, "LOOS+%x", sh_type - SHT_LOOS);
3599 }
3600 else if ((sh_type >= SHT_LOUSER) && (sh_type <= SHT_HIUSER))
3601 sprintf (buff, "LOUSER+%x", sh_type - SHT_LOUSER);
3602 else
3603 /* This message is probably going to be displayed in a 15
3604 character wide field, so put the hex value first. */
3605 snprintf (buff, sizeof (buff), _("%08x: <unknown>"), sh_type);
3606
3607 return buff;
3608 }
3609 }
3610
3611 #define OPTION_DEBUG_DUMP 512
3612 #define OPTION_DYN_SYMS 513
3613 #define OPTION_DWARF_DEPTH 514
3614 #define OPTION_DWARF_START 515
3615 #define OPTION_DWARF_CHECK 516
3616
3617 static struct option options[] =
3618 {
3619 {"all", no_argument, 0, 'a'},
3620 {"file-header", no_argument, 0, 'h'},
3621 {"program-headers", no_argument, 0, 'l'},
3622 {"headers", no_argument, 0, 'e'},
3623 {"histogram", no_argument, 0, 'I'},
3624 {"segments", no_argument, 0, 'l'},
3625 {"sections", no_argument, 0, 'S'},
3626 {"section-headers", no_argument, 0, 'S'},
3627 {"section-groups", no_argument, 0, 'g'},
3628 {"section-details", no_argument, 0, 't'},
3629 {"full-section-name",no_argument, 0, 'N'},
3630 {"symbols", no_argument, 0, 's'},
3631 {"syms", no_argument, 0, 's'},
3632 {"dyn-syms", no_argument, 0, OPTION_DYN_SYMS},
3633 {"relocs", no_argument, 0, 'r'},
3634 {"notes", no_argument, 0, 'n'},
3635 {"dynamic", no_argument, 0, 'd'},
3636 {"arch-specific", no_argument, 0, 'A'},
3637 {"version-info", no_argument, 0, 'V'},
3638 {"use-dynamic", no_argument, 0, 'D'},
3639 {"unwind", no_argument, 0, 'u'},
3640 {"archive-index", no_argument, 0, 'c'},
3641 {"hex-dump", required_argument, 0, 'x'},
3642 {"relocated-dump", required_argument, 0, 'R'},
3643 {"string-dump", required_argument, 0, 'p'},
3644 #ifdef SUPPORT_DISASSEMBLY
3645 {"instruction-dump", required_argument, 0, 'i'},
3646 #endif
3647 {"debug-dump", optional_argument, 0, OPTION_DEBUG_DUMP},
3648
3649 {"dwarf-depth", required_argument, 0, OPTION_DWARF_DEPTH},
3650 {"dwarf-start", required_argument, 0, OPTION_DWARF_START},
3651 {"dwarf-check", no_argument, 0, OPTION_DWARF_CHECK},
3652
3653 {"version", no_argument, 0, 'v'},
3654 {"wide", no_argument, 0, 'W'},
3655 {"help", no_argument, 0, 'H'},
3656 {0, no_argument, 0, 0}
3657 };
3658
3659 static void
3660 usage (FILE * stream)
3661 {
3662 fprintf (stream, _("Usage: readelf <option(s)> elf-file(s)\n"));
3663 fprintf (stream, _(" Display information about the contents of ELF format files\n"));
3664 fprintf (stream, _(" Options are:\n\
3665 -a --all Equivalent to: -h -l -S -s -r -d -V -A -I\n\
3666 -h --file-header Display the ELF file header\n\
3667 -l --program-headers Display the program headers\n\
3668 --segments An alias for --program-headers\n\
3669 -S --section-headers Display the sections' header\n\
3670 --sections An alias for --section-headers\n\
3671 -g --section-groups Display the section groups\n\
3672 -t --section-details Display the section details\n\
3673 -e --headers Equivalent to: -h -l -S\n\
3674 -s --syms Display the symbol table\n\
3675 --symbols An alias for --syms\n\
3676 --dyn-syms Display the dynamic symbol table\n\
3677 -n --notes Display the core notes (if present)\n\
3678 -r --relocs Display the relocations (if present)\n\
3679 -u --unwind Display the unwind info (if present)\n\
3680 -d --dynamic Display the dynamic section (if present)\n\
3681 -V --version-info Display the version sections (if present)\n\
3682 -A --arch-specific Display architecture specific information (if any)\n\
3683 -c --archive-index Display the symbol/file index in an archive\n\
3684 -D --use-dynamic Use the dynamic section info when displaying symbols\n\
3685 -x --hex-dump=<number|name>\n\
3686 Dump the contents of section <number|name> as bytes\n\
3687 -p --string-dump=<number|name>\n\
3688 Dump the contents of section <number|name> as strings\n\
3689 -R --relocated-dump=<number|name>\n\
3690 Dump the contents of section <number|name> as relocated bytes\n\
3691 -w[lLiaprmfFsoRt] or\n\
3692 --debug-dump[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,\n\
3693 =frames-interp,=str,=loc,=Ranges,=pubtypes,\n\
3694 =gdb_index,=trace_info,=trace_abbrev,=trace_aranges,\n\
3695 =addr,=cu_index]\n\
3696 Display the contents of DWARF2 debug sections\n"));
3697 fprintf (stream, _("\
3698 --dwarf-depth=N Do not display DIEs at depth N or greater\n\
3699 --dwarf-start=N Display DIEs starting with N, at the same depth\n\
3700 or deeper\n"));
3701 #ifdef SUPPORT_DISASSEMBLY
3702 fprintf (stream, _("\
3703 -i --instruction-dump=<number|name>\n\
3704 Disassemble the contents of section <number|name>\n"));
3705 #endif
3706 fprintf (stream, _("\
3707 -I --histogram Display histogram of bucket list lengths\n\
3708 -W --wide Allow output width to exceed 80 characters\n\
3709 @<file> Read options from <file>\n\
3710 -H --help Display this information\n\
3711 -v --version Display the version number of readelf\n"));
3712
3713 if (REPORT_BUGS_TO[0] && stream == stdout)
3714 fprintf (stdout, _("Report bugs to %s\n"), REPORT_BUGS_TO);
3715
3716 exit (stream == stdout ? 0 : 1);
3717 }
3718
3719 /* Record the fact that the user wants the contents of section number
3720 SECTION to be displayed using the method(s) encoded as flags bits
3721 in TYPE. Note, TYPE can be zero if we are creating the array for
3722 the first time. */
3723
3724 static void
3725 request_dump_bynumber (unsigned int section, dump_type type)
3726 {
3727 if (section >= num_dump_sects)
3728 {
3729 dump_type * new_dump_sects;
3730
3731 new_dump_sects = (dump_type *) calloc (section + 1,
3732 sizeof (* dump_sects));
3733
3734 if (new_dump_sects == NULL)
3735 error (_("Out of memory allocating dump request table.\n"));
3736 else
3737 {
3738 /* Copy current flag settings. */
3739 memcpy (new_dump_sects, dump_sects, num_dump_sects * sizeof (* dump_sects));
3740
3741 free (dump_sects);
3742
3743 dump_sects = new_dump_sects;
3744 num_dump_sects = section + 1;
3745 }
3746 }
3747
3748 if (dump_sects)
3749 dump_sects[section] |= type;
3750
3751 return;
3752 }
3753
3754 /* Request a dump by section name. */
3755
3756 static void
3757 request_dump_byname (const char * section, dump_type type)
3758 {
3759 struct dump_list_entry * new_request;
3760
3761 new_request = (struct dump_list_entry *)
3762 malloc (sizeof (struct dump_list_entry));
3763 if (!new_request)
3764 error (_("Out of memory allocating dump request table.\n"));
3765
3766 new_request->name = strdup (section);
3767 if (!new_request->name)
3768 error (_("Out of memory allocating dump request table.\n"));
3769
3770 new_request->type = type;
3771
3772 new_request->next = dump_sects_byname;
3773 dump_sects_byname = new_request;
3774 }
3775
3776 static inline void
3777 request_dump (dump_type type)
3778 {
3779 int section;
3780 char * cp;
3781
3782 do_dump++;
3783 section = strtoul (optarg, & cp, 0);
3784
3785 if (! *cp && section >= 0)
3786 request_dump_bynumber (section, type);
3787 else
3788 request_dump_byname (optarg, type);
3789 }
3790
3791
3792 static void
3793 parse_args (int argc, char ** argv)
3794 {
3795 int c;
3796
3797 if (argc < 2)
3798 usage (stderr);
3799
3800 while ((c = getopt_long
3801 (argc, argv, "ADHINR:SVWacdeghi:lnp:rstuvw::x:", options, NULL)) != EOF)
3802 {
3803 switch (c)
3804 {
3805 case 0:
3806 /* Long options. */
3807 break;
3808 case 'H':
3809 usage (stdout);
3810 break;
3811
3812 case 'a':
3813 do_syms++;
3814 do_reloc++;
3815 do_unwind++;
3816 do_dynamic++;
3817 do_header++;
3818 do_sections++;
3819 do_section_groups++;
3820 do_segments++;
3821 do_version++;
3822 do_histogram++;
3823 do_arch++;
3824 do_notes++;
3825 break;
3826 case 'g':
3827 do_section_groups++;
3828 break;
3829 case 't':
3830 case 'N':
3831 do_sections++;
3832 do_section_details++;
3833 break;
3834 case 'e':
3835 do_header++;
3836 do_sections++;
3837 do_segments++;
3838 break;
3839 case 'A':
3840 do_arch++;
3841 break;
3842 case 'D':
3843 do_using_dynamic++;
3844 break;
3845 case 'r':
3846 do_reloc++;
3847 break;
3848 case 'u':
3849 do_unwind++;
3850 break;
3851 case 'h':
3852 do_header++;
3853 break;
3854 case 'l':
3855 do_segments++;
3856 break;
3857 case 's':
3858 do_syms++;
3859 break;
3860 case 'S':
3861 do_sections++;
3862 break;
3863 case 'd':
3864 do_dynamic++;
3865 break;
3866 case 'I':
3867 do_histogram++;
3868 break;
3869 case 'n':
3870 do_notes++;
3871 break;
3872 case 'c':
3873 do_archive_index++;
3874 break;
3875 case 'x':
3876 request_dump (HEX_DUMP);
3877 break;
3878 case 'p':
3879 request_dump (STRING_DUMP);
3880 break;
3881 case 'R':
3882 request_dump (RELOC_DUMP);
3883 break;
3884 case 'w':
3885 do_dump++;
3886 if (optarg == 0)
3887 {
3888 do_debugging = 1;
3889 dwarf_select_sections_all ();
3890 }
3891 else
3892 {
3893 do_debugging = 0;
3894 dwarf_select_sections_by_letters (optarg);
3895 }
3896 break;
3897 case OPTION_DEBUG_DUMP:
3898 do_dump++;
3899 if (optarg == 0)
3900 do_debugging = 1;
3901 else
3902 {
3903 do_debugging = 0;
3904 dwarf_select_sections_by_names (optarg);
3905 }
3906 break;
3907 case OPTION_DWARF_DEPTH:
3908 {
3909 char *cp;
3910
3911 dwarf_cutoff_level = strtoul (optarg, & cp, 0);
3912 }
3913 break;
3914 case OPTION_DWARF_START:
3915 {
3916 char *cp;
3917
3918 dwarf_start_die = strtoul (optarg, & cp, 0);
3919 }
3920 break;
3921 case OPTION_DWARF_CHECK:
3922 dwarf_check = 1;
3923 break;
3924 case OPTION_DYN_SYMS:
3925 do_dyn_syms++;
3926 break;
3927 #ifdef SUPPORT_DISASSEMBLY
3928 case 'i':
3929 request_dump (DISASS_DUMP);
3930 break;
3931 #endif
3932 case 'v':
3933 print_version (program_name);
3934 break;
3935 case 'V':
3936 do_version++;
3937 break;
3938 case 'W':
3939 do_wide++;
3940 break;
3941 default:
3942 /* xgettext:c-format */
3943 error (_("Invalid option '-%c'\n"), c);
3944 /* Drop through. */
3945 case '?':
3946 usage (stderr);
3947 }
3948 }
3949
3950 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
3951 && !do_segments && !do_header && !do_dump && !do_version
3952 && !do_histogram && !do_debugging && !do_arch && !do_notes
3953 && !do_section_groups && !do_archive_index
3954 && !do_dyn_syms)
3955 usage (stderr);
3956 else if (argc < 3)
3957 {
3958 warn (_("Nothing to do.\n"));
3959 usage (stderr);
3960 }
3961 }
3962
3963 static const char *
3964 get_elf_class (unsigned int elf_class)
3965 {
3966 static char buff[32];
3967
3968 switch (elf_class)
3969 {
3970 case ELFCLASSNONE: return _("none");
3971 case ELFCLASS32: return "ELF32";
3972 case ELFCLASS64: return "ELF64";
3973 default:
3974 snprintf (buff, sizeof (buff), _("<unknown: %x>"), elf_class);
3975 return buff;
3976 }
3977 }
3978
3979 static const char *
3980 get_data_encoding (unsigned int encoding)
3981 {
3982 static char buff[32];
3983
3984 switch (encoding)
3985 {
3986 case ELFDATANONE: return _("none");
3987 case ELFDATA2LSB: return _("2's complement, little endian");
3988 case ELFDATA2MSB: return _("2's complement, big endian");
3989 default:
3990 snprintf (buff, sizeof (buff), _("<unknown: %x>"), encoding);
3991 return buff;
3992 }
3993 }
3994
3995 /* Decode the data held in 'elf_header'. */
3996
3997 static int
3998 process_file_header (void)
3999 {
4000 if ( elf_header.e_ident[EI_MAG0] != ELFMAG0
4001 || elf_header.e_ident[EI_MAG1] != ELFMAG1
4002 || elf_header.e_ident[EI_MAG2] != ELFMAG2
4003 || elf_header.e_ident[EI_MAG3] != ELFMAG3)
4004 {
4005 error
4006 (_("Not an ELF file - it has the wrong magic bytes at the start\n"));
4007 return 0;
4008 }
4009
4010 init_dwarf_regnames (elf_header.e_machine);
4011
4012 if (do_header)
4013 {
4014 int i;
4015
4016 printf (_("ELF Header:\n"));
4017 printf (_(" Magic: "));
4018 for (i = 0; i < EI_NIDENT; i++)
4019 printf ("%2.2x ", elf_header.e_ident[i]);
4020 printf ("\n");
4021 printf (_(" Class: %s\n"),
4022 get_elf_class (elf_header.e_ident[EI_CLASS]));
4023 printf (_(" Data: %s\n"),
4024 get_data_encoding (elf_header.e_ident[EI_DATA]));
4025 printf (_(" Version: %d %s\n"),
4026 elf_header.e_ident[EI_VERSION],
4027 (elf_header.e_ident[EI_VERSION] == EV_CURRENT
4028 ? "(current)"
4029 : (elf_header.e_ident[EI_VERSION] != EV_NONE
4030 ? _("<unknown: %lx>")
4031 : "")));
4032 printf (_(" OS/ABI: %s\n"),
4033 get_osabi_name (elf_header.e_ident[EI_OSABI]));
4034 printf (_(" ABI Version: %d\n"),
4035 elf_header.e_ident[EI_ABIVERSION]);
4036 printf (_(" Type: %s\n"),
4037 get_file_type (elf_header.e_type));
4038 printf (_(" Machine: %s\n"),
4039 get_machine_name (elf_header.e_machine));
4040 printf (_(" Version: 0x%lx\n"),
4041 (unsigned long) elf_header.e_version);
4042
4043 printf (_(" Entry point address: "));
4044 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
4045 printf (_("\n Start of program headers: "));
4046 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
4047 printf (_(" (bytes into file)\n Start of section headers: "));
4048 print_vma ((bfd_vma) elf_header.e_shoff, DEC);
4049 printf (_(" (bytes into file)\n"));
4050
4051 printf (_(" Flags: 0x%lx%s\n"),
4052 (unsigned long) elf_header.e_flags,
4053 get_machine_flags (elf_header.e_flags, elf_header.e_machine));
4054 printf (_(" Size of this header: %ld (bytes)\n"),
4055 (long) elf_header.e_ehsize);
4056 printf (_(" Size of program headers: %ld (bytes)\n"),
4057 (long) elf_header.e_phentsize);
4058 printf (_(" Number of program headers: %ld"),
4059 (long) elf_header.e_phnum);
4060 if (section_headers != NULL
4061 && elf_header.e_phnum == PN_XNUM
4062 && section_headers[0].sh_info != 0)
4063 printf (" (%ld)", (long) section_headers[0].sh_info);
4064 putc ('\n', stdout);
4065 printf (_(" Size of section headers: %ld (bytes)\n"),
4066 (long) elf_header.e_shentsize);
4067 printf (_(" Number of section headers: %ld"),
4068 (long) elf_header.e_shnum);
4069 if (section_headers != NULL && elf_header.e_shnum == SHN_UNDEF)
4070 printf (" (%ld)", (long) section_headers[0].sh_size);
4071 putc ('\n', stdout);
4072 printf (_(" Section header string table index: %ld"),
4073 (long) elf_header.e_shstrndx);
4074 if (section_headers != NULL
4075 && elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
4076 printf (" (%u)", section_headers[0].sh_link);
4077 else if (elf_header.e_shstrndx != SHN_UNDEF
4078 && elf_header.e_shstrndx >= elf_header.e_shnum)
4079 printf (_(" <corrupt: out of range>"));
4080 putc ('\n', stdout);
4081 }
4082
4083 if (section_headers != NULL)
4084 {
4085 if (elf_header.e_phnum == PN_XNUM
4086 && section_headers[0].sh_info != 0)
4087 elf_header.e_phnum = section_headers[0].sh_info;
4088 if (elf_header.e_shnum == SHN_UNDEF)
4089 elf_header.e_shnum = section_headers[0].sh_size;
4090 if (elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
4091 elf_header.e_shstrndx = section_headers[0].sh_link;
4092 else if (elf_header.e_shstrndx >= elf_header.e_shnum)
4093 elf_header.e_shstrndx = SHN_UNDEF;
4094 free (section_headers);
4095 section_headers = NULL;
4096 }
4097
4098 return 1;
4099 }
4100
4101
4102 static int
4103 get_32bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
4104 {
4105 Elf32_External_Phdr * phdrs;
4106 Elf32_External_Phdr * external;
4107 Elf_Internal_Phdr * internal;
4108 unsigned int i;
4109
4110 phdrs = (Elf32_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
4111 elf_header.e_phentsize,
4112 elf_header.e_phnum,
4113 _("program headers"));
4114 if (!phdrs)
4115 return 0;
4116
4117 for (i = 0, internal = pheaders, external = phdrs;
4118 i < elf_header.e_phnum;
4119 i++, internal++, external++)
4120 {
4121 internal->p_type = BYTE_GET (external->p_type);
4122 internal->p_offset = BYTE_GET (external->p_offset);
4123 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4124 internal->p_paddr = BYTE_GET (external->p_paddr);
4125 internal->p_filesz = BYTE_GET (external->p_filesz);
4126 internal->p_memsz = BYTE_GET (external->p_memsz);
4127 internal->p_flags = BYTE_GET (external->p_flags);
4128 internal->p_align = BYTE_GET (external->p_align);
4129 }
4130
4131 free (phdrs);
4132
4133 return 1;
4134 }
4135
4136 static int
4137 get_64bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
4138 {
4139 Elf64_External_Phdr * phdrs;
4140 Elf64_External_Phdr * external;
4141 Elf_Internal_Phdr * internal;
4142 unsigned int i;
4143
4144 phdrs = (Elf64_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
4145 elf_header.e_phentsize,
4146 elf_header.e_phnum,
4147 _("program headers"));
4148 if (!phdrs)
4149 return 0;
4150
4151 for (i = 0, internal = pheaders, external = phdrs;
4152 i < elf_header.e_phnum;
4153 i++, internal++, external++)
4154 {
4155 internal->p_type = BYTE_GET (external->p_type);
4156 internal->p_flags = BYTE_GET (external->p_flags);
4157 internal->p_offset = BYTE_GET (external->p_offset);
4158 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4159 internal->p_paddr = BYTE_GET (external->p_paddr);
4160 internal->p_filesz = BYTE_GET (external->p_filesz);
4161 internal->p_memsz = BYTE_GET (external->p_memsz);
4162 internal->p_align = BYTE_GET (external->p_align);
4163 }
4164
4165 free (phdrs);
4166
4167 return 1;
4168 }
4169
4170 /* Returns 1 if the program headers were read into `program_headers'. */
4171
4172 static int
4173 get_program_headers (FILE * file)
4174 {
4175 Elf_Internal_Phdr * phdrs;
4176
4177 /* Check cache of prior read. */
4178 if (program_headers != NULL)
4179 return 1;
4180
4181 phdrs = (Elf_Internal_Phdr *) cmalloc (elf_header.e_phnum,
4182 sizeof (Elf_Internal_Phdr));
4183
4184 if (phdrs == NULL)
4185 {
4186 error (_("Out of memory\n"));
4187 return 0;
4188 }
4189
4190 if (is_32bit_elf
4191 ? get_32bit_program_headers (file, phdrs)
4192 : get_64bit_program_headers (file, phdrs))
4193 {
4194 program_headers = phdrs;
4195 return 1;
4196 }
4197
4198 free (phdrs);
4199 return 0;
4200 }
4201
4202 /* Returns 1 if the program headers were loaded. */
4203
4204 static int
4205 process_program_headers (FILE * file)
4206 {
4207 Elf_Internal_Phdr * segment;
4208 unsigned int i;
4209
4210 if (elf_header.e_phnum == 0)
4211 {
4212 /* PR binutils/12467. */
4213 if (elf_header.e_phoff != 0)
4214 warn (_("possibly corrupt ELF header - it has a non-zero program"
4215 " header offset, but no program headers"));
4216 else if (do_segments)
4217 printf (_("\nThere are no program headers in this file.\n"));
4218 return 0;
4219 }
4220
4221 if (do_segments && !do_header)
4222 {
4223 printf (_("\nElf file type is %s\n"), get_file_type (elf_header.e_type));
4224 printf (_("Entry point "));
4225 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
4226 printf (_("\nThere are %d program headers, starting at offset "),
4227 elf_header.e_phnum);
4228 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
4229 printf ("\n");
4230 }
4231
4232 if (! get_program_headers (file))
4233 return 0;
4234
4235 if (do_segments)
4236 {
4237 if (elf_header.e_phnum > 1)
4238 printf (_("\nProgram Headers:\n"));
4239 else
4240 printf (_("\nProgram Headers:\n"));
4241
4242 if (is_32bit_elf)
4243 printf
4244 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4245 else if (do_wide)
4246 printf
4247 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4248 else
4249 {
4250 printf
4251 (_(" Type Offset VirtAddr PhysAddr\n"));
4252 printf
4253 (_(" FileSiz MemSiz Flags Align\n"));
4254 }
4255 }
4256
4257 dynamic_addr = 0;
4258 dynamic_size = 0;
4259
4260 for (i = 0, segment = program_headers;
4261 i < elf_header.e_phnum;
4262 i++, segment++)
4263 {
4264 if (do_segments)
4265 {
4266 printf (" %-14.14s ", get_segment_type (segment->p_type));
4267
4268 if (is_32bit_elf)
4269 {
4270 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4271 printf ("0x%8.8lx ", (unsigned long) segment->p_vaddr);
4272 printf ("0x%8.8lx ", (unsigned long) segment->p_paddr);
4273 printf ("0x%5.5lx ", (unsigned long) segment->p_filesz);
4274 printf ("0x%5.5lx ", (unsigned long) segment->p_memsz);
4275 printf ("%c%c%c ",
4276 (segment->p_flags & PF_R ? 'R' : ' '),
4277 (segment->p_flags & PF_W ? 'W' : ' '),
4278 (segment->p_flags & PF_X ? 'E' : ' '));
4279 printf ("%#lx", (unsigned long) segment->p_align);
4280 }
4281 else if (do_wide)
4282 {
4283 if ((unsigned long) segment->p_offset == segment->p_offset)
4284 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4285 else
4286 {
4287 print_vma (segment->p_offset, FULL_HEX);
4288 putchar (' ');
4289 }
4290
4291 print_vma (segment->p_vaddr, FULL_HEX);
4292 putchar (' ');
4293 print_vma (segment->p_paddr, FULL_HEX);
4294 putchar (' ');
4295
4296 if ((unsigned long) segment->p_filesz == segment->p_filesz)
4297 printf ("0x%6.6lx ", (unsigned long) segment->p_filesz);
4298 else
4299 {
4300 print_vma (segment->p_filesz, FULL_HEX);
4301 putchar (' ');
4302 }
4303
4304 if ((unsigned long) segment->p_memsz == segment->p_memsz)
4305 printf ("0x%6.6lx", (unsigned long) segment->p_memsz);
4306 else
4307 {
4308 print_vma (segment->p_memsz, FULL_HEX);
4309 }
4310
4311 printf (" %c%c%c ",
4312 (segment->p_flags & PF_R ? 'R' : ' '),
4313 (segment->p_flags & PF_W ? 'W' : ' '),
4314 (segment->p_flags & PF_X ? 'E' : ' '));
4315
4316 if ((unsigned long) segment->p_align == segment->p_align)
4317 printf ("%#lx", (unsigned long) segment->p_align);
4318 else
4319 {
4320 print_vma (segment->p_align, PREFIX_HEX);
4321 }
4322 }
4323 else
4324 {
4325 print_vma (segment->p_offset, FULL_HEX);
4326 putchar (' ');
4327 print_vma (segment->p_vaddr, FULL_HEX);
4328 putchar (' ');
4329 print_vma (segment->p_paddr, FULL_HEX);
4330 printf ("\n ");
4331 print_vma (segment->p_filesz, FULL_HEX);
4332 putchar (' ');
4333 print_vma (segment->p_memsz, FULL_HEX);
4334 printf (" %c%c%c ",
4335 (segment->p_flags & PF_R ? 'R' : ' '),
4336 (segment->p_flags & PF_W ? 'W' : ' '),
4337 (segment->p_flags & PF_X ? 'E' : ' '));
4338 print_vma (segment->p_align, HEX);
4339 }
4340 }
4341
4342 switch (segment->p_type)
4343 {
4344 case PT_DYNAMIC:
4345 if (dynamic_addr)
4346 error (_("more than one dynamic segment\n"));
4347
4348 /* By default, assume that the .dynamic section is the first
4349 section in the DYNAMIC segment. */
4350 dynamic_addr = segment->p_offset;
4351 dynamic_size = segment->p_filesz;
4352
4353 /* Try to locate the .dynamic section. If there is
4354 a section header table, we can easily locate it. */
4355 if (section_headers != NULL)
4356 {
4357 Elf_Internal_Shdr * sec;
4358
4359 sec = find_section (".dynamic");
4360 if (sec == NULL || sec->sh_size == 0)
4361 {
4362 /* A corresponding .dynamic section is expected, but on
4363 IA-64/OpenVMS it is OK for it to be missing. */
4364 if (!is_ia64_vms ())
4365 error (_("no .dynamic section in the dynamic segment\n"));
4366 break;
4367 }
4368
4369 if (sec->sh_type == SHT_NOBITS)
4370 {
4371 dynamic_size = 0;
4372 break;
4373 }
4374
4375 dynamic_addr = sec->sh_offset;
4376 dynamic_size = sec->sh_size;
4377
4378 if (dynamic_addr < segment->p_offset
4379 || dynamic_addr > segment->p_offset + segment->p_filesz)
4380 warn (_("the .dynamic section is not contained"
4381 " within the dynamic segment\n"));
4382 else if (dynamic_addr > segment->p_offset)
4383 warn (_("the .dynamic section is not the first section"
4384 " in the dynamic segment.\n"));
4385 }
4386 break;
4387
4388 case PT_INTERP:
4389 if (fseek (file, archive_file_offset + (long) segment->p_offset,
4390 SEEK_SET))
4391 error (_("Unable to find program interpreter name\n"));
4392 else
4393 {
4394 char fmt [32];
4395 int ret = snprintf (fmt, sizeof (fmt), "%%%ds", PATH_MAX);
4396
4397 if (ret >= (int) sizeof (fmt) || ret < 0)
4398 error (_("Internal error: failed to create format string to display program interpreter\n"));
4399
4400 program_interpreter[0] = 0;
4401 if (fscanf (file, fmt, program_interpreter) <= 0)
4402 error (_("Unable to read program interpreter name\n"));
4403
4404 if (do_segments)
4405 printf (_("\n [Requesting program interpreter: %s]"),
4406 program_interpreter);
4407 }
4408 break;
4409 }
4410
4411 if (do_segments)
4412 putc ('\n', stdout);
4413 }
4414
4415 if (do_segments && section_headers != NULL && string_table != NULL)
4416 {
4417 printf (_("\n Section to Segment mapping:\n"));
4418 printf (_(" Segment Sections...\n"));
4419
4420 for (i = 0; i < elf_header.e_phnum; i++)
4421 {
4422 unsigned int j;
4423 Elf_Internal_Shdr * section;
4424
4425 segment = program_headers + i;
4426 section = section_headers + 1;
4427
4428 printf (" %2.2d ", i);
4429
4430 for (j = 1; j < elf_header.e_shnum; j++, section++)
4431 {
4432 if (!ELF_TBSS_SPECIAL (section, segment)
4433 && ELF_SECTION_IN_SEGMENT_STRICT (section, segment))
4434 printf ("%s ", SECTION_NAME (section));
4435 }
4436
4437 putc ('\n',stdout);
4438 }
4439 }
4440
4441 return 1;
4442 }
4443
4444
4445 /* Find the file offset corresponding to VMA by using the program headers. */
4446
4447 static long
4448 offset_from_vma (FILE * file, bfd_vma vma, bfd_size_type size)
4449 {
4450 Elf_Internal_Phdr * seg;
4451
4452 if (! get_program_headers (file))
4453 {
4454 warn (_("Cannot interpret virtual addresses without program headers.\n"));
4455 return (long) vma;
4456 }
4457
4458 for (seg = program_headers;
4459 seg < program_headers + elf_header.e_phnum;
4460 ++seg)
4461 {
4462 if (seg->p_type != PT_LOAD)
4463 continue;
4464
4465 if (vma >= (seg->p_vaddr & -seg->p_align)
4466 && vma + size <= seg->p_vaddr + seg->p_filesz)
4467 return vma - seg->p_vaddr + seg->p_offset;
4468 }
4469
4470 warn (_("Virtual address 0x%lx not located in any PT_LOAD segment.\n"),
4471 (unsigned long) vma);
4472 return (long) vma;
4473 }
4474
4475
4476 static int
4477 get_32bit_section_headers (FILE * file, unsigned int num)
4478 {
4479 Elf32_External_Shdr * shdrs;
4480 Elf_Internal_Shdr * internal;
4481 unsigned int i;
4482
4483 shdrs = (Elf32_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
4484 elf_header.e_shentsize, num,
4485 _("section headers"));
4486 if (!shdrs)
4487 return 0;
4488
4489 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
4490 sizeof (Elf_Internal_Shdr));
4491
4492 if (section_headers == NULL)
4493 {
4494 error (_("Out of memory\n"));
4495 return 0;
4496 }
4497
4498 for (i = 0, internal = section_headers;
4499 i < num;
4500 i++, internal++)
4501 {
4502 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
4503 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
4504 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
4505 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
4506 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
4507 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
4508 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
4509 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
4510 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
4511 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
4512 }
4513
4514 free (shdrs);
4515
4516 return 1;
4517 }
4518
4519 static int
4520 get_64bit_section_headers (FILE * file, unsigned int num)
4521 {
4522 Elf64_External_Shdr * shdrs;
4523 Elf_Internal_Shdr * internal;
4524 unsigned int i;
4525
4526 shdrs = (Elf64_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
4527 elf_header.e_shentsize, num,
4528 _("section headers"));
4529 if (!shdrs)
4530 return 0;
4531
4532 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
4533 sizeof (Elf_Internal_Shdr));
4534
4535 if (section_headers == NULL)
4536 {
4537 error (_("Out of memory\n"));
4538 return 0;
4539 }
4540
4541 for (i = 0, internal = section_headers;
4542 i < num;
4543 i++, internal++)
4544 {
4545 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
4546 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
4547 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
4548 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
4549 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
4550 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
4551 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
4552 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
4553 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
4554 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
4555 }
4556
4557 free (shdrs);
4558
4559 return 1;
4560 }
4561
4562 static Elf_Internal_Sym *
4563 get_32bit_elf_symbols (FILE * file,
4564 Elf_Internal_Shdr * section,
4565 unsigned long * num_syms_return)
4566 {
4567 unsigned long number = 0;
4568 Elf32_External_Sym * esyms = NULL;
4569 Elf_External_Sym_Shndx * shndx = NULL;
4570 Elf_Internal_Sym * isyms = NULL;
4571 Elf_Internal_Sym * psym;
4572 unsigned int j;
4573
4574 /* Run some sanity checks first. */
4575 if (section->sh_entsize == 0)
4576 {
4577 error (_("sh_entsize is zero\n"));
4578 goto exit_point;
4579 }
4580
4581 number = section->sh_size / section->sh_entsize;
4582
4583 if (number * sizeof (Elf32_External_Sym) > section->sh_size + 1)
4584 {
4585 error (_("Invalid sh_entsize\n"));
4586 goto exit_point;
4587 }
4588
4589 esyms = (Elf32_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
4590 section->sh_size, _("symbols"));
4591 if (esyms == NULL)
4592 goto exit_point;
4593
4594 shndx = NULL;
4595 if (symtab_shndx_hdr != NULL
4596 && (symtab_shndx_hdr->sh_link
4597 == (unsigned long) (section - section_headers)))
4598 {
4599 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
4600 symtab_shndx_hdr->sh_offset,
4601 1, symtab_shndx_hdr->sh_size,
4602 _("symbol table section indicies"));
4603 if (shndx == NULL)
4604 goto exit_point;
4605 }
4606
4607 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
4608
4609 if (isyms == NULL)
4610 {
4611 error (_("Out of memory\n"));
4612 goto exit_point;
4613 }
4614
4615 for (j = 0, psym = isyms; j < number; j++, psym++)
4616 {
4617 psym->st_name = BYTE_GET (esyms[j].st_name);
4618 psym->st_value = BYTE_GET (esyms[j].st_value);
4619 psym->st_size = BYTE_GET (esyms[j].st_size);
4620 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
4621 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
4622 psym->st_shndx
4623 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
4624 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
4625 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
4626 psym->st_info = BYTE_GET (esyms[j].st_info);
4627 psym->st_other = BYTE_GET (esyms[j].st_other);
4628 }
4629
4630 exit_point:
4631 if (shndx != NULL)
4632 free (shndx);
4633 if (esyms != NULL)
4634 free (esyms);
4635
4636 if (num_syms_return != NULL)
4637 * num_syms_return = isyms == NULL ? 0 : number;
4638
4639 return isyms;
4640 }
4641
4642 static Elf_Internal_Sym *
4643 get_64bit_elf_symbols (FILE * file,
4644 Elf_Internal_Shdr * section,
4645 unsigned long * num_syms_return)
4646 {
4647 unsigned long number = 0;
4648 Elf64_External_Sym * esyms = NULL;
4649 Elf_External_Sym_Shndx * shndx = NULL;
4650 Elf_Internal_Sym * isyms = NULL;
4651 Elf_Internal_Sym * psym;
4652 unsigned int j;
4653
4654 /* Run some sanity checks first. */
4655 if (section->sh_entsize == 0)
4656 {
4657 error (_("sh_entsize is zero\n"));
4658 goto exit_point;
4659 }
4660
4661 number = section->sh_size / section->sh_entsize;
4662
4663 if (number * sizeof (Elf64_External_Sym) > section->sh_size + 1)
4664 {
4665 error (_("Invalid sh_entsize\n"));
4666 goto exit_point;
4667 }
4668
4669 esyms = (Elf64_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
4670 section->sh_size, _("symbols"));
4671 if (!esyms)
4672 goto exit_point;
4673
4674 if (symtab_shndx_hdr != NULL
4675 && (symtab_shndx_hdr->sh_link
4676 == (unsigned long) (section - section_headers)))
4677 {
4678 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
4679 symtab_shndx_hdr->sh_offset,
4680 1, symtab_shndx_hdr->sh_size,
4681 _("symbol table section indicies"));
4682 if (shndx == NULL)
4683 goto exit_point;
4684 }
4685
4686 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
4687
4688 if (isyms == NULL)
4689 {
4690 error (_("Out of memory\n"));
4691 goto exit_point;
4692 }
4693
4694 for (j = 0, psym = isyms; j < number; j++, psym++)
4695 {
4696 psym->st_name = BYTE_GET (esyms[j].st_name);
4697 psym->st_info = BYTE_GET (esyms[j].st_info);
4698 psym->st_other = BYTE_GET (esyms[j].st_other);
4699 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
4700
4701 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
4702 psym->st_shndx
4703 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
4704 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
4705 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
4706
4707 psym->st_value = BYTE_GET (esyms[j].st_value);
4708 psym->st_size = BYTE_GET (esyms[j].st_size);
4709 }
4710
4711 exit_point:
4712 if (shndx != NULL)
4713 free (shndx);
4714 if (esyms != NULL)
4715 free (esyms);
4716
4717 if (num_syms_return != NULL)
4718 * num_syms_return = isyms == NULL ? 0 : number;
4719
4720 return isyms;
4721 }
4722
4723 static const char *
4724 get_elf_section_flags (bfd_vma sh_flags)
4725 {
4726 static char buff[1024];
4727 char * p = buff;
4728 int field_size = is_32bit_elf ? 8 : 16;
4729 int sindex;
4730 int size = sizeof (buff) - (field_size + 4 + 1);
4731 bfd_vma os_flags = 0;
4732 bfd_vma proc_flags = 0;
4733 bfd_vma unknown_flags = 0;
4734 static const struct
4735 {
4736 const char * str;
4737 int len;
4738 }
4739 flags [] =
4740 {
4741 /* 0 */ { STRING_COMMA_LEN ("WRITE") },
4742 /* 1 */ { STRING_COMMA_LEN ("ALLOC") },
4743 /* 2 */ { STRING_COMMA_LEN ("EXEC") },
4744 /* 3 */ { STRING_COMMA_LEN ("MERGE") },
4745 /* 4 */ { STRING_COMMA_LEN ("STRINGS") },
4746 /* 5 */ { STRING_COMMA_LEN ("INFO LINK") },
4747 /* 6 */ { STRING_COMMA_LEN ("LINK ORDER") },
4748 /* 7 */ { STRING_COMMA_LEN ("OS NONCONF") },
4749 /* 8 */ { STRING_COMMA_LEN ("GROUP") },
4750 /* 9 */ { STRING_COMMA_LEN ("TLS") },
4751 /* IA-64 specific. */
4752 /* 10 */ { STRING_COMMA_LEN ("SHORT") },
4753 /* 11 */ { STRING_COMMA_LEN ("NORECOV") },
4754 /* IA-64 OpenVMS specific. */
4755 /* 12 */ { STRING_COMMA_LEN ("VMS_GLOBAL") },
4756 /* 13 */ { STRING_COMMA_LEN ("VMS_OVERLAID") },
4757 /* 14 */ { STRING_COMMA_LEN ("VMS_SHARED") },
4758 /* 15 */ { STRING_COMMA_LEN ("VMS_VECTOR") },
4759 /* 16 */ { STRING_COMMA_LEN ("VMS_ALLOC_64BIT") },
4760 /* 17 */ { STRING_COMMA_LEN ("VMS_PROTECTED") },
4761 /* Generic. */
4762 /* 18 */ { STRING_COMMA_LEN ("EXCLUDE") },
4763 /* SPARC specific. */
4764 /* 19 */ { STRING_COMMA_LEN ("ORDERED") }
4765 };
4766
4767 if (do_section_details)
4768 {
4769 sprintf (buff, "[%*.*lx]: ",
4770 field_size, field_size, (unsigned long) sh_flags);
4771 p += field_size + 4;
4772 }
4773
4774 while (sh_flags)
4775 {
4776 bfd_vma flag;
4777
4778 flag = sh_flags & - sh_flags;
4779 sh_flags &= ~ flag;
4780
4781 if (do_section_details)
4782 {
4783 switch (flag)
4784 {
4785 case SHF_WRITE: sindex = 0; break;
4786 case SHF_ALLOC: sindex = 1; break;
4787 case SHF_EXECINSTR: sindex = 2; break;
4788 case SHF_MERGE: sindex = 3; break;
4789 case SHF_STRINGS: sindex = 4; break;
4790 case SHF_INFO_LINK: sindex = 5; break;
4791 case SHF_LINK_ORDER: sindex = 6; break;
4792 case SHF_OS_NONCONFORMING: sindex = 7; break;
4793 case SHF_GROUP: sindex = 8; break;
4794 case SHF_TLS: sindex = 9; break;
4795 case SHF_EXCLUDE: sindex = 18; break;
4796
4797 default:
4798 sindex = -1;
4799 switch (elf_header.e_machine)
4800 {
4801 case EM_IA_64:
4802 if (flag == SHF_IA_64_SHORT)
4803 sindex = 10;
4804 else if (flag == SHF_IA_64_NORECOV)
4805 sindex = 11;
4806 #ifdef BFD64
4807 else if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
4808 switch (flag)
4809 {
4810 case SHF_IA_64_VMS_GLOBAL: sindex = 12; break;
4811 case SHF_IA_64_VMS_OVERLAID: sindex = 13; break;
4812 case SHF_IA_64_VMS_SHARED: sindex = 14; break;
4813 case SHF_IA_64_VMS_VECTOR: sindex = 15; break;
4814 case SHF_IA_64_VMS_ALLOC_64BIT: sindex = 16; break;
4815 case SHF_IA_64_VMS_PROTECTED: sindex = 17; break;
4816 default: break;
4817 }
4818 #endif
4819 break;
4820
4821 case EM_386:
4822 case EM_486:
4823 case EM_X86_64:
4824 case EM_L1OM:
4825 case EM_K1OM:
4826 case EM_OLD_SPARCV9:
4827 case EM_SPARC32PLUS:
4828 case EM_SPARCV9:
4829 case EM_SPARC:
4830 if (flag == SHF_ORDERED)
4831 sindex = 19;
4832 break;
4833 default:
4834 break;
4835 }
4836 }
4837
4838 if (sindex != -1)
4839 {
4840 if (p != buff + field_size + 4)
4841 {
4842 if (size < (10 + 2))
4843 abort ();
4844 size -= 2;
4845 *p++ = ',';
4846 *p++ = ' ';
4847 }
4848
4849 size -= flags [sindex].len;
4850 p = stpcpy (p, flags [sindex].str);
4851 }
4852 else if (flag & SHF_MASKOS)
4853 os_flags |= flag;
4854 else if (flag & SHF_MASKPROC)
4855 proc_flags |= flag;
4856 else
4857 unknown_flags |= flag;
4858 }
4859 else
4860 {
4861 switch (flag)
4862 {
4863 case SHF_WRITE: *p = 'W'; break;
4864 case SHF_ALLOC: *p = 'A'; break;
4865 case SHF_EXECINSTR: *p = 'X'; break;
4866 case SHF_MERGE: *p = 'M'; break;
4867 case SHF_STRINGS: *p = 'S'; break;
4868 case SHF_INFO_LINK: *p = 'I'; break;
4869 case SHF_LINK_ORDER: *p = 'L'; break;
4870 case SHF_OS_NONCONFORMING: *p = 'O'; break;
4871 case SHF_GROUP: *p = 'G'; break;
4872 case SHF_TLS: *p = 'T'; break;
4873 case SHF_EXCLUDE: *p = 'E'; break;
4874
4875 default:
4876 if ((elf_header.e_machine == EM_X86_64
4877 || elf_header.e_machine == EM_L1OM
4878 || elf_header.e_machine == EM_K1OM)
4879 && flag == SHF_X86_64_LARGE)
4880 *p = 'l';
4881 else if (flag & SHF_MASKOS)
4882 {
4883 *p = 'o';
4884 sh_flags &= ~ SHF_MASKOS;
4885 }
4886 else if (flag & SHF_MASKPROC)
4887 {
4888 *p = 'p';
4889 sh_flags &= ~ SHF_MASKPROC;
4890 }
4891 else
4892 *p = 'x';
4893 break;
4894 }
4895 p++;
4896 }
4897 }
4898
4899 if (do_section_details)
4900 {
4901 if (os_flags)
4902 {
4903 size -= 5 + field_size;
4904 if (p != buff + field_size + 4)
4905 {
4906 if (size < (2 + 1))
4907 abort ();
4908 size -= 2;
4909 *p++ = ',';
4910 *p++ = ' ';
4911 }
4912 sprintf (p, "OS (%*.*lx)", field_size, field_size,
4913 (unsigned long) os_flags);
4914 p += 5 + field_size;
4915 }
4916 if (proc_flags)
4917 {
4918 size -= 7 + field_size;
4919 if (p != buff + field_size + 4)
4920 {
4921 if (size < (2 + 1))
4922 abort ();
4923 size -= 2;
4924 *p++ = ',';
4925 *p++ = ' ';
4926 }
4927 sprintf (p, "PROC (%*.*lx)", field_size, field_size,
4928 (unsigned long) proc_flags);
4929 p += 7 + field_size;
4930 }
4931 if (unknown_flags)
4932 {
4933 size -= 10 + field_size;
4934 if (p != buff + field_size + 4)
4935 {
4936 if (size < (2 + 1))
4937 abort ();
4938 size -= 2;
4939 *p++ = ',';
4940 *p++ = ' ';
4941 }
4942 sprintf (p, _("UNKNOWN (%*.*lx)"), field_size, field_size,
4943 (unsigned long) unknown_flags);
4944 p += 10 + field_size;
4945 }
4946 }
4947
4948 *p = '\0';
4949 return buff;
4950 }
4951
4952 static int
4953 process_section_headers (FILE * file)
4954 {
4955 Elf_Internal_Shdr * section;
4956 unsigned int i;
4957
4958 section_headers = NULL;
4959
4960 if (elf_header.e_shnum == 0)
4961 {
4962 /* PR binutils/12467. */
4963 if (elf_header.e_shoff != 0)
4964 warn (_("possibly corrupt ELF file header - it has a non-zero"
4965 " section header offset, but no section headers\n"));
4966 else if (do_sections)
4967 printf (_("\nThere are no sections in this file.\n"));
4968
4969 return 1;
4970 }
4971
4972 if (do_sections && !do_header)
4973 printf (_("There are %d section headers, starting at offset 0x%lx:\n"),
4974 elf_header.e_shnum, (unsigned long) elf_header.e_shoff);
4975
4976 if (is_32bit_elf)
4977 {
4978 if (! get_32bit_section_headers (file, elf_header.e_shnum))
4979 return 0;
4980 }
4981 else if (! get_64bit_section_headers (file, elf_header.e_shnum))
4982 return 0;
4983
4984 /* Read in the string table, so that we have names to display. */
4985 if (elf_header.e_shstrndx != SHN_UNDEF
4986 && elf_header.e_shstrndx < elf_header.e_shnum)
4987 {
4988 section = section_headers + elf_header.e_shstrndx;
4989
4990 if (section->sh_size != 0)
4991 {
4992 string_table = (char *) get_data (NULL, file, section->sh_offset,
4993 1, section->sh_size,
4994 _("string table"));
4995
4996 string_table_length = string_table != NULL ? section->sh_size : 0;
4997 }
4998 }
4999
5000 /* Scan the sections for the dynamic symbol table
5001 and dynamic string table and debug sections. */
5002 dynamic_symbols = NULL;
5003 dynamic_strings = NULL;
5004 dynamic_syminfo = NULL;
5005 symtab_shndx_hdr = NULL;
5006
5007 eh_addr_size = is_32bit_elf ? 4 : 8;
5008 switch (elf_header.e_machine)
5009 {
5010 case EM_MIPS:
5011 case EM_MIPS_RS3_LE:
5012 /* The 64-bit MIPS EABI uses a combination of 32-bit ELF and 64-bit
5013 FDE addresses. However, the ABI also has a semi-official ILP32
5014 variant for which the normal FDE address size rules apply.
