readelf: Correct version flag formatting
[deliverable/binutils-gdb.git] / binutils / readelf.c
1 /* readelf.c -- display contents of an ELF format file
2 Copyright (C) 1998-2017 Free Software Foundation, Inc.
3
4 Originally developed by Eric Youngdale <eric@andante.jic.com>
5 Modifications by Nick Clifton <nickc@redhat.com>
6
7 This file is part of GNU Binutils.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
22 02110-1301, USA. */
23 \f
24 /* The difference between readelf and objdump:
25
26 Both programs are capable of displaying the contents of ELF format files,
27 so why does the binutils project have two file dumpers ?
28
29 The reason is that objdump sees an ELF file through a BFD filter of the
30 world; if BFD has a bug where, say, it disagrees about a machine constant
31 in e_flags, then the odds are good that it will remain internally
32 consistent. The linker sees it the BFD way, objdump sees it the BFD way,
33 GAS sees it the BFD way. There was need for a tool to go find out what
34 the file actually says.
35
36 This is why the readelf program does not link against the BFD library - it
37 exists as an independent program to help verify the correct working of BFD.
38
39 There is also the case that readelf can provide more information about an
40 ELF file than is provided by objdump. In particular it can display DWARF
41 debugging information which (at the moment) objdump cannot. */
42 \f
43 #include "sysdep.h"
44 #include <assert.h>
45 #include <time.h>
46 #include <zlib.h>
47 #ifdef HAVE_WCHAR_H
48 #include <wchar.h>
49 #endif
50
51 #if __GNUC__ >= 2
52 /* Define BFD64 here, even if our default architecture is 32 bit ELF
53 as this will allow us to read in and parse 64bit and 32bit ELF files.
54 Only do this if we believe that the compiler can support a 64 bit
55 data type. For now we only rely on GCC being able to do this. */
56 #define BFD64
57 #endif
58
59 #include "bfd.h"
60 #include "bucomm.h"
61 #include "elfcomm.h"
62 #include "dwarf.h"
63
64 #include "elf/common.h"
65 #include "elf/external.h"
66 #include "elf/internal.h"
67
68
69 /* Included here, before RELOC_MACROS_GEN_FUNC is defined, so that
70 we can obtain the H8 reloc numbers. We need these for the
71 get_reloc_size() function. We include h8.h again after defining
72 RELOC_MACROS_GEN_FUNC so that we get the naming function as well. */
73
74 #include "elf/h8.h"
75 #undef _ELF_H8_H
76
77 /* Undo the effects of #including reloc-macros.h. */
78
79 #undef START_RELOC_NUMBERS
80 #undef RELOC_NUMBER
81 #undef FAKE_RELOC
82 #undef EMPTY_RELOC
83 #undef END_RELOC_NUMBERS
84 #undef _RELOC_MACROS_H
85
86 /* The following headers use the elf/reloc-macros.h file to
87 automatically generate relocation recognition functions
88 such as elf_mips_reloc_type() */
89
90 #define RELOC_MACROS_GEN_FUNC
91
92 #include "elf/aarch64.h"
93 #include "elf/alpha.h"
94 #include "elf/arc.h"
95 #include "elf/arm.h"
96 #include "elf/avr.h"
97 #include "elf/bfin.h"
98 #include "elf/cr16.h"
99 #include "elf/cris.h"
100 #include "elf/crx.h"
101 #include "elf/d10v.h"
102 #include "elf/d30v.h"
103 #include "elf/dlx.h"
104 #include "elf/epiphany.h"
105 #include "elf/fr30.h"
106 #include "elf/frv.h"
107 #include "elf/ft32.h"
108 #include "elf/h8.h"
109 #include "elf/hppa.h"
110 #include "elf/i386.h"
111 #include "elf/i370.h"
112 #include "elf/i860.h"
113 #include "elf/i960.h"
114 #include "elf/ia64.h"
115 #include "elf/ip2k.h"
116 #include "elf/lm32.h"
117 #include "elf/iq2000.h"
118 #include "elf/m32c.h"
119 #include "elf/m32r.h"
120 #include "elf/m68k.h"
121 #include "elf/m68hc11.h"
122 #include "elf/mcore.h"
123 #include "elf/mep.h"
124 #include "elf/metag.h"
125 #include "elf/microblaze.h"
126 #include "elf/mips.h"
127 #include "elf/riscv.h"
128 #include "elf/mmix.h"
129 #include "elf/mn10200.h"
130 #include "elf/mn10300.h"
131 #include "elf/moxie.h"
132 #include "elf/mt.h"
133 #include "elf/msp430.h"
134 #include "elf/nds32.h"
135 #include "elf/nios2.h"
136 #include "elf/or1k.h"
137 #include "elf/pj.h"
138 #include "elf/ppc.h"
139 #include "elf/ppc64.h"
140 #include "elf/pru.h"
141 #include "elf/rl78.h"
142 #include "elf/rx.h"
143 #include "elf/s390.h"
144 #include "elf/score.h"
145 #include "elf/sh.h"
146 #include "elf/sparc.h"
147 #include "elf/spu.h"
148 #include "elf/tic6x.h"
149 #include "elf/tilegx.h"
150 #include "elf/tilepro.h"
151 #include "elf/v850.h"
152 #include "elf/vax.h"
153 #include "elf/visium.h"
154 #include "elf/x86-64.h"
155 #include "elf/xc16x.h"
156 #include "elf/xgate.h"
157 #include "elf/xstormy16.h"
158 #include "elf/xtensa.h"
159
160 #include "getopt.h"
161 #include "libiberty.h"
162 #include "safe-ctype.h"
163 #include "filenames.h"
164
165 #ifndef offsetof
166 #define offsetof(TYPE, MEMBER) ((size_t) &(((TYPE *) 0)->MEMBER))
167 #endif
168
169 typedef struct elf_section_list
170 {
171 Elf_Internal_Shdr * hdr;
172 struct elf_section_list * next;
173 } elf_section_list;
174
175 char * program_name = "readelf";
176 static unsigned long archive_file_offset;
177 static unsigned long archive_file_size;
178 static bfd_size_type current_file_size;
179 static unsigned long dynamic_addr;
180 static bfd_size_type dynamic_size;
181 static size_t dynamic_nent;
182 static char * dynamic_strings;
183 static unsigned long dynamic_strings_length;
184 static char * string_table;
185 static unsigned long string_table_length;
186 static unsigned long num_dynamic_syms;
187 static Elf_Internal_Sym * dynamic_symbols;
188 static Elf_Internal_Syminfo * dynamic_syminfo;
189 static unsigned long dynamic_syminfo_offset;
190 static unsigned int dynamic_syminfo_nent;
191 static char program_interpreter[PATH_MAX];
192 static bfd_vma dynamic_info[DT_ENCODING];
193 static bfd_vma dynamic_info_DT_GNU_HASH;
194 static bfd_vma version_info[16];
195 static Elf_Internal_Ehdr elf_header;
196 static Elf_Internal_Shdr * section_headers;
197 static Elf_Internal_Phdr * program_headers;
198 static Elf_Internal_Dyn * dynamic_section;
199 static elf_section_list * symtab_shndx_list;
200 static int show_name;
201 static int do_dynamic;
202 static int do_syms;
203 static int do_dyn_syms;
204 static int do_reloc;
205 static int do_sections;
206 static int do_section_groups;
207 static int do_section_details;
208 static int do_segments;
209 static int do_unwind;
210 static int do_using_dynamic;
211 static int do_header;
212 static int do_dump;
213 static int do_version;
214 static int do_histogram;
215 static int do_debugging;
216 static int do_arch;
217 static int do_notes;
218 static int do_archive_index;
219 static int is_32bit_elf;
220 static int decompress_dumps;
221
222 struct group_list
223 {
224 struct group_list * next;
225 unsigned int section_index;
226 };
227
228 struct group
229 {
230 struct group_list * root;
231 unsigned int group_index;
232 };
233
234 static size_t group_count;
235 static struct group * section_groups;
236 static struct group ** section_headers_groups;
237
238
239 /* Flag bits indicating particular types of dump. */
240 #define HEX_DUMP (1 << 0) /* The -x command line switch. */
241 #define DISASS_DUMP (1 << 1) /* The -i command line switch. */
242 #define DEBUG_DUMP (1 << 2) /* The -w command line switch. */
243 #define STRING_DUMP (1 << 3) /* The -p command line switch. */
244 #define RELOC_DUMP (1 << 4) /* The -R command line switch. */
245
246 typedef unsigned char dump_type;
247
248 /* A linked list of the section names for which dumps were requested. */
249 struct dump_list_entry
250 {
251 char * name;
252 dump_type type;
253 struct dump_list_entry * next;
254 };
255 static struct dump_list_entry * dump_sects_byname;
256
257 /* A dynamic array of flags indicating for which sections a dump
258 has been requested via command line switches. */
259 static dump_type * cmdline_dump_sects = NULL;
260 static unsigned int num_cmdline_dump_sects = 0;
261
262 /* A dynamic array of flags indicating for which sections a dump of
263 some kind has been requested. It is reset on a per-object file
264 basis and then initialised from the cmdline_dump_sects array,
265 the results of interpreting the -w switch, and the
266 dump_sects_byname list. */
267 static dump_type * dump_sects = NULL;
268 static unsigned int num_dump_sects = 0;
269
270
271 /* How to print a vma value. */
272 typedef enum print_mode
273 {
274 HEX,
275 DEC,
276 DEC_5,
277 UNSIGNED,
278 PREFIX_HEX,
279 FULL_HEX,
280 LONG_HEX
281 }
282 print_mode;
283
284 /* Versioned symbol info. */
285 enum versioned_symbol_info
286 {
287 symbol_undefined,
288 symbol_hidden,
289 symbol_public
290 };
291
292 static const char *get_symbol_version_string
293 (FILE *file, int is_dynsym, const char *strtab,
294 unsigned long int strtab_size, unsigned int si,
295 Elf_Internal_Sym *psym, enum versioned_symbol_info *sym_info,
296 unsigned short *vna_other);
297
298 #define UNKNOWN -1
299
300 #define SECTION_NAME(X) \
301 ((X) == NULL ? _("<none>") \
302 : string_table == NULL ? _("<no-name>") \
303 : ((X)->sh_name >= string_table_length ? _("<corrupt>") \
304 : string_table + (X)->sh_name))
305
306 #define DT_VERSIONTAGIDX(tag) (DT_VERNEEDNUM - (tag)) /* Reverse order! */
307
308 #define GET_ELF_SYMBOLS(file, section, sym_count) \
309 (is_32bit_elf ? get_32bit_elf_symbols (file, section, sym_count) \
310 : get_64bit_elf_symbols (file, section, sym_count))
311
312 #define VALID_DYNAMIC_NAME(offset) ((dynamic_strings != NULL) && (offset < dynamic_strings_length))
313 /* GET_DYNAMIC_NAME asssumes that VALID_DYNAMIC_NAME has
314 already been called and verified that the string exists. */
315 #define GET_DYNAMIC_NAME(offset) (dynamic_strings + offset)
316
317 #define REMOVE_ARCH_BITS(ADDR) \
318 do \
319 { \
320 if (elf_header.e_machine == EM_ARM) \
321 (ADDR) &= ~1; \
322 } \
323 while (0)
324 \f
325 /* Retrieve NMEMB structures, each SIZE bytes long from FILE starting at OFFSET +
326 the offset of the current archive member, if we are examining an archive.
327 Put the retrieved data into VAR, if it is not NULL. Otherwise allocate a buffer
328 using malloc and fill that. In either case return the pointer to the start of
329 the retrieved data or NULL if something went wrong. If something does go wrong
330 and REASON is not NULL then emit an error message using REASON as part of the
331 context. */
332
333 static void *
334 get_data (void * var, FILE * file, unsigned long offset, bfd_size_type size,
335 bfd_size_type nmemb, const char * reason)
336 {
337 void * mvar;
338 bfd_size_type amt = size * nmemb;
339
340 if (size == 0 || nmemb == 0)
341 return NULL;
342
343 /* If the size_t type is smaller than the bfd_size_type, eg because
344 you are building a 32-bit tool on a 64-bit host, then make sure
345 that when the sizes are cast to (size_t) no information is lost. */
346 if (sizeof (size_t) < sizeof (bfd_size_type)
347 && ( (bfd_size_type) ((size_t) size) != size
348 || (bfd_size_type) ((size_t) nmemb) != nmemb))
349 {
350 if (reason)
351 error (_("Size truncation prevents reading 0x%" BFD_VMA_FMT "x"
352 " elements of size 0x%" BFD_VMA_FMT "x for %s\n"),
353 nmemb, size, reason);
354 return NULL;
355 }
356
357 /* Check for size overflow. */
358 if (amt < nmemb)
359 {
360 if (reason)
361 error (_("Size overflow prevents reading 0x%" BFD_VMA_FMT "x"
362 " elements of size 0x%" BFD_VMA_FMT "x for %s\n"),
363 nmemb, size, reason);
364 return NULL;
365 }
366
367 /* Be kind to memory chekers (eg valgrind, address sanitizer) by not
368 attempting to allocate memory when the read is bound to fail. */
369 if (amt > current_file_size
370 || offset + archive_file_offset + amt > current_file_size)
371 {
372 if (reason)
373 error (_("Reading 0x%" BFD_VMA_FMT "x"
374 " bytes extends past end of file for %s\n"),
375 amt, reason);
376 return NULL;
377 }
378
379 if (fseek (file, archive_file_offset + offset, SEEK_SET))
380 {
381 if (reason)
382 error (_("Unable to seek to 0x%lx for %s\n"),
383 archive_file_offset + offset, reason);
384 return NULL;
385 }
386
387 mvar = var;
388 if (mvar == NULL)
389 {
390 /* Check for overflow. */
391 if (nmemb < (~(bfd_size_type) 0 - 1) / size)
392 /* + 1 so that we can '\0' terminate invalid string table sections. */
393 mvar = malloc ((size_t) amt + 1);
394
395 if (mvar == NULL)
396 {
397 if (reason)
398 error (_("Out of memory allocating 0x%" BFD_VMA_FMT "x"
399 " bytes for %s\n"),
400 amt, reason);
401 return NULL;
402 }
403
404 ((char *) mvar)[amt] = '\0';
405 }
406
407 if (fread (mvar, (size_t) size, (size_t) nmemb, file) != nmemb)
408 {
409 if (reason)
410 error (_("Unable to read in 0x%" BFD_VMA_FMT "x bytes of %s\n"),
411 amt, reason);
412 if (mvar != var)
413 free (mvar);
414 return NULL;
415 }
416
417 return mvar;
418 }
419
420 /* Print a VMA value. */
421
422 static int
423 print_vma (bfd_vma vma, print_mode mode)
424 {
425 int nc = 0;
426
427 switch (mode)
428 {
429 case FULL_HEX:
430 nc = printf ("0x");
431 /* Fall through. */
432
433 case LONG_HEX:
434 #ifdef BFD64
435 if (is_32bit_elf)
436 return nc + printf ("%8.8" BFD_VMA_FMT "x", vma);
437 #endif
438 printf_vma (vma);
439 return nc + 16;
440
441 case DEC_5:
442 if (vma <= 99999)
443 return printf ("%5" BFD_VMA_FMT "d", vma);
444 /* Fall through. */
445
446 case PREFIX_HEX:
447 nc = printf ("0x");
448 /* Fall through. */
449
450 case HEX:
451 return nc + printf ("%" BFD_VMA_FMT "x", vma);
452
453 case DEC:
454 return printf ("%" BFD_VMA_FMT "d", vma);
455
456 case UNSIGNED:
457 return printf ("%" BFD_VMA_FMT "u", vma);
458 }
459 return 0;
460 }
461
462 /* Display a symbol on stdout. Handles the display of control characters and
463 multibye characters (assuming the host environment supports them).
464
465 Display at most abs(WIDTH) characters, truncating as necessary, unless do_wide is true.
466
467 If WIDTH is negative then ensure that the output is at least (- WIDTH) characters,
468 padding as necessary.
469
470 Returns the number of emitted characters. */
471
472 static unsigned int
473 print_symbol (int width, const char *symbol)
474 {
475 bfd_boolean extra_padding = FALSE;
476 int num_printed = 0;
477 #ifdef HAVE_MBSTATE_T
478 mbstate_t state;
479 #endif
480 int width_remaining;
481
482 if (width < 0)
483 {
484 /* Keep the width positive. This also helps. */
485 width = - width;
486 extra_padding = TRUE;
487 }
488 assert (width != 0);
489
490 if (do_wide)
491 /* Set the remaining width to a very large value.
492 This simplifies the code below. */
493 width_remaining = INT_MAX;
494 else
495 width_remaining = width;
496
497 #ifdef HAVE_MBSTATE_T
498 /* Initialise the multibyte conversion state. */
499 memset (& state, 0, sizeof (state));
500 #endif
501
502 while (width_remaining)
503 {
504 size_t n;
505 const char c = *symbol++;
506
507 if (c == 0)
508 break;
509
510 /* Do not print control characters directly as they can affect terminal
511 settings. Such characters usually appear in the names generated
512 by the assembler for local labels. */
513 if (ISCNTRL (c))
514 {
515 if (width_remaining < 2)
516 break;
517
518 printf ("^%c", c + 0x40);
519 width_remaining -= 2;
520 num_printed += 2;
521 }
522 else if (ISPRINT (c))
523 {
524 putchar (c);
525 width_remaining --;
526 num_printed ++;
527 }
528 else
529 {
530 #ifdef HAVE_MBSTATE_T
531 wchar_t w;
532 #endif
533 /* Let printf do the hard work of displaying multibyte characters. */
534 printf ("%.1s", symbol - 1);
535 width_remaining --;
536 num_printed ++;
537
538 #ifdef HAVE_MBSTATE_T
539 /* Try to find out how many bytes made up the character that was
540 just printed. Advance the symbol pointer past the bytes that
541 were displayed. */
542 n = mbrtowc (& w, symbol - 1, MB_CUR_MAX, & state);
543 #else
544 n = 1;
545 #endif
546 if (n != (size_t) -1 && n != (size_t) -2 && n > 0)
547 symbol += (n - 1);
548 }
549 }
550
551 if (extra_padding && num_printed < width)
552 {
553 /* Fill in the remaining spaces. */
554 printf ("%-*s", width - num_printed, " ");
555 num_printed = width;
556 }
557
558 return num_printed;
559 }
560
561 /* Returns a pointer to a static buffer containing a printable version of
562 the given section's name. Like print_symbol, except that it does not try
563 to print multibyte characters, it just interprets them as hex values. */
564
565 static const char *
566 printable_section_name (const Elf_Internal_Shdr * sec)
567 {
568 #define MAX_PRINT_SEC_NAME_LEN 128
569 static char sec_name_buf [MAX_PRINT_SEC_NAME_LEN + 1];
570 const char * name = SECTION_NAME (sec);
571 char * buf = sec_name_buf;
572 char c;
573 unsigned int remaining = MAX_PRINT_SEC_NAME_LEN;
574
575 while ((c = * name ++) != 0)
576 {
577 if (ISCNTRL (c))
578 {
579 if (remaining < 2)
580 break;
581
582 * buf ++ = '^';
583 * buf ++ = c + 0x40;
584 remaining -= 2;
585 }
586 else if (ISPRINT (c))
587 {
588 * buf ++ = c;
589 remaining -= 1;
590 }
591 else
592 {
593 static char hex[17] = "0123456789ABCDEF";
594
595 if (remaining < 4)
596 break;
597 * buf ++ = '<';
598 * buf ++ = hex[(c & 0xf0) >> 4];
599 * buf ++ = hex[c & 0x0f];
600 * buf ++ = '>';
601 remaining -= 4;
602 }
603
604 if (remaining == 0)
605 break;
606 }
607
608 * buf = 0;
609 return sec_name_buf;
610 }
611
612 static const char *
613 printable_section_name_from_index (unsigned long ndx)
614 {
615 if (ndx >= elf_header.e_shnum)
616 return _("<corrupt>");
617
618 return printable_section_name (section_headers + ndx);
619 }
620
621 /* Return a pointer to section NAME, or NULL if no such section exists. */
622
623 static Elf_Internal_Shdr *
624 find_section (const char * name)
625 {
626 unsigned int i;
627
628 for (i = 0; i < elf_header.e_shnum; i++)
629 if (streq (SECTION_NAME (section_headers + i), name))
630 return section_headers + i;
631
632 return NULL;
633 }
634
635 /* Return a pointer to a section containing ADDR, or NULL if no such
636 section exists. */
637
638 static Elf_Internal_Shdr *
639 find_section_by_address (bfd_vma addr)
640 {
641 unsigned int i;
642
643 for (i = 0; i < elf_header.e_shnum; i++)
644 {
645 Elf_Internal_Shdr *sec = section_headers + i;
646 if (addr >= sec->sh_addr && addr < sec->sh_addr + sec->sh_size)
647 return sec;
648 }
649
650 return NULL;
651 }
652
653 static Elf_Internal_Shdr *
654 find_section_by_type (unsigned int type)
655 {
656 unsigned int i;
657
658 for (i = 0; i < elf_header.e_shnum; i++)
659 {
660 Elf_Internal_Shdr *sec = section_headers + i;
661 if (sec->sh_type == type)
662 return sec;
663 }
664
665 return NULL;
666 }
667
668 /* Return a pointer to section NAME, or NULL if no such section exists,
669 restricted to the list of sections given in SET. */
670
671 static Elf_Internal_Shdr *
672 find_section_in_set (const char * name, unsigned int * set)
673 {
674 unsigned int i;
675
676 if (set != NULL)
677 {
678 while ((i = *set++) > 0)
679 {
680 /* See PR 21156 for a reproducer. */
681 if (i >= elf_header.e_shnum)
682 continue; /* FIXME: Should we issue an error message ? */
683
684 if (streq (SECTION_NAME (section_headers + i), name))
685 return section_headers + i;
686 }
687 }
688
689 return find_section (name);
690 }
691
692 /* Read an unsigned LEB128 encoded value from p. Set *PLEN to the number of
693 bytes read. */
694
695 static inline unsigned long
696 read_uleb128 (unsigned char *data,
697 unsigned int *length_return,
698 const unsigned char * const end)
699 {
700 return read_leb128 (data, length_return, FALSE, end);
701 }
702
703 /* Return true if the current file is for IA-64 machine and OpenVMS ABI.
704 This OS has so many departures from the ELF standard that we test it at
705 many places. */
706
707 static inline int
708 is_ia64_vms (void)
709 {
710 return elf_header.e_machine == EM_IA_64
711 && elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS;
712 }
713
714 /* Guess the relocation size commonly used by the specific machines. */
715
716 static int
717 guess_is_rela (unsigned int e_machine)
718 {
719 switch (e_machine)
720 {
721 /* Targets that use REL relocations. */
722 case EM_386:
723 case EM_IAMCU:
724 case EM_960:
725 case EM_ARM:
726 case EM_D10V:
727 case EM_CYGNUS_D10V:
728 case EM_DLX:
729 case EM_MIPS:
730 case EM_MIPS_RS3_LE:
731 case EM_CYGNUS_M32R:
732 case EM_SCORE:
733 case EM_XGATE:
734 return FALSE;
735
736 /* Targets that use RELA relocations. */
737 case EM_68K:
738 case EM_860:
739 case EM_AARCH64:
740 case EM_ADAPTEVA_EPIPHANY:
741 case EM_ALPHA:
742 case EM_ALTERA_NIOS2:
743 case EM_ARC:
744 case EM_ARC_COMPACT:
745 case EM_ARC_COMPACT2:
746 case EM_AVR:
747 case EM_AVR_OLD:
748 case EM_BLACKFIN:
749 case EM_CR16:
750 case EM_CRIS:
751 case EM_CRX:
752 case EM_D30V:
753 case EM_CYGNUS_D30V:
754 case EM_FR30:
755 case EM_FT32:
756 case EM_CYGNUS_FR30:
757 case EM_CYGNUS_FRV:
758 case EM_H8S:
759 case EM_H8_300:
760 case EM_H8_300H:
761 case EM_IA_64:
762 case EM_IP2K:
763 case EM_IP2K_OLD:
764 case EM_IQ2000:
765 case EM_LATTICEMICO32:
766 case EM_M32C_OLD:
767 case EM_M32C:
768 case EM_M32R:
769 case EM_MCORE:
770 case EM_CYGNUS_MEP:
771 case EM_METAG:
772 case EM_MMIX:
773 case EM_MN10200:
774 case EM_CYGNUS_MN10200:
775 case EM_MN10300:
776 case EM_CYGNUS_MN10300:
777 case EM_MOXIE:
778 case EM_MSP430:
779 case EM_MSP430_OLD:
780 case EM_MT:
781 case EM_NDS32:
782 case EM_NIOS32:
783 case EM_OR1K:
784 case EM_PPC64:
785 case EM_PPC:
786 case EM_TI_PRU:
787 case EM_RISCV:
788 case EM_RL78:
789 case EM_RX:
790 case EM_S390:
791 case EM_S390_OLD:
792 case EM_SH:
793 case EM_SPARC:
794 case EM_SPARC32PLUS:
795 case EM_SPARCV9:
796 case EM_SPU:
797 case EM_TI_C6000:
798 case EM_TILEGX:
799 case EM_TILEPRO:
800 case EM_V800:
801 case EM_V850:
802 case EM_CYGNUS_V850:
803 case EM_VAX:
804 case EM_VISIUM:
805 case EM_X86_64:
806 case EM_L1OM:
807 case EM_K1OM:
808 case EM_XSTORMY16:
809 case EM_XTENSA:
810 case EM_XTENSA_OLD:
811 case EM_MICROBLAZE:
812 case EM_MICROBLAZE_OLD:
813 return TRUE;
814
815 case EM_68HC05:
816 case EM_68HC08:
817 case EM_68HC11:
818 case EM_68HC16:
819 case EM_FX66:
820 case EM_ME16:
821 case EM_MMA:
822 case EM_NCPU:
823 case EM_NDR1:
824 case EM_PCP:
825 case EM_ST100:
826 case EM_ST19:
827 case EM_ST7:
828 case EM_ST9PLUS:
829 case EM_STARCORE:
830 case EM_SVX:
831 case EM_TINYJ:
832 default:
833 warn (_("Don't know about relocations on this machine architecture\n"));
834 return FALSE;
835 }
836 }
837
838 static int
839 slurp_rela_relocs (FILE * file,
840 unsigned long rel_offset,
841 unsigned long rel_size,
842 Elf_Internal_Rela ** relasp,
843 unsigned long * nrelasp)
844 {
845 Elf_Internal_Rela * relas;
846 size_t nrelas;
847 unsigned int i;
848
849 if (is_32bit_elf)
850 {
851 Elf32_External_Rela * erelas;
852
853 erelas = (Elf32_External_Rela *) get_data (NULL, file, rel_offset, 1,
854 rel_size, _("32-bit relocation data"));
855 if (!erelas)
856 return 0;
857
858 nrelas = rel_size / sizeof (Elf32_External_Rela);
859
860 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
861 sizeof (Elf_Internal_Rela));
862
863 if (relas == NULL)
864 {
865 free (erelas);
866 error (_("out of memory parsing relocs\n"));
867 return 0;
868 }
869
870 for (i = 0; i < nrelas; i++)
871 {
872 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
873 relas[i].r_info = BYTE_GET (erelas[i].r_info);
874 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
875 }
876
877 free (erelas);
878 }
879 else
880 {
881 Elf64_External_Rela * erelas;
882
883 erelas = (Elf64_External_Rela *) get_data (NULL, file, rel_offset, 1,
884 rel_size, _("64-bit relocation data"));
885 if (!erelas)
886 return 0;
887
888 nrelas = rel_size / sizeof (Elf64_External_Rela);
889
890 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
891 sizeof (Elf_Internal_Rela));
892
893 if (relas == NULL)
894 {
895 free (erelas);
896 error (_("out of memory parsing relocs\n"));
897 return 0;
898 }
899
900 for (i = 0; i < nrelas; i++)
901 {
902 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
903 relas[i].r_info = BYTE_GET (erelas[i].r_info);
904 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
905
906 /* The #ifdef BFD64 below is to prevent a compile time
907 warning. We know that if we do not have a 64 bit data
908 type that we will never execute this code anyway. */
909 #ifdef BFD64
910 if (elf_header.e_machine == EM_MIPS
911 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
912 {
913 /* In little-endian objects, r_info isn't really a
914 64-bit little-endian value: it has a 32-bit
915 little-endian symbol index followed by four
916 individual byte fields. Reorder INFO
917 accordingly. */
918 bfd_vma inf = relas[i].r_info;
919 inf = (((inf & 0xffffffff) << 32)
920 | ((inf >> 56) & 0xff)
921 | ((inf >> 40) & 0xff00)
922 | ((inf >> 24) & 0xff0000)
923 | ((inf >> 8) & 0xff000000));
924 relas[i].r_info = inf;
925 }
926 #endif /* BFD64 */
927 }
928
929 free (erelas);
930 }
931 *relasp = relas;
932 *nrelasp = nrelas;
933 return 1;
934 }
935
936 static int
937 slurp_rel_relocs (FILE * file,
938 unsigned long rel_offset,
939 unsigned long rel_size,
940 Elf_Internal_Rela ** relsp,
941 unsigned long * nrelsp)
942 {
943 Elf_Internal_Rela * rels;
944 size_t nrels;
945 unsigned int i;
946
947 if (is_32bit_elf)
948 {
949 Elf32_External_Rel * erels;
950
951 erels = (Elf32_External_Rel *) get_data (NULL, file, rel_offset, 1,
952 rel_size, _("32-bit relocation data"));
953 if (!erels)
954 return 0;
955
956 nrels = rel_size / sizeof (Elf32_External_Rel);
957
958 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
959
960 if (rels == NULL)
961 {
962 free (erels);
963 error (_("out of memory parsing relocs\n"));
964 return 0;
965 }
966
967 for (i = 0; i < nrels; i++)
968 {
969 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
970 rels[i].r_info = BYTE_GET (erels[i].r_info);
971 rels[i].r_addend = 0;
972 }
973
974 free (erels);
975 }
976 else
977 {
978 Elf64_External_Rel * erels;
979
980 erels = (Elf64_External_Rel *) get_data (NULL, file, rel_offset, 1,
981 rel_size, _("64-bit relocation data"));
982 if (!erels)
983 return 0;
984
985 nrels = rel_size / sizeof (Elf64_External_Rel);
986
987 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
988
989 if (rels == NULL)
990 {
991 free (erels);
992 error (_("out of memory parsing relocs\n"));
993 return 0;
994 }
995
996 for (i = 0; i < nrels; i++)
997 {
998 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
999 rels[i].r_info = BYTE_GET (erels[i].r_info);
1000 rels[i].r_addend = 0;
1001
1002 /* The #ifdef BFD64 below is to prevent a compile time
1003 warning. We know that if we do not have a 64 bit data
1004 type that we will never execute this code anyway. */
1005 #ifdef BFD64
1006 if (elf_header.e_machine == EM_MIPS
1007 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
1008 {
1009 /* In little-endian objects, r_info isn't really a
1010 64-bit little-endian value: it has a 32-bit
1011 little-endian symbol index followed by four
1012 individual byte fields. Reorder INFO
1013 accordingly. */
1014 bfd_vma inf = rels[i].r_info;
1015 inf = (((inf & 0xffffffff) << 32)
1016 | ((inf >> 56) & 0xff)
1017 | ((inf >> 40) & 0xff00)
1018 | ((inf >> 24) & 0xff0000)
1019 | ((inf >> 8) & 0xff000000));
1020 rels[i].r_info = inf;
1021 }
1022 #endif /* BFD64 */
1023 }
1024
1025 free (erels);
1026 }
1027 *relsp = rels;
1028 *nrelsp = nrels;
1029 return 1;
1030 }
1031
1032 /* Returns the reloc type extracted from the reloc info field. */
1033
1034 static unsigned int
1035 get_reloc_type (bfd_vma reloc_info)
1036 {
1037 if (is_32bit_elf)
1038 return ELF32_R_TYPE (reloc_info);
1039
1040 switch (elf_header.e_machine)
1041 {
1042 case EM_MIPS:
1043 /* Note: We assume that reloc_info has already been adjusted for us. */
1044 return ELF64_MIPS_R_TYPE (reloc_info);
1045
1046 case EM_SPARCV9:
1047 return ELF64_R_TYPE_ID (reloc_info);
1048
1049 default:
1050 return ELF64_R_TYPE (reloc_info);
1051 }
1052 }
1053
1054 /* Return the symbol index extracted from the reloc info field. */
1055
1056 static bfd_vma
1057 get_reloc_symindex (bfd_vma reloc_info)
1058 {
1059 return is_32bit_elf ? ELF32_R_SYM (reloc_info) : ELF64_R_SYM (reloc_info);
1060 }
1061
1062 static inline bfd_boolean
1063 uses_msp430x_relocs (void)
1064 {
1065 return
1066 elf_header.e_machine == EM_MSP430 /* Paranoia. */
1067 /* GCC uses osabi == ELFOSBI_STANDALONE. */
1068 && (((elf_header.e_flags & EF_MSP430_MACH) == E_MSP430_MACH_MSP430X)
1069 /* TI compiler uses ELFOSABI_NONE. */
1070 || (elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE));
1071 }
1072
1073 /* Display the contents of the relocation data found at the specified
1074 offset. */
1075
1076 static void
1077 dump_relocations (FILE * file,
1078 unsigned long rel_offset,
1079 unsigned long rel_size,
1080 Elf_Internal_Sym * symtab,
1081 unsigned long nsyms,
1082 char * strtab,
1083 unsigned long strtablen,
1084 int is_rela,
1085 int is_dynsym)
1086 {
1087 unsigned int i;
1088 Elf_Internal_Rela * rels;
1089
1090 if (is_rela == UNKNOWN)
1091 is_rela = guess_is_rela (elf_header.e_machine);
1092
1093 if (is_rela)
1094 {
1095 if (!slurp_rela_relocs (file, rel_offset, rel_size, &rels, &rel_size))
1096 return;
1097 }
1098 else
1099 {
1100 if (!slurp_rel_relocs (file, rel_offset, rel_size, &rels, &rel_size))
1101 return;
1102 }
1103
1104 if (is_32bit_elf)
1105 {
1106 if (is_rela)
1107 {
1108 if (do_wide)
1109 printf (_(" Offset Info Type Sym. Value Symbol's Name + Addend\n"));
1110 else
1111 printf (_(" Offset Info Type Sym.Value Sym. Name + Addend\n"));
1112 }
1113 else
1114 {
1115 if (do_wide)
1116 printf (_(" Offset Info Type Sym. Value Symbol's Name\n"));
1117 else
1118 printf (_(" Offset Info Type Sym.Value Sym. Name\n"));
1119 }
1120 }
1121 else
1122 {
1123 if (is_rela)
1124 {
1125 if (do_wide)
1126 printf (_(" Offset Info Type Symbol's Value Symbol's Name + Addend\n"));
1127 else
1128 printf (_(" Offset Info Type Sym. Value Sym. Name + Addend\n"));
1129 }
1130 else
1131 {
1132 if (do_wide)
1133 printf (_(" Offset Info Type Symbol's Value Symbol's Name\n"));
1134 else
1135 printf (_(" Offset Info Type Sym. Value Sym. Name\n"));
1136 }
1137 }
1138
1139 for (i = 0; i < rel_size; i++)
1140 {
1141 const char * rtype;
1142 bfd_vma offset;
1143 bfd_vma inf;
1144 bfd_vma symtab_index;
1145 bfd_vma type;
1146
1147 offset = rels[i].r_offset;
1148 inf = rels[i].r_info;
1149
1150 type = get_reloc_type (inf);
1151 symtab_index = get_reloc_symindex (inf);
1152
1153 if (is_32bit_elf)
1154 {
1155 printf ("%8.8lx %8.8lx ",
1156 (unsigned long) offset & 0xffffffff,
1157 (unsigned long) inf & 0xffffffff);
1158 }
1159 else
1160 {
1161 #if BFD_HOST_64BIT_LONG
1162 printf (do_wide
1163 ? "%16.16lx %16.16lx "
1164 : "%12.12lx %12.12lx ",
1165 offset, inf);
1166 #elif BFD_HOST_64BIT_LONG_LONG
1167 #ifndef __MSVCRT__
1168 printf (do_wide
1169 ? "%16.16llx %16.16llx "
1170 : "%12.12llx %12.12llx ",
1171 offset, inf);
1172 #else
1173 printf (do_wide
1174 ? "%16.16I64x %16.16I64x "
1175 : "%12.12I64x %12.12I64x ",
1176 offset, inf);
1177 #endif
1178 #else
1179 printf (do_wide
1180 ? "%8.8lx%8.8lx %8.8lx%8.8lx "
1181 : "%4.4lx%8.8lx %4.4lx%8.8lx ",
1182 _bfd_int64_high (offset),
1183 _bfd_int64_low (offset),
1184 _bfd_int64_high (inf),
1185 _bfd_int64_low (inf));
1186 #endif
1187 }
1188
1189 switch (elf_header.e_machine)
1190 {
1191 default:
1192 rtype = NULL;
1193 break;
1194
1195 case EM_AARCH64:
1196 rtype = elf_aarch64_reloc_type (type);
1197 break;
1198
1199 case EM_M32R:
1200 case EM_CYGNUS_M32R:
1201 rtype = elf_m32r_reloc_type (type);
1202 break;
1203
1204 case EM_386:
1205 case EM_IAMCU:
1206 rtype = elf_i386_reloc_type (type);
1207 break;
1208
1209 case EM_68HC11:
1210 case EM_68HC12:
1211 rtype = elf_m68hc11_reloc_type (type);
1212 break;
1213
1214 case EM_68K:
1215 rtype = elf_m68k_reloc_type (type);
1216 break;
1217
1218 case EM_960:
1219 rtype = elf_i960_reloc_type (type);
1220 break;
1221
1222 case EM_AVR:
1223 case EM_AVR_OLD:
1224 rtype = elf_avr_reloc_type (type);
1225 break;
1226
1227 case EM_OLD_SPARCV9:
1228 case EM_SPARC32PLUS:
1229 case EM_SPARCV9:
1230 case EM_SPARC:
1231 rtype = elf_sparc_reloc_type (type);
1232 break;
1233
1234 case EM_SPU:
1235 rtype = elf_spu_reloc_type (type);
1236 break;
1237
1238 case EM_V800:
1239 rtype = v800_reloc_type (type);
1240 break;
1241 case EM_V850:
1242 case EM_CYGNUS_V850:
1243 rtype = v850_reloc_type (type);
1244 break;
1245
1246 case EM_D10V:
1247 case EM_CYGNUS_D10V:
1248 rtype = elf_d10v_reloc_type (type);
1249 break;
1250
1251 case EM_D30V:
1252 case EM_CYGNUS_D30V:
1253 rtype = elf_d30v_reloc_type (type);
1254 break;
1255
1256 case EM_DLX:
1257 rtype = elf_dlx_reloc_type (type);
1258 break;
1259
1260 case EM_SH:
1261 rtype = elf_sh_reloc_type (type);
1262 break;
1263
1264 case EM_MN10300:
1265 case EM_CYGNUS_MN10300:
1266 rtype = elf_mn10300_reloc_type (type);
1267 break;
1268
1269 case EM_MN10200:
1270 case EM_CYGNUS_MN10200:
1271 rtype = elf_mn10200_reloc_type (type);
1272 break;
1273
1274 case EM_FR30:
1275 case EM_CYGNUS_FR30:
1276 rtype = elf_fr30_reloc_type (type);
1277 break;
1278
1279 case EM_CYGNUS_FRV:
1280 rtype = elf_frv_reloc_type (type);
1281 break;
1282
1283 case EM_FT32:
1284 rtype = elf_ft32_reloc_type (type);
1285 break;
1286
1287 case EM_MCORE:
1288 rtype = elf_mcore_reloc_type (type);
1289 break;
1290
1291 case EM_MMIX:
1292 rtype = elf_mmix_reloc_type (type);
1293 break;
1294
1295 case EM_MOXIE:
1296 rtype = elf_moxie_reloc_type (type);
1297 break;
1298
1299 case EM_MSP430:
1300 if (uses_msp430x_relocs ())
1301 {
1302 rtype = elf_msp430x_reloc_type (type);
1303 break;
1304 }
1305 /* Fall through. */
1306 case EM_MSP430_OLD:
1307 rtype = elf_msp430_reloc_type (type);
1308 break;
1309
1310 case EM_NDS32:
1311 rtype = elf_nds32_reloc_type (type);
1312 break;
1313
1314 case EM_PPC:
1315 rtype = elf_ppc_reloc_type (type);
1316 break;
1317
1318 case EM_PPC64:
1319 rtype = elf_ppc64_reloc_type (type);
1320 break;
1321
1322 case EM_MIPS:
1323 case EM_MIPS_RS3_LE:
1324 rtype = elf_mips_reloc_type (type);
1325 break;
1326
1327 case EM_RISCV:
1328 rtype = elf_riscv_reloc_type (type);
1329 break;
1330
1331 case EM_ALPHA:
1332 rtype = elf_alpha_reloc_type (type);
1333 break;
1334
1335 case EM_ARM:
1336 rtype = elf_arm_reloc_type (type);
1337 break;
1338
1339 case EM_ARC:
1340 case EM_ARC_COMPACT:
1341 case EM_ARC_COMPACT2:
1342 rtype = elf_arc_reloc_type (type);
1343 break;
1344
1345 case EM_PARISC:
1346 rtype = elf_hppa_reloc_type (type);
1347 break;
1348
1349 case EM_H8_300:
1350 case EM_H8_300H:
1351 case EM_H8S:
1352 rtype = elf_h8_reloc_type (type);
1353 break;
1354
1355 case EM_OR1K:
1356 rtype = elf_or1k_reloc_type (type);
1357 break;
1358
1359 case EM_PJ:
1360 case EM_PJ_OLD:
1361 rtype = elf_pj_reloc_type (type);
1362 break;
1363 case EM_IA_64:
1364 rtype = elf_ia64_reloc_type (type);
1365 break;
1366
1367 case EM_CRIS:
1368 rtype = elf_cris_reloc_type (type);
1369 break;
1370
1371 case EM_860:
1372 rtype = elf_i860_reloc_type (type);
1373 break;
1374
1375 case EM_X86_64:
1376 case EM_L1OM:
1377 case EM_K1OM:
1378 rtype = elf_x86_64_reloc_type (type);
1379 break;
1380
1381 case EM_S370:
1382 rtype = i370_reloc_type (type);
1383 break;
1384
1385 case EM_S390_OLD:
1386 case EM_S390:
1387 rtype = elf_s390_reloc_type (type);
1388 break;
1389
1390 case EM_SCORE:
1391 rtype = elf_score_reloc_type (type);
1392 break;
1393
1394 case EM_XSTORMY16:
1395 rtype = elf_xstormy16_reloc_type (type);
1396 break;
1397
1398 case EM_CRX:
1399 rtype = elf_crx_reloc_type (type);
1400 break;
1401
1402 case EM_VAX:
1403 rtype = elf_vax_reloc_type (type);
1404 break;
1405
1406 case EM_VISIUM:
1407 rtype = elf_visium_reloc_type (type);
1408 break;
1409
1410 case EM_ADAPTEVA_EPIPHANY:
1411 rtype = elf_epiphany_reloc_type (type);
1412 break;
1413
1414 case EM_IP2K:
1415 case EM_IP2K_OLD:
1416 rtype = elf_ip2k_reloc_type (type);
1417 break;
1418
1419 case EM_IQ2000:
1420 rtype = elf_iq2000_reloc_type (type);
1421 break;
1422
1423 case EM_XTENSA_OLD:
1424 case EM_XTENSA:
1425 rtype = elf_xtensa_reloc_type (type);
1426 break;
1427
1428 case EM_LATTICEMICO32:
1429 rtype = elf_lm32_reloc_type (type);
1430 break;
1431
1432 case EM_M32C_OLD:
1433 case EM_M32C:
1434 rtype = elf_m32c_reloc_type (type);
1435 break;
1436
1437 case EM_MT:
1438 rtype = elf_mt_reloc_type (type);
1439 break;
1440
1441 case EM_BLACKFIN:
1442 rtype = elf_bfin_reloc_type (type);
1443 break;
1444
1445 case EM_CYGNUS_MEP:
1446 rtype = elf_mep_reloc_type (type);
1447 break;
1448
1449 case EM_CR16:
1450 rtype = elf_cr16_reloc_type (type);
1451 break;
1452
1453 case EM_MICROBLAZE:
1454 case EM_MICROBLAZE_OLD:
1455 rtype = elf_microblaze_reloc_type (type);
1456 break;
1457
1458 case EM_RL78:
1459 rtype = elf_rl78_reloc_type (type);
1460 break;
1461
1462 case EM_RX:
1463 rtype = elf_rx_reloc_type (type);
1464 break;
1465
1466 case EM_METAG:
1467 rtype = elf_metag_reloc_type (type);
1468 break;
1469
1470 case EM_XC16X:
1471 case EM_C166:
1472 rtype = elf_xc16x_reloc_type (type);
1473 break;
1474
1475 case EM_TI_C6000:
1476 rtype = elf_tic6x_reloc_type (type);
1477 break;
1478
1479 case EM_TILEGX:
1480 rtype = elf_tilegx_reloc_type (type);
1481 break;
1482
1483 case EM_TILEPRO:
1484 rtype = elf_tilepro_reloc_type (type);
1485 break;
1486
1487 case EM_XGATE:
1488 rtype = elf_xgate_reloc_type (type);
1489 break;
1490
1491 case EM_ALTERA_NIOS2:
1492 rtype = elf_nios2_reloc_type (type);
1493 break;
1494
1495 case EM_TI_PRU:
1496 rtype = elf_pru_reloc_type (type);
1497 break;
1498 }
1499
1500 if (rtype == NULL)
1501 printf (_("unrecognized: %-7lx"), (unsigned long) type & 0xffffffff);
1502 else
1503 printf (do_wide ? "%-22.22s" : "%-17.17s", rtype);
1504
1505 if (elf_header.e_machine == EM_ALPHA
1506 && rtype != NULL
1507 && streq (rtype, "R_ALPHA_LITUSE")
1508 && is_rela)
1509 {
1510 switch (rels[i].r_addend)
1511 {
1512 case LITUSE_ALPHA_ADDR: rtype = "ADDR"; break;
1513 case LITUSE_ALPHA_BASE: rtype = "BASE"; break;
1514 case LITUSE_ALPHA_BYTOFF: rtype = "BYTOFF"; break;
1515 case LITUSE_ALPHA_JSR: rtype = "JSR"; break;
1516 case LITUSE_ALPHA_TLSGD: rtype = "TLSGD"; break;
1517 case LITUSE_ALPHA_TLSLDM: rtype = "TLSLDM"; break;
1518 case LITUSE_ALPHA_JSRDIRECT: rtype = "JSRDIRECT"; break;
1519 default: rtype = NULL;
1520 }
1521 if (rtype)
1522 printf (" (%s)", rtype);
1523 else
1524 {
1525 putchar (' ');
1526 printf (_("<unknown addend: %lx>"),
1527 (unsigned long) rels[i].r_addend);
1528 }
1529 }
1530 else if (symtab_index)
1531 {
1532 if (symtab == NULL || symtab_index >= nsyms)
1533 printf (_(" bad symbol index: %08lx"), (unsigned long) symtab_index);
1534 else
1535 {
1536 Elf_Internal_Sym * psym;
1537 const char * version_string;
1538 enum versioned_symbol_info sym_info;
1539 unsigned short vna_other;
1540
1541 psym = symtab + symtab_index;
1542
1543 version_string
1544 = get_symbol_version_string (file, is_dynsym,
1545 strtab, strtablen,
1546 symtab_index,
1547 psym,
1548 &sym_info,
1549 &vna_other);
1550
1551 printf (" ");
1552
1553 if (ELF_ST_TYPE (psym->st_info) == STT_GNU_IFUNC)
1554 {
1555 const char * name;
1556 unsigned int len;
1557 unsigned int width = is_32bit_elf ? 8 : 14;
1558
1559 /* Relocations against GNU_IFUNC symbols do not use the value
1560 of the symbol as the address to relocate against. Instead
1561 they invoke the function named by the symbol and use its
1562 result as the address for relocation.
