More fixes for readelf problems reading corrupt files.
[deliverable/binutils-gdb.git] / binutils / readelf.c
1 /* readelf.c -- display contents of an ELF format file
2 Copyright (C) 1998-2014 Free Software Foundation, Inc.
3
4 Originally developed by Eric Youngdale <eric@andante.jic.com>
5 Modifications by Nick Clifton <nickc@redhat.com>
6
7 This file is part of GNU Binutils.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
22 02110-1301, USA. */
23 \f
24 /* The difference between readelf and objdump:
25
26 Both programs are capable of displaying the contents of ELF format files,
27 so why does the binutils project have two file dumpers ?
28
29 The reason is that objdump sees an ELF file through a BFD filter of the
30 world; if BFD has a bug where, say, it disagrees about a machine constant
31 in e_flags, then the odds are good that it will remain internally
32 consistent. The linker sees it the BFD way, objdump sees it the BFD way,
33 GAS sees it the BFD way. There was need for a tool to go find out what
34 the file actually says.
35
36 This is why the readelf program does not link against the BFD library - it
37 exists as an independent program to help verify the correct working of BFD.
38
39 There is also the case that readelf can provide more information about an
40 ELF file than is provided by objdump. In particular it can display DWARF
41 debugging information which (at the moment) objdump cannot. */
42 \f
43 #include "sysdep.h"
44 #include <assert.h>
45 #include <time.h>
46 #ifdef HAVE_ZLIB_H
47 #include <zlib.h>
48 #endif
49 #ifdef HAVE_WCHAR_H
50 #include <wchar.h>
51 #endif
52
53 #if __GNUC__ >= 2
54 /* Define BFD64 here, even if our default architecture is 32 bit ELF
55 as this will allow us to read in and parse 64bit and 32bit ELF files.
56 Only do this if we believe that the compiler can support a 64 bit
57 data type. For now we only rely on GCC being able to do this. */
58 #define BFD64
59 #endif
60
61 #include "bfd.h"
62 #include "bucomm.h"
63 #include "elfcomm.h"
64 #include "dwarf.h"
65
66 #include "elf/common.h"
67 #include "elf/external.h"
68 #include "elf/internal.h"
69
70
71 /* Included here, before RELOC_MACROS_GEN_FUNC is defined, so that
72 we can obtain the H8 reloc numbers. We need these for the
73 get_reloc_size() function. We include h8.h again after defining
74 RELOC_MACROS_GEN_FUNC so that we get the naming function as well. */
75
76 #include "elf/h8.h"
77 #undef _ELF_H8_H
78
79 /* Undo the effects of #including reloc-macros.h. */
80
81 #undef START_RELOC_NUMBERS
82 #undef RELOC_NUMBER
83 #undef FAKE_RELOC
84 #undef EMPTY_RELOC
85 #undef END_RELOC_NUMBERS
86 #undef _RELOC_MACROS_H
87
88 /* The following headers use the elf/reloc-macros.h file to
89 automatically generate relocation recognition functions
90 such as elf_mips_reloc_type() */
91
92 #define RELOC_MACROS_GEN_FUNC
93
94 #include "elf/aarch64.h"
95 #include "elf/alpha.h"
96 #include "elf/arc.h"
97 #include "elf/arm.h"
98 #include "elf/avr.h"
99 #include "elf/bfin.h"
100 #include "elf/cr16.h"
101 #include "elf/cris.h"
102 #include "elf/crx.h"
103 #include "elf/d10v.h"
104 #include "elf/d30v.h"
105 #include "elf/dlx.h"
106 #include "elf/epiphany.h"
107 #include "elf/fr30.h"
108 #include "elf/frv.h"
109 #include "elf/h8.h"
110 #include "elf/hppa.h"
111 #include "elf/i386.h"
112 #include "elf/i370.h"
113 #include "elf/i860.h"
114 #include "elf/i960.h"
115 #include "elf/ia64.h"
116 #include "elf/ip2k.h"
117 #include "elf/lm32.h"
118 #include "elf/iq2000.h"
119 #include "elf/m32c.h"
120 #include "elf/m32r.h"
121 #include "elf/m68k.h"
122 #include "elf/m68hc11.h"
123 #include "elf/mcore.h"
124 #include "elf/mep.h"
125 #include "elf/metag.h"
126 #include "elf/microblaze.h"
127 #include "elf/mips.h"
128 #include "elf/mmix.h"
129 #include "elf/mn10200.h"
130 #include "elf/mn10300.h"
131 #include "elf/moxie.h"
132 #include "elf/mt.h"
133 #include "elf/msp430.h"
134 #include "elf/nds32.h"
135 #include "elf/nios2.h"
136 #include "elf/or1k.h"
137 #include "elf/pj.h"
138 #include "elf/ppc.h"
139 #include "elf/ppc64.h"
140 #include "elf/rl78.h"
141 #include "elf/rx.h"
142 #include "elf/s390.h"
143 #include "elf/score.h"
144 #include "elf/sh.h"
145 #include "elf/sparc.h"
146 #include "elf/spu.h"
147 #include "elf/tic6x.h"
148 #include "elf/tilegx.h"
149 #include "elf/tilepro.h"
150 #include "elf/v850.h"
151 #include "elf/vax.h"
152 #include "elf/x86-64.h"
153 #include "elf/xc16x.h"
154 #include "elf/xgate.h"
155 #include "elf/xstormy16.h"
156 #include "elf/xtensa.h"
157
158 #include "getopt.h"
159 #include "libiberty.h"
160 #include "safe-ctype.h"
161 #include "filenames.h"
162
163 #ifndef offsetof
164 #define offsetof(TYPE, MEMBER) ((size_t) &(((TYPE *) 0)->MEMBER))
165 #endif
166
167 char * program_name = "readelf";
168 static long archive_file_offset;
169 static unsigned long archive_file_size;
170 static bfd_size_type current_file_size;
171 static unsigned long dynamic_addr;
172 static bfd_size_type dynamic_size;
173 static size_t dynamic_nent;
174 static char * dynamic_strings;
175 static unsigned long dynamic_strings_length;
176 static char * string_table;
177 static unsigned long string_table_length;
178 static unsigned long num_dynamic_syms;
179 static Elf_Internal_Sym * dynamic_symbols;
180 static Elf_Internal_Syminfo * dynamic_syminfo;
181 static unsigned long dynamic_syminfo_offset;
182 static unsigned int dynamic_syminfo_nent;
183 static char program_interpreter[PATH_MAX];
184 static bfd_vma dynamic_info[DT_ENCODING];
185 static bfd_vma dynamic_info_DT_GNU_HASH;
186 static bfd_vma version_info[16];
187 static Elf_Internal_Ehdr elf_header;
188 static Elf_Internal_Shdr * section_headers;
189 static Elf_Internal_Phdr * program_headers;
190 static Elf_Internal_Dyn * dynamic_section;
191 static Elf_Internal_Shdr * symtab_shndx_hdr;
192 static int show_name;
193 static int do_dynamic;
194 static int do_syms;
195 static int do_dyn_syms;
196 static int do_reloc;
197 static int do_sections;
198 static int do_section_groups;
199 static int do_section_details;
200 static int do_segments;
201 static int do_unwind;
202 static int do_using_dynamic;
203 static int do_header;
204 static int do_dump;
205 static int do_version;
206 static int do_histogram;
207 static int do_debugging;
208 static int do_arch;
209 static int do_notes;
210 static int do_archive_index;
211 static int is_32bit_elf;
212
213 struct group_list
214 {
215 struct group_list * next;
216 unsigned int section_index;
217 };
218
219 struct group
220 {
221 struct group_list * root;
222 unsigned int group_index;
223 };
224
225 static size_t group_count;
226 static struct group * section_groups;
227 static struct group ** section_headers_groups;
228
229
230 /* Flag bits indicating particular types of dump. */
231 #define HEX_DUMP (1 << 0) /* The -x command line switch. */
232 #define DISASS_DUMP (1 << 1) /* The -i command line switch. */
233 #define DEBUG_DUMP (1 << 2) /* The -w command line switch. */
234 #define STRING_DUMP (1 << 3) /* The -p command line switch. */
235 #define RELOC_DUMP (1 << 4) /* The -R command line switch. */
236
237 typedef unsigned char dump_type;
238
239 /* A linked list of the section names for which dumps were requested. */
240 struct dump_list_entry
241 {
242 char * name;
243 dump_type type;
244 struct dump_list_entry * next;
245 };
246 static struct dump_list_entry * dump_sects_byname;
247
248 /* A dynamic array of flags indicating for which sections a dump
249 has been requested via command line switches. */
250 static dump_type * cmdline_dump_sects = NULL;
251 static unsigned int num_cmdline_dump_sects = 0;
252
253 /* A dynamic array of flags indicating for which sections a dump of
254 some kind has been requested. It is reset on a per-object file
255 basis and then initialised from the cmdline_dump_sects array,
256 the results of interpreting the -w switch, and the
257 dump_sects_byname list. */
258 static dump_type * dump_sects = NULL;
259 static unsigned int num_dump_sects = 0;
260
261
262 /* How to print a vma value. */
263 typedef enum print_mode
264 {
265 HEX,
266 DEC,
267 DEC_5,
268 UNSIGNED,
269 PREFIX_HEX,
270 FULL_HEX,
271 LONG_HEX
272 }
273 print_mode;
274
275 #define UNKNOWN -1
276
277 #define SECTION_NAME(X) \
278 ((X) == NULL ? _("<none>") \
279 : string_table == NULL ? _("<no-name>") \
280 : ((X)->sh_name >= string_table_length ? _("<corrupt>") \
281 : string_table + (X)->sh_name))
282
283 #define DT_VERSIONTAGIDX(tag) (DT_VERNEEDNUM - (tag)) /* Reverse order! */
284
285 #define GET_ELF_SYMBOLS(file, section, sym_count) \
286 (is_32bit_elf ? get_32bit_elf_symbols (file, section, sym_count) \
287 : get_64bit_elf_symbols (file, section, sym_count))
288
289 #define VALID_DYNAMIC_NAME(offset) ((dynamic_strings != NULL) && (offset < dynamic_strings_length))
290 /* GET_DYNAMIC_NAME asssumes that VALID_DYNAMIC_NAME has
291 already been called and verified that the string exists. */
292 #define GET_DYNAMIC_NAME(offset) (dynamic_strings + offset)
293
294 #define REMOVE_ARCH_BITS(ADDR) \
295 do \
296 { \
297 if (elf_header.e_machine == EM_ARM) \
298 (ADDR) &= ~1; \
299 } \
300 while (0)
301 \f
302 /* Retrieve NMEMB structures, each SIZE bytes long from FILE starting at OFFSET.
303 Put the retrieved data into VAR, if it is not NULL. Otherwise allocate a buffer
304 using malloc and fill that. In either case return the pointer to the start of
305 the retrieved data or NULL if something went wrong. If something does go wrong
306 emit an error message using REASON as part of the context. */
307
308 static void *
309 get_data (void * var, FILE * file, long offset, size_t size, size_t nmemb,
310 const char * reason)
311 {
312 void * mvar;
313
314 if (size == 0 || nmemb == 0)
315 return NULL;
316
317 if (fseek (file, archive_file_offset + offset, SEEK_SET))
318 {
319 if (reason)
320 error (_("Unable to seek to 0x%lx for %s\n"),
321 (unsigned long) archive_file_offset + offset, reason);
322 return NULL;
323 }
324
325 /* Be kind to memory chekers (eg valgrind, address sanitizer) by not
326 attempting to allocate memory when the read is bound to fail. */
327 if (offset + archive_file_offset + size * nmemb > current_file_size)
328 {
329 if (reason)
330 error (_("Reading 0x%lx bytes extends past end of file for %s\n"),
331 (unsigned long) (size * nmemb), reason);
332 return NULL;
333 }
334
335 mvar = var;
336 if (mvar == NULL)
337 {
338 /* Check for overflow. */
339 if (nmemb < (~(size_t) 0 - 1) / size)
340 /* + 1 so that we can '\0' terminate invalid string table sections. */
341 mvar = malloc (size * nmemb + 1);
342
343 if (mvar == NULL)
344 {
345 if (reason)
346 error (_("Out of memory allocating 0x%lx bytes for %s\n"),
347 (unsigned long)(size * nmemb), reason);
348 return NULL;
349 }
350
351 ((char *) mvar)[size * nmemb] = '\0';
352 }
353
354 if (fread (mvar, size, nmemb, file) != nmemb)
355 {
356 if (reason)
357 error (_("Unable to read in 0x%lx bytes of %s\n"),
358 (unsigned long)(size * nmemb), reason);
359 if (mvar != var)
360 free (mvar);
361 return NULL;
362 }
363
364 return mvar;
365 }
366
367 /* Print a VMA value. */
368
369 static int
370 print_vma (bfd_vma vma, print_mode mode)
371 {
372 int nc = 0;
373
374 switch (mode)
375 {
376 case FULL_HEX:
377 nc = printf ("0x");
378 /* Drop through. */
379
380 case LONG_HEX:
381 #ifdef BFD64
382 if (is_32bit_elf)
383 return nc + printf ("%8.8" BFD_VMA_FMT "x", vma);
384 #endif
385 printf_vma (vma);
386 return nc + 16;
387
388 case DEC_5:
389 if (vma <= 99999)
390 return printf ("%5" BFD_VMA_FMT "d", vma);
391 /* Drop through. */
392
393 case PREFIX_HEX:
394 nc = printf ("0x");
395 /* Drop through. */
396
397 case HEX:
398 return nc + printf ("%" BFD_VMA_FMT "x", vma);
399
400 case DEC:
401 return printf ("%" BFD_VMA_FMT "d", vma);
402
403 case UNSIGNED:
404 return printf ("%" BFD_VMA_FMT "u", vma);
405 }
406 return 0;
407 }
408
409 /* Display a symbol on stdout. Handles the display of control characters and
410 multibye characters (assuming the host environment supports them).
411
412 Display at most abs(WIDTH) characters, truncating as necessary, unless do_wide is true.
413
414 If WIDTH is negative then ensure that the output is at least (- WIDTH) characters,
415 padding as necessary.
416
417 Returns the number of emitted characters. */
418
419 static unsigned int
420 print_symbol (int width, const char *symbol)
421 {
422 bfd_boolean extra_padding = FALSE;
423 int num_printed = 0;
424 #ifdef HAVE_MBSTATE_T
425 mbstate_t state;
426 #endif
427 int width_remaining;
428
429 if (width < 0)
430 {
431 /* Keep the width positive. This also helps. */
432 width = - width;
433 extra_padding = TRUE;
434 }
435 assert (width != 0);
436
437 if (do_wide)
438 /* Set the remaining width to a very large value.
439 This simplifies the code below. */
440 width_remaining = INT_MAX;
441 else
442 width_remaining = width;
443
444 #ifdef HAVE_MBSTATE_T
445 /* Initialise the multibyte conversion state. */
446 memset (& state, 0, sizeof (state));
447 #endif
448
449 while (width_remaining)
450 {
451 size_t n;
452 const char c = *symbol++;
453
454 if (c == 0)
455 break;
456
457 /* Do not print control characters directly as they can affect terminal
458 settings. Such characters usually appear in the names generated
459 by the assembler for local labels. */
460 if (ISCNTRL (c))
461 {
462 if (width_remaining < 2)
463 break;
464
465 printf ("^%c", c + 0x40);
466 width_remaining -= 2;
467 num_printed += 2;
468 }
469 else if (ISPRINT (c))
470 {
471 putchar (c);
472 width_remaining --;
473 num_printed ++;
474 }
475 else
476 {
477 #ifdef HAVE_MBSTATE_T
478 wchar_t w;
479 #endif
480 /* Let printf do the hard work of displaying multibyte characters. */
481 printf ("%.1s", symbol - 1);
482 width_remaining --;
483 num_printed ++;
484
485 #ifdef HAVE_MBSTATE_T
486 /* Try to find out how many bytes made up the character that was
487 just printed. Advance the symbol pointer past the bytes that
488 were displayed. */
489 n = mbrtowc (& w, symbol - 1, MB_CUR_MAX, & state);
490 #else
491 n = 1;
492 #endif
493 if (n != (size_t) -1 && n != (size_t) -2 && n > 0)
494 symbol += (n - 1);
495 }
496 }
497
498 if (extra_padding && num_printed < width)
499 {
500 /* Fill in the remaining spaces. */
501 printf ("%-*s", width - num_printed, " ");
502 num_printed = width;
503 }
504
505 return num_printed;
506 }
507
508 /* Returns a pointer to a static buffer containing a printable version of
509 the given section's name. Like print_symbol, except that it does not try
510 to print multibyte characters, it just interprets them as hex values. */
511
512 static const char *
513 printable_section_name (Elf_Internal_Shdr * sec)
514 {
515 #define MAX_PRINT_SEC_NAME_LEN 128
516 static char sec_name_buf [MAX_PRINT_SEC_NAME_LEN + 1];
517 const char * name = SECTION_NAME (sec);
518 char * buf = sec_name_buf;
519 char c;
520 unsigned int remaining = MAX_PRINT_SEC_NAME_LEN;
521
522 while ((c = * name ++) != 0)
523 {
524 if (ISCNTRL (c))
525 {
526 if (remaining < 2)
527 break;
528
529 * buf ++ = '^';
530 * buf ++ = c + 0x40;
531 remaining -= 2;
532 }
533 else if (ISPRINT (c))
534 {
535 * buf ++ = c;
536 remaining -= 1;
537 }
538 else
539 {
540 static char hex[17] = "0123456789ABCDEF";
541
542 if (remaining < 4)
543 break;
544 * buf ++ = '<';
545 * buf ++ = hex[(c & 0xf0) >> 4];
546 * buf ++ = hex[c & 0x0f];
547 * buf ++ = '>';
548 remaining -= 4;
549 }
550
551 if (remaining == 0)
552 break;
553 }
554
555 * buf = 0;
556 return sec_name_buf;
557 }
558
559 static const char *
560 printable_section_name_from_index (unsigned long ndx)
561 {
562 if (ndx >= elf_header.e_shnum)
563 return _("<corrupt>");
564
565 return printable_section_name (section_headers + ndx);
566 }
567
568 /* Return a pointer to section NAME, or NULL if no such section exists. */
569
570 static Elf_Internal_Shdr *
571 find_section (const char * name)
572 {
573 unsigned int i;
574
575 for (i = 0; i < elf_header.e_shnum; i++)
576 if (streq (SECTION_NAME (section_headers + i), name))
577 return section_headers + i;
578
579 return NULL;
580 }
581
582 /* Return a pointer to a section containing ADDR, or NULL if no such
583 section exists. */
584
585 static Elf_Internal_Shdr *
586 find_section_by_address (bfd_vma addr)
587 {
588 unsigned int i;
589
590 for (i = 0; i < elf_header.e_shnum; i++)
591 {
592 Elf_Internal_Shdr *sec = section_headers + i;
593 if (addr >= sec->sh_addr && addr < sec->sh_addr + sec->sh_size)
594 return sec;
595 }
596
597 return NULL;
598 }
599
600 static Elf_Internal_Shdr *
601 find_section_by_type (unsigned int type)
602 {
603 unsigned int i;
604
605 for (i = 0; i < elf_header.e_shnum; i++)
606 {
607 Elf_Internal_Shdr *sec = section_headers + i;
608 if (sec->sh_type == type)
609 return sec;
610 }
611
612 return NULL;
613 }
614
615 /* Return a pointer to section NAME, or NULL if no such section exists,
616 restricted to the list of sections given in SET. */
617
618 static Elf_Internal_Shdr *
619 find_section_in_set (const char * name, unsigned int * set)
620 {
621 unsigned int i;
622
623 if (set != NULL)
624 {
625 while ((i = *set++) > 0)
626 if (streq (SECTION_NAME (section_headers + i), name))
627 return section_headers + i;
628 }
629
630 return find_section (name);
631 }
632
633 /* Read an unsigned LEB128 encoded value from p. Set *PLEN to the number of
634 bytes read. */
635
636 static inline unsigned long
637 read_uleb128 (unsigned char *data,
638 unsigned int *length_return,
639 const unsigned char * const end)
640 {
641 return read_leb128 (data, length_return, FALSE, end);
642 }
643
644 /* Return true if the current file is for IA-64 machine and OpenVMS ABI.
645 This OS has so many departures from the ELF standard that we test it at
646 many places. */
647
648 static inline int
649 is_ia64_vms (void)
650 {
651 return elf_header.e_machine == EM_IA_64
652 && elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS;
653 }
654
655 /* Guess the relocation size commonly used by the specific machines. */
656
657 static int
658 guess_is_rela (unsigned int e_machine)
659 {
660 switch (e_machine)
661 {
662 /* Targets that use REL relocations. */
663 case EM_386:
664 case EM_486:
665 case EM_960:
666 case EM_ARM:
667 case EM_D10V:
668 case EM_CYGNUS_D10V:
669 case EM_DLX:
670 case EM_MIPS:
671 case EM_MIPS_RS3_LE:
672 case EM_CYGNUS_M32R:
673 case EM_SCORE:
674 case EM_XGATE:
675 return FALSE;
676
677 /* Targets that use RELA relocations. */
678 case EM_68K:
679 case EM_860:
680 case EM_AARCH64:
681 case EM_ADAPTEVA_EPIPHANY:
682 case EM_ALPHA:
683 case EM_ALTERA_NIOS2:
684 case EM_AVR:
685 case EM_AVR_OLD:
686 case EM_BLACKFIN:
687 case EM_CR16:
688 case EM_CRIS:
689 case EM_CRX:
690 case EM_D30V:
691 case EM_CYGNUS_D30V:
692 case EM_FR30:
693 case EM_CYGNUS_FR30:
694 case EM_CYGNUS_FRV:
695 case EM_H8S:
696 case EM_H8_300:
697 case EM_H8_300H:
698 case EM_IA_64:
699 case EM_IP2K:
700 case EM_IP2K_OLD:
701 case EM_IQ2000:
702 case EM_LATTICEMICO32:
703 case EM_M32C_OLD:
704 case EM_M32C:
705 case EM_M32R:
706 case EM_MCORE:
707 case EM_CYGNUS_MEP:
708 case EM_METAG:
709 case EM_MMIX:
710 case EM_MN10200:
711 case EM_CYGNUS_MN10200:
712 case EM_MN10300:
713 case EM_CYGNUS_MN10300:
714 case EM_MOXIE:
715 case EM_MSP430:
716 case EM_MSP430_OLD:
717 case EM_MT:
718 case EM_NDS32:
719 case EM_NIOS32:
720 case EM_OR1K:
721 case EM_PPC64:
722 case EM_PPC:
723 case EM_RL78:
724 case EM_RX:
725 case EM_S390:
726 case EM_S390_OLD:
727 case EM_SH:
728 case EM_SPARC:
729 case EM_SPARC32PLUS:
730 case EM_SPARCV9:
731 case EM_SPU:
732 case EM_TI_C6000:
733 case EM_TILEGX:
734 case EM_TILEPRO:
735 case EM_V800:
736 case EM_V850:
737 case EM_CYGNUS_V850:
738 case EM_VAX:
739 case EM_X86_64:
740 case EM_L1OM:
741 case EM_K1OM:
742 case EM_XSTORMY16:
743 case EM_XTENSA:
744 case EM_XTENSA_OLD:
745 case EM_MICROBLAZE:
746 case EM_MICROBLAZE_OLD:
747 return TRUE;
748
749 case EM_68HC05:
750 case EM_68HC08:
751 case EM_68HC11:
752 case EM_68HC16:
753 case EM_FX66:
754 case EM_ME16:
755 case EM_MMA:
756 case EM_NCPU:
757 case EM_NDR1:
758 case EM_PCP:
759 case EM_ST100:
760 case EM_ST19:
761 case EM_ST7:
762 case EM_ST9PLUS:
763 case EM_STARCORE:
764 case EM_SVX:
765 case EM_TINYJ:
766 default:
767 warn (_("Don't know about relocations on this machine architecture\n"));
768 return FALSE;
769 }
770 }
771
772 static int
773 slurp_rela_relocs (FILE * file,
774 unsigned long rel_offset,
775 unsigned long rel_size,
776 Elf_Internal_Rela ** relasp,
777 unsigned long * nrelasp)
778 {
779 Elf_Internal_Rela * relas;
780 size_t nrelas;
781 unsigned int i;
782
783 if (is_32bit_elf)
784 {
785 Elf32_External_Rela * erelas;
786
787 erelas = (Elf32_External_Rela *) get_data (NULL, file, rel_offset, 1,
788 rel_size, _("32-bit relocation data"));
789 if (!erelas)
790 return 0;
791
792 nrelas = rel_size / sizeof (Elf32_External_Rela);
793
794 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
795 sizeof (Elf_Internal_Rela));
796
797 if (relas == NULL)
798 {
799 free (erelas);
800 error (_("out of memory parsing relocs\n"));
801 return 0;
802 }
803
804 for (i = 0; i < nrelas; i++)
805 {
806 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
807 relas[i].r_info = BYTE_GET (erelas[i].r_info);
808 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
809 }
810
811 free (erelas);
812 }
813 else
814 {
815 Elf64_External_Rela * erelas;
816
817 erelas = (Elf64_External_Rela *) get_data (NULL, file, rel_offset, 1,
818 rel_size, _("64-bit relocation data"));
819 if (!erelas)
820 return 0;
821
822 nrelas = rel_size / sizeof (Elf64_External_Rela);
823
824 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
825 sizeof (Elf_Internal_Rela));
826
827 if (relas == NULL)
828 {
829 free (erelas);
830 error (_("out of memory parsing relocs\n"));
831 return 0;
832 }
833
834 for (i = 0; i < nrelas; i++)
835 {
836 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
837 relas[i].r_info = BYTE_GET (erelas[i].r_info);
838 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
839
840 /* The #ifdef BFD64 below is to prevent a compile time
841 warning. We know that if we do not have a 64 bit data
842 type that we will never execute this code anyway. */
843 #ifdef BFD64
844 if (elf_header.e_machine == EM_MIPS
845 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
846 {
847 /* In little-endian objects, r_info isn't really a
848 64-bit little-endian value: it has a 32-bit
849 little-endian symbol index followed by four
850 individual byte fields. Reorder INFO
851 accordingly. */
852 bfd_vma inf = relas[i].r_info;
853 inf = (((inf & 0xffffffff) << 32)
854 | ((inf >> 56) & 0xff)
855 | ((inf >> 40) & 0xff00)
856 | ((inf >> 24) & 0xff0000)
857 | ((inf >> 8) & 0xff000000));
858 relas[i].r_info = inf;
859 }
860 #endif /* BFD64 */
861 }
862
863 free (erelas);
864 }
865 *relasp = relas;
866 *nrelasp = nrelas;
867 return 1;
868 }
869
870 static int
871 slurp_rel_relocs (FILE * file,
872 unsigned long rel_offset,
873 unsigned long rel_size,
874 Elf_Internal_Rela ** relsp,
875 unsigned long * nrelsp)
876 {
877 Elf_Internal_Rela * rels;
878 size_t nrels;
879 unsigned int i;
880
881 if (is_32bit_elf)
882 {
883 Elf32_External_Rel * erels;
884
885 erels = (Elf32_External_Rel *) get_data (NULL, file, rel_offset, 1,
886 rel_size, _("32-bit relocation data"));
887 if (!erels)
888 return 0;
889
890 nrels = rel_size / sizeof (Elf32_External_Rel);
891
892 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
893
894 if (rels == NULL)
895 {
896 free (erels);
897 error (_("out of memory parsing relocs\n"));
898 return 0;
899 }
900
901 for (i = 0; i < nrels; i++)
902 {
903 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
904 rels[i].r_info = BYTE_GET (erels[i].r_info);
905 rels[i].r_addend = 0;
906 }
907
908 free (erels);
909 }
910 else
911 {
912 Elf64_External_Rel * erels;
913
914 erels = (Elf64_External_Rel *) get_data (NULL, file, rel_offset, 1,
915 rel_size, _("64-bit relocation data"));
916 if (!erels)
917 return 0;
918
919 nrels = rel_size / sizeof (Elf64_External_Rel);
920
921 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
922
923 if (rels == NULL)
924 {
925 free (erels);
926 error (_("out of memory parsing relocs\n"));
927 return 0;
928 }
929
930 for (i = 0; i < nrels; i++)
931 {
932 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
933 rels[i].r_info = BYTE_GET (erels[i].r_info);
934 rels[i].r_addend = 0;
935
936 /* The #ifdef BFD64 below is to prevent a compile time
937 warning. We know that if we do not have a 64 bit data
938 type that we will never execute this code anyway. */
939 #ifdef BFD64
940 if (elf_header.e_machine == EM_MIPS
941 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
942 {
943 /* In little-endian objects, r_info isn't really a
944 64-bit little-endian value: it has a 32-bit
945 little-endian symbol index followed by four
946 individual byte fields. Reorder INFO
947 accordingly. */
948 bfd_vma inf = rels[i].r_info;
949 inf = (((inf & 0xffffffff) << 32)
950 | ((inf >> 56) & 0xff)
951 | ((inf >> 40) & 0xff00)
952 | ((inf >> 24) & 0xff0000)
953 | ((inf >> 8) & 0xff000000));
954 rels[i].r_info = inf;
955 }
956 #endif /* BFD64 */
957 }
958
959 free (erels);
960 }
961 *relsp = rels;
962 *nrelsp = nrels;
963 return 1;
964 }
965
966 /* Returns the reloc type extracted from the reloc info field. */
967
968 static unsigned int
969 get_reloc_type (bfd_vma reloc_info)
970 {
971 if (is_32bit_elf)
972 return ELF32_R_TYPE (reloc_info);
973
974 switch (elf_header.e_machine)
975 {
976 case EM_MIPS:
977 /* Note: We assume that reloc_info has already been adjusted for us. */
978 return ELF64_MIPS_R_TYPE (reloc_info);
979
980 case EM_SPARCV9:
981 return ELF64_R_TYPE_ID (reloc_info);
982
983 default:
984 return ELF64_R_TYPE (reloc_info);
985 }
986 }
987
988 /* Return the symbol index extracted from the reloc info field. */
989
990 static bfd_vma
991 get_reloc_symindex (bfd_vma reloc_info)
992 {
993 return is_32bit_elf ? ELF32_R_SYM (reloc_info) : ELF64_R_SYM (reloc_info);
994 }
995
996 static inline bfd_boolean
997 uses_msp430x_relocs (void)
998 {
999 return
1000 elf_header.e_machine == EM_MSP430 /* Paranoia. */
1001 /* GCC uses osabi == ELFOSBI_STANDALONE. */
1002 && (((elf_header.e_flags & EF_MSP430_MACH) == E_MSP430_MACH_MSP430X)
1003 /* TI compiler uses ELFOSABI_NONE. */
1004 || (elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE));
1005 }
1006
1007 /* Display the contents of the relocation data found at the specified
1008 offset. */
1009
1010 static void
1011 dump_relocations (FILE * file,
1012 unsigned long rel_offset,
1013 unsigned long rel_size,
1014 Elf_Internal_Sym * symtab,
1015 unsigned long nsyms,
1016 char * strtab,
1017 unsigned long strtablen,
1018 int is_rela)
1019 {
1020 unsigned int i;
1021 Elf_Internal_Rela * rels;
1022
1023 if (is_rela == UNKNOWN)
1024 is_rela = guess_is_rela (elf_header.e_machine);
1025
1026 if (is_rela)
1027 {
1028 if (!slurp_rela_relocs (file, rel_offset, rel_size, &rels, &rel_size))
1029 return;
1030 }
1031 else
1032 {
1033 if (!slurp_rel_relocs (file, rel_offset, rel_size, &rels, &rel_size))
1034 return;
1035 }
1036
1037 if (is_32bit_elf)
1038 {
1039 if (is_rela)
1040 {
1041 if (do_wide)
1042 printf (_(" Offset Info Type Sym. Value Symbol's Name + Addend\n"));
1043 else
1044 printf (_(" Offset Info Type Sym.Value Sym. Name + Addend\n"));
1045 }
1046 else
1047 {
1048 if (do_wide)
1049 printf (_(" Offset Info Type Sym. Value Symbol's Name\n"));
1050 else
1051 printf (_(" Offset Info Type Sym.Value Sym. Name\n"));
1052 }
1053 }
1054 else
1055 {
1056 if (is_rela)
1057 {
1058 if (do_wide)
1059 printf (_(" Offset Info Type Symbol's Value Symbol's Name + Addend\n"));
1060 else
1061 printf (_(" Offset Info Type Sym. Value Sym. Name + Addend\n"));
1062 }
1063 else
1064 {
1065 if (do_wide)
1066 printf (_(" Offset Info Type Symbol's Value Symbol's Name\n"));
1067 else
1068 printf (_(" Offset Info Type Sym. Value Sym. Name\n"));
1069 }
1070 }
1071
1072 for (i = 0; i < rel_size; i++)
1073 {
1074 const char * rtype;
1075 bfd_vma offset;
1076 bfd_vma inf;
1077 bfd_vma symtab_index;
1078 bfd_vma type;
1079
1080 offset = rels[i].r_offset;
1081 inf = rels[i].r_info;
1082
1083 type = get_reloc_type (inf);
1084 symtab_index = get_reloc_symindex (inf);
1085
1086 if (is_32bit_elf)
1087 {
1088 printf ("%8.8lx %8.8lx ",
1089 (unsigned long) offset & 0xffffffff,
1090 (unsigned long) inf & 0xffffffff);
1091 }
1092 else
1093 {
1094 #if BFD_HOST_64BIT_LONG
1095 printf (do_wide
1096 ? "%16.16lx %16.16lx "
1097 : "%12.12lx %12.12lx ",
1098 offset, inf);
1099 #elif BFD_HOST_64BIT_LONG_LONG
1100 #ifndef __MSVCRT__
1101 printf (do_wide
1102 ? "%16.16llx %16.16llx "
1103 : "%12.12llx %12.12llx ",
1104 offset, inf);
1105 #else
1106 printf (do_wide
1107 ? "%16.16I64x %16.16I64x "
1108 : "%12.12I64x %12.12I64x ",
1109 offset, inf);
1110 #endif
1111 #else
1112 printf (do_wide
1113 ? "%8.8lx%8.8lx %8.8lx%8.8lx "
1114 : "%4.4lx%8.8lx %4.4lx%8.8lx ",
1115 _bfd_int64_high (offset),
1116 _bfd_int64_low (offset),
1117 _bfd_int64_high (inf),
1118 _bfd_int64_low (inf));
1119 #endif
1120 }
1121
1122 switch (elf_header.e_machine)
1123 {
1124 default:
1125 rtype = NULL;
1126 break;
1127
1128 case EM_AARCH64:
1129 rtype = elf_aarch64_reloc_type (type);
1130 break;
1131
1132 case EM_M32R:
1133 case EM_CYGNUS_M32R:
1134 rtype = elf_m32r_reloc_type (type);
1135 break;
1136
1137 case EM_386:
1138 case EM_486:
1139 rtype = elf_i386_reloc_type (type);
1140 break;
1141
1142 case EM_68HC11:
1143 case EM_68HC12:
1144 rtype = elf_m68hc11_reloc_type (type);
1145 break;
1146
1147 case EM_68K:
1148 rtype = elf_m68k_reloc_type (type);
1149 break;
1150
1151 case EM_960:
1152 rtype = elf_i960_reloc_type (type);
1153 break;
1154
1155 case EM_AVR:
1156 case EM_AVR_OLD:
1157 rtype = elf_avr_reloc_type (type);
1158 break;
1159
1160 case EM_OLD_SPARCV9:
1161 case EM_SPARC32PLUS:
1162 case EM_SPARCV9:
1163 case EM_SPARC:
1164 rtype = elf_sparc_reloc_type (type);
1165 break;
1166
1167 case EM_SPU:
1168 rtype = elf_spu_reloc_type (type);
1169 break;
1170
1171 case EM_V800:
1172 rtype = v800_reloc_type (type);
1173 break;
1174 case EM_V850:
1175 case EM_CYGNUS_V850:
1176 rtype = v850_reloc_type (type);
1177 break;
1178
1179 case EM_D10V:
1180 case EM_CYGNUS_D10V:
1181 rtype = elf_d10v_reloc_type (type);
1182 break;
1183
1184 case EM_D30V:
1185 case EM_CYGNUS_D30V:
1186 rtype = elf_d30v_reloc_type (type);
1187 break;
1188
1189 case EM_DLX:
1190 rtype = elf_dlx_reloc_type (type);
1191 break;
1192
1193 case EM_SH:
1194 rtype = elf_sh_reloc_type (type);
1195 break;
1196
1197 case EM_MN10300:
1198 case EM_CYGNUS_MN10300:
1199 rtype = elf_mn10300_reloc_type (type);
1200 break;
1201
1202 case EM_MN10200:
1203 case EM_CYGNUS_MN10200:
1204 rtype = elf_mn10200_reloc_type (type);
1205 break;
1206
1207 case EM_FR30:
1208 case EM_CYGNUS_FR30:
1209 rtype = elf_fr30_reloc_type (type);
1210 break;
1211
1212 case EM_CYGNUS_FRV:
1213 rtype = elf_frv_reloc_type (type);
1214 break;
1215
1216 case EM_MCORE:
1217 rtype = elf_mcore_reloc_type (type);
1218 break;
1219
1220 case EM_MMIX:
1221 rtype = elf_mmix_reloc_type (type);
1222 break;
1223
1224 case EM_MOXIE:
1225 rtype = elf_moxie_reloc_type (type);
1226 break;
1227
1228 case EM_MSP430:
1229 if (uses_msp430x_relocs ())
1230 {
1231 rtype = elf_msp430x_reloc_type (type);
1232 break;
1233 }
1234 case EM_MSP430_OLD:
1235 rtype = elf_msp430_reloc_type (type);
1236 break;
1237
1238 case EM_NDS32:
1239 rtype = elf_nds32_reloc_type (type);
1240 break;
1241
1242 case EM_PPC:
1243 rtype = elf_ppc_reloc_type (type);
1244 break;
1245
1246 case EM_PPC64:
1247 rtype = elf_ppc64_reloc_type (type);
1248 break;
1249
1250 case EM_MIPS:
1251 case EM_MIPS_RS3_LE:
1252 rtype = elf_mips_reloc_type (type);
1253 break;
1254
1255 case EM_ALPHA:
1256 rtype = elf_alpha_reloc_type (type);
1257 break;
1258
1259 case EM_ARM:
1260 rtype = elf_arm_reloc_type (type);
1261 break;
1262
1263 case EM_ARC:
1264 rtype = elf_arc_reloc_type (type);
1265 break;
1266
1267 case EM_PARISC:
1268 rtype = elf_hppa_reloc_type (type);
1269 break;
1270
1271 case EM_H8_300:
1272 case EM_H8_300H:
1273 case EM_H8S:
1274 rtype = elf_h8_reloc_type (type);
1275 break;
1276
1277 case EM_OR1K:
1278 rtype = elf_or1k_reloc_type (type);
1279 break;
1280
1281 case EM_PJ:
1282 case EM_PJ_OLD:
1283 rtype = elf_pj_reloc_type (type);
1284 break;
1285 case EM_IA_64:
1286 rtype = elf_ia64_reloc_type (type);
1287 break;
1288
1289 case EM_CRIS:
1290 rtype = elf_cris_reloc_type (type);
1291 break;
1292
1293 case EM_860:
1294 rtype = elf_i860_reloc_type (type);
1295 break;
1296
1297 case EM_X86_64:
1298 case EM_L1OM:
1299 case EM_K1OM:
1300 rtype = elf_x86_64_reloc_type (type);
1301 break;
1302
1303 case EM_S370:
1304 rtype = i370_reloc_type (type);
1305 break;
1306
1307 case EM_S390_OLD:
1308 case EM_S390:
1309 rtype = elf_s390_reloc_type (type);
1310 break;
1311
1312 case EM_SCORE:
1313 rtype = elf_score_reloc_type (type);
1314 break;
1315
1316 case EM_XSTORMY16:
1317 rtype = elf_xstormy16_reloc_type (type);
1318 break;
1319
1320 case EM_CRX:
1321 rtype = elf_crx_reloc_type (type);
1322 break;
1323
1324 case EM_VAX:
1325 rtype = elf_vax_reloc_type (type);
1326 break;
1327
1328 case EM_ADAPTEVA_EPIPHANY:
1329 rtype = elf_epiphany_reloc_type (type);
1330 break;
1331
1332 case EM_IP2K:
1333 case EM_IP2K_OLD:
1334 rtype = elf_ip2k_reloc_type (type);
1335 break;
1336
1337 case EM_IQ2000:
1338 rtype = elf_iq2000_reloc_type (type);
1339 break;
1340
1341 case EM_XTENSA_OLD:
1342 case EM_XTENSA:
1343 rtype = elf_xtensa_reloc_type (type);
1344 break;
1345
1346 case EM_LATTICEMICO32:
1347 rtype = elf_lm32_reloc_type (type);
1348 break;
1349
1350 case EM_M32C_OLD:
1351 case EM_M32C:
1352 rtype = elf_m32c_reloc_type (type);
1353 break;
1354
1355 case EM_MT:
1356 rtype = elf_mt_reloc_type (type);
1357 break;
1358
1359 case EM_BLACKFIN:
1360 rtype = elf_bfin_reloc_type (type);
1361 break;
1362
1363 case EM_CYGNUS_MEP:
1364 rtype = elf_mep_reloc_type (type);
1365 break;
1366
1367 case EM_CR16:
1368 rtype = elf_cr16_reloc_type (type);
1369 break;
1370
1371 case EM_MICROBLAZE:
1372 case EM_MICROBLAZE_OLD:
1373 rtype = elf_microblaze_reloc_type (type);
1374 break;
1375
1376 case EM_RL78:
1377 rtype = elf_rl78_reloc_type (type);
1378 break;
1379
1380 case EM_RX:
1381 rtype = elf_rx_reloc_type (type);
1382 break;
1383
1384 case EM_METAG:
1385 rtype = elf_metag_reloc_type (type);
1386 break;
1387
1388 case EM_XC16X:
1389 case EM_C166:
1390 rtype = elf_xc16x_reloc_type (type);
1391 break;
1392
1393 case EM_TI_C6000:
1394 rtype = elf_tic6x_reloc_type (type);
1395 break;
1396
1397 case EM_TILEGX:
1398 rtype = elf_tilegx_reloc_type (type);
1399 break;
1400
1401 case EM_TILEPRO:
1402 rtype = elf_tilepro_reloc_type (type);
1403 break;
1404
1405 case EM_XGATE:
1406 rtype = elf_xgate_reloc_type (type);
1407 break;
1408
1409 case EM_ALTERA_NIOS2:
1410 rtype = elf_nios2_reloc_type (type);
1411 break;
1412 }
1413
1414 if (rtype == NULL)
1415 printf (_("unrecognized: %-7lx"), (unsigned long) type & 0xffffffff);
1416 else
1417 printf (do_wide ? "%-22.22s" : "%-17.17s", rtype);
1418
1419 if (elf_header.e_machine == EM_ALPHA
1420 && rtype != NULL
1421 && streq (rtype, "R_ALPHA_LITUSE")
1422 && is_rela)
1423 {
1424 switch (rels[i].r_addend)
1425 {
1426 case LITUSE_ALPHA_ADDR: rtype = "ADDR"; break;
1427 case LITUSE_ALPHA_BASE: rtype = "BASE"; break;
1428 case LITUSE_ALPHA_BYTOFF: rtype = "BYTOFF"; break;
1429 case LITUSE_ALPHA_JSR: rtype = "JSR"; break;
1430 case LITUSE_ALPHA_TLSGD: rtype = "TLSGD"; break;
1431 case LITUSE_ALPHA_TLSLDM: rtype = "TLSLDM"; break;
1432 case LITUSE_ALPHA_JSRDIRECT: rtype = "JSRDIRECT"; break;
1433 default: rtype = NULL;
1434 }
1435 if (rtype)
1436 printf (" (%s)", rtype);
1437 else
1438 {
1439 putchar (' ');
1440 printf (_("<unknown addend: %lx>"),
1441 (unsigned long) rels[i].r_addend);
1442 }
1443 }
1444 else if (symtab_index)
1445 {
1446 if (symtab == NULL || symtab_index >= nsyms)
1447 printf (_(" bad symbol index: %08lx"), (unsigned long) symtab_index);
1448 else
1449 {
1450 Elf_Internal_Sym * psym;
1451
1452 psym = symtab + symtab_index;
1453
1454 printf (" ");
1455
1456 if (ELF_ST_TYPE (psym->st_info) == STT_GNU_IFUNC)
1457 {
1458 const char * name;
1459 unsigned int len;
1460 unsigned int width = is_32bit_elf ? 8 : 14;
1461
1462 /* Relocations against GNU_IFUNC symbols do not use the value
1463 of the symbol as the address to relocate against. Instead
1464 they invoke the function named by the symbol and use its
1465 result as the address for relocation.
1466
1467 To indicate this to the user, do not display the value of
1468 the symbol in the "Symbols's Value" field. Instead show
1469 its name followed by () as a hint that the symbol is
1470 invoked. */
1471
1472 if (strtab == NULL
1473 || psym->st_name == 0
1474 || psym->st_name >= strtablen)
1475 name = "??";
1476 else
1477 name = strtab + psym->st_name;
1478
1479 len = print_symbol (width, name);
1480 printf ("()%-*s", len <= width ? (width + 1) - len : 1, " ");
1481 }
1482 else
1483 {
1484 print_vma (psym->st_value, LONG_HEX);
1485
1486 printf (is_32bit_elf ? " " : " ");
1487 }
1488
1489 if (psym->st_name == 0)
1490 {
1491 const char * sec_name = "<null>";
1492 char name_buf[40];
1493
1494 if (ELF_ST_TYPE (psym->st_info) == STT_SECTION)
1495 {
1496 if (psym->st_shndx < elf_header.e_shnum)
1497 sec_name = SECTION_NAME (section_headers + psym->st_shndx);
1498 else if (psym->st_shndx == SHN_ABS)
1499 sec_name = "ABS";
1500 else if (psym->st_shndx == SHN_COMMON)
1501 sec_name = "COMMON";
1502 else if ((elf_header.e_machine == EM_MIPS
1503 && psym->st_shndx == SHN_MIPS_SCOMMON)
1504 || (elf_header.e_machine == EM_TI_C6000
1505 && psym->st_shndx == SHN_TIC6X_SCOMMON))
1506 sec_name = "SCOMMON";
1507 else if (elf_header.e_machine == EM_MIPS
1508 && psym->st_shndx == SHN_MIPS_SUNDEFINED)
1509 sec_name = "SUNDEF";
1510 else if ((elf_header.e_machine == EM_X86_64
1511 || elf_header.e_machine == EM_L1OM
1512 || elf_header.e_machine == EM_K1OM)
1513 && psym->st_shndx == SHN_X86_64_LCOMMON)
1514 sec_name = "LARGE_COMMON";
1515 else if (elf_header.e_machine == EM_IA_64
1516 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX
1517 && psym->st_shndx == SHN_IA_64_ANSI_COMMON)
1518 sec_name = "ANSI_COM";
1519 else if (is_ia64_vms ()
1520 && psym->st_shndx == SHN_IA_64_VMS_SYMVEC)
1521 sec_name = "VMS_SYMVEC";
1522 else
1523 {
1524 sprintf (name_buf, "<section 0x%x>",
1525 (unsigned int) psym->st_shndx);
1526 sec_name = name_buf;
1527 }
1528 }
1529 print_symbol (22, sec_name);
1530 }
1531 else if (strtab == NULL)
1532 printf (_("<string table index: %3ld>"), psym->st_name);
1533 else if (psym->st_name >= strtablen)
1534 printf (_("<corrupt string table index: %3ld>"), psym->st_name);
1535 else
1536 print_symbol (22, strtab + psym->st_name);
1537
1538 if (is_rela)
1539 {
1540 bfd_signed_vma off = rels[i].r_addend;
1541
1542 if (off < 0)
1543 printf (" - %" BFD_VMA_FMT "x", - off);
1544 else
1545 printf (" + %" BFD_VMA_FMT "x", off);
1546 }
1547 }
1548 }
1549 else if (is_rela)
1550 {
1551 bfd_signed_vma off = rels[i].r_addend;
1552
1553 printf ("%*c", is_32bit_elf ? 12 : 20, ' ');
1554 if (off < 0)
1555 printf ("-%" BFD_VMA_FMT "x", - off);
1556 else
1557 printf ("%" BFD_VMA_FMT "x", off);
1558 }
1559
1560 if (elf_header.e_machine == EM_SPARCV9
1561 && rtype != NULL
1562 && streq (rtype, "R_SPARC_OLO10"))
1563 printf (" + %lx", (unsigned long) ELF64_R_TYPE_DATA (inf));
1564
1565 putchar ('\n');
1566
1567 #ifdef BFD64
1568 if (! is_32bit_elf && elf_header.e_machine == EM_MIPS)
1569 {
1570 bfd_vma type2 = ELF64_MIPS_R_TYPE2 (inf);
1571 bfd_vma type3 = ELF64_MIPS_R_TYPE3 (inf);
1572 const char * rtype2 = elf_mips_reloc_type (type2);
1573 const char * rtype3 = elf_mips_reloc_type (type3);
1574
1575 printf (" Type2: ");
1576
1577 if (rtype2 == NULL)
1578 printf (_("unrecognized: %-7lx"),
1579 (unsigned long) type2 & 0xffffffff);
1580 else
1581 printf ("%-17.17s", rtype2);
1582
1583 printf ("\n Type3: ");
1584
1585 if (rtype3 == NULL)
1586 printf (_("unrecognized: %-7lx"),
1587 (unsigned long) type3 & 0xffffffff);
1588 else
1589 printf ("%-17.17s", rtype3);
1590
1591 putchar ('\n');
1592 }
1593 #endif /* BFD64 */
1594 }
1595
1596 free (rels);
1597 }
1598
1599 static const char *
1600 get_mips_dynamic_type (unsigned long type)
1601 {
1602 switch (type)
1603 {
1604 case DT_MIPS_RLD_VERSION: return "MIPS_RLD_VERSION";
1605 case DT_MIPS_TIME_STAMP: return "MIPS_TIME_STAMP";
1606 case DT_MIPS_ICHECKSUM: return "MIPS_ICHECKSUM";
1607 case DT_MIPS_IVERSION: return "MIPS_IVERSION";
1608 case DT_MIPS_FLAGS: return "MIPS_FLAGS";
1609 case DT_MIPS_BASE_ADDRESS: return "MIPS_BASE_ADDRESS";
1610 case DT_MIPS_MSYM: return "MIPS_MSYM";
1611 case DT_MIPS_CONFLICT: return "MIPS_CONFLICT";
1612 case DT_MIPS_LIBLIST: return "MIPS_LIBLIST";
1613 case DT_MIPS_LOCAL_GOTNO: return "MIPS_LOCAL_GOTNO";
1614 case DT_MIPS_CONFLICTNO: return "MIPS_CONFLICTNO";
1615 case DT_MIPS_LIBLISTNO: return "MIPS_LIBLISTNO";
1616 case DT_MIPS_SYMTABNO: return "MIPS_SYMTABNO";
1617 case DT_MIPS_UNREFEXTNO: return "MIPS_UNREFEXTNO";
1618 case DT_MIPS_GOTSYM: return "MIPS_GOTSYM";
1619 case DT_MIPS_HIPAGENO: return "MIPS_HIPAGENO";
1620 case DT_MIPS_RLD_MAP: return "MIPS_RLD_MAP";
1621 case DT_MIPS_DELTA_CLASS: return "MIPS_DELTA_CLASS";
1622 case DT_MIPS_DELTA_CLASS_NO: return "MIPS_DELTA_CLASS_NO";
1623 case DT_MIPS_DELTA_INSTANCE: return "MIPS_DELTA_INSTANCE";
1624 case DT_MIPS_DELTA_INSTANCE_NO: return "MIPS_DELTA_INSTANCE_NO";
1625 case DT_MIPS_DELTA_RELOC: return "MIPS_DELTA_RELOC";
1626 case DT_MIPS_DELTA_RELOC_NO: return "MIPS_DELTA_RELOC_NO";
1627 case DT_MIPS_DELTA_SYM: return "MIPS_DELTA_SYM";
1628 case DT_MIPS_DELTA_SYM_NO: return "MIPS_DELTA_SYM_NO";
1629 case DT_MIPS_DELTA_CLASSSYM: return "MIPS_DELTA_CLASSSYM";
1630 case DT_MIPS_DELTA_CLASSSYM_NO: return "MIPS_DELTA_CLASSSYM_NO";
1631 case DT_MIPS_CXX_FLAGS: return "MIPS_CXX_FLAGS";
1632 case DT_MIPS_PIXIE_INIT: return "MIPS_PIXIE_INIT";
1633 case DT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
1634 case DT_MIPS_LOCALPAGE_GOTIDX: return "MIPS_LOCALPAGE_GOTIDX";
1635 case DT_MIPS_LOCAL_GOTIDX: return "MIPS_LOCAL_GOTIDX";
1636 case DT_MIPS_HIDDEN_GOTIDX: return "MIPS_HIDDEN_GOTIDX";
1637 case DT_MIPS_PROTECTED_GOTIDX: return "MIPS_PROTECTED_GOTIDX";
1638 case DT_MIPS_OPTIONS: return "MIPS_OPTIONS";
1639 case DT_MIPS_INTERFACE: return "MIPS_INTERFACE";
1640 case DT_MIPS_DYNSTR_ALIGN: return "MIPS_DYNSTR_ALIGN";
1641 case DT_MIPS_INTERFACE_SIZE: return "MIPS_INTERFACE_SIZE";
1642 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: return "MIPS_RLD_TEXT_RESOLVE_ADDR";
1643 case DT_MIPS_PERF_SUFFIX: return "MIPS_PERF_SUFFIX";
1644 case DT_MIPS_COMPACT_SIZE: return "MIPS_COMPACT_SIZE";
1645 case DT_MIPS_GP_VALUE: return "MIPS_GP_VALUE";
1646 case DT_MIPS_AUX_DYNAMIC: return "MIPS_AUX_DYNAMIC";
1647 case DT_MIPS_PLTGOT: return "MIPS_PLTGOT";
1648 case DT_MIPS_RWPLT: return "MIPS_RWPLT";
1649 default:
1650 return NULL;
1651 }
1652 }
1653
1654 static const char *
1655 get_sparc64_dynamic_type (unsigned long type)
1656 {
1657 switch (type)
1658 {
1659 case DT_SPARC_REGISTER: return "SPARC_REGISTER";
1660 default:
1661 return NULL;
1662 }
1663 }
1664
1665 static const char *
1666 get_ppc_dynamic_type (unsigned long type)
1667 {
1668 switch (type)
1669 {
1670 case DT_PPC_GOT: return "PPC_GOT";
1671 case DT_PPC_OPT: return "PPC_OPT";
1672 default:
1673 return NULL;
1674 }
1675 }
1676
1677 static const char *
1678 get_ppc64_dynamic_type (unsigned long type)
1679 {
1680 switch (type)
1681 {
1682 case DT_PPC64_GLINK: return "PPC64_GLINK";
1683 case DT_PPC64_OPD: return "PPC64_OPD";
1684 case DT_PPC64_OPDSZ: return "PPC64_OPDSZ";
1685 case DT_PPC64_OPT: return "PPC64_OPT";
1686 default:
1687 return NULL;
1688 }
1689 }
1690
1691 static const char *
1692 get_parisc_dynamic_type (unsigned long type)
1693 {
1694 switch (type)
1695 {
1696 case DT_HP_LOAD_MAP: return "HP_LOAD_MAP";
1697 case DT_HP_DLD_FLAGS: return "HP_DLD_FLAGS";
1698 case DT_HP_DLD_HOOK: return "HP_DLD_HOOK";
1699 case DT_HP_UX10_INIT: return "HP_UX10_INIT";
1700 case DT_HP_UX10_INITSZ: return "HP_UX10_INITSZ";
1701 case DT_HP_PREINIT: return "HP_PREINIT";
1702 case DT_HP_PREINITSZ: return "HP_PREINITSZ";
1703 case DT_HP_NEEDED: return "HP_NEEDED";
1704 case DT_HP_TIME_STAMP: return "HP_TIME_STAMP";
1705 case DT_HP_CHECKSUM: return "HP_CHECKSUM";
1706 case DT_HP_GST_SIZE: return "HP_GST_SIZE";
1707 case DT_HP_GST_VERSION: return "HP_GST_VERSION";
1708 case DT_HP_GST_HASHVAL: return "HP_GST_HASHVAL";
1709 case DT_HP_EPLTREL: return "HP_GST_EPLTREL";
1710 case DT_HP_EPLTRELSZ: return "HP_GST_EPLTRELSZ";
1711 case DT_HP_FILTERED: return "HP_FILTERED";
1712 case DT_HP_FILTER_TLS: return "HP_FILTER_TLS";
1713 case DT_HP_COMPAT_FILTERED: return "HP_COMPAT_FILTERED";
1714 case DT_HP_LAZYLOAD: return "HP_LAZYLOAD";
1715 case DT_HP_BIND_NOW_COUNT: return "HP_BIND_NOW_COUNT";
1716 case DT_PLT: return "PLT";
1717 case DT_PLT_SIZE: return "PLT_SIZE";
1718 case DT_DLT: return "DLT";
1719 case DT_DLT_SIZE: return "DLT_SIZE";
1720 default:
1721 return NULL;
1722 }
1723 }
1724
1725 static const char *
1726 get_ia64_dynamic_type (unsigned long type)
1727 {
1728 switch (type)
1729 {
1730 case DT_IA_64_PLT_RESERVE: return "IA_64_PLT_RESERVE";
1731 case DT_IA_64_VMS_SUBTYPE: return "VMS_SUBTYPE";
1732 case DT_IA_64_VMS_IMGIOCNT: return "VMS_IMGIOCNT";
1733 case DT_IA_64_VMS_LNKFLAGS: return "VMS_LNKFLAGS";
1734 case DT_IA_64_VMS_VIR_MEM_BLK_SIZ: return "VMS_VIR_MEM_BLK_SIZ";
1735 case DT_IA_64_VMS_IDENT: return "VMS_IDENT";
1736 case DT_IA_64_VMS_NEEDED_IDENT: return "VMS_NEEDED_IDENT";
1737 case DT_IA_64_VMS_IMG_RELA_CNT: return "VMS_IMG_RELA_CNT";
1738 case DT_IA_64_VMS_SEG_RELA_CNT: return "VMS_SEG_RELA_CNT";
1739 case DT_IA_64_VMS_FIXUP_RELA_CNT: return "VMS_FIXUP_RELA_CNT";
1740 case DT_IA_64_VMS_FIXUP_NEEDED: return "VMS_FIXUP_NEEDED";
1741 case DT_IA_64_VMS_SYMVEC_CNT: return "VMS_SYMVEC_CNT";
1742 case DT_IA_64_VMS_XLATED: return "VMS_XLATED";
1743 case DT_IA_64_VMS_STACKSIZE: return "VMS_STACKSIZE";
1744 case DT_IA_64_VMS_UNWINDSZ: return "VMS_UNWINDSZ";
1745 case DT_IA_64_VMS_UNWIND_CODSEG: return "VMS_UNWIND_CODSEG";
1746 case DT_IA_64_VMS_UNWIND_INFOSEG: return "VMS_UNWIND_INFOSEG";
1747 case DT_IA_64_VMS_LINKTIME: return "VMS_LINKTIME";
1748 case DT_IA_64_VMS_SEG_NO: return "VMS_SEG_NO";
1749 case DT_IA_64_VMS_SYMVEC_OFFSET: return "VMS_SYMVEC_OFFSET";
1750 case DT_IA_64_VMS_SYMVEC_SEG: return "VMS_SYMVEC_SEG";
1751 case DT_IA_64_VMS_UNWIND_OFFSET: return "VMS_UNWIND_OFFSET";
1752 case DT_IA_64_VMS_UNWIND_SEG: return "VMS_UNWIND_SEG";
1753 case DT_IA_64_VMS_STRTAB_OFFSET: return "VMS_STRTAB_OFFSET";
1754 case DT_IA_64_VMS_SYSVER_OFFSET: return "VMS_SYSVER_OFFSET";
1755 case DT_IA_64_VMS_IMG_RELA_OFF: return "VMS_IMG_RELA_OFF";
1756 case DT_IA_64_VMS_SEG_RELA_OFF: return "VMS_SEG_RELA_OFF";
1757 case DT_IA_64_VMS_FIXUP_RELA_OFF: return "VMS_FIXUP_RELA_OFF";
1758 case DT_IA_64_VMS_PLTGOT_OFFSET: return "VMS_PLTGOT_OFFSET";
1759 case DT_IA_64_VMS_PLTGOT_SEG: return "VMS_PLTGOT_SEG";
1760 case DT_IA_64_VMS_FPMODE: return "VMS_FPMODE";
1761 default:
1762 return NULL;
1763 }
1764 }
1765
1766 static const char *
1767 get_alpha_dynamic_type (unsigned long type)
1768 {
1769 switch (type)
1770 {
1771 case DT_ALPHA_PLTRO: return "ALPHA_PLTRO";
1772 default:
1773 return NULL;
1774 }
1775 }
1776
1777 static const char *
1778 get_score_dynamic_type (unsigned long type)
1779 {
1780 switch (type)
1781 {
1782 case DT_SCORE_BASE_ADDRESS: return "SCORE_BASE_ADDRESS";
1783 case DT_SCORE_LOCAL_GOTNO: return "SCORE_LOCAL_GOTNO";
1784 case DT_SCORE_SYMTABNO: return "SCORE_SYMTABNO";
1785 case DT_SCORE_GOTSYM: return "SCORE_GOTSYM";
1786 case DT_SCORE_UNREFEXTNO: return "SCORE_UNREFEXTNO";
1787 case DT_SCORE_HIPAGENO: return "SCORE_HIPAGENO";
1788 default:
1789 return NULL;
1790 }
1791 }
1792
1793 static const char *
1794 get_tic6x_dynamic_type (unsigned long type)
1795 {
1796 switch (type)
1797 {
1798 case DT_C6000_GSYM_OFFSET: return "C6000_GSYM_OFFSET";
1799 case DT_C6000_GSTR_OFFSET: return "C6000_GSTR_OFFSET";
1800 case DT_C6000_DSBT_BASE: return "C6000_DSBT_BASE";
1801 case DT_C6000_DSBT_SIZE: return "C6000_DSBT_SIZE";
1802 case DT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
1803 case DT_C6000_DSBT_INDEX: return "C6000_DSBT_INDEX";
1804 default:
1805 return NULL;
1806 }
1807 }
1808
1809 static const char *
1810 get_nios2_dynamic_type (unsigned long type)
1811 {
1812 switch (type)
1813 {
1814 case DT_NIOS2_GP: return "NIOS2_GP";
1815 default:
1816 return NULL;
1817 }
1818 }
1819
1820 static const char *
1821 get_dynamic_type (unsigned long type)
1822 {
1823 static char buff[64];
1824
1825 switch (type)
1826 {
1827 case DT_NULL: return "NULL";
1828 case DT_NEEDED: return "NEEDED";
1829 case DT_PLTRELSZ: return "PLTRELSZ";
1830 case DT_PLTGOT: return "PLTGOT";
1831 case DT_HASH: return "HASH";
1832 case DT_STRTAB: return "STRTAB";
1833 case DT_SYMTAB: return "SYMTAB";
1834 case DT_RELA: return "RELA";
1835 case DT_RELASZ: return "RELASZ";
1836 case DT_RELAENT: return "RELAENT";
1837 case DT_STRSZ: return "STRSZ";
1838 case DT_SYMENT: return "SYMENT";
1839 case DT_INIT: return "INIT";
1840 case DT_FINI: return "FINI";
1841 case DT_SONAME: return "SONAME";
1842 case DT_RPATH: return "RPATH";
1843 case DT_SYMBOLIC: return "SYMBOLIC";
1844 case DT_REL: return "REL";
1845 case DT_RELSZ: return "RELSZ";
1846 case DT_RELENT: return "RELENT";
1847 case DT_PLTREL: return "PLTREL";
1848 case DT_DEBUG: return "DEBUG";
1849 case DT_TEXTREL: return "TEXTREL";
1850 case DT_JMPREL: return "JMPREL";
1851 case DT_BIND_NOW: return "BIND_NOW";
1852 case DT_INIT_ARRAY: return "INIT_ARRAY";
1853 case DT_FINI_ARRAY: return "FINI_ARRAY";
1854 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ";
1855 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ";
1856 case DT_RUNPATH: return "RUNPATH";
1857 case DT_FLAGS: return "FLAGS";
1858
1859 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY";
1860 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ";
1861
1862 case DT_CHECKSUM: return "CHECKSUM";
1863 case DT_PLTPADSZ: return "PLTPADSZ";
1864 case DT_MOVEENT: return "MOVEENT";
1865 case DT_MOVESZ: return "MOVESZ";
1866 case DT_FEATURE: return "FEATURE";
1867 case DT_POSFLAG_1: return "POSFLAG_1";
1868 case DT_SYMINSZ: return "SYMINSZ";
1869 case DT_SYMINENT: return "SYMINENT"; /* aka VALRNGHI */
1870
1871 case DT_ADDRRNGLO: return "ADDRRNGLO";
1872 case DT_CONFIG: return "CONFIG";
1873 case DT_DEPAUDIT: return "DEPAUDIT";
1874 case DT_AUDIT: return "AUDIT";
1875 case DT_PLTPAD: return "PLTPAD";
1876 case DT_MOVETAB: return "MOVETAB";
1877 case DT_SYMINFO: return "SYMINFO"; /* aka ADDRRNGHI */
1878
1879 case DT_VERSYM: return "VERSYM";
1880
1881 case DT_TLSDESC_GOT: return "TLSDESC_GOT";
1882 case DT_TLSDESC_PLT: return "TLSDESC_PLT";
1883 case DT_RELACOUNT: return "RELACOUNT";
1884 case DT_RELCOUNT: return "RELCOUNT";
1885 case DT_FLAGS_1: return "FLAGS_1";
1886 case DT_VERDEF: return "VERDEF";
1887 case DT_VERDEFNUM: return "VERDEFNUM";
1888 case DT_VERNEED: return "VERNEED";