5015
5016 GCC 4.0 marks EABI64 objects with a dummy .gcc_compiled_longXX
5017 section, where XX is the size of longs in bits. Unfortunately,
5018 earlier compilers provided no way of distinguishing ILP32 objects
5019 from LP64 objects, so if there's any doubt, we should assume that
5020 the official LP64 form is being used. */
5021 if ((elf_header.e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64
5022 && find_section (".gcc_compiled_long32") == NULL)
5023 eh_addr_size = 8;
5024 break;
5025
5026 case EM_H8_300:
5027 case EM_H8_300H:
5028 switch (elf_header.e_flags & EF_H8_MACH)
5029 {
5030 case E_H8_MACH_H8300:
5031 case E_H8_MACH_H8300HN:
5032 case E_H8_MACH_H8300SN:
5033 case E_H8_MACH_H8300SXN:
5034 eh_addr_size = 2;
5035 break;
5036 case E_H8_MACH_H8300H:
5037 case E_H8_MACH_H8300S:
5038 case E_H8_MACH_H8300SX:
5039 eh_addr_size = 4;
5040 break;
5041 }
5042 break;
5043
5044 case EM_M32C_OLD:
5045 case EM_M32C:
5046 switch (elf_header.e_flags & EF_M32C_CPU_MASK)
5047 {
5048 case EF_M32C_CPU_M16C:
5049 eh_addr_size = 2;
5050 break;
5051 }
5052 break;
5053 }
5054
5055 #define CHECK_ENTSIZE_VALUES(section, i, size32, size64) \
5056 do \
5057 { \
5058 bfd_size_type expected_entsize = is_32bit_elf ? size32 : size64; \
5059 if (section->sh_entsize != expected_entsize) \
5060 { \
5061 error (_("Section %d has invalid sh_entsize of %" BFD_VMA_FMT "x\n"), \
5062 i, section->sh_entsize); \
5063 error (_("(Using the expected size of %d for the rest of this dump)\n"), \
5064 (int) expected_entsize); \
5065 section->sh_entsize = expected_entsize; \
5066 } \
5067 } \
5068 while (0)
5069
5070 #define CHECK_ENTSIZE(section, i, type) \
5071 CHECK_ENTSIZE_VALUES (section, i, sizeof (Elf32_External_##type), \
5072 sizeof (Elf64_External_##type))
5073
5074 for (i = 0, section = section_headers;
5075 i < elf_header.e_shnum;
5076 i++, section++)
5077 {
5078 char * name = SECTION_NAME (section);
5079
5080 if (section->sh_type == SHT_DYNSYM)
5081 {
5082 if (dynamic_symbols != NULL)
5083 {
5084 error (_("File contains multiple dynamic symbol tables\n"));
5085 continue;
5086 }
5087
5088 CHECK_ENTSIZE (section, i, Sym);
5089 dynamic_symbols = GET_ELF_SYMBOLS (file, section, & num_dynamic_syms);
5090 }
5091 else if (section->sh_type == SHT_STRTAB
5092 && streq (name, ".dynstr"))
5093 {
5094 if (dynamic_strings != NULL)
5095 {
5096 error (_("File contains multiple dynamic string tables\n"));
5097 continue;
5098 }
5099
5100 dynamic_strings = (char *) get_data (NULL, file, section->sh_offset,
5101 1, section->sh_size,
5102 _("dynamic strings"));
5103 dynamic_strings_length = dynamic_strings == NULL ? 0 : section->sh_size;
5104 }
5105 else if (section->sh_type == SHT_SYMTAB_SHNDX)
5106 {
5107 if (symtab_shndx_hdr != NULL)
5108 {
5109 error (_("File contains multiple symtab shndx tables\n"));
5110 continue;
5111 }
5112 symtab_shndx_hdr = section;
5113 }
5114 else if (section->sh_type == SHT_SYMTAB)
5115 CHECK_ENTSIZE (section, i, Sym);
5116 else if (section->sh_type == SHT_GROUP)
5117 CHECK_ENTSIZE_VALUES (section, i, GRP_ENTRY_SIZE, GRP_ENTRY_SIZE);
5118 else if (section->sh_type == SHT_REL)
5119 CHECK_ENTSIZE (section, i, Rel);
5120 else if (section->sh_type == SHT_RELA)
5121 CHECK_ENTSIZE (section, i, Rela);
5122 else if ((do_debugging || do_debug_info || do_debug_abbrevs
5123 || do_debug_lines || do_debug_pubnames || do_debug_pubtypes
5124 || do_debug_aranges || do_debug_frames || do_debug_macinfo
5125 || do_debug_str || do_debug_loc || do_debug_ranges
5126 || do_debug_addr || do_debug_cu_index)
5127 && (const_strneq (name, ".debug_")
5128 || const_strneq (name, ".zdebug_")))
5129 {
5130 if (name[1] == 'z')
5131 name += sizeof (".zdebug_") - 1;
5132 else
5133 name += sizeof (".debug_") - 1;
5134
5135 if (do_debugging
5136 || (do_debug_info && const_strneq (name, "info"))
5137 || (do_debug_info && const_strneq (name, "types"))
5138 || (do_debug_abbrevs && const_strneq (name, "abbrev"))
5139 || (do_debug_lines && strcmp (name, "line") == 0)
5140 || (do_debug_lines && const_strneq (name, "line."))
5141 || (do_debug_pubnames && const_strneq (name, "pubnames"))
5142 || (do_debug_pubtypes && const_strneq (name, "pubtypes"))
5143 || (do_debug_pubnames && const_strneq (name, "gnu_pubnames"))
5144 || (do_debug_pubtypes && const_strneq (name, "gnu_pubtypes"))
5145 || (do_debug_aranges && const_strneq (name, "aranges"))
5146 || (do_debug_ranges && const_strneq (name, "ranges"))
5147 || (do_debug_frames && const_strneq (name, "frame"))
5148 || (do_debug_macinfo && const_strneq (name, "macinfo"))
5149 || (do_debug_macinfo && const_strneq (name, "macro"))
5150 || (do_debug_str && const_strneq (name, "str"))
5151 || (do_debug_loc && const_strneq (name, "loc"))
5152 || (do_debug_addr && const_strneq (name, "addr"))
5153 || (do_debug_cu_index && const_strneq (name, "cu_index"))
5154 || (do_debug_cu_index && const_strneq (name, "tu_index"))
5155 )
5156 request_dump_bynumber (i, DEBUG_DUMP);
5157 }
5158 /* Linkonce section to be combined with .debug_info at link time. */
5159 else if ((do_debugging || do_debug_info)
5160 && const_strneq (name, ".gnu.linkonce.wi."))
5161 request_dump_bynumber (i, DEBUG_DUMP);
5162 else if (do_debug_frames && streq (name, ".eh_frame"))
5163 request_dump_bynumber (i, DEBUG_DUMP);
5164 else if (do_gdb_index && streq (name, ".gdb_index"))
5165 request_dump_bynumber (i, DEBUG_DUMP);
5166 /* Trace sections for Itanium VMS. */
5167 else if ((do_debugging || do_trace_info || do_trace_abbrevs
5168 || do_trace_aranges)
5169 && const_strneq (name, ".trace_"))
5170 {
5171 name += sizeof (".trace_") - 1;
5172
5173 if (do_debugging
5174 || (do_trace_info && streq (name, "info"))
5175 || (do_trace_abbrevs && streq (name, "abbrev"))
5176 || (do_trace_aranges && streq (name, "aranges"))
5177 )
5178 request_dump_bynumber (i, DEBUG_DUMP);
5179 }
5180
5181 }
5182
5183 if (! do_sections)
5184 return 1;
5185
5186 if (elf_header.e_shnum > 1)
5187 printf (_("\nSection Headers:\n"));
5188 else
5189 printf (_("\nSection Header:\n"));
5190
5191 if (is_32bit_elf)
5192 {
5193 if (do_section_details)
5194 {
5195 printf (_(" [Nr] Name\n"));
5196 printf (_(" Type Addr Off Size ES Lk Inf Al\n"));
5197 }
5198 else
5199 printf
5200 (_(" [Nr] Name Type Addr Off Size ES Flg Lk Inf Al\n"));
5201 }
5202 else if (do_wide)
5203 {
5204 if (do_section_details)
5205 {
5206 printf (_(" [Nr] Name\n"));
5207 printf (_(" Type Address Off Size ES Lk Inf Al\n"));
5208 }
5209 else
5210 printf
5211 (_(" [Nr] Name Type Address Off Size ES Flg Lk Inf Al\n"));
5212 }
5213 else
5214 {
5215 if (do_section_details)
5216 {
5217 printf (_(" [Nr] Name\n"));
5218 printf (_(" Type Address Offset Link\n"));
5219 printf (_(" Size EntSize Info Align\n"));
5220 }
5221 else
5222 {
5223 printf (_(" [Nr] Name Type Address Offset\n"));
5224 printf (_(" Size EntSize Flags Link Info Align\n"));
5225 }
5226 }
5227
5228 if (do_section_details)
5229 printf (_(" Flags\n"));
5230
5231 for (i = 0, section = section_headers;
5232 i < elf_header.e_shnum;
5233 i++, section++)
5234 {
5235 printf (" [%2u] ", i);
5236 if (do_section_details)
5237 {
5238 print_symbol (INT_MAX, SECTION_NAME (section));
5239 printf ("\n ");
5240 }
5241 else
5242 {
5243 print_symbol (-17, SECTION_NAME (section));
5244 }
5245
5246 printf (do_wide ? " %-15s " : " %-15.15s ",
5247 get_section_type_name (section->sh_type));
5248
5249 if (is_32bit_elf)
5250 {
5251 const char * link_too_big = NULL;
5252
5253 print_vma (section->sh_addr, LONG_HEX);
5254
5255 printf ( " %6.6lx %6.6lx %2.2lx",
5256 (unsigned long) section->sh_offset,
5257 (unsigned long) section->sh_size,
5258 (unsigned long) section->sh_entsize);
5259
5260 if (do_section_details)
5261 fputs (" ", stdout);
5262 else
5263 printf (" %3s ", get_elf_section_flags (section->sh_flags));
5264
5265 if (section->sh_link >= elf_header.e_shnum)
5266 {
5267 link_too_big = "";
5268 /* The sh_link value is out of range. Normally this indicates
5269 an error but it can have special values in Solaris binaries. */
5270 switch (elf_header.e_machine)
5271 {
5272 case EM_386:
5273 case EM_486:
5274 case EM_X86_64:
5275 case EM_L1OM:
5276 case EM_K1OM:
5277 case EM_OLD_SPARCV9:
5278 case EM_SPARC32PLUS:
5279 case EM_SPARCV9:
5280 case EM_SPARC:
5281 if (section->sh_link == (SHN_BEFORE & 0xffff))
5282 link_too_big = "BEFORE";
5283 else if (section->sh_link == (SHN_AFTER & 0xffff))
5284 link_too_big = "AFTER";
5285 break;
5286 default:
5287 break;
5288 }
5289 }
5290
5291 if (do_section_details)
5292 {
5293 if (link_too_big != NULL && * link_too_big)
5294 printf ("<%s> ", link_too_big);
5295 else
5296 printf ("%2u ", section->sh_link);
5297 printf ("%3u %2lu\n", section->sh_info,
5298 (unsigned long) section->sh_addralign);
5299 }
5300 else
5301 printf ("%2u %3u %2lu\n",
5302 section->sh_link,
5303 section->sh_info,
5304 (unsigned long) section->sh_addralign);
5305
5306 if (link_too_big && ! * link_too_big)
5307 warn (_("section %u: sh_link value of %u is larger than the number of sections\n"),
5308 i, section->sh_link);
5309 }
5310 else if (do_wide)
5311 {
5312 print_vma (section->sh_addr, LONG_HEX);
5313
5314 if ((long) section->sh_offset == section->sh_offset)
5315 printf (" %6.6lx", (unsigned long) section->sh_offset);
5316 else
5317 {
5318 putchar (' ');
5319 print_vma (section->sh_offset, LONG_HEX);
5320 }
5321
5322 if ((unsigned long) section->sh_size == section->sh_size)
5323 printf (" %6.6lx", (unsigned long) section->sh_size);
5324 else
5325 {
5326 putchar (' ');
5327 print_vma (section->sh_size, LONG_HEX);
5328 }
5329
5330 if ((unsigned long) section->sh_entsize == section->sh_entsize)
5331 printf (" %2.2lx", (unsigned long) section->sh_entsize);
5332 else
5333 {
5334 putchar (' ');
5335 print_vma (section->sh_entsize, LONG_HEX);
5336 }
5337
5338 if (do_section_details)
5339 fputs (" ", stdout);
5340 else
5341 printf (" %3s ", get_elf_section_flags (section->sh_flags));
5342
5343 printf ("%2u %3u ", section->sh_link, section->sh_info);
5344
5345 if ((unsigned long) section->sh_addralign == section->sh_addralign)
5346 printf ("%2lu\n", (unsigned long) section->sh_addralign);
5347 else
5348 {
5349 print_vma (section->sh_addralign, DEC);
5350 putchar ('\n');
5351 }
5352 }
5353 else if (do_section_details)
5354 {
5355 printf (" %-15.15s ",
5356 get_section_type_name (section->sh_type));
5357 print_vma (section->sh_addr, LONG_HEX);
5358 if ((long) section->sh_offset == section->sh_offset)
5359 printf (" %16.16lx", (unsigned long) section->sh_offset);
5360 else
5361 {
5362 printf (" ");
5363 print_vma (section->sh_offset, LONG_HEX);
5364 }
5365 printf (" %u\n ", section->sh_link);
5366 print_vma (section->sh_size, LONG_HEX);
5367 putchar (' ');
5368 print_vma (section->sh_entsize, LONG_HEX);
5369
5370 printf (" %-16u %lu\n",
5371 section->sh_info,
5372 (unsigned long) section->sh_addralign);
5373 }
5374 else
5375 {
5376 putchar (' ');
5377 print_vma (section->sh_addr, LONG_HEX);
5378 if ((long) section->sh_offset == section->sh_offset)
5379 printf (" %8.8lx", (unsigned long) section->sh_offset);
5380 else
5381 {
5382 printf (" ");
5383 print_vma (section->sh_offset, LONG_HEX);
5384 }
5385 printf ("\n ");
5386 print_vma (section->sh_size, LONG_HEX);
5387 printf (" ");
5388 print_vma (section->sh_entsize, LONG_HEX);
5389
5390 printf (" %3s ", get_elf_section_flags (section->sh_flags));
5391
5392 printf (" %2u %3u %lu\n",
5393 section->sh_link,
5394 section->sh_info,
5395 (unsigned long) section->sh_addralign);
5396 }
5397
5398 if (do_section_details)
5399 printf (" %s\n", get_elf_section_flags (section->sh_flags));
5400 }
5401
5402 if (!do_section_details)
5403 {
5404 if (elf_header.e_machine == EM_X86_64
5405 || elf_header.e_machine == EM_L1OM
5406 || elf_header.e_machine == EM_K1OM)
5407 printf (_("Key to Flags:\n\
5408 W (write), A (alloc), X (execute), M (merge), S (strings), l (large)\n\
5409 I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)\n\
5410 O (extra OS processing required) o (OS specific), p (processor specific)\n"));
5411 else
5412 printf (_("Key to Flags:\n\
5413 W (write), A (alloc), X (execute), M (merge), S (strings)\n\
5414 I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)\n\
5415 O (extra OS processing required) o (OS specific), p (processor specific)\n"));
5416 }
5417
5418 return 1;
5419 }
5420
5421 static const char *
5422 get_group_flags (unsigned int flags)
5423 {
5424 static char buff[32];
5425 switch (flags)
5426 {
5427 case 0:
5428 return "";
5429
5430 case GRP_COMDAT:
5431 return "COMDAT ";
5432
5433 default:
5434 snprintf (buff, sizeof (buff), _("[<unknown>: 0x%x] "), flags);
5435 break;
5436 }
5437 return buff;
5438 }
5439
5440 static int
5441 process_section_groups (FILE * file)
5442 {
5443 Elf_Internal_Shdr * section;
5444 unsigned int i;
5445 struct group * group;
5446 Elf_Internal_Shdr * symtab_sec;
5447 Elf_Internal_Shdr * strtab_sec;
5448 Elf_Internal_Sym * symtab;
5449 unsigned long num_syms;
5450 char * strtab;
5451 size_t strtab_size;
5452
5453 /* Don't process section groups unless needed. */
5454 if (!do_unwind && !do_section_groups)
5455 return 1;
5456
5457 if (elf_header.e_shnum == 0)
5458 {
5459 if (do_section_groups)
5460 printf (_("\nThere are no sections to group in this file.\n"));
5461
5462 return 1;
5463 }
5464
5465 if (section_headers == NULL)
5466 {
5467 error (_("Section headers are not available!\n"));
5468 /* PR 13622: This can happen with a corrupt ELF header. */
5469 return 0;
5470 }
5471
5472 section_headers_groups = (struct group **) calloc (elf_header.e_shnum,
5473 sizeof (struct group *));
5474
5475 if (section_headers_groups == NULL)
5476 {
5477 error (_("Out of memory\n"));
5478 return 0;
5479 }
5480
5481 /* Scan the sections for the group section. */
5482 group_count = 0;
5483 for (i = 0, section = section_headers;
5484 i < elf_header.e_shnum;
5485 i++, section++)
5486 if (section->sh_type == SHT_GROUP)
5487 group_count++;
5488
5489 if (group_count == 0)
5490 {
5491 if (do_section_groups)
5492 printf (_("\nThere are no section groups in this file.\n"));
5493
5494 return 1;
5495 }
5496
5497 section_groups = (struct group *) calloc (group_count, sizeof (struct group));
5498
5499 if (section_groups == NULL)
5500 {
5501 error (_("Out of memory\n"));
5502 return 0;
5503 }
5504
5505 symtab_sec = NULL;
5506 strtab_sec = NULL;
5507 symtab = NULL;
5508 num_syms = 0;
5509 strtab = NULL;
5510 strtab_size = 0;
5511 for (i = 0, section = section_headers, group = section_groups;
5512 i < elf_header.e_shnum;
5513 i++, section++)
5514 {
5515 if (section->sh_type == SHT_GROUP)
5516 {
5517 char * name = SECTION_NAME (section);
5518 char * group_name;
5519 unsigned char * start;
5520 unsigned char * indices;
5521 unsigned int entry, j, size;
5522 Elf_Internal_Shdr * sec;
5523 Elf_Internal_Sym * sym;
5524
5525 /* Get the symbol table. */
5526 if (section->sh_link >= elf_header.e_shnum
5527 || ((sec = section_headers + section->sh_link)->sh_type
5528 != SHT_SYMTAB))
5529 {
5530 error (_("Bad sh_link in group section `%s'\n"), name);
5531 continue;
5532 }
5533
5534 if (symtab_sec != sec)
5535 {
5536 symtab_sec = sec;
5537 if (symtab)
5538 free (symtab);
5539 symtab = GET_ELF_SYMBOLS (file, symtab_sec, & num_syms);
5540 }
5541
5542 if (symtab == NULL)
5543 {
5544 error (_("Corrupt header in group section `%s'\n"), name);
5545 continue;
5546 }
5547
5548 if (section->sh_info >= num_syms)
5549 {
5550 error (_("Bad sh_info in group section `%s'\n"), name);
5551 continue;
5552 }
5553
5554 sym = symtab + section->sh_info;
5555
5556 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5557 {
5558 if (sym->st_shndx == 0
5559 || sym->st_shndx >= elf_header.e_shnum)
5560 {
5561 error (_("Bad sh_info in group section `%s'\n"), name);
5562 continue;
5563 }
5564
5565 group_name = SECTION_NAME (section_headers + sym->st_shndx);
5566 strtab_sec = NULL;
5567 if (strtab)
5568 free (strtab);
5569 strtab = NULL;
5570 strtab_size = 0;
5571 }
5572 else
5573 {
5574 /* Get the string table. */
5575 if (symtab_sec->sh_link >= elf_header.e_shnum)
5576 {
5577 strtab_sec = NULL;
5578 if (strtab)
5579 free (strtab);
5580 strtab = NULL;
5581 strtab_size = 0;
5582 }
5583 else if (strtab_sec
5584 != (sec = section_headers + symtab_sec->sh_link))
5585 {
5586 strtab_sec = sec;
5587 if (strtab)
5588 free (strtab);
5589 strtab = (char *) get_data (NULL, file, strtab_sec->sh_offset,
5590 1, strtab_sec->sh_size,
5591 _("string table"));
5592 strtab_size = strtab != NULL ? strtab_sec->sh_size : 0;
5593 }
5594 group_name = sym->st_name < strtab_size
5595 ? strtab + sym->st_name : _("<corrupt>");
5596 }
5597
5598 start = (unsigned char *) get_data (NULL, file, section->sh_offset,
5599 1, section->sh_size,
5600 _("section data"));
5601 if (start == NULL)
5602 continue;
5603
5604 indices = start;
5605 size = (section->sh_size / section->sh_entsize) - 1;
5606 entry = byte_get (indices, 4);
5607 indices += 4;
5608
5609 if (do_section_groups)
5610 {
5611 printf (_("\n%sgroup section [%5u] `%s' [%s] contains %u sections:\n"),
5612 get_group_flags (entry), i, name, group_name, size);
5613
5614 printf (_(" [Index] Name\n"));
5615 }
5616
5617 group->group_index = i;
5618
5619 for (j = 0; j < size; j++)
5620 {
5621 struct group_list * g;
5622
5623 entry = byte_get (indices, 4);
5624 indices += 4;
5625
5626 if (entry >= elf_header.e_shnum)
5627 {
5628 error (_("section [%5u] in group section [%5u] > maximum section [%5u]\n"),
5629 entry, i, elf_header.e_shnum - 1);
5630 continue;
5631 }
5632
5633 if (section_headers_groups [entry] != NULL)
5634 {
5635 if (entry)
5636 {
5637 error (_("section [%5u] in group section [%5u] already in group section [%5u]\n"),
5638 entry, i,
5639 section_headers_groups [entry]->group_index);
5640 continue;
5641 }
5642 else
5643 {
5644 /* Intel C/C++ compiler may put section 0 in a
5645 section group. We just warn it the first time
5646 and ignore it afterwards. */
5647 static int warned = 0;
5648 if (!warned)
5649 {
5650 error (_("section 0 in group section [%5u]\n"),
5651 section_headers_groups [entry]->group_index);
5652 warned++;
5653 }
5654 }
5655 }
5656
5657 section_headers_groups [entry] = group;
5658
5659 if (do_section_groups)
5660 {
5661 sec = section_headers + entry;
5662 printf (" [%5u] %s\n", entry, SECTION_NAME (sec));
5663 }
5664
5665 g = (struct group_list *) xmalloc (sizeof (struct group_list));
5666 g->section_index = entry;
5667 g->next = group->root;
5668 group->root = g;
5669 }
5670
5671 if (start)
5672 free (start);
5673
5674 group++;
5675 }
5676 }
5677
5678 if (symtab)
5679 free (symtab);
5680 if (strtab)
5681 free (strtab);
5682 return 1;
5683 }
5684
5685 /* Data used to display dynamic fixups. */
5686
5687 struct ia64_vms_dynfixup
5688 {
5689 bfd_vma needed_ident; /* Library ident number. */
5690 bfd_vma needed; /* Index in the dstrtab of the library name. */
5691 bfd_vma fixup_needed; /* Index of the library. */
5692 bfd_vma fixup_rela_cnt; /* Number of fixups. */
5693 bfd_vma fixup_rela_off; /* Fixups offset in the dynamic segment. */
5694 };
5695
5696 /* Data used to display dynamic relocations. */
5697
5698 struct ia64_vms_dynimgrela
5699 {
5700 bfd_vma img_rela_cnt; /* Number of relocations. */
5701 bfd_vma img_rela_off; /* Reloc offset in the dynamic segment. */
5702 };
5703
5704 /* Display IA-64 OpenVMS dynamic fixups (used to dynamically link a shared
5705 library). */
5706
5707 static void
5708 dump_ia64_vms_dynamic_fixups (FILE *file, struct ia64_vms_dynfixup *fixup,
5709 const char *strtab, unsigned int strtab_sz)
5710 {
5711 Elf64_External_VMS_IMAGE_FIXUP *imfs;
5712 long i;
5713 const char *lib_name;
5714
5715 imfs = get_data (NULL, file, dynamic_addr + fixup->fixup_rela_off,
5716 1, fixup->fixup_rela_cnt * sizeof (*imfs),
5717 _("dynamic section image fixups"));
5718 if (!imfs)
5719 return;
5720
5721 if (fixup->needed < strtab_sz)
5722 lib_name = strtab + fixup->needed;
5723 else
5724 {
5725 warn ("corrupt library name index of 0x%lx found in dynamic entry",
5726 (unsigned long) fixup->needed);
5727 lib_name = "???";
5728 }
5729 printf (_("\nImage fixups for needed library #%d: %s - ident: %lx\n"),
5730 (int) fixup->fixup_needed, lib_name, (long) fixup->needed_ident);
5731 printf
5732 (_("Seg Offset Type SymVec DataType\n"));
5733
5734 for (i = 0; i < (long) fixup->fixup_rela_cnt; i++)
5735 {
5736 unsigned int type;
5737 const char *rtype;
5738
5739 printf ("%3u ", (unsigned) BYTE_GET (imfs [i].fixup_seg));
5740 printf_vma ((bfd_vma) BYTE_GET (imfs [i].fixup_offset));
5741 type = BYTE_GET (imfs [i].type);
5742 rtype = elf_ia64_reloc_type (type);
5743 if (rtype == NULL)
5744 printf (" 0x%08x ", type);
5745 else
5746 printf (" %-32s ", rtype);
5747 printf ("%6u ", (unsigned) BYTE_GET (imfs [i].symvec_index));
5748 printf ("0x%08x\n", (unsigned) BYTE_GET (imfs [i].data_type));
5749 }
5750
5751 free (imfs);
5752 }
5753
5754 /* Display IA-64 OpenVMS dynamic relocations (used to relocate an image). */
5755
5756 static void
5757 dump_ia64_vms_dynamic_relocs (FILE *file, struct ia64_vms_dynimgrela *imgrela)
5758 {
5759 Elf64_External_VMS_IMAGE_RELA *imrs;
5760 long i;
5761
5762 imrs = get_data (NULL, file, dynamic_addr + imgrela->img_rela_off,
5763 1, imgrela->img_rela_cnt * sizeof (*imrs),
5764 _("dynamic section image relocations"));
5765 if (!imrs)
5766 return;
5767
5768 printf (_("\nImage relocs\n"));
5769 printf
5770 (_("Seg Offset Type Addend Seg Sym Off\n"));
5771
5772 for (i = 0; i < (long) imgrela->img_rela_cnt; i++)
5773 {
5774 unsigned int type;
5775 const char *rtype;
5776
5777 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].rela_seg));
5778 printf ("%08" BFD_VMA_FMT "x ",
5779 (bfd_vma) BYTE_GET (imrs [i].rela_offset));
5780 type = BYTE_GET (imrs [i].type);
5781 rtype = elf_ia64_reloc_type (type);
5782 if (rtype == NULL)
5783 printf ("0x%08x ", type);
5784 else
5785 printf ("%-31s ", rtype);
5786 print_vma (BYTE_GET (imrs [i].addend), FULL_HEX);
5787 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].sym_seg));
5788 printf ("%08" BFD_VMA_FMT "x\n",
5789 (bfd_vma) BYTE_GET (imrs [i].sym_offset));
5790 }
5791
5792 free (imrs);
5793 }
5794
5795 /* Display IA-64 OpenVMS dynamic relocations and fixups. */
5796
5797 static int
5798 process_ia64_vms_dynamic_relocs (FILE *file)
5799 {
5800 struct ia64_vms_dynfixup fixup;
5801 struct ia64_vms_dynimgrela imgrela;
5802 Elf_Internal_Dyn *entry;
5803 int res = 0;
5804 bfd_vma strtab_off = 0;
5805 bfd_vma strtab_sz = 0;
5806 char *strtab = NULL;
5807
5808 memset (&fixup, 0, sizeof (fixup));
5809 memset (&imgrela, 0, sizeof (imgrela));
5810
5811 /* Note: the order of the entries is specified by the OpenVMS specs. */
5812 for (entry = dynamic_section;
5813 entry < dynamic_section + dynamic_nent;
5814 entry++)
5815 {
5816 switch (entry->d_tag)
5817 {
5818 case DT_IA_64_VMS_STRTAB_OFFSET:
5819 strtab_off = entry->d_un.d_val;
5820 break;
5821 case DT_STRSZ:
5822 strtab_sz = entry->d_un.d_val;
5823 if (strtab == NULL)
5824 strtab = get_data (NULL, file, dynamic_addr + strtab_off,
5825 1, strtab_sz, _("dynamic string section"));
5826 break;
5827
5828 case DT_IA_64_VMS_NEEDED_IDENT:
5829 fixup.needed_ident = entry->d_un.d_val;
5830 break;
5831 case DT_NEEDED:
5832 fixup.needed = entry->d_un.d_val;
5833 break;
5834 case DT_IA_64_VMS_FIXUP_NEEDED:
5835 fixup.fixup_needed = entry->d_un.d_val;
5836 break;
5837 case DT_IA_64_VMS_FIXUP_RELA_CNT:
5838 fixup.fixup_rela_cnt = entry->d_un.d_val;
5839 break;
5840 case DT_IA_64_VMS_FIXUP_RELA_OFF:
5841 fixup.fixup_rela_off = entry->d_un.d_val;
5842 res++;
5843 dump_ia64_vms_dynamic_fixups (file, &fixup, strtab, strtab_sz);
5844 break;
5845
5846 case DT_IA_64_VMS_IMG_RELA_CNT:
5847 imgrela.img_rela_cnt = entry->d_un.d_val;
5848 break;
5849 case DT_IA_64_VMS_IMG_RELA_OFF:
5850 imgrela.img_rela_off = entry->d_un.d_val;
5851 res++;
5852 dump_ia64_vms_dynamic_relocs (file, &imgrela);
5853 break;
5854
5855 default:
5856 break;
5857 }
5858 }
5859
5860 if (strtab != NULL)
5861 free (strtab);
5862
5863 return res;
5864 }
5865
5866 static struct
5867 {
5868 const char * name;
5869 int reloc;
5870 int size;
5871 int rela;
5872 } dynamic_relocations [] =
5873 {
5874 { "REL", DT_REL, DT_RELSZ, FALSE },
5875 { "RELA", DT_RELA, DT_RELASZ, TRUE },
5876 { "PLT", DT_JMPREL, DT_PLTRELSZ, UNKNOWN }
5877 };
5878
5879 /* Process the reloc section. */
5880
5881 static int
5882 process_relocs (FILE * file)
5883 {
5884 unsigned long rel_size;
5885 unsigned long rel_offset;
5886
5887
5888 if (!do_reloc)
5889 return 1;
5890
5891 if (do_using_dynamic)
5892 {
5893 int is_rela;
5894 const char * name;
5895 int has_dynamic_reloc;
5896 unsigned int i;
5897
5898 has_dynamic_reloc = 0;
5899
5900 for (i = 0; i < ARRAY_SIZE (dynamic_relocations); i++)
5901 {
5902 is_rela = dynamic_relocations [i].rela;
5903 name = dynamic_relocations [i].name;
5904 rel_size = dynamic_info [dynamic_relocations [i].size];
5905 rel_offset = dynamic_info [dynamic_relocations [i].reloc];
5906
5907 has_dynamic_reloc |= rel_size;
5908
5909 if (is_rela == UNKNOWN)
5910 {
5911 if (dynamic_relocations [i].reloc == DT_JMPREL)
5912 switch (dynamic_info[DT_PLTREL])
5913 {
5914 case DT_REL:
5915 is_rela = FALSE;
5916 break;
5917 case DT_RELA:
5918 is_rela = TRUE;
5919 break;
5920 }
5921 }
5922
5923 if (rel_size)
5924 {
5925 printf
5926 (_("\n'%s' relocation section at offset 0x%lx contains %ld bytes:\n"),
5927 name, rel_offset, rel_size);
5928
5929 dump_relocations (file,
5930 offset_from_vma (file, rel_offset, rel_size),
5931 rel_size,
5932 dynamic_symbols, num_dynamic_syms,
5933 dynamic_strings, dynamic_strings_length, is_rela);
5934 }
5935 }
5936
5937 if (is_ia64_vms ())
5938 has_dynamic_reloc |= process_ia64_vms_dynamic_relocs (file);
5939
5940 if (! has_dynamic_reloc)
5941 printf (_("\nThere are no dynamic relocations in this file.\n"));
5942 }
5943 else
5944 {
5945 Elf_Internal_Shdr * section;
5946 unsigned long i;
5947 int found = 0;
5948
5949 for (i = 0, section = section_headers;
5950 i < elf_header.e_shnum;
5951 i++, section++)
5952 {
5953 if ( section->sh_type != SHT_RELA
5954 && section->sh_type != SHT_REL)
5955 continue;
5956
5957 rel_offset = section->sh_offset;
5958 rel_size = section->sh_size;
5959
5960 if (rel_size)
5961 {
5962 Elf_Internal_Shdr * strsec;
5963 int is_rela;
5964
5965 printf (_("\nRelocation section "));
5966
5967 if (string_table == NULL)
5968 printf ("%d", section->sh_name);
5969 else
5970 printf ("'%s'", SECTION_NAME (section));
5971
5972 printf (_(" at offset 0x%lx contains %lu entries:\n"),
5973 rel_offset, (unsigned long) (rel_size / section->sh_entsize));
5974
5975 is_rela = section->sh_type == SHT_RELA;
5976
5977 if (section->sh_link != 0
5978 && section->sh_link < elf_header.e_shnum)
5979 {
5980 Elf_Internal_Shdr * symsec;
5981 Elf_Internal_Sym * symtab;
5982 unsigned long nsyms;
5983 unsigned long strtablen = 0;
5984 char * strtab = NULL;
5985
5986 symsec = section_headers + section->sh_link;
5987 if (symsec->sh_type != SHT_SYMTAB
5988 && symsec->sh_type != SHT_DYNSYM)
5989 continue;
5990
5991 symtab = GET_ELF_SYMBOLS (file, symsec, & nsyms);
5992
5993 if (symtab == NULL)
5994 continue;
5995
5996 if (symsec->sh_link != 0
5997 && symsec->sh_link < elf_header.e_shnum)
5998 {
5999 strsec = section_headers + symsec->sh_link;
6000
6001 strtab = (char *) get_data (NULL, file, strsec->sh_offset,
6002 1, strsec->sh_size,
6003 _("string table"));
6004 strtablen = strtab == NULL ? 0 : strsec->sh_size;
6005 }
6006
6007 dump_relocations (file, rel_offset, rel_size,
6008 symtab, nsyms, strtab, strtablen, is_rela);
6009 if (strtab)
6010 free (strtab);
6011 free (symtab);
6012 }
6013 else
6014 dump_relocations (file, rel_offset, rel_size,
6015 NULL, 0, NULL, 0, is_rela);
6016
6017 found = 1;
6018 }
6019 }
6020
6021 if (! found)
6022 printf (_("\nThere are no relocations in this file.\n"));
6023 }
6024
6025 return 1;
6026 }
6027
6028 /* Process the unwind section. */
6029
6030 #include "unwind-ia64.h"
6031
6032 /* An absolute address consists of a section and an offset. If the
6033 section is NULL, the offset itself is the address, otherwise, the
6034 address equals to LOAD_ADDRESS(section) + offset. */
6035
6036 struct absaddr
6037 {
6038 unsigned short section;
6039 bfd_vma offset;
6040 };
6041
6042 #define ABSADDR(a) \
6043 ((a).section \
6044 ? section_headers [(a).section].sh_addr + (a).offset \
6045 : (a).offset)
6046
6047 struct ia64_unw_table_entry
6048 {
6049 struct absaddr start;
6050 struct absaddr end;
6051 struct absaddr info;
6052 };
6053
6054 struct ia64_unw_aux_info
6055 {
6056
6057 struct ia64_unw_table_entry *table; /* Unwind table. */
6058 unsigned long table_len; /* Length of unwind table. */
6059 unsigned char * info; /* Unwind info. */
6060 unsigned long info_size; /* Size of unwind info. */
6061 bfd_vma info_addr; /* starting address of unwind info. */
6062 bfd_vma seg_base; /* Starting address of segment. */
6063 Elf_Internal_Sym * symtab; /* The symbol table. */
6064 unsigned long nsyms; /* Number of symbols. */
6065 char * strtab; /* The string table. */
6066 unsigned long strtab_size; /* Size of string table. */
6067 };
6068
6069 static void
6070 find_symbol_for_address (Elf_Internal_Sym * symtab,
6071 unsigned long nsyms,
6072 const char * strtab,
6073 unsigned long strtab_size,
6074 struct absaddr addr,
6075 const char ** symname,
6076 bfd_vma * offset)
6077 {
6078 bfd_vma dist = 0x100000;
6079 Elf_Internal_Sym * sym;
6080 Elf_Internal_Sym * best = NULL;
6081 unsigned long i;
6082
6083 REMOVE_ARCH_BITS (addr.offset);
6084
6085 for (i = 0, sym = symtab; i < nsyms; ++i, ++sym)
6086 {
6087 bfd_vma value = sym->st_value;
6088
6089 REMOVE_ARCH_BITS (value);
6090
6091 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC
6092 && sym->st_name != 0
6093 && (addr.section == SHN_UNDEF || addr.section == sym->st_shndx)
6094 && addr.offset >= value
6095 && addr.offset - value < dist)
6096 {
6097 best = sym;
6098 dist = addr.offset - value;
6099 if (!dist)
6100 break;
6101 }
6102 }
6103
6104 if (best)
6105 {
6106 *symname = (best->st_name >= strtab_size
6107 ? _("<corrupt>") : strtab + best->st_name);
6108 *offset = dist;
6109 return;
6110 }
6111
6112 *symname = NULL;
6113 *offset = addr.offset;
6114 }
6115
6116 static void
6117 dump_ia64_unwind (struct ia64_unw_aux_info * aux)
6118 {
6119 struct ia64_unw_table_entry * tp;
6120 int in_body;
6121
6122 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
6123 {
6124 bfd_vma stamp;
6125 bfd_vma offset;
6126 const unsigned char * dp;
6127 const unsigned char * head;
6128 const char * procname;
6129
6130 find_symbol_for_address (aux->symtab, aux->nsyms, aux->strtab,
6131 aux->strtab_size, tp->start, &procname, &offset);
6132
6133 fputs ("\n<", stdout);
6134
6135 if (procname)
6136 {
6137 fputs (procname, stdout);
6138
6139 if (offset)
6140 printf ("+%lx", (unsigned long) offset);
6141 }
6142
6143 fputs (">: [", stdout);
6144 print_vma (tp->start.offset, PREFIX_HEX);
6145 fputc ('-', stdout);
6146 print_vma (tp->end.offset, PREFIX_HEX);
6147 printf ("], info at +0x%lx\n",
6148 (unsigned long) (tp->info.offset - aux->seg_base));
6149
6150 head = aux->info + (ABSADDR (tp->info) - aux->info_addr);
6151 stamp = byte_get ((unsigned char *) head, sizeof (stamp));
6152
6153 printf (" v%u, flags=0x%lx (%s%s), len=%lu bytes\n",
6154 (unsigned) UNW_VER (stamp),
6155 (unsigned long) ((stamp & UNW_FLAG_MASK) >> 32),
6156 UNW_FLAG_EHANDLER (stamp) ? " ehandler" : "",
6157 UNW_FLAG_UHANDLER (stamp) ? " uhandler" : "",
6158 (unsigned long) (eh_addr_size * UNW_LENGTH (stamp)));
6159
6160 if (UNW_VER (stamp) != 1)
6161 {
6162 printf (_("\tUnknown version.\n"));
6163 continue;
6164 }
6165
6166 in_body = 0;
6167 for (dp = head + 8; dp < head + 8 + eh_addr_size * UNW_LENGTH (stamp);)
6168 dp = unw_decode (dp, in_body, & in_body);
6169 }
6170 }
6171
6172 static int
6173 slurp_ia64_unwind_table (FILE * file,
6174 struct ia64_unw_aux_info * aux,
6175 Elf_Internal_Shdr * sec)
6176 {
6177 unsigned long size, nrelas, i;
6178 Elf_Internal_Phdr * seg;
6179 struct ia64_unw_table_entry * tep;
6180 Elf_Internal_Shdr * relsec;
6181 Elf_Internal_Rela * rela;
6182 Elf_Internal_Rela * rp;
6183 unsigned char * table;
6184 unsigned char * tp;
6185 Elf_Internal_Sym * sym;
6186 const char * relname;
6187
6188 /* First, find the starting address of the segment that includes
6189 this section: */
6190
6191 if (elf_header.e_phnum)
6192 {
6193 if (! get_program_headers (file))
6194 return 0;
6195
6196 for (seg = program_headers;
6197 seg < program_headers + elf_header.e_phnum;
6198 ++seg)
6199 {
6200 if (seg->p_type != PT_LOAD)
6201 continue;
6202
6203 if (sec->sh_addr >= seg->p_vaddr
6204 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
6205 {
6206 aux->seg_base = seg->p_vaddr;
6207 break;
6208 }
6209 }
6210 }
6211
6212 /* Second, build the unwind table from the contents of the unwind section: */
6213 size = sec->sh_size;
6214 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
6215 _("unwind table"));
6216 if (!table)
6217 return 0;
6218
6219 aux->table = (struct ia64_unw_table_entry *)
6220 xcmalloc (size / (3 * eh_addr_size), sizeof (aux->table[0]));
6221 tep = aux->table;
6222 for (tp = table; tp < table + size; ++tep)
6223 {
6224 tep->start.section = SHN_UNDEF;
6225 tep->end.section = SHN_UNDEF;
6226 tep->info.section = SHN_UNDEF;
6227 tep->start.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
6228 tep->end.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
6229 tep->info.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
6230 tep->start.offset += aux->seg_base;
6231 tep->end.offset += aux->seg_base;
6232 tep->info.offset += aux->seg_base;
6233 }
6234 free (table);
6235
6236 /* Third, apply any relocations to the unwind table: */
6237 for (relsec = section_headers;
6238 relsec < section_headers + elf_header.e_shnum;
6239 ++relsec)
6240 {
6241 if (relsec->sh_type != SHT_RELA
6242 || relsec->sh_info >= elf_header.e_shnum
6243 || section_headers + relsec->sh_info != sec)
6244 continue;
6245
6246 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
6247 & rela, & nrelas))
6248 return 0;
6249
6250 for (rp = rela; rp < rela + nrelas; ++rp)
6251 {
6252 relname = elf_ia64_reloc_type (get_reloc_type (rp->r_info));
6253 sym = aux->symtab + get_reloc_symindex (rp->r_info);
6254
6255 if (! const_strneq (relname, "R_IA64_SEGREL"))
6256 {
6257 warn (_("Skipping unexpected relocation type %s\n"), relname);
6258 continue;
6259 }
6260
6261 i = rp->r_offset / (3 * eh_addr_size);
6262
6263 switch (rp->r_offset/eh_addr_size % 3)