1563
1564 To indicate this to the user, do not display the value of
1565 the symbol in the "Symbols's Value" field. Instead show
1566 its name followed by () as a hint that the symbol is
1567 invoked. */
1568
1569 if (strtab == NULL
1570 || psym->st_name == 0
1571 || psym->st_name >= strtablen)
1572 name = "??";
1573 else
1574 name = strtab + psym->st_name;
1575
1576 len = print_symbol (width, name);
1577 if (version_string)
1578 printf (sym_info == symbol_public ? "@@%s" : "@%s",
1579 version_string);
1580 printf ("()%-*s", len <= width ? (width + 1) - len : 1, " ");
1581 }
1582 else
1583 {
1584 print_vma (psym->st_value, LONG_HEX);
1585
1586 printf (is_32bit_elf ? " " : " ");
1587 }
1588
1589 if (psym->st_name == 0)
1590 {
1591 const char * sec_name = "<null>";
1592 char name_buf[40];
1593
1594 if (ELF_ST_TYPE (psym->st_info) == STT_SECTION)
1595 {
1596 if (psym->st_shndx < elf_header.e_shnum)
1597 sec_name = SECTION_NAME (section_headers + psym->st_shndx);
1598 else if (psym->st_shndx == SHN_ABS)
1599 sec_name = "ABS";
1600 else if (psym->st_shndx == SHN_COMMON)
1601 sec_name = "COMMON";
1602 else if ((elf_header.e_machine == EM_MIPS
1603 && psym->st_shndx == SHN_MIPS_SCOMMON)
1604 || (elf_header.e_machine == EM_TI_C6000
1605 && psym->st_shndx == SHN_TIC6X_SCOMMON))
1606 sec_name = "SCOMMON";
1607 else if (elf_header.e_machine == EM_MIPS
1608 && psym->st_shndx == SHN_MIPS_SUNDEFINED)
1609 sec_name = "SUNDEF";
1610 else if ((elf_header.e_machine == EM_X86_64
1611 || elf_header.e_machine == EM_L1OM
1612 || elf_header.e_machine == EM_K1OM)
1613 && psym->st_shndx == SHN_X86_64_LCOMMON)
1614 sec_name = "LARGE_COMMON";
1615 else if (elf_header.e_machine == EM_IA_64
1616 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX
1617 && psym->st_shndx == SHN_IA_64_ANSI_COMMON)
1618 sec_name = "ANSI_COM";
1619 else if (is_ia64_vms ()
1620 && psym->st_shndx == SHN_IA_64_VMS_SYMVEC)
1621 sec_name = "VMS_SYMVEC";
1622 else
1623 {
1624 sprintf (name_buf, "<section 0x%x>",
1625 (unsigned int) psym->st_shndx);
1626 sec_name = name_buf;
1627 }
1628 }
1629 print_symbol (22, sec_name);
1630 }
1631 else if (strtab == NULL)
1632 printf (_("<string table index: %3ld>"), psym->st_name);
1633 else if (psym->st_name >= strtablen)
1634 printf (_("<corrupt string table index: %3ld>"), psym->st_name);
1635 else
1636 {
1637 print_symbol (22, strtab + psym->st_name);
1638 if (version_string)
1639 printf (sym_info == symbol_public ? "@@%s" : "@%s",
1640 version_string);
1641 }
1642
1643 if (is_rela)
1644 {
1645 bfd_vma off = rels[i].r_addend;
1646
1647 if ((bfd_signed_vma) off < 0)
1648 printf (" - %" BFD_VMA_FMT "x", - off);
1649 else
1650 printf (" + %" BFD_VMA_FMT "x", off);
1651 }
1652 }
1653 }
1654 else if (is_rela)
1655 {
1656 bfd_vma off = rels[i].r_addend;
1657
1658 printf ("%*c", is_32bit_elf ? 12 : 20, ' ');
1659 if ((bfd_signed_vma) off < 0)
1660 printf ("-%" BFD_VMA_FMT "x", - off);
1661 else
1662 printf ("%" BFD_VMA_FMT "x", off);
1663 }
1664
1665 if (elf_header.e_machine == EM_SPARCV9
1666 && rtype != NULL
1667 && streq (rtype, "R_SPARC_OLO10"))
1668 printf (" + %lx", (unsigned long) ELF64_R_TYPE_DATA (inf));
1669
1670 putchar ('\n');
1671
1672 #ifdef BFD64
1673 if (! is_32bit_elf && elf_header.e_machine == EM_MIPS)
1674 {
1675 bfd_vma type2 = ELF64_MIPS_R_TYPE2 (inf);
1676 bfd_vma type3 = ELF64_MIPS_R_TYPE3 (inf);
1677 const char * rtype2 = elf_mips_reloc_type (type2);
1678 const char * rtype3 = elf_mips_reloc_type (type3);
1679
1680 printf (" Type2: ");
1681
1682 if (rtype2 == NULL)
1683 printf (_("unrecognized: %-7lx"),
1684 (unsigned long) type2 & 0xffffffff);
1685 else
1686 printf ("%-17.17s", rtype2);
1687
1688 printf ("\n Type3: ");
1689
1690 if (rtype3 == NULL)
1691 printf (_("unrecognized: %-7lx"),
1692 (unsigned long) type3 & 0xffffffff);
1693 else
1694 printf ("%-17.17s", rtype3);
1695
1696 putchar ('\n');
1697 }
1698 #endif /* BFD64 */
1699 }
1700
1701 free (rels);
1702 }
1703
1704 static const char *
1705 get_mips_dynamic_type (unsigned long type)
1706 {
1707 switch (type)
1708 {
1709 case DT_MIPS_RLD_VERSION: return "MIPS_RLD_VERSION";
1710 case DT_MIPS_TIME_STAMP: return "MIPS_TIME_STAMP";
1711 case DT_MIPS_ICHECKSUM: return "MIPS_ICHECKSUM";
1712 case DT_MIPS_IVERSION: return "MIPS_IVERSION";
1713 case DT_MIPS_FLAGS: return "MIPS_FLAGS";
1714 case DT_MIPS_BASE_ADDRESS: return "MIPS_BASE_ADDRESS";
1715 case DT_MIPS_MSYM: return "MIPS_MSYM";
1716 case DT_MIPS_CONFLICT: return "MIPS_CONFLICT";
1717 case DT_MIPS_LIBLIST: return "MIPS_LIBLIST";
1718 case DT_MIPS_LOCAL_GOTNO: return "MIPS_LOCAL_GOTNO";
1719 case DT_MIPS_CONFLICTNO: return "MIPS_CONFLICTNO";
1720 case DT_MIPS_LIBLISTNO: return "MIPS_LIBLISTNO";
1721 case DT_MIPS_SYMTABNO: return "MIPS_SYMTABNO";
1722 case DT_MIPS_UNREFEXTNO: return "MIPS_UNREFEXTNO";
1723 case DT_MIPS_GOTSYM: return "MIPS_GOTSYM";
1724 case DT_MIPS_HIPAGENO: return "MIPS_HIPAGENO";
1725 case DT_MIPS_RLD_MAP: return "MIPS_RLD_MAP";
1726 case DT_MIPS_RLD_MAP_REL: return "MIPS_RLD_MAP_REL";
1727 case DT_MIPS_DELTA_CLASS: return "MIPS_DELTA_CLASS";
1728 case DT_MIPS_DELTA_CLASS_NO: return "MIPS_DELTA_CLASS_NO";
1729 case DT_MIPS_DELTA_INSTANCE: return "MIPS_DELTA_INSTANCE";
1730 case DT_MIPS_DELTA_INSTANCE_NO: return "MIPS_DELTA_INSTANCE_NO";
1731 case DT_MIPS_DELTA_RELOC: return "MIPS_DELTA_RELOC";
1732 case DT_MIPS_DELTA_RELOC_NO: return "MIPS_DELTA_RELOC_NO";
1733 case DT_MIPS_DELTA_SYM: return "MIPS_DELTA_SYM";
1734 case DT_MIPS_DELTA_SYM_NO: return "MIPS_DELTA_SYM_NO";
1735 case DT_MIPS_DELTA_CLASSSYM: return "MIPS_DELTA_CLASSSYM";
1736 case DT_MIPS_DELTA_CLASSSYM_NO: return "MIPS_DELTA_CLASSSYM_NO";
1737 case DT_MIPS_CXX_FLAGS: return "MIPS_CXX_FLAGS";
1738 case DT_MIPS_PIXIE_INIT: return "MIPS_PIXIE_INIT";
1739 case DT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
1740 case DT_MIPS_LOCALPAGE_GOTIDX: return "MIPS_LOCALPAGE_GOTIDX";
1741 case DT_MIPS_LOCAL_GOTIDX: return "MIPS_LOCAL_GOTIDX";
1742 case DT_MIPS_HIDDEN_GOTIDX: return "MIPS_HIDDEN_GOTIDX";
1743 case DT_MIPS_PROTECTED_GOTIDX: return "MIPS_PROTECTED_GOTIDX";
1744 case DT_MIPS_OPTIONS: return "MIPS_OPTIONS";
1745 case DT_MIPS_INTERFACE: return "MIPS_INTERFACE";
1746 case DT_MIPS_DYNSTR_ALIGN: return "MIPS_DYNSTR_ALIGN";
1747 case DT_MIPS_INTERFACE_SIZE: return "MIPS_INTERFACE_SIZE";
1748 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: return "MIPS_RLD_TEXT_RESOLVE_ADDR";
1749 case DT_MIPS_PERF_SUFFIX: return "MIPS_PERF_SUFFIX";
1750 case DT_MIPS_COMPACT_SIZE: return "MIPS_COMPACT_SIZE";
1751 case DT_MIPS_GP_VALUE: return "MIPS_GP_VALUE";
1752 case DT_MIPS_AUX_DYNAMIC: return "MIPS_AUX_DYNAMIC";
1753 case DT_MIPS_PLTGOT: return "MIPS_PLTGOT";
1754 case DT_MIPS_RWPLT: return "MIPS_RWPLT";
1755 default:
1756 return NULL;
1757 }
1758 }
1759
1760 static const char *
1761 get_sparc64_dynamic_type (unsigned long type)
1762 {
1763 switch (type)
1764 {
1765 case DT_SPARC_REGISTER: return "SPARC_REGISTER";
1766 default:
1767 return NULL;
1768 }
1769 }
1770
1771 static const char *
1772 get_ppc_dynamic_type (unsigned long type)
1773 {
1774 switch (type)
1775 {
1776 case DT_PPC_GOT: return "PPC_GOT";
1777 case DT_PPC_OPT: return "PPC_OPT";
1778 default:
1779 return NULL;
1780 }
1781 }
1782
1783 static const char *
1784 get_ppc64_dynamic_type (unsigned long type)
1785 {
1786 switch (type)
1787 {
1788 case DT_PPC64_GLINK: return "PPC64_GLINK";
1789 case DT_PPC64_OPD: return "PPC64_OPD";
1790 case DT_PPC64_OPDSZ: return "PPC64_OPDSZ";
1791 case DT_PPC64_OPT: return "PPC64_OPT";
1792 default:
1793 return NULL;
1794 }
1795 }
1796
1797 static const char *
1798 get_parisc_dynamic_type (unsigned long type)
1799 {
1800 switch (type)
1801 {
1802 case DT_HP_LOAD_MAP: return "HP_LOAD_MAP";
1803 case DT_HP_DLD_FLAGS: return "HP_DLD_FLAGS";
1804 case DT_HP_DLD_HOOK: return "HP_DLD_HOOK";
1805 case DT_HP_UX10_INIT: return "HP_UX10_INIT";
1806 case DT_HP_UX10_INITSZ: return "HP_UX10_INITSZ";
1807 case DT_HP_PREINIT: return "HP_PREINIT";
1808 case DT_HP_PREINITSZ: return "HP_PREINITSZ";
1809 case DT_HP_NEEDED: return "HP_NEEDED";
1810 case DT_HP_TIME_STAMP: return "HP_TIME_STAMP";
1811 case DT_HP_CHECKSUM: return "HP_CHECKSUM";
1812 case DT_HP_GST_SIZE: return "HP_GST_SIZE";
1813 case DT_HP_GST_VERSION: return "HP_GST_VERSION";
1814 case DT_HP_GST_HASHVAL: return "HP_GST_HASHVAL";
1815 case DT_HP_EPLTREL: return "HP_GST_EPLTREL";
1816 case DT_HP_EPLTRELSZ: return "HP_GST_EPLTRELSZ";
1817 case DT_HP_FILTERED: return "HP_FILTERED";
1818 case DT_HP_FILTER_TLS: return "HP_FILTER_TLS";
1819 case DT_HP_COMPAT_FILTERED: return "HP_COMPAT_FILTERED";
1820 case DT_HP_LAZYLOAD: return "HP_LAZYLOAD";
1821 case DT_HP_BIND_NOW_COUNT: return "HP_BIND_NOW_COUNT";
1822 case DT_PLT: return "PLT";
1823 case DT_PLT_SIZE: return "PLT_SIZE";
1824 case DT_DLT: return "DLT";
1825 case DT_DLT_SIZE: return "DLT_SIZE";
1826 default:
1827 return NULL;
1828 }
1829 }
1830
1831 static const char *
1832 get_ia64_dynamic_type (unsigned long type)
1833 {
1834 switch (type)
1835 {
1836 case DT_IA_64_PLT_RESERVE: return "IA_64_PLT_RESERVE";
1837 case DT_IA_64_VMS_SUBTYPE: return "VMS_SUBTYPE";
1838 case DT_IA_64_VMS_IMGIOCNT: return "VMS_IMGIOCNT";
1839 case DT_IA_64_VMS_LNKFLAGS: return "VMS_LNKFLAGS";
1840 case DT_IA_64_VMS_VIR_MEM_BLK_SIZ: return "VMS_VIR_MEM_BLK_SIZ";
1841 case DT_IA_64_VMS_IDENT: return "VMS_IDENT";
1842 case DT_IA_64_VMS_NEEDED_IDENT: return "VMS_NEEDED_IDENT";
1843 case DT_IA_64_VMS_IMG_RELA_CNT: return "VMS_IMG_RELA_CNT";
1844 case DT_IA_64_VMS_SEG_RELA_CNT: return "VMS_SEG_RELA_CNT";
1845 case DT_IA_64_VMS_FIXUP_RELA_CNT: return "VMS_FIXUP_RELA_CNT";
1846 case DT_IA_64_VMS_FIXUP_NEEDED: return "VMS_FIXUP_NEEDED";
1847 case DT_IA_64_VMS_SYMVEC_CNT: return "VMS_SYMVEC_CNT";
1848 case DT_IA_64_VMS_XLATED: return "VMS_XLATED";
1849 case DT_IA_64_VMS_STACKSIZE: return "VMS_STACKSIZE";
1850 case DT_IA_64_VMS_UNWINDSZ: return "VMS_UNWINDSZ";
1851 case DT_IA_64_VMS_UNWIND_CODSEG: return "VMS_UNWIND_CODSEG";
1852 case DT_IA_64_VMS_UNWIND_INFOSEG: return "VMS_UNWIND_INFOSEG";
1853 case DT_IA_64_VMS_LINKTIME: return "VMS_LINKTIME";
1854 case DT_IA_64_VMS_SEG_NO: return "VMS_SEG_NO";
1855 case DT_IA_64_VMS_SYMVEC_OFFSET: return "VMS_SYMVEC_OFFSET";
1856 case DT_IA_64_VMS_SYMVEC_SEG: return "VMS_SYMVEC_SEG";
1857 case DT_IA_64_VMS_UNWIND_OFFSET: return "VMS_UNWIND_OFFSET";
1858 case DT_IA_64_VMS_UNWIND_SEG: return "VMS_UNWIND_SEG";
1859 case DT_IA_64_VMS_STRTAB_OFFSET: return "VMS_STRTAB_OFFSET";
1860 case DT_IA_64_VMS_SYSVER_OFFSET: return "VMS_SYSVER_OFFSET";
1861 case DT_IA_64_VMS_IMG_RELA_OFF: return "VMS_IMG_RELA_OFF";
1862 case DT_IA_64_VMS_SEG_RELA_OFF: return "VMS_SEG_RELA_OFF";
1863 case DT_IA_64_VMS_FIXUP_RELA_OFF: return "VMS_FIXUP_RELA_OFF";
1864 case DT_IA_64_VMS_PLTGOT_OFFSET: return "VMS_PLTGOT_OFFSET";
1865 case DT_IA_64_VMS_PLTGOT_SEG: return "VMS_PLTGOT_SEG";
1866 case DT_IA_64_VMS_FPMODE: return "VMS_FPMODE";
1867 default:
1868 return NULL;
1869 }
1870 }
1871
1872 static const char *
1873 get_solaris_section_type (unsigned long type)
1874 {
1875 switch (type)
1876 {
1877 case 0x6fffffee: return "SUNW_ancillary";
1878 case 0x6fffffef: return "SUNW_capchain";
1879 case 0x6ffffff0: return "SUNW_capinfo";
1880 case 0x6ffffff1: return "SUNW_symsort";
1881 case 0x6ffffff2: return "SUNW_tlssort";
1882 case 0x6ffffff3: return "SUNW_LDYNSYM";
1883 case 0x6ffffff4: return "SUNW_dof";
1884 case 0x6ffffff5: return "SUNW_cap";
1885 case 0x6ffffff6: return "SUNW_SIGNATURE";
1886 case 0x6ffffff7: return "SUNW_ANNOTATE";
1887 case 0x6ffffff8: return "SUNW_DEBUGSTR";
1888 case 0x6ffffff9: return "SUNW_DEBUG";
1889 case 0x6ffffffa: return "SUNW_move";
1890 case 0x6ffffffb: return "SUNW_COMDAT";
1891 case 0x6ffffffc: return "SUNW_syminfo";
1892 case 0x6ffffffd: return "SUNW_verdef";
1893 case 0x6ffffffe: return "SUNW_verneed";
1894 case 0x6fffffff: return "SUNW_versym";
1895 case 0x70000000: return "SPARC_GOTDATA";
1896 default: return NULL;
1897 }
1898 }
1899
1900 static const char *
1901 get_alpha_dynamic_type (unsigned long type)
1902 {
1903 switch (type)
1904 {
1905 case DT_ALPHA_PLTRO: return "ALPHA_PLTRO";
1906 default:
1907 return NULL;
1908 }
1909 }
1910
1911 static const char *
1912 get_score_dynamic_type (unsigned long type)
1913 {
1914 switch (type)
1915 {
1916 case DT_SCORE_BASE_ADDRESS: return "SCORE_BASE_ADDRESS";
1917 case DT_SCORE_LOCAL_GOTNO: return "SCORE_LOCAL_GOTNO";
1918 case DT_SCORE_SYMTABNO: return "SCORE_SYMTABNO";
1919 case DT_SCORE_GOTSYM: return "SCORE_GOTSYM";
1920 case DT_SCORE_UNREFEXTNO: return "SCORE_UNREFEXTNO";
1921 case DT_SCORE_HIPAGENO: return "SCORE_HIPAGENO";
1922 default:
1923 return NULL;
1924 }
1925 }
1926
1927 static const char *
1928 get_tic6x_dynamic_type (unsigned long type)
1929 {
1930 switch (type)
1931 {
1932 case DT_C6000_GSYM_OFFSET: return "C6000_GSYM_OFFSET";
1933 case DT_C6000_GSTR_OFFSET: return "C6000_GSTR_OFFSET";
1934 case DT_C6000_DSBT_BASE: return "C6000_DSBT_BASE";
1935 case DT_C6000_DSBT_SIZE: return "C6000_DSBT_SIZE";
1936 case DT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
1937 case DT_C6000_DSBT_INDEX: return "C6000_DSBT_INDEX";
1938 default:
1939 return NULL;
1940 }
1941 }
1942
1943 static const char *
1944 get_nios2_dynamic_type (unsigned long type)
1945 {
1946 switch (type)
1947 {
1948 case DT_NIOS2_GP: return "NIOS2_GP";
1949 default:
1950 return NULL;
1951 }
1952 }
1953
1954 static const char *
1955 get_solaris_dynamic_type (unsigned long type)
1956 {
1957 switch (type)
1958 {
1959 case 0x6000000d: return "SUNW_AUXILIARY";
1960 case 0x6000000e: return "SUNW_RTLDINF";
1961 case 0x6000000f: return "SUNW_FILTER";
1962 case 0x60000010: return "SUNW_CAP";
1963 case 0x60000011: return "SUNW_SYMTAB";
1964 case 0x60000012: return "SUNW_SYMSZ";
1965 case 0x60000013: return "SUNW_SORTENT";
1966 case 0x60000014: return "SUNW_SYMSORT";
1967 case 0x60000015: return "SUNW_SYMSORTSZ";
1968 case 0x60000016: return "SUNW_TLSSORT";
1969 case 0x60000017: return "SUNW_TLSSORTSZ";
1970 case 0x60000018: return "SUNW_CAPINFO";
1971 case 0x60000019: return "SUNW_STRPAD";
1972 case 0x6000001a: return "SUNW_CAPCHAIN";
1973 case 0x6000001b: return "SUNW_LDMACH";
1974 case 0x6000001d: return "SUNW_CAPCHAINENT";
1975 case 0x6000001f: return "SUNW_CAPCHAINSZ";
1976 case 0x60000021: return "SUNW_PARENT";
1977 case 0x60000023: return "SUNW_ASLR";
1978 case 0x60000025: return "SUNW_RELAX";
1979 case 0x60000029: return "SUNW_NXHEAP";
1980 case 0x6000002b: return "SUNW_NXSTACK";
1981
1982 case 0x70000001: return "SPARC_REGISTER";
1983 case 0x7ffffffd: return "AUXILIARY";
1984 case 0x7ffffffe: return "USED";
1985 case 0x7fffffff: return "FILTER";
1986
1987 default: return NULL;
1988 }
1989 }
1990
1991 static const char *
1992 get_dynamic_type (unsigned long type)
1993 {
1994 static char buff[64];
1995
1996 switch (type)
1997 {
1998 case DT_NULL: return "NULL";
1999 case DT_NEEDED: return "NEEDED";
2000 case DT_PLTRELSZ: return "PLTRELSZ";
2001 case DT_PLTGOT: return "PLTGOT";
2002 case DT_HASH: return "HASH";
2003 case DT_STRTAB: return "STRTAB";
2004 case DT_SYMTAB: return "SYMTAB";
2005 case DT_RELA: return "RELA";
2006 case DT_RELASZ: return "RELASZ";
2007 case DT_RELAENT: return "RELAENT";
2008 case DT_STRSZ: return "STRSZ";
2009 case DT_SYMENT: return "SYMENT";
2010 case DT_INIT: return "INIT";
2011 case DT_FINI: return "FINI";
2012 case DT_SONAME: return "SONAME";
2013 case DT_RPATH: return "RPATH";
2014 case DT_SYMBOLIC: return "SYMBOLIC";
2015 case DT_REL: return "REL";
2016 case DT_RELSZ: return "RELSZ";
2017 case DT_RELENT: return "RELENT";
2018 case DT_PLTREL: return "PLTREL";
2019 case DT_DEBUG: return "DEBUG";
2020 case DT_TEXTREL: return "TEXTREL";
2021 case DT_JMPREL: return "JMPREL";
2022 case DT_BIND_NOW: return "BIND_NOW";
2023 case DT_INIT_ARRAY: return "INIT_ARRAY";
2024 case DT_FINI_ARRAY: return "FINI_ARRAY";
2025 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ";
2026 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ";
2027 case DT_RUNPATH: return "RUNPATH";
2028 case DT_FLAGS: return "FLAGS";
2029
2030 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY";
2031 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ";
2032 case DT_SYMTAB_SHNDX: return "SYMTAB_SHNDX";
2033
2034 case DT_CHECKSUM: return "CHECKSUM";
2035 case DT_PLTPADSZ: return "PLTPADSZ";
2036 case DT_MOVEENT: return "MOVEENT";
2037 case DT_MOVESZ: return "MOVESZ";
2038 case DT_FEATURE: return "FEATURE";
2039 case DT_POSFLAG_1: return "POSFLAG_1";
2040 case DT_SYMINSZ: return "SYMINSZ";
2041 case DT_SYMINENT: return "SYMINENT"; /* aka VALRNGHI */
2042
2043 case DT_ADDRRNGLO: return "ADDRRNGLO";
2044 case DT_CONFIG: return "CONFIG";
2045 case DT_DEPAUDIT: return "DEPAUDIT";
2046 case DT_AUDIT: return "AUDIT";
2047 case DT_PLTPAD: return "PLTPAD";
2048 case DT_MOVETAB: return "MOVETAB";
2049 case DT_SYMINFO: return "SYMINFO"; /* aka ADDRRNGHI */
2050
2051 case DT_VERSYM: return "VERSYM";
2052
2053 case DT_TLSDESC_GOT: return "TLSDESC_GOT";
2054 case DT_TLSDESC_PLT: return "TLSDESC_PLT";
2055 case DT_RELACOUNT: return "RELACOUNT";
2056 case DT_RELCOUNT: return "RELCOUNT";
2057 case DT_FLAGS_1: return "FLAGS_1";
2058 case DT_VERDEF: return "VERDEF";
2059 case DT_VERDEFNUM: return "VERDEFNUM";
2060 case DT_VERNEED: return "VERNEED";
2061 case DT_VERNEEDNUM: return "VERNEEDNUM";
2062
2063 case DT_AUXILIARY: return "AUXILIARY";
2064 case DT_USED: return "USED";
2065 case DT_FILTER: return "FILTER";
2066
2067 case DT_GNU_PRELINKED: return "GNU_PRELINKED";
2068 case DT_GNU_CONFLICT: return "GNU_CONFLICT";
2069 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ";
2070 case DT_GNU_LIBLIST: return "GNU_LIBLIST";
2071 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ";
2072 case DT_GNU_HASH: return "GNU_HASH";
2073
2074 default:
2075 if ((type >= DT_LOPROC) && (type <= DT_HIPROC))
2076 {
2077 const char * result;
2078
2079 switch (elf_header.e_machine)
2080 {
2081 case EM_MIPS:
2082 case EM_MIPS_RS3_LE:
2083 result = get_mips_dynamic_type (type);
2084 break;
2085 case EM_SPARCV9:
2086 result = get_sparc64_dynamic_type (type);
2087 break;
2088 case EM_PPC:
2089 result = get_ppc_dynamic_type (type);
2090 break;
2091 case EM_PPC64:
2092 result = get_ppc64_dynamic_type (type);
2093 break;
2094 case EM_IA_64:
2095 result = get_ia64_dynamic_type (type);
2096 break;
2097 case EM_ALPHA:
2098 result = get_alpha_dynamic_type (type);
2099 break;
2100 case EM_SCORE:
2101 result = get_score_dynamic_type (type);
2102 break;
2103 case EM_TI_C6000:
2104 result = get_tic6x_dynamic_type (type);
2105 break;
2106 case EM_ALTERA_NIOS2:
2107 result = get_nios2_dynamic_type (type);
2108 break;
2109 default:
2110 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
2111 result = get_solaris_dynamic_type (type);
2112 else
2113 result = NULL;
2114 break;
2115 }
2116
2117 if (result != NULL)
2118 return result;
2119
2120 snprintf (buff, sizeof (buff), _("Processor Specific: %lx"), type);
2121 }
2122 else if (((type >= DT_LOOS) && (type <= DT_HIOS))
2123 || (elf_header.e_machine == EM_PARISC
2124 && (type >= OLD_DT_LOOS) && (type <= OLD_DT_HIOS)))
2125 {
2126 const char * result;
2127
2128 switch (elf_header.e_machine)
2129 {
2130 case EM_PARISC:
2131 result = get_parisc_dynamic_type (type);
2132 break;
2133 case EM_IA_64:
2134 result = get_ia64_dynamic_type (type);
2135 break;
2136 default:
2137 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
2138 result = get_solaris_dynamic_type (type);
2139 else
2140 result = NULL;
2141 break;
2142 }
2143
2144 if (result != NULL)
2145 return result;
2146
2147 snprintf (buff, sizeof (buff), _("Operating System specific: %lx"),
2148 type);
2149 }
2150 else
2151 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), type);
2152
2153 return buff;
2154 }
2155 }
2156
2157 static char *
2158 get_file_type (unsigned e_type)
2159 {
2160 static char buff[32];
2161
2162 switch (e_type)
2163 {
2164 case ET_NONE: return _("NONE (None)");
2165 case ET_REL: return _("REL (Relocatable file)");
2166 case ET_EXEC: return _("EXEC (Executable file)");
2167 case ET_DYN: return _("DYN (Shared object file)");
2168 case ET_CORE: return _("CORE (Core file)");
2169
2170 default:
2171 if ((e_type >= ET_LOPROC) && (e_type <= ET_HIPROC))
2172 snprintf (buff, sizeof (buff), _("Processor Specific: (%x)"), e_type);
2173 else if ((e_type >= ET_LOOS) && (e_type <= ET_HIOS))
2174 snprintf (buff, sizeof (buff), _("OS Specific: (%x)"), e_type);
2175 else
2176 snprintf (buff, sizeof (buff), _("<unknown>: %x"), e_type);
2177 return buff;
2178 }
2179 }
2180
2181 static char *
2182 get_machine_name (unsigned e_machine)
2183 {
2184 static char buff[64]; /* XXX */
2185
2186 switch (e_machine)
2187 {
2188 case EM_NONE: return _("None");
2189 case EM_AARCH64: return "AArch64";
2190 case EM_M32: return "WE32100";
2191 case EM_SPARC: return "Sparc";
2192 case EM_SPU: return "SPU";
2193 case EM_386: return "Intel 80386";
2194 case EM_68K: return "MC68000";
2195 case EM_88K: return "MC88000";
2196 case EM_IAMCU: return "Intel MCU";
2197 case EM_860: return "Intel 80860";
2198 case EM_MIPS: return "MIPS R3000";
2199 case EM_S370: return "IBM System/370";
2200 case EM_MIPS_RS3_LE: return "MIPS R4000 big-endian";
2201 case EM_OLD_SPARCV9: return "Sparc v9 (old)";
2202 case EM_PARISC: return "HPPA";
2203 case EM_PPC_OLD: return "Power PC (old)";
2204 case EM_SPARC32PLUS: return "Sparc v8+" ;
2205 case EM_960: return "Intel 90860";
2206 case EM_PPC: return "PowerPC";
2207 case EM_PPC64: return "PowerPC64";
2208 case EM_FR20: return "Fujitsu FR20";
2209 case EM_FT32: return "FTDI FT32";
2210 case EM_RH32: return "TRW RH32";
2211 case EM_MCORE: return "MCORE";
2212 case EM_ARM: return "ARM";
2213 case EM_OLD_ALPHA: return "Digital Alpha (old)";
2214 case EM_SH: return "Renesas / SuperH SH";
2215 case EM_SPARCV9: return "Sparc v9";
2216 case EM_TRICORE: return "Siemens Tricore";
2217 case EM_ARC: return "ARC";
2218 case EM_ARC_COMPACT: return "ARCompact";
2219 case EM_ARC_COMPACT2: return "ARCv2";
2220 case EM_H8_300: return "Renesas H8/300";
2221 case EM_H8_300H: return "Renesas H8/300H";
2222 case EM_H8S: return "Renesas H8S";
2223 case EM_H8_500: return "Renesas H8/500";
2224 case EM_IA_64: return "Intel IA-64";
2225 case EM_MIPS_X: return "Stanford MIPS-X";
2226 case EM_COLDFIRE: return "Motorola Coldfire";
2227 case EM_ALPHA: return "Alpha";
2228 case EM_CYGNUS_D10V:
2229 case EM_D10V: return "d10v";
2230 case EM_CYGNUS_D30V:
2231 case EM_D30V: return "d30v";
2232 case EM_CYGNUS_M32R:
2233 case EM_M32R: return "Renesas M32R (formerly Mitsubishi M32r)";
2234 case EM_CYGNUS_V850:
2235 case EM_V800: return "Renesas V850 (using RH850 ABI)";
2236 case EM_V850: return "Renesas V850";
2237 case EM_CYGNUS_MN10300:
2238 case EM_MN10300: return "mn10300";
2239 case EM_CYGNUS_MN10200:
2240 case EM_MN10200: return "mn10200";
2241 case EM_MOXIE: return "Moxie";
2242 case EM_CYGNUS_FR30:
2243 case EM_FR30: return "Fujitsu FR30";
2244 case EM_CYGNUS_FRV: return "Fujitsu FR-V";
2245 case EM_PJ_OLD:
2246 case EM_PJ: return "picoJava";
2247 case EM_MMA: return "Fujitsu Multimedia Accelerator";
2248 case EM_PCP: return "Siemens PCP";
2249 case EM_NCPU: return "Sony nCPU embedded RISC processor";
2250 case EM_NDR1: return "Denso NDR1 microprocesspr";
2251 case EM_STARCORE: return "Motorola Star*Core processor";
2252 case EM_ME16: return "Toyota ME16 processor";
2253 case EM_ST100: return "STMicroelectronics ST100 processor";
2254 case EM_TINYJ: return "Advanced Logic Corp. TinyJ embedded processor";
2255 case EM_PDSP: return "Sony DSP processor";
2256 case EM_PDP10: return "Digital Equipment Corp. PDP-10";
2257 case EM_PDP11: return "Digital Equipment Corp. PDP-11";
2258 case EM_FX66: return "Siemens FX66 microcontroller";
2259 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 bit microcontroller";
2260 case EM_ST7: return "STMicroelectronics ST7 8-bit microcontroller";
2261 case EM_68HC16: return "Motorola MC68HC16 Microcontroller";
2262 case EM_68HC12: return "Motorola MC68HC12 Microcontroller";
2263 case EM_68HC11: return "Motorola MC68HC11 Microcontroller";
2264 case EM_68HC08: return "Motorola MC68HC08 Microcontroller";
2265 case EM_68HC05: return "Motorola MC68HC05 Microcontroller";
2266 case EM_SVX: return "Silicon Graphics SVx";
2267 case EM_ST19: return "STMicroelectronics ST19 8-bit microcontroller";
2268 case EM_VAX: return "Digital VAX";
2269 case EM_VISIUM: return "CDS VISIUMcore processor";
2270 case EM_AVR_OLD:
2271 case EM_AVR: return "Atmel AVR 8-bit microcontroller";
2272 case EM_CRIS: return "Axis Communications 32-bit embedded processor";
2273 case EM_JAVELIN: return "Infineon Technologies 32-bit embedded cpu";
2274 case EM_FIREPATH: return "Element 14 64-bit DSP processor";
2275 case EM_ZSP: return "LSI Logic's 16-bit DSP processor";
2276 case EM_MMIX: return "Donald Knuth's educational 64-bit processor";
2277 case EM_HUANY: return "Harvard Universitys's machine-independent object format";
2278 case EM_PRISM: return "Vitesse Prism";
2279 case EM_X86_64: return "Advanced Micro Devices X86-64";
2280 case EM_L1OM: return "Intel L1OM";
2281 case EM_K1OM: return "Intel K1OM";
2282 case EM_S390_OLD:
2283 case EM_S390: return "IBM S/390";
2284 case EM_SCORE: return "SUNPLUS S+Core";
2285 case EM_XSTORMY16: return "Sanyo XStormy16 CPU core";
2286 case EM_OR1K: return "OpenRISC 1000";
2287 case EM_CRX: return "National Semiconductor CRX microprocessor";
2288 case EM_ADAPTEVA_EPIPHANY: return "Adapteva EPIPHANY";
2289 case EM_DLX: return "OpenDLX";
2290 case EM_IP2K_OLD:
2291 case EM_IP2K: return "Ubicom IP2xxx 8-bit microcontrollers";
2292 case EM_IQ2000: return "Vitesse IQ2000";
2293 case EM_XTENSA_OLD:
2294 case EM_XTENSA: return "Tensilica Xtensa Processor";
2295 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor";
2296 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor";
2297 case EM_NS32K: return "National Semiconductor 32000 series";
2298 case EM_TPC: return "Tenor Network TPC processor";
2299 case EM_ST200: return "STMicroelectronics ST200 microcontroller";
2300 case EM_MAX: return "MAX Processor";
2301 case EM_CR: return "National Semiconductor CompactRISC";
2302 case EM_F2MC16: return "Fujitsu F2MC16";
2303 case EM_MSP430: return "Texas Instruments msp430 microcontroller";
2304 case EM_LATTICEMICO32: return "Lattice Mico32";
2305 case EM_M32C_OLD:
2306 case EM_M32C: return "Renesas M32c";
2307 case EM_MT: return "Morpho Techologies MT processor";
2308 case EM_BLACKFIN: return "Analog Devices Blackfin";
2309 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors";
2310 case EM_SEP: return "Sharp embedded microprocessor";
2311 case EM_ARCA: return "Arca RISC microprocessor";
2312 case EM_UNICORE: return "Unicore";
2313 case EM_EXCESS: return "eXcess 16/32/64-bit configurable embedded CPU";
2314 case EM_DXP: return "Icera Semiconductor Inc. Deep Execution Processor";
2315 case EM_NIOS32: return "Altera Nios";
2316 case EM_ALTERA_NIOS2: return "Altera Nios II";
2317 case EM_C166:
2318 case EM_XC16X: return "Infineon Technologies xc16x";
2319 case EM_M16C: return "Renesas M16C series microprocessors";
2320 case EM_DSPIC30F: return "Microchip Technology dsPIC30F Digital Signal Controller";
2321 case EM_CE: return "Freescale Communication Engine RISC core";
2322 case EM_TSK3000: return "Altium TSK3000 core";
2323 case EM_RS08: return "Freescale RS08 embedded processor";
2324 case EM_ECOG2: return "Cyan Technology eCOG2 microprocessor";
2325 case EM_DSP24: return "New Japan Radio (NJR) 24-bit DSP Processor";
2326 case EM_VIDEOCORE3: return "Broadcom VideoCore III processor";
2327 case EM_SE_C17: return "Seiko Epson C17 family";
2328 case EM_TI_C6000: return "Texas Instruments TMS320C6000 DSP family";
2329 case EM_TI_C2000: return "Texas Instruments TMS320C2000 DSP family";
2330 case EM_TI_C5500: return "Texas Instruments TMS320C55x DSP family";
2331 case EM_MMDSP_PLUS: return "STMicroelectronics 64bit VLIW Data Signal Processor";
2332 case EM_CYPRESS_M8C: return "Cypress M8C microprocessor";
2333 case EM_R32C: return "Renesas R32C series microprocessors";
2334 case EM_TRIMEDIA: return "NXP Semiconductors TriMedia architecture family";
2335 case EM_QDSP6: return "QUALCOMM DSP6 Processor";
2336 case EM_8051: return "Intel 8051 and variants";
2337 case EM_STXP7X: return "STMicroelectronics STxP7x family";
2338 case EM_NDS32: return "Andes Technology compact code size embedded RISC processor family";
2339 case EM_ECOG1X: return "Cyan Technology eCOG1X family";
2340 case EM_MAXQ30: return "Dallas Semiconductor MAXQ30 Core microcontrollers";
2341 case EM_XIMO16: return "New Japan Radio (NJR) 16-bit DSP Processor";
2342 case EM_MANIK: return "M2000 Reconfigurable RISC Microprocessor";
2343 case EM_CRAYNV2: return "Cray Inc. NV2 vector architecture";
2344 case EM_CYGNUS_MEP: return "Toshiba MeP Media Engine";
2345 case EM_CR16:
2346 case EM_MICROBLAZE:
2347 case EM_MICROBLAZE_OLD: return "Xilinx MicroBlaze";
2348 case EM_RISCV: return "RISC-V";
2349 case EM_RL78: return "Renesas RL78";
2350 case EM_RX: return "Renesas RX";
2351 case EM_METAG: return "Imagination Technologies Meta processor architecture";
2352 case EM_MCST_ELBRUS: return "MCST Elbrus general purpose hardware architecture";
2353 case EM_ECOG16: return "Cyan Technology eCOG16 family";
2354 case EM_ETPU: return "Freescale Extended Time Processing Unit";
2355 case EM_SLE9X: return "Infineon Technologies SLE9X core";
2356 case EM_AVR32: return "Atmel Corporation 32-bit microprocessor family";
2357 case EM_STM8: return "STMicroeletronics STM8 8-bit microcontroller";
2358 case EM_TILE64: return "Tilera TILE64 multicore architecture family";
2359 case EM_TILEPRO: return "Tilera TILEPro multicore architecture family";
2360 case EM_TILEGX: return "Tilera TILE-Gx multicore architecture family";
2361 case EM_CUDA: return "NVIDIA CUDA architecture";
2362 case EM_XGATE: return "Motorola XGATE embedded processor";
2363 case EM_CLOUDSHIELD: return "CloudShield architecture family";
2364 case EM_COREA_1ST: return "KIPO-KAIST Core-A 1st generation processor family";
2365 case EM_COREA_2ND: return "KIPO-KAIST Core-A 2nd generation processor family";
2366 case EM_OPEN8: return "Open8 8-bit RISC soft processor core";
2367 case EM_VIDEOCORE5: return "Broadcom VideoCore V processor";
2368 case EM_56800EX: return "Freescale 56800EX Digital Signal Controller (DSC)";
2369 case EM_BA1: return "Beyond BA1 CPU architecture";
2370 case EM_BA2: return "Beyond BA2 CPU architecture";
2371 case EM_XCORE: return "XMOS xCORE processor family";
2372 case EM_MCHP_PIC: return "Microchip 8-bit PIC(r) family";
2373 case EM_KM32: return "KM211 KM32 32-bit processor";
2374 case EM_KMX32: return "KM211 KMX32 32-bit processor";
2375 case EM_KMX16: return "KM211 KMX16 16-bit processor";
2376 case EM_KMX8: return "KM211 KMX8 8-bit processor";
2377 case EM_KVARC: return "KM211 KVARC processor";
2378 case EM_CDP: return "Paneve CDP architecture family";
2379 case EM_COGE: return "Cognitive Smart Memory Processor";
2380 case EM_COOL: return "Bluechip Systems CoolEngine";
2381 case EM_NORC: return "Nanoradio Optimized RISC";
2382 case EM_CSR_KALIMBA: return "CSR Kalimba architecture family";
2383 case EM_Z80: return "Zilog Z80";
2384 case EM_AMDGPU: return "AMD GPU architecture";
2385 case EM_TI_PRU: return "TI PRU I/O processor";
2386 default:
2387 snprintf (buff, sizeof (buff), _("<unknown>: 0x%x"), e_machine);
2388 return buff;
2389 }
2390 }
2391
2392 static void
2393 decode_ARC_machine_flags (unsigned e_flags, unsigned e_machine, char buf[])
2394 {
2395 /* ARC has two machine types EM_ARC_COMPACT and EM_ARC_COMPACT2. Some
2396 other compilers don't a specific architecture type in the e_flags, and
2397 instead use EM_ARC_COMPACT for old ARC600, ARC601, and ARC700
2398 architectures, and switch to EM_ARC_COMPACT2 for newer ARCEM and ARCHS
2399 architectures.
2400
2401 Th GNU tools follows this use of EM_ARC_COMPACT and EM_ARC_COMPACT2,
2402 but also sets a specific architecture type in the e_flags field.
2403
2404 However, when decoding the flags we don't worry if we see an
2405 unexpected pairing, for example EM_ARC_COMPACT machine type, with
2406 ARCEM architecture type. */
2407
2408 switch (e_flags & EF_ARC_MACH_MSK)
2409 {
2410 /* We only expect these to occur for EM_ARC_COMPACT2. */
2411 case EF_ARC_CPU_ARCV2EM:
2412 strcat (buf, ", ARC EM");
2413 break;
2414 case EF_ARC_CPU_ARCV2HS:
2415 strcat (buf, ", ARC HS");
2416 break;
2417
2418 /* We only expect these to occur for EM_ARC_COMPACT. */
2419 case E_ARC_MACH_ARC600:
2420 strcat (buf, ", ARC600");
2421 break;
2422 case E_ARC_MACH_ARC601:
2423 strcat (buf, ", ARC601");
2424 break;
2425 case E_ARC_MACH_ARC700:
2426 strcat (buf, ", ARC700");
2427 break;
2428
2429 /* The only times we should end up here are (a) A corrupt ELF, (b) A
2430 new ELF with new architecture being read by an old version of
2431 readelf, or (c) An ELF built with non-GNU compiler that does not
2432 set the architecture in the e_flags. */
2433 default:
2434 if (e_machine == EM_ARC_COMPACT)
2435 strcat (buf, ", Unknown ARCompact");
2436 else
2437 strcat (buf, ", Unknown ARC");
2438 break;
2439 }
2440
2441 switch (e_flags & EF_ARC_OSABI_MSK)
2442 {
2443 case E_ARC_OSABI_ORIG:
2444 strcat (buf, ", (ABI:legacy)");
2445 break;
2446 case E_ARC_OSABI_V2:
2447 strcat (buf, ", (ABI:v2)");
2448 break;
2449 /* Only upstream 3.9+ kernels will support ARCv2 ISA. */
2450 case E_ARC_OSABI_V3:
2451 strcat (buf, ", v3 no-legacy-syscalls ABI");
2452 break;
2453 default:
2454 strcat (buf, ", unrecognised ARC OSABI flag");
2455 break;
2456 }
2457 }
2458
2459 static void
2460 decode_ARM_machine_flags (unsigned e_flags, char buf[])
2461 {
2462 unsigned eabi;
2463 int unknown = 0;
2464
2465 eabi = EF_ARM_EABI_VERSION (e_flags);
2466 e_flags &= ~ EF_ARM_EABIMASK;
2467
2468 /* Handle "generic" ARM flags. */
2469 if (e_flags & EF_ARM_RELEXEC)
2470 {
2471 strcat (buf, ", relocatable executable");
2472 e_flags &= ~ EF_ARM_RELEXEC;
2473 }
2474
2475 /* Now handle EABI specific flags. */
2476 switch (eabi)
2477 {
2478 default:
2479 strcat (buf, ", <unrecognized EABI>");
2480 if (e_flags)
2481 unknown = 1;
2482 break;
2483
2484 case EF_ARM_EABI_VER1:
2485 strcat (buf, ", Version1 EABI");
2486 while (e_flags)
2487 {
2488 unsigned flag;
2489
2490 /* Process flags one bit at a time. */
2491 flag = e_flags & - e_flags;
2492 e_flags &= ~ flag;
2493
2494 switch (flag)
2495 {
2496 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2497 strcat (buf, ", sorted symbol tables");
2498 break;
2499
2500 default:
2501 unknown = 1;
2502 break;
2503 }
2504 }
2505 break;
2506
2507 case EF_ARM_EABI_VER2:
2508 strcat (buf, ", Version2 EABI");
2509 while (e_flags)
2510 {
2511 unsigned flag;
2512
2513 /* Process flags one bit at a time. */
2514 flag = e_flags & - e_flags;
2515 e_flags &= ~ flag;
2516
2517 switch (flag)
2518 {
2519 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2520 strcat (buf, ", sorted symbol tables");
2521 break;
2522
2523 case EF_ARM_DYNSYMSUSESEGIDX:
2524 strcat (buf, ", dynamic symbols use segment index");
2525 break;
2526
2527 case EF_ARM_MAPSYMSFIRST:
2528 strcat (buf, ", mapping symbols precede others");
2529 break;
2530
2531 default:
2532 unknown = 1;
2533 break;
2534 }
2535 }
2536 break;
2537
2538 case EF_ARM_EABI_VER3:
2539 strcat (buf, ", Version3 EABI");
2540 break;
2541
2542 case EF_ARM_EABI_VER4:
2543 strcat (buf, ", Version4 EABI");
2544 while (e_flags)
2545 {
2546 unsigned flag;
2547
2548 /* Process flags one bit at a time. */
2549 flag = e_flags & - e_flags;
2550 e_flags &= ~ flag;
2551
2552 switch (flag)
2553 {
2554 case EF_ARM_BE8:
2555 strcat (buf, ", BE8");
2556 break;
2557
2558 case EF_ARM_LE8:
2559 strcat (buf, ", LE8");
2560 break;
2561
2562 default:
2563 unknown = 1;
2564 break;
2565 }
2566 break;
2567 }
2568 break;
2569
2570 case EF_ARM_EABI_VER5:
2571 strcat (buf, ", Version5 EABI");
2572 while (e_flags)
2573 {
2574 unsigned flag;
2575
2576 /* Process flags one bit at a time. */
2577 flag = e_flags & - e_flags;
2578 e_flags &= ~ flag;
2579
2580 switch (flag)
2581 {
2582 case EF_ARM_BE8:
2583 strcat (buf, ", BE8");
2584 break;
2585
2586 case EF_ARM_LE8:
2587 strcat (buf, ", LE8");
2588 break;
2589
2590 case EF_ARM_ABI_FLOAT_SOFT: /* Conflicts with EF_ARM_SOFT_FLOAT. */
2591 strcat (buf, ", soft-float ABI");
2592 break;
2593
2594 case EF_ARM_ABI_FLOAT_HARD: /* Conflicts with EF_ARM_VFP_FLOAT. */
2595 strcat (buf, ", hard-float ABI");
2596 break;
2597
2598 default:
2599 unknown = 1;
2600 break;
2601 }
2602 }
2603 break;
2604
2605 case EF_ARM_EABI_UNKNOWN:
2606 strcat (buf, ", GNU EABI");
2607 while (e_flags)
2608 {
2609 unsigned flag;
2610
2611 /* Process flags one bit at a time. */
2612 flag = e_flags & - e_flags;
2613 e_flags &= ~ flag;
2614
2615 switch (flag)
2616 {
2617 case EF_ARM_INTERWORK:
2618 strcat (buf, ", interworking enabled");
2619 break;
2620
2621 case EF_ARM_APCS_26:
2622 strcat (buf, ", uses APCS/26");
2623 break;
2624
2625 case EF_ARM_APCS_FLOAT:
2626 strcat (buf, ", uses APCS/float");
2627 break;
2628
2629 case EF_ARM_PIC:
2630 strcat (buf, ", position independent");
2631 break;
2632
2633 case EF_ARM_ALIGN8:
2634 strcat (buf, ", 8 bit structure alignment");
2635 break;
2636
2637 case EF_ARM_NEW_ABI:
2638 strcat (buf, ", uses new ABI");
2639 break;
2640
2641 case EF_ARM_OLD_ABI:
2642 strcat (buf, ", uses old ABI");
2643 break;
2644
2645 case EF_ARM_SOFT_FLOAT:
2646 strcat (buf, ", software FP");
2647 break;
2648
2649 case EF_ARM_VFP_FLOAT:
2650 strcat (buf, ", VFP");
2651 break;
2652
2653 case EF_ARM_MAVERICK_FLOAT:
2654 strcat (buf, ", Maverick FP");
2655 break;
2656
2657 default:
2658 unknown = 1;
2659 break;
2660 }
2661 }
2662 }
2663
2664 if (unknown)
2665 strcat (buf,_(", <unknown>"));
2666 }
2667
2668 static void
2669 decode_AVR_machine_flags (unsigned e_flags, char buf[], size_t size)
2670 {
2671 --size; /* Leave space for null terminator. */
2672
2673 switch (e_flags & EF_AVR_MACH)
2674 {
2675 case E_AVR_MACH_AVR1:
2676 strncat (buf, ", avr:1", size);
2677 break;
2678 case E_AVR_MACH_AVR2:
2679 strncat (buf, ", avr:2", size);
2680 break;
2681 case E_AVR_MACH_AVR25:
2682 strncat (buf, ", avr:25", size);
2683 break;
2684 case E_AVR_MACH_AVR3:
2685 strncat (buf, ", avr:3", size);
2686 break;
2687 case E_AVR_MACH_AVR31:
2688 strncat (buf, ", avr:31", size);
2689 break;
2690 case E_AVR_MACH_AVR35:
2691 strncat (buf, ", avr:35", size);
2692 break;
2693 case E_AVR_MACH_AVR4:
2694 strncat (buf, ", avr:4", size);
2695 break;
2696 case E_AVR_MACH_AVR5:
2697 strncat (buf, ", avr:5", size);
2698 break;
2699 case E_AVR_MACH_AVR51:
2700 strncat (buf, ", avr:51", size);
2701 break;
2702 case E_AVR_MACH_AVR6:
2703 strncat (buf, ", avr:6", size);
2704 break;
2705 case E_AVR_MACH_AVRTINY:
2706 strncat (buf, ", avr:100", size);
2707 break;
2708 case E_AVR_MACH_XMEGA1:
2709 strncat (buf, ", avr:101", size);
2710 break;
2711 case E_AVR_MACH_XMEGA2:
2712 strncat (buf, ", avr:102", size);
2713 break;
2714 case E_AVR_MACH_XMEGA3:
2715 strncat (buf, ", avr:103", size);
2716 break;
2717 case E_AVR_MACH_XMEGA4:
2718 strncat (buf, ", avr:104", size);
2719 break;
2720 case E_AVR_MACH_XMEGA5:
2721 strncat (buf, ", avr:105", size);
2722 break;
2723 case E_AVR_MACH_XMEGA6:
2724 strncat (buf, ", avr:106", size);
2725 break;
2726 case E_AVR_MACH_XMEGA7:
2727 strncat (buf, ", avr:107", size);
2728 break;
2729 default:
2730 strncat (buf, ", avr:<unknown>", size);
2731 break;
2732 }
2733
2734 size -= strlen (buf);
2735 if (e_flags & EF_AVR_LINKRELAX_PREPARED)
2736 strncat (buf, ", link-relax", size);
2737 }
2738
2739 static void
2740 decode_NDS32_machine_flags (unsigned e_flags, char buf[], size_t size)
2741 {
2742 unsigned abi;
2743 unsigned arch;
2744 unsigned config;
2745 unsigned version;
2746 int has_fpu = 0;
2747 int r = 0;
2748
2749 static const char *ABI_STRINGS[] =
2750 {
2751 "ABI v0", /* use r5 as return register; only used in N1213HC */
2752 "ABI v1", /* use r0 as return register */
2753 "ABI v2", /* use r0 as return register and don't reserve 24 bytes for arguments */
2754 "ABI v2fp", /* for FPU */
2755 "AABI",
2756 "ABI2 FP+"
2757 };
2758 static const char *VER_STRINGS[] =
2759 {
2760 "Andes ELF V1.3 or older",
2761 "Andes ELF V1.3.1",
2762 "Andes ELF V1.4"
2763 };
2764 static const char *ARCH_STRINGS[] =
2765 {
2766 "",
2767 "Andes Star v1.0",
2768 "Andes Star v2.0",
2769 "Andes Star v3.0",
2770 "Andes Star v3.0m"
2771 };
2772
2773 abi = EF_NDS_ABI & e_flags;
2774 arch = EF_NDS_ARCH & e_flags;
2775 config = EF_NDS_INST & e_flags;
2776 version = EF_NDS32_ELF_VERSION & e_flags;
2777
2778 memset (buf, 0, size);
2779
2780 switch (abi)
2781 {
2782 case E_NDS_ABI_V0:
2783 case E_NDS_ABI_V1:
2784 case E_NDS_ABI_V2:
2785 case E_NDS_ABI_V2FP:
2786 case E_NDS_ABI_AABI:
2787 case E_NDS_ABI_V2FP_PLUS:
2788 /* In case there are holes in the array. */
2789 r += snprintf (buf + r, size - r, ", %s", ABI_STRINGS[abi >> EF_NDS_ABI_SHIFT]);
2790 break;
2791
2792 default:
2793 r += snprintf (buf + r, size - r, ", <unrecognized ABI>");
2794 break;
2795 }
2796
2797 switch (version)
2798 {
2799 case E_NDS32_ELF_VER_1_2:
2800 case E_NDS32_ELF_VER_1_3:
2801 case E_NDS32_ELF_VER_1_4:
2802 r += snprintf (buf + r, size - r, ", %s", VER_STRINGS[version >> EF_NDS32_ELF_VERSION_SHIFT]);
2803 break;
2804
2805 default:
2806 r += snprintf (buf + r, size - r, ", <unrecognized ELF version number>");
2807 break;
2808 }
2809
2810 if (E_NDS_ABI_V0 == abi)
2811 {
2812 /* OLD ABI; only used in N1213HC, has performance extension 1. */
2813 r += snprintf (buf + r, size - r, ", Andes Star v1.0, N1213HC, MAC, PERF1");
2814 if (arch == E_NDS_ARCH_STAR_V1_0)
2815 r += snprintf (buf + r, size -r, ", 16b"); /* has 16-bit instructions */
2816 return;
2817 }
2818
2819 switch (arch)
2820 {
2821 case E_NDS_ARCH_STAR_V1_0:
2822 case E_NDS_ARCH_STAR_V2_0:
2823 case E_NDS_ARCH_STAR_V3_0:
2824 case E_NDS_ARCH_STAR_V3_M:
2825 r += snprintf (buf + r, size - r, ", %s", ARCH_STRINGS[arch >> EF_NDS_ARCH_SHIFT]);
2826 break;
2827
2828 default:
2829 r += snprintf (buf + r, size - r, ", <unrecognized architecture>");
2830 /* ARCH version determines how the e_flags are interpreted.
2831 If it is unknown, we cannot proceed. */
2832 return;
2833 }
2834
2835 /* Newer ABI; Now handle architecture specific flags. */
2836 if (arch == E_NDS_ARCH_STAR_V1_0)
2837 {
2838 if (config & E_NDS32_HAS_MFUSR_PC_INST)
2839 r += snprintf (buf + r, size -r, ", MFUSR_PC");
2840
2841 if (!(config & E_NDS32_HAS_NO_MAC_INST))
2842 r += snprintf (buf + r, size -r, ", MAC");
2843
2844 if (config & E_NDS32_HAS_DIV_INST)
2845 r += snprintf (buf + r, size -r, ", DIV");
2846
2847 if (config & E_NDS32_HAS_16BIT_INST)
2848 r += snprintf (buf + r, size -r, ", 16b");
2849 }
2850 else
2851 {
2852 if (config & E_NDS32_HAS_MFUSR_PC_INST)
2853 {
2854 if (version <= E_NDS32_ELF_VER_1_3)
2855 r += snprintf (buf + r, size -r, ", [B8]");
2856 else
2857 r += snprintf (buf + r, size -r, ", EX9");
2858 }
2859
2860 if (config & E_NDS32_HAS_MAC_DX_INST)
2861 r += snprintf (buf + r, size -r, ", MAC_DX");
2862
2863 if (config & E_NDS32_HAS_DIV_DX_INST)
2864 r += snprintf (buf + r, size -r, ", DIV_DX");
2865
2866 if (config & E_NDS32_HAS_16BIT_INST)
2867 {
2868 if (version <= E_NDS32_ELF_VER_1_3)
2869 r += snprintf (buf + r, size -r, ", 16b");
2870 else
2871 r += snprintf (buf + r, size -r, ", IFC");
2872 }
2873 }
2874
2875 if (config & E_NDS32_HAS_EXT_INST)
2876 r += snprintf (buf + r, size -r, ", PERF1");
2877
2878 if (config & E_NDS32_HAS_EXT2_INST)
2879 r += snprintf (buf + r, size -r, ", PERF2");
2880
2881 if (config & E_NDS32_HAS_FPU_INST)
2882 {
2883 has_fpu = 1;
2884 r += snprintf (buf + r, size -r, ", FPU_SP");
2885 }
2886
2887 if (config & E_NDS32_HAS_FPU_DP_INST)
2888 {
2889 has_fpu = 1;
2890 r += snprintf (buf + r, size -r, ", FPU_DP");
2891 }
2892
2893 if (config & E_NDS32_HAS_FPU_MAC_INST)
2894 {
2895 has_fpu = 1;
2896 r += snprintf (buf + r, size -r, ", FPU_MAC");
2897 }
2898
2899 if (has_fpu)
2900 {
2901 switch ((config & E_NDS32_FPU_REG_CONF) >> E_NDS32_FPU_REG_CONF_SHIFT)
2902 {
2903 case E_NDS32_FPU_REG_8SP_4DP:
2904 r += snprintf (buf + r, size -r, ", FPU_REG:8/4");
2905 break;
2906 case E_NDS32_FPU_REG_16SP_8DP:
2907 r += snprintf (buf + r, size -r, ", FPU_REG:16/8");
2908 break;
2909 case E_NDS32_FPU_REG_32SP_16DP:
2910 r += snprintf (buf + r, size -r, ", FPU_REG:32/16");
2911 break;
2912 case E_NDS32_FPU_REG_32SP_32DP:
2913 r += snprintf (buf + r, size -r, ", FPU_REG:32/32");
2914 break;
2915 }
2916 }
2917
2918 if (config & E_NDS32_HAS_AUDIO_INST)
2919 r += snprintf (buf + r, size -r, ", AUDIO");
2920
2921 if (config & E_NDS32_HAS_STRING_INST)
2922 r += snprintf (buf + r, size -r, ", STR");
2923
2924 if (config & E_NDS32_HAS_REDUCED_REGS)
2925 r += snprintf (buf + r, size -r, ", 16REG");
2926
2927 if (config & E_NDS32_HAS_VIDEO_INST)
2928 {
2929 if (version <= E_NDS32_ELF_VER_1_3)
2930 r += snprintf (buf + r, size -r, ", VIDEO");
2931 else
2932 r += snprintf (buf + r, size -r, ", SATURATION");
2933 }
2934
2935 if (config & E_NDS32_HAS_ENCRIPT_INST)
2936 r += snprintf (buf + r, size -r, ", ENCRP");
2937
2938 if (config & E_NDS32_HAS_L2C_INST)
2939 r += snprintf (buf + r, size -r, ", L2C");
2940 }
2941
2942 static char *
2943 get_machine_flags (unsigned e_flags, unsigned e_machine)
2944 {
2945 static char buf[1024];
2946
2947 buf[0] = '\0';
2948
2949 if (e_flags)
2950 {
2951 switch (e_machine)
2952 {
2953 default:
2954 break;
2955
2956 case EM_ARC_COMPACT2:
2957 case EM_ARC_COMPACT:
2958 decode_ARC_machine_flags (e_flags, e_machine, buf);
2959 break;
2960
2961 case EM_ARM:
2962 decode_ARM_machine_flags (e_flags, buf);
2963 break;
2964
2965 case EM_AVR:
2966 decode_AVR_machine_flags (e_flags, buf, sizeof buf);
2967 break;
2968
2969 case EM_BLACKFIN:
2970 if (e_flags & EF_BFIN_PIC)
2971 strcat (buf, ", PIC");
2972
2973 if (e_flags & EF_BFIN_FDPIC)
2974 strcat (buf, ", FDPIC");
2975
2976 if (e_flags & EF_BFIN_CODE_IN_L1)
2977 strcat (buf, ", code in L1");
2978
2979 if (e_flags & EF_BFIN_DATA_IN_L1)
2980 strcat (buf, ", data in L1");
2981
2982 break;
2983
2984 case EM_CYGNUS_FRV:
2985 switch (e_flags & EF_FRV_CPU_MASK)
2986 {
2987 case EF_FRV_CPU_GENERIC:
2988 break;
2989
2990 default:
2991 strcat (buf, ", fr???");
2992 break;
2993
2994 case EF_FRV_CPU_FR300:
2995 strcat (buf, ", fr300");
2996 break;
2997
2998 case EF_FRV_CPU_FR400:
2999 strcat (buf, ", fr400");
3000 break;
3001 case EF_FRV_CPU_FR405:
3002 strcat (buf, ", fr405");
3003 break;
3004
3005 case EF_FRV_CPU_FR450:
3006 strcat (buf, ", fr450");
3007 break;
3008
3009 case EF_FRV_CPU_FR500:
3010 strcat (buf, ", fr500");
3011 break;
3012 case EF_FRV_CPU_FR550:
3013 strcat (buf, ", fr550");
3014 break;
3015
3016 case EF_FRV_CPU_SIMPLE:
3017 strcat (buf, ", simple");
3018 break;
3019 case EF_FRV_CPU_TOMCAT:
3020 strcat (buf, ", tomcat");
3021 break;
3022 }
3023 break;
3024
3025 case EM_68K:
3026 if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
3027 strcat (buf, ", m68000");
3028 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
3029 strcat (buf, ", cpu32");
3030 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
3031 strcat (buf, ", fido_a");
3032 else
3033 {
3034 char const * isa = _("unknown");
3035 char const * mac = _("unknown mac");
3036 char const * additional = NULL;
3037
3038 switch (e_flags & EF_M68K_CF_ISA_MASK)
3039 {
3040 case EF_M68K_CF_ISA_A_NODIV:
3041 isa = "A";
3042 additional = ", nodiv";
3043 break;
3044 case EF_M68K_CF_ISA_A:
3045 isa = "A";
3046 break;
3047 case EF_M68K_CF_ISA_A_PLUS:
3048 isa = "A+";
3049 break;
3050 case EF_M68K_CF_ISA_B_NOUSP:
3051 isa = "B";
3052 additional = ", nousp";
3053 break;
3054 case EF_M68K_CF_ISA_B:
3055 isa = "B";
3056 break;
3057 case EF_M68K_CF_ISA_C:
3058 isa = "C";
3059 break;
3060 case EF_M68K_CF_ISA_C_NODIV:
3061 isa = "C";
3062 additional = ", nodiv";
3063 break;
3064 }
3065 strcat (buf, ", cf, isa ");
3066 strcat (buf, isa);
3067 if (additional)
3068 strcat (buf, additional);
3069 if (e_flags & EF_M68K_CF_FLOAT)
3070 strcat (buf, ", float");
3071 switch (e_flags & EF_M68K_CF_MAC_MASK)
3072 {
3073 case 0:
3074 mac = NULL;
3075 break;
3076 case EF_M68K_CF_MAC:
3077 mac = "mac";
3078 break;
3079 case EF_M68K_CF_EMAC:
3080 mac = "emac";
3081 break;
3082 case EF_M68K_CF_EMAC_B:
3083 mac = "emac_b";
3084 break;
3085 }
3086 if (mac)
3087 {
3088 strcat (buf, ", ");
3089 strcat (buf, mac);
3090 }
3091 }
3092 break;
3093
3094 case EM_CYGNUS_MEP:
3095 switch (e_flags & EF_MEP_CPU_MASK)
3096 {
3097 case EF_MEP_CPU_MEP: strcat (buf, ", generic MeP"); break;
3098 case EF_MEP_CPU_C2: strcat (buf, ", MeP C2"); break;
3099 case EF_MEP_CPU_C3: strcat (buf, ", MeP C3"); break;
3100 case EF_MEP_CPU_C4: strcat (buf, ", MeP C4"); break;
3101 case EF_MEP_CPU_C5: strcat (buf, ", MeP C5"); break;
3102 case EF_MEP_CPU_H1: strcat (buf, ", MeP H1"); break;
3103 default: strcat (buf, _(", <unknown MeP cpu type>")); break;
3104 }
3105
3106 switch (e_flags & EF_MEP_COP_MASK)
3107 {
3108 case EF_MEP_COP_NONE: break;
3109 case EF_MEP_COP_AVC: strcat (buf, ", AVC coprocessor"); break;
3110 case EF_MEP_COP_AVC2: strcat (buf, ", AVC2 coprocessor"); break;
3111 case EF_MEP_COP_FMAX: strcat (buf, ", FMAX coprocessor"); break;
3112 case EF_MEP_COP_IVC2: strcat (buf, ", IVC2 coprocessor"); break;
3113 default: strcat (buf, _("<unknown MeP copro type>")); break;
3114 }
3115
3116 if (e_flags & EF_MEP_LIBRARY)
3117 strcat (buf, ", Built for Library");
3118
3119 if (e_flags & EF_MEP_INDEX_MASK)
3120 sprintf (buf + strlen (buf), ", Configuration Index: %#x",
3121 e_flags & EF_MEP_INDEX_MASK);
3122
3123 if (e_flags & ~ EF_MEP_ALL_FLAGS)
3124 sprintf (buf + strlen (buf), _(", unknown flags bits: %#x"),
3125 e_flags & ~ EF_MEP_ALL_FLAGS);
3126 break;
3127
3128 case EM_PPC:
3129 if (e_flags & EF_PPC_EMB)
3130 strcat (buf, ", emb");
3131
3132 if (e_flags & EF_PPC_RELOCATABLE)
3133 strcat (buf, _(", relocatable"));
3134
3135 if (e_flags & EF_PPC_RELOCATABLE_LIB)
3136 strcat (buf, _(", relocatable-lib"));
3137 break;
3138
3139 case EM_PPC64:
3140 if (e_flags & EF_PPC64_ABI)
3141 {
3142 char abi[] = ", abiv0";
3143
3144 abi[6] += e_flags & EF_PPC64_ABI;
3145 strcat (buf, abi);
3146 }
3147 break;
3148
3149 case EM_V800:
3150 if ((e_flags & EF_RH850_ABI) == EF_RH850_ABI)
3151 strcat (buf, ", RH850 ABI");
3152
3153 if (e_flags & EF_V800_850E3)
3154 strcat (buf, ", V3 architecture");
3155
3156 if ((e_flags & (EF_RH850_FPU_DOUBLE | EF_RH850_FPU_SINGLE)) == 0)
3157 strcat (buf, ", FPU not used");
3158
3159 if ((e_flags & (EF_RH850_REGMODE22 | EF_RH850_REGMODE32)) == 0)
3160 strcat (buf, ", regmode: COMMON");
3161
3162 if ((e_flags & (EF_RH850_GP_FIX | EF_RH850_GP_NOFIX)) == 0)
3163 strcat (buf, ", r4 not used");
3164
3165 if ((e_flags & (EF_RH850_EP_FIX | EF_RH850_EP_NOFIX)) == 0)
3166 strcat (buf, ", r30 not used");
3167
3168 if ((e_flags & (EF_RH850_TP_FIX | EF_RH850_TP_NOFIX)) == 0)
3169 strcat (buf, ", r5 not used");
3170
3171 if ((e_flags & (EF_RH850_REG2_RESERVE | EF_RH850_REG2_NORESERVE)) == 0)
3172 strcat (buf, ", r2 not used");
3173
3174 for (e_flags &= 0xFFFF; e_flags; e_flags &= ~ (e_flags & - e_flags))
3175 {
3176 switch (e_flags & - e_flags)
3177 {
3178 case EF_RH850_FPU_DOUBLE: strcat (buf, ", double precision FPU"); break;
3179 case EF_RH850_FPU_SINGLE: strcat (buf, ", single precision FPU"); break;
3180 case EF_RH850_REGMODE22: strcat (buf, ", regmode:22"); break;
3181 case EF_RH850_REGMODE32: strcat (buf, ", regmode:23"); break;
3182 case EF_RH850_GP_FIX: strcat (buf, ", r4 fixed"); break;
3183 case EF_RH850_GP_NOFIX: strcat (buf, ", r4 free"); break;
3184 case EF_RH850_EP_FIX: strcat (buf, ", r30 fixed"); break;
3185 case EF_RH850_EP_NOFIX: strcat (buf, ", r30 free"); break;
3186 case EF_RH850_TP_FIX: strcat (buf, ", r5 fixed"); break;
3187 case EF_RH850_TP_NOFIX: strcat (buf, ", r5 free"); break;
3188 case EF_RH850_REG2_RESERVE: strcat (buf, ", r2 fixed"); break;
3189 case EF_RH850_REG2_NORESERVE: strcat (buf, ", r2 free"); break;
3190 default: break;
3191 }
3192 }
3193 break;
3194
3195 case EM_V850:
3196 case EM_CYGNUS_V850:
3197 switch (e_flags & EF_V850_ARCH)
3198 {
3199 case E_V850E3V5_ARCH:
3200 strcat (buf, ", v850e3v5");
3201 break;
3202 case E_V850E2V3_ARCH:
3203 strcat (buf, ", v850e2v3");
3204 break;
3205 case E_V850E2_ARCH:
3206 strcat (buf, ", v850e2");
3207 break;
3208 case E_V850E1_ARCH:
3209 strcat (buf, ", v850e1");
3210 break;
3211 case E_V850E_ARCH:
3212 strcat (buf, ", v850e");
3213 break;
3214 case E_V850_ARCH:
3215 strcat (buf, ", v850");
3216 break;
3217 default:
3218 strcat (buf, _(", unknown v850 architecture variant"));
3219 break;
3220 }
3221 break;
3222
3223 case EM_M32R:
3224 case EM_CYGNUS_M32R:
3225 if ((e_flags & EF_M32R_ARCH) == E_M32R_ARCH)
3226 strcat (buf, ", m32r");
3227 break;
3228
3229 case EM_MIPS:
3230 case EM_MIPS_RS3_LE:
3231 if (e_flags & EF_MIPS_NOREORDER)
3232 strcat (buf, ", noreorder");
3233
3234 if (e_flags & EF_MIPS_PIC)
3235 strcat (buf, ", pic");
3236
3237 if (e_flags & EF_MIPS_CPIC)
3238 strcat (buf, ", cpic");
3239
3240 if (e_flags & EF_MIPS_UCODE)
3241 strcat (buf, ", ugen_reserved");
3242
3243 if (e_flags & EF_MIPS_ABI2)
3244 strcat (buf, ", abi2");
3245
3246 if (e_flags & EF_MIPS_OPTIONS_FIRST)
3247 strcat (buf, ", odk first");
3248
3249 if (e_flags & EF_MIPS_32BITMODE)
3250 strcat (buf, ", 32bitmode");
3251
3252 if (e_flags & EF_MIPS_NAN2008)
3253 strcat (buf, ", nan2008");
3254
3255 if (e_flags & EF_MIPS_FP64)
3256 strcat (buf, ", fp64");
3257
3258 switch ((e_flags & EF_MIPS_MACH))
3259 {
3260 case E_MIPS_MACH_3900: strcat (buf, ", 3900"); break;
3261 case E_MIPS_MACH_4010: strcat (buf, ", 4010"); break;
3262 case E_MIPS_MACH_4100: strcat (buf, ", 4100"); break;
3263 case E_MIPS_MACH_4111: strcat (buf, ", 4111"); break;
3264 case E_MIPS_MACH_4120: strcat (buf, ", 4120"); break;
3265 case E_MIPS_MACH_4650: strcat (buf, ", 4650"); break;
3266 case E_MIPS_MACH_5400: strcat (buf, ", 5400"); break;
3267 case E_MIPS_MACH_5500: strcat (buf, ", 5500"); break;
3268 case E_MIPS_MACH_SB1: strcat (buf, ", sb1"); break;
3269 case E_MIPS_MACH_9000: strcat (buf, ", 9000"); break;
3270 case E_MIPS_MACH_LS2E: strcat (buf, ", loongson-2e"); break;
3271 case E_MIPS_MACH_LS2F: strcat (buf, ", loongson-2f"); break;
3272 case E_MIPS_MACH_LS3A: strcat (buf, ", loongson-3a"); break;
3273 case E_MIPS_MACH_OCTEON: strcat (buf, ", octeon"); break;
3274 case E_MIPS_MACH_OCTEON2: strcat (buf, ", octeon2"); break;
3275 case E_MIPS_MACH_OCTEON3: strcat (buf, ", octeon3"); break;
3276 case E_MIPS_MACH_XLR: strcat (buf, ", xlr"); break;
3277 case 0:
3278 /* We simply ignore the field in this case to avoid confusion:
3279 MIPS ELF does not specify EF_MIPS_MACH, it is a GNU
3280 extension. */
3281 break;
3282 default: strcat (buf, _(", unknown CPU")); break;
3283 }
3284
3285 switch ((e_flags & EF_MIPS_ABI))
3286 {
3287 case E_MIPS_ABI_O32: strcat (buf, ", o32"); break;
3288 case E_MIPS_ABI_O64: strcat (buf, ", o64"); break;
3289 case E_MIPS_ABI_EABI32: strcat (buf, ", eabi32"); break;
3290 case E_MIPS_ABI_EABI64: strcat (buf, ", eabi64"); break;
3291 case 0:
3292 /* We simply ignore the field in this case to avoid confusion:
3293 MIPS ELF does not specify EF_MIPS_ABI, it is a GNU extension.
3294 This means it is likely to be an o32 file, but not for
3295 sure. */
3296 break;
3297 default: strcat (buf, _(", unknown ABI")); break;
3298 }
3299
3300 if (e_flags & EF_MIPS_ARCH_ASE_MDMX)
3301 strcat (buf, ", mdmx");
3302
3303 if (e_flags & EF_MIPS_ARCH_ASE_M16)
3304 strcat (buf, ", mips16");
3305
3306 if (e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
3307 strcat (buf, ", micromips");
3308
3309 switch ((e_flags & EF_MIPS_ARCH))
3310 {
3311 case E_MIPS_ARCH_1: strcat (buf, ", mips1"); break;
3312 case E_MIPS_ARCH_2: strcat (buf, ", mips2"); break;
3313 case E_MIPS_ARCH_3: strcat (buf, ", mips3"); break;
3314 case E_MIPS_ARCH_4: strcat (buf, ", mips4"); break;
3315 case E_MIPS_ARCH_5: strcat (buf, ", mips5"); break;
3316 case E_MIPS_ARCH_32: strcat (buf, ", mips32"); break;
3317 case E_MIPS_ARCH_32R2: strcat (buf, ", mips32r2"); break;
3318 case E_MIPS_ARCH_32R6: strcat (buf, ", mips32r6"); break;
3319 case E_MIPS_ARCH_64: strcat (buf, ", mips64"); break;
3320 case E_MIPS_ARCH_64R2: strcat (buf, ", mips64r2"); break;
3321 case E_MIPS_ARCH_64R6: strcat (buf, ", mips64r6"); break;
3322 default: strcat (buf, _(", unknown ISA")); break;
3323 }
3324 break;
3325
3326 case EM_NDS32:
3327 decode_NDS32_machine_flags (e_flags, buf, sizeof buf);
3328 break;
3329
3330 case EM_RISCV:
3331 if (e_flags & EF_RISCV_RVC)
3332 strcat (buf, ", RVC");
3333
3334 switch (e_flags & EF_RISCV_FLOAT_ABI)
3335 {
3336 case EF_RISCV_FLOAT_ABI_SOFT:
3337 strcat (buf, ", soft-float ABI");
3338 break;
3339
3340 case EF_RISCV_FLOAT_ABI_SINGLE:
3341 strcat (buf, ", single-float ABI");
3342 break;
3343
3344 case EF_RISCV_FLOAT_ABI_DOUBLE:
3345 strcat (buf, ", double-float ABI");
3346 break;
3347
3348 case EF_RISCV_FLOAT_ABI_QUAD:
3349 strcat (buf, ", quad-float ABI");
3350 break;
3351 }
3352 break;
3353
3354 case EM_SH:
3355 switch ((e_flags & EF_SH_MACH_MASK))
3356 {
3357 case EF_SH1: strcat (buf, ", sh1"); break;
3358 case EF_SH2: strcat (buf, ", sh2"); break;
3359 case EF_SH3: strcat (buf, ", sh3"); break;
3360 case EF_SH_DSP: strcat (buf, ", sh-dsp"); break;
3361 case EF_SH3_DSP: strcat (buf, ", sh3-dsp"); break;
3362 case EF_SH4AL_DSP: strcat (buf, ", sh4al-dsp"); break;
3363 case EF_SH3E: strcat (buf, ", sh3e"); break;
3364 case EF_SH4: strcat (buf, ", sh4"); break;
3365 case EF_SH5: strcat (buf, ", sh5"); break;
3366 case EF_SH2E: strcat (buf, ", sh2e"); break;
3367 case EF_SH4A: strcat (buf, ", sh4a"); break;
3368 case EF_SH2A: strcat (buf, ", sh2a"); break;
3369 case EF_SH4_NOFPU: strcat (buf, ", sh4-nofpu"); break;
3370 case EF_SH4A_NOFPU: strcat (buf, ", sh4a-nofpu"); break;
3371 case EF_SH2A_NOFPU: strcat (buf, ", sh2a-nofpu"); break;
3372 case EF_SH3_NOMMU: strcat (buf, ", sh3-nommu"); break;
3373 case EF_SH4_NOMMU_NOFPU: strcat (buf, ", sh4-nommu-nofpu"); break;
3374 case EF_SH2A_SH4_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh4-nommu-nofpu"); break;
3375 case EF_SH2A_SH3_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh3-nommu"); break;
3376 case EF_SH2A_SH4: strcat (buf, ", sh2a-or-sh4"); break;
3377 case EF_SH2A_SH3E: strcat (buf, ", sh2a-or-sh3e"); break;
3378 default: strcat (buf, _(", unknown ISA")); break;
3379 }
3380
3381 if (e_flags & EF_SH_PIC)
3382 strcat (buf, ", pic");
3383
3384 if (e_flags & EF_SH_FDPIC)
3385 strcat (buf, ", fdpic");
3386 break;
3387
3388 case EM_OR1K:
3389 if (e_flags & EF_OR1K_NODELAY)
3390 strcat (buf, ", no delay");
3391 break;
3392
3393 case EM_SPARCV9:
3394 if (e_flags & EF_SPARC_32PLUS)
3395 strcat (buf, ", v8+");
3396
3397 if (e_flags & EF_SPARC_SUN_US1)
3398 strcat (buf, ", ultrasparcI");
3399
3400 if (e_flags & EF_SPARC_SUN_US3)
3401 strcat (buf, ", ultrasparcIII");
3402
3403 if (e_flags & EF_SPARC_HAL_R1)
3404 strcat (buf, ", halr1");
3405
3406 if (e_flags & EF_SPARC_LEDATA)
3407 strcat (buf, ", ledata");
3408
3409 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_TSO)
3410 strcat (buf, ", tso");
3411
3412 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_PSO)
3413 strcat (buf, ", pso");
3414
3415 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_RMO)
3416 strcat (buf, ", rmo");
3417 break;
3418
3419 case EM_PARISC:
3420 switch (e_flags & EF_PARISC_ARCH)
3421 {
3422 case EFA_PARISC_1_0:
3423 strcpy (buf, ", PA-RISC 1.0");
3424 break;
3425 case EFA_PARISC_1_1:
3426 strcpy (buf, ", PA-RISC 1.1");
3427 break;
3428 case EFA_PARISC_2_0:
3429 strcpy (buf, ", PA-RISC 2.0");
3430 break;
3431 default:
3432 break;
3433 }
3434 if (e_flags & EF_PARISC_TRAPNIL)
3435 strcat (buf, ", trapnil");
3436 if (e_flags & EF_PARISC_EXT)
3437 strcat (buf, ", ext");
3438 if (e_flags & EF_PARISC_LSB)
3439 strcat (buf, ", lsb");
3440 if (e_flags & EF_PARISC_WIDE)
3441 strcat (buf, ", wide");
3442 if (e_flags & EF_PARISC_NO_KABP)
3443 strcat (buf, ", no kabp");
3444 if (e_flags & EF_PARISC_LAZYSWAP)
3445 strcat (buf, ", lazyswap");
3446 break;
3447
3448 case EM_PJ:
3449 case EM_PJ_OLD:
3450 if ((e_flags & EF_PICOJAVA_NEWCALLS) == EF_PICOJAVA_NEWCALLS)
3451 strcat (buf, ", new calling convention");
3452
3453 if ((e_flags & EF_PICOJAVA_GNUCALLS) == EF_PICOJAVA_GNUCALLS)
3454 strcat (buf, ", gnu calling convention");
3455 break;
3456
3457 case EM_IA_64:
3458 if ((e_flags & EF_IA_64_ABI64))
3459 strcat (buf, ", 64-bit");
3460 else
3461 strcat (buf, ", 32-bit");
3462 if ((e_flags & EF_IA_64_REDUCEDFP))
3463 strcat (buf, ", reduced fp model");
3464 if ((e_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
3465 strcat (buf, ", no function descriptors, constant gp");
3466 else if ((e_flags & EF_IA_64_CONS_GP))
3467 strcat (buf, ", constant gp");
3468 if ((e_flags & EF_IA_64_ABSOLUTE))
3469 strcat (buf, ", absolute");
3470 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
3471 {
3472 if ((e_flags & EF_IA_64_VMS_LINKAGES))
3473 strcat (buf, ", vms_linkages");
3474 switch ((e_flags & EF_IA_64_VMS_COMCOD))
3475 {
3476 case EF_IA_64_VMS_COMCOD_SUCCESS:
3477 break;
3478 case EF_IA_64_VMS_COMCOD_WARNING:
3479 strcat (buf, ", warning");
3480 break;
3481 case EF_IA_64_VMS_COMCOD_ERROR:
3482 strcat (buf, ", error");
3483 break;
3484 case EF_IA_64_VMS_COMCOD_ABORT:
3485 strcat (buf, ", abort");
3486 break;
3487 default:
3488 warn (_("Unrecognised IA64 VMS Command Code: %x\n"),
3489 e_flags & EF_IA_64_VMS_COMCOD);
3490 strcat (buf, ", <unknown>");
3491 }
3492 }
3493 break;
3494
3495 case EM_VAX:
3496 if ((e_flags & EF_VAX_NONPIC))
3497 strcat (buf, ", non-PIC");
3498 if ((e_flags & EF_VAX_DFLOAT))
3499 strcat (buf, ", D-Float");
3500 if ((e_flags & EF_VAX_GFLOAT))
3501 strcat (buf, ", G-Float");
3502 break;
3503
3504 case EM_VISIUM:
3505 if (e_flags & EF_VISIUM_ARCH_MCM)
3506 strcat (buf, ", mcm");
3507 else if (e_flags & EF_VISIUM_ARCH_MCM24)
3508 strcat (buf, ", mcm24");
3509 if (e_flags & EF_VISIUM_ARCH_GR6)
3510 strcat (buf, ", gr6");
3511 break;
3512
3513 case EM_RL78:
3514 switch (e_flags & E_FLAG_RL78_CPU_MASK)
3515 {
3516 case E_FLAG_RL78_ANY_CPU: break;
3517 case E_FLAG_RL78_G10: strcat (buf, ", G10"); break;
3518 case E_FLAG_RL78_G13: strcat (buf, ", G13"); break;
3519 case E_FLAG_RL78_G14: strcat (buf, ", G14"); break;
3520 }
3521 if (e_flags & E_FLAG_RL78_64BIT_DOUBLES)
3522 strcat (buf, ", 64-bit doubles");
3523 break;
3524
3525 case EM_RX:
3526 if (e_flags & E_FLAG_RX_64BIT_DOUBLES)
3527 strcat (buf, ", 64-bit doubles");
3528 if (e_flags & E_FLAG_RX_DSP)
3529 strcat (buf, ", dsp");
3530 if (e_flags & E_FLAG_RX_PID)
3531 strcat (buf, ", pid");
3532 if (e_flags & E_FLAG_RX_ABI)
3533 strcat (buf, ", RX ABI");
3534 if (e_flags & E_FLAG_RX_SINSNS_SET)
3535 strcat (buf, e_flags & E_FLAG_RX_SINSNS_YES
3536 ? ", uses String instructions" : ", bans String instructions");
3537 if (e_flags & E_FLAG_RX_V2)
3538 strcat (buf, ", V2");
3539 break;
3540
3541 case EM_S390:
3542 if (e_flags & EF_S390_HIGH_GPRS)
3543 strcat (buf, ", highgprs");
3544 break;
3545
3546 case EM_TI_C6000:
3547 if ((e_flags & EF_C6000_REL))
3548 strcat (buf, ", relocatable module");
3549 break;
3550
3551 case EM_MSP430:
3552 strcat (buf, _(": architecture variant: "));
3553 switch (e_flags & EF_MSP430_MACH)
3554 {
3555 case E_MSP430_MACH_MSP430x11: strcat (buf, "MSP430x11"); break;
3556 case E_MSP430_MACH_MSP430x11x1 : strcat (buf, "MSP430x11x1 "); break;
3557 case E_MSP430_MACH_MSP430x12: strcat (buf, "MSP430x12"); break;
3558 case E_MSP430_MACH_MSP430x13: strcat (buf, "MSP430x13"); break;
3559 case E_MSP430_MACH_MSP430x14: strcat (buf, "MSP430x14"); break;
3560 case E_MSP430_MACH_MSP430x15: strcat (buf, "MSP430x15"); break;
3561 case E_MSP430_MACH_MSP430x16: strcat (buf, "MSP430x16"); break;
3562 case E_MSP430_MACH_MSP430x31: strcat (buf, "MSP430x31"); break;
3563 case E_MSP430_MACH_MSP430x32: strcat (buf, "MSP430x32"); break;
3564 case E_MSP430_MACH_MSP430x33: strcat (buf, "MSP430x33"); break;
3565 case E_MSP430_MACH_MSP430x41: strcat (buf, "MSP430x41"); break;
3566 case E_MSP430_MACH_MSP430x42: strcat (buf, "MSP430x42"); break;
3567 case E_MSP430_MACH_MSP430x43: strcat (buf, "MSP430x43"); break;
3568 case E_MSP430_MACH_MSP430x44: strcat (buf, "MSP430x44"); break;
3569 case E_MSP430_MACH_MSP430X : strcat (buf, "MSP430X"); break;
3570 default:
3571 strcat (buf, _(": unknown")); break;
3572 }
3573
3574 if (e_flags & ~ EF_MSP430_MACH)
3575 strcat (buf, _(": unknown extra flag bits also present"));
3576 }
3577 }
3578
3579 return buf;
3580 }
3581
3582 static const char *
3583 get_osabi_name (unsigned int osabi)
3584 {
3585 static char buff[32];
3586
3587 switch (osabi)
3588 {
3589 case ELFOSABI_NONE: return "UNIX - System V";
3590 case ELFOSABI_HPUX: return "UNIX - HP-UX";
3591 case ELFOSABI_NETBSD: return "UNIX - NetBSD";
3592 case ELFOSABI_GNU: return "UNIX - GNU";
3593 case ELFOSABI_SOLARIS: return "UNIX - Solaris";
3594 case ELFOSABI_AIX: return "UNIX - AIX";
3595 case ELFOSABI_IRIX: return "UNIX - IRIX";
3596 case ELFOSABI_FREEBSD: return "UNIX - FreeBSD";
3597 case ELFOSABI_TRU64: return "UNIX - TRU64";
3598 case ELFOSABI_MODESTO: return "Novell - Modesto";
3599 case ELFOSABI_OPENBSD: return "UNIX - OpenBSD";
3600 case ELFOSABI_OPENVMS: return "VMS - OpenVMS";
3601 case ELFOSABI_NSK: return "HP - Non-Stop Kernel";
3602 case ELFOSABI_AROS: return "AROS";
3603 case ELFOSABI_FENIXOS: return "FenixOS";
3604 case ELFOSABI_CLOUDABI: return "Nuxi CloudABI";
3605 case ELFOSABI_OPENVOS: return "Stratus Technologies OpenVOS";
3606 default:
3607 if (osabi >= 64)
3608 switch (elf_header.e_machine)
3609 {
3610 case EM_ARM:
3611 switch (osabi)
3612 {
3613 case ELFOSABI_ARM: return "ARM";
3614 default:
3615 break;
3616 }
3617 break;
3618
3619 case EM_MSP430:
3620 case EM_MSP430_OLD:
3621 case EM_VISIUM:
3622 switch (osabi)
3623 {
3624 case ELFOSABI_STANDALONE: return _("Standalone App");
3625 default:
3626 break;
3627 }
3628 break;
3629
3630 case EM_TI_C6000:
3631 switch (osabi)
3632 {
3633 case ELFOSABI_C6000_ELFABI: return _("Bare-metal C6000");
3634 case ELFOSABI_C6000_LINUX: return "Linux C6000";
3635 default:
3636 break;
3637 }
3638 break;
3639
3640 default:
3641 break;
3642 }
3643 snprintf (buff, sizeof (buff), _("<unknown: %x>"), osabi);
3644 return buff;
3645 }
3646 }
3647
3648 static const char *
3649 get_aarch64_segment_type (unsigned long type)
3650 {
3651 switch (type)
3652 {
3653 case PT_AARCH64_ARCHEXT:
3654 return "AARCH64_ARCHEXT";
3655 default:
3656 break;
3657 }
3658
3659 return NULL;
3660 }
3661
3662 static const char *
3663 get_arm_segment_type (unsigned long type)
3664 {
3665 switch (type)
3666 {
3667 case PT_ARM_EXIDX:
3668 return "EXIDX";
3669 default:
3670 break;
3671 }
3672
3673 return NULL;
3674 }
3675
3676 static const char *
3677 get_mips_segment_type (unsigned long type)
3678 {
3679 switch (type)
3680 {
3681 case PT_MIPS_REGINFO:
3682 return "REGINFO";
3683 case PT_MIPS_RTPROC:
3684 return "RTPROC";
3685 case PT_MIPS_OPTIONS:
3686 return "OPTIONS";
3687 case PT_MIPS_ABIFLAGS:
3688 return "ABIFLAGS";
3689 default:
3690 break;
3691 }
3692
3693 return NULL;
3694 }
3695
3696 static const char *
3697 get_parisc_segment_type (unsigned long type)
3698 {
3699 switch (type)
3700 {
3701 case PT_HP_TLS: return "HP_TLS";
3702 case PT_HP_CORE_NONE: return "HP_CORE_NONE";
3703 case PT_HP_CORE_VERSION: return "HP_CORE_VERSION";
3704 case PT_HP_CORE_KERNEL: return "HP_CORE_KERNEL";
3705 case PT_HP_CORE_COMM: return "HP_CORE_COMM";
3706 case PT_HP_CORE_PROC: return "HP_CORE_PROC";
3707 case PT_HP_CORE_LOADABLE: return "HP_CORE_LOADABLE";
3708 case PT_HP_CORE_STACK: return "HP_CORE_STACK";
3709 case PT_HP_CORE_SHM: return "HP_CORE_SHM";
3710 case PT_HP_CORE_MMF: return "HP_CORE_MMF";
3711 case PT_HP_PARALLEL: return "HP_PARALLEL";
3712 case PT_HP_FASTBIND: return "HP_FASTBIND";
3713 case PT_HP_OPT_ANNOT: return "HP_OPT_ANNOT";
3714 case PT_HP_HSL_ANNOT: return "HP_HSL_ANNOT";
3715 case PT_HP_STACK: return "HP_STACK";
3716 case PT_HP_CORE_UTSNAME: return "HP_CORE_UTSNAME";
3717 case PT_PARISC_ARCHEXT: return "PARISC_ARCHEXT";
3718 case PT_PARISC_UNWIND: return "PARISC_UNWIND";
3719 case PT_PARISC_WEAKORDER: return "PARISC_WEAKORDER";
3720 default:
3721 break;
3722 }
3723
3724 return NULL;
3725 }
3726
3727 static const char *
3728 get_ia64_segment_type (unsigned long type)
3729 {
3730 switch (type)
3731 {
3732 case PT_IA_64_ARCHEXT: return "IA_64_ARCHEXT";
3733 case PT_IA_64_UNWIND: return "IA_64_UNWIND";
3734 case PT_HP_TLS: return "HP_TLS";
3735 case PT_IA_64_HP_OPT_ANOT: return "HP_OPT_ANNOT";
3736 case PT_IA_64_HP_HSL_ANOT: return "HP_HSL_ANNOT";
3737 case PT_IA_64_HP_STACK: return "HP_STACK";
3738 default:
3739 break;
3740 }
3741
3742 return NULL;
3743 }
3744
3745 static const char *
3746 get_tic6x_segment_type (unsigned long type)
3747 {
3748 switch (type)
3749 {
3750 case PT_C6000_PHATTR: return "C6000_PHATTR";
3751 default:
3752 break;
3753 }
3754
3755 return NULL;
3756 }
3757
3758 static const char *
3759 get_solaris_segment_type (unsigned long type)
3760 {
3761 switch (type)
3762 {
3763 case 0x6464e550: return "PT_SUNW_UNWIND";
3764 case 0x6474e550: return "PT_SUNW_EH_FRAME";
3765 case 0x6ffffff7: return "PT_LOSUNW";
3766 case 0x6ffffffa: return "PT_SUNWBSS";
3767 case 0x6ffffffb: return "PT_SUNWSTACK";
3768 case 0x6ffffffc: return "PT_SUNWDTRACE";
3769 case 0x6ffffffd: return "PT_SUNWCAP";
3770 case 0x6fffffff: return "PT_HISUNW";
3771 default: return NULL;
3772 }
3773 }
3774
3775 static const char *
3776 get_segment_type (unsigned long p_type)
3777 {
3778 static char buff[32];
3779
3780 switch (p_type)
3781 {
3782 case PT_NULL: return "NULL";
3783 case PT_LOAD: return "LOAD";
3784 case PT_DYNAMIC: return "DYNAMIC";
3785 case PT_INTERP: return "INTERP";
3786 case PT_NOTE: return "NOTE";
3787 case PT_SHLIB: return "SHLIB";
3788 case PT_PHDR: return "PHDR";
3789 case PT_TLS: return "TLS";
3790
3791 case PT_GNU_EH_FRAME:
3792 return "GNU_EH_FRAME";
3793 case PT_GNU_STACK: return "GNU_STACK";
3794 case PT_GNU_RELRO: return "GNU_RELRO";
3795
3796 default:
3797 if ((p_type >= PT_LOPROC) && (p_type <= PT_HIPROC))
3798 {
3799 const char * result;
3800
3801 switch (elf_header.e_machine)
3802 {
3803 case EM_AARCH64:
3804 result = get_aarch64_segment_type (p_type);
3805 break;
3806 case EM_ARM:
3807 result = get_arm_segment_type (p_type);
3808 break;
3809 case EM_MIPS:
3810 case EM_MIPS_RS3_LE:
3811 result = get_mips_segment_type (p_type);
3812 break;
3813 case EM_PARISC:
3814 result = get_parisc_segment_type (p_type);
3815 break;
3816 case EM_IA_64:
3817 result = get_ia64_segment_type (p_type);
3818 break;
3819 case EM_TI_C6000:
3820 result = get_tic6x_segment_type (p_type);
3821 break;
3822 default:
3823 result = NULL;
3824 break;
3825 }
3826
3827 if (result != NULL)
3828 return result;
3829
3830 sprintf (buff, "LOPROC+%#lx", p_type - PT_LOPROC);
3831 }
3832 else if ((p_type >= PT_LOOS) && (p_type <= PT_HIOS))
3833 {
3834 const char * result;
3835
3836 switch (elf_header.e_machine)
3837 {
3838 case EM_PARISC:
3839 result = get_parisc_segment_type (p_type);
3840 break;
3841 case EM_IA_64:
3842 result = get_ia64_segment_type (p_type);
3843 break;
3844 default:
3845 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
3846 result = get_solaris_segment_type (p_type);
3847 else
3848 result = NULL;
3849 break;
3850 }
3851
3852 if (result != NULL)
3853 return result;
3854
3855 sprintf (buff, "LOOS+%#lx", p_type - PT_LOOS);
3856 }
3857 else
3858 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), p_type);
3859
3860 return buff;
3861 }
3862 }
3863
3864 static const char *
3865 get_mips_section_type_name (unsigned int sh_type)
3866 {
3867 switch (sh_type)
3868 {
3869 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST";
3870 case SHT_MIPS_MSYM: return "MIPS_MSYM";
3871 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT";
3872 case SHT_MIPS_GPTAB: return "MIPS_GPTAB";
3873 case SHT_MIPS_UCODE: return "MIPS_UCODE";
3874 case SHT_MIPS_DEBUG: return "MIPS_DEBUG";
3875 case SHT_MIPS_REGINFO: return "MIPS_REGINFO";
3876 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE";
3877 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM";
3878 case SHT_MIPS_RELD: return "MIPS_RELD";
3879 case SHT_MIPS_IFACE: return "MIPS_IFACE";
3880 case SHT_MIPS_CONTENT: return "MIPS_CONTENT";
3881 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS";
3882 case SHT_MIPS_SHDR: return "MIPS_SHDR";
3883 case SHT_MIPS_FDESC: return "MIPS_FDESC";
3884 case SHT_MIPS_EXTSYM: return "MIPS_EXTSYM";
3885 case SHT_MIPS_DENSE: return "MIPS_DENSE";
3886 case SHT_MIPS_PDESC: return "MIPS_PDESC";
3887 case SHT_MIPS_LOCSYM: return "MIPS_LOCSYM";
3888 case SHT_MIPS_AUXSYM: return "MIPS_AUXSYM";
3889 case SHT_MIPS_OPTSYM: return "MIPS_OPTSYM";
3890 case SHT_MIPS_LOCSTR: return "MIPS_LOCSTR";
3891 case SHT_MIPS_LINE: return "MIPS_LINE";
3892 case SHT_MIPS_RFDESC: return "MIPS_RFDESC";
3893 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM";
3894 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST";
3895 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS";
3896 case SHT_MIPS_DWARF: return "MIPS_DWARF";
3897 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL";
3898 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
3899 case SHT_MIPS_EVENTS: return "MIPS_EVENTS";
3900 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE";
3901 case SHT_MIPS_PIXIE: return "MIPS_PIXIE";
3902 case SHT_MIPS_XLATE: return "MIPS_XLATE";
3903 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG";
3904 case SHT_MIPS_WHIRL: return "MIPS_WHIRL";
3905 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION";
3906 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD";
3907 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION";
3908 case SHT_MIPS_ABIFLAGS: return "MIPS_ABIFLAGS";
3909 default:
3910 break;
3911 }
3912 return NULL;
3913 }
3914
3915 static const char *
3916 get_parisc_section_type_name (unsigned int sh_type)
3917 {
3918 switch (sh_type)
3919 {
3920 case SHT_PARISC_EXT: return "PARISC_EXT";
3921 case SHT_PARISC_UNWIND: return "PARISC_UNWIND";
3922 case SHT_PARISC_DOC: return "PARISC_DOC";
3923 case SHT_PARISC_ANNOT: return "PARISC_ANNOT";
3924 case SHT_PARISC_SYMEXTN: return "PARISC_SYMEXTN";
3925 case SHT_PARISC_STUBS: return "PARISC_STUBS";
3926 case SHT_PARISC_DLKM: return "PARISC_DLKM";
3927 default:
3928 break;
3929 }
3930 return NULL;
3931 }
3932
3933 static const char *
3934 get_ia64_section_type_name (unsigned int sh_type)
3935 {
3936 /* If the top 8 bits are 0x78 the next 8 are the os/abi ID. */
3937 if ((sh_type & 0xFF000000) == SHT_IA_64_LOPSREG)
3938 return get_osabi_name ((sh_type & 0x00FF0000) >> 16);
3939
3940 switch (sh_type)
3941 {
3942 case SHT_IA_64_EXT: return "IA_64_EXT";
3943 case SHT_IA_64_UNWIND: return "IA_64_UNWIND";
3944 case SHT_IA_64_PRIORITY_INIT: return "IA_64_PRIORITY_INIT";
3945 case SHT_IA_64_VMS_TRACE: return "VMS_TRACE";
3946 case SHT_IA_64_VMS_TIE_SIGNATURES: return "VMS_TIE_SIGNATURES";
3947 case SHT_IA_64_VMS_DEBUG: return "VMS_DEBUG";
3948 case SHT_IA_64_VMS_DEBUG_STR: return "VMS_DEBUG_STR";
3949 case SHT_IA_64_VMS_LINKAGES: return "VMS_LINKAGES";
3950 case SHT_IA_64_VMS_SYMBOL_VECTOR: return "VMS_SYMBOL_VECTOR";
3951 case SHT_IA_64_VMS_FIXUP: return "VMS_FIXUP";
3952 default:
3953 break;
3954 }
3955 return NULL;
3956 }
3957
3958 static const char *
3959 get_x86_64_section_type_name (unsigned int sh_type)
3960 {
3961 switch (sh_type)
3962 {
3963 case SHT_X86_64_UNWIND: return "X86_64_UNWIND";
3964 default:
3965 break;
3966 }
3967 return NULL;
3968 }
3969
3970 static const char *
3971 get_aarch64_section_type_name (unsigned int sh_type)
3972 {
3973 switch (sh_type)
3974 {
3975 case SHT_AARCH64_ATTRIBUTES:
3976 return "AARCH64_ATTRIBUTES";
3977 default:
3978 break;
3979 }
3980 return NULL;
3981 }
3982
3983 static const char *
3984 get_arm_section_type_name (unsigned int sh_type)
3985 {
3986 switch (sh_type)
3987 {
3988 case SHT_ARM_EXIDX: return "ARM_EXIDX";
3989 case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP";
3990 case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES";
3991 case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY";
3992 case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION";
3993 default:
3994 break;
3995 }
3996 return NULL;
3997 }
3998
3999 static const char *
4000 get_tic6x_section_type_name (unsigned int sh_type)
4001 {
4002 switch (sh_type)
4003 {
4004 case SHT_C6000_UNWIND:
4005 return "C6000_UNWIND";
4006 case SHT_C6000_PREEMPTMAP:
4007 return "C6000_PREEMPTMAP";
4008 case SHT_C6000_ATTRIBUTES:
4009 return "C6000_ATTRIBUTES";
4010 case SHT_TI_ICODE:
4011 return "TI_ICODE";
4012 case SHT_TI_XREF:
4013 return "TI_XREF";
4014 case SHT_TI_HANDLER:
4015 return "TI_HANDLER";
4016 case SHT_TI_INITINFO:
4017 return "TI_INITINFO";
4018 case SHT_TI_PHATTRS:
4019 return "TI_PHATTRS";
4020 default:
4021 break;
4022 }
4023 return NULL;
4024 }
4025
4026 static const char *
4027 get_msp430x_section_type_name (unsigned int sh_type)
4028 {
4029 switch (sh_type)
4030 {
4031 case SHT_MSP430_SEC_FLAGS: return "MSP430_SEC_FLAGS";
4032 case SHT_MSP430_SYM_ALIASES: return "MSP430_SYM_ALIASES";
4033 case SHT_MSP430_ATTRIBUTES: return "MSP430_ATTRIBUTES";
4034 default: return NULL;
4035 }
4036 }
4037
4038 static const char *
4039 get_v850_section_type_name (unsigned int sh_type)
4040 {
4041 switch (sh_type)
4042 {
4043 case SHT_V850_SCOMMON: return "V850 Small Common";
4044 case SHT_V850_TCOMMON: return "V850 Tiny Common";
4045 case SHT_V850_ZCOMMON: return "V850 Zero Common";
4046 case SHT_RENESAS_IOP: return "RENESAS IOP";
4047 case SHT_RENESAS_INFO: return "RENESAS INFO";
4048 default: return NULL;
4049 }
4050 }
4051
4052 static const char *
4053 get_section_type_name (unsigned int sh_type)
4054 {
4055 static char buff[32];
4056 const char * result;
4057
4058 switch (sh_type)
4059 {
4060 case SHT_NULL: return "NULL";
4061 case SHT_PROGBITS: return "PROGBITS";
4062 case SHT_SYMTAB: return "SYMTAB";
4063 case SHT_STRTAB: return "STRTAB";
4064 case SHT_RELA: return "RELA";
4065 case SHT_HASH: return "HASH";
4066 case SHT_DYNAMIC: return "DYNAMIC";
4067 case SHT_NOTE: return "NOTE";
4068 case SHT_NOBITS: return "NOBITS";
4069 case SHT_REL: return "REL";
4070 case SHT_SHLIB: return "SHLIB";
4071 case SHT_DYNSYM: return "DYNSYM";
4072 case SHT_INIT_ARRAY: return "INIT_ARRAY";
4073 case SHT_FINI_ARRAY: return "FINI_ARRAY";
4074 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY";
4075 case SHT_GNU_HASH: return "GNU_HASH";
4076 case SHT_GROUP: return "GROUP";
4077 case SHT_SYMTAB_SHNDX: return "SYMTAB SECTION INDICIES";
4078 case SHT_GNU_verdef: return "VERDEF";
4079 case SHT_GNU_verneed: return "VERNEED";
4080 case SHT_GNU_versym: return "VERSYM";
4081 case 0x6ffffff0: return "VERSYM";
4082 case 0x6ffffffc: return "VERDEF";
4083 case 0x7ffffffd: return "AUXILIARY";
4084 case 0x7fffffff: return "FILTER";
4085 case SHT_GNU_LIBLIST: return "GNU_LIBLIST";
4086
4087 default:
4088 if ((sh_type >= SHT_LOPROC) && (sh_type <= SHT_HIPROC))
4089 {
4090 switch (elf_header.e_machine)
4091 {
4092 case EM_MIPS:
4093 case EM_MIPS_RS3_LE:
4094 result = get_mips_section_type_name (sh_type);
4095 break;
4096 case EM_PARISC:
4097 result = get_parisc_section_type_name (sh_type);
4098 break;
4099 case EM_IA_64:
4100 result = get_ia64_section_type_name (sh_type);
4101 break;
4102 case EM_X86_64:
4103 case EM_L1OM:
4104 case EM_K1OM:
4105 result = get_x86_64_section_type_name (sh_type);
4106 break;
4107 case EM_AARCH64:
4108 result = get_aarch64_section_type_name (sh_type);
4109 break;
4110 case EM_ARM:
4111 result = get_arm_section_type_name (sh_type);
4112 break;
4113 case EM_TI_C6000:
4114 result = get_tic6x_section_type_name (sh_type);
4115 break;
4116 case EM_MSP430:
4117 result = get_msp430x_section_type_name (sh_type);
4118 break;
4119 case EM_V800:
4120 case EM_V850:
4121 case EM_CYGNUS_V850:
4122 result = get_v850_section_type_name (sh_type);
4123 break;
4124 default:
4125 result = NULL;
4126 break;
4127 }
4128
4129 if (result != NULL)
4130 return result;
4131
4132 sprintf (buff, "LOPROC+%#x", sh_type - SHT_LOPROC);
4133 }
4134 else if ((sh_type >= SHT_LOOS) && (sh_type <= SHT_HIOS))
4135 {
4136 switch (elf_header.e_machine)
4137 {
4138 case EM_IA_64:
4139 result = get_ia64_section_type_name (sh_type);
4140 break;
4141 default:
4142 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
4143 result = get_solaris_section_type (sh_type);
4144 else
4145 {
4146 switch (sh_type)
4147 {
4148 case SHT_GNU_INCREMENTAL_INPUTS: result = "GNU_INCREMENTAL_INPUTS"; break;
4149 case SHT_GNU_ATTRIBUTES: result = "GNU_ATTRIBUTES"; break;
4150 case SHT_GNU_HASH: result = "GNU_HASH"; break;
4151 case SHT_GNU_LIBLIST: result = "GNU_LIBLIST"; break;
4152 default:
4153 result = NULL;
4154 break;
4155 }
4156 }
4157 break;
4158 }
4159
4160 if (result != NULL)
4161 return result;
4162
4163 sprintf (buff, "LOOS+%#x", sh_type - SHT_LOOS);
4164 }
4165 else if ((sh_type >= SHT_LOUSER) && (sh_type <= SHT_HIUSER))
4166 {
4167 switch (elf_header.e_machine)
4168 {
4169 case EM_V800:
4170 case EM_V850:
4171 case EM_CYGNUS_V850:
4172 result = get_v850_section_type_name (sh_type);
4173 break;
4174 default:
4175 result = NULL;
4176 break;
4177 }
4178
4179 if (result != NULL)
4180 return result;
4181
4182 sprintf (buff, "LOUSER+%#x", sh_type - SHT_LOUSER);
4183 }
4184 else
4185 /* This message is probably going to be displayed in a 15
4186 character wide field, so put the hex value first. */
4187 snprintf (buff, sizeof (buff), _("%08x: <unknown>"), sh_type);
4188
4189 return buff;
4190 }
4191 }
4192
4193 #define OPTION_DEBUG_DUMP 512
4194 #define OPTION_DYN_SYMS 513
4195 #define OPTION_DWARF_DEPTH 514
4196 #define OPTION_DWARF_START 515
4197 #define OPTION_DWARF_CHECK 516
4198
4199 static struct option options[] =
4200 {
4201 {"all", no_argument, 0, 'a'},
4202 {"file-header", no_argument, 0, 'h'},
4203 {"program-headers", no_argument, 0, 'l'},
4204 {"headers", no_argument, 0, 'e'},
4205 {"histogram", no_argument, 0, 'I'},
4206 {"segments", no_argument, 0, 'l'},
4207 {"sections", no_argument, 0, 'S'},
4208 {"section-headers", no_argument, 0, 'S'},
4209 {"section-groups", no_argument, 0, 'g'},
4210 {"section-details", no_argument, 0, 't'},
4211 {"full-section-name",no_argument, 0, 'N'},
4212 {"symbols", no_argument, 0, 's'},
4213 {"syms", no_argument, 0, 's'},
4214 {"dyn-syms", no_argument, 0, OPTION_DYN_SYMS},
4215 {"relocs", no_argument, 0, 'r'},
4216 {"notes", no_argument, 0, 'n'},
4217 {"dynamic", no_argument, 0, 'd'},
4218 {"arch-specific", no_argument, 0, 'A'},
4219 {"version-info", no_argument, 0, 'V'},
4220 {"use-dynamic", no_argument, 0, 'D'},
4221 {"unwind", no_argument, 0, 'u'},
4222 {"archive-index", no_argument, 0, 'c'},
4223 {"hex-dump", required_argument, 0, 'x'},
4224 {"relocated-dump", required_argument, 0, 'R'},
4225 {"string-dump", required_argument, 0, 'p'},
4226 {"decompress", no_argument, 0, 'z'},
4227 #ifdef SUPPORT_DISASSEMBLY
4228 {"instruction-dump", required_argument, 0, 'i'},
4229 #endif
4230 {"debug-dump", optional_argument, 0, OPTION_DEBUG_DUMP},
4231
4232 {"dwarf-depth", required_argument, 0, OPTION_DWARF_DEPTH},
4233 {"dwarf-start", required_argument, 0, OPTION_DWARF_START},
4234 {"dwarf-check", no_argument, 0, OPTION_DWARF_CHECK},
4235
4236 {"version", no_argument, 0, 'v'},
4237 {"wide", no_argument, 0, 'W'},
4238 {"help", no_argument, 0, 'H'},
4239 {0, no_argument, 0, 0}
4240 };
4241
4242 static void
4243 usage (FILE * stream)
4244 {
4245 fprintf (stream, _("Usage: readelf <option(s)> elf-file(s)\n"));
4246 fprintf (stream, _(" Display information about the contents of ELF format files\n"));
4247 fprintf (stream, _(" Options are:\n\
4248 -a --all Equivalent to: -h -l -S -s -r -d -V -A -I\n\
4249 -h --file-header Display the ELF file header\n\
4250 -l --program-headers Display the program headers\n\
4251 --segments An alias for --program-headers\n\
4252 -S --section-headers Display the sections' header\n\
4253 --sections An alias for --section-headers\n\
4254 -g --section-groups Display the section groups\n\
4255 -t --section-details Display the section details\n\
4256 -e --headers Equivalent to: -h -l -S\n\
4257 -s --syms Display the symbol table\n\
4258 --symbols An alias for --syms\n\
4259 --dyn-syms Display the dynamic symbol table\n\
4260 -n --notes Display the core notes (if present)\n\
4261 -r --relocs Display the relocations (if present)\n\
4262 -u --unwind Display the unwind info (if present)\n\
4263 -d --dynamic Display the dynamic section (if present)\n\
4264 -V --version-info Display the version sections (if present)\n\
4265 -A --arch-specific Display architecture specific information (if any)\n\
4266 -c --archive-index Display the symbol/file index in an archive\n\
4267 -D --use-dynamic Use the dynamic section info when displaying symbols\n\
4268 -x --hex-dump=<number|name>\n\
4269 Dump the contents of section <number|name> as bytes\n\
4270 -p --string-dump=<number|name>\n\
4271 Dump the contents of section <number|name> as strings\n\
4272 -R --relocated-dump=<number|name>\n\
4273 Dump the contents of section <number|name> as relocated bytes\n\
4274 -z --decompress Decompress section before dumping it\n\
4275 -w[lLiaprmfFsoRt] or\n\
4276 --debug-dump[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,\n\
4277 =frames-interp,=str,=loc,=Ranges,=pubtypes,\n\
4278 =gdb_index,=trace_info,=trace_abbrev,=trace_aranges,\n\
4279 =addr,=cu_index]\n\
4280 Display the contents of DWARF2 debug sections\n"));
4281 fprintf (stream, _("\
4282 --dwarf-depth=N Do not display DIEs at depth N or greater\n\
4283 --dwarf-start=N Display DIEs starting with N, at the same depth\n\
4284 or deeper\n"));
4285 #ifdef SUPPORT_DISASSEMBLY
4286 fprintf (stream, _("\
4287 -i --instruction-dump=<number|name>\n\
4288 Disassemble the contents of section <number|name>\n"));
4289 #endif
4290 fprintf (stream, _("\
4291 -I --histogram Display histogram of bucket list lengths\n\
4292 -W --wide Allow output width to exceed 80 characters\n\
4293 @<file> Read options from <file>\n\
4294 -H --help Display this information\n\
4295 -v --version Display the version number of readelf\n"));
4296
4297 if (REPORT_BUGS_TO[0] && stream == stdout)
4298 fprintf (stdout, _("Report bugs to %s\n"), REPORT_BUGS_TO);
4299
4300 exit (stream == stdout ? 0 : 1);
4301 }
4302
4303 /* Record the fact that the user wants the contents of section number
4304 SECTION to be displayed using the method(s) encoded as flags bits
4305 in TYPE. Note, TYPE can be zero if we are creating the array for
4306 the first time. */
4307
4308 static void
4309 request_dump_bynumber (unsigned int section, dump_type type)
4310 {
4311 if (section >= num_dump_sects)
4312 {
4313 dump_type * new_dump_sects;
4314
4315 new_dump_sects = (dump_type *) calloc (section + 1,
4316 sizeof (* dump_sects));
4317
4318 if (new_dump_sects == NULL)
4319 error (_("Out of memory allocating dump request table.\n"));
4320 else
4321 {
4322 if (dump_sects)
4323 {
4324 /* Copy current flag settings. */
4325 memcpy (new_dump_sects, dump_sects, num_dump_sects * sizeof (* dump_sects));
4326
4327 free (dump_sects);
4328 }
4329
4330 dump_sects = new_dump_sects;
4331 num_dump_sects = section + 1;
4332 }
4333 }
4334
4335 if (dump_sects)
4336 dump_sects[section] |= type;
4337
4338 return;
4339 }
4340
4341 /* Request a dump by section name. */
4342
4343 static void
4344 request_dump_byname (const char * section, dump_type type)
4345 {
4346 struct dump_list_entry * new_request;
4347
4348 new_request = (struct dump_list_entry *)
4349 malloc (sizeof (struct dump_list_entry));
4350 if (!new_request)
4351 error (_("Out of memory allocating dump request table.\n"));
4352
4353 new_request->name = strdup (section);
4354 if (!new_request->name)
4355 error (_("Out of memory allocating dump request table.\n"));
4356
4357 new_request->type = type;
4358
4359 new_request->next = dump_sects_byname;
4360 dump_sects_byname = new_request;
4361 }
4362
4363 static inline void
4364 request_dump (dump_type type)
4365 {
4366 int section;
4367 char * cp;
4368
4369 do_dump++;
4370 section = strtoul (optarg, & cp, 0);
4371
4372 if (! *cp && section >= 0)
4373 request_dump_bynumber (section, type);
4374 else
4375 request_dump_byname (optarg, type);
4376 }
4377
4378
4379 static void
4380 parse_args (int argc, char ** argv)
4381 {
4382 int c;
4383
4384 if (argc < 2)
4385 usage (stderr);
4386
4387 while ((c = getopt_long
4388 (argc, argv, "ADHINR:SVWacdeghi:lnp:rstuvw::x:z", options, NULL)) != EOF)
4389 {
4390 switch (c)
4391 {
4392 case 0:
4393 /* Long options. */
4394 break;
4395 case 'H':
4396 usage (stdout);
4397 break;
4398
4399 case 'a':
4400 do_syms++;
4401 do_reloc++;
4402 do_unwind++;
4403 do_dynamic++;
4404 do_header++;
4405 do_sections++;
4406 do_section_groups++;
4407 do_segments++;
4408 do_version++;
4409 do_histogram++;
4410 do_arch++;
4411 do_notes++;
4412 break;
4413 case 'g':
4414 do_section_groups++;
4415 break;
4416 case 't':
4417 case 'N':
4418 do_sections++;
4419 do_section_details++;
4420 break;
4421 case 'e':
4422 do_header++;
4423 do_sections++;
4424 do_segments++;
4425 break;
4426 case 'A':
4427 do_arch++;
4428 break;
4429 case 'D':
4430 do_using_dynamic++;
4431 break;
4432 case 'r':
4433 do_reloc++;
4434 break;
4435 case 'u':
4436 do_unwind++;
4437 break;
4438 case 'h':
4439 do_header++;
4440 break;
4441 case 'l':
4442 do_segments++;
4443 break;
4444 case 's':
4445 do_syms++;
4446 break;
4447 case 'S':
4448 do_sections++;
4449 break;
4450 case 'd':
4451 do_dynamic++;
4452 break;
4453 case 'I':
4454 do_histogram++;
4455 break;
4456 case 'n':
4457 do_notes++;
4458 break;
4459 case 'c':
4460 do_archive_index++;
4461 break;
4462 case 'x':
4463 request_dump (HEX_DUMP);
4464 break;
4465 case 'p':
4466 request_dump (STRING_DUMP);
4467 break;
4468 case 'R':
4469 request_dump (RELOC_DUMP);
4470 break;
4471 case 'z':
4472 decompress_dumps++;
4473 break;
4474 case 'w':
4475 do_dump++;
4476 if (optarg == 0)
4477 {
4478 do_debugging = 1;
4479 dwarf_select_sections_all ();
4480 }
4481 else
4482 {
4483 do_debugging = 0;
4484 dwarf_select_sections_by_letters (optarg);
4485 }
4486 break;
4487 case OPTION_DEBUG_DUMP:
4488 do_dump++;
4489 if (optarg == 0)
4490 do_debugging = 1;
4491 else
4492 {
4493 do_debugging = 0;
4494 dwarf_select_sections_by_names (optarg);
4495 }
4496 break;
4497 case OPTION_DWARF_DEPTH:
4498 {
4499 char *cp;
4500
4501 dwarf_cutoff_level = strtoul (optarg, & cp, 0);
4502 }
4503 break;
4504 case OPTION_DWARF_START:
4505 {
4506 char *cp;
4507
4508 dwarf_start_die = strtoul (optarg, & cp, 0);
4509 }
4510 break;
4511 case OPTION_DWARF_CHECK:
4512 dwarf_check = 1;
4513 break;
4514 case OPTION_DYN_SYMS:
4515 do_dyn_syms++;
4516 break;
4517 #ifdef SUPPORT_DISASSEMBLY
4518 case 'i':
4519 request_dump (DISASS_DUMP);
4520 break;
4521 #endif
4522 case 'v':
4523 print_version (program_name);
4524 break;
4525 case 'V':
4526 do_version++;
4527 break;
4528 case 'W':
4529 do_wide++;
4530 break;
4531 default:
4532 /* xgettext:c-format */
4533 error (_("Invalid option '-%c'\n"), c);
4534 /* Fall through. */
4535 case '?':
4536 usage (stderr);
4537 }
4538 }
4539
4540 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
4541 && !do_segments && !do_header && !do_dump && !do_version
4542 && !do_histogram && !do_debugging && !do_arch && !do_notes
4543 && !do_section_groups && !do_archive_index
4544 && !do_dyn_syms)
4545 usage (stderr);
4546 }
4547
4548 static const char *
4549 get_elf_class (unsigned int elf_class)
4550 {
4551 static char buff[32];
4552
4553 switch (elf_class)
4554 {
4555 case ELFCLASSNONE: return _("none");
4556 case ELFCLASS32: return "ELF32";
4557 case ELFCLASS64: return "ELF64";
4558 default:
4559 snprintf (buff, sizeof (buff), _("<unknown: %x>"), elf_class);
4560 return buff;
4561 }
4562 }
4563
4564 static const char *
4565 get_data_encoding (unsigned int encoding)
4566 {
4567 static char buff[32];
4568
4569 switch (encoding)
4570 {
4571 case ELFDATANONE: return _("none");
4572 case ELFDATA2LSB: return _("2's complement, little endian");
4573 case ELFDATA2MSB: return _("2's complement, big endian");
4574 default:
4575 snprintf (buff, sizeof (buff), _("<unknown: %x>"), encoding);
4576 return buff;
4577 }
4578 }
4579
4580 /* Decode the data held in 'elf_header'. */
4581
4582 static int
4583 process_file_header (void)
4584 {
4585 if ( elf_header.e_ident[EI_MAG0] != ELFMAG0
4586 || elf_header.e_ident[EI_MAG1] != ELFMAG1
4587 || elf_header.e_ident[EI_MAG2] != ELFMAG2
4588 || elf_header.e_ident[EI_MAG3] != ELFMAG3)
4589 {
4590 error
4591 (_("Not an ELF file - it has the wrong magic bytes at the start\n"));
4592 return 0;
4593 }
4594
4595 init_dwarf_regnames (elf_header.e_machine);
4596
4597 if (do_header)
4598 {
4599 int i;
4600
4601 printf (_("ELF Header:\n"));
4602 printf (_(" Magic: "));
4603 for (i = 0; i < EI_NIDENT; i++)
4604 printf ("%2.2x ", elf_header.e_ident[i]);
4605 printf ("\n");
4606 printf (_(" Class: %s\n"),
4607 get_elf_class (elf_header.e_ident[EI_CLASS]));
4608 printf (_(" Data: %s\n"),
4609 get_data_encoding (elf_header.e_ident[EI_DATA]));
4610 printf (_(" Version: %d %s\n"),
4611 elf_header.e_ident[EI_VERSION],
4612 (elf_header.e_ident[EI_VERSION] == EV_CURRENT
4613 ? "(current)"
4614 : (elf_header.e_ident[EI_VERSION] != EV_NONE
4615 ? _("<unknown: %lx>")
4616 : "")));
4617 printf (_(" OS/ABI: %s\n"),
4618 get_osabi_name (elf_header.e_ident[EI_OSABI]));
4619 printf (_(" ABI Version: %d\n"),
4620 elf_header.e_ident[EI_ABIVERSION]);
4621 printf (_(" Type: %s\n"),
4622 get_file_type (elf_header.e_type));
4623 printf (_(" Machine: %s\n"),
4624 get_machine_name (elf_header.e_machine));
4625 printf (_(" Version: 0x%lx\n"),
4626 (unsigned long) elf_header.e_version);
4627
4628 printf (_(" Entry point address: "));
4629 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
4630 printf (_("\n Start of program headers: "));
4631 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
4632 printf (_(" (bytes into file)\n Start of section headers: "));
4633 print_vma ((bfd_vma) elf_header.e_shoff, DEC);
4634 printf (_(" (bytes into file)\n"));
4635
4636 printf (_(" Flags: 0x%lx%s\n"),
4637 (unsigned long) elf_header.e_flags,
4638 get_machine_flags (elf_header.e_flags, elf_header.e_machine));
4639 printf (_(" Size of this header: %ld (bytes)\n"),
4640 (long) elf_header.e_ehsize);
4641 printf (_(" Size of program headers: %ld (bytes)\n"),
4642 (long) elf_header.e_phentsize);
4643 printf (_(" Number of program headers: %ld"),
4644 (long) elf_header.e_phnum);
4645 if (section_headers != NULL
4646 && elf_header.e_phnum == PN_XNUM
4647 && section_headers[0].sh_info != 0)
4648 printf (" (%ld)", (long) section_headers[0].sh_info);
4649 putc ('\n', stdout);
4650 printf (_(" Size of section headers: %ld (bytes)\n"),
4651 (long) elf_header.e_shentsize);
4652 printf (_(" Number of section headers: %ld"),
4653 (long) elf_header.e_shnum);
4654 if (section_headers != NULL && elf_header.e_shnum == SHN_UNDEF)
4655 printf (" (%ld)", (long) section_headers[0].sh_size);
4656 putc ('\n', stdout);
4657 printf (_(" Section header string table index: %ld"),
4658 (long) elf_header.e_shstrndx);
4659 if (section_headers != NULL
4660 && elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
4661 printf (" (%u)", section_headers[0].sh_link);
4662 else if (elf_header.e_shstrndx != SHN_UNDEF
4663 && elf_header.e_shstrndx >= elf_header.e_shnum)
4664 printf (_(" <corrupt: out of range>"));
4665 putc ('\n', stdout);
4666 }
4667
4668 if (section_headers != NULL)
4669 {
4670 if (elf_header.e_phnum == PN_XNUM
4671 && section_headers[0].sh_info != 0)
4672 elf_header.e_phnum = section_headers[0].sh_info;
4673 if (elf_header.e_shnum == SHN_UNDEF)
4674 elf_header.e_shnum = section_headers[0].sh_size;
4675 if (elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
4676 elf_header.e_shstrndx = section_headers[0].sh_link;
4677 else if (elf_header.e_shstrndx >= elf_header.e_shnum)
4678 elf_header.e_shstrndx = SHN_UNDEF;
4679 free (section_headers);
4680 section_headers = NULL;
4681 }
4682
4683 return 1;
4684 }
4685
4686 static bfd_boolean
4687 get_32bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
4688 {
4689 Elf32_External_Phdr * phdrs;
4690 Elf32_External_Phdr * external;
4691 Elf_Internal_Phdr * internal;
4692 unsigned int i;
4693 unsigned int size = elf_header.e_phentsize;
4694 unsigned int num = elf_header.e_phnum;
4695
4696 /* PR binutils/17531: Cope with unexpected section header sizes. */
4697 if (size == 0 || num == 0)
4698 return FALSE;
4699 if (size < sizeof * phdrs)
4700 {
4701 error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
4702 return FALSE;
4703 }
4704 if (size > sizeof * phdrs)
4705 warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
4706
4707 phdrs = (Elf32_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
4708 size, num, _("program headers"));
4709 if (phdrs == NULL)
4710 return FALSE;
4711
4712 for (i = 0, internal = pheaders, external = phdrs;
4713 i < elf_header.e_phnum;
4714 i++, internal++, external++)
4715 {
4716 internal->p_type = BYTE_GET (external->p_type);
4717 internal->p_offset = BYTE_GET (external->p_offset);
4718 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4719 internal->p_paddr = BYTE_GET (external->p_paddr);
4720 internal->p_filesz = BYTE_GET (external->p_filesz);
4721 internal->p_memsz = BYTE_GET (external->p_memsz);
4722 internal->p_flags = BYTE_GET (external->p_flags);
4723 internal->p_align = BYTE_GET (external->p_align);
4724 }
4725
4726 free (phdrs);
4727 return TRUE;
4728 }
4729
4730 static bfd_boolean
4731 get_64bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
4732 {
4733 Elf64_External_Phdr * phdrs;
4734 Elf64_External_Phdr * external;
4735 Elf_Internal_Phdr * internal;
4736 unsigned int i;
4737 unsigned int size = elf_header.e_phentsize;
4738 unsigned int num = elf_header.e_phnum;
4739
4740 /* PR binutils/17531: Cope with unexpected section header sizes. */
4741 if (size == 0 || num == 0)
4742 return FALSE;
4743 if (size < sizeof * phdrs)
4744 {
4745 error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
4746 return FALSE;
4747 }
4748 if (size > sizeof * phdrs)
4749 warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
4750
4751 phdrs = (Elf64_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
4752 size, num, _("program headers"));
4753 if (!phdrs)
4754 return FALSE;
4755
4756 for (i = 0, internal = pheaders, external = phdrs;
4757 i < elf_header.e_phnum;
4758 i++, internal++, external++)
4759 {
4760 internal->p_type = BYTE_GET (external->p_type);
4761 internal->p_flags = BYTE_GET (external->p_flags);
4762 internal->p_offset = BYTE_GET (external->p_offset);
4763 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4764 internal->p_paddr = BYTE_GET (external->p_paddr);
4765 internal->p_filesz = BYTE_GET (external->p_filesz);
4766 internal->p_memsz = BYTE_GET (external->p_memsz);
4767 internal->p_align = BYTE_GET (external->p_align);
4768 }
4769
4770 free (phdrs);
4771 return TRUE;
4772 }
4773
4774 /* Returns 1 if the program headers were read into `program_headers'. */
4775
4776 static int
4777 get_program_headers (FILE * file)
4778 {
4779 Elf_Internal_Phdr * phdrs;
4780
4781 /* Check cache of prior read. */
4782 if (program_headers != NULL)
4783 return 1;
4784
4785 phdrs = (Elf_Internal_Phdr *) cmalloc (elf_header.e_phnum,
4786 sizeof (Elf_Internal_Phdr));
4787
4788 if (phdrs == NULL)
4789 {
4790 error (_("Out of memory reading %u program headers\n"),
4791 elf_header.e_phnum);
4792 return 0;
4793 }
4794
4795 if (is_32bit_elf
4796 ? get_32bit_program_headers (file, phdrs)
4797 : get_64bit_program_headers (file, phdrs))
4798 {
4799 program_headers = phdrs;
4800 return 1;
4801 }
4802
4803 free (phdrs);
4804 return 0;
4805 }
4806
4807 /* Returns 1 if the program headers were loaded. */
4808
4809 static int
4810 process_program_headers (FILE * file)
4811 {
4812 Elf_Internal_Phdr * segment;
4813 unsigned int i;
4814 Elf_Internal_Phdr * previous_load = NULL;
4815
4816 if (elf_header.e_phnum == 0)
4817 {
4818 /* PR binutils/12467. */
4819 if (elf_header.e_phoff != 0)
4820 warn (_("possibly corrupt ELF header - it has a non-zero program"
4821 " header offset, but no program headers\n"));
4822 else if (do_segments)
4823 printf (_("\nThere are no program headers in this file.\n"));
4824 return 0;
4825 }
4826
4827 if (do_segments && !do_header)
4828 {
4829 printf (_("\nElf file type is %s\n"), get_file_type (elf_header.e_type));
4830 printf (_("Entry point "));
4831 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
4832 printf (_("\nThere are %d program headers, starting at offset "),
4833 elf_header.e_phnum);
4834 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
4835 printf ("\n");
4836 }
4837
4838 if (! get_program_headers (file))
4839 return 0;
4840
4841 if (do_segments)
4842 {
4843 if (elf_header.e_phnum > 1)
4844 printf (_("\nProgram Headers:\n"));
4845 else
4846 printf (_("\nProgram Headers:\n"));
4847
4848 if (is_32bit_elf)
4849 printf
4850 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4851 else if (do_wide)
4852 printf
4853 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4854 else
4855 {
4856 printf
4857 (_(" Type Offset VirtAddr PhysAddr\n"));
4858 printf
4859 (_(" FileSiz MemSiz Flags Align\n"));
4860 }
4861 }
4862
4863 dynamic_addr = 0;
4864 dynamic_size = 0;
4865
4866 for (i = 0, segment = program_headers;
4867 i < elf_header.e_phnum;
4868 i++, segment++)
4869 {
4870 if (do_segments)
4871 {
4872 printf (" %-14.14s ", get_segment_type (segment->p_type));
4873
4874 if (is_32bit_elf)
4875 {
4876 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4877 printf ("0x%8.8lx ", (unsigned long) segment->p_vaddr);
4878 printf ("0x%8.8lx ", (unsigned long) segment->p_paddr);
4879 printf ("0x%5.5lx ", (unsigned long) segment->p_filesz);
4880 printf ("0x%5.5lx ", (unsigned long) segment->p_memsz);
4881 printf ("%c%c%c ",
4882 (segment->p_flags & PF_R ? 'R' : ' '),
4883 (segment->p_flags & PF_W ? 'W' : ' '),
4884 (segment->p_flags & PF_X ? 'E' : ' '));
4885 printf ("%#lx", (unsigned long) segment->p_align);
4886 }
4887 else if (do_wide)
4888 {
4889 if ((unsigned long) segment->p_offset == segment->p_offset)
4890 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4891 else
4892 {
4893 print_vma (segment->p_offset, FULL_HEX);
4894 putchar (' ');
4895 }
4896
4897 print_vma (segment->p_vaddr, FULL_HEX);
4898 putchar (' ');
4899 print_vma (segment->p_paddr, FULL_HEX);
4900 putchar (' ');
4901
4902 if ((unsigned long) segment->p_filesz == segment->p_filesz)
4903 printf ("0x%6.6lx ", (unsigned long) segment->p_filesz);
4904 else
4905 {
4906 print_vma (segment->p_filesz, FULL_HEX);
4907 putchar (' ');
4908 }
4909
4910 if ((unsigned long) segment->p_memsz == segment->p_memsz)
4911 printf ("0x%6.6lx", (unsigned long) segment->p_memsz);
4912 else
4913 {
4914 print_vma (segment->p_memsz, FULL_HEX);
4915 }
4916
4917 printf (" %c%c%c ",
4918 (segment->p_flags & PF_R ? 'R' : ' '),
4919 (segment->p_flags & PF_W ? 'W' : ' '),
4920 (segment->p_flags & PF_X ? 'E' : ' '));
4921
4922 if ((unsigned long) segment->p_align == segment->p_align)
4923 printf ("%#lx", (unsigned long) segment->p_align);
4924 else
4925 {
4926 print_vma (segment->p_align, PREFIX_HEX);
4927 }
4928 }
4929 else
4930 {
4931 print_vma (segment->p_offset, FULL_HEX);
4932 putchar (' ');
4933 print_vma (segment->p_vaddr, FULL_HEX);
4934 putchar (' ');
4935 print_vma (segment->p_paddr, FULL_HEX);
4936 printf ("\n ");
4937 print_vma (segment->p_filesz, FULL_HEX);
4938 putchar (' ');
4939 print_vma (segment->p_memsz, FULL_HEX);
4940 printf (" %c%c%c ",
4941 (segment->p_flags & PF_R ? 'R' : ' '),
4942 (segment->p_flags & PF_W ? 'W' : ' '),
4943 (segment->p_flags & PF_X ? 'E' : ' '));
4944 print_vma (segment->p_align, PREFIX_HEX);
4945 }
4946
4947 putc ('\n', stdout);
4948 }
4949
4950 switch (segment->p_type)
4951 {
4952 case PT_LOAD:
4953 #if 0 /* Do not warn about out of order PT_LOAD segments. Although officially
4954 required by the ELF standard, several programs, including the Linux
4955 kernel, make use of non-ordered segments. */
4956 if (previous_load
4957 && previous_load->p_vaddr > segment->p_vaddr)
4958 error (_("LOAD segments must be sorted in order of increasing VirtAddr\n"));
4959 #endif
4960 if (segment->p_memsz < segment->p_filesz)
4961 error (_("the segment's file size is larger than its memory size\n"));
4962 previous_load = segment;
4963 break;
4964
4965 case PT_PHDR:
4966 /* PR 20815 - Verify that the program header is loaded into memory. */
4967 if (i > 0 && previous_load != NULL)
4968 error (_("the PHDR segment must occur before any LOAD segment\n"));
4969 if (elf_header.e_machine != EM_PARISC)
4970 {
4971 unsigned int j;
4972
4973 for (j = 1; j < elf_header.e_phnum; j++)
4974 if (program_headers[j].p_vaddr <= segment->p_vaddr
4975 && (program_headers[j].p_vaddr + program_headers[j].p_memsz)
4976 >= (segment->p_vaddr + segment->p_filesz))
4977 break;
4978 if (j == elf_header.e_phnum)
4979 error (_("the PHDR segment is not covered by a LOAD segment\n"));
4980 }
4981 break;
4982
4983 case PT_DYNAMIC:
4984 if (dynamic_addr)
4985 error (_("more than one dynamic segment\n"));
4986
4987 /* By default, assume that the .dynamic section is the first
4988 section in the DYNAMIC segment. */
4989 dynamic_addr = segment->p_offset;
4990 dynamic_size = segment->p_filesz;
4991 /* PR binutils/17512: Avoid corrupt dynamic section info in the segment. */
4992 if (dynamic_addr + dynamic_size >= current_file_size)
4993 {
4994 error (_("the dynamic segment offset + size exceeds the size of the file\n"));
4995 dynamic_addr = dynamic_size = 0;
4996 }
4997
4998 /* Try to locate the .dynamic section. If there is
4999 a section header table, we can easily locate it. */
5000 if (section_headers != NULL)
5001 {
5002 Elf_Internal_Shdr * sec;
5003
5004 sec = find_section (".dynamic");
5005 if (sec == NULL || sec->sh_size == 0)
5006 {
5007 /* A corresponding .dynamic section is expected, but on
5008 IA-64/OpenVMS it is OK for it to be missing. */
5009 if (!is_ia64_vms ())
5010 error (_("no .dynamic section in the dynamic segment\n"));
5011 break;
5012 }
5013
5014 if (sec->sh_type == SHT_NOBITS)
5015 {
5016 dynamic_size = 0;
5017 break;
5018 }
5019
5020 dynamic_addr = sec->sh_offset;
5021 dynamic_size = sec->sh_size;
5022
5023 if (dynamic_addr < segment->p_offset
5024 || dynamic_addr > segment->p_offset + segment->p_filesz)
5025 warn (_("the .dynamic section is not contained"
5026 " within the dynamic segment\n"));
5027 else if (dynamic_addr > segment->p_offset)
5028 warn (_("the .dynamic section is not the first section"
5029 " in the dynamic segment.\n"));
5030 }
5031 break;
5032
5033 case PT_INTERP:
5034 if (fseek (file, archive_file_offset + (long) segment->p_offset,
5035 SEEK_SET))
5036 error (_("Unable to find program interpreter name\n"));
5037 else
5038 {
5039 char fmt [32];
5040 int ret = snprintf (fmt, sizeof (fmt), "%%%ds", PATH_MAX - 1);
5041
5042 if (ret >= (int) sizeof (fmt) || ret < 0)
5043 error (_("Internal error: failed to create format string to display program interpreter\n"));
5044
5045 program_interpreter[0] = 0;
5046 if (fscanf (file, fmt, program_interpreter) <= 0)
5047 error (_("Unable to read program interpreter name\n"));
5048
5049 if (do_segments)
5050 printf (_(" [Requesting program interpreter: %s]\n"),
5051 program_interpreter);
5052 }
5053 break;
5054 }
5055 }
5056
5057 if (do_segments && section_headers != NULL && string_table != NULL)
5058 {
5059 printf (_("\n Section to Segment mapping:\n"));
5060 printf (_(" Segment Sections...\n"));
5061
5062 for (i = 0; i < elf_header.e_phnum; i++)
5063 {
5064 unsigned int j;
5065 Elf_Internal_Shdr * section;
5066
5067 segment = program_headers + i;
5068 section = section_headers + 1;
5069
5070 printf (" %2.2d ", i);
5071
5072 for (j = 1; j < elf_header.e_shnum; j++, section++)
5073 {
5074 if (!ELF_TBSS_SPECIAL (section, segment)
5075 && ELF_SECTION_IN_SEGMENT_STRICT (section, segment))
5076 printf ("%s ", printable_section_name (section));
5077 }
5078
5079 putc ('\n',stdout);
5080 }
5081 }
5082
5083 return 1;
5084 }
5085
5086
5087 /* Find the file offset corresponding to VMA by using the program headers. */
5088
5089 static long
5090 offset_from_vma (FILE * file, bfd_vma vma, bfd_size_type size)
5091 {
5092 Elf_Internal_Phdr * seg;
5093
5094 if (! get_program_headers (file))
5095 {
5096 warn (_("Cannot interpret virtual addresses without program headers.\n"));
5097 return (long) vma;
5098 }
5099
5100 for (seg = program_headers;
5101 seg < program_headers + elf_header.e_phnum;
5102 ++seg)
5103 {
5104 if (seg->p_type != PT_LOAD)
5105 continue;
5106
5107 if (vma >= (seg->p_vaddr & -seg->p_align)
5108 && vma + size <= seg->p_vaddr + seg->p_filesz)
5109 return vma - seg->p_vaddr + seg->p_offset;
5110 }
5111
5112 warn (_("Virtual address 0x%lx not located in any PT_LOAD segment.\n"),
5113 (unsigned long) vma);
5114 return (long) vma;
5115 }
5116
5117
5118 /* Allocate memory and load the sections headers into the global pointer
5119 SECTION_HEADERS. If PROBE is true, this is just a probe and we do not
5120 generate any error messages if the load fails. */
5121
5122 static bfd_boolean
5123 get_32bit_section_headers (FILE * file, bfd_boolean probe)
5124 {
5125 Elf32_External_Shdr * shdrs;
5126 Elf_Internal_Shdr * internal;
5127 unsigned int i;
5128 unsigned int size = elf_header.e_shentsize;
5129 unsigned int num = probe ? 1 : elf_header.e_shnum;
5130
5131 /* PR binutils/17531: Cope with unexpected section header sizes. */
5132 if (size == 0 || num == 0)
5133 return FALSE;
5134 if (size < sizeof * shdrs)
5135 {
5136 if (! probe)
5137 error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
5138 return FALSE;
5139 }
5140 if (!probe && size > sizeof * shdrs)
5141 warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
5142
5143 shdrs = (Elf32_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
5144 size, num,
5145 probe ? NULL : _("section headers"));
5146 if (shdrs == NULL)
5147 return FALSE;
5148
5149 if (section_headers != NULL)
5150 free (section_headers);
5151 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
5152 sizeof (Elf_Internal_Shdr));
5153 if (section_headers == NULL)
5154 {
5155 if (!probe)
5156 error (_("Out of memory reading %u section headers\n"), num);
5157 return FALSE;
5158 }
5159
5160 for (i = 0, internal = section_headers;
5161 i < num;
5162 i++, internal++)
5163 {
5164 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
5165 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
5166 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
5167 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
5168 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
5169 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
5170 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
5171 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
5172 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
5173 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
5174 if (!probe && internal->sh_link > num)
5175 warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link);
5176 if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num)
5177 warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info);
5178 }
5179
5180 free (shdrs);
5181 return TRUE;
5182 }
5183
5184 static bfd_boolean
5185 get_64bit_section_headers (FILE * file, bfd_boolean probe)
5186 {
5187 Elf64_External_Shdr * shdrs;
5188 Elf_Internal_Shdr * internal;
5189 unsigned int i;
5190 unsigned int size = elf_header.e_shentsize;
5191 unsigned int num = probe ? 1 : elf_header.e_shnum;
5192
5193 /* PR binutils/17531: Cope with unexpected section header sizes. */
5194 if (size == 0 || num == 0)
5195 return FALSE;
5196 if (size < sizeof * shdrs)
5197 {
5198 if (! probe)
5199 error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
5200 return FALSE;
5201 }
5202 if (! probe && size > sizeof * shdrs)
5203 warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
5204
5205 shdrs = (Elf64_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
5206 size, num,
5207 probe ? NULL : _("section headers"));
5208 if (shdrs == NULL)
5209 return FALSE;
5210
5211 if (section_headers != NULL)
5212 free (section_headers);
5213 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
5214 sizeof (Elf_Internal_Shdr));
5215 if (section_headers == NULL)
5216 {
5217 if (! probe)
5218 error (_("Out of memory reading %u section headers\n"), num);
5219 return FALSE;
5220 }
5221
5222 for (i = 0, internal = section_headers;
5223 i < num;
5224 i++, internal++)
5225 {
5226 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
5227 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
5228 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
5229 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
5230 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
5231 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
5232 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
5233 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
5234 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
5235 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
5236 if (!probe && internal->sh_link > num)
5237 warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link);
5238 if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num)
5239 warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info);
5240 }
5241
5242 free (shdrs);
5243 return TRUE;
5244 }
5245
5246 static Elf_Internal_Sym *
5247 get_32bit_elf_symbols (FILE * file,
5248 Elf_Internal_Shdr * section,
5249 unsigned long * num_syms_return)
5250 {
5251 unsigned long number = 0;
5252 Elf32_External_Sym * esyms = NULL;
5253 Elf_External_Sym_Shndx * shndx = NULL;
5254 Elf_Internal_Sym * isyms = NULL;
5255 Elf_Internal_Sym * psym;
5256 unsigned int j;
5257
5258 if (section->sh_size == 0)
5259 {
5260 if (num_syms_return != NULL)
5261 * num_syms_return = 0;
5262 return NULL;
5263 }
5264
5265 /* Run some sanity checks first. */
5266 if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size)
5267 {
5268 error (_("Section %s has an invalid sh_entsize of 0x%lx\n"),
5269 printable_section_name (section), (unsigned long) section->sh_entsize);
5270 goto exit_point;
5271 }
5272
5273 if (section->sh_size > current_file_size)
5274 {
5275 error (_("Section %s has an invalid sh_size of 0x%lx\n"),
5276 printable_section_name (section), (unsigned long) section->sh_size);
5277 goto exit_point;
5278 }
5279
5280 number = section->sh_size / section->sh_entsize;
5281
5282 if (number * sizeof (Elf32_External_Sym) > section->sh_size + 1)
5283 {
5284 error (_("Size (0x%lx) of section %s is not a multiple of its sh_entsize (0x%lx)\n"),
5285 (unsigned long) section->sh_size,
5286 printable_section_name (section),
5287 (unsigned long) section->sh_entsize);
5288 goto exit_point;
5289 }
5290
5291 esyms = (Elf32_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
5292 section->sh_size, _("symbols"));
5293 if (esyms == NULL)
5294 goto exit_point;
5295
5296 {
5297 elf_section_list * entry;
5298
5299 shndx = NULL;
5300 for (entry = symtab_shndx_list; entry != NULL; entry = entry->next)
5301 if (entry->hdr->sh_link == (unsigned long) (section - section_headers))
5302 {
5303 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
5304 entry->hdr->sh_offset,
5305 1, entry->hdr->sh_size,
5306 _("symbol table section indicies"));
5307 if (shndx == NULL)
5308 goto exit_point;
5309 /* PR17531: file: heap-buffer-overflow */
5310 else if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number)
5311 {
5312 error (_("Index section %s has an sh_size of 0x%lx - expected 0x%lx\n"),
5313 printable_section_name (entry->hdr),
5314 (unsigned long) entry->hdr->sh_size,
5315 (unsigned long) section->sh_size);
5316 goto exit_point;
5317 }
5318 }
5319 }
5320
5321 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
5322
5323 if (isyms == NULL)
5324 {
5325 error (_("Out of memory reading %lu symbols\n"),
5326 (unsigned long) number);
5327 goto exit_point;
5328 }
5329
5330 for (j = 0, psym = isyms; j < number; j++, psym++)
5331 {
5332 psym->st_name = BYTE_GET (esyms[j].st_name);
5333 psym->st_value = BYTE_GET (esyms[j].st_value);
5334 psym->st_size = BYTE_GET (esyms[j].st_size);
5335 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
5336 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
5337 psym->st_shndx
5338 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
5339 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
5340 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
5341 psym->st_info = BYTE_GET (esyms[j].st_info);
5342 psym->st_other = BYTE_GET (esyms[j].st_other);
5343 }
5344
5345 exit_point:
5346 if (shndx != NULL)
5347 free (shndx);
5348 if (esyms != NULL)
5349 free (esyms);
5350
5351 if (num_syms_return != NULL)
5352 * num_syms_return = isyms == NULL ? 0 : number;
5353
5354 return isyms;
5355 }
5356
5357 static Elf_Internal_Sym *
5358 get_64bit_elf_symbols (FILE * file,
5359 Elf_Internal_Shdr * section,
5360 unsigned long * num_syms_return)
5361 {
5362 unsigned long number = 0;
5363 Elf64_External_Sym * esyms = NULL;
5364 Elf_External_Sym_Shndx * shndx = NULL;
5365 Elf_Internal_Sym * isyms = NULL;
5366 Elf_Internal_Sym * psym;
5367 unsigned int j;
5368
5369 if (section->sh_size == 0)
5370 {
5371 if (num_syms_return != NULL)
5372 * num_syms_return = 0;
5373 return NULL;
5374 }
5375
5376 /* Run some sanity checks first. */
5377 if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size)
5378 {
5379 error (_("Section %s has an invalid sh_entsize of 0x%lx\n"),
5380 printable_section_name (section),
5381 (unsigned long) section->sh_entsize);
5382 goto exit_point;
5383 }
5384
5385 if (section->sh_size > current_file_size)
5386 {
5387 error (_("Section %s has an invalid sh_size of 0x%lx\n"),
5388 printable_section_name (section),
5389 (unsigned long) section->sh_size);
5390 goto exit_point;
5391 }
5392
5393 number = section->sh_size / section->sh_entsize;
5394
5395 if (number * sizeof (Elf64_External_Sym) > section->sh_size + 1)
5396 {
5397 error (_("Size (0x%lx) of section %s is not a multiple of its sh_entsize (0x%lx)\n"),
5398 (unsigned long) section->sh_size,
5399 printable_section_name (section),
5400 (unsigned long) section->sh_entsize);
5401 goto exit_point;
5402 }
5403
5404 esyms = (Elf64_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
5405 section->sh_size, _("symbols"));
5406 if (!esyms)
5407 goto exit_point;
5408
5409 {
5410 elf_section_list * entry;
5411
5412 shndx = NULL;
5413 for (entry = symtab_shndx_list; entry != NULL; entry = entry->next)
5414 if (entry->hdr->sh_link == (unsigned long) (section - section_headers))
5415 {
5416 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
5417 entry->hdr->sh_offset,
5418 1, entry->hdr->sh_size,
5419 _("symbol table section indicies"));
5420 if (shndx == NULL)
5421 goto exit_point;
5422 /* PR17531: file: heap-buffer-overflow */
5423 else if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number)
5424 {
5425 error (_("Index section %s has an sh_size of 0x%lx - expected 0x%lx\n"),
5426 printable_section_name (entry->hdr),
5427 (unsigned long) entry->hdr->sh_size,
5428 (unsigned long) section->sh_size);
5429 goto exit_point;
5430 }
5431 }
5432 }
5433
5434 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
5435
5436 if (isyms == NULL)
5437 {
5438 error (_("Out of memory reading %lu symbols\n"),
5439 (unsigned long) number);
5440 goto exit_point;
5441 }
5442
5443 for (j = 0, psym = isyms; j < number; j++, psym++)
5444 {
5445 psym->st_name = BYTE_GET (esyms[j].st_name);
5446 psym->st_info = BYTE_GET (esyms[j].st_info);
5447 psym->st_other = BYTE_GET (esyms[j].st_other);
5448 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
5449
5450 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
5451 psym->st_shndx
5452 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
5453 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
5454 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
5455
5456 psym->st_value = BYTE_GET (esyms[j].st_value);
5457 psym->st_size = BYTE_GET (esyms[j].st_size);
5458 }
5459
5460 exit_point:
5461 if (shndx != NULL)
5462 free (shndx);
5463 if (esyms != NULL)
5464 free (esyms);
5465
5466 if (num_syms_return != NULL)
5467 * num_syms_return = isyms == NULL ? 0 : number;
5468
5469 return isyms;
5470 }
5471
5472 static const char *
5473 get_elf_section_flags (bfd_vma sh_flags)
5474 {
5475 static char buff[1024];
5476 char * p = buff;
5477 int field_size = is_32bit_elf ? 8 : 16;
5478 int sindex;
5479 int size = sizeof (buff) - (field_size + 4 + 1);
5480 bfd_vma os_flags = 0;
5481 bfd_vma proc_flags = 0;
5482 bfd_vma unknown_flags = 0;
5483 static const struct
5484 {
5485 const char * str;
5486 int len;
5487 }
5488 flags [] =
5489 {
5490 /* 0 */ { STRING_COMMA_LEN ("WRITE") },
5491 /* 1 */ { STRING_COMMA_LEN ("ALLOC") },
5492 /* 2 */ { STRING_COMMA_LEN ("EXEC") },
5493 /* 3 */ { STRING_COMMA_LEN ("MERGE") },
5494 /* 4 */ { STRING_COMMA_LEN ("STRINGS") },
5495 /* 5 */ { STRING_COMMA_LEN ("INFO LINK") },
5496 /* 6 */ { STRING_COMMA_LEN ("LINK ORDER") },
5497 /* 7 */ { STRING_COMMA_LEN ("OS NONCONF") },
5498 /* 8 */ { STRING_COMMA_LEN ("GROUP") },
5499 /* 9 */ { STRING_COMMA_LEN ("TLS") },
5500 /* IA-64 specific. */
5501 /* 10 */ { STRING_COMMA_LEN ("SHORT") },
5502 /* 11 */ { STRING_COMMA_LEN ("NORECOV") },
5503 /* IA-64 OpenVMS specific. */
5504 /* 12 */ { STRING_COMMA_LEN ("VMS_GLOBAL") },
5505 /* 13 */ { STRING_COMMA_LEN ("VMS_OVERLAID") },
5506 /* 14 */ { STRING_COMMA_LEN ("VMS_SHARED") },
5507 /* 15 */ { STRING_COMMA_LEN ("VMS_VECTOR") },
5508 /* 16 */ { STRING_COMMA_LEN ("VMS_ALLOC_64BIT") },
5509 /* 17 */ { STRING_COMMA_LEN ("VMS_PROTECTED") },
5510 /* Generic. */
5511 /* 18 */ { STRING_COMMA_LEN ("EXCLUDE") },
5512 /* SPARC specific. */
5513 /* 19 */ { STRING_COMMA_LEN ("ORDERED") },
5514 /* 20 */ { STRING_COMMA_LEN ("COMPRESSED") },
5515 /* ARM specific. */
5516 /* 21 */ { STRING_COMMA_LEN ("ENTRYSECT") },
5517 /* 22 */ { STRING_COMMA_LEN ("ARM_PURECODE") },
5518 /* 23 */ { STRING_COMMA_LEN ("COMDEF") }
5519 };
5520
5521 if (do_section_details)
5522 {
5523 sprintf (buff, "[%*.*lx]: ",
5524 field_size, field_size, (unsigned long) sh_flags);
5525 p += field_size + 4;
5526 }
5527
5528 while (sh_flags)
5529 {
5530 bfd_vma flag;
5531
5532 flag = sh_flags & - sh_flags;
5533 sh_flags &= ~ flag;
5534
5535 if (do_section_details)
5536 {
5537 switch (flag)
5538 {
5539 case SHF_WRITE: sindex = 0; break;
5540 case SHF_ALLOC: sindex = 1; break;
5541 case SHF_EXECINSTR: sindex = 2; break;
5542 case SHF_MERGE: sindex = 3; break;
5543 case SHF_STRINGS: sindex = 4; break;
5544 case SHF_INFO_LINK: sindex = 5; break;
5545 case SHF_LINK_ORDER: sindex = 6; break;
5546 case SHF_OS_NONCONFORMING: sindex = 7; break;
5547 case SHF_GROUP: sindex = 8; break;
5548 case SHF_TLS: sindex = 9; break;
5549 case SHF_EXCLUDE: sindex = 18; break;
5550 case SHF_COMPRESSED: sindex = 20; break;
5551
5552 default:
5553 sindex = -1;
5554 switch (elf_header.e_machine)
5555 {
5556 case EM_IA_64:
5557 if (flag == SHF_IA_64_SHORT)
5558 sindex = 10;
5559 else if (flag == SHF_IA_64_NORECOV)
5560 sindex = 11;
5561 #ifdef BFD64
5562 else if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
5563 switch (flag)
5564 {
5565 case SHF_IA_64_VMS_GLOBAL: sindex = 12; break;
5566 case SHF_IA_64_VMS_OVERLAID: sindex = 13; break;
5567 case SHF_IA_64_VMS_SHARED: sindex = 14; break;
5568 case SHF_IA_64_VMS_VECTOR: sindex = 15; break;
5569 case SHF_IA_64_VMS_ALLOC_64BIT: sindex = 16; break;
5570 case SHF_IA_64_VMS_PROTECTED: sindex = 17; break;
5571 default: break;
5572 }
5573 #endif
5574 break;
5575
5576 case EM_386:
5577 case EM_IAMCU:
5578 case EM_X86_64:
5579 case EM_L1OM:
5580 case EM_K1OM:
5581 case EM_OLD_SPARCV9:
5582 case EM_SPARC32PLUS:
5583 case EM_SPARCV9:
5584 case EM_SPARC:
5585 if (flag == SHF_ORDERED)
5586 sindex = 19;
5587 break;
5588
5589 case EM_ARM:
5590 switch (flag)
5591 {
5592 case SHF_ENTRYSECT: sindex = 21; break;
5593 case SHF_ARM_PURECODE: sindex = 22; break;
5594 case SHF_COMDEF: sindex = 23; break;
5595 default: break;
5596 }
5597 break;
5598
5599 default:
5600 break;
5601 }
5602 }
5603
5604 if (sindex != -1)
5605 {
5606 if (p != buff + field_size + 4)
5607 {
5608 if (size < (10 + 2))
5609 {
5610 warn (_("Internal error: not enough buffer room for section flag info"));
5611 return _("<unknown>");
5612 }
5613 size -= 2;
5614 *p++ = ',';
5615 *p++ = ' ';
5616 }
5617
5618 size -= flags [sindex].len;
5619 p = stpcpy (p, flags [sindex].str);
5620 }
5621 else if (flag & SHF_MASKOS)
5622 os_flags |= flag;
5623 else if (flag & SHF_MASKPROC)
5624 proc_flags |= flag;
5625 else
5626 unknown_flags |= flag;
5627 }
5628 else
5629 {
5630 switch (flag)
5631 {
5632 case SHF_WRITE: *p = 'W'; break;
5633 case SHF_ALLOC: *p = 'A'; break;
5634 case SHF_EXECINSTR: *p = 'X'; break;
5635 case SHF_MERGE: *p = 'M'; break;
5636 case SHF_STRINGS: *p = 'S'; break;
5637 case SHF_INFO_LINK: *p = 'I'; break;
5638 case SHF_LINK_ORDER: *p = 'L'; break;
5639 case SHF_OS_NONCONFORMING: *p = 'O'; break;
5640 case SHF_GROUP: *p = 'G'; break;
5641 case SHF_TLS: *p = 'T'; break;
5642 case SHF_EXCLUDE: *p = 'E'; break;
5643 case SHF_COMPRESSED: *p = 'C'; break;
5644
5645 default:
5646 if ((elf_header.e_machine == EM_X86_64
5647 || elf_header.e_machine == EM_L1OM
5648 || elf_header.e_machine == EM_K1OM)
5649 && flag == SHF_X86_64_LARGE)
5650 *p = 'l';
5651 else if (elf_header.e_machine == EM_ARM
5652 && flag == SHF_ARM_PURECODE)
5653 *p = 'y';
5654 else if (flag & SHF_MASKOS)
5655 {
5656 *p = 'o';
5657 sh_flags &= ~ SHF_MASKOS;
5658 }
5659 else if (flag & SHF_MASKPROC)
5660 {
5661 *p = 'p';
5662 sh_flags &= ~ SHF_MASKPROC;
5663 }
5664 else
5665 *p = 'x';
5666 break;
5667 }
5668 p++;
5669 }
5670 }
5671
5672 if (do_section_details)
5673 {
5674 if (os_flags)
5675 {
5676 size -= 5 + field_size;
5677 if (p != buff + field_size + 4)
5678 {
5679 if (size < (2 + 1))
5680 {
5681 warn (_("Internal error: not enough buffer room for section flag info"));
5682 return _("<unknown>");
5683 }
5684 size -= 2;
5685 *p++ = ',';
5686 *p++ = ' ';
5687 }
5688 sprintf (p, "OS (%*.*lx)", field_size, field_size,
5689 (unsigned long) os_flags);
5690 p += 5 + field_size;
5691 }
5692 if (proc_flags)
5693 {
5694 size -= 7 + field_size;
5695 if (p != buff + field_size + 4)
5696 {
5697 if (size < (2 + 1))
5698 {
5699 warn (_("Internal error: not enough buffer room for section flag info"));
5700 return _("<unknown>");
5701 }
5702 size -= 2;
5703 *p++ = ',';
5704 *p++ = ' ';
5705 }
5706 sprintf (p, "PROC (%*.*lx)", field_size, field_size,
5707 (unsigned long) proc_flags);
5708 p += 7 + field_size;
5709 }
5710 if (unknown_flags)
5711 {
5712 size -= 10 + field_size;
5713 if (p != buff + field_size + 4)
5714 {
5715 if (size < (2 + 1))
5716 {
5717 warn (_("Internal error: not enough buffer room for section flag info"));
5718 return _("<unknown>");
5719 }
5720 size -= 2;
5721 *p++ = ',';
5722 *p++ = ' ';
5723 }
5724 sprintf (p, _("UNKNOWN (%*.*lx)"), field_size, field_size,
5725 (unsigned long) unknown_flags);
5726 p += 10 + field_size;
5727 }
5728 }
5729
5730 *p = '\0';
5731 return buff;
5732 }
5733
5734 static unsigned int
5735 get_compression_header (Elf_Internal_Chdr *chdr, unsigned char *buf, bfd_size_type size)
5736 {
5737 if (is_32bit_elf)
5738 {
5739 Elf32_External_Chdr *echdr = (Elf32_External_Chdr *) buf;
5740
5741 if (size < sizeof (* echdr))
5742 {
5743 error (_("Compressed section is too small even for a compression header\n"));
5744 return 0;
5745 }
5746
5747 chdr->ch_type = BYTE_GET (echdr->ch_type);
5748 chdr->ch_size = BYTE_GET (echdr->ch_size);
5749 chdr->ch_addralign = BYTE_GET (echdr->ch_addralign);
5750 return sizeof (*echdr);
5751 }
5752 else
5753 {
5754 Elf64_External_Chdr *echdr = (Elf64_External_Chdr *) buf;
5755
5756 if (size < sizeof (* echdr))
5757 {
5758 error (_("Compressed section is too small even for a compression header\n"));
5759 return 0;
5760 }
5761
5762 chdr->ch_type = BYTE_GET (echdr->ch_type);
5763 chdr->ch_size = BYTE_GET (echdr->ch_size);
5764 chdr->ch_addralign = BYTE_GET (echdr->ch_addralign);
5765 return sizeof (*echdr);
5766 }
5767 }
5768
5769 static int
5770 process_section_headers (FILE * file)
5771 {
5772 Elf_Internal_Shdr * section;
5773 unsigned int i;
5774
5775 section_headers = NULL;
5776
5777 if (elf_header.e_shnum == 0)
5778 {
5779 /* PR binutils/12467. */
5780 if (elf_header.e_shoff != 0)
5781 warn (_("possibly corrupt ELF file header - it has a non-zero"
5782 " section header offset, but no section headers\n"));
5783 else if (do_sections)
5784 printf (_("\nThere are no sections in this file.\n"));
5785
5786 return 1;
5787 }
5788
5789 if (do_sections && !do_header)
5790 printf (_("There are %d section headers, starting at offset 0x%lx:\n"),
5791 elf_header.e_shnum, (unsigned long) elf_header.e_shoff);
5792
5793 if (is_32bit_elf)
5794 {
5795 if (! get_32bit_section_headers (file, FALSE))
5796 return 0;
5797 }
5798 else if (! get_64bit_section_headers (file, FALSE))
5799 return 0;
5800
5801 /* Read in the string table, so that we have names to display. */
5802 if (elf_header.e_shstrndx != SHN_UNDEF
5803 && elf_header.e_shstrndx < elf_header.e_shnum)
5804 {
5805 section = section_headers + elf_header.e_shstrndx;
5806
5807 if (section->sh_size != 0)
5808 {
5809 string_table = (char *) get_data (NULL, file, section->sh_offset,
5810 1, section->sh_size,
5811 _("string table"));
5812
5813 string_table_length = string_table != NULL ? section->sh_size : 0;
5814 }
5815 }
5816
5817 /* Scan the sections for the dynamic symbol table
5818 and dynamic string table and debug sections. */
5819 dynamic_symbols = NULL;
5820 dynamic_strings = NULL;
5821 dynamic_syminfo = NULL;
5822 symtab_shndx_list = NULL;
5823
5824 eh_addr_size = is_32bit_elf ? 4 : 8;
5825 switch (elf_header.e_machine)
5826 {
5827 case EM_MIPS:
5828 case EM_MIPS_RS3_LE:
5829 /* The 64-bit MIPS EABI uses a combination of 32-bit ELF and 64-bit
5830 FDE addresses. However, the ABI also has a semi-official ILP32
5831 variant for which the normal FDE address size rules apply.