1889 case DT_VERNEEDNUM: return "VERNEEDNUM";
1890
1891 case DT_AUXILIARY: return "AUXILIARY";
1892 case DT_USED: return "USED";
1893 case DT_FILTER: return "FILTER";
1894
1895 case DT_GNU_PRELINKED: return "GNU_PRELINKED";
1896 case DT_GNU_CONFLICT: return "GNU_CONFLICT";
1897 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ";
1898 case DT_GNU_LIBLIST: return "GNU_LIBLIST";
1899 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ";
1900 case DT_GNU_HASH: return "GNU_HASH";
1901
1902 default:
1903 if ((type >= DT_LOPROC) && (type <= DT_HIPROC))
1904 {
1905 const char * result;
1906
1907 switch (elf_header.e_machine)
1908 {
1909 case EM_MIPS:
1910 case EM_MIPS_RS3_LE:
1911 result = get_mips_dynamic_type (type);
1912 break;
1913 case EM_SPARCV9:
1914 result = get_sparc64_dynamic_type (type);
1915 break;
1916 case EM_PPC:
1917 result = get_ppc_dynamic_type (type);
1918 break;
1919 case EM_PPC64:
1920 result = get_ppc64_dynamic_type (type);
1921 break;
1922 case EM_IA_64:
1923 result = get_ia64_dynamic_type (type);
1924 break;
1925 case EM_ALPHA:
1926 result = get_alpha_dynamic_type (type);
1927 break;
1928 case EM_SCORE:
1929 result = get_score_dynamic_type (type);
1930 break;
1931 case EM_TI_C6000:
1932 result = get_tic6x_dynamic_type (type);
1933 break;
1934 case EM_ALTERA_NIOS2:
1935 result = get_nios2_dynamic_type (type);
1936 break;
1937 default:
1938 result = NULL;
1939 break;
1940 }
1941
1942 if (result != NULL)
1943 return result;
1944
1945 snprintf (buff, sizeof (buff), _("Processor Specific: %lx"), type);
1946 }
1947 else if (((type >= DT_LOOS) && (type <= DT_HIOS))
1948 || (elf_header.e_machine == EM_PARISC
1949 && (type >= OLD_DT_LOOS) && (type <= OLD_DT_HIOS)))
1950 {
1951 const char * result;
1952
1953 switch (elf_header.e_machine)
1954 {
1955 case EM_PARISC:
1956 result = get_parisc_dynamic_type (type);
1957 break;
1958 case EM_IA_64:
1959 result = get_ia64_dynamic_type (type);
1960 break;
1961 default:
1962 result = NULL;
1963 break;
1964 }
1965
1966 if (result != NULL)
1967 return result;
1968
1969 snprintf (buff, sizeof (buff), _("Operating System specific: %lx"),
1970 type);
1971 }
1972 else
1973 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), type);
1974
1975 return buff;
1976 }
1977 }
1978
1979 static char *
1980 get_file_type (unsigned e_type)
1981 {
1982 static char buff[32];
1983
1984 switch (e_type)
1985 {
1986 case ET_NONE: return _("NONE (None)");
1987 case ET_REL: return _("REL (Relocatable file)");
1988 case ET_EXEC: return _("EXEC (Executable file)");
1989 case ET_DYN: return _("DYN (Shared object file)");
1990 case ET_CORE: return _("CORE (Core file)");
1991
1992 default:
1993 if ((e_type >= ET_LOPROC) && (e_type <= ET_HIPROC))
1994 snprintf (buff, sizeof (buff), _("Processor Specific: (%x)"), e_type);
1995 else if ((e_type >= ET_LOOS) && (e_type <= ET_HIOS))
1996 snprintf (buff, sizeof (buff), _("OS Specific: (%x)"), e_type);
1997 else
1998 snprintf (buff, sizeof (buff), _("<unknown>: %x"), e_type);
1999 return buff;
2000 }
2001 }
2002
2003 static char *
2004 get_machine_name (unsigned e_machine)
2005 {
2006 static char buff[64]; /* XXX */
2007
2008 switch (e_machine)
2009 {
2010 case EM_NONE: return _("None");
2011 case EM_AARCH64: return "AArch64";
2012 case EM_M32: return "WE32100";
2013 case EM_SPARC: return "Sparc";
2014 case EM_SPU: return "SPU";
2015 case EM_386: return "Intel 80386";
2016 case EM_68K: return "MC68000";
2017 case EM_88K: return "MC88000";
2018 case EM_486: return "Intel 80486";
2019 case EM_860: return "Intel 80860";
2020 case EM_MIPS: return "MIPS R3000";
2021 case EM_S370: return "IBM System/370";
2022 case EM_MIPS_RS3_LE: return "MIPS R4000 big-endian";
2023 case EM_OLD_SPARCV9: return "Sparc v9 (old)";
2024 case EM_PARISC: return "HPPA";
2025 case EM_PPC_OLD: return "Power PC (old)";
2026 case EM_SPARC32PLUS: return "Sparc v8+" ;
2027 case EM_960: return "Intel 90860";
2028 case EM_PPC: return "PowerPC";
2029 case EM_PPC64: return "PowerPC64";
2030 case EM_FR20: return "Fujitsu FR20";
2031 case EM_RH32: return "TRW RH32";
2032 case EM_MCORE: return "MCORE";
2033 case EM_ARM: return "ARM";
2034 case EM_OLD_ALPHA: return "Digital Alpha (old)";
2035 case EM_SH: return "Renesas / SuperH SH";
2036 case EM_SPARCV9: return "Sparc v9";
2037 case EM_TRICORE: return "Siemens Tricore";
2038 case EM_ARC: return "ARC";
2039 case EM_H8_300: return "Renesas H8/300";
2040 case EM_H8_300H: return "Renesas H8/300H";
2041 case EM_H8S: return "Renesas H8S";
2042 case EM_H8_500: return "Renesas H8/500";
2043 case EM_IA_64: return "Intel IA-64";
2044 case EM_MIPS_X: return "Stanford MIPS-X";
2045 case EM_COLDFIRE: return "Motorola Coldfire";
2046 case EM_ALPHA: return "Alpha";
2047 case EM_CYGNUS_D10V:
2048 case EM_D10V: return "d10v";
2049 case EM_CYGNUS_D30V:
2050 case EM_D30V: return "d30v";
2051 case EM_CYGNUS_M32R:
2052 case EM_M32R: return "Renesas M32R (formerly Mitsubishi M32r)";
2053 case EM_CYGNUS_V850:
2054 case EM_V800: return "Renesas V850 (using RH850 ABI)";
2055 case EM_V850: return "Renesas V850";
2056 case EM_CYGNUS_MN10300:
2057 case EM_MN10300: return "mn10300";
2058 case EM_CYGNUS_MN10200:
2059 case EM_MN10200: return "mn10200";
2060 case EM_MOXIE: return "Moxie";
2061 case EM_CYGNUS_FR30:
2062 case EM_FR30: return "Fujitsu FR30";
2063 case EM_CYGNUS_FRV: return "Fujitsu FR-V";
2064 case EM_PJ_OLD:
2065 case EM_PJ: return "picoJava";
2066 case EM_MMA: return "Fujitsu Multimedia Accelerator";
2067 case EM_PCP: return "Siemens PCP";
2068 case EM_NCPU: return "Sony nCPU embedded RISC processor";
2069 case EM_NDR1: return "Denso NDR1 microprocesspr";
2070 case EM_STARCORE: return "Motorola Star*Core processor";
2071 case EM_ME16: return "Toyota ME16 processor";
2072 case EM_ST100: return "STMicroelectronics ST100 processor";
2073 case EM_TINYJ: return "Advanced Logic Corp. TinyJ embedded processor";
2074 case EM_PDSP: return "Sony DSP processor";
2075 case EM_PDP10: return "Digital Equipment Corp. PDP-10";
2076 case EM_PDP11: return "Digital Equipment Corp. PDP-11";
2077 case EM_FX66: return "Siemens FX66 microcontroller";
2078 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 bit microcontroller";
2079 case EM_ST7: return "STMicroelectronics ST7 8-bit microcontroller";
2080 case EM_68HC16: return "Motorola MC68HC16 Microcontroller";
2081 case EM_68HC12: return "Motorola MC68HC12 Microcontroller";
2082 case EM_68HC11: return "Motorola MC68HC11 Microcontroller";
2083 case EM_68HC08: return "Motorola MC68HC08 Microcontroller";
2084 case EM_68HC05: return "Motorola MC68HC05 Microcontroller";
2085 case EM_SVX: return "Silicon Graphics SVx";
2086 case EM_ST19: return "STMicroelectronics ST19 8-bit microcontroller";
2087 case EM_VAX: return "Digital VAX";
2088 case EM_AVR_OLD:
2089 case EM_AVR: return "Atmel AVR 8-bit microcontroller";
2090 case EM_CRIS: return "Axis Communications 32-bit embedded processor";
2091 case EM_JAVELIN: return "Infineon Technologies 32-bit embedded cpu";
2092 case EM_FIREPATH: return "Element 14 64-bit DSP processor";
2093 case EM_ZSP: return "LSI Logic's 16-bit DSP processor";
2094 case EM_MMIX: return "Donald Knuth's educational 64-bit processor";
2095 case EM_HUANY: return "Harvard Universitys's machine-independent object format";
2096 case EM_PRISM: return "Vitesse Prism";
2097 case EM_X86_64: return "Advanced Micro Devices X86-64";
2098 case EM_L1OM: return "Intel L1OM";
2099 case EM_K1OM: return "Intel K1OM";
2100 case EM_S390_OLD:
2101 case EM_S390: return "IBM S/390";
2102 case EM_SCORE: return "SUNPLUS S+Core";
2103 case EM_XSTORMY16: return "Sanyo XStormy16 CPU core";
2104 case EM_OR1K: return "OpenRISC 1000";
2105 case EM_ARC_A5: return "ARC International ARCompact processor";
2106 case EM_CRX: return "National Semiconductor CRX microprocessor";
2107 case EM_ADAPTEVA_EPIPHANY: return "Adapteva EPIPHANY";
2108 case EM_DLX: return "OpenDLX";
2109 case EM_IP2K_OLD:
2110 case EM_IP2K: return "Ubicom IP2xxx 8-bit microcontrollers";
2111 case EM_IQ2000: return "Vitesse IQ2000";
2112 case EM_XTENSA_OLD:
2113 case EM_XTENSA: return "Tensilica Xtensa Processor";
2114 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor";
2115 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor";
2116 case EM_NS32K: return "National Semiconductor 32000 series";
2117 case EM_TPC: return "Tenor Network TPC processor";
2118 case EM_ST200: return "STMicroelectronics ST200 microcontroller";
2119 case EM_MAX: return "MAX Processor";
2120 case EM_CR: return "National Semiconductor CompactRISC";
2121 case EM_F2MC16: return "Fujitsu F2MC16";
2122 case EM_MSP430: return "Texas Instruments msp430 microcontroller";
2123 case EM_LATTICEMICO32: return "Lattice Mico32";
2124 case EM_M32C_OLD:
2125 case EM_M32C: return "Renesas M32c";
2126 case EM_MT: return "Morpho Techologies MT processor";
2127 case EM_BLACKFIN: return "Analog Devices Blackfin";
2128 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors";
2129 case EM_SEP: return "Sharp embedded microprocessor";
2130 case EM_ARCA: return "Arca RISC microprocessor";
2131 case EM_UNICORE: return "Unicore";
2132 case EM_EXCESS: return "eXcess 16/32/64-bit configurable embedded CPU";
2133 case EM_DXP: return "Icera Semiconductor Inc. Deep Execution Processor";
2134 case EM_NIOS32: return "Altera Nios";
2135 case EM_ALTERA_NIOS2: return "Altera Nios II";
2136 case EM_C166:
2137 case EM_XC16X: return "Infineon Technologies xc16x";
2138 case EM_M16C: return "Renesas M16C series microprocessors";
2139 case EM_DSPIC30F: return "Microchip Technology dsPIC30F Digital Signal Controller";
2140 case EM_CE: return "Freescale Communication Engine RISC core";
2141 case EM_TSK3000: return "Altium TSK3000 core";
2142 case EM_RS08: return "Freescale RS08 embedded processor";
2143 case EM_ECOG2: return "Cyan Technology eCOG2 microprocessor";
2144 case EM_DSP24: return "New Japan Radio (NJR) 24-bit DSP Processor";
2145 case EM_VIDEOCORE3: return "Broadcom VideoCore III processor";
2146 case EM_SE_C17: return "Seiko Epson C17 family";
2147 case EM_TI_C6000: return "Texas Instruments TMS320C6000 DSP family";
2148 case EM_TI_C2000: return "Texas Instruments TMS320C2000 DSP family";
2149 case EM_TI_C5500: return "Texas Instruments TMS320C55x DSP family";
2150 case EM_MMDSP_PLUS: return "STMicroelectronics 64bit VLIW Data Signal Processor";
2151 case EM_CYPRESS_M8C: return "Cypress M8C microprocessor";
2152 case EM_R32C: return "Renesas R32C series microprocessors";
2153 case EM_TRIMEDIA: return "NXP Semiconductors TriMedia architecture family";
2154 case EM_QDSP6: return "QUALCOMM DSP6 Processor";
2155 case EM_8051: return "Intel 8051 and variants";
2156 case EM_STXP7X: return "STMicroelectronics STxP7x family";
2157 case EM_NDS32: return "Andes Technology compact code size embedded RISC processor family";
2158 case EM_ECOG1X: return "Cyan Technology eCOG1X family";
2159 case EM_MAXQ30: return "Dallas Semiconductor MAXQ30 Core microcontrollers";
2160 case EM_XIMO16: return "New Japan Radio (NJR) 16-bit DSP Processor";
2161 case EM_MANIK: return "M2000 Reconfigurable RISC Microprocessor";
2162 case EM_CRAYNV2: return "Cray Inc. NV2 vector architecture";
2163 case EM_CYGNUS_MEP: return "Toshiba MeP Media Engine";
2164 case EM_CR16:
2165 case EM_MICROBLAZE:
2166 case EM_MICROBLAZE_OLD: return "Xilinx MicroBlaze";
2167 case EM_RL78: return "Renesas RL78";
2168 case EM_RX: return "Renesas RX";
2169 case EM_METAG: return "Imagination Technologies Meta processor architecture";
2170 case EM_MCST_ELBRUS: return "MCST Elbrus general purpose hardware architecture";
2171 case EM_ECOG16: return "Cyan Technology eCOG16 family";
2172 case EM_ETPU: return "Freescale Extended Time Processing Unit";
2173 case EM_SLE9X: return "Infineon Technologies SLE9X core";
2174 case EM_AVR32: return "Atmel Corporation 32-bit microprocessor family";
2175 case EM_STM8: return "STMicroeletronics STM8 8-bit microcontroller";
2176 case EM_TILE64: return "Tilera TILE64 multicore architecture family";
2177 case EM_TILEPRO: return "Tilera TILEPro multicore architecture family";
2178 case EM_TILEGX: return "Tilera TILE-Gx multicore architecture family";
2179 case EM_CUDA: return "NVIDIA CUDA architecture";
2180 case EM_XGATE: return "Motorola XGATE embedded processor";
2181 default:
2182 snprintf (buff, sizeof (buff), _("<unknown>: 0x%x"), e_machine);
2183 return buff;
2184 }
2185 }
2186
2187 static void
2188 decode_ARM_machine_flags (unsigned e_flags, char buf[])
2189 {
2190 unsigned eabi;
2191 int unknown = 0;
2192
2193 eabi = EF_ARM_EABI_VERSION (e_flags);
2194 e_flags &= ~ EF_ARM_EABIMASK;
2195
2196 /* Handle "generic" ARM flags. */
2197 if (e_flags & EF_ARM_RELEXEC)
2198 {
2199 strcat (buf, ", relocatable executable");
2200 e_flags &= ~ EF_ARM_RELEXEC;
2201 }
2202
2203 if (e_flags & EF_ARM_HASENTRY)
2204 {
2205 strcat (buf, ", has entry point");
2206 e_flags &= ~ EF_ARM_HASENTRY;
2207 }
2208
2209 /* Now handle EABI specific flags. */
2210 switch (eabi)
2211 {
2212 default:
2213 strcat (buf, ", <unrecognized EABI>");
2214 if (e_flags)
2215 unknown = 1;
2216 break;
2217
2218 case EF_ARM_EABI_VER1:
2219 strcat (buf, ", Version1 EABI");
2220 while (e_flags)
2221 {
2222 unsigned flag;
2223
2224 /* Process flags one bit at a time. */
2225 flag = e_flags & - e_flags;
2226 e_flags &= ~ flag;
2227
2228 switch (flag)
2229 {
2230 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2231 strcat (buf, ", sorted symbol tables");
2232 break;
2233
2234 default:
2235 unknown = 1;
2236 break;
2237 }
2238 }
2239 break;
2240
2241 case EF_ARM_EABI_VER2:
2242 strcat (buf, ", Version2 EABI");
2243 while (e_flags)
2244 {
2245 unsigned flag;
2246
2247 /* Process flags one bit at a time. */
2248 flag = e_flags & - e_flags;
2249 e_flags &= ~ flag;
2250
2251 switch (flag)
2252 {
2253 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2254 strcat (buf, ", sorted symbol tables");
2255 break;
2256
2257 case EF_ARM_DYNSYMSUSESEGIDX:
2258 strcat (buf, ", dynamic symbols use segment index");
2259 break;
2260
2261 case EF_ARM_MAPSYMSFIRST:
2262 strcat (buf, ", mapping symbols precede others");
2263 break;
2264
2265 default:
2266 unknown = 1;
2267 break;
2268 }
2269 }
2270 break;
2271
2272 case EF_ARM_EABI_VER3:
2273 strcat (buf, ", Version3 EABI");
2274 break;
2275
2276 case EF_ARM_EABI_VER4:
2277 strcat (buf, ", Version4 EABI");
2278 while (e_flags)
2279 {
2280 unsigned flag;
2281
2282 /* Process flags one bit at a time. */
2283 flag = e_flags & - e_flags;
2284 e_flags &= ~ flag;
2285
2286 switch (flag)
2287 {
2288 case EF_ARM_BE8:
2289 strcat (buf, ", BE8");
2290 break;
2291
2292 case EF_ARM_LE8:
2293 strcat (buf, ", LE8");
2294 break;
2295
2296 default:
2297 unknown = 1;
2298 break;
2299 }
2300 break;
2301 }
2302 break;
2303
2304 case EF_ARM_EABI_VER5:
2305 strcat (buf, ", Version5 EABI");
2306 while (e_flags)
2307 {
2308 unsigned flag;
2309
2310 /* Process flags one bit at a time. */
2311 flag = e_flags & - e_flags;
2312 e_flags &= ~ flag;
2313
2314 switch (flag)
2315 {
2316 case EF_ARM_BE8:
2317 strcat (buf, ", BE8");
2318 break;
2319
2320 case EF_ARM_LE8:
2321 strcat (buf, ", LE8");
2322 break;
2323
2324 case EF_ARM_ABI_FLOAT_SOFT: /* Conflicts with EF_ARM_SOFT_FLOAT. */
2325 strcat (buf, ", soft-float ABI");
2326 break;
2327
2328 case EF_ARM_ABI_FLOAT_HARD: /* Conflicts with EF_ARM_VFP_FLOAT. */
2329 strcat (buf, ", hard-float ABI");
2330 break;
2331
2332 default:
2333 unknown = 1;
2334 break;
2335 }
2336 }
2337 break;
2338
2339 case EF_ARM_EABI_UNKNOWN:
2340 strcat (buf, ", GNU EABI");
2341 while (e_flags)
2342 {
2343 unsigned flag;
2344
2345 /* Process flags one bit at a time. */
2346 flag = e_flags & - e_flags;
2347 e_flags &= ~ flag;
2348
2349 switch (flag)
2350 {
2351 case EF_ARM_INTERWORK:
2352 strcat (buf, ", interworking enabled");
2353 break;
2354
2355 case EF_ARM_APCS_26:
2356 strcat (buf, ", uses APCS/26");
2357 break;
2358
2359 case EF_ARM_APCS_FLOAT:
2360 strcat (buf, ", uses APCS/float");
2361 break;
2362
2363 case EF_ARM_PIC:
2364 strcat (buf, ", position independent");
2365 break;
2366
2367 case EF_ARM_ALIGN8:
2368 strcat (buf, ", 8 bit structure alignment");
2369 break;
2370
2371 case EF_ARM_NEW_ABI:
2372 strcat (buf, ", uses new ABI");
2373 break;
2374
2375 case EF_ARM_OLD_ABI:
2376 strcat (buf, ", uses old ABI");
2377 break;
2378
2379 case EF_ARM_SOFT_FLOAT:
2380 strcat (buf, ", software FP");
2381 break;
2382
2383 case EF_ARM_VFP_FLOAT:
2384 strcat (buf, ", VFP");
2385 break;
2386
2387 case EF_ARM_MAVERICK_FLOAT:
2388 strcat (buf, ", Maverick FP");
2389 break;
2390
2391 default:
2392 unknown = 1;
2393 break;
2394 }
2395 }
2396 }
2397
2398 if (unknown)
2399 strcat (buf,_(", <unknown>"));
2400 }
2401
2402 static void
2403 decode_NDS32_machine_flags (unsigned e_flags, char buf[], size_t size)
2404 {
2405 unsigned abi;
2406 unsigned arch;
2407 unsigned config;
2408 unsigned version;
2409 int has_fpu = 0;
2410 int r = 0;
2411
2412 static const char *ABI_STRINGS[] =
2413 {
2414 "ABI v0", /* use r5 as return register; only used in N1213HC */
2415 "ABI v1", /* use r0 as return register */
2416 "ABI v2", /* use r0 as return register and don't reserve 24 bytes for arguments */
2417 "ABI v2fp", /* for FPU */
2418 "AABI",
2419 "ABI2 FP+"
2420 };
2421 static const char *VER_STRINGS[] =
2422 {
2423 "Andes ELF V1.3 or older",
2424 "Andes ELF V1.3.1",
2425 "Andes ELF V1.4"
2426 };
2427 static const char *ARCH_STRINGS[] =
2428 {
2429 "",
2430 "Andes Star v1.0",
2431 "Andes Star v2.0",
2432 "Andes Star v3.0",
2433 "Andes Star v3.0m"
2434 };
2435
2436 abi = EF_NDS_ABI & e_flags;
2437 arch = EF_NDS_ARCH & e_flags;
2438 config = EF_NDS_INST & e_flags;
2439 version = EF_NDS32_ELF_VERSION & e_flags;
2440
2441 memset (buf, 0, size);
2442
2443 switch (abi)
2444 {
2445 case E_NDS_ABI_V0:
2446 case E_NDS_ABI_V1:
2447 case E_NDS_ABI_V2:
2448 case E_NDS_ABI_V2FP:
2449 case E_NDS_ABI_AABI:
2450 case E_NDS_ABI_V2FP_PLUS:
2451 /* In case there are holes in the array. */
2452 r += snprintf (buf + r, size - r, ", %s", ABI_STRINGS[abi >> EF_NDS_ABI_SHIFT]);
2453 break;
2454
2455 default:
2456 r += snprintf (buf + r, size - r, ", <unrecognized ABI>");
2457 break;
2458 }
2459
2460 switch (version)
2461 {
2462 case E_NDS32_ELF_VER_1_2:
2463 case E_NDS32_ELF_VER_1_3:
2464 case E_NDS32_ELF_VER_1_4:
2465 r += snprintf (buf + r, size - r, ", %s", VER_STRINGS[version >> EF_NDS32_ELF_VERSION_SHIFT]);
2466 break;
2467
2468 default:
2469 r += snprintf (buf + r, size - r, ", <unrecognized ELF version number>");
2470 break;
2471 }
2472
2473 if (E_NDS_ABI_V0 == abi)
2474 {
2475 /* OLD ABI; only used in N1213HC, has performance extension 1. */
2476 r += snprintf (buf + r, size - r, ", Andes Star v1.0, N1213HC, MAC, PERF1");
2477 if (arch == E_NDS_ARCH_STAR_V1_0)
2478 r += snprintf (buf + r, size -r, ", 16b"); /* has 16-bit instructions */
2479 return;
2480 }
2481
2482 switch (arch)
2483 {
2484 case E_NDS_ARCH_STAR_V1_0:
2485 case E_NDS_ARCH_STAR_V2_0:
2486 case E_NDS_ARCH_STAR_V3_0:
2487 case E_NDS_ARCH_STAR_V3_M:
2488 r += snprintf (buf + r, size - r, ", %s", ARCH_STRINGS[arch >> EF_NDS_ARCH_SHIFT]);
2489 break;
2490
2491 default:
2492 r += snprintf (buf + r, size - r, ", <unrecognized architecture>");
2493 /* ARCH version determines how the e_flags are interpreted.
2494 If it is unknown, we cannot proceed. */
2495 return;
2496 }
2497
2498 /* Newer ABI; Now handle architecture specific flags. */
2499 if (arch == E_NDS_ARCH_STAR_V1_0)
2500 {
2501 if (config & E_NDS32_HAS_MFUSR_PC_INST)
2502 r += snprintf (buf + r, size -r, ", MFUSR_PC");
2503
2504 if (!(config & E_NDS32_HAS_NO_MAC_INST))
2505 r += snprintf (buf + r, size -r, ", MAC");
2506
2507 if (config & E_NDS32_HAS_DIV_INST)
2508 r += snprintf (buf + r, size -r, ", DIV");
2509
2510 if (config & E_NDS32_HAS_16BIT_INST)
2511 r += snprintf (buf + r, size -r, ", 16b");
2512 }
2513 else
2514 {
2515 if (config & E_NDS32_HAS_MFUSR_PC_INST)
2516 {
2517 if (version <= E_NDS32_ELF_VER_1_3)
2518 r += snprintf (buf + r, size -r, ", [B8]");
2519 else
2520 r += snprintf (buf + r, size -r, ", EX9");
2521 }
2522
2523 if (config & E_NDS32_HAS_MAC_DX_INST)
2524 r += snprintf (buf + r, size -r, ", MAC_DX");
2525
2526 if (config & E_NDS32_HAS_DIV_DX_INST)
2527 r += snprintf (buf + r, size -r, ", DIV_DX");
2528
2529 if (config & E_NDS32_HAS_16BIT_INST)
2530 {
2531 if (version <= E_NDS32_ELF_VER_1_3)
2532 r += snprintf (buf + r, size -r, ", 16b");
2533 else
2534 r += snprintf (buf + r, size -r, ", IFC");
2535 }
2536 }
2537
2538 if (config & E_NDS32_HAS_EXT_INST)
2539 r += snprintf (buf + r, size -r, ", PERF1");
2540
2541 if (config & E_NDS32_HAS_EXT2_INST)
2542 r += snprintf (buf + r, size -r, ", PERF2");
2543
2544 if (config & E_NDS32_HAS_FPU_INST)
2545 {
2546 has_fpu = 1;
2547 r += snprintf (buf + r, size -r, ", FPU_SP");
2548 }
2549
2550 if (config & E_NDS32_HAS_FPU_DP_INST)
2551 {
2552 has_fpu = 1;
2553 r += snprintf (buf + r, size -r, ", FPU_DP");
2554 }
2555
2556 if (config & E_NDS32_HAS_FPU_MAC_INST)
2557 {
2558 has_fpu = 1;
2559 r += snprintf (buf + r, size -r, ", FPU_MAC");
2560 }
2561
2562 if (has_fpu)
2563 {
2564 switch ((config & E_NDS32_FPU_REG_CONF) >> E_NDS32_FPU_REG_CONF_SHIFT)
2565 {
2566 case E_NDS32_FPU_REG_8SP_4DP:
2567 r += snprintf (buf + r, size -r, ", FPU_REG:8/4");
2568 break;
2569 case E_NDS32_FPU_REG_16SP_8DP:
2570 r += snprintf (buf + r, size -r, ", FPU_REG:16/8");
2571 break;
2572 case E_NDS32_FPU_REG_32SP_16DP:
2573 r += snprintf (buf + r, size -r, ", FPU_REG:32/16");
2574 break;
2575 case E_NDS32_FPU_REG_32SP_32DP:
2576 r += snprintf (buf + r, size -r, ", FPU_REG:32/32");
2577 break;
2578 }
2579 }
2580
2581 if (config & E_NDS32_HAS_AUDIO_INST)
2582 r += snprintf (buf + r, size -r, ", AUDIO");
2583
2584 if (config & E_NDS32_HAS_STRING_INST)
2585 r += snprintf (buf + r, size -r, ", STR");
2586
2587 if (config & E_NDS32_HAS_REDUCED_REGS)
2588 r += snprintf (buf + r, size -r, ", 16REG");
2589
2590 if (config & E_NDS32_HAS_VIDEO_INST)
2591 {
2592 if (version <= E_NDS32_ELF_VER_1_3)
2593 r += snprintf (buf + r, size -r, ", VIDEO");
2594 else
2595 r += snprintf (buf + r, size -r, ", SATURATION");
2596 }
2597
2598 if (config & E_NDS32_HAS_ENCRIPT_INST)
2599 r += snprintf (buf + r, size -r, ", ENCRP");
2600
2601 if (config & E_NDS32_HAS_L2C_INST)
2602 r += snprintf (buf + r, size -r, ", L2C");
2603 }
2604
2605 static char *
2606 get_machine_flags (unsigned e_flags, unsigned e_machine)
2607 {
2608 static char buf[1024];
2609
2610 buf[0] = '\0';
2611
2612 if (e_flags)
2613 {
2614 switch (e_machine)
2615 {
2616 default:
2617 break;
2618
2619 case EM_ARM:
2620 decode_ARM_machine_flags (e_flags, buf);
2621 break;
2622
2623 case EM_BLACKFIN:
2624 if (e_flags & EF_BFIN_PIC)
2625 strcat (buf, ", PIC");
2626
2627 if (e_flags & EF_BFIN_FDPIC)
2628 strcat (buf, ", FDPIC");
2629
2630 if (e_flags & EF_BFIN_CODE_IN_L1)
2631 strcat (buf, ", code in L1");
2632
2633 if (e_flags & EF_BFIN_DATA_IN_L1)
2634 strcat (buf, ", data in L1");
2635
2636 break;
2637
2638 case EM_CYGNUS_FRV:
2639 switch (e_flags & EF_FRV_CPU_MASK)
2640 {
2641 case EF_FRV_CPU_GENERIC:
2642 break;
2643
2644 default:
2645 strcat (buf, ", fr???");
2646 break;
2647
2648 case EF_FRV_CPU_FR300:
2649 strcat (buf, ", fr300");
2650 break;
2651
2652 case EF_FRV_CPU_FR400:
2653 strcat (buf, ", fr400");
2654 break;
2655 case EF_FRV_CPU_FR405:
2656 strcat (buf, ", fr405");
2657 break;
2658
2659 case EF_FRV_CPU_FR450:
2660 strcat (buf, ", fr450");
2661 break;
2662
2663 case EF_FRV_CPU_FR500:
2664 strcat (buf, ", fr500");
2665 break;
2666 case EF_FRV_CPU_FR550:
2667 strcat (buf, ", fr550");
2668 break;
2669
2670 case EF_FRV_CPU_SIMPLE:
2671 strcat (buf, ", simple");
2672 break;
2673 case EF_FRV_CPU_TOMCAT:
2674 strcat (buf, ", tomcat");
2675 break;
2676 }
2677 break;
2678
2679 case EM_68K:
2680 if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
2681 strcat (buf, ", m68000");
2682 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
2683 strcat (buf, ", cpu32");
2684 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
2685 strcat (buf, ", fido_a");
2686 else
2687 {
2688 char const * isa = _("unknown");
2689 char const * mac = _("unknown mac");
2690 char const * additional = NULL;
2691
2692 switch (e_flags & EF_M68K_CF_ISA_MASK)
2693 {
2694 case EF_M68K_CF_ISA_A_NODIV:
2695 isa = "A";
2696 additional = ", nodiv";
2697 break;
2698 case EF_M68K_CF_ISA_A:
2699 isa = "A";
2700 break;
2701 case EF_M68K_CF_ISA_A_PLUS:
2702 isa = "A+";
2703 break;
2704 case EF_M68K_CF_ISA_B_NOUSP:
2705 isa = "B";
2706 additional = ", nousp";
2707 break;
2708 case EF_M68K_CF_ISA_B:
2709 isa = "B";
2710 break;
2711 case EF_M68K_CF_ISA_C:
2712 isa = "C";
2713 break;
2714 case EF_M68K_CF_ISA_C_NODIV:
2715 isa = "C";
2716 additional = ", nodiv";
2717 break;
2718 }
2719 strcat (buf, ", cf, isa ");
2720 strcat (buf, isa);
2721 if (additional)
2722 strcat (buf, additional);
2723 if (e_flags & EF_M68K_CF_FLOAT)
2724 strcat (buf, ", float");
2725 switch (e_flags & EF_M68K_CF_MAC_MASK)
2726 {
2727 case 0:
2728 mac = NULL;
2729 break;
2730 case EF_M68K_CF_MAC:
2731 mac = "mac";
2732 break;
2733 case EF_M68K_CF_EMAC:
2734 mac = "emac";
2735 break;
2736 case EF_M68K_CF_EMAC_B:
2737 mac = "emac_b";
2738 break;
2739 }
2740 if (mac)
2741 {
2742 strcat (buf, ", ");
2743 strcat (buf, mac);
2744 }
2745 }
2746 break;
2747
2748 case EM_PPC:
2749 if (e_flags & EF_PPC_EMB)
2750 strcat (buf, ", emb");
2751
2752 if (e_flags & EF_PPC_RELOCATABLE)
2753 strcat (buf, _(", relocatable"));
2754
2755 if (e_flags & EF_PPC_RELOCATABLE_LIB)
2756 strcat (buf, _(", relocatable-lib"));
2757 break;
2758
2759 case EM_PPC64:
2760 if (e_flags & EF_PPC64_ABI)
2761 {
2762 char abi[] = ", abiv0";
2763
2764 abi[6] += e_flags & EF_PPC64_ABI;
2765 strcat (buf, abi);
2766 }
2767 break;
2768
2769 case EM_V800:
2770 if ((e_flags & EF_RH850_ABI) == EF_RH850_ABI)
2771 strcat (buf, ", RH850 ABI");
2772
2773 if (e_flags & EF_V800_850E3)
2774 strcat (buf, ", V3 architecture");
2775
2776 if ((e_flags & (EF_RH850_FPU_DOUBLE | EF_RH850_FPU_SINGLE)) == 0)
2777 strcat (buf, ", FPU not used");
2778
2779 if ((e_flags & (EF_RH850_REGMODE22 | EF_RH850_REGMODE32)) == 0)
2780 strcat (buf, ", regmode: COMMON");
2781
2782 if ((e_flags & (EF_RH850_GP_FIX | EF_RH850_GP_NOFIX)) == 0)
2783 strcat (buf, ", r4 not used");
2784
2785 if ((e_flags & (EF_RH850_EP_FIX | EF_RH850_EP_NOFIX)) == 0)
2786 strcat (buf, ", r30 not used");
2787
2788 if ((e_flags & (EF_RH850_TP_FIX | EF_RH850_TP_NOFIX)) == 0)
2789 strcat (buf, ", r5 not used");
2790
2791 if ((e_flags & (EF_RH850_REG2_RESERVE | EF_RH850_REG2_NORESERVE)) == 0)
2792 strcat (buf, ", r2 not used");
2793
2794 for (e_flags &= 0xFFFF; e_flags; e_flags &= ~ (e_flags & - e_flags))
2795 {
2796 switch (e_flags & - e_flags)
2797 {
2798 case EF_RH850_FPU_DOUBLE: strcat (buf, ", double precision FPU"); break;
2799 case EF_RH850_FPU_SINGLE: strcat (buf, ", single precision FPU"); break;
2800 case EF_RH850_SIMD: strcat (buf, ", SIMD"); break;
2801 case EF_RH850_CACHE: strcat (buf, ", CACHE"); break;
2802 case EF_RH850_MMU: strcat (buf, ", MMU"); break;
2803 case EF_RH850_REGMODE22: strcat (buf, ", regmode:22"); break;
2804 case EF_RH850_REGMODE32: strcat (buf, ", regmode:23"); break;
2805 case EF_RH850_DATA_ALIGN8: strcat (buf, ", 8-byte alignment"); break;
2806 case EF_RH850_GP_FIX: strcat (buf, ", r4 fixed"); break;
2807 case EF_RH850_GP_NOFIX: strcat (buf, ", r4 free"); break;
2808 case EF_RH850_EP_FIX: strcat (buf, ", r30 fixed"); break;
2809 case EF_RH850_EP_NOFIX: strcat (buf, ", r30 free"); break;
2810 case EF_RH850_TP_FIX: strcat (buf, ", r5 fixed"); break;
2811 case EF_RH850_TP_NOFIX: strcat (buf, ", r5 free"); break;
2812 case EF_RH850_REG2_RESERVE: strcat (buf, ", r2 fixed"); break;
2813 case EF_RH850_REG2_NORESERVE: strcat (buf, ", r2 free"); break;
2814 default: break;
2815 }
2816 }
2817 break;
2818
2819 case EM_V850:
2820 case EM_CYGNUS_V850:
2821 switch (e_flags & EF_V850_ARCH)
2822 {
2823 case E_V850E3V5_ARCH:
2824 strcat (buf, ", v850e3v5");
2825 break;
2826 case E_V850E2V3_ARCH:
2827 strcat (buf, ", v850e2v3");
2828 break;
2829 case E_V850E2_ARCH:
2830 strcat (buf, ", v850e2");
2831 break;
2832 case E_V850E1_ARCH:
2833 strcat (buf, ", v850e1");
2834 break;
2835 case E_V850E_ARCH:
2836 strcat (buf, ", v850e");
2837 break;
2838 case E_V850_ARCH:
2839 strcat (buf, ", v850");
2840 break;
2841 default:
2842 strcat (buf, _(", unknown v850 architecture variant"));
2843 break;
2844 }
2845 break;
2846
2847 case EM_M32R:
2848 case EM_CYGNUS_M32R:
2849 if ((e_flags & EF_M32R_ARCH) == E_M32R_ARCH)
2850 strcat (buf, ", m32r");
2851 break;
2852
2853 case EM_MIPS:
2854 case EM_MIPS_RS3_LE:
2855 if (e_flags & EF_MIPS_NOREORDER)
2856 strcat (buf, ", noreorder");
2857
2858 if (e_flags & EF_MIPS_PIC)
2859 strcat (buf, ", pic");
2860
2861 if (e_flags & EF_MIPS_CPIC)
2862 strcat (buf, ", cpic");
2863
2864 if (e_flags & EF_MIPS_UCODE)
2865 strcat (buf, ", ugen_reserved");
2866
2867 if (e_flags & EF_MIPS_ABI2)
2868 strcat (buf, ", abi2");
2869
2870 if (e_flags & EF_MIPS_OPTIONS_FIRST)
2871 strcat (buf, ", odk first");
2872
2873 if (e_flags & EF_MIPS_32BITMODE)
2874 strcat (buf, ", 32bitmode");
2875
2876 if (e_flags & EF_MIPS_NAN2008)
2877 strcat (buf, ", nan2008");
2878
2879 if (e_flags & EF_MIPS_FP64)
2880 strcat (buf, ", fp64");
2881
2882 switch ((e_flags & EF_MIPS_MACH))
2883 {
2884 case E_MIPS_MACH_3900: strcat (buf, ", 3900"); break;
2885 case E_MIPS_MACH_4010: strcat (buf, ", 4010"); break;
2886 case E_MIPS_MACH_4100: strcat (buf, ", 4100"); break;
2887 case E_MIPS_MACH_4111: strcat (buf, ", 4111"); break;
2888 case E_MIPS_MACH_4120: strcat (buf, ", 4120"); break;
2889 case E_MIPS_MACH_4650: strcat (buf, ", 4650"); break;
2890 case E_MIPS_MACH_5400: strcat (buf, ", 5400"); break;
2891 case E_MIPS_MACH_5500: strcat (buf, ", 5500"); break;
2892 case E_MIPS_MACH_SB1: strcat (buf, ", sb1"); break;
2893 case E_MIPS_MACH_9000: strcat (buf, ", 9000"); break;
2894 case E_MIPS_MACH_LS2E: strcat (buf, ", loongson-2e"); break;
2895 case E_MIPS_MACH_LS2F: strcat (buf, ", loongson-2f"); break;
2896 case E_MIPS_MACH_LS3A: strcat (buf, ", loongson-3a"); break;
2897 case E_MIPS_MACH_OCTEON: strcat (buf, ", octeon"); break;
2898 case E_MIPS_MACH_OCTEON2: strcat (buf, ", octeon2"); break;
2899 case E_MIPS_MACH_OCTEON3: strcat (buf, ", octeon3"); break;
2900 case E_MIPS_MACH_XLR: strcat (buf, ", xlr"); break;
2901 case 0:
2902 /* We simply ignore the field in this case to avoid confusion:
2903 MIPS ELF does not specify EF_MIPS_MACH, it is a GNU
2904 extension. */
2905 break;
2906 default: strcat (buf, _(", unknown CPU")); break;
2907 }
2908
2909 switch ((e_flags & EF_MIPS_ABI))
2910 {
2911 case E_MIPS_ABI_O32: strcat (buf, ", o32"); break;
2912 case E_MIPS_ABI_O64: strcat (buf, ", o64"); break;
2913 case E_MIPS_ABI_EABI32: strcat (buf, ", eabi32"); break;
2914 case E_MIPS_ABI_EABI64: strcat (buf, ", eabi64"); break;
2915 case 0:
2916 /* We simply ignore the field in this case to avoid confusion:
2917 MIPS ELF does not specify EF_MIPS_ABI, it is a GNU extension.
2918 This means it is likely to be an o32 file, but not for
2919 sure. */
2920 break;
2921 default: strcat (buf, _(", unknown ABI")); break;
2922 }
2923
2924 if (e_flags & EF_MIPS_ARCH_ASE_MDMX)
2925 strcat (buf, ", mdmx");
2926
2927 if (e_flags & EF_MIPS_ARCH_ASE_M16)
2928 strcat (buf, ", mips16");
2929
2930 if (e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
2931 strcat (buf, ", micromips");
2932
2933 switch ((e_flags & EF_MIPS_ARCH))
2934 {
2935 case E_MIPS_ARCH_1: strcat (buf, ", mips1"); break;
2936 case E_MIPS_ARCH_2: strcat (buf, ", mips2"); break;
2937 case E_MIPS_ARCH_3: strcat (buf, ", mips3"); break;
2938 case E_MIPS_ARCH_4: strcat (buf, ", mips4"); break;
2939 case E_MIPS_ARCH_5: strcat (buf, ", mips5"); break;
2940 case E_MIPS_ARCH_32: strcat (buf, ", mips32"); break;
2941 case E_MIPS_ARCH_32R2: strcat (buf, ", mips32r2"); break;
2942 case E_MIPS_ARCH_32R6: strcat (buf, ", mips32r6"); break;
2943 case E_MIPS_ARCH_64: strcat (buf, ", mips64"); break;
2944 case E_MIPS_ARCH_64R2: strcat (buf, ", mips64r2"); break;
2945 case E_MIPS_ARCH_64R6: strcat (buf, ", mips64r6"); break;
2946 default: strcat (buf, _(", unknown ISA")); break;
2947 }
2948 break;
2949
2950 case EM_NDS32:
2951 decode_NDS32_machine_flags (e_flags, buf, sizeof buf);
2952 break;
2953
2954 case EM_SH:
2955 switch ((e_flags & EF_SH_MACH_MASK))
2956 {
2957 case EF_SH1: strcat (buf, ", sh1"); break;
2958 case EF_SH2: strcat (buf, ", sh2"); break;
2959 case EF_SH3: strcat (buf, ", sh3"); break;
2960 case EF_SH_DSP: strcat (buf, ", sh-dsp"); break;
2961 case EF_SH3_DSP: strcat (buf, ", sh3-dsp"); break;
2962 case EF_SH4AL_DSP: strcat (buf, ", sh4al-dsp"); break;
2963 case EF_SH3E: strcat (buf, ", sh3e"); break;
2964 case EF_SH4: strcat (buf, ", sh4"); break;
2965 case EF_SH5: strcat (buf, ", sh5"); break;
2966 case EF_SH2E: strcat (buf, ", sh2e"); break;
2967 case EF_SH4A: strcat (buf, ", sh4a"); break;
2968 case EF_SH2A: strcat (buf, ", sh2a"); break;
2969 case EF_SH4_NOFPU: strcat (buf, ", sh4-nofpu"); break;
2970 case EF_SH4A_NOFPU: strcat (buf, ", sh4a-nofpu"); break;
2971 case EF_SH2A_NOFPU: strcat (buf, ", sh2a-nofpu"); break;
2972 case EF_SH3_NOMMU: strcat (buf, ", sh3-nommu"); break;
2973 case EF_SH4_NOMMU_NOFPU: strcat (buf, ", sh4-nommu-nofpu"); break;
2974 case EF_SH2A_SH4_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh4-nommu-nofpu"); break;
2975 case EF_SH2A_SH3_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh3-nommu"); break;
2976 case EF_SH2A_SH4: strcat (buf, ", sh2a-or-sh4"); break;
2977 case EF_SH2A_SH3E: strcat (buf, ", sh2a-or-sh3e"); break;
2978 default: strcat (buf, _(", unknown ISA")); break;
2979 }
2980
2981 if (e_flags & EF_SH_PIC)
2982 strcat (buf, ", pic");
2983
2984 if (e_flags & EF_SH_FDPIC)
2985 strcat (buf, ", fdpic");
2986 break;
2987
2988 case EM_OR1K:
2989 if (e_flags & EF_OR1K_NODELAY)
2990 strcat (buf, ", no delay");
2991 break;
2992
2993 case EM_SPARCV9:
2994 if (e_flags & EF_SPARC_32PLUS)
2995 strcat (buf, ", v8+");
2996
2997 if (e_flags & EF_SPARC_SUN_US1)
2998 strcat (buf, ", ultrasparcI");
2999
3000 if (e_flags & EF_SPARC_SUN_US3)
3001 strcat (buf, ", ultrasparcIII");
3002
3003 if (e_flags & EF_SPARC_HAL_R1)
3004 strcat (buf, ", halr1");
3005
3006 if (e_flags & EF_SPARC_LEDATA)
3007 strcat (buf, ", ledata");
3008
3009 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_TSO)
3010 strcat (buf, ", tso");
3011
3012 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_PSO)
3013 strcat (buf, ", pso");
3014
3015 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_RMO)
3016 strcat (buf, ", rmo");
3017 break;
3018
3019 case EM_PARISC:
3020 switch (e_flags & EF_PARISC_ARCH)
3021 {
3022 case EFA_PARISC_1_0:
3023 strcpy (buf, ", PA-RISC 1.0");
3024 break;
3025 case EFA_PARISC_1_1:
3026 strcpy (buf, ", PA-RISC 1.1");
3027 break;
3028 case EFA_PARISC_2_0:
3029 strcpy (buf, ", PA-RISC 2.0");
3030 break;
3031 default:
3032 break;
3033 }
3034 if (e_flags & EF_PARISC_TRAPNIL)
3035 strcat (buf, ", trapnil");
3036 if (e_flags & EF_PARISC_EXT)
3037 strcat (buf, ", ext");
3038 if (e_flags & EF_PARISC_LSB)
3039 strcat (buf, ", lsb");
3040 if (e_flags & EF_PARISC_WIDE)
3041 strcat (buf, ", wide");
3042 if (e_flags & EF_PARISC_NO_KABP)
3043 strcat (buf, ", no kabp");
3044 if (e_flags & EF_PARISC_LAZYSWAP)
3045 strcat (buf, ", lazyswap");
3046 break;
3047
3048 case EM_PJ:
3049 case EM_PJ_OLD:
3050 if ((e_flags & EF_PICOJAVA_NEWCALLS) == EF_PICOJAVA_NEWCALLS)
3051 strcat (buf, ", new calling convention");
3052
3053 if ((e_flags & EF_PICOJAVA_GNUCALLS) == EF_PICOJAVA_GNUCALLS)
3054 strcat (buf, ", gnu calling convention");
3055 break;
3056
3057 case EM_IA_64:
3058 if ((e_flags & EF_IA_64_ABI64))
3059 strcat (buf, ", 64-bit");
3060 else
3061 strcat (buf, ", 32-bit");
3062 if ((e_flags & EF_IA_64_REDUCEDFP))
3063 strcat (buf, ", reduced fp model");
3064 if ((e_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
3065 strcat (buf, ", no function descriptors, constant gp");
3066 else if ((e_flags & EF_IA_64_CONS_GP))
3067 strcat (buf, ", constant gp");
3068 if ((e_flags & EF_IA_64_ABSOLUTE))
3069 strcat (buf, ", absolute");
3070 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
3071 {
3072 if ((e_flags & EF_IA_64_VMS_LINKAGES))
3073 strcat (buf, ", vms_linkages");
3074 switch ((e_flags & EF_IA_64_VMS_COMCOD))
3075 {
3076 case EF_IA_64_VMS_COMCOD_SUCCESS:
3077 break;
3078 case EF_IA_64_VMS_COMCOD_WARNING:
3079 strcat (buf, ", warning");
3080 break;
3081 case EF_IA_64_VMS_COMCOD_ERROR:
3082 strcat (buf, ", error");
3083 break;
3084 case EF_IA_64_VMS_COMCOD_ABORT:
3085 strcat (buf, ", abort");
3086 break;
3087 default:
3088 abort ();
3089 }
3090 }
3091 break;
3092
3093 case EM_VAX:
3094 if ((e_flags & EF_VAX_NONPIC))
3095 strcat (buf, ", non-PIC");
3096 if ((e_flags & EF_VAX_DFLOAT))
3097 strcat (buf, ", D-Float");
3098 if ((e_flags & EF_VAX_GFLOAT))
3099 strcat (buf, ", G-Float");
3100 break;
3101
3102 case EM_RL78:
3103 if (e_flags & E_FLAG_RL78_G10)
3104 strcat (buf, ", G10");
3105 if (e_flags & E_FLAG_RL78_64BIT_DOUBLES)
3106 strcat (buf, ", 64-bit doubles");
3107 break;
3108
3109 case EM_RX:
3110 if (e_flags & E_FLAG_RX_64BIT_DOUBLES)
3111 strcat (buf, ", 64-bit doubles");
3112 if (e_flags & E_FLAG_RX_DSP)
3113 strcat (buf, ", dsp");
3114 if (e_flags & E_FLAG_RX_PID)
3115 strcat (buf, ", pid");
3116 if (e_flags & E_FLAG_RX_ABI)
3117 strcat (buf, ", RX ABI");
3118 break;
3119
3120 case EM_S390:
3121 if (e_flags & EF_S390_HIGH_GPRS)
3122 strcat (buf, ", highgprs");
3123 break;
3124
3125 case EM_TI_C6000:
3126 if ((e_flags & EF_C6000_REL))
3127 strcat (buf, ", relocatable module");
3128 break;
3129
3130 case EM_MSP430:
3131 strcat (buf, _(": architecture variant: "));
3132 switch (e_flags & EF_MSP430_MACH)
3133 {
3134 case E_MSP430_MACH_MSP430x11: strcat (buf, "MSP430x11"); break;
3135 case E_MSP430_MACH_MSP430x11x1 : strcat (buf, "MSP430x11x1 "); break;
3136 case E_MSP430_MACH_MSP430x12: strcat (buf, "MSP430x12"); break;
3137 case E_MSP430_MACH_MSP430x13: strcat (buf, "MSP430x13"); break;
3138 case E_MSP430_MACH_MSP430x14: strcat (buf, "MSP430x14"); break;
3139 case E_MSP430_MACH_MSP430x15: strcat (buf, "MSP430x15"); break;
3140 case E_MSP430_MACH_MSP430x16: strcat (buf, "MSP430x16"); break;
3141 case E_MSP430_MACH_MSP430x31: strcat (buf, "MSP430x31"); break;
3142 case E_MSP430_MACH_MSP430x32: strcat (buf, "MSP430x32"); break;
3143 case E_MSP430_MACH_MSP430x33: strcat (buf, "MSP430x33"); break;
3144 case E_MSP430_MACH_MSP430x41: strcat (buf, "MSP430x41"); break;
3145 case E_MSP430_MACH_MSP430x42: strcat (buf, "MSP430x42"); break;
3146 case E_MSP430_MACH_MSP430x43: strcat (buf, "MSP430x43"); break;
3147 case E_MSP430_MACH_MSP430x44: strcat (buf, "MSP430x44"); break;
3148 case E_MSP430_MACH_MSP430X : strcat (buf, "MSP430X"); break;
3149 default:
3150 strcat (buf, _(": unknown")); break;
3151 }
3152
3153 if (e_flags & ~ EF_MSP430_MACH)
3154 strcat (buf, _(": unknown extra flag bits also present"));
3155 }
3156 }
3157
3158 return buf;
3159 }
3160
3161 static const char *
3162 get_osabi_name (unsigned int osabi)
3163 {
3164 static char buff[32];
3165
3166 switch (osabi)
3167 {
3168 case ELFOSABI_NONE: return "UNIX - System V";
3169 case ELFOSABI_HPUX: return "UNIX - HP-UX";
3170 case ELFOSABI_NETBSD: return "UNIX - NetBSD";
3171 case ELFOSABI_GNU: return "UNIX - GNU";
3172 case ELFOSABI_SOLARIS: return "UNIX - Solaris";
3173 case ELFOSABI_AIX: return "UNIX - AIX";
3174 case ELFOSABI_IRIX: return "UNIX - IRIX";
3175 case ELFOSABI_FREEBSD: return "UNIX - FreeBSD";
3176 case ELFOSABI_TRU64: return "UNIX - TRU64";
3177 case ELFOSABI_MODESTO: return "Novell - Modesto";
3178 case ELFOSABI_OPENBSD: return "UNIX - OpenBSD";
3179 case ELFOSABI_OPENVMS: return "VMS - OpenVMS";
3180 case ELFOSABI_NSK: return "HP - Non-Stop Kernel";
3181 case ELFOSABI_AROS: return "AROS";
3182 case ELFOSABI_FENIXOS: return "FenixOS";
3183 default:
3184 if (osabi >= 64)
3185 switch (elf_header.e_machine)
3186 {
3187 case EM_ARM:
3188 switch (osabi)
3189 {
3190 case ELFOSABI_ARM: return "ARM";
3191 default:
3192 break;
3193 }
3194 break;
3195
3196 case EM_MSP430:
3197 case EM_MSP430_OLD:
3198 switch (osabi)
3199 {
3200 case ELFOSABI_STANDALONE: return _("Standalone App");
3201 default:
3202 break;
3203 }
3204 break;
3205
3206 case EM_TI_C6000:
3207 switch (osabi)
3208 {
3209 case ELFOSABI_C6000_ELFABI: return _("Bare-metal C6000");
3210 case ELFOSABI_C6000_LINUX: return "Linux C6000";
3211 default:
3212 break;
3213 }
3214 break;
3215
3216 default:
3217 break;
3218 }
3219 snprintf (buff, sizeof (buff), _("<unknown: %x>"), osabi);
3220 return buff;
3221 }
3222 }
3223
3224 static const char *
3225 get_aarch64_segment_type (unsigned long type)
3226 {
3227 switch (type)
3228 {
3229 case PT_AARCH64_ARCHEXT:
3230 return "AARCH64_ARCHEXT";
3231 default:
3232 break;
3233 }
3234
3235 return NULL;
3236 }
3237
3238 static const char *
3239 get_arm_segment_type (unsigned long type)
3240 {
3241 switch (type)
3242 {
3243 case PT_ARM_EXIDX:
3244 return "EXIDX";
3245 default:
3246 break;
3247 }
3248
3249 return NULL;
3250 }
3251
3252 static const char *
3253 get_mips_segment_type (unsigned long type)
3254 {
3255 switch (type)
3256 {
3257 case PT_MIPS_REGINFO:
3258 return "REGINFO";
3259 case PT_MIPS_RTPROC:
3260 return "RTPROC";
3261 case PT_MIPS_OPTIONS:
3262 return "OPTIONS";
3263 case PT_MIPS_ABIFLAGS:
3264 return "ABIFLAGS";
3265 default:
3266 break;
3267 }
3268
3269 return NULL;
3270 }
3271
3272 static const char *
3273 get_parisc_segment_type (unsigned long type)
3274 {
3275 switch (type)
3276 {
3277 case PT_HP_TLS: return "HP_TLS";
3278 case PT_HP_CORE_NONE: return "HP_CORE_NONE";
3279 case PT_HP_CORE_VERSION: return "HP_CORE_VERSION";
3280 case PT_HP_CORE_KERNEL: return "HP_CORE_KERNEL";
3281 case PT_HP_CORE_COMM: return "HP_CORE_COMM";
3282 case PT_HP_CORE_PROC: return "HP_CORE_PROC";
3283 case PT_HP_CORE_LOADABLE: return "HP_CORE_LOADABLE";
3284 case PT_HP_CORE_STACK: return "HP_CORE_STACK";
3285 case PT_HP_CORE_SHM: return "HP_CORE_SHM";
3286 case PT_HP_CORE_MMF: return "HP_CORE_MMF";
3287 case PT_HP_PARALLEL: return "HP_PARALLEL";
3288 case PT_HP_FASTBIND: return "HP_FASTBIND";
3289 case PT_HP_OPT_ANNOT: return "HP_OPT_ANNOT";
3290 case PT_HP_HSL_ANNOT: return "HP_HSL_ANNOT";
3291 case PT_HP_STACK: return "HP_STACK";
3292 case PT_HP_CORE_UTSNAME: return "HP_CORE_UTSNAME";
3293 case PT_PARISC_ARCHEXT: return "PARISC_ARCHEXT";
3294 case PT_PARISC_UNWIND: return "PARISC_UNWIND";
3295 case PT_PARISC_WEAKORDER: return "PARISC_WEAKORDER";
3296 default:
3297 break;
3298 }
3299
3300 return NULL;
3301 }
3302
3303 static const char *
3304 get_ia64_segment_type (unsigned long type)
3305 {
3306 switch (type)
3307 {
3308 case PT_IA_64_ARCHEXT: return "IA_64_ARCHEXT";
3309 case PT_IA_64_UNWIND: return "IA_64_UNWIND";
3310 case PT_HP_TLS: return "HP_TLS";
3311 case PT_IA_64_HP_OPT_ANOT: return "HP_OPT_ANNOT";
3312 case PT_IA_64_HP_HSL_ANOT: return "HP_HSL_ANNOT";
3313 case PT_IA_64_HP_STACK: return "HP_STACK";
3314 default:
3315 break;
3316 }
3317
3318 return NULL;
3319 }
3320
3321 static const char *
3322 get_tic6x_segment_type (unsigned long type)
3323 {
3324 switch (type)
3325 {
3326 case PT_C6000_PHATTR: return "C6000_PHATTR";
3327 default:
3328 break;
3329 }
3330
3331 return NULL;
3332 }
3333
3334 static const char *
3335 get_segment_type (unsigned long p_type)
3336 {
3337 static char buff[32];
3338
3339 switch (p_type)
3340 {
3341 case PT_NULL: return "NULL";
3342 case PT_LOAD: return "LOAD";
3343 case PT_DYNAMIC: return "DYNAMIC";
3344 case PT_INTERP: return "INTERP";
3345 case PT_NOTE: return "NOTE";
3346 case PT_SHLIB: return "SHLIB";
3347 case PT_PHDR: return "PHDR";
3348 case PT_TLS: return "TLS";
3349
3350 case PT_GNU_EH_FRAME:
3351 return "GNU_EH_FRAME";
3352 case PT_GNU_STACK: return "GNU_STACK";
3353 case PT_GNU_RELRO: return "GNU_RELRO";
3354
3355 default:
3356 if ((p_type >= PT_LOPROC) && (p_type <= PT_HIPROC))
3357 {
3358 const char * result;
3359
3360 switch (elf_header.e_machine)
3361 {
3362 case EM_AARCH64:
3363 result = get_aarch64_segment_type (p_type);
3364 break;
3365 case EM_ARM:
3366 result = get_arm_segment_type (p_type);
3367 break;
3368 case EM_MIPS:
3369 case EM_MIPS_RS3_LE:
3370 result = get_mips_segment_type (p_type);
3371 break;
3372 case EM_PARISC:
3373 result = get_parisc_segment_type (p_type);
3374 break;
3375 case EM_IA_64:
3376 result = get_ia64_segment_type (p_type);
3377 break;
3378 case EM_TI_C6000:
3379 result = get_tic6x_segment_type (p_type);
3380 break;
3381 default:
3382 result = NULL;
3383 break;
3384 }
3385
3386 if (result != NULL)
3387 return result;
3388
3389 sprintf (buff, "LOPROC+%lx", p_type - PT_LOPROC);
3390 }
3391 else if ((p_type >= PT_LOOS) && (p_type <= PT_HIOS))
3392 {
3393 const char * result;
3394
3395 switch (elf_header.e_machine)
3396 {
3397 case EM_PARISC:
3398 result = get_parisc_segment_type (p_type);
3399 break;
3400 case EM_IA_64:
3401 result = get_ia64_segment_type (p_type);
3402 break;
3403 default:
3404 result = NULL;
3405 break;
3406 }
3407
3408 if (result != NULL)
3409 return result;
3410
3411 sprintf (buff, "LOOS+%lx", p_type - PT_LOOS);
3412 }
3413 else
3414 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), p_type);
3415
3416 return buff;
3417 }
3418 }
3419
3420 static const char *
3421 get_mips_section_type_name (unsigned int sh_type)
3422 {
3423 switch (sh_type)
3424 {
3425 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST";
3426 case SHT_MIPS_MSYM: return "MIPS_MSYM";
3427 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT";
3428 case SHT_MIPS_GPTAB: return "MIPS_GPTAB";
3429 case SHT_MIPS_UCODE: return "MIPS_UCODE";
3430 case SHT_MIPS_DEBUG: return "MIPS_DEBUG";
3431 case SHT_MIPS_REGINFO: return "MIPS_REGINFO";
3432 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE";
3433 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM";
3434 case SHT_MIPS_RELD: return "MIPS_RELD";
3435 case SHT_MIPS_IFACE: return "MIPS_IFACE";
3436 case SHT_MIPS_CONTENT: return "MIPS_CONTENT";
3437 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS";
3438 case SHT_MIPS_SHDR: return "MIPS_SHDR";
3439 case SHT_MIPS_FDESC: return "MIPS_FDESC";
3440 case SHT_MIPS_EXTSYM: return "MIPS_EXTSYM";
3441 case SHT_MIPS_DENSE: return "MIPS_DENSE";
3442 case SHT_MIPS_PDESC: return "MIPS_PDESC";
3443 case SHT_MIPS_LOCSYM: return "MIPS_LOCSYM";
3444 case SHT_MIPS_AUXSYM: return "MIPS_AUXSYM";
3445 case SHT_MIPS_OPTSYM: return "MIPS_OPTSYM";
3446 case SHT_MIPS_LOCSTR: return "MIPS_LOCSTR";
3447 case SHT_MIPS_LINE: return "MIPS_LINE";
3448 case SHT_MIPS_RFDESC: return "MIPS_RFDESC";
3449 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM";
3450 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST";
3451 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS";
3452 case SHT_MIPS_DWARF: return "MIPS_DWARF";
3453 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL";
3454 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
3455 case SHT_MIPS_EVENTS: return "MIPS_EVENTS";
3456 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE";
3457 case SHT_MIPS_PIXIE: return "MIPS_PIXIE";
3458 case SHT_MIPS_XLATE: return "MIPS_XLATE";
3459 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG";
3460 case SHT_MIPS_WHIRL: return "MIPS_WHIRL";
3461 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION";
3462 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD";
3463 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION";
3464 case SHT_MIPS_ABIFLAGS: return "MIPS_ABIFLAGS";
3465 default:
3466 break;
3467 }
3468 return NULL;
3469 }
3470
3471 static const char *
3472 get_parisc_section_type_name (unsigned int sh_type)
3473 {
3474 switch (sh_type)
3475 {
3476 case SHT_PARISC_EXT: return "PARISC_EXT";
3477 case SHT_PARISC_UNWIND: return "PARISC_UNWIND";
3478 case SHT_PARISC_DOC: return "PARISC_DOC";
3479 case SHT_PARISC_ANNOT: return "PARISC_ANNOT";
3480 case SHT_PARISC_SYMEXTN: return "PARISC_SYMEXTN";
3481 case SHT_PARISC_STUBS: return "PARISC_STUBS";
3482 case SHT_PARISC_DLKM: return "PARISC_DLKM";
3483 default:
3484 break;
3485 }
3486 return NULL;
3487 }
3488
3489 static const char *
3490 get_ia64_section_type_name (unsigned int sh_type)
3491 {
3492 /* If the top 8 bits are 0x78 the next 8 are the os/abi ID. */
3493 if ((sh_type & 0xFF000000) == SHT_IA_64_LOPSREG)
3494 return get_osabi_name ((sh_type & 0x00FF0000) >> 16);
3495
3496 switch (sh_type)
3497 {
3498 case SHT_IA_64_EXT: return "IA_64_EXT";
3499 case SHT_IA_64_UNWIND: return "IA_64_UNWIND";
3500 case SHT_IA_64_PRIORITY_INIT: return "IA_64_PRIORITY_INIT";
3501 case SHT_IA_64_VMS_TRACE: return "VMS_TRACE";
3502 case SHT_IA_64_VMS_TIE_SIGNATURES: return "VMS_TIE_SIGNATURES";
3503 case SHT_IA_64_VMS_DEBUG: return "VMS_DEBUG";
3504 case SHT_IA_64_VMS_DEBUG_STR: return "VMS_DEBUG_STR";
3505 case SHT_IA_64_VMS_LINKAGES: return "VMS_LINKAGES";
3506 case SHT_IA_64_VMS_SYMBOL_VECTOR: return "VMS_SYMBOL_VECTOR";
3507 case SHT_IA_64_VMS_FIXUP: return "VMS_FIXUP";
3508 default:
3509 break;
3510 }
3511 return NULL;
3512 }
3513
3514 static const char *
3515 get_x86_64_section_type_name (unsigned int sh_type)
3516 {
3517 switch (sh_type)
3518 {
3519 case SHT_X86_64_UNWIND: return "X86_64_UNWIND";
3520 default:
3521 break;
3522 }
3523 return NULL;
3524 }
3525
3526 static const char *
3527 get_aarch64_section_type_name (unsigned int sh_type)
3528 {
3529 switch (sh_type)
3530 {
3531 case SHT_AARCH64_ATTRIBUTES:
3532 return "AARCH64_ATTRIBUTES";
3533 default:
3534 break;
3535 }
3536 return NULL;
3537 }
3538
3539 static const char *
3540 get_arm_section_type_name (unsigned int sh_type)
3541 {
3542 switch (sh_type)
3543 {
3544 case SHT_ARM_EXIDX: return "ARM_EXIDX";
3545 case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP";
3546 case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES";
3547 case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY";
3548 case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION";
3549 default:
3550 break;
3551 }
3552 return NULL;
3553 }
3554
3555 static const char *
3556 get_tic6x_section_type_name (unsigned int sh_type)
3557 {
3558 switch (sh_type)
3559 {
3560 case SHT_C6000_UNWIND:
3561 return "C6000_UNWIND";
3562 case SHT_C6000_PREEMPTMAP:
3563 return "C6000_PREEMPTMAP";
3564 case SHT_C6000_ATTRIBUTES:
3565 return "C6000_ATTRIBUTES";
3566 case SHT_TI_ICODE:
3567 return "TI_ICODE";
3568 case SHT_TI_XREF:
3569 return "TI_XREF";
3570 case SHT_TI_HANDLER:
3571 return "TI_HANDLER";
3572 case SHT_TI_INITINFO:
3573 return "TI_INITINFO";
3574 case SHT_TI_PHATTRS:
3575 return "TI_PHATTRS";
3576 default:
3577 break;
3578 }
3579 return NULL;
3580 }
3581
3582 static const char *
3583 get_msp430x_section_type_name (unsigned int sh_type)
3584 {
3585 switch (sh_type)
3586 {
3587 case SHT_MSP430_SEC_FLAGS: return "MSP430_SEC_FLAGS";
3588 case SHT_MSP430_SYM_ALIASES: return "MSP430_SYM_ALIASES";
3589 case SHT_MSP430_ATTRIBUTES: return "MSP430_ATTRIBUTES";
3590 default: return NULL;
3591 }
3592 }
3593
3594 static const char *
3595 get_section_type_name (unsigned int sh_type)
3596 {
3597 static char buff[32];
3598
3599 switch (sh_type)