6264 {
6265 case 0:
6266 aux->table[i].start.section = sym->st_shndx;
6267 aux->table[i].start.offset = rp->r_addend + sym->st_value;
6268 break;
6269 case 1:
6270 aux->table[i].end.section = sym->st_shndx;
6271 aux->table[i].end.offset = rp->r_addend + sym->st_value;
6272 break;
6273 case 2:
6274 aux->table[i].info.section = sym->st_shndx;
6275 aux->table[i].info.offset = rp->r_addend + sym->st_value;
6276 break;
6277 default:
6278 break;
6279 }
6280 }
6281
6282 free (rela);
6283 }
6284
6285 aux->table_len = size / (3 * eh_addr_size);
6286 return 1;
6287 }
6288
6289 static void
6290 ia64_process_unwind (FILE * file)
6291 {
6292 Elf_Internal_Shdr * sec;
6293 Elf_Internal_Shdr * unwsec = NULL;
6294 Elf_Internal_Shdr * strsec;
6295 unsigned long i, unwcount = 0, unwstart = 0;
6296 struct ia64_unw_aux_info aux;
6297
6298 memset (& aux, 0, sizeof (aux));
6299
6300 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
6301 {
6302 if (sec->sh_type == SHT_SYMTAB
6303 && sec->sh_link < elf_header.e_shnum)
6304 {
6305 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
6306
6307 strsec = section_headers + sec->sh_link;
6308 assert (aux.strtab == NULL);
6309 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
6310 1, strsec->sh_size,
6311 _("string table"));
6312 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
6313 }
6314 else if (sec->sh_type == SHT_IA_64_UNWIND)
6315 unwcount++;
6316 }
6317
6318 if (!unwcount)
6319 printf (_("\nThere are no unwind sections in this file.\n"));
6320
6321 while (unwcount-- > 0)
6322 {
6323 char * suffix;
6324 size_t len, len2;
6325
6326 for (i = unwstart, sec = section_headers + unwstart;
6327 i < elf_header.e_shnum; ++i, ++sec)
6328 if (sec->sh_type == SHT_IA_64_UNWIND)
6329 {
6330 unwsec = sec;
6331 break;
6332 }
6333
6334 unwstart = i + 1;
6335 len = sizeof (ELF_STRING_ia64_unwind_once) - 1;
6336
6337 if ((unwsec->sh_flags & SHF_GROUP) != 0)
6338 {
6339 /* We need to find which section group it is in. */
6340 struct group_list * g = section_headers_groups [i]->root;
6341
6342 for (; g != NULL; g = g->next)
6343 {
6344 sec = section_headers + g->section_index;
6345
6346 if (streq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info))
6347 break;
6348 }
6349
6350 if (g == NULL)
6351 i = elf_header.e_shnum;
6352 }
6353 else if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind_once, len))
6354 {
6355 /* .gnu.linkonce.ia64unw.FOO -> .gnu.linkonce.ia64unwi.FOO. */
6356 len2 = sizeof (ELF_STRING_ia64_unwind_info_once) - 1;
6357 suffix = SECTION_NAME (unwsec) + len;
6358 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
6359 ++i, ++sec)
6360 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info_once, len2)
6361 && streq (SECTION_NAME (sec) + len2, suffix))
6362 break;
6363 }
6364 else
6365 {
6366 /* .IA_64.unwindFOO -> .IA_64.unwind_infoFOO
6367 .IA_64.unwind or BAR -> .IA_64.unwind_info. */
6368 len = sizeof (ELF_STRING_ia64_unwind) - 1;
6369 len2 = sizeof (ELF_STRING_ia64_unwind_info) - 1;
6370 suffix = "";
6371 if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind, len))
6372 suffix = SECTION_NAME (unwsec) + len;
6373 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
6374 ++i, ++sec)
6375 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info, len2)
6376 && streq (SECTION_NAME (sec) + len2, suffix))
6377 break;
6378 }
6379
6380 if (i == elf_header.e_shnum)
6381 {
6382 printf (_("\nCould not find unwind info section for "));
6383
6384 if (string_table == NULL)
6385 printf ("%d", unwsec->sh_name);
6386 else
6387 printf (_("'%s'"), SECTION_NAME (unwsec));
6388 }
6389 else
6390 {
6391 aux.info_addr = sec->sh_addr;
6392 aux.info = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1,
6393 sec->sh_size,
6394 _("unwind info"));
6395 aux.info_size = aux.info == NULL ? 0 : sec->sh_size;
6396
6397 printf (_("\nUnwind section "));
6398
6399 if (string_table == NULL)
6400 printf ("%d", unwsec->sh_name);
6401 else
6402 printf (_("'%s'"), SECTION_NAME (unwsec));
6403
6404 printf (_(" at offset 0x%lx contains %lu entries:\n"),
6405 (unsigned long) unwsec->sh_offset,
6406 (unsigned long) (unwsec->sh_size / (3 * eh_addr_size)));
6407
6408 (void) slurp_ia64_unwind_table (file, & aux, unwsec);
6409
6410 if (aux.table_len > 0)
6411 dump_ia64_unwind (& aux);
6412
6413 if (aux.table)
6414 free ((char *) aux.table);
6415 if (aux.info)
6416 free ((char *) aux.info);
6417 aux.table = NULL;
6418 aux.info = NULL;
6419 }
6420 }
6421
6422 if (aux.symtab)
6423 free (aux.symtab);
6424 if (aux.strtab)
6425 free ((char *) aux.strtab);
6426 }
6427
6428 struct hppa_unw_table_entry
6429 {
6430 struct absaddr start;
6431 struct absaddr end;
6432 unsigned int Cannot_unwind:1; /* 0 */
6433 unsigned int Millicode:1; /* 1 */
6434 unsigned int Millicode_save_sr0:1; /* 2 */
6435 unsigned int Region_description:2; /* 3..4 */
6436 unsigned int reserved1:1; /* 5 */
6437 unsigned int Entry_SR:1; /* 6 */
6438 unsigned int Entry_FR:4; /* number saved */ /* 7..10 */
6439 unsigned int Entry_GR:5; /* number saved */ /* 11..15 */
6440 unsigned int Args_stored:1; /* 16 */
6441 unsigned int Variable_Frame:1; /* 17 */
6442 unsigned int Separate_Package_Body:1; /* 18 */
6443 unsigned int Frame_Extension_Millicode:1; /* 19 */
6444 unsigned int Stack_Overflow_Check:1; /* 20 */
6445 unsigned int Two_Instruction_SP_Increment:1; /* 21 */
6446 unsigned int Ada_Region:1; /* 22 */
6447 unsigned int cxx_info:1; /* 23 */
6448 unsigned int cxx_try_catch:1; /* 24 */
6449 unsigned int sched_entry_seq:1; /* 25 */
6450 unsigned int reserved2:1; /* 26 */
6451 unsigned int Save_SP:1; /* 27 */
6452 unsigned int Save_RP:1; /* 28 */
6453 unsigned int Save_MRP_in_frame:1; /* 29 */
6454 unsigned int extn_ptr_defined:1; /* 30 */
6455 unsigned int Cleanup_defined:1; /* 31 */
6456
6457 unsigned int MPE_XL_interrupt_marker:1; /* 0 */
6458 unsigned int HP_UX_interrupt_marker:1; /* 1 */
6459 unsigned int Large_frame:1; /* 2 */
6460 unsigned int Pseudo_SP_Set:1; /* 3 */
6461 unsigned int reserved4:1; /* 4 */
6462 unsigned int Total_frame_size:27; /* 5..31 */
6463 };
6464
6465 struct hppa_unw_aux_info
6466 {
6467 struct hppa_unw_table_entry *table; /* Unwind table. */
6468 unsigned long table_len; /* Length of unwind table. */
6469 bfd_vma seg_base; /* Starting address of segment. */
6470 Elf_Internal_Sym * symtab; /* The symbol table. */
6471 unsigned long nsyms; /* Number of symbols. */
6472 char * strtab; /* The string table. */
6473 unsigned long strtab_size; /* Size of string table. */
6474 };
6475
6476 static void
6477 dump_hppa_unwind (struct hppa_unw_aux_info * aux)
6478 {
6479 struct hppa_unw_table_entry * tp;
6480
6481 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
6482 {
6483 bfd_vma offset;
6484 const char * procname;
6485
6486 find_symbol_for_address (aux->symtab, aux->nsyms, aux->strtab,
6487 aux->strtab_size, tp->start, &procname,
6488 &offset);
6489
6490 fputs ("\n<", stdout);
6491
6492 if (procname)
6493 {
6494 fputs (procname, stdout);
6495
6496 if (offset)
6497 printf ("+%lx", (unsigned long) offset);
6498 }
6499
6500 fputs (">: [", stdout);
6501 print_vma (tp->start.offset, PREFIX_HEX);
6502 fputc ('-', stdout);
6503 print_vma (tp->end.offset, PREFIX_HEX);
6504 printf ("]\n\t");
6505
6506 #define PF(_m) if (tp->_m) printf (#_m " ");
6507 #define PV(_m) if (tp->_m) printf (#_m "=%d ", tp->_m);
6508 PF(Cannot_unwind);
6509 PF(Millicode);
6510 PF(Millicode_save_sr0);
6511 /* PV(Region_description); */
6512 PF(Entry_SR);
6513 PV(Entry_FR);
6514 PV(Entry_GR);
6515 PF(Args_stored);
6516 PF(Variable_Frame);
6517 PF(Separate_Package_Body);
6518 PF(Frame_Extension_Millicode);
6519 PF(Stack_Overflow_Check);
6520 PF(Two_Instruction_SP_Increment);
6521 PF(Ada_Region);
6522 PF(cxx_info);
6523 PF(cxx_try_catch);
6524 PF(sched_entry_seq);
6525 PF(Save_SP);
6526 PF(Save_RP);
6527 PF(Save_MRP_in_frame);
6528 PF(extn_ptr_defined);
6529 PF(Cleanup_defined);
6530 PF(MPE_XL_interrupt_marker);
6531 PF(HP_UX_interrupt_marker);
6532 PF(Large_frame);
6533 PF(Pseudo_SP_Set);
6534 PV(Total_frame_size);
6535 #undef PF
6536 #undef PV
6537 }
6538
6539 printf ("\n");
6540 }
6541
6542 static int
6543 slurp_hppa_unwind_table (FILE * file,
6544 struct hppa_unw_aux_info * aux,
6545 Elf_Internal_Shdr * sec)
6546 {
6547 unsigned long size, unw_ent_size, nentries, nrelas, i;
6548 Elf_Internal_Phdr * seg;
6549 struct hppa_unw_table_entry * tep;
6550 Elf_Internal_Shdr * relsec;
6551 Elf_Internal_Rela * rela;
6552 Elf_Internal_Rela * rp;
6553 unsigned char * table;
6554 unsigned char * tp;
6555 Elf_Internal_Sym * sym;
6556 const char * relname;
6557
6558 /* First, find the starting address of the segment that includes
6559 this section. */
6560
6561 if (elf_header.e_phnum)
6562 {
6563 if (! get_program_headers (file))
6564 return 0;
6565
6566 for (seg = program_headers;
6567 seg < program_headers + elf_header.e_phnum;
6568 ++seg)
6569 {
6570 if (seg->p_type != PT_LOAD)
6571 continue;
6572
6573 if (sec->sh_addr >= seg->p_vaddr
6574 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
6575 {
6576 aux->seg_base = seg->p_vaddr;
6577 break;
6578 }
6579 }
6580 }
6581
6582 /* Second, build the unwind table from the contents of the unwind
6583 section. */
6584 size = sec->sh_size;
6585 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
6586 _("unwind table"));
6587 if (!table)
6588 return 0;
6589
6590 unw_ent_size = 16;
6591 nentries = size / unw_ent_size;
6592 size = unw_ent_size * nentries;
6593
6594 tep = aux->table = (struct hppa_unw_table_entry *)
6595 xcmalloc (nentries, sizeof (aux->table[0]));
6596
6597 for (tp = table; tp < table + size; tp += unw_ent_size, ++tep)
6598 {
6599 unsigned int tmp1, tmp2;
6600
6601 tep->start.section = SHN_UNDEF;
6602 tep->end.section = SHN_UNDEF;
6603
6604 tep->start.offset = byte_get ((unsigned char *) tp + 0, 4);
6605 tep->end.offset = byte_get ((unsigned char *) tp + 4, 4);
6606 tmp1 = byte_get ((unsigned char *) tp + 8, 4);
6607 tmp2 = byte_get ((unsigned char *) tp + 12, 4);
6608
6609 tep->start.offset += aux->seg_base;
6610 tep->end.offset += aux->seg_base;
6611
6612 tep->Cannot_unwind = (tmp1 >> 31) & 0x1;
6613 tep->Millicode = (tmp1 >> 30) & 0x1;
6614 tep->Millicode_save_sr0 = (tmp1 >> 29) & 0x1;
6615 tep->Region_description = (tmp1 >> 27) & 0x3;
6616 tep->reserved1 = (tmp1 >> 26) & 0x1;
6617 tep->Entry_SR = (tmp1 >> 25) & 0x1;
6618 tep->Entry_FR = (tmp1 >> 21) & 0xf;
6619 tep->Entry_GR = (tmp1 >> 16) & 0x1f;
6620 tep->Args_stored = (tmp1 >> 15) & 0x1;
6621 tep->Variable_Frame = (tmp1 >> 14) & 0x1;
6622 tep->Separate_Package_Body = (tmp1 >> 13) & 0x1;
6623 tep->Frame_Extension_Millicode = (tmp1 >> 12) & 0x1;
6624 tep->Stack_Overflow_Check = (tmp1 >> 11) & 0x1;
6625 tep->Two_Instruction_SP_Increment = (tmp1 >> 10) & 0x1;
6626 tep->Ada_Region = (tmp1 >> 9) & 0x1;
6627 tep->cxx_info = (tmp1 >> 8) & 0x1;
6628 tep->cxx_try_catch = (tmp1 >> 7) & 0x1;
6629 tep->sched_entry_seq = (tmp1 >> 6) & 0x1;
6630 tep->reserved2 = (tmp1 >> 5) & 0x1;
6631 tep->Save_SP = (tmp1 >> 4) & 0x1;
6632 tep->Save_RP = (tmp1 >> 3) & 0x1;
6633 tep->Save_MRP_in_frame = (tmp1 >> 2) & 0x1;
6634 tep->extn_ptr_defined = (tmp1 >> 1) & 0x1;
6635 tep->Cleanup_defined = tmp1 & 0x1;
6636
6637 tep->MPE_XL_interrupt_marker = (tmp2 >> 31) & 0x1;
6638 tep->HP_UX_interrupt_marker = (tmp2 >> 30) & 0x1;
6639 tep->Large_frame = (tmp2 >> 29) & 0x1;
6640 tep->Pseudo_SP_Set = (tmp2 >> 28) & 0x1;
6641 tep->reserved4 = (tmp2 >> 27) & 0x1;
6642 tep->Total_frame_size = tmp2 & 0x7ffffff;
6643 }
6644 free (table);
6645
6646 /* Third, apply any relocations to the unwind table. */
6647 for (relsec = section_headers;
6648 relsec < section_headers + elf_header.e_shnum;
6649 ++relsec)
6650 {
6651 if (relsec->sh_type != SHT_RELA
6652 || relsec->sh_info >= elf_header.e_shnum
6653 || section_headers + relsec->sh_info != sec)
6654 continue;
6655
6656 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
6657 & rela, & nrelas))
6658 return 0;
6659
6660 for (rp = rela; rp < rela + nrelas; ++rp)
6661 {
6662 relname = elf_hppa_reloc_type (get_reloc_type (rp->r_info));
6663 sym = aux->symtab + get_reloc_symindex (rp->r_info);
6664
6665 /* R_PARISC_SEGREL32 or R_PARISC_SEGREL64. */
6666 if (! const_strneq (relname, "R_PARISC_SEGREL"))
6667 {
6668 warn (_("Skipping unexpected relocation type %s\n"), relname);
6669 continue;
6670 }
6671
6672 i = rp->r_offset / unw_ent_size;
6673
6674 switch ((rp->r_offset % unw_ent_size) / eh_addr_size)
6675 {
6676 case 0:
6677 aux->table[i].start.section = sym->st_shndx;
6678 aux->table[i].start.offset = sym->st_value + rp->r_addend;
6679 break;
6680 case 1:
6681 aux->table[i].end.section = sym->st_shndx;
6682 aux->table[i].end.offset = sym->st_value + rp->r_addend;
6683 break;
6684 default:
6685 break;
6686 }
6687 }
6688
6689 free (rela);
6690 }
6691
6692 aux->table_len = nentries;
6693
6694 return 1;
6695 }
6696
6697 static void
6698 hppa_process_unwind (FILE * file)
6699 {
6700 struct hppa_unw_aux_info aux;
6701 Elf_Internal_Shdr * unwsec = NULL;
6702 Elf_Internal_Shdr * strsec;
6703 Elf_Internal_Shdr * sec;
6704 unsigned long i;
6705
6706 if (string_table == NULL)
6707 return;
6708
6709 memset (& aux, 0, sizeof (aux));
6710
6711 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
6712 {
6713 if (sec->sh_type == SHT_SYMTAB
6714 && sec->sh_link < elf_header.e_shnum)
6715 {
6716 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
6717
6718 strsec = section_headers + sec->sh_link;
6719 assert (aux.strtab == NULL);
6720 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
6721 1, strsec->sh_size,
6722 _("string table"));
6723 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
6724 }
6725 else if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
6726 unwsec = sec;
6727 }
6728
6729 if (!unwsec)
6730 printf (_("\nThere are no unwind sections in this file.\n"));
6731
6732 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
6733 {
6734 if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
6735 {
6736 printf (_("\nUnwind section "));
6737 printf (_("'%s'"), SECTION_NAME (sec));
6738
6739 printf (_(" at offset 0x%lx contains %lu entries:\n"),
6740 (unsigned long) sec->sh_offset,
6741 (unsigned long) (sec->sh_size / (2 * eh_addr_size + 8)));
6742
6743 slurp_hppa_unwind_table (file, &aux, sec);
6744 if (aux.table_len > 0)
6745 dump_hppa_unwind (&aux);
6746
6747 if (aux.table)
6748 free ((char *) aux.table);
6749 aux.table = NULL;
6750 }
6751 }
6752
6753 if (aux.symtab)
6754 free (aux.symtab);
6755 if (aux.strtab)
6756 free ((char *) aux.strtab);
6757 }
6758
6759 struct arm_section
6760 {
6761 unsigned char * data; /* The unwind data. */
6762 Elf_Internal_Shdr * sec; /* The cached unwind section header. */
6763 Elf_Internal_Rela * rela; /* The cached relocations for this section. */
6764 unsigned long nrelas; /* The number of relocations. */
6765 unsigned int rel_type; /* REL or RELA ? */
6766 Elf_Internal_Rela * next_rela; /* Cyclic pointer to the next reloc to process. */
6767 };
6768
6769 struct arm_unw_aux_info
6770 {
6771 FILE * file; /* The file containing the unwind sections. */
6772 Elf_Internal_Sym * symtab; /* The file's symbol table. */
6773 unsigned long nsyms; /* Number of symbols. */
6774 char * strtab; /* The file's string table. */
6775 unsigned long strtab_size; /* Size of string table. */
6776 };
6777
6778 static const char *
6779 arm_print_vma_and_name (struct arm_unw_aux_info *aux,
6780 bfd_vma fn, struct absaddr addr)
6781 {
6782 const char *procname;
6783 bfd_vma sym_offset;
6784
6785 if (addr.section == SHN_UNDEF)
6786 addr.offset = fn;
6787
6788 find_symbol_for_address (aux->symtab, aux->nsyms, aux->strtab,
6789 aux->strtab_size, addr, &procname,
6790 &sym_offset);
6791
6792 print_vma (fn, PREFIX_HEX);
6793
6794 if (procname)
6795 {
6796 fputs (" <", stdout);
6797 fputs (procname, stdout);
6798
6799 if (sym_offset)
6800 printf ("+0x%lx", (unsigned long) sym_offset);
6801 fputc ('>', stdout);
6802 }
6803
6804 return procname;
6805 }
6806
6807 static void
6808 arm_free_section (struct arm_section *arm_sec)
6809 {
6810 if (arm_sec->data != NULL)
6811 free (arm_sec->data);
6812
6813 if (arm_sec->rela != NULL)
6814 free (arm_sec->rela);
6815 }
6816
6817 /* 1) If SEC does not match the one cached in ARM_SEC, then free the current
6818 cached section and install SEC instead.
6819 2) Locate the 32-bit word at WORD_OFFSET in unwind section SEC
6820 and return its valued in * WORDP, relocating if necessary.
6821 3) Update the NEXT_RELA field in ARM_SEC and store the section index and
6822 relocation's offset in ADDR.
6823 4) If SYM_NAME is non-NULL and a relocation was applied, record the offset
6824 into the string table of the symbol associated with the reloc. If no
6825 reloc was applied store -1 there.
6826 5) Return TRUE upon success, FALSE otherwise. */
6827
6828 static bfd_boolean
6829 get_unwind_section_word (struct arm_unw_aux_info * aux,
6830 struct arm_section * arm_sec,
6831 Elf_Internal_Shdr * sec,
6832 bfd_vma word_offset,
6833 unsigned int * wordp,
6834 struct absaddr * addr,
6835 bfd_vma * sym_name)
6836 {
6837 Elf_Internal_Rela *rp;
6838 Elf_Internal_Sym *sym;
6839 const char * relname;
6840 unsigned int word;
6841 bfd_boolean wrapped;
6842
6843 addr->section = SHN_UNDEF;
6844 addr->offset = 0;
6845
6846 if (sym_name != NULL)
6847 *sym_name = (bfd_vma) -1;
6848
6849 /* If necessary, update the section cache. */
6850 if (sec != arm_sec->sec)
6851 {
6852 Elf_Internal_Shdr *relsec;
6853
6854 arm_free_section (arm_sec);
6855
6856 arm_sec->sec = sec;
6857 arm_sec->data = get_data (NULL, aux->file, sec->sh_offset, 1,
6858 sec->sh_size, _("unwind data"));
6859 arm_sec->rela = NULL;
6860 arm_sec->nrelas = 0;
6861
6862 for (relsec = section_headers;
6863 relsec < section_headers + elf_header.e_shnum;
6864 ++relsec)
6865 {
6866 if (relsec->sh_info >= elf_header.e_shnum
6867 || section_headers + relsec->sh_info != sec
6868 /* PR 15745: Check the section type as well. */
6869 || (relsec->sh_type != SHT_REL
6870 && relsec->sh_type != SHT_RELA))
6871 continue;
6872
6873 arm_sec->rel_type = relsec->sh_type;
6874 if (relsec->sh_type == SHT_REL)
6875 {
6876 if (!slurp_rel_relocs (aux->file, relsec->sh_offset,
6877 relsec->sh_size,
6878 & arm_sec->rela, & arm_sec->nrelas))
6879 return FALSE;
6880 }
6881 else /* relsec->sh_type == SHT_RELA */
6882 {
6883 if (!slurp_rela_relocs (aux->file, relsec->sh_offset,
6884 relsec->sh_size,
6885 & arm_sec->rela, & arm_sec->nrelas))
6886 return FALSE;
6887 }
6888 break;
6889 }
6890
6891 arm_sec->next_rela = arm_sec->rela;
6892 }
6893
6894 /* If there is no unwind data we can do nothing. */
6895 if (arm_sec->data == NULL)
6896 return FALSE;
6897
6898 /* Get the word at the required offset. */
6899 word = byte_get (arm_sec->data + word_offset, 4);
6900
6901 /* Look through the relocs to find the one that applies to the provided offset. */
6902 wrapped = FALSE;
6903 for (rp = arm_sec->next_rela; rp != arm_sec->rela + arm_sec->nrelas; rp++)
6904 {
6905 bfd_vma prelval, offset;
6906
6907 if (rp->r_offset > word_offset && !wrapped)
6908 {
6909 rp = arm_sec->rela;
6910 wrapped = TRUE;
6911 }
6912 if (rp->r_offset > word_offset)
6913 break;
6914
6915 if (rp->r_offset & 3)
6916 {
6917 warn (_("Skipping unexpected relocation at offset 0x%lx\n"),
6918 (unsigned long) rp->r_offset);
6919 continue;
6920 }
6921
6922 if (rp->r_offset < word_offset)
6923 continue;
6924
6925 sym = aux->symtab + ELF32_R_SYM (rp->r_info);
6926
6927 if (arm_sec->rel_type == SHT_REL)
6928 {
6929 offset = word & 0x7fffffff;
6930 if (offset & 0x40000000)
6931 offset |= ~ (bfd_vma) 0x7fffffff;
6932 }
6933 else if (arm_sec->rel_type == SHT_RELA)
6934 offset = rp->r_addend;
6935 else
6936 abort ();
6937
6938 offset += sym->st_value;
6939 prelval = offset - (arm_sec->sec->sh_addr + rp->r_offset);
6940
6941 /* Check that we are processing the expected reloc type. */
6942 if (elf_header.e_machine == EM_ARM)
6943 {
6944 relname = elf_arm_reloc_type (ELF32_R_TYPE (rp->r_info));
6945
6946 if (streq (relname, "R_ARM_NONE"))
6947 continue;
6948
6949 if (! streq (relname, "R_ARM_PREL31"))
6950 {
6951 warn (_("Skipping unexpected relocation type %s\n"), relname);
6952 continue;
6953 }
6954 }
6955 else if (elf_header.e_machine == EM_TI_C6000)
6956 {
6957 relname = elf_tic6x_reloc_type (ELF32_R_TYPE (rp->r_info));
6958
6959 if (streq (relname, "R_C6000_NONE"))
6960 continue;
6961
6962 if (! streq (relname, "R_C6000_PREL31"))
6963 {
6964 warn (_("Skipping unexpected relocation type %s\n"), relname);
6965 continue;
6966 }
6967
6968 prelval >>= 1;
6969 }
6970 else
6971 /* This function currently only supports ARM and TI unwinders. */
6972 abort ();
6973
6974 word = (word & ~ (bfd_vma) 0x7fffffff) | (prelval & 0x7fffffff);
6975 addr->section = sym->st_shndx;
6976 addr->offset = offset;
6977 if (sym_name)
6978 * sym_name = sym->st_name;
6979 break;
6980 }
6981
6982 *wordp = word;
6983 arm_sec->next_rela = rp;
6984
6985 return TRUE;
6986 }
6987
6988 static const char *tic6x_unwind_regnames[16] =
6989 {
6990 "A15", "B15", "B14", "B13", "B12", "B11", "B10", "B3",
6991 "A14", "A13", "A12", "A11", "A10",
6992 "[invalid reg 13]", "[invalid reg 14]", "[invalid reg 15]"
6993 };
6994
6995 static void
6996 decode_tic6x_unwind_regmask (unsigned int mask)
6997 {
6998 int i;
6999
7000 for (i = 12; mask; mask >>= 1, i--)
7001 {
7002 if (mask & 1)
7003 {
7004 fputs (tic6x_unwind_regnames[i], stdout);
7005 if (mask > 1)
7006 fputs (", ", stdout);
7007 }
7008 }
7009 }
7010
7011 #define ADVANCE \
7012 if (remaining == 0 && more_words) \
7013 { \
7014 data_offset += 4; \
7015 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, \
7016 data_offset, & word, & addr, NULL)) \
7017 return; \
7018 remaining = 4; \
7019 more_words--; \
7020 } \
7021
7022 #define GET_OP(OP) \
7023 ADVANCE; \
7024 if (remaining) \
7025 { \
7026 remaining--; \
7027 (OP) = word >> 24; \
7028 word <<= 8; \
7029 } \
7030 else \
7031 { \
7032 printf (_("[Truncated opcode]\n")); \
7033 return; \
7034 } \
7035 printf ("0x%02x ", OP)
7036
7037 static void
7038 decode_arm_unwind_bytecode (struct arm_unw_aux_info *aux,
7039 unsigned int word, unsigned int remaining,
7040 unsigned int more_words,
7041 bfd_vma data_offset, Elf_Internal_Shdr *data_sec,
7042 struct arm_section *data_arm_sec)
7043 {
7044 struct absaddr addr;
7045
7046 /* Decode the unwinding instructions. */
7047 while (1)
7048 {
7049 unsigned int op, op2;
7050
7051 ADVANCE;
7052 if (remaining == 0)
7053 break;
7054 remaining--;
7055 op = word >> 24;
7056 word <<= 8;
7057
7058 printf (" 0x%02x ", op);
7059
7060 if ((op & 0xc0) == 0x00)
7061 {
7062 int offset = ((op & 0x3f) << 2) + 4;
7063
7064 printf (" vsp = vsp + %d", offset);
7065 }
7066 else if ((op & 0xc0) == 0x40)
7067 {
7068 int offset = ((op & 0x3f) << 2) + 4;
7069
7070 printf (" vsp = vsp - %d", offset);
7071 }
7072 else if ((op & 0xf0) == 0x80)
7073 {
7074 GET_OP (op2);
7075 if (op == 0x80 && op2 == 0)
7076 printf (_("Refuse to unwind"));
7077 else
7078 {
7079 unsigned int mask = ((op & 0x0f) << 8) | op2;
7080 int first = 1;
7081 int i;
7082
7083 printf ("pop {");
7084 for (i = 0; i < 12; i++)
7085 if (mask & (1 << i))
7086 {
7087 if (first)
7088 first = 0;
7089 else
7090 printf (", ");
7091 printf ("r%d", 4 + i);
7092 }
7093 printf ("}");
7094 }
7095 }
7096 else if ((op & 0xf0) == 0x90)
7097 {
7098 if (op == 0x9d || op == 0x9f)
7099 printf (_(" [Reserved]"));
7100 else
7101 printf (" vsp = r%d", op & 0x0f);
7102 }
7103 else if ((op & 0xf0) == 0xa0)
7104 {
7105 int end = 4 + (op & 0x07);
7106 int first = 1;
7107 int i;
7108
7109 printf (" pop {");
7110 for (i = 4; i <= end; i++)
7111 {
7112 if (first)
7113 first = 0;
7114 else
7115 printf (", ");
7116 printf ("r%d", i);
7117 }
7118 if (op & 0x08)
7119 {
7120 if (!first)
7121 printf (", ");
7122 printf ("r14");
7123 }
7124 printf ("}");
7125 }
7126 else if (op == 0xb0)
7127 printf (_(" finish"));
7128 else if (op == 0xb1)
7129 {
7130 GET_OP (op2);
7131 if (op2 == 0 || (op2 & 0xf0) != 0)
7132 printf (_("[Spare]"));
7133 else
7134 {
7135 unsigned int mask = op2 & 0x0f;
7136 int first = 1;
7137 int i;
7138
7139 printf ("pop {");
7140 for (i = 0; i < 12; i++)
7141 if (mask & (1 << i))
7142 {
7143 if (first)
7144 first = 0;
7145 else
7146 printf (", ");
7147 printf ("r%d", i);
7148 }
7149 printf ("}");
7150 }
7151 }
7152 else if (op == 0xb2)
7153 {
7154 unsigned char buf[9];
7155 unsigned int i, len;
7156 unsigned long offset;
7157
7158 for (i = 0; i < sizeof (buf); i++)
7159 {
7160 GET_OP (buf[i]);
7161 if ((buf[i] & 0x80) == 0)
7162 break;
7163 }
7164 assert (i < sizeof (buf));
7165 offset = read_uleb128 (buf, &len, buf + i + 1);
7166 assert (len == i + 1);
7167 offset = offset * 4 + 0x204;
7168 printf ("vsp = vsp + %ld", offset);
7169 }
7170 else if (op == 0xb3 || op == 0xc8 || op == 0xc9)
7171 {
7172 unsigned int first, last;
7173
7174 GET_OP (op2);
7175 first = op2 >> 4;
7176 last = op2 & 0x0f;
7177 if (op == 0xc8)
7178 first = first + 16;
7179 printf ("pop {D%d", first);
7180 if (last)
7181 printf ("-D%d", first + last);
7182 printf ("}");
7183 }
7184 else if ((op & 0xf8) == 0xb8 || (op & 0xf8) == 0xd0)
7185 {
7186 unsigned int count = op & 0x07;
7187
7188 printf ("pop {D8");
7189 if (count)
7190 printf ("-D%d", 8 + count);
7191 printf ("}");
7192 }
7193 else if (op >= 0xc0 && op <= 0xc5)
7194 {
7195 unsigned int count = op & 0x07;
7196
7197 printf (" pop {wR10");
7198 if (count)
7199 printf ("-wR%d", 10 + count);
7200 printf ("}");
7201 }
7202 else if (op == 0xc6)
7203 {
7204 unsigned int first, last;
7205
7206 GET_OP (op2);
7207 first = op2 >> 4;
7208 last = op2 & 0x0f;
7209 printf ("pop {wR%d", first);
7210 if (last)
7211 printf ("-wR%d", first + last);
7212 printf ("}");
7213 }
7214 else if (op == 0xc7)
7215 {
7216 GET_OP (op2);
7217 if (op2 == 0 || (op2 & 0xf0) != 0)
7218 printf (_("[Spare]"));
7219 else
7220 {
7221 unsigned int mask = op2 & 0x0f;
7222 int first = 1;
7223 int i;
7224
7225 printf ("pop {");
7226 for (i = 0; i < 4; i++)
7227 if (mask & (1 << i))
7228 {
7229 if (first)
7230 first = 0;
7231 else
7232 printf (", ");
7233 printf ("wCGR%d", i);
7234 }
7235 printf ("}");
7236 }
7237 }
7238 else
7239 printf (_(" [unsupported opcode]"));
7240 printf ("\n");
7241 }
7242 }
7243
7244 static void
7245 decode_tic6x_unwind_bytecode (struct arm_unw_aux_info *aux,
7246 unsigned int word, unsigned int remaining,
7247 unsigned int more_words,
7248 bfd_vma data_offset, Elf_Internal_Shdr *data_sec,
7249 struct arm_section *data_arm_sec)
7250 {
7251 struct absaddr addr;
7252
7253 /* Decode the unwinding instructions. */
7254 while (1)
7255 {
7256 unsigned int op, op2;
7257
7258 ADVANCE;
7259 if (remaining == 0)
7260 break;
7261 remaining--;
7262 op = word >> 24;
7263 word <<= 8;
7264
7265 printf (" 0x%02x ", op);
7266
7267 if ((op & 0xc0) == 0x00)
7268 {
7269 int offset = ((op & 0x3f) << 3) + 8;
7270 printf (" sp = sp + %d", offset);
7271 }
7272 else if ((op & 0xc0) == 0x80)
7273 {
7274 GET_OP (op2);
7275 if (op == 0x80 && op2 == 0)
7276 printf (_("Refuse to unwind"));
7277 else
7278 {
7279 unsigned int mask = ((op & 0x1f) << 8) | op2;
7280 if (op & 0x20)
7281 printf ("pop compact {");
7282 else
7283 printf ("pop {");
7284
7285 decode_tic6x_unwind_regmask (mask);
7286 printf("}");
7287 }
7288 }
7289 else if ((op & 0xf0) == 0xc0)
7290 {
7291 unsigned int reg;
7292 unsigned int nregs;
7293 unsigned int i;
7294 const char *name;
7295 struct
7296 {
7297 unsigned int offset;
7298 unsigned int reg;
7299 } regpos[16];
7300
7301 /* Scan entire instruction first so that GET_OP output is not
7302 interleaved with disassembly. */
7303 nregs = 0;
7304 for (i = 0; nregs < (op & 0xf); i++)
7305 {
7306 GET_OP (op2);
7307 reg = op2 >> 4;
7308 if (reg != 0xf)
7309 {
7310 regpos[nregs].offset = i * 2;
7311 regpos[nregs].reg = reg;
7312 nregs++;
7313 }
7314
7315 reg = op2 & 0xf;
7316 if (reg != 0xf)
7317 {
7318 regpos[nregs].offset = i * 2 + 1;
7319 regpos[nregs].reg = reg;
7320 nregs++;
7321 }
7322 }
7323
7324 printf (_("pop frame {"));
7325 reg = nregs - 1;
7326 for (i = i * 2; i > 0; i--)
7327 {
7328 if (regpos[reg].offset == i - 1)
7329 {
7330 name = tic6x_unwind_regnames[regpos[reg].reg];
7331 if (reg > 0)
7332 reg--;
7333 }
7334 else
7335 name = _("[pad]");
7336
7337 fputs (name, stdout);
7338 if (i > 1)
7339 printf (", ");
7340 }
7341
7342 printf ("}");
7343 }
7344 else if (op == 0xd0)
7345 printf (" MOV FP, SP");
7346 else if (op == 0xd1)
7347 printf (" __c6xabi_pop_rts");
7348 else if (op == 0xd2)
7349 {
7350 unsigned char buf[9];
7351 unsigned int i, len;
7352 unsigned long offset;
7353
7354 for (i = 0; i < sizeof (buf); i++)
7355 {
7356 GET_OP (buf[i]);
7357 if ((buf[i] & 0x80) == 0)
7358 break;
7359 }
7360 assert (i < sizeof (buf));
7361 offset = read_uleb128 (buf, &len, buf + i + 1);
7362 assert (len == i + 1);
7363 offset = offset * 8 + 0x408;
7364 printf (_("sp = sp + %ld"), offset);
7365 }
7366 else if ((op & 0xf0) == 0xe0)
7367 {
7368 if ((op & 0x0f) == 7)
7369 printf (" RETURN");
7370 else
7371 printf (" MV %s, B3", tic6x_unwind_regnames[op & 0x0f]);
7372 }
7373 else
7374 {
7375 printf (_(" [unsupported opcode]"));
7376 }
7377 putchar ('\n');
7378 }
7379 }
7380
7381 static bfd_vma
7382 arm_expand_prel31 (bfd_vma word, bfd_vma where)
7383 {
7384 bfd_vma offset;
7385
7386 offset = word & 0x7fffffff;
7387 if (offset & 0x40000000)
7388 offset |= ~ (bfd_vma) 0x7fffffff;
7389
7390 if (elf_header.e_machine == EM_TI_C6000)
7391 offset <<= 1;
7392
7393 return offset + where;
7394 }
7395
7396 static void
7397 decode_arm_unwind (struct arm_unw_aux_info * aux,
7398 unsigned int word,
7399 unsigned int remaining,
7400 bfd_vma data_offset,
7401 Elf_Internal_Shdr * data_sec,
7402 struct arm_section * data_arm_sec)
7403 {
7404 int per_index;
7405 unsigned int more_words = 0;
7406 struct absaddr addr;
7407 bfd_vma sym_name = (bfd_vma) -1;
7408
7409 if (remaining == 0)
7410 {
7411 /* Fetch the first word.
7412 Note - when decoding an object file the address extracted
7413 here will always be 0. So we also pass in the sym_name
7414 parameter so that we can find the symbol associated with
7415 the personality routine. */
7416 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, data_offset,
7417 & word, & addr, & sym_name))
7418 return;
7419
7420 remaining = 4;
7421 }
7422
7423 if ((word & 0x80000000) == 0)
7424 {
7425 /* Expand prel31 for personality routine. */
7426 bfd_vma fn;
7427 const char *procname;
7428
7429 fn = arm_expand_prel31 (word, data_sec->sh_addr + data_offset);
7430 printf (_(" Personality routine: "));
7431 if (fn == 0
7432 && addr.section == SHN_UNDEF && addr.offset == 0
7433 && sym_name != (bfd_vma) -1 && sym_name < aux->strtab_size)
7434 {
7435 procname = aux->strtab + sym_name;
7436 print_vma (fn, PREFIX_HEX);
7437 if (procname)
7438 {
7439 fputs (" <", stdout);
7440 fputs (procname, stdout);
7441 fputc ('>', stdout);
7442 }
7443 }
7444 else
7445 procname = arm_print_vma_and_name (aux, fn, addr);
7446 fputc ('\n', stdout);
7447
7448 /* The GCC personality routines use the standard compact
7449 encoding, starting with one byte giving the number of
7450 words. */
7451 if (procname != NULL
7452 && (const_strneq (procname, "__gcc_personality_v0")
7453 || const_strneq (procname, "__gxx_personality_v0")
7454 || const_strneq (procname, "__gcj_personality_v0")
7455 || const_strneq (procname, "__gnu_objc_personality_v0")))
7456 {
7457 remaining = 0;
7458 more_words = 1;
7459 ADVANCE;
7460 if (!remaining)
7461 {
7462 printf (_(" [Truncated data]\n"));
7463 return;
7464 }
7465 more_words = word >> 24;
7466 word <<= 8;
7467 remaining--;
7468 per_index = -1;
7469 }
7470 else
7471 return;
7472 }
7473 else
7474 {
7475 /* ARM EHABI Section 6.3:
7476
7477 An exception-handling table entry for the compact model looks like:
7478
7479 31 30-28 27-24 23-0
7480 -- ----- ----- ----
7481 1 0 index Data for personalityRoutine[index] */
7482
7483 if (elf_header.e_machine == EM_ARM
7484 && (word & 0x70000000))
7485 warn (_("Corrupt ARM compact model table entry: %x \n"), word);
7486
7487 per_index = (word >> 24) & 0x7f;
7488 printf (_(" Compact model index: %d\n"), per_index);
7489 if (per_index == 0)
7490 {
7491 more_words = 0;
7492 word <<= 8;
7493 remaining--;
7494 }
7495 else if (per_index < 3)
7496 {
7497 more_words = (word >> 16) & 0xff;
7498 word <<= 16;
7499 remaining -= 2;
7500 }
7501 }
7502
7503 switch (elf_header.e_machine)
7504 {
7505 case EM_ARM:
7506 if (per_index < 3)
7507 {
7508 decode_arm_unwind_bytecode (aux, word, remaining, more_words,
7509 data_offset, data_sec, data_arm_sec);
7510 }
7511 else
7512 {
7513 warn (_("Unknown ARM compact model index encountered\n"));
7514 printf (_(" [reserved]\n"));
7515 }
7516 break;
7517
7518 case EM_TI_C6000:
7519 if (per_index < 3)
7520 {
7521 decode_tic6x_unwind_bytecode (aux, word, remaining, more_words,
7522 data_offset, data_sec, data_arm_sec);
7523 }
7524 else if (per_index < 5)
7525 {
7526 if (((word >> 17) & 0x7f) == 0x7f)
7527 printf (_(" Restore stack from frame pointer\n"));
7528 else
7529 printf (_(" Stack increment %d\n"), (word >> 14) & 0x1fc);
7530 printf (_(" Registers restored: "));
7531 if (per_index == 4)
7532 printf (" (compact) ");
7533 decode_tic6x_unwind_regmask ((word >> 4) & 0x1fff);
7534 putchar ('\n');
7535 printf (_(" Return register: %s\n"),
7536 tic6x_unwind_regnames[word & 0xf]);
7537 }
7538 else
7539 printf (_(" [reserved (%d)]\n"), per_index);
7540 break;
7541
7542 default:
7543 error (_("Unsupported architecture type %d encountered when decoding unwind table"),
7544 elf_header.e_machine);
7545 }
7546
7547 /* Decode the descriptors. Not implemented. */
7548 }
7549
7550 static void
7551 dump_arm_unwind (struct arm_unw_aux_info *aux, Elf_Internal_Shdr *exidx_sec)
7552 {
7553 struct arm_section exidx_arm_sec, extab_arm_sec;
7554 unsigned int i, exidx_len;
7555
7556 memset (&exidx_arm_sec, 0, sizeof (exidx_arm_sec));
7557 memset (&extab_arm_sec, 0, sizeof (extab_arm_sec));
7558 exidx_len = exidx_sec->sh_size / 8;
7559
7560 for (i = 0; i < exidx_len; i++)
7561 {
7562 unsigned int exidx_fn, exidx_entry;
7563 struct absaddr fn_addr, entry_addr;
7564 bfd_vma fn;
7565
7566 fputc ('\n', stdout);
7567
7568 if (! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
7569 8 * i, & exidx_fn, & fn_addr, NULL)
7570 || ! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
7571 8 * i + 4, & exidx_entry, & entry_addr, NULL))
7572 {
7573 arm_free_section (& exidx_arm_sec);
7574 arm_free_section (& extab_arm_sec);
7575 return;
7576 }
7577
7578 /* ARM EHABI, Section 5:
7579 An index table entry consists of 2 words.
7580 The first word contains a prel31 offset to the start of a function, with bit 31 clear. */
7581 if (exidx_fn & 0x80000000)
7582 warn (_("corrupt index table entry: %x\n"), exidx_fn);
7583
7584 fn = arm_expand_prel31 (exidx_fn, exidx_sec->sh_addr + 8 * i);
7585
7586 arm_print_vma_and_name (aux, fn, fn_addr);
7587 fputs (": ", stdout);
7588
7589 if (exidx_entry == 1)
7590 {
7591 print_vma (exidx_entry, PREFIX_HEX);
7592 fputs (" [cantunwind]\n", stdout);
7593 }
7594 else if (exidx_entry & 0x80000000)
7595 {
7596 print_vma (exidx_entry, PREFIX_HEX);
7597 fputc ('\n', stdout);
7598 decode_arm_unwind (aux, exidx_entry, 4, 0, NULL, NULL);
7599 }
7600 else
7601 {
7602 bfd_vma table, table_offset = 0;
7603 Elf_Internal_Shdr *table_sec;
7604
7605 fputs ("@", stdout);
7606 table = arm_expand_prel31 (exidx_entry, exidx_sec->sh_addr + 8 * i + 4);
7607 print_vma (table, PREFIX_HEX);
7608 printf ("\n");
7609
7610 /* Locate the matching .ARM.extab. */
7611 if (entry_addr.section != SHN_UNDEF
7612 && entry_addr.section < elf_header.e_shnum)
7613 {
7614 table_sec = section_headers + entry_addr.section;
7615 table_offset = entry_addr.offset;
7616 }
7617 else
7618 {
7619 table_sec = find_section_by_address (table);
7620 if (table_sec != NULL)
7621 table_offset = table - table_sec->sh_addr;
7622 }
7623 if (table_sec == NULL)
7624 {
7625 warn (_("Could not locate .ARM.extab section containing 0x%lx.\n"),
7626 (unsigned long) table);
7627 continue;
7628 }
7629 decode_arm_unwind (aux, 0, 0, table_offset, table_sec,
7630 &extab_arm_sec);
7631 }
7632 }
7633
7634 printf ("\n");
7635
7636 arm_free_section (&exidx_arm_sec);
7637 arm_free_section (&extab_arm_sec);
7638 }
7639
7640 /* Used for both ARM and C6X unwinding tables. */
7641
7642 static void
7643 arm_process_unwind (FILE *file)
7644 {
7645 struct arm_unw_aux_info aux;
7646 Elf_Internal_Shdr *unwsec = NULL;
7647 Elf_Internal_Shdr *strsec;
7648 Elf_Internal_Shdr *sec;
7649 unsigned long i;
7650 unsigned int sec_type;
7651
7652 switch (elf_header.e_machine)
7653 {
7654 case EM_ARM:
7655 sec_type = SHT_ARM_EXIDX;
7656 break;
7657
7658 case EM_TI_C6000:
7659 sec_type = SHT_C6000_UNWIND;
7660 break;
7661
7662 default:
7663 error (_("Unsupported architecture type %d encountered when processing unwind table"),
7664 elf_header.e_machine);
7665 return;
7666 }
7667
7668 if (string_table == NULL)
7669 return;
7670
7671 memset (& aux, 0, sizeof (aux));
7672 aux.file = file;
7673
7674 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7675 {
7676 if (sec->sh_type == SHT_SYMTAB && sec->sh_link < elf_header.e_shnum)
7677 {
7678 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
7679
7680 strsec = section_headers + sec->sh_link;
7681 assert (aux.strtab == NULL);
7682 aux.strtab = get_data (NULL, file, strsec->sh_offset,
7683 1, strsec->sh_size, _("string table"));
7684 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7685 }
7686 else if (sec->sh_type == sec_type)
7687 unwsec = sec;
7688 }
7689
7690 if (unwsec == NULL)
7691 printf (_("\nThere are no unwind sections in this file.\n"));
7692 else
7693 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7694 {
7695 if (sec->sh_type == sec_type)
7696 {
7697 printf (_("\nUnwind table index '%s' at offset 0x%lx contains %lu entries:\n"),
7698 SECTION_NAME (sec),
7699 (unsigned long) sec->sh_offset,
7700 (unsigned long) (sec->sh_size / (2 * eh_addr_size)));
7701
7702 dump_arm_unwind (&aux, sec);
7703 }
7704 }
7705
7706 if (aux.symtab)
7707 free (aux.symtab);
7708 if (aux.strtab)
7709 free ((char *) aux.strtab);
7710 }
7711
7712 static void
7713 process_unwind (FILE * file)
7714 {
7715 struct unwind_handler
7716 {
7717 int machtype;
7718 void (* handler)(FILE *);
7719 } handlers[] =
7720 {
7721 { EM_ARM, arm_process_unwind },
7722 { EM_IA_64, ia64_process_unwind },
7723 { EM_PARISC, hppa_process_unwind },
7724 { EM_TI_C6000, arm_process_unwind },
7725 { 0, 0 }
7726 };
7727 int i;
7728
7729 if (!do_unwind)
7730 return;
7731
7732 for (i = 0; handlers[i].handler != NULL; i++)
7733 if (elf_header.e_machine == handlers[i].machtype)
7734 {
7735 handlers[i].handler (file);
7736 return;
7737 }
7738
7739 printf (_("\nThe decoding of unwind sections for machine type %s is not currently supported.\n"),
7740 get_machine_name (elf_header.e_machine));
7741 }
7742
7743 static void
7744 dynamic_section_mips_val (Elf_Internal_Dyn * entry)
7745 {
7746 switch (entry->d_tag)
7747 {
7748 case DT_MIPS_FLAGS:
7749 if (entry->d_un.d_val == 0)
7750 printf (_("NONE"));
7751 else
7752 {
7753 static const char * opts[] =
7754 {
7755 "QUICKSTART", "NOTPOT", "NO_LIBRARY_REPLACEMENT",
7756 "NO_MOVE", "SGI_ONLY", "GUARANTEE_INIT", "DELTA_C_PLUS_PLUS",
7757 "GUARANTEE_START_INIT", "PIXIE", "DEFAULT_DELAY_LOAD",
7758 "REQUICKSTART", "REQUICKSTARTED", "CORD", "NO_UNRES_UNDEF",
7759 "RLD_ORDER_SAFE"
7760 };
7761 unsigned int cnt;
7762 int first = 1;
7763
7764 for (cnt = 0; cnt < ARRAY_SIZE (opts); ++cnt)
7765 if (entry->d_un.d_val & (1 << cnt))
7766 {
7767 printf ("%s%s", first ? "" : " ", opts[cnt]);
7768 first = 0;
7769 }
7770 }
7771 break;
7772
7773 case DT_MIPS_IVERSION:
7774 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
7775 printf (_("Interface Version: %s"), GET_DYNAMIC_NAME (entry->d_un.d_val));
7776 else
7777 printf (_("<corrupt: %" BFD_VMA_FMT "d>"), entry->d_un.d_ptr);
7778 break;
7779
7780 case DT_MIPS_TIME_STAMP:
7781 {
7782 char timebuf[20];
7783 struct tm * tmp;
7784
7785 time_t atime = entry->d_un.d_val;
7786 tmp = gmtime (&atime);
7787 snprintf (timebuf, sizeof (timebuf), "%04u-%02u-%02uT%02u:%02u:%02u",
7788 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
7789 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
7790 printf (_("Time Stamp: %s"), timebuf);
7791 }
7792 break;
7793
7794 case DT_MIPS_RLD_VERSION:
7795 case DT_MIPS_LOCAL_GOTNO:
7796 case DT_MIPS_CONFLICTNO:
7797 case DT_MIPS_LIBLISTNO:
7798 case DT_MIPS_SYMTABNO:
7799 case DT_MIPS_UNREFEXTNO:
7800 case DT_MIPS_HIPAGENO:
7801 case DT_MIPS_DELTA_CLASS_NO:
7802 case DT_MIPS_DELTA_INSTANCE_NO:
7803 case DT_MIPS_DELTA_RELOC_NO:
7804 case DT_MIPS_DELTA_SYM_NO:
7805 case DT_MIPS_DELTA_CLASSSYM_NO:
7806 case DT_MIPS_COMPACT_SIZE:
7807 print_vma (entry->d_un.d_ptr, DEC);
7808 break;
7809
7810 default:
7811 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7812 }
7813 putchar ('\n');
7814 }
7815
7816 static void
7817 dynamic_section_parisc_val (Elf_Internal_Dyn * entry)
7818 {
7819 switch (entry->d_tag)
7820 {
7821 case DT_HP_DLD_FLAGS:
7822 {
7823 static struct
7824 {
7825 long int bit;
7826 const char * str;
7827 }
7828 flags[] =
7829 {
7830 { DT_HP_DEBUG_PRIVATE, "HP_DEBUG_PRIVATE" },
7831 { DT_HP_DEBUG_CALLBACK, "HP_DEBUG_CALLBACK" },
7832 { DT_HP_DEBUG_CALLBACK_BOR, "HP_DEBUG_CALLBACK_BOR" },
7833 { DT_HP_NO_ENVVAR, "HP_NO_ENVVAR" },
7834 { DT_HP_BIND_NOW, "HP_BIND_NOW" },
7835 { DT_HP_BIND_NONFATAL, "HP_BIND_NONFATAL" },
7836 { DT_HP_BIND_VERBOSE, "HP_BIND_VERBOSE" },
7837 { DT_HP_BIND_RESTRICTED, "HP_BIND_RESTRICTED" },
7838 { DT_HP_BIND_SYMBOLIC, "HP_BIND_SYMBOLIC" },
7839 { DT_HP_RPATH_FIRST, "HP_RPATH_FIRST" },
7840 { DT_HP_BIND_DEPTH_FIRST, "HP_BIND_DEPTH_FIRST" },
7841 { DT_HP_GST, "HP_GST" },
7842 { DT_HP_SHLIB_FIXED, "HP_SHLIB_FIXED" },
7843 { DT_HP_MERGE_SHLIB_SEG, "HP_MERGE_SHLIB_SEG" },
7844 { DT_HP_NODELETE, "HP_NODELETE" },
7845 { DT_HP_GROUP, "HP_GROUP" },
7846 { DT_HP_PROTECT_LINKAGE_TABLE, "HP_PROTECT_LINKAGE_TABLE" }
7847 };
7848 int first = 1;
7849 size_t cnt;
7850 bfd_vma val = entry->d_un.d_val;
7851
7852 for (cnt = 0; cnt < ARRAY_SIZE (flags); ++cnt)
7853 if (val & flags[cnt].bit)
7854 {
7855 if (! first)
7856 putchar (' ');
7857 fputs (flags[cnt].str, stdout);
7858 first = 0;
7859 val ^= flags[cnt].bit;
7860 }
7861
7862 if (val != 0 || first)
7863 {
7864 if (! first)
7865 putchar (' ');
7866 print_vma (val, HEX);
7867 }
7868 }
7869 break;
7870
7871 default:
7872 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7873 break;
7874 }
7875 putchar ('\n');
7876 }
7877
7878 #ifdef BFD64
7879
7880 /* VMS vs Unix time offset and factor. */
7881
7882 #define VMS_EPOCH_OFFSET 35067168000000000LL
7883 #define VMS_GRANULARITY_FACTOR 10000000
7884
7885 /* Display a VMS time in a human readable format. */
7886
7887 static void
7888 print_vms_time (bfd_int64_t vmstime)
7889 {
7890 struct tm *tm;
7891 time_t unxtime;
7892
7893 unxtime = (vmstime - VMS_EPOCH_OFFSET) / VMS_GRANULARITY_FACTOR;
7894 tm = gmtime (&unxtime);
7895 printf ("%04u-%02u-%02uT%02u:%02u:%02u",
7896 tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
7897 tm->tm_hour, tm->tm_min, tm->tm_sec);
7898 }
7899 #endif /* BFD64 */
7900
7901 static void
7902 dynamic_section_ia64_val (Elf_Internal_Dyn * entry)
7903 {
7904 switch (entry->d_tag)
7905 {
7906 case DT_IA_64_PLT_RESERVE:
7907 /* First 3 slots reserved. */
7908 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7909 printf (" -- ");
7910 print_vma (entry->d_un.d_ptr + (3 * 8), PREFIX_HEX);
7911 break;
7912
7913 case DT_IA_64_VMS_LINKTIME:
7914 #ifdef BFD64
7915 print_vms_time (entry->d_un.d_val);
7916 #endif
7917 break;
7918
7919 case DT_IA_64_VMS_LNKFLAGS:
7920 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7921 if (entry->d_un.d_val & VMS_LF_CALL_DEBUG)
7922 printf (" CALL_DEBUG");
7923 if (entry->d_un.d_val & VMS_LF_NOP0BUFS)
7924 printf (" NOP0BUFS");
7925 if (entry->d_un.d_val & VMS_LF_P0IMAGE)
7926 printf (" P0IMAGE");
7927 if (entry->d_un.d_val & VMS_LF_MKTHREADS)
7928 printf (" MKTHREADS");
7929 if (entry->d_un.d_val & VMS_LF_UPCALLS)
7930 printf (" UPCALLS");
7931 if (entry->d_un.d_val & VMS_LF_IMGSTA)
7932 printf (" IMGSTA");
7933 if (entry->d_un.d_val & VMS_LF_INITIALIZE)
7934 printf (" INITIALIZE");
7935 if (entry->d_un.d_val & VMS_LF_MAIN)
7936 printf (" MAIN");
7937 if (entry->d_un.d_val & VMS_LF_EXE_INIT)
7938 printf (" EXE_INIT");
7939 if (entry->d_un.d_val & VMS_LF_TBK_IN_IMG)
7940 printf (" TBK_IN_IMG");
7941 if (entry->d_un.d_val & VMS_LF_DBG_IN_IMG)
7942 printf (" DBG_IN_IMG");
7943 if (entry->d_un.d_val & VMS_LF_TBK_IN_DSF)
7944 printf (" TBK_IN_DSF");
7945 if (entry->d_un.d_val & VMS_LF_DBG_IN_DSF)
7946 printf (" DBG_IN_DSF");
7947 if (entry->d_un.d_val & VMS_LF_SIGNATURES)
7948 printf (" SIGNATURES");
7949 if (entry->d_un.d_val & VMS_LF_REL_SEG_OFF)
7950 printf (" REL_SEG_OFF");
7951 break;
7952
7953 default:
7954 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7955 break;
7956 }
7957 putchar ('\n');
7958 }
7959
7960 static int
7961 get_32bit_dynamic_section (FILE * file)
7962 {
7963 Elf32_External_Dyn * edyn;
7964 Elf32_External_Dyn * ext;
7965 Elf_Internal_Dyn * entry;
7966
7967 edyn = (Elf32_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
7968 dynamic_size, _("dynamic section"));
7969 if (!edyn)
7970 return 0;
7971
7972 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
7973 might not have the luxury of section headers. Look for the DT_NULL
7974 terminator to determine the number of entries. */
7975 for (ext = edyn, dynamic_nent = 0;
7976 (char *) ext < (char *) edyn + dynamic_size;
7977 ext++)
7978 {
7979 dynamic_nent++;
7980 if (BYTE_GET (ext->d_tag) == DT_NULL)
7981 break;
7982 }
7983
7984 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
7985 sizeof (* entry));
7986 if (dynamic_section == NULL)
7987 {
7988 error (_("Out of memory\n"));
7989 free (edyn);
7990 return 0;
7991 }
7992
7993 for (ext = edyn, entry = dynamic_section;
7994 entry < dynamic_section + dynamic_nent;
7995 ext++, entry++)
7996 {
7997 entry->d_tag = BYTE_GET (ext->d_tag);
7998 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
7999 }
8000
8001 free (edyn);
8002
8003 return 1;
8004 }
8005
8006 static int
8007 get_64bit_dynamic_section (FILE * file)
8008 {
8009 Elf64_External_Dyn * edyn;
8010 Elf64_External_Dyn * ext;
8011 Elf_Internal_Dyn * entry;
8012
8013 edyn = (Elf64_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
8014 dynamic_size, _("dynamic section"));
8015 if (!edyn)
8016 return 0;
8017
8018 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
8019 might not have the luxury of section headers. Look for the DT_NULL
8020 terminator to determine the number of entries. */
8021 for (ext = edyn, dynamic_nent = 0;
8022 (char *) ext < (char *) edyn + dynamic_size;
8023 ext++)
8024 {
8025 dynamic_nent++;
8026 if (BYTE_GET (ext->d_tag) == DT_NULL)
8027 break;
8028 }
8029
8030 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
8031 sizeof (* entry));
8032 if (dynamic_section == NULL)
8033 {
8034 error (_("Out of memory\n"));
8035 free (edyn);
8036 return 0;
8037 }
8038
8039 for (ext = edyn, entry = dynamic_section;
8040 entry < dynamic_section + dynamic_nent;
8041 ext++, entry++)
8042 {
8043 entry->d_tag = BYTE_GET (ext->d_tag);
8044 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
8045 }
8046
8047 free (edyn);
8048
8049 return 1;
8050 }
8051
8052 static void
8053 print_dynamic_flags (bfd_vma flags)
8054 {
8055 int first = 1;
8056
8057 while (flags)
8058 {
8059 bfd_vma flag;
8060
8061 flag = flags & - flags;
8062 flags &= ~ flag;
8063
8064 if (first)
8065 first = 0;
8066 else
8067 putc (' ', stdout);
8068
8069 switch (flag)
8070 {
8071 case DF_ORIGIN: fputs ("ORIGIN", stdout); break;
8072 case DF_SYMBOLIC: fputs ("SYMBOLIC", stdout); break;
8073 case DF_TEXTREL: fputs ("TEXTREL", stdout); break;
8074 case DF_BIND_NOW: fputs ("BIND_NOW", stdout); break;
8075 case DF_STATIC_TLS: fputs ("STATIC_TLS", stdout); break;
8076 default: fputs (_("unknown"), stdout); break;
8077 }
8078 }
8079 puts ("");
8080 }
8081
8082 /* Parse and display the contents of the dynamic section. */
8083
8084 static int
8085 process_dynamic_section (FILE * file)
8086 {
8087 Elf_Internal_Dyn * entry;
8088
8089 if (dynamic_size == 0)
8090 {
8091 if (do_dynamic)
8092 printf (_("\nThere is no dynamic section in this file.\n"));
8093
8094 return 1;
8095 }
8096
8097 if (is_32bit_elf)
8098 {
8099 if (! get_32bit_dynamic_section (file))
8100 return 0;
8101 }
8102 else if (! get_64bit_dynamic_section (file))
8103 return 0;
8104
8105 /* Find the appropriate symbol table. */
8106 if (dynamic_symbols == NULL)
8107 {
8108 for (entry = dynamic_section;
8109 entry < dynamic_section + dynamic_nent;
8110 ++entry)
8111 {
8112 Elf_Internal_Shdr section;
8113
8114 if (entry->d_tag != DT_SYMTAB)
8115 continue;
8116
8117 dynamic_info[DT_SYMTAB] = entry->d_un.d_val;
8118
8119 /* Since we do not know how big the symbol table is,
8120 we default to reading in the entire file (!) and
8121 processing that. This is overkill, I know, but it
8122 should work. */
8123 section.sh_offset = offset_from_vma (file, entry->d_un.d_val, 0);
8124
8125 if (archive_file_offset != 0)
8126 section.sh_size = archive_file_size - section.sh_offset;
8127 else
8128 {
8129 if (fseek (file, 0, SEEK_END))
8130 error (_("Unable to seek to end of file!\n"));
8131
8132 section.sh_size = ftell (file) - section.sh_offset;
8133 }
8134
8135 if (is_32bit_elf)
8136 section.sh_entsize = sizeof (Elf32_External_Sym);
8137 else
8138 section.sh_entsize = sizeof (Elf64_External_Sym);
8139
8140 dynamic_symbols = GET_ELF_SYMBOLS (file, &section, & num_dynamic_syms);
8141 if (num_dynamic_syms < 1)
8142 {
8143 error (_("Unable to determine the number of symbols to load\n"));
8144 continue;
8145 }
8146 }
8147 }
8148
8149 /* Similarly find a string table. */
8150 if (dynamic_strings == NULL)
8151 {
8152 for (entry = dynamic_section;
8153 entry < dynamic_section + dynamic_nent;
8154 ++entry)
8155 {
8156 unsigned long offset;
8157 long str_tab_len;
8158
8159 if (entry->d_tag != DT_STRTAB)
8160 continue;
8161
8162 dynamic_info[DT_STRTAB] = entry->d_un.d_val;
8163
8164 /* Since we do not know how big the string table is,
8165 we default to reading in the entire file (!) and
8166 processing that. This is overkill, I know, but it
8167 should work. */
8168
8169 offset = offset_from_vma (file, entry->d_un.d_val, 0);
8170
8171 if (archive_file_offset != 0)
8172 str_tab_len = archive_file_size - offset;
8173 else
8174 {
8175 if (fseek (file, 0, SEEK_END))
8176 error (_("Unable to seek to end of file\n"));
8177 str_tab_len = ftell (file) - offset;
8178 }
8179
8180 if (str_tab_len < 1)
8181 {
8182 error
8183 (_("Unable to determine the length of the dynamic string table\n"));
8184 continue;
8185 }
8186
8187 dynamic_strings = (char *) get_data (NULL, file, offset, 1,
8188 str_tab_len,
8189 _("dynamic string table"));
8190 dynamic_strings_length = dynamic_strings == NULL ? 0 : str_tab_len;
8191 break;
8192 }
8193 }
8194
8195 /* And find the syminfo section if available. */
8196 if (dynamic_syminfo == NULL)
8197 {
8198 unsigned long syminsz = 0;
8199
8200 for (entry = dynamic_section;
8201 entry < dynamic_section + dynamic_nent;
8202 ++entry)
8203 {
8204 if (entry->d_tag == DT_SYMINENT)
8205 {
8206 /* Note: these braces are necessary to avoid a syntax
8207 error from the SunOS4 C compiler. */
8208 assert (sizeof (Elf_External_Syminfo) == entry->d_un.d_val);
8209 }
8210 else if (entry->d_tag == DT_SYMINSZ)
8211 syminsz = entry->d_un.d_val;
8212 else if (entry->d_tag == DT_SYMINFO)
8213 dynamic_syminfo_offset = offset_from_vma (file, entry->d_un.d_val,
8214 syminsz);
8215 }
8216
8217 if (dynamic_syminfo_offset != 0 && syminsz != 0)
8218 {
8219 Elf_External_Syminfo * extsyminfo;
8220 Elf_External_Syminfo * extsym;
8221 Elf_Internal_Syminfo * syminfo;
8222
8223 /* There is a syminfo section. Read the data. */
8224 extsyminfo = (Elf_External_Syminfo *)
8225 get_data (NULL, file, dynamic_syminfo_offset, 1, syminsz,
8226 _("symbol information"));
8227 if (!extsyminfo)
8228 return 0;
8229
8230 dynamic_syminfo = (Elf_Internal_Syminfo *) malloc (syminsz);
8231 if (dynamic_syminfo == NULL)
8232 {
8233 error (_("Out of memory\n"));
8234 return 0;
8235 }
8236
8237 dynamic_syminfo_nent = syminsz / sizeof (Elf_External_Syminfo);
8238 for (syminfo = dynamic_syminfo, extsym = extsyminfo;
8239 syminfo < dynamic_syminfo + dynamic_syminfo_nent;
8240 ++syminfo, ++extsym)
8241 {
8242 syminfo->si_boundto = BYTE_GET (extsym->si_boundto);
8243 syminfo->si_flags = BYTE_GET (extsym->si_flags);
8244 }
8245
8246 free (extsyminfo);
8247 }
8248 }
8249
8250 if (do_dynamic && dynamic_addr)
8251 printf (_("\nDynamic section at offset 0x%lx contains %u entries:\n"),
8252 dynamic_addr, dynamic_nent);
8253 if (do_dynamic)
8254 printf (_(" Tag Type Name/Value\n"));
8255
8256 for (entry = dynamic_section;
8257 entry < dynamic_section + dynamic_nent;
8258 entry++)
8259 {
8260 if (do_dynamic)
8261 {
8262 const char * dtype;
8263
8264 putchar (' ');
8265 print_vma (entry->d_tag, FULL_HEX);
8266 dtype = get_dynamic_type (entry->d_tag);
8267 printf (" (%s)%*s", dtype,
8268 ((is_32bit_elf ? 27 : 19)
8269 - (int) strlen (dtype)),
8270 " ");
8271 }
8272
8273 switch (entry->d_tag)
8274 {
8275 case DT_FLAGS:
8276 if (do_dynamic)
8277 print_dynamic_flags (entry->d_un.d_val);
8278 break;
8279
8280 case DT_AUXILIARY:
8281 case DT_FILTER:
8282 case DT_CONFIG:
8283 case DT_DEPAUDIT:
8284 case DT_AUDIT:
8285 if (do_dynamic)
8286 {
8287 switch (entry->d_tag)
8288 {
8289 case DT_AUXILIARY:
8290 printf (_("Auxiliary library"));
8291 break;
8292
8293 case DT_FILTER:
8294 printf (_("Filter library"));
8295 break;
8296
8297 case DT_CONFIG:
8298 printf (_("Configuration file"));
8299 break;
8300
8301 case DT_DEPAUDIT:
8302 printf (_("Dependency audit library"));
8303 break;
8304
8305 case DT_AUDIT:
8306 printf (_("Audit library"));
8307 break;
8308 }
8309
8310 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
8311 printf (": [%s]\n", GET_DYNAMIC_NAME (entry->d_un.d_val));
8312 else
8313 {
8314 printf (": ");
8315 print_vma (entry->d_un.d_val, PREFIX_HEX);
8316 putchar ('\n');
8317 }
8318 }
8319 break;
8320
8321 case DT_FEATURE:
8322 if (do_dynamic)
8323 {
8324 printf (_("Flags:"));
8325
8326 if (entry->d_un.d_val == 0)
8327 printf (_(" None\n"));
8328 else
8329 {
8330 unsigned long int val = entry->d_un.d_val;
8331
8332 if (val & DTF_1_PARINIT)
8333 {
8334 printf (" PARINIT");
8335 val ^= DTF_1_PARINIT;
8336 }
8337 if (val & DTF_1_CONFEXP)
8338 {
8339 printf (" CONFEXP");
8340 val ^= DTF_1_CONFEXP;
8341 }
8342 if (val != 0)
8343 printf (" %lx", val);
8344 puts ("");
8345 }
8346 }
8347 break;
8348
8349 case DT_POSFLAG_1:
8350 if (do_dynamic)
8351 {
8352 printf (_("Flags:"));
8353
8354 if (entry->d_un.d_val == 0)
8355 printf (_(" None\n"));
8356 else
8357 {
8358 unsigned long int val = entry->d_un.d_val;
8359
8360 if (val & DF_P1_LAZYLOAD)
8361 {
8362 printf (" LAZYLOAD");
8363 val ^= DF_P1_LAZYLOAD;
8364 }
8365 if (val & DF_P1_GROUPPERM)
8366 {
8367 printf (" GROUPPERM");
8368 val ^= DF_P1_GROUPPERM;
8369 }
8370 if (val != 0)
8371 printf (" %lx", val);
8372 puts ("");
8373 }
8374 }
8375 break;
8376
8377 case DT_FLAGS_1:
8378 if (do_dynamic)
8379 {
8380 printf (_("Flags:"));
8381 if (entry->d_un.d_val == 0)
8382 printf (_(" None\n"));
8383 else
8384 {
8385 unsigned long int val = entry->d_un.d_val;
8386
8387 if (val & DF_1_NOW)
8388 {
8389 printf (" NOW");
8390 val ^= DF_1_NOW;
8391 }
8392 if (val & DF_1_GLOBAL)
8393 {
8394 printf (" GLOBAL");
8395 val ^= DF_1_GLOBAL;
8396 }
8397 if (val & DF_1_GROUP)
8398 {
8399 printf (" GROUP");
8400 val ^= DF_1_GROUP;
8401 }
8402 if (val & DF_1_NODELETE)
8403 {
8404 printf (" NODELETE");
8405 val ^= DF_1_NODELETE;
8406 }
8407 if (val & DF_1_LOADFLTR)
8408 {
8409 printf (" LOADFLTR");
8410 val ^= DF_1_LOADFLTR;
8411 }
8412 if (val & DF_1_INITFIRST)
8413 {
8414 printf (" INITFIRST");
8415 val ^= DF_1_INITFIRST;
8416 }
8417 if (val & DF_1_NOOPEN)
8418 {
8419 printf (" NOOPEN");
8420 val ^= DF_1_NOOPEN;
8421 }
8422 if (val & DF_1_ORIGIN)
8423 {
8424 printf (" ORIGIN");
8425 val ^= DF_1_ORIGIN;
8426 }
8427 if (val & DF_1_DIRECT)
8428 {
8429 printf (" DIRECT");
8430 val ^= DF_1_DIRECT;
8431 }
8432 if (val & DF_1_TRANS)
8433 {
8434 printf (" TRANS");
8435 val ^= DF_1_TRANS;
8436 }
8437 if (val & DF_1_INTERPOSE)
8438 {
8439 printf (" INTERPOSE");
8440 val ^= DF_1_INTERPOSE;
8441 }
8442 if (val & DF_1_NODEFLIB)
8443 {
8444 printf (" NODEFLIB");
8445 val ^= DF_1_NODEFLIB;
8446 }
8447 if (val & DF_1_NODUMP)
8448 {
8449 printf (" NODUMP");
8450 val ^= DF_1_NODUMP;
8451 }
8452 if (val & DF_1_CONFALT)
8453 {
8454 printf (" CONFALT");
8455 val ^= DF_1_CONFALT;
8456 }
8457 if (val & DF_1_ENDFILTEE)
8458 {
8459 printf (" ENDFILTEE");
8460 val ^= DF_1_ENDFILTEE;
8461 }
8462 if (val & DF_1_DISPRELDNE)
8463 {
8464 printf (" DISPRELDNE");
8465 val ^= DF_1_DISPRELDNE;
8466 }
8467 if (val & DF_1_DISPRELPND)
8468 {
8469 printf (" DISPRELPND");
8470 val ^= DF_1_DISPRELPND;
8471 }
8472 if (val & DF_1_NODIRECT)
8473 {
8474 printf (" NODIRECT");
8475 val ^= DF_1_NODIRECT;
8476 }
8477 if (val & DF_1_IGNMULDEF)
8478 {
8479 printf (" IGNMULDEF");
8480 val ^= DF_1_IGNMULDEF;
8481 }
8482 if (val & DF_1_NOKSYMS)
8483 {
8484 printf (" NOKSYMS");
8485 val ^= DF_1_NOKSYMS;
8486 }
8487 if (val & DF_1_NOHDR)
8488 {
8489 printf (" NOHDR");
8490 val ^= DF_1_NOHDR;
8491 }
8492 if (val & DF_1_EDITED)
8493 {
8494 printf (" EDITED");
8495 val ^= DF_1_EDITED;
8496 }
8497 if (val & DF_1_NORELOC)
8498 {
8499 printf (" NORELOC");
8500 val ^= DF_1_NORELOC;
8501 }
8502 if (val & DF_1_SYMINTPOSE)
8503 {
8504 printf (" SYMINTPOSE");
8505 val ^= DF_1_SYMINTPOSE;
8506 }
8507 if (val & DF_1_GLOBAUDIT)
8508 {
8509 printf (" GLOBAUDIT");
8510 val ^= DF_1_GLOBAUDIT;
8511 }
8512 if (val & DF_1_SINGLETON)
8513 {
8514 printf (" SINGLETON");
8515 val ^= DF_1_SINGLETON;
8516 }
8517 if (val != 0)
8518 printf (" %lx", val);
8519 puts ("");
8520 }
8521 }
8522 break;
8523
8524 case DT_PLTREL:
8525 dynamic_info[entry->d_tag] = entry->d_un.d_val;
8526 if (do_dynamic)
8527 puts (get_dynamic_type (entry->d_un.d_val));
8528 break;
8529
8530 case DT_NULL :
8531 case DT_NEEDED :
8532 case DT_PLTGOT :
8533 case DT_HASH :
8534 case DT_STRTAB :
8535 case DT_SYMTAB :
8536 case DT_RELA :
8537 case DT_INIT :
8538 case DT_FINI :
8539 case DT_SONAME :
8540 case DT_RPATH :
8541 case DT_SYMBOLIC:
8542 case DT_REL :
8543 case DT_DEBUG :
8544 case DT_TEXTREL :
8545 case DT_JMPREL :
8546 case DT_RUNPATH :
8547 dynamic_info[entry->d_tag] = entry->d_un.d_val;
8548
8549 if (do_dynamic)
8550 {
8551 char * name;
8552
8553 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
8554 name = GET_DYNAMIC_NAME (entry->d_un.d_val);
8555 else
8556 name = NULL;
8557
8558 if (name)
8559 {
8560 switch (entry->d_tag)
8561 {
8562 case DT_NEEDED:
8563 printf (_("Shared library: [%s]"), name);
8564
8565 if (streq (name, program_interpreter))
8566 printf (_(" program interpreter"));
8567 break;
8568
8569 case DT_SONAME:
8570 printf (_("Library soname: [%s]"), name);
8571 break;
8572
8573 case DT_RPATH:
8574 printf (_("Library rpath: [%s]"), name);
8575 break;
8576
8577 case DT_RUNPATH:
8578 printf (_("Library runpath: [%s]"), name);
8579 break;
8580
8581 default:
8582 print_vma (entry->d_un.d_val, PREFIX_HEX);
8583 break;
8584 }
8585 }
8586 else
8587 print_vma (entry->d_un.d_val, PREFIX_HEX);
8588
8589 putchar ('\n');
8590 }
8591 break;
8592
8593 case DT_PLTRELSZ:
8594 case DT_RELASZ :
8595 case DT_STRSZ :
8596 case DT_RELSZ :
8597 case DT_RELAENT :
8598 case DT_SYMENT :
8599 case DT_RELENT :
8600 dynamic_info[entry->d_tag] = entry->d_un.d_val;
8601 case DT_PLTPADSZ:
8602 case DT_MOVEENT :
8603 case DT_MOVESZ :
8604 case DT_INIT_ARRAYSZ:
8605 case DT_FINI_ARRAYSZ:
8606 case DT_GNU_CONFLICTSZ:
8607 case DT_GNU_LIBLISTSZ:
8608 if (do_dynamic)
8609 {
8610 print_vma (entry->d_un.d_val, UNSIGNED);
8611 printf (_(" (bytes)\n"));
8612 }
8613 break;
8614
8615 case DT_VERDEFNUM:
8616 case DT_VERNEEDNUM:
8617 case DT_RELACOUNT:
8618 case DT_RELCOUNT:
8619 if (do_dynamic)
8620 {
8621 print_vma (entry->d_un.d_val, UNSIGNED);
8622 putchar ('\n');
8623 }
8624 break;
8625
8626 case DT_SYMINSZ:
8627 case DT_SYMINENT:
8628 case DT_SYMINFO:
8629 case DT_USED:
8630 case DT_INIT_ARRAY:
8631 case DT_FINI_ARRAY:
8632 if (do_dynamic)
8633 {
8634 if (entry->d_tag == DT_USED
8635 && VALID_DYNAMIC_NAME (entry->d_un.d_val))
8636 {
8637 char * name = GET_DYNAMIC_NAME (entry->d_un.d_val);
8638
8639 if (*name)
8640 {
8641 printf (_("Not needed object: [%s]\n"), name);
8642 break;
8643 }
8644 }
8645
8646 print_vma (entry->d_un.d_val, PREFIX_HEX);
8647 putchar ('\n');
8648 }
8649 break;
8650
8651 case DT_BIND_NOW:
8652 /* The value of this entry is ignored. */
8653 if (do_dynamic)
8654 putchar ('\n');
8655 break;
8656
8657 case DT_GNU_PRELINKED:
8658 if (do_dynamic)
8659 {
8660 struct tm * tmp;
8661 time_t atime = entry->d_un.d_val;
8662
8663 tmp = gmtime (&atime);
8664 printf ("%04u-%02u-%02uT%02u:%02u:%02u\n",
8665 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
8666 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
8667
8668 }
8669 break;
8670
8671 case DT_GNU_HASH:
8672 dynamic_info_DT_GNU_HASH = entry->d_un.d_val;
8673 if (do_dynamic)
8674 {
8675 print_vma (entry->d_un.d_val, PREFIX_HEX);
8676 putchar ('\n');
8677 }
8678 break;
8679
8680 default:
8681 if ((entry->d_tag >= DT_VERSYM) && (entry->d_tag <= DT_VERNEEDNUM))
8682 version_info[DT_VERSIONTAGIDX (entry->d_tag)] =
8683 entry->d_un.d_val;
8684
8685 if (do_dynamic)
8686 {
8687 switch (elf_header.e_machine)
8688 {
8689 case EM_MIPS:
8690 case EM_MIPS_RS3_LE:
8691 dynamic_section_mips_val (entry);
8692 break;
8693 case EM_PARISC:
8694 dynamic_section_parisc_val (entry);
8695 break;
8696 case EM_IA_64:
8697 dynamic_section_ia64_val (entry);
8698 break;
8699 default:
8700 print_vma (entry->d_un.d_val, PREFIX_HEX);
8701 putchar ('\n');
8702 }
8703 }
8704 break;
8705 }
8706 }
8707
8708 return 1;
8709 }
8710
8711 static char *
8712 get_ver_flags (unsigned int flags)
8713 {
8714 static char buff[32];
8715
8716 buff[0] = 0;
8717
8718 if (flags == 0)
8719 return _("none");
8720
8721 if (flags & VER_FLG_BASE)
8722 strcat (buff, "BASE ");
8723
8724 if (flags & VER_FLG_WEAK)
8725 {
8726 if (flags & VER_FLG_BASE)
8727 strcat (buff, "| ");
8728
8729 strcat (buff, "WEAK ");
8730 }
8731
8732 if (flags & VER_FLG_INFO)
8733 {
8734 if (flags & (VER_FLG_BASE|VER_FLG_WEAK))
8735 strcat (buff, "| ");
8736
8737 strcat (buff, "INFO ");
8738 }
8739
8740 if (flags & ~(VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
8741 strcat (buff, _("| <unknown>"));
8742
8743 return buff;
8744 }
8745
8746 /* Display the contents of the version sections. */
8747
8748 static int
8749 process_version_sections (FILE * file)
8750 {
8751 Elf_Internal_Shdr * section;
8752 unsigned i;
8753 int found = 0;
8754
8755 if (! do_version)
8756 return 1;
8757
8758 for (i = 0, section = section_headers;
8759 i < elf_header.e_shnum;
8760 i++, section++)
8761 {
8762 switch (section->sh_type)
8763 {
8764 case SHT_GNU_verdef:
8765 {
8766 Elf_External_Verdef * edefs;
8767 unsigned int idx;
8768 unsigned int cnt;
8769 char * endbuf;
8770
8771 found = 1;
8772
8773 printf
8774 (_("\nVersion definition section '%s' contains %u entries:\n"),
8775 SECTION_NAME (section), section->sh_info);
8776
8777 printf (_(" Addr: 0x"));
8778 printf_vma (section->sh_addr);
8779 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
8780 (unsigned long) section->sh_offset, section->sh_link,
8781 section->sh_link < elf_header.e_shnum
8782 ? SECTION_NAME (section_headers + section->sh_link)
8783 : _("<corrupt>"));
8784
8785 edefs = (Elf_External_Verdef *)
8786 get_data (NULL, file, section->sh_offset, 1,section->sh_size,
8787 _("version definition section"));
8788 if (!edefs)
8789 break;
8790 endbuf = (char *) edefs + section->sh_size;
8791
8792 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
8793 {
8794 char * vstart;
8795 Elf_External_Verdef * edef;
8796 Elf_Internal_Verdef ent;
8797 Elf_External_Verdaux * eaux;
8798 Elf_Internal_Verdaux aux;
8799 int j;
8800 int isum;
8801
8802 /* Check for very large indicies. */
8803 if (idx > (size_t) (endbuf - (char *) edefs))
8804 break;
8805
8806 vstart = ((char *) edefs) + idx;
8807 if (vstart + sizeof (*edef) > endbuf)
8808 break;
8809
8810 edef = (Elf_External_Verdef *) vstart;
8811
8812 ent.vd_version = BYTE_GET (edef->vd_version);
8813 ent.vd_flags = BYTE_GET (edef->vd_flags);
8814 ent.vd_ndx = BYTE_GET (edef->vd_ndx);
8815 ent.vd_cnt = BYTE_GET (edef->vd_cnt);
8816 ent.vd_hash = BYTE_GET (edef->vd_hash);
8817 ent.vd_aux = BYTE_GET (edef->vd_aux);
8818 ent.vd_next = BYTE_GET (edef->vd_next);
8819
8820 printf (_(" %#06x: Rev: %d Flags: %s"),
8821 idx, ent.vd_version, get_ver_flags (ent.vd_flags));
8822
8823 printf (_(" Index: %d Cnt: %d "),
8824 ent.vd_ndx, ent.vd_cnt);
8825
8826 /* Check for overflow. */
8827 if (ent.vd_aux > (size_t) (endbuf - vstart))
8828 break;
8829
8830 vstart += ent.vd_aux;
8831
8832 eaux = (Elf_External_Verdaux *) vstart;
8833
8834 aux.vda_name = BYTE_GET (eaux->vda_name);
8835 aux.vda_next = BYTE_GET (eaux->vda_next);
8836
8837 if (VALID_DYNAMIC_NAME (aux.vda_name))
8838 printf (_("Name: %s\n"), GET_DYNAMIC_NAME (aux.vda_name));
8839 else
8840 printf (_("Name index: %ld\n"), aux.vda_name);
8841
8842 isum = idx + ent.vd_aux;
8843
8844 for (j = 1; j < ent.vd_cnt; j++)
8845 {
8846 /* Check for overflow. */
8847 if (aux.vda_next > (size_t) (endbuf - vstart))
8848 break;
8849
8850 isum += aux.vda_next;
8851 vstart += aux.vda_next;
8852
8853 eaux = (Elf_External_Verdaux *) vstart;
8854 if (vstart + sizeof (*eaux) > endbuf)
8855 break;
8856
8857 aux.vda_name = BYTE_GET (eaux->vda_name);
8858 aux.vda_next = BYTE_GET (eaux->vda_next);
8859
8860 if (VALID_DYNAMIC_NAME (aux.vda_name))
8861 printf (_(" %#06x: Parent %d: %s\n"),
8862 isum, j, GET_DYNAMIC_NAME (aux.vda_name));
8863 else
8864 printf (_(" %#06x: Parent %d, name index: %ld\n"),
8865 isum, j, aux.vda_name);
8866 }
8867
8868 if (j < ent.vd_cnt)
8869 printf (_(" Version def aux past end of section\n"));
8870
8871 idx += ent.vd_next;
8872 }
8873
8874 if (cnt < section->sh_info)
8875 printf (_(" Version definition past end of section\n"));
8876
8877 free (edefs);
8878 }
8879 break;
8880
8881 case SHT_GNU_verneed:
8882 {
8883 Elf_External_Verneed * eneed;
8884 unsigned int idx;
8885 unsigned int cnt;
8886 char * endbuf;
8887
8888 found = 1;
8889
8890 printf (_("\nVersion needs section '%s' contains %u entries:\n"),
8891 SECTION_NAME (section), section->sh_info);
8892
8893 printf (_(" Addr: 0x"));
8894 printf_vma (section->sh_addr);
8895 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
8896 (unsigned long) section->sh_offset, section->sh_link,
8897 section->sh_link < elf_header.e_shnum
8898 ? SECTION_NAME (section_headers + section->sh_link)
8899 : _("<corrupt>"));
8900
8901 eneed = (Elf_External_Verneed *) get_data (NULL, file,
8902 section->sh_offset, 1,
8903 section->sh_size,
8904 _("Version Needs section"));
8905 if (!eneed)
8906 break;
8907 endbuf = (char *) eneed + section->sh_size;
8908
8909 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
8910 {
8911 Elf_External_Verneed * entry;
8912 Elf_Internal_Verneed ent;
8913 int j;
8914 int isum;
8915 char * vstart;
8916
8917 if (idx > (size_t) (endbuf - (char *) eneed))
8918 break;
8919
8920 vstart = ((char *) eneed) + idx;
8921 if (vstart + sizeof (*entry) > endbuf)
8922 break;
8923
8924 entry = (Elf_External_Verneed *) vstart;
8925
8926 ent.vn_version = BYTE_GET (entry->vn_version);
8927 ent.vn_cnt = BYTE_GET (entry->vn_cnt);
8928 ent.vn_file = BYTE_GET (entry->vn_file);
8929 ent.vn_aux = BYTE_GET (entry->vn_aux);
8930 ent.vn_next = BYTE_GET (entry->vn_next);
8931
8932 printf (_(" %#06x: Version: %d"), idx, ent.vn_version);
8933
8934 if (VALID_DYNAMIC_NAME (ent.vn_file))
8935 printf (_(" File: %s"), GET_DYNAMIC_NAME (ent.vn_file));
8936 else
8937 printf (_(" File: %lx"), ent.vn_file);
8938
8939 printf (_(" Cnt: %d\n"), ent.vn_cnt);
8940
8941 /* Check for overflow. */
8942 if (ent.vn_aux > (size_t) (endbuf - vstart))
8943 break;
8944
8945 vstart += ent.vn_aux;
8946
8947 for (j = 0, isum = idx + ent.vn_aux; j < ent.vn_cnt; ++j)
8948 {
8949 Elf_External_Vernaux * eaux;
8950 Elf_Internal_Vernaux aux;
8951
8952 if (vstart + sizeof (*eaux) > endbuf)
8953 break;
8954 eaux = (Elf_External_Vernaux *) vstart;
8955
8956 aux.vna_hash = BYTE_GET (eaux->vna_hash);
8957 aux.vna_flags = BYTE_GET (eaux->vna_flags);
8958 aux.vna_other = BYTE_GET (eaux->vna_other);
8959 aux.vna_name = BYTE_GET (eaux->vna_name);
8960 aux.vna_next = BYTE_GET (eaux->vna_next);
8961
8962 if (VALID_DYNAMIC_NAME (aux.vna_name))
8963 printf (_(" %#06x: Name: %s"),
8964 isum, GET_DYNAMIC_NAME (aux.vna_name));
8965 else
8966 printf (_(" %#06x: Name index: %lx"),
8967 isum, aux.vna_name);
8968
8969 printf (_(" Flags: %s Version: %d\n"),
8970 get_ver_flags (aux.vna_flags), aux.vna_other);
8971
8972 /* Check for overflow. */
8973 if (aux.vna_next > (size_t) (endbuf - vstart))
8974 break;
8975
8976 isum += aux.vna_next;
8977 vstart += aux.vna_next;
8978 }
8979
8980 if (j < ent.vn_cnt)
8981 warn (_("Missing Version Needs auxillary information\n"));
8982
8983 if (ent.vn_next == 0 && cnt < section->sh_info - 1)
8984 {
8985 warn (_("Corrupt Version Needs structure - offset to next structure is zero with entries still left to be processed\n"));
8986 cnt = section->sh_info;
8987 break;
8988 }
8989 idx += ent.vn_next;
8990 }
8991
8992 if (cnt < section->sh_info)
8993 warn (_("Missing Version Needs information\n"));
8994
8995 free (eneed);
8996 }
8997 break;
8998
8999 case SHT_GNU_versym:
9000 {
9001 Elf_Internal_Shdr * link_section;
9002 int total;
9003 int cnt;
9004 unsigned char * edata;
9005 unsigned short * data;
9006 char * strtab;
9007 Elf_Internal_Sym * symbols;
9008 Elf_Internal_Shdr * string_sec;
9009 unsigned long num_syms;
9010 long off;
9011
9012 if (section->sh_link >= elf_header.e_shnum)
9013 break;
9014
9015 link_section = section_headers + section->sh_link;
9016 total = section->sh_size / sizeof (Elf_External_Versym);
9017
9018 if (link_section->sh_link >= elf_header.e_shnum)
9019 break;
9020
9021 found = 1;
9022
9023 symbols = GET_ELF_SYMBOLS (file, link_section, & num_syms);
9024 if (symbols == NULL)
9025 break;
9026
9027 string_sec = section_headers + link_section->sh_link;
9028
9029 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
9030 string_sec->sh_size,
9031 _("version string table"));
9032 if (!strtab)
9033 {
9034 free (symbols);
9035 break;
9036 }
9037
9038 printf (_("\nVersion symbols section '%s' contains %d entries:\n"),
9039 SECTION_NAME (section), total);
9040
9041 printf (_(" Addr: "));
9042 printf_vma (section->sh_addr);
9043 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
9044 (unsigned long) section->sh_offset, section->sh_link,
9045 SECTION_NAME (link_section));
9046
9047 off = offset_from_vma (file,
9048 version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
9049 total * sizeof (short));
9050 edata = (unsigned char *) get_data (NULL, file, off, total,
9051 sizeof (short),
9052 _("version symbol data"));
9053 if (!edata)
9054 {
9055 free (strtab);
9056 free (symbols);
9057 break;
9058 }
9059
9060 data = (short unsigned int *) cmalloc (total, sizeof (short));
9061
9062 for (cnt = total; cnt --;)
9063 data[cnt] = byte_get (edata + cnt * sizeof (short),
9064 sizeof (short));
9065
9066 free (edata);
9067
9068 for (cnt = 0; cnt < total; cnt += 4)
9069 {
9070 int j, nn;
9071 int check_def, check_need;
9072 char * name;
9073
9074 printf (" %03x:", cnt);
9075
9076 for (j = 0; (j < 4) && (cnt + j) < total; ++j)
9077 switch (data[cnt + j])
9078 {
9079 case 0:
9080 fputs (_(" 0 (*local*) "), stdout);
9081 break;
9082
9083 case 1:
9084 fputs (_(" 1 (*global*) "), stdout);
9085 break;
9086
9087 default:
9088 nn = printf ("%4x%c", data[cnt + j] & VERSYM_VERSION,
9089 data[cnt + j] & VERSYM_HIDDEN ? 'h' : ' ');
9090
9091 /* If this index value is greater than the size of the symbols
9092 array, break to avoid an out-of-bounds read. */
9093 if ((unsigned long)(cnt + j) >= num_syms)
9094 {
9095 warn (_("invalid index into symbol array\n"));
9096 break;
9097 }
9098
9099 check_def = 1;
9100 check_need = 1;
9101 if (symbols[cnt + j].st_shndx >= elf_header.e_shnum
9102 || section_headers[symbols[cnt + j].st_shndx].sh_type
9103 != SHT_NOBITS)
9104 {
9105 if (symbols[cnt + j].st_shndx == SHN_UNDEF)
9106 check_def = 0;
9107 else
9108 check_need = 0;
9109 }
9110
9111 if (check_need
9112 && version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
9113 {
9114 Elf_Internal_Verneed ivn;
9115 unsigned long offset;
9116
9117 offset = offset_from_vma
9118 (file, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
9119 sizeof (Elf_External_Verneed));
9120
9121 do
9122 {
9123 Elf_Internal_Vernaux ivna;
9124 Elf_External_Verneed evn;
9125 Elf_External_Vernaux evna;
9126 unsigned long a_off;
9127
9128 if (get_data (&evn, file, offset, sizeof (evn), 1,
9129 _("version need")) == NULL)
9130 break;
9131
9132 ivn.vn_aux = BYTE_GET (evn.vn_aux);
9133 ivn.vn_next = BYTE_GET (evn.vn_next);
9134
9135 a_off = offset + ivn.vn_aux;
9136
9137 do
9138 {
9139 if (get_data (&evna, file, a_off, sizeof (evna),
9140 1, _("version need aux (2)")) == NULL)
9141 {
9142 ivna.vna_next = 0;
9143 ivna.vna_other = 0;
9144 }
9145 else
9146 {
9147 ivna.vna_next = BYTE_GET (evna.vna_next);
9148 ivna.vna_other = BYTE_GET (evna.vna_other);
9149 }
9150
9151 a_off += ivna.vna_next;
9152 }
9153 while (ivna.vna_other != data[cnt + j]
9154 && ivna.vna_next != 0);
9155
9156 if (ivna.vna_other == data[cnt + j])
9157 {
9158 ivna.vna_name = BYTE_GET (evna.vna_name);
9159
9160 if (ivna.vna_name >= string_sec->sh_size)
9161 name = _("*invalid*");
9162 else
9163 name = strtab + ivna.vna_name;
9164 nn += printf ("(%s%-*s",
9165 name,
9166 12 - (int) strlen (name),
9167 ")");
9168 check_def = 0;
9169 break;
9170 }
9171
9172 offset += ivn.vn_next;
9173 }
9174 while (ivn.vn_next);
9175 }
9176
9177 if (check_def && data[cnt + j] != 0x8001
9178 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
9179 {
9180 Elf_Internal_Verdef ivd;
9181 Elf_External_Verdef evd;
9182 unsigned long offset;
9183
9184 offset = offset_from_vma
9185 (file, version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
9186 sizeof evd);
9187
9188 do
9189 {
9190 if (get_data (&evd, file, offset, sizeof (evd), 1,
9191 _("version def")) == NULL)
9192 {
9193 ivd.vd_next = 0;
9194 ivd.vd_ndx = 0;
9195 }
9196 else
9197 {
9198 ivd.vd_next = BYTE_GET (evd.vd_next);
9199 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
9200 }
9201
9202 offset += ivd.vd_next;
9203 }
9204 while (ivd.vd_ndx != (data[cnt + j] & VERSYM_VERSION)
9205 && ivd.vd_next != 0);
9206
9207 if (ivd.vd_ndx == (data[cnt + j] & VERSYM_VERSION))
9208 {
9209 Elf_External_Verdaux evda;
9210 Elf_Internal_Verdaux ivda;
9211
9212 ivd.vd_aux = BYTE_GET (evd.vd_aux);
9213
9214 if (get_data (&evda, file,
9215 offset - ivd.vd_next + ivd.vd_aux,
9216 sizeof (evda), 1,
9217 _("version def aux")) == NULL)
9218 break;
9219
9220 ivda.vda_name = BYTE_GET (evda.vda_name);
9221
9222 if (ivda.vda_name >= string_sec->sh_size)
9223 name = _("*invalid*");
9224 else
9225 name = strtab + ivda.vda_name;
9226 nn += printf ("(%s%-*s",
9227 name,
9228 12 - (int) strlen (name),
9229 ")");
9230 }
9231 }
9232
9233 if (nn < 18)
9234 printf ("%*c", 18 - nn, ' ');
9235 }
9236
9237 putchar ('\n');
9238 }
9239
9240 free (data);
9241 free (strtab);
9242 free (symbols);
9243 }
9244 break;
9245
9246 default:
9247 break;
9248 }
9249 }
9250
9251 if (! found)
9252 printf (_("\nNo version information found in this file.\n"));
9253
9254 return 1;
9255 }
9256
9257 static const char *
9258 get_symbol_binding (unsigned int binding)
9259 {
9260 static char buff[32];
9261
9262 switch (binding)
9263 {
9264 case STB_LOCAL: return "LOCAL";
9265 case STB_GLOBAL: return "GLOBAL";
9266 case STB_WEAK: return "WEAK";
9267 default:
9268 if (binding >= STB_LOPROC && binding <= STB_HIPROC)
9269 snprintf (buff, sizeof (buff), _("<processor specific>: %d"),
9270 binding);
9271 else if (binding >= STB_LOOS && binding <= STB_HIOS)
9272 {
9273 if (binding == STB_GNU_UNIQUE
9274 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
9275 /* GNU is still using the default value 0. */
9276 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
9277 return "UNIQUE";
9278 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), binding);
9279 }
9280 else
9281 snprintf (buff, sizeof (buff), _("<unknown>: %d"), binding);
9282 return buff;
9283 }
9284 }
9285
9286 static const char *
9287 get_symbol_type (unsigned int type)
9288 {
9289 static char buff[32];
9290
9291 switch (type)
9292 {
9293 case STT_NOTYPE: return "NOTYPE";
9294 case STT_OBJECT: return "OBJECT";
9295 case STT_FUNC: return "FUNC";
9296 case STT_SECTION: return "SECTION";
9297 case STT_FILE: return "FILE";
9298 case STT_COMMON: return "COMMON";
9299 case STT_TLS: return "TLS";
9300 case STT_RELC: return "RELC";
9301 case STT_SRELC: return "SRELC";
9302 default:
9303 if (type >= STT_LOPROC && type <= STT_HIPROC)
9304 {
9305 if (elf_header.e_machine == EM_ARM && type == STT_ARM_TFUNC)
9306 return "THUMB_FUNC";
9307
9308 if (elf_header.e_machine == EM_SPARCV9 && type == STT_REGISTER)
9309 return "REGISTER";
9310
9311 if (elf_header.e_machine == EM_PARISC && type == STT_PARISC_MILLI)
9312 return "PARISC_MILLI";
9313
9314 snprintf (buff, sizeof (buff), _("<processor specific>: %d"), type);
9315 }
9316 else if (type >= STT_LOOS && type <= STT_HIOS)
9317 {
9318 if (elf_header.e_machine == EM_PARISC)
9319 {
9320 if (type == STT_HP_OPAQUE)
9321 return "HP_OPAQUE";
9322 if (type == STT_HP_STUB)
9323 return "HP_STUB";
9324 }
9325
9326 if (type == STT_GNU_IFUNC
9327 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
9328 || elf_header.e_ident[EI_OSABI] == ELFOSABI_FREEBSD
9329 /* GNU is still using the default value 0. */
9330 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
9331 return "IFUNC";
9332
9333 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), type);
9334 }
9335 else
9336 snprintf (buff, sizeof (buff), _("<unknown>: %d"), type);
9337 return buff;
9338 }
9339 }
9340
9341 static const char *
9342 get_symbol_visibility (unsigned int visibility)
9343 {
9344 switch (visibility)
9345 {
9346 case STV_DEFAULT: return "DEFAULT";
9347 case STV_INTERNAL: return "INTERNAL";
9348 case STV_HIDDEN: return "HIDDEN";
9349 case STV_PROTECTED: return "PROTECTED";
9350 default: abort ();
9351 }
9352 }
9353
9354 static const char *
9355 get_mips_symbol_other (unsigned int other)
9356 {
9357 switch (other)
9358 {
9359 case STO_OPTIONAL:
9360 return "OPTIONAL";
9361 case STO_MIPS_PLT:
9362 return "MIPS PLT";
9363 case STO_MIPS_PIC:
9364 return "MIPS PIC";
9365 case STO_MICROMIPS:
9366 return "MICROMIPS";
9367 case STO_MICROMIPS | STO_MIPS_PIC:
9368 return "MICROMIPS, MIPS PIC";
9369 case STO_MIPS16:
9370 return "MIPS16";
9371 default:
9372 return NULL;
9373 }
9374 }
9375
9376 static const char *
9377 get_ia64_symbol_other (unsigned int other)
9378 {
9379 if (is_ia64_vms ())
9380 {
9381 static char res[32];
9382
9383 res[0] = 0;
9384
9385 /* Function types is for images and .STB files only. */
9386 switch (elf_header.e_type)
9387 {
9388 case ET_DYN:
9389 case ET_EXEC:
9390 switch (VMS_ST_FUNC_TYPE (other))
9391 {
9392 case VMS_SFT_CODE_ADDR:
9393 strcat (res, " CA");
9394 break;
9395 case VMS_SFT_SYMV_IDX:
9396 strcat (res, " VEC");
9397 break;
9398 case VMS_SFT_FD:
9399 strcat (res, " FD");
9400 break;
9401 case VMS_SFT_RESERVE:
9402 strcat (res, " RSV");
9403 break;
9404 default:
9405 abort ();
9406 }
9407 break;
9408 default:
9409 break;
9410 }
9411 switch (VMS_ST_LINKAGE (other))
9412 {
9413 case VMS_STL_IGNORE:
9414 strcat (res, " IGN");
9415 break;
9416 case VMS_STL_RESERVE:
9417 strcat (res, " RSV");
9418 break;
9419 case VMS_STL_STD:
9420 strcat (res, " STD");
9421 break;
9422 case VMS_STL_LNK:
9423 strcat (res, " LNK");
9424 break;
9425 default:
9426 abort ();
9427 }
9428
9429 if (res[0] != 0)
9430 return res + 1;
9431 else
9432 return res;
9433 }
9434 return NULL;
9435 }
9436
9437 static const char *
9438 get_ppc64_symbol_other (unsigned int other)
9439 {
9440 if (PPC64_LOCAL_ENTRY_OFFSET (other) != 0)
9441 {
9442 static char buf[32];
9443 snprintf (buf, sizeof buf, _("<localentry>: %d"),
9444 PPC64_LOCAL_ENTRY_OFFSET (other));
9445 return buf;
9446 }
9447 return NULL;
9448 }
9449
9450 static const char *
9451 get_symbol_other (unsigned int other)
9452 {
9453 const char * result = NULL;
9454 static char buff [32];
9455
9456 if (other == 0)
9457 return "";
9458
9459 switch (elf_header.e_machine)
9460 {
9461 case EM_MIPS:
9462 result = get_mips_symbol_other (other);
9463 break;
9464 case EM_IA_64:
9465 result = get_ia64_symbol_other (other);
9466 break;
9467 case EM_PPC64:
9468 result = get_ppc64_symbol_other (other);
9469 break;
9470 default:
9471 break;
9472 }
9473
9474 if (result)
9475 return result;
9476
9477 snprintf (buff, sizeof buff, _("<other>: %x"), other);
9478 return buff;
9479 }
9480
9481 static const char *
9482 get_symbol_index_type (unsigned int type)
9483 {
9484 static char buff[32];
9485
9486 switch (type)
9487 {
9488 case SHN_UNDEF: return "UND";
9489 case SHN_ABS: return "ABS";
9490 case SHN_COMMON: return "COM";
9491 default:
9492 if (type == SHN_IA_64_ANSI_COMMON
9493 && elf_header.e_machine == EM_IA_64
9494 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX)
9495 return "ANSI_COM";
9496 else if ((elf_header.e_machine == EM_X86_64
9497 || elf_header.e_machine == EM_L1OM
9498 || elf_header.e_machine == EM_K1OM)
9499 && type == SHN_X86_64_LCOMMON)
9500 return "LARGE_COM";
9501 else if ((type == SHN_MIPS_SCOMMON
9502 && elf_header.e_machine == EM_MIPS)
9503 || (type == SHN_TIC6X_SCOMMON
9504 && elf_header.e_machine == EM_TI_C6000))
9505 return "SCOM";
9506 else if (type == SHN_MIPS_SUNDEFINED
9507 && elf_header.e_machine == EM_MIPS)
9508 return "SUND";
9509 else if (type >= SHN_LOPROC && type <= SHN_HIPROC)
9510 sprintf (buff, "PRC[0x%04x]", type & 0xffff);
9511 else if (type >= SHN_LOOS && type <= SHN_HIOS)
9512 sprintf (buff, "OS [0x%04x]", type & 0xffff);
9513 else if (type >= SHN_LORESERVE)
9514 sprintf (buff, "RSV[0x%04x]", type & 0xffff);
9515 else if (type >= elf_header.e_shnum)
9516 sprintf (buff, "bad section index[%3d]", type);
9517 else
9518 sprintf (buff, "%3d", type);
9519 break;
9520 }
9521
9522 return buff;
9523 }
9524
9525 static bfd_vma *
9526 get_dynamic_data (FILE * file, unsigned int number, unsigned int ent_size)
9527 {
9528 unsigned char * e_data;
9529 bfd_vma * i_data;
9530
9531 e_data = (unsigned char *) cmalloc (number, ent_size);
9532
9533 if (e_data == NULL)
9534 {
9535 error (_("Out of memory\n"));
9536 return NULL;
9537 }
9538
9539 if (fread (e_data, ent_size, number, file) != number)
9540 {
9541 error (_("Unable to read in dynamic data\n"));
9542 return NULL;
9543 }
9544
9545 i_data = (bfd_vma *) cmalloc (number, sizeof (*i_data));
9546
9547 if (i_data == NULL)
9548 {
9549 error (_("Out of memory\n"));
9550 free (e_data);
9551 return NULL;
9552 }
9553
9554 while (number--)
9555 i_data[number] = byte_get (e_data + number * ent_size, ent_size);
9556
9557 free (e_data);
9558
9559 return i_data;
9560 }
9561
9562 static void
9563 print_dynamic_symbol (bfd_vma si, unsigned long hn)
9564 {
9565 Elf_Internal_Sym * psym;
9566 int n;
9567
9568 psym = dynamic_symbols + si;
9569
9570 n = print_vma (si, DEC_5);
9571 if (n < 5)
9572 fputs (&" "[n], stdout);
9573 printf (" %3lu: ", hn);
9574 print_vma (psym->st_value, LONG_HEX);
9575 putchar (' ');
9576 print_vma (psym->st_size, DEC_5);
9577
9578 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
9579 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
9580 printf (" %-7s", get_symbol_visibility (ELF_ST_VISIBILITY (psym->st_other)));
9581 /* Check to see if any other bits in the st_other field are set.