5832
5833 GCC 4.0 marks EABI64 objects with a dummy .gcc_compiled_longXX
5834 section, where XX is the size of longs in bits. Unfortunately,
5835 earlier compilers provided no way of distinguishing ILP32 objects
5836 from LP64 objects, so if there's any doubt, we should assume that
5837 the official LP64 form is being used. */
5838 if ((elf_header.e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64
5839 && find_section (".gcc_compiled_long32") == NULL)
5840 eh_addr_size = 8;
5841 break;
5842
5843 case EM_H8_300:
5844 case EM_H8_300H:
5845 switch (elf_header.e_flags & EF_H8_MACH)
5846 {
5847 case E_H8_MACH_H8300:
5848 case E_H8_MACH_H8300HN:
5849 case E_H8_MACH_H8300SN:
5850 case E_H8_MACH_H8300SXN:
5851 eh_addr_size = 2;
5852 break;
5853 case E_H8_MACH_H8300H:
5854 case E_H8_MACH_H8300S:
5855 case E_H8_MACH_H8300SX:
5856 eh_addr_size = 4;
5857 break;
5858 }
5859 break;
5860
5861 case EM_M32C_OLD:
5862 case EM_M32C:
5863 switch (elf_header.e_flags & EF_M32C_CPU_MASK)
5864 {
5865 case EF_M32C_CPU_M16C:
5866 eh_addr_size = 2;
5867 break;
5868 }
5869 break;
5870 }
5871
5872 #define CHECK_ENTSIZE_VALUES(section, i, size32, size64) \
5873 do \
5874 { \
5875 bfd_size_type expected_entsize = is_32bit_elf ? size32 : size64; \
5876 if (section->sh_entsize != expected_entsize) \
5877 { \
5878 char buf[40]; \
5879 sprintf_vma (buf, section->sh_entsize); \
5880 /* Note: coded this way so that there is a single string for \
5881 translation. */ \
5882 error (_("Section %d has invalid sh_entsize of %s\n"), i, buf); \
5883 error (_("(Using the expected size of %u for the rest of this dump)\n"), \
5884 (unsigned) expected_entsize); \
5885 section->sh_entsize = expected_entsize; \
5886 } \
5887 } \
5888 while (0)
5889
5890 #define CHECK_ENTSIZE(section, i, type) \
5891 CHECK_ENTSIZE_VALUES (section, i, sizeof (Elf32_External_##type), \
5892 sizeof (Elf64_External_##type))
5893
5894 for (i = 0, section = section_headers;
5895 i < elf_header.e_shnum;
5896 i++, section++)
5897 {
5898 char * name = SECTION_NAME (section);
5899
5900 if (section->sh_type == SHT_DYNSYM)
5901 {
5902 if (dynamic_symbols != NULL)
5903 {
5904 error (_("File contains multiple dynamic symbol tables\n"));
5905 continue;
5906 }
5907
5908 CHECK_ENTSIZE (section, i, Sym);
5909 dynamic_symbols = GET_ELF_SYMBOLS (file, section, & num_dynamic_syms);
5910 }
5911 else if (section->sh_type == SHT_STRTAB
5912 && streq (name, ".dynstr"))
5913 {
5914 if (dynamic_strings != NULL)
5915 {
5916 error (_("File contains multiple dynamic string tables\n"));
5917 continue;
5918 }
5919
5920 dynamic_strings = (char *) get_data (NULL, file, section->sh_offset,
5921 1, section->sh_size,
5922 _("dynamic strings"));
5923 dynamic_strings_length = dynamic_strings == NULL ? 0 : section->sh_size;
5924 }
5925 else if (section->sh_type == SHT_SYMTAB_SHNDX)
5926 {
5927 elf_section_list * entry = xmalloc (sizeof * entry);
5928 entry->hdr = section;
5929 entry->next = symtab_shndx_list;
5930 symtab_shndx_list = entry;
5931 }
5932 else if (section->sh_type == SHT_SYMTAB)
5933 CHECK_ENTSIZE (section, i, Sym);
5934 else if (section->sh_type == SHT_GROUP)
5935 CHECK_ENTSIZE_VALUES (section, i, GRP_ENTRY_SIZE, GRP_ENTRY_SIZE);
5936 else if (section->sh_type == SHT_REL)
5937 CHECK_ENTSIZE (section, i, Rel);
5938 else if (section->sh_type == SHT_RELA)
5939 CHECK_ENTSIZE (section, i, Rela);
5940 else if ((do_debugging || do_debug_info || do_debug_abbrevs
5941 || do_debug_lines || do_debug_pubnames || do_debug_pubtypes
5942 || do_debug_aranges || do_debug_frames || do_debug_macinfo
5943 || do_debug_str || do_debug_loc || do_debug_ranges
5944 || do_debug_addr || do_debug_cu_index)
5945 && (const_strneq (name, ".debug_")
5946 || const_strneq (name, ".zdebug_")))
5947 {
5948 if (name[1] == 'z')
5949 name += sizeof (".zdebug_") - 1;
5950 else
5951 name += sizeof (".debug_") - 1;
5952
5953 if (do_debugging
5954 || (do_debug_info && const_strneq (name, "info"))
5955 || (do_debug_info && const_strneq (name, "types"))
5956 || (do_debug_abbrevs && const_strneq (name, "abbrev"))
5957 || (do_debug_lines && strcmp (name, "line") == 0)
5958 || (do_debug_lines && const_strneq (name, "line."))
5959 || (do_debug_pubnames && const_strneq (name, "pubnames"))
5960 || (do_debug_pubtypes && const_strneq (name, "pubtypes"))
5961 || (do_debug_pubnames && const_strneq (name, "gnu_pubnames"))
5962 || (do_debug_pubtypes && const_strneq (name, "gnu_pubtypes"))
5963 || (do_debug_aranges && const_strneq (name, "aranges"))
5964 || (do_debug_ranges && const_strneq (name, "ranges"))
5965 || (do_debug_ranges && const_strneq (name, "rnglists"))
5966 || (do_debug_frames && const_strneq (name, "frame"))
5967 || (do_debug_macinfo && const_strneq (name, "macinfo"))
5968 || (do_debug_macinfo && const_strneq (name, "macro"))
5969 || (do_debug_str && const_strneq (name, "str"))
5970 || (do_debug_loc && const_strneq (name, "loc"))
5971 || (do_debug_loc && const_strneq (name, "loclists"))
5972 || (do_debug_addr && const_strneq (name, "addr"))
5973 || (do_debug_cu_index && const_strneq (name, "cu_index"))
5974 || (do_debug_cu_index && const_strneq (name, "tu_index"))
5975 )
5976 request_dump_bynumber (i, DEBUG_DUMP);
5977 }
5978 /* Linkonce section to be combined with .debug_info at link time. */
5979 else if ((do_debugging || do_debug_info)
5980 && const_strneq (name, ".gnu.linkonce.wi."))
5981 request_dump_bynumber (i, DEBUG_DUMP);
5982 else if (do_debug_frames && streq (name, ".eh_frame"))
5983 request_dump_bynumber (i, DEBUG_DUMP);
5984 else if (do_gdb_index && streq (name, ".gdb_index"))
5985 request_dump_bynumber (i, DEBUG_DUMP);
5986 /* Trace sections for Itanium VMS. */
5987 else if ((do_debugging || do_trace_info || do_trace_abbrevs
5988 || do_trace_aranges)
5989 && const_strneq (name, ".trace_"))
5990 {
5991 name += sizeof (".trace_") - 1;
5992
5993 if (do_debugging
5994 || (do_trace_info && streq (name, "info"))
5995 || (do_trace_abbrevs && streq (name, "abbrev"))
5996 || (do_trace_aranges && streq (name, "aranges"))
5997 )
5998 request_dump_bynumber (i, DEBUG_DUMP);
5999 }
6000 }
6001
6002 if (! do_sections)
6003 return 1;
6004
6005 if (elf_header.e_shnum > 1)
6006 printf (_("\nSection Headers:\n"));
6007 else
6008 printf (_("\nSection Header:\n"));
6009
6010 if (is_32bit_elf)
6011 {
6012 if (do_section_details)
6013 {
6014 printf (_(" [Nr] Name\n"));
6015 printf (_(" Type Addr Off Size ES Lk Inf Al\n"));
6016 }
6017 else
6018 printf
6019 (_(" [Nr] Name Type Addr Off Size ES Flg Lk Inf Al\n"));
6020 }
6021 else if (do_wide)
6022 {
6023 if (do_section_details)
6024 {
6025 printf (_(" [Nr] Name\n"));
6026 printf (_(" Type Address Off Size ES Lk Inf Al\n"));
6027 }
6028 else
6029 printf
6030 (_(" [Nr] Name Type Address Off Size ES Flg Lk Inf Al\n"));
6031 }
6032 else
6033 {
6034 if (do_section_details)
6035 {
6036 printf (_(" [Nr] Name\n"));
6037 printf (_(" Type Address Offset Link\n"));
6038 printf (_(" Size EntSize Info Align\n"));
6039 }
6040 else
6041 {
6042 printf (_(" [Nr] Name Type Address Offset\n"));
6043 printf (_(" Size EntSize Flags Link Info Align\n"));
6044 }
6045 }
6046
6047 if (do_section_details)
6048 printf (_(" Flags\n"));
6049
6050 for (i = 0, section = section_headers;
6051 i < elf_header.e_shnum;
6052 i++, section++)
6053 {
6054 /* Run some sanity checks on the section header. */
6055
6056 /* Check the sh_link field. */
6057 switch (section->sh_type)
6058 {
6059 case SHT_SYMTAB_SHNDX:
6060 case SHT_GROUP:
6061 case SHT_HASH:
6062 case SHT_GNU_HASH:
6063 case SHT_GNU_versym:
6064 case SHT_REL:
6065 case SHT_RELA:
6066 if (section->sh_link < 1
6067 || section->sh_link >= elf_header.e_shnum
6068 || (section_headers[section->sh_link].sh_type != SHT_SYMTAB
6069 && section_headers[section->sh_link].sh_type != SHT_DYNSYM))
6070 warn (_("[%2u]: Link field (%u) should index a symtab section.\n"),
6071 i, section->sh_link);
6072 break;
6073
6074 case SHT_DYNAMIC:
6075 case SHT_SYMTAB:
6076 case SHT_DYNSYM:
6077 case SHT_GNU_verneed:
6078 case SHT_GNU_verdef:
6079 case SHT_GNU_LIBLIST:
6080 if (section->sh_link < 1
6081 || section->sh_link >= elf_header.e_shnum
6082 || section_headers[section->sh_link].sh_type != SHT_STRTAB)
6083 warn (_("[%2u]: Link field (%u) should index a string section.\n"),
6084 i, section->sh_link);
6085 break;
6086
6087 case SHT_INIT_ARRAY:
6088 case SHT_FINI_ARRAY:
6089 case SHT_PREINIT_ARRAY:
6090 if (section->sh_type < SHT_LOOS && section->sh_link != 0)
6091 warn (_("[%2u]: Unexpected value (%u) in link field.\n"),
6092 i, section->sh_link);
6093 break;
6094
6095 default:
6096 /* FIXME: Add support for target specific section types. */
6097 #if 0 /* Currently we do not check other section types as there are too
6098 many special cases. Stab sections for example have a type
6099 of SHT_PROGBITS but an sh_link field that links to the .stabstr
6100 section. */
6101 if (section->sh_type < SHT_LOOS && section->sh_link != 0)
6102 warn (_("[%2u]: Unexpected value (%u) in link field.\n"),
6103 i, section->sh_link);
6104 #endif
6105 break;
6106 }
6107
6108 /* Check the sh_info field. */
6109 switch (section->sh_type)
6110 {
6111 case SHT_REL:
6112 case SHT_RELA:
6113 if (section->sh_info < 1
6114 || section->sh_info >= elf_header.e_shnum
6115 || (section_headers[section->sh_info].sh_type != SHT_PROGBITS
6116 && section_headers[section->sh_info].sh_type != SHT_NOBITS
6117 && section_headers[section->sh_info].sh_type != SHT_NOTE
6118 && section_headers[section->sh_info].sh_type != SHT_INIT_ARRAY
6119 /* FIXME: Are other section types valid ? */
6120 && section_headers[section->sh_info].sh_type < SHT_LOOS))
6121 {
6122 if (section->sh_info == 0
6123 && (streq (SECTION_NAME (section), ".rel.dyn")
6124 || streq (SECTION_NAME (section), ".rela.dyn")))
6125 /* The .rel.dyn and .rela.dyn sections have an sh_info field
6126 of zero. The relocations in these sections may apply
6127 to many different sections. */
6128 ;
6129 else
6130 warn (_("[%2u]: Info field (%u) should index a relocatable section.\n"),
6131 i, section->sh_info);
6132 }
6133 break;
6134
6135 case SHT_DYNAMIC:
6136 case SHT_HASH:
6137 case SHT_SYMTAB_SHNDX:
6138 case SHT_INIT_ARRAY:
6139 case SHT_FINI_ARRAY:
6140 case SHT_PREINIT_ARRAY:
6141 if (section->sh_info != 0)
6142 warn (_("[%2u]: Unexpected value (%u) in info field.\n"),
6143 i, section->sh_info);
6144 break;
6145
6146 case SHT_GROUP:
6147 case SHT_SYMTAB:
6148 case SHT_DYNSYM:
6149 /* A symbol index - we assume that it is valid. */
6150 break;
6151
6152 default:
6153 /* FIXME: Add support for target specific section types. */
6154 if (section->sh_type == SHT_NOBITS)
6155 /* NOBITS section headers with non-zero sh_info fields can be
6156 created when a binary is stripped of everything but its debug
6157 information. The stripped sections have their headers
6158 preserved but their types set to SHT_NOBITS. So do not check
6159 this type of section. */
6160 ;
6161 else if (section->sh_flags & SHF_INFO_LINK)
6162 {
6163 if (section->sh_info < 1 || section->sh_info >= elf_header.e_shnum)
6164 warn (_("[%2u]: Expected link to another section in info field"), i);
6165 }
6166 else if (section->sh_type < SHT_LOOS && section->sh_info != 0)
6167 warn (_("[%2u]: Unexpected value (%u) in info field.\n"),
6168 i, section->sh_info);
6169 break;
6170 }
6171
6172 printf (" [%2u] ", i);
6173 if (do_section_details)
6174 printf ("%s\n ", printable_section_name (section));
6175 else
6176 print_symbol (-17, SECTION_NAME (section));
6177
6178 printf (do_wide ? " %-15s " : " %-15.15s ",
6179 get_section_type_name (section->sh_type));
6180
6181 if (is_32bit_elf)
6182 {
6183 const char * link_too_big = NULL;
6184
6185 print_vma (section->sh_addr, LONG_HEX);
6186
6187 printf ( " %6.6lx %6.6lx %2.2lx",
6188 (unsigned long) section->sh_offset,
6189 (unsigned long) section->sh_size,
6190 (unsigned long) section->sh_entsize);
6191
6192 if (do_section_details)
6193 fputs (" ", stdout);
6194 else
6195 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6196
6197 if (section->sh_link >= elf_header.e_shnum)
6198 {
6199 link_too_big = "";
6200 /* The sh_link value is out of range. Normally this indicates
6201 an error but it can have special values in Solaris binaries. */
6202 switch (elf_header.e_machine)
6203 {
6204 case EM_386:
6205 case EM_IAMCU:
6206 case EM_X86_64:
6207 case EM_L1OM:
6208 case EM_K1OM:
6209 case EM_OLD_SPARCV9:
6210 case EM_SPARC32PLUS:
6211 case EM_SPARCV9:
6212 case EM_SPARC:
6213 if (section->sh_link == (SHN_BEFORE & 0xffff))
6214 link_too_big = "BEFORE";
6215 else if (section->sh_link == (SHN_AFTER & 0xffff))
6216 link_too_big = "AFTER";
6217 break;
6218 default:
6219 break;
6220 }
6221 }
6222
6223 if (do_section_details)
6224 {
6225 if (link_too_big != NULL && * link_too_big)
6226 printf ("<%s> ", link_too_big);
6227 else
6228 printf ("%2u ", section->sh_link);
6229 printf ("%3u %2lu\n", section->sh_info,
6230 (unsigned long) section->sh_addralign);
6231 }
6232 else
6233 printf ("%2u %3u %2lu\n",
6234 section->sh_link,
6235 section->sh_info,
6236 (unsigned long) section->sh_addralign);
6237
6238 if (link_too_big && ! * link_too_big)
6239 warn (_("section %u: sh_link value of %u is larger than the number of sections\n"),
6240 i, section->sh_link);
6241 }
6242 else if (do_wide)
6243 {
6244 print_vma (section->sh_addr, LONG_HEX);
6245
6246 if ((long) section->sh_offset == section->sh_offset)
6247 printf (" %6.6lx", (unsigned long) section->sh_offset);
6248 else
6249 {
6250 putchar (' ');
6251 print_vma (section->sh_offset, LONG_HEX);
6252 }
6253
6254 if ((unsigned long) section->sh_size == section->sh_size)
6255 printf (" %6.6lx", (unsigned long) section->sh_size);
6256 else
6257 {
6258 putchar (' ');
6259 print_vma (section->sh_size, LONG_HEX);
6260 }
6261
6262 if ((unsigned long) section->sh_entsize == section->sh_entsize)
6263 printf (" %2.2lx", (unsigned long) section->sh_entsize);
6264 else
6265 {
6266 putchar (' ');
6267 print_vma (section->sh_entsize, LONG_HEX);
6268 }
6269
6270 if (do_section_details)
6271 fputs (" ", stdout);
6272 else
6273 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6274
6275 printf ("%2u %3u ", section->sh_link, section->sh_info);
6276
6277 if ((unsigned long) section->sh_addralign == section->sh_addralign)
6278 printf ("%2lu\n", (unsigned long) section->sh_addralign);
6279 else
6280 {
6281 print_vma (section->sh_addralign, DEC);
6282 putchar ('\n');
6283 }
6284 }
6285 else if (do_section_details)
6286 {
6287 printf (" %-15.15s ",
6288 get_section_type_name (section->sh_type));
6289 print_vma (section->sh_addr, LONG_HEX);
6290 if ((long) section->sh_offset == section->sh_offset)
6291 printf (" %16.16lx", (unsigned long) section->sh_offset);
6292 else
6293 {
6294 printf (" ");
6295 print_vma (section->sh_offset, LONG_HEX);
6296 }
6297 printf (" %u\n ", section->sh_link);
6298 print_vma (section->sh_size, LONG_HEX);
6299 putchar (' ');
6300 print_vma (section->sh_entsize, LONG_HEX);
6301
6302 printf (" %-16u %lu\n",
6303 section->sh_info,
6304 (unsigned long) section->sh_addralign);
6305 }
6306 else
6307 {
6308 putchar (' ');
6309 print_vma (section->sh_addr, LONG_HEX);
6310 if ((long) section->sh_offset == section->sh_offset)
6311 printf (" %8.8lx", (unsigned long) section->sh_offset);
6312 else
6313 {
6314 printf (" ");
6315 print_vma (section->sh_offset, LONG_HEX);
6316 }
6317 printf ("\n ");
6318 print_vma (section->sh_size, LONG_HEX);
6319 printf (" ");
6320 print_vma (section->sh_entsize, LONG_HEX);
6321
6322 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6323
6324 printf (" %2u %3u %lu\n",
6325 section->sh_link,
6326 section->sh_info,
6327 (unsigned long) section->sh_addralign);
6328 }
6329
6330 if (do_section_details)
6331 {
6332 printf (" %s\n", get_elf_section_flags (section->sh_flags));
6333 if ((section->sh_flags & SHF_COMPRESSED) != 0)
6334 {
6335 /* Minimum section size is 12 bytes for 32-bit compression
6336 header + 12 bytes for compressed data header. */
6337 unsigned char buf[24];
6338
6339 assert (sizeof (buf) >= sizeof (Elf64_External_Chdr));
6340 if (get_data (&buf, (FILE *) file, section->sh_offset, 1,
6341 sizeof (buf), _("compression header")))
6342 {
6343 Elf_Internal_Chdr chdr;
6344
6345 (void) get_compression_header (&chdr, buf, sizeof (buf));
6346
6347 if (chdr.ch_type == ELFCOMPRESS_ZLIB)
6348 printf (" ZLIB, ");
6349 else
6350 printf (_(" [<unknown>: 0x%x], "),
6351 chdr.ch_type);
6352 print_vma (chdr.ch_size, LONG_HEX);
6353 printf (", %lu\n", (unsigned long) chdr.ch_addralign);
6354 }
6355 }
6356 }
6357 }
6358
6359 if (!do_section_details)
6360 {
6361 /* The ordering of the letters shown here matches the ordering of the
6362 corresponding SHF_xxx values, and hence the order in which these
6363 letters will be displayed to the user. */
6364 printf (_("Key to Flags:\n\
6365 W (write), A (alloc), X (execute), M (merge), S (strings), I (info),\n\
6366 L (link order), O (extra OS processing required), G (group), T (TLS),\n\
6367 C (compressed), x (unknown), o (OS specific), E (exclude),\n "));
6368 if (elf_header.e_machine == EM_X86_64
6369 || elf_header.e_machine == EM_L1OM
6370 || elf_header.e_machine == EM_K1OM)
6371 printf (_("l (large), "));
6372 else if (elf_header.e_machine == EM_ARM)
6373 printf (_("y (purecode), "));
6374 printf ("p (processor specific)\n");
6375 }
6376
6377 return 1;
6378 }
6379
6380 static const char *
6381 get_group_flags (unsigned int flags)
6382 {
6383 static char buff[128];
6384
6385 if (flags == 0)
6386 return "";
6387 else if (flags == GRP_COMDAT)
6388 return "COMDAT ";
6389
6390 snprintf (buff, 14, _("[0x%x: "), flags);
6391
6392 flags &= ~ GRP_COMDAT;
6393 if (flags & GRP_MASKOS)
6394 {
6395 strcat (buff, "<OS specific>");
6396 flags &= ~ GRP_MASKOS;
6397 }
6398
6399 if (flags & GRP_MASKPROC)
6400 {
6401 strcat (buff, "<PROC specific>");
6402 flags &= ~ GRP_MASKPROC;
6403 }
6404
6405 if (flags)
6406 strcat (buff, "<unknown>");
6407
6408 strcat (buff, "]");
6409 return buff;
6410 }
6411
6412 static int
6413 process_section_groups (FILE * file)
6414 {
6415 Elf_Internal_Shdr * section;
6416 unsigned int i;
6417 struct group * group;
6418 Elf_Internal_Shdr * symtab_sec;
6419 Elf_Internal_Shdr * strtab_sec;
6420 Elf_Internal_Sym * symtab;
6421 unsigned long num_syms;
6422 char * strtab;
6423 size_t strtab_size;
6424
6425 /* Don't process section groups unless needed. */
6426 if (!do_unwind && !do_section_groups)
6427 return 1;
6428
6429 if (elf_header.e_shnum == 0)
6430 {
6431 if (do_section_groups)
6432 printf (_("\nThere are no sections to group in this file.\n"));
6433
6434 return 1;
6435 }
6436
6437 if (section_headers == NULL)
6438 {
6439 error (_("Section headers are not available!\n"));
6440 /* PR 13622: This can happen with a corrupt ELF header. */
6441 return 0;
6442 }
6443
6444 section_headers_groups = (struct group **) calloc (elf_header.e_shnum,
6445 sizeof (struct group *));
6446
6447 if (section_headers_groups == NULL)
6448 {
6449 error (_("Out of memory reading %u section group headers\n"),
6450 elf_header.e_shnum);
6451 return 0;
6452 }
6453
6454 /* Scan the sections for the group section. */
6455 group_count = 0;
6456 for (i = 0, section = section_headers;
6457 i < elf_header.e_shnum;
6458 i++, section++)
6459 if (section->sh_type == SHT_GROUP)
6460 group_count++;
6461
6462 if (group_count == 0)
6463 {
6464 if (do_section_groups)
6465 printf (_("\nThere are no section groups in this file.\n"));
6466
6467 return 1;
6468 }
6469
6470 section_groups = (struct group *) calloc (group_count, sizeof (struct group));
6471
6472 if (section_groups == NULL)
6473 {
6474 error (_("Out of memory reading %lu groups\n"),
6475 (unsigned long) group_count);
6476 return 0;
6477 }
6478
6479 symtab_sec = NULL;
6480 strtab_sec = NULL;
6481 symtab = NULL;
6482 num_syms = 0;
6483 strtab = NULL;
6484 strtab_size = 0;
6485 for (i = 0, section = section_headers, group = section_groups;
6486 i < elf_header.e_shnum;
6487 i++, section++)
6488 {
6489 if (section->sh_type == SHT_GROUP)
6490 {
6491 const char * name = printable_section_name (section);
6492 const char * group_name;
6493 unsigned char * start;
6494 unsigned char * indices;
6495 unsigned int entry, j, size;
6496 Elf_Internal_Shdr * sec;
6497 Elf_Internal_Sym * sym;
6498
6499 /* Get the symbol table. */
6500 if (section->sh_link >= elf_header.e_shnum
6501 || ((sec = section_headers + section->sh_link)->sh_type
6502 != SHT_SYMTAB))
6503 {
6504 error (_("Bad sh_link in group section `%s'\n"), name);
6505 continue;
6506 }
6507
6508 if (symtab_sec != sec)
6509 {
6510 symtab_sec = sec;
6511 if (symtab)
6512 free (symtab);
6513 symtab = GET_ELF_SYMBOLS (file, symtab_sec, & num_syms);
6514 }
6515
6516 if (symtab == NULL)
6517 {
6518 error (_("Corrupt header in group section `%s'\n"), name);
6519 continue;
6520 }
6521
6522 if (section->sh_info >= num_syms)
6523 {
6524 error (_("Bad sh_info in group section `%s'\n"), name);
6525 continue;
6526 }
6527
6528 sym = symtab + section->sh_info;
6529
6530 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6531 {
6532 if (sym->st_shndx == 0
6533 || sym->st_shndx >= elf_header.e_shnum)
6534 {
6535 error (_("Bad sh_info in group section `%s'\n"), name);
6536 continue;
6537 }
6538
6539 group_name = SECTION_NAME (section_headers + sym->st_shndx);
6540 strtab_sec = NULL;
6541 if (strtab)
6542 free (strtab);
6543 strtab = NULL;
6544 strtab_size = 0;
6545 }
6546 else
6547 {
6548 /* Get the string table. */
6549 if (symtab_sec->sh_link >= elf_header.e_shnum)
6550 {
6551 strtab_sec = NULL;
6552 if (strtab)
6553 free (strtab);
6554 strtab = NULL;
6555 strtab_size = 0;
6556 }
6557 else if (strtab_sec
6558 != (sec = section_headers + symtab_sec->sh_link))
6559 {
6560 strtab_sec = sec;
6561 if (strtab)
6562 free (strtab);
6563
6564 strtab = (char *) get_data (NULL, file, strtab_sec->sh_offset,
6565 1, strtab_sec->sh_size,
6566 _("string table"));
6567 strtab_size = strtab != NULL ? strtab_sec->sh_size : 0;
6568 }
6569 group_name = sym->st_name < strtab_size
6570 ? strtab + sym->st_name : _("<corrupt>");
6571 }
6572
6573 /* PR 17531: file: loop. */
6574 if (section->sh_entsize > section->sh_size)
6575 {
6576 error (_("Section %s has sh_entsize (0x%lx) which is larger than its size (0x%lx)\n"),
6577 printable_section_name (section),
6578 (unsigned long) section->sh_entsize,
6579 (unsigned long) section->sh_size);
6580 break;
6581 }
6582
6583 start = (unsigned char *) get_data (NULL, file, section->sh_offset,
6584 1, section->sh_size,
6585 _("section data"));
6586 if (start == NULL)
6587 continue;
6588
6589 indices = start;
6590 size = (section->sh_size / section->sh_entsize) - 1;
6591 entry = byte_get (indices, 4);
6592 indices += 4;
6593
6594 if (do_section_groups)
6595 {
6596 printf (_("\n%sgroup section [%5u] `%s' [%s] contains %u sections:\n"),
6597 get_group_flags (entry), i, name, group_name, size);
6598
6599 printf (_(" [Index] Name\n"));
6600 }
6601
6602 group->group_index = i;
6603
6604 for (j = 0; j < size; j++)
6605 {
6606 struct group_list * g;
6607
6608 entry = byte_get (indices, 4);
6609 indices += 4;
6610
6611 if (entry >= elf_header.e_shnum)
6612 {
6613 static unsigned num_group_errors = 0;
6614
6615 if (num_group_errors ++ < 10)
6616 {
6617 error (_("section [%5u] in group section [%5u] > maximum section [%5u]\n"),
6618 entry, i, elf_header.e_shnum - 1);
6619 if (num_group_errors == 10)
6620 warn (_("Futher error messages about overlarge group section indicies suppressed\n"));
6621 }
6622 continue;
6623 }
6624
6625 if (section_headers_groups [entry] != NULL)
6626 {
6627 if (entry)
6628 {
6629 static unsigned num_errs = 0;
6630
6631 if (num_errs ++ < 10)
6632 {
6633 error (_("section [%5u] in group section [%5u] already in group section [%5u]\n"),
6634 entry, i,
6635 section_headers_groups [entry]->group_index);
6636 if (num_errs == 10)
6637 warn (_("Further error messages about already contained group sections suppressed\n"));
6638 }
6639 continue;
6640 }
6641 else
6642 {
6643 /* Intel C/C++ compiler may put section 0 in a
6644 section group. We just warn it the first time
6645 and ignore it afterwards. */
6646 static int warned = 0;
6647 if (!warned)
6648 {
6649 error (_("section 0 in group section [%5u]\n"),
6650 section_headers_groups [entry]->group_index);
6651 warned++;
6652 }
6653 }
6654 }
6655
6656 section_headers_groups [entry] = group;
6657
6658 if (do_section_groups)
6659 {
6660 sec = section_headers + entry;
6661 printf (" [%5u] %s\n", entry, printable_section_name (sec));
6662 }
6663
6664 g = (struct group_list *) xmalloc (sizeof (struct group_list));
6665 g->section_index = entry;
6666 g->next = group->root;
6667 group->root = g;
6668 }
6669
6670 if (start)
6671 free (start);
6672
6673 group++;
6674 }
6675 }
6676
6677 if (symtab)
6678 free (symtab);
6679 if (strtab)
6680 free (strtab);
6681 return 1;
6682 }
6683
6684 /* Data used to display dynamic fixups. */
6685
6686 struct ia64_vms_dynfixup
6687 {
6688 bfd_vma needed_ident; /* Library ident number. */
6689 bfd_vma needed; /* Index in the dstrtab of the library name. */
6690 bfd_vma fixup_needed; /* Index of the library. */
6691 bfd_vma fixup_rela_cnt; /* Number of fixups. */
6692 bfd_vma fixup_rela_off; /* Fixups offset in the dynamic segment. */
6693 };
6694
6695 /* Data used to display dynamic relocations. */
6696
6697 struct ia64_vms_dynimgrela
6698 {
6699 bfd_vma img_rela_cnt; /* Number of relocations. */
6700 bfd_vma img_rela_off; /* Reloc offset in the dynamic segment. */
6701 };
6702
6703 /* Display IA-64 OpenVMS dynamic fixups (used to dynamically link a shared
6704 library). */
6705
6706 static void
6707 dump_ia64_vms_dynamic_fixups (FILE *file, struct ia64_vms_dynfixup *fixup,
6708 const char *strtab, unsigned int strtab_sz)
6709 {
6710 Elf64_External_VMS_IMAGE_FIXUP *imfs;
6711 long i;
6712 const char *lib_name;
6713
6714 imfs = get_data (NULL, file, dynamic_addr + fixup->fixup_rela_off,
6715 1, fixup->fixup_rela_cnt * sizeof (*imfs),
6716 _("dynamic section image fixups"));
6717 if (!imfs)
6718 return;
6719
6720 if (fixup->needed < strtab_sz)
6721 lib_name = strtab + fixup->needed;
6722 else
6723 {
6724 warn ("corrupt library name index of 0x%lx found in dynamic entry",
6725 (unsigned long) fixup->needed);
6726 lib_name = "???";
6727 }
6728 printf (_("\nImage fixups for needed library #%d: %s - ident: %lx\n"),
6729 (int) fixup->fixup_needed, lib_name, (long) fixup->needed_ident);
6730 printf
6731 (_("Seg Offset Type SymVec DataType\n"));
6732
6733 for (i = 0; i < (long) fixup->fixup_rela_cnt; i++)
6734 {
6735 unsigned int type;
6736 const char *rtype;
6737
6738 printf ("%3u ", (unsigned) BYTE_GET (imfs [i].fixup_seg));
6739 printf_vma ((bfd_vma) BYTE_GET (imfs [i].fixup_offset));
6740 type = BYTE_GET (imfs [i].type);
6741 rtype = elf_ia64_reloc_type (type);
6742 if (rtype == NULL)
6743 printf (" 0x%08x ", type);
6744 else
6745 printf (" %-32s ", rtype);
6746 printf ("%6u ", (unsigned) BYTE_GET (imfs [i].symvec_index));
6747 printf ("0x%08x\n", (unsigned) BYTE_GET (imfs [i].data_type));
6748 }
6749
6750 free (imfs);
6751 }
6752
6753 /* Display IA-64 OpenVMS dynamic relocations (used to relocate an image). */
6754
6755 static void
6756 dump_ia64_vms_dynamic_relocs (FILE *file, struct ia64_vms_dynimgrela *imgrela)
6757 {
6758 Elf64_External_VMS_IMAGE_RELA *imrs;
6759 long i;
6760
6761 imrs = get_data (NULL, file, dynamic_addr + imgrela->img_rela_off,
6762 1, imgrela->img_rela_cnt * sizeof (*imrs),
6763 _("dynamic section image relocations"));
6764 if (!imrs)
6765 return;
6766
6767 printf (_("\nImage relocs\n"));
6768 printf
6769 (_("Seg Offset Type Addend Seg Sym Off\n"));
6770
6771 for (i = 0; i < (long) imgrela->img_rela_cnt; i++)
6772 {
6773 unsigned int type;
6774 const char *rtype;
6775
6776 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].rela_seg));
6777 printf ("%08" BFD_VMA_FMT "x ",
6778 (bfd_vma) BYTE_GET (imrs [i].rela_offset));
6779 type = BYTE_GET (imrs [i].type);
6780 rtype = elf_ia64_reloc_type (type);
6781 if (rtype == NULL)
6782 printf ("0x%08x ", type);
6783 else
6784 printf ("%-31s ", rtype);
6785 print_vma (BYTE_GET (imrs [i].addend), FULL_HEX);
6786 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].sym_seg));
6787 printf ("%08" BFD_VMA_FMT "x\n",
6788 (bfd_vma) BYTE_GET (imrs [i].sym_offset));
6789 }
6790
6791 free (imrs);
6792 }
6793
6794 /* Display IA-64 OpenVMS dynamic relocations and fixups. */
6795
6796 static int
6797 process_ia64_vms_dynamic_relocs (FILE *file)
6798 {
6799 struct ia64_vms_dynfixup fixup;
6800 struct ia64_vms_dynimgrela imgrela;
6801 Elf_Internal_Dyn *entry;
6802 int res = 0;
6803 bfd_vma strtab_off = 0;
6804 bfd_vma strtab_sz = 0;
6805 char *strtab = NULL;
6806
6807 memset (&fixup, 0, sizeof (fixup));
6808 memset (&imgrela, 0, sizeof (imgrela));
6809
6810 /* Note: the order of the entries is specified by the OpenVMS specs. */
6811 for (entry = dynamic_section;
6812 entry < dynamic_section + dynamic_nent;
6813 entry++)
6814 {
6815 switch (entry->d_tag)
6816 {
6817 case DT_IA_64_VMS_STRTAB_OFFSET:
6818 strtab_off = entry->d_un.d_val;
6819 break;
6820 case DT_STRSZ:
6821 strtab_sz = entry->d_un.d_val;
6822 if (strtab == NULL)
6823 strtab = get_data (NULL, file, dynamic_addr + strtab_off,
6824 1, strtab_sz, _("dynamic string section"));
6825 break;
6826
6827 case DT_IA_64_VMS_NEEDED_IDENT:
6828 fixup.needed_ident = entry->d_un.d_val;
6829 break;
6830 case DT_NEEDED:
6831 fixup.needed = entry->d_un.d_val;
6832 break;
6833 case DT_IA_64_VMS_FIXUP_NEEDED:
6834 fixup.fixup_needed = entry->d_un.d_val;
6835 break;
6836 case DT_IA_64_VMS_FIXUP_RELA_CNT:
6837 fixup.fixup_rela_cnt = entry->d_un.d_val;
6838 break;
6839 case DT_IA_64_VMS_FIXUP_RELA_OFF:
6840 fixup.fixup_rela_off = entry->d_un.d_val;
6841 res++;
6842 dump_ia64_vms_dynamic_fixups (file, &fixup, strtab, strtab_sz);
6843 break;
6844
6845 case DT_IA_64_VMS_IMG_RELA_CNT:
6846 imgrela.img_rela_cnt = entry->d_un.d_val;
6847 break;
6848 case DT_IA_64_VMS_IMG_RELA_OFF:
6849 imgrela.img_rela_off = entry->d_un.d_val;
6850 res++;
6851 dump_ia64_vms_dynamic_relocs (file, &imgrela);
6852 break;
6853
6854 default:
6855 break;
6856 }
6857 }
6858
6859 if (strtab != NULL)
6860 free (strtab);
6861
6862 return res;
6863 }
6864
6865 static struct
6866 {
6867 const char * name;
6868 int reloc;
6869 int size;
6870 int rela;
6871 } dynamic_relocations [] =
6872 {
6873 { "REL", DT_REL, DT_RELSZ, FALSE },
6874 { "RELA", DT_RELA, DT_RELASZ, TRUE },
6875 { "PLT", DT_JMPREL, DT_PLTRELSZ, UNKNOWN }
6876 };
6877
6878 /* Process the reloc section. */
6879
6880 static int
6881 process_relocs (FILE * file)
6882 {
6883 unsigned long rel_size;
6884 unsigned long rel_offset;
6885
6886
6887 if (!do_reloc)
6888 return 1;
6889
6890 if (do_using_dynamic)
6891 {
6892 int is_rela;
6893 const char * name;
6894 int has_dynamic_reloc;
6895 unsigned int i;
6896
6897 has_dynamic_reloc = 0;
6898
6899 for (i = 0; i < ARRAY_SIZE (dynamic_relocations); i++)
6900 {
6901 is_rela = dynamic_relocations [i].rela;
6902 name = dynamic_relocations [i].name;
6903 rel_size = dynamic_info [dynamic_relocations [i].size];
6904 rel_offset = dynamic_info [dynamic_relocations [i].reloc];
6905
6906 has_dynamic_reloc |= rel_size;
6907
6908 if (is_rela == UNKNOWN)
6909 {
6910 if (dynamic_relocations [i].reloc == DT_JMPREL)
6911 switch (dynamic_info[DT_PLTREL])
6912 {
6913 case DT_REL:
6914 is_rela = FALSE;
6915 break;
6916 case DT_RELA:
6917 is_rela = TRUE;
6918 break;
6919 }
6920 }
6921
6922 if (rel_size)
6923 {
6924 printf
6925 (_("\n'%s' relocation section at offset 0x%lx contains %ld bytes:\n"),
6926 name, rel_offset, rel_size);
6927
6928 dump_relocations (file,
6929 offset_from_vma (file, rel_offset, rel_size),
6930 rel_size,
6931 dynamic_symbols, num_dynamic_syms,
6932 dynamic_strings, dynamic_strings_length,
6933 is_rela, 1);
6934 }
6935 }
6936
6937 if (is_ia64_vms ())
6938 has_dynamic_reloc |= process_ia64_vms_dynamic_relocs (file);
6939
6940 if (! has_dynamic_reloc)
6941 printf (_("\nThere are no dynamic relocations in this file.\n"));
6942 }
6943 else
6944 {
6945 Elf_Internal_Shdr * section;
6946 unsigned long i;
6947 int found = 0;
6948
6949 for (i = 0, section = section_headers;
6950 i < elf_header.e_shnum;
6951 i++, section++)
6952 {
6953 if ( section->sh_type != SHT_RELA
6954 && section->sh_type != SHT_REL)
6955 continue;
6956
6957 rel_offset = section->sh_offset;
6958 rel_size = section->sh_size;
6959
6960 if (rel_size)
6961 {
6962 Elf_Internal_Shdr * strsec;
6963 int is_rela;
6964
6965 printf (_("\nRelocation section "));
6966
6967 if (string_table == NULL)
6968 printf ("%d", section->sh_name);
6969 else
6970 printf ("'%s'", printable_section_name (section));
6971
6972 printf (_(" at offset 0x%lx contains %lu entries:\n"),
6973 rel_offset, (unsigned long) (rel_size / section->sh_entsize));
6974
6975 is_rela = section->sh_type == SHT_RELA;
6976
6977 if (section->sh_link != 0
6978 && section->sh_link < elf_header.e_shnum)
6979 {
6980 Elf_Internal_Shdr * symsec;
6981 Elf_Internal_Sym * symtab;
6982 unsigned long nsyms;
6983 unsigned long strtablen = 0;
6984 char * strtab = NULL;
6985
6986 symsec = section_headers + section->sh_link;
6987 if (symsec->sh_type != SHT_SYMTAB
6988 && symsec->sh_type != SHT_DYNSYM)
6989 continue;
6990
6991 symtab = GET_ELF_SYMBOLS (file, symsec, & nsyms);
6992
6993 if (symtab == NULL)
6994 continue;
6995
6996 if (symsec->sh_link != 0
6997 && symsec->sh_link < elf_header.e_shnum)
6998 {
6999 strsec = section_headers + symsec->sh_link;
7000
7001 strtab = (char *) get_data (NULL, file, strsec->sh_offset,
7002 1, strsec->sh_size,
7003 _("string table"));
7004 strtablen = strtab == NULL ? 0 : strsec->sh_size;
7005 }
7006
7007 dump_relocations (file, rel_offset, rel_size,
7008 symtab, nsyms, strtab, strtablen,
7009 is_rela,
7010 symsec->sh_type == SHT_DYNSYM);
7011 if (strtab)
7012 free (strtab);
7013 free (symtab);
7014 }
7015 else
7016 dump_relocations (file, rel_offset, rel_size,
7017 NULL, 0, NULL, 0, is_rela, 0);
7018
7019 found = 1;
7020 }
7021 }
7022
7023 if (! found)
7024 printf (_("\nThere are no relocations in this file.\n"));
7025 }
7026
7027 return 1;
7028 }
7029
7030 /* An absolute address consists of a section and an offset. If the
7031 section is NULL, the offset itself is the address, otherwise, the
7032 address equals to LOAD_ADDRESS(section) + offset. */
7033
7034 struct absaddr
7035 {
7036 unsigned short section;
7037 bfd_vma offset;
7038 };
7039
7040 #define ABSADDR(a) \
7041 ((a).section \
7042 ? section_headers [(a).section].sh_addr + (a).offset \
7043 : (a).offset)
7044
7045 /* Find the nearest symbol at or below ADDR. Returns the symbol
7046 name, if found, and the offset from the symbol to ADDR. */
7047
7048 static void
7049 find_symbol_for_address (Elf_Internal_Sym * symtab,
7050 unsigned long nsyms,
7051 const char * strtab,
7052 unsigned long strtab_size,
7053 struct absaddr addr,
7054 const char ** symname,
7055 bfd_vma * offset)
7056 {
7057 bfd_vma dist = 0x100000;
7058 Elf_Internal_Sym * sym;
7059 Elf_Internal_Sym * beg;
7060 Elf_Internal_Sym * end;
7061 Elf_Internal_Sym * best = NULL;
7062
7063 REMOVE_ARCH_BITS (addr.offset);
7064 beg = symtab;
7065 end = symtab + nsyms;
7066
7067 while (beg < end)
7068 {
7069 bfd_vma value;
7070
7071 sym = beg + (end - beg) / 2;
7072
7073 value = sym->st_value;
7074 REMOVE_ARCH_BITS (value);
7075
7076 if (sym->st_name != 0
7077 && (addr.section == SHN_UNDEF || addr.section == sym->st_shndx)
7078 && addr.offset >= value
7079 && addr.offset - value < dist)
7080 {
7081 best = sym;
7082 dist = addr.offset - value;
7083 if (!dist)
7084 break;
7085 }
7086
7087 if (addr.offset < value)
7088 end = sym;
7089 else
7090 beg = sym + 1;
7091 }
7092
7093 if (best)
7094 {
7095 *symname = (best->st_name >= strtab_size
7096 ? _("<corrupt>") : strtab + best->st_name);
7097 *offset = dist;
7098 return;
7099 }
7100
7101 *symname = NULL;
7102 *offset = addr.offset;
7103 }
7104
7105 static int
7106 symcmp (const void *p, const void *q)
7107 {
7108 Elf_Internal_Sym *sp = (Elf_Internal_Sym *) p;
7109 Elf_Internal_Sym *sq = (Elf_Internal_Sym *) q;
7110
7111 return sp->st_value > sq->st_value ? 1 : (sp->st_value < sq->st_value ? -1 : 0);
7112 }
7113
7114 /* Process the unwind section. */
7115
7116 #include "unwind-ia64.h"
7117
7118 struct ia64_unw_table_entry
7119 {
7120 struct absaddr start;
7121 struct absaddr end;
7122 struct absaddr info;
7123 };
7124
7125 struct ia64_unw_aux_info
7126 {
7127 struct ia64_unw_table_entry *table; /* Unwind table. */
7128 unsigned long table_len; /* Length of unwind table. */
7129 unsigned char * info; /* Unwind info. */
7130 unsigned long info_size; /* Size of unwind info. */
7131 bfd_vma info_addr; /* Starting address of unwind info. */
7132 bfd_vma seg_base; /* Starting address of segment. */
7133 Elf_Internal_Sym * symtab; /* The symbol table. */
7134 unsigned long nsyms; /* Number of symbols. */
7135 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7136 unsigned long nfuns; /* Number of entries in funtab. */
7137 char * strtab; /* The string table. */
7138 unsigned long strtab_size; /* Size of string table. */
7139 };
7140
7141 static void
7142 dump_ia64_unwind (struct ia64_unw_aux_info * aux)
7143 {
7144 struct ia64_unw_table_entry * tp;
7145 unsigned long j, nfuns;
7146 int in_body;
7147
7148 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
7149 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
7150 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
7151 aux->funtab[nfuns++] = aux->symtab[j];
7152 aux->nfuns = nfuns;
7153 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
7154
7155 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
7156 {
7157 bfd_vma stamp;
7158 bfd_vma offset;
7159 const unsigned char * dp;
7160 const unsigned char * head;
7161 const unsigned char * end;
7162 const char * procname;
7163
7164 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
7165 aux->strtab_size, tp->start, &procname, &offset);
7166
7167 fputs ("\n<", stdout);
7168
7169 if (procname)
7170 {
7171 fputs (procname, stdout);
7172
7173 if (offset)
7174 printf ("+%lx", (unsigned long) offset);
7175 }
7176
7177 fputs (">: [", stdout);
7178 print_vma (tp->start.offset, PREFIX_HEX);
7179 fputc ('-', stdout);
7180 print_vma (tp->end.offset, PREFIX_HEX);
7181 printf ("], info at +0x%lx\n",
7182 (unsigned long) (tp->info.offset - aux->seg_base));
7183
7184 /* PR 17531: file: 86232b32. */
7185 if (aux->info == NULL)
7186 continue;
7187
7188 /* PR 17531: file: 0997b4d1. */
7189 if ((ABSADDR (tp->info) - aux->info_addr) >= aux->info_size)
7190 {
7191 warn (_("Invalid offset %lx in table entry %ld\n"),
7192 (long) tp->info.offset, (long) (tp - aux->table));
7193 continue;
7194 }
7195
7196 head = aux->info + (ABSADDR (tp->info) - aux->info_addr);
7197 stamp = byte_get ((unsigned char *) head, sizeof (stamp));
7198
7199 printf (" v%u, flags=0x%lx (%s%s), len=%lu bytes\n",
7200 (unsigned) UNW_VER (stamp),
7201 (unsigned long) ((stamp & UNW_FLAG_MASK) >> 32),
7202 UNW_FLAG_EHANDLER (stamp) ? " ehandler" : "",
7203 UNW_FLAG_UHANDLER (stamp) ? " uhandler" : "",
7204 (unsigned long) (eh_addr_size * UNW_LENGTH (stamp)));
7205
7206 if (UNW_VER (stamp) != 1)
7207 {
7208 printf (_("\tUnknown version.\n"));
7209 continue;
7210 }
7211
7212 in_body = 0;
7213 end = head + 8 + eh_addr_size * UNW_LENGTH (stamp);
7214 /* PR 17531: file: 16ceda89. */
7215 if (end > aux->info + aux->info_size)
7216 end = aux->info + aux->info_size;
7217 for (dp = head + 8; dp < end;)
7218 dp = unw_decode (dp, in_body, & in_body, end);
7219 }
7220
7221 free (aux->funtab);
7222 }
7223
7224 static bfd_boolean
7225 slurp_ia64_unwind_table (FILE * file,
7226 struct ia64_unw_aux_info * aux,
7227 Elf_Internal_Shdr * sec)
7228 {
7229 unsigned long size, nrelas, i;
7230 Elf_Internal_Phdr * seg;
7231 struct ia64_unw_table_entry * tep;
7232 Elf_Internal_Shdr * relsec;
7233 Elf_Internal_Rela * rela;
7234 Elf_Internal_Rela * rp;
7235 unsigned char * table;
7236 unsigned char * tp;
7237 Elf_Internal_Sym * sym;
7238 const char * relname;
7239
7240 aux->table_len = 0;
7241
7242 /* First, find the starting address of the segment that includes
7243 this section: */
7244
7245 if (elf_header.e_phnum)
7246 {
7247 if (! get_program_headers (file))
7248 return FALSE;
7249
7250 for (seg = program_headers;
7251 seg < program_headers + elf_header.e_phnum;
7252 ++seg)
7253 {
7254 if (seg->p_type != PT_LOAD)
7255 continue;
7256
7257 if (sec->sh_addr >= seg->p_vaddr
7258 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
7259 {
7260 aux->seg_base = seg->p_vaddr;
7261 break;
7262 }
7263 }
7264 }
7265
7266 /* Second, build the unwind table from the contents of the unwind section: */
7267 size = sec->sh_size;
7268 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
7269 _("unwind table"));
7270 if (!table)
7271 return FALSE;
7272
7273 aux->table_len = size / (3 * eh_addr_size);
7274 aux->table = (struct ia64_unw_table_entry *)
7275 xcmalloc (aux->table_len, sizeof (aux->table[0]));
7276 tep = aux->table;
7277
7278 for (tp = table; tp <= table + size - (3 * eh_addr_size); ++tep)
7279 {
7280 tep->start.section = SHN_UNDEF;
7281 tep->end.section = SHN_UNDEF;
7282 tep->info.section = SHN_UNDEF;
7283 tep->start.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7284 tep->end.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7285 tep->info.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7286 tep->start.offset += aux->seg_base;
7287 tep->end.offset += aux->seg_base;
7288 tep->info.offset += aux->seg_base;
7289 }
7290 free (table);
7291
7292 /* Third, apply any relocations to the unwind table: */
7293 for (relsec = section_headers;
7294 relsec < section_headers + elf_header.e_shnum;
7295 ++relsec)
7296 {
7297 if (relsec->sh_type != SHT_RELA
7298 || relsec->sh_info >= elf_header.e_shnum
7299 || section_headers + relsec->sh_info != sec)
7300 continue;
7301
7302 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
7303 & rela, & nrelas))
7304 {
7305 free (aux->table);
7306 aux->table = NULL;
7307 aux->table_len = 0;
7308 return FALSE;
7309 }
7310
7311 for (rp = rela; rp < rela + nrelas; ++rp)
7312 {
7313 relname = elf_ia64_reloc_type (get_reloc_type (rp->r_info));
7314 sym = aux->symtab + get_reloc_symindex (rp->r_info);
7315
7316 /* PR 17531: file: 9fa67536. */
7317 if (relname == NULL)
7318 {
7319 warn (_("Skipping unknown relocation type: %u\n"), get_reloc_type (rp->r_info));
7320 continue;
7321 }
7322
7323 if (! const_strneq (relname, "R_IA64_SEGREL"))
7324 {
7325 warn (_("Skipping unexpected relocation type: %s\n"), relname);
7326 continue;
7327 }
7328
7329 i = rp->r_offset / (3 * eh_addr_size);
7330
7331 /* PR 17531: file: 5bc8d9bf. */
7332 if (i >= aux->table_len)
7333 {
7334 warn (_("Skipping reloc with overlarge offset: %lx\n"), i);
7335 continue;
7336 }
7337
7338 switch (rp->r_offset / eh_addr_size % 3)
7339 {
7340 case 0:
7341 aux->table[i].start.section = sym->st_shndx;
7342 aux->table[i].start.offset = rp->r_addend + sym->st_value;
7343 break;
7344 case 1:
7345 aux->table[i].end.section = sym->st_shndx;
7346 aux->table[i].end.offset = rp->r_addend + sym->st_value;
7347 break;
7348 case 2:
7349 aux->table[i].info.section = sym->st_shndx;
7350 aux->table[i].info.offset = rp->r_addend + sym->st_value;
7351 break;
7352 default:
7353 break;
7354 }
7355 }
7356
7357 free (rela);
7358 }
7359
7360 return TRUE;
7361 }
7362
7363 static void
7364 ia64_process_unwind (FILE * file)
7365 {
7366 Elf_Internal_Shdr * sec;
7367 Elf_Internal_Shdr * unwsec = NULL;
7368 Elf_Internal_Shdr * strsec;
7369 unsigned long i, unwcount = 0, unwstart = 0;
7370 struct ia64_unw_aux_info aux;
7371
7372 memset (& aux, 0, sizeof (aux));
7373
7374 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7375 {
7376 if (sec->sh_type == SHT_SYMTAB
7377 && sec->sh_link < elf_header.e_shnum)
7378 {
7379 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
7380
7381 strsec = section_headers + sec->sh_link;
7382 if (aux.strtab != NULL)
7383 {
7384 error (_("Multiple auxillary string tables encountered\n"));
7385 free (aux.strtab);
7386 }
7387 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
7388 1, strsec->sh_size,
7389 _("string table"));
7390 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7391 }
7392 else if (sec->sh_type == SHT_IA_64_UNWIND)
7393 unwcount++;
7394 }
7395
7396 if (!unwcount)
7397 printf (_("\nThere are no unwind sections in this file.\n"));
7398
7399 while (unwcount-- > 0)
7400 {
7401 char * suffix;
7402 size_t len, len2;
7403
7404 for (i = unwstart, sec = section_headers + unwstart, unwsec = NULL;
7405 i < elf_header.e_shnum; ++i, ++sec)
7406 if (sec->sh_type == SHT_IA_64_UNWIND)
7407 {
7408 unwsec = sec;
7409 break;
7410 }
7411 /* We have already counted the number of SHT_IA64_UNWIND
7412 sections so the loop above should never fail. */
7413 assert (unwsec != NULL);
7414
7415 unwstart = i + 1;
7416 len = sizeof (ELF_STRING_ia64_unwind_once) - 1;
7417
7418 if ((unwsec->sh_flags & SHF_GROUP) != 0)
7419 {
7420 /* We need to find which section group it is in. */
7421 struct group_list * g;
7422
7423 if (section_headers_groups == NULL
7424 || section_headers_groups [i] == NULL)
7425 i = elf_header.e_shnum;
7426 else
7427 {
7428 g = section_headers_groups [i]->root;
7429
7430 for (; g != NULL; g = g->next)
7431 {
7432 sec = section_headers + g->section_index;
7433
7434 if (streq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info))
7435 break;
7436 }
7437
7438 if (g == NULL)
7439 i = elf_header.e_shnum;
7440 }
7441 }
7442 else if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind_once, len))
7443 {
7444 /* .gnu.linkonce.ia64unw.FOO -> .gnu.linkonce.ia64unwi.FOO. */
7445 len2 = sizeof (ELF_STRING_ia64_unwind_info_once) - 1;
7446 suffix = SECTION_NAME (unwsec) + len;
7447 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
7448 ++i, ++sec)
7449 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info_once, len2)
7450 && streq (SECTION_NAME (sec) + len2, suffix))
7451 break;
7452 }
7453 else
7454 {
7455 /* .IA_64.unwindFOO -> .IA_64.unwind_infoFOO
7456 .IA_64.unwind or BAR -> .IA_64.unwind_info. */
7457 len = sizeof (ELF_STRING_ia64_unwind) - 1;
7458 len2 = sizeof (ELF_STRING_ia64_unwind_info) - 1;
7459 suffix = "";
7460 if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind, len))
7461 suffix = SECTION_NAME (unwsec) + len;
7462 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
7463 ++i, ++sec)
7464 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info, len2)
7465 && streq (SECTION_NAME (sec) + len2, suffix))
7466 break;
7467 }
7468
7469 if (i == elf_header.e_shnum)
7470 {
7471 printf (_("\nCould not find unwind info section for "));
7472
7473 if (string_table == NULL)
7474 printf ("%d", unwsec->sh_name);
7475 else
7476 printf ("'%s'", printable_section_name (unwsec));
7477 }
7478 else
7479 {
7480 aux.info_addr = sec->sh_addr;
7481 aux.info = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1,
7482 sec->sh_size,
7483 _("unwind info"));
7484 aux.info_size = aux.info == NULL ? 0 : sec->sh_size;
7485
7486 printf (_("\nUnwind section "));
7487
7488 if (string_table == NULL)
7489 printf ("%d", unwsec->sh_name);
7490 else
7491 printf ("'%s'", printable_section_name (unwsec));
7492
7493 printf (_(" at offset 0x%lx contains %lu entries:\n"),
7494 (unsigned long) unwsec->sh_offset,
7495 (unsigned long) (unwsec->sh_size / (3 * eh_addr_size)));
7496
7497 if (slurp_ia64_unwind_table (file, & aux, unwsec)
7498 && aux.table_len > 0)
7499 dump_ia64_unwind (& aux);
7500
7501 if (aux.table)
7502 free ((char *) aux.table);
7503 if (aux.info)
7504 free ((char *) aux.info);
7505 aux.table = NULL;
7506 aux.info = NULL;
7507 }
7508 }
7509
7510 if (aux.symtab)
7511 free (aux.symtab);
7512 if (aux.strtab)
7513 free ((char *) aux.strtab);
7514 }
7515
7516 struct hppa_unw_table_entry
7517 {
7518 struct absaddr start;
7519 struct absaddr end;
7520 unsigned int Cannot_unwind:1; /* 0 */
7521 unsigned int Millicode:1; /* 1 */
7522 unsigned int Millicode_save_sr0:1; /* 2 */
7523 unsigned int Region_description:2; /* 3..4 */
7524 unsigned int reserved1:1; /* 5 */
7525 unsigned int Entry_SR:1; /* 6 */
7526 unsigned int Entry_FR:4; /* number saved */ /* 7..10 */
7527 unsigned int Entry_GR:5; /* number saved */ /* 11..15 */
7528 unsigned int Args_stored:1; /* 16 */
7529 unsigned int Variable_Frame:1; /* 17 */
7530 unsigned int Separate_Package_Body:1; /* 18 */
7531 unsigned int Frame_Extension_Millicode:1; /* 19 */
7532 unsigned int Stack_Overflow_Check:1; /* 20 */
7533 unsigned int Two_Instruction_SP_Increment:1;/* 21 */
7534 unsigned int Ada_Region:1; /* 22 */
7535 unsigned int cxx_info:1; /* 23 */
7536 unsigned int cxx_try_catch:1; /* 24 */
7537 unsigned int sched_entry_seq:1; /* 25 */
7538 unsigned int reserved2:1; /* 26 */
7539 unsigned int Save_SP:1; /* 27 */
7540 unsigned int Save_RP:1; /* 28 */
7541 unsigned int Save_MRP_in_frame:1; /* 29 */
7542 unsigned int extn_ptr_defined:1; /* 30 */
7543 unsigned int Cleanup_defined:1; /* 31 */
7544
7545 unsigned int MPE_XL_interrupt_marker:1; /* 0 */
7546 unsigned int HP_UX_interrupt_marker:1; /* 1 */
7547 unsigned int Large_frame:1; /* 2 */
7548 unsigned int Pseudo_SP_Set:1; /* 3 */
7549 unsigned int reserved4:1; /* 4 */
7550 unsigned int Total_frame_size:27; /* 5..31 */
7551 };
7552
7553 struct hppa_unw_aux_info
7554 {
7555 struct hppa_unw_table_entry * table; /* Unwind table. */
7556 unsigned long table_len; /* Length of unwind table. */
7557 bfd_vma seg_base; /* Starting address of segment. */
7558 Elf_Internal_Sym * symtab; /* The symbol table. */
7559 unsigned long nsyms; /* Number of symbols. */
7560 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7561 unsigned long nfuns; /* Number of entries in funtab. */
7562 char * strtab; /* The string table. */
7563 unsigned long strtab_size; /* Size of string table. */
7564 };
7565
7566 static void
7567 dump_hppa_unwind (struct hppa_unw_aux_info * aux)
7568 {
7569 struct hppa_unw_table_entry * tp;
7570 unsigned long j, nfuns;
7571
7572 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
7573 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
7574 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
7575 aux->funtab[nfuns++] = aux->symtab[j];
7576 aux->nfuns = nfuns;
7577 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
7578
7579 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
7580 {
7581 bfd_vma offset;
7582 const char * procname;
7583
7584 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
7585 aux->strtab_size, tp->start, &procname,
7586 &offset);
7587
7588 fputs ("\n<", stdout);
7589
7590 if (procname)
7591 {
7592 fputs (procname, stdout);
7593
7594 if (offset)
7595 printf ("+%lx", (unsigned long) offset);
7596 }
7597
7598 fputs (">: [", stdout);
7599 print_vma (tp->start.offset, PREFIX_HEX);
7600 fputc ('-', stdout);
7601 print_vma (tp->end.offset, PREFIX_HEX);
7602 printf ("]\n\t");
7603
7604 #define PF(_m) if (tp->_m) printf (#_m " ");
7605 #define PV(_m) if (tp->_m) printf (#_m "=%d ", tp->_m);
7606 PF(Cannot_unwind);
7607 PF(Millicode);
7608 PF(Millicode_save_sr0);
7609 /* PV(Region_description); */
7610 PF(Entry_SR);
7611 PV(Entry_FR);
7612 PV(Entry_GR);
7613 PF(Args_stored);
7614 PF(Variable_Frame);
7615 PF(Separate_Package_Body);
7616 PF(Frame_Extension_Millicode);
7617 PF(Stack_Overflow_Check);
7618 PF(Two_Instruction_SP_Increment);
7619 PF(Ada_Region);
7620 PF(cxx_info);
7621 PF(cxx_try_catch);
7622 PF(sched_entry_seq);
7623 PF(Save_SP);
7624 PF(Save_RP);
7625 PF(Save_MRP_in_frame);
7626 PF(extn_ptr_defined);
7627 PF(Cleanup_defined);
7628 PF(MPE_XL_interrupt_marker);
7629 PF(HP_UX_interrupt_marker);
7630 PF(Large_frame);
7631 PF(Pseudo_SP_Set);
7632 PV(Total_frame_size);
7633 #undef PF
7634 #undef PV
7635 }
7636
7637 printf ("\n");
7638
7639 free (aux->funtab);
7640 }
7641
7642 static int
7643 slurp_hppa_unwind_table (FILE * file,
7644 struct hppa_unw_aux_info * aux,
7645 Elf_Internal_Shdr * sec)
7646 {
7647 unsigned long size, unw_ent_size, nentries, nrelas, i;
7648 Elf_Internal_Phdr * seg;
7649 struct hppa_unw_table_entry * tep;
7650 Elf_Internal_Shdr * relsec;
7651 Elf_Internal_Rela * rela;
7652 Elf_Internal_Rela * rp;
7653 unsigned char * table;
7654 unsigned char * tp;
7655 Elf_Internal_Sym * sym;
7656 const char * relname;
7657
7658 /* First, find the starting address of the segment that includes
7659 this section. */
7660
7661 if (elf_header.e_phnum)
7662 {
7663 if (! get_program_headers (file))
7664 return 0;
7665
7666 for (seg = program_headers;
7667 seg < program_headers + elf_header.e_phnum;
7668 ++seg)
7669 {
7670 if (seg->p_type != PT_LOAD)
7671 continue;
7672
7673 if (sec->sh_addr >= seg->p_vaddr
7674 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
7675 {
7676 aux->seg_base = seg->p_vaddr;
7677 break;
7678 }
7679 }
7680 }
7681
7682 /* Second, build the unwind table from the contents of the unwind
7683 section. */
7684 size = sec->sh_size;
7685 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
7686 _("unwind table"));
7687 if (!table)
7688 return 0;
7689
7690 unw_ent_size = 16;
7691 nentries = size / unw_ent_size;
7692 size = unw_ent_size * nentries;
7693
7694 tep = aux->table = (struct hppa_unw_table_entry *)
7695 xcmalloc (nentries, sizeof (aux->table[0]));
7696
7697 for (tp = table; tp < table + size; tp += unw_ent_size, ++tep)
7698 {
7699 unsigned int tmp1, tmp2;
7700
7701 tep->start.section = SHN_UNDEF;
7702 tep->end.section = SHN_UNDEF;
7703
7704 tep->start.offset = byte_get ((unsigned char *) tp + 0, 4);
7705 tep->end.offset = byte_get ((unsigned char *) tp + 4, 4);
7706 tmp1 = byte_get ((unsigned char *) tp + 8, 4);
7707 tmp2 = byte_get ((unsigned char *) tp + 12, 4);
7708
7709 tep->start.offset += aux->seg_base;
7710 tep->end.offset += aux->seg_base;
7711
7712 tep->Cannot_unwind = (tmp1 >> 31) & 0x1;
7713 tep->Millicode = (tmp1 >> 30) & 0x1;
7714 tep->Millicode_save_sr0 = (tmp1 >> 29) & 0x1;
7715 tep->Region_description = (tmp1 >> 27) & 0x3;
7716 tep->reserved1 = (tmp1 >> 26) & 0x1;
7717 tep->Entry_SR = (tmp1 >> 25) & 0x1;
7718 tep->Entry_FR = (tmp1 >> 21) & 0xf;
7719 tep->Entry_GR = (tmp1 >> 16) & 0x1f;
7720 tep->Args_stored = (tmp1 >> 15) & 0x1;
7721 tep->Variable_Frame = (tmp1 >> 14) & 0x1;
7722 tep->Separate_Package_Body = (tmp1 >> 13) & 0x1;
7723 tep->Frame_Extension_Millicode = (tmp1 >> 12) & 0x1;
7724 tep->Stack_Overflow_Check = (tmp1 >> 11) & 0x1;
7725 tep->Two_Instruction_SP_Increment = (tmp1 >> 10) & 0x1;
7726 tep->Ada_Region = (tmp1 >> 9) & 0x1;
7727 tep->cxx_info = (tmp1 >> 8) & 0x1;
7728 tep->cxx_try_catch = (tmp1 >> 7) & 0x1;
7729 tep->sched_entry_seq = (tmp1 >> 6) & 0x1;
7730 tep->reserved2 = (tmp1 >> 5) & 0x1;
7731 tep->Save_SP = (tmp1 >> 4) & 0x1;
7732 tep->Save_RP = (tmp1 >> 3) & 0x1;
7733 tep->Save_MRP_in_frame = (tmp1 >> 2) & 0x1;
7734 tep->extn_ptr_defined = (tmp1 >> 1) & 0x1;
7735 tep->Cleanup_defined = tmp1 & 0x1;
7736
7737 tep->MPE_XL_interrupt_marker = (tmp2 >> 31) & 0x1;
7738 tep->HP_UX_interrupt_marker = (tmp2 >> 30) & 0x1;
7739 tep->Large_frame = (tmp2 >> 29) & 0x1;
7740 tep->Pseudo_SP_Set = (tmp2 >> 28) & 0x1;
7741 tep->reserved4 = (tmp2 >> 27) & 0x1;
7742 tep->Total_frame_size = tmp2 & 0x7ffffff;
7743 }
7744 free (table);
7745
7746 /* Third, apply any relocations to the unwind table. */
7747 for (relsec = section_headers;
7748 relsec < section_headers + elf_header.e_shnum;
7749 ++relsec)
7750 {
7751 if (relsec->sh_type != SHT_RELA
7752 || relsec->sh_info >= elf_header.e_shnum
7753 || section_headers + relsec->sh_info != sec)
7754 continue;
7755
7756 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
7757 & rela, & nrelas))
7758 return 0;
7759
7760 for (rp = rela; rp < rela + nrelas; ++rp)
7761 {
7762 relname = elf_hppa_reloc_type (get_reloc_type (rp->r_info));
7763 sym = aux->symtab + get_reloc_symindex (rp->r_info);
7764
7765 /* R_PARISC_SEGREL32 or R_PARISC_SEGREL64. */
7766 if (! const_strneq (relname, "R_PARISC_SEGREL"))
7767 {
7768 warn (_("Skipping unexpected relocation type %s\n"), relname);
7769 continue;
7770 }
7771
7772 i = rp->r_offset / unw_ent_size;
7773
7774 switch ((rp->r_offset % unw_ent_size) / eh_addr_size)
7775 {
7776 case 0:
7777 aux->table[i].start.section = sym->st_shndx;
7778 aux->table[i].start.offset = sym->st_value + rp->r_addend;
7779 break;
7780 case 1:
7781 aux->table[i].end.section = sym->st_shndx;
7782 aux->table[i].end.offset = sym->st_value + rp->r_addend;
7783 break;
7784 default:
7785 break;
7786 }
7787 }
7788
7789 free (rela);
7790 }
7791
7792 aux->table_len = nentries;
7793
7794 return 1;
7795 }
7796
7797 static void
7798 hppa_process_unwind (FILE * file)
7799 {
7800 struct hppa_unw_aux_info aux;
7801 Elf_Internal_Shdr * unwsec = NULL;
7802 Elf_Internal_Shdr * strsec;
7803 Elf_Internal_Shdr * sec;
7804 unsigned long i;
7805
7806 if (string_table == NULL)
7807 return;
7808
7809 memset (& aux, 0, sizeof (aux));
7810
7811 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7812 {
7813 if (sec->sh_type == SHT_SYMTAB
7814 && sec->sh_link < elf_header.e_shnum)
7815 {
7816 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
7817
7818 strsec = section_headers + sec->sh_link;
7819 if (aux.strtab != NULL)
7820 {
7821 error (_("Multiple auxillary string tables encountered\n"));
7822 free (aux.strtab);
7823 }
7824 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
7825 1, strsec->sh_size,
7826 _("string table"));
7827 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7828 }
7829 else if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
7830 unwsec = sec;
7831 }
7832
7833 if (!unwsec)
7834 printf (_("\nThere are no unwind sections in this file.\n"));
7835
7836 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7837 {
7838 if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
7839 {
7840 printf (_("\nUnwind section '%s' at offset 0x%lx contains %lu entries:\n"),
7841 printable_section_name (sec),
7842 (unsigned long) sec->sh_offset,
7843 (unsigned long) (sec->sh_size / (2 * eh_addr_size + 8)));
7844
7845 slurp_hppa_unwind_table (file, &aux, sec);
7846 if (aux.table_len > 0)
7847 dump_hppa_unwind (&aux);
7848
7849 if (aux.table)
7850 free ((char *) aux.table);
7851 aux.table = NULL;
7852 }
7853 }
7854
7855 if (aux.symtab)
7856 free (aux.symtab);
7857 if (aux.strtab)
7858 free ((char *) aux.strtab);
7859 }
7860
7861 struct arm_section
7862 {
7863 unsigned char * data; /* The unwind data. */
7864 Elf_Internal_Shdr * sec; /* The cached unwind section header. */
7865 Elf_Internal_Rela * rela; /* The cached relocations for this section. */
7866 unsigned long nrelas; /* The number of relocations. */
7867 unsigned int rel_type; /* REL or RELA ? */
7868 Elf_Internal_Rela * next_rela; /* Cyclic pointer to the next reloc to process. */
7869 };
7870
7871 struct arm_unw_aux_info
7872 {
7873 FILE * file; /* The file containing the unwind sections. */
7874 Elf_Internal_Sym * symtab; /* The file's symbol table. */
7875 unsigned long nsyms; /* Number of symbols. */
7876 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7877 unsigned long nfuns; /* Number of these symbols. */
7878 char * strtab; /* The file's string table. */
7879 unsigned long strtab_size; /* Size of string table. */
7880 };
7881
7882 static const char *
7883 arm_print_vma_and_name (struct arm_unw_aux_info *aux,
7884 bfd_vma fn, struct absaddr addr)
7885 {
7886 const char *procname;
7887 bfd_vma sym_offset;
7888
7889 if (addr.section == SHN_UNDEF)
7890 addr.offset = fn;
7891
7892 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
7893 aux->strtab_size, addr, &procname,
7894 &sym_offset);
7895
7896 print_vma (fn, PREFIX_HEX);
7897
7898 if (procname)
7899 {
7900 fputs (" <", stdout);
7901 fputs (procname, stdout);
7902
7903 if (sym_offset)
7904 printf ("+0x%lx", (unsigned long) sym_offset);
7905 fputc ('>', stdout);
7906 }
7907
7908 return procname;
7909 }
7910
7911 static void
7912 arm_free_section (struct arm_section *arm_sec)
7913 {
7914 if (arm_sec->data != NULL)
7915 free (arm_sec->data);
7916
7917 if (arm_sec->rela != NULL)
7918 free (arm_sec->rela);
7919 }
7920
7921 /* 1) If SEC does not match the one cached in ARM_SEC, then free the current
7922 cached section and install SEC instead.