3600 {
3601 case SHT_NULL: return "NULL";
3602 case SHT_PROGBITS: return "PROGBITS";
3603 case SHT_SYMTAB: return "SYMTAB";
3604 case SHT_STRTAB: return "STRTAB";
3605 case SHT_RELA: return "RELA";
3606 case SHT_HASH: return "HASH";
3607 case SHT_DYNAMIC: return "DYNAMIC";
3608 case SHT_NOTE: return "NOTE";
3609 case SHT_NOBITS: return "NOBITS";
3610 case SHT_REL: return "REL";
3611 case SHT_SHLIB: return "SHLIB";
3612 case SHT_DYNSYM: return "DYNSYM";
3613 case SHT_INIT_ARRAY: return "INIT_ARRAY";
3614 case SHT_FINI_ARRAY: return "FINI_ARRAY";
3615 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY";
3616 case SHT_GNU_HASH: return "GNU_HASH";
3617 case SHT_GROUP: return "GROUP";
3618 case SHT_SYMTAB_SHNDX: return "SYMTAB SECTION INDICIES";
3619 case SHT_GNU_verdef: return "VERDEF";
3620 case SHT_GNU_verneed: return "VERNEED";
3621 case SHT_GNU_versym: return "VERSYM";
3622 case 0x6ffffff0: return "VERSYM";
3623 case 0x6ffffffc: return "VERDEF";
3624 case 0x7ffffffd: return "AUXILIARY";
3625 case 0x7fffffff: return "FILTER";
3626 case SHT_GNU_LIBLIST: return "GNU_LIBLIST";
3627
3628 default:
3629 if ((sh_type >= SHT_LOPROC) && (sh_type <= SHT_HIPROC))
3630 {
3631 const char * result;
3632
3633 switch (elf_header.e_machine)
3634 {
3635 case EM_MIPS:
3636 case EM_MIPS_RS3_LE:
3637 result = get_mips_section_type_name (sh_type);
3638 break;
3639 case EM_PARISC:
3640 result = get_parisc_section_type_name (sh_type);
3641 break;
3642 case EM_IA_64:
3643 result = get_ia64_section_type_name (sh_type);
3644 break;
3645 case EM_X86_64:
3646 case EM_L1OM:
3647 case EM_K1OM:
3648 result = get_x86_64_section_type_name (sh_type);
3649 break;
3650 case EM_AARCH64:
3651 result = get_aarch64_section_type_name (sh_type);
3652 break;
3653 case EM_ARM:
3654 result = get_arm_section_type_name (sh_type);
3655 break;
3656 case EM_TI_C6000:
3657 result = get_tic6x_section_type_name (sh_type);
3658 break;
3659 case EM_MSP430:
3660 result = get_msp430x_section_type_name (sh_type);
3661 break;
3662 default:
3663 result = NULL;
3664 break;
3665 }
3666
3667 if (result != NULL)
3668 return result;
3669
3670 sprintf (buff, "LOPROC+%x", sh_type - SHT_LOPROC);
3671 }
3672 else if ((sh_type >= SHT_LOOS) && (sh_type <= SHT_HIOS))
3673 {
3674 const char * result;
3675
3676 switch (elf_header.e_machine)
3677 {
3678 case EM_IA_64:
3679 result = get_ia64_section_type_name (sh_type);
3680 break;
3681 default:
3682 result = NULL;
3683 break;
3684 }
3685
3686 if (result != NULL)
3687 return result;
3688
3689 sprintf (buff, "LOOS+%x", sh_type - SHT_LOOS);
3690 }
3691 else if ((sh_type >= SHT_LOUSER) && (sh_type <= SHT_HIUSER))
3692 sprintf (buff, "LOUSER+%x", sh_type - SHT_LOUSER);
3693 else
3694 /* This message is probably going to be displayed in a 15
3695 character wide field, so put the hex value first. */
3696 snprintf (buff, sizeof (buff), _("%08x: <unknown>"), sh_type);
3697
3698 return buff;
3699 }
3700 }
3701
3702 #define OPTION_DEBUG_DUMP 512
3703 #define OPTION_DYN_SYMS 513
3704 #define OPTION_DWARF_DEPTH 514
3705 #define OPTION_DWARF_START 515
3706 #define OPTION_DWARF_CHECK 516
3707
3708 static struct option options[] =
3709 {
3710 {"all", no_argument, 0, 'a'},
3711 {"file-header", no_argument, 0, 'h'},
3712 {"program-headers", no_argument, 0, 'l'},
3713 {"headers", no_argument, 0, 'e'},
3714 {"histogram", no_argument, 0, 'I'},
3715 {"segments", no_argument, 0, 'l'},
3716 {"sections", no_argument, 0, 'S'},
3717 {"section-headers", no_argument, 0, 'S'},
3718 {"section-groups", no_argument, 0, 'g'},
3719 {"section-details", no_argument, 0, 't'},
3720 {"full-section-name",no_argument, 0, 'N'},
3721 {"symbols", no_argument, 0, 's'},
3722 {"syms", no_argument, 0, 's'},
3723 {"dyn-syms", no_argument, 0, OPTION_DYN_SYMS},
3724 {"relocs", no_argument, 0, 'r'},
3725 {"notes", no_argument, 0, 'n'},
3726 {"dynamic", no_argument, 0, 'd'},
3727 {"arch-specific", no_argument, 0, 'A'},
3728 {"version-info", no_argument, 0, 'V'},
3729 {"use-dynamic", no_argument, 0, 'D'},
3730 {"unwind", no_argument, 0, 'u'},
3731 {"archive-index", no_argument, 0, 'c'},
3732 {"hex-dump", required_argument, 0, 'x'},
3733 {"relocated-dump", required_argument, 0, 'R'},
3734 {"string-dump", required_argument, 0, 'p'},
3735 #ifdef SUPPORT_DISASSEMBLY
3736 {"instruction-dump", required_argument, 0, 'i'},
3737 #endif
3738 {"debug-dump", optional_argument, 0, OPTION_DEBUG_DUMP},
3739
3740 {"dwarf-depth", required_argument, 0, OPTION_DWARF_DEPTH},
3741 {"dwarf-start", required_argument, 0, OPTION_DWARF_START},
3742 {"dwarf-check", no_argument, 0, OPTION_DWARF_CHECK},
3743
3744 {"version", no_argument, 0, 'v'},
3745 {"wide", no_argument, 0, 'W'},
3746 {"help", no_argument, 0, 'H'},
3747 {0, no_argument, 0, 0}
3748 };
3749
3750 static void
3751 usage (FILE * stream)
3752 {
3753 fprintf (stream, _("Usage: readelf <option(s)> elf-file(s)\n"));
3754 fprintf (stream, _(" Display information about the contents of ELF format files\n"));
3755 fprintf (stream, _(" Options are:\n\
3756 -a --all Equivalent to: -h -l -S -s -r -d -V -A -I\n\
3757 -h --file-header Display the ELF file header\n\
3758 -l --program-headers Display the program headers\n\
3759 --segments An alias for --program-headers\n\
3760 -S --section-headers Display the sections' header\n\
3761 --sections An alias for --section-headers\n\
3762 -g --section-groups Display the section groups\n\
3763 -t --section-details Display the section details\n\
3764 -e --headers Equivalent to: -h -l -S\n\
3765 -s --syms Display the symbol table\n\
3766 --symbols An alias for --syms\n\
3767 --dyn-syms Display the dynamic symbol table\n\
3768 -n --notes Display the core notes (if present)\n\
3769 -r --relocs Display the relocations (if present)\n\
3770 -u --unwind Display the unwind info (if present)\n\
3771 -d --dynamic Display the dynamic section (if present)\n\
3772 -V --version-info Display the version sections (if present)\n\
3773 -A --arch-specific Display architecture specific information (if any)\n\
3774 -c --archive-index Display the symbol/file index in an archive\n\
3775 -D --use-dynamic Use the dynamic section info when displaying symbols\n\
3776 -x --hex-dump=<number|name>\n\
3777 Dump the contents of section <number|name> as bytes\n\
3778 -p --string-dump=<number|name>\n\
3779 Dump the contents of section <number|name> as strings\n\
3780 -R --relocated-dump=<number|name>\n\
3781 Dump the contents of section <number|name> as relocated bytes\n\
3782 -w[lLiaprmfFsoRt] or\n\
3783 --debug-dump[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,\n\
3784 =frames-interp,=str,=loc,=Ranges,=pubtypes,\n\
3785 =gdb_index,=trace_info,=trace_abbrev,=trace_aranges,\n\
3786 =addr,=cu_index]\n\
3787 Display the contents of DWARF2 debug sections\n"));
3788 fprintf (stream, _("\
3789 --dwarf-depth=N Do not display DIEs at depth N or greater\n\
3790 --dwarf-start=N Display DIEs starting with N, at the same depth\n\
3791 or deeper\n"));
3792 #ifdef SUPPORT_DISASSEMBLY
3793 fprintf (stream, _("\
3794 -i --instruction-dump=<number|name>\n\
3795 Disassemble the contents of section <number|name>\n"));
3796 #endif
3797 fprintf (stream, _("\
3798 -I --histogram Display histogram of bucket list lengths\n\
3799 -W --wide Allow output width to exceed 80 characters\n\
3800 @<file> Read options from <file>\n\
3801 -H --help Display this information\n\
3802 -v --version Display the version number of readelf\n"));
3803
3804 if (REPORT_BUGS_TO[0] && stream == stdout)
3805 fprintf (stdout, _("Report bugs to %s\n"), REPORT_BUGS_TO);
3806
3807 exit (stream == stdout ? 0 : 1);
3808 }
3809
3810 /* Record the fact that the user wants the contents of section number
3811 SECTION to be displayed using the method(s) encoded as flags bits
3812 in TYPE. Note, TYPE can be zero if we are creating the array for
3813 the first time. */
3814
3815 static void
3816 request_dump_bynumber (unsigned int section, dump_type type)
3817 {
3818 if (section >= num_dump_sects)
3819 {
3820 dump_type * new_dump_sects;
3821
3822 new_dump_sects = (dump_type *) calloc (section + 1,
3823 sizeof (* dump_sects));
3824
3825 if (new_dump_sects == NULL)
3826 error (_("Out of memory allocating dump request table.\n"));
3827 else
3828 {
3829 /* Copy current flag settings. */
3830 memcpy (new_dump_sects, dump_sects, num_dump_sects * sizeof (* dump_sects));
3831
3832 free (dump_sects);
3833
3834 dump_sects = new_dump_sects;
3835 num_dump_sects = section + 1;
3836 }
3837 }
3838
3839 if (dump_sects)
3840 dump_sects[section] |= type;
3841
3842 return;
3843 }
3844
3845 /* Request a dump by section name. */
3846
3847 static void
3848 request_dump_byname (const char * section, dump_type type)
3849 {
3850 struct dump_list_entry * new_request;
3851
3852 new_request = (struct dump_list_entry *)
3853 malloc (sizeof (struct dump_list_entry));
3854 if (!new_request)
3855 error (_("Out of memory allocating dump request table.\n"));
3856
3857 new_request->name = strdup (section);
3858 if (!new_request->name)
3859 error (_("Out of memory allocating dump request table.\n"));
3860
3861 new_request->type = type;
3862
3863 new_request->next = dump_sects_byname;
3864 dump_sects_byname = new_request;
3865 }
3866
3867 static inline void
3868 request_dump (dump_type type)
3869 {
3870 int section;
3871 char * cp;
3872
3873 do_dump++;
3874 section = strtoul (optarg, & cp, 0);
3875
3876 if (! *cp && section >= 0)
3877 request_dump_bynumber (section, type);
3878 else
3879 request_dump_byname (optarg, type);
3880 }
3881
3882
3883 static void
3884 parse_args (int argc, char ** argv)
3885 {
3886 int c;
3887
3888 if (argc < 2)
3889 usage (stderr);
3890
3891 while ((c = getopt_long
3892 (argc, argv, "ADHINR:SVWacdeghi:lnp:rstuvw::x:", options, NULL)) != EOF)
3893 {
3894 switch (c)
3895 {
3896 case 0:
3897 /* Long options. */
3898 break;
3899 case 'H':
3900 usage (stdout);
3901 break;
3902
3903 case 'a':
3904 do_syms++;
3905 do_reloc++;
3906 do_unwind++;
3907 do_dynamic++;
3908 do_header++;
3909 do_sections++;
3910 do_section_groups++;
3911 do_segments++;
3912 do_version++;
3913 do_histogram++;
3914 do_arch++;
3915 do_notes++;
3916 break;
3917 case 'g':
3918 do_section_groups++;
3919 break;
3920 case 't':
3921 case 'N':
3922 do_sections++;
3923 do_section_details++;
3924 break;
3925 case 'e':
3926 do_header++;
3927 do_sections++;
3928 do_segments++;
3929 break;
3930 case 'A':
3931 do_arch++;
3932 break;
3933 case 'D':
3934 do_using_dynamic++;
3935 break;
3936 case 'r':
3937 do_reloc++;
3938 break;
3939 case 'u':
3940 do_unwind++;
3941 break;
3942 case 'h':
3943 do_header++;
3944 break;
3945 case 'l':
3946 do_segments++;
3947 break;
3948 case 's':
3949 do_syms++;
3950 break;
3951 case 'S':
3952 do_sections++;
3953 break;
3954 case 'd':
3955 do_dynamic++;
3956 break;
3957 case 'I':
3958 do_histogram++;
3959 break;
3960 case 'n':
3961 do_notes++;
3962 break;
3963 case 'c':
3964 do_archive_index++;
3965 break;
3966 case 'x':
3967 request_dump (HEX_DUMP);
3968 break;
3969 case 'p':
3970 request_dump (STRING_DUMP);
3971 break;
3972 case 'R':
3973 request_dump (RELOC_DUMP);
3974 break;
3975 case 'w':
3976 do_dump++;
3977 if (optarg == 0)
3978 {
3979 do_debugging = 1;
3980 dwarf_select_sections_all ();
3981 }
3982 else
3983 {
3984 do_debugging = 0;
3985 dwarf_select_sections_by_letters (optarg);
3986 }
3987 break;
3988 case OPTION_DEBUG_DUMP:
3989 do_dump++;
3990 if (optarg == 0)
3991 do_debugging = 1;
3992 else
3993 {
3994 do_debugging = 0;
3995 dwarf_select_sections_by_names (optarg);
3996 }
3997 break;
3998 case OPTION_DWARF_DEPTH:
3999 {
4000 char *cp;
4001
4002 dwarf_cutoff_level = strtoul (optarg, & cp, 0);
4003 }
4004 break;
4005 case OPTION_DWARF_START:
4006 {
4007 char *cp;
4008
4009 dwarf_start_die = strtoul (optarg, & cp, 0);
4010 }
4011 break;
4012 case OPTION_DWARF_CHECK:
4013 dwarf_check = 1;
4014 break;
4015 case OPTION_DYN_SYMS:
4016 do_dyn_syms++;
4017 break;
4018 #ifdef SUPPORT_DISASSEMBLY
4019 case 'i':
4020 request_dump (DISASS_DUMP);
4021 break;
4022 #endif
4023 case 'v':
4024 print_version (program_name);
4025 break;
4026 case 'V':
4027 do_version++;
4028 break;
4029 case 'W':
4030 do_wide++;
4031 break;
4032 default:
4033 /* xgettext:c-format */
4034 error (_("Invalid option '-%c'\n"), c);
4035 /* Drop through. */
4036 case '?':
4037 usage (stderr);
4038 }
4039 }
4040
4041 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
4042 && !do_segments && !do_header && !do_dump && !do_version
4043 && !do_histogram && !do_debugging && !do_arch && !do_notes
4044 && !do_section_groups && !do_archive_index
4045 && !do_dyn_syms)
4046 usage (stderr);
4047 else if (argc < 3)
4048 {
4049 warn (_("Nothing to do.\n"));
4050 usage (stderr);
4051 }
4052 }
4053
4054 static const char *
4055 get_elf_class (unsigned int elf_class)
4056 {
4057 static char buff[32];
4058
4059 switch (elf_class)
4060 {
4061 case ELFCLASSNONE: return _("none");
4062 case ELFCLASS32: return "ELF32";
4063 case ELFCLASS64: return "ELF64";
4064 default:
4065 snprintf (buff, sizeof (buff), _("<unknown: %x>"), elf_class);
4066 return buff;
4067 }
4068 }
4069
4070 static const char *
4071 get_data_encoding (unsigned int encoding)
4072 {
4073 static char buff[32];
4074
4075 switch (encoding)
4076 {
4077 case ELFDATANONE: return _("none");
4078 case ELFDATA2LSB: return _("2's complement, little endian");
4079 case ELFDATA2MSB: return _("2's complement, big endian");
4080 default:
4081 snprintf (buff, sizeof (buff), _("<unknown: %x>"), encoding);
4082 return buff;
4083 }
4084 }
4085
4086 /* Decode the data held in 'elf_header'. */
4087
4088 static int
4089 process_file_header (void)
4090 {
4091 if ( elf_header.e_ident[EI_MAG0] != ELFMAG0
4092 || elf_header.e_ident[EI_MAG1] != ELFMAG1
4093 || elf_header.e_ident[EI_MAG2] != ELFMAG2
4094 || elf_header.e_ident[EI_MAG3] != ELFMAG3)
4095 {
4096 error
4097 (_("Not an ELF file - it has the wrong magic bytes at the start\n"));
4098 return 0;
4099 }
4100
4101 init_dwarf_regnames (elf_header.e_machine);
4102
4103 if (do_header)
4104 {
4105 int i;
4106
4107 printf (_("ELF Header:\n"));
4108 printf (_(" Magic: "));
4109 for (i = 0; i < EI_NIDENT; i++)
4110 printf ("%2.2x ", elf_header.e_ident[i]);
4111 printf ("\n");
4112 printf (_(" Class: %s\n"),
4113 get_elf_class (elf_header.e_ident[EI_CLASS]));
4114 printf (_(" Data: %s\n"),
4115 get_data_encoding (elf_header.e_ident[EI_DATA]));
4116 printf (_(" Version: %d %s\n"),
4117 elf_header.e_ident[EI_VERSION],
4118 (elf_header.e_ident[EI_VERSION] == EV_CURRENT
4119 ? "(current)"
4120 : (elf_header.e_ident[EI_VERSION] != EV_NONE
4121 ? _("<unknown: %lx>")
4122 : "")));
4123 printf (_(" OS/ABI: %s\n"),
4124 get_osabi_name (elf_header.e_ident[EI_OSABI]));
4125 printf (_(" ABI Version: %d\n"),
4126 elf_header.e_ident[EI_ABIVERSION]);
4127 printf (_(" Type: %s\n"),
4128 get_file_type (elf_header.e_type));
4129 printf (_(" Machine: %s\n"),
4130 get_machine_name (elf_header.e_machine));
4131 printf (_(" Version: 0x%lx\n"),
4132 (unsigned long) elf_header.e_version);
4133
4134 printf (_(" Entry point address: "));
4135 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
4136 printf (_("\n Start of program headers: "));
4137 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
4138 printf (_(" (bytes into file)\n Start of section headers: "));
4139 print_vma ((bfd_vma) elf_header.e_shoff, DEC);
4140 printf (_(" (bytes into file)\n"));
4141
4142 printf (_(" Flags: 0x%lx%s\n"),
4143 (unsigned long) elf_header.e_flags,
4144 get_machine_flags (elf_header.e_flags, elf_header.e_machine));
4145 printf (_(" Size of this header: %ld (bytes)\n"),
4146 (long) elf_header.e_ehsize);
4147 printf (_(" Size of program headers: %ld (bytes)\n"),
4148 (long) elf_header.e_phentsize);
4149 printf (_(" Number of program headers: %ld"),
4150 (long) elf_header.e_phnum);
4151 if (section_headers != NULL
4152 && elf_header.e_phnum == PN_XNUM
4153 && section_headers[0].sh_info != 0)
4154 printf (" (%ld)", (long) section_headers[0].sh_info);
4155 putc ('\n', stdout);
4156 printf (_(" Size of section headers: %ld (bytes)\n"),
4157 (long) elf_header.e_shentsize);
4158 printf (_(" Number of section headers: %ld"),
4159 (long) elf_header.e_shnum);
4160 if (section_headers != NULL && elf_header.e_shnum == SHN_UNDEF)
4161 printf (" (%ld)", (long) section_headers[0].sh_size);
4162 putc ('\n', stdout);
4163 printf (_(" Section header string table index: %ld"),
4164 (long) elf_header.e_shstrndx);
4165 if (section_headers != NULL
4166 && elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
4167 printf (" (%u)", section_headers[0].sh_link);
4168 else if (elf_header.e_shstrndx != SHN_UNDEF
4169 && elf_header.e_shstrndx >= elf_header.e_shnum)
4170 printf (_(" <corrupt: out of range>"));
4171 putc ('\n', stdout);
4172 }
4173
4174 if (section_headers != NULL)
4175 {
4176 if (elf_header.e_phnum == PN_XNUM
4177 && section_headers[0].sh_info != 0)
4178 elf_header.e_phnum = section_headers[0].sh_info;
4179 if (elf_header.e_shnum == SHN_UNDEF)
4180 elf_header.e_shnum = section_headers[0].sh_size;
4181 if (elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
4182 elf_header.e_shstrndx = section_headers[0].sh_link;
4183 else if (elf_header.e_shstrndx >= elf_header.e_shnum)
4184 elf_header.e_shstrndx = SHN_UNDEF;
4185 free (section_headers);
4186 section_headers = NULL;
4187 }
4188
4189 return 1;
4190 }
4191
4192 static bfd_boolean
4193 get_32bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
4194 {
4195 Elf32_External_Phdr * phdrs;
4196 Elf32_External_Phdr * external;
4197 Elf_Internal_Phdr * internal;
4198 unsigned int i;
4199 unsigned int size = elf_header.e_phentsize;
4200 unsigned int num = elf_header.e_phnum;
4201
4202 /* PR binutils/17531: Cope with unexpected section header sizes. */
4203 if (size == 0 || num == 0)
4204 return FALSE;
4205 if (size < sizeof * phdrs)
4206 {
4207 error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
4208 return FALSE;
4209 }
4210 if (size > sizeof * phdrs)
4211 warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
4212
4213 phdrs = (Elf32_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
4214 size, num, _("program headers"));
4215 if (phdrs == NULL)
4216 return FALSE;
4217
4218 for (i = 0, internal = pheaders, external = phdrs;
4219 i < elf_header.e_phnum;
4220 i++, internal++, external++)
4221 {
4222 internal->p_type = BYTE_GET (external->p_type);
4223 internal->p_offset = BYTE_GET (external->p_offset);
4224 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4225 internal->p_paddr = BYTE_GET (external->p_paddr);
4226 internal->p_filesz = BYTE_GET (external->p_filesz);
4227 internal->p_memsz = BYTE_GET (external->p_memsz);
4228 internal->p_flags = BYTE_GET (external->p_flags);
4229 internal->p_align = BYTE_GET (external->p_align);
4230 }
4231
4232 free (phdrs);
4233 return TRUE;
4234 }
4235
4236 static bfd_boolean
4237 get_64bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
4238 {
4239 Elf64_External_Phdr * phdrs;
4240 Elf64_External_Phdr * external;
4241 Elf_Internal_Phdr * internal;
4242 unsigned int i;
4243 unsigned int size = elf_header.e_phentsize;
4244 unsigned int num = elf_header.e_phnum;
4245
4246 /* PR binutils/17531: Cope with unexpected section header sizes. */
4247 if (size == 0 || num == 0)
4248 return FALSE;
4249 if (size < sizeof * phdrs)
4250 {
4251 error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
4252 return FALSE;
4253 }
4254 if (size > sizeof * phdrs)
4255 warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
4256
4257 phdrs = (Elf64_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
4258 size, num, _("program headers"));
4259 if (!phdrs)
4260 return FALSE;
4261
4262 for (i = 0, internal = pheaders, external = phdrs;
4263 i < elf_header.e_phnum;
4264 i++, internal++, external++)
4265 {
4266 internal->p_type = BYTE_GET (external->p_type);
4267 internal->p_flags = BYTE_GET (external->p_flags);
4268 internal->p_offset = BYTE_GET (external->p_offset);
4269 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4270 internal->p_paddr = BYTE_GET (external->p_paddr);
4271 internal->p_filesz = BYTE_GET (external->p_filesz);
4272 internal->p_memsz = BYTE_GET (external->p_memsz);
4273 internal->p_align = BYTE_GET (external->p_align);
4274 }
4275
4276 free (phdrs);
4277 return TRUE;
4278 }
4279
4280 /* Returns 1 if the program headers were read into `program_headers'. */
4281
4282 static int
4283 get_program_headers (FILE * file)
4284 {
4285 Elf_Internal_Phdr * phdrs;
4286
4287 /* Check cache of prior read. */
4288 if (program_headers != NULL)
4289 return 1;
4290
4291 phdrs = (Elf_Internal_Phdr *) cmalloc (elf_header.e_phnum,
4292 sizeof (Elf_Internal_Phdr));
4293
4294 if (phdrs == NULL)
4295 {
4296 error (_("Out of memory reading %u program headers\n"),
4297 elf_header.e_phnum);
4298 return 0;
4299 }
4300
4301 if (is_32bit_elf
4302 ? get_32bit_program_headers (file, phdrs)
4303 : get_64bit_program_headers (file, phdrs))
4304 {
4305 program_headers = phdrs;
4306 return 1;
4307 }
4308
4309 free (phdrs);
4310 return 0;
4311 }
4312
4313 /* Returns 1 if the program headers were loaded. */
4314
4315 static int
4316 process_program_headers (FILE * file)
4317 {
4318 Elf_Internal_Phdr * segment;
4319 unsigned int i;
4320
4321 if (elf_header.e_phnum == 0)
4322 {
4323 /* PR binutils/12467. */
4324 if (elf_header.e_phoff != 0)
4325 warn (_("possibly corrupt ELF header - it has a non-zero program"
4326 " header offset, but no program headers"));
4327 else if (do_segments)
4328 printf (_("\nThere are no program headers in this file.\n"));
4329 return 0;
4330 }
4331
4332 if (do_segments && !do_header)
4333 {
4334 printf (_("\nElf file type is %s\n"), get_file_type (elf_header.e_type));
4335 printf (_("Entry point "));
4336 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
4337 printf (_("\nThere are %d program headers, starting at offset "),
4338 elf_header.e_phnum);
4339 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
4340 printf ("\n");
4341 }
4342
4343 if (! get_program_headers (file))
4344 return 0;
4345
4346 if (do_segments)
4347 {
4348 if (elf_header.e_phnum > 1)
4349 printf (_("\nProgram Headers:\n"));
4350 else
4351 printf (_("\nProgram Headers:\n"));
4352
4353 if (is_32bit_elf)
4354 printf
4355 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4356 else if (do_wide)
4357 printf
4358 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4359 else
4360 {
4361 printf
4362 (_(" Type Offset VirtAddr PhysAddr\n"));
4363 printf
4364 (_(" FileSiz MemSiz Flags Align\n"));
4365 }
4366 }
4367
4368 dynamic_addr = 0;
4369 dynamic_size = 0;
4370
4371 for (i = 0, segment = program_headers;
4372 i < elf_header.e_phnum;
4373 i++, segment++)
4374 {
4375 if (do_segments)
4376 {
4377 printf (" %-14.14s ", get_segment_type (segment->p_type));
4378
4379 if (is_32bit_elf)
4380 {
4381 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4382 printf ("0x%8.8lx ", (unsigned long) segment->p_vaddr);
4383 printf ("0x%8.8lx ", (unsigned long) segment->p_paddr);
4384 printf ("0x%5.5lx ", (unsigned long) segment->p_filesz);
4385 printf ("0x%5.5lx ", (unsigned long) segment->p_memsz);
4386 printf ("%c%c%c ",
4387 (segment->p_flags & PF_R ? 'R' : ' '),
4388 (segment->p_flags & PF_W ? 'W' : ' '),
4389 (segment->p_flags & PF_X ? 'E' : ' '));
4390 printf ("%#lx", (unsigned long) segment->p_align);
4391 }
4392 else if (do_wide)
4393 {
4394 if ((unsigned long) segment->p_offset == segment->p_offset)
4395 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4396 else
4397 {
4398 print_vma (segment->p_offset, FULL_HEX);
4399 putchar (' ');
4400 }
4401
4402 print_vma (segment->p_vaddr, FULL_HEX);
4403 putchar (' ');
4404 print_vma (segment->p_paddr, FULL_HEX);
4405 putchar (' ');
4406
4407 if ((unsigned long) segment->p_filesz == segment->p_filesz)
4408 printf ("0x%6.6lx ", (unsigned long) segment->p_filesz);
4409 else
4410 {
4411 print_vma (segment->p_filesz, FULL_HEX);
4412 putchar (' ');
4413 }
4414
4415 if ((unsigned long) segment->p_memsz == segment->p_memsz)
4416 printf ("0x%6.6lx", (unsigned long) segment->p_memsz);
4417 else
4418 {
4419 print_vma (segment->p_memsz, FULL_HEX);
4420 }
4421
4422 printf (" %c%c%c ",
4423 (segment->p_flags & PF_R ? 'R' : ' '),
4424 (segment->p_flags & PF_W ? 'W' : ' '),
4425 (segment->p_flags & PF_X ? 'E' : ' '));
4426
4427 if ((unsigned long) segment->p_align == segment->p_align)
4428 printf ("%#lx", (unsigned long) segment->p_align);
4429 else
4430 {
4431 print_vma (segment->p_align, PREFIX_HEX);
4432 }
4433 }
4434 else
4435 {
4436 print_vma (segment->p_offset, FULL_HEX);
4437 putchar (' ');
4438 print_vma (segment->p_vaddr, FULL_HEX);
4439 putchar (' ');
4440 print_vma (segment->p_paddr, FULL_HEX);
4441 printf ("\n ");
4442 print_vma (segment->p_filesz, FULL_HEX);
4443 putchar (' ');
4444 print_vma (segment->p_memsz, FULL_HEX);
4445 printf (" %c%c%c ",
4446 (segment->p_flags & PF_R ? 'R' : ' '),
4447 (segment->p_flags & PF_W ? 'W' : ' '),
4448 (segment->p_flags & PF_X ? 'E' : ' '));
4449 print_vma (segment->p_align, HEX);
4450 }
4451 }
4452
4453 if (do_segments)
4454 putc ('\n', stdout);
4455
4456 switch (segment->p_type)
4457 {
4458 case PT_DYNAMIC:
4459 if (dynamic_addr)
4460 error (_("more than one dynamic segment\n"));
4461
4462 /* By default, assume that the .dynamic section is the first
4463 section in the DYNAMIC segment. */
4464 dynamic_addr = segment->p_offset;
4465 dynamic_size = segment->p_filesz;
4466 /* PR binutils/17512: Avoid corrupt dynamic section info in the segment. */
4467 if (dynamic_addr + dynamic_size >= current_file_size)
4468 {
4469 error (_("the dynamic segment offset + size exceeds the size of the file\n"));
4470 dynamic_addr = dynamic_size = 0;
4471 }
4472
4473 /* Try to locate the .dynamic section. If there is
4474 a section header table, we can easily locate it. */
4475 if (section_headers != NULL)
4476 {
4477 Elf_Internal_Shdr * sec;
4478
4479 sec = find_section (".dynamic");
4480 if (sec == NULL || sec->sh_size == 0)
4481 {
4482 /* A corresponding .dynamic section is expected, but on
4483 IA-64/OpenVMS it is OK for it to be missing. */
4484 if (!is_ia64_vms ())
4485 error (_("no .dynamic section in the dynamic segment\n"));
4486 break;
4487 }
4488
4489 if (sec->sh_type == SHT_NOBITS)
4490 {
4491 dynamic_size = 0;
4492 break;
4493 }
4494
4495 dynamic_addr = sec->sh_offset;
4496 dynamic_size = sec->sh_size;
4497
4498 if (dynamic_addr < segment->p_offset
4499 || dynamic_addr > segment->p_offset + segment->p_filesz)
4500 warn (_("the .dynamic section is not contained"
4501 " within the dynamic segment\n"));
4502 else if (dynamic_addr > segment->p_offset)
4503 warn (_("the .dynamic section is not the first section"
4504 " in the dynamic segment.\n"));
4505 }
4506 break;
4507
4508 case PT_INTERP:
4509 if (fseek (file, archive_file_offset + (long) segment->p_offset,
4510 SEEK_SET))
4511 error (_("Unable to find program interpreter name\n"));
4512 else
4513 {
4514 char fmt [32];
4515 int ret = snprintf (fmt, sizeof (fmt), "%%%ds", PATH_MAX - 1);
4516
4517 if (ret >= (int) sizeof (fmt) || ret < 0)
4518 error (_("Internal error: failed to create format string to display program interpreter\n"));
4519
4520 program_interpreter[0] = 0;
4521 if (fscanf (file, fmt, program_interpreter) <= 0)
4522 error (_("Unable to read program interpreter name\n"));
4523
4524 if (do_segments)
4525 printf (_(" [Requesting program interpreter: %s]\n"),
4526 program_interpreter);
4527 }
4528 break;
4529 }
4530 }
4531
4532 if (do_segments && section_headers != NULL && string_table != NULL)
4533 {
4534 printf (_("\n Section to Segment mapping:\n"));
4535 printf (_(" Segment Sections...\n"));
4536
4537 for (i = 0; i < elf_header.e_phnum; i++)
4538 {
4539 unsigned int j;
4540 Elf_Internal_Shdr * section;
4541
4542 segment = program_headers + i;
4543 section = section_headers + 1;
4544
4545 printf (" %2.2d ", i);
4546
4547 for (j = 1; j < elf_header.e_shnum; j++, section++)
4548 {
4549 if (!ELF_TBSS_SPECIAL (section, segment)
4550 && ELF_SECTION_IN_SEGMENT_STRICT (section, segment))
4551 printf ("%s ", printable_section_name (section));
4552 }
4553
4554 putc ('\n',stdout);
4555 }
4556 }
4557
4558 return 1;
4559 }
4560
4561
4562 /* Find the file offset corresponding to VMA by using the program headers. */
4563
4564 static long
4565 offset_from_vma (FILE * file, bfd_vma vma, bfd_size_type size)
4566 {
4567 Elf_Internal_Phdr * seg;
4568
4569 if (! get_program_headers (file))
4570 {
4571 warn (_("Cannot interpret virtual addresses without program headers.\n"));
4572 return (long) vma;
4573 }
4574
4575 for (seg = program_headers;
4576 seg < program_headers + elf_header.e_phnum;
4577 ++seg)
4578 {
4579 if (seg->p_type != PT_LOAD)
4580 continue;
4581
4582 if (vma >= (seg->p_vaddr & -seg->p_align)
4583 && vma + size <= seg->p_vaddr + seg->p_filesz)
4584 return vma - seg->p_vaddr + seg->p_offset;
4585 }
4586
4587 warn (_("Virtual address 0x%lx not located in any PT_LOAD segment.\n"),
4588 (unsigned long) vma);
4589 return (long) vma;
4590 }
4591
4592
4593 /* Allocate memory and load the sections headers into the global pointer
4594 SECTION_HEADERS. If PROBE is true, this is just a probe and we do not
4595 generate any error messages if the load fails. */
4596
4597 static bfd_boolean
4598 get_32bit_section_headers (FILE * file, bfd_boolean probe)
4599 {
4600 Elf32_External_Shdr * shdrs;
4601 Elf_Internal_Shdr * internal;
4602 unsigned int i;
4603 unsigned int size = elf_header.e_shentsize;
4604 unsigned int num = probe ? 1 : elf_header.e_shnum;
4605
4606 /* PR binutils/17531: Cope with unexpected section header sizes. */
4607 if (size == 0 || num == 0)
4608 return FALSE;
4609 if (size < sizeof * shdrs)
4610 {
4611 if (! probe)
4612 error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
4613 return FALSE;
4614 }
4615 if (!probe && size > sizeof * shdrs)
4616 warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
4617
4618 shdrs = (Elf32_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
4619 size, num,
4620 probe ? NULL : _("section headers"));
4621 if (shdrs == NULL)
4622 return FALSE;
4623
4624 if (section_headers != NULL)
4625 free (section_headers);
4626 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
4627 sizeof (Elf_Internal_Shdr));
4628 if (section_headers == NULL)
4629 {
4630 if (!probe)
4631 error (_("Out of memory reading %u section headers\n"), num);
4632 return FALSE;
4633 }
4634
4635 for (i = 0, internal = section_headers;
4636 i < num;
4637 i++, internal++)
4638 {
4639 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
4640 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
4641 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
4642 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
4643 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
4644 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
4645 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
4646 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
4647 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
4648 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
4649 }
4650
4651 free (shdrs);
4652 return TRUE;
4653 }
4654
4655 static bfd_boolean
4656 get_64bit_section_headers (FILE * file, bfd_boolean probe)
4657 {
4658 Elf64_External_Shdr * shdrs;
4659 Elf_Internal_Shdr * internal;
4660 unsigned int i;
4661 unsigned int size = elf_header.e_shentsize;
4662 unsigned int num = probe ? 1 : elf_header.e_shnum;
4663
4664 /* PR binutils/17531: Cope with unexpected section header sizes. */
4665 if (size == 0 || num == 0)
4666 return FALSE;
4667 if (size < sizeof * shdrs)
4668 {
4669 if (! probe)
4670 error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
4671 return FALSE;
4672 }
4673 if (! probe && size > sizeof * shdrs)
4674 warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
4675
4676 shdrs = (Elf64_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
4677 size, num,
4678 probe ? NULL : _("section headers"));
4679 if (shdrs == NULL)
4680 return FALSE;
4681
4682 if (section_headers != NULL)
4683 free (section_headers);
4684 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
4685 sizeof (Elf_Internal_Shdr));
4686 if (section_headers == NULL)
4687 {
4688 if (! probe)
4689 error (_("Out of memory reading %u section headers\n"), num);
4690 return FALSE;
4691 }
4692
4693 for (i = 0, internal = section_headers;
4694 i < num;
4695 i++, internal++)
4696 {
4697 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
4698 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
4699 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
4700 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
4701 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
4702 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
4703 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
4704 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
4705 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
4706 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
4707 }
4708
4709 free (shdrs);
4710 return TRUE;
4711 }
4712
4713 static Elf_Internal_Sym *
4714 get_32bit_elf_symbols (FILE * file,
4715 Elf_Internal_Shdr * section,
4716 unsigned long * num_syms_return)
4717 {
4718 unsigned long number = 0;
4719 Elf32_External_Sym * esyms = NULL;
4720 Elf_External_Sym_Shndx * shndx = NULL;
4721 Elf_Internal_Sym * isyms = NULL;
4722 Elf_Internal_Sym * psym;
4723 unsigned int j;
4724
4725 /* Run some sanity checks first. */
4726 if (section->sh_entsize == 0)
4727 {
4728 error (_("sh_entsize is zero\n"));
4729 goto exit_point;
4730 }
4731
4732 if (section->sh_size > current_file_size)
4733 {
4734 error (_("Section %s has an invalid sh_size of 0x%lx\n"),
4735 printable_section_name (section), (unsigned long) section->sh_size);
4736 goto exit_point;
4737 }
4738
4739 number = section->sh_size / section->sh_entsize;
4740
4741 if (number * sizeof (Elf32_External_Sym) > section->sh_size + 1)
4742 {
4743 error (_("Invalid sh_entsize\n"));
4744 goto exit_point;
4745 }
4746
4747 esyms = (Elf32_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
4748 section->sh_size, _("symbols"));
4749 if (esyms == NULL)
4750 goto exit_point;
4751
4752 shndx = NULL;
4753 if (symtab_shndx_hdr != NULL
4754 && (symtab_shndx_hdr->sh_link
4755 == (unsigned long) (section - section_headers)))
4756 {
4757 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
4758 symtab_shndx_hdr->sh_offset,
4759 1, symtab_shndx_hdr->sh_size,
4760 _("symbol table section indicies"));
4761 if (shndx == NULL)
4762 goto exit_point;
4763 }
4764
4765 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
4766
4767 if (isyms == NULL)
4768 {
4769 error (_("Out of memory reading %lu symbols\n"),
4770 (unsigned long) number);
4771 goto exit_point;
4772 }
4773
4774 for (j = 0, psym = isyms; j < number; j++, psym++)
4775 {
4776 psym->st_name = BYTE_GET (esyms[j].st_name);
4777 psym->st_value = BYTE_GET (esyms[j].st_value);
4778 psym->st_size = BYTE_GET (esyms[j].st_size);
4779 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
4780 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
4781 psym->st_shndx
4782 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
4783 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
4784 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
4785 psym->st_info = BYTE_GET (esyms[j].st_info);
4786 psym->st_other = BYTE_GET (esyms[j].st_other);
4787 }
4788
4789 exit_point:
4790 if (shndx != NULL)
4791 free (shndx);
4792 if (esyms != NULL)
4793 free (esyms);
4794
4795 if (num_syms_return != NULL)
4796 * num_syms_return = isyms == NULL ? 0 : number;
4797
4798 return isyms;
4799 }
4800
4801 static Elf_Internal_Sym *
4802 get_64bit_elf_symbols (FILE * file,
4803 Elf_Internal_Shdr * section,
4804 unsigned long * num_syms_return)
4805 {
4806 unsigned long number = 0;
4807 Elf64_External_Sym * esyms = NULL;
4808 Elf_External_Sym_Shndx * shndx = NULL;
4809 Elf_Internal_Sym * isyms = NULL;
4810 Elf_Internal_Sym * psym;
4811 unsigned int j;
4812
4813 /* Run some sanity checks first. */
4814 if (section->sh_entsize == 0)
4815 {
4816 error (_("sh_entsize is zero\n"));
4817 goto exit_point;
4818 }
4819
4820 if (section->sh_size > current_file_size)
4821 {
4822 error (_("Section %s has an invalid sh_size of 0x%lx\n"),
4823 printable_section_name (section), (unsigned long) section->sh_size);
4824 goto exit_point;
4825 }
4826
4827 number = section->sh_size / section->sh_entsize;
4828
4829 if (number * sizeof (Elf64_External_Sym) > section->sh_size + 1)
4830 {
4831 error (_("Invalid sh_entsize\n"));
4832 goto exit_point;
4833 }
4834
4835 esyms = (Elf64_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
4836 section->sh_size, _("symbols"));
4837 if (!esyms)
4838 goto exit_point;
4839
4840 if (symtab_shndx_hdr != NULL
4841 && (symtab_shndx_hdr->sh_link
4842 == (unsigned long) (section - section_headers)))
4843 {
4844 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
4845 symtab_shndx_hdr->sh_offset,
4846 1, symtab_shndx_hdr->sh_size,
4847 _("symbol table section indicies"));
4848 if (shndx == NULL)
4849 goto exit_point;
4850 }
4851
4852 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
4853
4854 if (isyms == NULL)
4855 {
4856 error (_("Out of memory reading %lu symbols\n"),
4857 (unsigned long) number);
4858 goto exit_point;
4859 }
4860
4861 for (j = 0, psym = isyms; j < number; j++, psym++)
4862 {
4863 psym->st_name = BYTE_GET (esyms[j].st_name);
4864 psym->st_info = BYTE_GET (esyms[j].st_info);
4865 psym->st_other = BYTE_GET (esyms[j].st_other);
4866 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
4867
4868 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
4869 psym->st_shndx
4870 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
4871 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
4872 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
4873
4874 psym->st_value = BYTE_GET (esyms[j].st_value);
4875 psym->st_size = BYTE_GET (esyms[j].st_size);
4876 }
4877
4878 exit_point:
4879 if (shndx != NULL)
4880 free (shndx);
4881 if (esyms != NULL)
4882 free (esyms);
4883
4884 if (num_syms_return != NULL)
4885 * num_syms_return = isyms == NULL ? 0 : number;
4886
4887 return isyms;
4888 }
4889
4890 static const char *
4891 get_elf_section_flags (bfd_vma sh_flags)
4892 {
4893 static char buff[1024];
4894 char * p = buff;
4895 int field_size = is_32bit_elf ? 8 : 16;
4896 int sindex;
4897 int size = sizeof (buff) - (field_size + 4 + 1);
4898 bfd_vma os_flags = 0;
4899 bfd_vma proc_flags = 0;
4900 bfd_vma unknown_flags = 0;
4901 static const struct
4902 {
4903 const char * str;
4904 int len;
4905 }
4906 flags [] =
4907 {
4908 /* 0 */ { STRING_COMMA_LEN ("WRITE") },
4909 /* 1 */ { STRING_COMMA_LEN ("ALLOC") },
4910 /* 2 */ { STRING_COMMA_LEN ("EXEC") },
4911 /* 3 */ { STRING_COMMA_LEN ("MERGE") },
4912 /* 4 */ { STRING_COMMA_LEN ("STRINGS") },
4913 /* 5 */ { STRING_COMMA_LEN ("INFO LINK") },
4914 /* 6 */ { STRING_COMMA_LEN ("LINK ORDER") },
4915 /* 7 */ { STRING_COMMA_LEN ("OS NONCONF") },
4916 /* 8 */ { STRING_COMMA_LEN ("GROUP") },
4917 /* 9 */ { STRING_COMMA_LEN ("TLS") },
4918 /* IA-64 specific. */
4919 /* 10 */ { STRING_COMMA_LEN ("SHORT") },
4920 /* 11 */ { STRING_COMMA_LEN ("NORECOV") },
4921 /* IA-64 OpenVMS specific. */
4922 /* 12 */ { STRING_COMMA_LEN ("VMS_GLOBAL") },
4923 /* 13 */ { STRING_COMMA_LEN ("VMS_OVERLAID") },
4924 /* 14 */ { STRING_COMMA_LEN ("VMS_SHARED") },
4925 /* 15 */ { STRING_COMMA_LEN ("VMS_VECTOR") },
4926 /* 16 */ { STRING_COMMA_LEN ("VMS_ALLOC_64BIT") },
4927 /* 17 */ { STRING_COMMA_LEN ("VMS_PROTECTED") },
4928 /* Generic. */
4929 /* 18 */ { STRING_COMMA_LEN ("EXCLUDE") },
4930 /* SPARC specific. */
4931 /* 19 */ { STRING_COMMA_LEN ("ORDERED") }
4932 };
4933
4934 if (do_section_details)
4935 {
4936 sprintf (buff, "[%*.*lx]: ",
4937 field_size, field_size, (unsigned long) sh_flags);
4938 p += field_size + 4;
4939 }
4940
4941 while (sh_flags)
4942 {
4943 bfd_vma flag;
4944
4945 flag = sh_flags & - sh_flags;
4946 sh_flags &= ~ flag;
4947
4948 if (do_section_details)
4949 {
4950 switch (flag)
4951 {
4952 case SHF_WRITE: sindex = 0; break;
4953 case SHF_ALLOC: sindex = 1; break;
4954 case SHF_EXECINSTR: sindex = 2; break;
4955 case SHF_MERGE: sindex = 3; break;
4956 case SHF_STRINGS: sindex = 4; break;
4957 case SHF_INFO_LINK: sindex = 5; break;
4958 case SHF_LINK_ORDER: sindex = 6; break;
4959 case SHF_OS_NONCONFORMING: sindex = 7; break;
4960 case SHF_GROUP: sindex = 8; break;
4961 case SHF_TLS: sindex = 9; break;
4962 case SHF_EXCLUDE: sindex = 18; break;
4963
4964 default:
4965 sindex = -1;
4966 switch (elf_header.e_machine)
4967 {
4968 case EM_IA_64:
4969 if (flag == SHF_IA_64_SHORT)
4970 sindex = 10;
4971 else if (flag == SHF_IA_64_NORECOV)
4972 sindex = 11;
4973 #ifdef BFD64
4974 else if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
4975 switch (flag)
4976 {
4977 case SHF_IA_64_VMS_GLOBAL: sindex = 12; break;
4978 case SHF_IA_64_VMS_OVERLAID: sindex = 13; break;
4979 case SHF_IA_64_VMS_SHARED: sindex = 14; break;
4980 case SHF_IA_64_VMS_VECTOR: sindex = 15; break;
4981 case SHF_IA_64_VMS_ALLOC_64BIT: sindex = 16; break;
4982 case SHF_IA_64_VMS_PROTECTED: sindex = 17; break;
4983 default: break;
4984 }
4985 #endif
4986 break;
4987
4988 case EM_386:
4989 case EM_486:
4990 case EM_X86_64:
4991 case EM_L1OM:
4992 case EM_K1OM:
4993 case EM_OLD_SPARCV9:
4994 case EM_SPARC32PLUS:
4995 case EM_SPARCV9:
4996 case EM_SPARC:
4997 if (flag == SHF_ORDERED)
4998 sindex = 19;
4999 break;
5000 default:
5001 break;
5002 }
5003 }
5004
5005 if (sindex != -1)
5006 {
5007 if (p != buff + field_size + 4)
5008 {
5009 if (size < (10 + 2))
5010 abort ();
5011 size -= 2;
5012 *p++ = ',';
5013 *p++ = ' ';
5014 }
5015
5016 size -= flags [sindex].len;
5017 p = stpcpy (p, flags [sindex].str);
5018 }
5019 else if (flag & SHF_MASKOS)
5020 os_flags |= flag;
5021 else if (flag & SHF_MASKPROC)
5022 proc_flags |= flag;
5023 else
5024 unknown_flags |= flag;
5025 }
5026 else
5027 {
5028 switch (flag)
5029 {
5030 case SHF_WRITE: *p = 'W'; break;
5031 case SHF_ALLOC: *p = 'A'; break;
5032 case SHF_EXECINSTR: *p = 'X'; break;
5033 case SHF_MERGE: *p = 'M'; break;
5034 case SHF_STRINGS: *p = 'S'; break;
5035 case SHF_INFO_LINK: *p = 'I'; break;
5036 case SHF_LINK_ORDER: *p = 'L'; break;
5037 case SHF_OS_NONCONFORMING: *p = 'O'; break;
5038 case SHF_GROUP: *p = 'G'; break;
5039 case SHF_TLS: *p = 'T'; break;
5040 case SHF_EXCLUDE: *p = 'E'; break;
5041
5042 default:
5043 if ((elf_header.e_machine == EM_X86_64
5044 || elf_header.e_machine == EM_L1OM
5045 || elf_header.e_machine == EM_K1OM)
5046 && flag == SHF_X86_64_LARGE)
5047 *p = 'l';
5048 else if (flag & SHF_MASKOS)
5049 {
5050 *p = 'o';
5051 sh_flags &= ~ SHF_MASKOS;
5052 }
5053 else if (flag & SHF_MASKPROC)
5054 {
5055 *p = 'p';
5056 sh_flags &= ~ SHF_MASKPROC;
5057 }
5058 else
5059 *p = 'x';
5060 break;
5061 }
5062 p++;
5063 }
5064 }
5065
5066 if (do_section_details)
5067 {
5068 if (os_flags)
5069 {
5070 size -= 5 + field_size;
5071 if (p != buff + field_size + 4)
5072 {
5073 if (size < (2 + 1))
5074 abort ();
5075 size -= 2;
5076 *p++ = ',';
5077 *p++ = ' ';
5078 }
5079 sprintf (p, "OS (%*.*lx)", field_size, field_size,
5080 (unsigned long) os_flags);
5081 p += 5 + field_size;
5082 }
5083 if (proc_flags)
5084 {
5085 size -= 7 + field_size;
5086 if (p != buff + field_size + 4)
5087 {
5088 if (size < (2 + 1))
5089 abort ();
5090 size -= 2;
5091 *p++ = ',';
5092 *p++ = ' ';
5093 }
5094 sprintf (p, "PROC (%*.*lx)", field_size, field_size,
5095 (unsigned long) proc_flags);
5096 p += 7 + field_size;
5097 }
5098 if (unknown_flags)
5099 {
5100 size -= 10 + field_size;
5101 if (p != buff + field_size + 4)
5102 {
5103 if (size < (2 + 1))
5104 abort ();
5105 size -= 2;
5106 *p++ = ',';
5107 *p++ = ' ';
5108 }
5109 sprintf (p, _("UNKNOWN (%*.*lx)"), field_size, field_size,
5110 (unsigned long) unknown_flags);
5111 p += 10 + field_size;
5112 }
5113 }
5114
5115 *p = '\0';
5116 return buff;
5117 }
5118
5119 static int
5120 process_section_headers (FILE * file)
5121 {
5122 Elf_Internal_Shdr * section;
5123 unsigned int i;
5124
5125 section_headers = NULL;
5126
5127 if (elf_header.e_shnum == 0)
5128 {
5129 /* PR binutils/12467. */
5130 if (elf_header.e_shoff != 0)
5131 warn (_("possibly corrupt ELF file header - it has a non-zero"
5132 " section header offset, but no section headers\n"));
5133 else if (do_sections)
5134 printf (_("\nThere are no sections in this file.\n"));
5135
5136 return 1;
5137 }
5138
5139 if (do_sections && !do_header)
5140 printf (_("There are %d section headers, starting at offset 0x%lx:\n"),
5141 elf_header.e_shnum, (unsigned long) elf_header.e_shoff);
5142
5143 if (is_32bit_elf)
5144 {
5145 if (! get_32bit_section_headers (file, FALSE))
5146 return 0;
5147 }
5148 else if (! get_64bit_section_headers (file, FALSE))
5149 return 0;
5150
5151 /* Read in the string table, so that we have names to display. */
5152 if (elf_header.e_shstrndx != SHN_UNDEF
5153 && elf_header.e_shstrndx < elf_header.e_shnum)
5154 {
5155 section = section_headers + elf_header.e_shstrndx;
5156
5157 if (section->sh_size != 0)
5158 {
5159 string_table = (char *) get_data (NULL, file, section->sh_offset,
5160 1, section->sh_size,
5161 _("string table"));
5162
5163 string_table_length = string_table != NULL ? section->sh_size : 0;
5164 }
5165 }
5166
5167 /* Scan the sections for the dynamic symbol table
5168 and dynamic string table and debug sections. */
5169 dynamic_symbols = NULL;
5170 dynamic_strings = NULL;
5171 dynamic_syminfo = NULL;
5172 symtab_shndx_hdr = NULL;
5173
5174 eh_addr_size = is_32bit_elf ? 4 : 8;
5175 switch (elf_header.e_machine)
5176 {
5177 case EM_MIPS:
5178 case EM_MIPS_RS3_LE:
5179 /* The 64-bit MIPS EABI uses a combination of 32-bit ELF and 64-bit
5180 FDE addresses. However, the ABI also has a semi-official ILP32
5181 variant for which the normal FDE address size rules apply.
5182
5183 GCC 4.0 marks EABI64 objects with a dummy .gcc_compiled_longXX
5184 section, where XX is the size of longs in bits. Unfortunately,
5185 earlier compilers provided no way of distinguishing ILP32 objects
5186 from LP64 objects, so if there's any doubt, we should assume that
5187 the official LP64 form is being used. */
5188 if ((elf_header.e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64
5189 && find_section (".gcc_compiled_long32") == NULL)
5190 eh_addr_size = 8;
5191 break;
5192
5193 case EM_H8_300:
5194 case EM_H8_300H:
5195 switch (elf_header.e_flags & EF_H8_MACH)
5196 {
5197 case E_H8_MACH_H8300:
5198 case E_H8_MACH_H8300HN:
5199 case E_H8_MACH_H8300SN:
5200 case E_H8_MACH_H8300SXN:
5201 eh_addr_size = 2;
5202 break;
5203 case E_H8_MACH_H8300H:
5204 case E_H8_MACH_H8300S:
5205 case E_H8_MACH_H8300SX:
5206 eh_addr_size = 4;
5207 break;
5208 }
5209 break;
5210
5211 case EM_M32C_OLD:
5212 case EM_M32C:
5213 switch (elf_header.e_flags & EF_M32C_CPU_MASK)
5214 {
5215 case EF_M32C_CPU_M16C:
5216 eh_addr_size = 2;
5217 break;
5218 }
5219 break;
5220 }
5221
5222 #define CHECK_ENTSIZE_VALUES(section, i, size32, size64) \
5223 do \
5224 { \
5225 bfd_size_type expected_entsize = is_32bit_elf ? size32 : size64; \
5226 if (section->sh_entsize != expected_entsize) \
5227 { \
5228 char buf[40]; \
5229 sprintf_vma (buf, section->sh_entsize); \
5230 /* Note: coded this way so that there is a single string for \
5231 translation. */ \
5232 error (_("Section %d has invalid sh_entsize of %s\n"), i, buf); \
5233 error (_("(Using the expected size of %u for the rest of this dump)\n"), \
5234 (unsigned) expected_entsize); \
5235 section->sh_entsize = expected_entsize; \
5236 } \
5237 } \
5238 while (0)
5239
5240 #define CHECK_ENTSIZE(section, i, type) \
5241 CHECK_ENTSIZE_VALUES (section, i, sizeof (Elf32_External_##type), \
5242 sizeof (Elf64_External_##type))
5243
5244 for (i = 0, section = section_headers;
5245 i < elf_header.e_shnum;
5246 i++, section++)
5247 {
5248 char * name = SECTION_NAME (section);
5249
5250 if (section->sh_type == SHT_DYNSYM)
5251 {
5252 if (dynamic_symbols != NULL)
5253 {
5254 error (_("File contains multiple dynamic symbol tables\n"));
5255 continue;
5256 }
5257
5258 CHECK_ENTSIZE (section, i, Sym);
5259 dynamic_symbols = GET_ELF_SYMBOLS (file, section, & num_dynamic_syms);
5260 }
5261 else if (section->sh_type == SHT_STRTAB
5262 && streq (name, ".dynstr"))
5263 {
5264 if (dynamic_strings != NULL)
5265 {
5266 error (_("File contains multiple dynamic string tables\n"));
5267 continue;
5268 }
5269
5270 dynamic_strings = (char *) get_data (NULL, file, section->sh_offset,
5271 1, section->sh_size,
5272 _("dynamic strings"));
5273 dynamic_strings_length = dynamic_strings == NULL ? 0 : section->sh_size;
5274 }
5275 else if (section->sh_type == SHT_SYMTAB_SHNDX)
5276 {
5277 if (symtab_shndx_hdr != NULL)
5278 {
5279 error (_("File contains multiple symtab shndx tables\n"));
5280 continue;
5281 }
5282 symtab_shndx_hdr = section;
5283 }
5284 else if (section->sh_type == SHT_SYMTAB)
5285 CHECK_ENTSIZE (section, i, Sym);
5286 else if (section->sh_type == SHT_GROUP)
5287 CHECK_ENTSIZE_VALUES (section, i, GRP_ENTRY_SIZE, GRP_ENTRY_SIZE);
5288 else if (section->sh_type == SHT_REL)
5289 CHECK_ENTSIZE (section, i, Rel);
5290 else if (section->sh_type == SHT_RELA)
5291 CHECK_ENTSIZE (section, i, Rela);
5292 else if ((do_debugging || do_debug_info || do_debug_abbrevs
5293 || do_debug_lines || do_debug_pubnames || do_debug_pubtypes
5294 || do_debug_aranges || do_debug_frames || do_debug_macinfo
5295 || do_debug_str || do_debug_loc || do_debug_ranges
5296 || do_debug_addr || do_debug_cu_index)
5297 && (const_strneq (name, ".debug_")
5298 || const_strneq (name, ".zdebug_")))
5299 {
5300 if (name[1] == 'z')
5301 name += sizeof (".zdebug_") - 1;
5302 else
5303 name += sizeof (".debug_") - 1;
5304
5305 if (do_debugging
5306 || (do_debug_info && const_strneq (name, "info"))
5307 || (do_debug_info && const_strneq (name, "types"))
5308 || (do_debug_abbrevs && const_strneq (name, "abbrev"))
5309 || (do_debug_lines && strcmp (name, "line") == 0)
5310 || (do_debug_lines && const_strneq (name, "line."))
5311 || (do_debug_pubnames && const_strneq (name, "pubnames"))
5312 || (do_debug_pubtypes && const_strneq (name, "pubtypes"))
5313 || (do_debug_pubnames && const_strneq (name, "gnu_pubnames"))
5314 || (do_debug_pubtypes && const_strneq (name, "gnu_pubtypes"))
5315 || (do_debug_aranges && const_strneq (name, "aranges"))
5316 || (do_debug_ranges && const_strneq (name, "ranges"))
5317 || (do_debug_frames && const_strneq (name, "frame"))
5318 || (do_debug_macinfo && const_strneq (name, "macinfo"))
5319 || (do_debug_macinfo && const_strneq (name, "macro"))
5320 || (do_debug_str && const_strneq (name, "str"))
5321 || (do_debug_loc && const_strneq (name, "loc"))
5322 || (do_debug_addr && const_strneq (name, "addr"))
5323 || (do_debug_cu_index && const_strneq (name, "cu_index"))
5324 || (do_debug_cu_index && const_strneq (name, "tu_index"))
5325 )
5326 request_dump_bynumber (i, DEBUG_DUMP);
5327 }
5328 /* Linkonce section to be combined with .debug_info at link time. */
5329 else if ((do_debugging || do_debug_info)
5330 && const_strneq (name, ".gnu.linkonce.wi."))