9582 Note - displaying this information disrupts the layout of the
9583 table being generated, but for the moment this case is very
9584 rare. */
9585 if (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other))
9586 printf (" [%s] ", get_symbol_other (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other)));
9587 printf (" %3.3s ", get_symbol_index_type (psym->st_shndx));
9588 if (VALID_DYNAMIC_NAME (psym->st_name))
9589 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
9590 else
9591 printf (_(" <corrupt: %14ld>"), psym->st_name);
9592 putchar ('\n');
9593 }
9594
9595 /* Dump the symbol table. */
9596 static int
9597 process_symbol_table (FILE * file)
9598 {
9599 Elf_Internal_Shdr * section;
9600 bfd_vma nbuckets = 0;
9601 bfd_vma nchains = 0;
9602 bfd_vma * buckets = NULL;
9603 bfd_vma * chains = NULL;
9604 bfd_vma ngnubuckets = 0;
9605 bfd_vma * gnubuckets = NULL;
9606 bfd_vma * gnuchains = NULL;
9607 bfd_vma gnusymidx = 0;
9608
9609 if (!do_syms && !do_dyn_syms && !do_histogram)
9610 return 1;
9611
9612 if (dynamic_info[DT_HASH]
9613 && (do_histogram
9614 || (do_using_dynamic
9615 && !do_dyn_syms
9616 && dynamic_strings != NULL)))
9617 {
9618 unsigned char nb[8];
9619 unsigned char nc[8];
9620 int hash_ent_size = 4;
9621
9622 if ((elf_header.e_machine == EM_ALPHA
9623 || elf_header.e_machine == EM_S390
9624 || elf_header.e_machine == EM_S390_OLD)
9625 && elf_header.e_ident[EI_CLASS] == ELFCLASS64)
9626 hash_ent_size = 8;
9627
9628 if (fseek (file,
9629 (archive_file_offset
9630 + offset_from_vma (file, dynamic_info[DT_HASH],
9631 sizeof nb + sizeof nc)),
9632 SEEK_SET))
9633 {
9634 error (_("Unable to seek to start of dynamic information\n"));
9635 goto no_hash;
9636 }
9637
9638 if (fread (nb, hash_ent_size, 1, file) != 1)
9639 {
9640 error (_("Failed to read in number of buckets\n"));
9641 goto no_hash;
9642 }
9643
9644 if (fread (nc, hash_ent_size, 1, file) != 1)
9645 {
9646 error (_("Failed to read in number of chains\n"));
9647 goto no_hash;
9648 }
9649
9650 nbuckets = byte_get (nb, hash_ent_size);
9651 nchains = byte_get (nc, hash_ent_size);
9652
9653 buckets = get_dynamic_data (file, nbuckets, hash_ent_size);
9654 chains = get_dynamic_data (file, nchains, hash_ent_size);
9655
9656 no_hash:
9657 if (buckets == NULL || chains == NULL)
9658 {
9659 if (do_using_dynamic)
9660 return 0;
9661 free (buckets);
9662 free (chains);
9663 buckets = NULL;
9664 chains = NULL;
9665 nbuckets = 0;
9666 nchains = 0;
9667 }
9668 }
9669
9670 if (dynamic_info_DT_GNU_HASH
9671 && (do_histogram
9672 || (do_using_dynamic
9673 && !do_dyn_syms
9674 && dynamic_strings != NULL)))
9675 {
9676 unsigned char nb[16];
9677 bfd_vma i, maxchain = 0xffffffff, bitmaskwords;
9678 bfd_vma buckets_vma;
9679
9680 if (fseek (file,
9681 (archive_file_offset
9682 + offset_from_vma (file, dynamic_info_DT_GNU_HASH,
9683 sizeof nb)),
9684 SEEK_SET))
9685 {
9686 error (_("Unable to seek to start of dynamic information\n"));
9687 goto no_gnu_hash;
9688 }
9689
9690 if (fread (nb, 16, 1, file) != 1)
9691 {
9692 error (_("Failed to read in number of buckets\n"));
9693 goto no_gnu_hash;
9694 }
9695
9696 ngnubuckets = byte_get (nb, 4);
9697 gnusymidx = byte_get (nb + 4, 4);
9698 bitmaskwords = byte_get (nb + 8, 4);
9699 buckets_vma = dynamic_info_DT_GNU_HASH + 16;
9700 if (is_32bit_elf)
9701 buckets_vma += bitmaskwords * 4;
9702 else
9703 buckets_vma += bitmaskwords * 8;
9704
9705 if (fseek (file,
9706 (archive_file_offset
9707 + offset_from_vma (file, buckets_vma, 4)),
9708 SEEK_SET))
9709 {
9710 error (_("Unable to seek to start of dynamic information\n"));
9711 goto no_gnu_hash;
9712 }
9713
9714 gnubuckets = get_dynamic_data (file, ngnubuckets, 4);
9715
9716 if (gnubuckets == NULL)
9717 goto no_gnu_hash;
9718
9719 for (i = 0; i < ngnubuckets; i++)
9720 if (gnubuckets[i] != 0)
9721 {
9722 if (gnubuckets[i] < gnusymidx)
9723 return 0;
9724
9725 if (maxchain == 0xffffffff || gnubuckets[i] > maxchain)
9726 maxchain = gnubuckets[i];
9727 }
9728
9729 if (maxchain == 0xffffffff)
9730 goto no_gnu_hash;
9731
9732 maxchain -= gnusymidx;
9733
9734 if (fseek (file,
9735 (archive_file_offset
9736 + offset_from_vma (file, buckets_vma
9737 + 4 * (ngnubuckets + maxchain), 4)),
9738 SEEK_SET))
9739 {
9740 error (_("Unable to seek to start of dynamic information\n"));
9741 goto no_gnu_hash;
9742 }
9743
9744 do
9745 {
9746 if (fread (nb, 4, 1, file) != 1)
9747 {
9748 error (_("Failed to determine last chain length\n"));
9749 goto no_gnu_hash;
9750 }
9751
9752 if (maxchain + 1 == 0)
9753 goto no_gnu_hash;
9754
9755 ++maxchain;
9756 }
9757 while ((byte_get (nb, 4) & 1) == 0);
9758
9759 if (fseek (file,
9760 (archive_file_offset
9761 + offset_from_vma (file, buckets_vma + 4 * ngnubuckets, 4)),
9762 SEEK_SET))
9763 {
9764 error (_("Unable to seek to start of dynamic information\n"));
9765 goto no_gnu_hash;
9766 }
9767
9768 gnuchains = get_dynamic_data (file, maxchain, 4);
9769
9770 no_gnu_hash:
9771 if (gnuchains == NULL)
9772 {
9773 free (gnubuckets);
9774 gnubuckets = NULL;
9775 ngnubuckets = 0;
9776 if (do_using_dynamic)
9777 return 0;
9778 }
9779 }
9780
9781 if ((dynamic_info[DT_HASH] || dynamic_info_DT_GNU_HASH)
9782 && do_syms
9783 && do_using_dynamic
9784 && dynamic_strings != NULL)
9785 {
9786 unsigned long hn;
9787
9788 if (dynamic_info[DT_HASH])
9789 {
9790 bfd_vma si;
9791
9792 printf (_("\nSymbol table for image:\n"));
9793 if (is_32bit_elf)
9794 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
9795 else
9796 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
9797
9798 for (hn = 0; hn < nbuckets; hn++)
9799 {
9800 if (! buckets[hn])
9801 continue;
9802
9803 for (si = buckets[hn]; si < nchains && si > 0; si = chains[si])
9804 print_dynamic_symbol (si, hn);
9805 }
9806 }
9807
9808 if (dynamic_info_DT_GNU_HASH)
9809 {
9810 printf (_("\nSymbol table of `.gnu.hash' for image:\n"));
9811 if (is_32bit_elf)
9812 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
9813 else
9814 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
9815
9816 for (hn = 0; hn < ngnubuckets; ++hn)
9817 if (gnubuckets[hn] != 0)
9818 {
9819 bfd_vma si = gnubuckets[hn];
9820 bfd_vma off = si - gnusymidx;
9821
9822 do
9823 {
9824 print_dynamic_symbol (si, hn);
9825 si++;
9826 }
9827 while ((gnuchains[off++] & 1) == 0);
9828 }
9829 }
9830 }
9831 else if (do_dyn_syms || (do_syms && !do_using_dynamic))
9832 {
9833 unsigned int i;
9834
9835 for (i = 0, section = section_headers;
9836 i < elf_header.e_shnum;
9837 i++, section++)
9838 {
9839 unsigned int si;
9840 char * strtab = NULL;
9841 unsigned long int strtab_size = 0;
9842 Elf_Internal_Sym * symtab;
9843 Elf_Internal_Sym * psym;
9844 unsigned long num_syms;
9845
9846 if ((section->sh_type != SHT_SYMTAB
9847 && section->sh_type != SHT_DYNSYM)
9848 || (!do_syms
9849 && section->sh_type == SHT_SYMTAB))
9850 continue;
9851
9852 if (section->sh_entsize == 0)
9853 {
9854 printf (_("\nSymbol table '%s' has a sh_entsize of zero!\n"),
9855 SECTION_NAME (section));
9856 continue;
9857 }
9858
9859 printf (_("\nSymbol table '%s' contains %lu entries:\n"),
9860 SECTION_NAME (section),
9861 (unsigned long) (section->sh_size / section->sh_entsize));
9862
9863 if (is_32bit_elf)
9864 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
9865 else
9866 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
9867
9868 symtab = GET_ELF_SYMBOLS (file, section, & num_syms);
9869 if (symtab == NULL)
9870 continue;
9871
9872 if (section->sh_link == elf_header.e_shstrndx)
9873 {
9874 strtab = string_table;
9875 strtab_size = string_table_length;
9876 }
9877 else if (section->sh_link < elf_header.e_shnum)
9878 {
9879 Elf_Internal_Shdr * string_sec;
9880
9881 string_sec = section_headers + section->sh_link;
9882
9883 strtab = (char *) get_data (NULL, file, string_sec->sh_offset,
9884 1, string_sec->sh_size,
9885 _("string table"));
9886 strtab_size = strtab != NULL ? string_sec->sh_size : 0;
9887 }
9888
9889 for (si = 0, psym = symtab; si < num_syms; si++, psym++)
9890 {
9891 printf ("%6d: ", si);
9892 print_vma (psym->st_value, LONG_HEX);
9893 putchar (' ');
9894 print_vma (psym->st_size, DEC_5);
9895 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
9896 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
9897 printf (" %-7s", get_symbol_visibility (ELF_ST_VISIBILITY (psym->st_other)));
9898 /* Check to see if any other bits in the st_other field are set.
9899 Note - displaying this information disrupts the layout of the
9900 table being generated, but for the moment this case is very rare. */
9901 if (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other))
9902 printf (" [%s] ", get_symbol_other (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other)));
9903 printf (" %4s ", get_symbol_index_type (psym->st_shndx));
9904 print_symbol (25, psym->st_name < strtab_size
9905 ? strtab + psym->st_name : _("<corrupt>"));
9906
9907 if (section->sh_type == SHT_DYNSYM
9908 && version_info[DT_VERSIONTAGIDX (DT_VERSYM)] != 0)
9909 {
9910 unsigned char data[2];
9911 unsigned short vers_data;
9912 unsigned long offset;
9913 int is_nobits;
9914 int check_def;
9915
9916 offset = offset_from_vma
9917 (file, version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
9918 sizeof data + si * sizeof (vers_data));
9919
9920 if (get_data (&data, file, offset + si * sizeof (vers_data),
9921 sizeof (data), 1, _("version data")) == NULL)
9922 break;
9923
9924 vers_data = byte_get (data, 2);
9925
9926 is_nobits = (psym->st_shndx < elf_header.e_shnum
9927 && section_headers[psym->st_shndx].sh_type
9928 == SHT_NOBITS);
9929
9930 check_def = (psym->st_shndx != SHN_UNDEF);
9931
9932 if ((vers_data & VERSYM_HIDDEN) || vers_data > 1)
9933 {
9934 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)]
9935 && (is_nobits || ! check_def))
9936 {
9937 Elf_External_Verneed evn;
9938 Elf_Internal_Verneed ivn;
9939 Elf_Internal_Vernaux ivna;
9940
9941 /* We must test both. */
9942 offset = offset_from_vma
9943 (file, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
9944 sizeof evn);
9945
9946 do
9947 {
9948 unsigned long vna_off;
9949
9950 if (get_data (&evn, file, offset, sizeof (evn), 1,
9951 _("version need")) == NULL)
9952 {
9953 ivna.vna_next = 0;
9954 ivna.vna_other = 0;
9955 ivna.vna_name = 0;
9956 break;
9957 }
9958
9959 ivn.vn_aux = BYTE_GET (evn.vn_aux);
9960 ivn.vn_next = BYTE_GET (evn.vn_next);
9961
9962 vna_off = offset + ivn.vn_aux;
9963
9964 do
9965 {
9966 Elf_External_Vernaux evna;
9967
9968 if (get_data (&evna, file, vna_off,
9969 sizeof (evna), 1,
9970 _("version need aux (3)")) == NULL)
9971 {
9972 ivna.vna_next = 0;
9973 ivna.vna_other = 0;
9974 ivna.vna_name = 0;
9975 }
9976 else
9977 {
9978 ivna.vna_other = BYTE_GET (evna.vna_other);
9979 ivna.vna_next = BYTE_GET (evna.vna_next);
9980 ivna.vna_name = BYTE_GET (evna.vna_name);
9981 }
9982
9983 vna_off += ivna.vna_next;
9984 }
9985 while (ivna.vna_other != vers_data
9986 && ivna.vna_next != 0);
9987
9988 if (ivna.vna_other == vers_data)
9989 break;
9990
9991 offset += ivn.vn_next;
9992 }
9993 while (ivn.vn_next != 0);
9994
9995 if (ivna.vna_other == vers_data)
9996 {
9997 printf ("@%s (%d)",
9998 ivna.vna_name < strtab_size
9999 ? strtab + ivna.vna_name : _("<corrupt>"),
10000 ivna.vna_other);
10001 check_def = 0;
10002 }
10003 else if (! is_nobits)
10004 error (_("bad dynamic symbol\n"));
10005 else
10006 check_def = 1;
10007 }
10008
10009 if (check_def)
10010 {
10011 if (vers_data != 0x8001
10012 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
10013 {
10014 Elf_Internal_Verdef ivd;
10015 Elf_Internal_Verdaux ivda;
10016 Elf_External_Verdaux evda;
10017 unsigned long off;
10018
10019 off = offset_from_vma
10020 (file,
10021 version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
10022 sizeof (Elf_External_Verdef));
10023
10024 do
10025 {
10026 Elf_External_Verdef evd;
10027
10028 if (get_data (&evd, file, off, sizeof (evd),
10029 1, _("version def")) == NULL)
10030 {
10031 ivd.vd_ndx = 0;
10032 ivd.vd_aux = 0;
10033 ivd.vd_next = 0;
10034 }
10035 else
10036 {
10037 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
10038 ivd.vd_aux = BYTE_GET (evd.vd_aux);
10039 ivd.vd_next = BYTE_GET (evd.vd_next);
10040 }
10041
10042 off += ivd.vd_next;
10043 }
10044 while (ivd.vd_ndx != (vers_data & VERSYM_VERSION)
10045 && ivd.vd_next != 0);
10046
10047 off -= ivd.vd_next;
10048 off += ivd.vd_aux;
10049
10050 if (get_data (&evda, file, off, sizeof (evda),
10051 1, _("version def aux")) == NULL)
10052 break;
10053
10054 ivda.vda_name = BYTE_GET (evda.vda_name);
10055
10056 if (psym->st_name != ivda.vda_name)
10057 printf ((vers_data & VERSYM_HIDDEN)
10058 ? "@%s" : "@@%s",
10059 ivda.vda_name < strtab_size
10060 ? strtab + ivda.vda_name : _("<corrupt>"));
10061 }
10062 }
10063 }
10064 }
10065
10066 putchar ('\n');
10067 }
10068
10069 free (symtab);
10070 if (strtab != string_table)
10071 free (strtab);
10072 }
10073 }
10074 else if (do_syms)
10075 printf
10076 (_("\nDynamic symbol information is not available for displaying symbols.\n"));
10077
10078 if (do_histogram && buckets != NULL)
10079 {
10080 unsigned long * lengths;
10081 unsigned long * counts;
10082 unsigned long hn;
10083 bfd_vma si;
10084 unsigned long maxlength = 0;
10085 unsigned long nzero_counts = 0;
10086 unsigned long nsyms = 0;
10087
10088 printf (_("\nHistogram for bucket list length (total of %lu buckets):\n"),
10089 (unsigned long) nbuckets);
10090 printf (_(" Length Number %% of total Coverage\n"));
10091
10092 lengths = (unsigned long *) calloc (nbuckets, sizeof (*lengths));
10093 if (lengths == NULL)
10094 {
10095 error (_("Out of memory\n"));
10096 return 0;
10097 }
10098 for (hn = 0; hn < nbuckets; ++hn)
10099 {
10100 for (si = buckets[hn]; si > 0 && si < nchains; si = chains[si])
10101 {
10102 ++nsyms;
10103 if (maxlength < ++lengths[hn])
10104 ++maxlength;
10105 }
10106 }
10107
10108 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
10109 if (counts == NULL)
10110 {
10111 free (lengths);
10112 error (_("Out of memory\n"));
10113 return 0;
10114 }
10115
10116 for (hn = 0; hn < nbuckets; ++hn)
10117 ++counts[lengths[hn]];
10118
10119 if (nbuckets > 0)
10120 {
10121 unsigned long i;
10122 printf (" 0 %-10lu (%5.1f%%)\n",
10123 counts[0], (counts[0] * 100.0) / nbuckets);
10124 for (i = 1; i <= maxlength; ++i)
10125 {
10126 nzero_counts += counts[i] * i;
10127 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
10128 i, counts[i], (counts[i] * 100.0) / nbuckets,
10129 (nzero_counts * 100.0) / nsyms);
10130 }
10131 }
10132
10133 free (counts);
10134 free (lengths);
10135 }
10136
10137 if (buckets != NULL)
10138 {
10139 free (buckets);
10140 free (chains);
10141 }
10142
10143 if (do_histogram && gnubuckets != NULL)
10144 {
10145 unsigned long * lengths;
10146 unsigned long * counts;
10147 unsigned long hn;
10148 unsigned long maxlength = 0;
10149 unsigned long nzero_counts = 0;
10150 unsigned long nsyms = 0;
10151
10152 lengths = (unsigned long *) calloc (ngnubuckets, sizeof (*lengths));
10153 if (lengths == NULL)
10154 {
10155 error (_("Out of memory\n"));
10156 return 0;
10157 }
10158
10159 printf (_("\nHistogram for `.gnu.hash' bucket list length (total of %lu buckets):\n"),
10160 (unsigned long) ngnubuckets);
10161 printf (_(" Length Number %% of total Coverage\n"));
10162
10163 for (hn = 0; hn < ngnubuckets; ++hn)
10164 if (gnubuckets[hn] != 0)
10165 {
10166 bfd_vma off, length = 1;
10167
10168 for (off = gnubuckets[hn] - gnusymidx;
10169 (gnuchains[off] & 1) == 0; ++off)
10170 ++length;
10171 lengths[hn] = length;
10172 if (length > maxlength)
10173 maxlength = length;
10174 nsyms += length;
10175 }
10176
10177 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
10178 if (counts == NULL)
10179 {
10180 free (lengths);
10181 error (_("Out of memory\n"));
10182 return 0;
10183 }
10184
10185 for (hn = 0; hn < ngnubuckets; ++hn)
10186 ++counts[lengths[hn]];
10187
10188 if (ngnubuckets > 0)
10189 {
10190 unsigned long j;
10191 printf (" 0 %-10lu (%5.1f%%)\n",
10192 counts[0], (counts[0] * 100.0) / ngnubuckets);
10193 for (j = 1; j <= maxlength; ++j)
10194 {
10195 nzero_counts += counts[j] * j;
10196 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
10197 j, counts[j], (counts[j] * 100.0) / ngnubuckets,
10198 (nzero_counts * 100.0) / nsyms);
10199 }
10200 }
10201
10202 free (counts);
10203 free (lengths);
10204 free (gnubuckets);
10205 free (gnuchains);
10206 }
10207
10208 return 1;
10209 }
10210
10211 static int
10212 process_syminfo (FILE * file ATTRIBUTE_UNUSED)
10213 {
10214 unsigned int i;
10215
10216 if (dynamic_syminfo == NULL
10217 || !do_dynamic)
10218 /* No syminfo, this is ok. */
10219 return 1;
10220
10221 /* There better should be a dynamic symbol section. */
10222 if (dynamic_symbols == NULL || dynamic_strings == NULL)
10223 return 0;
10224
10225 if (dynamic_addr)
10226 printf (_("\nDynamic info segment at offset 0x%lx contains %d entries:\n"),
10227 dynamic_syminfo_offset, dynamic_syminfo_nent);
10228
10229 printf (_(" Num: Name BoundTo Flags\n"));
10230 for (i = 0; i < dynamic_syminfo_nent; ++i)
10231 {
10232 unsigned short int flags = dynamic_syminfo[i].si_flags;
10233
10234 printf ("%4d: ", i);
10235 if (VALID_DYNAMIC_NAME (dynamic_symbols[i].st_name))
10236 print_symbol (30, GET_DYNAMIC_NAME (dynamic_symbols[i].st_name));
10237 else
10238 printf (_("<corrupt: %19ld>"), dynamic_symbols[i].st_name);
10239 putchar (' ');
10240
10241 switch (dynamic_syminfo[i].si_boundto)
10242 {
10243 case SYMINFO_BT_SELF:
10244 fputs ("SELF ", stdout);
10245 break;
10246 case SYMINFO_BT_PARENT:
10247 fputs ("PARENT ", stdout);
10248 break;
10249 default:
10250 if (dynamic_syminfo[i].si_boundto > 0
10251 && dynamic_syminfo[i].si_boundto < dynamic_nent
10252 && VALID_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val))
10253 {
10254 print_symbol (10, GET_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val));
10255 putchar (' ' );
10256 }
10257 else
10258 printf ("%-10d ", dynamic_syminfo[i].si_boundto);
10259 break;
10260 }
10261
10262 if (flags & SYMINFO_FLG_DIRECT)
10263 printf (" DIRECT");
10264 if (flags & SYMINFO_FLG_PASSTHRU)
10265 printf (" PASSTHRU");
10266 if (flags & SYMINFO_FLG_COPY)
10267 printf (" COPY");
10268 if (flags & SYMINFO_FLG_LAZYLOAD)
10269 printf (" LAZYLOAD");
10270
10271 puts ("");
10272 }
10273
10274 return 1;
10275 }
10276
10277 /* Check to see if the given reloc needs to be handled in a target specific
10278 manner. If so then process the reloc and return TRUE otherwise return
10279 FALSE. */
10280
10281 static bfd_boolean
10282 target_specific_reloc_handling (Elf_Internal_Rela * reloc,
10283 unsigned char * start,
10284 Elf_Internal_Sym * symtab)
10285 {
10286 unsigned int reloc_type = get_reloc_type (reloc->r_info);
10287
10288 switch (elf_header.e_machine)
10289 {
10290 case EM_MSP430:
10291 case EM_MSP430_OLD:
10292 {
10293 static Elf_Internal_Sym * saved_sym = NULL;
10294
10295 switch (reloc_type)
10296 {
10297 case 10: /* R_MSP430_SYM_DIFF */
10298 if (uses_msp430x_relocs ())
10299 break;
10300 case 21: /* R_MSP430X_SYM_DIFF */
10301 saved_sym = symtab + get_reloc_symindex (reloc->r_info);
10302 return TRUE;
10303
10304 case 1: /* R_MSP430_32 or R_MSP430_ABS32 */
10305 case 3: /* R_MSP430_16 or R_MSP430_ABS8 */
10306 goto handle_sym_diff;
10307
10308 case 5: /* R_MSP430_16_BYTE */
10309 case 9: /* R_MSP430_8 */
10310 if (uses_msp430x_relocs ())
10311 break;
10312 goto handle_sym_diff;
10313
10314 case 2: /* R_MSP430_ABS16 */
10315 case 15: /* R_MSP430X_ABS16 */
10316 if (! uses_msp430x_relocs ())
10317 break;
10318 goto handle_sym_diff;
10319
10320 handle_sym_diff:
10321 if (saved_sym != NULL)
10322 {
10323 bfd_vma value;
10324
10325 value = reloc->r_addend
10326 + (symtab[get_reloc_symindex (reloc->r_info)].st_value
10327 - saved_sym->st_value);
10328
10329 byte_put (start + reloc->r_offset, value, reloc_type == 1 ? 4 : 2);
10330
10331 saved_sym = NULL;
10332 return TRUE;
10333 }
10334 break;
10335
10336 default:
10337 if (saved_sym != NULL)
10338 error (_("Unhandled MSP430 reloc type found after SYM_DIFF reloc"));
10339 break;
10340 }
10341 break;
10342 }
10343
10344 case EM_MN10300:
10345 case EM_CYGNUS_MN10300:
10346 {
10347 static Elf_Internal_Sym * saved_sym = NULL;
10348
10349 switch (reloc_type)
10350 {
10351 case 34: /* R_MN10300_ALIGN */
10352 return TRUE;
10353 case 33: /* R_MN10300_SYM_DIFF */
10354 saved_sym = symtab + get_reloc_symindex (reloc->r_info);
10355 return TRUE;
10356 case 1: /* R_MN10300_32 */
10357 case 2: /* R_MN10300_16 */
10358 if (saved_sym != NULL)
10359 {
10360 bfd_vma value;
10361
10362 value = reloc->r_addend
10363 + (symtab[get_reloc_symindex (reloc->r_info)].st_value
10364 - saved_sym->st_value);
10365
10366 byte_put (start + reloc->r_offset, value, reloc_type == 1 ? 4 : 2);
10367
10368 saved_sym = NULL;
10369 return TRUE;
10370 }
10371 break;
10372 default:
10373 if (saved_sym != NULL)
10374 error (_("Unhandled MN10300 reloc type found after SYM_DIFF reloc"));
10375 break;
10376 }
10377 break;
10378 }
10379 }
10380
10381 return FALSE;
10382 }
10383
10384 /* Returns TRUE iff RELOC_TYPE is a 32-bit absolute RELA relocation used in
10385 DWARF debug sections. This is a target specific test. Note - we do not
10386 go through the whole including-target-headers-multiple-times route, (as
10387 we have already done with <elf/h8.h>) because this would become very
10388 messy and even then this function would have to contain target specific
10389 information (the names of the relocs instead of their numeric values).
10390 FIXME: This is not the correct way to solve this problem. The proper way
10391 is to have target specific reloc sizing and typing functions created by
10392 the reloc-macros.h header, in the same way that it already creates the
10393 reloc naming functions. */
10394
10395 static bfd_boolean
10396 is_32bit_abs_reloc (unsigned int reloc_type)
10397 {
10398 switch (elf_header.e_machine)
10399 {
10400 case EM_386:
10401 case EM_486:
10402 return reloc_type == 1; /* R_386_32. */
10403 case EM_68K:
10404 return reloc_type == 1; /* R_68K_32. */
10405 case EM_860:
10406 return reloc_type == 1; /* R_860_32. */
10407 case EM_960:
10408 return reloc_type == 2; /* R_960_32. */
10409 case EM_AARCH64:
10410 return reloc_type == 258; /* R_AARCH64_ABS32 */
10411 case EM_ALPHA:
10412 return reloc_type == 1; /* R_ALPHA_REFLONG. */
10413 case EM_ARC:
10414 return reloc_type == 1; /* R_ARC_32. */
10415 case EM_ARM:
10416 return reloc_type == 2; /* R_ARM_ABS32 */
10417 case EM_AVR_OLD:
10418 case EM_AVR:
10419 return reloc_type == 1;
10420 case EM_ADAPTEVA_EPIPHANY:
10421 return reloc_type == 3;
10422 case EM_BLACKFIN:
10423 return reloc_type == 0x12; /* R_byte4_data. */
10424 case EM_CRIS:
10425 return reloc_type == 3; /* R_CRIS_32. */
10426 case EM_CR16:
10427 return reloc_type == 3; /* R_CR16_NUM32. */
10428 case EM_CRX:
10429 return reloc_type == 15; /* R_CRX_NUM32. */
10430 case EM_CYGNUS_FRV:
10431 return reloc_type == 1;
10432 case EM_CYGNUS_D10V:
10433 case EM_D10V:
10434 return reloc_type == 6; /* R_D10V_32. */
10435 case EM_CYGNUS_D30V:
10436 case EM_D30V:
10437 return reloc_type == 12; /* R_D30V_32_NORMAL. */
10438 case EM_DLX:
10439 return reloc_type == 3; /* R_DLX_RELOC_32. */
10440 case EM_CYGNUS_FR30:
10441 case EM_FR30:
10442 return reloc_type == 3; /* R_FR30_32. */
10443 case EM_H8S:
10444 case EM_H8_300:
10445 case EM_H8_300H:
10446 return reloc_type == 1; /* R_H8_DIR32. */
10447 case EM_IA_64:
10448 return reloc_type == 0x65; /* R_IA64_SECREL32LSB. */
10449 case EM_IP2K_OLD:
10450 case EM_IP2K:
10451 return reloc_type == 2; /* R_IP2K_32. */
10452 case EM_IQ2000:
10453 return reloc_type == 2; /* R_IQ2000_32. */
10454 case EM_LATTICEMICO32:
10455 return reloc_type == 3; /* R_LM32_32. */
10456 case EM_M32C_OLD:
10457 case EM_M32C:
10458 return reloc_type == 3; /* R_M32C_32. */
10459 case EM_M32R:
10460 return reloc_type == 34; /* R_M32R_32_RELA. */
10461 case EM_MCORE:
10462 return reloc_type == 1; /* R_MCORE_ADDR32. */
10463 case EM_CYGNUS_MEP:
10464 return reloc_type == 4; /* R_MEP_32. */
10465 case EM_METAG:
10466 return reloc_type == 2; /* R_METAG_ADDR32. */
10467 case EM_MICROBLAZE:
10468 return reloc_type == 1; /* R_MICROBLAZE_32. */
10469 case EM_MIPS:
10470 return reloc_type == 2; /* R_MIPS_32. */
10471 case EM_MMIX:
10472 return reloc_type == 4; /* R_MMIX_32. */
10473 case EM_CYGNUS_MN10200:
10474 case EM_MN10200:
10475 return reloc_type == 1; /* R_MN10200_32. */
10476 case EM_CYGNUS_MN10300:
10477 case EM_MN10300:
10478 return reloc_type == 1; /* R_MN10300_32. */
10479 case EM_MOXIE:
10480 return reloc_type == 1; /* R_MOXIE_32. */
10481 case EM_MSP430_OLD:
10482 case EM_MSP430:
10483 return reloc_type == 1; /* R_MSP430_32 or R_MSP320_ABS32. */
10484 case EM_MT:
10485 return reloc_type == 2; /* R_MT_32. */
10486 case EM_NDS32:
10487 return reloc_type == 20; /* R_NDS32_RELA. */
10488 case EM_ALTERA_NIOS2:
10489 return reloc_type == 12; /* R_NIOS2_BFD_RELOC_32. */
10490 case EM_NIOS32:
10491 return reloc_type == 1; /* R_NIOS_32. */
10492 case EM_OR1K:
10493 return reloc_type == 1; /* R_OR1K_32. */
10494 case EM_PARISC:
10495 return (reloc_type == 1 /* R_PARISC_DIR32. */
10496 || reloc_type == 41); /* R_PARISC_SECREL32. */
10497 case EM_PJ:
10498 case EM_PJ_OLD:
10499 return reloc_type == 1; /* R_PJ_DATA_DIR32. */
10500 case EM_PPC64:
10501 return reloc_type == 1; /* R_PPC64_ADDR32. */
10502 case EM_PPC:
10503 return reloc_type == 1; /* R_PPC_ADDR32. */
10504 case EM_RL78:
10505 return reloc_type == 1; /* R_RL78_DIR32. */
10506 case EM_RX:
10507 return reloc_type == 1; /* R_RX_DIR32. */
10508 case EM_S370:
10509 return reloc_type == 1; /* R_I370_ADDR31. */
10510 case EM_S390_OLD:
10511 case EM_S390:
10512 return reloc_type == 4; /* R_S390_32. */
10513 case EM_SCORE:
10514 return reloc_type == 8; /* R_SCORE_ABS32. */
10515 case EM_SH:
10516 return reloc_type == 1; /* R_SH_DIR32. */
10517 case EM_SPARC32PLUS:
10518 case EM_SPARCV9:
10519 case EM_SPARC:
10520 return reloc_type == 3 /* R_SPARC_32. */
10521 || reloc_type == 23; /* R_SPARC_UA32. */
10522 case EM_SPU:
10523 return reloc_type == 6; /* R_SPU_ADDR32 */
10524 case EM_TI_C6000:
10525 return reloc_type == 1; /* R_C6000_ABS32. */
10526 case EM_TILEGX:
10527 return reloc_type == 2; /* R_TILEGX_32. */
10528 case EM_TILEPRO:
10529 return reloc_type == 1; /* R_TILEPRO_32. */
10530 case EM_CYGNUS_V850:
10531 case EM_V850:
10532 return reloc_type == 6; /* R_V850_ABS32. */
10533 case EM_V800:
10534 return reloc_type == 0x33; /* R_V810_WORD. */
10535 case EM_VAX:
10536 return reloc_type == 1; /* R_VAX_32. */
10537 case EM_X86_64:
10538 case EM_L1OM:
10539 case EM_K1OM:
10540 return reloc_type == 10; /* R_X86_64_32. */
10541 case EM_XC16X:
10542 case EM_C166:
10543 return reloc_type == 3; /* R_XC16C_ABS_32. */
10544 case EM_XGATE:
10545 return reloc_type == 4; /* R_XGATE_32. */
10546 case EM_XSTORMY16:
10547 return reloc_type == 1; /* R_XSTROMY16_32. */
10548 case EM_XTENSA_OLD:
10549 case EM_XTENSA:
10550 return reloc_type == 1; /* R_XTENSA_32. */
10551 default:
10552 error (_("Missing knowledge of 32-bit reloc types used in DWARF sections of machine number %d\n"),
10553 elf_header.e_machine);
10554 abort ();
10555 }
10556 }
10557
10558 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
10559 a 32-bit pc-relative RELA relocation used in DWARF debug sections. */
10560
10561 static bfd_boolean
10562 is_32bit_pcrel_reloc (unsigned int reloc_type)
10563 {
10564 switch (elf_header.e_machine)
10565 {
10566 case EM_386:
10567 case EM_486:
10568 return reloc_type == 2; /* R_386_PC32. */
10569 case EM_68K:
10570 return reloc_type == 4; /* R_68K_PC32. */
10571 case EM_AARCH64:
10572 return reloc_type == 261; /* R_AARCH64_PREL32 */
10573 case EM_ADAPTEVA_EPIPHANY:
10574 return reloc_type == 6;
10575 case EM_ALPHA:
10576 return reloc_type == 10; /* R_ALPHA_SREL32. */
10577 case EM_ARM:
10578 return reloc_type == 3; /* R_ARM_REL32 */
10579 case EM_MICROBLAZE:
10580 return reloc_type == 2; /* R_MICROBLAZE_32_PCREL. */
10581 case EM_OR1K:
10582 return reloc_type == 9; /* R_OR1K_32_PCREL. */
10583 case EM_PARISC:
10584 return reloc_type == 9; /* R_PARISC_PCREL32. */
10585 case EM_PPC:
10586 return reloc_type == 26; /* R_PPC_REL32. */
10587 case EM_PPC64:
10588 return reloc_type == 26; /* R_PPC64_REL32. */
10589 case EM_S390_OLD:
10590 case EM_S390:
10591 return reloc_type == 5; /* R_390_PC32. */
10592 case EM_SH:
10593 return reloc_type == 2; /* R_SH_REL32. */
10594 case EM_SPARC32PLUS:
10595 case EM_SPARCV9:
10596 case EM_SPARC:
10597 return reloc_type == 6; /* R_SPARC_DISP32. */
10598 case EM_SPU:
10599 return reloc_type == 13; /* R_SPU_REL32. */
10600 case EM_TILEGX:
10601 return reloc_type == 6; /* R_TILEGX_32_PCREL. */
10602 case EM_TILEPRO:
10603 return reloc_type == 4; /* R_TILEPRO_32_PCREL. */
10604 case EM_X86_64:
10605 case EM_L1OM:
10606 case EM_K1OM:
10607 return reloc_type == 2; /* R_X86_64_PC32. */
10608 case EM_XTENSA_OLD:
10609 case EM_XTENSA:
10610 return reloc_type == 14; /* R_XTENSA_32_PCREL. */
10611 default:
10612 /* Do not abort or issue an error message here. Not all targets use
10613 pc-relative 32-bit relocs in their DWARF debug information and we
10614 have already tested for target coverage in is_32bit_abs_reloc. A
10615 more helpful warning message will be generated by apply_relocations
10616 anyway, so just return. */
10617 return FALSE;
10618 }
10619 }
10620
10621 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
10622 a 64-bit absolute RELA relocation used in DWARF debug sections. */
10623
10624 static bfd_boolean
10625 is_64bit_abs_reloc (unsigned int reloc_type)
10626 {
10627 switch (elf_header.e_machine)
10628 {
10629 case EM_AARCH64:
10630 return reloc_type == 257; /* R_AARCH64_ABS64. */
10631 case EM_ALPHA:
10632 return reloc_type == 2; /* R_ALPHA_REFQUAD. */
10633 case EM_IA_64:
10634 return reloc_type == 0x27; /* R_IA64_DIR64LSB. */
10635 case EM_PARISC:
10636 return reloc_type == 80; /* R_PARISC_DIR64. */
10637 case EM_PPC64:
10638 return reloc_type == 38; /* R_PPC64_ADDR64. */
10639 case EM_SPARC32PLUS:
10640 case EM_SPARCV9:
10641 case EM_SPARC:
10642 return reloc_type == 54; /* R_SPARC_UA64. */
10643 case EM_X86_64:
10644 case EM_L1OM:
10645 case EM_K1OM:
10646 return reloc_type == 1; /* R_X86_64_64. */
10647 case EM_S390_OLD:
10648 case EM_S390:
10649 return reloc_type == 22; /* R_S390_64. */
10650 case EM_TILEGX:
10651 return reloc_type == 1; /* R_TILEGX_64. */
10652 case EM_MIPS:
10653 return reloc_type == 18; /* R_MIPS_64. */
10654 default:
10655 return FALSE;
10656 }
10657 }
10658
10659 /* Like is_32bit_pcrel_reloc except that it returns TRUE iff RELOC_TYPE is
10660 a 64-bit pc-relative RELA relocation used in DWARF debug sections. */
10661
10662 static bfd_boolean
10663 is_64bit_pcrel_reloc (unsigned int reloc_type)
10664 {
10665 switch (elf_header.e_machine)
10666 {
10667 case EM_AARCH64:
10668 return reloc_type == 260; /* R_AARCH64_PREL64. */
10669 case EM_ALPHA:
10670 return reloc_type == 11; /* R_ALPHA_SREL64. */
10671 case EM_IA_64:
10672 return reloc_type == 0x4f; /* R_IA64_PCREL64LSB. */
10673 case EM_PARISC:
10674 return reloc_type == 72; /* R_PARISC_PCREL64. */
10675 case EM_PPC64:
10676 return reloc_type == 44; /* R_PPC64_REL64. */
10677 case EM_SPARC32PLUS:
10678 case EM_SPARCV9:
10679 case EM_SPARC:
10680 return reloc_type == 46; /* R_SPARC_DISP64. */
10681 case EM_X86_64:
10682 case EM_L1OM:
10683 case EM_K1OM:
10684 return reloc_type == 24; /* R_X86_64_PC64. */
10685 case EM_S390_OLD:
10686 case EM_S390:
10687 return reloc_type == 23; /* R_S390_PC64. */
10688 case EM_TILEGX:
10689 return reloc_type == 5; /* R_TILEGX_64_PCREL. */
10690 default:
10691 return FALSE;
10692 }
10693 }
10694
10695 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
10696 a 24-bit absolute RELA relocation used in DWARF debug sections. */
10697
10698 static bfd_boolean
10699 is_24bit_abs_reloc (unsigned int reloc_type)
10700 {
10701 switch (elf_header.e_machine)
10702 {
10703 case EM_CYGNUS_MN10200:
10704 case EM_MN10200:
10705 return reloc_type == 4; /* R_MN10200_24. */
10706 default:
10707 return FALSE;
10708 }
10709 }
10710
10711 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
10712 a 16-bit absolute RELA relocation used in DWARF debug sections. */
10713
10714 static bfd_boolean
10715 is_16bit_abs_reloc (unsigned int reloc_type)
10716 {
10717 switch (elf_header.e_machine)
10718 {
10719 case EM_AVR_OLD:
10720 case EM_AVR:
10721 return reloc_type == 4; /* R_AVR_16. */
10722 case EM_ADAPTEVA_EPIPHANY:
10723 return reloc_type == 5;
10724 case EM_CYGNUS_D10V:
10725 case EM_D10V:
10726 return reloc_type == 3; /* R_D10V_16. */
10727 case EM_H8S:
10728 case EM_H8_300:
10729 case EM_H8_300H:
10730 return reloc_type == R_H8_DIR16;
10731 case EM_IP2K_OLD:
10732 case EM_IP2K:
10733 return reloc_type == 1; /* R_IP2K_16. */
10734 case EM_M32C_OLD:
10735 case EM_M32C:
10736 return reloc_type == 1; /* R_M32C_16 */
10737 case EM_MSP430:
10738 if (uses_msp430x_relocs ())
10739 return reloc_type == 2; /* R_MSP430_ABS16. */
10740 case EM_MSP430_OLD:
10741 return reloc_type == 5; /* R_MSP430_16_BYTE. */
10742 case EM_NDS32:
10743 return reloc_type == 19; /* R_NDS32_RELA. */
10744 case EM_ALTERA_NIOS2:
10745 return reloc_type == 13; /* R_NIOS2_BFD_RELOC_16. */
10746 case EM_NIOS32:
10747 return reloc_type == 9; /* R_NIOS_16. */
10748 case EM_OR1K:
10749 return reloc_type == 2; /* R_OR1K_16. */
10750 case EM_TI_C6000:
10751 return reloc_type == 2; /* R_C6000_ABS16. */
10752 case EM_XC16X:
10753 case EM_C166:
10754 return reloc_type == 2; /* R_XC16C_ABS_16. */
10755 case EM_CYGNUS_MN10200:
10756 case EM_MN10200:
10757 return reloc_type == 2; /* R_MN10200_16. */
10758 case EM_CYGNUS_MN10300:
10759 case EM_MN10300:
10760 return reloc_type == 2; /* R_MN10300_16. */
10761 case EM_XGATE:
10762 return reloc_type == 3; /* R_XGATE_16. */
10763 default:
10764 return FALSE;
10765 }
10766 }
10767
10768 /* Returns TRUE iff RELOC_TYPE is a NONE relocation used for discarded
10769 relocation entries (possibly formerly used for SHT_GROUP sections). */
10770
10771 static bfd_boolean
10772 is_none_reloc (unsigned int reloc_type)
10773 {
10774 switch (elf_header.e_machine)
10775 {
10776 case EM_68K: /* R_68K_NONE. */
10777 case EM_386: /* R_386_NONE. */
10778 case EM_SPARC32PLUS:
10779 case EM_SPARCV9:
10780 case EM_SPARC: /* R_SPARC_NONE. */
10781 case EM_MIPS: /* R_MIPS_NONE. */
10782 case EM_PARISC: /* R_PARISC_NONE. */
10783 case EM_ALPHA: /* R_ALPHA_NONE. */
10784 case EM_ADAPTEVA_EPIPHANY:
10785 case EM_PPC: /* R_PPC_NONE. */
10786 case EM_PPC64: /* R_PPC64_NONE. */
10787 case EM_ARM: /* R_ARM_NONE. */
10788 case EM_IA_64: /* R_IA64_NONE. */
10789 case EM_SH: /* R_SH_NONE. */
10790 case EM_S390_OLD:
10791 case EM_S390: /* R_390_NONE. */
10792 case EM_CRIS: /* R_CRIS_NONE. */
10793 case EM_X86_64: /* R_X86_64_NONE. */
10794 case EM_L1OM: /* R_X86_64_NONE. */
10795 case EM_K1OM: /* R_X86_64_NONE. */
10796 case EM_MN10300: /* R_MN10300_NONE. */
10797 case EM_MOXIE: /* R_MOXIE_NONE. */
10798 case EM_M32R: /* R_M32R_NONE. */
10799 case EM_TI_C6000:/* R_C6000_NONE. */
10800 case EM_TILEGX: /* R_TILEGX_NONE. */
10801 case EM_TILEPRO: /* R_TILEPRO_NONE. */
10802 case EM_XC16X:
10803 case EM_C166: /* R_XC16X_NONE. */
10804 case EM_ALTERA_NIOS2: /* R_NIOS2_NONE. */
10805 case EM_NIOS32: /* R_NIOS_NONE. */
10806 case EM_OR1K: /* R_OR1K_NONE. */
10807 return reloc_type == 0;
10808 case EM_AARCH64:
10809 return reloc_type == 0 || reloc_type == 256;
10810 case EM_NDS32:
10811 return (reloc_type == 0 /* R_XTENSA_NONE. */
10812 || reloc_type == 204 /* R_NDS32_DIFF8. */
10813 || reloc_type == 205 /* R_NDS32_DIFF16. */
10814 || reloc_type == 206 /* R_NDS32_DIFF32. */
10815 || reloc_type == 207 /* R_NDS32_ULEB128. */);
10816 case EM_XTENSA_OLD:
10817 case EM_XTENSA:
10818 return (reloc_type == 0 /* R_XTENSA_NONE. */
10819 || reloc_type == 17 /* R_XTENSA_DIFF8. */
10820 || reloc_type == 18 /* R_XTENSA_DIFF16. */
10821 || reloc_type == 19 /* R_XTENSA_DIFF32. */);
10822 case EM_METAG:
10823 return reloc_type == 3; /* R_METAG_NONE. */
10824 }
10825 return FALSE;
10826 }
10827
10828 /* Apply relocations to a section.