7923 2) Locate the 32-bit word at WORD_OFFSET in unwind section SEC
7924 and return its valued in * WORDP, relocating if necessary.
7925 3) Update the NEXT_RELA field in ARM_SEC and store the section index and
7926 relocation's offset in ADDR.
7927 4) If SYM_NAME is non-NULL and a relocation was applied, record the offset
7928 into the string table of the symbol associated with the reloc. If no
7929 reloc was applied store -1 there.
7930 5) Return TRUE upon success, FALSE otherwise. */
7931
7932 static bfd_boolean
7933 get_unwind_section_word (struct arm_unw_aux_info * aux,
7934 struct arm_section * arm_sec,
7935 Elf_Internal_Shdr * sec,
7936 bfd_vma word_offset,
7937 unsigned int * wordp,
7938 struct absaddr * addr,
7939 bfd_vma * sym_name)
7940 {
7941 Elf_Internal_Rela *rp;
7942 Elf_Internal_Sym *sym;
7943 const char * relname;
7944 unsigned int word;
7945 bfd_boolean wrapped;
7946
7947 if (sec == NULL || arm_sec == NULL)
7948 return FALSE;
7949
7950 addr->section = SHN_UNDEF;
7951 addr->offset = 0;
7952
7953 if (sym_name != NULL)
7954 *sym_name = (bfd_vma) -1;
7955
7956 /* If necessary, update the section cache. */
7957 if (sec != arm_sec->sec)
7958 {
7959 Elf_Internal_Shdr *relsec;
7960
7961 arm_free_section (arm_sec);
7962
7963 arm_sec->sec = sec;
7964 arm_sec->data = get_data (NULL, aux->file, sec->sh_offset, 1,
7965 sec->sh_size, _("unwind data"));
7966 arm_sec->rela = NULL;
7967 arm_sec->nrelas = 0;
7968
7969 for (relsec = section_headers;
7970 relsec < section_headers + elf_header.e_shnum;
7971 ++relsec)
7972 {
7973 if (relsec->sh_info >= elf_header.e_shnum
7974 || section_headers + relsec->sh_info != sec
7975 /* PR 15745: Check the section type as well. */
7976 || (relsec->sh_type != SHT_REL
7977 && relsec->sh_type != SHT_RELA))
7978 continue;
7979
7980 arm_sec->rel_type = relsec->sh_type;
7981 if (relsec->sh_type == SHT_REL)
7982 {
7983 if (!slurp_rel_relocs (aux->file, relsec->sh_offset,
7984 relsec->sh_size,
7985 & arm_sec->rela, & arm_sec->nrelas))
7986 return FALSE;
7987 }
7988 else /* relsec->sh_type == SHT_RELA */
7989 {
7990 if (!slurp_rela_relocs (aux->file, relsec->sh_offset,
7991 relsec->sh_size,
7992 & arm_sec->rela, & arm_sec->nrelas))
7993 return FALSE;
7994 }
7995 break;
7996 }
7997
7998 arm_sec->next_rela = arm_sec->rela;
7999 }
8000
8001 /* If there is no unwind data we can do nothing. */
8002 if (arm_sec->data == NULL)
8003 return FALSE;
8004
8005 /* If the offset is invalid then fail. */
8006 if (word_offset > (sec->sh_size - 4)
8007 /* PR 18879 */
8008 || (sec->sh_size < 5 && word_offset >= sec->sh_size)
8009 || ((bfd_signed_vma) word_offset) < 0)
8010 return FALSE;
8011
8012 /* Get the word at the required offset. */
8013 word = byte_get (arm_sec->data + word_offset, 4);
8014
8015 /* PR 17531: file: id:000001,src:001266+003044,op:splice,rep:128. */
8016 if (arm_sec->rela == NULL)
8017 {
8018 * wordp = word;
8019 return TRUE;
8020 }
8021
8022 /* Look through the relocs to find the one that applies to the provided offset. */
8023 wrapped = FALSE;
8024 for (rp = arm_sec->next_rela; rp != arm_sec->rela + arm_sec->nrelas; rp++)
8025 {
8026 bfd_vma prelval, offset;
8027
8028 if (rp->r_offset > word_offset && !wrapped)
8029 {
8030 rp = arm_sec->rela;
8031 wrapped = TRUE;
8032 }
8033 if (rp->r_offset > word_offset)
8034 break;
8035
8036 if (rp->r_offset & 3)
8037 {
8038 warn (_("Skipping unexpected relocation at offset 0x%lx\n"),
8039 (unsigned long) rp->r_offset);
8040 continue;
8041 }
8042
8043 if (rp->r_offset < word_offset)
8044 continue;
8045
8046 /* PR 17531: file: 027-161405-0.004 */
8047 if (aux->symtab == NULL)
8048 continue;
8049
8050 if (arm_sec->rel_type == SHT_REL)
8051 {
8052 offset = word & 0x7fffffff;
8053 if (offset & 0x40000000)
8054 offset |= ~ (bfd_vma) 0x7fffffff;
8055 }
8056 else if (arm_sec->rel_type == SHT_RELA)
8057 offset = rp->r_addend;
8058 else
8059 {
8060 error (_("Unknown section relocation type %d encountered\n"),
8061 arm_sec->rel_type);
8062 break;
8063 }
8064
8065 /* PR 17531 file: 027-1241568-0.004. */
8066 if (ELF32_R_SYM (rp->r_info) >= aux->nsyms)
8067 {
8068 error (_("Bad symbol index in unwind relocation (%lu > %lu)\n"),
8069 (unsigned long) ELF32_R_SYM (rp->r_info), aux->nsyms);
8070 break;
8071 }
8072
8073 sym = aux->symtab + ELF32_R_SYM (rp->r_info);
8074 offset += sym->st_value;
8075 prelval = offset - (arm_sec->sec->sh_addr + rp->r_offset);
8076
8077 /* Check that we are processing the expected reloc type. */
8078 if (elf_header.e_machine == EM_ARM)
8079 {
8080 relname = elf_arm_reloc_type (ELF32_R_TYPE (rp->r_info));
8081 if (relname == NULL)
8082 {
8083 warn (_("Skipping unknown ARM relocation type: %d\n"),
8084 (int) ELF32_R_TYPE (rp->r_info));
8085 continue;
8086 }
8087
8088 if (streq (relname, "R_ARM_NONE"))
8089 continue;
8090
8091 if (! streq (relname, "R_ARM_PREL31"))
8092 {
8093 warn (_("Skipping unexpected ARM relocation type %s\n"), relname);
8094 continue;
8095 }
8096 }
8097 else if (elf_header.e_machine == EM_TI_C6000)
8098 {
8099 relname = elf_tic6x_reloc_type (ELF32_R_TYPE (rp->r_info));
8100 if (relname == NULL)
8101 {
8102 warn (_("Skipping unknown C6000 relocation type: %d\n"),
8103 (int) ELF32_R_TYPE (rp->r_info));
8104 continue;
8105 }
8106
8107 if (streq (relname, "R_C6000_NONE"))
8108 continue;
8109
8110 if (! streq (relname, "R_C6000_PREL31"))
8111 {
8112 warn (_("Skipping unexpected C6000 relocation type %s\n"), relname);
8113 continue;
8114 }
8115
8116 prelval >>= 1;
8117 }
8118 else
8119 {
8120 /* This function currently only supports ARM and TI unwinders. */
8121 warn (_("Only TI and ARM unwinders are currently supported\n"));
8122 break;
8123 }
8124
8125 word = (word & ~ (bfd_vma) 0x7fffffff) | (prelval & 0x7fffffff);
8126 addr->section = sym->st_shndx;
8127 addr->offset = offset;
8128
8129 if (sym_name)
8130 * sym_name = sym->st_name;
8131 break;
8132 }
8133
8134 *wordp = word;
8135 arm_sec->next_rela = rp;
8136
8137 return TRUE;
8138 }
8139
8140 static const char *tic6x_unwind_regnames[16] =
8141 {
8142 "A15", "B15", "B14", "B13", "B12", "B11", "B10", "B3",
8143 "A14", "A13", "A12", "A11", "A10",
8144 "[invalid reg 13]", "[invalid reg 14]", "[invalid reg 15]"
8145 };
8146
8147 static void
8148 decode_tic6x_unwind_regmask (unsigned int mask)
8149 {
8150 int i;
8151
8152 for (i = 12; mask; mask >>= 1, i--)
8153 {
8154 if (mask & 1)
8155 {
8156 fputs (tic6x_unwind_regnames[i], stdout);
8157 if (mask > 1)
8158 fputs (", ", stdout);
8159 }
8160 }
8161 }
8162
8163 #define ADVANCE \
8164 if (remaining == 0 && more_words) \
8165 { \
8166 data_offset += 4; \
8167 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, \
8168 data_offset, & word, & addr, NULL)) \
8169 return; \
8170 remaining = 4; \
8171 more_words--; \
8172 } \
8173
8174 #define GET_OP(OP) \
8175 ADVANCE; \
8176 if (remaining) \
8177 { \
8178 remaining--; \
8179 (OP) = word >> 24; \
8180 word <<= 8; \
8181 } \
8182 else \
8183 { \
8184 printf (_("[Truncated opcode]\n")); \
8185 return; \
8186 } \
8187 printf ("0x%02x ", OP)
8188
8189 static void
8190 decode_arm_unwind_bytecode (struct arm_unw_aux_info * aux,
8191 unsigned int word,
8192 unsigned int remaining,
8193 unsigned int more_words,
8194 bfd_vma data_offset,
8195 Elf_Internal_Shdr * data_sec,
8196 struct arm_section * data_arm_sec)
8197 {
8198 struct absaddr addr;
8199
8200 /* Decode the unwinding instructions. */
8201 while (1)
8202 {
8203 unsigned int op, op2;
8204
8205 ADVANCE;
8206 if (remaining == 0)
8207 break;
8208 remaining--;
8209 op = word >> 24;
8210 word <<= 8;
8211
8212 printf (" 0x%02x ", op);
8213
8214 if ((op & 0xc0) == 0x00)
8215 {
8216 int offset = ((op & 0x3f) << 2) + 4;
8217
8218 printf (" vsp = vsp + %d", offset);
8219 }
8220 else if ((op & 0xc0) == 0x40)
8221 {
8222 int offset = ((op & 0x3f) << 2) + 4;
8223
8224 printf (" vsp = vsp - %d", offset);
8225 }
8226 else if ((op & 0xf0) == 0x80)
8227 {
8228 GET_OP (op2);
8229 if (op == 0x80 && op2 == 0)
8230 printf (_("Refuse to unwind"));
8231 else
8232 {
8233 unsigned int mask = ((op & 0x0f) << 8) | op2;
8234 int first = 1;
8235 int i;
8236
8237 printf ("pop {");
8238 for (i = 0; i < 12; i++)
8239 if (mask & (1 << i))
8240 {
8241 if (first)
8242 first = 0;
8243 else
8244 printf (", ");
8245 printf ("r%d", 4 + i);
8246 }
8247 printf ("}");
8248 }
8249 }
8250 else if ((op & 0xf0) == 0x90)
8251 {
8252 if (op == 0x9d || op == 0x9f)
8253 printf (_(" [Reserved]"));
8254 else
8255 printf (" vsp = r%d", op & 0x0f);
8256 }
8257 else if ((op & 0xf0) == 0xa0)
8258 {
8259 int end = 4 + (op & 0x07);
8260 int first = 1;
8261 int i;
8262
8263 printf (" pop {");
8264 for (i = 4; i <= end; i++)
8265 {
8266 if (first)
8267 first = 0;
8268 else
8269 printf (", ");
8270 printf ("r%d", i);
8271 }
8272 if (op & 0x08)
8273 {
8274 if (!first)
8275 printf (", ");
8276 printf ("r14");
8277 }
8278 printf ("}");
8279 }
8280 else if (op == 0xb0)
8281 printf (_(" finish"));
8282 else if (op == 0xb1)
8283 {
8284 GET_OP (op2);
8285 if (op2 == 0 || (op2 & 0xf0) != 0)
8286 printf (_("[Spare]"));
8287 else
8288 {
8289 unsigned int mask = op2 & 0x0f;
8290 int first = 1;
8291 int i;
8292
8293 printf ("pop {");
8294 for (i = 0; i < 12; i++)
8295 if (mask & (1 << i))
8296 {
8297 if (first)
8298 first = 0;
8299 else
8300 printf (", ");
8301 printf ("r%d", i);
8302 }
8303 printf ("}");
8304 }
8305 }
8306 else if (op == 0xb2)
8307 {
8308 unsigned char buf[9];
8309 unsigned int i, len;
8310 unsigned long offset;
8311
8312 for (i = 0; i < sizeof (buf); i++)
8313 {
8314 GET_OP (buf[i]);
8315 if ((buf[i] & 0x80) == 0)
8316 break;
8317 }
8318 if (i == sizeof (buf))
8319 printf (_("corrupt change to vsp"));
8320 else
8321 {
8322 offset = read_uleb128 (buf, &len, buf + i + 1);
8323 assert (len == i + 1);
8324 offset = offset * 4 + 0x204;
8325 printf ("vsp = vsp + %ld", offset);
8326 }
8327 }
8328 else if (op == 0xb3 || op == 0xc8 || op == 0xc9)
8329 {
8330 unsigned int first, last;
8331
8332 GET_OP (op2);
8333 first = op2 >> 4;
8334 last = op2 & 0x0f;
8335 if (op == 0xc8)
8336 first = first + 16;
8337 printf ("pop {D%d", first);
8338 if (last)
8339 printf ("-D%d", first + last);
8340 printf ("}");
8341 }
8342 else if ((op & 0xf8) == 0xb8 || (op & 0xf8) == 0xd0)
8343 {
8344 unsigned int count = op & 0x07;
8345
8346 printf ("pop {D8");
8347 if (count)
8348 printf ("-D%d", 8 + count);
8349 printf ("}");
8350 }
8351 else if (op >= 0xc0 && op <= 0xc5)
8352 {
8353 unsigned int count = op & 0x07;
8354
8355 printf (" pop {wR10");
8356 if (count)
8357 printf ("-wR%d", 10 + count);
8358 printf ("}");
8359 }
8360 else if (op == 0xc6)
8361 {
8362 unsigned int first, last;
8363
8364 GET_OP (op2);
8365 first = op2 >> 4;
8366 last = op2 & 0x0f;
8367 printf ("pop {wR%d", first);
8368 if (last)
8369 printf ("-wR%d", first + last);
8370 printf ("}");
8371 }
8372 else if (op == 0xc7)
8373 {
8374 GET_OP (op2);
8375 if (op2 == 0 || (op2 & 0xf0) != 0)
8376 printf (_("[Spare]"));
8377 else
8378 {
8379 unsigned int mask = op2 & 0x0f;
8380 int first = 1;
8381 int i;
8382
8383 printf ("pop {");
8384 for (i = 0; i < 4; i++)
8385 if (mask & (1 << i))
8386 {
8387 if (first)
8388 first = 0;
8389 else
8390 printf (", ");
8391 printf ("wCGR%d", i);
8392 }
8393 printf ("}");
8394 }
8395 }
8396 else
8397 printf (_(" [unsupported opcode]"));
8398 printf ("\n");
8399 }
8400 }
8401
8402 static void
8403 decode_tic6x_unwind_bytecode (struct arm_unw_aux_info * aux,
8404 unsigned int word,
8405 unsigned int remaining,
8406 unsigned int more_words,
8407 bfd_vma data_offset,
8408 Elf_Internal_Shdr * data_sec,
8409 struct arm_section * data_arm_sec)
8410 {
8411 struct absaddr addr;
8412
8413 /* Decode the unwinding instructions. */
8414 while (1)
8415 {
8416 unsigned int op, op2;
8417
8418 ADVANCE;
8419 if (remaining == 0)
8420 break;
8421 remaining--;
8422 op = word >> 24;
8423 word <<= 8;
8424
8425 printf (" 0x%02x ", op);
8426
8427 if ((op & 0xc0) == 0x00)
8428 {
8429 int offset = ((op & 0x3f) << 3) + 8;
8430 printf (" sp = sp + %d", offset);
8431 }
8432 else if ((op & 0xc0) == 0x80)
8433 {
8434 GET_OP (op2);
8435 if (op == 0x80 && op2 == 0)
8436 printf (_("Refuse to unwind"));
8437 else
8438 {
8439 unsigned int mask = ((op & 0x1f) << 8) | op2;
8440 if (op & 0x20)
8441 printf ("pop compact {");
8442 else
8443 printf ("pop {");
8444
8445 decode_tic6x_unwind_regmask (mask);
8446 printf("}");
8447 }
8448 }
8449 else if ((op & 0xf0) == 0xc0)
8450 {
8451 unsigned int reg;
8452 unsigned int nregs;
8453 unsigned int i;
8454 const char *name;
8455 struct
8456 {
8457 unsigned int offset;
8458 unsigned int reg;
8459 } regpos[16];
8460
8461 /* Scan entire instruction first so that GET_OP output is not
8462 interleaved with disassembly. */
8463 nregs = 0;
8464 for (i = 0; nregs < (op & 0xf); i++)
8465 {
8466 GET_OP (op2);
8467 reg = op2 >> 4;
8468 if (reg != 0xf)
8469 {
8470 regpos[nregs].offset = i * 2;
8471 regpos[nregs].reg = reg;
8472 nregs++;
8473 }
8474
8475 reg = op2 & 0xf;
8476 if (reg != 0xf)
8477 {
8478 regpos[nregs].offset = i * 2 + 1;
8479 regpos[nregs].reg = reg;
8480 nregs++;
8481 }
8482 }
8483
8484 printf (_("pop frame {"));
8485 reg = nregs - 1;
8486 for (i = i * 2; i > 0; i--)
8487 {
8488 if (regpos[reg].offset == i - 1)
8489 {
8490 name = tic6x_unwind_regnames[regpos[reg].reg];
8491 if (reg > 0)
8492 reg--;
8493 }
8494 else
8495 name = _("[pad]");
8496
8497 fputs (name, stdout);
8498 if (i > 1)
8499 printf (", ");
8500 }
8501
8502 printf ("}");
8503 }
8504 else if (op == 0xd0)
8505 printf (" MOV FP, SP");
8506 else if (op == 0xd1)
8507 printf (" __c6xabi_pop_rts");
8508 else if (op == 0xd2)
8509 {
8510 unsigned char buf[9];
8511 unsigned int i, len;
8512 unsigned long offset;
8513
8514 for (i = 0; i < sizeof (buf); i++)
8515 {
8516 GET_OP (buf[i]);
8517 if ((buf[i] & 0x80) == 0)
8518 break;
8519 }
8520 /* PR 17531: file: id:000001,src:001906+004739,op:splice,rep:2. */
8521 if (i == sizeof (buf))
8522 {
8523 printf ("<corrupt sp adjust>\n");
8524 warn (_("Corrupt stack pointer adjustment detected\n"));
8525 return;
8526 }
8527
8528 offset = read_uleb128 (buf, &len, buf + i + 1);
8529 assert (len == i + 1);
8530 offset = offset * 8 + 0x408;
8531 printf (_("sp = sp + %ld"), offset);
8532 }
8533 else if ((op & 0xf0) == 0xe0)
8534 {
8535 if ((op & 0x0f) == 7)
8536 printf (" RETURN");
8537 else
8538 printf (" MV %s, B3", tic6x_unwind_regnames[op & 0x0f]);
8539 }
8540 else
8541 {
8542 printf (_(" [unsupported opcode]"));
8543 }
8544 putchar ('\n');
8545 }
8546 }
8547
8548 static bfd_vma
8549 arm_expand_prel31 (bfd_vma word, bfd_vma where)
8550 {
8551 bfd_vma offset;
8552
8553 offset = word & 0x7fffffff;
8554 if (offset & 0x40000000)
8555 offset |= ~ (bfd_vma) 0x7fffffff;
8556
8557 if (elf_header.e_machine == EM_TI_C6000)
8558 offset <<= 1;
8559
8560 return offset + where;
8561 }
8562
8563 static void
8564 decode_arm_unwind (struct arm_unw_aux_info * aux,
8565 unsigned int word,
8566 unsigned int remaining,
8567 bfd_vma data_offset,
8568 Elf_Internal_Shdr * data_sec,
8569 struct arm_section * data_arm_sec)
8570 {
8571 int per_index;
8572 unsigned int more_words = 0;
8573 struct absaddr addr;
8574 bfd_vma sym_name = (bfd_vma) -1;
8575
8576 if (remaining == 0)
8577 {
8578 /* Fetch the first word.
8579 Note - when decoding an object file the address extracted
8580 here will always be 0. So we also pass in the sym_name
8581 parameter so that we can find the symbol associated with
8582 the personality routine. */
8583 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, data_offset,
8584 & word, & addr, & sym_name))
8585 return;
8586
8587 remaining = 4;
8588 }
8589
8590 if ((word & 0x80000000) == 0)
8591 {
8592 /* Expand prel31 for personality routine. */
8593 bfd_vma fn;
8594 const char *procname;
8595
8596 fn = arm_expand_prel31 (word, data_sec->sh_addr + data_offset);
8597 printf (_(" Personality routine: "));
8598 if (fn == 0
8599 && addr.section == SHN_UNDEF && addr.offset == 0
8600 && sym_name != (bfd_vma) -1 && sym_name < aux->strtab_size)
8601 {
8602 procname = aux->strtab + sym_name;
8603 print_vma (fn, PREFIX_HEX);
8604 if (procname)
8605 {
8606 fputs (" <", stdout);
8607 fputs (procname, stdout);
8608 fputc ('>', stdout);
8609 }
8610 }
8611 else
8612 procname = arm_print_vma_and_name (aux, fn, addr);
8613 fputc ('\n', stdout);
8614
8615 /* The GCC personality routines use the standard compact
8616 encoding, starting with one byte giving the number of
8617 words. */
8618 if (procname != NULL
8619 && (const_strneq (procname, "__gcc_personality_v0")
8620 || const_strneq (procname, "__gxx_personality_v0")
8621 || const_strneq (procname, "__gcj_personality_v0")
8622 || const_strneq (procname, "__gnu_objc_personality_v0")))
8623 {
8624 remaining = 0;
8625 more_words = 1;
8626 ADVANCE;
8627 if (!remaining)
8628 {
8629 printf (_(" [Truncated data]\n"));
8630 return;
8631 }
8632 more_words = word >> 24;
8633 word <<= 8;
8634 remaining--;
8635 per_index = -1;
8636 }
8637 else
8638 return;
8639 }
8640 else
8641 {
8642 /* ARM EHABI Section 6.3:
8643
8644 An exception-handling table entry for the compact model looks like:
8645
8646 31 30-28 27-24 23-0
8647 -- ----- ----- ----
8648 1 0 index Data for personalityRoutine[index] */
8649
8650 if (elf_header.e_machine == EM_ARM
8651 && (word & 0x70000000))
8652 warn (_("Corrupt ARM compact model table entry: %x \n"), word);
8653
8654 per_index = (word >> 24) & 0x7f;
8655 printf (_(" Compact model index: %d\n"), per_index);
8656 if (per_index == 0)
8657 {
8658 more_words = 0;
8659 word <<= 8;
8660 remaining--;
8661 }
8662 else if (per_index < 3)
8663 {
8664 more_words = (word >> 16) & 0xff;
8665 word <<= 16;
8666 remaining -= 2;
8667 }
8668 }
8669
8670 switch (elf_header.e_machine)
8671 {
8672 case EM_ARM:
8673 if (per_index < 3)
8674 {
8675 decode_arm_unwind_bytecode (aux, word, remaining, more_words,
8676 data_offset, data_sec, data_arm_sec);
8677 }
8678 else
8679 {
8680 warn (_("Unknown ARM compact model index encountered\n"));
8681 printf (_(" [reserved]\n"));
8682 }
8683 break;
8684
8685 case EM_TI_C6000:
8686 if (per_index < 3)
8687 {
8688 decode_tic6x_unwind_bytecode (aux, word, remaining, more_words,
8689 data_offset, data_sec, data_arm_sec);
8690 }
8691 else if (per_index < 5)
8692 {
8693 if (((word >> 17) & 0x7f) == 0x7f)
8694 printf (_(" Restore stack from frame pointer\n"));
8695 else
8696 printf (_(" Stack increment %d\n"), (word >> 14) & 0x1fc);
8697 printf (_(" Registers restored: "));
8698 if (per_index == 4)
8699 printf (" (compact) ");
8700 decode_tic6x_unwind_regmask ((word >> 4) & 0x1fff);
8701 putchar ('\n');
8702 printf (_(" Return register: %s\n"),
8703 tic6x_unwind_regnames[word & 0xf]);
8704 }
8705 else
8706 printf (_(" [reserved (%d)]\n"), per_index);
8707 break;
8708
8709 default:
8710 error (_("Unsupported architecture type %d encountered when decoding unwind table\n"),
8711 elf_header.e_machine);
8712 }
8713
8714 /* Decode the descriptors. Not implemented. */
8715 }
8716
8717 static void
8718 dump_arm_unwind (struct arm_unw_aux_info *aux, Elf_Internal_Shdr *exidx_sec)
8719 {
8720 struct arm_section exidx_arm_sec, extab_arm_sec;
8721 unsigned int i, exidx_len;
8722 unsigned long j, nfuns;
8723
8724 memset (&exidx_arm_sec, 0, sizeof (exidx_arm_sec));
8725 memset (&extab_arm_sec, 0, sizeof (extab_arm_sec));
8726 exidx_len = exidx_sec->sh_size / 8;
8727
8728 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
8729 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
8730 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
8731 aux->funtab[nfuns++] = aux->symtab[j];
8732 aux->nfuns = nfuns;
8733 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
8734
8735 for (i = 0; i < exidx_len; i++)
8736 {
8737 unsigned int exidx_fn, exidx_entry;
8738 struct absaddr fn_addr, entry_addr;
8739 bfd_vma fn;
8740
8741 fputc ('\n', stdout);
8742
8743 if (! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
8744 8 * i, & exidx_fn, & fn_addr, NULL)
8745 || ! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
8746 8 * i + 4, & exidx_entry, & entry_addr, NULL))
8747 {
8748 free (aux->funtab);
8749 arm_free_section (& exidx_arm_sec);
8750 arm_free_section (& extab_arm_sec);
8751 return;
8752 }
8753
8754 /* ARM EHABI, Section 5:
8755 An index table entry consists of 2 words.
8756 The first word contains a prel31 offset to the start of a function, with bit 31 clear. */
8757 if (exidx_fn & 0x80000000)
8758 warn (_("corrupt index table entry: %x\n"), exidx_fn);
8759
8760 fn = arm_expand_prel31 (exidx_fn, exidx_sec->sh_addr + 8 * i);
8761
8762 arm_print_vma_and_name (aux, fn, fn_addr);
8763 fputs (": ", stdout);
8764
8765 if (exidx_entry == 1)
8766 {
8767 print_vma (exidx_entry, PREFIX_HEX);
8768 fputs (" [cantunwind]\n", stdout);
8769 }
8770 else if (exidx_entry & 0x80000000)
8771 {
8772 print_vma (exidx_entry, PREFIX_HEX);
8773 fputc ('\n', stdout);
8774 decode_arm_unwind (aux, exidx_entry, 4, 0, NULL, NULL);
8775 }
8776 else
8777 {
8778 bfd_vma table, table_offset = 0;
8779 Elf_Internal_Shdr *table_sec;
8780
8781 fputs ("@", stdout);
8782 table = arm_expand_prel31 (exidx_entry, exidx_sec->sh_addr + 8 * i + 4);
8783 print_vma (table, PREFIX_HEX);
8784 printf ("\n");
8785
8786 /* Locate the matching .ARM.extab. */
8787 if (entry_addr.section != SHN_UNDEF
8788 && entry_addr.section < elf_header.e_shnum)
8789 {
8790 table_sec = section_headers + entry_addr.section;
8791 table_offset = entry_addr.offset;
8792 /* PR 18879 */
8793 if (table_offset > table_sec->sh_size
8794 || ((bfd_signed_vma) table_offset) < 0)
8795 {
8796 warn (_("Unwind entry contains corrupt offset (0x%lx) into section %s\n"),
8797 (unsigned long) table_offset,
8798 printable_section_name (table_sec));
8799 continue;
8800 }
8801 }
8802 else
8803 {
8804 table_sec = find_section_by_address (table);
8805 if (table_sec != NULL)
8806 table_offset = table - table_sec->sh_addr;
8807 }
8808 if (table_sec == NULL)
8809 {
8810 warn (_("Could not locate .ARM.extab section containing 0x%lx.\n"),
8811 (unsigned long) table);
8812 continue;
8813 }
8814 decode_arm_unwind (aux, 0, 0, table_offset, table_sec,
8815 &extab_arm_sec);
8816 }
8817 }
8818
8819 printf ("\n");
8820
8821 free (aux->funtab);
8822 arm_free_section (&exidx_arm_sec);
8823 arm_free_section (&extab_arm_sec);
8824 }
8825
8826 /* Used for both ARM and C6X unwinding tables. */
8827
8828 static void
8829 arm_process_unwind (FILE *file)
8830 {
8831 struct arm_unw_aux_info aux;
8832 Elf_Internal_Shdr *unwsec = NULL;
8833 Elf_Internal_Shdr *strsec;
8834 Elf_Internal_Shdr *sec;
8835 unsigned long i;
8836 unsigned int sec_type;
8837
8838 switch (elf_header.e_machine)
8839 {
8840 case EM_ARM:
8841 sec_type = SHT_ARM_EXIDX;
8842 break;
8843
8844 case EM_TI_C6000:
8845 sec_type = SHT_C6000_UNWIND;
8846 break;
8847
8848 default:
8849 error (_("Unsupported architecture type %d encountered when processing unwind table\n"),
8850 elf_header.e_machine);
8851 return;
8852 }
8853
8854 if (string_table == NULL)
8855 return;
8856
8857 memset (& aux, 0, sizeof (aux));
8858 aux.file = file;
8859
8860 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
8861 {
8862 if (sec->sh_type == SHT_SYMTAB && sec->sh_link < elf_header.e_shnum)
8863 {
8864 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
8865
8866 strsec = section_headers + sec->sh_link;
8867
8868 /* PR binutils/17531 file: 011-12666-0.004. */
8869 if (aux.strtab != NULL)
8870 {
8871 error (_("Multiple string tables found in file.\n"));
8872 free (aux.strtab);
8873 }
8874 aux.strtab = get_data (NULL, file, strsec->sh_offset,
8875 1, strsec->sh_size, _("string table"));
8876 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
8877 }
8878 else if (sec->sh_type == sec_type)
8879 unwsec = sec;
8880 }
8881
8882 if (unwsec == NULL)
8883 printf (_("\nThere are no unwind sections in this file.\n"));
8884 else
8885 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
8886 {
8887 if (sec->sh_type == sec_type)
8888 {
8889 printf (_("\nUnwind table index '%s' at offset 0x%lx contains %lu entries:\n"),
8890 printable_section_name (sec),
8891 (unsigned long) sec->sh_offset,
8892 (unsigned long) (sec->sh_size / (2 * eh_addr_size)));
8893
8894 dump_arm_unwind (&aux, sec);
8895 }
8896 }
8897
8898 if (aux.symtab)
8899 free (aux.symtab);
8900 if (aux.strtab)
8901 free ((char *) aux.strtab);
8902 }
8903
8904 static void
8905 process_unwind (FILE * file)
8906 {
8907 struct unwind_handler
8908 {
8909 int machtype;
8910 void (* handler)(FILE *);
8911 } handlers[] =
8912 {
8913 { EM_ARM, arm_process_unwind },
8914 { EM_IA_64, ia64_process_unwind },
8915 { EM_PARISC, hppa_process_unwind },
8916 { EM_TI_C6000, arm_process_unwind },
8917 { 0, 0 }
8918 };
8919 int i;
8920
8921 if (!do_unwind)
8922 return;
8923
8924 for (i = 0; handlers[i].handler != NULL; i++)
8925 if (elf_header.e_machine == handlers[i].machtype)
8926 {
8927 handlers[i].handler (file);
8928 return;
8929 }
8930
8931 printf (_("\nThe decoding of unwind sections for machine type %s is not currently supported.\n"),
8932 get_machine_name (elf_header.e_machine));
8933 }
8934
8935 static void
8936 dynamic_section_mips_val (Elf_Internal_Dyn * entry)
8937 {
8938 switch (entry->d_tag)
8939 {
8940 case DT_MIPS_FLAGS:
8941 if (entry->d_un.d_val == 0)
8942 printf (_("NONE"));
8943 else
8944 {
8945 static const char * opts[] =
8946 {
8947 "QUICKSTART", "NOTPOT", "NO_LIBRARY_REPLACEMENT",
8948 "NO_MOVE", "SGI_ONLY", "GUARANTEE_INIT", "DELTA_C_PLUS_PLUS",
8949 "GUARANTEE_START_INIT", "PIXIE", "DEFAULT_DELAY_LOAD",
8950 "REQUICKSTART", "REQUICKSTARTED", "CORD", "NO_UNRES_UNDEF",
8951 "RLD_ORDER_SAFE"
8952 };
8953 unsigned int cnt;
8954 int first = 1;
8955
8956 for (cnt = 0; cnt < ARRAY_SIZE (opts); ++cnt)
8957 if (entry->d_un.d_val & (1 << cnt))
8958 {
8959 printf ("%s%s", first ? "" : " ", opts[cnt]);
8960 first = 0;
8961 }
8962 }
8963 break;
8964
8965 case DT_MIPS_IVERSION:
8966 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
8967 printf (_("Interface Version: %s"), GET_DYNAMIC_NAME (entry->d_un.d_val));
8968 else
8969 {
8970 char buf[40];
8971 sprintf_vma (buf, entry->d_un.d_ptr);
8972 /* Note: coded this way so that there is a single string for translation. */
8973 printf (_("<corrupt: %s>"), buf);
8974 }
8975 break;
8976
8977 case DT_MIPS_TIME_STAMP:
8978 {
8979 char timebuf[128];
8980 struct tm * tmp;
8981 time_t atime = entry->d_un.d_val;
8982
8983 tmp = gmtime (&atime);
8984 /* PR 17531: file: 6accc532. */
8985 if (tmp == NULL)
8986 snprintf (timebuf, sizeof (timebuf), _("<corrupt>"));
8987 else
8988 snprintf (timebuf, sizeof (timebuf), "%04u-%02u-%02uT%02u:%02u:%02u",
8989 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
8990 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
8991 printf (_("Time Stamp: %s"), timebuf);
8992 }
8993 break;
8994
8995 case DT_MIPS_RLD_VERSION:
8996 case DT_MIPS_LOCAL_GOTNO:
8997 case DT_MIPS_CONFLICTNO:
8998 case DT_MIPS_LIBLISTNO:
8999 case DT_MIPS_SYMTABNO:
9000 case DT_MIPS_UNREFEXTNO:
9001 case DT_MIPS_HIPAGENO:
9002 case DT_MIPS_DELTA_CLASS_NO:
9003 case DT_MIPS_DELTA_INSTANCE_NO:
9004 case DT_MIPS_DELTA_RELOC_NO:
9005 case DT_MIPS_DELTA_SYM_NO:
9006 case DT_MIPS_DELTA_CLASSSYM_NO:
9007 case DT_MIPS_COMPACT_SIZE:
9008 print_vma (entry->d_un.d_val, DEC);
9009 break;
9010
9011 default:
9012 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9013 }
9014 putchar ('\n');
9015 }
9016
9017 static void
9018 dynamic_section_parisc_val (Elf_Internal_Dyn * entry)
9019 {
9020 switch (entry->d_tag)
9021 {
9022 case DT_HP_DLD_FLAGS:
9023 {
9024 static struct
9025 {
9026 long int bit;
9027 const char * str;
9028 }
9029 flags[] =
9030 {
9031 { DT_HP_DEBUG_PRIVATE, "HP_DEBUG_PRIVATE" },
9032 { DT_HP_DEBUG_CALLBACK, "HP_DEBUG_CALLBACK" },
9033 { DT_HP_DEBUG_CALLBACK_BOR, "HP_DEBUG_CALLBACK_BOR" },
9034 { DT_HP_NO_ENVVAR, "HP_NO_ENVVAR" },
9035 { DT_HP_BIND_NOW, "HP_BIND_NOW" },
9036 { DT_HP_BIND_NONFATAL, "HP_BIND_NONFATAL" },
9037 { DT_HP_BIND_VERBOSE, "HP_BIND_VERBOSE" },
9038 { DT_HP_BIND_RESTRICTED, "HP_BIND_RESTRICTED" },
9039 { DT_HP_BIND_SYMBOLIC, "HP_BIND_SYMBOLIC" },
9040 { DT_HP_RPATH_FIRST, "HP_RPATH_FIRST" },
9041 { DT_HP_BIND_DEPTH_FIRST, "HP_BIND_DEPTH_FIRST" },
9042 { DT_HP_GST, "HP_GST" },
9043 { DT_HP_SHLIB_FIXED, "HP_SHLIB_FIXED" },
9044 { DT_HP_MERGE_SHLIB_SEG, "HP_MERGE_SHLIB_SEG" },
9045 { DT_HP_NODELETE, "HP_NODELETE" },
9046 { DT_HP_GROUP, "HP_GROUP" },
9047 { DT_HP_PROTECT_LINKAGE_TABLE, "HP_PROTECT_LINKAGE_TABLE" }
9048 };
9049 int first = 1;
9050 size_t cnt;
9051 bfd_vma val = entry->d_un.d_val;
9052
9053 for (cnt = 0; cnt < ARRAY_SIZE (flags); ++cnt)
9054 if (val & flags[cnt].bit)
9055 {
9056 if (! first)
9057 putchar (' ');
9058 fputs (flags[cnt].str, stdout);
9059 first = 0;
9060 val ^= flags[cnt].bit;
9061 }
9062
9063 if (val != 0 || first)
9064 {
9065 if (! first)
9066 putchar (' ');
9067 print_vma (val, HEX);
9068 }
9069 }
9070 break;
9071
9072 default:
9073 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9074 break;
9075 }
9076 putchar ('\n');
9077 }
9078
9079 #ifdef BFD64
9080
9081 /* VMS vs Unix time offset and factor. */
9082
9083 #define VMS_EPOCH_OFFSET 35067168000000000LL
9084 #define VMS_GRANULARITY_FACTOR 10000000
9085
9086 /* Display a VMS time in a human readable format. */
9087
9088 static void
9089 print_vms_time (bfd_int64_t vmstime)
9090 {
9091 struct tm *tm;
9092 time_t unxtime;
9093
9094 unxtime = (vmstime - VMS_EPOCH_OFFSET) / VMS_GRANULARITY_FACTOR;
9095 tm = gmtime (&unxtime);
9096 printf ("%04u-%02u-%02uT%02u:%02u:%02u",
9097 tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
9098 tm->tm_hour, tm->tm_min, tm->tm_sec);
9099 }
9100 #endif /* BFD64 */
9101
9102 static void
9103 dynamic_section_ia64_val (Elf_Internal_Dyn * entry)
9104 {
9105 switch (entry->d_tag)
9106 {
9107 case DT_IA_64_PLT_RESERVE:
9108 /* First 3 slots reserved. */
9109 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9110 printf (" -- ");
9111 print_vma (entry->d_un.d_ptr + (3 * 8), PREFIX_HEX);
9112 break;
9113
9114 case DT_IA_64_VMS_LINKTIME:
9115 #ifdef BFD64
9116 print_vms_time (entry->d_un.d_val);
9117 #endif
9118 break;
9119
9120 case DT_IA_64_VMS_LNKFLAGS:
9121 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9122 if (entry->d_un.d_val & VMS_LF_CALL_DEBUG)
9123 printf (" CALL_DEBUG");
9124 if (entry->d_un.d_val & VMS_LF_NOP0BUFS)
9125 printf (" NOP0BUFS");
9126 if (entry->d_un.d_val & VMS_LF_P0IMAGE)
9127 printf (" P0IMAGE");
9128 if (entry->d_un.d_val & VMS_LF_MKTHREADS)
9129 printf (" MKTHREADS");
9130 if (entry->d_un.d_val & VMS_LF_UPCALLS)
9131 printf (" UPCALLS");
9132 if (entry->d_un.d_val & VMS_LF_IMGSTA)
9133 printf (" IMGSTA");
9134 if (entry->d_un.d_val & VMS_LF_INITIALIZE)
9135 printf (" INITIALIZE");
9136 if (entry->d_un.d_val & VMS_LF_MAIN)
9137 printf (" MAIN");
9138 if (entry->d_un.d_val & VMS_LF_EXE_INIT)
9139 printf (" EXE_INIT");
9140 if (entry->d_un.d_val & VMS_LF_TBK_IN_IMG)
9141 printf (" TBK_IN_IMG");
9142 if (entry->d_un.d_val & VMS_LF_DBG_IN_IMG)
9143 printf (" DBG_IN_IMG");
9144 if (entry->d_un.d_val & VMS_LF_TBK_IN_DSF)
9145 printf (" TBK_IN_DSF");
9146 if (entry->d_un.d_val & VMS_LF_DBG_IN_DSF)
9147 printf (" DBG_IN_DSF");
9148 if (entry->d_un.d_val & VMS_LF_SIGNATURES)
9149 printf (" SIGNATURES");
9150 if (entry->d_un.d_val & VMS_LF_REL_SEG_OFF)
9151 printf (" REL_SEG_OFF");
9152 break;
9153
9154 default:
9155 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9156 break;
9157 }
9158 putchar ('\n');
9159 }
9160
9161 static int
9162 get_32bit_dynamic_section (FILE * file)
9163 {
9164 Elf32_External_Dyn * edyn;
9165 Elf32_External_Dyn * ext;
9166 Elf_Internal_Dyn * entry;
9167
9168 edyn = (Elf32_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
9169 dynamic_size, _("dynamic section"));
9170 if (!edyn)
9171 return 0;
9172
9173 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
9174 might not have the luxury of section headers. Look for the DT_NULL
9175 terminator to determine the number of entries. */
9176 for (ext = edyn, dynamic_nent = 0;
9177 (char *) (ext + 1) <= (char *) edyn + dynamic_size;
9178 ext++)
9179 {
9180 dynamic_nent++;
9181 if (BYTE_GET (ext->d_tag) == DT_NULL)
9182 break;
9183 }
9184
9185 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
9186 sizeof (* entry));
9187 if (dynamic_section == NULL)
9188 {
9189 error (_("Out of memory allocating space for %lu dynamic entries\n"),
9190 (unsigned long) dynamic_nent);
9191 free (edyn);
9192 return 0;
9193 }
9194
9195 for (ext = edyn, entry = dynamic_section;
9196 entry < dynamic_section + dynamic_nent;
9197 ext++, entry++)
9198 {
9199 entry->d_tag = BYTE_GET (ext->d_tag);
9200 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
9201 }
9202
9203 free (edyn);
9204
9205 return 1;
9206 }
9207
9208 static int
9209 get_64bit_dynamic_section (FILE * file)
9210 {
9211 Elf64_External_Dyn * edyn;
9212 Elf64_External_Dyn * ext;
9213 Elf_Internal_Dyn * entry;
9214
9215 /* Read in the data. */
9216 edyn = (Elf64_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
9217 dynamic_size, _("dynamic section"));
9218 if (!edyn)
9219 return 0;
9220
9221 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
9222 might not have the luxury of section headers. Look for the DT_NULL
9223 terminator to determine the number of entries. */
9224 for (ext = edyn, dynamic_nent = 0;
9225 /* PR 17533 file: 033-67080-0.004 - do not read past end of buffer. */
9226 (char *) (ext + 1) <= (char *) edyn + dynamic_size;
9227 ext++)
9228 {
9229 dynamic_nent++;
9230 if (BYTE_GET (ext->d_tag) == DT_NULL)
9231 break;
9232 }
9233
9234 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
9235 sizeof (* entry));
9236 if (dynamic_section == NULL)
9237 {
9238 error (_("Out of memory allocating space for %lu dynamic entries\n"),
9239 (unsigned long) dynamic_nent);
9240 free (edyn);
9241 return 0;
9242 }
9243
9244 /* Convert from external to internal formats. */
9245 for (ext = edyn, entry = dynamic_section;
9246 entry < dynamic_section + dynamic_nent;
9247 ext++, entry++)
9248 {
9249 entry->d_tag = BYTE_GET (ext->d_tag);
9250 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
9251 }
9252
9253 free (edyn);
9254
9255 return 1;
9256 }
9257
9258 static void
9259 print_dynamic_flags (bfd_vma flags)
9260 {
9261 int first = 1;
9262
9263 while (flags)
9264 {
9265 bfd_vma flag;
9266
9267 flag = flags & - flags;
9268 flags &= ~ flag;
9269
9270 if (first)
9271 first = 0;
9272 else
9273 putc (' ', stdout);
9274
9275 switch (flag)
9276 {
9277 case DF_ORIGIN: fputs ("ORIGIN", stdout); break;
9278 case DF_SYMBOLIC: fputs ("SYMBOLIC", stdout); break;
9279 case DF_TEXTREL: fputs ("TEXTREL", stdout); break;
9280 case DF_BIND_NOW: fputs ("BIND_NOW", stdout); break;
9281 case DF_STATIC_TLS: fputs ("STATIC_TLS", stdout); break;
9282 default: fputs (_("unknown"), stdout); break;
9283 }
9284 }
9285 puts ("");
9286 }
9287
9288 /* Parse and display the contents of the dynamic section. */
9289
9290 static int
9291 process_dynamic_section (FILE * file)
9292 {
9293 Elf_Internal_Dyn * entry;
9294
9295 if (dynamic_size == 0)
9296 {
9297 if (do_dynamic)
9298 printf (_("\nThere is no dynamic section in this file.\n"));
9299
9300 return 1;
9301 }
9302
9303 if (is_32bit_elf)
9304 {
9305 if (! get_32bit_dynamic_section (file))
9306 return 0;
9307 }
9308 else if (! get_64bit_dynamic_section (file))
9309 return 0;
9310
9311 /* Find the appropriate symbol table. */
9312 if (dynamic_symbols == NULL)
9313 {
9314 for (entry = dynamic_section;
9315 entry < dynamic_section + dynamic_nent;
9316 ++entry)
9317 {
9318 Elf_Internal_Shdr section;
9319
9320 if (entry->d_tag != DT_SYMTAB)
9321 continue;
9322
9323 dynamic_info[DT_SYMTAB] = entry->d_un.d_val;
9324
9325 /* Since we do not know how big the symbol table is,
9326 we default to reading in the entire file (!) and
9327 processing that. This is overkill, I know, but it
9328 should work. */
9329 section.sh_offset = offset_from_vma (file, entry->d_un.d_val, 0);
9330
9331 if (archive_file_offset != 0)
9332 section.sh_size = archive_file_size - section.sh_offset;
9333 else
9334 {
9335 if (fseek (file, 0, SEEK_END))
9336 error (_("Unable to seek to end of file!\n"));
9337
9338 section.sh_size = ftell (file) - section.sh_offset;
9339 }
9340
9341 if (is_32bit_elf)
9342 section.sh_entsize = sizeof (Elf32_External_Sym);
9343 else
9344 section.sh_entsize = sizeof (Elf64_External_Sym);
9345 section.sh_name = string_table_length;
9346
9347 dynamic_symbols = GET_ELF_SYMBOLS (file, &section, & num_dynamic_syms);
9348 if (num_dynamic_syms < 1)
9349 {
9350 error (_("Unable to determine the number of symbols to load\n"));
9351 continue;
9352 }
9353 }
9354 }
9355
9356 /* Similarly find a string table. */
9357 if (dynamic_strings == NULL)
9358 {
9359 for (entry = dynamic_section;
9360 entry < dynamic_section + dynamic_nent;
9361 ++entry)
9362 {
9363 unsigned long offset;
9364 long str_tab_len;
9365
9366 if (entry->d_tag != DT_STRTAB)
9367 continue;
9368
9369 dynamic_info[DT_STRTAB] = entry->d_un.d_val;
9370
9371 /* Since we do not know how big the string table is,
9372 we default to reading in the entire file (!) and
9373 processing that. This is overkill, I know, but it
9374 should work. */
9375
9376 offset = offset_from_vma (file, entry->d_un.d_val, 0);
9377
9378 if (archive_file_offset != 0)
9379 str_tab_len = archive_file_size - offset;
9380 else
9381 {
9382 if (fseek (file, 0, SEEK_END))
9383 error (_("Unable to seek to end of file\n"));
9384 str_tab_len = ftell (file) - offset;
9385 }
9386
9387 if (str_tab_len < 1)
9388 {
9389 error
9390 (_("Unable to determine the length of the dynamic string table\n"));
9391 continue;
9392 }
9393
9394 dynamic_strings = (char *) get_data (NULL, file, offset, 1,
9395 str_tab_len,
9396 _("dynamic string table"));
9397 dynamic_strings_length = dynamic_strings == NULL ? 0 : str_tab_len;
9398 break;
9399 }
9400 }
9401
9402 /* And find the syminfo section if available. */
9403 if (dynamic_syminfo == NULL)
9404 {
9405 unsigned long syminsz = 0;
9406
9407 for (entry = dynamic_section;
9408 entry < dynamic_section + dynamic_nent;
9409 ++entry)
9410 {
9411 if (entry->d_tag == DT_SYMINENT)
9412 {
9413 /* Note: these braces are necessary to avoid a syntax
9414 error from the SunOS4 C compiler. */
9415 /* PR binutils/17531: A corrupt file can trigger this test.