5331 request_dump_bynumber (i, DEBUG_DUMP);
5332 else if (do_debug_frames && streq (name, ".eh_frame"))
5333 request_dump_bynumber (i, DEBUG_DUMP);
5334 else if (do_gdb_index && streq (name, ".gdb_index"))
5335 request_dump_bynumber (i, DEBUG_DUMP);
5336 /* Trace sections for Itanium VMS. */
5337 else if ((do_debugging || do_trace_info || do_trace_abbrevs
5338 || do_trace_aranges)
5339 && const_strneq (name, ".trace_"))
5340 {
5341 name += sizeof (".trace_") - 1;
5342
5343 if (do_debugging
5344 || (do_trace_info && streq (name, "info"))
5345 || (do_trace_abbrevs && streq (name, "abbrev"))
5346 || (do_trace_aranges && streq (name, "aranges"))
5347 )
5348 request_dump_bynumber (i, DEBUG_DUMP);
5349 }
5350 }
5351
5352 if (! do_sections)
5353 return 1;
5354
5355 if (elf_header.e_shnum > 1)
5356 printf (_("\nSection Headers:\n"));
5357 else
5358 printf (_("\nSection Header:\n"));
5359
5360 if (is_32bit_elf)
5361 {
5362 if (do_section_details)
5363 {
5364 printf (_(" [Nr] Name\n"));
5365 printf (_(" Type Addr Off Size ES Lk Inf Al\n"));
5366 }
5367 else
5368 printf
5369 (_(" [Nr] Name Type Addr Off Size ES Flg Lk Inf Al\n"));
5370 }
5371 else if (do_wide)
5372 {
5373 if (do_section_details)
5374 {
5375 printf (_(" [Nr] Name\n"));
5376 printf (_(" Type Address Off Size ES Lk Inf Al\n"));
5377 }
5378 else
5379 printf
5380 (_(" [Nr] Name Type Address Off Size ES Flg Lk Inf Al\n"));
5381 }
5382 else
5383 {
5384 if (do_section_details)
5385 {
5386 printf (_(" [Nr] Name\n"));
5387 printf (_(" Type Address Offset Link\n"));
5388 printf (_(" Size EntSize Info Align\n"));
5389 }
5390 else
5391 {
5392 printf (_(" [Nr] Name Type Address Offset\n"));
5393 printf (_(" Size EntSize Flags Link Info Align\n"));
5394 }
5395 }
5396
5397 if (do_section_details)
5398 printf (_(" Flags\n"));
5399
5400 for (i = 0, section = section_headers;
5401 i < elf_header.e_shnum;
5402 i++, section++)
5403 {
5404 printf (" [%2u] ", i);
5405 if (do_section_details)
5406 printf ("%s\n ", printable_section_name (section));
5407 else
5408 print_symbol (-17, SECTION_NAME (section));
5409
5410 printf (do_wide ? " %-15s " : " %-15.15s ",
5411 get_section_type_name (section->sh_type));
5412
5413 if (is_32bit_elf)
5414 {
5415 const char * link_too_big = NULL;
5416
5417 print_vma (section->sh_addr, LONG_HEX);
5418
5419 printf ( " %6.6lx %6.6lx %2.2lx",
5420 (unsigned long) section->sh_offset,
5421 (unsigned long) section->sh_size,
5422 (unsigned long) section->sh_entsize);
5423
5424 if (do_section_details)
5425 fputs (" ", stdout);
5426 else
5427 printf (" %3s ", get_elf_section_flags (section->sh_flags));
5428
5429 if (section->sh_link >= elf_header.e_shnum)
5430 {
5431 link_too_big = "";
5432 /* The sh_link value is out of range. Normally this indicates
5433 an error but it can have special values in Solaris binaries. */
5434 switch (elf_header.e_machine)
5435 {
5436 case EM_386:
5437 case EM_486:
5438 case EM_X86_64:
5439 case EM_L1OM:
5440 case EM_K1OM:
5441 case EM_OLD_SPARCV9:
5442 case EM_SPARC32PLUS:
5443 case EM_SPARCV9:
5444 case EM_SPARC:
5445 if (section->sh_link == (SHN_BEFORE & 0xffff))
5446 link_too_big = "BEFORE";
5447 else if (section->sh_link == (SHN_AFTER & 0xffff))
5448 link_too_big = "AFTER";
5449 break;
5450 default:
5451 break;
5452 }
5453 }
5454
5455 if (do_section_details)
5456 {
5457 if (link_too_big != NULL && * link_too_big)
5458 printf ("<%s> ", link_too_big);
5459 else
5460 printf ("%2u ", section->sh_link);
5461 printf ("%3u %2lu\n", section->sh_info,
5462 (unsigned long) section->sh_addralign);
5463 }
5464 else
5465 printf ("%2u %3u %2lu\n",
5466 section->sh_link,
5467 section->sh_info,
5468 (unsigned long) section->sh_addralign);
5469
5470 if (link_too_big && ! * link_too_big)
5471 warn (_("section %u: sh_link value of %u is larger than the number of sections\n"),
5472 i, section->sh_link);
5473 }
5474 else if (do_wide)
5475 {
5476 print_vma (section->sh_addr, LONG_HEX);
5477
5478 if ((long) section->sh_offset == section->sh_offset)
5479 printf (" %6.6lx", (unsigned long) section->sh_offset);
5480 else
5481 {
5482 putchar (' ');
5483 print_vma (section->sh_offset, LONG_HEX);
5484 }
5485
5486 if ((unsigned long) section->sh_size == section->sh_size)
5487 printf (" %6.6lx", (unsigned long) section->sh_size);
5488 else
5489 {
5490 putchar (' ');
5491 print_vma (section->sh_size, LONG_HEX);
5492 }
5493
5494 if ((unsigned long) section->sh_entsize == section->sh_entsize)
5495 printf (" %2.2lx", (unsigned long) section->sh_entsize);
5496 else
5497 {
5498 putchar (' ');
5499 print_vma (section->sh_entsize, LONG_HEX);
5500 }
5501
5502 if (do_section_details)
5503 fputs (" ", stdout);
5504 else
5505 printf (" %3s ", get_elf_section_flags (section->sh_flags));
5506
5507 printf ("%2u %3u ", section->sh_link, section->sh_info);
5508
5509 if ((unsigned long) section->sh_addralign == section->sh_addralign)
5510 printf ("%2lu\n", (unsigned long) section->sh_addralign);
5511 else
5512 {
5513 print_vma (section->sh_addralign, DEC);
5514 putchar ('\n');
5515 }
5516 }
5517 else if (do_section_details)
5518 {
5519 printf (" %-15.15s ",
5520 get_section_type_name (section->sh_type));
5521 print_vma (section->sh_addr, LONG_HEX);
5522 if ((long) section->sh_offset == section->sh_offset)
5523 printf (" %16.16lx", (unsigned long) section->sh_offset);
5524 else
5525 {
5526 printf (" ");
5527 print_vma (section->sh_offset, LONG_HEX);
5528 }
5529 printf (" %u\n ", section->sh_link);
5530 print_vma (section->sh_size, LONG_HEX);
5531 putchar (' ');
5532 print_vma (section->sh_entsize, LONG_HEX);
5533
5534 printf (" %-16u %lu\n",
5535 section->sh_info,
5536 (unsigned long) section->sh_addralign);
5537 }
5538 else
5539 {
5540 putchar (' ');
5541 print_vma (section->sh_addr, LONG_HEX);
5542 if ((long) section->sh_offset == section->sh_offset)
5543 printf (" %8.8lx", (unsigned long) section->sh_offset);
5544 else
5545 {
5546 printf (" ");
5547 print_vma (section->sh_offset, LONG_HEX);
5548 }
5549 printf ("\n ");
5550 print_vma (section->sh_size, LONG_HEX);
5551 printf (" ");
5552 print_vma (section->sh_entsize, LONG_HEX);
5553
5554 printf (" %3s ", get_elf_section_flags (section->sh_flags));
5555
5556 printf (" %2u %3u %lu\n",
5557 section->sh_link,
5558 section->sh_info,
5559 (unsigned long) section->sh_addralign);
5560 }
5561
5562 if (do_section_details)
5563 printf (" %s\n", get_elf_section_flags (section->sh_flags));
5564 }
5565
5566 if (!do_section_details)
5567 {
5568 if (elf_header.e_machine == EM_X86_64
5569 || elf_header.e_machine == EM_L1OM
5570 || elf_header.e_machine == EM_K1OM)
5571 printf (_("Key to Flags:\n\
5572 W (write), A (alloc), X (execute), M (merge), S (strings), l (large)\n\
5573 I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)\n\
5574 O (extra OS processing required) o (OS specific), p (processor specific)\n"));
5575 else
5576 printf (_("Key to Flags:\n\
5577 W (write), A (alloc), X (execute), M (merge), S (strings)\n\
5578 I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)\n\
5579 O (extra OS processing required) o (OS specific), p (processor specific)\n"));
5580 }
5581
5582 return 1;
5583 }
5584
5585 static const char *
5586 get_group_flags (unsigned int flags)
5587 {
5588 static char buff[32];
5589 switch (flags)
5590 {
5591 case 0:
5592 return "";
5593
5594 case GRP_COMDAT:
5595 return "COMDAT ";
5596
5597 default:
5598 snprintf (buff, sizeof (buff), _("[<unknown>: 0x%x] "), flags);
5599 break;
5600 }
5601 return buff;
5602 }
5603
5604 static int
5605 process_section_groups (FILE * file)
5606 {
5607 Elf_Internal_Shdr * section;
5608 unsigned int i;
5609 struct group * group;
5610 Elf_Internal_Shdr * symtab_sec;
5611 Elf_Internal_Shdr * strtab_sec;
5612 Elf_Internal_Sym * symtab;
5613 unsigned long num_syms;
5614 char * strtab;
5615 size_t strtab_size;
5616
5617 /* Don't process section groups unless needed. */
5618 if (!do_unwind && !do_section_groups)
5619 return 1;
5620
5621 if (elf_header.e_shnum == 0)
5622 {
5623 if (do_section_groups)
5624 printf (_("\nThere are no sections to group in this file.\n"));
5625
5626 return 1;
5627 }
5628
5629 if (section_headers == NULL)
5630 {
5631 error (_("Section headers are not available!\n"));
5632 /* PR 13622: This can happen with a corrupt ELF header. */
5633 return 0;
5634 }
5635
5636 section_headers_groups = (struct group **) calloc (elf_header.e_shnum,
5637 sizeof (struct group *));
5638
5639 if (section_headers_groups == NULL)
5640 {
5641 error (_("Out of memory reading %u section group headers\n"),
5642 elf_header.e_shnum);
5643 return 0;
5644 }
5645
5646 /* Scan the sections for the group section. */
5647 group_count = 0;
5648 for (i = 0, section = section_headers;
5649 i < elf_header.e_shnum;
5650 i++, section++)
5651 if (section->sh_type == SHT_GROUP)
5652 group_count++;
5653
5654 if (group_count == 0)
5655 {
5656 if (do_section_groups)
5657 printf (_("\nThere are no section groups in this file.\n"));
5658
5659 return 1;
5660 }
5661
5662 section_groups = (struct group *) calloc (group_count, sizeof (struct group));
5663
5664 if (section_groups == NULL)
5665 {
5666 error (_("Out of memory reading %lu groups\n"),
5667 (unsigned long) group_count);
5668 return 0;
5669 }
5670
5671 symtab_sec = NULL;
5672 strtab_sec = NULL;
5673 symtab = NULL;
5674 num_syms = 0;
5675 strtab = NULL;
5676 strtab_size = 0;
5677 for (i = 0, section = section_headers, group = section_groups;
5678 i < elf_header.e_shnum;
5679 i++, section++)
5680 {
5681 if (section->sh_type == SHT_GROUP)
5682 {
5683 const char * name = printable_section_name (section);
5684 const char * group_name;
5685 unsigned char * start;
5686 unsigned char * indices;
5687 unsigned int entry, j, size;
5688 Elf_Internal_Shdr * sec;
5689 Elf_Internal_Sym * sym;
5690
5691 /* Get the symbol table. */
5692 if (section->sh_link >= elf_header.e_shnum
5693 || ((sec = section_headers + section->sh_link)->sh_type
5694 != SHT_SYMTAB))
5695 {
5696 error (_("Bad sh_link in group section `%s'\n"), name);
5697 continue;
5698 }
5699
5700 if (symtab_sec != sec)
5701 {
5702 symtab_sec = sec;
5703 if (symtab)
5704 free (symtab);
5705 symtab = GET_ELF_SYMBOLS (file, symtab_sec, & num_syms);
5706 }
5707
5708 if (symtab == NULL)
5709 {
5710 error (_("Corrupt header in group section `%s'\n"), name);
5711 continue;
5712 }
5713
5714 if (section->sh_info >= num_syms)
5715 {
5716 error (_("Bad sh_info in group section `%s'\n"), name);
5717 continue;
5718 }
5719
5720 sym = symtab + section->sh_info;
5721
5722 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5723 {
5724 if (sym->st_shndx == 0
5725 || sym->st_shndx >= elf_header.e_shnum)
5726 {
5727 error (_("Bad sh_info in group section `%s'\n"), name);
5728 continue;
5729 }
5730
5731 group_name = SECTION_NAME (section_headers + sym->st_shndx);
5732 strtab_sec = NULL;
5733 if (strtab)
5734 free (strtab);
5735 strtab = NULL;
5736 strtab_size = 0;
5737 }
5738 else
5739 {
5740 /* Get the string table. */
5741 if (symtab_sec->sh_link >= elf_header.e_shnum)
5742 {
5743 strtab_sec = NULL;
5744 if (strtab)
5745 free (strtab);
5746 strtab = NULL;
5747 strtab_size = 0;
5748 }
5749 else if (strtab_sec
5750 != (sec = section_headers + symtab_sec->sh_link))
5751 {
5752 strtab_sec = sec;
5753 if (strtab)
5754 free (strtab);
5755
5756 strtab = (char *) get_data (NULL, file, strtab_sec->sh_offset,
5757 1, strtab_sec->sh_size,
5758 _("string table"));
5759 strtab_size = strtab != NULL ? strtab_sec->sh_size : 0;
5760 }
5761 group_name = sym->st_name < strtab_size
5762 ? strtab + sym->st_name : _("<corrupt>");
5763 }
5764
5765 start = (unsigned char *) get_data (NULL, file, section->sh_offset,
5766 1, section->sh_size,
5767 _("section data"));
5768 if (start == NULL)
5769 continue;
5770
5771 indices = start;
5772 size = (section->sh_size / section->sh_entsize) - 1;
5773 entry = byte_get (indices, 4);
5774 indices += 4;
5775
5776 if (do_section_groups)
5777 {
5778 printf (_("\n%sgroup section [%5u] `%s' [%s] contains %u sections:\n"),
5779 get_group_flags (entry), i, name, group_name, size);
5780
5781 printf (_(" [Index] Name\n"));
5782 }
5783
5784 group->group_index = i;
5785
5786 for (j = 0; j < size; j++)
5787 {
5788 struct group_list * g;
5789
5790 entry = byte_get (indices, 4);
5791 indices += 4;
5792
5793 if (entry >= elf_header.e_shnum)
5794 {
5795 error (_("section [%5u] in group section [%5u] > maximum section [%5u]\n"),
5796 entry, i, elf_header.e_shnum - 1);
5797 continue;
5798 }
5799
5800 if (section_headers_groups [entry] != NULL)
5801 {
5802 if (entry)
5803 {
5804 error (_("section [%5u] in group section [%5u] already in group section [%5u]\n"),
5805 entry, i,
5806 section_headers_groups [entry]->group_index);
5807 continue;
5808 }
5809 else
5810 {
5811 /* Intel C/C++ compiler may put section 0 in a
5812 section group. We just warn it the first time
5813 and ignore it afterwards. */
5814 static int warned = 0;
5815 if (!warned)
5816 {
5817 error (_("section 0 in group section [%5u]\n"),
5818 section_headers_groups [entry]->group_index);
5819 warned++;
5820 }
5821 }
5822 }
5823
5824 section_headers_groups [entry] = group;
5825
5826 if (do_section_groups)
5827 {
5828 sec = section_headers + entry;
5829 printf (" [%5u] %s\n", entry, printable_section_name (sec));
5830 }
5831
5832 g = (struct group_list *) xmalloc (sizeof (struct group_list));
5833 g->section_index = entry;
5834 g->next = group->root;
5835 group->root = g;
5836 }
5837
5838 if (start)
5839 free (start);
5840
5841 group++;
5842 }
5843 }
5844
5845 if (symtab)
5846 free (symtab);
5847 if (strtab)
5848 free (strtab);
5849 return 1;
5850 }
5851
5852 /* Data used to display dynamic fixups. */
5853
5854 struct ia64_vms_dynfixup
5855 {
5856 bfd_vma needed_ident; /* Library ident number. */
5857 bfd_vma needed; /* Index in the dstrtab of the library name. */
5858 bfd_vma fixup_needed; /* Index of the library. */
5859 bfd_vma fixup_rela_cnt; /* Number of fixups. */
5860 bfd_vma fixup_rela_off; /* Fixups offset in the dynamic segment. */
5861 };
5862
5863 /* Data used to display dynamic relocations. */
5864
5865 struct ia64_vms_dynimgrela
5866 {
5867 bfd_vma img_rela_cnt; /* Number of relocations. */
5868 bfd_vma img_rela_off; /* Reloc offset in the dynamic segment. */
5869 };
5870
5871 /* Display IA-64 OpenVMS dynamic fixups (used to dynamically link a shared
5872 library). */
5873
5874 static void
5875 dump_ia64_vms_dynamic_fixups (FILE *file, struct ia64_vms_dynfixup *fixup,
5876 const char *strtab, unsigned int strtab_sz)
5877 {
5878 Elf64_External_VMS_IMAGE_FIXUP *imfs;
5879 long i;
5880 const char *lib_name;
5881
5882 imfs = get_data (NULL, file, dynamic_addr + fixup->fixup_rela_off,
5883 1, fixup->fixup_rela_cnt * sizeof (*imfs),
5884 _("dynamic section image fixups"));
5885 if (!imfs)
5886 return;
5887
5888 if (fixup->needed < strtab_sz)
5889 lib_name = strtab + fixup->needed;
5890 else
5891 {
5892 warn ("corrupt library name index of 0x%lx found in dynamic entry",
5893 (unsigned long) fixup->needed);
5894 lib_name = "???";
5895 }
5896 printf (_("\nImage fixups for needed library #%d: %s - ident: %lx\n"),
5897 (int) fixup->fixup_needed, lib_name, (long) fixup->needed_ident);
5898 printf
5899 (_("Seg Offset Type SymVec DataType\n"));
5900
5901 for (i = 0; i < (long) fixup->fixup_rela_cnt; i++)
5902 {
5903 unsigned int type;
5904 const char *rtype;
5905
5906 printf ("%3u ", (unsigned) BYTE_GET (imfs [i].fixup_seg));
5907 printf_vma ((bfd_vma) BYTE_GET (imfs [i].fixup_offset));
5908 type = BYTE_GET (imfs [i].type);
5909 rtype = elf_ia64_reloc_type (type);
5910 if (rtype == NULL)
5911 printf (" 0x%08x ", type);
5912 else
5913 printf (" %-32s ", rtype);
5914 printf ("%6u ", (unsigned) BYTE_GET (imfs [i].symvec_index));
5915 printf ("0x%08x\n", (unsigned) BYTE_GET (imfs [i].data_type));
5916 }
5917
5918 free (imfs);
5919 }
5920
5921 /* Display IA-64 OpenVMS dynamic relocations (used to relocate an image). */
5922
5923 static void
5924 dump_ia64_vms_dynamic_relocs (FILE *file, struct ia64_vms_dynimgrela *imgrela)
5925 {
5926 Elf64_External_VMS_IMAGE_RELA *imrs;
5927 long i;
5928
5929 imrs = get_data (NULL, file, dynamic_addr + imgrela->img_rela_off,
5930 1, imgrela->img_rela_cnt * sizeof (*imrs),
5931 _("dynamic section image relocations"));
5932 if (!imrs)
5933 return;
5934
5935 printf (_("\nImage relocs\n"));
5936 printf
5937 (_("Seg Offset Type Addend Seg Sym Off\n"));
5938
5939 for (i = 0; i < (long) imgrela->img_rela_cnt; i++)
5940 {
5941 unsigned int type;
5942 const char *rtype;
5943
5944 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].rela_seg));
5945 printf ("%08" BFD_VMA_FMT "x ",
5946 (bfd_vma) BYTE_GET (imrs [i].rela_offset));
5947 type = BYTE_GET (imrs [i].type);
5948 rtype = elf_ia64_reloc_type (type);
5949 if (rtype == NULL)
5950 printf ("0x%08x ", type);
5951 else
5952 printf ("%-31s ", rtype);
5953 print_vma (BYTE_GET (imrs [i].addend), FULL_HEX);
5954 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].sym_seg));
5955 printf ("%08" BFD_VMA_FMT "x\n",
5956 (bfd_vma) BYTE_GET (imrs [i].sym_offset));
5957 }
5958
5959 free (imrs);
5960 }
5961
5962 /* Display IA-64 OpenVMS dynamic relocations and fixups. */
5963
5964 static int
5965 process_ia64_vms_dynamic_relocs (FILE *file)
5966 {
5967 struct ia64_vms_dynfixup fixup;
5968 struct ia64_vms_dynimgrela imgrela;
5969 Elf_Internal_Dyn *entry;
5970 int res = 0;
5971 bfd_vma strtab_off = 0;
5972 bfd_vma strtab_sz = 0;
5973 char *strtab = NULL;
5974
5975 memset (&fixup, 0, sizeof (fixup));
5976 memset (&imgrela, 0, sizeof (imgrela));
5977
5978 /* Note: the order of the entries is specified by the OpenVMS specs. */
5979 for (entry = dynamic_section;
5980 entry < dynamic_section + dynamic_nent;
5981 entry++)
5982 {
5983 switch (entry->d_tag)
5984 {
5985 case DT_IA_64_VMS_STRTAB_OFFSET:
5986 strtab_off = entry->d_un.d_val;
5987 break;
5988 case DT_STRSZ:
5989 strtab_sz = entry->d_un.d_val;
5990 if (strtab == NULL)
5991 strtab = get_data (NULL, file, dynamic_addr + strtab_off,
5992 1, strtab_sz, _("dynamic string section"));
5993 break;
5994
5995 case DT_IA_64_VMS_NEEDED_IDENT:
5996 fixup.needed_ident = entry->d_un.d_val;
5997 break;
5998 case DT_NEEDED:
5999 fixup.needed = entry->d_un.d_val;
6000 break;
6001 case DT_IA_64_VMS_FIXUP_NEEDED:
6002 fixup.fixup_needed = entry->d_un.d_val;
6003 break;
6004 case DT_IA_64_VMS_FIXUP_RELA_CNT:
6005 fixup.fixup_rela_cnt = entry->d_un.d_val;
6006 break;
6007 case DT_IA_64_VMS_FIXUP_RELA_OFF:
6008 fixup.fixup_rela_off = entry->d_un.d_val;
6009 res++;
6010 dump_ia64_vms_dynamic_fixups (file, &fixup, strtab, strtab_sz);
6011 break;
6012
6013 case DT_IA_64_VMS_IMG_RELA_CNT:
6014 imgrela.img_rela_cnt = entry->d_un.d_val;
6015 break;
6016 case DT_IA_64_VMS_IMG_RELA_OFF:
6017 imgrela.img_rela_off = entry->d_un.d_val;
6018 res++;
6019 dump_ia64_vms_dynamic_relocs (file, &imgrela);
6020 break;
6021
6022 default:
6023 break;
6024 }
6025 }
6026
6027 if (strtab != NULL)
6028 free (strtab);
6029
6030 return res;
6031 }
6032
6033 static struct
6034 {
6035 const char * name;
6036 int reloc;
6037 int size;
6038 int rela;
6039 } dynamic_relocations [] =
6040 {
6041 { "REL", DT_REL, DT_RELSZ, FALSE },
6042 { "RELA", DT_RELA, DT_RELASZ, TRUE },
6043 { "PLT", DT_JMPREL, DT_PLTRELSZ, UNKNOWN }
6044 };
6045
6046 /* Process the reloc section. */
6047
6048 static int
6049 process_relocs (FILE * file)
6050 {
6051 unsigned long rel_size;
6052 unsigned long rel_offset;
6053
6054
6055 if (!do_reloc)
6056 return 1;
6057
6058 if (do_using_dynamic)
6059 {
6060 int is_rela;
6061 const char * name;
6062 int has_dynamic_reloc;
6063 unsigned int i;
6064
6065 has_dynamic_reloc = 0;
6066
6067 for (i = 0; i < ARRAY_SIZE (dynamic_relocations); i++)
6068 {
6069 is_rela = dynamic_relocations [i].rela;
6070 name = dynamic_relocations [i].name;
6071 rel_size = dynamic_info [dynamic_relocations [i].size];
6072 rel_offset = dynamic_info [dynamic_relocations [i].reloc];
6073
6074 has_dynamic_reloc |= rel_size;
6075
6076 if (is_rela == UNKNOWN)
6077 {
6078 if (dynamic_relocations [i].reloc == DT_JMPREL)
6079 switch (dynamic_info[DT_PLTREL])
6080 {
6081 case DT_REL:
6082 is_rela = FALSE;
6083 break;
6084 case DT_RELA:
6085 is_rela = TRUE;
6086 break;
6087 }
6088 }
6089
6090 if (rel_size)
6091 {
6092 printf
6093 (_("\n'%s' relocation section at offset 0x%lx contains %ld bytes:\n"),
6094 name, rel_offset, rel_size);
6095
6096 dump_relocations (file,
6097 offset_from_vma (file, rel_offset, rel_size),
6098 rel_size,
6099 dynamic_symbols, num_dynamic_syms,
6100 dynamic_strings, dynamic_strings_length, is_rela);
6101 }
6102 }
6103
6104 if (is_ia64_vms ())
6105 has_dynamic_reloc |= process_ia64_vms_dynamic_relocs (file);
6106
6107 if (! has_dynamic_reloc)
6108 printf (_("\nThere are no dynamic relocations in this file.\n"));
6109 }
6110 else
6111 {
6112 Elf_Internal_Shdr * section;
6113 unsigned long i;
6114 int found = 0;
6115
6116 for (i = 0, section = section_headers;
6117 i < elf_header.e_shnum;
6118 i++, section++)
6119 {
6120 if ( section->sh_type != SHT_RELA
6121 && section->sh_type != SHT_REL)
6122 continue;
6123
6124 rel_offset = section->sh_offset;
6125 rel_size = section->sh_size;
6126
6127 if (rel_size)
6128 {
6129 Elf_Internal_Shdr * strsec;
6130 int is_rela;
6131
6132 printf (_("\nRelocation section "));
6133
6134 if (string_table == NULL)
6135 printf ("%d", section->sh_name);
6136 else
6137 printf ("'%s'", printable_section_name (section));
6138
6139 printf (_(" at offset 0x%lx contains %lu entries:\n"),
6140 rel_offset, (unsigned long) (rel_size / section->sh_entsize));
6141
6142 is_rela = section->sh_type == SHT_RELA;
6143
6144 if (section->sh_link != 0
6145 && section->sh_link < elf_header.e_shnum)
6146 {
6147 Elf_Internal_Shdr * symsec;
6148 Elf_Internal_Sym * symtab;
6149 unsigned long nsyms;
6150 unsigned long strtablen = 0;
6151 char * strtab = NULL;
6152
6153 symsec = section_headers + section->sh_link;
6154 if (symsec->sh_type != SHT_SYMTAB
6155 && symsec->sh_type != SHT_DYNSYM)
6156 continue;
6157
6158 symtab = GET_ELF_SYMBOLS (file, symsec, & nsyms);
6159
6160 if (symtab == NULL)
6161 continue;
6162
6163 if (symsec->sh_link != 0
6164 && symsec->sh_link < elf_header.e_shnum)
6165 {
6166 strsec = section_headers + symsec->sh_link;
6167
6168 strtab = (char *) get_data (NULL, file, strsec->sh_offset,
6169 1, strsec->sh_size,
6170 _("string table"));
6171 strtablen = strtab == NULL ? 0 : strsec->sh_size;
6172 }
6173
6174 dump_relocations (file, rel_offset, rel_size,
6175 symtab, nsyms, strtab, strtablen, is_rela);
6176 if (strtab)
6177 free (strtab);
6178 free (symtab);
6179 }
6180 else
6181 dump_relocations (file, rel_offset, rel_size,
6182 NULL, 0, NULL, 0, is_rela);
6183
6184 found = 1;
6185 }
6186 }
6187
6188 if (! found)
6189 printf (_("\nThere are no relocations in this file.\n"));
6190 }
6191
6192 return 1;
6193 }
6194
6195 /* Process the unwind section. */
6196
6197 #include "unwind-ia64.h"
6198
6199 /* An absolute address consists of a section and an offset. If the
6200 section is NULL, the offset itself is the address, otherwise, the
6201 address equals to LOAD_ADDRESS(section) + offset. */
6202
6203 struct absaddr
6204 {
6205 unsigned short section;
6206 bfd_vma offset;
6207 };
6208
6209 #define ABSADDR(a) \
6210 ((a).section \
6211 ? section_headers [(a).section].sh_addr + (a).offset \
6212 : (a).offset)
6213
6214 struct ia64_unw_table_entry
6215 {
6216 struct absaddr start;
6217 struct absaddr end;
6218 struct absaddr info;
6219 };
6220
6221 struct ia64_unw_aux_info
6222 {
6223
6224 struct ia64_unw_table_entry *table; /* Unwind table. */
6225 unsigned long table_len; /* Length of unwind table. */
6226 unsigned char * info; /* Unwind info. */
6227 unsigned long info_size; /* Size of unwind info. */
6228 bfd_vma info_addr; /* starting address of unwind info. */
6229 bfd_vma seg_base; /* Starting address of segment. */
6230 Elf_Internal_Sym * symtab; /* The symbol table. */
6231 unsigned long nsyms; /* Number of symbols. */
6232 char * strtab; /* The string table. */
6233 unsigned long strtab_size; /* Size of string table. */
6234 };
6235
6236 static void
6237 find_symbol_for_address (Elf_Internal_Sym * symtab,
6238 unsigned long nsyms,
6239 const char * strtab,
6240 unsigned long strtab_size,
6241 struct absaddr addr,
6242 const char ** symname,
6243 bfd_vma * offset)
6244 {
6245 bfd_vma dist = 0x100000;
6246 Elf_Internal_Sym * sym;
6247 Elf_Internal_Sym * best = NULL;
6248 unsigned long i;
6249
6250 REMOVE_ARCH_BITS (addr.offset);
6251
6252 for (i = 0, sym = symtab; i < nsyms; ++i, ++sym)
6253 {
6254 bfd_vma value = sym->st_value;
6255
6256 REMOVE_ARCH_BITS (value);
6257
6258 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC
6259 && sym->st_name != 0
6260 && (addr.section == SHN_UNDEF || addr.section == sym->st_shndx)
6261 && addr.offset >= value
6262 && addr.offset - value < dist)
6263 {
6264 best = sym;
6265 dist = addr.offset - value;
6266 if (!dist)
6267 break;
6268 }
6269 }
6270
6271 if (best)
6272 {
6273 *symname = (best->st_name >= strtab_size
6274 ? _("<corrupt>") : strtab + best->st_name);
6275 *offset = dist;
6276 return;
6277 }
6278
6279 *symname = NULL;
6280 *offset = addr.offset;
6281 }
6282
6283 static void
6284 dump_ia64_unwind (struct ia64_unw_aux_info * aux)
6285 {
6286 struct ia64_unw_table_entry * tp;
6287 int in_body;
6288
6289 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
6290 {
6291 bfd_vma stamp;
6292 bfd_vma offset;
6293 const unsigned char * dp;
6294 const unsigned char * head;
6295 const char * procname;
6296
6297 find_symbol_for_address (aux->symtab, aux->nsyms, aux->strtab,
6298 aux->strtab_size, tp->start, &procname, &offset);
6299
6300 fputs ("\n<", stdout);
6301
6302 if (procname)
6303 {
6304 fputs (procname, stdout);
6305
6306 if (offset)
6307 printf ("+%lx", (unsigned long) offset);
6308 }
6309
6310 fputs (">: [", stdout);
6311 print_vma (tp->start.offset, PREFIX_HEX);
6312 fputc ('-', stdout);
6313 print_vma (tp->end.offset, PREFIX_HEX);
6314 printf ("], info at +0x%lx\n",
6315 (unsigned long) (tp->info.offset - aux->seg_base));
6316
6317 head = aux->info + (ABSADDR (tp->info) - aux->info_addr);
6318 stamp = byte_get ((unsigned char *) head, sizeof (stamp));
6319
6320 printf (" v%u, flags=0x%lx (%s%s), len=%lu bytes\n",
6321 (unsigned) UNW_VER (stamp),
6322 (unsigned long) ((stamp & UNW_FLAG_MASK) >> 32),
6323 UNW_FLAG_EHANDLER (stamp) ? " ehandler" : "",
6324 UNW_FLAG_UHANDLER (stamp) ? " uhandler" : "",
6325 (unsigned long) (eh_addr_size * UNW_LENGTH (stamp)));
6326
6327 if (UNW_VER (stamp) != 1)
6328 {
6329 printf (_("\tUnknown version.\n"));
6330 continue;
6331 }
6332
6333 in_body = 0;
6334 for (dp = head + 8; dp < head + 8 + eh_addr_size * UNW_LENGTH (stamp);)
6335 dp = unw_decode (dp, in_body, & in_body);
6336 }
6337 }
6338
6339 static int
6340 slurp_ia64_unwind_table (FILE * file,
6341 struct ia64_unw_aux_info * aux,
6342 Elf_Internal_Shdr * sec)
6343 {
6344 unsigned long size, nrelas, i;
6345 Elf_Internal_Phdr * seg;
6346 struct ia64_unw_table_entry * tep;
6347 Elf_Internal_Shdr * relsec;
6348 Elf_Internal_Rela * rela;
6349 Elf_Internal_Rela * rp;
6350 unsigned char * table;
6351 unsigned char * tp;
6352 Elf_Internal_Sym * sym;
6353 const char * relname;
6354
6355 /* First, find the starting address of the segment that includes
6356 this section: */
6357
6358 if (elf_header.e_phnum)
6359 {
6360 if (! get_program_headers (file))
6361 return 0;
6362
6363 for (seg = program_headers;
6364 seg < program_headers + elf_header.e_phnum;
6365 ++seg)
6366 {
6367 if (seg->p_type != PT_LOAD)
6368 continue;
6369
6370 if (sec->sh_addr >= seg->p_vaddr
6371 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
6372 {
6373 aux->seg_base = seg->p_vaddr;
6374 break;
6375 }
6376 }
6377 }
6378
6379 /* Second, build the unwind table from the contents of the unwind section: */
6380 size = sec->sh_size;
6381 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
6382 _("unwind table"));
6383 if (!table)
6384 return 0;
6385
6386 aux->table = (struct ia64_unw_table_entry *)
6387 xcmalloc (size / (3 * eh_addr_size), sizeof (aux->table[0]));
6388 tep = aux->table;
6389 for (tp = table; tp < table + size; ++tep)
6390 {
6391 tep->start.section = SHN_UNDEF;
6392 tep->end.section = SHN_UNDEF;
6393 tep->info.section = SHN_UNDEF;
6394 tep->start.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
6395 tep->end.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
6396 tep->info.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
6397 tep->start.offset += aux->seg_base;
6398 tep->end.offset += aux->seg_base;
6399 tep->info.offset += aux->seg_base;
6400 }
6401 free (table);
6402
6403 /* Third, apply any relocations to the unwind table: */
6404 for (relsec = section_headers;
6405 relsec < section_headers + elf_header.e_shnum;
6406 ++relsec)
6407 {
6408 if (relsec->sh_type != SHT_RELA
6409 || relsec->sh_info >= elf_header.e_shnum
6410 || section_headers + relsec->sh_info != sec)
6411 continue;
6412
6413 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
6414 & rela, & nrelas))
6415 return 0;
6416
6417 for (rp = rela; rp < rela + nrelas; ++rp)
6418 {
6419 relname = elf_ia64_reloc_type (get_reloc_type (rp->r_info));
6420 sym = aux->symtab + get_reloc_symindex (rp->r_info);
6421
6422 if (! const_strneq (relname, "R_IA64_SEGREL"))
6423 {
6424 warn (_("Skipping unexpected relocation type %s\n"), relname);
6425 continue;
6426 }
6427
6428 i = rp->r_offset / (3 * eh_addr_size);
6429
6430 switch (rp->r_offset/eh_addr_size % 3)
6431 {
6432 case 0:
6433 aux->table[i].start.section = sym->st_shndx;
6434 aux->table[i].start.offset = rp->r_addend + sym->st_value;
6435 break;
6436 case 1:
6437 aux->table[i].end.section = sym->st_shndx;
6438 aux->table[i].end.offset = rp->r_addend + sym->st_value;
6439 break;
6440 case 2:
6441 aux->table[i].info.section = sym->st_shndx;
6442 aux->table[i].info.offset = rp->r_addend + sym->st_value;
6443 break;
6444 default:
6445 break;
6446 }
6447 }
6448
6449 free (rela);
6450 }
6451
6452 aux->table_len = size / (3 * eh_addr_size);
6453 return 1;
6454 }
6455
6456 static void
6457 ia64_process_unwind (FILE * file)
6458 {
6459 Elf_Internal_Shdr * sec;
6460 Elf_Internal_Shdr * unwsec = NULL;
6461 Elf_Internal_Shdr * strsec;
6462 unsigned long i, unwcount = 0, unwstart = 0;
6463 struct ia64_unw_aux_info aux;
6464
6465 memset (& aux, 0, sizeof (aux));
6466
6467 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
6468 {
6469 if (sec->sh_type == SHT_SYMTAB
6470 && sec->sh_link < elf_header.e_shnum)
6471 {
6472 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
6473
6474 strsec = section_headers + sec->sh_link;
6475 if (aux.strtab != NULL)
6476 {
6477 error (_("Multiple auxillary string tables encountered\n"));
6478 free (aux.strtab);
6479 }
6480 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
6481 1, strsec->sh_size,
6482 _("string table"));
6483 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
6484 }
6485 else if (sec->sh_type == SHT_IA_64_UNWIND)
6486 unwcount++;
6487 }
6488
6489 if (!unwcount)
6490 printf (_("\nThere are no unwind sections in this file.\n"));
6491
6492 while (unwcount-- > 0)
6493 {
6494 char * suffix;
6495 size_t len, len2;
6496
6497 for (i = unwstart, sec = section_headers + unwstart, unwsec = NULL;
6498 i < elf_header.e_shnum; ++i, ++sec)
6499 if (sec->sh_type == SHT_IA_64_UNWIND)
6500 {
6501 unwsec = sec;
6502 break;
6503 }
6504 /* We have already counted the number of SHT_IA64_UNWIND
6505 sections so the loop above should never fail. */
6506 assert (unwsec != NULL);
6507
6508 unwstart = i + 1;
6509 len = sizeof (ELF_STRING_ia64_unwind_once) - 1;
6510
6511 if ((unwsec->sh_flags & SHF_GROUP) != 0)
6512 {
6513 /* We need to find which section group it is in. */
6514 struct group_list * g;
6515
6516 if (section_headers_groups == NULL
6517 || section_headers_groups [i] == NULL)
6518 i = elf_header.e_shnum;
6519 else
6520 {
6521 g = section_headers_groups [i]->root;
6522
6523 for (; g != NULL; g = g->next)
6524 {
6525 sec = section_headers + g->section_index;
6526
6527 if (streq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info))
6528 break;
6529 }
6530
6531 if (g == NULL)
6532 i = elf_header.e_shnum;
6533 }
6534 }
6535 else if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind_once, len))
6536 {
6537 /* .gnu.linkonce.ia64unw.FOO -> .gnu.linkonce.ia64unwi.FOO. */
6538 len2 = sizeof (ELF_STRING_ia64_unwind_info_once) - 1;
6539 suffix = SECTION_NAME (unwsec) + len;
6540 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
6541 ++i, ++sec)
6542 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info_once, len2)
6543 && streq (SECTION_NAME (sec) + len2, suffix))
6544 break;
6545 }
6546 else
6547 {
6548 /* .IA_64.unwindFOO -> .IA_64.unwind_infoFOO
6549 .IA_64.unwind or BAR -> .IA_64.unwind_info. */
6550 len = sizeof (ELF_STRING_ia64_unwind) - 1;
6551 len2 = sizeof (ELF_STRING_ia64_unwind_info) - 1;
6552 suffix = "";
6553 if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind, len))
6554 suffix = SECTION_NAME (unwsec) + len;
6555 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
6556 ++i, ++sec)
6557 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info, len2)
6558 && streq (SECTION_NAME (sec) + len2, suffix))
6559 break;
6560 }
6561
6562 if (i == elf_header.e_shnum)
6563 {
6564 printf (_("\nCould not find unwind info section for "));
6565
6566 if (string_table == NULL)
6567 printf ("%d", unwsec->sh_name);
6568 else
6569 printf ("'%s'", printable_section_name (unwsec));
6570 }
6571 else
6572 {
6573 aux.info_addr = sec->sh_addr;
6574 aux.info = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1,
6575 sec->sh_size,
6576 _("unwind info"));
6577 aux.info_size = aux.info == NULL ? 0 : sec->sh_size;
6578
6579 printf (_("\nUnwind section "));
6580
6581 if (string_table == NULL)
6582 printf ("%d", unwsec->sh_name);
6583 else
6584 printf ("'%s'", printable_section_name (unwsec));
6585
6586 printf (_(" at offset 0x%lx contains %lu entries:\n"),
6587 (unsigned long) unwsec->sh_offset,
6588 (unsigned long) (unwsec->sh_size / (3 * eh_addr_size)));
6589
6590 (void) slurp_ia64_unwind_table (file, & aux, unwsec);
6591
6592 if (aux.table_len > 0)
6593 dump_ia64_unwind (& aux);
6594
6595 if (aux.table)
6596 free ((char *) aux.table);
6597 if (aux.info)
6598 free ((char *) aux.info);
6599 aux.table = NULL;
6600 aux.info = NULL;
6601 }
6602 }
6603
6604 if (aux.symtab)
6605 free (aux.symtab);
6606 if (aux.strtab)
6607 free ((char *) aux.strtab);
6608 }
6609
6610 struct hppa_unw_table_entry
6611 {
6612 struct absaddr start;
6613 struct absaddr end;
6614 unsigned int Cannot_unwind:1; /* 0 */
6615 unsigned int Millicode:1; /* 1 */
6616 unsigned int Millicode_save_sr0:1; /* 2 */
6617 unsigned int Region_description:2; /* 3..4 */
6618 unsigned int reserved1:1; /* 5 */
6619 unsigned int Entry_SR:1; /* 6 */
6620 unsigned int Entry_FR:4; /* number saved */ /* 7..10 */
6621 unsigned int Entry_GR:5; /* number saved */ /* 11..15 */
6622 unsigned int Args_stored:1; /* 16 */
6623 unsigned int Variable_Frame:1; /* 17 */
6624 unsigned int Separate_Package_Body:1; /* 18 */
6625 unsigned int Frame_Extension_Millicode:1; /* 19 */
6626 unsigned int Stack_Overflow_Check:1; /* 20 */
6627 unsigned int Two_Instruction_SP_Increment:1; /* 21 */
6628 unsigned int Ada_Region:1; /* 22 */
6629 unsigned int cxx_info:1; /* 23 */
6630 unsigned int cxx_try_catch:1; /* 24 */
6631 unsigned int sched_entry_seq:1; /* 25 */
6632 unsigned int reserved2:1; /* 26 */
6633 unsigned int Save_SP:1; /* 27 */
6634 unsigned int Save_RP:1; /* 28 */
6635 unsigned int Save_MRP_in_frame:1; /* 29 */
6636 unsigned int extn_ptr_defined:1; /* 30 */
6637 unsigned int Cleanup_defined:1; /* 31 */
6638
6639 unsigned int MPE_XL_interrupt_marker:1; /* 0 */
6640 unsigned int HP_UX_interrupt_marker:1; /* 1 */
6641 unsigned int Large_frame:1; /* 2 */
6642 unsigned int Pseudo_SP_Set:1; /* 3 */
6643 unsigned int reserved4:1; /* 4 */
6644 unsigned int Total_frame_size:27; /* 5..31 */
6645 };
6646
6647 struct hppa_unw_aux_info
6648 {
6649 struct hppa_unw_table_entry *table; /* Unwind table. */
6650 unsigned long table_len; /* Length of unwind table. */
6651 bfd_vma seg_base; /* Starting address of segment. */
6652 Elf_Internal_Sym * symtab; /* The symbol table. */
6653 unsigned long nsyms; /* Number of symbols. */
6654 char * strtab; /* The string table. */
6655 unsigned long strtab_size; /* Size of string table. */
6656 };
6657
6658 static void
6659 dump_hppa_unwind (struct hppa_unw_aux_info * aux)
6660 {
6661 struct hppa_unw_table_entry * tp;
6662
6663 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
6664 {
6665 bfd_vma offset;
6666 const char * procname;
6667
6668 find_symbol_for_address (aux->symtab, aux->nsyms, aux->strtab,
6669 aux->strtab_size, tp->start, &procname,
6670 &offset);
6671
6672 fputs ("\n<", stdout);
6673
6674 if (procname)
6675 {
6676 fputs (procname, stdout);
6677
6678 if (offset)
6679 printf ("+%lx", (unsigned long) offset);
6680 }
6681
6682 fputs (">: [", stdout);
6683 print_vma (tp->start.offset, PREFIX_HEX);
6684 fputc ('-', stdout);
6685 print_vma (tp->end.offset, PREFIX_HEX);
6686 printf ("]\n\t");
6687
6688 #define PF(_m) if (tp->_m) printf (#_m " ");
6689 #define PV(_m) if (tp->_m) printf (#_m "=%d ", tp->_m);
6690 PF(Cannot_unwind);
6691 PF(Millicode);
6692 PF(Millicode_save_sr0);
6693 /* PV(Region_description); */
6694 PF(Entry_SR);
6695 PV(Entry_FR);
6696 PV(Entry_GR);
6697 PF(Args_stored);
6698 PF(Variable_Frame);
6699 PF(Separate_Package_Body);
6700 PF(Frame_Extension_Millicode);
6701 PF(Stack_Overflow_Check);
6702 PF(Two_Instruction_SP_Increment);
6703 PF(Ada_Region);
6704 PF(cxx_info);
6705 PF(cxx_try_catch);
6706 PF(sched_entry_seq);
6707 PF(Save_SP);
6708 PF(Save_RP);
6709 PF(Save_MRP_in_frame);
6710 PF(extn_ptr_defined);
6711 PF(Cleanup_defined);
6712 PF(MPE_XL_interrupt_marker);
6713 PF(HP_UX_interrupt_marker);
6714 PF(Large_frame);
6715 PF(Pseudo_SP_Set);
6716 PV(Total_frame_size);
6717 #undef PF
6718 #undef PV
6719 }
6720
6721 printf ("\n");
6722 }
6723
6724 static int
6725 slurp_hppa_unwind_table (FILE * file,
6726 struct hppa_unw_aux_info * aux,
6727 Elf_Internal_Shdr * sec)
6728 {
6729 unsigned long size, unw_ent_size, nentries, nrelas, i;
6730 Elf_Internal_Phdr * seg;
6731 struct hppa_unw_table_entry * tep;
6732 Elf_Internal_Shdr * relsec;
6733 Elf_Internal_Rela * rela;
6734 Elf_Internal_Rela * rp;
6735 unsigned char * table;
6736 unsigned char * tp;
6737 Elf_Internal_Sym * sym;
6738 const char * relname;
6739
6740 /* First, find the starting address of the segment that includes
6741 this section. */
6742
6743 if (elf_header.e_phnum)
6744 {
6745 if (! get_program_headers (file))
6746 return 0;
6747
6748 for (seg = program_headers;
6749 seg < program_headers + elf_header.e_phnum;
6750 ++seg)
6751 {
6752 if (seg->p_type != PT_LOAD)
6753 continue;
6754
6755 if (sec->sh_addr >= seg->p_vaddr
6756 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
6757 {
6758 aux->seg_base = seg->p_vaddr;
6759 break;
6760 }
6761 }
6762 }
6763
6764 /* Second, build the unwind table from the contents of the unwind
6765 section. */
6766 size = sec->sh_size;
6767 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
6768 _("unwind table"));
6769 if (!table)
6770 return 0;
6771
6772 unw_ent_size = 16;
6773 nentries = size / unw_ent_size;
6774 size = unw_ent_size * nentries;
6775
6776 tep = aux->table = (struct hppa_unw_table_entry *)
6777 xcmalloc (nentries, sizeof (aux->table[0]));
6778
6779 for (tp = table; tp < table + size; tp += unw_ent_size, ++tep)
6780 {
6781 unsigned int tmp1, tmp2;
6782
6783 tep->start.section = SHN_UNDEF;
6784 tep->end.section = SHN_UNDEF;
6785
6786 tep->start.offset = byte_get ((unsigned char *) tp + 0, 4);
6787 tep->end.offset = byte_get ((unsigned char *) tp + 4, 4);
6788 tmp1 = byte_get ((unsigned char *) tp + 8, 4);
6789 tmp2 = byte_get ((unsigned char *) tp + 12, 4);
6790
6791 tep->start.offset += aux->seg_base;
6792 tep->end.offset += aux->seg_base;
6793
6794 tep->Cannot_unwind = (tmp1 >> 31) & 0x1;
6795 tep->Millicode = (tmp1 >> 30) & 0x1;
6796 tep->Millicode_save_sr0 = (tmp1 >> 29) & 0x1;
6797 tep->Region_description = (tmp1 >> 27) & 0x3;
6798 tep->reserved1 = (tmp1 >> 26) & 0x1;
6799 tep->Entry_SR = (tmp1 >> 25) & 0x1;
6800 tep->Entry_FR = (tmp1 >> 21) & 0xf;
6801 tep->Entry_GR = (tmp1 >> 16) & 0x1f;
6802 tep->Args_stored = (tmp1 >> 15) & 0x1;
6803 tep->Variable_Frame = (tmp1 >> 14) & 0x1;
6804 tep->Separate_Package_Body = (tmp1 >> 13) & 0x1;
6805 tep->Frame_Extension_Millicode = (tmp1 >> 12) & 0x1;
6806 tep->Stack_Overflow_Check = (tmp1 >> 11) & 0x1;
6807 tep->Two_Instruction_SP_Increment = (tmp1 >> 10) & 0x1;
6808 tep->Ada_Region = (tmp1 >> 9) & 0x1;
6809 tep->cxx_info = (tmp1 >> 8) & 0x1;
6810 tep->cxx_try_catch = (tmp1 >> 7) & 0x1;
6811 tep->sched_entry_seq = (tmp1 >> 6) & 0x1;
6812 tep->reserved2 = (tmp1 >> 5) & 0x1;
6813 tep->Save_SP = (tmp1 >> 4) & 0x1;
6814 tep->Save_RP = (tmp1 >> 3) & 0x1;
6815 tep->Save_MRP_in_frame = (tmp1 >> 2) & 0x1;
6816 tep->extn_ptr_defined = (tmp1 >> 1) & 0x1;
6817 tep->Cleanup_defined = tmp1 & 0x1;
6818
6819 tep->MPE_XL_interrupt_marker = (tmp2 >> 31) & 0x1;
6820 tep->HP_UX_interrupt_marker = (tmp2 >> 30) & 0x1;
6821 tep->Large_frame = (tmp2 >> 29) & 0x1;
6822 tep->Pseudo_SP_Set = (tmp2 >> 28) & 0x1;
6823 tep->reserved4 = (tmp2 >> 27) & 0x1;
6824 tep->Total_frame_size = tmp2 & 0x7ffffff;
6825 }
6826 free (table);
6827
6828 /* Third, apply any relocations to the unwind table. */
6829 for (relsec = section_headers;
6830 relsec < section_headers + elf_header.e_shnum;
6831 ++relsec)
6832 {
6833 if (relsec->sh_type != SHT_RELA
6834 || relsec->sh_info >= elf_header.e_shnum
6835 || section_headers + relsec->sh_info != sec)
6836 continue;
6837
6838 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
6839 & rela, & nrelas))
6840 return 0;
6841
6842 for (rp = rela; rp < rela + nrelas; ++rp)
6843 {
6844 relname = elf_hppa_reloc_type (get_reloc_type (rp->r_info));
6845 sym = aux->symtab + get_reloc_symindex (rp->r_info);
6846
6847 /* R_PARISC_SEGREL32 or R_PARISC_SEGREL64. */
6848 if (! const_strneq (relname, "R_PARISC_SEGREL"))
6849 {
6850 warn (_("Skipping unexpected relocation type %s\n"), relname);
6851 continue;
6852 }
6853
6854 i = rp->r_offset / unw_ent_size;
6855
6856 switch ((rp->r_offset % unw_ent_size) / eh_addr_size)
6857 {
6858 case 0:
6859 aux->table[i].start.section = sym->st_shndx;
6860 aux->table[i].start.offset = sym->st_value + rp->r_addend;
6861 break;
6862 case 1:
6863 aux->table[i].end.section = sym->st_shndx;
6864 aux->table[i].end.offset = sym->st_value + rp->r_addend;
6865 break;
6866 default:
6867 break;
6868 }
6869 }
6870
6871 free (rela);
6872 }
6873
6874 aux->table_len = nentries;
6875
6876 return 1;
6877 }
6878
6879 static void
6880 hppa_process_unwind (FILE * file)
6881 {
6882 struct hppa_unw_aux_info aux;
6883 Elf_Internal_Shdr * unwsec = NULL;
6884 Elf_Internal_Shdr * strsec;
6885 Elf_Internal_Shdr * sec;
6886 unsigned long i;
6887
6888 if (string_table == NULL)
6889 return;
6890
6891 memset (& aux, 0, sizeof (aux));
6892
6893 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
6894 {
6895 if (sec->sh_type == SHT_SYMTAB
6896 && sec->sh_link < elf_header.e_shnum)
6897 {
6898 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
6899
6900 strsec = section_headers + sec->sh_link;
6901 if (aux.strtab != NULL)
6902 {
6903 error (_("Multiple auxillary string tables encountered\n"));
6904 free (aux.strtab);
6905 }
6906 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
6907 1, strsec->sh_size,
6908 _("string table"));
6909 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
6910 }
6911 else if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
6912 unwsec = sec;
6913 }
6914
6915 if (!unwsec)
6916 printf (_("\nThere are no unwind sections in this file.\n"));
6917
6918 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
6919 {
6920 if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
6921 {
6922 printf (_("\nUnwind section '%s' at offset 0x%lx contains %lu entries:\n"),
6923 printable_section_name (sec),
6924 (unsigned long) sec->sh_offset,
6925 (unsigned long) (sec->sh_size / (2 * eh_addr_size + 8)));
6926
6927 slurp_hppa_unwind_table (file, &aux, sec);
6928 if (aux.table_len > 0)
6929 dump_hppa_unwind (&aux);
6930
6931 if (aux.table)
6932 free ((char *) aux.table);
6933 aux.table = NULL;
6934 }
6935 }
6936
6937 if (aux.symtab)
6938 free (aux.symtab);
6939 if (aux.strtab)
6940 free ((char *) aux.strtab);
6941 }
6942
6943 struct arm_section
6944 {
6945 unsigned char * data; /* The unwind data. */
6946 Elf_Internal_Shdr * sec; /* The cached unwind section header. */
6947 Elf_Internal_Rela * rela; /* The cached relocations for this section. */
6948 unsigned long nrelas; /* The number of relocations. */
6949 unsigned int rel_type; /* REL or RELA ? */
6950 Elf_Internal_Rela * next_rela; /* Cyclic pointer to the next reloc to process. */
6951 };
6952
6953 struct arm_unw_aux_info
6954 {
6955 FILE * file; /* The file containing the unwind sections. */
6956 Elf_Internal_Sym * symtab; /* The file's symbol table. */
6957 unsigned long nsyms; /* Number of symbols. */
6958 char * strtab; /* The file's string table. */
6959 unsigned long strtab_size; /* Size of string table. */
6960 };
6961
6962 static const char *
6963 arm_print_vma_and_name (struct arm_unw_aux_info *aux,
6964 bfd_vma fn, struct absaddr addr)
6965 {
6966 const char *procname;
6967 bfd_vma sym_offset;
6968
6969 if (addr.section == SHN_UNDEF)
6970 addr.offset = fn;
6971
6972 find_symbol_for_address (aux->symtab, aux->nsyms, aux->strtab,
6973 aux->strtab_size, addr, &procname,
6974 &sym_offset);
6975
6976 print_vma (fn, PREFIX_HEX);
6977
6978 if (procname)
6979 {
6980 fputs (" <", stdout);
6981 fputs (procname, stdout);
6982
6983 if (sym_offset)
6984 printf ("+0x%lx", (unsigned long) sym_offset);
6985 fputc ('>', stdout);
6986 }
6987
6988 return procname;
6989 }
6990
6991 static void
6992 arm_free_section (struct arm_section *arm_sec)
6993 {
6994 if (arm_sec->data != NULL)
6995 free (arm_sec->data);
6996
6997 if (arm_sec->rela != NULL)
6998 free (arm_sec->rela);
6999 }
7000
7001 /* 1) If SEC does not match the one cached in ARM_SEC, then free the current
7002 cached section and install SEC instead.
7003 2) Locate the 32-bit word at WORD_OFFSET in unwind section SEC
7004 and return its valued in * WORDP, relocating if necessary.
7005 3) Update the NEXT_RELA field in ARM_SEC and store the section index and
7006 relocation's offset in ADDR.
7007 4) If SYM_NAME is non-NULL and a relocation was applied, record the offset
7008 into the string table of the symbol associated with the reloc. If no
7009 reloc was applied store -1 there.
7010 5) Return TRUE upon success, FALSE otherwise. */
7011
7012 static bfd_boolean
7013 get_unwind_section_word (struct arm_unw_aux_info * aux,
7014 struct arm_section * arm_sec,
7015 Elf_Internal_Shdr * sec,
7016 bfd_vma word_offset,
7017 unsigned int * wordp,
7018 struct absaddr * addr,
7019 bfd_vma * sym_name)
7020 {
7021 Elf_Internal_Rela *rp;
7022 Elf_Internal_Sym *sym;
7023 const char * relname;
7024 unsigned int word;
7025 bfd_boolean wrapped;
7026
7027 if (sec == NULL || arm_sec == NULL)
7028 return FALSE;
7029
7030 addr->section = SHN_UNDEF;
7031 addr->offset = 0;
7032
7033 if (sym_name != NULL)
7034 *sym_name = (bfd_vma) -1;
7035
7036 /* If necessary, update the section cache. */
7037 if (sec != arm_sec->sec)
7038 {
7039 Elf_Internal_Shdr *relsec;
7040
7041 arm_free_section (arm_sec);
7042
7043 arm_sec->sec = sec;
7044 arm_sec->data = get_data (NULL, aux->file, sec->sh_offset, 1,
7045 sec->sh_size, _("unwind data"));
7046 arm_sec->rela = NULL;
7047 arm_sec->nrelas = 0;
7048
7049 for (relsec = section_headers;
7050 relsec < section_headers + elf_header.e_shnum;
7051 ++relsec)
7052 {
7053 if (relsec->sh_info >= elf_header.e_shnum
7054 || section_headers + relsec->sh_info != sec
7055 /* PR 15745: Check the section type as well. */
7056 || (relsec->sh_type != SHT_REL
7057 && relsec->sh_type != SHT_RELA))
7058 continue;
7059
7060 arm_sec->rel_type = relsec->sh_type;
7061 if (relsec->sh_type == SHT_REL)
7062 {
7063 if (!slurp_rel_relocs (aux->file, relsec->sh_offset,
7064 relsec->sh_size,
7065 & arm_sec->rela, & arm_sec->nrelas))
7066 return FALSE;
7067 }
7068 else /* relsec->sh_type == SHT_RELA */
7069 {
7070 if (!slurp_rela_relocs (aux->file, relsec->sh_offset,
7071 relsec->sh_size,
7072 & arm_sec->rela, & arm_sec->nrelas))
7073 return FALSE;
7074 }
7075 break;
7076 }
7077
7078 arm_sec->next_rela = arm_sec->rela;
7079 }
7080
7081 /* If there is no unwind data we can do nothing. */
7082 if (arm_sec->data == NULL)
7083 return FALSE;
7084
7085 /* If the offset is invalid then fail. */
7086 if (word_offset > sec->sh_size - 4)
7087 return FALSE;
7088
7089 /* Get the word at the required offset. */
7090 word = byte_get (arm_sec->data + word_offset, 4);
7091
7092 /* Look through the relocs to find the one that applies to the provided offset. */
7093 wrapped = FALSE;
7094 for (rp = arm_sec->next_rela; rp != arm_sec->rela + arm_sec->nrelas; rp++)
7095 {
7096 bfd_vma prelval, offset;
7097
7098 if (rp->r_offset > word_offset && !wrapped)
7099 {
7100 rp = arm_sec->rela;
7101 wrapped = TRUE;
7102 }
7103 if (rp->r_offset > word_offset)
7104 break;
7105
7106 if (rp->r_offset & 3)
7107 {
7108 warn (_("Skipping unexpected relocation at offset 0x%lx\n"),
7109 (unsigned long) rp->r_offset);
7110 continue;
7111 }
7112
7113 if (rp->r_offset < word_offset)
7114 continue;
7115
7116 /* PR 17531: file: 027-161405-0.004 */
7117 if (aux->symtab == NULL)
7118 continue;
7119
7120 if (arm_sec->rel_type == SHT_REL)
7121 {
7122 offset = word & 0x7fffffff;
7123 if (offset & 0x40000000)
7124 offset |= ~ (bfd_vma) 0x7fffffff;
7125 }
7126 else if (arm_sec->rel_type == SHT_RELA)
7127 offset = rp->r_addend;
7128 else
7129 {
7130 error (_("Unknown section relocation type %d encountered\n"),
7131 arm_sec->rel_type);
7132 break;
7133 }
7134
7135 /* PR 17531 file: 027-1241568-0.004. */
7136 if (ELF32_R_SYM (rp->r_info) >= aux->nsyms)
7137 {
7138 error (_("Bad symbol index in unwind relocation (%lu > %lu)\n"),
7139 (unsigned long) ELF32_R_SYM (rp->r_info), aux->nsyms);
7140 break;
7141 }
7142
7143 sym = aux->symtab + ELF32_R_SYM (rp->r_info);
7144 offset += sym->st_value;
7145 prelval = offset - (arm_sec->sec->sh_addr + rp->r_offset);
7146
7147 /* Check that we are processing the expected reloc type. */
7148 if (elf_header.e_machine == EM_ARM)
7149 {
7150 relname = elf_arm_reloc_type (ELF32_R_TYPE (rp->r_info));
7151 if (relname == NULL)
7152 {
7153 warn (_("Skipping unknown ARM relocation type: %d\n"),
7154 (int) ELF32_R_TYPE (rp->r_info));
7155 continue;
7156 }
7157
7158 if (streq (relname, "R_ARM_NONE"))
7159 continue;
7160
7161 if (! streq (relname, "R_ARM_PREL31"))
7162 {
7163 warn (_("Skipping unexpected ARM relocation type %s\n"), relname);
7164 continue;
7165 }
7166 }
7167 else if (elf_header.e_machine == EM_TI_C6000)
7168 {
7169 relname = elf_tic6x_reloc_type (ELF32_R_TYPE (rp->r_info));
7170 if (relname == NULL)
7171 {
7172 warn (_("Skipping unknown C6000 relocation type: %d\n"),
7173 (int) ELF32_R_TYPE (rp->r_info));
7174 continue;
7175 }
7176
7177 if (streq (relname, "R_C6000_NONE"))
7178 continue;
7179
7180 if (! streq (relname, "R_C6000_PREL31"))
7181 {
7182 warn (_("Skipping unexpected C6000 relocation type %s\n"), relname);
7183 continue;
7184 }
7185
7186 prelval >>= 1;
7187 }
7188 else
7189 {
7190 /* This function currently only supports ARM and TI unwinders. */
7191 warn (_("Only TI and ARM unwinders are currently supported\n"));
7192 break;
7193 }
7194
7195 word = (word & ~ (bfd_vma) 0x7fffffff) | (prelval & 0x7fffffff);
7196 addr->section = sym->st_shndx;
7197 addr->offset = offset;
7198
7199 if (sym_name)
7200 * sym_name = sym->st_name;
7201 break;
7202 }
7203
7204 *wordp = word;
7205 arm_sec->next_rela = rp;
7206
7207 return TRUE;
7208 }
7209
7210 static const char *tic6x_unwind_regnames[16] =
7211 {
7212 "A15", "B15", "B14", "B13", "B12", "B11", "B10", "B3",
7213 "A14", "A13", "A12", "A11", "A10",
7214 "[invalid reg 13]", "[invalid reg 14]", "[invalid reg 15]"
7215 };
7216
7217 static void
7218 decode_tic6x_unwind_regmask (unsigned int mask)
7219 {
7220 int i;
7221
7222 for (i = 12; mask; mask >>= 1, i--)
7223 {
7224 if (mask & 1)
7225 {
7226 fputs (tic6x_unwind_regnames[i], stdout);
7227 if (mask > 1)
7228 fputs (", ", stdout);
7229 }
7230 }
7231 }
7232
7233 #define ADVANCE \
7234 if (remaining == 0 && more_words) \
7235 { \
7236 data_offset += 4; \
7237 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, \
7238 data_offset, & word, & addr, NULL)) \
7239 return; \
7240 remaining = 4; \
7241 more_words--; \
7242 } \
7243
7244 #define GET_OP(OP) \
7245 ADVANCE; \
7246 if (remaining) \
7247 { \
7248 remaining--; \
7249 (OP) = word >> 24; \
7250 word <<= 8; \
7251 } \
7252 else \
7253 { \
7254 printf (_("[Truncated opcode]\n")); \
7255 return; \
7256 } \
7257 printf ("0x%02x ", OP)
7258
7259 static void
7260 decode_arm_unwind_bytecode (struct arm_unw_aux_info *aux,
7261 unsigned int word, unsigned int remaining,
7262 unsigned int more_words,
7263 bfd_vma data_offset, Elf_Internal_Shdr *data_sec,
7264 struct arm_section *data_arm_sec)
7265 {
7266 struct absaddr addr;
7267
7268 /* Decode the unwinding instructions. */
7269 while (1)
7270 {
7271 unsigned int op, op2;
7272
7273 ADVANCE;
7274 if (remaining == 0)
7275 break;
7276 remaining--;
7277 op = word >> 24;
7278 word <<= 8;
7279
7280 printf (" 0x%02x ", op);
7281
7282 if ((op & 0xc0) == 0x00)
7283 {
7284 int offset = ((op & 0x3f) << 2) + 4;
7285
7286 printf (" vsp = vsp + %d", offset);
7287 }
7288 else if ((op & 0xc0) == 0x40)
7289 {
7290 int offset = ((op & 0x3f) << 2) + 4;
7291
7292 printf (" vsp = vsp - %d", offset);
7293 }
7294 else if ((op & 0xf0) == 0x80)
7295 {
7296 GET_OP (op2);
7297 if (op == 0x80 && op2 == 0)
7298 printf (_("Refuse to unwind"));
7299 else
7300 {
7301 unsigned int mask = ((op & 0x0f) << 8) | op2;
7302 int first = 1;
7303 int i;
7304
7305 printf ("pop {");
7306 for (i = 0; i < 12; i++)
7307 if (mask & (1 << i))
7308 {
7309 if (first)
7310 first = 0;
7311 else
7312 printf (", ");
7313 printf ("r%d", 4 + i);
7314 }
7315 printf ("}");
7316 }
7317 }
7318 else if ((op & 0xf0) == 0x90)
7319 {
7320 if (op == 0x9d || op == 0x9f)
7321 printf (_(" [Reserved]"));
7322 else
7323 printf (" vsp = r%d", op & 0x0f);
7324 }
7325 else if ((op & 0xf0) == 0xa0)
7326 {
7327 int end = 4 + (op & 0x07);
7328 int first = 1;
7329 int i;
7330
7331 printf (" pop {");
7332 for (i = 4; i <= end; i++)
7333 {
7334 if (first)
7335 first = 0;
7336 else
7337 printf (", ");
7338 printf ("r%d", i);
7339 }
7340 if (op & 0x08)
7341 {
7342 if (!first)
7343 printf (", ");
7344 printf ("r14");
7345 }
7346 printf ("}");
7347 }
7348 else if (op == 0xb0)
7349 printf (_(" finish"));
7350 else if (op == 0xb1)
7351 {
7352 GET_OP (op2);
7353 if (op2 == 0 || (op2 & 0xf0) != 0)
7354 printf (_("[Spare]"));
7355 else
7356 {
7357 unsigned int mask = op2 & 0x0f;
7358 int first = 1;
7359 int i;
7360
7361 printf ("pop {");
7362 for (i = 0; i < 12; i++)
7363 if (mask & (1 << i))
7364 {
7365 if (first)
7366 first = 0;
7367 else
7368 printf (", ");
7369 printf ("r%d", i);
7370 }
7371 printf ("}");
7372 }
7373 }
7374 else if (op == 0xb2)
7375 {
7376 unsigned char buf[9];
7377 unsigned int i, len;
7378 unsigned long offset;
7379
7380 for (i = 0; i < sizeof (buf); i++)
7381 {
7382 GET_OP (buf[i]);
7383 if ((buf[i] & 0x80) == 0)
7384 break;
7385 }
7386 if (i == sizeof (buf))
7387 printf (_("corrupt change to vsp"));
7388 else
7389 {
7390 offset = read_uleb128 (buf, &len, buf + i + 1);
7391 assert (len == i + 1);
7392 offset = offset * 4 + 0x204;
7393 printf ("vsp = vsp + %ld", offset);
7394 }
7395 }
7396 else if (op == 0xb3 || op == 0xc8 || op == 0xc9)
7397 {
7398 unsigned int first, last;
7399
7400 GET_OP (op2);
7401 first = op2 >> 4;
7402 last = op2 & 0x0f;
7403 if (op == 0xc8)
7404 first = first + 16;
7405 printf ("pop {D%d", first);
7406 if (last)
7407 printf ("-D%d", first + last);
7408 printf ("}");
7409 }
7410 else if ((op & 0xf8) == 0xb8 || (op & 0xf8) == 0xd0)
7411 {
7412 unsigned int count = op & 0x07;
7413
7414 printf ("pop {D8");
7415 if (count)
7416 printf ("-D%d", 8 + count);
7417 printf ("}");
7418 }
7419 else if (op >= 0xc0 && op <= 0xc5)
7420 {
7421 unsigned int count = op & 0x07;
7422
7423 printf (" pop {wR10");
7424 if (count)
7425 printf ("-wR%d", 10 + count);
7426 printf ("}");
7427 }
7428 else if (op == 0xc6)
7429 {
7430 unsigned int first, last;
7431
7432 GET_OP (op2);
7433 first = op2 >> 4;
7434 last = op2 & 0x0f;
7435 printf ("pop {wR%d", first);
7436 if (last)
7437 printf ("-wR%d", first + last);
7438 printf ("}");
7439 }
7440 else if (op == 0xc7)
7441 {
7442 GET_OP (op2);
7443 if (op2 == 0 || (op2 & 0xf0) != 0)
7444 printf (_("[Spare]"));
7445 else
7446 {
7447 unsigned int mask = op2 & 0x0f;
7448 int first = 1;
7449 int i;
7450
7451 printf ("pop {");
7452 for (i = 0; i < 4; i++)
7453 if (mask & (1 << i))
7454 {
7455 if (first)
7456 first = 0;
7457 else
7458 printf (", ");
7459 printf ("wCGR%d", i);
7460 }
7461 printf ("}");
7462 }
7463 }
7464 else
7465 printf (_(" [unsupported opcode]"));
7466 printf ("\n");
7467 }
7468 }
7469
7470 static void
7471 decode_tic6x_unwind_bytecode (struct arm_unw_aux_info *aux,
7472 unsigned int word, unsigned int remaining,
7473 unsigned int more_words,
7474 bfd_vma data_offset, Elf_Internal_Shdr *data_sec,
7475 struct arm_section *data_arm_sec)
7476 {
7477 struct absaddr addr;
7478
7479 /* Decode the unwinding instructions. */
7480 while (1)
7481 {
7482 unsigned int op, op2;
7483
7484 ADVANCE;
7485 if (remaining == 0)
7486 break;
7487 remaining--;
7488 op = word >> 24;
7489 word <<= 8;
7490
7491 printf (" 0x%02x ", op);
7492
7493 if ((op & 0xc0) == 0x00)
7494 {
7495 int offset = ((op & 0x3f) << 3) + 8;
7496 printf (" sp = sp + %d", offset);
7497 }
7498 else if ((op & 0xc0) == 0x80)
7499 {
7500 GET_OP (op2);
7501 if (op == 0x80 && op2 == 0)
7502 printf (_("Refuse to unwind"));
7503 else
7504 {
7505 unsigned int mask = ((op & 0x1f) << 8) | op2;
7506 if (op & 0x20)
7507 printf ("pop compact {");
7508 else
7509 printf ("pop {");
7510
7511 decode_tic6x_unwind_regmask (mask);
7512 printf("}");
7513 }
7514 }
7515 else if ((op & 0xf0) == 0xc0)
7516 {
7517 unsigned int reg;
7518 unsigned int nregs;
7519 unsigned int i;
7520 const char *name;
7521 struct
7522 {
7523 unsigned int offset;
7524 unsigned int reg;
7525 } regpos[16];
7526
7527 /* Scan entire instruction first so that GET_OP output is not
7528 interleaved with disassembly. */
7529 nregs = 0;
7530 for (i = 0; nregs < (op & 0xf); i++)
7531 {
7532 GET_OP (op2);
7533 reg = op2 >> 4;
7534 if (reg != 0xf)
7535 {
7536 regpos[nregs].offset = i * 2;
7537 regpos[nregs].reg = reg;
7538 nregs++;
7539 }
7540
7541 reg = op2 & 0xf;
7542 if (reg != 0xf)
7543 {
7544 regpos[nregs].offset = i * 2 + 1;
7545 regpos[nregs].reg = reg;
7546 nregs++;
7547 }
7548 }
7549
7550 printf (_("pop frame {"));
7551 reg = nregs - 1;
7552 for (i = i * 2; i > 0; i--)
7553 {
7554 if (regpos[reg].offset == i - 1)
7555 {
7556 name = tic6x_unwind_regnames[regpos[reg].reg];
7557 if (reg > 0)
7558 reg--;
7559 }
7560 else
7561 name = _("[pad]");
7562
7563 fputs (name, stdout);
7564 if (i > 1)
7565 printf (", ");
7566 }
7567
7568 printf ("}");
7569 }
7570 else if (op == 0xd0)
7571 printf (" MOV FP, SP");
7572 else if (op == 0xd1)
7573 printf (" __c6xabi_pop_rts");
7574 else if (op == 0xd2)
7575 {
7576 unsigned char buf[9];
7577 unsigned int i, len;
7578 unsigned long offset;
7579
7580 for (i = 0; i < sizeof (buf); i++)
7581 {
7582 GET_OP (buf[i]);
7583 if ((buf[i] & 0x80) == 0)
7584 break;
7585 }
7586 assert (i < sizeof (buf));
7587 offset = read_uleb128 (buf, &len, buf + i + 1);
7588 assert (len == i + 1);
7589 offset = offset * 8 + 0x408;
7590 printf (_("sp = sp + %ld"), offset);
7591 }
7592 else if ((op & 0xf0) == 0xe0)
7593 {
7594 if ((op & 0x0f) == 7)
7595 printf (" RETURN");
7596 else
7597 printf (" MV %s, B3", tic6x_unwind_regnames[op & 0x0f]);
7598 }
7599 else
7600 {
7601 printf (_(" [unsupported opcode]"));
7602 }
7603 putchar ('\n');
7604 }
7605 }
7606
7607 static bfd_vma
7608 arm_expand_prel31 (bfd_vma word, bfd_vma where)
7609 {
7610 bfd_vma offset;
7611
7612 offset = word & 0x7fffffff;
7613 if (offset & 0x40000000)
7614 offset |= ~ (bfd_vma) 0x7fffffff;
7615
7616 if (elf_header.e_machine == EM_TI_C6000)
7617 offset <<= 1;
7618
7619 return offset + where;
7620 }
7621
7622 static void
7623 decode_arm_unwind (struct arm_unw_aux_info * aux,
7624 unsigned int word,
7625 unsigned int remaining,
7626 bfd_vma data_offset,
7627 Elf_Internal_Shdr * data_sec,
7628 struct arm_section * data_arm_sec)
7629 {
7630 int per_index;
7631 unsigned int more_words = 0;
7632 struct absaddr addr;
7633 bfd_vma sym_name = (bfd_vma) -1;
7634
7635 if (remaining == 0)
7636 {
7637 /* Fetch the first word.