10829 Note: So far support has been added only for those relocations
10830 which can be found in debug sections.
10831 FIXME: Add support for more relocations ? */
10832
10833 static void
10834 apply_relocations (void * file,
10835 Elf_Internal_Shdr * section,
10836 unsigned char * start)
10837 {
10838 Elf_Internal_Shdr * relsec;
10839 unsigned char * end = start + section->sh_size;
10840
10841 if (elf_header.e_type != ET_REL)
10842 return;
10843
10844 /* Find the reloc section associated with the section. */
10845 for (relsec = section_headers;
10846 relsec < section_headers + elf_header.e_shnum;
10847 ++relsec)
10848 {
10849 bfd_boolean is_rela;
10850 unsigned long num_relocs;
10851 Elf_Internal_Rela * relocs;
10852 Elf_Internal_Rela * rp;
10853 Elf_Internal_Shdr * symsec;
10854 Elf_Internal_Sym * symtab;
10855 unsigned long num_syms;
10856 Elf_Internal_Sym * sym;
10857
10858 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
10859 || relsec->sh_info >= elf_header.e_shnum
10860 || section_headers + relsec->sh_info != section
10861 || relsec->sh_size == 0
10862 || relsec->sh_link >= elf_header.e_shnum)
10863 continue;
10864
10865 is_rela = relsec->sh_type == SHT_RELA;
10866
10867 if (is_rela)
10868 {
10869 if (!slurp_rela_relocs ((FILE *) file, relsec->sh_offset,
10870 relsec->sh_size, & relocs, & num_relocs))
10871 return;
10872 }
10873 else
10874 {
10875 if (!slurp_rel_relocs ((FILE *) file, relsec->sh_offset,
10876 relsec->sh_size, & relocs, & num_relocs))
10877 return;
10878 }
10879
10880 /* SH uses RELA but uses in place value instead of the addend field. */
10881 if (elf_header.e_machine == EM_SH)
10882 is_rela = FALSE;
10883
10884 symsec = section_headers + relsec->sh_link;
10885 symtab = GET_ELF_SYMBOLS ((FILE *) file, symsec, & num_syms);
10886
10887 for (rp = relocs; rp < relocs + num_relocs; ++rp)
10888 {
10889 bfd_vma addend;
10890 unsigned int reloc_type;
10891 unsigned int reloc_size;
10892 unsigned char * rloc;
10893 unsigned long sym_index;
10894
10895 reloc_type = get_reloc_type (rp->r_info);
10896
10897 if (target_specific_reloc_handling (rp, start, symtab))
10898 continue;
10899 else if (is_none_reloc (reloc_type))
10900 continue;
10901 else if (is_32bit_abs_reloc (reloc_type)
10902 || is_32bit_pcrel_reloc (reloc_type))
10903 reloc_size = 4;
10904 else if (is_64bit_abs_reloc (reloc_type)
10905 || is_64bit_pcrel_reloc (reloc_type))
10906 reloc_size = 8;
10907 else if (is_24bit_abs_reloc (reloc_type))
10908 reloc_size = 3;
10909 else if (is_16bit_abs_reloc (reloc_type))
10910 reloc_size = 2;
10911 else
10912 {
10913 warn (_("unable to apply unsupported reloc type %d to section %s\n"),
10914 reloc_type, SECTION_NAME (section));
10915 continue;
10916 }
10917
10918 rloc = start + rp->r_offset;
10919 if ((rloc + reloc_size) > end || (rloc < start))
10920 {
10921 warn (_("skipping invalid relocation offset 0x%lx in section %s\n"),
10922 (unsigned long) rp->r_offset,
10923 SECTION_NAME (section));
10924 continue;
10925 }
10926
10927 sym_index = (unsigned long) get_reloc_symindex (rp->r_info);
10928 if (sym_index >= num_syms)
10929 {
10930 warn (_("skipping invalid relocation symbol index 0x%lx in section %s\n"),
10931 sym_index, SECTION_NAME (section));
10932 continue;
10933 }
10934 sym = symtab + sym_index;
10935
10936 /* If the reloc has a symbol associated with it,
10937 make sure that it is of an appropriate type.
10938
10939 Relocations against symbols without type can happen.
10940 Gcc -feliminate-dwarf2-dups may generate symbols
10941 without type for debug info.
10942
10943 Icc generates relocations against function symbols
10944 instead of local labels.
10945
10946 Relocations against object symbols can happen, eg when
10947 referencing a global array. For an example of this see
10948 the _clz.o binary in libgcc.a. */
10949 if (sym != symtab
10950 && ELF_ST_TYPE (sym->st_info) > STT_SECTION)
10951 {
10952 warn (_("skipping unexpected symbol type %s in %ld'th relocation in section %s\n"),
10953 get_symbol_type (ELF_ST_TYPE (sym->st_info)),
10954 (long int)(rp - relocs),
10955 SECTION_NAME (relsec));
10956 continue;
10957 }
10958
10959 addend = 0;
10960 if (is_rela)
10961 addend += rp->r_addend;
10962 /* R_XTENSA_32, R_PJ_DATA_DIR32 and R_D30V_32_NORMAL are
10963 partial_inplace. */
10964 if (!is_rela
10965 || (elf_header.e_machine == EM_XTENSA
10966 && reloc_type == 1)
10967 || ((elf_header.e_machine == EM_PJ
10968 || elf_header.e_machine == EM_PJ_OLD)
10969 && reloc_type == 1)
10970 || ((elf_header.e_machine == EM_D30V
10971 || elf_header.e_machine == EM_CYGNUS_D30V)
10972 && reloc_type == 12))
10973 addend += byte_get (rloc, reloc_size);
10974
10975 if (is_32bit_pcrel_reloc (reloc_type)
10976 || is_64bit_pcrel_reloc (reloc_type))
10977 {
10978 /* On HPPA, all pc-relative relocations are biased by 8. */
10979 if (elf_header.e_machine == EM_PARISC)
10980 addend -= 8;
10981 byte_put (rloc, (addend + sym->st_value) - rp->r_offset,
10982 reloc_size);
10983 }
10984 else
10985 byte_put (rloc, addend + sym->st_value, reloc_size);
10986 }
10987
10988 free (symtab);
10989 free (relocs);
10990 break;
10991 }
10992 }
10993
10994 #ifdef SUPPORT_DISASSEMBLY
10995 static int
10996 disassemble_section (Elf_Internal_Shdr * section, FILE * file)
10997 {
10998 printf (_("\nAssembly dump of section %s\n"),
10999 SECTION_NAME (section));
11000
11001 /* XXX -- to be done --- XXX */
11002
11003 return 1;
11004 }
11005 #endif
11006
11007 /* Reads in the contents of SECTION from FILE, returning a pointer
11008 to a malloc'ed buffer or NULL if something went wrong. */
11009
11010 static char *
11011 get_section_contents (Elf_Internal_Shdr * section, FILE * file)
11012 {
11013 bfd_size_type num_bytes;
11014
11015 num_bytes = section->sh_size;
11016
11017 if (num_bytes == 0 || section->sh_type == SHT_NOBITS)
11018 {
11019 printf (_("\nSection '%s' has no data to dump.\n"),
11020 SECTION_NAME (section));
11021 return NULL;
11022 }
11023
11024 return (char *) get_data (NULL, file, section->sh_offset, 1, num_bytes,
11025 _("section contents"));
11026 }
11027
11028
11029 static void
11030 dump_section_as_strings (Elf_Internal_Shdr * section, FILE * file)
11031 {
11032 Elf_Internal_Shdr * relsec;
11033 bfd_size_type num_bytes;
11034 char * data;
11035 char * end;
11036 char * start;
11037 char * name = SECTION_NAME (section);
11038 bfd_boolean some_strings_shown;
11039
11040 start = get_section_contents (section, file);
11041 if (start == NULL)
11042 return;
11043
11044 printf (_("\nString dump of section '%s':\n"), name);
11045
11046 /* If the section being dumped has relocations against it the user might
11047 be expecting these relocations to have been applied. Check for this
11048 case and issue a warning message in order to avoid confusion.
11049 FIXME: Maybe we ought to have an option that dumps a section with
11050 relocs applied ? */
11051 for (relsec = section_headers;
11052 relsec < section_headers + elf_header.e_shnum;
11053 ++relsec)
11054 {
11055 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
11056 || relsec->sh_info >= elf_header.e_shnum
11057 || section_headers + relsec->sh_info != section
11058 || relsec->sh_size == 0
11059 || relsec->sh_link >= elf_header.e_shnum)
11060 continue;
11061
11062 printf (_(" Note: This section has relocations against it, but these have NOT been applied to this dump.\n"));
11063 break;
11064 }
11065
11066 num_bytes = section->sh_size;
11067 data = start;
11068 end = start + num_bytes;
11069 some_strings_shown = FALSE;
11070
11071 while (data < end)
11072 {
11073 while (!ISPRINT (* data))
11074 if (++ data >= end)
11075 break;
11076
11077 if (data < end)
11078 {
11079 #ifndef __MSVCRT__
11080 /* PR 11128: Use two separate invocations in order to work
11081 around bugs in the Solaris 8 implementation of printf. */
11082 printf (" [%6tx] ", data - start);
11083 printf ("%s\n", data);
11084 #else
11085 printf (" [%6Ix] %s\n", (size_t) (data - start), data);
11086 #endif
11087 data += strlen (data);
11088 some_strings_shown = TRUE;
11089 }
11090 }
11091
11092 if (! some_strings_shown)
11093 printf (_(" No strings found in this section."));
11094
11095 free (start);
11096
11097 putchar ('\n');
11098 }
11099
11100 static void
11101 dump_section_as_bytes (Elf_Internal_Shdr * section,
11102 FILE * file,
11103 bfd_boolean relocate)
11104 {
11105 Elf_Internal_Shdr * relsec;
11106 bfd_size_type bytes;
11107 bfd_vma addr;
11108 unsigned char * data;
11109 unsigned char * start;
11110
11111 start = (unsigned char *) get_section_contents (section, file);
11112 if (start == NULL)
11113 return;
11114
11115 printf (_("\nHex dump of section '%s':\n"), SECTION_NAME (section));
11116
11117 if (relocate)
11118 {
11119 apply_relocations (file, section, start);
11120 }
11121 else
11122 {
11123 /* If the section being dumped has relocations against it the user might
11124 be expecting these relocations to have been applied. Check for this
11125 case and issue a warning message in order to avoid confusion.
11126 FIXME: Maybe we ought to have an option that dumps a section with
11127 relocs applied ? */
11128 for (relsec = section_headers;
11129 relsec < section_headers + elf_header.e_shnum;
11130 ++relsec)
11131 {
11132 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
11133 || relsec->sh_info >= elf_header.e_shnum
11134 || section_headers + relsec->sh_info != section
11135 || relsec->sh_size == 0
11136 || relsec->sh_link >= elf_header.e_shnum)
11137 continue;
11138
11139 printf (_(" NOTE: This section has relocations against it, but these have NOT been applied to this dump.\n"));
11140 break;
11141 }
11142 }
11143
11144 addr = section->sh_addr;
11145 bytes = section->sh_size;
11146 data = start;
11147
11148 while (bytes)
11149 {
11150 int j;
11151 int k;
11152 int lbytes;
11153
11154 lbytes = (bytes > 16 ? 16 : bytes);
11155
11156 printf (" 0x%8.8lx ", (unsigned long) addr);
11157
11158 for (j = 0; j < 16; j++)
11159 {
11160 if (j < lbytes)
11161 printf ("%2.2x", data[j]);
11162 else
11163 printf (" ");
11164
11165 if ((j & 3) == 3)
11166 printf (" ");
11167 }
11168
11169 for (j = 0; j < lbytes; j++)
11170 {
11171 k = data[j];
11172 if (k >= ' ' && k < 0x7f)
11173 printf ("%c", k);
11174 else
11175 printf (".");
11176 }
11177
11178 putchar ('\n');
11179
11180 data += lbytes;
11181 addr += lbytes;
11182 bytes -= lbytes;
11183 }
11184
11185 free (start);
11186
11187 putchar ('\n');
11188 }
11189
11190 /* Uncompresses a section that was compressed using zlib, in place. */
11191
11192 static int
11193 uncompress_section_contents (unsigned char **buffer ATTRIBUTE_UNUSED,
11194 dwarf_size_type *size ATTRIBUTE_UNUSED)
11195 {
11196 #ifndef HAVE_ZLIB_H
11197 return FALSE;
11198 #else
11199 dwarf_size_type compressed_size = *size;
11200 unsigned char * compressed_buffer = *buffer;
11201 dwarf_size_type uncompressed_size;
11202 unsigned char * uncompressed_buffer;
11203 z_stream strm;
11204 int rc;
11205 dwarf_size_type header_size = 12;
11206
11207 /* Read the zlib header. In this case, it should be "ZLIB" followed
11208 by the uncompressed section size, 8 bytes in big-endian order. */
11209 if (compressed_size < header_size
11210 || ! streq ((char *) compressed_buffer, "ZLIB"))
11211 return 0;
11212
11213 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
11214 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
11215 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
11216 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
11217 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
11218 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
11219 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
11220 uncompressed_size += compressed_buffer[11];
11221
11222 /* It is possible the section consists of several compressed
11223 buffers concatenated together, so we uncompress in a loop. */
11224 strm.zalloc = NULL;
11225 strm.zfree = NULL;
11226 strm.opaque = NULL;
11227 strm.avail_in = compressed_size - header_size;
11228 strm.next_in = (Bytef *) compressed_buffer + header_size;
11229 strm.avail_out = uncompressed_size;
11230 uncompressed_buffer = (unsigned char *) xmalloc (uncompressed_size);
11231
11232 rc = inflateInit (& strm);
11233 while (strm.avail_in > 0)
11234 {
11235 if (rc != Z_OK)
11236 goto fail;
11237 strm.next_out = ((Bytef *) uncompressed_buffer
11238 + (uncompressed_size - strm.avail_out));
11239 rc = inflate (&strm, Z_FINISH);
11240 if (rc != Z_STREAM_END)
11241 goto fail;
11242 rc = inflateReset (& strm);
11243 }
11244 rc = inflateEnd (& strm);
11245 if (rc != Z_OK
11246 || strm.avail_out != 0)
11247 goto fail;
11248
11249 free (compressed_buffer);
11250 *buffer = uncompressed_buffer;
11251 *size = uncompressed_size;
11252 return 1;
11253
11254 fail:
11255 free (uncompressed_buffer);
11256 /* Indicate decompression failure. */
11257 *buffer = NULL;
11258 return 0;
11259 #endif /* HAVE_ZLIB_H */
11260 }
11261
11262 static int
11263 load_specific_debug_section (enum dwarf_section_display_enum debug,
11264 Elf_Internal_Shdr * sec, void * file)
11265 {
11266 struct dwarf_section * section = &debug_displays [debug].section;
11267 char buf [64];
11268
11269 /* If it is already loaded, do nothing. */
11270 if (section->start != NULL)
11271 return 1;
11272
11273 snprintf (buf, sizeof (buf), _("%s section data"), section->name);
11274 section->address = sec->sh_addr;
11275 section->start = (unsigned char *) get_data (NULL, (FILE *) file,
11276 sec->sh_offset, 1,
11277 sec->sh_size, buf);
11278 if (section->start == NULL)
11279 section->size = 0;
11280 else
11281 {
11282 section->size = sec->sh_size;
11283 if (uncompress_section_contents (&section->start, &section->size))
11284 sec->sh_size = section->size;
11285 }
11286
11287 if (section->start == NULL)
11288 return 0;
11289
11290 if (debug_displays [debug].relocate)
11291 apply_relocations ((FILE *) file, sec, section->start);
11292
11293 return 1;
11294 }
11295
11296 /* If this is not NULL, load_debug_section will only look for sections
11297 within the list of sections given here. */
11298 unsigned int *section_subset = NULL;
11299
11300 int
11301 load_debug_section (enum dwarf_section_display_enum debug, void * file)
11302 {
11303 struct dwarf_section * section = &debug_displays [debug].section;
11304 Elf_Internal_Shdr * sec;
11305
11306 /* Locate the debug section. */
11307 sec = find_section_in_set (section->uncompressed_name, section_subset);
11308 if (sec != NULL)
11309 section->name = section->uncompressed_name;
11310 else
11311 {
11312 sec = find_section_in_set (section->compressed_name, section_subset);
11313 if (sec != NULL)
11314 section->name = section->compressed_name;
11315 }
11316 if (sec == NULL)
11317 return 0;
11318
11319 /* If we're loading from a subset of sections, and we've loaded
11320 a section matching this name before, it's likely that it's a
11321 different one. */
11322 if (section_subset != NULL)
11323 free_debug_section (debug);
11324
11325 return load_specific_debug_section (debug, sec, (FILE *) file);
11326 }
11327
11328 void
11329 free_debug_section (enum dwarf_section_display_enum debug)
11330 {
11331 struct dwarf_section * section = &debug_displays [debug].section;
11332
11333 if (section->start == NULL)
11334 return;
11335
11336 free ((char *) section->start);
11337 section->start = NULL;
11338 section->address = 0;
11339 section->size = 0;
11340 }
11341
11342 static int
11343 display_debug_section (int shndx, Elf_Internal_Shdr * section, FILE * file)
11344 {
11345 char * name = SECTION_NAME (section);
11346 bfd_size_type length;
11347 int result = 1;
11348 int i;
11349
11350 length = section->sh_size;
11351 if (length == 0)
11352 {
11353 printf (_("\nSection '%s' has no debugging data.\n"), name);
11354 return 0;
11355 }
11356 if (section->sh_type == SHT_NOBITS)
11357 {
11358 /* There is no point in dumping the contents of a debugging section
11359 which has the NOBITS type - the bits in the file will be random.
11360 This can happen when a file containing a .eh_frame section is
11361 stripped with the --only-keep-debug command line option. */
11362 printf (_("section '%s' has the NOBITS type - its contents are unreliable.\n"), name);
11363 return 0;
11364 }
11365
11366 if (const_strneq (name, ".gnu.linkonce.wi."))
11367 name = ".debug_info";
11368
11369 /* See if we know how to display the contents of this section. */
11370 for (i = 0; i < max; i++)
11371 if (streq (debug_displays[i].section.uncompressed_name, name)
11372 || (i == line && const_strneq (name, ".debug_line."))
11373 || streq (debug_displays[i].section.compressed_name, name))
11374 {
11375 struct dwarf_section * sec = &debug_displays [i].section;
11376 int secondary = (section != find_section (name));
11377
11378 if (secondary)
11379 free_debug_section ((enum dwarf_section_display_enum) i);
11380
11381 if (i == line && const_strneq (name, ".debug_line."))
11382 sec->name = name;
11383 else if (streq (sec->uncompressed_name, name))
11384 sec->name = sec->uncompressed_name;
11385 else
11386 sec->name = sec->compressed_name;
11387 if (load_specific_debug_section ((enum dwarf_section_display_enum) i,
11388 section, file))
11389 {
11390 /* If this debug section is part of a CU/TU set in a .dwp file,
11391 restrict load_debug_section to the sections in that set. */
11392 section_subset = find_cu_tu_set (file, shndx);
11393
11394 result &= debug_displays[i].display (sec, file);
11395
11396 section_subset = NULL;
11397
11398 if (secondary || (i != info && i != abbrev))
11399 free_debug_section ((enum dwarf_section_display_enum) i);
11400 }
11401
11402 break;
11403 }
11404
11405 if (i == max)
11406 {
11407 printf (_("Unrecognized debug section: %s\n"), name);
11408 result = 0;
11409 }
11410
11411 return result;
11412 }
11413
11414 /* Set DUMP_SECTS for all sections where dumps were requested
11415 based on section name. */
11416
11417 static void
11418 initialise_dumps_byname (void)
11419 {
11420 struct dump_list_entry * cur;
11421
11422 for (cur = dump_sects_byname; cur; cur = cur->next)
11423 {
11424 unsigned int i;
11425 int any;
11426
11427 for (i = 0, any = 0; i < elf_header.e_shnum; i++)
11428 if (streq (SECTION_NAME (section_headers + i), cur->name))
11429 {
11430 request_dump_bynumber (i, cur->type);
11431 any = 1;
11432 }
11433
11434 if (!any)
11435 warn (_("Section '%s' was not dumped because it does not exist!\n"),
11436 cur->name);
11437 }
11438 }
11439
11440 static void
11441 process_section_contents (FILE * file)
11442 {
11443 Elf_Internal_Shdr * section;
11444 unsigned int i;
11445
11446 if (! do_dump)
11447 return;
11448
11449 initialise_dumps_byname ();
11450
11451 for (i = 0, section = section_headers;
11452 i < elf_header.e_shnum && i < num_dump_sects;
11453 i++, section++)
11454 {
11455 #ifdef SUPPORT_DISASSEMBLY
11456 if (dump_sects[i] & DISASS_DUMP)
11457 disassemble_section (section, file);
11458 #endif
11459 if (dump_sects[i] & HEX_DUMP)
11460 dump_section_as_bytes (section, file, FALSE);
11461
11462 if (dump_sects[i] & RELOC_DUMP)
11463 dump_section_as_bytes (section, file, TRUE);
11464
11465 if (dump_sects[i] & STRING_DUMP)
11466 dump_section_as_strings (section, file);
11467
11468 if (dump_sects[i] & DEBUG_DUMP)
11469 display_debug_section (i, section, file);
11470 }
11471
11472 /* Check to see if the user requested a
11473 dump of a section that does not exist. */
11474 while (i++ < num_dump_sects)
11475 if (dump_sects[i])
11476 warn (_("Section %d was not dumped because it does not exist!\n"), i);
11477 }
11478
11479 static void
11480 process_mips_fpe_exception (int mask)
11481 {
11482 if (mask)
11483 {
11484 int first = 1;
11485 if (mask & OEX_FPU_INEX)
11486 fputs ("INEX", stdout), first = 0;
11487 if (mask & OEX_FPU_UFLO)
11488 printf ("%sUFLO", first ? "" : "|"), first = 0;
11489 if (mask & OEX_FPU_OFLO)
11490 printf ("%sOFLO", first ? "" : "|"), first = 0;
11491 if (mask & OEX_FPU_DIV0)
11492 printf ("%sDIV0", first ? "" : "|"), first = 0;
11493 if (mask & OEX_FPU_INVAL)
11494 printf ("%sINVAL", first ? "" : "|");
11495 }
11496 else
11497 fputs ("0", stdout);
11498 }
11499
11500 /* Display's the value of TAG at location P. If TAG is
11501 greater than 0 it is assumed to be an unknown tag, and
11502 a message is printed to this effect. Otherwise it is
11503 assumed that a message has already been printed.
11504
11505 If the bottom bit of TAG is set it assumed to have a
11506 string value, otherwise it is assumed to have an integer
11507 value.
11508
11509 Returns an updated P pointing to the first unread byte
11510 beyond the end of TAG's value.
11511
11512 Reads at or beyond END will not be made. */
11513
11514 static unsigned char *
11515 display_tag_value (int tag,
11516 unsigned char * p,
11517 const unsigned char * const end)
11518 {
11519 unsigned long val;
11520
11521 if (tag > 0)
11522 printf (" Tag_unknown_%d: ", tag);
11523
11524 if (p >= end)
11525 {
11526 warn (_("corrupt tag\n"));
11527 }
11528 else if (tag & 1)
11529 {
11530 /* FIXME: we could read beyond END here. */
11531 printf ("\"%s\"\n", p);
11532 p += strlen ((char *) p) + 1;
11533 }
11534 else
11535 {
11536 unsigned int len;
11537
11538 val = read_uleb128 (p, &len, end);
11539 p += len;
11540 printf ("%ld (0x%lx)\n", val, val);
11541 }
11542
11543 return p;
11544 }
11545
11546 /* ARM EABI attributes section. */
11547 typedef struct
11548 {
11549 int tag;
11550 const char * name;
11551 /* 0 = special, 1 = string, 2 = uleb123, > 0x80 == table lookup. */
11552 int type;
11553 const char ** table;
11554 } arm_attr_public_tag;
11555
11556 static const char * arm_attr_tag_CPU_arch[] =
11557 {"Pre-v4", "v4", "v4T", "v5T", "v5TE", "v5TEJ", "v6", "v6KZ", "v6T2",
11558 "v6K", "v7", "v6-M", "v6S-M", "v7E-M", "v8"};
11559 static const char * arm_attr_tag_ARM_ISA_use[] = {"No", "Yes"};
11560 static const char * arm_attr_tag_THUMB_ISA_use[] =
11561 {"No", "Thumb-1", "Thumb-2"};
11562 static const char * arm_attr_tag_FP_arch[] =
11563 {"No", "VFPv1", "VFPv2", "VFPv3", "VFPv3-D16", "VFPv4", "VFPv4-D16",
11564 "FP for ARMv8"};
11565 static const char * arm_attr_tag_WMMX_arch[] = {"No", "WMMXv1", "WMMXv2"};
11566 static const char * arm_attr_tag_Advanced_SIMD_arch[] =
11567 {"No", "NEONv1", "NEONv1 with Fused-MAC", "NEON for ARMv8"};
11568 static const char * arm_attr_tag_PCS_config[] =
11569 {"None", "Bare platform", "Linux application", "Linux DSO", "PalmOS 2004",
11570 "PalmOS (reserved)", "SymbianOS 2004", "SymbianOS (reserved)"};
11571 static const char * arm_attr_tag_ABI_PCS_R9_use[] =
11572 {"V6", "SB", "TLS", "Unused"};
11573 static const char * arm_attr_tag_ABI_PCS_RW_data[] =
11574 {"Absolute", "PC-relative", "SB-relative", "None"};
11575 static const char * arm_attr_tag_ABI_PCS_RO_data[] =
11576 {"Absolute", "PC-relative", "None"};
11577 static const char * arm_attr_tag_ABI_PCS_GOT_use[] =
11578 {"None", "direct", "GOT-indirect"};
11579 static const char * arm_attr_tag_ABI_PCS_wchar_t[] =
11580 {"None", "??? 1", "2", "??? 3", "4"};
11581 static const char * arm_attr_tag_ABI_FP_rounding[] = {"Unused", "Needed"};
11582 static const char * arm_attr_tag_ABI_FP_denormal[] =
11583 {"Unused", "Needed", "Sign only"};
11584 static const char * arm_attr_tag_ABI_FP_exceptions[] = {"Unused", "Needed"};
11585 static const char * arm_attr_tag_ABI_FP_user_exceptions[] = {"Unused", "Needed"};
11586 static const char * arm_attr_tag_ABI_FP_number_model[] =
11587 {"Unused", "Finite", "RTABI", "IEEE 754"};
11588 static const char * arm_attr_tag_ABI_enum_size[] =
11589 {"Unused", "small", "int", "forced to int"};
11590 static const char * arm_attr_tag_ABI_HardFP_use[] =
11591 {"As Tag_FP_arch", "SP only", "DP only", "SP and DP"};
11592 static const char * arm_attr_tag_ABI_VFP_args[] =
11593 {"AAPCS", "VFP registers", "custom"};
11594 static const char * arm_attr_tag_ABI_WMMX_args[] =
11595 {"AAPCS", "WMMX registers", "custom"};
11596 static const char * arm_attr_tag_ABI_optimization_goals[] =
11597 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
11598 "Aggressive Size", "Prefer Debug", "Aggressive Debug"};
11599 static const char * arm_attr_tag_ABI_FP_optimization_goals[] =
11600 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
11601 "Aggressive Size", "Prefer Accuracy", "Aggressive Accuracy"};
11602 static const char * arm_attr_tag_CPU_unaligned_access[] = {"None", "v6"};
11603 static const char * arm_attr_tag_FP_HP_extension[] =
11604 {"Not Allowed", "Allowed"};
11605 static const char * arm_attr_tag_ABI_FP_16bit_format[] =
11606 {"None", "IEEE 754", "Alternative Format"};
11607 static const char * arm_attr_tag_MPextension_use[] =
11608 {"Not Allowed", "Allowed"};
11609 static const char * arm_attr_tag_DIV_use[] =
11610 {"Allowed in Thumb-ISA, v7-R or v7-M", "Not allowed",
11611 "Allowed in v7-A with integer division extension"};
11612 static const char * arm_attr_tag_T2EE_use[] = {"Not Allowed", "Allowed"};
11613 static const char * arm_attr_tag_Virtualization_use[] =
11614 {"Not Allowed", "TrustZone", "Virtualization Extensions",
11615 "TrustZone and Virtualization Extensions"};
11616 static const char * arm_attr_tag_MPextension_use_legacy[] =
11617 {"Not Allowed", "Allowed"};
11618
11619 #define LOOKUP(id, name) \
11620 {id, #name, 0x80 | ARRAY_SIZE(arm_attr_tag_##name), arm_attr_tag_##name}
11621 static arm_attr_public_tag arm_attr_public_tags[] =
11622 {
11623 {4, "CPU_raw_name", 1, NULL},
11624 {5, "CPU_name", 1, NULL},
11625 LOOKUP(6, CPU_arch),
11626 {7, "CPU_arch_profile", 0, NULL},
11627 LOOKUP(8, ARM_ISA_use),
11628 LOOKUP(9, THUMB_ISA_use),
11629 LOOKUP(10, FP_arch),
11630 LOOKUP(11, WMMX_arch),
11631 LOOKUP(12, Advanced_SIMD_arch),
11632 LOOKUP(13, PCS_config),
11633 LOOKUP(14, ABI_PCS_R9_use),
11634 LOOKUP(15, ABI_PCS_RW_data),
11635 LOOKUP(16, ABI_PCS_RO_data),
11636 LOOKUP(17, ABI_PCS_GOT_use),
11637 LOOKUP(18, ABI_PCS_wchar_t),
11638 LOOKUP(19, ABI_FP_rounding),
11639 LOOKUP(20, ABI_FP_denormal),
11640 LOOKUP(21, ABI_FP_exceptions),
11641 LOOKUP(22, ABI_FP_user_exceptions),
11642 LOOKUP(23, ABI_FP_number_model),
11643 {24, "ABI_align_needed", 0, NULL},
11644 {25, "ABI_align_preserved", 0, NULL},
11645 LOOKUP(26, ABI_enum_size),
11646 LOOKUP(27, ABI_HardFP_use),
11647 LOOKUP(28, ABI_VFP_args),
11648 LOOKUP(29, ABI_WMMX_args),
11649 LOOKUP(30, ABI_optimization_goals),
11650 LOOKUP(31, ABI_FP_optimization_goals),
11651 {32, "compatibility", 0, NULL},
11652 LOOKUP(34, CPU_unaligned_access),
11653 LOOKUP(36, FP_HP_extension),
11654 LOOKUP(38, ABI_FP_16bit_format),
11655 LOOKUP(42, MPextension_use),
11656 LOOKUP(44, DIV_use),
11657 {64, "nodefaults", 0, NULL},
11658 {65, "also_compatible_with", 0, NULL},
11659 LOOKUP(66, T2EE_use),
11660 {67, "conformance", 1, NULL},
11661 LOOKUP(68, Virtualization_use),
11662 LOOKUP(70, MPextension_use_legacy)
11663 };
11664 #undef LOOKUP
11665
11666 static unsigned char *
11667 display_arm_attribute (unsigned char * p,
11668 const unsigned char * const end)
11669 {
11670 int tag;
11671 unsigned int len;
11672 int val;
11673 arm_attr_public_tag * attr;
11674 unsigned i;
11675 int type;
11676
11677 tag = read_uleb128 (p, &len, end);
11678 p += len;
11679 attr = NULL;
11680 for (i = 0; i < ARRAY_SIZE (arm_attr_public_tags); i++)
11681 {
11682 if (arm_attr_public_tags[i].tag == tag)
11683 {
11684 attr = &arm_attr_public_tags[i];
11685 break;
11686 }
11687 }
11688
11689 if (attr)
11690 {
11691 printf (" Tag_%s: ", attr->name);
11692 switch (attr->type)
11693 {
11694 case 0:
11695 switch (tag)
11696 {
11697 case 7: /* Tag_CPU_arch_profile. */
11698 val = read_uleb128 (p, &len, end);
11699 p += len;
11700 switch (val)
11701 {
11702 case 0: printf (_("None\n")); break;
11703 case 'A': printf (_("Application\n")); break;
11704 case 'R': printf (_("Realtime\n")); break;
11705 case 'M': printf (_("Microcontroller\n")); break;
11706 case 'S': printf (_("Application or Realtime\n")); break;
11707 default: printf ("??? (%d)\n", val); break;
11708 }
11709 break;
11710
11711 case 24: /* Tag_align_needed. */
11712 val = read_uleb128 (p, &len, end);
11713 p += len;
11714 switch (val)
11715 {
11716 case 0: printf (_("None\n")); break;
11717 case 1: printf (_("8-byte\n")); break;
11718 case 2: printf (_("4-byte\n")); break;
11719 case 3: printf ("??? 3\n"); break;
11720 default:
11721 if (val <= 12)
11722 printf (_("8-byte and up to %d-byte extended\n"),
11723 1 << val);
11724 else
11725 printf ("??? (%d)\n", val);
11726 break;
11727 }
11728 break;
11729
11730 case 25: /* Tag_align_preserved. */
11731 val = read_uleb128 (p, &len, end);
11732 p += len;
11733 switch (val)
11734 {
11735 case 0: printf (_("None\n")); break;
11736 case 1: printf (_("8-byte, except leaf SP\n")); break;
11737 case 2: printf (_("8-byte\n")); break;
11738 case 3: printf ("??? 3\n"); break;
11739 default:
11740 if (val <= 12)
11741 printf (_("8-byte and up to %d-byte extended\n"),
11742 1 << val);
11743 else
11744 printf ("??? (%d)\n", val);
11745 break;
11746 }
11747 break;
11748
11749 case 32: /* Tag_compatibility. */
11750 val = read_uleb128 (p, &len, end);
11751 p += len;
11752 printf (_("flag = %d, vendor = %s\n"), val, p);
11753 p += strlen ((char *) p) + 1;
11754 break;
11755
11756 case 64: /* Tag_nodefaults. */
11757 p++;
11758 printf (_("True\n"));
11759 break;
11760
11761 case 65: /* Tag_also_compatible_with. */
11762 val = read_uleb128 (p, &len, end);
11763 p += len;
11764 if (val == 6 /* Tag_CPU_arch. */)
11765 {
11766 val = read_uleb128 (p, &len, end);
11767 p += len;
11768 if ((unsigned int)val >= ARRAY_SIZE (arm_attr_tag_CPU_arch))
11769 printf ("??? (%d)\n", val);
11770 else
11771 printf ("%s\n", arm_attr_tag_CPU_arch[val]);
11772 }
11773 else
11774 printf ("???\n");
11775 while (*(p++) != '\0' /* NUL terminator. */);
11776 break;
11777
11778 default:
11779 abort ();
11780 }
11781 return p;
11782
11783 case 1:
11784 return display_tag_value (-1, p, end);
11785 case 2:
11786 return display_tag_value (0, p, end);
11787
11788 default:
11789 assert (attr->type & 0x80);
11790 val = read_uleb128 (p, &len, end);
11791 p += len;
11792 type = attr->type & 0x7f;
11793 if (val >= type)
11794 printf ("??? (%d)\n", val);
11795 else
11796 printf ("%s\n", attr->table[val]);
11797 return p;
11798 }
11799 }
11800
11801 return display_tag_value (tag, p, end);
11802 }
11803
11804 static unsigned char *
11805 display_gnu_attribute (unsigned char * p,
11806 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, int, const unsigned char * const),
11807 const unsigned char * const end)
11808 {
11809 int tag;
11810 unsigned int len;
11811 int val;
11812
11813 tag = read_uleb128 (p, &len, end);
11814 p += len;
11815
11816 /* Tag_compatibility is the only generic GNU attribute defined at
11817 present. */
11818 if (tag == 32)
11819 {
11820 val = read_uleb128 (p, &len, end);
11821 p += len;
11822 if (p == end)
11823 {
11824 printf (_("flag = %d, vendor = <corrupt>\n"), val);
11825 warn (_("corrupt vendor attribute\n"));
11826 }
11827 else
11828 {
11829 printf (_("flag = %d, vendor = %s\n"), val, p);
11830 p += strlen ((char *) p) + 1;
11831 }
11832 return p;
11833 }
11834
11835 if ((tag & 2) == 0 && display_proc_gnu_attribute)
11836 return display_proc_gnu_attribute (p, tag, end);
11837
11838 return display_tag_value (tag, p, end);
11839 }
11840
11841 static unsigned char *
11842 display_power_gnu_attribute (unsigned char * p,
11843 int tag,
11844 const unsigned char * const end)
11845 {
11846 unsigned int len;
11847 int val;
11848
11849 if (tag == Tag_GNU_Power_ABI_FP)
11850 {
11851 val = read_uleb128 (p, &len, end);
11852 p += len;
11853 printf (" Tag_GNU_Power_ABI_FP: ");
11854
11855 switch (val)
11856 {
11857 case 0:
11858 printf (_("Hard or soft float\n"));
11859 break;
11860 case 1:
11861 printf (_("Hard float\n"));
11862 break;
11863 case 2:
11864 printf (_("Soft float\n"));
11865 break;
11866 case 3:
11867 printf (_("Single-precision hard float\n"));
11868 break;
11869 default:
11870 printf ("??? (%d)\n", val);
11871 break;
11872 }
11873 return p;
11874 }
11875
11876 if (tag == Tag_GNU_Power_ABI_Vector)
11877 {
11878 val = read_uleb128 (p, &len, end);
11879 p += len;
11880 printf (" Tag_GNU_Power_ABI_Vector: ");
11881 switch (val)
11882 {
11883 case 0:
11884 printf (_("Any\n"));
11885 break;
11886 case 1:
11887 printf (_("Generic\n"));
11888 break;
11889 case 2:
11890 printf ("AltiVec\n");
11891 break;
11892 case 3:
11893 printf ("SPE\n");
11894 break;
11895 default:
11896 printf ("??? (%d)\n", val);
11897 break;
11898 }
11899 return p;
11900 }
11901
11902 if (tag == Tag_GNU_Power_ABI_Struct_Return)
11903 {
11904 if (p == end)
11905 {
11906 warn (_("corrupt Tag_GNU_Power_ABI_Struct_Return"));
11907 return p;
11908 }
11909
11910 val = read_uleb128 (p, &len, end);
11911 p += len;
11912 printf (" Tag_GNU_Power_ABI_Struct_Return: ");
11913 switch (val)
11914 {
11915 case 0:
11916 printf (_("Any\n"));
11917 break;
11918 case 1:
11919 printf ("r3/r4\n");
11920 break;
11921 case 2:
11922 printf (_("Memory\n"));
11923 break;
11924 default:
11925 printf ("??? (%d)\n", val);
11926 break;
11927 }
11928 return p;
11929 }
11930
11931 return display_tag_value (tag & 1, p, end);
11932 }
11933
11934 static void
11935 display_sparc_hwcaps (int mask)
11936 {
11937 if (mask)
11938 {
11939 int first = 1;
11940 if (mask & ELF_SPARC_HWCAP_MUL32)
11941 fputs ("mul32", stdout), first = 0;
11942 if (mask & ELF_SPARC_HWCAP_DIV32)
11943 printf ("%sdiv32", first ? "" : "|"), first = 0;
11944 if (mask & ELF_SPARC_HWCAP_FSMULD)
11945 printf ("%sfsmuld", first ? "" : "|"), first = 0;
11946 if (mask & ELF_SPARC_HWCAP_V8PLUS)
11947 printf ("%sv8plus", first ? "" : "|"), first = 0;
11948 if (mask & ELF_SPARC_HWCAP_POPC)
11949 printf ("%spopc", first ? "" : "|"), first = 0;
11950 if (mask & ELF_SPARC_HWCAP_VIS)
11951 printf ("%svis", first ? "" : "|"), first = 0;
11952 if (mask & ELF_SPARC_HWCAP_VIS2)
11953 printf ("%svis2", first ? "" : "|"), first = 0;
11954 if (mask & ELF_SPARC_HWCAP_ASI_BLK_INIT)
11955 printf ("%sASIBlkInit", first ? "" : "|"), first = 0;
11956 if (mask & ELF_SPARC_HWCAP_FMAF)
11957 printf ("%sfmaf", first ? "" : "|"), first = 0;
11958 if (mask & ELF_SPARC_HWCAP_VIS3)
11959 printf ("%svis3", first ? "" : "|"), first = 0;
11960 if (mask & ELF_SPARC_HWCAP_HPC)
11961 printf ("%shpc", first ? "" : "|"), first = 0;
11962 if (mask & ELF_SPARC_HWCAP_RANDOM)
11963 printf ("%srandom", first ? "" : "|"), first = 0;
11964 if (mask & ELF_SPARC_HWCAP_TRANS)
11965 printf ("%strans", first ? "" : "|"), first = 0;
11966 if (mask & ELF_SPARC_HWCAP_FJFMAU)
11967 printf ("%sfjfmau", first ? "" : "|"), first = 0;
11968 if (mask & ELF_SPARC_HWCAP_IMA)
11969 printf ("%sima", first ? "" : "|"), first = 0;
11970 if (mask & ELF_SPARC_HWCAP_ASI_CACHE_SPARING)
11971 printf ("%scspare", first ? "" : "|"), first = 0;
11972 }
11973 else
11974 fputc('0', stdout);
11975 fputc('\n', stdout);
11976 }
11977
11978 static unsigned char *
11979 display_sparc_gnu_attribute (unsigned char * p,
11980 int tag,
11981 const unsigned char * const end)
11982 {
11983 if (tag == Tag_GNU_Sparc_HWCAPS)
11984 {
11985 unsigned int len;
11986 int val;
11987
11988 val = read_uleb128 (p, &len, end);
11989 p += len;
11990 printf (" Tag_GNU_Sparc_HWCAPS: ");
11991 display_sparc_hwcaps (val);
11992 return p;
11993 }
11994
11995 return display_tag_value (tag, p, end);
11996 }
11997
11998 static void
11999 print_mips_fp_abi_value (int val)
12000 {
12001 switch (val)
12002 {
12003 case Val_GNU_MIPS_ABI_FP_ANY:
12004 printf (_("Hard or soft float\n"));
12005 break;
12006 case Val_GNU_MIPS_ABI_FP_DOUBLE:
12007 printf (_("Hard float (double precision)\n"));
12008 break;
12009 case Val_GNU_MIPS_ABI_FP_SINGLE:
12010 printf (_("Hard float (single precision)\n"));
12011 break;
12012 case Val_GNU_MIPS_ABI_FP_SOFT:
12013 printf (_("Soft float\n"));
12014 break;
12015 case Val_GNU_MIPS_ABI_FP_OLD_64:
12016 printf (_("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
12017 break;
12018 case Val_GNU_MIPS_ABI_FP_XX:
12019 printf (_("Hard float (32-bit CPU, Any FPU)\n"));
12020 break;
12021 case Val_GNU_MIPS_ABI_FP_64:
12022 printf (_("Hard float (32-bit CPU, 64-bit FPU)\n"));
12023 break;
12024 case Val_GNU_MIPS_ABI_FP_64A:
12025 printf (_("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
12026 break;
12027 default:
12028 printf ("??? (%d)\n", val);
12029 break;
12030 }
12031 }
12032
12033 static unsigned char *
12034 display_mips_gnu_attribute (unsigned char * p,
12035 int tag,
12036 const unsigned char * const end)
12037 {
12038 if (tag == Tag_GNU_MIPS_ABI_FP)
12039 {
12040 unsigned int len;
12041 int val;
12042
12043 val = read_uleb128 (p, &len, end);
12044 p += len;
12045 printf (" Tag_GNU_MIPS_ABI_FP: ");
12046
12047 print_mips_fp_abi_value (val);
12048
12049 return p;
12050 }
12051
12052 if (tag == Tag_GNU_MIPS_ABI_MSA)
12053 {
12054 unsigned int len;
12055 int val;
12056
12057 val = read_uleb128 (p, &len, end);
12058 p += len;
12059 printf (" Tag_GNU_MIPS_ABI_MSA: ");
12060
12061 switch (val)
12062 {
12063 case Val_GNU_MIPS_ABI_MSA_ANY:
12064 printf (_("Any MSA or not\n"));
12065 break;
12066 case Val_GNU_MIPS_ABI_MSA_128:
12067 printf (_("128-bit MSA\n"));
12068 break;
12069 default:
12070 printf ("??? (%d)\n", val);
12071 break;
12072 }
12073 return p;
12074 }
12075
12076 return display_tag_value (tag & 1, p, end);
12077 }
12078
12079 static unsigned char *
12080 display_tic6x_attribute (unsigned char * p,
12081 const unsigned char * const end)
12082 {
12083 int tag;
12084 unsigned int len;
12085 int val;
12086
12087 tag = read_uleb128 (p, &len, end);
12088 p += len;
12089
12090 switch (tag)
12091 {
12092 case Tag_ISA:
12093 val = read_uleb128 (p, &len, end);
12094 p += len;
12095 printf (" Tag_ISA: ");
12096
12097 switch (val)
12098 {
12099 case C6XABI_Tag_ISA_none:
12100 printf (_("None\n"));
12101 break;
12102 case C6XABI_Tag_ISA_C62X:
12103 printf ("C62x\n");
12104 break;
12105 case C6XABI_Tag_ISA_C67X:
12106 printf ("C67x\n");
12107 break;
12108 case C6XABI_Tag_ISA_C67XP:
12109 printf ("C67x+\n");
12110 break;
12111 case C6XABI_Tag_ISA_C64X:
12112 printf ("C64x\n");
12113 break;
12114 case C6XABI_Tag_ISA_C64XP:
12115 printf ("C64x+\n");
12116 break;
12117 case C6XABI_Tag_ISA_C674X:
12118 printf ("C674x\n");
12119 break;
12120 default:
12121 printf ("??? (%d)\n", val);
12122 break;
12123 }
12124 return p;
12125
12126 case Tag_ABI_wchar_t:
12127 val = read_uleb128 (p, &len, end);
12128 p += len;
12129 printf (" Tag_ABI_wchar_t: ");
12130 switch (val)
12131 {
12132 case 0:
12133 printf (_("Not used\n"));
12134 break;
12135 case 1:
12136 printf (_("2 bytes\n"));
12137 break;
12138 case 2:
12139 printf (_("4 bytes\n"));
12140 break;
12141 default:
12142 printf ("??? (%d)\n", val);
12143 break;
12144 }
12145 return p;
12146
12147 case Tag_ABI_stack_align_needed:
12148 val = read_uleb128 (p, &len, end);
12149 p += len;
12150 printf (" Tag_ABI_stack_align_needed: ");