9416 So do not use an assert, instead generate an error message. */
9417 if (sizeof (Elf_External_Syminfo) != entry->d_un.d_val)
9418 error (_("Bad value (%d) for SYMINENT entry\n"),
9419 (int) entry->d_un.d_val);
9420 }
9421 else if (entry->d_tag == DT_SYMINSZ)
9422 syminsz = entry->d_un.d_val;
9423 else if (entry->d_tag == DT_SYMINFO)
9424 dynamic_syminfo_offset = offset_from_vma (file, entry->d_un.d_val,
9425 syminsz);
9426 }
9427
9428 if (dynamic_syminfo_offset != 0 && syminsz != 0)
9429 {
9430 Elf_External_Syminfo * extsyminfo;
9431 Elf_External_Syminfo * extsym;
9432 Elf_Internal_Syminfo * syminfo;
9433
9434 /* There is a syminfo section. Read the data. */
9435 extsyminfo = (Elf_External_Syminfo *)
9436 get_data (NULL, file, dynamic_syminfo_offset, 1, syminsz,
9437 _("symbol information"));
9438 if (!extsyminfo)
9439 return 0;
9440
9441 dynamic_syminfo = (Elf_Internal_Syminfo *) malloc (syminsz);
9442 if (dynamic_syminfo == NULL)
9443 {
9444 error (_("Out of memory allocating %lu byte for dynamic symbol info\n"),
9445 (unsigned long) syminsz);
9446 return 0;
9447 }
9448
9449 dynamic_syminfo_nent = syminsz / sizeof (Elf_External_Syminfo);
9450 for (syminfo = dynamic_syminfo, extsym = extsyminfo;
9451 syminfo < dynamic_syminfo + dynamic_syminfo_nent;
9452 ++syminfo, ++extsym)
9453 {
9454 syminfo->si_boundto = BYTE_GET (extsym->si_boundto);
9455 syminfo->si_flags = BYTE_GET (extsym->si_flags);
9456 }
9457
9458 free (extsyminfo);
9459 }
9460 }
9461
9462 if (do_dynamic && dynamic_addr)
9463 printf (_("\nDynamic section at offset 0x%lx contains %lu entries:\n"),
9464 dynamic_addr, (unsigned long) dynamic_nent);
9465 if (do_dynamic)
9466 printf (_(" Tag Type Name/Value\n"));
9467
9468 for (entry = dynamic_section;
9469 entry < dynamic_section + dynamic_nent;
9470 entry++)
9471 {
9472 if (do_dynamic)
9473 {
9474 const char * dtype;
9475
9476 putchar (' ');
9477 print_vma (entry->d_tag, FULL_HEX);
9478 dtype = get_dynamic_type (entry->d_tag);
9479 printf (" (%s)%*s", dtype,
9480 ((is_32bit_elf ? 27 : 19)
9481 - (int) strlen (dtype)),
9482 " ");
9483 }
9484
9485 switch (entry->d_tag)
9486 {
9487 case DT_FLAGS:
9488 if (do_dynamic)
9489 print_dynamic_flags (entry->d_un.d_val);
9490 break;
9491
9492 case DT_AUXILIARY:
9493 case DT_FILTER:
9494 case DT_CONFIG:
9495 case DT_DEPAUDIT:
9496 case DT_AUDIT:
9497 if (do_dynamic)
9498 {
9499 switch (entry->d_tag)
9500 {
9501 case DT_AUXILIARY:
9502 printf (_("Auxiliary library"));
9503 break;
9504
9505 case DT_FILTER:
9506 printf (_("Filter library"));
9507 break;
9508
9509 case DT_CONFIG:
9510 printf (_("Configuration file"));
9511 break;
9512
9513 case DT_DEPAUDIT:
9514 printf (_("Dependency audit library"));
9515 break;
9516
9517 case DT_AUDIT:
9518 printf (_("Audit library"));
9519 break;
9520 }
9521
9522 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
9523 printf (": [%s]\n", GET_DYNAMIC_NAME (entry->d_un.d_val));
9524 else
9525 {
9526 printf (": ");
9527 print_vma (entry->d_un.d_val, PREFIX_HEX);
9528 putchar ('\n');
9529 }
9530 }
9531 break;
9532
9533 case DT_FEATURE:
9534 if (do_dynamic)
9535 {
9536 printf (_("Flags:"));
9537
9538 if (entry->d_un.d_val == 0)
9539 printf (_(" None\n"));
9540 else
9541 {
9542 unsigned long int val = entry->d_un.d_val;
9543
9544 if (val & DTF_1_PARINIT)
9545 {
9546 printf (" PARINIT");
9547 val ^= DTF_1_PARINIT;
9548 }
9549 if (val & DTF_1_CONFEXP)
9550 {
9551 printf (" CONFEXP");
9552 val ^= DTF_1_CONFEXP;
9553 }
9554 if (val != 0)
9555 printf (" %lx", val);
9556 puts ("");
9557 }
9558 }
9559 break;
9560
9561 case DT_POSFLAG_1:
9562 if (do_dynamic)
9563 {
9564 printf (_("Flags:"));
9565
9566 if (entry->d_un.d_val == 0)
9567 printf (_(" None\n"));
9568 else
9569 {
9570 unsigned long int val = entry->d_un.d_val;
9571
9572 if (val & DF_P1_LAZYLOAD)
9573 {
9574 printf (" LAZYLOAD");
9575 val ^= DF_P1_LAZYLOAD;
9576 }
9577 if (val & DF_P1_GROUPPERM)
9578 {
9579 printf (" GROUPPERM");
9580 val ^= DF_P1_GROUPPERM;
9581 }
9582 if (val != 0)
9583 printf (" %lx", val);
9584 puts ("");
9585 }
9586 }
9587 break;
9588
9589 case DT_FLAGS_1:
9590 if (do_dynamic)
9591 {
9592 printf (_("Flags:"));
9593 if (entry->d_un.d_val == 0)
9594 printf (_(" None\n"));
9595 else
9596 {
9597 unsigned long int val = entry->d_un.d_val;
9598
9599 if (val & DF_1_NOW)
9600 {
9601 printf (" NOW");
9602 val ^= DF_1_NOW;
9603 }
9604 if (val & DF_1_GLOBAL)
9605 {
9606 printf (" GLOBAL");
9607 val ^= DF_1_GLOBAL;
9608 }
9609 if (val & DF_1_GROUP)
9610 {
9611 printf (" GROUP");
9612 val ^= DF_1_GROUP;
9613 }
9614 if (val & DF_1_NODELETE)
9615 {
9616 printf (" NODELETE");
9617 val ^= DF_1_NODELETE;
9618 }
9619 if (val & DF_1_LOADFLTR)
9620 {
9621 printf (" LOADFLTR");
9622 val ^= DF_1_LOADFLTR;
9623 }
9624 if (val & DF_1_INITFIRST)
9625 {
9626 printf (" INITFIRST");
9627 val ^= DF_1_INITFIRST;
9628 }
9629 if (val & DF_1_NOOPEN)
9630 {
9631 printf (" NOOPEN");
9632 val ^= DF_1_NOOPEN;
9633 }
9634 if (val & DF_1_ORIGIN)
9635 {
9636 printf (" ORIGIN");
9637 val ^= DF_1_ORIGIN;
9638 }
9639 if (val & DF_1_DIRECT)
9640 {
9641 printf (" DIRECT");
9642 val ^= DF_1_DIRECT;
9643 }
9644 if (val & DF_1_TRANS)
9645 {
9646 printf (" TRANS");
9647 val ^= DF_1_TRANS;
9648 }
9649 if (val & DF_1_INTERPOSE)
9650 {
9651 printf (" INTERPOSE");
9652 val ^= DF_1_INTERPOSE;
9653 }
9654 if (val & DF_1_NODEFLIB)
9655 {
9656 printf (" NODEFLIB");
9657 val ^= DF_1_NODEFLIB;
9658 }
9659 if (val & DF_1_NODUMP)
9660 {
9661 printf (" NODUMP");
9662 val ^= DF_1_NODUMP;
9663 }
9664 if (val & DF_1_CONFALT)
9665 {
9666 printf (" CONFALT");
9667 val ^= DF_1_CONFALT;
9668 }
9669 if (val & DF_1_ENDFILTEE)
9670 {
9671 printf (" ENDFILTEE");
9672 val ^= DF_1_ENDFILTEE;
9673 }
9674 if (val & DF_1_DISPRELDNE)
9675 {
9676 printf (" DISPRELDNE");
9677 val ^= DF_1_DISPRELDNE;
9678 }
9679 if (val & DF_1_DISPRELPND)
9680 {
9681 printf (" DISPRELPND");
9682 val ^= DF_1_DISPRELPND;
9683 }
9684 if (val & DF_1_NODIRECT)
9685 {
9686 printf (" NODIRECT");
9687 val ^= DF_1_NODIRECT;
9688 }
9689 if (val & DF_1_IGNMULDEF)
9690 {
9691 printf (" IGNMULDEF");
9692 val ^= DF_1_IGNMULDEF;
9693 }
9694 if (val & DF_1_NOKSYMS)
9695 {
9696 printf (" NOKSYMS");
9697 val ^= DF_1_NOKSYMS;
9698 }
9699 if (val & DF_1_NOHDR)
9700 {
9701 printf (" NOHDR");
9702 val ^= DF_1_NOHDR;
9703 }
9704 if (val & DF_1_EDITED)
9705 {
9706 printf (" EDITED");
9707 val ^= DF_1_EDITED;
9708 }
9709 if (val & DF_1_NORELOC)
9710 {
9711 printf (" NORELOC");
9712 val ^= DF_1_NORELOC;
9713 }
9714 if (val & DF_1_SYMINTPOSE)
9715 {
9716 printf (" SYMINTPOSE");
9717 val ^= DF_1_SYMINTPOSE;
9718 }
9719 if (val & DF_1_GLOBAUDIT)
9720 {
9721 printf (" GLOBAUDIT");
9722 val ^= DF_1_GLOBAUDIT;
9723 }
9724 if (val & DF_1_SINGLETON)
9725 {
9726 printf (" SINGLETON");
9727 val ^= DF_1_SINGLETON;
9728 }
9729 if (val & DF_1_STUB)
9730 {
9731 printf (" STUB");
9732 val ^= DF_1_STUB;
9733 }
9734 if (val & DF_1_PIE)
9735 {
9736 printf (" PIE");
9737 val ^= DF_1_PIE;
9738 }
9739 if (val != 0)
9740 printf (" %lx", val);
9741 puts ("");
9742 }
9743 }
9744 break;
9745
9746 case DT_PLTREL:
9747 dynamic_info[entry->d_tag] = entry->d_un.d_val;
9748 if (do_dynamic)
9749 puts (get_dynamic_type (entry->d_un.d_val));
9750 break;
9751
9752 case DT_NULL :
9753 case DT_NEEDED :
9754 case DT_PLTGOT :
9755 case DT_HASH :
9756 case DT_STRTAB :
9757 case DT_SYMTAB :
9758 case DT_RELA :
9759 case DT_INIT :
9760 case DT_FINI :
9761 case DT_SONAME :
9762 case DT_RPATH :
9763 case DT_SYMBOLIC:
9764 case DT_REL :
9765 case DT_DEBUG :
9766 case DT_TEXTREL :
9767 case DT_JMPREL :
9768 case DT_RUNPATH :
9769 dynamic_info[entry->d_tag] = entry->d_un.d_val;
9770
9771 if (do_dynamic)
9772 {
9773 char * name;
9774
9775 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
9776 name = GET_DYNAMIC_NAME (entry->d_un.d_val);
9777 else
9778 name = NULL;
9779
9780 if (name)
9781 {
9782 switch (entry->d_tag)
9783 {
9784 case DT_NEEDED:
9785 printf (_("Shared library: [%s]"), name);
9786
9787 if (streq (name, program_interpreter))
9788 printf (_(" program interpreter"));
9789 break;
9790
9791 case DT_SONAME:
9792 printf (_("Library soname: [%s]"), name);
9793 break;
9794
9795 case DT_RPATH:
9796 printf (_("Library rpath: [%s]"), name);
9797 break;
9798
9799 case DT_RUNPATH:
9800 printf (_("Library runpath: [%s]"), name);
9801 break;
9802
9803 default:
9804 print_vma (entry->d_un.d_val, PREFIX_HEX);
9805 break;
9806 }
9807 }
9808 else
9809 print_vma (entry->d_un.d_val, PREFIX_HEX);
9810
9811 putchar ('\n');
9812 }
9813 break;
9814
9815 case DT_PLTRELSZ:
9816 case DT_RELASZ :
9817 case DT_STRSZ :
9818 case DT_RELSZ :
9819 case DT_RELAENT :
9820 case DT_SYMENT :
9821 case DT_RELENT :
9822 dynamic_info[entry->d_tag] = entry->d_un.d_val;
9823 /* Fall through. */
9824 case DT_PLTPADSZ:
9825 case DT_MOVEENT :
9826 case DT_MOVESZ :
9827 case DT_INIT_ARRAYSZ:
9828 case DT_FINI_ARRAYSZ:
9829 case DT_GNU_CONFLICTSZ:
9830 case DT_GNU_LIBLISTSZ:
9831 if (do_dynamic)
9832 {
9833 print_vma (entry->d_un.d_val, UNSIGNED);
9834 printf (_(" (bytes)\n"));
9835 }
9836 break;
9837
9838 case DT_VERDEFNUM:
9839 case DT_VERNEEDNUM:
9840 case DT_RELACOUNT:
9841 case DT_RELCOUNT:
9842 if (do_dynamic)
9843 {
9844 print_vma (entry->d_un.d_val, UNSIGNED);
9845 putchar ('\n');
9846 }
9847 break;
9848
9849 case DT_SYMINSZ:
9850 case DT_SYMINENT:
9851 case DT_SYMINFO:
9852 case DT_USED:
9853 case DT_INIT_ARRAY:
9854 case DT_FINI_ARRAY:
9855 if (do_dynamic)
9856 {
9857 if (entry->d_tag == DT_USED
9858 && VALID_DYNAMIC_NAME (entry->d_un.d_val))
9859 {
9860 char * name = GET_DYNAMIC_NAME (entry->d_un.d_val);
9861
9862 if (*name)
9863 {
9864 printf (_("Not needed object: [%s]\n"), name);
9865 break;
9866 }
9867 }
9868
9869 print_vma (entry->d_un.d_val, PREFIX_HEX);
9870 putchar ('\n');
9871 }
9872 break;
9873
9874 case DT_BIND_NOW:
9875 /* The value of this entry is ignored. */
9876 if (do_dynamic)
9877 putchar ('\n');
9878 break;
9879
9880 case DT_GNU_PRELINKED:
9881 if (do_dynamic)
9882 {
9883 struct tm * tmp;
9884 time_t atime = entry->d_un.d_val;
9885
9886 tmp = gmtime (&atime);
9887 /* PR 17533 file: 041-1244816-0.004. */
9888 if (tmp == NULL)
9889 printf (_("<corrupt time val: %lx"),
9890 (unsigned long) atime);
9891 else
9892 printf ("%04u-%02u-%02uT%02u:%02u:%02u\n",
9893 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
9894 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
9895
9896 }
9897 break;
9898
9899 case DT_GNU_HASH:
9900 dynamic_info_DT_GNU_HASH = entry->d_un.d_val;
9901 if (do_dynamic)
9902 {
9903 print_vma (entry->d_un.d_val, PREFIX_HEX);
9904 putchar ('\n');
9905 }
9906 break;
9907
9908 default:
9909 if ((entry->d_tag >= DT_VERSYM) && (entry->d_tag <= DT_VERNEEDNUM))
9910 version_info[DT_VERSIONTAGIDX (entry->d_tag)] =
9911 entry->d_un.d_val;
9912
9913 if (do_dynamic)
9914 {
9915 switch (elf_header.e_machine)
9916 {
9917 case EM_MIPS:
9918 case EM_MIPS_RS3_LE:
9919 dynamic_section_mips_val (entry);
9920 break;
9921 case EM_PARISC:
9922 dynamic_section_parisc_val (entry);
9923 break;
9924 case EM_IA_64:
9925 dynamic_section_ia64_val (entry);
9926 break;
9927 default:
9928 print_vma (entry->d_un.d_val, PREFIX_HEX);
9929 putchar ('\n');
9930 }
9931 }
9932 break;
9933 }
9934 }
9935
9936 return 1;
9937 }
9938
9939 static char *
9940 get_ver_flags (unsigned int flags)
9941 {
9942 static char buff[32];
9943
9944 buff[0] = 0;
9945
9946 if (flags == 0)
9947 return _("none");
9948
9949 if (flags & VER_FLG_BASE)
9950 strcat (buff, "BASE");
9951
9952 if (flags & VER_FLG_WEAK)
9953 {
9954 if (flags & VER_FLG_BASE)
9955 strcat (buff, " | ");
9956
9957 strcat (buff, "WEAK");
9958 }
9959
9960 if (flags & VER_FLG_INFO)
9961 {
9962 if (flags & (VER_FLG_BASE|VER_FLG_WEAK))
9963 strcat (buff, " | ");
9964
9965 strcat (buff, "INFO");
9966 }
9967
9968 if (flags & ~(VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
9969 {
9970 if (flags & (VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
9971 strcat (buff, " | ");
9972
9973 strcat (buff, _("<unknown>"));
9974 }
9975
9976 return buff;
9977 }
9978
9979 /* Display the contents of the version sections. */
9980
9981 static int
9982 process_version_sections (FILE * file)
9983 {
9984 Elf_Internal_Shdr * section;
9985 unsigned i;
9986 int found = 0;
9987
9988 if (! do_version)
9989 return 1;
9990
9991 for (i = 0, section = section_headers;
9992 i < elf_header.e_shnum;
9993 i++, section++)
9994 {
9995 switch (section->sh_type)
9996 {
9997 case SHT_GNU_verdef:
9998 {
9999 Elf_External_Verdef * edefs;
10000 unsigned int idx;
10001 unsigned int cnt;
10002 unsigned int end;
10003 char * endbuf;
10004
10005 found = 1;
10006
10007 printf (_("\nVersion definition section '%s' contains %u entries:\n"),
10008 printable_section_name (section),
10009 section->sh_info);
10010
10011 printf (_(" Addr: 0x"));
10012 printf_vma (section->sh_addr);
10013 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10014 (unsigned long) section->sh_offset, section->sh_link,
10015 printable_section_name_from_index (section->sh_link));
10016
10017 edefs = (Elf_External_Verdef *)
10018 get_data (NULL, file, section->sh_offset, 1,section->sh_size,
10019 _("version definition section"));
10020 if (!edefs)
10021 break;
10022 endbuf = (char *) edefs + section->sh_size;
10023
10024 /* PR 17531: file: id:000001,src:000172+005151,op:splice,rep:2. */
10025 end = (section->sh_info < section->sh_size
10026 ? section->sh_info : section->sh_size);
10027 for (idx = cnt = 0; cnt < end; ++cnt)
10028 {
10029 char * vstart;
10030 Elf_External_Verdef * edef;
10031 Elf_Internal_Verdef ent;
10032 Elf_External_Verdaux * eaux;
10033 Elf_Internal_Verdaux aux;
10034 unsigned int isum;
10035 int j;
10036
10037 /* Check for very large indices. */
10038 if (idx > (size_t) (endbuf - (char *) edefs))
10039 break;
10040
10041 vstart = ((char *) edefs) + idx;
10042 if (vstart + sizeof (*edef) > endbuf)
10043 break;
10044
10045 edef = (Elf_External_Verdef *) vstart;
10046
10047 ent.vd_version = BYTE_GET (edef->vd_version);
10048 ent.vd_flags = BYTE_GET (edef->vd_flags);
10049 ent.vd_ndx = BYTE_GET (edef->vd_ndx);
10050 ent.vd_cnt = BYTE_GET (edef->vd_cnt);
10051 ent.vd_hash = BYTE_GET (edef->vd_hash);
10052 ent.vd_aux = BYTE_GET (edef->vd_aux);
10053 ent.vd_next = BYTE_GET (edef->vd_next);
10054
10055 printf (_(" %#06x: Rev: %d Flags: %s"),
10056 idx, ent.vd_version, get_ver_flags (ent.vd_flags));
10057
10058 printf (_(" Index: %d Cnt: %d "),
10059 ent.vd_ndx, ent.vd_cnt);
10060
10061 /* Check for overflow. */
10062 if (ent.vd_aux + sizeof (* eaux) > (size_t) (endbuf - vstart))
10063 break;
10064
10065 vstart += ent.vd_aux;
10066
10067 eaux = (Elf_External_Verdaux *) vstart;
10068
10069 aux.vda_name = BYTE_GET (eaux->vda_name);
10070 aux.vda_next = BYTE_GET (eaux->vda_next);
10071
10072 if (VALID_DYNAMIC_NAME (aux.vda_name))
10073 printf (_("Name: %s\n"), GET_DYNAMIC_NAME (aux.vda_name));
10074 else
10075 printf (_("Name index: %ld\n"), aux.vda_name);
10076
10077 isum = idx + ent.vd_aux;
10078
10079 for (j = 1; j < ent.vd_cnt; j++)
10080 {
10081 /* Check for overflow. */
10082 if (aux.vda_next > (size_t) (endbuf - vstart))
10083 break;
10084
10085 isum += aux.vda_next;
10086 vstart += aux.vda_next;
10087
10088 eaux = (Elf_External_Verdaux *) vstart;
10089 if (vstart + sizeof (*eaux) > endbuf)
10090 break;
10091
10092 aux.vda_name = BYTE_GET (eaux->vda_name);
10093 aux.vda_next = BYTE_GET (eaux->vda_next);
10094
10095 if (VALID_DYNAMIC_NAME (aux.vda_name))
10096 printf (_(" %#06x: Parent %d: %s\n"),
10097 isum, j, GET_DYNAMIC_NAME (aux.vda_name));
10098 else
10099 printf (_(" %#06x: Parent %d, name index: %ld\n"),
10100 isum, j, aux.vda_name);
10101 }
10102
10103 if (j < ent.vd_cnt)
10104 printf (_(" Version def aux past end of section\n"));
10105
10106 /* PR 17531:
10107 file: id:000001,src:000172+005151,op:splice,rep:2. */
10108 if (idx + ent.vd_next < idx)
10109 break;
10110
10111 idx += ent.vd_next;
10112 }
10113
10114 if (cnt < section->sh_info)
10115 printf (_(" Version definition past end of section\n"));
10116
10117 free (edefs);
10118 }
10119 break;
10120
10121 case SHT_GNU_verneed:
10122 {
10123 Elf_External_Verneed * eneed;
10124 unsigned int idx;
10125 unsigned int cnt;
10126 char * endbuf;
10127
10128 found = 1;
10129
10130 printf (_("\nVersion needs section '%s' contains %u entries:\n"),
10131 printable_section_name (section), section->sh_info);
10132
10133 printf (_(" Addr: 0x"));
10134 printf_vma (section->sh_addr);
10135 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10136 (unsigned long) section->sh_offset, section->sh_link,
10137 printable_section_name_from_index (section->sh_link));
10138
10139 eneed = (Elf_External_Verneed *) get_data (NULL, file,
10140 section->sh_offset, 1,
10141 section->sh_size,
10142 _("Version Needs section"));
10143 if (!eneed)
10144 break;
10145 endbuf = (char *) eneed + section->sh_size;
10146
10147 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
10148 {
10149 Elf_External_Verneed * entry;
10150 Elf_Internal_Verneed ent;
10151 unsigned int isum;
10152 int j;
10153 char * vstart;
10154
10155 if (idx > (size_t) (endbuf - (char *) eneed))
10156 break;
10157
10158 vstart = ((char *) eneed) + idx;
10159 if (vstart + sizeof (*entry) > endbuf)
10160 break;
10161
10162 entry = (Elf_External_Verneed *) vstart;
10163
10164 ent.vn_version = BYTE_GET (entry->vn_version);
10165 ent.vn_cnt = BYTE_GET (entry->vn_cnt);
10166 ent.vn_file = BYTE_GET (entry->vn_file);
10167 ent.vn_aux = BYTE_GET (entry->vn_aux);
10168 ent.vn_next = BYTE_GET (entry->vn_next);
10169
10170 printf (_(" %#06x: Version: %d"), idx, ent.vn_version);
10171
10172 if (VALID_DYNAMIC_NAME (ent.vn_file))
10173 printf (_(" File: %s"), GET_DYNAMIC_NAME (ent.vn_file));
10174 else
10175 printf (_(" File: %lx"), ent.vn_file);
10176
10177 printf (_(" Cnt: %d\n"), ent.vn_cnt);
10178
10179 /* Check for overflow. */
10180 if (ent.vn_aux > (size_t) (endbuf - vstart))
10181 break;
10182 vstart += ent.vn_aux;
10183
10184 for (j = 0, isum = idx + ent.vn_aux; j < ent.vn_cnt; ++j)
10185 {
10186 Elf_External_Vernaux * eaux;
10187 Elf_Internal_Vernaux aux;
10188
10189 if (vstart + sizeof (*eaux) > endbuf)
10190 break;
10191 eaux = (Elf_External_Vernaux *) vstart;
10192
10193 aux.vna_hash = BYTE_GET (eaux->vna_hash);
10194 aux.vna_flags = BYTE_GET (eaux->vna_flags);
10195 aux.vna_other = BYTE_GET (eaux->vna_other);
10196 aux.vna_name = BYTE_GET (eaux->vna_name);
10197 aux.vna_next = BYTE_GET (eaux->vna_next);
10198
10199 if (VALID_DYNAMIC_NAME (aux.vna_name))
10200 printf (_(" %#06x: Name: %s"),
10201 isum, GET_DYNAMIC_NAME (aux.vna_name));
10202 else
10203 printf (_(" %#06x: Name index: %lx"),
10204 isum, aux.vna_name);
10205
10206 printf (_(" Flags: %s Version: %d\n"),
10207 get_ver_flags (aux.vna_flags), aux.vna_other);
10208
10209 /* Check for overflow. */
10210 if (aux.vna_next > (size_t) (endbuf - vstart)
10211 || (aux.vna_next == 0 && j < ent.vn_cnt - 1))
10212 {
10213 warn (_("Invalid vna_next field of %lx\n"),
10214 aux.vna_next);
10215 j = ent.vn_cnt;
10216 break;
10217 }
10218 isum += aux.vna_next;
10219 vstart += aux.vna_next;
10220 }
10221
10222 if (j < ent.vn_cnt)
10223 warn (_("Missing Version Needs auxillary information\n"));
10224
10225 if (ent.vn_next == 0 && cnt < section->sh_info - 1)
10226 {
10227 warn (_("Corrupt Version Needs structure - offset to next structure is zero with entries still left to be processed\n"));
10228 cnt = section->sh_info;
10229 break;
10230 }
10231 idx += ent.vn_next;
10232 }
10233
10234 if (cnt < section->sh_info)
10235 warn (_("Missing Version Needs information\n"));
10236
10237 free (eneed);
10238 }
10239 break;
10240
10241 case SHT_GNU_versym:
10242 {
10243 Elf_Internal_Shdr * link_section;
10244 size_t total;
10245 unsigned int cnt;
10246 unsigned char * edata;
10247 unsigned short * data;
10248 char * strtab;
10249 Elf_Internal_Sym * symbols;
10250 Elf_Internal_Shdr * string_sec;
10251 unsigned long num_syms;
10252 long off;
10253
10254 if (section->sh_link >= elf_header.e_shnum)
10255 break;
10256
10257 link_section = section_headers + section->sh_link;
10258 total = section->sh_size / sizeof (Elf_External_Versym);
10259
10260 if (link_section->sh_link >= elf_header.e_shnum)
10261 break;
10262
10263 found = 1;
10264
10265 symbols = GET_ELF_SYMBOLS (file, link_section, & num_syms);
10266 if (symbols == NULL)
10267 break;
10268
10269 string_sec = section_headers + link_section->sh_link;
10270
10271 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
10272 string_sec->sh_size,
10273 _("version string table"));
10274 if (!strtab)
10275 {
10276 free (symbols);
10277 break;
10278 }
10279
10280 printf (_("\nVersion symbols section '%s' contains %lu entries:\n"),
10281 printable_section_name (section), (unsigned long) total);
10282
10283 printf (_(" Addr: "));
10284 printf_vma (section->sh_addr);
10285 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10286 (unsigned long) section->sh_offset, section->sh_link,
10287 printable_section_name (link_section));
10288
10289 off = offset_from_vma (file,
10290 version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
10291 total * sizeof (short));
10292 edata = (unsigned char *) get_data (NULL, file, off, total,
10293 sizeof (short),
10294 _("version symbol data"));
10295 if (!edata)
10296 {
10297 free (strtab);
10298 free (symbols);
10299 break;
10300 }
10301
10302 data = (short unsigned int *) cmalloc (total, sizeof (short));
10303
10304 for (cnt = total; cnt --;)
10305 data[cnt] = byte_get (edata + cnt * sizeof (short),
10306 sizeof (short));
10307
10308 free (edata);
10309
10310 for (cnt = 0; cnt < total; cnt += 4)
10311 {
10312 int j, nn;
10313 char *name;
10314 char *invalid = _("*invalid*");
10315
10316 printf (" %03x:", cnt);
10317
10318 for (j = 0; (j < 4) && (cnt + j) < total; ++j)
10319 switch (data[cnt + j])
10320 {
10321 case 0:
10322 fputs (_(" 0 (*local*) "), stdout);
10323 break;
10324
10325 case 1:
10326 fputs (_(" 1 (*global*) "), stdout);
10327 break;
10328
10329 default:
10330 nn = printf ("%4x%c", data[cnt + j] & VERSYM_VERSION,
10331 data[cnt + j] & VERSYM_HIDDEN ? 'h' : ' ');
10332
10333 /* If this index value is greater than the size of the symbols
10334 array, break to avoid an out-of-bounds read. */
10335 if ((unsigned long)(cnt + j) >= num_syms)
10336 {
10337 warn (_("invalid index into symbol array\n"));
10338 break;
10339 }
10340
10341 name = NULL;
10342 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
10343 {
10344 Elf_Internal_Verneed ivn;
10345 unsigned long offset;
10346
10347 offset = offset_from_vma
10348 (file, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
10349 sizeof (Elf_External_Verneed));
10350
10351 do
10352 {
10353 Elf_Internal_Vernaux ivna;
10354 Elf_External_Verneed evn;
10355 Elf_External_Vernaux evna;
10356 unsigned long a_off;
10357
10358 if (get_data (&evn, file, offset, sizeof (evn), 1,
10359 _("version need")) == NULL)
10360 break;
10361
10362 ivn.vn_aux = BYTE_GET (evn.vn_aux);
10363 ivn.vn_next = BYTE_GET (evn.vn_next);
10364
10365 a_off = offset + ivn.vn_aux;
10366
10367 do
10368 {
10369 if (get_data (&evna, file, a_off, sizeof (evna),
10370 1, _("version need aux (2)")) == NULL)
10371 {
10372 ivna.vna_next = 0;
10373 ivna.vna_other = 0;
10374 }
10375 else
10376 {
10377 ivna.vna_next = BYTE_GET (evna.vna_next);
10378 ivna.vna_other = BYTE_GET (evna.vna_other);
10379 }
10380
10381 a_off += ivna.vna_next;
10382 }
10383 while (ivna.vna_other != data[cnt + j]
10384 && ivna.vna_next != 0);
10385
10386 if (ivna.vna_other == data[cnt + j])
10387 {
10388 ivna.vna_name = BYTE_GET (evna.vna_name);
10389
10390 if (ivna.vna_name >= string_sec->sh_size)
10391 name = invalid;
10392 else
10393 name = strtab + ivna.vna_name;
10394 break;
10395 }
10396
10397 offset += ivn.vn_next;
10398 }
10399 while (ivn.vn_next);
10400 }
10401
10402 if (data[cnt + j] != 0x8001
10403 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
10404 {
10405 Elf_Internal_Verdef ivd;
10406 Elf_External_Verdef evd;
10407 unsigned long offset;
10408
10409 offset = offset_from_vma
10410 (file, version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
10411 sizeof evd);
10412
10413 do
10414 {
10415 if (get_data (&evd, file, offset, sizeof (evd), 1,
10416 _("version def")) == NULL)
10417 {
10418 ivd.vd_next = 0;
10419 /* PR 17531: file: 046-1082287-0.004. */
10420 ivd.vd_ndx = (data[cnt + j] & VERSYM_VERSION) + 1;
10421 break;
10422 }
10423 else
10424 {
10425 ivd.vd_next = BYTE_GET (evd.vd_next);
10426 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
10427 }
10428
10429 offset += ivd.vd_next;
10430 }
10431 while (ivd.vd_ndx != (data[cnt + j] & VERSYM_VERSION)
10432 && ivd.vd_next != 0);
10433
10434 if (ivd.vd_ndx == (data[cnt + j] & VERSYM_VERSION))
10435 {
10436 Elf_External_Verdaux evda;
10437 Elf_Internal_Verdaux ivda;
10438
10439 ivd.vd_aux = BYTE_GET (evd.vd_aux);
10440
10441 if (get_data (&evda, file,
10442 offset - ivd.vd_next + ivd.vd_aux,
10443 sizeof (evda), 1,
10444 _("version def aux")) == NULL)
10445 break;
10446
10447 ivda.vda_name = BYTE_GET (evda.vda_name);
10448
10449 if (ivda.vda_name >= string_sec->sh_size)
10450 name = invalid;
10451 else if (name != NULL && name != invalid)
10452 name = _("*both*");
10453 else
10454 name = strtab + ivda.vda_name;
10455 }
10456 }
10457 if (name != NULL)
10458 nn += printf ("(%s%-*s",
10459 name,
10460 12 - (int) strlen (name),
10461 ")");
10462
10463 if (nn < 18)
10464 printf ("%*c", 18 - nn, ' ');
10465 }
10466
10467 putchar ('\n');
10468 }
10469
10470 free (data);
10471 free (strtab);
10472 free (symbols);
10473 }
10474 break;
10475
10476 default:
10477 break;
10478 }
10479 }
10480
10481 if (! found)
10482 printf (_("\nNo version information found in this file.\n"));
10483
10484 return 1;
10485 }
10486
10487 static const char *
10488 get_symbol_binding (unsigned int binding)
10489 {
10490 static char buff[32];
10491
10492 switch (binding)
10493 {
10494 case STB_LOCAL: return "LOCAL";
10495 case STB_GLOBAL: return "GLOBAL";
10496 case STB_WEAK: return "WEAK";
10497 default:
10498 if (binding >= STB_LOPROC && binding <= STB_HIPROC)
10499 snprintf (buff, sizeof (buff), _("<processor specific>: %d"),
10500 binding);
10501 else if (binding >= STB_LOOS && binding <= STB_HIOS)
10502 {
10503 if (binding == STB_GNU_UNIQUE
10504 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
10505 /* GNU is still using the default value 0. */
10506 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
10507 return "UNIQUE";
10508 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), binding);
10509 }
10510 else
10511 snprintf (buff, sizeof (buff), _("<unknown>: %d"), binding);
10512 return buff;
10513 }
10514 }
10515
10516 static const char *
10517 get_symbol_type (unsigned int type)
10518 {
10519 static char buff[32];
10520
10521 switch (type)
10522 {
10523 case STT_NOTYPE: return "NOTYPE";
10524 case STT_OBJECT: return "OBJECT";
10525 case STT_FUNC: return "FUNC";
10526 case STT_SECTION: return "SECTION";
10527 case STT_FILE: return "FILE";
10528 case STT_COMMON: return "COMMON";
10529 case STT_TLS: return "TLS";
10530 case STT_RELC: return "RELC";
10531 case STT_SRELC: return "SRELC";
10532 default:
10533 if (type >= STT_LOPROC && type <= STT_HIPROC)
10534 {
10535 if (elf_header.e_machine == EM_ARM && type == STT_ARM_TFUNC)
10536 return "THUMB_FUNC";
10537
10538 if (elf_header.e_machine == EM_SPARCV9 && type == STT_REGISTER)
10539 return "REGISTER";
10540
10541 if (elf_header.e_machine == EM_PARISC && type == STT_PARISC_MILLI)
10542 return "PARISC_MILLI";
10543
10544 snprintf (buff, sizeof (buff), _("<processor specific>: %d"), type);
10545 }
10546 else if (type >= STT_LOOS && type <= STT_HIOS)
10547 {
10548 if (elf_header.e_machine == EM_PARISC)
10549 {
10550 if (type == STT_HP_OPAQUE)
10551 return "HP_OPAQUE";
10552 if (type == STT_HP_STUB)
10553 return "HP_STUB";
10554 }
10555
10556 if (type == STT_GNU_IFUNC
10557 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
10558 || elf_header.e_ident[EI_OSABI] == ELFOSABI_FREEBSD
10559 /* GNU is still using the default value 0. */
10560 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
10561 return "IFUNC";
10562
10563 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), type);
10564 }
10565 else
10566 snprintf (buff, sizeof (buff), _("<unknown>: %d"), type);
10567 return buff;
10568 }
10569 }
10570
10571 static const char *
10572 get_symbol_visibility (unsigned int visibility)
10573 {
10574 switch (visibility)
10575 {
10576 case STV_DEFAULT: return "DEFAULT";
10577 case STV_INTERNAL: return "INTERNAL";
10578 case STV_HIDDEN: return "HIDDEN";
10579 case STV_PROTECTED: return "PROTECTED";
10580 default:
10581 error (_("Unrecognized visibility value: %u"), visibility);
10582 return _("<unknown>");
10583 }
10584 }
10585
10586 static const char *
10587 get_solaris_symbol_visibility (unsigned int visibility)
10588 {
10589 switch (visibility)
10590 {
10591 case 4: return "EXPORTED";
10592 case 5: return "SINGLETON";
10593 case 6: return "ELIMINATE";
10594 default: return get_symbol_visibility (visibility);
10595 }
10596 }
10597
10598 static const char *
10599 get_mips_symbol_other (unsigned int other)
10600 {
10601 switch (other)
10602 {
10603 case STO_OPTIONAL:
10604 return "OPTIONAL";
10605 case STO_MIPS_PLT:
10606 return "MIPS PLT";
10607 case STO_MIPS_PIC:
10608 return "MIPS PIC";
10609 case STO_MICROMIPS:
10610 return "MICROMIPS";
10611 case STO_MICROMIPS | STO_MIPS_PIC:
10612 return "MICROMIPS, MIPS PIC";
10613 case STO_MIPS16:
10614 return "MIPS16";
10615 default:
10616 return NULL;
10617 }
10618 }
10619
10620 static const char *
10621 get_ia64_symbol_other (unsigned int other)
10622 {
10623 if (is_ia64_vms ())
10624 {
10625 static char res[32];
10626
10627 res[0] = 0;
10628
10629 /* Function types is for images and .STB files only. */
10630 switch (elf_header.e_type)
10631 {
10632 case ET_DYN:
10633 case ET_EXEC:
10634 switch (VMS_ST_FUNC_TYPE (other))
10635 {
10636 case VMS_SFT_CODE_ADDR:
10637 strcat (res, " CA");
10638 break;
10639 case VMS_SFT_SYMV_IDX:
10640 strcat (res, " VEC");
10641 break;
10642 case VMS_SFT_FD:
10643 strcat (res, " FD");
10644 break;
10645 case VMS_SFT_RESERVE:
10646 strcat (res, " RSV");
10647 break;
10648 default:
10649 warn (_("Unrecognized IA64 VMS ST Function type: %d\n"),
10650 VMS_ST_FUNC_TYPE (other));
10651 strcat (res, " <unknown>");
10652 break;
10653 }
10654 break;
10655 default:
10656 break;
10657 }
10658 switch (VMS_ST_LINKAGE (other))
10659 {
10660 case VMS_STL_IGNORE:
10661 strcat (res, " IGN");
10662 break;
10663 case VMS_STL_RESERVE:
10664 strcat (res, " RSV");
10665 break;
10666 case VMS_STL_STD:
10667 strcat (res, " STD");
10668 break;
10669 case VMS_STL_LNK:
10670 strcat (res, " LNK");
10671 break;
10672 default:
10673 warn (_("Unrecognized IA64 VMS ST Linkage: %d\n"),
10674 VMS_ST_LINKAGE (other));
10675 strcat (res, " <unknown>");
10676 break;
10677 }
10678
10679 if (res[0] != 0)
10680 return res + 1;
10681 else
10682 return res;
10683 }
10684 return NULL;
10685 }
10686
10687 static const char *
10688 get_ppc64_symbol_other (unsigned int other)
10689 {
10690 if (PPC64_LOCAL_ENTRY_OFFSET (other) != 0)
10691 {
10692 static char buf[32];
10693 snprintf (buf, sizeof buf, _("<localentry>: %d"),
10694 PPC64_LOCAL_ENTRY_OFFSET (other));
10695 return buf;
10696 }
10697 return NULL;
10698 }
10699
10700 static const char *
10701 get_symbol_other (unsigned int other)
10702 {
10703 const char * result = NULL;
10704 static char buff [32];
10705
10706 if (other == 0)
10707 return "";
10708
10709 switch (elf_header.e_machine)
10710 {
10711 case EM_MIPS:
10712 result = get_mips_symbol_other (other);
10713 break;
10714 case EM_IA_64:
10715 result = get_ia64_symbol_other (other);
10716 break;
10717 case EM_PPC64:
10718 result = get_ppc64_symbol_other (other);
10719 break;
10720 default:
10721 result = NULL;
10722 break;
10723 }
10724
10725 if (result)
10726 return result;
10727
10728 snprintf (buff, sizeof buff, _("<other>: %x"), other);
10729 return buff;
10730 }
10731
10732 static const char *
10733 get_symbol_index_type (unsigned int type)
10734 {
10735 static char buff[32];
10736
10737 switch (type)
10738 {
10739 case SHN_UNDEF: return "UND";
10740 case SHN_ABS: return "ABS";
10741 case SHN_COMMON: return "COM";
10742 default:
10743 if (type == SHN_IA_64_ANSI_COMMON
10744 && elf_header.e_machine == EM_IA_64
10745 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX)
10746 return "ANSI_COM";
10747 else if ((elf_header.e_machine == EM_X86_64
10748 || elf_header.e_machine == EM_L1OM
10749 || elf_header.e_machine == EM_K1OM)
10750 && type == SHN_X86_64_LCOMMON)
10751 return "LARGE_COM";
10752 else if ((type == SHN_MIPS_SCOMMON
10753 && elf_header.e_machine == EM_MIPS)
10754 || (type == SHN_TIC6X_SCOMMON
10755 && elf_header.e_machine == EM_TI_C6000))
10756 return "SCOM";
10757 else if (type == SHN_MIPS_SUNDEFINED
10758 && elf_header.e_machine == EM_MIPS)
10759 return "SUND";
10760 else if (type >= SHN_LOPROC && type <= SHN_HIPROC)
10761 sprintf (buff, "PRC[0x%04x]", type & 0xffff);
10762 else if (type >= SHN_LOOS && type <= SHN_HIOS)
10763 sprintf (buff, "OS [0x%04x]", type & 0xffff);
10764 else if (type >= SHN_LORESERVE)
10765 sprintf (buff, "RSV[0x%04x]", type & 0xffff);
10766 else if (type >= elf_header.e_shnum)
10767 sprintf (buff, _("bad section index[%3d]"), type);
10768 else
10769 sprintf (buff, "%3d", type);
10770 break;
10771 }
10772
10773 return buff;
10774 }
10775
10776 static bfd_vma *
10777 get_dynamic_data (FILE * file, bfd_size_type number, unsigned int ent_size)
10778 {
10779 unsigned char * e_data;
10780 bfd_vma * i_data;
10781
10782 /* If the size_t type is smaller than the bfd_size_type, eg because
10783 you are building a 32-bit tool on a 64-bit host, then make sure
10784 that when (number) is cast to (size_t) no information is lost. */
10785 if (sizeof (size_t) < sizeof (bfd_size_type)
10786 && (bfd_size_type) ((size_t) number) != number)
10787 {
10788 error (_("Size truncation prevents reading %" BFD_VMA_FMT "u"
10789 " elements of size %u\n"),
10790 number, ent_size);
10791 return NULL;
10792 }
10793
10794 /* Be kind to memory chekers (eg valgrind, address sanitizer) by not
10795 attempting to allocate memory when the read is bound to fail. */
10796 if (ent_size * number > current_file_size)
10797 {
10798 error (_("Invalid number of dynamic entries: %" BFD_VMA_FMT "u\n"),
10799 number);
10800 return NULL;
10801 }
10802
10803 e_data = (unsigned char *) cmalloc ((size_t) number, ent_size);
10804 if (e_data == NULL)
10805 {
10806 error (_("Out of memory reading %" BFD_VMA_FMT "u dynamic entries\n"),
10807 number);
10808 return NULL;
10809 }
10810
10811 if (fread (e_data, ent_size, (size_t) number, file) != number)
10812 {
10813 error (_("Unable to read in %" BFD_VMA_FMT "u bytes of dynamic data\n"),
10814 number * ent_size);
10815 free (e_data);
10816 return NULL;
10817 }
10818
10819 i_data = (bfd_vma *) cmalloc ((size_t) number, sizeof (*i_data));
10820 if (i_data == NULL)
10821 {
10822 error (_("Out of memory allocating space for %" BFD_VMA_FMT "u"
10823 " dynamic entries\n"),
10824 number);
10825 free (e_data);
10826 return NULL;
10827 }
10828
10829 while (number--)
10830 i_data[number] = byte_get (e_data + number * ent_size, ent_size);
10831
10832 free (e_data);
10833
10834 return i_data;
10835 }
10836
10837 static void
10838 print_dynamic_symbol (bfd_vma si, unsigned long hn)
10839 {
10840 Elf_Internal_Sym * psym;
10841 int n;
10842
10843 n = print_vma (si, DEC_5);
10844 if (n < 5)
10845 fputs (&" "[n], stdout);
10846 printf (" %3lu: ", hn);
10847
10848 if (dynamic_symbols == NULL || si >= num_dynamic_syms)
10849 {
10850 printf (_("<No info available for dynamic symbol number %lu>\n"),
10851 (unsigned long) si);
10852 return;
10853 }
10854
10855 psym = dynamic_symbols + si;
10856 print_vma (psym->st_value, LONG_HEX);
10857 putchar (' ');
10858 print_vma (psym->st_size, DEC_5);
10859
10860 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
10861 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
10862
10863 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
10864 printf (" %-7s", get_solaris_symbol_visibility (psym->st_other));
10865 else
10866 {
10867 unsigned int vis = ELF_ST_VISIBILITY (psym->st_other);
10868
10869 printf (" %-7s", get_symbol_visibility (vis));
10870 /* Check to see if any other bits in the st_other field are set.
10871 Note - displaying this information disrupts the layout of the
10872 table being generated, but for the moment this case is very
10873 rare. */
10874 if (psym->st_other ^ vis)
10875 printf (" [%s] ", get_symbol_other (psym->st_other ^ vis));
10876 }
10877
10878 printf (" %3.3s ", get_symbol_index_type (psym->st_shndx));
10879 if (VALID_DYNAMIC_NAME (psym->st_name))
10880 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
10881 else
10882 printf (_(" <corrupt: %14ld>"), psym->st_name);
10883 putchar ('\n');
10884 }
10885
10886 static const char *
10887 get_symbol_version_string (FILE * file,
10888 bfd_boolean is_dynsym,
10889 const char * strtab,
10890 unsigned long int strtab_size,
10891 unsigned int si,
10892 Elf_Internal_Sym * psym,
10893 enum versioned_symbol_info * sym_info,
10894 unsigned short * vna_other)
10895 {
10896 unsigned char data[2];
10897 unsigned short vers_data;
10898 unsigned long offset;
10899
10900 if (!is_dynsym
10901 || version_info[DT_VERSIONTAGIDX (DT_VERSYM)] == 0)
10902 return NULL;
10903
10904 offset = offset_from_vma (file, version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
10905 sizeof data + si * sizeof (vers_data));
10906
10907 if (get_data (&data, file, offset + si * sizeof (vers_data),
10908 sizeof (data), 1, _("version data")) == NULL)
10909 return NULL;
10910
10911 vers_data = byte_get (data, 2);
10912
10913 if ((vers_data & VERSYM_HIDDEN) == 0 && vers_data <= 1)
10914 return NULL;
10915
10916 /* Usually we'd only see verdef for defined symbols, and verneed for
10917 undefined symbols. However, symbols defined by the linker in
10918 .dynbss for variables copied from a shared library in order to
10919 avoid text relocations are defined yet have verneed. We could
10920 use a heuristic to detect the special case, for example, check
10921 for verneed first on symbols defined in SHT_NOBITS sections, but
10922 it is simpler and more reliable to just look for both verdef and
10923 verneed. .dynbss might not be mapped to a SHT_NOBITS section. */
10924
10925 if (psym->st_shndx != SHN_UNDEF
10926 && vers_data != 0x8001
10927 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
10928 {
10929 Elf_Internal_Verdef ivd;
10930 Elf_Internal_Verdaux ivda;
10931 Elf_External_Verdaux evda;
10932 unsigned long off;
10933
10934 off = offset_from_vma (file,
10935 version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
10936 sizeof (Elf_External_Verdef));
10937
10938 do
10939 {
10940 Elf_External_Verdef evd;
10941
10942 if (get_data (&evd, file, off, sizeof (evd), 1,
10943 _("version def")) == NULL)
10944 {
10945 ivd.vd_ndx = 0;
10946 ivd.vd_aux = 0;
10947 ivd.vd_next = 0;
10948 }
10949 else
10950 {
10951 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
10952 ivd.vd_aux = BYTE_GET (evd.vd_aux);
10953 ivd.vd_next = BYTE_GET (evd.vd_next);
10954 }
10955
10956 off += ivd.vd_next;
10957 }
10958 while (ivd.vd_ndx != (vers_data & VERSYM_VERSION) && ivd.vd_next != 0);
10959
10960 if (ivd.vd_ndx == (vers_data & VERSYM_VERSION))
10961 {
10962 off -= ivd.vd_next;
10963 off += ivd.vd_aux;
10964
10965 if (get_data (&evda, file, off, sizeof (evda), 1,
10966 _("version def aux")) != NULL)
10967 {
10968 ivda.vda_name = BYTE_GET (evda.vda_name);
10969
10970 if (psym->st_name != ivda.vda_name)
10971 {
10972 *sym_info = ((vers_data & VERSYM_HIDDEN) != 0
10973 ? symbol_hidden : symbol_public);
10974 return (ivda.vda_name < strtab_size
10975 ? strtab + ivda.vda_name : _("<corrupt>"));
10976 }
10977 }
10978 }
10979 }
10980
10981 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
10982 {
10983 Elf_External_Verneed evn;
10984 Elf_Internal_Verneed ivn;
10985 Elf_Internal_Vernaux ivna;
10986
10987 offset = offset_from_vma (file,
10988 version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
10989 sizeof evn);
10990 do
10991 {
10992 unsigned long vna_off;
10993
10994 if (get_data (&evn, file, offset, sizeof (evn), 1,
10995 _("version need")) == NULL)
10996 {
10997 ivna.vna_next = 0;
10998 ivna.vna_other = 0;
10999 ivna.vna_name = 0;
11000 break;
11001 }
11002
11003 ivn.vn_aux = BYTE_GET (evn.vn_aux);
11004 ivn.vn_next = BYTE_GET (evn.vn_next);
11005
11006 vna_off = offset + ivn.vn_aux;
11007
11008 do
11009 {
11010 Elf_External_Vernaux evna;
11011
11012 if (get_data (&evna, file, vna_off, sizeof (evna), 1,
11013 _("version need aux (3)")) == NULL)
11014 {
11015 ivna.vna_next = 0;
11016 ivna.vna_other = 0;
11017 ivna.vna_name = 0;
11018 }
11019 else
11020 {
11021 ivna.vna_other = BYTE_GET (evna.vna_other);
11022 ivna.vna_next = BYTE_GET (evna.vna_next);
11023 ivna.vna_name = BYTE_GET (evna.vna_name);
11024 }
11025
11026 vna_off += ivna.vna_next;
11027 }
11028 while (ivna.vna_other != vers_data && ivna.vna_next != 0);
11029
11030 if (ivna.vna_other == vers_data)
11031 break;
11032
11033 offset += ivn.vn_next;
11034 }
11035 while (ivn.vn_next != 0);
11036
11037 if (ivna.vna_other == vers_data)
11038 {
11039 *sym_info = symbol_undefined;
11040 *vna_other = ivna.vna_other;
11041 return (ivna.vna_name < strtab_size
11042 ? strtab + ivna.vna_name : _("<corrupt>"));
11043 }
11044 }
11045 return NULL;
11046 }
11047
11048 /* Dump the symbol table. */
11049 static int
11050 process_symbol_table (FILE * file)
11051 {
11052 Elf_Internal_Shdr * section;
11053 bfd_size_type nbuckets = 0;
11054 bfd_size_type nchains = 0;
11055 bfd_vma * buckets = NULL;
11056 bfd_vma * chains = NULL;
11057 bfd_vma ngnubuckets = 0;
11058 bfd_vma * gnubuckets = NULL;
11059 bfd_vma * gnuchains = NULL;
11060 bfd_vma gnusymidx = 0;
11061 bfd_size_type ngnuchains = 0;
11062
11063 if (!do_syms && !do_dyn_syms && !do_histogram)
11064 return 1;
11065
11066 if (dynamic_info[DT_HASH]
11067 && (do_histogram
11068 || (do_using_dynamic
11069 && !do_dyn_syms
11070 && dynamic_strings != NULL)))
11071 {
11072 unsigned char nb[8];
11073 unsigned char nc[8];
11074 unsigned int hash_ent_size = 4;
11075
11076 if ((elf_header.e_machine == EM_ALPHA
11077 || elf_header.e_machine == EM_S390
11078 || elf_header.e_machine == EM_S390_OLD)
11079 && elf_header.e_ident[EI_CLASS] == ELFCLASS64)
11080 hash_ent_size = 8;
11081
11082 if (fseek (file,
11083 (archive_file_offset
11084 + offset_from_vma (file, dynamic_info[DT_HASH],
11085 sizeof nb + sizeof nc)),
11086 SEEK_SET))
11087 {
11088 error (_("Unable to seek to start of dynamic information\n"));
11089 goto no_hash;
11090 }
11091
11092 if (fread (nb, hash_ent_size, 1, file) != 1)
11093 {
11094 error (_("Failed to read in number of buckets\n"));
11095 goto no_hash;
11096 }
11097
11098 if (fread (nc, hash_ent_size, 1, file) != 1)
11099 {
11100 error (_("Failed to read in number of chains\n"));
11101 goto no_hash;
11102 }
11103
11104 nbuckets = byte_get (nb, hash_ent_size);
11105 nchains = byte_get (nc, hash_ent_size);
11106
11107 buckets = get_dynamic_data (file, nbuckets, hash_ent_size);
11108 chains = get_dynamic_data (file, nchains, hash_ent_size);
11109
11110 no_hash:
11111 if (buckets == NULL || chains == NULL)
11112 {
11113 if (do_using_dynamic)
11114 return 0;
11115 free (buckets);
11116 free (chains);
11117 buckets = NULL;
11118 chains = NULL;
11119 nbuckets = 0;
11120 nchains = 0;
11121 }
11122 }
11123
11124 if (dynamic_info_DT_GNU_HASH
11125 && (do_histogram
11126 || (do_using_dynamic
11127 && !do_dyn_syms
11128 && dynamic_strings != NULL)))
11129 {
11130 unsigned char nb[16];
11131 bfd_vma i, maxchain = 0xffffffff, bitmaskwords;
11132 bfd_vma buckets_vma;
11133
11134 if (fseek (file,
11135 (archive_file_offset
11136 + offset_from_vma (file, dynamic_info_DT_GNU_HASH,
11137 sizeof nb)),
11138 SEEK_SET))
11139 {
11140 error (_("Unable to seek to start of dynamic information\n"));
11141 goto no_gnu_hash;
11142 }
11143
11144 if (fread (nb, 16, 1, file) != 1)
11145 {
11146 error (_("Failed to read in number of buckets\n"));
11147 goto no_gnu_hash;
11148 }
11149
11150 ngnubuckets = byte_get (nb, 4);
11151 gnusymidx = byte_get (nb + 4, 4);
11152 bitmaskwords = byte_get (nb + 8, 4);
11153 buckets_vma = dynamic_info_DT_GNU_HASH + 16;
11154 if (is_32bit_elf)
11155 buckets_vma += bitmaskwords * 4;
11156 else
11157 buckets_vma += bitmaskwords * 8;
11158
11159 if (fseek (file,
11160 (archive_file_offset
11161 + offset_from_vma (file, buckets_vma, 4)),
11162 SEEK_SET))
11163 {
11164 error (_("Unable to seek to start of dynamic information\n"));
11165 goto no_gnu_hash;
11166 }
11167
11168 gnubuckets = get_dynamic_data (file, ngnubuckets, 4);
11169
11170 if (gnubuckets == NULL)
11171 goto no_gnu_hash;
11172
11173 for (i = 0; i < ngnubuckets; i++)
11174 if (gnubuckets[i] != 0)
11175 {
11176 if (gnubuckets[i] < gnusymidx)
11177 return 0;
11178
11179 if (maxchain == 0xffffffff || gnubuckets[i] > maxchain)
11180 maxchain = gnubuckets[i];
11181 }
11182
11183 if (maxchain == 0xffffffff)
11184 goto no_gnu_hash;
11185
11186 maxchain -= gnusymidx;
11187
11188 if (fseek (file,
11189 (archive_file_offset
11190 + offset_from_vma (file, buckets_vma
11191 + 4 * (ngnubuckets + maxchain), 4)),
11192 SEEK_SET))
11193 {
11194 error (_("Unable to seek to start of dynamic information\n"));
11195 goto no_gnu_hash;
11196 }
11197
11198 do
11199 {
11200 if (fread (nb, 4, 1, file) != 1)
11201 {
11202 error (_("Failed to determine last chain length\n"));
11203 goto no_gnu_hash;
11204 }
11205
11206 if (maxchain + 1 == 0)
11207 goto no_gnu_hash;
11208
11209 ++maxchain;
11210 }
11211 while ((byte_get (nb, 4) & 1) == 0);
11212
11213 if (fseek (file,
11214 (archive_file_offset
11215 + offset_from_vma (file, buckets_vma + 4 * ngnubuckets, 4)),
11216 SEEK_SET))
11217 {
11218 error (_("Unable to seek to start of dynamic information\n"));
11219 goto no_gnu_hash;
11220 }
11221
11222 gnuchains = get_dynamic_data (file, maxchain, 4);
11223 ngnuchains = maxchain;
11224
11225 no_gnu_hash:
11226 if (gnuchains == NULL)
11227 {
11228 free (gnubuckets);
11229 gnubuckets = NULL;
11230 ngnubuckets = 0;
11231 if (do_using_dynamic)
11232 return 0;
11233 }
11234 }
11235
11236 if ((dynamic_info[DT_HASH] || dynamic_info_DT_GNU_HASH)
11237 && do_syms
11238 && do_using_dynamic
11239 && dynamic_strings != NULL
11240 && dynamic_symbols != NULL)
11241 {
11242 unsigned long hn;
11243
11244 if (dynamic_info[DT_HASH])
11245 {
11246 bfd_vma si;
11247
11248 printf (_("\nSymbol table for image:\n"));
11249 if (is_32bit_elf)
11250 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11251 else
11252 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11253
11254 for (hn = 0; hn < nbuckets; hn++)
11255 {
11256 if (! buckets[hn])
11257 continue;
11258
11259 for (si = buckets[hn]; si < nchains && si > 0; si = chains[si])
11260 print_dynamic_symbol (si, hn);
11261 }
11262 }
11263
11264 if (dynamic_info_DT_GNU_HASH)
11265 {
11266 printf (_("\nSymbol table of `.gnu.hash' for image:\n"));
11267 if (is_32bit_elf)
11268 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11269 else
11270 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11271
11272 for (hn = 0; hn < ngnubuckets; ++hn)
11273 if (gnubuckets[hn] != 0)
11274 {
11275 bfd_vma si = gnubuckets[hn];
11276 bfd_vma off = si - gnusymidx;
11277
11278 do
11279 {
11280 print_dynamic_symbol (si, hn);
11281 si++;
11282 }
11283 while (off < ngnuchains && (gnuchains[off++] & 1) == 0);
11284 }
11285 }
11286 }
11287 else if ((do_dyn_syms || (do_syms && !do_using_dynamic))
11288 && section_headers != NULL)
11289 {
11290 unsigned int i;
11291
11292 for (i = 0, section = section_headers;
11293 i < elf_header.e_shnum;
11294 i++, section++)
11295 {
11296 unsigned int si;
11297 char * strtab = NULL;
11298 unsigned long int strtab_size = 0;
11299 Elf_Internal_Sym * symtab;
11300 Elf_Internal_Sym * psym;
11301 unsigned long num_syms;
11302
11303 if ((section->sh_type != SHT_SYMTAB
11304 && section->sh_type != SHT_DYNSYM)
11305 || (!do_syms
11306 && section->sh_type == SHT_SYMTAB))
11307 continue;
11308
11309 if (section->sh_entsize == 0)
11310 {
11311 printf (_("\nSymbol table '%s' has a sh_entsize of zero!\n"),
11312 printable_section_name (section));
11313 continue;
11314 }
11315
11316 printf (_("\nSymbol table '%s' contains %lu entries:\n"),
11317 printable_section_name (section),
11318 (unsigned long) (section->sh_size / section->sh_entsize));
11319
11320 if (is_32bit_elf)
11321 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
11322 else
11323 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
11324
11325 symtab = GET_ELF_SYMBOLS (file, section, & num_syms);
11326 if (symtab == NULL)
11327 continue;
11328
11329 if (section->sh_link == elf_header.e_shstrndx)
11330 {
11331 strtab = string_table;
11332 strtab_size = string_table_length;
11333 }
11334 else if (section->sh_link < elf_header.e_shnum)
11335 {
11336 Elf_Internal_Shdr * string_sec;
11337
11338 string_sec = section_headers + section->sh_link;
11339
11340 strtab = (char *) get_data (NULL, file, string_sec->sh_offset,
11341 1, string_sec->sh_size,
11342 _("string table"));
11343 strtab_size = strtab != NULL ? string_sec->sh_size : 0;
11344 }
11345
11346 for (si = 0, psym = symtab; si < num_syms; si++, psym++)
11347 {
11348 const char *version_string;
11349 enum versioned_symbol_info sym_info;
11350 unsigned short vna_other;
11351
11352 printf ("%6d: ", si);
11353 print_vma (psym->st_value, LONG_HEX);
11354 putchar (' ');
11355 print_vma (psym->st_size, DEC_5);
11356 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
11357 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
11358 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
11359 printf (" %-7s", get_solaris_symbol_visibility (psym->st_other));
11360 else
11361 {
11362 unsigned int vis = ELF_ST_VISIBILITY (psym->st_other);
11363
11364 printf (" %-7s", get_symbol_visibility (vis));
11365 /* Check to see if any other bits in the st_other field are set.