7638 Note - when decoding an object file the address extracted
7639 here will always be 0. So we also pass in the sym_name
7640 parameter so that we can find the symbol associated with
7641 the personality routine. */
7642 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, data_offset,
7643 & word, & addr, & sym_name))
7644 return;
7645
7646 remaining = 4;
7647 }
7648
7649 if ((word & 0x80000000) == 0)
7650 {
7651 /* Expand prel31 for personality routine. */
7652 bfd_vma fn;
7653 const char *procname;
7654
7655 fn = arm_expand_prel31 (word, data_sec->sh_addr + data_offset);
7656 printf (_(" Personality routine: "));
7657 if (fn == 0
7658 && addr.section == SHN_UNDEF && addr.offset == 0
7659 && sym_name != (bfd_vma) -1 && sym_name < aux->strtab_size)
7660 {
7661 procname = aux->strtab + sym_name;
7662 print_vma (fn, PREFIX_HEX);
7663 if (procname)
7664 {
7665 fputs (" <", stdout);
7666 fputs (procname, stdout);
7667 fputc ('>', stdout);
7668 }
7669 }
7670 else
7671 procname = arm_print_vma_and_name (aux, fn, addr);
7672 fputc ('\n', stdout);
7673
7674 /* The GCC personality routines use the standard compact
7675 encoding, starting with one byte giving the number of
7676 words. */
7677 if (procname != NULL
7678 && (const_strneq (procname, "__gcc_personality_v0")
7679 || const_strneq (procname, "__gxx_personality_v0")
7680 || const_strneq (procname, "__gcj_personality_v0")
7681 || const_strneq (procname, "__gnu_objc_personality_v0")))
7682 {
7683 remaining = 0;
7684 more_words = 1;
7685 ADVANCE;
7686 if (!remaining)
7687 {
7688 printf (_(" [Truncated data]\n"));
7689 return;
7690 }
7691 more_words = word >> 24;
7692 word <<= 8;
7693 remaining--;
7694 per_index = -1;
7695 }
7696 else
7697 return;
7698 }
7699 else
7700 {
7701 /* ARM EHABI Section 6.3:
7702
7703 An exception-handling table entry for the compact model looks like:
7704
7705 31 30-28 27-24 23-0
7706 -- ----- ----- ----
7707 1 0 index Data for personalityRoutine[index] */
7708
7709 if (elf_header.e_machine == EM_ARM
7710 && (word & 0x70000000))
7711 warn (_("Corrupt ARM compact model table entry: %x \n"), word);
7712
7713 per_index = (word >> 24) & 0x7f;
7714 printf (_(" Compact model index: %d\n"), per_index);
7715 if (per_index == 0)
7716 {
7717 more_words = 0;
7718 word <<= 8;
7719 remaining--;
7720 }
7721 else if (per_index < 3)
7722 {
7723 more_words = (word >> 16) & 0xff;
7724 word <<= 16;
7725 remaining -= 2;
7726 }
7727 }
7728
7729 switch (elf_header.e_machine)
7730 {
7731 case EM_ARM:
7732 if (per_index < 3)
7733 {
7734 decode_arm_unwind_bytecode (aux, word, remaining, more_words,
7735 data_offset, data_sec, data_arm_sec);
7736 }
7737 else
7738 {
7739 warn (_("Unknown ARM compact model index encountered\n"));
7740 printf (_(" [reserved]\n"));
7741 }
7742 break;
7743
7744 case EM_TI_C6000:
7745 if (per_index < 3)
7746 {
7747 decode_tic6x_unwind_bytecode (aux, word, remaining, more_words,
7748 data_offset, data_sec, data_arm_sec);
7749 }
7750 else if (per_index < 5)
7751 {
7752 if (((word >> 17) & 0x7f) == 0x7f)
7753 printf (_(" Restore stack from frame pointer\n"));
7754 else
7755 printf (_(" Stack increment %d\n"), (word >> 14) & 0x1fc);
7756 printf (_(" Registers restored: "));
7757 if (per_index == 4)
7758 printf (" (compact) ");
7759 decode_tic6x_unwind_regmask ((word >> 4) & 0x1fff);
7760 putchar ('\n');
7761 printf (_(" Return register: %s\n"),
7762 tic6x_unwind_regnames[word & 0xf]);
7763 }
7764 else
7765 printf (_(" [reserved (%d)]\n"), per_index);
7766 break;
7767
7768 default:
7769 error (_("Unsupported architecture type %d encountered when decoding unwind table\n"),
7770 elf_header.e_machine);
7771 }
7772
7773 /* Decode the descriptors. Not implemented. */
7774 }
7775
7776 static void
7777 dump_arm_unwind (struct arm_unw_aux_info *aux, Elf_Internal_Shdr *exidx_sec)
7778 {
7779 struct arm_section exidx_arm_sec, extab_arm_sec;
7780 unsigned int i, exidx_len;
7781
7782 memset (&exidx_arm_sec, 0, sizeof (exidx_arm_sec));
7783 memset (&extab_arm_sec, 0, sizeof (extab_arm_sec));
7784 exidx_len = exidx_sec->sh_size / 8;
7785
7786 for (i = 0; i < exidx_len; i++)
7787 {
7788 unsigned int exidx_fn, exidx_entry;
7789 struct absaddr fn_addr, entry_addr;
7790 bfd_vma fn;
7791
7792 fputc ('\n', stdout);
7793
7794 if (! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
7795 8 * i, & exidx_fn, & fn_addr, NULL)
7796 || ! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
7797 8 * i + 4, & exidx_entry, & entry_addr, NULL))
7798 {
7799 arm_free_section (& exidx_arm_sec);
7800 arm_free_section (& extab_arm_sec);
7801 return;
7802 }
7803
7804 /* ARM EHABI, Section 5:
7805 An index table entry consists of 2 words.
7806 The first word contains a prel31 offset to the start of a function, with bit 31 clear. */
7807 if (exidx_fn & 0x80000000)
7808 warn (_("corrupt index table entry: %x\n"), exidx_fn);
7809
7810 fn = arm_expand_prel31 (exidx_fn, exidx_sec->sh_addr + 8 * i);
7811
7812 arm_print_vma_and_name (aux, fn, fn_addr);
7813 fputs (": ", stdout);
7814
7815 if (exidx_entry == 1)
7816 {
7817 print_vma (exidx_entry, PREFIX_HEX);
7818 fputs (" [cantunwind]\n", stdout);
7819 }
7820 else if (exidx_entry & 0x80000000)
7821 {
7822 print_vma (exidx_entry, PREFIX_HEX);
7823 fputc ('\n', stdout);
7824 decode_arm_unwind (aux, exidx_entry, 4, 0, NULL, NULL);
7825 }
7826 else
7827 {
7828 bfd_vma table, table_offset = 0;
7829 Elf_Internal_Shdr *table_sec;
7830
7831 fputs ("@", stdout);
7832 table = arm_expand_prel31 (exidx_entry, exidx_sec->sh_addr + 8 * i + 4);
7833 print_vma (table, PREFIX_HEX);
7834 printf ("\n");
7835
7836 /* Locate the matching .ARM.extab. */
7837 if (entry_addr.section != SHN_UNDEF
7838 && entry_addr.section < elf_header.e_shnum)
7839 {
7840 table_sec = section_headers + entry_addr.section;
7841 table_offset = entry_addr.offset;
7842 }
7843 else
7844 {
7845 table_sec = find_section_by_address (table);
7846 if (table_sec != NULL)
7847 table_offset = table - table_sec->sh_addr;
7848 }
7849 if (table_sec == NULL)
7850 {
7851 warn (_("Could not locate .ARM.extab section containing 0x%lx.\n"),
7852 (unsigned long) table);
7853 continue;
7854 }
7855 decode_arm_unwind (aux, 0, 0, table_offset, table_sec,
7856 &extab_arm_sec);
7857 }
7858 }
7859
7860 printf ("\n");
7861
7862 arm_free_section (&exidx_arm_sec);
7863 arm_free_section (&extab_arm_sec);
7864 }
7865
7866 /* Used for both ARM and C6X unwinding tables. */
7867
7868 static void
7869 arm_process_unwind (FILE *file)
7870 {
7871 struct arm_unw_aux_info aux;
7872 Elf_Internal_Shdr *unwsec = NULL;
7873 Elf_Internal_Shdr *strsec;
7874 Elf_Internal_Shdr *sec;
7875 unsigned long i;
7876 unsigned int sec_type;
7877
7878 switch (elf_header.e_machine)
7879 {
7880 case EM_ARM:
7881 sec_type = SHT_ARM_EXIDX;
7882 break;
7883
7884 case EM_TI_C6000:
7885 sec_type = SHT_C6000_UNWIND;
7886 break;
7887
7888 default:
7889 error (_("Unsupported architecture type %d encountered when processing unwind table\n"),
7890 elf_header.e_machine);
7891 return;
7892 }
7893
7894 if (string_table == NULL)
7895 return;
7896
7897 memset (& aux, 0, sizeof (aux));
7898 aux.file = file;
7899
7900 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7901 {
7902 if (sec->sh_type == SHT_SYMTAB && sec->sh_link < elf_header.e_shnum)
7903 {
7904 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
7905
7906 strsec = section_headers + sec->sh_link;
7907
7908 /* PR binutils/17531 file: 011-12666-0.004. */
7909 if (aux.strtab != NULL)
7910 {
7911 error (_("Multiple string tables found in file.\n"));
7912 free (aux.strtab);
7913 }
7914 aux.strtab = get_data (NULL, file, strsec->sh_offset,
7915 1, strsec->sh_size, _("string table"));
7916 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7917 }
7918 else if (sec->sh_type == sec_type)
7919 unwsec = sec;
7920 }
7921
7922 if (unwsec == NULL)
7923 printf (_("\nThere are no unwind sections in this file.\n"));
7924 else
7925 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7926 {
7927 if (sec->sh_type == sec_type)
7928 {
7929 printf (_("\nUnwind table index '%s' at offset 0x%lx contains %lu entries:\n"),
7930 printable_section_name (sec),
7931 (unsigned long) sec->sh_offset,
7932 (unsigned long) (sec->sh_size / (2 * eh_addr_size)));
7933
7934 dump_arm_unwind (&aux, sec);
7935 }
7936 }
7937
7938 if (aux.symtab)
7939 free (aux.symtab);
7940 if (aux.strtab)
7941 free ((char *) aux.strtab);
7942 }
7943
7944 static void
7945 process_unwind (FILE * file)
7946 {
7947 struct unwind_handler
7948 {
7949 int machtype;
7950 void (* handler)(FILE *);
7951 } handlers[] =
7952 {
7953 { EM_ARM, arm_process_unwind },
7954 { EM_IA_64, ia64_process_unwind },
7955 { EM_PARISC, hppa_process_unwind },
7956 { EM_TI_C6000, arm_process_unwind },
7957 { 0, 0 }
7958 };
7959 int i;
7960
7961 if (!do_unwind)
7962 return;
7963
7964 for (i = 0; handlers[i].handler != NULL; i++)
7965 if (elf_header.e_machine == handlers[i].machtype)
7966 {
7967 handlers[i].handler (file);
7968 return;
7969 }
7970
7971 printf (_("\nThe decoding of unwind sections for machine type %s is not currently supported.\n"),
7972 get_machine_name (elf_header.e_machine));
7973 }
7974
7975 static void
7976 dynamic_section_mips_val (Elf_Internal_Dyn * entry)
7977 {
7978 switch (entry->d_tag)
7979 {
7980 case DT_MIPS_FLAGS:
7981 if (entry->d_un.d_val == 0)
7982 printf (_("NONE"));
7983 else
7984 {
7985 static const char * opts[] =
7986 {
7987 "QUICKSTART", "NOTPOT", "NO_LIBRARY_REPLACEMENT",
7988 "NO_MOVE", "SGI_ONLY", "GUARANTEE_INIT", "DELTA_C_PLUS_PLUS",
7989 "GUARANTEE_START_INIT", "PIXIE", "DEFAULT_DELAY_LOAD",
7990 "REQUICKSTART", "REQUICKSTARTED", "CORD", "NO_UNRES_UNDEF",
7991 "RLD_ORDER_SAFE"
7992 };
7993 unsigned int cnt;
7994 int first = 1;
7995
7996 for (cnt = 0; cnt < ARRAY_SIZE (opts); ++cnt)
7997 if (entry->d_un.d_val & (1 << cnt))
7998 {
7999 printf ("%s%s", first ? "" : " ", opts[cnt]);
8000 first = 0;
8001 }
8002 }
8003 break;
8004
8005 case DT_MIPS_IVERSION:
8006 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
8007 printf (_("Interface Version: %s"), GET_DYNAMIC_NAME (entry->d_un.d_val));
8008 else
8009 {
8010 char buf[40];
8011 sprintf_vma (buf, entry->d_un.d_ptr);
8012 /* Note: coded this way so that there is a single string for translation. */
8013 printf (_("<corrupt: %s>"), buf);
8014 }
8015 break;
8016
8017 case DT_MIPS_TIME_STAMP:
8018 {
8019 char timebuf[20];
8020 struct tm * tmp;
8021
8022 time_t atime = entry->d_un.d_val;
8023 tmp = gmtime (&atime);
8024 snprintf (timebuf, sizeof (timebuf), "%04u-%02u-%02uT%02u:%02u:%02u",
8025 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
8026 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
8027 printf (_("Time Stamp: %s"), timebuf);
8028 }
8029 break;
8030
8031 case DT_MIPS_RLD_VERSION:
8032 case DT_MIPS_LOCAL_GOTNO:
8033 case DT_MIPS_CONFLICTNO:
8034 case DT_MIPS_LIBLISTNO:
8035 case DT_MIPS_SYMTABNO:
8036 case DT_MIPS_UNREFEXTNO:
8037 case DT_MIPS_HIPAGENO:
8038 case DT_MIPS_DELTA_CLASS_NO:
8039 case DT_MIPS_DELTA_INSTANCE_NO:
8040 case DT_MIPS_DELTA_RELOC_NO:
8041 case DT_MIPS_DELTA_SYM_NO:
8042 case DT_MIPS_DELTA_CLASSSYM_NO:
8043 case DT_MIPS_COMPACT_SIZE:
8044 print_vma (entry->d_un.d_ptr, DEC);
8045 break;
8046
8047 default:
8048 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
8049 }
8050 putchar ('\n');
8051 }
8052
8053 static void
8054 dynamic_section_parisc_val (Elf_Internal_Dyn * entry)
8055 {
8056 switch (entry->d_tag)
8057 {
8058 case DT_HP_DLD_FLAGS:
8059 {
8060 static struct
8061 {
8062 long int bit;
8063 const char * str;
8064 }
8065 flags[] =
8066 {
8067 { DT_HP_DEBUG_PRIVATE, "HP_DEBUG_PRIVATE" },
8068 { DT_HP_DEBUG_CALLBACK, "HP_DEBUG_CALLBACK" },
8069 { DT_HP_DEBUG_CALLBACK_BOR, "HP_DEBUG_CALLBACK_BOR" },
8070 { DT_HP_NO_ENVVAR, "HP_NO_ENVVAR" },
8071 { DT_HP_BIND_NOW, "HP_BIND_NOW" },
8072 { DT_HP_BIND_NONFATAL, "HP_BIND_NONFATAL" },
8073 { DT_HP_BIND_VERBOSE, "HP_BIND_VERBOSE" },
8074 { DT_HP_BIND_RESTRICTED, "HP_BIND_RESTRICTED" },
8075 { DT_HP_BIND_SYMBOLIC, "HP_BIND_SYMBOLIC" },
8076 { DT_HP_RPATH_FIRST, "HP_RPATH_FIRST" },
8077 { DT_HP_BIND_DEPTH_FIRST, "HP_BIND_DEPTH_FIRST" },
8078 { DT_HP_GST, "HP_GST" },
8079 { DT_HP_SHLIB_FIXED, "HP_SHLIB_FIXED" },
8080 { DT_HP_MERGE_SHLIB_SEG, "HP_MERGE_SHLIB_SEG" },
8081 { DT_HP_NODELETE, "HP_NODELETE" },
8082 { DT_HP_GROUP, "HP_GROUP" },
8083 { DT_HP_PROTECT_LINKAGE_TABLE, "HP_PROTECT_LINKAGE_TABLE" }
8084 };
8085 int first = 1;
8086 size_t cnt;
8087 bfd_vma val = entry->d_un.d_val;
8088
8089 for (cnt = 0; cnt < ARRAY_SIZE (flags); ++cnt)
8090 if (val & flags[cnt].bit)
8091 {
8092 if (! first)
8093 putchar (' ');
8094 fputs (flags[cnt].str, stdout);
8095 first = 0;
8096 val ^= flags[cnt].bit;
8097 }
8098
8099 if (val != 0 || first)
8100 {
8101 if (! first)
8102 putchar (' ');
8103 print_vma (val, HEX);
8104 }
8105 }
8106 break;
8107
8108 default:
8109 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
8110 break;
8111 }
8112 putchar ('\n');
8113 }
8114
8115 #ifdef BFD64
8116
8117 /* VMS vs Unix time offset and factor. */
8118
8119 #define VMS_EPOCH_OFFSET 35067168000000000LL
8120 #define VMS_GRANULARITY_FACTOR 10000000
8121
8122 /* Display a VMS time in a human readable format. */
8123
8124 static void
8125 print_vms_time (bfd_int64_t vmstime)
8126 {
8127 struct tm *tm;
8128 time_t unxtime;
8129
8130 unxtime = (vmstime - VMS_EPOCH_OFFSET) / VMS_GRANULARITY_FACTOR;
8131 tm = gmtime (&unxtime);
8132 printf ("%04u-%02u-%02uT%02u:%02u:%02u",
8133 tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
8134 tm->tm_hour, tm->tm_min, tm->tm_sec);
8135 }
8136 #endif /* BFD64 */
8137
8138 static void
8139 dynamic_section_ia64_val (Elf_Internal_Dyn * entry)
8140 {
8141 switch (entry->d_tag)
8142 {
8143 case DT_IA_64_PLT_RESERVE:
8144 /* First 3 slots reserved. */
8145 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
8146 printf (" -- ");
8147 print_vma (entry->d_un.d_ptr + (3 * 8), PREFIX_HEX);
8148 break;
8149
8150 case DT_IA_64_VMS_LINKTIME:
8151 #ifdef BFD64
8152 print_vms_time (entry->d_un.d_val);
8153 #endif
8154 break;
8155
8156 case DT_IA_64_VMS_LNKFLAGS:
8157 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
8158 if (entry->d_un.d_val & VMS_LF_CALL_DEBUG)
8159 printf (" CALL_DEBUG");
8160 if (entry->d_un.d_val & VMS_LF_NOP0BUFS)
8161 printf (" NOP0BUFS");
8162 if (entry->d_un.d_val & VMS_LF_P0IMAGE)
8163 printf (" P0IMAGE");
8164 if (entry->d_un.d_val & VMS_LF_MKTHREADS)
8165 printf (" MKTHREADS");
8166 if (entry->d_un.d_val & VMS_LF_UPCALLS)
8167 printf (" UPCALLS");
8168 if (entry->d_un.d_val & VMS_LF_IMGSTA)
8169 printf (" IMGSTA");
8170 if (entry->d_un.d_val & VMS_LF_INITIALIZE)
8171 printf (" INITIALIZE");
8172 if (entry->d_un.d_val & VMS_LF_MAIN)
8173 printf (" MAIN");
8174 if (entry->d_un.d_val & VMS_LF_EXE_INIT)
8175 printf (" EXE_INIT");
8176 if (entry->d_un.d_val & VMS_LF_TBK_IN_IMG)
8177 printf (" TBK_IN_IMG");
8178 if (entry->d_un.d_val & VMS_LF_DBG_IN_IMG)
8179 printf (" DBG_IN_IMG");
8180 if (entry->d_un.d_val & VMS_LF_TBK_IN_DSF)
8181 printf (" TBK_IN_DSF");
8182 if (entry->d_un.d_val & VMS_LF_DBG_IN_DSF)
8183 printf (" DBG_IN_DSF");
8184 if (entry->d_un.d_val & VMS_LF_SIGNATURES)
8185 printf (" SIGNATURES");
8186 if (entry->d_un.d_val & VMS_LF_REL_SEG_OFF)
8187 printf (" REL_SEG_OFF");
8188 break;
8189
8190 default:
8191 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
8192 break;
8193 }
8194 putchar ('\n');
8195 }
8196
8197 static int
8198 get_32bit_dynamic_section (FILE * file)
8199 {
8200 Elf32_External_Dyn * edyn;
8201 Elf32_External_Dyn * ext;
8202 Elf_Internal_Dyn * entry;
8203
8204 edyn = (Elf32_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
8205 dynamic_size, _("dynamic section"));
8206 if (!edyn)
8207 return 0;
8208
8209 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
8210 might not have the luxury of section headers. Look for the DT_NULL
8211 terminator to determine the number of entries. */
8212 for (ext = edyn, dynamic_nent = 0;
8213 (char *) ext < (char *) edyn + dynamic_size - sizeof (* entry);
8214 ext++)
8215 {
8216 dynamic_nent++;
8217 if (BYTE_GET (ext->d_tag) == DT_NULL)
8218 break;
8219 }
8220
8221 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
8222 sizeof (* entry));
8223 if (dynamic_section == NULL)
8224 {
8225 error (_("Out of memory allocating space for %lu dynamic entries\n"),
8226 (unsigned long) dynamic_nent);
8227 free (edyn);
8228 return 0;
8229 }
8230
8231 for (ext = edyn, entry = dynamic_section;
8232 entry < dynamic_section + dynamic_nent;
8233 ext++, entry++)
8234 {
8235 entry->d_tag = BYTE_GET (ext->d_tag);
8236 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
8237 }
8238
8239 free (edyn);
8240
8241 return 1;
8242 }
8243
8244 static int
8245 get_64bit_dynamic_section (FILE * file)
8246 {
8247 Elf64_External_Dyn * edyn;
8248 Elf64_External_Dyn * ext;
8249 Elf_Internal_Dyn * entry;
8250
8251 /* Read in the data. */
8252 edyn = (Elf64_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
8253 dynamic_size, _("dynamic section"));
8254 if (!edyn)
8255 return 0;
8256
8257 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
8258 might not have the luxury of section headers. Look for the DT_NULL
8259 terminator to determine the number of entries. */
8260 for (ext = edyn, dynamic_nent = 0;
8261 /* PR 17533 file: 033-67080-0.004 - do not read off the end of the buffer. */
8262 (char *) ext < ((char *) edyn) + dynamic_size - sizeof (* ext);
8263 ext++)
8264 {
8265 dynamic_nent++;
8266 if (BYTE_GET (ext->d_tag) == DT_NULL)
8267 break;
8268 }
8269
8270 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
8271 sizeof (* entry));
8272 if (dynamic_section == NULL)
8273 {
8274 error (_("Out of memory allocating space for %lu dynamic entries\n"),
8275 (unsigned long) dynamic_nent);
8276 free (edyn);
8277 return 0;
8278 }
8279
8280 /* Convert from external to internal formats. */
8281 for (ext = edyn, entry = dynamic_section;
8282 entry < dynamic_section + dynamic_nent;
8283 ext++, entry++)
8284 {
8285 entry->d_tag = BYTE_GET (ext->d_tag);
8286 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
8287 }
8288
8289 free (edyn);
8290
8291 return 1;
8292 }
8293
8294 static void
8295 print_dynamic_flags (bfd_vma flags)
8296 {
8297 int first = 1;
8298
8299 while (flags)
8300 {
8301 bfd_vma flag;
8302
8303 flag = flags & - flags;
8304 flags &= ~ flag;
8305
8306 if (first)
8307 first = 0;
8308 else
8309 putc (' ', stdout);
8310
8311 switch (flag)
8312 {
8313 case DF_ORIGIN: fputs ("ORIGIN", stdout); break;
8314 case DF_SYMBOLIC: fputs ("SYMBOLIC", stdout); break;
8315 case DF_TEXTREL: fputs ("TEXTREL", stdout); break;
8316 case DF_BIND_NOW: fputs ("BIND_NOW", stdout); break;
8317 case DF_STATIC_TLS: fputs ("STATIC_TLS", stdout); break;
8318 default: fputs (_("unknown"), stdout); break;
8319 }
8320 }
8321 puts ("");
8322 }
8323
8324 /* Parse and display the contents of the dynamic section. */
8325
8326 static int
8327 process_dynamic_section (FILE * file)
8328 {
8329 Elf_Internal_Dyn * entry;
8330
8331 if (dynamic_size == 0)
8332 {
8333 if (do_dynamic)
8334 printf (_("\nThere is no dynamic section in this file.\n"));
8335
8336 return 1;
8337 }
8338
8339 if (is_32bit_elf)
8340 {
8341 if (! get_32bit_dynamic_section (file))
8342 return 0;
8343 }
8344 else if (! get_64bit_dynamic_section (file))
8345 return 0;
8346
8347 /* Find the appropriate symbol table. */
8348 if (dynamic_symbols == NULL)
8349 {
8350 for (entry = dynamic_section;
8351 entry < dynamic_section + dynamic_nent;
8352 ++entry)
8353 {
8354 Elf_Internal_Shdr section;
8355
8356 if (entry->d_tag != DT_SYMTAB)
8357 continue;
8358
8359 dynamic_info[DT_SYMTAB] = entry->d_un.d_val;
8360
8361 /* Since we do not know how big the symbol table is,
8362 we default to reading in the entire file (!) and
8363 processing that. This is overkill, I know, but it
8364 should work. */
8365 section.sh_offset = offset_from_vma (file, entry->d_un.d_val, 0);
8366
8367 if (archive_file_offset != 0)
8368 section.sh_size = archive_file_size - section.sh_offset;
8369 else
8370 {
8371 if (fseek (file, 0, SEEK_END))
8372 error (_("Unable to seek to end of file!\n"));
8373
8374 section.sh_size = ftell (file) - section.sh_offset;
8375 }
8376
8377 if (is_32bit_elf)
8378 section.sh_entsize = sizeof (Elf32_External_Sym);
8379 else
8380 section.sh_entsize = sizeof (Elf64_External_Sym);
8381 section.sh_name = string_table_length;
8382
8383 dynamic_symbols = GET_ELF_SYMBOLS (file, &section, & num_dynamic_syms);
8384 if (num_dynamic_syms < 1)
8385 {
8386 error (_("Unable to determine the number of symbols to load\n"));
8387 continue;
8388 }
8389 }
8390 }
8391
8392 /* Similarly find a string table. */
8393 if (dynamic_strings == NULL)
8394 {
8395 for (entry = dynamic_section;
8396 entry < dynamic_section + dynamic_nent;
8397 ++entry)
8398 {
8399 unsigned long offset;
8400 long str_tab_len;
8401
8402 if (entry->d_tag != DT_STRTAB)
8403 continue;
8404
8405 dynamic_info[DT_STRTAB] = entry->d_un.d_val;
8406
8407 /* Since we do not know how big the string table is,
8408 we default to reading in the entire file (!) and
8409 processing that. This is overkill, I know, but it
8410 should work. */
8411
8412 offset = offset_from_vma (file, entry->d_un.d_val, 0);
8413
8414 if (archive_file_offset != 0)
8415 str_tab_len = archive_file_size - offset;
8416 else
8417 {
8418 if (fseek (file, 0, SEEK_END))
8419 error (_("Unable to seek to end of file\n"));
8420 str_tab_len = ftell (file) - offset;
8421 }
8422
8423 if (str_tab_len < 1)
8424 {
8425 error
8426 (_("Unable to determine the length of the dynamic string table\n"));
8427 continue;
8428 }
8429
8430 dynamic_strings = (char *) get_data (NULL, file, offset, 1,
8431 str_tab_len,
8432 _("dynamic string table"));
8433 dynamic_strings_length = dynamic_strings == NULL ? 0 : str_tab_len;
8434 break;
8435 }
8436 }
8437
8438 /* And find the syminfo section if available. */
8439 if (dynamic_syminfo == NULL)
8440 {
8441 unsigned long syminsz = 0;
8442
8443 for (entry = dynamic_section;
8444 entry < dynamic_section + dynamic_nent;
8445 ++entry)
8446 {
8447 if (entry->d_tag == DT_SYMINENT)
8448 {
8449 /* Note: these braces are necessary to avoid a syntax
8450 error from the SunOS4 C compiler. */
8451 /* PR binutils/17531: A corrupt file can trigger this test.
8452 So do not use an assert, instead generate an error message. */
8453 if (sizeof (Elf_External_Syminfo) != entry->d_un.d_val)
8454 error (_("Bad value (%d) for SYMINENT entry\n"),
8455 (int) entry->d_un.d_val);
8456 }
8457 else if (entry->d_tag == DT_SYMINSZ)
8458 syminsz = entry->d_un.d_val;
8459 else if (entry->d_tag == DT_SYMINFO)
8460 dynamic_syminfo_offset = offset_from_vma (file, entry->d_un.d_val,
8461 syminsz);
8462 }
8463
8464 if (dynamic_syminfo_offset != 0 && syminsz != 0)
8465 {
8466 Elf_External_Syminfo * extsyminfo;
8467 Elf_External_Syminfo * extsym;
8468 Elf_Internal_Syminfo * syminfo;
8469
8470 /* There is a syminfo section. Read the data. */
8471 extsyminfo = (Elf_External_Syminfo *)
8472 get_data (NULL, file, dynamic_syminfo_offset, 1, syminsz,
8473 _("symbol information"));
8474 if (!extsyminfo)
8475 return 0;
8476
8477 dynamic_syminfo = (Elf_Internal_Syminfo *) malloc (syminsz);
8478 if (dynamic_syminfo == NULL)
8479 {
8480 error (_("Out of memory allocating %lu byte for dynamic symbol info\n"),
8481 (unsigned long) syminsz);
8482 return 0;
8483 }
8484
8485 dynamic_syminfo_nent = syminsz / sizeof (Elf_External_Syminfo);
8486 for (syminfo = dynamic_syminfo, extsym = extsyminfo;
8487 syminfo < dynamic_syminfo + dynamic_syminfo_nent;
8488 ++syminfo, ++extsym)
8489 {
8490 syminfo->si_boundto = BYTE_GET (extsym->si_boundto);
8491 syminfo->si_flags = BYTE_GET (extsym->si_flags);
8492 }
8493
8494 free (extsyminfo);
8495 }
8496 }
8497
8498 if (do_dynamic && dynamic_addr)
8499 printf (_("\nDynamic section at offset 0x%lx contains %lu entries:\n"),
8500 dynamic_addr, (unsigned long) dynamic_nent);
8501 if (do_dynamic)
8502 printf (_(" Tag Type Name/Value\n"));
8503
8504 for (entry = dynamic_section;
8505 entry < dynamic_section + dynamic_nent;
8506 entry++)
8507 {
8508 if (do_dynamic)
8509 {
8510 const char * dtype;
8511
8512 putchar (' ');
8513 print_vma (entry->d_tag, FULL_HEX);
8514 dtype = get_dynamic_type (entry->d_tag);
8515 printf (" (%s)%*s", dtype,
8516 ((is_32bit_elf ? 27 : 19)
8517 - (int) strlen (dtype)),
8518 " ");
8519 }
8520
8521 switch (entry->d_tag)
8522 {
8523 case DT_FLAGS:
8524 if (do_dynamic)
8525 print_dynamic_flags (entry->d_un.d_val);
8526 break;
8527
8528 case DT_AUXILIARY:
8529 case DT_FILTER:
8530 case DT_CONFIG:
8531 case DT_DEPAUDIT:
8532 case DT_AUDIT:
8533 if (do_dynamic)
8534 {
8535 switch (entry->d_tag)
8536 {
8537 case DT_AUXILIARY:
8538 printf (_("Auxiliary library"));
8539 break;
8540
8541 case DT_FILTER:
8542 printf (_("Filter library"));
8543 break;
8544
8545 case DT_CONFIG:
8546 printf (_("Configuration file"));
8547 break;
8548
8549 case DT_DEPAUDIT:
8550 printf (_("Dependency audit library"));
8551 break;
8552
8553 case DT_AUDIT:
8554 printf (_("Audit library"));
8555 break;
8556 }
8557
8558 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
8559 printf (": [%s]\n", GET_DYNAMIC_NAME (entry->d_un.d_val));
8560 else
8561 {
8562 printf (": ");
8563 print_vma (entry->d_un.d_val, PREFIX_HEX);
8564 putchar ('\n');
8565 }
8566 }
8567 break;
8568
8569 case DT_FEATURE:
8570 if (do_dynamic)
8571 {
8572 printf (_("Flags:"));
8573
8574 if (entry->d_un.d_val == 0)
8575 printf (_(" None\n"));
8576 else
8577 {
8578 unsigned long int val = entry->d_un.d_val;
8579
8580 if (val & DTF_1_PARINIT)
8581 {
8582 printf (" PARINIT");
8583 val ^= DTF_1_PARINIT;
8584 }
8585 if (val & DTF_1_CONFEXP)
8586 {
8587 printf (" CONFEXP");
8588 val ^= DTF_1_CONFEXP;
8589 }
8590 if (val != 0)
8591 printf (" %lx", val);
8592 puts ("");
8593 }
8594 }
8595 break;
8596
8597 case DT_POSFLAG_1:
8598 if (do_dynamic)
8599 {
8600 printf (_("Flags:"));
8601
8602 if (entry->d_un.d_val == 0)
8603 printf (_(" None\n"));
8604 else
8605 {
8606 unsigned long int val = entry->d_un.d_val;
8607
8608 if (val & DF_P1_LAZYLOAD)
8609 {
8610 printf (" LAZYLOAD");
8611 val ^= DF_P1_LAZYLOAD;
8612 }
8613 if (val & DF_P1_GROUPPERM)
8614 {
8615 printf (" GROUPPERM");
8616 val ^= DF_P1_GROUPPERM;
8617 }
8618 if (val != 0)
8619 printf (" %lx", val);
8620 puts ("");
8621 }
8622 }
8623 break;
8624
8625 case DT_FLAGS_1:
8626 if (do_dynamic)
8627 {
8628 printf (_("Flags:"));
8629 if (entry->d_un.d_val == 0)
8630 printf (_(" None\n"));
8631 else
8632 {
8633 unsigned long int val = entry->d_un.d_val;
8634
8635 if (val & DF_1_NOW)
8636 {
8637 printf (" NOW");
8638 val ^= DF_1_NOW;
8639 }
8640 if (val & DF_1_GLOBAL)
8641 {
8642 printf (" GLOBAL");
8643 val ^= DF_1_GLOBAL;
8644 }
8645 if (val & DF_1_GROUP)
8646 {
8647 printf (" GROUP");
8648 val ^= DF_1_GROUP;
8649 }
8650 if (val & DF_1_NODELETE)
8651 {
8652 printf (" NODELETE");
8653 val ^= DF_1_NODELETE;
8654 }
8655 if (val & DF_1_LOADFLTR)
8656 {
8657 printf (" LOADFLTR");
8658 val ^= DF_1_LOADFLTR;
8659 }
8660 if (val & DF_1_INITFIRST)
8661 {
8662 printf (" INITFIRST");
8663 val ^= DF_1_INITFIRST;
8664 }
8665 if (val & DF_1_NOOPEN)
8666 {
8667 printf (" NOOPEN");
8668 val ^= DF_1_NOOPEN;
8669 }
8670 if (val & DF_1_ORIGIN)
8671 {
8672 printf (" ORIGIN");
8673 val ^= DF_1_ORIGIN;
8674 }
8675 if (val & DF_1_DIRECT)
8676 {
8677 printf (" DIRECT");
8678 val ^= DF_1_DIRECT;
8679 }
8680 if (val & DF_1_TRANS)
8681 {
8682 printf (" TRANS");
8683 val ^= DF_1_TRANS;
8684 }
8685 if (val & DF_1_INTERPOSE)
8686 {
8687 printf (" INTERPOSE");
8688 val ^= DF_1_INTERPOSE;
8689 }
8690 if (val & DF_1_NODEFLIB)
8691 {
8692 printf (" NODEFLIB");
8693 val ^= DF_1_NODEFLIB;
8694 }
8695 if (val & DF_1_NODUMP)
8696 {
8697 printf (" NODUMP");
8698 val ^= DF_1_NODUMP;
8699 }
8700 if (val & DF_1_CONFALT)
8701 {
8702 printf (" CONFALT");
8703 val ^= DF_1_CONFALT;
8704 }
8705 if (val & DF_1_ENDFILTEE)
8706 {
8707 printf (" ENDFILTEE");
8708 val ^= DF_1_ENDFILTEE;
8709 }
8710 if (val & DF_1_DISPRELDNE)
8711 {
8712 printf (" DISPRELDNE");
8713 val ^= DF_1_DISPRELDNE;
8714 }
8715 if (val & DF_1_DISPRELPND)
8716 {
8717 printf (" DISPRELPND");
8718 val ^= DF_1_DISPRELPND;
8719 }
8720 if (val & DF_1_NODIRECT)
8721 {
8722 printf (" NODIRECT");
8723 val ^= DF_1_NODIRECT;
8724 }
8725 if (val & DF_1_IGNMULDEF)
8726 {
8727 printf (" IGNMULDEF");
8728 val ^= DF_1_IGNMULDEF;
8729 }
8730 if (val & DF_1_NOKSYMS)
8731 {
8732 printf (" NOKSYMS");
8733 val ^= DF_1_NOKSYMS;
8734 }
8735 if (val & DF_1_NOHDR)
8736 {
8737 printf (" NOHDR");
8738 val ^= DF_1_NOHDR;
8739 }
8740 if (val & DF_1_EDITED)
8741 {
8742 printf (" EDITED");
8743 val ^= DF_1_EDITED;
8744 }
8745 if (val & DF_1_NORELOC)
8746 {
8747 printf (" NORELOC");
8748 val ^= DF_1_NORELOC;
8749 }
8750 if (val & DF_1_SYMINTPOSE)
8751 {
8752 printf (" SYMINTPOSE");
8753 val ^= DF_1_SYMINTPOSE;
8754 }
8755 if (val & DF_1_GLOBAUDIT)
8756 {
8757 printf (" GLOBAUDIT");
8758 val ^= DF_1_GLOBAUDIT;
8759 }
8760 if (val & DF_1_SINGLETON)
8761 {
8762 printf (" SINGLETON");
8763 val ^= DF_1_SINGLETON;
8764 }
8765 if (val != 0)
8766 printf (" %lx", val);
8767 puts ("");
8768 }
8769 }
8770 break;
8771
8772 case DT_PLTREL:
8773 dynamic_info[entry->d_tag] = entry->d_un.d_val;
8774 if (do_dynamic)
8775 puts (get_dynamic_type (entry->d_un.d_val));
8776 break;
8777
8778 case DT_NULL :
8779 case DT_NEEDED :
8780 case DT_PLTGOT :
8781 case DT_HASH :
8782 case DT_STRTAB :
8783 case DT_SYMTAB :
8784 case DT_RELA :
8785 case DT_INIT :
8786 case DT_FINI :
8787 case DT_SONAME :
8788 case DT_RPATH :
8789 case DT_SYMBOLIC:
8790 case DT_REL :
8791 case DT_DEBUG :
8792 case DT_TEXTREL :
8793 case DT_JMPREL :
8794 case DT_RUNPATH :
8795 dynamic_info[entry->d_tag] = entry->d_un.d_val;
8796
8797 if (do_dynamic)
8798 {
8799 char * name;
8800
8801 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
8802 name = GET_DYNAMIC_NAME (entry->d_un.d_val);
8803 else
8804 name = NULL;
8805
8806 if (name)
8807 {
8808 switch (entry->d_tag)
8809 {
8810 case DT_NEEDED:
8811 printf (_("Shared library: [%s]"), name);
8812
8813 if (streq (name, program_interpreter))
8814 printf (_(" program interpreter"));
8815 break;
8816
8817 case DT_SONAME:
8818 printf (_("Library soname: [%s]"), name);
8819 break;
8820
8821 case DT_RPATH:
8822 printf (_("Library rpath: [%s]"), name);
8823 break;
8824
8825 case DT_RUNPATH:
8826 printf (_("Library runpath: [%s]"), name);
8827 break;
8828
8829 default:
8830 print_vma (entry->d_un.d_val, PREFIX_HEX);
8831 break;
8832 }
8833 }
8834 else
8835 print_vma (entry->d_un.d_val, PREFIX_HEX);
8836
8837 putchar ('\n');
8838 }
8839 break;
8840
8841 case DT_PLTRELSZ:
8842 case DT_RELASZ :
8843 case DT_STRSZ :
8844 case DT_RELSZ :
8845 case DT_RELAENT :
8846 case DT_SYMENT :
8847 case DT_RELENT :
8848 dynamic_info[entry->d_tag] = entry->d_un.d_val;
8849 case DT_PLTPADSZ:
8850 case DT_MOVEENT :
8851 case DT_MOVESZ :
8852 case DT_INIT_ARRAYSZ:
8853 case DT_FINI_ARRAYSZ:
8854 case DT_GNU_CONFLICTSZ:
8855 case DT_GNU_LIBLISTSZ:
8856 if (do_dynamic)
8857 {
8858 print_vma (entry->d_un.d_val, UNSIGNED);
8859 printf (_(" (bytes)\n"));
8860 }
8861 break;
8862
8863 case DT_VERDEFNUM:
8864 case DT_VERNEEDNUM:
8865 case DT_RELACOUNT:
8866 case DT_RELCOUNT:
8867 if (do_dynamic)
8868 {
8869 print_vma (entry->d_un.d_val, UNSIGNED);
8870 putchar ('\n');
8871 }
8872 break;
8873
8874 case DT_SYMINSZ:
8875 case DT_SYMINENT:
8876 case DT_SYMINFO:
8877 case DT_USED:
8878 case DT_INIT_ARRAY:
8879 case DT_FINI_ARRAY:
8880 if (do_dynamic)
8881 {
8882 if (entry->d_tag == DT_USED
8883 && VALID_DYNAMIC_NAME (entry->d_un.d_val))
8884 {
8885 char * name = GET_DYNAMIC_NAME (entry->d_un.d_val);
8886
8887 if (*name)
8888 {
8889 printf (_("Not needed object: [%s]\n"), name);
8890 break;
8891 }
8892 }
8893
8894 print_vma (entry->d_un.d_val, PREFIX_HEX);
8895 putchar ('\n');
8896 }
8897 break;
8898
8899 case DT_BIND_NOW:
8900 /* The value of this entry is ignored. */
8901 if (do_dynamic)
8902 putchar ('\n');
8903 break;
8904
8905 case DT_GNU_PRELINKED:
8906 if (do_dynamic)
8907 {
8908 struct tm * tmp;
8909 time_t atime = entry->d_un.d_val;
8910
8911 tmp = gmtime (&atime);
8912 /* PR 17533 file: 041-1244816-0.004. */
8913 if (tmp == NULL)
8914 printf (_("<corrupt time val: %lx"),
8915 (unsigned long) atime);
8916 else
8917 printf ("%04u-%02u-%02uT%02u:%02u:%02u\n",
8918 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
8919 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
8920
8921 }
8922 break;
8923
8924 case DT_GNU_HASH:
8925 dynamic_info_DT_GNU_HASH = entry->d_un.d_val;
8926 if (do_dynamic)
8927 {
8928 print_vma (entry->d_un.d_val, PREFIX_HEX);
8929 putchar ('\n');
8930 }
8931 break;
8932
8933 default:
8934 if ((entry->d_tag >= DT_VERSYM) && (entry->d_tag <= DT_VERNEEDNUM))
8935 version_info[DT_VERSIONTAGIDX (entry->d_tag)] =
8936 entry->d_un.d_val;
8937
8938 if (do_dynamic)
8939 {
8940 switch (elf_header.e_machine)
8941 {
8942 case EM_MIPS:
8943 case EM_MIPS_RS3_LE:
8944 dynamic_section_mips_val (entry);
8945 break;
8946 case EM_PARISC:
8947 dynamic_section_parisc_val (entry);
8948 break;
8949 case EM_IA_64:
8950 dynamic_section_ia64_val (entry);
8951 break;
8952 default:
8953 print_vma (entry->d_un.d_val, PREFIX_HEX);
8954 putchar ('\n');
8955 }
8956 }
8957 break;
8958 }
8959 }
8960
8961 return 1;
8962 }
8963
8964 static char *
8965 get_ver_flags (unsigned int flags)
8966 {
8967 static char buff[32];
8968
8969 buff[0] = 0;
8970
8971 if (flags == 0)
8972 return _("none");
8973
8974 if (flags & VER_FLG_BASE)
8975 strcat (buff, "BASE ");
8976
8977 if (flags & VER_FLG_WEAK)
8978 {
8979 if (flags & VER_FLG_BASE)
8980 strcat (buff, "| ");
8981
8982 strcat (buff, "WEAK ");
8983 }
8984
8985 if (flags & VER_FLG_INFO)
8986 {
8987 if (flags & (VER_FLG_BASE|VER_FLG_WEAK))
8988 strcat (buff, "| ");
8989
8990 strcat (buff, "INFO ");
8991 }
8992
8993 if (flags & ~(VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
8994 strcat (buff, _("| <unknown>"));
8995
8996 return buff;
8997 }
8998
8999 /* Display the contents of the version sections. */
9000
9001 static int
9002 process_version_sections (FILE * file)
9003 {
9004 Elf_Internal_Shdr * section;
9005 unsigned i;
9006 int found = 0;
9007
9008 if (! do_version)
9009 return 1;
9010
9011 for (i = 0, section = section_headers;
9012 i < elf_header.e_shnum;
9013 i++, section++)
9014 {
9015 switch (section->sh_type)
9016 {
9017 case SHT_GNU_verdef:
9018 {
9019 Elf_External_Verdef * edefs;
9020 unsigned int idx;
9021 unsigned int cnt;
9022 char * endbuf;
9023
9024 found = 1;
9025
9026 printf (_("\nVersion definition section '%s' contains %u entries:\n"),
9027 printable_section_name (section),
9028 section->sh_info);
9029
9030 printf (_(" Addr: 0x"));
9031 printf_vma (section->sh_addr);
9032 printf (_(" Offset: %#08lx Link: %u (%s)"),
9033 (unsigned long) section->sh_offset, section->sh_link,
9034 printable_section_name_from_index (section->sh_link));
9035
9036 edefs = (Elf_External_Verdef *)
9037 get_data (NULL, file, section->sh_offset, 1,section->sh_size,
9038 _("version definition section"));
9039 if (!edefs)
9040 break;
9041 endbuf = (char *) edefs + section->sh_size;
9042
9043 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
9044 {
9045 char * vstart;
9046 Elf_External_Verdef * edef;
9047 Elf_Internal_Verdef ent;
9048 Elf_External_Verdaux * eaux;
9049 Elf_Internal_Verdaux aux;
9050 int j;
9051 int isum;
9052
9053 /* Check for very large indicies. */
9054 if (idx > (size_t) (endbuf - (char *) edefs))
9055 break;
9056
9057 vstart = ((char *) edefs) + idx;
9058 if (vstart + sizeof (*edef) > endbuf)
9059 break;
9060
9061 edef = (Elf_External_Verdef *) vstart;
9062
9063 ent.vd_version = BYTE_GET (edef->vd_version);
9064 ent.vd_flags = BYTE_GET (edef->vd_flags);
9065 ent.vd_ndx = BYTE_GET (edef->vd_ndx);
9066 ent.vd_cnt = BYTE_GET (edef->vd_cnt);
9067 ent.vd_hash = BYTE_GET (edef->vd_hash);
9068 ent.vd_aux = BYTE_GET (edef->vd_aux);
9069 ent.vd_next = BYTE_GET (edef->vd_next);
9070
9071 printf (_(" %#06x: Rev: %d Flags: %s"),
9072 idx, ent.vd_version, get_ver_flags (ent.vd_flags));
9073
9074 printf (_(" Index: %d Cnt: %d "),
9075 ent.vd_ndx, ent.vd_cnt);
9076
9077 /* Check for overflow. */
9078 if (ent.vd_aux > (size_t) (endbuf - vstart))
9079 break;
9080
9081 vstart += ent.vd_aux;
9082
9083 eaux = (Elf_External_Verdaux *) vstart;
9084
9085 aux.vda_name = BYTE_GET (eaux->vda_name);
9086 aux.vda_next = BYTE_GET (eaux->vda_next);
9087
9088 if (VALID_DYNAMIC_NAME (aux.vda_name))
9089 printf (_("Name: %s\n"), GET_DYNAMIC_NAME (aux.vda_name));
9090 else
9091 printf (_("Name index: %ld\n"), aux.vda_name);
9092
9093 isum = idx + ent.vd_aux;
9094
9095 for (j = 1; j < ent.vd_cnt; j++)
9096 {
9097 /* Check for overflow. */
9098 if (aux.vda_next > (size_t) (endbuf - vstart))
9099 break;
9100
9101 isum += aux.vda_next;
9102 vstart += aux.vda_next;
9103
9104 eaux = (Elf_External_Verdaux *) vstart;
9105 if (vstart + sizeof (*eaux) > endbuf)
9106 break;
9107
9108 aux.vda_name = BYTE_GET (eaux->vda_name);
9109 aux.vda_next = BYTE_GET (eaux->vda_next);
9110
9111 if (VALID_DYNAMIC_NAME (aux.vda_name))
9112 printf (_(" %#06x: Parent %d: %s\n"),
9113 isum, j, GET_DYNAMIC_NAME (aux.vda_name));
9114 else
9115 printf (_(" %#06x: Parent %d, name index: %ld\n"),
9116 isum, j, aux.vda_name);
9117 }
9118
9119 if (j < ent.vd_cnt)
9120 printf (_(" Version def aux past end of section\n"));
9121
9122 idx += ent.vd_next;
9123 }
9124
9125 if (cnt < section->sh_info)
9126 printf (_(" Version definition past end of section\n"));
9127
9128 free (edefs);
9129 }
9130 break;
9131
9132 case SHT_GNU_verneed:
9133 {
9134 Elf_External_Verneed * eneed;
9135 unsigned int idx;
9136 unsigned int cnt;
9137 char * endbuf;
9138
9139 found = 1;
9140
9141 printf (_("\nVersion needs section '%s' contains %u entries:\n"),
9142 printable_section_name (section), section->sh_info);
9143
9144 printf (_(" Addr: 0x"));
9145 printf_vma (section->sh_addr);
9146 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
9147 (unsigned long) section->sh_offset, section->sh_link,
9148 printable_section_name_from_index (section->sh_link));
9149
9150 eneed = (Elf_External_Verneed *) get_data (NULL, file,
9151 section->sh_offset, 1,
9152 section->sh_size,
9153 _("Version Needs section"));
9154 if (!eneed)
9155 break;
9156 endbuf = (char *) eneed + section->sh_size;
9157
9158 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
9159 {
9160 Elf_External_Verneed * entry;
9161 Elf_Internal_Verneed ent;
9162 int j;
9163 int isum;
9164 char * vstart;
9165
9166 if (idx > (size_t) (endbuf - (char *) eneed))
9167 break;
9168
9169 vstart = ((char *) eneed) + idx;
9170 if (vstart + sizeof (*entry) > endbuf)
9171 break;
9172
9173 entry = (Elf_External_Verneed *) vstart;
9174
9175 ent.vn_version = BYTE_GET (entry->vn_version);
9176 ent.vn_cnt = BYTE_GET (entry->vn_cnt);
9177 ent.vn_file = BYTE_GET (entry->vn_file);
9178 ent.vn_aux = BYTE_GET (entry->vn_aux);
9179 ent.vn_next = BYTE_GET (entry->vn_next);
9180
9181 printf (_(" %#06x: Version: %d"), idx, ent.vn_version);
9182
9183 if (VALID_DYNAMIC_NAME (ent.vn_file))
9184 printf (_(" File: %s"), GET_DYNAMIC_NAME (ent.vn_file));
9185 else
9186 printf (_(" File: %lx"), ent.vn_file);
9187
9188 printf (_(" Cnt: %d\n"), ent.vn_cnt);
9189
9190 /* Check for overflow. */
9191 if (ent.vn_aux > (size_t) (endbuf - vstart))
9192 break;
9193
9194 vstart += ent.vn_aux;
9195
9196 for (j = 0, isum = idx + ent.vn_aux; j < ent.vn_cnt; ++j)
9197 {
9198 Elf_External_Vernaux * eaux;
9199 Elf_Internal_Vernaux aux;
9200
9201 if (vstart + sizeof (*eaux) > endbuf)
9202 break;
9203 eaux = (Elf_External_Vernaux *) vstart;
9204
9205 aux.vna_hash = BYTE_GET (eaux->vna_hash);
9206 aux.vna_flags = BYTE_GET (eaux->vna_flags);
9207 aux.vna_other = BYTE_GET (eaux->vna_other);
9208 aux.vna_name = BYTE_GET (eaux->vna_name);
9209 aux.vna_next = BYTE_GET (eaux->vna_next);
9210
9211 if (VALID_DYNAMIC_NAME (aux.vna_name))
9212 printf (_(" %#06x: Name: %s"),
9213 isum, GET_DYNAMIC_NAME (aux.vna_name));
9214 else
9215 printf (_(" %#06x: Name index: %lx"),
9216 isum, aux.vna_name);
9217
9218 printf (_(" Flags: %s Version: %d\n"),
9219 get_ver_flags (aux.vna_flags), aux.vna_other);
9220
9221 /* Check for overflow. */
9222 if (aux.vna_next > (size_t) (endbuf - vstart))
9223 break;
9224
9225 isum += aux.vna_next;
9226 vstart += aux.vna_next;
9227 }
9228
9229 if (j < ent.vn_cnt)
9230 warn (_("Missing Version Needs auxillary information\n"));
9231
9232 if (ent.vn_next == 0 && cnt < section->sh_info - 1)
9233 {
9234 warn (_("Corrupt Version Needs structure - offset to next structure is zero with entries still left to be processed\n"));
9235 cnt = section->sh_info;
9236 break;
9237 }
9238 idx += ent.vn_next;
9239 }
9240
9241 if (cnt < section->sh_info)
9242 warn (_("Missing Version Needs information\n"));
9243
9244 free (eneed);
9245 }
9246 break;
9247
9248 case SHT_GNU_versym:
9249 {
9250 Elf_Internal_Shdr * link_section;
9251 size_t total;
9252 unsigned int cnt;
9253 unsigned char * edata;
9254 unsigned short * data;
9255 char * strtab;
9256 Elf_Internal_Sym * symbols;
9257 Elf_Internal_Shdr * string_sec;
9258 unsigned long num_syms;
9259 long off;
9260
9261 if (section->sh_link >= elf_header.e_shnum)
9262 break;
9263
9264 link_section = section_headers + section->sh_link;
9265 total = section->sh_size / sizeof (Elf_External_Versym);
9266
9267 if (link_section->sh_link >= elf_header.e_shnum)
9268 break;
9269
9270 found = 1;
9271
9272 symbols = GET_ELF_SYMBOLS (file, link_section, & num_syms);
9273 if (symbols == NULL)
9274 break;
9275
9276 string_sec = section_headers + link_section->sh_link;
9277
9278 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
9279 string_sec->sh_size,
9280 _("version string table"));
9281 if (!strtab)
9282 {
9283 free (symbols);
9284 break;
9285 }
9286
9287 printf (_("\nVersion symbols section '%s' contains %lu entries:\n"),
9288 printable_section_name (section), (unsigned long) total);
9289
9290 printf (_(" Addr: "));
9291 printf_vma (section->sh_addr);
9292 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
9293 (unsigned long) section->sh_offset, section->sh_link,
9294 printable_section_name (link_section));
9295
9296 off = offset_from_vma (file,
9297 version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
9298 total * sizeof (short));
9299 edata = (unsigned char *) get_data (NULL, file, off, total,
9300 sizeof (short),
9301 _("version symbol data"));
9302 if (!edata)
9303 {
9304 free (strtab);
9305 free (symbols);
9306 break;
9307 }
9308
9309 data = (short unsigned int *) cmalloc (total, sizeof (short));
9310
9311 for (cnt = total; cnt --;)
9312 data[cnt] = byte_get (edata + cnt * sizeof (short),
9313 sizeof (short));
9314
9315 free (edata);
9316
9317 for (cnt = 0; cnt < total; cnt += 4)
9318 {
9319 int j, nn;
9320 int check_def, check_need;
9321 char * name;
9322
9323 printf (" %03x:", cnt);
9324
9325 for (j = 0; (j < 4) && (cnt + j) < total; ++j)
9326 switch (data[cnt + j])
9327 {
9328 case 0:
9329 fputs (_(" 0 (*local*) "), stdout);
9330 break;
9331
9332 case 1:
9333 fputs (_(" 1 (*global*) "), stdout);
9334 break;
9335
9336 default:
9337 nn = printf ("%4x%c", data[cnt + j] & VERSYM_VERSION,
9338 data[cnt + j] & VERSYM_HIDDEN ? 'h' : ' ');
9339
9340 /* If this index value is greater than the size of the symbols
9341 array, break to avoid an out-of-bounds read. */
9342 if ((unsigned long)(cnt + j) >= num_syms)
9343 {
9344 warn (_("invalid index into symbol array\n"));
9345 break;
9346 }
9347
9348 check_def = 1;
9349 check_need = 1;
9350 if (symbols[cnt + j].st_shndx >= elf_header.e_shnum
9351 || section_headers[symbols[cnt + j].st_shndx].sh_type
9352 != SHT_NOBITS)
9353 {
9354 if (symbols[cnt + j].st_shndx == SHN_UNDEF)
9355 check_def = 0;
9356 else
9357 check_need = 0;
9358 }
9359
9360 if (check_need
9361 && version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
9362 {
9363 Elf_Internal_Verneed ivn;
9364 unsigned long offset;
9365
9366 offset = offset_from_vma
9367 (file, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
9368 sizeof (Elf_External_Verneed));
9369
9370 do
9371 {
9372 Elf_Internal_Vernaux ivna;
9373 Elf_External_Verneed evn;
9374 Elf_External_Vernaux evna;
9375 unsigned long a_off;
9376
9377 if (get_data (&evn, file, offset, sizeof (evn), 1,
9378 _("version need")) == NULL)
9379 break;
9380
9381 ivn.vn_aux = BYTE_GET (evn.vn_aux);
9382 ivn.vn_next = BYTE_GET (evn.vn_next);
9383
9384 a_off = offset + ivn.vn_aux;
9385
9386 do
9387 {
9388 if (get_data (&evna, file, a_off, sizeof (evna),
9389 1, _("version need aux (2)")) == NULL)
9390 {
9391 ivna.vna_next = 0;
9392 ivna.vna_other = 0;
9393 }
9394 else
9395 {
9396 ivna.vna_next = BYTE_GET (evna.vna_next);
9397 ivna.vna_other = BYTE_GET (evna.vna_other);
9398 }
9399
9400 a_off += ivna.vna_next;
9401 }
9402 while (ivna.vna_other != data[cnt + j]
9403 && ivna.vna_next != 0);
9404
9405 if (ivna.vna_other == data[cnt + j])
9406 {
9407 ivna.vna_name = BYTE_GET (evna.vna_name);
9408
9409 if (ivna.vna_name >= string_sec->sh_size)
9410 name = _("*invalid*");
9411 else
9412 name = strtab + ivna.vna_name;
9413 nn += printf ("(%s%-*s",
9414 name,
9415 12 - (int) strlen (name),
9416 ")");
9417 check_def = 0;
9418 break;
9419 }
9420
9421 offset += ivn.vn_next;
9422 }
9423 while (ivn.vn_next);
9424 }
9425
9426 if (check_def && data[cnt + j] != 0x8001
9427 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
9428 {
9429 Elf_Internal_Verdef ivd;
9430 Elf_External_Verdef evd;
9431 unsigned long offset;
9432
9433 offset = offset_from_vma
9434 (file, version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
9435 sizeof evd);
9436
9437 do
9438 {
9439 if (get_data (&evd, file, offset, sizeof (evd), 1,
9440 _("version def")) == NULL)
9441 {
9442 ivd.vd_next = 0;
9443 /* PR 17531: file: 046-1082287-0.004. */
9444 ivd.vd_ndx = (data[cnt + j] & VERSYM_VERSION) + 1;
9445 break;
9446 }
9447 else
9448 {
9449 ivd.vd_next = BYTE_GET (evd.vd_next);
9450 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
9451 }
9452
9453 offset += ivd.vd_next;
9454 }
9455 while (ivd.vd_ndx != (data[cnt + j] & VERSYM_VERSION)
9456 && ivd.vd_next != 0);
9457
9458 if (ivd.vd_ndx == (data[cnt + j] & VERSYM_VERSION))
9459 {
9460 Elf_External_Verdaux evda;
9461 Elf_Internal_Verdaux ivda;
9462
9463 ivd.vd_aux = BYTE_GET (evd.vd_aux);
9464
9465 if (get_data (&evda, file,
9466 offset - ivd.vd_next + ivd.vd_aux,
9467 sizeof (evda), 1,
9468 _("version def aux")) == NULL)
9469 break;
9470
9471 ivda.vda_name = BYTE_GET (evda.vda_name);
9472
9473 if (ivda.vda_name >= string_sec->sh_size)
9474 name = _("*invalid*");
9475 else
9476 name = strtab + ivda.vda_name;
9477 nn += printf ("(%s%-*s",
9478 name,
9479 12 - (int) strlen (name),
9480 ")");
9481 }
9482 }
9483
9484 if (nn < 18)
9485 printf ("%*c", 18 - nn, ' ');
9486 }
9487
9488 putchar ('\n');
9489 }
9490
9491 free (data);
9492 free (strtab);
9493 free (symbols);
9494 }
9495 break;
9496
9497 default:
9498 break;
9499 }
9500 }
9501
9502 if (! found)
9503 printf (_("\nNo version information found in this file.\n"));
9504
9505 return 1;
9506 }
9507
9508 static const char *
9509 get_symbol_binding (unsigned int binding)
9510 {
9511 static char buff[32];
9512
9513 switch (binding)
9514 {
9515 case STB_LOCAL: return "LOCAL";
9516 case STB_GLOBAL: return "GLOBAL";
9517 case STB_WEAK: return "WEAK";
9518 default:
9519 if (binding >= STB_LOPROC && binding <= STB_HIPROC)
9520 snprintf (buff, sizeof (buff), _("<processor specific>: %d"),
9521 binding);
9522 else if (binding >= STB_LOOS && binding <= STB_HIOS)
9523 {
9524 if (binding == STB_GNU_UNIQUE
9525 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
9526 /* GNU is still using the default value 0. */
9527 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
9528 return "UNIQUE";
9529 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), binding);
9530 }
9531 else
9532 snprintf (buff, sizeof (buff), _("<unknown>: %d"), binding);
9533 return buff;
9534 }
9535 }
9536
9537 static const char *
9538 get_symbol_type (unsigned int type)
9539 {
9540 static char buff[32];
9541
9542 switch (type)
9543 {
9544 case STT_NOTYPE: return "NOTYPE";
9545 case STT_OBJECT: return "OBJECT";
9546 case STT_FUNC: return "FUNC";
9547 case STT_SECTION: return "SECTION";
9548 case STT_FILE: return "FILE";
9549 case STT_COMMON: return "COMMON";
9550 case STT_TLS: return "TLS";
9551 case STT_RELC: return "RELC";
9552 case STT_SRELC: return "SRELC";
9553 default:
9554 if (type >= STT_LOPROC && type <= STT_HIPROC)
9555 {
9556 if (elf_header.e_machine == EM_ARM && type == STT_ARM_TFUNC)
9557 return "THUMB_FUNC";
9558
9559 if (elf_header.e_machine == EM_SPARCV9 && type == STT_REGISTER)
9560 return "REGISTER";
9561
9562 if (elf_header.e_machine == EM_PARISC && type == STT_PARISC_MILLI)
9563 return "PARISC_MILLI";
9564
9565 snprintf (buff, sizeof (buff), _("<processor specific>: %d"), type);
9566 }
9567 else if (type >= STT_LOOS && type <= STT_HIOS)
9568 {
9569 if (elf_header.e_machine == EM_PARISC)
9570 {
9571 if (type == STT_HP_OPAQUE)
9572 return "HP_OPAQUE";
9573 if (type == STT_HP_STUB)
9574 return "HP_STUB";
9575 }
9576
9577 if (type == STT_GNU_IFUNC
9578 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
9579 || elf_header.e_ident[EI_OSABI] == ELFOSABI_FREEBSD
9580 /* GNU is still using the default value 0. */
9581 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
9582 return "IFUNC";
9583
9584 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), type);
9585 }
9586 else
9587 snprintf (buff, sizeof (buff), _("<unknown>: %d"), type);
9588 return buff;
9589 }
9590 }
9591
9592 static const char *
9593 get_symbol_visibility (unsigned int visibility)
9594 {
9595 switch (visibility)
9596 {
9597 case STV_DEFAULT: return "DEFAULT";
9598 case STV_INTERNAL: return "INTERNAL";
9599 case STV_HIDDEN: return "HIDDEN";
9600 case STV_PROTECTED: return "PROTECTED";
9601 default: abort ();
9602 }
9603 }
9604
9605 static const char *
9606 get_mips_symbol_other (unsigned int other)
9607 {
9608 switch (other)
9609 {
9610 case STO_OPTIONAL:
9611 return "OPTIONAL";
9612 case STO_MIPS_PLT:
9613 return "MIPS PLT";
9614 case STO_MIPS_PIC:
9615 return "MIPS PIC";
9616 case STO_MICROMIPS:
9617 return "MICROMIPS";
9618 case STO_MICROMIPS | STO_MIPS_PIC:
9619 return "MICROMIPS, MIPS PIC";
9620 case STO_MIPS16:
9621 return "MIPS16";
9622 default:
9623 return NULL;
9624 }
9625 }
9626
9627 static const char *
9628 get_ia64_symbol_other (unsigned int other)
9629 {
9630 if (is_ia64_vms ())
9631 {
9632 static char res[32];
9633
9634 res[0] = 0;
9635
9636 /* Function types is for images and .STB files only. */
9637 switch (elf_header.e_type)
9638 {
9639 case ET_DYN:
9640 case ET_EXEC:
9641 switch (VMS_ST_FUNC_TYPE (other))
9642 {
9643 case VMS_SFT_CODE_ADDR:
9644 strcat (res, " CA");
9645 break;
9646 case VMS_SFT_SYMV_IDX:
9647 strcat (res, " VEC");
9648 break;
9649 case VMS_SFT_FD:
9650 strcat (res, " FD");
9651 break;
9652 case VMS_SFT_RESERVE:
9653 strcat (res, " RSV");
9654 break;
9655 default:
9656 abort ();
9657 }
9658 break;
9659 default:
9660 break;
9661 }
9662 switch (VMS_ST_LINKAGE (other))
9663 {
9664 case VMS_STL_IGNORE:
9665 strcat (res, " IGN");
9666 break;
9667 case VMS_STL_RESERVE:
9668 strcat (res, " RSV");
9669 break;
9670 case VMS_STL_STD:
9671 strcat (res, " STD");
9672 break;
9673 case VMS_STL_LNK:
9674 strcat (res, " LNK");
9675 break;
9676 default:
9677 abort ();
9678 }
9679
9680 if (res[0] != 0)
9681 return res + 1;
9682 else
9683 return res;
9684 }
9685 return NULL;
9686 }
9687
9688 static const char *
9689 get_ppc64_symbol_other (unsigned int other)
9690 {
9691 if (PPC64_LOCAL_ENTRY_OFFSET (other) != 0)
9692 {
9693 static char buf[32];
9694 snprintf (buf, sizeof buf, _("<localentry>: %d"),
9695 PPC64_LOCAL_ENTRY_OFFSET (other));
9696 return buf;
9697 }
9698 return NULL;
9699 }
9700
9701 static const char *
9702 get_symbol_other (unsigned int other)
9703 {
9704 const char * result = NULL;
9705 static char buff [32];
9706
9707 if (other == 0)
9708 return "";
9709
9710 switch (elf_header.e_machine)
9711 {
9712 case EM_MIPS:
9713 result = get_mips_symbol_other (other);
9714 break;
9715 case EM_IA_64:
9716 result = get_ia64_symbol_other (other);
9717 break;
9718 case EM_PPC64:
9719 result = get_ppc64_symbol_other (other);
9720 break;
9721 default:
9722 break;
9723 }
9724
9725 if (result)
9726 return result;
9727
9728 snprintf (buff, sizeof buff, _("<other>: %x"), other);
9729 return buff;
9730 }
9731
9732 static const char *
9733 get_symbol_index_type (unsigned int type)
9734 {
9735 static char buff[32];
9736
9737 switch (type)
9738 {
9739 case SHN_UNDEF: return "UND";
9740 case SHN_ABS: return "ABS";
9741 case SHN_COMMON: return "COM";
9742 default:
9743 if (type == SHN_IA_64_ANSI_COMMON
9744 && elf_header.e_machine == EM_IA_64
9745 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX)
9746 return "ANSI_COM";
9747 else if ((elf_header.e_machine == EM_X86_64
9748 || elf_header.e_machine == EM_L1OM
9749 || elf_header.e_machine == EM_K1OM)
9750 && type == SHN_X86_64_LCOMMON)
9751 return "LARGE_COM";
9752 else if ((type == SHN_MIPS_SCOMMON
9753 && elf_header.e_machine == EM_MIPS)
9754 || (type == SHN_TIC6X_SCOMMON
9755 && elf_header.e_machine == EM_TI_C6000))
9756 return "SCOM";
9757 else if (type == SHN_MIPS_SUNDEFINED
9758 && elf_header.e_machine == EM_MIPS)
9759 return "SUND";
9760 else if (type >= SHN_LOPROC && type <= SHN_HIPROC)
9761 sprintf (buff, "PRC[0x%04x]", type & 0xffff);
9762 else if (type >= SHN_LOOS && type <= SHN_HIOS)
9763 sprintf (buff, "OS [0x%04x]", type & 0xffff);
9764 else if (type >= SHN_LORESERVE)
9765 sprintf (buff, "RSV[0x%04x]", type & 0xffff);
9766 else if (type >= elf_header.e_shnum)
9767 sprintf (buff, _("bad section index[%3d]"), type);
9768 else
9769 sprintf (buff, "%3d", type);
9770 break;
9771 }
9772
9773 return buff;
9774 }
9775
9776 static bfd_vma *
9777 get_dynamic_data (FILE * file, size_t number, unsigned int ent_size)
9778 {
9779 unsigned char * e_data;
9780 bfd_vma * i_data;
9781
9782 /* Be kind to memory chekers (eg valgrind, address sanitizer) by not
9783 attempting to allocate memory when the read is bound to fail. */
9784 if (ent_size * number > current_file_size)
9785 {
9786 error (_("Invalid number of dynamic entries: %lu\n"),
9787 (unsigned long) number);
9788 return NULL;
9789 }
9790
9791 e_data = (unsigned char *) cmalloc (number, ent_size);
9792 if (e_data == NULL)
9793 {
9794 error (_("Out of memory reading %lu dynamic entries\n"),
9795 (unsigned long) number);
9796 return NULL;
9797 }
9798
9799 if (fread (e_data, ent_size, number, file) != number)
9800 {
9801 error (_("Unable to read in %lu bytes of dynamic data\n"),
9802 (unsigned long) (number * ent_size));
9803 free (e_data);
9804 return NULL;
9805 }
9806
9807 i_data = (bfd_vma *) cmalloc (number, sizeof (*i_data));
9808 if (i_data == NULL)
9809 {
9810 error (_("Out of memory allocating space for %lu dynamic entries\n"),
9811 (unsigned long) number);
9812 free (e_data);
9813 return NULL;
9814 }
9815
9816 while (number--)
9817 i_data[number] = byte_get (e_data + number * ent_size, ent_size);
9818
9819 free (e_data);
9820
9821 return i_data;
9822 }
9823
9824 static void
9825 print_dynamic_symbol (bfd_vma si, unsigned long hn)
9826 {
9827 Elf_Internal_Sym * psym;
9828 int n;
9829
9830 n = print_vma (si, DEC_5);
9831 if (n < 5)
9832 fputs (&" "[n], stdout);
9833 printf (" %3lu: ", hn);
9834
9835 if (dynamic_symbols == NULL || si >= num_dynamic_syms)
9836 {
9837 printf (_("<No info available for dynamic symbol number %lu>\n"),
9838 (unsigned long) si);
9839 return;
9840 }
9841
9842 psym = dynamic_symbols + si;
9843 print_vma (psym->st_value, LONG_HEX);
9844 putchar (' ');
9845 print_vma (psym->st_size, DEC_5);
9846
9847 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
9848 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
9849 printf (" %-7s", get_symbol_visibility (ELF_ST_VISIBILITY (psym->st_other)));
9850 /* Check to see if any other bits in the st_other field are set.