12151 switch (val)
12152 {
12153 case 0:
12154 printf (_("8-byte\n"));
12155 break;
12156 case 1:
12157 printf (_("16-byte\n"));
12158 break;
12159 default:
12160 printf ("??? (%d)\n", val);
12161 break;
12162 }
12163 return p;
12164
12165 case Tag_ABI_stack_align_preserved:
12166 val = read_uleb128 (p, &len, end);
12167 p += len;
12168 printf (" Tag_ABI_stack_align_preserved: ");
12169 switch (val)
12170 {
12171 case 0:
12172 printf (_("8-byte\n"));
12173 break;
12174 case 1:
12175 printf (_("16-byte\n"));
12176 break;
12177 default:
12178 printf ("??? (%d)\n", val);
12179 break;
12180 }
12181 return p;
12182
12183 case Tag_ABI_DSBT:
12184 val = read_uleb128 (p, &len, end);
12185 p += len;
12186 printf (" Tag_ABI_DSBT: ");
12187 switch (val)
12188 {
12189 case 0:
12190 printf (_("DSBT addressing not used\n"));
12191 break;
12192 case 1:
12193 printf (_("DSBT addressing used\n"));
12194 break;
12195 default:
12196 printf ("??? (%d)\n", val);
12197 break;
12198 }
12199 return p;
12200
12201 case Tag_ABI_PID:
12202 val = read_uleb128 (p, &len, end);
12203 p += len;
12204 printf (" Tag_ABI_PID: ");
12205 switch (val)
12206 {
12207 case 0:
12208 printf (_("Data addressing position-dependent\n"));
12209 break;
12210 case 1:
12211 printf (_("Data addressing position-independent, GOT near DP\n"));
12212 break;
12213 case 2:
12214 printf (_("Data addressing position-independent, GOT far from DP\n"));
12215 break;
12216 default:
12217 printf ("??? (%d)\n", val);
12218 break;
12219 }
12220 return p;
12221
12222 case Tag_ABI_PIC:
12223 val = read_uleb128 (p, &len, end);
12224 p += len;
12225 printf (" Tag_ABI_PIC: ");
12226 switch (val)
12227 {
12228 case 0:
12229 printf (_("Code addressing position-dependent\n"));
12230 break;
12231 case 1:
12232 printf (_("Code addressing position-independent\n"));
12233 break;
12234 default:
12235 printf ("??? (%d)\n", val);
12236 break;
12237 }
12238 return p;
12239
12240 case Tag_ABI_array_object_alignment:
12241 val = read_uleb128 (p, &len, end);
12242 p += len;
12243 printf (" Tag_ABI_array_object_alignment: ");
12244 switch (val)
12245 {
12246 case 0:
12247 printf (_("8-byte\n"));
12248 break;
12249 case 1:
12250 printf (_("4-byte\n"));
12251 break;
12252 case 2:
12253 printf (_("16-byte\n"));
12254 break;
12255 default:
12256 printf ("??? (%d)\n", val);
12257 break;
12258 }
12259 return p;
12260
12261 case Tag_ABI_array_object_align_expected:
12262 val = read_uleb128 (p, &len, end);
12263 p += len;
12264 printf (" Tag_ABI_array_object_align_expected: ");
12265 switch (val)
12266 {
12267 case 0:
12268 printf (_("8-byte\n"));
12269 break;
12270 case 1:
12271 printf (_("4-byte\n"));
12272 break;
12273 case 2:
12274 printf (_("16-byte\n"));
12275 break;
12276 default:
12277 printf ("??? (%d)\n", val);
12278 break;
12279 }
12280 return p;
12281
12282 case Tag_ABI_compatibility:
12283 val = read_uleb128 (p, &len, end);
12284 p += len;
12285 printf (" Tag_ABI_compatibility: ");
12286 printf (_("flag = %d, vendor = %s\n"), val, p);
12287 p += strlen ((char *) p) + 1;
12288 return p;
12289
12290 case Tag_ABI_conformance:
12291 printf (" Tag_ABI_conformance: ");
12292 printf ("\"%s\"\n", p);
12293 p += strlen ((char *) p) + 1;
12294 return p;
12295 }
12296
12297 return display_tag_value (tag, p, end);
12298 }
12299
12300 static void
12301 display_raw_attribute (unsigned char * p, unsigned char * end)
12302 {
12303 unsigned long addr = 0;
12304 size_t bytes = end - p;
12305
12306 while (bytes)
12307 {
12308 int j;
12309 int k;
12310 int lbytes = (bytes > 16 ? 16 : bytes);
12311
12312 printf (" 0x%8.8lx ", addr);
12313
12314 for (j = 0; j < 16; j++)
12315 {
12316 if (j < lbytes)
12317 printf ("%2.2x", p[j]);
12318 else
12319 printf (" ");
12320
12321 if ((j & 3) == 3)
12322 printf (" ");
12323 }
12324
12325 for (j = 0; j < lbytes; j++)
12326 {
12327 k = p[j];
12328 if (k >= ' ' && k < 0x7f)
12329 printf ("%c", k);
12330 else
12331 printf (".");
12332 }
12333
12334 putchar ('\n');
12335
12336 p += lbytes;
12337 bytes -= lbytes;
12338 addr += lbytes;
12339 }
12340
12341 putchar ('\n');
12342 }
12343
12344 static unsigned char *
12345 display_msp430x_attribute (unsigned char * p,
12346 const unsigned char * const end)
12347 {
12348 unsigned int len;
12349 int val;
12350 int tag;
12351
12352 tag = read_uleb128 (p, & len, end);
12353 p += len;
12354
12355 switch (tag)
12356 {
12357 case OFBA_MSPABI_Tag_ISA:
12358 val = read_uleb128 (p, &len, end);
12359 p += len;
12360 printf (" Tag_ISA: ");
12361 switch (val)
12362 {
12363 case 0: printf (_("None\n")); break;
12364 case 1: printf (_("MSP430\n")); break;
12365 case 2: printf (_("MSP430X\n")); break;
12366 default: printf ("??? (%d)\n", val); break;
12367 }
12368 break;
12369
12370 case OFBA_MSPABI_Tag_Code_Model:
12371 val = read_uleb128 (p, &len, end);
12372 p += len;
12373 printf (" Tag_Code_Model: ");
12374 switch (val)
12375 {
12376 case 0: printf (_("None\n")); break;
12377 case 1: printf (_("Small\n")); break;
12378 case 2: printf (_("Large\n")); break;
12379 default: printf ("??? (%d)\n", val); break;
12380 }
12381 break;
12382
12383 case OFBA_MSPABI_Tag_Data_Model:
12384 val = read_uleb128 (p, &len, end);
12385 p += len;
12386 printf (" Tag_Data_Model: ");
12387 switch (val)
12388 {
12389 case 0: printf (_("None\n")); break;
12390 case 1: printf (_("Small\n")); break;
12391 case 2: printf (_("Large\n")); break;
12392 case 3: printf (_("Restricted Large\n")); break;
12393 default: printf ("??? (%d)\n", val); break;
12394 }
12395 break;
12396
12397 default:
12398 printf (_(" <unknown tag %d>: "), tag);
12399
12400 if (tag & 1)
12401 {
12402 printf ("\"%s\"\n", p);
12403 p += strlen ((char *) p) + 1;
12404 }
12405 else
12406 {
12407 val = read_uleb128 (p, &len, end);
12408 p += len;
12409 printf ("%d (0x%x)\n", val, val);
12410 }
12411 break;
12412 }
12413
12414 return p;
12415 }
12416
12417 static int
12418 process_attributes (FILE * file,
12419 const char * public_name,
12420 unsigned int proc_type,
12421 unsigned char * (* display_pub_attribute) (unsigned char *, const unsigned char * const),
12422 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, int, const unsigned char * const))
12423 {
12424 Elf_Internal_Shdr * sect;
12425 unsigned char * contents;
12426 unsigned char * p;
12427 unsigned char * end;
12428 bfd_vma section_len;
12429 bfd_vma len;
12430 unsigned i;
12431
12432 /* Find the section header so that we get the size. */
12433 for (i = 0, sect = section_headers;
12434 i < elf_header.e_shnum;
12435 i++, sect++)
12436 {
12437 if (sect->sh_type != proc_type && sect->sh_type != SHT_GNU_ATTRIBUTES)
12438 continue;
12439
12440 contents = (unsigned char *) get_data (NULL, file, sect->sh_offset, 1,
12441 sect->sh_size, _("attributes"));
12442 if (contents == NULL)
12443 continue;
12444
12445 p = contents;
12446 if (*p == 'A')
12447 {
12448 len = sect->sh_size - 1;
12449 p++;
12450
12451 while (len > 0)
12452 {
12453 unsigned int namelen;
12454 bfd_boolean public_section;
12455 bfd_boolean gnu_section;
12456
12457 section_len = byte_get (p, 4);
12458 p += 4;
12459
12460 if (section_len > len)
12461 {
12462 error (_("Length of attribute (%u) greater than length of section (%u)\n"),
12463 (unsigned) section_len, (unsigned) len);
12464 section_len = len;
12465 }
12466
12467 len -= section_len;
12468 section_len -= 4;
12469
12470 namelen = strnlen ((char *) p, section_len) + 1;
12471 if (namelen == 0 || namelen >= section_len)
12472 {
12473 error (_("Corrupt attribute section name\n"));
12474 break;
12475 }
12476
12477 printf (_("Attribute Section: %s\n"), p);
12478
12479 if (public_name && streq ((char *) p, public_name))
12480 public_section = TRUE;
12481 else
12482 public_section = FALSE;
12483
12484 if (streq ((char *) p, "gnu"))
12485 gnu_section = TRUE;
12486 else
12487 gnu_section = FALSE;
12488
12489 p += namelen;
12490 section_len -= namelen;
12491 while (section_len > 0)
12492 {
12493 int tag = *(p++);
12494 int val;
12495 bfd_vma size;
12496
12497 size = byte_get (p, 4);
12498 if (size > section_len)
12499 {
12500 error (_("Bad subsection length (%u > %u)\n"),
12501 (unsigned) size, (unsigned) section_len);
12502 size = section_len;
12503 }
12504
12505 section_len -= size;
12506 end = p + size - 1;
12507 p += 4;
12508
12509 switch (tag)
12510 {
12511 case 1:
12512 printf (_("File Attributes\n"));
12513 break;
12514 case 2:
12515 printf (_("Section Attributes:"));
12516 goto do_numlist;
12517 case 3:
12518 printf (_("Symbol Attributes:"));
12519 do_numlist:
12520 for (;;)
12521 {
12522 unsigned int j;
12523
12524 val = read_uleb128 (p, &j, end);
12525 p += j;
12526 if (val == 0)
12527 break;
12528 printf (" %d", val);
12529 }
12530 printf ("\n");
12531 break;
12532 default:
12533 printf (_("Unknown tag: %d\n"), tag);
12534 public_section = FALSE;
12535 break;
12536 }
12537
12538 if (public_section)
12539 {
12540 while (p < end)
12541 p = display_pub_attribute (p, end);
12542 }
12543 else if (gnu_section)
12544 {
12545 while (p < end)
12546 p = display_gnu_attribute (p,
12547 display_proc_gnu_attribute,
12548 end);
12549 }
12550 else
12551 {
12552 printf (_(" Unknown section contexts\n"));
12553 display_raw_attribute (p, end);
12554 p = end;
12555 }
12556 }
12557 }
12558 }
12559 else
12560 printf (_("Unknown format '%c' (%d)\n"), *p, *p);
12561
12562 free (contents);
12563 }
12564 return 1;
12565 }
12566
12567 static int
12568 process_arm_specific (FILE * file)
12569 {
12570 return process_attributes (file, "aeabi", SHT_ARM_ATTRIBUTES,
12571 display_arm_attribute, NULL);
12572 }
12573
12574 static int
12575 process_power_specific (FILE * file)
12576 {
12577 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
12578 display_power_gnu_attribute);
12579 }
12580
12581 static int
12582 process_sparc_specific (FILE * file)
12583 {
12584 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
12585 display_sparc_gnu_attribute);
12586 }
12587
12588 static int
12589 process_tic6x_specific (FILE * file)
12590 {
12591 return process_attributes (file, "c6xabi", SHT_C6000_ATTRIBUTES,
12592 display_tic6x_attribute, NULL);
12593 }
12594
12595 static int
12596 process_msp430x_specific (FILE * file)
12597 {
12598 return process_attributes (file, "mspabi", SHT_MSP430_ATTRIBUTES,
12599 display_msp430x_attribute, NULL);
12600 }
12601
12602 /* DATA points to the contents of a MIPS GOT that starts at VMA PLTGOT.
12603 Print the Address, Access and Initial fields of an entry at VMA ADDR
12604 and return the VMA of the next entry. */
12605
12606 static bfd_vma
12607 print_mips_got_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
12608 {
12609 printf (" ");
12610 print_vma (addr, LONG_HEX);
12611 printf (" ");
12612 if (addr < pltgot + 0xfff0)
12613 printf ("%6d(gp)", (int) (addr - pltgot - 0x7ff0));
12614 else
12615 printf ("%10s", "");
12616 printf (" ");
12617 if (data == NULL)
12618 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
12619 else
12620 {
12621 bfd_vma entry;
12622
12623 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
12624 print_vma (entry, LONG_HEX);
12625 }
12626 return addr + (is_32bit_elf ? 4 : 8);
12627 }
12628
12629 /* DATA points to the contents of a MIPS PLT GOT that starts at VMA
12630 PLTGOT. Print the Address and Initial fields of an entry at VMA
12631 ADDR and return the VMA of the next entry. */
12632
12633 static bfd_vma
12634 print_mips_pltgot_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
12635 {
12636 printf (" ");
12637 print_vma (addr, LONG_HEX);
12638 printf (" ");
12639 if (data == NULL)
12640 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
12641 else
12642 {
12643 bfd_vma entry;
12644
12645 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
12646 print_vma (entry, LONG_HEX);
12647 }
12648 return addr + (is_32bit_elf ? 4 : 8);
12649 }
12650
12651 static void
12652 print_mips_ases (unsigned int mask)
12653 {
12654 if (mask & AFL_ASE_DSP)
12655 fputs ("\n\tDSP ASE", stdout);
12656 if (mask & AFL_ASE_DSPR2)
12657 fputs ("\n\tDSP R2 ASE", stdout);
12658 if (mask & AFL_ASE_EVA)
12659 fputs ("\n\tEnhanced VA Scheme", stdout);
12660 if (mask & AFL_ASE_MCU)
12661 fputs ("\n\tMCU (MicroController) ASE", stdout);
12662 if (mask & AFL_ASE_MDMX)
12663 fputs ("\n\tMDMX ASE", stdout);
12664 if (mask & AFL_ASE_MIPS3D)
12665 fputs ("\n\tMIPS-3D ASE", stdout);
12666 if (mask & AFL_ASE_MT)
12667 fputs ("\n\tMT ASE", stdout);
12668 if (mask & AFL_ASE_SMARTMIPS)
12669 fputs ("\n\tSmartMIPS ASE", stdout);
12670 if (mask & AFL_ASE_VIRT)
12671 fputs ("\n\tVZ ASE", stdout);
12672 if (mask & AFL_ASE_MSA)
12673 fputs ("\n\tMSA ASE", stdout);
12674 if (mask & AFL_ASE_MIPS16)
12675 fputs ("\n\tMIPS16 ASE", stdout);
12676 if (mask & AFL_ASE_MICROMIPS)
12677 fputs ("\n\tMICROMIPS ASE", stdout);
12678 if (mask & AFL_ASE_XPA)
12679 fputs ("\n\tXPA ASE", stdout);
12680 if (mask == 0)
12681 fprintf (stdout, "\n\t%s", _("None"));
12682 }
12683
12684 static void
12685 print_mips_isa_ext (unsigned int isa_ext)
12686 {
12687 switch (isa_ext)
12688 {
12689 case 0:
12690 fputs (_("None"), stdout);
12691 break;
12692 case AFL_EXT_XLR:
12693 fputs ("RMI XLR", stdout);
12694 break;
12695 case AFL_EXT_OCTEON2:
12696 fputs ("Cavium Networks Octeon2", stdout);
12697 break;
12698 case AFL_EXT_OCTEONP:
12699 fputs ("Cavium Networks OcteonP", stdout);
12700 break;
12701 case AFL_EXT_LOONGSON_3A:
12702 fputs ("Loongson 3A", stdout);
12703 break;
12704 case AFL_EXT_OCTEON:
12705 fputs ("Cavium Networks Octeon", stdout);
12706 break;
12707 case AFL_EXT_5900:
12708 fputs ("Toshiba R5900", stdout);
12709 break;
12710 case AFL_EXT_4650:
12711 fputs ("MIPS R4650", stdout);
12712 break;
12713 case AFL_EXT_4010:
12714 fputs ("LSI R4010", stdout);
12715 break;
12716 case AFL_EXT_4100:
12717 fputs ("NEC VR4100", stdout);
12718 break;
12719 case AFL_EXT_3900:
12720 fputs ("Toshiba R3900", stdout);
12721 break;
12722 case AFL_EXT_10000:
12723 fputs ("MIPS R10000", stdout);
12724 break;
12725 case AFL_EXT_SB1:
12726 fputs ("Broadcom SB-1", stdout);
12727 break;
12728 case AFL_EXT_4111:
12729 fputs ("NEC VR4111/VR4181", stdout);
12730 break;
12731 case AFL_EXT_4120:
12732 fputs ("NEC VR4120", stdout);
12733 break;
12734 case AFL_EXT_5400:
12735 fputs ("NEC VR5400", stdout);
12736 break;
12737 case AFL_EXT_5500:
12738 fputs ("NEC VR5500", stdout);
12739 break;
12740 case AFL_EXT_LOONGSON_2E:
12741 fputs ("ST Microelectronics Loongson 2E", stdout);
12742 break;
12743 case AFL_EXT_LOONGSON_2F:
12744 fputs ("ST Microelectronics Loongson 2F", stdout);
12745 break;
12746 default:
12747 fputs (_("Unknown"), stdout);
12748 }
12749 }
12750
12751 static int
12752 get_mips_reg_size (int reg_size)
12753 {
12754 return (reg_size == AFL_REG_NONE) ? 0
12755 : (reg_size == AFL_REG_32) ? 32
12756 : (reg_size == AFL_REG_64) ? 64
12757 : (reg_size == AFL_REG_128) ? 128
12758 : -1;
12759 }
12760
12761 static int
12762 process_mips_specific (FILE * file)
12763 {
12764 Elf_Internal_Dyn * entry;
12765 Elf_Internal_Shdr *sect = NULL;
12766 size_t liblist_offset = 0;
12767 size_t liblistno = 0;
12768 size_t conflictsno = 0;
12769 size_t options_offset = 0;
12770 size_t conflicts_offset = 0;
12771 size_t pltrelsz = 0;
12772 size_t pltrel = 0;
12773 bfd_vma pltgot = 0;
12774 bfd_vma mips_pltgot = 0;
12775 bfd_vma jmprel = 0;
12776 bfd_vma local_gotno = 0;
12777 bfd_vma gotsym = 0;
12778 bfd_vma symtabno = 0;
12779
12780 process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
12781 display_mips_gnu_attribute);
12782
12783 sect = find_section (".MIPS.abiflags");
12784
12785 if (sect != NULL)
12786 {
12787 Elf_External_ABIFlags_v0 *abiflags_ext;
12788 Elf_Internal_ABIFlags_v0 abiflags_in;
12789
12790 if (sizeof (Elf_External_ABIFlags_v0) != sect->sh_size)
12791 fputs ("\nCorrupt ABI Flags section.\n", stdout);
12792 else
12793 {
12794 abiflags_ext = get_data (NULL, file, sect->sh_offset, 1,
12795 sect->sh_size, _("MIPS ABI Flags section"));
12796 if (abiflags_ext)
12797 {
12798 abiflags_in.version = BYTE_GET (abiflags_ext->version);
12799 abiflags_in.isa_level = BYTE_GET (abiflags_ext->isa_level);
12800 abiflags_in.isa_rev = BYTE_GET (abiflags_ext->isa_rev);
12801 abiflags_in.gpr_size = BYTE_GET (abiflags_ext->gpr_size);
12802 abiflags_in.cpr1_size = BYTE_GET (abiflags_ext->cpr1_size);
12803 abiflags_in.cpr2_size = BYTE_GET (abiflags_ext->cpr2_size);
12804 abiflags_in.fp_abi = BYTE_GET (abiflags_ext->fp_abi);
12805 abiflags_in.isa_ext = BYTE_GET (abiflags_ext->isa_ext);
12806 abiflags_in.ases = BYTE_GET (abiflags_ext->ases);
12807 abiflags_in.flags1 = BYTE_GET (abiflags_ext->flags1);
12808 abiflags_in.flags2 = BYTE_GET (abiflags_ext->flags2);
12809
12810 printf ("\nMIPS ABI Flags Version: %d\n", abiflags_in.version);
12811 printf ("\nISA: MIPS%d", abiflags_in.isa_level);
12812 if (abiflags_in.isa_rev > 1)
12813 printf ("r%d", abiflags_in.isa_rev);
12814 printf ("\nGPR size: %d",
12815 get_mips_reg_size (abiflags_in.gpr_size));
12816 printf ("\nCPR1 size: %d",
12817 get_mips_reg_size (abiflags_in.cpr1_size));
12818 printf ("\nCPR2 size: %d",
12819 get_mips_reg_size (abiflags_in.cpr2_size));
12820 fputs ("\nFP ABI: ", stdout);
12821 print_mips_fp_abi_value (abiflags_in.fp_abi);
12822 fputs ("ISA Extension: ", stdout);
12823 print_mips_isa_ext (abiflags_in.isa_ext);
12824 fputs ("\nASEs:", stdout);
12825 print_mips_ases (abiflags_in.ases);
12826 printf ("\nFLAGS 1: %8.8lx", abiflags_in.flags1);
12827 printf ("\nFLAGS 2: %8.8lx", abiflags_in.flags2);
12828 fputc ('\n', stdout);
12829 free (abiflags_ext);
12830 }
12831 }
12832 }
12833
12834 /* We have a lot of special sections. Thanks SGI! */
12835 if (dynamic_section == NULL)
12836 /* No information available. */
12837 return 0;
12838
12839 for (entry = dynamic_section; entry->d_tag != DT_NULL; ++entry)
12840 switch (entry->d_tag)
12841 {
12842 case DT_MIPS_LIBLIST:
12843 liblist_offset
12844 = offset_from_vma (file, entry->d_un.d_val,
12845 liblistno * sizeof (Elf32_External_Lib));
12846 break;
12847 case DT_MIPS_LIBLISTNO:
12848 liblistno = entry->d_un.d_val;
12849 break;
12850 case DT_MIPS_OPTIONS:
12851 options_offset = offset_from_vma (file, entry->d_un.d_val, 0);
12852 break;
12853 case DT_MIPS_CONFLICT:
12854 conflicts_offset
12855 = offset_from_vma (file, entry->d_un.d_val,
12856 conflictsno * sizeof (Elf32_External_Conflict));
12857 break;
12858 case DT_MIPS_CONFLICTNO:
12859 conflictsno = entry->d_un.d_val;
12860 break;
12861 case DT_PLTGOT:
12862 pltgot = entry->d_un.d_ptr;
12863 break;
12864 case DT_MIPS_LOCAL_GOTNO:
12865 local_gotno = entry->d_un.d_val;
12866 break;
12867 case DT_MIPS_GOTSYM:
12868 gotsym = entry->d_un.d_val;
12869 break;
12870 case DT_MIPS_SYMTABNO:
12871 symtabno = entry->d_un.d_val;
12872 break;
12873 case DT_MIPS_PLTGOT:
12874 mips_pltgot = entry->d_un.d_ptr;
12875 break;
12876 case DT_PLTREL:
12877 pltrel = entry->d_un.d_val;
12878 break;
12879 case DT_PLTRELSZ:
12880 pltrelsz = entry->d_un.d_val;
12881 break;
12882 case DT_JMPREL:
12883 jmprel = entry->d_un.d_ptr;
12884 break;
12885 default:
12886 break;
12887 }
12888
12889 if (liblist_offset != 0 && liblistno != 0 && do_dynamic)
12890 {
12891 Elf32_External_Lib * elib;
12892 size_t cnt;
12893
12894 elib = (Elf32_External_Lib *) get_data (NULL, file, liblist_offset,
12895 liblistno,
12896 sizeof (Elf32_External_Lib),
12897 _("liblist section data"));
12898 if (elib)
12899 {
12900 printf (_("\nSection '.liblist' contains %lu entries:\n"),
12901 (unsigned long) liblistno);
12902 fputs (_(" Library Time Stamp Checksum Version Flags\n"),
12903 stdout);
12904
12905 for (cnt = 0; cnt < liblistno; ++cnt)
12906 {
12907 Elf32_Lib liblist;
12908 time_t atime;
12909 char timebuf[20];
12910 struct tm * tmp;
12911
12912 liblist.l_name = BYTE_GET (elib[cnt].l_name);
12913 atime = BYTE_GET (elib[cnt].l_time_stamp);
12914 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
12915 liblist.l_version = BYTE_GET (elib[cnt].l_version);
12916 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
12917
12918 tmp = gmtime (&atime);
12919 snprintf (timebuf, sizeof (timebuf),
12920 "%04u-%02u-%02uT%02u:%02u:%02u",
12921 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
12922 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
12923
12924 printf ("%3lu: ", (unsigned long) cnt);
12925 if (VALID_DYNAMIC_NAME (liblist.l_name))
12926 print_symbol (20, GET_DYNAMIC_NAME (liblist.l_name));
12927 else
12928 printf (_("<corrupt: %9ld>"), liblist.l_name);
12929 printf (" %s %#10lx %-7ld", timebuf, liblist.l_checksum,
12930 liblist.l_version);
12931
12932 if (liblist.l_flags == 0)
12933 puts (_(" NONE"));
12934 else
12935 {
12936 static const struct
12937 {
12938 const char * name;
12939 int bit;
12940 }
12941 l_flags_vals[] =
12942 {
12943 { " EXACT_MATCH", LL_EXACT_MATCH },
12944 { " IGNORE_INT_VER", LL_IGNORE_INT_VER },
12945 { " REQUIRE_MINOR", LL_REQUIRE_MINOR },
12946 { " EXPORTS", LL_EXPORTS },
12947 { " DELAY_LOAD", LL_DELAY_LOAD },
12948 { " DELTA", LL_DELTA }
12949 };
12950 int flags = liblist.l_flags;
12951 size_t fcnt;
12952
12953 for (fcnt = 0; fcnt < ARRAY_SIZE (l_flags_vals); ++fcnt)
12954 if ((flags & l_flags_vals[fcnt].bit) != 0)
12955 {
12956 fputs (l_flags_vals[fcnt].name, stdout);
12957 flags ^= l_flags_vals[fcnt].bit;
12958 }
12959 if (flags != 0)
12960 printf (" %#x", (unsigned int) flags);
12961
12962 puts ("");
12963 }
12964 }
12965
12966 free (elib);
12967 }
12968 }
12969
12970 if (options_offset != 0)
12971 {
12972 Elf_External_Options * eopt;
12973 Elf_Internal_Options * iopt;
12974 Elf_Internal_Options * option;
12975 size_t offset;
12976 int cnt;
12977 sect = section_headers;
12978
12979 /* Find the section header so that we get the size. */
12980 while (sect->sh_type != SHT_MIPS_OPTIONS)
12981 ++sect;
12982
12983 eopt = (Elf_External_Options *) get_data (NULL, file, options_offset, 1,
12984 sect->sh_size, _("options"));
12985 if (eopt)
12986 {
12987 iopt = (Elf_Internal_Options *)
12988 cmalloc ((sect->sh_size / sizeof (eopt)), sizeof (* iopt));
12989 if (iopt == NULL)
12990 {
12991 error (_("Out of memory\n"));
12992 return 0;
12993 }
12994
12995 offset = cnt = 0;
12996 option = iopt;
12997
12998 while (offset < sect->sh_size)
12999 {
13000 Elf_External_Options * eoption;
13001
13002 eoption = (Elf_External_Options *) ((char *) eopt + offset);
13003
13004 option->kind = BYTE_GET (eoption->kind);
13005 option->size = BYTE_GET (eoption->size);
13006 option->section = BYTE_GET (eoption->section);
13007 option->info = BYTE_GET (eoption->info);
13008
13009 offset += option->size;
13010
13011 ++option;
13012 ++cnt;
13013 }
13014
13015 printf (_("\nSection '%s' contains %d entries:\n"),
13016 SECTION_NAME (sect), cnt);
13017
13018 option = iopt;
13019
13020 while (cnt-- > 0)
13021 {
13022 size_t len;
13023
13024 switch (option->kind)
13025 {
13026 case ODK_NULL:
13027 /* This shouldn't happen. */
13028 printf (" NULL %d %lx", option->section, option->info);
13029 break;
13030 case ODK_REGINFO:
13031 printf (" REGINFO ");
13032 if (elf_header.e_machine == EM_MIPS)
13033 {
13034 /* 32bit form. */
13035 Elf32_External_RegInfo * ereg;
13036 Elf32_RegInfo reginfo;
13037
13038 ereg = (Elf32_External_RegInfo *) (option + 1);
13039 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
13040 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
13041 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
13042 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
13043 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
13044 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
13045
13046 printf ("GPR %08lx GP 0x%lx\n",
13047 reginfo.ri_gprmask,
13048 (unsigned long) reginfo.ri_gp_value);
13049 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
13050 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
13051 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
13052 }
13053 else
13054 {
13055 /* 64 bit form. */
13056 Elf64_External_RegInfo * ereg;
13057 Elf64_Internal_RegInfo reginfo;
13058
13059 ereg = (Elf64_External_RegInfo *) (option + 1);
13060 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
13061 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
13062 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
13063 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
13064 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
13065 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
13066
13067 printf ("GPR %08lx GP 0x",
13068 reginfo.ri_gprmask);
13069 printf_vma (reginfo.ri_gp_value);
13070 printf ("\n");
13071
13072 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
13073 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
13074 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
13075 }
13076 ++option;
13077 continue;
13078 case ODK_EXCEPTIONS:
13079 fputs (" EXCEPTIONS fpe_min(", stdout);
13080 process_mips_fpe_exception (option->info & OEX_FPU_MIN);
13081 fputs (") fpe_max(", stdout);
13082 process_mips_fpe_exception ((option->info & OEX_FPU_MAX) >> 8);
13083 fputs (")", stdout);
13084
13085 if (option->info & OEX_PAGE0)
13086 fputs (" PAGE0", stdout);
13087 if (option->info & OEX_SMM)
13088 fputs (" SMM", stdout);
13089 if (option->info & OEX_FPDBUG)
13090 fputs (" FPDBUG", stdout);
13091 if (option->info & OEX_DISMISS)
13092 fputs (" DISMISS", stdout);
13093 break;
13094 case ODK_PAD:
13095 fputs (" PAD ", stdout);
13096 if (option->info & OPAD_PREFIX)
13097 fputs (" PREFIX", stdout);
13098 if (option->info & OPAD_POSTFIX)
13099 fputs (" POSTFIX", stdout);
13100 if (option->info & OPAD_SYMBOL)
13101 fputs (" SYMBOL", stdout);
13102 break;
13103 case ODK_HWPATCH:
13104 fputs (" HWPATCH ", stdout);
13105 if (option->info & OHW_R4KEOP)
13106 fputs (" R4KEOP", stdout);
13107 if (option->info & OHW_R8KPFETCH)
13108 fputs (" R8KPFETCH", stdout);
13109 if (option->info & OHW_R5KEOP)
13110 fputs (" R5KEOP", stdout);
13111 if (option->info & OHW_R5KCVTL)
13112 fputs (" R5KCVTL", stdout);
13113 break;
13114 case ODK_FILL:
13115 fputs (" FILL ", stdout);
13116 /* XXX Print content of info word? */
13117 break;
13118 case ODK_TAGS:
13119 fputs (" TAGS ", stdout);
13120 /* XXX Print content of info word? */
13121 break;
13122 case ODK_HWAND:
13123 fputs (" HWAND ", stdout);
13124 if (option->info & OHWA0_R4KEOP_CHECKED)
13125 fputs (" R4KEOP_CHECKED", stdout);
13126 if (option->info & OHWA0_R4KEOP_CLEAN)
13127 fputs (" R4KEOP_CLEAN", stdout);
13128 break;
13129 case ODK_HWOR:
13130 fputs (" HWOR ", stdout);
13131 if (option->info & OHWA0_R4KEOP_CHECKED)
13132 fputs (" R4KEOP_CHECKED", stdout);
13133 if (option->info & OHWA0_R4KEOP_CLEAN)
13134 fputs (" R4KEOP_CLEAN", stdout);
13135 break;
13136 case ODK_GP_GROUP:
13137 printf (" GP_GROUP %#06lx self-contained %#06lx",
13138 option->info & OGP_GROUP,
13139 (option->info & OGP_SELF) >> 16);
13140 break;
13141 case ODK_IDENT:
13142 printf (" IDENT %#06lx self-contained %#06lx",
13143 option->info & OGP_GROUP,
13144 (option->info & OGP_SELF) >> 16);
13145 break;
13146 default:
13147 /* This shouldn't happen. */
13148 printf (" %3d ??? %d %lx",
13149 option->kind, option->section, option->info);
13150 break;
13151 }
13152
13153 len = sizeof (* eopt);
13154 while (len < option->size)
13155 if (((char *) option)[len] >= ' '
13156 && ((char *) option)[len] < 0x7f)
13157 printf ("%c", ((char *) option)[len++]);
13158 else
13159 printf ("\\%03o", ((char *) option)[len++]);
13160
13161 fputs ("\n", stdout);
13162 ++option;
13163 }
13164
13165 free (eopt);
13166 }
13167 }
13168
13169 if (conflicts_offset != 0 && conflictsno != 0)
13170 {
13171 Elf32_Conflict * iconf;
13172 size_t cnt;
13173
13174 if (dynamic_symbols == NULL)
13175 {
13176 error (_("conflict list found without a dynamic symbol table\n"));
13177 return 0;
13178 }
13179
13180 iconf = (Elf32_Conflict *) cmalloc (conflictsno, sizeof (* iconf));
13181 if (iconf == NULL)
13182 {
13183 error (_("Out of memory\n"));
13184 return 0;
13185 }
13186
13187 if (is_32bit_elf)
13188 {
13189 Elf32_External_Conflict * econf32;
13190
13191 econf32 = (Elf32_External_Conflict *)
13192 get_data (NULL, file, conflicts_offset, conflictsno,
13193 sizeof (* econf32), _("conflict"));
13194 if (!econf32)
13195 return 0;
13196
13197 for (cnt = 0; cnt < conflictsno; ++cnt)
13198 iconf[cnt] = BYTE_GET (econf32[cnt]);
13199
13200 free (econf32);
13201 }
13202 else
13203 {
13204 Elf64_External_Conflict * econf64;
13205
13206 econf64 = (Elf64_External_Conflict *)
13207 get_data (NULL, file, conflicts_offset, conflictsno,
13208 sizeof (* econf64), _("conflict"));
13209 if (!econf64)
13210 return 0;
13211
13212 for (cnt = 0; cnt < conflictsno; ++cnt)
13213 iconf[cnt] = BYTE_GET (econf64[cnt]);
13214
13215 free (econf64);
13216 }
13217
13218 printf (_("\nSection '.conflict' contains %lu entries:\n"),
13219 (unsigned long) conflictsno);
13220 puts (_(" Num: Index Value Name"));
13221
13222 for (cnt = 0; cnt < conflictsno; ++cnt)
13223 {
13224 Elf_Internal_Sym * psym = & dynamic_symbols[iconf[cnt]];
13225
13226 printf ("%5lu: %8lu ", (unsigned long) cnt, iconf[cnt]);
13227 print_vma (psym->st_value, FULL_HEX);
13228 putchar (' ');
13229 if (VALID_DYNAMIC_NAME (psym->st_name))
13230 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
13231 else
13232 printf (_("<corrupt: %14ld>"), psym->st_name);
13233 putchar ('\n');
13234 }
13235
13236 free (iconf);
13237 }
13238
13239 if (pltgot != 0 && local_gotno != 0)
13240 {
13241 bfd_vma ent, local_end, global_end;
13242 size_t i, offset;
13243 unsigned char * data;
13244 int addr_size;
13245
13246 ent = pltgot;
13247 addr_size = (is_32bit_elf ? 4 : 8);
13248 local_end = pltgot + local_gotno * addr_size;
13249 global_end = local_end + (symtabno - gotsym) * addr_size;
13250
13251 offset = offset_from_vma (file, pltgot, global_end - pltgot);
13252 data = (unsigned char *) get_data (NULL, file, offset,
13253 global_end - pltgot, 1,
13254 _("Global Offset Table data"));
13255 if (data == NULL)
13256 return 0;
13257
13258 printf (_("\nPrimary GOT:\n"));
13259 printf (_(" Canonical gp value: "));
13260 print_vma (pltgot + 0x7ff0, LONG_HEX);
13261 printf ("\n\n");
13262
13263 printf (_(" Reserved entries:\n"));
13264 printf (_(" %*s %10s %*s Purpose\n"),
13265 addr_size * 2, _("Address"), _("Access"),
13266 addr_size * 2, _("Initial"));
13267 ent = print_mips_got_entry (data, pltgot, ent);
13268 printf (_(" Lazy resolver\n"));
13269 if (data
13270 && (byte_get (data + ent - pltgot, addr_size)
13271 >> (addr_size * 8 - 1)) != 0)
13272 {
13273 ent = print_mips_got_entry (data, pltgot, ent);
13274 printf (_(" Module pointer (GNU extension)\n"));
13275 }
13276 printf ("\n");
13277
13278 if (ent < local_end)
13279 {
13280 printf (_(" Local entries:\n"));
13281 printf (" %*s %10s %*s\n",
13282 addr_size * 2, _("Address"), _("Access"),
13283 addr_size * 2, _("Initial"));
13284 while (ent < local_end)
13285 {
13286 ent = print_mips_got_entry (data, pltgot, ent);
13287 printf ("\n");
13288 }
13289 printf ("\n");
13290 }
13291
13292 if (gotsym < symtabno)
13293 {
13294 int sym_width;
13295
13296 printf (_(" Global entries:\n"));
13297 printf (" %*s %10s %*s %*s %-7s %3s %s\n",
13298 addr_size * 2, _("Address"),
13299 _("Access"),
13300 addr_size * 2, _("Initial"),
13301 addr_size * 2, _("Sym.Val."),
13302 _("Type"),
13303 /* Note for translators: "Ndx" = abbreviated form of "Index". */
13304 _("Ndx"), _("Name"));
13305
13306 sym_width = (is_32bit_elf ? 80 : 160) - 28 - addr_size * 6 - 1;
13307 for (i = gotsym; i < symtabno; i++)
13308 {
13309 Elf_Internal_Sym * psym;
13310
13311 psym = dynamic_symbols + i;
13312 ent = print_mips_got_entry (data, pltgot, ent);
13313 printf (" ");
13314 print_vma (psym->st_value, LONG_HEX);
13315 printf (" %-7s %3s ",
13316 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
13317 get_symbol_index_type (psym->st_shndx));
13318 if (VALID_DYNAMIC_NAME (psym->st_name))
13319 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
13320 else
13321 printf (_("<corrupt: %14ld>"), psym->st_name);
13322 printf ("\n");
13323 }
13324 printf ("\n");
13325 }
13326
13327 if (data)
13328 free (data);
13329 }
13330
13331 if (mips_pltgot != 0 && jmprel != 0 && pltrel != 0 && pltrelsz != 0)
13332 {
13333 bfd_vma ent, end;
13334 size_t offset, rel_offset;
13335 unsigned long count, i;
13336 unsigned char * data;
13337 int addr_size, sym_width;
13338 Elf_Internal_Rela * rels;
13339
13340 rel_offset = offset_from_vma (file, jmprel, pltrelsz);
13341 if (pltrel == DT_RELA)
13342 {
13343 if (!slurp_rela_relocs (file, rel_offset, pltrelsz, &rels, &count))
13344 return 0;
13345 }
13346 else
13347 {
13348 if (!slurp_rel_relocs (file, rel_offset, pltrelsz, &rels, &count))
13349 return 0;
13350 }
13351
13352 ent = mips_pltgot;
13353 addr_size = (is_32bit_elf ? 4 : 8);
13354 end = mips_pltgot + (2 + count) * addr_size;
13355
13356 offset = offset_from_vma (file, mips_pltgot, end - mips_pltgot);
13357 data = (unsigned char *) get_data (NULL, file, offset, end - mips_pltgot,
13358 1, _("Procedure Linkage Table data"));
13359 if (data == NULL)
13360 return 0;
13361
13362 printf ("\nPLT GOT:\n\n");
13363 printf (_(" Reserved entries:\n"));
13364 printf (_(" %*s %*s Purpose\n"),
13365 addr_size * 2, _("Address"), addr_size * 2, _("Initial"));
13366 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
13367 printf (_(" PLT lazy resolver\n"));
13368 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
13369 printf (_(" Module pointer\n"));
13370 printf ("\n");
13371
13372 printf (_(" Entries:\n"));
13373 printf (" %*s %*s %*s %-7s %3s %s\n",
13374 addr_size * 2, _("Address"),
13375 addr_size * 2, _("Initial"),
13376 addr_size * 2, _("Sym.Val."), _("Type"), _("Ndx"), _("Name"));
13377 sym_width = (is_32bit_elf ? 80 : 160) - 17 - addr_size * 6 - 1;
13378 for (i = 0; i < count; i++)
13379 {
13380 Elf_Internal_Sym * psym;
13381
13382 psym = dynamic_symbols + get_reloc_symindex (rels[i].r_info);
13383 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
13384 printf (" ");
13385 print_vma (psym->st_value, LONG_HEX);
13386 printf (" %-7s %3s ",
13387 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
13388 get_symbol_index_type (psym->st_shndx));
13389 if (VALID_DYNAMIC_NAME (psym->st_name))
13390 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
13391 else
13392 printf (_("<corrupt: %14ld>"), psym->st_name);
13393 printf ("\n");
13394 }
13395 printf ("\n");
13396
13397 if (data)
13398 free (data);
13399 free (rels);
13400 }
13401
13402 return 1;
13403 }
13404
13405 static int
13406 process_nds32_specific (FILE * file)
13407 {
13408 Elf_Internal_Shdr *sect = NULL;
13409
13410 sect = find_section (".nds32_e_flags");
13411 if (sect != NULL)
13412 {
13413 unsigned int *flag;
13414
13415 printf ("\nNDS32 elf flags section:\n");
13416 flag = get_data (NULL, file, sect->sh_offset, 1,
13417 sect->sh_size, _("NDS32 elf flags section"));
13418
13419 switch ((*flag) & 0x3)
13420 {
13421 case 0:
13422 printf ("(VEC_SIZE):\tNo entry.\n");
13423 break;
13424 case 1:
13425 printf ("(VEC_SIZE):\t4 bytes\n");
13426 break;
13427 case 2:
13428 printf ("(VEC_SIZE):\t16 bytes\n");
13429 break;
13430 case 3:
13431 printf ("(VEC_SIZE):\treserved\n");
13432 break;
13433 }
13434 }
13435
13436 return TRUE;
13437 }
13438
13439 static int
13440 process_gnu_liblist (FILE * file)
13441 {
13442 Elf_Internal_Shdr * section;
13443 Elf_Internal_Shdr * string_sec;
13444 Elf32_External_Lib * elib;
13445 char * strtab;
13446 size_t strtab_size;
13447 size_t cnt;
13448 unsigned i;
13449
13450 if (! do_arch)
13451 return 0;
13452
13453 for (i = 0, section = section_headers;
13454 i < elf_header.e_shnum;
13455 i++, section++)
13456 {
13457 switch (section->sh_type)
13458 {
13459 case SHT_GNU_LIBLIST:
13460 if (section->sh_link >= elf_header.e_shnum)
13461 break;
13462
13463 elib = (Elf32_External_Lib *)
13464 get_data (NULL, file, section->sh_offset, 1, section->sh_size,
13465 _("liblist section data"));
13466
13467 if (elib == NULL)
13468 break;
13469 string_sec = section_headers + section->sh_link;
13470
13471 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
13472 string_sec->sh_size,
13473 _("liblist string table"));
13474 if (strtab == NULL
13475 || section->sh_entsize != sizeof (Elf32_External_Lib))
13476 {
13477 free (elib);
13478 free (strtab);
13479 break;
13480 }
13481 strtab_size = string_sec->sh_size;
13482
13483 printf (_("\nLibrary list section '%s' contains %lu entries:\n"),
13484 SECTION_NAME (section),
13485 (unsigned long) (section->sh_size / sizeof (Elf32_External_Lib)));
13486
13487 puts (_(" Library Time Stamp Checksum Version Flags"));
13488
13489 for (cnt = 0; cnt < section->sh_size / sizeof (Elf32_External_Lib);
13490 ++cnt)
13491 {
13492 Elf32_Lib liblist;
13493 time_t atime;
13494 char timebuf[20];
13495 struct tm * tmp;
13496
13497 liblist.l_name = BYTE_GET (elib[cnt].l_name);
13498 atime = BYTE_GET (elib[cnt].l_time_stamp);
13499 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
13500 liblist.l_version = BYTE_GET (elib[cnt].l_version);
13501 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
13502
13503 tmp = gmtime (&atime);
13504 snprintf (timebuf, sizeof (timebuf),
13505 "%04u-%02u-%02uT%02u:%02u:%02u",
13506 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
13507 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
13508
13509 printf ("%3lu: ", (unsigned long) cnt);
13510 if (do_wide)
13511 printf ("%-20s", liblist.l_name < strtab_size
13512 ? strtab + liblist.l_name : _("<corrupt>"));
13513 else
13514 printf ("%-20.20s", liblist.l_name < strtab_size
13515 ? strtab + liblist.l_name : _("<corrupt>"));
13516 printf (" %s %#010lx %-7ld %-7ld\n", timebuf, liblist.l_checksum,
13517 liblist.l_version, liblist.l_flags);
13518 }
13519
13520 free (elib);
13521 free (strtab);
13522 }
13523 }
13524
13525 return 1;
13526 }
13527
13528 static const char *
13529 get_note_type (unsigned e_type)
13530 {
13531 static char buff[64];
13532
13533 if (elf_header.e_type == ET_CORE)
13534 switch (e_type)
13535 {
13536 case NT_AUXV:
13537 return _("NT_AUXV (auxiliary vector)");
13538 case NT_PRSTATUS:
13539 return _("NT_PRSTATUS (prstatus structure)");
13540 case NT_FPREGSET:
13541 return _("NT_FPREGSET (floating point registers)");
13542 case NT_PRPSINFO:
13543 return _("NT_PRPSINFO (prpsinfo structure)");
13544 case NT_TASKSTRUCT:
13545 return _("NT_TASKSTRUCT (task structure)");
13546 case NT_PRXFPREG:
13547 return _("NT_PRXFPREG (user_xfpregs structure)");
13548 case NT_PPC_VMX:
13549 return _("NT_PPC_VMX (ppc Altivec registers)");
13550 case NT_PPC_VSX:
13551 return _("NT_PPC_VSX (ppc VSX registers)");
13552 case NT_386_TLS:
13553 return _("NT_386_TLS (x86 TLS information)");
13554 case NT_386_IOPERM:
13555 return _("NT_386_IOPERM (x86 I/O permissions)");
13556 case NT_X86_XSTATE:
13557 return _("NT_X86_XSTATE (x86 XSAVE extended state)");
13558 case NT_S390_HIGH_GPRS:
13559 return _("NT_S390_HIGH_GPRS (s390 upper register halves)");
13560 case NT_S390_TIMER:
13561 return _("NT_S390_TIMER (s390 timer register)");
13562 case NT_S390_TODCMP:
13563 return _("NT_S390_TODCMP (s390 TOD comparator register)");
13564 case NT_S390_TODPREG:
13565 return _("NT_S390_TODPREG (s390 TOD programmable register)");
13566 case NT_S390_CTRS:
13567 return _("NT_S390_CTRS (s390 control registers)");
13568 case NT_S390_PREFIX:
13569 return _("NT_S390_PREFIX (s390 prefix register)");
13570 case NT_S390_LAST_BREAK:
13571 return _("NT_S390_LAST_BREAK (s390 last breaking event address)");
13572 case NT_S390_SYSTEM_CALL:
13573 return _("NT_S390_SYSTEM_CALL (s390 system call restart data)");
13574 case NT_S390_TDB:
13575 return _("NT_S390_TDB (s390 transaction diagnostic block)");
13576 case NT_ARM_VFP:
13577 return _("NT_ARM_VFP (arm VFP registers)");
13578 case NT_ARM_TLS:
13579 return _("NT_ARM_TLS (AArch TLS registers)");
13580 case NT_ARM_HW_BREAK:
13581 return _("NT_ARM_HW_BREAK (AArch hardware breakpoint registers)");
13582 case NT_ARM_HW_WATCH:
13583 return _("NT_ARM_HW_WATCH (AArch hardware watchpoint registers)");
13584 case NT_PSTATUS:
13585 return _("NT_PSTATUS (pstatus structure)");
13586 case NT_FPREGS:
13587 return _("NT_FPREGS (floating point registers)");
13588 case NT_PSINFO:
13589 return _("NT_PSINFO (psinfo structure)");
13590 case NT_LWPSTATUS:
13591 return _("NT_LWPSTATUS (lwpstatus_t structure)");
13592 case NT_LWPSINFO:
13593 return _("NT_LWPSINFO (lwpsinfo_t structure)");
13594 case NT_WIN32PSTATUS:
13595 return _("NT_WIN32PSTATUS (win32_pstatus structure)");
13596 case NT_SIGINFO:
13597 return _("NT_SIGINFO (siginfo_t data)");
13598 case NT_FILE:
13599 return _("NT_FILE (mapped files)");
13600 default:
13601 break;
13602 }
13603 else
13604 switch (e_type)
13605 {
13606 case NT_VERSION:
13607 return _("NT_VERSION (version)");
13608 case NT_ARCH:
13609 return _("NT_ARCH (architecture)");
13610 default:
13611 break;
13612 }
13613
13614 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
13615 return buff;
13616 }
13617
13618 static int
13619 print_core_note (Elf_Internal_Note *pnote)
13620 {
13621 unsigned int addr_size = is_32bit_elf ? 4 : 8;
13622 bfd_vma count, page_size;
13623 unsigned char *descdata, *filenames, *descend;
13624
13625 if (pnote->type != NT_FILE)
13626 return 1;
13627
13628 #ifndef BFD64
13629 if (!is_32bit_elf)
13630 {
13631 printf (_(" Cannot decode 64-bit note in 32-bit build\n"));
13632 /* Still "successful". */
13633 return 1;
13634 }
13635 #endif
13636
13637 if (pnote->descsz < 2 * addr_size)
13638 {
13639 printf (_(" Malformed note - too short for header\n"));
13640 return 0;
13641 }
13642
13643 descdata = (unsigned char *) pnote->descdata;
13644 descend = descdata + pnote->descsz;
13645
13646 if (descdata[pnote->descsz - 1] != '\0')
13647 {
13648 printf (_(" Malformed note - does not end with \\0\n"));
13649 return 0;
13650 }
13651
13652 count = byte_get (descdata, addr_size);
13653 descdata += addr_size;
13654
13655 page_size = byte_get (descdata, addr_size);
13656 descdata += addr_size;
13657
13658 if (pnote->descsz < 2 * addr_size + count * 3 * addr_size)
13659 {
13660 printf (_(" Malformed note - too short for supplied file count\n"));
13661 return 0;
13662 }
13663
13664 printf (_(" Page size: "));
13665 print_vma (page_size, DEC);
13666 printf ("\n");
13667
13668 printf (_(" %*s%*s%*s\n"),
13669 (int) (2 + 2 * addr_size), _("Start"),
13670 (int) (4 + 2 * addr_size), _("End"),
13671 (int) (4 + 2 * addr_size), _("Page Offset"));
13672 filenames = descdata + count * 3 * addr_size;
13673 while (--count > 0)
13674 {
13675 bfd_vma start, end, file_ofs;
13676
13677 if (filenames == descend)
13678 {
13679 printf (_(" Malformed note - filenames end too early\n"));
13680 return 0;
13681 }
13682
13683 start = byte_get (descdata, addr_size);
13684 descdata += addr_size;
13685 end = byte_get (descdata, addr_size);
13686 descdata += addr_size;
13687 file_ofs = byte_get (descdata, addr_size);
13688 descdata += addr_size;
13689
13690 printf (" ");
13691 print_vma (start, FULL_HEX);
13692 printf (" ");
13693 print_vma (end, FULL_HEX);
13694 printf (" ");
13695 print_vma (file_ofs, FULL_HEX);
13696 printf ("\n %s\n", filenames);
13697
13698 filenames += 1 + strlen ((char *) filenames);
13699 }
13700
13701 return 1;
13702 }
13703
13704 static const char *
13705 get_gnu_elf_note_type (unsigned e_type)
13706 {
13707 static char buff[64];
13708
13709 switch (e_type)
13710 {
13711 case NT_GNU_ABI_TAG:
13712 return _("NT_GNU_ABI_TAG (ABI version tag)");
13713 case NT_GNU_HWCAP:
13714 return _("NT_GNU_HWCAP (DSO-supplied software HWCAP info)");
13715 case NT_GNU_BUILD_ID:
13716 return _("NT_GNU_BUILD_ID (unique build ID bitstring)");
13717 case NT_GNU_GOLD_VERSION:
13718 return _("NT_GNU_GOLD_VERSION (gold version)");
13719 default:
13720 break;
13721 }
13722
13723 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
13724 return buff;
13725 }
13726
13727 static int
13728 print_gnu_note (Elf_Internal_Note *pnote)
13729 {
13730 switch (pnote->type)
13731 {
13732 case NT_GNU_BUILD_ID:
13733 {
13734 unsigned long i;
13735
13736 printf (_(" Build ID: "));
13737 for (i = 0; i < pnote->descsz; ++i)
13738 printf ("%02x", pnote->descdata[i] & 0xff);
13739 printf ("\n");
13740 }
13741 break;
13742
13743 case NT_GNU_ABI_TAG:
13744 {
13745 unsigned long os, major, minor, subminor;
13746 const char *osname;
13747
13748 os = byte_get ((unsigned char *) pnote->descdata, 4);
13749 major = byte_get ((unsigned char *) pnote->descdata + 4, 4);
13750 minor = byte_get ((unsigned char *) pnote->descdata + 8, 4);
13751 subminor = byte_get ((unsigned char *) pnote->descdata + 12, 4);
13752
13753 switch (os)
13754 {
13755 case GNU_ABI_TAG_LINUX:
13756 osname = "Linux";
13757 break;
13758 case GNU_ABI_TAG_HURD:
13759 osname = "Hurd";
13760 break;
13761 case GNU_ABI_TAG_SOLARIS:
13762 osname = "Solaris";
13763 break;
13764 case GNU_ABI_TAG_FREEBSD:
13765 osname = "FreeBSD";
13766 break;
13767 case GNU_ABI_TAG_NETBSD:
13768 osname = "NetBSD";
13769 break;
13770 default:
13771 osname = "Unknown";
13772 break;
13773 }
13774
13775 printf (_(" OS: %s, ABI: %ld.%ld.%ld\n"), osname,
13776 major, minor, subminor);
13777 }
13778 break;
13779
13780 case NT_GNU_GOLD_VERSION:
13781 {
13782 unsigned long i;
13783
13784 printf (_(" Version: "));
13785 for (i = 0; i < pnote->descsz && pnote->descdata[i] != '\0'; ++i)
13786 printf ("%c", pnote->descdata[i]);
13787 printf ("\n");
13788 }
13789 break;
13790 }
13791
13792 return 1;
13793 }
13794
13795 static const char *
13796 get_netbsd_elfcore_note_type (unsigned e_type)
13797 {
13798 static char buff[64];
13799
13800 if (e_type == NT_NETBSDCORE_PROCINFO)
13801 {
13802 /* NetBSD core "procinfo" structure. */
13803 return _("NetBSD procinfo structure");
13804 }
13805
13806 /* As of Jan 2002 there are no other machine-independent notes
13807 defined for NetBSD core files. If the note type is less
13808 than the start of the machine-dependent note types, we don't
13809 understand it. */
13810
13811 if (e_type < NT_NETBSDCORE_FIRSTMACH)
13812 {
13813 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
13814 return buff;
13815 }
13816
13817 switch (elf_header.e_machine)
13818 {
13819 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0
13820 and PT_GETFPREGS == mach+2. */
13821
13822 case EM_OLD_ALPHA:
13823 case EM_ALPHA:
13824 case EM_SPARC:
13825 case EM_SPARC32PLUS:
13826 case EM_SPARCV9:
13827 switch (e_type)
13828 {
13829 case NT_NETBSDCORE_FIRSTMACH + 0:
13830 return _("PT_GETREGS (reg structure)");
13831 case NT_NETBSDCORE_FIRSTMACH + 2:
13832 return _("PT_GETFPREGS (fpreg structure)");
13833 default:
13834 break;
13835 }
13836 break;
13837
13838 /* On all other arch's, PT_GETREGS == mach+1 and
13839 PT_GETFPREGS == mach+3. */
13840 default:
13841 switch (e_type)
13842 {
13843 case NT_NETBSDCORE_FIRSTMACH + 1:
13844 return _("PT_GETREGS (reg structure)");
13845 case NT_NETBSDCORE_FIRSTMACH + 3:
13846 return _("PT_GETFPREGS (fpreg structure)");
13847 default:
13848 break;
13849 }
13850 }
13851
13852 snprintf (buff, sizeof (buff), "PT_FIRSTMACH+%d",
13853 e_type - NT_NETBSDCORE_FIRSTMACH);
13854 return buff;
13855 }
13856
13857 static const char *
13858 get_stapsdt_note_type (unsigned e_type)
13859 {
13860 static char buff[64];
13861
13862 switch (e_type)
13863 {
13864 case NT_STAPSDT:
13865 return _("NT_STAPSDT (SystemTap probe descriptors)");
13866
13867 default:
13868 break;
13869 }
13870
13871 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
13872 return buff;
13873 }
13874
13875 static int
13876 print_stapsdt_note (Elf_Internal_Note *pnote)
13877 {
13878 int addr_size = is_32bit_elf ? 4 : 8;
13879 char *data = pnote->descdata;
13880 char *data_end = pnote->descdata + pnote->descsz;
13881 bfd_vma pc, base_addr, semaphore;
13882 char *provider, *probe, *arg_fmt;
13883
13884 pc = byte_get ((unsigned char *) data, addr_size);
13885 data += addr_size;
13886 base_addr = byte_get ((unsigned char *) data, addr_size);
13887 data += addr_size;
13888 semaphore = byte_get ((unsigned char *) data, addr_size);
13889 data += addr_size;
13890
13891 provider = data;
13892 data += strlen (data) + 1;
13893 probe = data;
13894 data += strlen (data) + 1;
13895 arg_fmt = data;
13896 data += strlen (data) + 1;
13897
13898 printf (_(" Provider: %s\n"), provider);
13899 printf (_(" Name: %s\n"), probe);
13900 printf (_(" Location: "));
13901 print_vma (pc, FULL_HEX);
13902 printf (_(", Base: "));
13903 print_vma (base_addr, FULL_HEX);
13904 printf (_(", Semaphore: "));
13905 print_vma (semaphore, FULL_HEX);
13906 printf ("\n");
13907 printf (_(" Arguments: %s\n"), arg_fmt);
13908
13909 return data == data_end;
13910 }
13911
13912 static const char *
13913 get_ia64_vms_note_type (unsigned e_type)
13914 {
13915 static char buff[64];
13916
13917 switch (e_type)
13918 {
13919 case NT_VMS_MHD:
13920 return _("NT_VMS_MHD (module header)");
13921 case NT_VMS_LNM:
13922 return _("NT_VMS_LNM (language name)");
13923 case NT_VMS_SRC:
13924 return _("NT_VMS_SRC (source files)");
13925 case NT_VMS_TITLE:
13926 return "NT_VMS_TITLE";
13927 case NT_VMS_EIDC:
13928 return _("NT_VMS_EIDC (consistency check)");
13929 case NT_VMS_FPMODE:
13930 return _("NT_VMS_FPMODE (FP mode)");
13931 case NT_VMS_LINKTIME:
13932 return "NT_VMS_LINKTIME";
13933 case NT_VMS_IMGNAM:
13934 return _("NT_VMS_IMGNAM (image name)");
13935 case NT_VMS_IMGID:
13936 return _("NT_VMS_IMGID (image id)");
13937 case NT_VMS_LINKID:
13938 return _("NT_VMS_LINKID (link id)");
13939 case NT_VMS_IMGBID:
13940 return _("NT_VMS_IMGBID (build id)");
13941 case NT_VMS_GSTNAM:
13942 return _("NT_VMS_GSTNAM (sym table name)");
13943 case NT_VMS_ORIG_DYN:
13944 return "NT_VMS_ORIG_DYN";
13945 case NT_VMS_PATCHTIME:
13946 return "NT_VMS_PATCHTIME";
13947 default:
13948 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
13949 return buff;
13950 }
13951 }
13952
13953 static int
13954 print_ia64_vms_note (Elf_Internal_Note * pnote)
13955 {
13956 switch (pnote->type)
13957 {
13958 case NT_VMS_MHD:
13959 if (pnote->descsz > 36)
13960 {
13961 size_t l = strlen (pnote->descdata + 34);
13962 printf (_(" Creation date : %.17s\n"), pnote->descdata);
13963 printf (_(" Last patch date: %.17s\n"), pnote->descdata + 17);
13964 printf (_(" Module name : %s\n"), pnote->descdata + 34);
13965 printf (_(" Module version : %s\n"), pnote->descdata + 34 + l + 1);
13966 }
13967 else
13968 printf (_(" Invalid size\n"));
13969 break;
13970 case NT_VMS_LNM:
13971 printf (_(" Language: %s\n"), pnote->descdata);
13972 break;
13973 #ifdef BFD64
13974 case NT_VMS_FPMODE:
13975 printf (_(" Floating Point mode: "));
13976 printf ("0x%016" BFD_VMA_FMT "x\n",
13977 (bfd_vma)byte_get ((unsigned char *)pnote->descdata, 8));
13978 break;
13979 case NT_VMS_LINKTIME:
13980 printf (_(" Link time: "));
13981 print_vms_time
13982 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
13983 printf ("\n");
13984 break;
13985 case NT_VMS_PATCHTIME:
13986 printf (_(" Patch time: "));
13987 print_vms_time
13988 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
13989 printf ("\n");
13990 break;
13991 case NT_VMS_ORIG_DYN:
13992 printf (_(" Major id: %u, minor id: %u\n"),
13993 (unsigned) byte_get ((unsigned char *)pnote->descdata, 4),
13994 (unsigned) byte_get ((unsigned char *)pnote->descdata + 4, 4));
13995 printf (_(" Last modified : "));
13996 print_vms_time
13997 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata + 8, 8));
13998 printf (_("\n Link flags : "));
13999 printf ("0x%016" BFD_VMA_FMT "x\n",
14000 (bfd_vma)byte_get ((unsigned char *)pnote->descdata + 16, 8));
14001 printf (_(" Header flags: 0x%08x\n"),
14002 (unsigned)byte_get ((unsigned char *)pnote->descdata + 24, 4));
14003 printf (_(" Image id : %s\n"), pnote->descdata + 32);
14004 break;
14005 #endif
14006 case NT_VMS_IMGNAM:
14007 printf (_(" Image name: %s\n"), pnote->descdata);
14008 break;
14009 case NT_VMS_GSTNAM:
14010 printf (_(" Global symbol table name: %s\n"), pnote->descdata);
14011 break;
14012 case NT_VMS_IMGID:
14013 printf (_(" Image id: %s\n"), pnote->descdata);
14014 break;
14015 case NT_VMS_LINKID:
14016 printf (_(" Linker id: %s\n"), pnote->descdata);
14017 break;
14018 default:
14019 break;
14020 }
14021 return 1;
14022 }
14023
14024 /* Note that by the ELF standard, the name field is already null byte
14025 terminated, and namesz includes the terminating null byte.
14026 I.E. the value of namesz for the name "FSF" is 4.
14027
14028 If the value of namesz is zero, there is no name present. */
14029 static int
14030 process_note (Elf_Internal_Note * pnote)
14031 {
14032 const char * name = pnote->namesz ? pnote->namedata : "(NONE)";
14033 const char * nt;
14034
14035 if (pnote->namesz == 0)
14036 /* If there is no note name, then use the default set of
14037 note type strings. */
14038 nt = get_note_type (pnote->type);
14039
14040 else if (const_strneq (pnote->namedata, "GNU"))
14041 /* GNU-specific object file notes. */
14042 nt = get_gnu_elf_note_type (pnote->type);
14043
14044 else if (const_strneq (pnote->namedata, "NetBSD-CORE"))
14045 /* NetBSD-specific core file notes. */
14046 nt = get_netbsd_elfcore_note_type (pnote->type);
14047
14048 else if (strneq (pnote->namedata, "SPU/", 4))
14049 {
14050 /* SPU-specific core file notes. */
14051 nt = pnote->namedata + 4;
14052 name = "SPU";
14053 }
14054
14055 else if (const_strneq (pnote->namedata, "IPF/VMS"))
14056 /* VMS/ia64-specific file notes. */
14057 nt = get_ia64_vms_note_type (pnote->type);
14058
14059 else if (const_strneq (pnote->namedata, "stapsdt"))
14060 nt = get_stapsdt_note_type (pnote->type);
14061
14062 else
14063 /* Don't recognize this note name; just use the default set of
14064 note type strings. */
14065 nt = get_note_type (pnote->type);
14066
14067 printf (" %-20s 0x%08lx\t%s\n", name, pnote->descsz, nt);
14068
14069 if (const_strneq (pnote->namedata, "IPF/VMS"))
14070 return print_ia64_vms_note (pnote);
14071 else if (const_strneq (pnote->namedata, "GNU"))
14072 return print_gnu_note (pnote);
14073 else if (const_strneq (pnote->namedata, "stapsdt"))
14074 return print_stapsdt_note (pnote);
14075 else if (const_strneq (pnote->namedata, "CORE"))
14076 return print_core_note (pnote);
14077 else
14078 return 1;
14079 }
14080
14081
14082 static int
14083 process_corefile_note_segment (FILE * file, bfd_vma offset, bfd_vma length)
14084 {
14085 Elf_External_Note * pnotes;
14086 Elf_External_Note * external;
14087 int res = 1;
14088
14089 if (length <= 0)
14090 return 0;
14091
14092 pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
14093 _("notes"));
14094 if (pnotes == NULL)
14095 return 0;
14096
14097 external = pnotes;
14098
14099 printf (_("\nDisplaying notes found at file offset 0x%08lx with length 0x%08lx:\n"),
14100 (unsigned long) offset, (unsigned long) length);
14101 printf (_(" %-20s %10s\tDescription\n"), _("Owner"), _("Data size"));
14102
14103 while ((char *) external < (char *) pnotes + length)
14104 {
14105 Elf_Internal_Note inote;
14106 size_t min_notesz;
14107 char *next;
14108 char * temp = NULL;
14109 size_t data_remaining = ((char *) pnotes + length) - (char *) external;
14110
14111 if (!is_ia64_vms ())
14112 {
14113 /* PR binutils/15191
14114 Make sure that there is enough data to read. */
14115 min_notesz = offsetof (Elf_External_Note, name);
14116 if (data_remaining < min_notesz)
14117 {
14118 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
14119 (int) data_remaining);
14120 break;
14121 }
14122 inote.type = BYTE_GET (external->type);
14123 inote.namesz = BYTE_GET (external->namesz);
14124 inote.namedata = external->name;
14125 inote.descsz = BYTE_GET (external->descsz);
14126 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
14127 inote.descpos = offset + (inote.descdata - (char *) pnotes);
14128 next = inote.descdata + align_power (inote.descsz, 2);
14129 }
14130 else
14131 {
14132 Elf64_External_VMS_Note *vms_external;
14133
14134 /* PR binutils/15191
14135 Make sure that there is enough data to read. */
14136 min_notesz = offsetof (Elf64_External_VMS_Note, name);
14137 if (data_remaining < min_notesz)
14138 {
14139 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
14140 (int) data_remaining);
14141 break;
14142 }
14143
14144 vms_external = (Elf64_External_VMS_Note *) external;
14145 inote.type = BYTE_GET (vms_external->type);
14146 inote.namesz = BYTE_GET (vms_external->namesz);
14147 inote.namedata = vms_external->name;
14148 inote.descsz = BYTE_GET (vms_external->descsz);
14149 inote.descdata = inote.namedata + align_power (inote.namesz, 3);
14150 inote.descpos = offset + (inote.descdata - (char *) pnotes);
14151 next = inote.descdata + align_power (inote.descsz, 3);
14152 }
14153
14154 if (inote.descdata < (char *) external + min_notesz
14155 || next < (char *) external + min_notesz
14156 || data_remaining < (size_t)(next - (char *) external))
14157 {
14158 warn (_("note with invalid namesz and/or descsz found at offset 0x%lx\n"),
14159 (unsigned long) ((char *) external - (char *) pnotes));
14160 warn (_(" type: 0x%lx, namesize: 0x%08lx, descsize: 0x%08lx\n"),
14161 inote.type, inote.namesz, inote.descsz);
14162 break;
14163 }
14164
14165 external = (Elf_External_Note *) next;
14166
14167 /* Verify that name is null terminated. It appears that at least
14168 one version of Linux (RedHat 6.0) generates corefiles that don't
14169 comply with the ELF spec by failing to include the null byte in
14170 namesz. */
14171 if (inote.namedata[inote.namesz - 1] != '\0')
14172 {
14173 temp = (char *) malloc (inote.namesz + 1);
14174
14175 if (temp == NULL)
14176 {
14177 error (_("Out of memory\n"));
14178 res = 0;
14179 break;
14180 }
14181
14182 strncpy (temp, inote.namedata, inote.namesz);
14183 temp[inote.namesz] = 0;
14184
14185 /* warn (_("'%s' NOTE name not properly null terminated\n"), temp); */
14186 inote.namedata = temp;
14187 }
14188
14189 res &= process_note (& inote);
14190
14191 if (temp != NULL)
14192 {
14193 free (temp);
14194 temp = NULL;
14195 }
14196 }
14197
14198 free (pnotes);
14199
14200 return res;
14201 }
14202
14203 static int
14204 process_corefile_note_segments (FILE * file)
14205 {
14206 Elf_Internal_Phdr * segment;
14207 unsigned int i;
14208 int res = 1;
14209
14210 if (! get_program_headers (file))
14211 return 0;
14212
14213 for (i = 0, segment = program_headers;
14214 i < elf_header.e_phnum;
14215 i++, segment++)
14216 {
14217 if (segment->p_type == PT_NOTE)
14218 res &= process_corefile_note_segment (file,
14219 (bfd_vma) segment->p_offset,
14220 (bfd_vma) segment->p_filesz);
14221 }
14222
14223 return res;
14224 }
14225
14226 static int
14227 process_note_sections (FILE * file)
14228 {
14229 Elf_Internal_Shdr * section;
14230 unsigned long i;
14231 int n = 0;
14232 int res = 1;
14233
14234 for (i = 0, section = section_headers;
14235 i < elf_header.e_shnum && section != NULL;
14236 i++, section++)
14237 if (section->sh_type == SHT_NOTE)
14238 {
14239 res &= process_corefile_note_segment (file,
14240 (bfd_vma) section->sh_offset,
14241 (bfd_vma) section->sh_size);
14242 n++;
14243 }
14244
14245 if (n == 0)
14246 /* Try processing NOTE segments instead. */
14247 return process_corefile_note_segments (file);
14248
14249 return res;
14250 }
14251
14252 static int
14253 process_notes (FILE * file)
14254 {
14255 /* If we have not been asked to display the notes then do nothing. */
14256 if (! do_notes)
14257 return 1;
14258
14259 if (elf_header.e_type != ET_CORE)
14260 return process_note_sections (file);
14261
14262 /* No program headers means no NOTE segment. */
14263 if (elf_header.e_phnum > 0)
14264 return process_corefile_note_segments (file);
14265
14266 printf (_("No note segments present in the core file.\n"));
14267 return 1;
14268 }
14269
14270 static int
14271 process_arch_specific (FILE * file)
14272 {
14273 if (! do_arch)
14274 return 1;
14275
14276 switch (elf_header.e_machine)
14277 {
14278 case EM_ARM:
14279 return process_arm_specific (file);
14280 case EM_MIPS:
14281 case EM_MIPS_RS3_LE:
14282 return process_mips_specific (file);
14283 break;
14284 case EM_NDS32:
14285 return process_nds32_specific (file);
14286 break;
14287 case EM_PPC:
14288 return process_power_specific (file);
14289 break;
14290 case EM_SPARC:
14291 case EM_SPARC32PLUS:
14292 case EM_SPARCV9:
14293 return process_sparc_specific (file);
14294 break;
14295 case EM_TI_C6000:
14296 return process_tic6x_specific (file);
14297 break;
14298 case EM_MSP430:
14299 return process_msp430x_specific (file);
14300 default:
14301 break;
14302 }
14303 return 1;
14304 }
14305
14306 static int
14307 get_file_header (FILE * file)
14308 {
14309 /* Read in the identity array. */
14310 if (fread (elf_header.e_ident, EI_NIDENT, 1, file) != 1)
14311 return 0;
14312
14313 /* Determine how to read the rest of the header. */
14314 switch (elf_header.e_ident[EI_DATA])
14315 {
14316 default: /* fall through */
14317 case ELFDATANONE: /* fall through */
14318 case ELFDATA2LSB:
14319 byte_get = byte_get_little_endian;
14320 byte_put = byte_put_little_endian;
14321 break;
14322 case ELFDATA2MSB:
14323 byte_get = byte_get_big_endian;
14324 byte_put = byte_put_big_endian;
14325 break;
14326 }
14327
14328 /* For now we only support 32 bit and 64 bit ELF files. */
14329 is_32bit_elf = (elf_header.e_ident[EI_CLASS] != ELFCLASS64);
14330
14331 /* Read in the rest of the header. */
14332 if (is_32bit_elf)
14333 {
14334 Elf32_External_Ehdr ehdr32;
14335
14336 if (fread (ehdr32.e_type, sizeof (ehdr32) - EI_NIDENT, 1, file) != 1)
14337 return 0;
14338
14339 elf_header.e_type = BYTE_GET (ehdr32.e_type);
14340 elf_header.e_machine = BYTE_GET (ehdr32.e_machine);
14341 elf_header.e_version = BYTE_GET (ehdr32.e_version);
14342 elf_header.e_entry = BYTE_GET (ehdr32.e_entry);
14343 elf_header.e_phoff = BYTE_GET (ehdr32.e_phoff);
14344 elf_header.e_shoff = BYTE_GET (ehdr32.e_shoff);
14345 elf_header.e_flags = BYTE_GET (ehdr32.e_flags);
14346 elf_header.e_ehsize = BYTE_GET (ehdr32.e_ehsize);
14347 elf_header.e_phentsize = BYTE_GET (ehdr32.e_phentsize);
14348 elf_header.e_phnum = BYTE_GET (ehdr32.e_phnum);
14349 elf_header.e_shentsize = BYTE_GET (ehdr32.e_shentsize);
14350 elf_header.e_shnum = BYTE_GET (ehdr32.e_shnum);
14351 elf_header.e_shstrndx = BYTE_GET (ehdr32.e_shstrndx);
14352 }
14353 else
14354 {
14355 Elf64_External_Ehdr ehdr64;
14356
14357 /* If we have been compiled with sizeof (bfd_vma) == 4, then
14358 we will not be able to cope with the 64bit data found in
14359 64 ELF files. Detect this now and abort before we start
14360 overwriting things. */
14361 if (sizeof (bfd_vma) < 8)
14362 {
14363 error (_("This instance of readelf has been built without support for a\n\
14364 64 bit data type and so it cannot read 64 bit ELF files.\n"));
14365 return 0;
14366 }
14367
14368 if (fread (ehdr64.e_type, sizeof (ehdr64) - EI_NIDENT, 1, file) != 1)
14369 return 0;
14370
14371 elf_header.e_type = BYTE_GET (ehdr64.e_type);
14372 elf_header.e_machine = BYTE_GET (ehdr64.e_machine);
14373 elf_header.e_version = BYTE_GET (ehdr64.e_version);
14374 elf_header.e_entry = BYTE_GET (ehdr64.e_entry);
14375 elf_header.e_phoff = BYTE_GET (ehdr64.e_phoff);
14376 elf_header.e_shoff = BYTE_GET (ehdr64.e_shoff);
14377 elf_header.e_flags = BYTE_GET (ehdr64.e_flags);
14378 elf_header.e_ehsize = BYTE_GET (ehdr64.e_ehsize);
14379 elf_header.e_phentsize = BYTE_GET (ehdr64.e_phentsize);
14380 elf_header.e_phnum = BYTE_GET (ehdr64.e_phnum);
14381 elf_header.e_shentsize = BYTE_GET (ehdr64.e_shentsize);
14382 elf_header.e_shnum = BYTE_GET (ehdr64.e_shnum);
14383 elf_header.e_shstrndx = BYTE_GET (ehdr64.e_shstrndx);
14384 }
14385
14386 if (elf_header.e_shoff)
14387 {
14388 /* There may be some extensions in the first section header. Don't
14389 bomb if we can't read it. */
14390 if (is_32bit_elf)
14391 get_32bit_section_headers (file, 1);
14392 else
14393 get_64bit_section_headers (file, 1);
14394 }
14395
14396 return 1;
14397 }
14398
14399 /* Process one ELF object file according to the command line options.
14400 This file may actually be stored in an archive. The file is
14401 positioned at the start of the ELF object. */
14402
14403 static int
14404 process_object (char * file_name, FILE * file)
14405 {
14406 unsigned int i;
14407
14408 if (! get_file_header (file))
14409 {
14410 error (_("%s: Failed to read file header\n"), file_name);
14411 return 1;
14412 }
14413
14414 /* Initialise per file variables. */
14415 for (i = ARRAY_SIZE (version_info); i--;)
14416 version_info[i] = 0;
14417
14418 for (i = ARRAY_SIZE (dynamic_info); i--;)
14419 dynamic_info[i] = 0;
14420 dynamic_info_DT_GNU_HASH = 0;
14421
14422 /* Process the file. */
14423 if (show_name)
14424 printf (_("\nFile: %s\n"), file_name);
14425
14426 /* Initialise the dump_sects array from the cmdline_dump_sects array.
14427 Note we do this even if cmdline_dump_sects is empty because we
14428 must make sure that the dump_sets array is zeroed out before each
14429 object file is processed. */
14430 if (num_dump_sects > num_cmdline_dump_sects)
14431 memset (dump_sects, 0, num_dump_sects * sizeof (* dump_sects));
14432
14433 if (num_cmdline_dump_sects > 0)
14434 {
14435 if (num_dump_sects == 0)
14436 /* A sneaky way of allocating the dump_sects array. */
14437 request_dump_bynumber (num_cmdline_dump_sects, 0);
14438
14439 assert (num_dump_sects >= num_cmdline_dump_sects);
14440 memcpy (dump_sects, cmdline_dump_sects,
14441 num_cmdline_dump_sects * sizeof (* dump_sects));
14442 }
14443
14444 if (! process_file_header ())
14445 return 1;
14446
14447 if (! process_section_headers (file))
14448 {
14449 /* Without loaded section headers we cannot process lots of
14450 things. */
14451 do_unwind = do_version = do_dump = do_arch = 0;
14452
14453 if (! do_using_dynamic)
14454 do_syms = do_dyn_syms = do_reloc = 0;
14455 }
14456
14457 if (! process_section_groups (file))
14458 {
14459 /* Without loaded section groups we cannot process unwind. */
14460 do_unwind = 0;
14461 }
14462
14463 if (process_program_headers (file))
14464 process_dynamic_section (file);
14465
14466 process_relocs (file);
14467
14468 process_unwind (file);
14469
14470 process_symbol_table (file);
14471
14472 process_syminfo (file);
14473
14474 process_version_sections (file);
14475
14476 process_section_contents (file);
14477
14478 process_notes (file);
14479
14480 process_gnu_liblist (file);
14481
14482 process_arch_specific (file);
14483
14484 if (program_headers)
14485 {
14486 free (program_headers);
14487 program_headers = NULL;
14488 }
14489
14490 if (section_headers)
14491 {
14492 free (section_headers);
14493 section_headers = NULL;
14494 }
14495
14496 if (string_table)
14497 {
14498 free (string_table);
14499 string_table = NULL;
14500 string_table_length = 0;
14501 }
14502
14503 if (dynamic_strings)
14504 {
14505 free (dynamic_strings);
14506 dynamic_strings = NULL;
14507 dynamic_strings_length = 0;
14508 }
14509
14510 if (dynamic_symbols)
14511 {
14512 free (dynamic_symbols);
14513 dynamic_symbols = NULL;
14514 num_dynamic_syms = 0;
14515 }
14516
14517 if (dynamic_syminfo)
14518 {
14519 free (dynamic_syminfo);
14520 dynamic_syminfo = NULL;
14521 }
14522
14523 if (dynamic_section)
14524 {
14525 free (dynamic_section);
14526 dynamic_section = NULL;
14527 }
14528
14529 if (section_headers_groups)
14530 {
14531 free (section_headers_groups);
14532 section_headers_groups = NULL;
14533 }
14534
14535 if (section_groups)
14536 {
14537 struct group_list * g;
14538 struct group_list * next;
14539
14540 for (i = 0; i < group_count; i++)
14541 {
14542 for (g = section_groups [i].root; g != NULL; g = next)
14543 {
14544 next = g->next;
14545 free (g);
14546 }
14547 }
14548
14549 free (section_groups);
14550 section_groups = NULL;
14551 }
14552
14553 free_debug_memory ();
14554
14555 return 0;
14556 }
14557
14558 /* Process an ELF archive.
14559 On entry the file is positioned just after the ARMAG string. */
14560
14561 static int
14562 process_archive (char * file_name, FILE * file, bfd_boolean is_thin_archive)
14563 {
14564 struct archive_info arch;
14565 struct archive_info nested_arch;
14566 size_t got;
14567 int ret;
14568
14569 show_name = 1;
14570
14571 /* The ARCH structure is used to hold information about this archive. */
14572 arch.file_name = NULL;
14573 arch.file = NULL;
14574 arch.index_array = NULL;
14575 arch.sym_table = NULL;
14576 arch.longnames = NULL;
14577
14578 /* The NESTED_ARCH structure is used as a single-item cache of information
14579 about a nested archive (when members of a thin archive reside within
14580 another regular archive file). */
14581 nested_arch.file_name = NULL;
14582 nested_arch.file = NULL;
14583 nested_arch.index_array = NULL;
14584 nested_arch.sym_table = NULL;
14585 nested_arch.longnames = NULL;
14586
14587 if (setup_archive (&arch, file_name, file, is_thin_archive, do_archive_index) != 0)
14588 {
14589 ret = 1;
14590 goto out;
14591 }
14592
14593 if (do_archive_index)
14594 {
14595 if (arch.sym_table == NULL)
14596 error (_("%s: unable to dump the index as none was found\n"), file_name);
14597 else
14598 {
14599 unsigned int i, l;
14600 unsigned long current_pos;
14601
14602 printf (_("Index of archive %s: (%ld entries, 0x%lx bytes in the symbol table)\n"),
14603 file_name, (long) arch.index_num, arch.sym_size);
14604 current_pos = ftell (file);
14605
14606 for (i = l = 0; i < arch.index_num; i++)
14607 {
14608 if ((i == 0) || ((i > 0) && (arch.index_array[i] != arch.index_array[i - 1])))
14609 {
14610 char * member_name;
14611
14612 member_name = get_archive_member_name_at (&arch, arch.index_array[i], &nested_arch);
14613
14614 if (member_name != NULL)
14615 {
14616 char * qualified_name = make_qualified_name (&arch, &nested_arch, member_name);
14617
14618 if (qualified_name != NULL)
14619 {
14620 printf (_("Contents of binary %s at offset "), qualified_name);
14621 (void) print_vma (arch.index_array[i], PREFIX_HEX);
14622 putchar ('\n');
14623 free (qualified_name);
14624 }
14625 }
14626 }
14627
14628 if (l >= arch.sym_size)
14629 {
14630 error (_("%s: end of the symbol table reached before the end of the index\n"),
14631 file_name);
14632 break;
14633 }
14634 printf ("\t%s\n", arch.sym_table + l);
14635 l += strlen (arch.sym_table + l) + 1;
14636 }
14637
14638 if (arch.uses_64bit_indicies)
14639 l = (l + 7) & ~ 7;
14640 else
14641 l += l & 1;
14642
14643 if (l < arch.sym_size)
14644 error (_("%s: %ld bytes remain in the symbol table, but without corresponding entries in the index table\n"),
14645 file_name, arch.sym_size - l);
14646
14647 if (fseek (file, current_pos, SEEK_SET) != 0)
14648 {
14649 error (_("%s: failed to seek back to start of object files in the archive\n"), file_name);
14650 ret = 1;
14651 goto out;
14652 }
14653 }
14654
14655 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
14656 && !do_segments && !do_header && !do_dump && !do_version
14657 && !do_histogram && !do_debugging && !do_arch && !do_notes
14658 && !do_section_groups && !do_dyn_syms)
14659 {
14660 ret = 0; /* Archive index only. */
14661 goto out;
14662 }
14663 }
14664
14665 ret = 0;
14666
14667 while (1)
14668 {
14669 char * name;
14670 size_t namelen;
14671 char * qualified_name;
14672
14673 /* Read the next archive header. */
14674 if (fseek (file, arch.next_arhdr_offset, SEEK_SET) != 0)
14675 {
14676 error (_("%s: failed to seek to next archive header\n"), file_name);
14677 return 1;
14678 }
14679 got = fread (&arch.arhdr, 1, sizeof arch.arhdr, file);
14680 if (got != sizeof arch.arhdr)
14681 {
14682 if (got == 0)
14683 break;
14684 error (_("%s: failed to read archive header\n"), file_name);
14685 ret = 1;
14686 break;
14687 }
14688 if (memcmp (arch.arhdr.ar_fmag, ARFMAG, 2) != 0)
14689 {
14690 error (_("%s: did not find a valid archive header\n"), arch.file_name);
14691 ret = 1;
14692 break;
14693 }
14694
14695 arch.next_arhdr_offset += sizeof arch.arhdr;
14696
14697 archive_file_size = strtoul (arch.arhdr.ar_size, NULL, 10);
14698 if (archive_file_size & 01)
14699 ++archive_file_size;
14700
14701 name = get_archive_member_name (&arch, &nested_arch);
14702 if (name == NULL)
14703 {
14704 error (_("%s: bad archive file name\n"), file_name);
14705 ret = 1;
14706 break;
14707 }
14708 namelen = strlen (name);
14709
14710 qualified_name = make_qualified_name (&arch, &nested_arch, name);
14711 if (qualified_name == NULL)
14712 {
14713 error (_("%s: bad archive file name\n"), file_name);
14714 ret = 1;
14715 break;
14716 }
14717
14718 if (is_thin_archive && arch.nested_member_origin == 0)
14719 {
14720 /* This is a proxy for an external member of a thin archive. */
14721 FILE * member_file;
14722 char * member_file_name = adjust_relative_path (file_name, name, namelen);
14723 if (member_file_name == NULL)
14724 {
14725 ret = 1;
14726 break;
14727 }
14728
14729 member_file = fopen (member_file_name, "rb");
14730 if (member_file == NULL)
14731 {
14732 error (_("Input file '%s' is not readable.\n"), member_file_name);
14733 free (member_file_name);
14734 ret = 1;
14735 break;
14736 }
14737
14738 archive_file_offset = arch.nested_member_origin;
14739
14740 ret |= process_object (qualified_name, member_file);
14741
14742 fclose (member_file);
14743 free (member_file_name);
14744 }
14745 else if (is_thin_archive)
14746 {
14747 /* PR 15140: Allow for corrupt thin archives. */
14748 if (nested_arch.file == NULL)
14749 {
14750 error (_("%s: contains corrupt thin archive: %s\n"),
14751 file_name, name);
14752 ret = 1;
14753 break;
14754 }
14755
14756 /* This is a proxy for a member of a nested archive. */
14757 archive_file_offset = arch.nested_member_origin + sizeof arch.arhdr;
14758
14759 /* The nested archive file will have been opened and setup by
14760 get_archive_member_name. */
14761 if (fseek (nested_arch.file, archive_file_offset, SEEK_SET) != 0)
14762 {
14763 error (_("%s: failed to seek to archive member.\n"), nested_arch.file_name);
14764 ret = 1;
14765 break;
14766 }
14767
14768 ret |= process_object (qualified_name, nested_arch.file);
14769 }
14770 else
14771 {
14772 archive_file_offset = arch.next_arhdr_offset;
14773 arch.next_arhdr_offset += archive_file_size;
14774
14775 ret |= process_object (qualified_name, file);
14776 }
14777
14778 if (dump_sects != NULL)
14779 {
14780 free (dump_sects);
14781 dump_sects = NULL;
14782 num_dump_sects = 0;
14783 }
14784
14785 free (qualified_name);
14786 }
14787
14788 out:
14789 if (nested_arch.file != NULL)
14790 fclose (nested_arch.file);
14791 release_archive (&nested_arch);
14792 release_archive (&arch);
14793
14794 return ret;
14795 }
14796
14797 static int
14798 process_file (char * file_name)
14799 {
14800 FILE * file;
14801 struct stat statbuf;
14802 char armag[SARMAG];
14803 int ret;
14804
14805 if (stat (file_name, &statbuf) < 0)
14806 {
14807 if (errno == ENOENT)
14808 error (_("'%s': No such file\n"), file_name);
14809 else
14810 error (_("Could not locate '%s'. System error message: %s\n"),
14811 file_name, strerror (errno));
14812 return 1;
14813 }
14814
14815 if (! S_ISREG (statbuf.st_mode))
14816 {
14817 error (_("'%s' is not an ordinary file\n"), file_name);
14818 return 1;
14819 }
14820
14821 file = fopen (file_name, "rb");
14822 if (file == NULL)
14823 {
14824 error (_("Input file '%s' is not readable.\n"), file_name);
14825 return 1;
14826 }
14827
14828 if (fread (armag, SARMAG, 1, file) != 1)
14829 {
14830 error (_("%s: Failed to read file's magic number\n"), file_name);
14831 fclose (file);
14832 return 1;
14833 }
14834
14835 if (memcmp (armag, ARMAG, SARMAG) == 0)
14836 ret = process_archive (file_name, file, FALSE);
14837 else if (memcmp (armag, ARMAGT, SARMAG) == 0)
14838 ret = process_archive (file_name, file, TRUE);
14839 else
14840 {
14841 if (do_archive_index)
14842 error (_("File %s is not an archive so its index cannot be displayed.\n"),
14843 file_name);
14844
14845 rewind (file);
14846 archive_file_size = archive_file_offset = 0;
14847 ret = process_object (file_name, file);
14848 }
14849
14850 fclose (file);
14851
14852 return ret;
14853 }
14854
14855 #ifdef SUPPORT_DISASSEMBLY
14856 /* Needed by the i386 disassembler. For extra credit, someone could
14857 fix this so that we insert symbolic addresses here, esp for GOT/PLT
14858 symbols. */
14859
14860 void
14861 print_address (unsigned int addr, FILE * outfile)
14862 {
14863 fprintf (outfile,"0x%8.8x", addr);
14864 }
14865
14866 /* Needed by the i386 disassembler. */
14867 void
14868 db_task_printsym (unsigned int addr)
14869 {
14870 print_address (addr, stderr);
14871 }
14872 #endif
14873
14874 int
14875 main (int argc, char ** argv)
14876 {
14877 int err;
14878
14879 #if defined (HAVE_SETLOCALE) && defined (HAVE_LC_MESSAGES)
14880 setlocale (LC_MESSAGES, "");
14881 #endif
14882 #if defined (HAVE_SETLOCALE)
14883 setlocale (LC_CTYPE, "");
14884 #endif
14885 bindtextdomain (PACKAGE, LOCALEDIR);
14886 textdomain (PACKAGE);
14887
14888 expandargv (&argc, &argv);
14889
14890 parse_args (argc, argv);
14891
14892 if (num_dump_sects > 0)
14893 {
14894 /* Make a copy of the dump_sects array. */
14895 cmdline_dump_sects = (dump_type *)
14896 malloc (num_dump_sects * sizeof (* dump_sects));
14897 if (cmdline_dump_sects == NULL)
14898 error (_("Out of memory allocating dump request table.\n"));
14899 else
14900 {
14901 memcpy (cmdline_dump_sects, dump_sects,
14902 num_dump_sects * sizeof (* dump_sects));
14903 num_cmdline_dump_sects = num_dump_sects;
14904 }
14905 }
14906
14907 if (optind < (argc - 1))
14908 show_name = 1;
14909
14910 err = 0;
14911 while (optind < argc)
14912 err |= process_file (argv[optind++]);
14913
14914 if (dump_sects != NULL)
14915 free (dump_sects);
14916 if (cmdline_dump_sects != NULL)
14917 free (cmdline_dump_sects);
14918
14919 return err;
14920 }
This page took 0.344141 seconds and 4 git commands to generate.