11366 Note - displaying this information disrupts the layout of the
11367 table being generated, but for the moment this case is very rare. */
11368 if (psym->st_other ^ vis)
11369 printf (" [%s] ", get_symbol_other (psym->st_other ^ vis));
11370 }
11371 printf (" %4s ", get_symbol_index_type (psym->st_shndx));
11372 print_symbol (25, psym->st_name < strtab_size
11373 ? strtab + psym->st_name : _("<corrupt>"));
11374
11375 version_string
11376 = get_symbol_version_string (file,
11377 section->sh_type == SHT_DYNSYM,
11378 strtab, strtab_size, si,
11379 psym, &sym_info, &vna_other);
11380 if (version_string)
11381 {
11382 if (sym_info == symbol_undefined)
11383 printf ("@%s (%d)", version_string, vna_other);
11384 else
11385 printf (sym_info == symbol_hidden ? "@%s" : "@@%s",
11386 version_string);
11387 }
11388
11389 putchar ('\n');
11390
11391 if (ELF_ST_BIND (psym->st_info) == STB_LOCAL
11392 && si >= section->sh_info
11393 /* Irix 5 and 6 MIPS binaries are known to ignore this requirement. */
11394 && elf_header.e_machine != EM_MIPS
11395 /* Solaris binaries have been found to violate this requirement as
11396 well. Not sure if this is a bug or an ABI requirement. */
11397 && elf_header.e_ident[EI_OSABI] != ELFOSABI_SOLARIS)
11398 warn (_("local symbol %u found at index >= %s's sh_info value of %u\n"),
11399 si, printable_section_name (section), section->sh_info);
11400 }
11401
11402 free (symtab);
11403 if (strtab != string_table)
11404 free (strtab);
11405 }
11406 }
11407 else if (do_syms)
11408 printf
11409 (_("\nDynamic symbol information is not available for displaying symbols.\n"));
11410
11411 if (do_histogram && buckets != NULL)
11412 {
11413 unsigned long * lengths;
11414 unsigned long * counts;
11415 unsigned long hn;
11416 bfd_vma si;
11417 unsigned long maxlength = 0;
11418 unsigned long nzero_counts = 0;
11419 unsigned long nsyms = 0;
11420 unsigned long chained;
11421
11422 printf (_("\nHistogram for bucket list length (total of %lu buckets):\n"),
11423 (unsigned long) nbuckets);
11424
11425 lengths = (unsigned long *) calloc (nbuckets, sizeof (*lengths));
11426 if (lengths == NULL)
11427 {
11428 error (_("Out of memory allocating space for histogram buckets\n"));
11429 return 0;
11430 }
11431
11432 printf (_(" Length Number %% of total Coverage\n"));
11433 for (hn = 0; hn < nbuckets; ++hn)
11434 {
11435 for (si = buckets[hn], chained = 0;
11436 si > 0 && si < nchains && si < nbuckets && chained <= nchains;
11437 si = chains[si], ++chained)
11438 {
11439 ++nsyms;
11440 if (maxlength < ++lengths[hn])
11441 ++maxlength;
11442 }
11443
11444 /* PR binutils/17531: A corrupt binary could contain broken
11445 histogram data. Do not go into an infinite loop trying
11446 to process it. */
11447 if (chained > nchains)
11448 {
11449 error (_("histogram chain is corrupt\n"));
11450 break;
11451 }
11452 }
11453
11454 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
11455 if (counts == NULL)
11456 {
11457 free (lengths);
11458 error (_("Out of memory allocating space for histogram counts\n"));
11459 return 0;
11460 }
11461
11462 for (hn = 0; hn < nbuckets; ++hn)
11463 ++counts[lengths[hn]];
11464
11465 if (nbuckets > 0)
11466 {
11467 unsigned long i;
11468 printf (" 0 %-10lu (%5.1f%%)\n",
11469 counts[0], (counts[0] * 100.0) / nbuckets);
11470 for (i = 1; i <= maxlength; ++i)
11471 {
11472 nzero_counts += counts[i] * i;
11473 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
11474 i, counts[i], (counts[i] * 100.0) / nbuckets,
11475 (nzero_counts * 100.0) / nsyms);
11476 }
11477 }
11478
11479 free (counts);
11480 free (lengths);
11481 }
11482
11483 if (buckets != NULL)
11484 {
11485 free (buckets);
11486 free (chains);
11487 }
11488
11489 if (do_histogram && gnubuckets != NULL)
11490 {
11491 unsigned long * lengths;
11492 unsigned long * counts;
11493 unsigned long hn;
11494 unsigned long maxlength = 0;
11495 unsigned long nzero_counts = 0;
11496 unsigned long nsyms = 0;
11497
11498 printf (_("\nHistogram for `.gnu.hash' bucket list length (total of %lu buckets):\n"),
11499 (unsigned long) ngnubuckets);
11500
11501 lengths = (unsigned long *) calloc (ngnubuckets, sizeof (*lengths));
11502 if (lengths == NULL)
11503 {
11504 error (_("Out of memory allocating space for gnu histogram buckets\n"));
11505 return 0;
11506 }
11507
11508 printf (_(" Length Number %% of total Coverage\n"));
11509
11510 for (hn = 0; hn < ngnubuckets; ++hn)
11511 if (gnubuckets[hn] != 0)
11512 {
11513 bfd_vma off, length = 1;
11514
11515 for (off = gnubuckets[hn] - gnusymidx;
11516 /* PR 17531 file: 010-77222-0.004. */
11517 off < ngnuchains && (gnuchains[off] & 1) == 0;
11518 ++off)
11519 ++length;
11520 lengths[hn] = length;
11521 if (length > maxlength)
11522 maxlength = length;
11523 nsyms += length;
11524 }
11525
11526 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
11527 if (counts == NULL)
11528 {
11529 free (lengths);
11530 error (_("Out of memory allocating space for gnu histogram counts\n"));
11531 return 0;
11532 }
11533
11534 for (hn = 0; hn < ngnubuckets; ++hn)
11535 ++counts[lengths[hn]];
11536
11537 if (ngnubuckets > 0)
11538 {
11539 unsigned long j;
11540 printf (" 0 %-10lu (%5.1f%%)\n",
11541 counts[0], (counts[0] * 100.0) / ngnubuckets);
11542 for (j = 1; j <= maxlength; ++j)
11543 {
11544 nzero_counts += counts[j] * j;
11545 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
11546 j, counts[j], (counts[j] * 100.0) / ngnubuckets,
11547 (nzero_counts * 100.0) / nsyms);
11548 }
11549 }
11550
11551 free (counts);
11552 free (lengths);
11553 free (gnubuckets);
11554 free (gnuchains);
11555 }
11556
11557 return 1;
11558 }
11559
11560 static int
11561 process_syminfo (FILE * file ATTRIBUTE_UNUSED)
11562 {
11563 unsigned int i;
11564
11565 if (dynamic_syminfo == NULL
11566 || !do_dynamic)
11567 /* No syminfo, this is ok. */
11568 return 1;
11569
11570 /* There better should be a dynamic symbol section. */
11571 if (dynamic_symbols == NULL || dynamic_strings == NULL)
11572 return 0;
11573
11574 if (dynamic_addr)
11575 printf (_("\nDynamic info segment at offset 0x%lx contains %d entries:\n"),
11576 dynamic_syminfo_offset, dynamic_syminfo_nent);
11577
11578 printf (_(" Num: Name BoundTo Flags\n"));
11579 for (i = 0; i < dynamic_syminfo_nent; ++i)
11580 {
11581 unsigned short int flags = dynamic_syminfo[i].si_flags;
11582
11583 printf ("%4d: ", i);
11584 if (i >= num_dynamic_syms)
11585 printf (_("<corrupt index>"));
11586 else if (VALID_DYNAMIC_NAME (dynamic_symbols[i].st_name))
11587 print_symbol (30, GET_DYNAMIC_NAME (dynamic_symbols[i].st_name));
11588 else
11589 printf (_("<corrupt: %19ld>"), dynamic_symbols[i].st_name);
11590 putchar (' ');
11591
11592 switch (dynamic_syminfo[i].si_boundto)
11593 {
11594 case SYMINFO_BT_SELF:
11595 fputs ("SELF ", stdout);
11596 break;
11597 case SYMINFO_BT_PARENT:
11598 fputs ("PARENT ", stdout);
11599 break;
11600 default:
11601 if (dynamic_syminfo[i].si_boundto > 0
11602 && dynamic_syminfo[i].si_boundto < dynamic_nent
11603 && VALID_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val))
11604 {
11605 print_symbol (10, GET_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val));
11606 putchar (' ' );
11607 }
11608 else
11609 printf ("%-10d ", dynamic_syminfo[i].si_boundto);
11610 break;
11611 }
11612
11613 if (flags & SYMINFO_FLG_DIRECT)
11614 printf (" DIRECT");
11615 if (flags & SYMINFO_FLG_PASSTHRU)
11616 printf (" PASSTHRU");
11617 if (flags & SYMINFO_FLG_COPY)
11618 printf (" COPY");
11619 if (flags & SYMINFO_FLG_LAZYLOAD)
11620 printf (" LAZYLOAD");
11621
11622 puts ("");
11623 }
11624
11625 return 1;
11626 }
11627
11628 #define IN_RANGE(START,END,ADDR,OFF) \
11629 (((ADDR) >= (START)) && ((ADDR) + (OFF) < (END)))
11630
11631 /* Check to see if the given reloc needs to be handled in a target specific
11632 manner. If so then process the reloc and return TRUE otherwise return
11633 FALSE.
11634
11635 If called with reloc == NULL, then this is a signal that reloc processing
11636 for the current section has finished, and any saved state should be
11637 discarded. */
11638
11639 static bfd_boolean
11640 target_specific_reloc_handling (Elf_Internal_Rela * reloc,
11641 unsigned char * start,
11642 unsigned char * end,
11643 Elf_Internal_Sym * symtab,
11644 unsigned long num_syms)
11645 {
11646 unsigned int reloc_type = 0;
11647 unsigned long sym_index = 0;
11648
11649 if (reloc)
11650 {
11651 reloc_type = get_reloc_type (reloc->r_info);
11652 sym_index = get_reloc_symindex (reloc->r_info);
11653 }
11654
11655 switch (elf_header.e_machine)
11656 {
11657 case EM_MSP430:
11658 case EM_MSP430_OLD:
11659 {
11660 static Elf_Internal_Sym * saved_sym = NULL;
11661
11662 if (reloc == NULL)
11663 {
11664 saved_sym = NULL;
11665 return TRUE;
11666 }
11667
11668 switch (reloc_type)
11669 {
11670 case 10: /* R_MSP430_SYM_DIFF */
11671 if (uses_msp430x_relocs ())
11672 break;
11673 /* Fall through. */
11674 case 21: /* R_MSP430X_SYM_DIFF */
11675 /* PR 21139. */
11676 if (sym_index >= num_syms)
11677 error (_("MSP430 SYM_DIFF reloc contains invalid symbol index %lu\n"),
11678 sym_index);
11679 else
11680 saved_sym = symtab + sym_index;
11681 return TRUE;
11682
11683 case 1: /* R_MSP430_32 or R_MSP430_ABS32 */
11684 case 3: /* R_MSP430_16 or R_MSP430_ABS8 */
11685 goto handle_sym_diff;
11686
11687 case 5: /* R_MSP430_16_BYTE */
11688 case 9: /* R_MSP430_8 */
11689 if (uses_msp430x_relocs ())
11690 break;
11691 goto handle_sym_diff;
11692
11693 case 2: /* R_MSP430_ABS16 */
11694 case 15: /* R_MSP430X_ABS16 */
11695 if (! uses_msp430x_relocs ())
11696 break;
11697 goto handle_sym_diff;
11698
11699 handle_sym_diff:
11700 if (saved_sym != NULL)
11701 {
11702 int reloc_size = reloc_type == 1 ? 4 : 2;
11703 bfd_vma value;
11704
11705 if (sym_index >= num_syms)
11706 error (_("MSP430 reloc contains invalid symbol index %lu\n"),
11707 sym_index);
11708 else
11709 {
11710 value = reloc->r_addend + (symtab[sym_index].st_value
11711 - saved_sym->st_value);
11712
11713 if (IN_RANGE (start, end, start + reloc->r_offset, reloc_size))
11714 byte_put (start + reloc->r_offset, value, reloc_size);
11715 else
11716 /* PR 21137 */
11717 error (_("MSP430 sym diff reloc contains invalid offset: 0x%lx\n"),
11718 (long) reloc->r_offset);
11719 }
11720
11721 saved_sym = NULL;
11722 return TRUE;
11723 }
11724 break;
11725
11726 default:
11727 if (saved_sym != NULL)
11728 error (_("Unhandled MSP430 reloc type found after SYM_DIFF reloc\n"));
11729 break;
11730 }
11731 break;
11732 }
11733
11734 case EM_MN10300:
11735 case EM_CYGNUS_MN10300:
11736 {
11737 static Elf_Internal_Sym * saved_sym = NULL;
11738
11739 if (reloc == NULL)
11740 {
11741 saved_sym = NULL;
11742 return TRUE;
11743 }
11744
11745 switch (reloc_type)
11746 {
11747 case 34: /* R_MN10300_ALIGN */
11748 return TRUE;
11749 case 33: /* R_MN10300_SYM_DIFF */
11750 if (sym_index >= num_syms)
11751 error (_("MN10300_SYM_DIFF reloc contains invalid symbol index %lu\n"),
11752 sym_index);
11753 else
11754 saved_sym = symtab + sym_index;
11755 return TRUE;
11756
11757 case 1: /* R_MN10300_32 */
11758 case 2: /* R_MN10300_16 */
11759 if (saved_sym != NULL)
11760 {
11761 int reloc_size = reloc_type == 1 ? 4 : 2;
11762 bfd_vma value;
11763
11764 if (sym_index >= num_syms)
11765 error (_("MN10300 reloc contains invalid symbol index %lu\n"),
11766 sym_index);
11767 else
11768 {
11769 value = reloc->r_addend + (symtab[sym_index].st_value
11770 - saved_sym->st_value);
11771
11772 if (IN_RANGE (start, end, start + reloc->r_offset, reloc_size))
11773 byte_put (start + reloc->r_offset, value, reloc_size);
11774 else
11775 error (_("MN10300 sym diff reloc contains invalid offset: 0x%lx\n"),
11776 (long) reloc->r_offset);
11777 }
11778
11779 saved_sym = NULL;
11780 return TRUE;
11781 }
11782 break;
11783 default:
11784 if (saved_sym != NULL)
11785 error (_("Unhandled MN10300 reloc type found after SYM_DIFF reloc\n"));
11786 break;
11787 }
11788 break;
11789 }
11790
11791 case EM_RL78:
11792 {
11793 static bfd_vma saved_sym1 = 0;
11794 static bfd_vma saved_sym2 = 0;
11795 static bfd_vma value;
11796
11797 if (reloc == NULL)
11798 {
11799 saved_sym1 = saved_sym2 = 0;
11800 return TRUE;
11801 }
11802
11803 switch (reloc_type)
11804 {
11805 case 0x80: /* R_RL78_SYM. */
11806 saved_sym1 = saved_sym2;
11807 if (sym_index >= num_syms)
11808 error (_("RL78_SYM reloc contains invalid symbol index %lu\n"),
11809 sym_index);
11810 else
11811 {
11812 saved_sym2 = symtab[sym_index].st_value;
11813 saved_sym2 += reloc->r_addend;
11814 }
11815 return TRUE;
11816
11817 case 0x83: /* R_RL78_OPsub. */
11818 value = saved_sym1 - saved_sym2;
11819 saved_sym2 = saved_sym1 = 0;
11820 return TRUE;
11821 break;
11822
11823 case 0x41: /* R_RL78_ABS32. */
11824 if (IN_RANGE (start, end, start + reloc->r_offset, 4))
11825 byte_put (start + reloc->r_offset, value, 4);
11826 else
11827 error (_("RL78 sym diff reloc contains invalid offset: 0x%lx\n"),
11828 (long) reloc->r_offset);
11829 value = 0;
11830 return TRUE;
11831
11832 case 0x43: /* R_RL78_ABS16. */
11833 if (IN_RANGE (start, end, start + reloc->r_offset, 2))
11834 byte_put (start + reloc->r_offset, value, 2);
11835 else
11836 error (_("RL78 sym diff reloc contains invalid offset: 0x%lx\n"),
11837 (long) reloc->r_offset);
11838 value = 0;
11839 return TRUE;
11840
11841 default:
11842 break;
11843 }
11844 break;
11845 }
11846 }
11847
11848 return FALSE;
11849 }
11850
11851 /* Returns TRUE iff RELOC_TYPE is a 32-bit absolute RELA relocation used in
11852 DWARF debug sections. This is a target specific test. Note - we do not
11853 go through the whole including-target-headers-multiple-times route, (as
11854 we have already done with <elf/h8.h>) because this would become very
11855 messy and even then this function would have to contain target specific
11856 information (the names of the relocs instead of their numeric values).
11857 FIXME: This is not the correct way to solve this problem. The proper way
11858 is to have target specific reloc sizing and typing functions created by
11859 the reloc-macros.h header, in the same way that it already creates the
11860 reloc naming functions. */
11861
11862 static bfd_boolean
11863 is_32bit_abs_reloc (unsigned int reloc_type)
11864 {
11865 /* Please keep this table alpha-sorted for ease of visual lookup. */
11866 switch (elf_header.e_machine)
11867 {
11868 case EM_386:
11869 case EM_IAMCU:
11870 return reloc_type == 1; /* R_386_32. */
11871 case EM_68K:
11872 return reloc_type == 1; /* R_68K_32. */
11873 case EM_860:
11874 return reloc_type == 1; /* R_860_32. */
11875 case EM_960:
11876 return reloc_type == 2; /* R_960_32. */
11877 case EM_AARCH64:
11878 return (reloc_type == 258
11879 || reloc_type == 1); /* R_AARCH64_ABS32 || R_AARCH64_P32_ABS32 */
11880 case EM_ADAPTEVA_EPIPHANY:
11881 return reloc_type == 3;
11882 case EM_ALPHA:
11883 return reloc_type == 1; /* R_ALPHA_REFLONG. */
11884 case EM_ARC:
11885 return reloc_type == 1; /* R_ARC_32. */
11886 case EM_ARC_COMPACT:
11887 case EM_ARC_COMPACT2:
11888 return reloc_type == 4; /* R_ARC_32. */
11889 case EM_ARM:
11890 return reloc_type == 2; /* R_ARM_ABS32 */
11891 case EM_AVR_OLD:
11892 case EM_AVR:
11893 return reloc_type == 1;
11894 case EM_BLACKFIN:
11895 return reloc_type == 0x12; /* R_byte4_data. */
11896 case EM_CRIS:
11897 return reloc_type == 3; /* R_CRIS_32. */
11898 case EM_CR16:
11899 return reloc_type == 3; /* R_CR16_NUM32. */
11900 case EM_CRX:
11901 return reloc_type == 15; /* R_CRX_NUM32. */
11902 case EM_CYGNUS_FRV:
11903 return reloc_type == 1;
11904 case EM_CYGNUS_D10V:
11905 case EM_D10V:
11906 return reloc_type == 6; /* R_D10V_32. */
11907 case EM_CYGNUS_D30V:
11908 case EM_D30V:
11909 return reloc_type == 12; /* R_D30V_32_NORMAL. */
11910 case EM_DLX:
11911 return reloc_type == 3; /* R_DLX_RELOC_32. */
11912 case EM_CYGNUS_FR30:
11913 case EM_FR30:
11914 return reloc_type == 3; /* R_FR30_32. */
11915 case EM_FT32:
11916 return reloc_type == 1; /* R_FT32_32. */
11917 case EM_H8S:
11918 case EM_H8_300:
11919 case EM_H8_300H:
11920 return reloc_type == 1; /* R_H8_DIR32. */
11921 case EM_IA_64:
11922 return reloc_type == 0x65 /* R_IA64_SECREL32LSB. */
11923 || reloc_type == 0x25; /* R_IA64_DIR32LSB. */
11924 case EM_IP2K_OLD:
11925 case EM_IP2K:
11926 return reloc_type == 2; /* R_IP2K_32. */
11927 case EM_IQ2000:
11928 return reloc_type == 2; /* R_IQ2000_32. */
11929 case EM_LATTICEMICO32:
11930 return reloc_type == 3; /* R_LM32_32. */
11931 case EM_M32C_OLD:
11932 case EM_M32C:
11933 return reloc_type == 3; /* R_M32C_32. */
11934 case EM_M32R:
11935 return reloc_type == 34; /* R_M32R_32_RELA. */
11936 case EM_68HC11:
11937 case EM_68HC12:
11938 return reloc_type == 6; /* R_M68HC11_32. */
11939 case EM_MCORE:
11940 return reloc_type == 1; /* R_MCORE_ADDR32. */
11941 case EM_CYGNUS_MEP:
11942 return reloc_type == 4; /* R_MEP_32. */
11943 case EM_METAG:
11944 return reloc_type == 2; /* R_METAG_ADDR32. */
11945 case EM_MICROBLAZE:
11946 return reloc_type == 1; /* R_MICROBLAZE_32. */
11947 case EM_MIPS:
11948 return reloc_type == 2; /* R_MIPS_32. */
11949 case EM_MMIX:
11950 return reloc_type == 4; /* R_MMIX_32. */
11951 case EM_CYGNUS_MN10200:
11952 case EM_MN10200:
11953 return reloc_type == 1; /* R_MN10200_32. */
11954 case EM_CYGNUS_MN10300:
11955 case EM_MN10300:
11956 return reloc_type == 1; /* R_MN10300_32. */
11957 case EM_MOXIE:
11958 return reloc_type == 1; /* R_MOXIE_32. */
11959 case EM_MSP430_OLD:
11960 case EM_MSP430:
11961 return reloc_type == 1; /* R_MSP430_32 or R_MSP320_ABS32. */
11962 case EM_MT:
11963 return reloc_type == 2; /* R_MT_32. */
11964 case EM_NDS32:
11965 return reloc_type == 20; /* R_NDS32_RELA. */
11966 case EM_ALTERA_NIOS2:
11967 return reloc_type == 12; /* R_NIOS2_BFD_RELOC_32. */
11968 case EM_NIOS32:
11969 return reloc_type == 1; /* R_NIOS_32. */
11970 case EM_OR1K:
11971 return reloc_type == 1; /* R_OR1K_32. */
11972 case EM_PARISC:
11973 return (reloc_type == 1 /* R_PARISC_DIR32. */
11974 || reloc_type == 41); /* R_PARISC_SECREL32. */
11975 case EM_PJ:
11976 case EM_PJ_OLD:
11977 return reloc_type == 1; /* R_PJ_DATA_DIR32. */
11978 case EM_PPC64:
11979 return reloc_type == 1; /* R_PPC64_ADDR32. */
11980 case EM_PPC:
11981 return reloc_type == 1; /* R_PPC_ADDR32. */
11982 case EM_TI_PRU:
11983 return reloc_type == 11; /* R_PRU_BFD_RELOC_32. */
11984 case EM_RISCV:
11985 return reloc_type == 1; /* R_RISCV_32. */
11986 case EM_RL78:
11987 return reloc_type == 1; /* R_RL78_DIR32. */
11988 case EM_RX:
11989 return reloc_type == 1; /* R_RX_DIR32. */
11990 case EM_S370:
11991 return reloc_type == 1; /* R_I370_ADDR31. */
11992 case EM_S390_OLD:
11993 case EM_S390:
11994 return reloc_type == 4; /* R_S390_32. */
11995 case EM_SCORE:
11996 return reloc_type == 8; /* R_SCORE_ABS32. */
11997 case EM_SH:
11998 return reloc_type == 1; /* R_SH_DIR32. */
11999 case EM_SPARC32PLUS:
12000 case EM_SPARCV9:
12001 case EM_SPARC:
12002 return reloc_type == 3 /* R_SPARC_32. */
12003 || reloc_type == 23; /* R_SPARC_UA32. */
12004 case EM_SPU:
12005 return reloc_type == 6; /* R_SPU_ADDR32 */
12006 case EM_TI_C6000:
12007 return reloc_type == 1; /* R_C6000_ABS32. */
12008 case EM_TILEGX:
12009 return reloc_type == 2; /* R_TILEGX_32. */
12010 case EM_TILEPRO:
12011 return reloc_type == 1; /* R_TILEPRO_32. */
12012 case EM_CYGNUS_V850:
12013 case EM_V850:
12014 return reloc_type == 6; /* R_V850_ABS32. */
12015 case EM_V800:
12016 return reloc_type == 0x33; /* R_V810_WORD. */
12017 case EM_VAX:
12018 return reloc_type == 1; /* R_VAX_32. */
12019 case EM_VISIUM:
12020 return reloc_type == 3; /* R_VISIUM_32. */
12021 case EM_X86_64:
12022 case EM_L1OM:
12023 case EM_K1OM:
12024 return reloc_type == 10; /* R_X86_64_32. */
12025 case EM_XC16X:
12026 case EM_C166:
12027 return reloc_type == 3; /* R_XC16C_ABS_32. */
12028 case EM_XGATE:
12029 return reloc_type == 4; /* R_XGATE_32. */
12030 case EM_XSTORMY16:
12031 return reloc_type == 1; /* R_XSTROMY16_32. */
12032 case EM_XTENSA_OLD:
12033 case EM_XTENSA:
12034 return reloc_type == 1; /* R_XTENSA_32. */
12035 default:
12036 {
12037 static unsigned int prev_warn = 0;
12038
12039 /* Avoid repeating the same warning multiple times. */
12040 if (prev_warn != elf_header.e_machine)
12041 error (_("Missing knowledge of 32-bit reloc types used in DWARF sections of machine number %d\n"),
12042 elf_header.e_machine);
12043 prev_warn = elf_header.e_machine;
12044 return FALSE;
12045 }
12046 }
12047 }
12048
12049 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12050 a 32-bit pc-relative RELA relocation used in DWARF debug sections. */
12051
12052 static bfd_boolean
12053 is_32bit_pcrel_reloc (unsigned int reloc_type)
12054 {
12055 switch (elf_header.e_machine)
12056 /* Please keep this table alpha-sorted for ease of visual lookup. */
12057 {
12058 case EM_386:
12059 case EM_IAMCU:
12060 return reloc_type == 2; /* R_386_PC32. */
12061 case EM_68K:
12062 return reloc_type == 4; /* R_68K_PC32. */
12063 case EM_AARCH64:
12064 return reloc_type == 261; /* R_AARCH64_PREL32 */
12065 case EM_ADAPTEVA_EPIPHANY:
12066 return reloc_type == 6;
12067 case EM_ALPHA:
12068 return reloc_type == 10; /* R_ALPHA_SREL32. */
12069 case EM_ARC_COMPACT:
12070 case EM_ARC_COMPACT2:
12071 return reloc_type == 49; /* R_ARC_32_PCREL. */
12072 case EM_ARM:
12073 return reloc_type == 3; /* R_ARM_REL32 */
12074 case EM_AVR_OLD:
12075 case EM_AVR:
12076 return reloc_type == 36; /* R_AVR_32_PCREL. */
12077 case EM_MICROBLAZE:
12078 return reloc_type == 2; /* R_MICROBLAZE_32_PCREL. */
12079 case EM_OR1K:
12080 return reloc_type == 9; /* R_OR1K_32_PCREL. */
12081 case EM_PARISC:
12082 return reloc_type == 9; /* R_PARISC_PCREL32. */
12083 case EM_PPC:
12084 return reloc_type == 26; /* R_PPC_REL32. */
12085 case EM_PPC64:
12086 return reloc_type == 26; /* R_PPC64_REL32. */
12087 case EM_S390_OLD:
12088 case EM_S390:
12089 return reloc_type == 5; /* R_390_PC32. */
12090 case EM_SH:
12091 return reloc_type == 2; /* R_SH_REL32. */
12092 case EM_SPARC32PLUS:
12093 case EM_SPARCV9:
12094 case EM_SPARC:
12095 return reloc_type == 6; /* R_SPARC_DISP32. */
12096 case EM_SPU:
12097 return reloc_type == 13; /* R_SPU_REL32. */
12098 case EM_TILEGX:
12099 return reloc_type == 6; /* R_TILEGX_32_PCREL. */
12100 case EM_TILEPRO:
12101 return reloc_type == 4; /* R_TILEPRO_32_PCREL. */
12102 case EM_VISIUM:
12103 return reloc_type == 6; /* R_VISIUM_32_PCREL */
12104 case EM_X86_64:
12105 case EM_L1OM:
12106 case EM_K1OM:
12107 return reloc_type == 2; /* R_X86_64_PC32. */
12108 case EM_XTENSA_OLD:
12109 case EM_XTENSA:
12110 return reloc_type == 14; /* R_XTENSA_32_PCREL. */
12111 default:
12112 /* Do not abort or issue an error message here. Not all targets use
12113 pc-relative 32-bit relocs in their DWARF debug information and we
12114 have already tested for target coverage in is_32bit_abs_reloc. A
12115 more helpful warning message will be generated by apply_relocations
12116 anyway, so just return. */
12117 return FALSE;
12118 }
12119 }
12120
12121 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12122 a 64-bit absolute RELA relocation used in DWARF debug sections. */
12123
12124 static bfd_boolean
12125 is_64bit_abs_reloc (unsigned int reloc_type)
12126 {
12127 switch (elf_header.e_machine)
12128 {
12129 case EM_AARCH64:
12130 return reloc_type == 257; /* R_AARCH64_ABS64. */
12131 case EM_ALPHA:
12132 return reloc_type == 2; /* R_ALPHA_REFQUAD. */
12133 case EM_IA_64:
12134 return reloc_type == 0x27; /* R_IA64_DIR64LSB. */
12135 case EM_PARISC:
12136 return reloc_type == 80; /* R_PARISC_DIR64. */
12137 case EM_PPC64:
12138 return reloc_type == 38; /* R_PPC64_ADDR64. */
12139 case EM_RISCV:
12140 return reloc_type == 2; /* R_RISCV_64. */
12141 case EM_SPARC32PLUS:
12142 case EM_SPARCV9:
12143 case EM_SPARC:
12144 return reloc_type == 54; /* R_SPARC_UA64. */
12145 case EM_X86_64:
12146 case EM_L1OM:
12147 case EM_K1OM:
12148 return reloc_type == 1; /* R_X86_64_64. */
12149 case EM_S390_OLD:
12150 case EM_S390:
12151 return reloc_type == 22; /* R_S390_64. */
12152 case EM_TILEGX:
12153 return reloc_type == 1; /* R_TILEGX_64. */
12154 case EM_MIPS:
12155 return reloc_type == 18; /* R_MIPS_64. */
12156 default:
12157 return FALSE;
12158 }
12159 }
12160
12161 /* Like is_32bit_pcrel_reloc except that it returns TRUE iff RELOC_TYPE is
12162 a 64-bit pc-relative RELA relocation used in DWARF debug sections. */
12163
12164 static bfd_boolean
12165 is_64bit_pcrel_reloc (unsigned int reloc_type)
12166 {
12167 switch (elf_header.e_machine)
12168 {
12169 case EM_AARCH64:
12170 return reloc_type == 260; /* R_AARCH64_PREL64. */
12171 case EM_ALPHA:
12172 return reloc_type == 11; /* R_ALPHA_SREL64. */
12173 case EM_IA_64:
12174 return reloc_type == 0x4f; /* R_IA64_PCREL64LSB. */
12175 case EM_PARISC:
12176 return reloc_type == 72; /* R_PARISC_PCREL64. */
12177 case EM_PPC64:
12178 return reloc_type == 44; /* R_PPC64_REL64. */
12179 case EM_SPARC32PLUS:
12180 case EM_SPARCV9:
12181 case EM_SPARC:
12182 return reloc_type == 46; /* R_SPARC_DISP64. */
12183 case EM_X86_64:
12184 case EM_L1OM:
12185 case EM_K1OM:
12186 return reloc_type == 24; /* R_X86_64_PC64. */
12187 case EM_S390_OLD:
12188 case EM_S390:
12189 return reloc_type == 23; /* R_S390_PC64. */
12190 case EM_TILEGX:
12191 return reloc_type == 5; /* R_TILEGX_64_PCREL. */
12192 default:
12193 return FALSE;
12194 }
12195 }
12196
12197 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12198 a 24-bit absolute RELA relocation used in DWARF debug sections. */
12199
12200 static bfd_boolean
12201 is_24bit_abs_reloc (unsigned int reloc_type)
12202 {
12203 switch (elf_header.e_machine)
12204 {
12205 case EM_CYGNUS_MN10200:
12206 case EM_MN10200:
12207 return reloc_type == 4; /* R_MN10200_24. */
12208 case EM_FT32:
12209 return reloc_type == 5; /* R_FT32_20. */
12210 default:
12211 return FALSE;
12212 }
12213 }
12214
12215 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12216 a 16-bit absolute RELA relocation used in DWARF debug sections. */
12217
12218 static bfd_boolean
12219 is_16bit_abs_reloc (unsigned int reloc_type)
12220 {
12221 /* Please keep this table alpha-sorted for ease of visual lookup. */
12222 switch (elf_header.e_machine)
12223 {
12224 case EM_ARC:
12225 case EM_ARC_COMPACT:
12226 case EM_ARC_COMPACT2:
12227 return reloc_type == 2; /* R_ARC_16. */
12228 case EM_ADAPTEVA_EPIPHANY:
12229 return reloc_type == 5;
12230 case EM_AVR_OLD:
12231 case EM_AVR:
12232 return reloc_type == 4; /* R_AVR_16. */
12233 case EM_CYGNUS_D10V:
12234 case EM_D10V:
12235 return reloc_type == 3; /* R_D10V_16. */
12236 case EM_H8S:
12237 case EM_H8_300:
12238 case EM_H8_300H:
12239 return reloc_type == R_H8_DIR16;
12240 case EM_IP2K_OLD:
12241 case EM_IP2K:
12242 return reloc_type == 1; /* R_IP2K_16. */
12243 case EM_M32C_OLD:
12244 case EM_M32C:
12245 return reloc_type == 1; /* R_M32C_16 */
12246 case EM_CYGNUS_MN10200:
12247 case EM_MN10200:
12248 return reloc_type == 2; /* R_MN10200_16. */
12249 case EM_CYGNUS_MN10300:
12250 case EM_MN10300:
12251 return reloc_type == 2; /* R_MN10300_16. */
12252 case EM_MSP430:
12253 if (uses_msp430x_relocs ())
12254 return reloc_type == 2; /* R_MSP430_ABS16. */
12255 /* Fall through. */
12256 case EM_MSP430_OLD:
12257 return reloc_type == 5; /* R_MSP430_16_BYTE. */
12258 case EM_NDS32:
12259 return reloc_type == 19; /* R_NDS32_RELA. */
12260 case EM_ALTERA_NIOS2:
12261 return reloc_type == 13; /* R_NIOS2_BFD_RELOC_16. */
12262 case EM_NIOS32:
12263 return reloc_type == 9; /* R_NIOS_16. */
12264 case EM_OR1K:
12265 return reloc_type == 2; /* R_OR1K_16. */
12266 case EM_TI_PRU:
12267 return reloc_type == 8; /* R_PRU_BFD_RELOC_16. */
12268 case EM_TI_C6000:
12269 return reloc_type == 2; /* R_C6000_ABS16. */
12270 case EM_VISIUM:
12271 return reloc_type == 2; /* R_VISIUM_16. */
12272 case EM_XC16X:
12273 case EM_C166:
12274 return reloc_type == 2; /* R_XC16C_ABS_16. */
12275 case EM_XGATE:
12276 return reloc_type == 3; /* R_XGATE_16. */
12277 default:
12278 return FALSE;
12279 }
12280 }
12281
12282 /* Returns TRUE iff RELOC_TYPE is a NONE relocation used for discarded
12283 relocation entries (possibly formerly used for SHT_GROUP sections). */
12284
12285 static bfd_boolean
12286 is_none_reloc (unsigned int reloc_type)
12287 {
12288 switch (elf_header.e_machine)
12289 {
12290 case EM_386: /* R_386_NONE. */
12291 case EM_68K: /* R_68K_NONE. */
12292 case EM_ADAPTEVA_EPIPHANY:
12293 case EM_ALPHA: /* R_ALPHA_NONE. */
12294 case EM_ALTERA_NIOS2: /* R_NIOS2_NONE. */
12295 case EM_ARC: /* R_ARC_NONE. */
12296 case EM_ARC_COMPACT2: /* R_ARC_NONE. */
12297 case EM_ARC_COMPACT: /* R_ARC_NONE. */
12298 case EM_ARM: /* R_ARM_NONE. */
12299 case EM_C166: /* R_XC16X_NONE. */
12300 case EM_CRIS: /* R_CRIS_NONE. */
12301 case EM_FT32: /* R_FT32_NONE. */
12302 case EM_IA_64: /* R_IA64_NONE. */
12303 case EM_K1OM: /* R_X86_64_NONE. */
12304 case EM_L1OM: /* R_X86_64_NONE. */
12305 case EM_M32R: /* R_M32R_NONE. */
12306 case EM_MIPS: /* R_MIPS_NONE. */
12307 case EM_MN10300: /* R_MN10300_NONE. */
12308 case EM_MOXIE: /* R_MOXIE_NONE. */
12309 case EM_NIOS32: /* R_NIOS_NONE. */
12310 case EM_OR1K: /* R_OR1K_NONE. */
12311 case EM_PARISC: /* R_PARISC_NONE. */
12312 case EM_PPC64: /* R_PPC64_NONE. */
12313 case EM_PPC: /* R_PPC_NONE. */
12314 case EM_RISCV: /* R_RISCV_NONE. */
12315 case EM_S390: /* R_390_NONE. */
12316 case EM_S390_OLD:
12317 case EM_SH: /* R_SH_NONE. */
12318 case EM_SPARC32PLUS:
12319 case EM_SPARC: /* R_SPARC_NONE. */
12320 case EM_SPARCV9:
12321 case EM_TILEGX: /* R_TILEGX_NONE. */
12322 case EM_TILEPRO: /* R_TILEPRO_NONE. */
12323 case EM_TI_C6000:/* R_C6000_NONE. */
12324 case EM_X86_64: /* R_X86_64_NONE. */
12325 case EM_XC16X:
12326 return reloc_type == 0;
12327
12328 case EM_AARCH64:
12329 return reloc_type == 0 || reloc_type == 256;
12330 case EM_AVR_OLD:
12331 case EM_AVR:
12332 return (reloc_type == 0 /* R_AVR_NONE. */
12333 || reloc_type == 30 /* R_AVR_DIFF8. */
12334 || reloc_type == 31 /* R_AVR_DIFF16. */
12335 || reloc_type == 32 /* R_AVR_DIFF32. */);
12336 case EM_METAG:
12337 return reloc_type == 3; /* R_METAG_NONE. */
12338 case EM_NDS32:
12339 return (reloc_type == 0 /* R_XTENSA_NONE. */
12340 || reloc_type == 204 /* R_NDS32_DIFF8. */
12341 || reloc_type == 205 /* R_NDS32_DIFF16. */
12342 || reloc_type == 206 /* R_NDS32_DIFF32. */
12343 || reloc_type == 207 /* R_NDS32_ULEB128. */);
12344 case EM_TI_PRU:
12345 return (reloc_type == 0 /* R_PRU_NONE. */
12346 || reloc_type == 65 /* R_PRU_DIFF8. */
12347 || reloc_type == 66 /* R_PRU_DIFF16. */
12348 || reloc_type == 67 /* R_PRU_DIFF32. */);
12349 case EM_XTENSA_OLD:
12350 case EM_XTENSA:
12351 return (reloc_type == 0 /* R_XTENSA_NONE. */
12352 || reloc_type == 17 /* R_XTENSA_DIFF8. */
12353 || reloc_type == 18 /* R_XTENSA_DIFF16. */
12354 || reloc_type == 19 /* R_XTENSA_DIFF32. */);
12355 }
12356 return FALSE;
12357 }
12358
12359 /* Returns TRUE if there is a relocation against
12360 section NAME at OFFSET bytes. */
12361
12362 bfd_boolean
12363 reloc_at (struct dwarf_section * dsec, dwarf_vma offset)
12364 {
12365 Elf_Internal_Rela * relocs;
12366 Elf_Internal_Rela * rp;
12367
12368 if (dsec == NULL || dsec->reloc_info == NULL)
12369 return FALSE;
12370
12371 relocs = (Elf_Internal_Rela *) dsec->reloc_info;
12372
12373 for (rp = relocs; rp < relocs + dsec->num_relocs; ++rp)
12374 if (rp->r_offset == offset)
12375 return TRUE;
12376
12377 return FALSE;
12378 }
12379
12380 /* Apply relocations to a section.
12381 Note: So far support has been added only for those relocations
12382 which can be found in debug sections.
12383 If RELOCS_RETURN is non-NULL then returns in it a pointer to the
12384 loaded relocs. It is then the caller's responsibility to free them.
12385 FIXME: Add support for more relocations ? */
12386
12387 static void
12388 apply_relocations (void * file,
12389 const Elf_Internal_Shdr * section,
12390 unsigned char * start,
12391 bfd_size_type size,
12392 void ** relocs_return,
12393 unsigned long * num_relocs_return)
12394 {
12395 Elf_Internal_Shdr * relsec;
12396 unsigned char * end = start + size;
12397
12398 if (relocs_return != NULL)
12399 {
12400 * (Elf_Internal_Rela **) relocs_return = NULL;
12401 * num_relocs_return = 0;
12402 }
12403
12404 if (elf_header.e_type != ET_REL)
12405 return;
12406
12407 /* Find the reloc section associated with the section. */
12408 for (relsec = section_headers;
12409 relsec < section_headers + elf_header.e_shnum;
12410 ++relsec)
12411 {
12412 bfd_boolean is_rela;
12413 unsigned long num_relocs;
12414 Elf_Internal_Rela * relocs;
12415 Elf_Internal_Rela * rp;
12416 Elf_Internal_Shdr * symsec;
12417 Elf_Internal_Sym * symtab;
12418 unsigned long num_syms;
12419 Elf_Internal_Sym * sym;
12420
12421 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
12422 || relsec->sh_info >= elf_header.e_shnum
12423 || section_headers + relsec->sh_info != section
12424 || relsec->sh_size == 0
12425 || relsec->sh_link >= elf_header.e_shnum)
12426 continue;
12427
12428 is_rela = relsec->sh_type == SHT_RELA;
12429
12430 if (is_rela)
12431 {
12432 if (!slurp_rela_relocs ((FILE *) file, relsec->sh_offset,
12433 relsec->sh_size, & relocs, & num_relocs))
12434 return;
12435 }
12436 else
12437 {
12438 if (!slurp_rel_relocs ((FILE *) file, relsec->sh_offset,
12439 relsec->sh_size, & relocs, & num_relocs))
12440 return;
12441 }
12442
12443 /* SH uses RELA but uses in place value instead of the addend field. */
12444 if (elf_header.e_machine == EM_SH)
12445 is_rela = FALSE;
12446
12447 symsec = section_headers + relsec->sh_link;
12448 if (symsec->sh_type != SHT_SYMTAB
12449 && symsec->sh_type != SHT_DYNSYM)
12450 return;
12451 symtab = GET_ELF_SYMBOLS ((FILE *) file, symsec, & num_syms);
12452
12453 for (rp = relocs; rp < relocs + num_relocs; ++rp)
12454 {
12455 bfd_vma addend;
12456 unsigned int reloc_type;
12457 unsigned int reloc_size;
12458 unsigned char * rloc;
12459 unsigned long sym_index;
12460
12461 reloc_type = get_reloc_type (rp->r_info);
12462
12463 if (target_specific_reloc_handling (rp, start, end, symtab, num_syms))
12464 continue;
12465 else if (is_none_reloc (reloc_type))
12466 continue;
12467 else if (is_32bit_abs_reloc (reloc_type)
12468 || is_32bit_pcrel_reloc (reloc_type))
12469 reloc_size = 4;
12470 else if (is_64bit_abs_reloc (reloc_type)
12471 || is_64bit_pcrel_reloc (reloc_type))
12472 reloc_size = 8;
12473 else if (is_24bit_abs_reloc (reloc_type))
12474 reloc_size = 3;
12475 else if (is_16bit_abs_reloc (reloc_type))
12476 reloc_size = 2;
12477 else
12478 {
12479 static unsigned int prev_reloc = 0;
12480 if (reloc_type != prev_reloc)
12481 warn (_("unable to apply unsupported reloc type %d to section %s\n"),
12482 reloc_type, printable_section_name (section));
12483 prev_reloc = reloc_type;
12484 continue;
12485 }
12486
12487 rloc = start + rp->r_offset;
12488 if ((rloc + reloc_size) > end || (rloc < start))
12489 {
12490 warn (_("skipping invalid relocation offset 0x%lx in section %s\n"),
12491 (unsigned long) rp->r_offset,
12492 printable_section_name (section));
12493 continue;
12494 }
12495
12496 sym_index = (unsigned long) get_reloc_symindex (rp->r_info);
12497 if (sym_index >= num_syms)
12498 {
12499 warn (_("skipping invalid relocation symbol index 0x%lx in section %s\n"),
12500 sym_index, printable_section_name (section));
12501 continue;
12502 }
12503 sym = symtab + sym_index;
12504
12505 /* If the reloc has a symbol associated with it,
12506 make sure that it is of an appropriate type.
12507
12508 Relocations against symbols without type can happen.
12509 Gcc -feliminate-dwarf2-dups may generate symbols
12510 without type for debug info.
12511
12512 Icc generates relocations against function symbols
12513 instead of local labels.
12514
12515 Relocations against object symbols can happen, eg when
12516 referencing a global array. For an example of this see
12517 the _clz.o binary in libgcc.a. */
12518 if (sym != symtab
12519 && ELF_ST_TYPE (sym->st_info) != STT_COMMON
12520 && ELF_ST_TYPE (sym->st_info) > STT_SECTION)
12521 {
12522 warn (_("skipping unexpected symbol type %s in %ld'th relocation in section %s\n"),
12523 get_symbol_type (ELF_ST_TYPE (sym->st_info)),
12524 (long int)(rp - relocs),
12525 printable_section_name (relsec));
12526 continue;
12527 }
12528
12529 addend = 0;
12530 if (is_rela)
12531 addend += rp->r_addend;
12532 /* R_XTENSA_32, R_PJ_DATA_DIR32 and R_D30V_32_NORMAL are
12533 partial_inplace. */
12534 if (!is_rela
12535 || (elf_header.e_machine == EM_XTENSA
12536 && reloc_type == 1)
12537 || ((elf_header.e_machine == EM_PJ
12538 || elf_header.e_machine == EM_PJ_OLD)
12539 && reloc_type == 1)
12540 || ((elf_header.e_machine == EM_D30V
12541 || elf_header.e_machine == EM_CYGNUS_D30V)
12542 && reloc_type == 12))
12543 addend += byte_get (rloc, reloc_size);
12544
12545 if (is_32bit_pcrel_reloc (reloc_type)
12546 || is_64bit_pcrel_reloc (reloc_type))
12547 {
12548 /* On HPPA, all pc-relative relocations are biased by 8. */
12549 if (elf_header.e_machine == EM_PARISC)
12550 addend -= 8;
12551 byte_put (rloc, (addend + sym->st_value) - rp->r_offset,
12552 reloc_size);
12553 }
12554 else
12555 byte_put (rloc, addend + sym->st_value, reloc_size);
12556 }
12557
12558 free (symtab);
12559 /* Let the target specific reloc processing code know that
12560 we have finished with these relocs. */
12561 target_specific_reloc_handling (NULL, NULL, NULL, NULL, 0);
12562
12563 if (relocs_return)
12564 {
12565 * (Elf_Internal_Rela **) relocs_return = relocs;
12566 * num_relocs_return = num_relocs;
12567 }
12568 else
12569 free (relocs);
12570
12571 break;
12572 }
12573 }
12574
12575 #ifdef SUPPORT_DISASSEMBLY
12576 static int
12577 disassemble_section (Elf_Internal_Shdr * section, FILE * file)
12578 {
12579 printf (_("\nAssembly dump of section %s\n"), printable_section_name (section));
12580
12581 /* FIXME: XXX -- to be done --- XXX */
12582
12583 return 1;
12584 }
12585 #endif
12586
12587 /* Reads in the contents of SECTION from FILE, returning a pointer
12588 to a malloc'ed buffer or NULL if something went wrong. */
12589
12590 static char *
12591 get_section_contents (Elf_Internal_Shdr * section, FILE * file)
12592 {
12593 bfd_size_type num_bytes;
12594
12595 num_bytes = section->sh_size;
12596
12597 if (num_bytes == 0 || section->sh_type == SHT_NOBITS)
12598 {
12599 printf (_("\nSection '%s' has no data to dump.\n"),
12600 printable_section_name (section));
12601 return NULL;
12602 }
12603
12604 return (char *) get_data (NULL, file, section->sh_offset, 1, num_bytes,
12605 _("section contents"));
12606 }
12607
12608 /* Uncompresses a section that was compressed using zlib, in place. */
12609
12610 static bfd_boolean
12611 uncompress_section_contents (unsigned char **buffer,
12612 dwarf_size_type uncompressed_size,
12613 dwarf_size_type *size)
12614 {
12615 dwarf_size_type compressed_size = *size;
12616 unsigned char * compressed_buffer = *buffer;
12617 unsigned char * uncompressed_buffer;
12618 z_stream strm;
12619 int rc;
12620
12621 /* It is possible the section consists of several compressed
12622 buffers concatenated together, so we uncompress in a loop. */
12623 /* PR 18313: The state field in the z_stream structure is supposed
12624 to be invisible to the user (ie us), but some compilers will
12625 still complain about it being used without initialisation. So
12626 we first zero the entire z_stream structure and then set the fields
12627 that we need. */
12628 memset (& strm, 0, sizeof strm);
12629 strm.avail_in = compressed_size;
12630 strm.next_in = (Bytef *) compressed_buffer;
12631 strm.avail_out = uncompressed_size;
12632 uncompressed_buffer = (unsigned char *) xmalloc (uncompressed_size);
12633
12634 rc = inflateInit (& strm);
12635 while (strm.avail_in > 0)
12636 {
12637 if (rc != Z_OK)
12638 goto fail;
12639 strm.next_out = ((Bytef *) uncompressed_buffer
12640 + (uncompressed_size - strm.avail_out));
12641 rc = inflate (&strm, Z_FINISH);
12642 if (rc != Z_STREAM_END)
12643 goto fail;
12644 rc = inflateReset (& strm);
12645 }
12646 rc = inflateEnd (& strm);
12647 if (rc != Z_OK
12648 || strm.avail_out != 0)
12649 goto fail;
12650
12651 *buffer = uncompressed_buffer;
12652 *size = uncompressed_size;
12653 return TRUE;
12654
12655 fail:
12656 free (uncompressed_buffer);
12657 /* Indicate decompression failure. */
12658 *buffer = NULL;
12659 return FALSE;
12660 }
12661
12662 static void
12663 dump_section_as_strings (Elf_Internal_Shdr * section, FILE * file)
12664 {
12665 Elf_Internal_Shdr * relsec;
12666 bfd_size_type num_bytes;
12667 unsigned char * data;
12668 unsigned char * end;
12669 unsigned char * real_start;
12670 unsigned char * start;
12671 bfd_boolean some_strings_shown;
12672
12673 real_start = start = (unsigned char *) get_section_contents (section,
12674 file);
12675 if (start == NULL)
12676 return;
12677 num_bytes = section->sh_size;
12678
12679 printf (_("\nString dump of section '%s':\n"), printable_section_name (section));
12680
12681 if (decompress_dumps)
12682 {
12683 dwarf_size_type new_size = num_bytes;
12684 dwarf_size_type uncompressed_size = 0;
12685
12686 if ((section->sh_flags & SHF_COMPRESSED) != 0)
12687 {
12688 Elf_Internal_Chdr chdr;
12689 unsigned int compression_header_size
12690 = get_compression_header (& chdr, (unsigned char *) start,
12691 num_bytes);
12692
12693 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
12694 {
12695 warn (_("section '%s' has unsupported compress type: %d\n"),
12696 printable_section_name (section), chdr.ch_type);
12697 return;
12698 }
12699 else if (chdr.ch_addralign != section->sh_addralign)
12700 {
12701 warn (_("compressed section '%s' is corrupted\n"),
12702 printable_section_name (section));
12703 return;
12704 }
12705 uncompressed_size = chdr.ch_size;
12706 start += compression_header_size;
12707 new_size -= compression_header_size;
12708 }
12709 else if (new_size > 12 && streq ((char *) start, "ZLIB"))
12710 {
12711 /* Read the zlib header. In this case, it should be "ZLIB"
12712 followed by the uncompressed section size, 8 bytes in
12713 big-endian order. */
12714 uncompressed_size = start[4]; uncompressed_size <<= 8;
12715 uncompressed_size += start[5]; uncompressed_size <<= 8;
12716 uncompressed_size += start[6]; uncompressed_size <<= 8;
12717 uncompressed_size += start[7]; uncompressed_size <<= 8;
12718 uncompressed_size += start[8]; uncompressed_size <<= 8;
12719 uncompressed_size += start[9]; uncompressed_size <<= 8;
12720 uncompressed_size += start[10]; uncompressed_size <<= 8;
12721 uncompressed_size += start[11];
12722 start += 12;
12723 new_size -= 12;
12724 }
12725
12726 if (uncompressed_size)
12727 {
12728 if (uncompress_section_contents (& start,
12729 uncompressed_size, & new_size))
12730 num_bytes = new_size;
12731 else
12732 {
12733 error (_("Unable to decompress section %s\n"),
12734 printable_section_name (section));
12735 return;
12736 }
12737 }
12738 else
12739 start = real_start;
12740 }
12741
12742 /* If the section being dumped has relocations against it the user might
12743 be expecting these relocations to have been applied. Check for this
12744 case and issue a warning message in order to avoid confusion.
12745 FIXME: Maybe we ought to have an option that dumps a section with
12746 relocs applied ? */
12747 for (relsec = section_headers;
12748 relsec < section_headers + elf_header.e_shnum;
12749 ++relsec)
12750 {
12751 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
12752 || relsec->sh_info >= elf_header.e_shnum
12753 || section_headers + relsec->sh_info != section
12754 || relsec->sh_size == 0
12755 || relsec->sh_link >= elf_header.e_shnum)
12756 continue;
12757
12758 printf (_(" Note: This section has relocations against it, but these have NOT been applied to this dump.\n"));
12759 break;
12760 }
12761
12762 data = start;
12763 end = start + num_bytes;
12764 some_strings_shown = FALSE;
12765
12766 while (data < end)
12767 {
12768 while (!ISPRINT (* data))
12769 if (++ data >= end)
12770 break;
12771
12772 if (data < end)
12773 {
12774 size_t maxlen = end - data;
12775
12776 #ifndef __MSVCRT__
12777 /* PR 11128: Use two separate invocations in order to work
12778 around bugs in the Solaris 8 implementation of printf. */
12779 printf (" [%6tx] ", data - start);
12780 #else
12781 printf (" [%6Ix] ", (size_t) (data - start));
12782 #endif
12783 if (maxlen > 0)
12784 {
12785 print_symbol ((int) maxlen, (const char *) data);
12786 putchar ('\n');
12787 data += strnlen ((const char *) data, maxlen);
12788 }
12789 else
12790 {
12791 printf (_("<corrupt>\n"));
12792 data = end;
12793 }
12794 some_strings_shown = TRUE;
12795 }
12796 }
12797
12798 if (! some_strings_shown)
12799 printf (_(" No strings found in this section."));
12800
12801 free (real_start);
12802
12803 putchar ('\n');
12804 }
12805
12806 static void
12807 dump_section_as_bytes (Elf_Internal_Shdr * section,
12808 FILE * file,
12809 bfd_boolean relocate)
12810 {
12811 Elf_Internal_Shdr * relsec;
12812 bfd_size_type bytes;
12813 bfd_size_type section_size;
12814 bfd_vma addr;
12815 unsigned char * data;
12816 unsigned char * real_start;
12817 unsigned char * start;
12818
12819 real_start = start = (unsigned char *) get_section_contents (section, file);
12820 if (start == NULL)
12821 return;
12822 section_size = section->sh_size;
12823
12824 printf (_("\nHex dump of section '%s':\n"), printable_section_name (section));
12825
12826 if (decompress_dumps)
12827 {
12828 dwarf_size_type new_size = section_size;
12829 dwarf_size_type uncompressed_size = 0;
12830
12831 if ((section->sh_flags & SHF_COMPRESSED) != 0)
12832 {
12833 Elf_Internal_Chdr chdr;
12834 unsigned int compression_header_size
12835 = get_compression_header (& chdr, start, section_size);
12836
12837 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
12838 {
12839 warn (_("section '%s' has unsupported compress type: %d\n"),
12840 printable_section_name (section), chdr.ch_type);
12841 return;
12842 }
12843 else if (chdr.ch_addralign != section->sh_addralign)
12844 {
12845 warn (_("compressed section '%s' is corrupted\n"),
12846 printable_section_name (section));
12847 return;
12848 }
12849 uncompressed_size = chdr.ch_size;
12850 start += compression_header_size;
12851 new_size -= compression_header_size;
12852 }
12853 else if (new_size > 12 && streq ((char *) start, "ZLIB"))
12854 {
12855 /* Read the zlib header. In this case, it should be "ZLIB"
12856 followed by the uncompressed section size, 8 bytes in
12857 big-endian order. */
12858 uncompressed_size = start[4]; uncompressed_size <<= 8;
12859 uncompressed_size += start[5]; uncompressed_size <<= 8;
12860 uncompressed_size += start[6]; uncompressed_size <<= 8;
12861 uncompressed_size += start[7]; uncompressed_size <<= 8;
12862 uncompressed_size += start[8]; uncompressed_size <<= 8;
12863 uncompressed_size += start[9]; uncompressed_size <<= 8;
12864 uncompressed_size += start[10]; uncompressed_size <<= 8;
12865 uncompressed_size += start[11];
12866 start += 12;
12867 new_size -= 12;
12868 }
12869
12870 if (uncompressed_size)
12871 {
12872 if (uncompress_section_contents (& start, uncompressed_size,
12873 & new_size))
12874 {
12875 section_size = new_size;
12876 }
12877 else
12878 {
12879 error (_("Unable to decompress section %s\n"),
12880 printable_section_name (section));
12881 /* FIXME: Print the section anyway ? */
12882 return;
12883 }
12884 }
12885 else
12886 start = real_start;
12887 }
12888
12889 if (relocate)
12890 {
12891 apply_relocations (file, section, start, section_size, NULL, NULL);
12892 }
12893 else
12894 {
12895 /* If the section being dumped has relocations against it the user might
12896 be expecting these relocations to have been applied. Check for this
12897 case and issue a warning message in order to avoid confusion.
12898 FIXME: Maybe we ought to have an option that dumps a section with
12899 relocs applied ? */
12900 for (relsec = section_headers;
12901 relsec < section_headers + elf_header.e_shnum;
12902 ++relsec)
12903 {
12904 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
12905 || relsec->sh_info >= elf_header.e_shnum
12906 || section_headers + relsec->sh_info != section
12907 || relsec->sh_size == 0
12908 || relsec->sh_link >= elf_header.e_shnum)
12909 continue;
12910
12911 printf (_(" NOTE: This section has relocations against it, but these have NOT been applied to this dump.\n"));
12912 break;
12913 }
12914 }
12915
12916 addr = section->sh_addr;
12917 bytes = section_size;
12918 data = start;
12919
12920 while (bytes)
12921 {
12922 int j;
12923 int k;
12924 int lbytes;
12925
12926 lbytes = (bytes > 16 ? 16 : bytes);
12927
12928 printf (" 0x%8.8lx ", (unsigned long) addr);
12929
12930 for (j = 0; j < 16; j++)
12931 {
12932 if (j < lbytes)
12933 printf ("%2.2x", data[j]);
12934 else
12935 printf (" ");
12936
12937 if ((j & 3) == 3)
12938 printf (" ");
12939 }
12940
12941 for (j = 0; j < lbytes; j++)
12942 {
12943 k = data[j];
12944 if (k >= ' ' && k < 0x7f)
12945 printf ("%c", k);
12946 else
12947 printf (".");
12948 }
12949
12950 putchar ('\n');
12951
12952 data += lbytes;
12953 addr += lbytes;
12954 bytes -= lbytes;
12955 }
12956
12957 free (real_start);
12958
12959 putchar ('\n');
12960 }
12961
12962 static int
12963 load_specific_debug_section (enum dwarf_section_display_enum debug,
12964 const Elf_Internal_Shdr * sec, void * file)
12965 {
12966 struct dwarf_section * section = &debug_displays [debug].section;
12967 char buf [64];
12968
12969 /* If it is already loaded, do nothing. */
12970 if (section->start != NULL)
12971 return 1;
12972
12973 snprintf (buf, sizeof (buf), _("%s section data"), section->name);
12974 section->address = sec->sh_addr;
12975 section->user_data = NULL;
12976 section->start = (unsigned char *) get_data (NULL, (FILE *) file,
12977 sec->sh_offset, 1,
12978 sec->sh_size, buf);
12979 if (section->start == NULL)
12980 section->size = 0;
12981 else
12982 {
12983 unsigned char *start = section->start;
12984 dwarf_size_type size = sec->sh_size;
12985 dwarf_size_type uncompressed_size = 0;
12986
12987 if ((sec->sh_flags & SHF_COMPRESSED) != 0)
12988 {
12989 Elf_Internal_Chdr chdr;
12990 unsigned int compression_header_size;
12991
12992 if (size < (is_32bit_elf
12993 ? sizeof (Elf32_External_Chdr)
12994 : sizeof (Elf64_External_Chdr)))
12995 {
12996 warn (_("compressed section %s is too small to contain a compression header"),
12997 section->name);
12998 return 0;
12999 }
13000
13001 compression_header_size = get_compression_header (&chdr, start, size);
13002
13003 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
13004 {
13005 warn (_("section '%s' has unsupported compress type: %d\n"),
13006 section->name, chdr.ch_type);
13007 return 0;
13008 }
13009 else if (chdr.ch_addralign != sec->sh_addralign)
13010 {
13011 warn (_("compressed section '%s' is corrupted\n"),
13012 section->name);
13013 return 0;
13014 }
13015 uncompressed_size = chdr.ch_size;
13016 start += compression_header_size;
13017 size -= compression_header_size;
13018 }
13019 else if (size > 12 && streq ((char *) start, "ZLIB"))
13020 {
13021 /* Read the zlib header. In this case, it should be "ZLIB"
13022 followed by the uncompressed section size, 8 bytes in
13023 big-endian order. */
13024 uncompressed_size = start[4]; uncompressed_size <<= 8;
13025 uncompressed_size += start[5]; uncompressed_size <<= 8;
13026 uncompressed_size += start[6]; uncompressed_size <<= 8;
13027 uncompressed_size += start[7]; uncompressed_size <<= 8;
13028 uncompressed_size += start[8]; uncompressed_size <<= 8;
13029 uncompressed_size += start[9]; uncompressed_size <<= 8;
13030 uncompressed_size += start[10]; uncompressed_size <<= 8;
13031 uncompressed_size += start[11];
13032 start += 12;
13033 size -= 12;
13034 }
13035
13036 if (uncompressed_size)
13037 {
13038 if (uncompress_section_contents (&start, uncompressed_size,
13039 &size))
13040 {
13041 /* Free the compressed buffer, update the section buffer
13042 and the section size if uncompress is successful. */
13043 free (section->start);
13044 section->start = start;
13045 }
13046 else
13047 {
13048 error (_("Unable to decompress section %s\n"),
13049 printable_section_name (sec));
13050 return 0;
13051 }
13052 }
13053
13054 section->size = size;
13055 }
13056
13057 if (section->start == NULL)
13058 return 0;
13059
13060 if (debug_displays [debug].relocate)
13061 apply_relocations ((FILE *) file, sec, section->start, section->size,
13062 & section->reloc_info, & section->num_relocs);
13063 else
13064 {
13065 section->reloc_info = NULL;
13066 section->num_relocs = 0;
13067 }
13068
13069 return 1;
13070 }
13071
13072 /* If this is not NULL, load_debug_section will only look for sections
13073 within the list of sections given here. */
13074 unsigned int *section_subset = NULL;
13075
13076 int
13077 load_debug_section (enum dwarf_section_display_enum debug, void * file)
13078 {
13079 struct dwarf_section * section = &debug_displays [debug].section;
13080 Elf_Internal_Shdr * sec;
13081
13082 /* Locate the debug section. */
13083 sec = find_section_in_set (section->uncompressed_name, section_subset);
13084 if (sec != NULL)
13085 section->name = section->uncompressed_name;
13086 else
13087 {
13088 sec = find_section_in_set (section->compressed_name, section_subset);
13089 if (sec != NULL)
13090 section->name = section->compressed_name;
13091 }
13092 if (sec == NULL)
13093 return 0;
13094
13095 /* If we're loading from a subset of sections, and we've loaded
13096 a section matching this name before, it's likely that it's a
13097 different one. */
13098 if (section_subset != NULL)
13099 free_debug_section (debug);
13100
13101 return load_specific_debug_section (debug, sec, (FILE *) file);
13102 }
13103
13104 void
13105 free_debug_section (enum dwarf_section_display_enum debug)
13106 {
13107 struct dwarf_section * section = &debug_displays [debug].section;
13108
13109 if (section->start == NULL)
13110 return;
13111
13112 free ((char *) section->start);
13113 section->start = NULL;
13114 section->address = 0;
13115 section->size = 0;
13116 }
13117
13118 static int
13119 display_debug_section (int shndx, Elf_Internal_Shdr * section, FILE * file)
13120 {
13121 char * name = SECTION_NAME (section);
13122 const char * print_name = printable_section_name (section);
13123 bfd_size_type length;
13124 int result = 1;
13125 int i;
13126
13127 length = section->sh_size;
13128 if (length == 0)
13129 {
13130 printf (_("\nSection '%s' has no debugging data.\n"), print_name);
13131 return 0;
13132 }
13133 if (section->sh_type == SHT_NOBITS)
13134 {
13135 /* There is no point in dumping the contents of a debugging section
13136 which has the NOBITS type - the bits in the file will be random.
13137 This can happen when a file containing a .eh_frame section is
13138 stripped with the --only-keep-debug command line option. */
13139 printf (_("section '%s' has the NOBITS type - its contents are unreliable.\n"),
13140 print_name);
13141 return 0;
13142 }
13143
13144 if (const_strneq (name, ".gnu.linkonce.wi."))
13145 name = ".debug_info";
13146
13147 /* See if we know how to display the contents of this section. */
13148 for (i = 0; i < max; i++)
13149 if (streq (debug_displays[i].section.uncompressed_name, name)
13150 || (i == line && const_strneq (name, ".debug_line."))
13151 || streq (debug_displays[i].section.compressed_name, name))
13152 {
13153 struct dwarf_section * sec = &debug_displays [i].section;
13154 int secondary = (section != find_section (name));
13155
13156 if (secondary)
13157 free_debug_section ((enum dwarf_section_display_enum) i);
13158
13159 if (i == line && const_strneq (name, ".debug_line."))
13160 sec->name = name;
13161 else if (streq (sec->uncompressed_name, name))
13162 sec->name = sec->uncompressed_name;
13163 else
13164 sec->name = sec->compressed_name;
13165 if (load_specific_debug_section ((enum dwarf_section_display_enum) i,
13166 section, file))
13167 {
13168 /* If this debug section is part of a CU/TU set in a .dwp file,
13169 restrict load_debug_section to the sections in that set. */
13170 section_subset = find_cu_tu_set (file, shndx);
13171
13172 result &= debug_displays[i].display (sec, file);
13173
13174 section_subset = NULL;
13175
13176 if (secondary || (i != info && i != abbrev))
13177 free_debug_section ((enum dwarf_section_display_enum) i);
13178 }
13179
13180 break;
13181 }
13182
13183 if (i == max)
13184 {
13185 printf (_("Unrecognized debug section: %s\n"), print_name);
13186 result = 0;
13187 }
13188
13189 return result;
13190 }
13191
13192 /* Set DUMP_SECTS for all sections where dumps were requested
13193 based on section name. */
13194
13195 static void
13196 initialise_dumps_byname (void)
13197 {
13198 struct dump_list_entry * cur;
13199
13200 for (cur = dump_sects_byname; cur; cur = cur->next)
13201 {
13202 unsigned int i;
13203 int any;
13204
13205 for (i = 0, any = 0; i < elf_header.e_shnum; i++)
13206 if (streq (SECTION_NAME (section_headers + i), cur->name))
13207 {
13208 request_dump_bynumber (i, cur->type);
13209 any = 1;
13210 }
13211
13212 if (!any)
13213 warn (_("Section '%s' was not dumped because it does not exist!\n"),
13214 cur->name);
13215 }
13216 }
13217
13218 static void
13219 process_section_contents (FILE * file)
13220 {
13221 Elf_Internal_Shdr * section;
13222 unsigned int i;
13223
13224 if (! do_dump)
13225 return;
13226
13227 initialise_dumps_byname ();
13228
13229 for (i = 0, section = section_headers;
13230 i < elf_header.e_shnum && i < num_dump_sects;
13231 i++, section++)
13232 {
13233 #ifdef SUPPORT_DISASSEMBLY
13234 if (dump_sects[i] & DISASS_DUMP)
13235 disassemble_section (section, file);
13236 #endif
13237 if (dump_sects[i] & HEX_DUMP)
13238 dump_section_as_bytes (section, file, FALSE);
13239
13240 if (dump_sects[i] & RELOC_DUMP)
13241 dump_section_as_bytes (section, file, TRUE);
13242
13243 if (dump_sects[i] & STRING_DUMP)
13244 dump_section_as_strings (section, file);
13245
13246 if (dump_sects[i] & DEBUG_DUMP)
13247 display_debug_section (i, section, file);
13248 }
13249
13250 /* Check to see if the user requested a
13251 dump of a section that does not exist. */
13252 while (i < num_dump_sects)
13253 {
13254 if (dump_sects[i])
13255 warn (_("Section %d was not dumped because it does not exist!\n"), i);
13256 i++;
13257 }
13258 }
13259
13260 static void
13261 process_mips_fpe_exception (int mask)
13262 {
13263 if (mask)
13264 {
13265 int first = 1;
13266 if (mask & OEX_FPU_INEX)
13267 fputs ("INEX", stdout), first = 0;
13268 if (mask & OEX_FPU_UFLO)
13269 printf ("%sUFLO", first ? "" : "|"), first = 0;
13270 if (mask & OEX_FPU_OFLO)
13271 printf ("%sOFLO", first ? "" : "|"), first = 0;
13272 if (mask & OEX_FPU_DIV0)
13273 printf ("%sDIV0", first ? "" : "|"), first = 0;
13274 if (mask & OEX_FPU_INVAL)
13275 printf ("%sINVAL", first ? "" : "|");
13276 }
13277 else
13278 fputs ("0", stdout);
13279 }
13280
13281 /* Display's the value of TAG at location P. If TAG is
13282 greater than 0 it is assumed to be an unknown tag, and
13283 a message is printed to this effect. Otherwise it is
13284 assumed that a message has already been printed.
13285
13286 If the bottom bit of TAG is set it assumed to have a
13287 string value, otherwise it is assumed to have an integer
13288 value.
13289
13290 Returns an updated P pointing to the first unread byte
13291 beyond the end of TAG's value.