9851 Note - displaying this information disrupts the layout of the
9852 table being generated, but for the moment this case is very
9853 rare. */
9854 if (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other))
9855 printf (" [%s] ", get_symbol_other (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other)));
9856 printf (" %3.3s ", get_symbol_index_type (psym->st_shndx));
9857 if (VALID_DYNAMIC_NAME (psym->st_name))
9858 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
9859 else
9860 printf (_(" <corrupt: %14ld>"), psym->st_name);
9861 putchar ('\n');
9862 }
9863
9864 /* Dump the symbol table. */
9865 static int
9866 process_symbol_table (FILE * file)
9867 {
9868 Elf_Internal_Shdr * section;
9869 bfd_size_type nbuckets = 0;
9870 bfd_size_type nchains = 0;
9871 bfd_vma * buckets = NULL;
9872 bfd_vma * chains = NULL;
9873 bfd_vma ngnubuckets = 0;
9874 bfd_vma * gnubuckets = NULL;
9875 bfd_vma * gnuchains = NULL;
9876 bfd_vma gnusymidx = 0;
9877 bfd_size_type ngnuchains = 0;
9878
9879 if (!do_syms && !do_dyn_syms && !do_histogram)
9880 return 1;
9881
9882 if (dynamic_info[DT_HASH]
9883 && (do_histogram
9884 || (do_using_dynamic
9885 && !do_dyn_syms
9886 && dynamic_strings != NULL)))
9887 {
9888 unsigned char nb[8];
9889 unsigned char nc[8];
9890 unsigned int hash_ent_size = 4;
9891
9892 if ((elf_header.e_machine == EM_ALPHA
9893 || elf_header.e_machine == EM_S390
9894 || elf_header.e_machine == EM_S390_OLD)
9895 && elf_header.e_ident[EI_CLASS] == ELFCLASS64)
9896 hash_ent_size = 8;
9897
9898 if (fseek (file,
9899 (archive_file_offset
9900 + offset_from_vma (file, dynamic_info[DT_HASH],
9901 sizeof nb + sizeof nc)),
9902 SEEK_SET))
9903 {
9904 error (_("Unable to seek to start of dynamic information\n"));
9905 goto no_hash;
9906 }
9907
9908 if (fread (nb, hash_ent_size, 1, file) != 1)
9909 {
9910 error (_("Failed to read in number of buckets\n"));
9911 goto no_hash;
9912 }
9913
9914 if (fread (nc, hash_ent_size, 1, file) != 1)
9915 {
9916 error (_("Failed to read in number of chains\n"));
9917 goto no_hash;
9918 }
9919
9920 nbuckets = byte_get (nb, hash_ent_size);
9921 nchains = byte_get (nc, hash_ent_size);
9922
9923 buckets = get_dynamic_data (file, nbuckets, hash_ent_size);
9924 chains = get_dynamic_data (file, nchains, hash_ent_size);
9925
9926 no_hash:
9927 if (buckets == NULL || chains == NULL)
9928 {
9929 if (do_using_dynamic)
9930 return 0;
9931 free (buckets);
9932 free (chains);
9933 buckets = NULL;
9934 chains = NULL;
9935 nbuckets = 0;
9936 nchains = 0;
9937 }
9938 }
9939
9940 if (dynamic_info_DT_GNU_HASH
9941 && (do_histogram
9942 || (do_using_dynamic
9943 && !do_dyn_syms
9944 && dynamic_strings != NULL)))
9945 {
9946 unsigned char nb[16];
9947 bfd_vma i, maxchain = 0xffffffff, bitmaskwords;
9948 bfd_vma buckets_vma;
9949
9950 if (fseek (file,
9951 (archive_file_offset
9952 + offset_from_vma (file, dynamic_info_DT_GNU_HASH,
9953 sizeof nb)),
9954 SEEK_SET))
9955 {
9956 error (_("Unable to seek to start of dynamic information\n"));
9957 goto no_gnu_hash;
9958 }
9959
9960 if (fread (nb, 16, 1, file) != 1)
9961 {
9962 error (_("Failed to read in number of buckets\n"));
9963 goto no_gnu_hash;
9964 }
9965
9966 ngnubuckets = byte_get (nb, 4);
9967 gnusymidx = byte_get (nb + 4, 4);
9968 bitmaskwords = byte_get (nb + 8, 4);
9969 buckets_vma = dynamic_info_DT_GNU_HASH + 16;
9970 if (is_32bit_elf)
9971 buckets_vma += bitmaskwords * 4;
9972 else
9973 buckets_vma += bitmaskwords * 8;
9974
9975 if (fseek (file,
9976 (archive_file_offset
9977 + offset_from_vma (file, buckets_vma, 4)),
9978 SEEK_SET))
9979 {
9980 error (_("Unable to seek to start of dynamic information\n"));
9981 goto no_gnu_hash;
9982 }
9983
9984 gnubuckets = get_dynamic_data (file, ngnubuckets, 4);
9985
9986 if (gnubuckets == NULL)
9987 goto no_gnu_hash;
9988
9989 for (i = 0; i < ngnubuckets; i++)
9990 if (gnubuckets[i] != 0)
9991 {
9992 if (gnubuckets[i] < gnusymidx)
9993 return 0;
9994
9995 if (maxchain == 0xffffffff || gnubuckets[i] > maxchain)
9996 maxchain = gnubuckets[i];
9997 }
9998
9999 if (maxchain == 0xffffffff)
10000 goto no_gnu_hash;
10001
10002 maxchain -= gnusymidx;
10003
10004 if (fseek (file,
10005 (archive_file_offset
10006 + offset_from_vma (file, buckets_vma
10007 + 4 * (ngnubuckets + maxchain), 4)),
10008 SEEK_SET))
10009 {
10010 error (_("Unable to seek to start of dynamic information\n"));
10011 goto no_gnu_hash;
10012 }
10013
10014 do
10015 {
10016 if (fread (nb, 4, 1, file) != 1)
10017 {
10018 error (_("Failed to determine last chain length\n"));
10019 goto no_gnu_hash;
10020 }
10021
10022 if (maxchain + 1 == 0)
10023 goto no_gnu_hash;
10024
10025 ++maxchain;
10026 }
10027 while ((byte_get (nb, 4) & 1) == 0);
10028
10029 if (fseek (file,
10030 (archive_file_offset
10031 + offset_from_vma (file, buckets_vma + 4 * ngnubuckets, 4)),
10032 SEEK_SET))
10033 {
10034 error (_("Unable to seek to start of dynamic information\n"));
10035 goto no_gnu_hash;
10036 }
10037
10038 gnuchains = get_dynamic_data (file, maxchain, 4);
10039 ngnuchains = maxchain;
10040
10041 no_gnu_hash:
10042 if (gnuchains == NULL)
10043 {
10044 free (gnubuckets);
10045 gnubuckets = NULL;
10046 ngnubuckets = 0;
10047 if (do_using_dynamic)
10048 return 0;
10049 }
10050 }
10051
10052 if ((dynamic_info[DT_HASH] || dynamic_info_DT_GNU_HASH)
10053 && do_syms
10054 && do_using_dynamic
10055 && dynamic_strings != NULL
10056 && dynamic_symbols != NULL)
10057 {
10058 unsigned long hn;
10059
10060 if (dynamic_info[DT_HASH])
10061 {
10062 bfd_vma si;
10063
10064 printf (_("\nSymbol table for image:\n"));
10065 if (is_32bit_elf)
10066 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
10067 else
10068 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
10069
10070 for (hn = 0; hn < nbuckets; hn++)
10071 {
10072 if (! buckets[hn])
10073 continue;
10074
10075 for (si = buckets[hn]; si < nchains && si > 0; si = chains[si])
10076 print_dynamic_symbol (si, hn);
10077 }
10078 }
10079
10080 if (dynamic_info_DT_GNU_HASH)
10081 {
10082 printf (_("\nSymbol table of `.gnu.hash' for image:\n"));
10083 if (is_32bit_elf)
10084 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
10085 else
10086 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
10087
10088 for (hn = 0; hn < ngnubuckets; ++hn)
10089 if (gnubuckets[hn] != 0)
10090 {
10091 bfd_vma si = gnubuckets[hn];
10092 bfd_vma off = si - gnusymidx;
10093
10094 do
10095 {
10096 print_dynamic_symbol (si, hn);
10097 si++;
10098 }
10099 while (off < ngnuchains && (gnuchains[off++] & 1) == 0);
10100 }
10101 }
10102 }
10103 else if ((do_dyn_syms || (do_syms && !do_using_dynamic))
10104 && section_headers != NULL)
10105 {
10106 unsigned int i;
10107
10108 for (i = 0, section = section_headers;
10109 i < elf_header.e_shnum;
10110 i++, section++)
10111 {
10112 unsigned int si;
10113 char * strtab = NULL;
10114 unsigned long int strtab_size = 0;
10115 Elf_Internal_Sym * symtab;
10116 Elf_Internal_Sym * psym;
10117 unsigned long num_syms;
10118
10119 if ((section->sh_type != SHT_SYMTAB
10120 && section->sh_type != SHT_DYNSYM)
10121 || (!do_syms
10122 && section->sh_type == SHT_SYMTAB))
10123 continue;
10124
10125 if (section->sh_entsize == 0)
10126 {
10127 printf (_("\nSymbol table '%s' has a sh_entsize of zero!\n"),
10128 printable_section_name (section));
10129 continue;
10130 }
10131
10132 printf (_("\nSymbol table '%s' contains %lu entries:\n"),
10133 printable_section_name (section),
10134 (unsigned long) (section->sh_size / section->sh_entsize));
10135
10136 if (is_32bit_elf)
10137 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
10138 else
10139 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
10140
10141 symtab = GET_ELF_SYMBOLS (file, section, & num_syms);
10142 if (symtab == NULL)
10143 continue;
10144
10145 if (section->sh_link == elf_header.e_shstrndx)
10146 {
10147 strtab = string_table;
10148 strtab_size = string_table_length;
10149 }
10150 else if (section->sh_link < elf_header.e_shnum)
10151 {
10152 Elf_Internal_Shdr * string_sec;
10153
10154 string_sec = section_headers + section->sh_link;
10155
10156 strtab = (char *) get_data (NULL, file, string_sec->sh_offset,
10157 1, string_sec->sh_size,
10158 _("string table"));
10159 strtab_size = strtab != NULL ? string_sec->sh_size : 0;
10160 }
10161
10162 for (si = 0, psym = symtab; si < num_syms; si++, psym++)
10163 {
10164 printf ("%6d: ", si);
10165 print_vma (psym->st_value, LONG_HEX);
10166 putchar (' ');
10167 print_vma (psym->st_size, DEC_5);
10168 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
10169 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
10170 printf (" %-7s", get_symbol_visibility (ELF_ST_VISIBILITY (psym->st_other)));
10171 /* Check to see if any other bits in the st_other field are set.
10172 Note - displaying this information disrupts the layout of the
10173 table being generated, but for the moment this case is very rare. */
10174 if (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other))
10175 printf (" [%s] ", get_symbol_other (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other)));
10176 printf (" %4s ", get_symbol_index_type (psym->st_shndx));
10177 print_symbol (25, psym->st_name < strtab_size
10178 ? strtab + psym->st_name : _("<corrupt>"));
10179
10180 if (section->sh_type == SHT_DYNSYM
10181 && version_info[DT_VERSIONTAGIDX (DT_VERSYM)] != 0)
10182 {
10183 unsigned char data[2];
10184 unsigned short vers_data;
10185 unsigned long offset;
10186 int is_nobits;
10187 int check_def;
10188
10189 offset = offset_from_vma
10190 (file, version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
10191 sizeof data + si * sizeof (vers_data));
10192
10193 if (get_data (&data, file, offset + si * sizeof (vers_data),
10194 sizeof (data), 1, _("version data")) == NULL)
10195 break;
10196
10197 vers_data = byte_get (data, 2);
10198
10199 is_nobits = (psym->st_shndx < elf_header.e_shnum
10200 && section_headers[psym->st_shndx].sh_type
10201 == SHT_NOBITS);
10202
10203 check_def = (psym->st_shndx != SHN_UNDEF);
10204
10205 if ((vers_data & VERSYM_HIDDEN) || vers_data > 1)
10206 {
10207 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)]
10208 && (is_nobits || ! check_def))
10209 {
10210 Elf_External_Verneed evn;
10211 Elf_Internal_Verneed ivn;
10212 Elf_Internal_Vernaux ivna;
10213
10214 /* We must test both. */
10215 offset = offset_from_vma
10216 (file, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
10217 sizeof evn);
10218
10219 do
10220 {
10221 unsigned long vna_off;
10222
10223 if (get_data (&evn, file, offset, sizeof (evn), 1,
10224 _("version need")) == NULL)
10225 {
10226 ivna.vna_next = 0;
10227 ivna.vna_other = 0;
10228 ivna.vna_name = 0;
10229 break;
10230 }
10231
10232 ivn.vn_aux = BYTE_GET (evn.vn_aux);
10233 ivn.vn_next = BYTE_GET (evn.vn_next);
10234
10235 vna_off = offset + ivn.vn_aux;
10236
10237 do
10238 {
10239 Elf_External_Vernaux evna;
10240
10241 if (get_data (&evna, file, vna_off,
10242 sizeof (evna), 1,
10243 _("version need aux (3)")) == NULL)
10244 {
10245 ivna.vna_next = 0;
10246 ivna.vna_other = 0;
10247 ivna.vna_name = 0;
10248 }
10249 else
10250 {
10251 ivna.vna_other = BYTE_GET (evna.vna_other);
10252 ivna.vna_next = BYTE_GET (evna.vna_next);
10253 ivna.vna_name = BYTE_GET (evna.vna_name);
10254 }
10255
10256 vna_off += ivna.vna_next;
10257 }
10258 while (ivna.vna_other != vers_data
10259 && ivna.vna_next != 0);
10260
10261 if (ivna.vna_other == vers_data)
10262 break;
10263
10264 offset += ivn.vn_next;
10265 }
10266 while (ivn.vn_next != 0);
10267
10268 if (ivna.vna_other == vers_data)
10269 {
10270 printf ("@%s (%d)",
10271 ivna.vna_name < strtab_size
10272 ? strtab + ivna.vna_name : _("<corrupt>"),
10273 ivna.vna_other);
10274 check_def = 0;
10275 }
10276 else if (! is_nobits)
10277 error (_("bad dynamic symbol\n"));
10278 else
10279 check_def = 1;
10280 }
10281
10282 if (check_def)
10283 {
10284 if (vers_data != 0x8001
10285 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
10286 {
10287 Elf_Internal_Verdef ivd;
10288 Elf_Internal_Verdaux ivda;
10289 Elf_External_Verdaux evda;
10290 unsigned long off;
10291
10292 off = offset_from_vma
10293 (file,
10294 version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
10295 sizeof (Elf_External_Verdef));
10296
10297 do
10298 {
10299 Elf_External_Verdef evd;
10300
10301 if (get_data (&evd, file, off, sizeof (evd),
10302 1, _("version def")) == NULL)
10303 {
10304 ivd.vd_ndx = 0;
10305 ivd.vd_aux = 0;
10306 ivd.vd_next = 0;
10307 }
10308 else
10309 {
10310 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
10311 ivd.vd_aux = BYTE_GET (evd.vd_aux);
10312 ivd.vd_next = BYTE_GET (evd.vd_next);
10313 }
10314
10315 off += ivd.vd_next;
10316 }
10317 while (ivd.vd_ndx != (vers_data & VERSYM_VERSION)
10318 && ivd.vd_next != 0);
10319
10320 off -= ivd.vd_next;
10321 off += ivd.vd_aux;
10322
10323 if (get_data (&evda, file, off, sizeof (evda),
10324 1, _("version def aux")) == NULL)
10325 break;
10326
10327 ivda.vda_name = BYTE_GET (evda.vda_name);
10328
10329 if (psym->st_name != ivda.vda_name)
10330 printf ((vers_data & VERSYM_HIDDEN)
10331 ? "@%s" : "@@%s",
10332 ivda.vda_name < strtab_size
10333 ? strtab + ivda.vda_name : _("<corrupt>"));
10334 }
10335 }
10336 }
10337 }
10338
10339 putchar ('\n');
10340 }
10341
10342 free (symtab);
10343 if (strtab != string_table)
10344 free (strtab);
10345 }
10346 }
10347 else if (do_syms)
10348 printf
10349 (_("\nDynamic symbol information is not available for displaying symbols.\n"));
10350
10351 if (do_histogram && buckets != NULL)
10352 {
10353 unsigned long * lengths;
10354 unsigned long * counts;
10355 unsigned long hn;
10356 bfd_vma si;
10357 unsigned long maxlength = 0;
10358 unsigned long nzero_counts = 0;
10359 unsigned long nsyms = 0;
10360
10361 printf (_("\nHistogram for bucket list length (total of %lu buckets):\n"),
10362 (unsigned long) nbuckets);
10363
10364 lengths = (unsigned long *) calloc (nbuckets, sizeof (*lengths));
10365 if (lengths == NULL)
10366 {
10367 error (_("Out of memory allocating space for histogram buckets\n"));
10368 return 0;
10369 }
10370
10371 printf (_(" Length Number %% of total Coverage\n"));
10372 for (hn = 0; hn < nbuckets; ++hn)
10373 {
10374 for (si = buckets[hn]; si > 0 && si < nchains; si = chains[si])
10375 {
10376 ++nsyms;
10377 if (maxlength < ++lengths[hn])
10378 ++maxlength;
10379
10380 /* PR binutils/17531: A corrupt binary could contain broken
10381 histogram data. Do not go into an infinite loop trying
10382 to process it. */
10383 if (chains[si] == si)
10384 {
10385 error (_("histogram chain links to itself\n"));
10386 break;
10387 }
10388 }
10389 }
10390
10391 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
10392 if (counts == NULL)
10393 {
10394 free (lengths);
10395 error (_("Out of memory allocating space for histogram counts\n"));
10396 return 0;
10397 }
10398
10399 for (hn = 0; hn < nbuckets; ++hn)
10400 ++counts[lengths[hn]];
10401
10402 if (nbuckets > 0)
10403 {
10404 unsigned long i;
10405 printf (" 0 %-10lu (%5.1f%%)\n",
10406 counts[0], (counts[0] * 100.0) / nbuckets);
10407 for (i = 1; i <= maxlength; ++i)
10408 {
10409 nzero_counts += counts[i] * i;
10410 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
10411 i, counts[i], (counts[i] * 100.0) / nbuckets,
10412 (nzero_counts * 100.0) / nsyms);
10413 }
10414 }
10415
10416 free (counts);
10417 free (lengths);
10418 }
10419
10420 if (buckets != NULL)
10421 {
10422 free (buckets);
10423 free (chains);
10424 }
10425
10426 if (do_histogram && gnubuckets != NULL)
10427 {
10428 unsigned long * lengths;
10429 unsigned long * counts;
10430 unsigned long hn;
10431 unsigned long maxlength = 0;
10432 unsigned long nzero_counts = 0;
10433 unsigned long nsyms = 0;
10434
10435 printf (_("\nHistogram for `.gnu.hash' bucket list length (total of %lu buckets):\n"),
10436 (unsigned long) ngnubuckets);
10437
10438 lengths = (unsigned long *) calloc (ngnubuckets, sizeof (*lengths));
10439 if (lengths == NULL)
10440 {
10441 error (_("Out of memory allocating space for gnu histogram buckets\n"));
10442 return 0;
10443 }
10444
10445 printf (_(" Length Number %% of total Coverage\n"));
10446
10447 for (hn = 0; hn < ngnubuckets; ++hn)
10448 if (gnubuckets[hn] != 0)
10449 {
10450 bfd_vma off, length = 1;
10451
10452 for (off = gnubuckets[hn] - gnusymidx;
10453 /* PR 17531 file: 010-77222-0.004. */
10454 off < ngnuchains && (gnuchains[off] & 1) == 0;
10455 ++off)
10456 ++length;
10457 lengths[hn] = length;
10458 if (length > maxlength)
10459 maxlength = length;
10460 nsyms += length;
10461 }
10462
10463 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
10464 if (counts == NULL)
10465 {
10466 free (lengths);
10467 error (_("Out of memory allocating space for gnu histogram counts\n"));
10468 return 0;
10469 }
10470
10471 for (hn = 0; hn < ngnubuckets; ++hn)
10472 ++counts[lengths[hn]];
10473
10474 if (ngnubuckets > 0)
10475 {
10476 unsigned long j;
10477 printf (" 0 %-10lu (%5.1f%%)\n",
10478 counts[0], (counts[0] * 100.0) / ngnubuckets);
10479 for (j = 1; j <= maxlength; ++j)
10480 {
10481 nzero_counts += counts[j] * j;
10482 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
10483 j, counts[j], (counts[j] * 100.0) / ngnubuckets,
10484 (nzero_counts * 100.0) / nsyms);
10485 }
10486 }
10487
10488 free (counts);
10489 free (lengths);
10490 free (gnubuckets);
10491 free (gnuchains);
10492 }
10493
10494 return 1;
10495 }
10496
10497 static int
10498 process_syminfo (FILE * file ATTRIBUTE_UNUSED)
10499 {
10500 unsigned int i;
10501
10502 if (dynamic_syminfo == NULL
10503 || !do_dynamic)
10504 /* No syminfo, this is ok. */
10505 return 1;
10506
10507 /* There better should be a dynamic symbol section. */
10508 if (dynamic_symbols == NULL || dynamic_strings == NULL)
10509 return 0;
10510
10511 if (dynamic_addr)
10512 printf (_("\nDynamic info segment at offset 0x%lx contains %d entries:\n"),
10513 dynamic_syminfo_offset, dynamic_syminfo_nent);
10514
10515 printf (_(" Num: Name BoundTo Flags\n"));
10516 for (i = 0; i < dynamic_syminfo_nent; ++i)
10517 {
10518 unsigned short int flags = dynamic_syminfo[i].si_flags;
10519
10520 printf ("%4d: ", i);
10521 if (i >= num_dynamic_syms)
10522 printf (_("<corrupt index>"));
10523 else if (VALID_DYNAMIC_NAME (dynamic_symbols[i].st_name))
10524 print_symbol (30, GET_DYNAMIC_NAME (dynamic_symbols[i].st_name));
10525 else
10526 printf (_("<corrupt: %19ld>"), dynamic_symbols[i].st_name);
10527 putchar (' ');
10528
10529 switch (dynamic_syminfo[i].si_boundto)
10530 {
10531 case SYMINFO_BT_SELF:
10532 fputs ("SELF ", stdout);
10533 break;
10534 case SYMINFO_BT_PARENT:
10535 fputs ("PARENT ", stdout);
10536 break;
10537 default:
10538 if (dynamic_syminfo[i].si_boundto > 0
10539 && dynamic_syminfo[i].si_boundto < dynamic_nent
10540 && VALID_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val))
10541 {
10542 print_symbol (10, GET_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val));
10543 putchar (' ' );
10544 }
10545 else
10546 printf ("%-10d ", dynamic_syminfo[i].si_boundto);
10547 break;
10548 }
10549
10550 if (flags & SYMINFO_FLG_DIRECT)
10551 printf (" DIRECT");
10552 if (flags & SYMINFO_FLG_PASSTHRU)
10553 printf (" PASSTHRU");
10554 if (flags & SYMINFO_FLG_COPY)
10555 printf (" COPY");
10556 if (flags & SYMINFO_FLG_LAZYLOAD)
10557 printf (" LAZYLOAD");
10558
10559 puts ("");
10560 }
10561
10562 return 1;
10563 }
10564
10565 /* Check to see if the given reloc needs to be handled in a target specific
10566 manner. If so then process the reloc and return TRUE otherwise return
10567 FALSE. */
10568
10569 static bfd_boolean
10570 target_specific_reloc_handling (Elf_Internal_Rela * reloc,
10571 unsigned char * start,
10572 Elf_Internal_Sym * symtab)
10573 {
10574 unsigned int reloc_type = get_reloc_type (reloc->r_info);
10575
10576 switch (elf_header.e_machine)
10577 {
10578 case EM_MSP430:
10579 case EM_MSP430_OLD:
10580 {
10581 static Elf_Internal_Sym * saved_sym = NULL;
10582
10583 switch (reloc_type)
10584 {
10585 case 10: /* R_MSP430_SYM_DIFF */
10586 if (uses_msp430x_relocs ())
10587 break;
10588 case 21: /* R_MSP430X_SYM_DIFF */
10589 saved_sym = symtab + get_reloc_symindex (reloc->r_info);
10590 return TRUE;
10591
10592 case 1: /* R_MSP430_32 or R_MSP430_ABS32 */
10593 case 3: /* R_MSP430_16 or R_MSP430_ABS8 */
10594 goto handle_sym_diff;
10595
10596 case 5: /* R_MSP430_16_BYTE */
10597 case 9: /* R_MSP430_8 */
10598 if (uses_msp430x_relocs ())
10599 break;
10600 goto handle_sym_diff;
10601
10602 case 2: /* R_MSP430_ABS16 */
10603 case 15: /* R_MSP430X_ABS16 */
10604 if (! uses_msp430x_relocs ())
10605 break;
10606 goto handle_sym_diff;
10607
10608 handle_sym_diff:
10609 if (saved_sym != NULL)
10610 {
10611 bfd_vma value;
10612
10613 value = reloc->r_addend
10614 + (symtab[get_reloc_symindex (reloc->r_info)].st_value
10615 - saved_sym->st_value);
10616
10617 byte_put (start + reloc->r_offset, value, reloc_type == 1 ? 4 : 2);
10618
10619 saved_sym = NULL;
10620 return TRUE;
10621 }
10622 break;
10623
10624 default:
10625 if (saved_sym != NULL)
10626 error (_("Unhandled MSP430 reloc type found after SYM_DIFF reloc\n"));
10627 break;
10628 }
10629 break;
10630 }
10631
10632 case EM_MN10300:
10633 case EM_CYGNUS_MN10300:
10634 {
10635 static Elf_Internal_Sym * saved_sym = NULL;
10636
10637 switch (reloc_type)
10638 {
10639 case 34: /* R_MN10300_ALIGN */
10640 return TRUE;
10641 case 33: /* R_MN10300_SYM_DIFF */
10642 saved_sym = symtab + get_reloc_symindex (reloc->r_info);
10643 return TRUE;
10644 case 1: /* R_MN10300_32 */
10645 case 2: /* R_MN10300_16 */
10646 if (saved_sym != NULL)
10647 {
10648 bfd_vma value;
10649
10650 value = reloc->r_addend
10651 + (symtab[get_reloc_symindex (reloc->r_info)].st_value
10652 - saved_sym->st_value);
10653
10654 byte_put (start + reloc->r_offset, value, reloc_type == 1 ? 4 : 2);
10655
10656 saved_sym = NULL;
10657 return TRUE;
10658 }
10659 break;
10660 default:
10661 if (saved_sym != NULL)
10662 error (_("Unhandled MN10300 reloc type found after SYM_DIFF reloc\n"));
10663 break;
10664 }
10665 break;
10666 }
10667 }
10668
10669 return FALSE;
10670 }
10671
10672 /* Returns TRUE iff RELOC_TYPE is a 32-bit absolute RELA relocation used in
10673 DWARF debug sections. This is a target specific test. Note - we do not
10674 go through the whole including-target-headers-multiple-times route, (as
10675 we have already done with <elf/h8.h>) because this would become very
10676 messy and even then this function would have to contain target specific
10677 information (the names of the relocs instead of their numeric values).
10678 FIXME: This is not the correct way to solve this problem. The proper way
10679 is to have target specific reloc sizing and typing functions created by
10680 the reloc-macros.h header, in the same way that it already creates the
10681 reloc naming functions. */
10682
10683 static bfd_boolean
10684 is_32bit_abs_reloc (unsigned int reloc_type)
10685 {
10686 switch (elf_header.e_machine)
10687 {
10688 case EM_386:
10689 case EM_486:
10690 return reloc_type == 1; /* R_386_32. */
10691 case EM_68K:
10692 return reloc_type == 1; /* R_68K_32. */
10693 case EM_860:
10694 return reloc_type == 1; /* R_860_32. */
10695 case EM_960:
10696 return reloc_type == 2; /* R_960_32. */
10697 case EM_AARCH64:
10698 return reloc_type == 258; /* R_AARCH64_ABS32 */
10699 case EM_ALPHA:
10700 return reloc_type == 1; /* R_ALPHA_REFLONG. */
10701 case EM_ARC:
10702 return reloc_type == 1; /* R_ARC_32. */
10703 case EM_ARM:
10704 return reloc_type == 2; /* R_ARM_ABS32 */
10705 case EM_AVR_OLD:
10706 case EM_AVR:
10707 return reloc_type == 1;
10708 case EM_ADAPTEVA_EPIPHANY:
10709 return reloc_type == 3;
10710 case EM_BLACKFIN:
10711 return reloc_type == 0x12; /* R_byte4_data. */
10712 case EM_CRIS:
10713 return reloc_type == 3; /* R_CRIS_32. */
10714 case EM_CR16:
10715 return reloc_type == 3; /* R_CR16_NUM32. */
10716 case EM_CRX:
10717 return reloc_type == 15; /* R_CRX_NUM32. */
10718 case EM_CYGNUS_FRV:
10719 return reloc_type == 1;
10720 case EM_CYGNUS_D10V:
10721 case EM_D10V:
10722 return reloc_type == 6; /* R_D10V_32. */
10723 case EM_CYGNUS_D30V:
10724 case EM_D30V:
10725 return reloc_type == 12; /* R_D30V_32_NORMAL. */
10726 case EM_DLX:
10727 return reloc_type == 3; /* R_DLX_RELOC_32. */
10728 case EM_CYGNUS_FR30:
10729 case EM_FR30:
10730 return reloc_type == 3; /* R_FR30_32. */
10731 case EM_H8S:
10732 case EM_H8_300:
10733 case EM_H8_300H:
10734 return reloc_type == 1; /* R_H8_DIR32. */
10735 case EM_IA_64:
10736 return reloc_type == 0x65; /* R_IA64_SECREL32LSB. */
10737 case EM_IP2K_OLD:
10738 case EM_IP2K:
10739 return reloc_type == 2; /* R_IP2K_32. */
10740 case EM_IQ2000:
10741 return reloc_type == 2; /* R_IQ2000_32. */
10742 case EM_LATTICEMICO32:
10743 return reloc_type == 3; /* R_LM32_32. */
10744 case EM_M32C_OLD:
10745 case EM_M32C:
10746 return reloc_type == 3; /* R_M32C_32. */
10747 case EM_M32R:
10748 return reloc_type == 34; /* R_M32R_32_RELA. */
10749 case EM_MCORE:
10750 return reloc_type == 1; /* R_MCORE_ADDR32. */
10751 case EM_CYGNUS_MEP:
10752 return reloc_type == 4; /* R_MEP_32. */
10753 case EM_METAG:
10754 return reloc_type == 2; /* R_METAG_ADDR32. */
10755 case EM_MICROBLAZE:
10756 return reloc_type == 1; /* R_MICROBLAZE_32. */
10757 case EM_MIPS:
10758 return reloc_type == 2; /* R_MIPS_32. */
10759 case EM_MMIX:
10760 return reloc_type == 4; /* R_MMIX_32. */
10761 case EM_CYGNUS_MN10200:
10762 case EM_MN10200:
10763 return reloc_type == 1; /* R_MN10200_32. */
10764 case EM_CYGNUS_MN10300:
10765 case EM_MN10300:
10766 return reloc_type == 1; /* R_MN10300_32. */
10767 case EM_MOXIE:
10768 return reloc_type == 1; /* R_MOXIE_32. */
10769 case EM_MSP430_OLD:
10770 case EM_MSP430:
10771 return reloc_type == 1; /* R_MSP430_32 or R_MSP320_ABS32. */
10772 case EM_MT:
10773 return reloc_type == 2; /* R_MT_32. */
10774 case EM_NDS32:
10775 return reloc_type == 20; /* R_NDS32_RELA. */
10776 case EM_ALTERA_NIOS2:
10777 return reloc_type == 12; /* R_NIOS2_BFD_RELOC_32. */
10778 case EM_NIOS32:
10779 return reloc_type == 1; /* R_NIOS_32. */
10780 case EM_OR1K:
10781 return reloc_type == 1; /* R_OR1K_32. */
10782 case EM_PARISC:
10783 return (reloc_type == 1 /* R_PARISC_DIR32. */
10784 || reloc_type == 41); /* R_PARISC_SECREL32. */
10785 case EM_PJ:
10786 case EM_PJ_OLD:
10787 return reloc_type == 1; /* R_PJ_DATA_DIR32. */
10788 case EM_PPC64:
10789 return reloc_type == 1; /* R_PPC64_ADDR32. */
10790 case EM_PPC:
10791 return reloc_type == 1; /* R_PPC_ADDR32. */
10792 case EM_RL78:
10793 return reloc_type == 1; /* R_RL78_DIR32. */
10794 case EM_RX:
10795 return reloc_type == 1; /* R_RX_DIR32. */
10796 case EM_S370:
10797 return reloc_type == 1; /* R_I370_ADDR31. */
10798 case EM_S390_OLD:
10799 case EM_S390:
10800 return reloc_type == 4; /* R_S390_32. */
10801 case EM_SCORE:
10802 return reloc_type == 8; /* R_SCORE_ABS32. */
10803 case EM_SH:
10804 return reloc_type == 1; /* R_SH_DIR32. */
10805 case EM_SPARC32PLUS:
10806 case EM_SPARCV9:
10807 case EM_SPARC:
10808 return reloc_type == 3 /* R_SPARC_32. */
10809 || reloc_type == 23; /* R_SPARC_UA32. */
10810 case EM_SPU:
10811 return reloc_type == 6; /* R_SPU_ADDR32 */
10812 case EM_TI_C6000:
10813 return reloc_type == 1; /* R_C6000_ABS32. */
10814 case EM_TILEGX:
10815 return reloc_type == 2; /* R_TILEGX_32. */
10816 case EM_TILEPRO:
10817 return reloc_type == 1; /* R_TILEPRO_32. */
10818 case EM_CYGNUS_V850:
10819 case EM_V850:
10820 return reloc_type == 6; /* R_V850_ABS32. */
10821 case EM_V800:
10822 return reloc_type == 0x33; /* R_V810_WORD. */
10823 case EM_VAX:
10824 return reloc_type == 1; /* R_VAX_32. */
10825 case EM_X86_64:
10826 case EM_L1OM:
10827 case EM_K1OM:
10828 return reloc_type == 10; /* R_X86_64_32. */
10829 case EM_XC16X:
10830 case EM_C166:
10831 return reloc_type == 3; /* R_XC16C_ABS_32. */
10832 case EM_XGATE:
10833 return reloc_type == 4; /* R_XGATE_32. */
10834 case EM_XSTORMY16:
10835 return reloc_type == 1; /* R_XSTROMY16_32. */
10836 case EM_XTENSA_OLD:
10837 case EM_XTENSA:
10838 return reloc_type == 1; /* R_XTENSA_32. */
10839 default:
10840 error (_("Missing knowledge of 32-bit reloc types used in DWARF sections of machine number %d\n"),
10841 elf_header.e_machine);
10842 abort ();
10843 }
10844 }
10845
10846 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
10847 a 32-bit pc-relative RELA relocation used in DWARF debug sections. */
10848
10849 static bfd_boolean
10850 is_32bit_pcrel_reloc (unsigned int reloc_type)
10851 {
10852 switch (elf_header.e_machine)
10853 {
10854 case EM_386:
10855 case EM_486:
10856 return reloc_type == 2; /* R_386_PC32. */
10857 case EM_68K:
10858 return reloc_type == 4; /* R_68K_PC32. */
10859 case EM_AARCH64:
10860 return reloc_type == 261; /* R_AARCH64_PREL32 */
10861 case EM_ADAPTEVA_EPIPHANY:
10862 return reloc_type == 6;
10863 case EM_ALPHA:
10864 return reloc_type == 10; /* R_ALPHA_SREL32. */
10865 case EM_ARM:
10866 return reloc_type == 3; /* R_ARM_REL32 */
10867 case EM_MICROBLAZE:
10868 return reloc_type == 2; /* R_MICROBLAZE_32_PCREL. */
10869 case EM_OR1K:
10870 return reloc_type == 9; /* R_OR1K_32_PCREL. */
10871 case EM_PARISC:
10872 return reloc_type == 9; /* R_PARISC_PCREL32. */
10873 case EM_PPC:
10874 return reloc_type == 26; /* R_PPC_REL32. */
10875 case EM_PPC64:
10876 return reloc_type == 26; /* R_PPC64_REL32. */
10877 case EM_S390_OLD:
10878 case EM_S390:
10879 return reloc_type == 5; /* R_390_PC32. */
10880 case EM_SH:
10881 return reloc_type == 2; /* R_SH_REL32. */
10882 case EM_SPARC32PLUS:
10883 case EM_SPARCV9:
10884 case EM_SPARC:
10885 return reloc_type == 6; /* R_SPARC_DISP32. */
10886 case EM_SPU:
10887 return reloc_type == 13; /* R_SPU_REL32. */
10888 case EM_TILEGX:
10889 return reloc_type == 6; /* R_TILEGX_32_PCREL. */
10890 case EM_TILEPRO:
10891 return reloc_type == 4; /* R_TILEPRO_32_PCREL. */
10892 case EM_X86_64:
10893 case EM_L1OM:
10894 case EM_K1OM:
10895 return reloc_type == 2; /* R_X86_64_PC32. */
10896 case EM_XTENSA_OLD:
10897 case EM_XTENSA:
10898 return reloc_type == 14; /* R_XTENSA_32_PCREL. */
10899 default:
10900 /* Do not abort or issue an error message here. Not all targets use
10901 pc-relative 32-bit relocs in their DWARF debug information and we
10902 have already tested for target coverage in is_32bit_abs_reloc. A
10903 more helpful warning message will be generated by apply_relocations
10904 anyway, so just return. */
10905 return FALSE;
10906 }
10907 }
10908
10909 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
10910 a 64-bit absolute RELA relocation used in DWARF debug sections. */
10911
10912 static bfd_boolean
10913 is_64bit_abs_reloc (unsigned int reloc_type)
10914 {
10915 switch (elf_header.e_machine)
10916 {
10917 case EM_AARCH64:
10918 return reloc_type == 257; /* R_AARCH64_ABS64. */
10919 case EM_ALPHA:
10920 return reloc_type == 2; /* R_ALPHA_REFQUAD. */
10921 case EM_IA_64:
10922 return reloc_type == 0x27; /* R_IA64_DIR64LSB. */
10923 case EM_PARISC:
10924 return reloc_type == 80; /* R_PARISC_DIR64. */
10925 case EM_PPC64:
10926 return reloc_type == 38; /* R_PPC64_ADDR64. */
10927 case EM_SPARC32PLUS:
10928 case EM_SPARCV9:
10929 case EM_SPARC:
10930 return reloc_type == 54; /* R_SPARC_UA64. */
10931 case EM_X86_64:
10932 case EM_L1OM:
10933 case EM_K1OM:
10934 return reloc_type == 1; /* R_X86_64_64. */
10935 case EM_S390_OLD:
10936 case EM_S390:
10937 return reloc_type == 22; /* R_S390_64. */
10938 case EM_TILEGX:
10939 return reloc_type == 1; /* R_TILEGX_64. */
10940 case EM_MIPS:
10941 return reloc_type == 18; /* R_MIPS_64. */
10942 default:
10943 return FALSE;
10944 }
10945 }
10946
10947 /* Like is_32bit_pcrel_reloc except that it returns TRUE iff RELOC_TYPE is
10948 a 64-bit pc-relative RELA relocation used in DWARF debug sections. */
10949
10950 static bfd_boolean
10951 is_64bit_pcrel_reloc (unsigned int reloc_type)
10952 {
10953 switch (elf_header.e_machine)
10954 {
10955 case EM_AARCH64:
10956 return reloc_type == 260; /* R_AARCH64_PREL64. */
10957 case EM_ALPHA:
10958 return reloc_type == 11; /* R_ALPHA_SREL64. */
10959 case EM_IA_64:
10960 return reloc_type == 0x4f; /* R_IA64_PCREL64LSB. */
10961 case EM_PARISC:
10962 return reloc_type == 72; /* R_PARISC_PCREL64. */
10963 case EM_PPC64:
10964 return reloc_type == 44; /* R_PPC64_REL64. */
10965 case EM_SPARC32PLUS:
10966 case EM_SPARCV9:
10967 case EM_SPARC:
10968 return reloc_type == 46; /* R_SPARC_DISP64. */
10969 case EM_X86_64:
10970 case EM_L1OM:
10971 case EM_K1OM:
10972 return reloc_type == 24; /* R_X86_64_PC64. */
10973 case EM_S390_OLD:
10974 case EM_S390:
10975 return reloc_type == 23; /* R_S390_PC64. */
10976 case EM_TILEGX:
10977 return reloc_type == 5; /* R_TILEGX_64_PCREL. */
10978 default:
10979 return FALSE;
10980 }
10981 }
10982
10983 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
10984 a 24-bit absolute RELA relocation used in DWARF debug sections. */
10985
10986 static bfd_boolean
10987 is_24bit_abs_reloc (unsigned int reloc_type)
10988 {
10989 switch (elf_header.e_machine)
10990 {
10991 case EM_CYGNUS_MN10200:
10992 case EM_MN10200:
10993 return reloc_type == 4; /* R_MN10200_24. */
10994 default:
10995 return FALSE;
10996 }
10997 }
10998
10999 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
11000 a 16-bit absolute RELA relocation used in DWARF debug sections. */
11001
11002 static bfd_boolean
11003 is_16bit_abs_reloc (unsigned int reloc_type)
11004 {
11005 switch (elf_header.e_machine)
11006 {
11007 case EM_AVR_OLD:
11008 case EM_AVR:
11009 return reloc_type == 4; /* R_AVR_16. */
11010 case EM_ADAPTEVA_EPIPHANY:
11011 return reloc_type == 5;
11012 case EM_CYGNUS_D10V:
11013 case EM_D10V:
11014 return reloc_type == 3; /* R_D10V_16. */
11015 case EM_H8S:
11016 case EM_H8_300:
11017 case EM_H8_300H:
11018 return reloc_type == R_H8_DIR16;
11019 case EM_IP2K_OLD:
11020 case EM_IP2K:
11021 return reloc_type == 1; /* R_IP2K_16. */
11022 case EM_M32C_OLD:
11023 case EM_M32C:
11024 return reloc_type == 1; /* R_M32C_16 */
11025 case EM_MSP430:
11026 if (uses_msp430x_relocs ())
11027 return reloc_type == 2; /* R_MSP430_ABS16. */
11028 case EM_MSP430_OLD:
11029 return reloc_type == 5; /* R_MSP430_16_BYTE. */
11030 case EM_NDS32:
11031 return reloc_type == 19; /* R_NDS32_RELA. */
11032 case EM_ALTERA_NIOS2:
11033 return reloc_type == 13; /* R_NIOS2_BFD_RELOC_16. */
11034 case EM_NIOS32:
11035 return reloc_type == 9; /* R_NIOS_16. */
11036 case EM_OR1K:
11037 return reloc_type == 2; /* R_OR1K_16. */
11038 case EM_TI_C6000:
11039 return reloc_type == 2; /* R_C6000_ABS16. */
11040 case EM_XC16X:
11041 case EM_C166:
11042 return reloc_type == 2; /* R_XC16C_ABS_16. */
11043 case EM_CYGNUS_MN10200:
11044 case EM_MN10200:
11045 return reloc_type == 2; /* R_MN10200_16. */
11046 case EM_CYGNUS_MN10300:
11047 case EM_MN10300:
11048 return reloc_type == 2; /* R_MN10300_16. */
11049 case EM_XGATE:
11050 return reloc_type == 3; /* R_XGATE_16. */
11051 default:
11052 return FALSE;
11053 }
11054 }
11055
11056 /* Returns TRUE iff RELOC_TYPE is a NONE relocation used for discarded
11057 relocation entries (possibly formerly used for SHT_GROUP sections). */
11058
11059 static bfd_boolean
11060 is_none_reloc (unsigned int reloc_type)
11061 {
11062 switch (elf_header.e_machine)
11063 {
11064 case EM_68K: /* R_68K_NONE. */
11065 case EM_386: /* R_386_NONE. */
11066 case EM_SPARC32PLUS:
11067 case EM_SPARCV9:
11068 case EM_SPARC: /* R_SPARC_NONE. */
11069 case EM_MIPS: /* R_MIPS_NONE. */
11070 case EM_PARISC: /* R_PARISC_NONE. */
11071 case EM_ALPHA: /* R_ALPHA_NONE. */
11072 case EM_ADAPTEVA_EPIPHANY:
11073 case EM_PPC: /* R_PPC_NONE. */
11074 case EM_PPC64: /* R_PPC64_NONE. */
11075 case EM_ARM: /* R_ARM_NONE. */
11076 case EM_IA_64: /* R_IA64_NONE. */
11077 case EM_SH: /* R_SH_NONE. */
11078 case EM_S390_OLD:
11079 case EM_S390: /* R_390_NONE. */
11080 case EM_CRIS: /* R_CRIS_NONE. */
11081 case EM_X86_64: /* R_X86_64_NONE. */
11082 case EM_L1OM: /* R_X86_64_NONE. */
11083 case EM_K1OM: /* R_X86_64_NONE. */
11084 case EM_MN10300: /* R_MN10300_NONE. */
11085 case EM_MOXIE: /* R_MOXIE_NONE. */
11086 case EM_M32R: /* R_M32R_NONE. */
11087 case EM_TI_C6000:/* R_C6000_NONE. */
11088 case EM_TILEGX: /* R_TILEGX_NONE. */
11089 case EM_TILEPRO: /* R_TILEPRO_NONE. */
11090 case EM_XC16X:
11091 case EM_C166: /* R_XC16X_NONE. */
11092 case EM_ALTERA_NIOS2: /* R_NIOS2_NONE. */
11093 case EM_NIOS32: /* R_NIOS_NONE. */
11094 case EM_OR1K: /* R_OR1K_NONE. */
11095 return reloc_type == 0;
11096 case EM_AARCH64:
11097 return reloc_type == 0 || reloc_type == 256;
11098 case EM_NDS32:
11099 return (reloc_type == 0 /* R_XTENSA_NONE. */
11100 || reloc_type == 204 /* R_NDS32_DIFF8. */
11101 || reloc_type == 205 /* R_NDS32_DIFF16. */
11102 || reloc_type == 206 /* R_NDS32_DIFF32. */
11103 || reloc_type == 207 /* R_NDS32_ULEB128. */);
11104 case EM_XTENSA_OLD:
11105 case EM_XTENSA:
11106 return (reloc_type == 0 /* R_XTENSA_NONE. */
11107 || reloc_type == 17 /* R_XTENSA_DIFF8. */
11108 || reloc_type == 18 /* R_XTENSA_DIFF16. */
11109 || reloc_type == 19 /* R_XTENSA_DIFF32. */);
11110 case EM_METAG:
11111 return reloc_type == 3; /* R_METAG_NONE. */
11112 }
11113 return FALSE;
11114 }
11115
11116 /* Apply relocations to a section.
11117 Note: So far support has been added only for those relocations
11118 which can be found in debug sections.
11119 FIXME: Add support for more relocations ? */
11120
11121 static void
11122 apply_relocations (void * file,
11123 Elf_Internal_Shdr * section,
11124 unsigned char * start)
11125 {
11126 Elf_Internal_Shdr * relsec;
11127 unsigned char * end = start + section->sh_size;
11128
11129 if (elf_header.e_type != ET_REL)
11130 return;
11131
11132 /* Find the reloc section associated with the section. */
11133 for (relsec = section_headers;
11134 relsec < section_headers + elf_header.e_shnum;
11135 ++relsec)
11136 {
11137 bfd_boolean is_rela;
11138 unsigned long num_relocs;
11139 Elf_Internal_Rela * relocs;
11140 Elf_Internal_Rela * rp;
11141 Elf_Internal_Shdr * symsec;
11142 Elf_Internal_Sym * symtab;
11143 unsigned long num_syms;
11144 Elf_Internal_Sym * sym;
11145
11146 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
11147 || relsec->sh_info >= elf_header.e_shnum
11148 || section_headers + relsec->sh_info != section
11149 || relsec->sh_size == 0
11150 || relsec->sh_link >= elf_header.e_shnum)
11151 continue;
11152
11153 is_rela = relsec->sh_type == SHT_RELA;
11154
11155 if (is_rela)
11156 {
11157 if (!slurp_rela_relocs ((FILE *) file, relsec->sh_offset,
11158 relsec->sh_size, & relocs, & num_relocs))
11159 return;
11160 }
11161 else
11162 {
11163 if (!slurp_rel_relocs ((FILE *) file, relsec->sh_offset,
11164 relsec->sh_size, & relocs, & num_relocs))
11165 return;
11166 }
11167
11168 /* SH uses RELA but uses in place value instead of the addend field. */
11169 if (elf_header.e_machine == EM_SH)
11170 is_rela = FALSE;
11171
11172 symsec = section_headers + relsec->sh_link;
11173 symtab = GET_ELF_SYMBOLS ((FILE *) file, symsec, & num_syms);
11174
11175 for (rp = relocs; rp < relocs + num_relocs; ++rp)
11176 {
11177 bfd_vma addend;
11178 unsigned int reloc_type;
11179 unsigned int reloc_size;
11180 unsigned char * rloc;
11181 unsigned long sym_index;
11182
11183 reloc_type = get_reloc_type (rp->r_info);
11184
11185 if (target_specific_reloc_handling (rp, start, symtab))
11186 continue;
11187 else if (is_none_reloc (reloc_type))
11188 continue;
11189 else if (is_32bit_abs_reloc (reloc_type)
11190 || is_32bit_pcrel_reloc (reloc_type))
11191 reloc_size = 4;
11192 else if (is_64bit_abs_reloc (reloc_type)
11193 || is_64bit_pcrel_reloc (reloc_type))
11194 reloc_size = 8;
11195 else if (is_24bit_abs_reloc (reloc_type))
11196 reloc_size = 3;
11197 else if (is_16bit_abs_reloc (reloc_type))
11198 reloc_size = 2;
11199 else
11200 {
11201 warn (_("unable to apply unsupported reloc type %d to section %s\n"),
11202 reloc_type, printable_section_name (section));
11203 continue;
11204 }
11205
11206 rloc = start + rp->r_offset;
11207 if ((rloc + reloc_size) > end || (rloc < start))
11208 {
11209 warn (_("skipping invalid relocation offset 0x%lx in section %s\n"),
11210 (unsigned long) rp->r_offset,
11211 printable_section_name (section));
11212 continue;
11213 }
11214
11215 sym_index = (unsigned long) get_reloc_symindex (rp->r_info);
11216 if (sym_index >= num_syms)
11217 {
11218 warn (_("skipping invalid relocation symbol index 0x%lx in section %s\n"),
11219 sym_index, printable_section_name (section));
11220 continue;
11221 }
11222 sym = symtab + sym_index;
11223
11224 /* If the reloc has a symbol associated with it,
11225 make sure that it is of an appropriate type.
11226
11227 Relocations against symbols without type can happen.
11228 Gcc -feliminate-dwarf2-dups may generate symbols
11229 without type for debug info.
11230
11231 Icc generates relocations against function symbols
11232 instead of local labels.
11233
11234 Relocations against object symbols can happen, eg when
11235 referencing a global array. For an example of this see
11236 the _clz.o binary in libgcc.a. */
11237 if (sym != symtab
11238 && ELF_ST_TYPE (sym->st_info) > STT_SECTION)
11239 {
11240 warn (_("skipping unexpected symbol type %s in %ld'th relocation in section %s\n"),
11241 get_symbol_type (ELF_ST_TYPE (sym->st_info)),
11242 (long int)(rp - relocs),
11243 printable_section_name (relsec));
11244 continue;
11245 }
11246
11247 addend = 0;
11248 if (is_rela)
11249 addend += rp->r_addend;
11250 /* R_XTENSA_32, R_PJ_DATA_DIR32 and R_D30V_32_NORMAL are
11251 partial_inplace. */
11252 if (!is_rela
11253 || (elf_header.e_machine == EM_XTENSA
11254 && reloc_type == 1)
11255 || ((elf_header.e_machine == EM_PJ
11256 || elf_header.e_machine == EM_PJ_OLD)
11257 && reloc_type == 1)
11258 || ((elf_header.e_machine == EM_D30V
11259 || elf_header.e_machine == EM_CYGNUS_D30V)
11260 && reloc_type == 12))
11261 addend += byte_get (rloc, reloc_size);
11262
11263 if (is_32bit_pcrel_reloc (reloc_type)
11264 || is_64bit_pcrel_reloc (reloc_type))
11265 {
11266 /* On HPPA, all pc-relative relocations are biased by 8. */
11267 if (elf_header.e_machine == EM_PARISC)
11268 addend -= 8;
11269 byte_put (rloc, (addend + sym->st_value) - rp->r_offset,
11270 reloc_size);
11271 }
11272 else
11273 byte_put (rloc, addend + sym->st_value, reloc_size);
11274 }
11275
11276 free (symtab);
11277 free (relocs);
11278 break;
11279 }
11280 }
11281
11282 #ifdef SUPPORT_DISASSEMBLY
11283 static int
11284 disassemble_section (Elf_Internal_Shdr * section, FILE * file)
11285 {
11286 printf (_("\nAssembly dump of section %s\n"), printable_section_name (section));
11287
11288 /* FIXME: XXX -- to be done --- XXX */
11289
11290 return 1;
11291 }
11292 #endif
11293
11294 /* Reads in the contents of SECTION from FILE, returning a pointer
11295 to a malloc'ed buffer or NULL if something went wrong. */
11296
11297 static char *
11298 get_section_contents (Elf_Internal_Shdr * section, FILE * file)
11299 {
11300 bfd_size_type num_bytes;
11301
11302 num_bytes = section->sh_size;
11303
11304 if (num_bytes == 0 || section->sh_type == SHT_NOBITS)
11305 {
11306 printf (_("\nSection '%s' has no data to dump.\n"),
11307 printable_section_name (section));
11308 return NULL;
11309 }
11310
11311 return (char *) get_data (NULL, file, section->sh_offset, 1, num_bytes,
11312 _("section contents"));
11313 }
11314
11315
11316 static void
11317 dump_section_as_strings (Elf_Internal_Shdr * section, FILE * file)
11318 {
11319 Elf_Internal_Shdr * relsec;
11320 bfd_size_type num_bytes;
11321 char * data;
11322 char * end;
11323 char * start;
11324 bfd_boolean some_strings_shown;
11325
11326 start = get_section_contents (section, file);
11327 if (start == NULL)
11328 return;
11329
11330 printf (_("\nString dump of section '%s':\n"), printable_section_name (section));
11331
11332 /* If the section being dumped has relocations against it the user might
11333 be expecting these relocations to have been applied. Check for this
11334 case and issue a warning message in order to avoid confusion.
11335 FIXME: Maybe we ought to have an option that dumps a section with
11336 relocs applied ? */
11337 for (relsec = section_headers;
11338 relsec < section_headers + elf_header.e_shnum;
11339 ++relsec)
11340 {
11341 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
11342 || relsec->sh_info >= elf_header.e_shnum
11343 || section_headers + relsec->sh_info != section
11344 || relsec->sh_size == 0
11345 || relsec->sh_link >= elf_header.e_shnum)
11346 continue;
11347
11348 printf (_(" Note: This section has relocations against it, but these have NOT been applied to this dump.\n"));
11349 break;
11350 }
11351
11352 num_bytes = section->sh_size;
11353 data = start;
11354 end = start + num_bytes;
11355 some_strings_shown = FALSE;
11356
11357 while (data < end)
11358 {
11359 while (!ISPRINT (* data))
11360 if (++ data >= end)
11361 break;
11362
11363 if (data < end)
11364 {
11365 size_t maxlen = end - data;
11366
11367 #ifndef __MSVCRT__
11368 /* PR 11128: Use two separate invocations in order to work
11369 around bugs in the Solaris 8 implementation of printf. */
11370 printf (" [%6tx] ", data - start);
11371 #else
11372 printf (" [%6Ix] ", (size_t) (data - start));
11373 #endif
11374 if (maxlen > 0)
11375 {
11376 print_symbol ((int) maxlen, data);
11377 putchar ('\n');
11378 data += strnlen (data, maxlen);
11379 }
11380 else
11381 {
11382 printf (_("<corrupt>\n"));
11383 data = end;
11384 }
11385 some_strings_shown = TRUE;
11386 }
11387 }
11388
11389 if (! some_strings_shown)
11390 printf (_(" No strings found in this section."));
11391
11392 free (start);
11393
11394 putchar ('\n');
11395 }
11396
11397 static void
11398 dump_section_as_bytes (Elf_Internal_Shdr * section,
11399 FILE * file,
11400 bfd_boolean relocate)
11401 {
11402 Elf_Internal_Shdr * relsec;
11403 bfd_size_type bytes;
11404 bfd_vma addr;
11405 unsigned char * data;
11406 unsigned char * start;
11407
11408 start = (unsigned char *) get_section_contents (section, file);
11409 if (start == NULL)
11410 return;
11411
11412 printf (_("\nHex dump of section '%s':\n"), printable_section_name (section));
11413
11414 if (relocate)
11415 {
11416 apply_relocations (file, section, start);
11417 }
11418 else
11419 {
11420 /* If the section being dumped has relocations against it the user might
11421 be expecting these relocations to have been applied. Check for this
11422 case and issue a warning message in order to avoid confusion.
11423 FIXME: Maybe we ought to have an option that dumps a section with
11424 relocs applied ? */
11425 for (relsec = section_headers;
11426 relsec < section_headers + elf_header.e_shnum;
11427 ++relsec)
11428 {
11429 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
11430 || relsec->sh_info >= elf_header.e_shnum
11431 || section_headers + relsec->sh_info != section
11432 || relsec->sh_size == 0
11433 || relsec->sh_link >= elf_header.e_shnum)
11434 continue;
11435
11436 printf (_(" NOTE: This section has relocations against it, but these have NOT been applied to this dump.\n"));
11437 break;
11438 }
11439 }
11440
11441 addr = section->sh_addr;
11442 bytes = section->sh_size;
11443 data = start;
11444
11445 while (bytes)
11446 {
11447 int j;
11448 int k;
11449 int lbytes;
11450
11451 lbytes = (bytes > 16 ? 16 : bytes);
11452
11453 printf (" 0x%8.8lx ", (unsigned long) addr);
11454
11455 for (j = 0; j < 16; j++)
11456 {
11457 if (j < lbytes)
11458 printf ("%2.2x", data[j]);
11459 else
11460 printf (" ");
11461
11462 if ((j & 3) == 3)
11463 printf (" ");
11464 }
11465
11466 for (j = 0; j < lbytes; j++)
11467 {
11468 k = data[j];
11469 if (k >= ' ' && k < 0x7f)
11470 printf ("%c", k);
11471 else
11472 printf (".");
11473 }
11474
11475 putchar ('\n');
11476
11477 data += lbytes;
11478 addr += lbytes;
11479 bytes -= lbytes;
11480 }
11481
11482 free (start);
11483
11484 putchar ('\n');
11485 }
11486
11487 /* Uncompresses a section that was compressed using zlib, in place. */
11488
11489 static int
11490 uncompress_section_contents (unsigned char **buffer ATTRIBUTE_UNUSED,
11491 dwarf_size_type *size ATTRIBUTE_UNUSED)
11492 {
11493 #ifndef HAVE_ZLIB_H
11494 return FALSE;
11495 #else
11496 dwarf_size_type compressed_size = *size;
11497 unsigned char * compressed_buffer = *buffer;
11498 dwarf_size_type uncompressed_size;
11499 unsigned char * uncompressed_buffer;
11500 z_stream strm;
11501 int rc;
11502 dwarf_size_type header_size = 12;
11503
11504 /* Read the zlib header. In this case, it should be "ZLIB" followed
11505 by the uncompressed section size, 8 bytes in big-endian order. */
11506 if (compressed_size < header_size
11507 || ! streq ((char *) compressed_buffer, "ZLIB"))
11508 return 0;
11509
11510 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
11511 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
11512 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
11513 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
11514 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
11515 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
11516 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
11517 uncompressed_size += compressed_buffer[11];
11518
11519 /* It is possible the section consists of several compressed
11520 buffers concatenated together, so we uncompress in a loop. */
11521 strm.zalloc = NULL;
11522 strm.zfree = NULL;
11523 strm.opaque = NULL;
11524 strm.avail_in = compressed_size - header_size;
11525 strm.next_in = (Bytef *) compressed_buffer + header_size;
11526 strm.avail_out = uncompressed_size;
11527 uncompressed_buffer = (unsigned char *) xmalloc (uncompressed_size);
11528
11529 rc = inflateInit (& strm);
11530 while (strm.avail_in > 0)
11531 {
11532 if (rc != Z_OK)
11533 goto fail;
11534 strm.next_out = ((Bytef *) uncompressed_buffer
11535 + (uncompressed_size - strm.avail_out));
11536 rc = inflate (&strm, Z_FINISH);
11537 if (rc != Z_STREAM_END)
11538 goto fail;
11539 rc = inflateReset (& strm);
11540 }
11541 rc = inflateEnd (& strm);
11542 if (rc != Z_OK
11543 || strm.avail_out != 0)
11544 goto fail;
11545
11546 free (compressed_buffer);
11547 *buffer = uncompressed_buffer;
11548 *size = uncompressed_size;
11549 return 1;
11550
11551 fail:
11552 free (uncompressed_buffer);
11553 /* Indicate decompression failure. */
11554 *buffer = NULL;
11555 return 0;
11556 #endif /* HAVE_ZLIB_H */
11557 }
11558
11559 static int
11560 load_specific_debug_section (enum dwarf_section_display_enum debug,
11561 Elf_Internal_Shdr * sec, void * file)
11562 {
11563 struct dwarf_section * section = &debug_displays [debug].section;
11564 char buf [64];
11565
11566 /* If it is already loaded, do nothing. */
11567 if (section->start != NULL)
11568 return 1;
11569
11570 snprintf (buf, sizeof (buf), _("%s section data"), section->name);
11571 section->address = sec->sh_addr;
11572 section->start = (unsigned char *) get_data (NULL, (FILE *) file,
11573 sec->sh_offset, 1,
11574 sec->sh_size, buf);
11575 if (section->start == NULL)
11576 section->size = 0;
11577 else
11578 {
11579 section->size = sec->sh_size;
11580 if (uncompress_section_contents (&section->start, &section->size))
11581 sec->sh_size = section->size;
11582 }
11583
11584 if (section->start == NULL)
11585 return 0;
11586
11587 if (debug_displays [debug].relocate)
11588 apply_relocations ((FILE *) file, sec, section->start);
11589
11590 return 1;
11591 }
11592
11593 /* If this is not NULL, load_debug_section will only look for sections
11594 within the list of sections given here. */
11595 unsigned int *section_subset = NULL;
11596
11597 int
11598 load_debug_section (enum dwarf_section_display_enum debug, void * file)
11599 {
11600 struct dwarf_section * section = &debug_displays [debug].section;
11601 Elf_Internal_Shdr * sec;
11602
11603 /* Locate the debug section. */
11604 sec = find_section_in_set (section->uncompressed_name, section_subset);
11605 if (sec != NULL)
11606 section->name = section->uncompressed_name;
11607 else
11608 {
11609 sec = find_section_in_set (section->compressed_name, section_subset);
11610 if (sec != NULL)
11611 section->name = section->compressed_name;
11612 }
11613 if (sec == NULL)
11614 return 0;
11615
11616 /* If we're loading from a subset of sections, and we've loaded
11617 a section matching this name before, it's likely that it's a
11618 different one. */
11619 if (section_subset != NULL)
11620 free_debug_section (debug);
11621
11622 return load_specific_debug_section (debug, sec, (FILE *) file);
11623 }
11624
11625 void
11626 free_debug_section (enum dwarf_section_display_enum debug)
11627 {
11628 struct dwarf_section * section = &debug_displays [debug].section;
11629
11630 if (section->start == NULL)
11631 return;
11632
11633 free ((char *) section->start);
11634 section->start = NULL;
11635 section->address = 0;
11636 section->size = 0;
11637 }
11638
11639 static int
11640 display_debug_section (int shndx, Elf_Internal_Shdr * section, FILE * file)
11641 {
11642 char * name = SECTION_NAME (section);
11643 const char * print_name = printable_section_name (section);
11644 bfd_size_type length;
11645 int result = 1;
11646 int i;
11647
11648 length = section->sh_size;
11649 if (length == 0)
11650 {
11651 printf (_("\nSection '%s' has no debugging data.\n"), print_name);
11652 return 0;
11653 }
11654 if (section->sh_type == SHT_NOBITS)
11655 {
11656 /* There is no point in dumping the contents of a debugging section
11657 which has the NOBITS type - the bits in the file will be random.
11658 This can happen when a file containing a .eh_frame section is
11659 stripped with the --only-keep-debug command line option. */
11660 printf (_("section '%s' has the NOBITS type - its contents are unreliable.\n"),
11661 print_name);
11662 return 0;
11663 }
11664
11665 if (const_strneq (name, ".gnu.linkonce.wi."))
11666 name = ".debug_info";
11667
11668 /* See if we know how to display the contents of this section. */
11669 for (i = 0; i < max; i++)
11670 if (streq (debug_displays[i].section.uncompressed_name, name)
11671 || (i == line && const_strneq (name, ".debug_line."))
11672 || streq (debug_displays[i].section.compressed_name, name))
11673 {
11674 struct dwarf_section * sec = &debug_displays [i].section;
11675 int secondary = (section != find_section (name));
11676
11677 if (secondary)
11678 free_debug_section ((enum dwarf_section_display_enum) i);
11679
11680 if (i == line && const_strneq (name, ".debug_line."))
11681 sec->name = name;
11682 else if (streq (sec->uncompressed_name, name))
11683 sec->name = sec->uncompressed_name;
11684 else
11685 sec->name = sec->compressed_name;
11686 if (load_specific_debug_section ((enum dwarf_section_display_enum) i,
11687 section, file))
11688 {
11689 /* If this debug section is part of a CU/TU set in a .dwp file,
11690 restrict load_debug_section to the sections in that set. */
11691 section_subset = find_cu_tu_set (file, shndx);
11692
11693 result &= debug_displays[i].display (sec, file);
11694
11695 section_subset = NULL;
11696
11697 if (secondary || (i != info && i != abbrev))
11698 free_debug_section ((enum dwarf_section_display_enum) i);
11699 }
11700
11701 break;
11702 }
11703
11704 if (i == max)
11705 {
11706 printf (_("Unrecognized debug section: %s\n"), print_name);
11707 result = 0;
11708 }
11709
11710 return result;
11711 }
11712
11713 /* Set DUMP_SECTS for all sections where dumps were requested
11714 based on section name. */
11715
11716 static void
11717 initialise_dumps_byname (void)
11718 {
11719 struct dump_list_entry * cur;
11720
11721 for (cur = dump_sects_byname; cur; cur = cur->next)
11722 {
11723 unsigned int i;
11724 int any;
11725
11726 for (i = 0, any = 0; i < elf_header.e_shnum; i++)
11727 if (streq (SECTION_NAME (section_headers + i), cur->name))
11728 {
11729 request_dump_bynumber (i, cur->type);
11730 any = 1;
11731 }
11732
11733 if (!any)
11734 warn (_("Section '%s' was not dumped because it does not exist!\n"),
11735 cur->name);
11736 }
11737 }
11738
11739 static void
11740 process_section_contents (FILE * file)
11741 {
11742 Elf_Internal_Shdr * section;
11743 unsigned int i;
11744
11745 if (! do_dump)
11746 return;
11747
11748 initialise_dumps_byname ();
11749
11750 for (i = 0, section = section_headers;
11751 i < elf_header.e_shnum && i < num_dump_sects;
11752 i++, section++)
11753 {
11754 #ifdef SUPPORT_DISASSEMBLY
11755 if (dump_sects[i] & DISASS_DUMP)
11756 disassemble_section (section, file);
11757 #endif
11758 if (dump_sects[i] & HEX_DUMP)
11759 dump_section_as_bytes (section, file, FALSE);
11760
11761 if (dump_sects[i] & RELOC_DUMP)
11762 dump_section_as_bytes (section, file, TRUE);
11763
11764 if (dump_sects[i] & STRING_DUMP)
11765 dump_section_as_strings (section, file);
11766
11767 if (dump_sects[i] & DEBUG_DUMP)
11768 display_debug_section (i, section, file);
11769 }
11770
11771 /* Check to see if the user requested a
11772 dump of a section that does not exist. */
11773 while (i++ < num_dump_sects)
11774 if (dump_sects[i])
11775 warn (_("Section %d was not dumped because it does not exist!\n"), i);
11776 }
11777
11778 static void
11779 process_mips_fpe_exception (int mask)
11780 {
11781 if (mask)
11782 {
11783 int first = 1;
11784 if (mask & OEX_FPU_INEX)
11785 fputs ("INEX", stdout), first = 0;
11786 if (mask & OEX_FPU_UFLO)
11787 printf ("%sUFLO", first ? "" : "|"), first = 0;
11788 if (mask & OEX_FPU_OFLO)
11789 printf ("%sOFLO", first ? "" : "|"), first = 0;
11790 if (mask & OEX_FPU_DIV0)
11791 printf ("%sDIV0", first ? "" : "|"), first = 0;
11792 if (mask & OEX_FPU_INVAL)
11793 printf ("%sINVAL", first ? "" : "|");
11794 }
11795 else
11796 fputs ("0", stdout);
11797 }
11798
11799 /* Display's the value of TAG at location P. If TAG is
11800 greater than 0 it is assumed to be an unknown tag, and
11801 a message is printed to this effect. Otherwise it is
11802 assumed that a message has already been printed.
11803
11804 If the bottom bit of TAG is set it assumed to have a
11805 string value, otherwise it is assumed to have an integer
11806 value.
11807
11808 Returns an updated P pointing to the first unread byte
11809 beyond the end of TAG's value.
11810
11811 Reads at or beyond END will not be made. */
11812
11813 static unsigned char *
11814 display_tag_value (int tag,
11815 unsigned char * p,
11816 const unsigned char * const end)
11817 {
11818 unsigned long val;
11819
11820 if (tag > 0)
11821 printf (" Tag_unknown_%d: ", tag);
11822
11823 if (p >= end)
11824 {
11825 warn (_("<corrupt tag>\n"));
11826 }
11827 else if (tag & 1)
11828 {
11829 /* PR 17531 file: 027-19978-0.004. */
11830 size_t maxlen = (end - p) - 1;
11831
11832 putchar ('"');
11833 if (maxlen > 0)
11834 {
11835 print_symbol ((int) maxlen, (const char *) p);
11836 p += strnlen ((char *) p, maxlen) + 1;
11837 }
11838 else
11839 {
11840 printf (_("<corrupt string tag>"));
11841 p = (unsigned char *) end;
11842 }
11843 printf ("\"\n");
11844 }
11845 else
11846 {
11847 unsigned int len;
11848
11849 val = read_uleb128 (p, &len, end);
11850 p += len;
11851 printf ("%ld (0x%lx)\n", val, val);
11852 }
11853
11854 assert (p <= end);
11855 return p;
11856 }
11857
11858 /* ARM EABI attributes section. */
11859 typedef struct
11860 {
11861 unsigned int tag;
11862 const char * name;
11863 /* 0 = special, 1 = string, 2 = uleb123, > 0x80 == table lookup. */
11864 unsigned int type;
11865 const char ** table;
11866 } arm_attr_public_tag;
11867
11868 static const char * arm_attr_tag_CPU_arch[] =
11869 {"Pre-v4", "v4", "v4T", "v5T", "v5TE", "v5TEJ", "v6", "v6KZ", "v6T2",
11870 "v6K", "v7", "v6-M", "v6S-M", "v7E-M", "v8"};
11871 static const char * arm_attr_tag_ARM_ISA_use[] = {"No", "Yes"};
11872 static const char * arm_attr_tag_THUMB_ISA_use[] =
11873 {"No", "Thumb-1", "Thumb-2"};
11874 static const char * arm_attr_tag_FP_arch[] =
11875 {"No", "VFPv1", "VFPv2", "VFPv3", "VFPv3-D16", "VFPv4", "VFPv4-D16",
11876 "FP for ARMv8"};
11877 static const char * arm_attr_tag_WMMX_arch[] = {"No", "WMMXv1", "WMMXv2"};
11878 static const char * arm_attr_tag_Advanced_SIMD_arch[] =
11879 {"No", "NEONv1", "NEONv1 with Fused-MAC", "NEON for ARMv8"};
11880 static const char * arm_attr_tag_PCS_config[] =
11881 {"None", "Bare platform", "Linux application", "Linux DSO", "PalmOS 2004",
11882 "PalmOS (reserved)", "SymbianOS 2004", "SymbianOS (reserved)"};
11883 static const char * arm_attr_tag_ABI_PCS_R9_use[] =
11884 {"V6", "SB", "TLS", "Unused"};
11885 static const char * arm_attr_tag_ABI_PCS_RW_data[] =
11886 {"Absolute", "PC-relative", "SB-relative", "None"};
11887 static const char * arm_attr_tag_ABI_PCS_RO_data[] =
11888 {"Absolute", "PC-relative", "None"};
11889 static const char * arm_attr_tag_ABI_PCS_GOT_use[] =
11890 {"None", "direct", "GOT-indirect"};
11891 static const char * arm_attr_tag_ABI_PCS_wchar_t[] =
11892 {"None", "??? 1", "2", "??? 3", "4"};
11893 static const char * arm_attr_tag_ABI_FP_rounding[] = {"Unused", "Needed"};
11894 static const char * arm_attr_tag_ABI_FP_denormal[] =
11895 {"Unused", "Needed", "Sign only"};
11896 static const char * arm_attr_tag_ABI_FP_exceptions[] = {"Unused", "Needed"};
11897 static const char * arm_attr_tag_ABI_FP_user_exceptions[] = {"Unused", "Needed"};
11898 static const char * arm_attr_tag_ABI_FP_number_model[] =
11899 {"Unused", "Finite", "RTABI", "IEEE 754"};
11900 static const char * arm_attr_tag_ABI_enum_size[] =
11901 {"Unused", "small", "int", "forced to int"};
11902 static const char * arm_attr_tag_ABI_HardFP_use[] =
11903 {"As Tag_FP_arch", "SP only", "DP only", "SP and DP"};
11904 static const char * arm_attr_tag_ABI_VFP_args[] =
11905 {"AAPCS", "VFP registers", "custom"};
11906 static const char * arm_attr_tag_ABI_WMMX_args[] =
11907 {"AAPCS", "WMMX registers", "custom"};
11908 static const char * arm_attr_tag_ABI_optimization_goals[] =
11909 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
11910 "Aggressive Size", "Prefer Debug", "Aggressive Debug"};
11911 static const char * arm_attr_tag_ABI_FP_optimization_goals[] =
11912 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
11913 "Aggressive Size", "Prefer Accuracy", "Aggressive Accuracy"};
11914 static const char * arm_attr_tag_CPU_unaligned_access[] = {"None", "v6"};
11915 static const char * arm_attr_tag_FP_HP_extension[] =
11916 {"Not Allowed", "Allowed"};
11917 static const char * arm_attr_tag_ABI_FP_16bit_format[] =
11918 {"None", "IEEE 754", "Alternative Format"};
11919 static const char * arm_attr_tag_MPextension_use[] =
11920 {"Not Allowed", "Allowed"};
11921 static const char * arm_attr_tag_DIV_use[] =
11922 {"Allowed in Thumb-ISA, v7-R or v7-M", "Not allowed",
11923 "Allowed in v7-A with integer division extension"};
11924 static const char * arm_attr_tag_T2EE_use[] = {"Not Allowed", "Allowed"};
11925 static const char * arm_attr_tag_Virtualization_use[] =
11926 {"Not Allowed", "TrustZone", "Virtualization Extensions",
11927 "TrustZone and Virtualization Extensions"};
11928 static const char * arm_attr_tag_MPextension_use_legacy[] =
11929 {"Not Allowed", "Allowed"};
11930
11931 #define LOOKUP(id, name) \
11932 {id, #name, 0x80 | ARRAY_SIZE(arm_attr_tag_##name), arm_attr_tag_##name}
11933 static arm_attr_public_tag arm_attr_public_tags[] =
11934 {
11935 {4, "CPU_raw_name", 1, NULL},
11936 {5, "CPU_name", 1, NULL},
11937 LOOKUP(6, CPU_arch),
11938 {7, "CPU_arch_profile", 0, NULL},
11939 LOOKUP(8, ARM_ISA_use),
11940 LOOKUP(9, THUMB_ISA_use),
11941 LOOKUP(10, FP_arch),
11942 LOOKUP(11, WMMX_arch),
11943 LOOKUP(12, Advanced_SIMD_arch),
11944 LOOKUP(13, PCS_config),
11945 LOOKUP(14, ABI_PCS_R9_use),
11946 LOOKUP(15, ABI_PCS_RW_data),
11947 LOOKUP(16, ABI_PCS_RO_data),
11948 LOOKUP(17, ABI_PCS_GOT_use),
11949 LOOKUP(18, ABI_PCS_wchar_t),
11950 LOOKUP(19, ABI_FP_rounding),
11951 LOOKUP(20, ABI_FP_denormal),
11952 LOOKUP(21, ABI_FP_exceptions),
11953 LOOKUP(22, ABI_FP_user_exceptions),
11954 LOOKUP(23, ABI_FP_number_model),
11955 {24, "ABI_align_needed", 0, NULL},
11956 {25, "ABI_align_preserved", 0, NULL},
11957 LOOKUP(26, ABI_enum_size),
11958 LOOKUP(27, ABI_HardFP_use),
11959 LOOKUP(28, ABI_VFP_args),
11960 LOOKUP(29, ABI_WMMX_args),
11961 LOOKUP(30, ABI_optimization_goals),
11962 LOOKUP(31, ABI_FP_optimization_goals),
11963 {32, "compatibility", 0, NULL},
11964 LOOKUP(34, CPU_unaligned_access),
11965 LOOKUP(36, FP_HP_extension),
11966 LOOKUP(38, ABI_FP_16bit_format),
11967 LOOKUP(42, MPextension_use),
11968 LOOKUP(44, DIV_use),
11969 {64, "nodefaults", 0, NULL},
11970 {65, "also_compatible_with", 0, NULL},
11971 LOOKUP(66, T2EE_use),
11972 {67, "conformance", 1, NULL},
11973 LOOKUP(68, Virtualization_use),
11974 LOOKUP(70, MPextension_use_legacy)
11975 };
11976 #undef LOOKUP
11977
11978 static unsigned char *
11979 display_arm_attribute (unsigned char * p,
11980 const unsigned char * const end)
11981 {
11982 unsigned int tag;
11983 unsigned int len;
11984 unsigned int val;
11985 arm_attr_public_tag * attr;
11986 unsigned i;
11987 unsigned int type;
11988
11989 tag = read_uleb128 (p, &len, end);
11990 p += len;
11991 attr = NULL;
11992 for (i = 0; i < ARRAY_SIZE (arm_attr_public_tags); i++)
11993 {
11994 if (arm_attr_public_tags[i].tag == tag)
11995 {
11996 attr = &arm_attr_public_tags[i];
11997 break;
11998 }
11999 }
12000
12001 if (attr)
12002 {
12003 printf (" Tag_%s: ", attr->name);
12004 switch (attr->type)
12005 {
12006 case 0:
12007 switch (tag)
12008 {
12009 case 7: /* Tag_CPU_arch_profile. */
12010 val = read_uleb128 (p, &len, end);
12011 p += len;
12012 switch (val)
12013 {
12014 case 0: printf (_("None\n")); break;
12015 case 'A': printf (_("Application\n")); break;
12016 case 'R': printf (_("Realtime\n")); break;
12017 case 'M': printf (_("Microcontroller\n")); break;
12018 case 'S': printf (_("Application or Realtime\n")); break;
12019 default: printf ("??? (%d)\n", val); break;
12020 }
12021 break;
12022
12023 case 24: /* Tag_align_needed. */
12024 val = read_uleb128 (p, &len, end);
12025 p += len;
12026 switch (val)
12027 {
12028 case 0: printf (_("None\n")); break;
12029 case 1: printf (_("8-byte\n")); break;
12030 case 2: printf (_("4-byte\n")); break;
12031 case 3: printf ("??? 3\n"); break;
12032 default:
12033 if (val <= 12)
12034 printf (_("8-byte and up to %d-byte extended\n"),
12035 1 << val);
12036 else
12037 printf ("??? (%d)\n", val);
12038 break;
12039 }
12040 break;
12041
12042 case 25: /* Tag_align_preserved. */
12043 val = read_uleb128 (p, &len, end);
12044 p += len;
12045 switch (val)
12046 {
12047 case 0: printf (_("None\n")); break;
12048 case 1: printf (_("8-byte, except leaf SP\n")); break;
12049 case 2: printf (_("8-byte\n")); break;
12050 case 3: printf ("??? 3\n"); break;
12051 default:
12052 if (val <= 12)
12053 printf (_("8-byte and up to %d-byte extended\n"),
12054 1 << val);
12055 else
12056 printf ("??? (%d)\n", val);
12057 break;
12058 }
12059 break;
12060
12061 case 32: /* Tag_compatibility. */
12062 {
12063 val = read_uleb128 (p, &len, end);
12064 p += len;
12065 printf (_("flag = %d, vendor = "), val);
12066 if (p < end - 1)
12067 {
12068 size_t maxlen = (end - p) - 1;
12069
12070 print_symbol ((int) maxlen, (const char *) p);
12071 p += strnlen ((char *) p, maxlen) + 1;
12072 }
12073 else
12074 {
12075 printf (_("<corrupt>"));
12076 p = (unsigned char *) end;
12077 }
12078 putchar ('\n');
12079 }
12080 break;
12081
12082 case 64: /* Tag_nodefaults. */
12083 /* PR 17531: file: 001-505008-0.01. */
12084 if (p < end)
12085 p++;
12086 printf (_("True\n"));
12087 break;
12088
12089 case 65: /* Tag_also_compatible_with. */
12090 val = read_uleb128 (p, &len, end);
12091 p += len;
12092 if (val == 6 /* Tag_CPU_arch. */)
12093 {
12094 val = read_uleb128 (p, &len, end);
12095 p += len;
12096 if ((unsigned int) val >= ARRAY_SIZE (arm_attr_tag_CPU_arch))
12097 printf ("??? (%d)\n", val);
12098 else
12099 printf ("%s\n", arm_attr_tag_CPU_arch[val]);
12100 }
12101 else
12102 printf ("???\n");
12103 while (p < end && *(p++) != '\0' /* NUL terminator. */)
12104 ;
12105 break;
12106
12107 default:
12108 abort ();
12109 }
12110 return p;
12111
12112 case 1:
12113 return display_tag_value (-1, p, end);
12114 case 2:
12115 return display_tag_value (0, p, end);
12116
12117 default:
12118 assert (attr->type & 0x80);
12119 val = read_uleb128 (p, &len, end);
12120 p += len;
12121 type = attr->type & 0x7f;
12122 if (val >= type)
12123 printf ("??? (%d)\n", val);
12124 else
12125 printf ("%s\n", attr->table[val]);
12126 return p;
12127 }
12128 }
12129
12130 return display_tag_value (tag, p, end);
12131 }
12132
12133 static unsigned char *
12134 display_gnu_attribute (unsigned char * p,
12135 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, int, const unsigned char * const),
12136 const unsigned char * const end)
12137 {
12138 int tag;
12139 unsigned int len;
12140 int val;
12141
12142 tag = read_uleb128 (p, &len, end);
12143 p += len;
12144
12145 /* Tag_compatibility is the only generic GNU attribute defined at
12146 present. */
12147 if (tag == 32)
12148 {
12149 val = read_uleb128 (p, &len, end);
12150 p += len;
12151
12152 printf (_("flag = %d, vendor = "), val);
12153 if (p == end)
12154 {
12155 printf (_("<corrupt>\n"));
12156 warn (_("corrupt vendor attribute\n"));
12157 }
12158 else
12159 {
12160 if (p < end - 1)
12161 {
12162 size_t maxlen = (end - p) - 1;
12163
12164 print_symbol ((int) maxlen, (const char *) p);
12165 p += strnlen ((char *) p, maxlen) + 1;
12166 }
12167 else
12168 {
12169 printf (_("<corrupt>"));
12170 p = (unsigned char *) end;
12171 }
12172 putchar ('\n');
12173 }
12174 return p;
12175 }
12176
12177 if ((tag & 2) == 0 && display_proc_gnu_attribute)
12178 return display_proc_gnu_attribute (p, tag, end);
12179
12180 return display_tag_value (tag, p, end);
12181 }
12182
12183 static unsigned char *
12184 display_power_gnu_attribute (unsigned char * p,
12185 int tag,
12186 const unsigned char * const end)
12187 {
12188 unsigned int len;
12189 int val;
12190
12191 if (tag == Tag_GNU_Power_ABI_FP)
12192 {
12193 val = read_uleb128 (p, &len, end);
12194 p += len;
12195 printf (" Tag_GNU_Power_ABI_FP: ");
12196
12197 switch (val)
12198 {
12199 case 0:
12200 printf (_("Hard or soft float\n"));
12201 break;
12202 case 1:
12203 printf (_("Hard float\n"));
12204 break;
12205 case 2:
12206 printf (_("Soft float\n"));
12207 break;
12208 case 3:
12209 printf (_("Single-precision hard float\n"));
12210 break;
12211 default:
12212 printf ("??? (%d)\n", val);
12213 break;
12214 }
12215 return p;
12216 }
12217
12218 if (tag == Tag_GNU_Power_ABI_Vector)
12219 {
12220 val = read_uleb128 (p, &len, end);
12221 p += len;
12222 printf (" Tag_GNU_Power_ABI_Vector: ");
12223 switch (val)
12224 {
12225 case 0:
12226 printf (_("Any\n"));
12227 break;
12228 case 1:
12229 printf (_("Generic\n"));
12230 break;
12231 case 2:
12232 printf ("AltiVec\n");
12233 break;
12234 case 3:
12235 printf ("SPE\n");
12236 break;
12237 default:
12238 printf ("??? (%d)\n", val);
12239 break;
12240 }
12241 return p;
12242 }
12243
12244 if (tag == Tag_GNU_Power_ABI_Struct_Return)
12245 {
12246 if (p == end)
12247 {
12248 warn (_("corrupt Tag_GNU_Power_ABI_Struct_Return\n"));
12249 return p;
12250 }
12251
12252 val = read_uleb128 (p, &len, end);
12253 p += len;
12254 printf (" Tag_GNU_Power_ABI_Struct_Return: ");
12255 switch (val)
12256 {
12257 case 0:
12258 printf (_("Any\n"));
12259 break;
12260 case 1:
12261 printf ("r3/r4\n");
12262 break;
12263 case 2:
12264 printf (_("Memory\n"));
12265 break;
12266 default:
12267 printf ("??? (%d)\n", val);
12268 break;
12269 }
12270 return p;
12271 }
12272
12273 return display_tag_value (tag & 1, p, end);
12274 }
12275
12276 static void
12277 display_sparc_hwcaps (int mask)
12278 {
12279 if (mask)
12280 {
12281 int first = 1;
12282
12283 if (mask & ELF_SPARC_HWCAP_MUL32)
12284 fputs ("mul32", stdout), first = 0;
12285 if (mask & ELF_SPARC_HWCAP_DIV32)
12286 printf ("%sdiv32", first ? "" : "|"), first = 0;
12287 if (mask & ELF_SPARC_HWCAP_FSMULD)
12288 printf ("%sfsmuld", first ? "" : "|"), first = 0;
12289 if (mask & ELF_SPARC_HWCAP_V8PLUS)
12290 printf ("%sv8plus", first ? "" : "|"), first = 0;
12291 if (mask & ELF_SPARC_HWCAP_POPC)
12292 printf ("%spopc", first ? "" : "|"), first = 0;
12293 if (mask & ELF_SPARC_HWCAP_VIS)
12294 printf ("%svis", first ? "" : "|"), first = 0;
12295 if (mask & ELF_SPARC_HWCAP_VIS2)
12296 printf ("%svis2", first ? "" : "|"), first = 0;
12297 if (mask & ELF_SPARC_HWCAP_ASI_BLK_INIT)
12298 printf ("%sASIBlkInit", first ? "" : "|"), first = 0;
12299 if (mask & ELF_SPARC_HWCAP_FMAF)
12300 printf ("%sfmaf", first ? "" : "|"), first = 0;
12301 if (mask & ELF_SPARC_HWCAP_VIS3)
12302 printf ("%svis3", first ? "" : "|"), first = 0;
12303 if (mask & ELF_SPARC_HWCAP_HPC)
12304 printf ("%shpc", first ? "" : "|"), first = 0;
12305 if (mask & ELF_SPARC_HWCAP_RANDOM)
12306 printf ("%srandom", first ? "" : "|"), first = 0;
12307 if (mask & ELF_SPARC_HWCAP_TRANS)
12308 printf ("%strans", first ? "" : "|"), first = 0;
12309 if (mask & ELF_SPARC_HWCAP_FJFMAU)
12310 printf ("%sfjfmau", first ? "" : "|"), first = 0;
12311 if (mask & ELF_SPARC_HWCAP_IMA)
12312 printf ("%sima", first ? "" : "|"), first = 0;
12313 if (mask & ELF_SPARC_HWCAP_ASI_CACHE_SPARING)
12314 printf ("%scspare", first ? "" : "|"), first = 0;
12315 }
12316 else
12317 fputc ('0', stdout);
12318 fputc ('\n', stdout);
12319 }
12320
12321 static void
12322 display_sparc_hwcaps2 (int mask)
12323 {
12324 if (mask)
12325 {
12326 int first = 1;
12327
12328 if (mask & ELF_SPARC_HWCAP2_FJATHPLUS)
12329 fputs ("fjathplus", stdout), first = 0;
12330 if (mask & ELF_SPARC_HWCAP2_VIS3B)
12331 printf ("%svis3b", first ? "" : "|"), first = 0;
12332 if (mask & ELF_SPARC_HWCAP2_ADP)
12333 printf ("%sadp", first ? "" : "|"), first = 0;
12334 if (mask & ELF_SPARC_HWCAP2_SPARC5)
12335 printf ("%ssparc5", first ? "" : "|"), first = 0;
12336 if (mask & ELF_SPARC_HWCAP2_MWAIT)
12337 printf ("%smwait", first ? "" : "|"), first = 0;
12338 if (mask & ELF_SPARC_HWCAP2_XMPMUL)
12339 printf ("%sxmpmul", first ? "" : "|"), first = 0;
12340 if (mask & ELF_SPARC_HWCAP2_XMONT)
12341 printf ("%sxmont2", first ? "" : "|"), first = 0;
12342 if (mask & ELF_SPARC_HWCAP2_NSEC)
12343 printf ("%snsec", first ? "" : "|"), first = 0;
12344 if (mask & ELF_SPARC_HWCAP2_FJATHHPC)
12345 printf ("%sfjathhpc", first ? "" : "|"), first = 0;
12346 if (mask & ELF_SPARC_HWCAP2_FJDES)
12347 printf ("%sfjdes", first ? "" : "|"), first = 0;
12348 if (mask & ELF_SPARC_HWCAP2_FJAES)
12349 printf ("%sfjaes", first ? "" : "|"), first = 0;
12350 }
12351 else
12352 fputc ('0', stdout);
12353 fputc ('\n', stdout);
12354 }
12355
12356 static unsigned char *
12357 display_sparc_gnu_attribute (unsigned char * p,
12358 int tag,
12359 const unsigned char * const end)
12360 {
12361 unsigned int len;
12362 int val;
12363
12364 if (tag == Tag_GNU_Sparc_HWCAPS)
12365 {
12366 val = read_uleb128 (p, &len, end);
12367 p += len;
12368 printf (" Tag_GNU_Sparc_HWCAPS: ");
12369 display_sparc_hwcaps (val);
12370 return p;
12371 }
12372 if (tag == Tag_GNU_Sparc_HWCAPS2)
12373 {
12374 val = read_uleb128 (p, &len, end);
12375 p += len;
12376 printf (" Tag_GNU_Sparc_HWCAPS2: ");
12377 display_sparc_hwcaps2 (val);
12378 return p;
12379 }
12380
12381 return display_tag_value (tag, p, end);
12382 }
12383
12384 static void
12385 print_mips_fp_abi_value (int val)
12386 {
12387 switch (val)
12388 {
12389 case Val_GNU_MIPS_ABI_FP_ANY:
12390 printf (_("Hard or soft float\n"));
12391 break;
12392 case Val_GNU_MIPS_ABI_FP_DOUBLE:
12393 printf (_("Hard float (double precision)\n"));
12394 break;
12395 case Val_GNU_MIPS_ABI_FP_SINGLE:
12396 printf (_("Hard float (single precision)\n"));
12397 break;
12398 case Val_GNU_MIPS_ABI_FP_SOFT:
12399 printf (_("Soft float\n"));
12400 break;
12401 case Val_GNU_MIPS_ABI_FP_OLD_64:
12402 printf (_("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
12403 break;
12404 case Val_GNU_MIPS_ABI_FP_XX:
12405 printf (_("Hard float (32-bit CPU, Any FPU)\n"));
12406 break;
12407 case Val_GNU_MIPS_ABI_FP_64:
12408 printf (_("Hard float (32-bit CPU, 64-bit FPU)\n"));
12409 break;
12410 case Val_GNU_MIPS_ABI_FP_64A:
12411 printf (_("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
12412 break;
12413 default:
12414 printf ("??? (%d)\n", val);
12415 break;
12416 }
12417 }
12418
12419 static unsigned char *
12420 display_mips_gnu_attribute (unsigned char * p,
12421 int tag,
12422 const unsigned char * const end)
12423 {
12424 if (tag == Tag_GNU_MIPS_ABI_FP)
12425 {
12426 unsigned int len;
12427 int val;
12428
12429 val = read_uleb128 (p, &len, end);
12430 p += len;
12431 printf (" Tag_GNU_MIPS_ABI_FP: ");
12432
12433 print_mips_fp_abi_value (val);
12434
12435 return p;
12436 }
12437
12438 if (tag == Tag_GNU_MIPS_ABI_MSA)
12439 {
12440 unsigned int len;
12441 int val;
12442
12443 val = read_uleb128 (p, &len, end);
12444 p += len;
12445 printf (" Tag_GNU_MIPS_ABI_MSA: ");
12446
12447 switch (val)
12448 {
12449 case Val_GNU_MIPS_ABI_MSA_ANY:
12450 printf (_("Any MSA or not\n"));
12451 break;
12452 case Val_GNU_MIPS_ABI_MSA_128:
12453 printf (_("128-bit MSA\n"));
12454 break;
12455 default:
12456 printf ("??? (%d)\n", val);
12457 break;
12458 }
12459 return p;
12460 }
12461
12462 return display_tag_value (tag & 1, p, end);
12463 }
12464
12465 static unsigned char *
12466 display_tic6x_attribute (unsigned char * p,
12467 const unsigned char * const end)
12468 {
12469 int tag;
12470 unsigned int len;
12471 int val;
12472
12473 tag = read_uleb128 (p, &len, end);
12474 p += len;
12475
12476 switch (tag)
12477 {
12478 case Tag_ISA:
12479 val = read_uleb128 (p, &len, end);
12480 p += len;
12481 printf (" Tag_ISA: ");
12482
12483 switch (val)
12484 {
12485 case C6XABI_Tag_ISA_none:
12486 printf (_("None\n"));
12487 break;
12488 case C6XABI_Tag_ISA_C62X:
12489 printf ("C62x\n");
12490 break;
12491 case C6XABI_Tag_ISA_C67X:
12492 printf ("C67x\n");
12493 break;
12494 case C6XABI_Tag_ISA_C67XP:
12495 printf ("C67x+\n");
12496 break;
12497 case C6XABI_Tag_ISA_C64X:
12498 printf ("C64x\n");
12499 break;
12500 case C6XABI_Tag_ISA_C64XP:
12501 printf ("C64x+\n");
12502 break;
12503 case C6XABI_Tag_ISA_C674X:
12504 printf ("C674x\n");
12505 break;
12506 default:
12507 printf ("??? (%d)\n", val);
12508 break;
12509 }
12510 return p;
12511
12512 case Tag_ABI_wchar_t:
12513 val = read_uleb128 (p, &len, end);
12514 p += len;
12515 printf (" Tag_ABI_wchar_t: ");
12516 switch (val)
12517 {
12518 case 0:
12519 printf (_("Not used\n"));
12520 break;
12521 case 1:
12522 printf (_("2 bytes\n"));
12523 break;
12524 case 2:
12525 printf (_("4 bytes\n"));
12526 break;
12527 default:
12528 printf ("??? (%d)\n", val);
12529 break;
12530 }
12531 return p;
12532
12533 case Tag_ABI_stack_align_needed:
12534 val = read_uleb128 (p, &len, end);
12535 p += len;
12536 printf (" Tag_ABI_stack_align_needed: ");
12537 switch (val)
12538 {
12539 case 0:
12540 printf (_("8-byte\n"));
12541 break;
12542 case 1:
12543 printf (_("16-byte\n"));
12544 break;
12545 default:
12546 printf ("??? (%d)\n", val);
12547 break;
12548 }
12549 return p;
12550
12551 case Tag_ABI_stack_align_preserved:
12552 val = read_uleb128 (p, &len, end);
12553 p += len;
12554 printf (" Tag_ABI_stack_align_preserved: ");
12555 switch (val)
12556 {
12557 case 0:
12558 printf (_("8-byte\n"));
12559 break;
12560 case 1:
12561 printf (_("16-byte\n"));
12562 break;
12563 default:
12564 printf ("??? (%d)\n", val);
12565 break;
12566 }
12567 return p;
12568
12569 case Tag_ABI_DSBT:
12570 val = read_uleb128 (p, &len, end);
12571 p += len;
12572 printf (" Tag_ABI_DSBT: ");
12573 switch (val)
12574 {
12575 case 0:
12576 printf (_("DSBT addressing not used\n"));
12577 break;
12578 case 1:
12579 printf (_("DSBT addressing used\n"));
12580 break;
12581 default:
12582 printf ("??? (%d)\n", val);
12583 break;
12584 }
12585 return p;
12586
12587 case Tag_ABI_PID:
12588 val = read_uleb128 (p, &len, end);
12589 p += len;
12590 printf (" Tag_ABI_PID: ");
12591 switch (val)
12592 {
12593 case 0:
12594 printf (_("Data addressing position-dependent\n"));
12595 break;
12596 case 1:
12597 printf (_("Data addressing position-independent, GOT near DP\n"));
12598 break;
12599 case 2:
12600 printf (_("Data addressing position-independent, GOT far from DP\n"));
12601 break;
12602 default:
12603 printf ("??? (%d)\n", val);
12604 break;
12605 }
12606 return p;
12607
12608 case Tag_ABI_PIC:
12609 val = read_uleb128 (p, &len, end);
12610 p += len;
12611 printf (" Tag_ABI_PIC: ");
12612 switch (val)
12613 {
12614 case 0:
12615 printf (_("Code addressing position-dependent\n"));
12616 break;
12617 case 1:
12618 printf (_("Code addressing position-independent\n"));
12619 break;
12620 default:
12621 printf ("??? (%d)\n", val);
12622 break;
12623 }
12624 return p;
12625
12626 case Tag_ABI_array_object_alignment:
12627 val = read_uleb128 (p, &len, end);
12628 p += len;
12629 printf (" Tag_ABI_array_object_alignment: ");
12630 switch (val)
12631 {
12632 case 0:
12633 printf (_("8-byte\n"));
12634 break;
12635 case 1:
12636 printf (_("4-byte\n"));
12637 break;
12638 case 2:
12639 printf (_("16-byte\n"));
12640 break;
12641 default:
12642 printf ("??? (%d)\n", val);
12643 break;
12644 }
12645 return p;
12646
12647 case Tag_ABI_array_object_align_expected:
12648 val = read_uleb128 (p, &len, end);
12649 p += len;
12650 printf (" Tag_ABI_array_object_align_expected: ");
12651 switch (val)
12652 {
12653 case 0:
12654 printf (_("8-byte\n"));
12655 break;
12656 case 1:
12657 printf (_("4-byte\n"));
12658 break;
12659 case 2:
12660 printf (_("16-byte\n"));
12661 break;
12662 default:
12663 printf ("??? (%d)\n", val);
12664 break;
12665 }
12666 return p;
12667
12668 case Tag_ABI_compatibility:
12669 {
12670 val = read_uleb128 (p, &len, end);
12671 p += len;
12672 printf (" Tag_ABI_compatibility: ");
12673 printf (_("flag = %d, vendor = "), val);
12674 if (p < end - 1)
12675 {
12676 size_t maxlen = (end - p) - 1;
12677
12678 print_symbol ((int) maxlen, (const char *) p);
12679 p += strnlen ((char *) p, maxlen) + 1;
12680 }
12681 else
12682 {
12683 printf (_("<corrupt>"));
12684 p = (unsigned char *) end;
12685 }
12686 putchar ('\n');
12687 return p;
12688 }
12689
12690 case Tag_ABI_conformance:
12691 {
12692 printf (" Tag_ABI_conformance: \"");
12693 if (p < end - 1)
12694 {
12695 size_t maxlen = (end - p) - 1;
12696
12697 print_symbol ((int) maxlen, (const char *) p);
12698 p += strnlen ((char *) p, maxlen) + 1;
12699 }
12700 else
12701 {
12702 printf (_("<corrupt>"));
12703 p = (unsigned char *) end;
12704 }
12705 printf ("\"\n");
12706 return p;
12707 }
12708 }
12709
12710 return display_tag_value (tag, p, end);
12711 }
12712
12713 static void
12714 display_raw_attribute (unsigned char * p, unsigned char * end)
12715 {
12716 unsigned long addr = 0;
12717 size_t bytes = end - p;
12718
12719 assert (end > p);
12720 while (bytes)
12721 {
12722 int j;
12723 int k;
12724 int lbytes = (bytes > 16 ? 16 : bytes);
12725
12726 printf (" 0x%8.8lx ", addr);
12727
12728 for (j = 0; j < 16; j++)
12729 {
12730 if (j < lbytes)
12731 printf ("%2.2x", p[j]);
12732 else
12733 printf (" ");
12734
12735 if ((j & 3) == 3)
12736 printf (" ");
12737 }
12738
12739 for (j = 0; j < lbytes; j++)
12740 {
12741 k = p[j];
12742 if (k >= ' ' && k < 0x7f)
12743 printf ("%c", k);
12744 else
12745 printf (".");
12746 }
12747
12748 putchar ('\n');
12749
12750 p += lbytes;
12751 bytes -= lbytes;
12752 addr += lbytes;
12753 }
12754
12755 putchar ('\n');
12756 }
12757
12758 static unsigned char *
12759 display_msp430x_attribute (unsigned char * p,
12760 const unsigned char * const end)
12761 {
12762 unsigned int len;
12763 int val;
12764 int tag;
12765
12766 tag = read_uleb128 (p, & len, end);
12767 p += len;
12768
12769 switch (tag)
12770 {
12771 case OFBA_MSPABI_Tag_ISA:
12772 val = read_uleb128 (p, &len, end);
12773 p += len;
12774 printf (" Tag_ISA: ");
12775 switch (val)
12776 {
12777 case 0: printf (_("None\n")); break;
12778 case 1: printf (_("MSP430\n")); break;
12779 case 2: printf (_("MSP430X\n")); break;
12780 default: printf ("??? (%d)\n", val); break;
12781 }
12782 break;
12783
12784 case OFBA_MSPABI_Tag_Code_Model:
12785 val = read_uleb128 (p, &len, end);
12786 p += len;
12787 printf (" Tag_Code_Model: ");
12788 switch (val)
12789 {
12790 case 0: printf (_("None\n")); break;
12791 case 1: printf (_("Small\n")); break;
12792 case 2: printf (_("Large\n")); break;
12793 default: printf ("??? (%d)\n", val); break;
12794 }
12795 break;
12796
12797 case OFBA_MSPABI_Tag_Data_Model:
12798 val = read_uleb128 (p, &len, end);
12799 p += len;
12800 printf (" Tag_Data_Model: ");
12801 switch (val)
12802 {
12803 case 0: printf (_("None\n")); break;
12804 case 1: printf (_("Small\n")); break;
12805 case 2: printf (_("Large\n")); break;
12806 case 3: printf (_("Restricted Large\n")); break;
12807 default: printf ("??? (%d)\n", val); break;
12808 }
12809 break;
12810
12811 default:
12812 printf (_(" <unknown tag %d>: "), tag);
12813
12814 if (tag & 1)
12815 {
12816 putchar ('"');
12817 if (p < end - 1)
12818 {
12819 size_t maxlen = (end - p) - 1;
12820
12821 print_symbol ((int) maxlen, (const char *) p);
12822 p += strnlen ((char *) p, maxlen) + 1;
12823 }
12824 else
12825 {
12826 printf (_("<corrupt>"));
12827 p = (unsigned char *) end;
12828 }
12829 printf ("\"\n");
12830 }
12831 else
12832 {
12833 val = read_uleb128 (p, &len, end);
12834 p += len;
12835 printf ("%d (0x%x)\n", val, val);
12836 }
12837 break;
12838 }
12839
12840 assert (p <= end);
12841 return p;
12842 }
12843
12844 static int
12845 process_attributes (FILE * file,
12846 const char * public_name,
12847 unsigned int proc_type,
12848 unsigned char * (* display_pub_attribute) (unsigned char *, const unsigned char * const),
12849 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, int, const unsigned char * const))
12850 {
12851 Elf_Internal_Shdr * sect;
12852 unsigned i;
12853
12854 /* Find the section header so that we get the size. */
12855 for (i = 0, sect = section_headers;
12856 i < elf_header.e_shnum;
12857 i++, sect++)
12858 {
12859 unsigned char * contents;
12860 unsigned char * p;
12861
12862 if (sect->sh_type != proc_type && sect->sh_type != SHT_GNU_ATTRIBUTES)
12863 continue;
12864
12865 contents = (unsigned char *) get_data (NULL, file, sect->sh_offset, 1,
12866 sect->sh_size, _("attributes"));
12867 if (contents == NULL)
12868 continue;
12869
12870 p = contents;
12871 if (*p == 'A')
12872 {
12873 bfd_vma section_len;
12874
12875 section_len = sect->sh_size - 1;
12876 p++;
12877
12878 while (section_len > 0)
12879 {
12880 bfd_vma attr_len;
12881 unsigned int namelen;
12882 bfd_boolean public_section;
12883 bfd_boolean gnu_section;
12884
12885 if (section_len <= 4)
12886 {
12887 error (_("Tag section ends prematurely\n"));
12888 break;
12889 }
12890 attr_len = byte_get (p, 4);
12891 p += 4;
12892
12893 if (attr_len > section_len)
12894 {
12895 error (_("Bad attribute length (%u > %u)\n"),
12896 (unsigned) attr_len, (unsigned) section_len);
12897 attr_len = section_len;
12898 }
12899 /* PR 17531: file: 001-101425-0.004 */
12900 else if (attr_len < 5)
12901 {
12902 error (_("Attribute length of %u is too small\n"), (unsigned) attr_len);
12903 break;
12904 }
12905
12906 section_len -= attr_len;
12907 attr_len -= 4;
12908
12909 namelen = strnlen ((char *) p, attr_len) + 1;
12910 if (namelen == 0 || namelen >= attr_len)
12911 {
12912 error (_("Corrupt attribute section name\n"));
12913 break;
12914 }
12915
12916 printf (_("Attribute Section: "));
12917 print_symbol (INT_MAX, (const char *) p);
12918 putchar ('\n');
12919
12920 if (public_name && streq ((char *) p, public_name))
12921 public_section = TRUE;
12922 else
12923 public_section = FALSE;
12924
12925 if (streq ((char *) p, "gnu"))
12926 gnu_section = TRUE;
12927 else
12928 gnu_section = FALSE;
12929
12930 p += namelen;
12931 attr_len -= namelen;
12932
12933 while (attr_len > 0 && p < contents + sect->sh_size)
12934 {
12935 int tag;
12936 int val;
12937 bfd_vma size;
12938 unsigned char * end;
12939
12940 /* PR binutils/17531: Safe handling of corrupt files. */
12941 if (attr_len < 6)
12942 {
12943 error (_("Unused bytes at end of section\n"));
12944 section_len = 0;
12945 break;
12946 }
12947
12948 tag = *(p++);
12949 size = byte_get (p, 4);
12950 if (size > attr_len)
12951 {
12952 error (_("Bad subsection length (%u > %u)\n"),
12953 (unsigned) size, (unsigned) attr_len);
12954 size = attr_len;
12955 }
12956 /* PR binutils/17531: Safe handling of corrupt files. */
12957 if (size < 6)
12958 {
12959 error (_("Bad subsection length (%u < 6)\n"),
12960 (unsigned) size);
12961 section_len = 0;
12962 break;
12963 }
12964
12965 attr_len -= size;
12966 end = p + size - 1;
12967 assert (end <= contents + sect->sh_size);
12968 p += 4;
12969
12970 switch (tag)
12971 {
12972 case 1:
12973 printf (_("File Attributes\n"));
12974 break;
12975 case 2:
12976 printf (_("Section Attributes:"));
12977 goto do_numlist;
12978 case 3:
12979 printf (_("Symbol Attributes:"));
12980 do_numlist:
12981 for (;;)
12982 {
12983 unsigned int j;
12984
12985 val = read_uleb128 (p, &j, end);
12986 p += j;
12987 if (val == 0)
12988 break;
12989 printf (" %d", val);
12990 }
12991 printf ("\n");
12992 break;
12993 default:
12994 printf (_("Unknown tag: %d\n"), tag);
12995 public_section = FALSE;
12996 break;
12997 }
12998
12999 if (public_section && display_pub_attribute != NULL)
13000 {
13001 while (p < end)
13002 p = display_pub_attribute (p, end);
13003 assert (p <= end);
13004 }
13005 else if (gnu_section && display_proc_gnu_attribute != NULL)
13006 {
13007 while (p < end)
13008 p = display_gnu_attribute (p,
13009 display_proc_gnu_attribute,
13010 end);
13011 assert (p <= end);
13012 }
13013 else if (p < end)
13014 {
13015 printf (_(" Unknown attribute:\n"));
13016 display_raw_attribute (p, end);
13017 p = end;
13018 }
13019 else
13020 attr_len = 0;
13021 }
13022 }
13023 }
13024 else
13025 printf (_("Unknown format '%c' (%d)\n"), *p, *p);
13026
13027 free (contents);
13028 }
13029 return 1;
13030 }
13031
13032 static int
13033 process_arm_specific (FILE * file)
13034 {
13035 return process_attributes (file, "aeabi", SHT_ARM_ATTRIBUTES,
13036 display_arm_attribute, NULL);
13037 }
13038
13039 static int
13040 process_power_specific (FILE * file)
13041 {
13042 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
13043 display_power_gnu_attribute);
13044 }
13045
13046 static int
13047 process_sparc_specific (FILE * file)
13048 {
13049 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
13050 display_sparc_gnu_attribute);
13051 }
13052
13053 static int
13054 process_tic6x_specific (FILE * file)
13055 {
13056 return process_attributes (file, "c6xabi", SHT_C6000_ATTRIBUTES,
13057 display_tic6x_attribute, NULL);
13058 }
13059
13060 static int
13061 process_msp430x_specific (FILE * file)
13062 {
13063 return process_attributes (file, "mspabi", SHT_MSP430_ATTRIBUTES,
13064 display_msp430x_attribute, NULL);
13065 }
13066
13067 /* DATA points to the contents of a MIPS GOT that starts at VMA PLTGOT.
13068 Print the Address, Access and Initial fields of an entry at VMA ADDR
13069 and return the VMA of the next entry. */
13070
13071 static bfd_vma
13072 print_mips_got_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
13073 {
13074 printf (" ");
13075 print_vma (addr, LONG_HEX);
13076 printf (" ");
13077 if (addr < pltgot + 0xfff0)
13078 printf ("%6d(gp)", (int) (addr - pltgot - 0x7ff0));
13079 else
13080 printf ("%10s", "");
13081 printf (" ");
13082 if (data == NULL)
13083 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
13084 else
13085 {
13086 bfd_vma entry;
13087
13088 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
13089 print_vma (entry, LONG_HEX);
13090 }
13091 return addr + (is_32bit_elf ? 4 : 8);
13092 }
13093
13094 /* DATA points to the contents of a MIPS PLT GOT that starts at VMA
13095 PLTGOT. Print the Address and Initial fields of an entry at VMA
13096 ADDR and return the VMA of the next entry. */
13097
13098 static bfd_vma
13099 print_mips_pltgot_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
13100 {
13101 printf (" ");
13102 print_vma (addr, LONG_HEX);
13103 printf (" ");
13104 if (data == NULL)
13105 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
13106 else
13107 {
13108 bfd_vma entry;
13109
13110 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
13111 print_vma (entry, LONG_HEX);
13112 }
13113 return addr + (is_32bit_elf ? 4 : 8);
13114 }
13115
13116 static void
13117 print_mips_ases (unsigned int mask)
13118 {
13119 if (mask & AFL_ASE_DSP)
13120 fputs ("\n\tDSP ASE", stdout);
13121 if (mask & AFL_ASE_DSPR2)
13122 fputs ("\n\tDSP R2 ASE", stdout);
13123 if (mask & AFL_ASE_EVA)
13124 fputs ("\n\tEnhanced VA Scheme", stdout);
13125 if (mask & AFL_ASE_MCU)
13126 fputs ("\n\tMCU (MicroController) ASE", stdout);
13127 if (mask & AFL_ASE_MDMX)
13128 fputs ("\n\tMDMX ASE", stdout);
13129 if (mask & AFL_ASE_MIPS3D)
13130 fputs ("\n\tMIPS-3D ASE", stdout);
13131 if (mask & AFL_ASE_MT)
13132 fputs ("\n\tMT ASE", stdout);
13133 if (mask & AFL_ASE_SMARTMIPS)
13134 fputs ("\n\tSmartMIPS ASE", stdout);
13135 if (mask & AFL_ASE_VIRT)
13136 fputs ("\n\tVZ ASE", stdout);
13137 if (mask & AFL_ASE_MSA)
13138 fputs ("\n\tMSA ASE", stdout);
13139 if (mask & AFL_ASE_MIPS16)
13140 fputs ("\n\tMIPS16 ASE", stdout);
13141 if (mask & AFL_ASE_MICROMIPS)
13142 fputs ("\n\tMICROMIPS ASE", stdout);
13143 if (mask & AFL_ASE_XPA)
13144 fputs ("\n\tXPA ASE", stdout);
13145 if (mask == 0)
13146 fprintf (stdout, "\n\t%s", _("None"));
13147 else if ((mask & ~AFL_ASE_MASK) != 0)
13148 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
13149 }
13150
13151 static void
13152 print_mips_isa_ext (unsigned int isa_ext)
13153 {
13154 switch (isa_ext)
13155 {
13156 case 0:
13157 fputs (_("None"), stdout);
13158 break;
13159 case AFL_EXT_XLR:
13160 fputs ("RMI XLR", stdout);
13161 break;
13162 case AFL_EXT_OCTEON3:
13163 fputs ("Cavium Networks Octeon3", stdout);
13164 break;
13165 case AFL_EXT_OCTEON2:
13166 fputs ("Cavium Networks Octeon2", stdout);
13167 break;
13168 case AFL_EXT_OCTEONP:
13169 fputs ("Cavium Networks OcteonP", stdout);
13170 break;
13171 case AFL_EXT_LOONGSON_3A:
13172 fputs ("Loongson 3A", stdout);
13173 break;
13174 case AFL_EXT_OCTEON:
13175 fputs ("Cavium Networks Octeon", stdout);
13176 break;
13177 case AFL_EXT_5900:
13178 fputs ("Toshiba R5900", stdout);
13179 break;
13180 case AFL_EXT_4650:
13181 fputs ("MIPS R4650", stdout);
13182 break;
13183 case AFL_EXT_4010:
13184 fputs ("LSI R4010", stdout);
13185 break;
13186 case AFL_EXT_4100:
13187 fputs ("NEC VR4100", stdout);
13188 break;
13189 case AFL_EXT_3900:
13190 fputs ("Toshiba R3900", stdout);
13191 break;
13192 case AFL_EXT_10000:
13193 fputs ("MIPS R10000", stdout);
13194 break;
13195 case AFL_EXT_SB1:
13196 fputs ("Broadcom SB-1", stdout);
13197 break;
13198 case AFL_EXT_4111:
13199 fputs ("NEC VR4111/VR4181", stdout);
13200 break;
13201 case AFL_EXT_4120:
13202 fputs ("NEC VR4120", stdout);
13203 break;
13204 case AFL_EXT_5400:
13205 fputs ("NEC VR5400", stdout);
13206 break;
13207 case AFL_EXT_5500:
13208 fputs ("NEC VR5500", stdout);
13209 break;
13210 case AFL_EXT_LOONGSON_2E:
13211 fputs ("ST Microelectronics Loongson 2E", stdout);
13212 break;
13213 case AFL_EXT_LOONGSON_2F:
13214 fputs ("ST Microelectronics Loongson 2F", stdout);
13215 break;
13216 default:
13217 fprintf (stdout, "%s (%d)", _("Unknown"), isa_ext);
13218 }
13219 }
13220
13221 static int
13222 get_mips_reg_size (int reg_size)
13223 {
13224 return (reg_size == AFL_REG_NONE) ? 0
13225 : (reg_size == AFL_REG_32) ? 32
13226 : (reg_size == AFL_REG_64) ? 64
13227 : (reg_size == AFL_REG_128) ? 128
13228 : -1;
13229 }
13230
13231 static int
13232 process_mips_specific (FILE * file)
13233 {
13234 Elf_Internal_Dyn * entry;
13235 Elf_Internal_Shdr *sect = NULL;
13236 size_t liblist_offset = 0;
13237 size_t liblistno = 0;
13238 size_t conflictsno = 0;
13239 size_t options_offset = 0;
13240 size_t conflicts_offset = 0;
13241 size_t pltrelsz = 0;
13242 size_t pltrel = 0;
13243 bfd_vma pltgot = 0;
13244 bfd_vma mips_pltgot = 0;
13245 bfd_vma jmprel = 0;
13246 bfd_vma local_gotno = 0;
13247 bfd_vma gotsym = 0;
13248 bfd_vma symtabno = 0;
13249
13250 process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
13251 display_mips_gnu_attribute);
13252
13253 sect = find_section (".MIPS.abiflags");
13254
13255 if (sect != NULL)
13256 {
13257 Elf_External_ABIFlags_v0 *abiflags_ext;
13258 Elf_Internal_ABIFlags_v0 abiflags_in;
13259
13260 if (sizeof (Elf_External_ABIFlags_v0) != sect->sh_size)
13261 fputs ("\nCorrupt ABI Flags section.\n", stdout);
13262 else
13263 {
13264 abiflags_ext = get_data (NULL, file, sect->sh_offset, 1,
13265 sect->sh_size, _("MIPS ABI Flags section"));
13266 if (abiflags_ext)
13267 {
13268 abiflags_in.version = BYTE_GET (abiflags_ext->version);
13269 abiflags_in.isa_level = BYTE_GET (abiflags_ext->isa_level);
13270 abiflags_in.isa_rev = BYTE_GET (abiflags_ext->isa_rev);
13271 abiflags_in.gpr_size = BYTE_GET (abiflags_ext->gpr_size);
13272 abiflags_in.cpr1_size = BYTE_GET (abiflags_ext->cpr1_size);
13273 abiflags_in.cpr2_size = BYTE_GET (abiflags_ext->cpr2_size);
13274 abiflags_in.fp_abi = BYTE_GET (abiflags_ext->fp_abi);
13275 abiflags_in.isa_ext = BYTE_GET (abiflags_ext->isa_ext);
13276 abiflags_in.ases = BYTE_GET (abiflags_ext->ases);
13277 abiflags_in.flags1 = BYTE_GET (abiflags_ext->flags1);
13278 abiflags_in.flags2 = BYTE_GET (abiflags_ext->flags2);
13279
13280 printf ("\nMIPS ABI Flags Version: %d\n", abiflags_in.version);
13281 printf ("\nISA: MIPS%d", abiflags_in.isa_level);
13282 if (abiflags_in.isa_rev > 1)
13283 printf ("r%d", abiflags_in.isa_rev);
13284 printf ("\nGPR size: %d",
13285 get_mips_reg_size (abiflags_in.gpr_size));
13286 printf ("\nCPR1 size: %d",
13287 get_mips_reg_size (abiflags_in.cpr1_size));
13288 printf ("\nCPR2 size: %d",
13289 get_mips_reg_size (abiflags_in.cpr2_size));
13290 fputs ("\nFP ABI: ", stdout);
13291 print_mips_fp_abi_value (abiflags_in.fp_abi);
13292 fputs ("ISA Extension: ", stdout);
13293 print_mips_isa_ext (abiflags_in.isa_ext);
13294 fputs ("\nASEs:", stdout);
13295 print_mips_ases (abiflags_in.ases);
13296 printf ("\nFLAGS 1: %8.8lx", abiflags_in.flags1);
13297 printf ("\nFLAGS 2: %8.8lx", abiflags_in.flags2);
13298 fputc ('\n', stdout);
13299 free (abiflags_ext);
13300 }
13301 }
13302 }
13303
13304 /* We have a lot of special sections. Thanks SGI! */
13305 if (dynamic_section == NULL)
13306 /* No information available. */
13307 return 0;
13308
13309 for (entry = dynamic_section;
13310 /* PR 17531 file: 012-50589-0.004. */
13311 entry < dynamic_section + dynamic_nent && entry->d_tag != DT_NULL;
13312 ++entry)
13313 switch (entry->d_tag)
13314 {
13315 case DT_MIPS_LIBLIST:
13316 liblist_offset
13317 = offset_from_vma (file, entry->d_un.d_val,
13318 liblistno * sizeof (Elf32_External_Lib));
13319 break;
13320 case DT_MIPS_LIBLISTNO:
13321 liblistno = entry->d_un.d_val;
13322 break;
13323 case DT_MIPS_OPTIONS:
13324 options_offset = offset_from_vma (file, entry->d_un.d_val, 0);
13325 break;
13326 case DT_MIPS_CONFLICT:
13327 conflicts_offset
13328 = offset_from_vma (file, entry->d_un.d_val,
13329 conflictsno * sizeof (Elf32_External_Conflict));
13330 break;
13331 case DT_MIPS_CONFLICTNO:
13332 conflictsno = entry->d_un.d_val;
13333 break;
13334 case DT_PLTGOT:
13335 pltgot = entry->d_un.d_ptr;
13336 break;
13337 case DT_MIPS_LOCAL_GOTNO:
13338 local_gotno = entry->d_un.d_val;
13339 break;
13340 case DT_MIPS_GOTSYM:
13341 gotsym = entry->d_un.d_val;
13342 break;
13343 case DT_MIPS_SYMTABNO:
13344 symtabno = entry->d_un.d_val;
13345 break;
13346 case DT_MIPS_PLTGOT:
13347 mips_pltgot = entry->d_un.d_ptr;
13348 break;
13349 case DT_PLTREL:
13350 pltrel = entry->d_un.d_val;
13351 break;
13352 case DT_PLTRELSZ:
13353 pltrelsz = entry->d_un.d_val;
13354 break;
13355 case DT_JMPREL:
13356 jmprel = entry->d_un.d_ptr;
13357 break;
13358 default:
13359 break;
13360 }
13361
13362 if (liblist_offset != 0 && liblistno != 0 && do_dynamic)
13363 {
13364 Elf32_External_Lib * elib;
13365 size_t cnt;
13366
13367 elib = (Elf32_External_Lib *) get_data (NULL, file, liblist_offset,
13368 liblistno,
13369 sizeof (Elf32_External_Lib),
13370 _("liblist section data"));
13371 if (elib)
13372 {
13373 printf (_("\nSection '.liblist' contains %lu entries:\n"),
13374 (unsigned long) liblistno);
13375 fputs (_(" Library Time Stamp Checksum Version Flags\n"),
13376 stdout);
13377
13378 for (cnt = 0; cnt < liblistno; ++cnt)
13379 {
13380 Elf32_Lib liblist;
13381 time_t atime;
13382 char timebuf[20];
13383 struct tm * tmp;
13384
13385 liblist.l_name = BYTE_GET (elib[cnt].l_name);
13386 atime = BYTE_GET (elib[cnt].l_time_stamp);
13387 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
13388 liblist.l_version = BYTE_GET (elib[cnt].l_version);
13389 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
13390
13391 tmp = gmtime (&atime);
13392 snprintf (timebuf, sizeof (timebuf),
13393 "%04u-%02u-%02uT%02u:%02u:%02u",
13394 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
13395 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
13396
13397 printf ("%3lu: ", (unsigned long) cnt);
13398 if (VALID_DYNAMIC_NAME (liblist.l_name))
13399 print_symbol (20, GET_DYNAMIC_NAME (liblist.l_name));
13400 else
13401 printf (_("<corrupt: %9ld>"), liblist.l_name);
13402 printf (" %s %#10lx %-7ld", timebuf, liblist.l_checksum,
13403 liblist.l_version);
13404
13405 if (liblist.l_flags == 0)
13406 puts (_(" NONE"));
13407 else
13408 {
13409 static const struct
13410 {
13411 const char * name;
13412 int bit;
13413 }
13414 l_flags_vals[] =
13415 {
13416 { " EXACT_MATCH", LL_EXACT_MATCH },
13417 { " IGNORE_INT_VER", LL_IGNORE_INT_VER },
13418 { " REQUIRE_MINOR", LL_REQUIRE_MINOR },
13419 { " EXPORTS", LL_EXPORTS },
13420 { " DELAY_LOAD", LL_DELAY_LOAD },
13421 { " DELTA", LL_DELTA }
13422 };
13423 int flags = liblist.l_flags;
13424 size_t fcnt;
13425
13426 for (fcnt = 0; fcnt < ARRAY_SIZE (l_flags_vals); ++fcnt)
13427 if ((flags & l_flags_vals[fcnt].bit) != 0)
13428 {
13429 fputs (l_flags_vals[fcnt].name, stdout);
13430 flags ^= l_flags_vals[fcnt].bit;
13431 }
13432 if (flags != 0)
13433 printf (" %#x", (unsigned int) flags);
13434
13435 puts ("");
13436 }
13437 }
13438
13439 free (elib);
13440 }
13441 }
13442
13443 if (options_offset != 0)
13444 {
13445 Elf_External_Options * eopt;
13446 Elf_Internal_Options * iopt;
13447 Elf_Internal_Options * option;
13448 size_t offset;
13449 int cnt;
13450 sect = section_headers;
13451
13452 /* Find the section header so that we get the size. */
13453 sect = find_section_by_type (SHT_MIPS_OPTIONS);
13454 /* PR 17533 file: 012-277276-0.004. */
13455 if (sect == NULL)
13456 {
13457 error (_("No MIPS_OPTIONS header found\n"));
13458 return 0;
13459 }
13460
13461 eopt = (Elf_External_Options *) get_data (NULL, file, options_offset, 1,
13462 sect->sh_size, _("options"));
13463 if (eopt)
13464 {
13465 iopt = (Elf_Internal_Options *)
13466 cmalloc ((sect->sh_size / sizeof (eopt)), sizeof (* iopt));
13467 if (iopt == NULL)
13468 {
13469 error (_("Out of memory allocatinf space for MIPS options\n"));
13470 return 0;
13471 }
13472
13473 offset = cnt = 0;
13474 option = iopt;
13475
13476 while (offset < sect->sh_size)
13477 {
13478 Elf_External_Options * eoption;
13479
13480 eoption = (Elf_External_Options *) ((char *) eopt + offset);
13481
13482 option->kind = BYTE_GET (eoption->kind);
13483 option->size = BYTE_GET (eoption->size);
13484 option->section = BYTE_GET (eoption->section);
13485 option->info = BYTE_GET (eoption->info);
13486
13487 offset += option->size;
13488
13489 ++option;
13490 ++cnt;
13491 }
13492
13493 printf (_("\nSection '%s' contains %d entries:\n"),
13494 printable_section_name (sect), cnt);
13495
13496 option = iopt;
13497
13498 while (cnt-- > 0)
13499 {
13500 size_t len;
13501
13502 switch (option->kind)
13503 {
13504 case ODK_NULL:
13505 /* This shouldn't happen. */
13506 printf (" NULL %d %lx", option->section, option->info);
13507 break;
13508 case ODK_REGINFO:
13509 printf (" REGINFO ");
13510 if (elf_header.e_machine == EM_MIPS)
13511 {
13512 /* 32bit form. */
13513 Elf32_External_RegInfo * ereg;
13514 Elf32_RegInfo reginfo;
13515
13516 ereg = (Elf32_External_RegInfo *) (option + 1);
13517 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
13518 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
13519 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
13520 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
13521 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
13522 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
13523
13524 printf ("GPR %08lx GP 0x%lx\n",
13525 reginfo.ri_gprmask,
13526 (unsigned long) reginfo.ri_gp_value);
13527 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
13528 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
13529 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
13530 }
13531 else
13532 {
13533 /* 64 bit form. */
13534 Elf64_External_RegInfo * ereg;
13535 Elf64_Internal_RegInfo reginfo;
13536
13537 ereg = (Elf64_External_RegInfo *) (option + 1);
13538 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
13539 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
13540 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
13541 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
13542 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
13543 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
13544
13545 printf ("GPR %08lx GP 0x",
13546 reginfo.ri_gprmask);
13547 printf_vma (reginfo.ri_gp_value);
13548 printf ("\n");
13549
13550 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
13551 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
13552 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
13553 }
13554 ++option;
13555 continue;
13556 case ODK_EXCEPTIONS:
13557 fputs (" EXCEPTIONS fpe_min(", stdout);
13558 process_mips_fpe_exception (option->info & OEX_FPU_MIN);
13559 fputs (") fpe_max(", stdout);
13560 process_mips_fpe_exception ((option->info & OEX_FPU_MAX) >> 8);
13561 fputs (")", stdout);
13562
13563 if (option->info & OEX_PAGE0)
13564 fputs (" PAGE0", stdout);
13565 if (option->info & OEX_SMM)
13566 fputs (" SMM", stdout);
13567 if (option->info & OEX_FPDBUG)
13568 fputs (" FPDBUG", stdout);
13569 if (option->info & OEX_DISMISS)
13570 fputs (" DISMISS", stdout);
13571 break;
13572 case ODK_PAD:
13573 fputs (" PAD ", stdout);
13574 if (option->info & OPAD_PREFIX)
13575 fputs (" PREFIX", stdout);
13576 if (option->info & OPAD_POSTFIX)
13577 fputs (" POSTFIX", stdout);
13578 if (option->info & OPAD_SYMBOL)
13579 fputs (" SYMBOL", stdout);
13580 break;
13581 case ODK_HWPATCH:
13582 fputs (" HWPATCH ", stdout);
13583 if (option->info & OHW_R4KEOP)
13584 fputs (" R4KEOP", stdout);
13585 if (option->info & OHW_R8KPFETCH)
13586 fputs (" R8KPFETCH", stdout);
13587 if (option->info & OHW_R5KEOP)
13588 fputs (" R5KEOP", stdout);
13589 if (option->info & OHW_R5KCVTL)
13590 fputs (" R5KCVTL", stdout);
13591 break;
13592 case ODK_FILL:
13593 fputs (" FILL ", stdout);
13594 /* XXX Print content of info word? */
13595 break;
13596 case ODK_TAGS:
13597 fputs (" TAGS ", stdout);
13598 /* XXX Print content of info word? */
13599 break;
13600 case ODK_HWAND:
13601 fputs (" HWAND ", stdout);
13602 if (option->info & OHWA0_R4KEOP_CHECKED)
13603 fputs (" R4KEOP_CHECKED", stdout);
13604 if (option->info & OHWA0_R4KEOP_CLEAN)
13605 fputs (" R4KEOP_CLEAN", stdout);
13606 break;
13607 case ODK_HWOR:
13608 fputs (" HWOR ", stdout);
13609 if (option->info & OHWA0_R4KEOP_CHECKED)
13610 fputs (" R4KEOP_CHECKED", stdout);
13611 if (option->info & OHWA0_R4KEOP_CLEAN)
13612 fputs (" R4KEOP_CLEAN", stdout);
13613 break;
13614 case ODK_GP_GROUP:
13615 printf (" GP_GROUP %#06lx self-contained %#06lx",
13616 option->info & OGP_GROUP,
13617 (option->info & OGP_SELF) >> 16);
13618 break;
13619 case ODK_IDENT:
13620 printf (" IDENT %#06lx self-contained %#06lx",
13621 option->info & OGP_GROUP,
13622 (option->info & OGP_SELF) >> 16);
13623 break;
13624 default:
13625 /* This shouldn't happen. */
13626 printf (" %3d ??? %d %lx",
13627 option->kind, option->section, option->info);
13628 break;
13629 }
13630
13631 len = sizeof (* eopt);
13632 while (len < option->size)
13633 if (((char *) option)[len] >= ' '
13634 && ((char *) option)[len] < 0x7f)
13635 printf ("%c", ((char *) option)[len++]);
13636 else
13637 printf ("\\%03o", ((char *) option)[len++]);
13638
13639 fputs ("\n", stdout);
13640 ++option;
13641 }
13642
13643 free (eopt);
13644 }
13645 }
13646
13647 if (conflicts_offset != 0 && conflictsno != 0)
13648 {
13649 Elf32_Conflict * iconf;
13650 size_t cnt;
13651
13652 if (dynamic_symbols == NULL)
13653 {
13654 error (_("conflict list found without a dynamic symbol table\n"));
13655 return 0;
13656 }
13657
13658 iconf = (Elf32_Conflict *) cmalloc (conflictsno, sizeof (* iconf));
13659 if (iconf == NULL)
13660 {
13661 error (_("Out of memory allocating space for dynamic conflicts\n"));
13662 return 0;
13663 }
13664
13665 if (is_32bit_elf)
13666 {
13667 Elf32_External_Conflict * econf32;
13668
13669 econf32 = (Elf32_External_Conflict *)
13670 get_data (NULL, file, conflicts_offset, conflictsno,
13671 sizeof (* econf32), _("conflict"));
13672 if (!econf32)
13673 return 0;
13674
13675 for (cnt = 0; cnt < conflictsno; ++cnt)
13676 iconf[cnt] = BYTE_GET (econf32[cnt]);
13677
13678 free (econf32);
13679 }
13680 else
13681 {
13682 Elf64_External_Conflict * econf64;
13683
13684 econf64 = (Elf64_External_Conflict *)
13685 get_data (NULL, file, conflicts_offset, conflictsno,
13686 sizeof (* econf64), _("conflict"));
13687 if (!econf64)
13688 return 0;
13689
13690 for (cnt = 0; cnt < conflictsno; ++cnt)
13691 iconf[cnt] = BYTE_GET (econf64[cnt]);
13692
13693 free (econf64);
13694 }
13695
13696 printf (_("\nSection '.conflict' contains %lu entries:\n"),
13697 (unsigned long) conflictsno);
13698 puts (_(" Num: Index Value Name"));
13699
13700 for (cnt = 0; cnt < conflictsno; ++cnt)
13701 {
13702 printf ("%5lu: %8lu ", (unsigned long) cnt, iconf[cnt]);
13703
13704 if (iconf[cnt] >= num_dynamic_syms)
13705 printf (_("<corrupt symbol index>"));
13706 else
13707 {
13708 Elf_Internal_Sym * psym;
13709
13710 psym = & dynamic_symbols[iconf[cnt]];
13711 print_vma (psym->st_value, FULL_HEX);
13712 putchar (' ');
13713 if (VALID_DYNAMIC_NAME (psym->st_name))
13714 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
13715 else
13716 printf (_("<corrupt: %14ld>"), psym->st_name);
13717 }
13718 putchar ('\n');
13719 }
13720
13721 free (iconf);
13722 }
13723
13724 if (pltgot != 0 && local_gotno != 0)
13725 {
13726 bfd_vma ent, local_end, global_end;
13727 size_t i, offset;
13728 unsigned char * data;
13729 int addr_size;
13730
13731 ent = pltgot;
13732 addr_size = (is_32bit_elf ? 4 : 8);
13733 local_end = pltgot + local_gotno * addr_size;
13734
13735 /* PR binutils/17533 file: 012-111227-0.004 */
13736 if (symtabno < gotsym)
13737 {
13738 error (_("The GOT symbol offset (%lu) is greater than the symbol table size (%lu)\n"),
13739 (long) gotsym, (long) symtabno);
13740 return 0;
13741 }
13742
13743 global_end = local_end + (symtabno - gotsym) * addr_size;
13744 assert (global_end >= local_end);
13745 offset = offset_from_vma (file, pltgot, global_end - pltgot);
13746 data = (unsigned char *) get_data (NULL, file, offset,
13747 global_end - pltgot, 1,
13748 _("Global Offset Table data"));
13749 if (data == NULL)
13750 return 0;
13751
13752 printf (_("\nPrimary GOT:\n"));
13753 printf (_(" Canonical gp value: "));
13754 print_vma (pltgot + 0x7ff0, LONG_HEX);
13755 printf ("\n\n");
13756
13757 printf (_(" Reserved entries:\n"));
13758 printf (_(" %*s %10s %*s Purpose\n"),
13759 addr_size * 2, _("Address"), _("Access"),
13760 addr_size * 2, _("Initial"));
13761 ent = print_mips_got_entry (data, pltgot, ent);
13762 printf (_(" Lazy resolver\n"));
13763 if (data
13764 && (byte_get (data + ent - pltgot, addr_size)
13765 >> (addr_size * 8 - 1)) != 0)
13766 {
13767 ent = print_mips_got_entry (data, pltgot, ent);
13768 printf (_(" Module pointer (GNU extension)\n"));
13769 }
13770 printf ("\n");
13771
13772 if (ent < local_end)
13773 {
13774 printf (_(" Local entries:\n"));
13775 printf (" %*s %10s %*s\n",
13776 addr_size * 2, _("Address"), _("Access"),
13777 addr_size * 2, _("Initial"));
13778 while (ent < local_end)
13779 {
13780 ent = print_mips_got_entry (data, pltgot, ent);
13781 printf ("\n");
13782 }
13783 printf ("\n");
13784 }
13785
13786 if (gotsym < symtabno)
13787 {
13788 int sym_width;
13789
13790 printf (_(" Global entries:\n"));
13791 printf (" %*s %10s %*s %*s %-7s %3s %s\n",
13792 addr_size * 2, _("Address"),
13793 _("Access"),
13794 addr_size * 2, _("Initial"),
13795 addr_size * 2, _("Sym.Val."),
13796 _("Type"),
13797 /* Note for translators: "Ndx" = abbreviated form of "Index". */
13798 _("Ndx"), _("Name"));
13799
13800 sym_width = (is_32bit_elf ? 80 : 160) - 28 - addr_size * 6 - 1;
13801
13802 for (i = gotsym; i < symtabno; i++)
13803 {
13804 ent = print_mips_got_entry (data, pltgot, ent);
13805 printf (" ");
13806
13807 if (dynamic_symbols == NULL)
13808 printf (_("<no dynamic symbols>"));
13809 else if (i < num_dynamic_syms)
13810 {
13811 Elf_Internal_Sym * psym = dynamic_symbols + i;
13812
13813 print_vma (psym->st_value, LONG_HEX);
13814 printf (" %-7s %3s ",
13815 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
13816 get_symbol_index_type (psym->st_shndx));
13817
13818 if (VALID_DYNAMIC_NAME (psym->st_name))
13819 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
13820 else
13821 printf (_("<corrupt: %14ld>"), psym->st_name);
13822 }
13823 else
13824 printf (_("<symbol index %lu exceeds number of dynamic symbols>"),
13825 (unsigned long) i);
13826
13827 printf ("\n");
13828 }
13829 printf ("\n");
13830 }
13831
13832 if (data)
13833 free (data);
13834 }
13835
13836 if (mips_pltgot != 0 && jmprel != 0 && pltrel != 0 && pltrelsz != 0)
13837 {
13838 bfd_vma ent, end;
13839 size_t offset, rel_offset;
13840 unsigned long count, i;
13841 unsigned char * data;
13842 int addr_size, sym_width;
13843 Elf_Internal_Rela * rels;
13844
13845 rel_offset = offset_from_vma (file, jmprel, pltrelsz);
13846 if (pltrel == DT_RELA)
13847 {
13848 if (!slurp_rela_relocs (file, rel_offset, pltrelsz, &rels, &count))
13849 return 0;
13850 }
13851 else
13852 {
13853 if (!slurp_rel_relocs (file, rel_offset, pltrelsz, &rels, &count))
13854 return 0;
13855 }
13856
13857 ent = mips_pltgot;
13858 addr_size = (is_32bit_elf ? 4 : 8);
13859 end = mips_pltgot + (2 + count) * addr_size;
13860
13861 offset = offset_from_vma (file, mips_pltgot, end - mips_pltgot);
13862 data = (unsigned char *) get_data (NULL, file, offset, end - mips_pltgot,
13863 1, _("Procedure Linkage Table data"));
13864 if (data == NULL)
13865 return 0;
13866
13867 printf ("\nPLT GOT:\n\n");
13868 printf (_(" Reserved entries:\n"));
13869 printf (_(" %*s %*s Purpose\n"),
13870 addr_size * 2, _("Address"), addr_size * 2, _("Initial"));
13871 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
13872 printf (_(" PLT lazy resolver\n"));
13873 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
13874 printf (_(" Module pointer\n"));
13875 printf ("\n");
13876
13877 printf (_(" Entries:\n"));
13878 printf (" %*s %*s %*s %-7s %3s %s\n",
13879 addr_size * 2, _("Address"),
13880 addr_size * 2, _("Initial"),
13881 addr_size * 2, _("Sym.Val."), _("Type"), _("Ndx"), _("Name"));
13882 sym_width = (is_32bit_elf ? 80 : 160) - 17 - addr_size * 6 - 1;
13883 for (i = 0; i < count; i++)
13884 {
13885 unsigned long idx = get_reloc_symindex (rels[i].r_info);
13886
13887 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
13888 printf (" ");
13889
13890 if (idx >= num_dynamic_syms)
13891 printf (_("<corrupt symbol index: %lu>"), idx);
13892 else
13893 {
13894 Elf_Internal_Sym * psym = dynamic_symbols + idx;
13895
13896 print_vma (psym->st_value, LONG_HEX);
13897 printf (" %-7s %3s ",
13898 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
13899 get_symbol_index_type (psym->st_shndx));
13900 if (VALID_DYNAMIC_NAME (psym->st_name))
13901 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
13902 else
13903 printf (_("<corrupt: %14ld>"), psym->st_name);
13904 }
13905 printf ("\n");
13906 }
13907 printf ("\n");
13908
13909 if (data)
13910 free (data);
13911 free (rels);
13912 }
13913
13914 return 1;
13915 }
13916
13917 static int
13918 process_nds32_specific (FILE * file)
13919 {
13920 Elf_Internal_Shdr *sect = NULL;
13921
13922 sect = find_section (".nds32_e_flags");
13923 if (sect != NULL)
13924 {
13925 unsigned int *flag;
13926
13927 printf ("\nNDS32 elf flags section:\n");
13928 flag = get_data (NULL, file, sect->sh_offset, 1,
13929 sect->sh_size, _("NDS32 elf flags section"));
13930
13931 switch ((*flag) & 0x3)
13932 {
13933 case 0:
13934 printf ("(VEC_SIZE):\tNo entry.\n");
13935 break;
13936 case 1:
13937 printf ("(VEC_SIZE):\t4 bytes\n");
13938 break;
13939 case 2:
13940 printf ("(VEC_SIZE):\t16 bytes\n");
13941 break;
13942 case 3:
13943 printf ("(VEC_SIZE):\treserved\n");
13944 break;
13945 }
13946 }
13947
13948 return TRUE;
13949 }
13950
13951 static int
13952 process_gnu_liblist (FILE * file)
13953 {
13954 Elf_Internal_Shdr * section;
13955 Elf_Internal_Shdr * string_sec;
13956 Elf32_External_Lib * elib;
13957 char * strtab;
13958 size_t strtab_size;
13959 size_t cnt;
13960 unsigned i;
13961
13962 if (! do_arch)
13963 return 0;
13964
13965 for (i = 0, section = section_headers;
13966 i < elf_header.e_shnum;
13967 i++, section++)
13968 {
13969 switch (section->sh_type)
13970 {
13971 case SHT_GNU_LIBLIST:
13972 if (section->sh_link >= elf_header.e_shnum)
13973 break;
13974
13975 elib = (Elf32_External_Lib *)
13976 get_data (NULL, file, section->sh_offset, 1, section->sh_size,
13977 _("liblist section data"));
13978
13979 if (elib == NULL)
13980 break;
13981 string_sec = section_headers + section->sh_link;
13982
13983 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
13984 string_sec->sh_size,
13985 _("liblist string table"));
13986 if (strtab == NULL
13987 || section->sh_entsize != sizeof (Elf32_External_Lib))
13988 {
13989 free (elib);
13990 free (strtab);
13991 break;
13992 }
13993 strtab_size = string_sec->sh_size;
13994
13995 printf (_("\nLibrary list section '%s' contains %lu entries:\n"),
13996 printable_section_name (section),
13997 (unsigned long) (section->sh_size / sizeof (Elf32_External_Lib)));
13998
13999 puts (_(" Library Time Stamp Checksum Version Flags"));
14000
14001 for (cnt = 0; cnt < section->sh_size / sizeof (Elf32_External_Lib);
14002 ++cnt)
14003 {
14004 Elf32_Lib liblist;
14005 time_t atime;
14006 char timebuf[20];
14007 struct tm * tmp;
14008
14009 liblist.l_name = BYTE_GET (elib[cnt].l_name);
14010 atime = BYTE_GET (elib[cnt].l_time_stamp);
14011 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
14012 liblist.l_version = BYTE_GET (elib[cnt].l_version);
14013 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
14014
14015 tmp = gmtime (&atime);
14016 snprintf (timebuf, sizeof (timebuf),
14017 "%04u-%02u-%02uT%02u:%02u:%02u",
14018 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
14019 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
14020
14021 printf ("%3lu: ", (unsigned long) cnt);
14022 if (do_wide)
14023 printf ("%-20s", liblist.l_name < strtab_size
14024 ? strtab + liblist.l_name : _("<corrupt>"));
14025 else
14026 printf ("%-20.20s", liblist.l_name < strtab_size
14027 ? strtab + liblist.l_name : _("<corrupt>"));
14028 printf (" %s %#010lx %-7ld %-7ld\n", timebuf, liblist.l_checksum,
14029 liblist.l_version, liblist.l_flags);
14030 }
14031
14032 free (elib);
14033 free (strtab);
14034 }
14035 }
14036
14037 return 1;
14038 }
14039
14040 static const char *
14041 get_note_type (unsigned e_type)
14042 {
14043 static char buff[64];
14044
14045 if (elf_header.e_type == ET_CORE)
14046 switch (e_type)
14047 {
14048 case NT_AUXV:
14049 return _("NT_AUXV (auxiliary vector)");
14050 case NT_PRSTATUS:
14051 return _("NT_PRSTATUS (prstatus structure)");
14052 case NT_FPREGSET:
14053 return _("NT_FPREGSET (floating point registers)");
14054 case NT_PRPSINFO:
14055 return _("NT_PRPSINFO (prpsinfo structure)");
14056 case NT_TASKSTRUCT:
14057 return _("NT_TASKSTRUCT (task structure)");
14058 case NT_PRXFPREG:
14059 return _("NT_PRXFPREG (user_xfpregs structure)");
14060 case NT_PPC_VMX:
14061 return _("NT_PPC_VMX (ppc Altivec registers)");
14062 case NT_PPC_VSX:
14063 return _("NT_PPC_VSX (ppc VSX registers)");
14064 case NT_386_TLS:
14065 return _("NT_386_TLS (x86 TLS information)");
14066 case NT_386_IOPERM:
14067 return _("NT_386_IOPERM (x86 I/O permissions)");
14068 case NT_X86_XSTATE:
14069 return _("NT_X86_XSTATE (x86 XSAVE extended state)");
14070 case NT_S390_HIGH_GPRS:
14071 return _("NT_S390_HIGH_GPRS (s390 upper register halves)");
14072 case NT_S390_TIMER:
14073 return _("NT_S390_TIMER (s390 timer register)");
14074 case NT_S390_TODCMP:
14075 return _("NT_S390_TODCMP (s390 TOD comparator register)");
14076 case NT_S390_TODPREG:
14077 return _("NT_S390_TODPREG (s390 TOD programmable register)");
14078 case NT_S390_CTRS:
14079 return _("NT_S390_CTRS (s390 control registers)");
14080 case NT_S390_PREFIX:
14081 return _("NT_S390_PREFIX (s390 prefix register)");
14082 case NT_S390_LAST_BREAK:
14083 return _("NT_S390_LAST_BREAK (s390 last breaking event address)");
14084 case NT_S390_SYSTEM_CALL:
14085 return _("NT_S390_SYSTEM_CALL (s390 system call restart data)");
14086 case NT_S390_TDB:
14087 return _("NT_S390_TDB (s390 transaction diagnostic block)");
14088 case NT_ARM_VFP:
14089 return _("NT_ARM_VFP (arm VFP registers)");
14090 case NT_ARM_TLS:
14091 return _("NT_ARM_TLS (AArch TLS registers)");
14092 case NT_ARM_HW_BREAK:
14093 return _("NT_ARM_HW_BREAK (AArch hardware breakpoint registers)");
14094 case NT_ARM_HW_WATCH:
14095 return _("NT_ARM_HW_WATCH (AArch hardware watchpoint registers)");
14096 case NT_PSTATUS:
14097 return _("NT_PSTATUS (pstatus structure)");
14098 case NT_FPREGS:
14099 return _("NT_FPREGS (floating point registers)");
14100 case NT_PSINFO:
14101 return _("NT_PSINFO (psinfo structure)");
14102 case NT_LWPSTATUS:
14103 return _("NT_LWPSTATUS (lwpstatus_t structure)");
14104 case NT_LWPSINFO:
14105 return _("NT_LWPSINFO (lwpsinfo_t structure)");
14106 case NT_WIN32PSTATUS:
14107 return _("NT_WIN32PSTATUS (win32_pstatus structure)");
14108 case NT_SIGINFO:
14109 return _("NT_SIGINFO (siginfo_t data)");
14110 case NT_FILE:
14111 return _("NT_FILE (mapped files)");
14112 default:
14113 break;
14114 }
14115 else
14116 switch (e_type)
14117 {
14118 case NT_VERSION:
14119 return _("NT_VERSION (version)");
14120 case NT_ARCH:
14121 return _("NT_ARCH (architecture)");
14122 default:
14123 break;
14124 }
14125
14126 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
14127 return buff;
14128 }
14129
14130 static int
14131 print_core_note (Elf_Internal_Note *pnote)
14132 {
14133 unsigned int addr_size = is_32bit_elf ? 4 : 8;
14134 bfd_vma count, page_size;
14135 unsigned char *descdata, *filenames, *descend;
14136
14137 if (pnote->type != NT_FILE)
14138 return 1;
14139
14140 #ifndef BFD64
14141 if (!is_32bit_elf)
14142 {
14143 printf (_(" Cannot decode 64-bit note in 32-bit build\n"));
14144 /* Still "successful". */
14145 return 1;
14146 }
14147 #endif
14148
14149 if (pnote->descsz < 2 * addr_size)
14150 {
14151 printf (_(" Malformed note - too short for header\n"));
14152 return 0;
14153 }
14154
14155 descdata = (unsigned char *) pnote->descdata;
14156 descend = descdata + pnote->descsz;
14157
14158 if (descdata[pnote->descsz - 1] != '\0')
14159 {
14160 printf (_(" Malformed note - does not end with \\0\n"));
14161 return 0;
14162 }
14163
14164 count = byte_get (descdata, addr_size);
14165 descdata += addr_size;
14166
14167 page_size = byte_get (descdata, addr_size);
14168 descdata += addr_size;
14169
14170 if (pnote->descsz < 2 * addr_size + count * 3 * addr_size)
14171 {
14172 printf (_(" Malformed note - too short for supplied file count\n"));
14173 return 0;
14174 }
14175
14176 printf (_(" Page size: "));
14177 print_vma (page_size, DEC);
14178 printf ("\n");
14179
14180 printf (_(" %*s%*s%*s\n"),
14181 (int) (2 + 2 * addr_size), _("Start"),
14182 (int) (4 + 2 * addr_size), _("End"),
14183 (int) (4 + 2 * addr_size), _("Page Offset"));
14184 filenames = descdata + count * 3 * addr_size;
14185 while (--count > 0)
14186 {
14187 bfd_vma start, end, file_ofs;
14188
14189 if (filenames == descend)
14190 {
14191 printf (_(" Malformed note - filenames end too early\n"));
14192 return 0;
14193 }
14194
14195 start = byte_get (descdata, addr_size);
14196 descdata += addr_size;
14197 end = byte_get (descdata, addr_size);
14198 descdata += addr_size;
14199 file_ofs = byte_get (descdata, addr_size);
14200 descdata += addr_size;
14201
14202 printf (" ");
14203 print_vma (start, FULL_HEX);
14204 printf (" ");
14205 print_vma (end, FULL_HEX);
14206 printf (" ");
14207 print_vma (file_ofs, FULL_HEX);
14208 printf ("\n %s\n", filenames);
14209
14210 filenames += 1 + strlen ((char *) filenames);
14211 }
14212
14213 return 1;
14214 }
14215
14216 static const char *
14217 get_gnu_elf_note_type (unsigned e_type)
14218 {
14219 static char buff[64];
14220
14221 switch (e_type)
14222 {
14223 case NT_GNU_ABI_TAG:
14224 return _("NT_GNU_ABI_TAG (ABI version tag)");
14225 case NT_GNU_HWCAP:
14226 return _("NT_GNU_HWCAP (DSO-supplied software HWCAP info)");
14227 case NT_GNU_BUILD_ID:
14228 return _("NT_GNU_BUILD_ID (unique build ID bitstring)");
14229 case NT_GNU_GOLD_VERSION:
14230 return _("NT_GNU_GOLD_VERSION (gold version)");
14231 default:
14232 break;
14233 }
14234
14235 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
14236 return buff;
14237 }
14238
14239 static int
14240 print_gnu_note (Elf_Internal_Note *pnote)
14241 {
14242 switch (pnote->type)
14243 {
14244 case NT_GNU_BUILD_ID:
14245 {
14246 unsigned long i;
14247
14248 printf (_(" Build ID: "));
14249 for (i = 0; i < pnote->descsz; ++i)
14250 printf ("%02x", pnote->descdata[i] & 0xff);
14251 printf ("\n");
14252 }
14253 break;
14254
14255 case NT_GNU_ABI_TAG:
14256 {
14257 unsigned long os, major, minor, subminor;
14258 const char *osname;
14259
14260 /* PR 17531: file: 030-599401-0.004. */
14261 if (pnote->descsz < 16)
14262 {
14263 printf (_(" <corrupt GNU_ABI_TAG>\n"));
14264 break;
14265 }
14266
14267 os = byte_get ((unsigned char *) pnote->descdata, 4);
14268 major = byte_get ((unsigned char *) pnote->descdata + 4, 4);
14269 minor = byte_get ((unsigned char *) pnote->descdata + 8, 4);
14270 subminor = byte_get ((unsigned char *) pnote->descdata + 12, 4);
14271
14272 switch (os)
14273 {
14274 case GNU_ABI_TAG_LINUX:
14275 osname = "Linux";
14276 break;
14277 case GNU_ABI_TAG_HURD:
14278 osname = "Hurd";
14279 break;
14280 case GNU_ABI_TAG_SOLARIS:
14281 osname = "Solaris";
14282 break;
14283 case GNU_ABI_TAG_FREEBSD:
14284 osname = "FreeBSD";
14285 break;
14286 case GNU_ABI_TAG_NETBSD:
14287 osname = "NetBSD";
14288 break;
14289 default:
14290 osname = "Unknown";
14291 break;
14292 }
14293
14294 printf (_(" OS: %s, ABI: %ld.%ld.%ld\n"), osname,
14295 major, minor, subminor);
14296 }
14297 break;
14298
14299 case NT_GNU_GOLD_VERSION:
14300 {
14301 unsigned long i;
14302
14303 printf (_(" Version: "));
14304 for (i = 0; i < pnote->descsz && pnote->descdata[i] != '\0'; ++i)
14305 printf ("%c", pnote->descdata[i]);
14306 printf ("\n");
14307 }
14308 break;
14309 }
14310
14311 return 1;
14312 }
14313
14314 static const char *
14315 get_netbsd_elfcore_note_type (unsigned e_type)
14316 {
14317 static char buff[64];
14318
14319 if (e_type == NT_NETBSDCORE_PROCINFO)
14320 {
14321 /* NetBSD core "procinfo" structure. */
14322 return _("NetBSD procinfo structure");
14323 }
14324
14325 /* As of Jan 2002 there are no other machine-independent notes
14326 defined for NetBSD core files. If the note type is less
14327 than the start of the machine-dependent note types, we don't
14328 understand it. */
14329
14330 if (e_type < NT_NETBSDCORE_FIRSTMACH)
14331 {
14332 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
14333 return buff;
14334 }
14335
14336 switch (elf_header.e_machine)
14337 {
14338 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0
14339 and PT_GETFPREGS == mach+2. */
14340
14341 case EM_OLD_ALPHA:
14342 case EM_ALPHA:
14343 case EM_SPARC:
14344 case EM_SPARC32PLUS:
14345 case EM_SPARCV9:
14346 switch (e_type)
14347 {
14348 case NT_NETBSDCORE_FIRSTMACH + 0:
14349 return _("PT_GETREGS (reg structure)");
14350 case NT_NETBSDCORE_FIRSTMACH + 2:
14351 return _("PT_GETFPREGS (fpreg structure)");
14352 default:
14353 break;
14354 }
14355 break;
14356
14357 /* On all other arch's, PT_GETREGS == mach+1 and
14358 PT_GETFPREGS == mach+3. */
14359 default:
14360 switch (e_type)
14361 {
14362 case NT_NETBSDCORE_FIRSTMACH + 1:
14363 return _("PT_GETREGS (reg structure)");
14364 case NT_NETBSDCORE_FIRSTMACH + 3:
14365 return _("PT_GETFPREGS (fpreg structure)");
14366 default:
14367 break;
14368 }
14369 }
14370
14371 snprintf (buff, sizeof (buff), "PT_FIRSTMACH+%d",
14372 e_type - NT_NETBSDCORE_FIRSTMACH);
14373 return buff;
14374 }
14375
14376 static const char *
14377 get_stapsdt_note_type (unsigned e_type)
14378 {
14379 static char buff[64];
14380
14381 switch (e_type)
14382 {
14383 case NT_STAPSDT:
14384 return _("NT_STAPSDT (SystemTap probe descriptors)");
14385
14386 default:
14387 break;
14388 }
14389
14390 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
14391 return buff;
14392 }
14393
14394 static int
14395 print_stapsdt_note (Elf_Internal_Note *pnote)
14396 {
14397 int addr_size = is_32bit_elf ? 4 : 8;
14398 char *data = pnote->descdata;
14399 char *data_end = pnote->descdata + pnote->descsz;
14400 bfd_vma pc, base_addr, semaphore;
14401 char *provider, *probe, *arg_fmt;
14402
14403 pc = byte_get ((unsigned char *) data, addr_size);
14404 data += addr_size;
14405 base_addr = byte_get ((unsigned char *) data, addr_size);
14406 data += addr_size;
14407 semaphore = byte_get ((unsigned char *) data, addr_size);
14408 data += addr_size;
14409
14410 provider = data;
14411 data += strlen (data) + 1;
14412 probe = data;
14413 data += strlen (data) + 1;
14414 arg_fmt = data;
14415 data += strlen (data) + 1;
14416
14417 printf (_(" Provider: %s\n"), provider);
14418 printf (_(" Name: %s\n"), probe);
14419 printf (_(" Location: "));
14420 print_vma (pc, FULL_HEX);
14421 printf (_(", Base: "));
14422 print_vma (base_addr, FULL_HEX);
14423 printf (_(", Semaphore: "));
14424 print_vma (semaphore, FULL_HEX);
14425 printf ("\n");
14426 printf (_(" Arguments: %s\n"), arg_fmt);
14427
14428 return data == data_end;
14429 }
14430
14431 static const char *
14432 get_ia64_vms_note_type (unsigned e_type)
14433 {
14434 static char buff[64];
14435
14436 switch (e_type)
14437 {
14438 case NT_VMS_MHD:
14439 return _("NT_VMS_MHD (module header)");
14440 case NT_VMS_LNM:
14441 return _("NT_VMS_LNM (language name)");
14442 case NT_VMS_SRC:
14443 return _("NT_VMS_SRC (source files)");
14444 case NT_VMS_TITLE:
14445 return "NT_VMS_TITLE";
14446 case NT_VMS_EIDC:
14447 return _("NT_VMS_EIDC (consistency check)");
14448 case NT_VMS_FPMODE:
14449 return _("NT_VMS_FPMODE (FP mode)");
14450 case NT_VMS_LINKTIME:
14451 return "NT_VMS_LINKTIME";
14452 case NT_VMS_IMGNAM:
14453 return _("NT_VMS_IMGNAM (image name)");
14454 case NT_VMS_IMGID:
14455 return _("NT_VMS_IMGID (image id)");
14456 case NT_VMS_LINKID:
14457 return _("NT_VMS_LINKID (link id)");
14458 case NT_VMS_IMGBID:
14459 return _("NT_VMS_IMGBID (build id)");
14460 case NT_VMS_GSTNAM:
14461 return _("NT_VMS_GSTNAM (sym table name)");
14462 case NT_VMS_ORIG_DYN:
14463 return "NT_VMS_ORIG_DYN";
14464 case NT_VMS_PATCHTIME:
14465 return "NT_VMS_PATCHTIME";
14466 default:
14467 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
14468 return buff;
14469 }
14470 }
14471
14472 static int
14473 print_ia64_vms_note (Elf_Internal_Note * pnote)
14474 {
14475 switch (pnote->type)
14476 {
14477 case NT_VMS_MHD:
14478 if (pnote->descsz > 36)
14479 {
14480 size_t l = strlen (pnote->descdata + 34);
14481 printf (_(" Creation date : %.17s\n"), pnote->descdata);
14482 printf (_(" Last patch date: %.17s\n"), pnote->descdata + 17);
14483 printf (_(" Module name : %s\n"), pnote->descdata + 34);
14484 printf (_(" Module version : %s\n"), pnote->descdata + 34 + l + 1);
14485 }
14486 else
14487 printf (_(" Invalid size\n"));
14488 break;
14489 case NT_VMS_LNM:
14490 printf (_(" Language: %s\n"), pnote->descdata);
14491 break;
14492 #ifdef BFD64
14493 case NT_VMS_FPMODE:
14494 printf (_(" Floating Point mode: "));
14495 printf ("0x%016" BFD_VMA_FMT "x\n",
14496 (bfd_vma)byte_get ((unsigned char *)pnote->descdata, 8));
14497 break;
14498 case NT_VMS_LINKTIME:
14499 printf (_(" Link time: "));
14500 print_vms_time
14501 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
14502 printf ("\n");
14503 break;
14504 case NT_VMS_PATCHTIME:
14505 printf (_(" Patch time: "));
14506 print_vms_time
14507 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
14508 printf ("\n");
14509 break;
14510 case NT_VMS_ORIG_DYN:
14511 printf (_(" Major id: %u, minor id: %u\n"),
14512 (unsigned) byte_get ((unsigned char *)pnote->descdata, 4),
14513 (unsigned) byte_get ((unsigned char *)pnote->descdata + 4, 4));
14514 printf (_(" Last modified : "));
14515 print_vms_time
14516 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata + 8, 8));
14517 printf (_("\n Link flags : "));
14518 printf ("0x%016" BFD_VMA_FMT "x\n",
14519 (bfd_vma)byte_get ((unsigned char *)pnote->descdata + 16, 8));
14520 printf (_(" Header flags: 0x%08x\n"),
14521 (unsigned)byte_get ((unsigned char *)pnote->descdata + 24, 4));
14522 printf (_(" Image id : %s\n"), pnote->descdata + 32);
14523 break;
14524 #endif
14525 case NT_VMS_IMGNAM:
14526 printf (_(" Image name: %s\n"), pnote->descdata);
14527 break;
14528 case NT_VMS_GSTNAM:
14529 printf (_(" Global symbol table name: %s\n"), pnote->descdata);
14530 break;
14531 case NT_VMS_IMGID:
14532 printf (_(" Image id: %s\n"), pnote->descdata);
14533 break;
14534 case NT_VMS_LINKID:
14535 printf (_(" Linker id: %s\n"), pnote->descdata);
14536 break;
14537 default:
14538 break;
14539 }
14540 return 1;
14541 }
14542
14543 /* Note that by the ELF standard, the name field is already null byte
14544 terminated, and namesz includes the terminating null byte.
14545 I.E. the value of namesz for the name "FSF" is 4.
14546
14547 If the value of namesz is zero, there is no name present. */
14548 static int
14549 process_note (Elf_Internal_Note * pnote)
14550 {
14551 const char * name = pnote->namesz ? pnote->namedata : "(NONE)";
14552 const char * nt;
14553
14554 if (pnote->namesz == 0)
14555 /* If there is no note name, then use the default set of
14556 note type strings. */
14557 nt = get_note_type (pnote->type);
14558
14559 else if (const_strneq (pnote->namedata, "GNU"))
14560 /* GNU-specific object file notes. */
14561 nt = get_gnu_elf_note_type (pnote->type);
14562
14563 else if (const_strneq (pnote->namedata, "NetBSD-CORE"))
14564 /* NetBSD-specific core file notes. */
14565 nt = get_netbsd_elfcore_note_type (pnote->type);
14566
14567 else if (strneq (pnote->namedata, "SPU/", 4))
14568 {
14569 /* SPU-specific core file notes. */
14570 nt = pnote->namedata + 4;
14571 name = "SPU";
14572 }
14573
14574 else if (const_strneq (pnote->namedata, "IPF/VMS"))
14575 /* VMS/ia64-specific file notes. */
14576 nt = get_ia64_vms_note_type (pnote->type);
14577
14578 else if (const_strneq (pnote->namedata, "stapsdt"))
14579 nt = get_stapsdt_note_type (pnote->type);
14580
14581 else
14582 /* Don't recognize this note name; just use the default set of
14583 note type strings. */
14584 nt = get_note_type (pnote->type);
14585
14586 printf (" %-20s 0x%08lx\t%s\n", name, pnote->descsz, nt);
14587
14588 if (const_strneq (pnote->namedata, "IPF/VMS"))
14589 return print_ia64_vms_note (pnote);
14590 else if (const_strneq (pnote->namedata, "GNU"))
14591 return print_gnu_note (pnote);
14592 else if (const_strneq (pnote->namedata, "stapsdt"))
14593 return print_stapsdt_note (pnote);
14594 else if (const_strneq (pnote->namedata, "CORE"))
14595 return print_core_note (pnote);
14596 else
14597 return 1;
14598 }
14599
14600
14601 static int
14602 process_corefile_note_segment (FILE * file, bfd_vma offset, bfd_vma length)
14603 {
14604 Elf_External_Note * pnotes;
14605 Elf_External_Note * external;
14606 int res = 1;
14607
14608 if (length <= 0)
14609 return 0;
14610
14611 pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
14612 _("notes"));
14613 if (pnotes == NULL)
14614 return 0;
14615
14616 external = pnotes;
14617
14618 printf (_("\nDisplaying notes found at file offset 0x%08lx with length 0x%08lx:\n"),
14619 (unsigned long) offset, (unsigned long) length);
14620 printf (_(" %-20s %10s\tDescription\n"), _("Owner"), _("Data size"));
14621
14622 while ((char *) external < (char *) pnotes + length)
14623 {
14624 Elf_Internal_Note inote;
14625 size_t min_notesz;
14626 char *next;
14627 char * temp = NULL;
14628 size_t data_remaining = ((char *) pnotes + length) - (char *) external;
14629
14630 if (!is_ia64_vms ())
14631 {
14632 /* PR binutils/15191
14633 Make sure that there is enough data to read. */
14634 min_notesz = offsetof (Elf_External_Note, name);
14635 if (data_remaining < min_notesz)
14636 {
14637 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
14638 (int) data_remaining);
14639 break;
14640 }
14641 inote.type = BYTE_GET (external->type);
14642 inote.namesz = BYTE_GET (external->namesz);
14643 inote.namedata = external->name;
14644 inote.descsz = BYTE_GET (external->descsz);
14645 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
14646 inote.descpos = offset + (inote.descdata - (char *) pnotes);
14647 next = inote.descdata + align_power (inote.descsz, 2);
14648 }
14649 else
14650 {
14651 Elf64_External_VMS_Note *vms_external;
14652
14653 /* PR binutils/15191
14654 Make sure that there is enough data to read. */
14655 min_notesz = offsetof (Elf64_External_VMS_Note, name);
14656 if (data_remaining < min_notesz)
14657 {
14658 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
14659 (int) data_remaining);
14660 break;
14661 }
14662
14663 vms_external = (Elf64_External_VMS_Note *) external;
14664 inote.type = BYTE_GET (vms_external->type);
14665 inote.namesz = BYTE_GET (vms_external->namesz);
14666 inote.namedata = vms_external->name;
14667 inote.descsz = BYTE_GET (vms_external->descsz);
14668 inote.descdata = inote.namedata + align_power (inote.namesz, 3);
14669 inote.descpos = offset + (inote.descdata - (char *) pnotes);
14670 next = inote.descdata + align_power (inote.descsz, 3);
14671 }
14672
14673 if (inote.descdata < (char *) external + min_notesz
14674 || next < (char *) external + min_notesz
14675 || data_remaining < (size_t)(next - (char *) external))
14676 {
14677 warn (_("note with invalid namesz and/or descsz found at offset 0x%lx\n"),
14678 (unsigned long) ((char *) external - (char *) pnotes));
14679 warn (_(" type: 0x%lx, namesize: 0x%08lx, descsize: 0x%08lx\n"),
14680 inote.type, inote.namesz, inote.descsz);
14681 break;
14682 }
14683
14684 external = (Elf_External_Note *) next;
14685
14686 /* Verify that name is null terminated. It appears that at least
14687 one version of Linux (RedHat 6.0) generates corefiles that don't
14688 comply with the ELF spec by failing to include the null byte in
14689 namesz. */
14690 if (inote.namedata[inote.namesz - 1] != '\0')
14691 {
14692 temp = (char *) malloc (inote.namesz + 1);
14693
14694 if (temp == NULL)
14695 {
14696 error (_("Out of memory allocating space for inote name\n"));
14697 res = 0;
14698 break;
14699 }
14700
14701 strncpy (temp, inote.namedata, inote.namesz);
14702 temp[inote.namesz] = 0;
14703
14704 /* warn (_("'%s' NOTE name not properly null terminated\n"), temp); */
14705 inote.namedata = temp;
14706 }
14707
14708 res &= process_note (& inote);
14709
14710 if (temp != NULL)
14711 {
14712 free (temp);
14713 temp = NULL;
14714 }
14715 }
14716
14717 free (pnotes);
14718
14719 return res;
14720 }
14721
14722 static int
14723 process_corefile_note_segments (FILE * file)
14724 {
14725 Elf_Internal_Phdr * segment;
14726 unsigned int i;
14727 int res = 1;
14728
14729 if (! get_program_headers (file))
14730 return 0;
14731
14732 for (i = 0, segment = program_headers;
14733 i < elf_header.e_phnum;
14734 i++, segment++)
14735 {
14736 if (segment->p_type == PT_NOTE)
14737 res &= process_corefile_note_segment (file,
14738 (bfd_vma) segment->p_offset,
14739 (bfd_vma) segment->p_filesz);
14740 }
14741
14742 return res;
14743 }
14744
14745 static int
14746 process_note_sections (FILE * file)
14747 {
14748 Elf_Internal_Shdr * section;
14749 unsigned long i;
14750 int n = 0;
14751 int res = 1;
14752
14753 for (i = 0, section = section_headers;
14754 i < elf_header.e_shnum && section != NULL;
14755 i++, section++)
14756 if (section->sh_type == SHT_NOTE)
14757 {
14758 res &= process_corefile_note_segment (file,
14759 (bfd_vma) section->sh_offset,
14760 (bfd_vma) section->sh_size);
14761 n++;
14762 }
14763
14764 if (n == 0)
14765 /* Try processing NOTE segments instead. */
14766 return process_corefile_note_segments (file);
14767
14768 return res;
14769 }
14770
14771 static int
14772 process_notes (FILE * file)
14773 {
14774 /* If we have not been asked to display the notes then do nothing. */
14775 if (! do_notes)
14776 return 1;
14777
14778 if (elf_header.e_type != ET_CORE)
14779 return process_note_sections (file);
14780
14781 /* No program headers means no NOTE segment. */
14782 if (elf_header.e_phnum > 0)
14783 return process_corefile_note_segments (file);
14784
14785 printf (_("No note segments present in the core file.\n"));
14786 return 1;
14787 }
14788
14789 static int
14790 process_arch_specific (FILE * file)
14791 {
14792 if (! do_arch)
14793 return 1;
14794
14795 switch (elf_header.e_machine)
14796 {
14797 case EM_ARM:
14798 return process_arm_specific (file);
14799 case EM_MIPS:
14800 case EM_MIPS_RS3_LE:
14801 return process_mips_specific (file);
14802 break;
14803 case EM_NDS32:
14804 return process_nds32_specific (file);
14805 break;
14806 case EM_PPC:
14807 return process_power_specific (file);
14808 break;
14809 case EM_SPARC:
14810 case EM_SPARC32PLUS:
14811 case EM_SPARCV9:
14812 return process_sparc_specific (file);
14813 break;
14814 case EM_TI_C6000:
14815 return process_tic6x_specific (file);
14816 break;
14817 case EM_MSP430:
14818 return process_msp430x_specific (file);
14819 default:
14820 break;
14821 }
14822 return 1;
14823 }
14824
14825 static int
14826 get_file_header (FILE * file)
14827 {
14828 /* Read in the identity array. */
14829 if (fread (elf_header.e_ident, EI_NIDENT, 1, file) != 1)
14830 return 0;
14831
14832 /* Determine how to read the rest of the header. */
14833 switch (elf_header.e_ident[EI_DATA])
14834 {
14835 default: /* fall through */
14836 case ELFDATANONE: /* fall through */
14837 case ELFDATA2LSB:
14838 byte_get = byte_get_little_endian;
14839 byte_put = byte_put_little_endian;
14840 break;
14841 case ELFDATA2MSB:
14842 byte_get = byte_get_big_endian;
14843 byte_put = byte_put_big_endian;
14844 break;
14845 }
14846
14847 /* For now we only support 32 bit and 64 bit ELF files. */
14848 is_32bit_elf = (elf_header.e_ident[EI_CLASS] != ELFCLASS64);
14849
14850 /* Read in the rest of the header. */
14851 if (is_32bit_elf)
14852 {
14853 Elf32_External_Ehdr ehdr32;
14854
14855 if (fread (ehdr32.e_type, sizeof (ehdr32) - EI_NIDENT, 1, file) != 1)
14856 return 0;
14857
14858 elf_header.e_type = BYTE_GET (ehdr32.e_type);
14859 elf_header.e_machine = BYTE_GET (ehdr32.e_machine);
14860 elf_header.e_version = BYTE_GET (ehdr32.e_version);
14861 elf_header.e_entry = BYTE_GET (ehdr32.e_entry);
14862 elf_header.e_phoff = BYTE_GET (ehdr32.e_phoff);
14863 elf_header.e_shoff = BYTE_GET (ehdr32.e_shoff);
14864 elf_header.e_flags = BYTE_GET (ehdr32.e_flags);
14865 elf_header.e_ehsize = BYTE_GET (ehdr32.e_ehsize);
14866 elf_header.e_phentsize = BYTE_GET (ehdr32.e_phentsize);
14867 elf_header.e_phnum = BYTE_GET (ehdr32.e_phnum);
14868 elf_header.e_shentsize = BYTE_GET (ehdr32.e_shentsize);
14869 elf_header.e_shnum = BYTE_GET (ehdr32.e_shnum);
14870 elf_header.e_shstrndx = BYTE_GET (ehdr32.e_shstrndx);
14871 }
14872 else
14873 {
14874 Elf64_External_Ehdr ehdr64;
14875
14876 /* If we have been compiled with sizeof (bfd_vma) == 4, then
14877 we will not be able to cope with the 64bit data found in
14878 64 ELF files. Detect this now and abort before we start
14879 overwriting things. */
14880 if (sizeof (bfd_vma) < 8)
14881 {
14882 error (_("This instance of readelf has been built without support for a\n\
14883 64 bit data type and so it cannot read 64 bit ELF files.\n"));
14884 return 0;
14885 }
14886
14887 if (fread (ehdr64.e_type, sizeof (ehdr64) - EI_NIDENT, 1, file) != 1)
14888 return 0;
14889
14890 elf_header.e_type = BYTE_GET (ehdr64.e_type);
14891 elf_header.e_machine = BYTE_GET (ehdr64.e_machine);
14892 elf_header.e_version = BYTE_GET (ehdr64.e_version);
14893 elf_header.e_entry = BYTE_GET (ehdr64.e_entry);
14894 elf_header.e_phoff = BYTE_GET (ehdr64.e_phoff);
14895 elf_header.e_shoff = BYTE_GET (ehdr64.e_shoff);
14896 elf_header.e_flags = BYTE_GET (ehdr64.e_flags);
14897 elf_header.e_ehsize = BYTE_GET (ehdr64.e_ehsize);
14898 elf_header.e_phentsize = BYTE_GET (ehdr64.e_phentsize);
14899 elf_header.e_phnum = BYTE_GET (ehdr64.e_phnum);
14900 elf_header.e_shentsize = BYTE_GET (ehdr64.e_shentsize);
14901 elf_header.e_shnum = BYTE_GET (ehdr64.e_shnum);
14902 elf_header.e_shstrndx = BYTE_GET (ehdr64.e_shstrndx);
14903 }
14904
14905 if (elf_header.e_shoff)
14906 {
14907 /* There may be some extensions in the first section header. Don't
14908 bomb if we can't read it. */
14909 if (is_32bit_elf)
14910 get_32bit_section_headers (file, TRUE);
14911 else
14912 get_64bit_section_headers (file, TRUE);
14913 }
14914
14915 return 1;
14916 }
14917
14918 /* Process one ELF object file according to the command line options.
14919 This file may actually be stored in an archive. The file is
14920 positioned at the start of the ELF object. */
14921
14922 static int
14923 process_object (char * file_name, FILE * file)
14924 {
14925 unsigned int i;
14926
14927 if (! get_file_header (file))
14928 {
14929 error (_("%s: Failed to read file header\n"), file_name);
14930 return 1;
14931 }
14932
14933 /* Initialise per file variables. */
14934 for (i = ARRAY_SIZE (version_info); i--;)
14935 version_info[i] = 0;
14936
14937 for (i = ARRAY_SIZE (dynamic_info); i--;)
14938 dynamic_info[i] = 0;
14939 dynamic_info_DT_GNU_HASH = 0;
14940
14941 /* Process the file. */
14942 if (show_name)
14943 printf (_("\nFile: %s\n"), file_name);
14944
14945 /* Initialise the dump_sects array from the cmdline_dump_sects array.
14946 Note we do this even if cmdline_dump_sects is empty because we
14947 must make sure that the dump_sets array is zeroed out before each
14948 object file is processed. */
14949 if (num_dump_sects > num_cmdline_dump_sects)
14950 memset (dump_sects, 0, num_dump_sects * sizeof (* dump_sects));
14951
14952 if (num_cmdline_dump_sects > 0)
14953 {
14954 if (num_dump_sects == 0)
14955 /* A sneaky way of allocating the dump_sects array. */
14956 request_dump_bynumber (num_cmdline_dump_sects, 0);
14957
14958 assert (num_dump_sects >= num_cmdline_dump_sects);
14959 memcpy (dump_sects, cmdline_dump_sects,
14960 num_cmdline_dump_sects * sizeof (* dump_sects));
14961 }
14962
14963 if (! process_file_header ())
14964 return 1;
14965
14966 if (! process_section_headers (file))
14967 {
14968 /* Without loaded section headers we cannot process lots of
14969 things. */
14970 do_unwind = do_version = do_dump = do_arch = 0;
14971
14972 if (! do_using_dynamic)
14973 do_syms = do_dyn_syms = do_reloc = 0;
14974 }
14975
14976 if (! process_section_groups (file))
14977 {
14978 /* Without loaded section groups we cannot process unwind. */
14979 do_unwind = 0;
14980 }
14981
14982 if (process_program_headers (file))
14983 process_dynamic_section (file);
14984
14985 process_relocs (file);
14986
14987 process_unwind (file);
14988
14989 process_symbol_table (file);
14990
14991 process_syminfo (file);
14992
14993 process_version_sections (file);
14994
14995 process_section_contents (file);
14996
14997 process_notes (file);
14998
14999 process_gnu_liblist (file);
15000
15001 process_arch_specific (file);
15002
15003 if (program_headers)
15004 {
15005 free (program_headers);
15006 program_headers = NULL;
15007 }
15008
15009 if (section_headers)
15010 {
15011 free (section_headers);
15012 section_headers = NULL;
15013 }
15014
15015 if (string_table)
15016 {
15017 free (string_table);
15018 string_table = NULL;
15019 string_table_length = 0;
15020 }
15021
15022 if (dynamic_strings)
15023 {
15024 free (dynamic_strings);
15025 dynamic_strings = NULL;
15026 dynamic_strings_length = 0;
15027 }
15028
15029 if (dynamic_symbols)
15030 {
15031 free (dynamic_symbols);
15032 dynamic_symbols = NULL;
15033 num_dynamic_syms = 0;
15034 }
15035
15036 if (dynamic_syminfo)
15037 {
15038 free (dynamic_syminfo);
15039 dynamic_syminfo = NULL;
15040 }
15041
15042 if (dynamic_section)
15043 {
15044 free (dynamic_section);
15045 dynamic_section = NULL;
15046 }
15047
15048 if (section_headers_groups)
15049 {
15050 free (section_headers_groups);
15051 section_headers_groups = NULL;
15052 }
15053
15054 if (section_groups)
15055 {
15056 struct group_list * g;
15057 struct group_list * next;
15058
15059 for (i = 0; i < group_count; i++)
15060 {
15061 for (g = section_groups [i].root; g != NULL; g = next)
15062 {
15063 next = g->next;
15064 free (g);
15065 }
15066 }
15067
15068 free (section_groups);
15069 section_groups = NULL;
15070 }
15071
15072 free_debug_memory ();
15073
15074 return 0;
15075 }
15076
15077 /* Process an ELF archive.
15078 On entry the file is positioned just after the ARMAG string. */
15079
15080 static int
15081 process_archive (char * file_name, FILE * file, bfd_boolean is_thin_archive)
15082 {
15083 struct archive_info arch;
15084 struct archive_info nested_arch;
15085 size_t got;
15086 int ret;
15087
15088 show_name = 1;
15089
15090 /* The ARCH structure is used to hold information about this archive. */
15091 arch.file_name = NULL;
15092 arch.file = NULL;
15093 arch.index_array = NULL;
15094 arch.sym_table = NULL;
15095 arch.longnames = NULL;
15096
15097 /* The NESTED_ARCH structure is used as a single-item cache of information
15098 about a nested archive (when members of a thin archive reside within
15099 another regular archive file). */
15100 nested_arch.file_name = NULL;
15101 nested_arch.file = NULL;
15102 nested_arch.index_array = NULL;
15103 nested_arch.sym_table = NULL;
15104 nested_arch.longnames = NULL;
15105
15106 if (setup_archive (&arch, file_name, file, is_thin_archive, do_archive_index) != 0)
15107 {
15108 ret = 1;
15109 goto out;
15110 }
15111
15112 if (do_archive_index)
15113 {
15114 if (arch.sym_table == NULL)
15115 error (_("%s: unable to dump the index as none was found\n"), file_name);
15116 else
15117 {
15118 unsigned int i, l;
15119 unsigned long current_pos;
15120
15121 printf (_("Index of archive %s: (%ld entries, 0x%lx bytes in the symbol table)\n"),
15122 file_name, (long) arch.index_num, arch.sym_size);
15123 current_pos = ftell (file);
15124
15125 for (i = l = 0; i < arch.index_num; i++)
15126 {
15127 if ((i == 0) || ((i > 0) && (arch.index_array[i] != arch.index_array[i - 1])))
15128 {
15129 char * member_name;
15130
15131 member_name = get_archive_member_name_at (&arch, arch.index_array[i], &nested_arch);
15132
15133 if (member_name != NULL)
15134 {
15135 char * qualified_name = make_qualified_name (&arch, &nested_arch, member_name);
15136
15137 if (qualified_name != NULL)
15138 {
15139 printf (_("Contents of binary %s at offset "), qualified_name);
15140 (void) print_vma (arch.index_array[i], PREFIX_HEX);
15141 putchar ('\n');
15142 free (qualified_name);
15143 }
15144 }
15145 }
15146
15147 if (l >= arch.sym_size)
15148 {
15149 error (_("%s: end of the symbol table reached before the end of the index\n"),
15150 file_name);
15151 break;
15152 }
15153 printf ("\t%s\n", arch.sym_table + l);
15154 l += strlen (arch.sym_table + l) + 1;
15155 }
15156
15157 if (arch.uses_64bit_indicies)
15158 l = (l + 7) & ~ 7;
15159 else
15160 l += l & 1;
15161
15162 if (l < arch.sym_size)
15163 error (_("%s: %ld bytes remain in the symbol table, but without corresponding entries in the index table\n"),
15164 file_name, arch.sym_size - l);
15165
15166 if (fseek (file, current_pos, SEEK_SET) != 0)
15167 {
15168 error (_("%s: failed to seek back to start of object files in the archive\n"), file_name);
15169 ret = 1;
15170 goto out;
15171 }
15172 }
15173
15174 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
15175 && !do_segments && !do_header && !do_dump && !do_version
15176 && !do_histogram && !do_debugging && !do_arch && !do_notes
15177 && !do_section_groups && !do_dyn_syms)
15178 {
15179 ret = 0; /* Archive index only. */
15180 goto out;
15181 }
15182 }
15183
15184 ret = 0;
15185
15186 while (1)
15187 {
15188 char * name;
15189 size_t namelen;
15190 char * qualified_name;
15191
15192 /* Read the next archive header. */
15193 if (fseek (file, arch.next_arhdr_offset, SEEK_SET) != 0)
15194 {
15195 error (_("%s: failed to seek to next archive header\n"), file_name);
15196 return 1;
15197 }
15198 got = fread (&arch.arhdr, 1, sizeof arch.arhdr, file);
15199 if (got != sizeof arch.arhdr)
15200 {
15201 if (got == 0)
15202 break;
15203 error (_("%s: failed to read archive header\n"), file_name);
15204 ret = 1;
15205 break;
15206 }
15207 if (memcmp (arch.arhdr.ar_fmag, ARFMAG, 2) != 0)
15208 {
15209 error (_("%s: did not find a valid archive header\n"), arch.file_name);
15210 ret = 1;
15211 break;
15212 }
15213
15214 arch.next_arhdr_offset += sizeof arch.arhdr;
15215
15216 archive_file_size = strtoul (arch.arhdr.ar_size, NULL, 10);
15217 if (archive_file_size & 01)
15218 ++archive_file_size;
15219
15220 name = get_archive_member_name (&arch, &nested_arch);
15221 if (name == NULL)
15222 {
15223 error (_("%s: bad archive file name\n"), file_name);
15224 ret = 1;
15225 break;
15226 }
15227 namelen = strlen (name);
15228
15229 qualified_name = make_qualified_name (&arch, &nested_arch, name);
15230 if (qualified_name == NULL)
15231 {
15232 error (_("%s: bad archive file name\n"), file_name);
15233 ret = 1;
15234 break;
15235 }
15236
15237 if (is_thin_archive && arch.nested_member_origin == 0)
15238 {
15239 /* This is a proxy for an external member of a thin archive. */
15240 FILE * member_file;
15241 char * member_file_name = adjust_relative_path (file_name, name, namelen);
15242 if (member_file_name == NULL)
15243 {
15244 ret = 1;
15245 break;
15246 }
15247
15248 member_file = fopen (member_file_name, "rb");
15249 if (member_file == NULL)
15250 {
15251 error (_("Input file '%s' is not readable.\n"), member_file_name);
15252 free (member_file_name);
15253 ret = 1;
15254 break;
15255 }
15256
15257 archive_file_offset = arch.nested_member_origin;
15258
15259 ret |= process_object (qualified_name, member_file);
15260
15261 fclose (member_file);
15262 free (member_file_name);
15263 }
15264 else if (is_thin_archive)
15265 {
15266 /* PR 15140: Allow for corrupt thin archives. */
15267 if (nested_arch.file == NULL)
15268 {
15269 error (_("%s: contains corrupt thin archive: %s\n"),
15270 file_name, name);
15271 ret = 1;
15272 break;
15273 }
15274
15275 /* This is a proxy for a member of a nested archive. */
15276 archive_file_offset = arch.nested_member_origin + sizeof arch.arhdr;
15277
15278 /* The nested archive file will have been opened and setup by
15279 get_archive_member_name. */
15280 if (fseek (nested_arch.file, archive_file_offset, SEEK_SET) != 0)
15281 {
15282 error (_("%s: failed to seek to archive member.\n"), nested_arch.file_name);
15283 ret = 1;
15284 break;
15285 }
15286
15287 ret |= process_object (qualified_name, nested_arch.file);
15288 }
15289 else
15290 {
15291 archive_file_offset = arch.next_arhdr_offset;
15292 arch.next_arhdr_offset += archive_file_size;
15293
15294 ret |= process_object (qualified_name, file);
15295 }
15296
15297 if (dump_sects != NULL)
15298 {
15299 free (dump_sects);
15300 dump_sects = NULL;
15301 num_dump_sects = 0;
15302 }
15303
15304 free (qualified_name);
15305 }
15306
15307 out:
15308 if (nested_arch.file != NULL)
15309 fclose (nested_arch.file);
15310 release_archive (&nested_arch);
15311 release_archive (&arch);
15312
15313 return ret;
15314 }
15315
15316 static int
15317 process_file (char * file_name)
15318 {
15319 FILE * file;
15320 struct stat statbuf;
15321 char armag[SARMAG];
15322 int ret;
15323
15324 if (stat (file_name, &statbuf) < 0)
15325 {
15326 if (errno == ENOENT)
15327 error (_("'%s': No such file\n"), file_name);
15328 else
15329 error (_("Could not locate '%s'. System error message: %s\n"),
15330 file_name, strerror (errno));
15331 return 1;
15332 }
15333
15334 if (! S_ISREG (statbuf.st_mode))
15335 {
15336 error (_("'%s' is not an ordinary file\n"), file_name);
15337 return 1;
15338 }
15339
15340 file = fopen (file_name, "rb");
15341 if (file == NULL)
15342 {
15343 error (_("Input file '%s' is not readable.\n"), file_name);
15344 return 1;
15345 }
15346
15347 if (fread (armag, SARMAG, 1, file) != 1)
15348 {
15349 error (_("%s: Failed to read file's magic number\n"), file_name);
15350 fclose (file);
15351 return 1;
15352 }
15353
15354 current_file_size = (bfd_size_type) statbuf.st_size;
15355
15356 if (memcmp (armag, ARMAG, SARMAG) == 0)
15357 ret = process_archive (file_name, file, FALSE);
15358 else if (memcmp (armag, ARMAGT, SARMAG) == 0)
15359 ret = process_archive (file_name, file, TRUE);
15360 else
15361 {
15362 if (do_archive_index)
15363 error (_("File %s is not an archive so its index cannot be displayed.\n"),
15364 file_name);
15365
15366 rewind (file);
15367 archive_file_size = archive_file_offset = 0;
15368 ret = process_object (file_name, file);
15369 }
15370
15371 fclose (file);
15372
15373 current_file_size = 0;
15374 return ret;
15375 }
15376
15377 #ifdef SUPPORT_DISASSEMBLY
15378 /* Needed by the i386 disassembler. For extra credit, someone could
15379 fix this so that we insert symbolic addresses here, esp for GOT/PLT
15380 symbols. */
15381
15382 void
15383 print_address (unsigned int addr, FILE * outfile)
15384 {
15385 fprintf (outfile,"0x%8.8x", addr);
15386 }
15387
15388 /* Needed by the i386 disassembler. */
15389 void
15390 db_task_printsym (unsigned int addr)
15391 {
15392 print_address (addr, stderr);
15393 }
15394 #endif
15395
15396 int
15397 main (int argc, char ** argv)
15398 {
15399 int err;
15400
15401 #if defined (HAVE_SETLOCALE) && defined (HAVE_LC_MESSAGES)
15402 setlocale (LC_MESSAGES, "");
15403 #endif
15404 #if defined (HAVE_SETLOCALE)
15405 setlocale (LC_CTYPE, "");
15406 #endif
15407 bindtextdomain (PACKAGE, LOCALEDIR);
15408 textdomain (PACKAGE);
15409
15410 expandargv (&argc, &argv);
15411
15412 parse_args (argc, argv);
15413
15414 if (num_dump_sects > 0)
15415 {
15416 /* Make a copy of the dump_sects array. */
15417 cmdline_dump_sects = (dump_type *)
15418 malloc (num_dump_sects * sizeof (* dump_sects));
15419 if (cmdline_dump_sects == NULL)
15420 error (_("Out of memory allocating dump request table.\n"));
15421 else
15422 {
15423 memcpy (cmdline_dump_sects, dump_sects,
15424 num_dump_sects * sizeof (* dump_sects));
15425 num_cmdline_dump_sects = num_dump_sects;
15426 }
15427 }
15428
15429 if (optind < (argc - 1))
15430 show_name = 1;
15431
15432 err = 0;
15433 while (optind < argc)
15434 err |= process_file (argv[optind++]);
15435
15436 if (dump_sects != NULL)
15437 free (dump_sects);
15438 if (cmdline_dump_sects != NULL)
15439 free (cmdline_dump_sects);
15440
15441 return err;
15442 }
This page took 0.328493 seconds and 5 git commands to generate.