13292
13293 Reads at or beyond END will not be made. */
13294
13295 static unsigned char *
13296 display_tag_value (signed int tag,
13297 unsigned char * p,
13298 const unsigned char * const end)
13299 {
13300 unsigned long val;
13301
13302 if (tag > 0)
13303 printf (" Tag_unknown_%d: ", tag);
13304
13305 if (p >= end)
13306 {
13307 warn (_("<corrupt tag>\n"));
13308 }
13309 else if (tag & 1)
13310 {
13311 /* PR 17531 file: 027-19978-0.004. */
13312 size_t maxlen = (end - p) - 1;
13313
13314 putchar ('"');
13315 if (maxlen > 0)
13316 {
13317 print_symbol ((int) maxlen, (const char *) p);
13318 p += strnlen ((char *) p, maxlen) + 1;
13319 }
13320 else
13321 {
13322 printf (_("<corrupt string tag>"));
13323 p = (unsigned char *) end;
13324 }
13325 printf ("\"\n");
13326 }
13327 else
13328 {
13329 unsigned int len;
13330
13331 val = read_uleb128 (p, &len, end);
13332 p += len;
13333 printf ("%ld (0x%lx)\n", val, val);
13334 }
13335
13336 assert (p <= end);
13337 return p;
13338 }
13339
13340 /* ARM EABI attributes section. */
13341 typedef struct
13342 {
13343 unsigned int tag;
13344 const char * name;
13345 /* 0 = special, 1 = string, 2 = uleb123, > 0x80 == table lookup. */
13346 unsigned int type;
13347 const char ** table;
13348 } arm_attr_public_tag;
13349
13350 static const char * arm_attr_tag_CPU_arch[] =
13351 {"Pre-v4", "v4", "v4T", "v5T", "v5TE", "v5TEJ", "v6", "v6KZ", "v6T2",
13352 "v6K", "v7", "v6-M", "v6S-M", "v7E-M", "v8", "", "v8-M.baseline",
13353 "v8-M.mainline"};
13354 static const char * arm_attr_tag_ARM_ISA_use[] = {"No", "Yes"};
13355 static const char * arm_attr_tag_THUMB_ISA_use[] =
13356 {"No", "Thumb-1", "Thumb-2", "Yes"};
13357 static const char * arm_attr_tag_FP_arch[] =
13358 {"No", "VFPv1", "VFPv2", "VFPv3", "VFPv3-D16", "VFPv4", "VFPv4-D16",
13359 "FP for ARMv8", "FPv5/FP-D16 for ARMv8"};
13360 static const char * arm_attr_tag_WMMX_arch[] = {"No", "WMMXv1", "WMMXv2"};
13361 static const char * arm_attr_tag_Advanced_SIMD_arch[] =
13362 {"No", "NEONv1", "NEONv1 with Fused-MAC", "NEON for ARMv8",
13363 "NEON for ARMv8.1"};
13364 static const char * arm_attr_tag_PCS_config[] =
13365 {"None", "Bare platform", "Linux application", "Linux DSO", "PalmOS 2004",
13366 "PalmOS (reserved)", "SymbianOS 2004", "SymbianOS (reserved)"};
13367 static const char * arm_attr_tag_ABI_PCS_R9_use[] =
13368 {"V6", "SB", "TLS", "Unused"};
13369 static const char * arm_attr_tag_ABI_PCS_RW_data[] =
13370 {"Absolute", "PC-relative", "SB-relative", "None"};
13371 static const char * arm_attr_tag_ABI_PCS_RO_data[] =
13372 {"Absolute", "PC-relative", "None"};
13373 static const char * arm_attr_tag_ABI_PCS_GOT_use[] =
13374 {"None", "direct", "GOT-indirect"};
13375 static const char * arm_attr_tag_ABI_PCS_wchar_t[] =
13376 {"None", "??? 1", "2", "??? 3", "4"};
13377 static const char * arm_attr_tag_ABI_FP_rounding[] = {"Unused", "Needed"};
13378 static const char * arm_attr_tag_ABI_FP_denormal[] =
13379 {"Unused", "Needed", "Sign only"};
13380 static const char * arm_attr_tag_ABI_FP_exceptions[] = {"Unused", "Needed"};
13381 static const char * arm_attr_tag_ABI_FP_user_exceptions[] = {"Unused", "Needed"};
13382 static const char * arm_attr_tag_ABI_FP_number_model[] =
13383 {"Unused", "Finite", "RTABI", "IEEE 754"};
13384 static const char * arm_attr_tag_ABI_enum_size[] =
13385 {"Unused", "small", "int", "forced to int"};
13386 static const char * arm_attr_tag_ABI_HardFP_use[] =
13387 {"As Tag_FP_arch", "SP only", "Reserved", "Deprecated"};
13388 static const char * arm_attr_tag_ABI_VFP_args[] =
13389 {"AAPCS", "VFP registers", "custom", "compatible"};
13390 static const char * arm_attr_tag_ABI_WMMX_args[] =
13391 {"AAPCS", "WMMX registers", "custom"};
13392 static const char * arm_attr_tag_ABI_optimization_goals[] =
13393 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
13394 "Aggressive Size", "Prefer Debug", "Aggressive Debug"};
13395 static const char * arm_attr_tag_ABI_FP_optimization_goals[] =
13396 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
13397 "Aggressive Size", "Prefer Accuracy", "Aggressive Accuracy"};
13398 static const char * arm_attr_tag_CPU_unaligned_access[] = {"None", "v6"};
13399 static const char * arm_attr_tag_FP_HP_extension[] =
13400 {"Not Allowed", "Allowed"};
13401 static const char * arm_attr_tag_ABI_FP_16bit_format[] =
13402 {"None", "IEEE 754", "Alternative Format"};
13403 static const char * arm_attr_tag_DSP_extension[] =
13404 {"Follow architecture", "Allowed"};
13405 static const char * arm_attr_tag_MPextension_use[] =
13406 {"Not Allowed", "Allowed"};
13407 static const char * arm_attr_tag_DIV_use[] =
13408 {"Allowed in Thumb-ISA, v7-R or v7-M", "Not allowed",
13409 "Allowed in v7-A with integer division extension"};
13410 static const char * arm_attr_tag_T2EE_use[] = {"Not Allowed", "Allowed"};
13411 static const char * arm_attr_tag_Virtualization_use[] =
13412 {"Not Allowed", "TrustZone", "Virtualization Extensions",
13413 "TrustZone and Virtualization Extensions"};
13414 static const char * arm_attr_tag_MPextension_use_legacy[] =
13415 {"Not Allowed", "Allowed"};
13416
13417 #define LOOKUP(id, name) \
13418 {id, #name, 0x80 | ARRAY_SIZE(arm_attr_tag_##name), arm_attr_tag_##name}
13419 static arm_attr_public_tag arm_attr_public_tags[] =
13420 {
13421 {4, "CPU_raw_name", 1, NULL},
13422 {5, "CPU_name", 1, NULL},
13423 LOOKUP(6, CPU_arch),
13424 {7, "CPU_arch_profile", 0, NULL},
13425 LOOKUP(8, ARM_ISA_use),
13426 LOOKUP(9, THUMB_ISA_use),
13427 LOOKUP(10, FP_arch),
13428 LOOKUP(11, WMMX_arch),
13429 LOOKUP(12, Advanced_SIMD_arch),
13430 LOOKUP(13, PCS_config),
13431 LOOKUP(14, ABI_PCS_R9_use),
13432 LOOKUP(15, ABI_PCS_RW_data),
13433 LOOKUP(16, ABI_PCS_RO_data),
13434 LOOKUP(17, ABI_PCS_GOT_use),
13435 LOOKUP(18, ABI_PCS_wchar_t),
13436 LOOKUP(19, ABI_FP_rounding),
13437 LOOKUP(20, ABI_FP_denormal),
13438 LOOKUP(21, ABI_FP_exceptions),
13439 LOOKUP(22, ABI_FP_user_exceptions),
13440 LOOKUP(23, ABI_FP_number_model),
13441 {24, "ABI_align_needed", 0, NULL},
13442 {25, "ABI_align_preserved", 0, NULL},
13443 LOOKUP(26, ABI_enum_size),
13444 LOOKUP(27, ABI_HardFP_use),
13445 LOOKUP(28, ABI_VFP_args),
13446 LOOKUP(29, ABI_WMMX_args),
13447 LOOKUP(30, ABI_optimization_goals),
13448 LOOKUP(31, ABI_FP_optimization_goals),
13449 {32, "compatibility", 0, NULL},
13450 LOOKUP(34, CPU_unaligned_access),
13451 LOOKUP(36, FP_HP_extension),
13452 LOOKUP(38, ABI_FP_16bit_format),
13453 LOOKUP(42, MPextension_use),
13454 LOOKUP(44, DIV_use),
13455 LOOKUP(46, DSP_extension),
13456 {64, "nodefaults", 0, NULL},
13457 {65, "also_compatible_with", 0, NULL},
13458 LOOKUP(66, T2EE_use),
13459 {67, "conformance", 1, NULL},
13460 LOOKUP(68, Virtualization_use),
13461 LOOKUP(70, MPextension_use_legacy)
13462 };
13463 #undef LOOKUP
13464
13465 static unsigned char *
13466 display_arm_attribute (unsigned char * p,
13467 const unsigned char * const end)
13468 {
13469 unsigned int tag;
13470 unsigned int len;
13471 unsigned int val;
13472 arm_attr_public_tag * attr;
13473 unsigned i;
13474 unsigned int type;
13475
13476 tag = read_uleb128 (p, &len, end);
13477 p += len;
13478 attr = NULL;
13479 for (i = 0; i < ARRAY_SIZE (arm_attr_public_tags); i++)
13480 {
13481 if (arm_attr_public_tags[i].tag == tag)
13482 {
13483 attr = &arm_attr_public_tags[i];
13484 break;
13485 }
13486 }
13487
13488 if (attr)
13489 {
13490 printf (" Tag_%s: ", attr->name);
13491 switch (attr->type)
13492 {
13493 case 0:
13494 switch (tag)
13495 {
13496 case 7: /* Tag_CPU_arch_profile. */
13497 val = read_uleb128 (p, &len, end);
13498 p += len;
13499 switch (val)
13500 {
13501 case 0: printf (_("None\n")); break;
13502 case 'A': printf (_("Application\n")); break;
13503 case 'R': printf (_("Realtime\n")); break;
13504 case 'M': printf (_("Microcontroller\n")); break;
13505 case 'S': printf (_("Application or Realtime\n")); break;
13506 default: printf ("??? (%d)\n", val); break;
13507 }
13508 break;
13509
13510 case 24: /* Tag_align_needed. */
13511 val = read_uleb128 (p, &len, end);
13512 p += len;
13513 switch (val)
13514 {
13515 case 0: printf (_("None\n")); break;
13516 case 1: printf (_("8-byte\n")); break;
13517 case 2: printf (_("4-byte\n")); break;
13518 case 3: printf ("??? 3\n"); break;
13519 default:
13520 if (val <= 12)
13521 printf (_("8-byte and up to %d-byte extended\n"),
13522 1 << val);
13523 else
13524 printf ("??? (%d)\n", val);
13525 break;
13526 }
13527 break;
13528
13529 case 25: /* Tag_align_preserved. */
13530 val = read_uleb128 (p, &len, end);
13531 p += len;
13532 switch (val)
13533 {
13534 case 0: printf (_("None\n")); break;
13535 case 1: printf (_("8-byte, except leaf SP\n")); break;
13536 case 2: printf (_("8-byte\n")); break;
13537 case 3: printf ("??? 3\n"); break;
13538 default:
13539 if (val <= 12)
13540 printf (_("8-byte and up to %d-byte extended\n"),
13541 1 << val);
13542 else
13543 printf ("??? (%d)\n", val);
13544 break;
13545 }
13546 break;
13547
13548 case 32: /* Tag_compatibility. */
13549 {
13550 val = read_uleb128 (p, &len, end);
13551 p += len;
13552 printf (_("flag = %d, vendor = "), val);
13553 if (p < end - 1)
13554 {
13555 size_t maxlen = (end - p) - 1;
13556
13557 print_symbol ((int) maxlen, (const char *) p);
13558 p += strnlen ((char *) p, maxlen) + 1;
13559 }
13560 else
13561 {
13562 printf (_("<corrupt>"));
13563 p = (unsigned char *) end;
13564 }
13565 putchar ('\n');
13566 }
13567 break;
13568
13569 case 64: /* Tag_nodefaults. */
13570 /* PR 17531: file: 001-505008-0.01. */
13571 if (p < end)
13572 p++;
13573 printf (_("True\n"));
13574 break;
13575
13576 case 65: /* Tag_also_compatible_with. */
13577 val = read_uleb128 (p, &len, end);
13578 p += len;
13579 if (val == 6 /* Tag_CPU_arch. */)
13580 {
13581 val = read_uleb128 (p, &len, end);
13582 p += len;
13583 if ((unsigned int) val >= ARRAY_SIZE (arm_attr_tag_CPU_arch))
13584 printf ("??? (%d)\n", val);
13585 else
13586 printf ("%s\n", arm_attr_tag_CPU_arch[val]);
13587 }
13588 else
13589 printf ("???\n");
13590 while (p < end && *(p++) != '\0' /* NUL terminator. */)
13591 ;
13592 break;
13593
13594 default:
13595 printf (_("<unknown: %d>\n"), tag);
13596 break;
13597 }
13598 return p;
13599
13600 case 1:
13601 return display_tag_value (-1, p, end);
13602 case 2:
13603 return display_tag_value (0, p, end);
13604
13605 default:
13606 assert (attr->type & 0x80);
13607 val = read_uleb128 (p, &len, end);
13608 p += len;
13609 type = attr->type & 0x7f;
13610 if (val >= type)
13611 printf ("??? (%d)\n", val);
13612 else
13613 printf ("%s\n", attr->table[val]);
13614 return p;
13615 }
13616 }
13617
13618 return display_tag_value (tag, p, end);
13619 }
13620
13621 static unsigned char *
13622 display_gnu_attribute (unsigned char * p,
13623 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, unsigned int, const unsigned char * const),
13624 const unsigned char * const end)
13625 {
13626 int tag;
13627 unsigned int len;
13628 unsigned int val;
13629
13630 tag = read_uleb128 (p, &len, end);
13631 p += len;
13632
13633 /* Tag_compatibility is the only generic GNU attribute defined at
13634 present. */
13635 if (tag == 32)
13636 {
13637 val = read_uleb128 (p, &len, end);
13638 p += len;
13639
13640 printf (_("flag = %d, vendor = "), val);
13641 if (p == end)
13642 {
13643 printf (_("<corrupt>\n"));
13644 warn (_("corrupt vendor attribute\n"));
13645 }
13646 else
13647 {
13648 if (p < end - 1)
13649 {
13650 size_t maxlen = (end - p) - 1;
13651
13652 print_symbol ((int) maxlen, (const char *) p);
13653 p += strnlen ((char *) p, maxlen) + 1;
13654 }
13655 else
13656 {
13657 printf (_("<corrupt>"));
13658 p = (unsigned char *) end;
13659 }
13660 putchar ('\n');
13661 }
13662 return p;
13663 }
13664
13665 if ((tag & 2) == 0 && display_proc_gnu_attribute)
13666 return display_proc_gnu_attribute (p, tag, end);
13667
13668 return display_tag_value (tag, p, end);
13669 }
13670
13671 static unsigned char *
13672 display_power_gnu_attribute (unsigned char * p,
13673 unsigned int tag,
13674 const unsigned char * const end)
13675 {
13676 unsigned int len;
13677 unsigned int val;
13678
13679 if (tag == Tag_GNU_Power_ABI_FP)
13680 {
13681 val = read_uleb128 (p, &len, end);
13682 p += len;
13683 printf (" Tag_GNU_Power_ABI_FP: ");
13684 if (len == 0)
13685 {
13686 printf (_("<corrupt>\n"));
13687 return p;
13688 }
13689
13690 if (val > 15)
13691 printf ("(%#x), ", val);
13692
13693 switch (val & 3)
13694 {
13695 case 0:
13696 printf (_("unspecified hard/soft float, "));
13697 break;
13698 case 1:
13699 printf (_("hard float, "));
13700 break;
13701 case 2:
13702 printf (_("soft float, "));
13703 break;
13704 case 3:
13705 printf (_("single-precision hard float, "));
13706 break;
13707 }
13708
13709 switch (val & 0xC)
13710 {
13711 case 0:
13712 printf (_("unspecified long double\n"));
13713 break;
13714 case 4:
13715 printf (_("128-bit IBM long double\n"));
13716 break;
13717 case 8:
13718 printf (_("64-bit long double\n"));
13719 break;
13720 case 12:
13721 printf (_("128-bit IEEE long double\n"));
13722 break;
13723 }
13724 return p;
13725 }
13726
13727 if (tag == Tag_GNU_Power_ABI_Vector)
13728 {
13729 val = read_uleb128 (p, &len, end);
13730 p += len;
13731 printf (" Tag_GNU_Power_ABI_Vector: ");
13732 if (len == 0)
13733 {
13734 printf (_("<corrupt>\n"));
13735 return p;
13736 }
13737
13738 if (val > 3)
13739 printf ("(%#x), ", val);
13740
13741 switch (val & 3)
13742 {
13743 case 0:
13744 printf (_("unspecified\n"));
13745 break;
13746 case 1:
13747 printf (_("generic\n"));
13748 break;
13749 case 2:
13750 printf ("AltiVec\n");
13751 break;
13752 case 3:
13753 printf ("SPE\n");
13754 break;
13755 }
13756 return p;
13757 }
13758
13759 if (tag == Tag_GNU_Power_ABI_Struct_Return)
13760 {
13761 val = read_uleb128 (p, &len, end);
13762 p += len;
13763 printf (" Tag_GNU_Power_ABI_Struct_Return: ");
13764 if (len == 0)
13765 {
13766 printf (_("<corrupt>\n"));
13767 return p;
13768 }
13769
13770 if (val > 2)
13771 printf ("(%#x), ", val);
13772
13773 switch (val & 3)
13774 {
13775 case 0:
13776 printf (_("unspecified\n"));
13777 break;
13778 case 1:
13779 printf ("r3/r4\n");
13780 break;
13781 case 2:
13782 printf (_("memory\n"));
13783 break;
13784 case 3:
13785 printf ("???\n");
13786 break;
13787 }
13788 return p;
13789 }
13790
13791 return display_tag_value (tag & 1, p, end);
13792 }
13793
13794 static unsigned char *
13795 display_s390_gnu_attribute (unsigned char * p,
13796 unsigned int tag,
13797 const unsigned char * const end)
13798 {
13799 unsigned int len;
13800 int val;
13801
13802 if (tag == Tag_GNU_S390_ABI_Vector)
13803 {
13804 val = read_uleb128 (p, &len, end);
13805 p += len;
13806 printf (" Tag_GNU_S390_ABI_Vector: ");
13807
13808 switch (val)
13809 {
13810 case 0:
13811 printf (_("any\n"));
13812 break;
13813 case 1:
13814 printf (_("software\n"));
13815 break;
13816 case 2:
13817 printf (_("hardware\n"));
13818 break;
13819 default:
13820 printf ("??? (%d)\n", val);
13821 break;
13822 }
13823 return p;
13824 }
13825
13826 return display_tag_value (tag & 1, p, end);
13827 }
13828
13829 static void
13830 display_sparc_hwcaps (unsigned int mask)
13831 {
13832 if (mask)
13833 {
13834 int first = 1;
13835
13836 if (mask & ELF_SPARC_HWCAP_MUL32)
13837 fputs ("mul32", stdout), first = 0;
13838 if (mask & ELF_SPARC_HWCAP_DIV32)
13839 printf ("%sdiv32", first ? "" : "|"), first = 0;
13840 if (mask & ELF_SPARC_HWCAP_FSMULD)
13841 printf ("%sfsmuld", first ? "" : "|"), first = 0;
13842 if (mask & ELF_SPARC_HWCAP_V8PLUS)
13843 printf ("%sv8plus", first ? "" : "|"), first = 0;
13844 if (mask & ELF_SPARC_HWCAP_POPC)
13845 printf ("%spopc", first ? "" : "|"), first = 0;
13846 if (mask & ELF_SPARC_HWCAP_VIS)
13847 printf ("%svis", first ? "" : "|"), first = 0;
13848 if (mask & ELF_SPARC_HWCAP_VIS2)
13849 printf ("%svis2", first ? "" : "|"), first = 0;
13850 if (mask & ELF_SPARC_HWCAP_ASI_BLK_INIT)
13851 printf ("%sASIBlkInit", first ? "" : "|"), first = 0;
13852 if (mask & ELF_SPARC_HWCAP_FMAF)
13853 printf ("%sfmaf", first ? "" : "|"), first = 0;
13854 if (mask & ELF_SPARC_HWCAP_VIS3)
13855 printf ("%svis3", first ? "" : "|"), first = 0;
13856 if (mask & ELF_SPARC_HWCAP_HPC)
13857 printf ("%shpc", first ? "" : "|"), first = 0;
13858 if (mask & ELF_SPARC_HWCAP_RANDOM)
13859 printf ("%srandom", first ? "" : "|"), first = 0;
13860 if (mask & ELF_SPARC_HWCAP_TRANS)
13861 printf ("%strans", first ? "" : "|"), first = 0;
13862 if (mask & ELF_SPARC_HWCAP_FJFMAU)
13863 printf ("%sfjfmau", first ? "" : "|"), first = 0;
13864 if (mask & ELF_SPARC_HWCAP_IMA)
13865 printf ("%sima", first ? "" : "|"), first = 0;
13866 if (mask & ELF_SPARC_HWCAP_ASI_CACHE_SPARING)
13867 printf ("%scspare", first ? "" : "|"), first = 0;
13868 }
13869 else
13870 fputc ('0', stdout);
13871 fputc ('\n', stdout);
13872 }
13873
13874 static void
13875 display_sparc_hwcaps2 (unsigned int mask)
13876 {
13877 if (mask)
13878 {
13879 int first = 1;
13880
13881 if (mask & ELF_SPARC_HWCAP2_FJATHPLUS)
13882 fputs ("fjathplus", stdout), first = 0;
13883 if (mask & ELF_SPARC_HWCAP2_VIS3B)
13884 printf ("%svis3b", first ? "" : "|"), first = 0;
13885 if (mask & ELF_SPARC_HWCAP2_ADP)
13886 printf ("%sadp", first ? "" : "|"), first = 0;
13887 if (mask & ELF_SPARC_HWCAP2_SPARC5)
13888 printf ("%ssparc5", first ? "" : "|"), first = 0;
13889 if (mask & ELF_SPARC_HWCAP2_MWAIT)
13890 printf ("%smwait", first ? "" : "|"), first = 0;
13891 if (mask & ELF_SPARC_HWCAP2_XMPMUL)
13892 printf ("%sxmpmul", first ? "" : "|"), first = 0;
13893 if (mask & ELF_SPARC_HWCAP2_XMONT)
13894 printf ("%sxmont2", first ? "" : "|"), first = 0;
13895 if (mask & ELF_SPARC_HWCAP2_NSEC)
13896 printf ("%snsec", first ? "" : "|"), first = 0;
13897 if (mask & ELF_SPARC_HWCAP2_FJATHHPC)
13898 printf ("%sfjathhpc", first ? "" : "|"), first = 0;
13899 if (mask & ELF_SPARC_HWCAP2_FJDES)
13900 printf ("%sfjdes", first ? "" : "|"), first = 0;
13901 if (mask & ELF_SPARC_HWCAP2_FJAES)
13902 printf ("%sfjaes", first ? "" : "|"), first = 0;
13903 }
13904 else
13905 fputc ('0', stdout);
13906 fputc ('\n', stdout);
13907 }
13908
13909 static unsigned char *
13910 display_sparc_gnu_attribute (unsigned char * p,
13911 unsigned int tag,
13912 const unsigned char * const end)
13913 {
13914 unsigned int len;
13915 int val;
13916
13917 if (tag == Tag_GNU_Sparc_HWCAPS)
13918 {
13919 val = read_uleb128 (p, &len, end);
13920 p += len;
13921 printf (" Tag_GNU_Sparc_HWCAPS: ");
13922 display_sparc_hwcaps (val);
13923 return p;
13924 }
13925 if (tag == Tag_GNU_Sparc_HWCAPS2)
13926 {
13927 val = read_uleb128 (p, &len, end);
13928 p += len;
13929 printf (" Tag_GNU_Sparc_HWCAPS2: ");
13930 display_sparc_hwcaps2 (val);
13931 return p;
13932 }
13933
13934 return display_tag_value (tag, p, end);
13935 }
13936
13937 static void
13938 print_mips_fp_abi_value (int val)
13939 {
13940 switch (val)
13941 {
13942 case Val_GNU_MIPS_ABI_FP_ANY:
13943 printf (_("Hard or soft float\n"));
13944 break;
13945 case Val_GNU_MIPS_ABI_FP_DOUBLE:
13946 printf (_("Hard float (double precision)\n"));
13947 break;
13948 case Val_GNU_MIPS_ABI_FP_SINGLE:
13949 printf (_("Hard float (single precision)\n"));
13950 break;
13951 case Val_GNU_MIPS_ABI_FP_SOFT:
13952 printf (_("Soft float\n"));
13953 break;
13954 case Val_GNU_MIPS_ABI_FP_OLD_64:
13955 printf (_("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
13956 break;
13957 case Val_GNU_MIPS_ABI_FP_XX:
13958 printf (_("Hard float (32-bit CPU, Any FPU)\n"));
13959 break;
13960 case Val_GNU_MIPS_ABI_FP_64:
13961 printf (_("Hard float (32-bit CPU, 64-bit FPU)\n"));
13962 break;
13963 case Val_GNU_MIPS_ABI_FP_64A:
13964 printf (_("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
13965 break;
13966 case Val_GNU_MIPS_ABI_FP_NAN2008:
13967 printf (_("NaN 2008 compatibility\n"));
13968 break;
13969 default:
13970 printf ("??? (%d)\n", val);
13971 break;
13972 }
13973 }
13974
13975 static unsigned char *
13976 display_mips_gnu_attribute (unsigned char * p,
13977 unsigned int tag,
13978 const unsigned char * const end)
13979 {
13980 if (tag == Tag_GNU_MIPS_ABI_FP)
13981 {
13982 unsigned int len;
13983 int val;
13984
13985 val = read_uleb128 (p, &len, end);
13986 p += len;
13987 printf (" Tag_GNU_MIPS_ABI_FP: ");
13988
13989 print_mips_fp_abi_value (val);
13990
13991 return p;
13992 }
13993
13994 if (tag == Tag_GNU_MIPS_ABI_MSA)
13995 {
13996 unsigned int len;
13997 int val;
13998
13999 val = read_uleb128 (p, &len, end);
14000 p += len;
14001 printf (" Tag_GNU_MIPS_ABI_MSA: ");
14002
14003 switch (val)
14004 {
14005 case Val_GNU_MIPS_ABI_MSA_ANY:
14006 printf (_("Any MSA or not\n"));
14007 break;
14008 case Val_GNU_MIPS_ABI_MSA_128:
14009 printf (_("128-bit MSA\n"));
14010 break;
14011 default:
14012 printf ("??? (%d)\n", val);
14013 break;
14014 }
14015 return p;
14016 }
14017
14018 return display_tag_value (tag & 1, p, end);
14019 }
14020
14021 static unsigned char *
14022 display_tic6x_attribute (unsigned char * p,
14023 const unsigned char * const end)
14024 {
14025 unsigned int tag;
14026 unsigned int len;
14027 int val;
14028
14029 tag = read_uleb128 (p, &len, end);
14030 p += len;
14031
14032 switch (tag)
14033 {
14034 case Tag_ISA:
14035 val = read_uleb128 (p, &len, end);
14036 p += len;
14037 printf (" Tag_ISA: ");
14038
14039 switch (val)
14040 {
14041 case C6XABI_Tag_ISA_none:
14042 printf (_("None\n"));
14043 break;
14044 case C6XABI_Tag_ISA_C62X:
14045 printf ("C62x\n");
14046 break;
14047 case C6XABI_Tag_ISA_C67X:
14048 printf ("C67x\n");
14049 break;
14050 case C6XABI_Tag_ISA_C67XP:
14051 printf ("C67x+\n");
14052 break;
14053 case C6XABI_Tag_ISA_C64X:
14054 printf ("C64x\n");
14055 break;
14056 case C6XABI_Tag_ISA_C64XP:
14057 printf ("C64x+\n");
14058 break;
14059 case C6XABI_Tag_ISA_C674X:
14060 printf ("C674x\n");
14061 break;
14062 default:
14063 printf ("??? (%d)\n", val);
14064 break;
14065 }
14066 return p;
14067
14068 case Tag_ABI_wchar_t:
14069 val = read_uleb128 (p, &len, end);
14070 p += len;
14071 printf (" Tag_ABI_wchar_t: ");
14072 switch (val)
14073 {
14074 case 0:
14075 printf (_("Not used\n"));
14076 break;
14077 case 1:
14078 printf (_("2 bytes\n"));
14079 break;
14080 case 2:
14081 printf (_("4 bytes\n"));
14082 break;
14083 default:
14084 printf ("??? (%d)\n", val);
14085 break;
14086 }
14087 return p;
14088
14089 case Tag_ABI_stack_align_needed:
14090 val = read_uleb128 (p, &len, end);
14091 p += len;
14092 printf (" Tag_ABI_stack_align_needed: ");
14093 switch (val)
14094 {
14095 case 0:
14096 printf (_("8-byte\n"));
14097 break;
14098 case 1:
14099 printf (_("16-byte\n"));
14100 break;
14101 default:
14102 printf ("??? (%d)\n", val);
14103 break;
14104 }
14105 return p;
14106
14107 case Tag_ABI_stack_align_preserved:
14108 val = read_uleb128 (p, &len, end);
14109 p += len;
14110 printf (" Tag_ABI_stack_align_preserved: ");
14111 switch (val)
14112 {
14113 case 0:
14114 printf (_("8-byte\n"));
14115 break;
14116 case 1:
14117 printf (_("16-byte\n"));
14118 break;
14119 default:
14120 printf ("??? (%d)\n", val);
14121 break;
14122 }
14123 return p;
14124
14125 case Tag_ABI_DSBT:
14126 val = read_uleb128 (p, &len, end);
14127 p += len;
14128 printf (" Tag_ABI_DSBT: ");
14129 switch (val)
14130 {
14131 case 0:
14132 printf (_("DSBT addressing not used\n"));
14133 break;
14134 case 1:
14135 printf (_("DSBT addressing used\n"));
14136 break;
14137 default:
14138 printf ("??? (%d)\n", val);
14139 break;
14140 }
14141 return p;
14142
14143 case Tag_ABI_PID:
14144 val = read_uleb128 (p, &len, end);
14145 p += len;
14146 printf (" Tag_ABI_PID: ");
14147 switch (val)
14148 {
14149 case 0:
14150 printf (_("Data addressing position-dependent\n"));
14151 break;
14152 case 1:
14153 printf (_("Data addressing position-independent, GOT near DP\n"));
14154 break;
14155 case 2:
14156 printf (_("Data addressing position-independent, GOT far from DP\n"));
14157 break;
14158 default:
14159 printf ("??? (%d)\n", val);
14160 break;
14161 }
14162 return p;
14163
14164 case Tag_ABI_PIC:
14165 val = read_uleb128 (p, &len, end);
14166 p += len;
14167 printf (" Tag_ABI_PIC: ");
14168 switch (val)
14169 {
14170 case 0:
14171 printf (_("Code addressing position-dependent\n"));
14172 break;
14173 case 1:
14174 printf (_("Code addressing position-independent\n"));
14175 break;
14176 default:
14177 printf ("??? (%d)\n", val);
14178 break;
14179 }
14180 return p;
14181
14182 case Tag_ABI_array_object_alignment:
14183 val = read_uleb128 (p, &len, end);
14184 p += len;
14185 printf (" Tag_ABI_array_object_alignment: ");
14186 switch (val)
14187 {
14188 case 0:
14189 printf (_("8-byte\n"));
14190 break;
14191 case 1:
14192 printf (_("4-byte\n"));
14193 break;
14194 case 2:
14195 printf (_("16-byte\n"));
14196 break;
14197 default:
14198 printf ("??? (%d)\n", val);
14199 break;
14200 }
14201 return p;
14202
14203 case Tag_ABI_array_object_align_expected:
14204 val = read_uleb128 (p, &len, end);
14205 p += len;
14206 printf (" Tag_ABI_array_object_align_expected: ");
14207 switch (val)
14208 {
14209 case 0:
14210 printf (_("8-byte\n"));
14211 break;
14212 case 1:
14213 printf (_("4-byte\n"));
14214 break;
14215 case 2:
14216 printf (_("16-byte\n"));
14217 break;
14218 default:
14219 printf ("??? (%d)\n", val);
14220 break;
14221 }
14222 return p;
14223
14224 case Tag_ABI_compatibility:
14225 {
14226 val = read_uleb128 (p, &len, end);
14227 p += len;
14228 printf (" Tag_ABI_compatibility: ");
14229 printf (_("flag = %d, vendor = "), val);
14230 if (p < end - 1)
14231 {
14232 size_t maxlen = (end - p) - 1;
14233
14234 print_symbol ((int) maxlen, (const char *) p);
14235 p += strnlen ((char *) p, maxlen) + 1;
14236 }
14237 else
14238 {
14239 printf (_("<corrupt>"));
14240 p = (unsigned char *) end;
14241 }
14242 putchar ('\n');
14243 return p;
14244 }
14245
14246 case Tag_ABI_conformance:
14247 {
14248 printf (" Tag_ABI_conformance: \"");
14249 if (p < end - 1)
14250 {
14251 size_t maxlen = (end - p) - 1;
14252
14253 print_symbol ((int) maxlen, (const char *) p);
14254 p += strnlen ((char *) p, maxlen) + 1;
14255 }
14256 else
14257 {
14258 printf (_("<corrupt>"));
14259 p = (unsigned char *) end;
14260 }
14261 printf ("\"\n");
14262 return p;
14263 }
14264 }
14265
14266 return display_tag_value (tag, p, end);
14267 }
14268
14269 static void
14270 display_raw_attribute (unsigned char * p, unsigned char const * const end)
14271 {
14272 unsigned long addr = 0;
14273 size_t bytes = end - p;
14274
14275 assert (end > p);
14276 while (bytes)
14277 {
14278 int j;
14279 int k;
14280 int lbytes = (bytes > 16 ? 16 : bytes);
14281
14282 printf (" 0x%8.8lx ", addr);
14283
14284 for (j = 0; j < 16; j++)
14285 {
14286 if (j < lbytes)
14287 printf ("%2.2x", p[j]);
14288 else
14289 printf (" ");
14290
14291 if ((j & 3) == 3)
14292 printf (" ");
14293 }
14294
14295 for (j = 0; j < lbytes; j++)
14296 {
14297 k = p[j];
14298 if (k >= ' ' && k < 0x7f)
14299 printf ("%c", k);
14300 else
14301 printf (".");
14302 }
14303
14304 putchar ('\n');
14305
14306 p += lbytes;
14307 bytes -= lbytes;
14308 addr += lbytes;
14309 }
14310
14311 putchar ('\n');
14312 }
14313
14314 static unsigned char *
14315 display_msp430x_attribute (unsigned char * p,
14316 const unsigned char * const end)
14317 {
14318 unsigned int len;
14319 unsigned int val;
14320 unsigned int tag;
14321
14322 tag = read_uleb128 (p, & len, end);
14323 p += len;
14324
14325 switch (tag)
14326 {
14327 case OFBA_MSPABI_Tag_ISA:
14328 val = read_uleb128 (p, &len, end);
14329 p += len;
14330 printf (" Tag_ISA: ");
14331 switch (val)
14332 {
14333 case 0: printf (_("None\n")); break;
14334 case 1: printf (_("MSP430\n")); break;
14335 case 2: printf (_("MSP430X\n")); break;
14336 default: printf ("??? (%d)\n", val); break;
14337 }
14338 break;
14339
14340 case OFBA_MSPABI_Tag_Code_Model:
14341 val = read_uleb128 (p, &len, end);
14342 p += len;
14343 printf (" Tag_Code_Model: ");
14344 switch (val)
14345 {
14346 case 0: printf (_("None\n")); break;
14347 case 1: printf (_("Small\n")); break;
14348 case 2: printf (_("Large\n")); break;
14349 default: printf ("??? (%d)\n", val); break;
14350 }
14351 break;
14352
14353 case OFBA_MSPABI_Tag_Data_Model:
14354 val = read_uleb128 (p, &len, end);
14355 p += len;
14356 printf (" Tag_Data_Model: ");
14357 switch (val)
14358 {
14359 case 0: printf (_("None\n")); break;
14360 case 1: printf (_("Small\n")); break;
14361 case 2: printf (_("Large\n")); break;
14362 case 3: printf (_("Restricted Large\n")); break;
14363 default: printf ("??? (%d)\n", val); break;
14364 }
14365 break;
14366
14367 default:
14368 printf (_(" <unknown tag %d>: "), tag);
14369
14370 if (tag & 1)
14371 {
14372 putchar ('"');
14373 if (p < end - 1)
14374 {
14375 size_t maxlen = (end - p) - 1;
14376
14377 print_symbol ((int) maxlen, (const char *) p);
14378 p += strnlen ((char *) p, maxlen) + 1;
14379 }
14380 else
14381 {
14382 printf (_("<corrupt>"));
14383 p = (unsigned char *) end;
14384 }
14385 printf ("\"\n");
14386 }
14387 else
14388 {
14389 val = read_uleb128 (p, &len, end);
14390 p += len;
14391 printf ("%d (0x%x)\n", val, val);
14392 }
14393 break;
14394 }
14395
14396 assert (p <= end);
14397 return p;
14398 }
14399
14400 static int
14401 process_attributes (FILE * file,
14402 const char * public_name,
14403 unsigned int proc_type,
14404 unsigned char * (* display_pub_attribute) (unsigned char *, const unsigned char * const),
14405 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, unsigned int, const unsigned char * const))
14406 {
14407 Elf_Internal_Shdr * sect;
14408 unsigned i;
14409
14410 /* Find the section header so that we get the size. */
14411 for (i = 0, sect = section_headers;
14412 i < elf_header.e_shnum;
14413 i++, sect++)
14414 {
14415 unsigned char * contents;
14416 unsigned char * p;
14417
14418 if (sect->sh_type != proc_type && sect->sh_type != SHT_GNU_ATTRIBUTES)
14419 continue;
14420
14421 contents = (unsigned char *) get_data (NULL, file, sect->sh_offset, 1,
14422 sect->sh_size, _("attributes"));
14423 if (contents == NULL)
14424 continue;
14425
14426 p = contents;
14427 /* The first character is the version of the attributes.
14428 Currently only version 1, (aka 'A') is recognised here. */
14429 if (*p != 'A')
14430 printf (_("Unknown attributes version '%c'(%d) - expecting 'A'\n"), *p, *p);
14431 else
14432 {
14433 bfd_vma section_len;
14434
14435 section_len = sect->sh_size - 1;
14436 p++;
14437
14438 while (section_len > 0)
14439 {
14440 bfd_vma attr_len;
14441 unsigned int namelen;
14442 bfd_boolean public_section;
14443 bfd_boolean gnu_section;
14444
14445 if (section_len <= 4)
14446 {
14447 error (_("Tag section ends prematurely\n"));
14448 break;
14449 }
14450 attr_len = byte_get (p, 4);
14451 p += 4;
14452
14453 if (attr_len > section_len)
14454 {
14455 error (_("Bad attribute length (%u > %u)\n"),
14456 (unsigned) attr_len, (unsigned) section_len);
14457 attr_len = section_len;
14458 }
14459 /* PR 17531: file: 001-101425-0.004 */
14460 else if (attr_len < 5)
14461 {
14462 error (_("Attribute length of %u is too small\n"), (unsigned) attr_len);
14463 break;
14464 }
14465
14466 section_len -= attr_len;
14467 attr_len -= 4;
14468
14469 namelen = strnlen ((char *) p, attr_len) + 1;
14470 if (namelen == 0 || namelen >= attr_len)
14471 {
14472 error (_("Corrupt attribute section name\n"));
14473 break;
14474 }
14475
14476 printf (_("Attribute Section: "));
14477 print_symbol (INT_MAX, (const char *) p);
14478 putchar ('\n');
14479
14480 if (public_name && streq ((char *) p, public_name))
14481 public_section = TRUE;
14482 else
14483 public_section = FALSE;
14484
14485 if (streq ((char *) p, "gnu"))
14486 gnu_section = TRUE;
14487 else
14488 gnu_section = FALSE;
14489
14490 p += namelen;
14491 attr_len -= namelen;
14492
14493 while (attr_len > 0 && p < contents + sect->sh_size)
14494 {
14495 int tag;
14496 int val;
14497 bfd_vma size;
14498 unsigned char * end;
14499
14500 /* PR binutils/17531: Safe handling of corrupt files. */
14501 if (attr_len < 6)
14502 {
14503 error (_("Unused bytes at end of section\n"));
14504 section_len = 0;
14505 break;
14506 }
14507
14508 tag = *(p++);
14509 size = byte_get (p, 4);
14510 if (size > attr_len)
14511 {
14512 error (_("Bad subsection length (%u > %u)\n"),
14513 (unsigned) size, (unsigned) attr_len);
14514 size = attr_len;
14515 }
14516 /* PR binutils/17531: Safe handling of corrupt files. */
14517 if (size < 6)
14518 {
14519 error (_("Bad subsection length (%u < 6)\n"),
14520 (unsigned) size);
14521 section_len = 0;
14522 break;
14523 }
14524
14525 attr_len -= size;
14526 end = p + size - 1;
14527 assert (end <= contents + sect->sh_size);
14528 p += 4;
14529
14530 switch (tag)
14531 {
14532 case 1:
14533 printf (_("File Attributes\n"));
14534 break;
14535 case 2:
14536 printf (_("Section Attributes:"));
14537 goto do_numlist;
14538 case 3:
14539 printf (_("Symbol Attributes:"));
14540 /* Fall through. */
14541 do_numlist:
14542 for (;;)
14543 {
14544 unsigned int j;
14545
14546 val = read_uleb128 (p, &j, end);
14547 p += j;
14548 if (val == 0)
14549 break;
14550 printf (" %d", val);
14551 }
14552 printf ("\n");
14553 break;
14554 default:
14555 printf (_("Unknown tag: %d\n"), tag);
14556 public_section = FALSE;
14557 break;
14558 }
14559
14560 if (public_section && display_pub_attribute != NULL)
14561 {
14562 while (p < end)
14563 p = display_pub_attribute (p, end);
14564 assert (p == end);
14565 }
14566 else if (gnu_section && display_proc_gnu_attribute != NULL)
14567 {
14568 while (p < end)
14569 p = display_gnu_attribute (p,
14570 display_proc_gnu_attribute,
14571 end);
14572 assert (p == end);
14573 }
14574 else if (p < end)
14575 {
14576 printf (_(" Unknown attribute:\n"));
14577 display_raw_attribute (p, end);
14578 p = end;
14579 }
14580 else
14581 attr_len = 0;
14582 }
14583 }
14584 }
14585
14586 free (contents);
14587 }
14588 return 1;
14589 }
14590
14591 /* DATA points to the contents of a MIPS GOT that starts at VMA PLTGOT.
14592 Print the Address, Access and Initial fields of an entry at VMA ADDR
14593 and return the VMA of the next entry, or -1 if there was a problem.
14594 Does not read from DATA_END or beyond. */
14595
14596 static bfd_vma
14597 print_mips_got_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr,
14598 unsigned char * data_end)
14599 {
14600 printf (" ");
14601 print_vma (addr, LONG_HEX);
14602 printf (" ");
14603 if (addr < pltgot + 0xfff0)
14604 printf ("%6d(gp)", (int) (addr - pltgot - 0x7ff0));
14605 else
14606 printf ("%10s", "");
14607 printf (" ");
14608 if (data == NULL)
14609 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
14610 else
14611 {
14612 bfd_vma entry;
14613 unsigned char * from = data + addr - pltgot;
14614
14615 if (from + (is_32bit_elf ? 4 : 8) > data_end)
14616 {
14617 warn (_("MIPS GOT entry extends beyond the end of available data\n"));
14618 printf ("%*s", is_32bit_elf ? 8 : 16, _("<corrupt>"));
14619 return (bfd_vma) -1;
14620 }
14621 else
14622 {
14623 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
14624 print_vma (entry, LONG_HEX);
14625 }
14626 }
14627 return addr + (is_32bit_elf ? 4 : 8);
14628 }
14629
14630 /* DATA points to the contents of a MIPS PLT GOT that starts at VMA
14631 PLTGOT. Print the Address and Initial fields of an entry at VMA
14632 ADDR and return the VMA of the next entry. */
14633
14634 static bfd_vma
14635 print_mips_pltgot_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
14636 {
14637 printf (" ");
14638 print_vma (addr, LONG_HEX);
14639 printf (" ");
14640 if (data == NULL)
14641 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
14642 else
14643 {
14644 bfd_vma entry;
14645
14646 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
14647 print_vma (entry, LONG_HEX);
14648 }
14649 return addr + (is_32bit_elf ? 4 : 8);
14650 }
14651
14652 static void
14653 print_mips_ases (unsigned int mask)
14654 {
14655 if (mask & AFL_ASE_DSP)
14656 fputs ("\n\tDSP ASE", stdout);
14657 if (mask & AFL_ASE_DSPR2)
14658 fputs ("\n\tDSP R2 ASE", stdout);
14659 if (mask & AFL_ASE_DSPR3)
14660 fputs ("\n\tDSP R3 ASE", stdout);
14661 if (mask & AFL_ASE_EVA)
14662 fputs ("\n\tEnhanced VA Scheme", stdout);
14663 if (mask & AFL_ASE_MCU)
14664 fputs ("\n\tMCU (MicroController) ASE", stdout);
14665 if (mask & AFL_ASE_MDMX)
14666 fputs ("\n\tMDMX ASE", stdout);
14667 if (mask & AFL_ASE_MIPS3D)
14668 fputs ("\n\tMIPS-3D ASE", stdout);
14669 if (mask & AFL_ASE_MT)
14670 fputs ("\n\tMT ASE", stdout);
14671 if (mask & AFL_ASE_SMARTMIPS)
14672 fputs ("\n\tSmartMIPS ASE", stdout);
14673 if (mask & AFL_ASE_VIRT)
14674 fputs ("\n\tVZ ASE", stdout);
14675 if (mask & AFL_ASE_MSA)
14676 fputs ("\n\tMSA ASE", stdout);
14677 if (mask & AFL_ASE_MIPS16)
14678 fputs ("\n\tMIPS16 ASE", stdout);
14679 if (mask & AFL_ASE_MICROMIPS)
14680 fputs ("\n\tMICROMIPS ASE", stdout);
14681 if (mask & AFL_ASE_XPA)
14682 fputs ("\n\tXPA ASE", stdout);
14683 if (mask == 0)
14684 fprintf (stdout, "\n\t%s", _("None"));
14685 else if ((mask & ~AFL_ASE_MASK) != 0)
14686 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
14687 }
14688
14689 static void
14690 print_mips_isa_ext (unsigned int isa_ext)
14691 {
14692 switch (isa_ext)
14693 {
14694 case 0:
14695 fputs (_("None"), stdout);
14696 break;
14697 case AFL_EXT_XLR:
14698 fputs ("RMI XLR", stdout);
14699 break;
14700 case AFL_EXT_OCTEON3:
14701 fputs ("Cavium Networks Octeon3", stdout);
14702 break;
14703 case AFL_EXT_OCTEON2:
14704 fputs ("Cavium Networks Octeon2", stdout);
14705 break;
14706 case AFL_EXT_OCTEONP:
14707 fputs ("Cavium Networks OcteonP", stdout);
14708 break;
14709 case AFL_EXT_LOONGSON_3A:
14710 fputs ("Loongson 3A", stdout);
14711 break;
14712 case AFL_EXT_OCTEON:
14713 fputs ("Cavium Networks Octeon", stdout);
14714 break;
14715 case AFL_EXT_5900:
14716 fputs ("Toshiba R5900", stdout);
14717 break;
14718 case AFL_EXT_4650:
14719 fputs ("MIPS R4650", stdout);
14720 break;
14721 case AFL_EXT_4010:
14722 fputs ("LSI R4010", stdout);
14723 break;
14724 case AFL_EXT_4100:
14725 fputs ("NEC VR4100", stdout);
14726 break;
14727 case AFL_EXT_3900:
14728 fputs ("Toshiba R3900", stdout);
14729 break;
14730 case AFL_EXT_10000:
14731 fputs ("MIPS R10000", stdout);
14732 break;
14733 case AFL_EXT_SB1:
14734 fputs ("Broadcom SB-1", stdout);
14735 break;
14736 case AFL_EXT_4111:
14737 fputs ("NEC VR4111/VR4181", stdout);
14738 break;
14739 case AFL_EXT_4120:
14740 fputs ("NEC VR4120", stdout);
14741 break;
14742 case AFL_EXT_5400:
14743 fputs ("NEC VR5400", stdout);
14744 break;
14745 case AFL_EXT_5500:
14746 fputs ("NEC VR5500", stdout);
14747 break;
14748 case AFL_EXT_LOONGSON_2E:
14749 fputs ("ST Microelectronics Loongson 2E", stdout);
14750 break;
14751 case AFL_EXT_LOONGSON_2F:
14752 fputs ("ST Microelectronics Loongson 2F", stdout);
14753 break;
14754 default:
14755 fprintf (stdout, "%s (%d)", _("Unknown"), isa_ext);
14756 }
14757 }
14758
14759 static int
14760 get_mips_reg_size (int reg_size)
14761 {
14762 return (reg_size == AFL_REG_NONE) ? 0
14763 : (reg_size == AFL_REG_32) ? 32
14764 : (reg_size == AFL_REG_64) ? 64
14765 : (reg_size == AFL_REG_128) ? 128
14766 : -1;
14767 }
14768
14769 static int
14770 process_mips_specific (FILE * file)
14771 {
14772 Elf_Internal_Dyn * entry;
14773 Elf_Internal_Shdr *sect = NULL;
14774 size_t liblist_offset = 0;
14775 size_t liblistno = 0;
14776 size_t conflictsno = 0;
14777 size_t options_offset = 0;
14778 size_t conflicts_offset = 0;
14779 size_t pltrelsz = 0;
14780 size_t pltrel = 0;
14781 bfd_vma pltgot = 0;
14782 bfd_vma mips_pltgot = 0;
14783 bfd_vma jmprel = 0;
14784 bfd_vma local_gotno = 0;
14785 bfd_vma gotsym = 0;
14786 bfd_vma symtabno = 0;
14787
14788 process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
14789 display_mips_gnu_attribute);
14790
14791 sect = find_section (".MIPS.abiflags");
14792
14793 if (sect != NULL)
14794 {
14795 Elf_External_ABIFlags_v0 *abiflags_ext;
14796 Elf_Internal_ABIFlags_v0 abiflags_in;
14797
14798 if (sizeof (Elf_External_ABIFlags_v0) != sect->sh_size)
14799 fputs ("\nCorrupt ABI Flags section.\n", stdout);
14800 else
14801 {
14802 abiflags_ext = get_data (NULL, file, sect->sh_offset, 1,
14803 sect->sh_size, _("MIPS ABI Flags section"));
14804 if (abiflags_ext)
14805 {
14806 abiflags_in.version = BYTE_GET (abiflags_ext->version);
14807 abiflags_in.isa_level = BYTE_GET (abiflags_ext->isa_level);
14808 abiflags_in.isa_rev = BYTE_GET (abiflags_ext->isa_rev);
14809 abiflags_in.gpr_size = BYTE_GET (abiflags_ext->gpr_size);
14810 abiflags_in.cpr1_size = BYTE_GET (abiflags_ext->cpr1_size);
14811 abiflags_in.cpr2_size = BYTE_GET (abiflags_ext->cpr2_size);
14812 abiflags_in.fp_abi = BYTE_GET (abiflags_ext->fp_abi);
14813 abiflags_in.isa_ext = BYTE_GET (abiflags_ext->isa_ext);
14814 abiflags_in.ases = BYTE_GET (abiflags_ext->ases);
14815 abiflags_in.flags1 = BYTE_GET (abiflags_ext->flags1);
14816 abiflags_in.flags2 = BYTE_GET (abiflags_ext->flags2);
14817
14818 printf ("\nMIPS ABI Flags Version: %d\n", abiflags_in.version);
14819 printf ("\nISA: MIPS%d", abiflags_in.isa_level);
14820 if (abiflags_in.isa_rev > 1)
14821 printf ("r%d", abiflags_in.isa_rev);
14822 printf ("\nGPR size: %d",
14823 get_mips_reg_size (abiflags_in.gpr_size));
14824 printf ("\nCPR1 size: %d",
14825 get_mips_reg_size (abiflags_in.cpr1_size));
14826 printf ("\nCPR2 size: %d",
14827 get_mips_reg_size (abiflags_in.cpr2_size));
14828 fputs ("\nFP ABI: ", stdout);
14829 print_mips_fp_abi_value (abiflags_in.fp_abi);
14830 fputs ("ISA Extension: ", stdout);
14831 print_mips_isa_ext (abiflags_in.isa_ext);
14832 fputs ("\nASEs:", stdout);
14833 print_mips_ases (abiflags_in.ases);
14834 printf ("\nFLAGS 1: %8.8lx", abiflags_in.flags1);
14835 printf ("\nFLAGS 2: %8.8lx", abiflags_in.flags2);
14836 fputc ('\n', stdout);
14837 free (abiflags_ext);
14838 }
14839 }
14840 }
14841
14842 /* We have a lot of special sections. Thanks SGI! */
14843 if (dynamic_section == NULL)
14844 /* No information available. */
14845 return 0;
14846
14847 for (entry = dynamic_section;
14848 /* PR 17531 file: 012-50589-0.004. */
14849 entry < dynamic_section + dynamic_nent && entry->d_tag != DT_NULL;
14850 ++entry)
14851 switch (entry->d_tag)
14852 {
14853 case DT_MIPS_LIBLIST:
14854 liblist_offset
14855 = offset_from_vma (file, entry->d_un.d_val,
14856 liblistno * sizeof (Elf32_External_Lib));
14857 break;
14858 case DT_MIPS_LIBLISTNO:
14859 liblistno = entry->d_un.d_val;
14860 break;
14861 case DT_MIPS_OPTIONS:
14862 options_offset = offset_from_vma (file, entry->d_un.d_val, 0);
14863 break;
14864 case DT_MIPS_CONFLICT:
14865 conflicts_offset
14866 = offset_from_vma (file, entry->d_un.d_val,
14867 conflictsno * sizeof (Elf32_External_Conflict));
14868 break;
14869 case DT_MIPS_CONFLICTNO:
14870 conflictsno = entry->d_un.d_val;
14871 break;
14872 case DT_PLTGOT:
14873 pltgot = entry->d_un.d_ptr;
14874 break;
14875 case DT_MIPS_LOCAL_GOTNO:
14876 local_gotno = entry->d_un.d_val;
14877 break;
14878 case DT_MIPS_GOTSYM:
14879 gotsym = entry->d_un.d_val;
14880 break;
14881 case DT_MIPS_SYMTABNO:
14882 symtabno = entry->d_un.d_val;
14883 break;
14884 case DT_MIPS_PLTGOT:
14885 mips_pltgot = entry->d_un.d_ptr;
14886 break;
14887 case DT_PLTREL:
14888 pltrel = entry->d_un.d_val;
14889 break;
14890 case DT_PLTRELSZ:
14891 pltrelsz = entry->d_un.d_val;
14892 break;
14893 case DT_JMPREL:
14894 jmprel = entry->d_un.d_ptr;
14895 break;
14896 default:
14897 break;
14898 }
14899
14900 if (liblist_offset != 0 && liblistno != 0 && do_dynamic)
14901 {
14902 Elf32_External_Lib * elib;
14903 size_t cnt;
14904
14905 elib = (Elf32_External_Lib *) get_data (NULL, file, liblist_offset,
14906 liblistno,
14907 sizeof (Elf32_External_Lib),
14908 _("liblist section data"));
14909 if (elib)
14910 {
14911 printf (_("\nSection '.liblist' contains %lu entries:\n"),
14912 (unsigned long) liblistno);
14913 fputs (_(" Library Time Stamp Checksum Version Flags\n"),
14914 stdout);
14915
14916 for (cnt = 0; cnt < liblistno; ++cnt)
14917 {
14918 Elf32_Lib liblist;
14919 time_t atime;
14920 char timebuf[128];
14921 struct tm * tmp;
14922
14923 liblist.l_name = BYTE_GET (elib[cnt].l_name);
14924 atime = BYTE_GET (elib[cnt].l_time_stamp);
14925 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
14926 liblist.l_version = BYTE_GET (elib[cnt].l_version);
14927 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
14928
14929 tmp = gmtime (&atime);
14930 snprintf (timebuf, sizeof (timebuf),
14931 "%04u-%02u-%02uT%02u:%02u:%02u",
14932 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
14933 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
14934
14935 printf ("%3lu: ", (unsigned long) cnt);
14936 if (VALID_DYNAMIC_NAME (liblist.l_name))
14937 print_symbol (20, GET_DYNAMIC_NAME (liblist.l_name));
14938 else
14939 printf (_("<corrupt: %9ld>"), liblist.l_name);
14940 printf (" %s %#10lx %-7ld", timebuf, liblist.l_checksum,
14941 liblist.l_version);
14942
14943 if (liblist.l_flags == 0)
14944 puts (_(" NONE"));
14945 else
14946 {
14947 static const struct
14948 {
14949 const char * name;
14950 int bit;
14951 }
14952 l_flags_vals[] =
14953 {
14954 { " EXACT_MATCH", LL_EXACT_MATCH },
14955 { " IGNORE_INT_VER", LL_IGNORE_INT_VER },
14956 { " REQUIRE_MINOR", LL_REQUIRE_MINOR },
14957 { " EXPORTS", LL_EXPORTS },
14958 { " DELAY_LOAD", LL_DELAY_LOAD },
14959 { " DELTA", LL_DELTA }
14960 };
14961 int flags = liblist.l_flags;
14962 size_t fcnt;
14963
14964 for (fcnt = 0; fcnt < ARRAY_SIZE (l_flags_vals); ++fcnt)
14965 if ((flags & l_flags_vals[fcnt].bit) != 0)
14966 {
14967 fputs (l_flags_vals[fcnt].name, stdout);
14968 flags ^= l_flags_vals[fcnt].bit;
14969 }
14970 if (flags != 0)
14971 printf (" %#x", (unsigned int) flags);
14972
14973 puts ("");
14974 }
14975 }
14976
14977 free (elib);
14978 }
14979 }
14980
14981 if (options_offset != 0)
14982 {
14983 Elf_External_Options * eopt;
14984 Elf_Internal_Options * iopt;
14985 Elf_Internal_Options * option;
14986 size_t offset;
14987 int cnt;
14988 sect = section_headers;
14989
14990 /* Find the section header so that we get the size. */
14991 sect = find_section_by_type (SHT_MIPS_OPTIONS);
14992 /* PR 17533 file: 012-277276-0.004. */
14993 if (sect == NULL)
14994 {
14995 error (_("No MIPS_OPTIONS header found\n"));
14996 return 0;
14997 }
14998
14999 eopt = (Elf_External_Options *) get_data (NULL, file, options_offset, 1,
15000 sect->sh_size, _("options"));
15001 if (eopt)
15002 {
15003 iopt = (Elf_Internal_Options *)
15004 cmalloc ((sect->sh_size / sizeof (eopt)), sizeof (* iopt));
15005 if (iopt == NULL)
15006 {
15007 error (_("Out of memory allocating space for MIPS options\n"));
15008 return 0;
15009 }
15010
15011 offset = cnt = 0;
15012 option = iopt;
15013
15014 while (offset <= sect->sh_size - sizeof (* eopt))
15015 {
15016 Elf_External_Options * eoption;
15017
15018 eoption = (Elf_External_Options *) ((char *) eopt + offset);
15019
15020 option->kind = BYTE_GET (eoption->kind);
15021 option->size = BYTE_GET (eoption->size);
15022 option->section = BYTE_GET (eoption->section);
15023 option->info = BYTE_GET (eoption->info);
15024
15025 /* PR 17531: file: ffa0fa3b. */
15026 if (option->size < sizeof (* eopt)
15027 || offset + option->size > sect->sh_size)
15028 {
15029 error (_("Invalid size (%u) for MIPS option\n"), option->size);
15030 return 0;
15031 }
15032 offset += option->size;
15033
15034 ++option;
15035 ++cnt;
15036 }
15037
15038 printf (_("\nSection '%s' contains %d entries:\n"),
15039 printable_section_name (sect), cnt);
15040
15041 option = iopt;
15042 offset = 0;
15043
15044 while (cnt-- > 0)
15045 {
15046 size_t len;
15047
15048 switch (option->kind)
15049 {
15050 case ODK_NULL:
15051 /* This shouldn't happen. */
15052 printf (" NULL %d %lx", option->section, option->info);
15053 break;
15054 case ODK_REGINFO:
15055 printf (" REGINFO ");
15056 if (elf_header.e_machine == EM_MIPS)
15057 {
15058 /* 32bit form. */
15059 Elf32_External_RegInfo * ereg;
15060 Elf32_RegInfo reginfo;
15061
15062 ereg = (Elf32_External_RegInfo *) (option + 1);
15063 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
15064 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
15065 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
15066 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
15067 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
15068 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
15069
15070 printf ("GPR %08lx GP 0x%lx\n",
15071 reginfo.ri_gprmask,
15072 (unsigned long) reginfo.ri_gp_value);
15073 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
15074 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
15075 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
15076 }
15077 else
15078 {
15079 /* 64 bit form. */
15080 Elf64_External_RegInfo * ereg;
15081 Elf64_Internal_RegInfo reginfo;
15082
15083 ereg = (Elf64_External_RegInfo *) (option + 1);
15084 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
15085 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
15086 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
15087 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
15088 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
15089 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
15090
15091 printf ("GPR %08lx GP 0x",
15092 reginfo.ri_gprmask);
15093 printf_vma (reginfo.ri_gp_value);
15094 printf ("\n");
15095
15096 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
15097 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
15098 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
15099 }
15100 ++option;
15101 continue;
15102 case ODK_EXCEPTIONS:
15103 fputs (" EXCEPTIONS fpe_min(", stdout);
15104 process_mips_fpe_exception (option->info & OEX_FPU_MIN);
15105 fputs (") fpe_max(", stdout);
15106 process_mips_fpe_exception ((option->info & OEX_FPU_MAX) >> 8);
15107 fputs (")", stdout);
15108
15109 if (option->info & OEX_PAGE0)
15110 fputs (" PAGE0", stdout);
15111 if (option->info & OEX_SMM)
15112 fputs (" SMM", stdout);
15113 if (option->info & OEX_FPDBUG)
15114 fputs (" FPDBUG", stdout);
15115 if (option->info & OEX_DISMISS)
15116 fputs (" DISMISS", stdout);
15117 break;
15118 case ODK_PAD:
15119 fputs (" PAD ", stdout);
15120 if (option->info & OPAD_PREFIX)
15121 fputs (" PREFIX", stdout);
15122 if (option->info & OPAD_POSTFIX)
15123 fputs (" POSTFIX", stdout);
15124 if (option->info & OPAD_SYMBOL)
15125 fputs (" SYMBOL", stdout);
15126 break;
15127 case ODK_HWPATCH:
15128 fputs (" HWPATCH ", stdout);
15129 if (option->info & OHW_R4KEOP)
15130 fputs (" R4KEOP", stdout);
15131 if (option->info & OHW_R8KPFETCH)
15132 fputs (" R8KPFETCH", stdout);
15133 if (option->info & OHW_R5KEOP)
15134 fputs (" R5KEOP", stdout);
15135 if (option->info & OHW_R5KCVTL)
15136 fputs (" R5KCVTL", stdout);
15137 break;
15138 case ODK_FILL:
15139 fputs (" FILL ", stdout);
15140 /* XXX Print content of info word? */
15141 break;
15142 case ODK_TAGS:
15143 fputs (" TAGS ", stdout);
15144 /* XXX Print content of info word? */
15145 break;
15146 case ODK_HWAND:
15147 fputs (" HWAND ", stdout);
15148 if (option->info & OHWA0_R4KEOP_CHECKED)
15149 fputs (" R4KEOP_CHECKED", stdout);
15150 if (option->info & OHWA0_R4KEOP_CLEAN)
15151 fputs (" R4KEOP_CLEAN", stdout);
15152 break;
15153 case ODK_HWOR:
15154 fputs (" HWOR ", stdout);
15155 if (option->info & OHWA0_R4KEOP_CHECKED)
15156 fputs (" R4KEOP_CHECKED", stdout);
15157 if (option->info & OHWA0_R4KEOP_CLEAN)
15158 fputs (" R4KEOP_CLEAN", stdout);
15159 break;
15160 case ODK_GP_GROUP:
15161 printf (" GP_GROUP %#06lx self-contained %#06lx",
15162 option->info & OGP_GROUP,
15163 (option->info & OGP_SELF) >> 16);
15164 break;
15165 case ODK_IDENT:
15166 printf (" IDENT %#06lx self-contained %#06lx",
15167 option->info & OGP_GROUP,
15168 (option->info & OGP_SELF) >> 16);
15169 break;
15170 default:
15171 /* This shouldn't happen. */
15172 printf (" %3d ??? %d %lx",
15173 option->kind, option->section, option->info);
15174 break;
15175 }
15176
15177 len = sizeof (* eopt);
15178 while (len < option->size)
15179 {
15180 unsigned char datum = * ((unsigned char *) eopt + offset + len);
15181
15182 if (ISPRINT (datum))
15183 printf ("%c", datum);
15184 else
15185 printf ("\\%03o", datum);
15186 len ++;
15187 }
15188 fputs ("\n", stdout);
15189
15190 offset += option->size;
15191 ++option;
15192 }
15193
15194 free (eopt);
15195 }
15196 }
15197
15198 if (conflicts_offset != 0 && conflictsno != 0)
15199 {
15200 Elf32_Conflict * iconf;
15201 size_t cnt;
15202
15203 if (dynamic_symbols == NULL)
15204 {
15205 error (_("conflict list found without a dynamic symbol table\n"));
15206 return 0;
15207 }
15208
15209 iconf = (Elf32_Conflict *) cmalloc (conflictsno, sizeof (* iconf));
15210 if (iconf == NULL)
15211 {
15212 error (_("Out of memory allocating space for dynamic conflicts\n"));
15213 return 0;
15214 }
15215
15216 if (is_32bit_elf)
15217 {
15218 Elf32_External_Conflict * econf32;
15219
15220 econf32 = (Elf32_External_Conflict *)
15221 get_data (NULL, file, conflicts_offset, conflictsno,
15222 sizeof (* econf32), _("conflict"));
15223 if (!econf32)
15224 return 0;
15225
15226 for (cnt = 0; cnt < conflictsno; ++cnt)
15227 iconf[cnt] = BYTE_GET (econf32[cnt]);
15228
15229 free (econf32);
15230 }
15231 else
15232 {
15233 Elf64_External_Conflict * econf64;
15234
15235 econf64 = (Elf64_External_Conflict *)
15236 get_data (NULL, file, conflicts_offset, conflictsno,
15237 sizeof (* econf64), _("conflict"));
15238 if (!econf64)
15239 return 0;
15240
15241 for (cnt = 0; cnt < conflictsno; ++cnt)
15242 iconf[cnt] = BYTE_GET (econf64[cnt]);
15243
15244 free (econf64);
15245 }
15246
15247 printf (_("\nSection '.conflict' contains %lu entries:\n"),
15248 (unsigned long) conflictsno);
15249 puts (_(" Num: Index Value Name"));
15250
15251 for (cnt = 0; cnt < conflictsno; ++cnt)
15252 {
15253 printf ("%5lu: %8lu ", (unsigned long) cnt, iconf[cnt]);
15254
15255 if (iconf[cnt] >= num_dynamic_syms)
15256 printf (_("<corrupt symbol index>"));
15257 else
15258 {
15259 Elf_Internal_Sym * psym;
15260
15261 psym = & dynamic_symbols[iconf[cnt]];
15262 print_vma (psym->st_value, FULL_HEX);
15263 putchar (' ');
15264 if (VALID_DYNAMIC_NAME (psym->st_name))
15265 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
15266 else
15267 printf (_("<corrupt: %14ld>"), psym->st_name);
15268 }
15269 putchar ('\n');
15270 }
15271
15272 free (iconf);
15273 }
15274
15275 if (pltgot != 0 && local_gotno != 0)
15276 {
15277 bfd_vma ent, local_end, global_end;
15278 size_t i, offset;
15279 unsigned char * data;
15280 unsigned char * data_end;
15281 int addr_size;
15282
15283 ent = pltgot;
15284 addr_size = (is_32bit_elf ? 4 : 8);
15285 local_end = pltgot + local_gotno * addr_size;
15286
15287 /* PR binutils/17533 file: 012-111227-0.004 */
15288 if (symtabno < gotsym)
15289 {
15290 error (_("The GOT symbol offset (%lu) is greater than the symbol table size (%lu)\n"),
15291 (unsigned long) gotsym, (unsigned long) symtabno);
15292 return 0;
15293 }
15294
15295 global_end = local_end + (symtabno - gotsym) * addr_size;
15296 /* PR 17531: file: 54c91a34. */
15297 if (global_end < local_end)
15298 {
15299 error (_("Too many GOT symbols: %lu\n"), (unsigned long) symtabno);
15300 return 0;
15301 }
15302
15303 offset = offset_from_vma (file, pltgot, global_end - pltgot);
15304 data = (unsigned char *) get_data (NULL, file, offset,
15305 global_end - pltgot, 1,
15306 _("Global Offset Table data"));
15307 if (data == NULL)
15308 return 0;
15309 data_end = data + (global_end - pltgot);
15310
15311 printf (_("\nPrimary GOT:\n"));
15312 printf (_(" Canonical gp value: "));
15313 print_vma (pltgot + 0x7ff0, LONG_HEX);
15314 printf ("\n\n");
15315
15316 printf (_(" Reserved entries:\n"));
15317 printf (_(" %*s %10s %*s Purpose\n"),
15318 addr_size * 2, _("Address"), _("Access"),
15319 addr_size * 2, _("Initial"));
15320 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15321 printf (_(" Lazy resolver\n"));
15322 if (ent == (bfd_vma) -1)
15323 goto got_print_fail;
15324 if (data
15325 && (byte_get (data + ent - pltgot, addr_size)
15326 >> (addr_size * 8 - 1)) != 0)
15327 {
15328 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15329 printf (_(" Module pointer (GNU extension)\n"));
15330 if (ent == (bfd_vma) -1)
15331 goto got_print_fail;
15332 }
15333 printf ("\n");
15334
15335 if (ent < local_end)
15336 {
15337 printf (_(" Local entries:\n"));
15338 printf (" %*s %10s %*s\n",
15339 addr_size * 2, _("Address"), _("Access"),
15340 addr_size * 2, _("Initial"));
15341 while (ent < local_end)
15342 {
15343 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15344 printf ("\n");
15345 if (ent == (bfd_vma) -1)
15346 goto got_print_fail;
15347 }
15348 printf ("\n");
15349 }
15350
15351 if (gotsym < symtabno)
15352 {
15353 int sym_width;
15354
15355 printf (_(" Global entries:\n"));
15356 printf (" %*s %10s %*s %*s %-7s %3s %s\n",
15357 addr_size * 2, _("Address"),
15358 _("Access"),
15359 addr_size * 2, _("Initial"),
15360 addr_size * 2, _("Sym.Val."),
15361 _("Type"),
15362 /* Note for translators: "Ndx" = abbreviated form of "Index". */
15363 _("Ndx"), _("Name"));
15364
15365 sym_width = (is_32bit_elf ? 80 : 160) - 28 - addr_size * 6 - 1;
15366
15367 for (i = gotsym; i < symtabno; i++)
15368 {
15369 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15370 printf (" ");
15371
15372 if (dynamic_symbols == NULL)
15373 printf (_("<no dynamic symbols>"));
15374 else if (i < num_dynamic_syms)
15375 {
15376 Elf_Internal_Sym * psym = dynamic_symbols + i;
15377
15378 print_vma (psym->st_value, LONG_HEX);
15379 printf (" %-7s %3s ",
15380 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
15381 get_symbol_index_type (psym->st_shndx));
15382
15383 if (VALID_DYNAMIC_NAME (psym->st_name))
15384 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
15385 else
15386 printf (_("<corrupt: %14ld>"), psym->st_name);
15387 }
15388 else
15389 printf (_("<symbol index %lu exceeds number of dynamic symbols>"),
15390 (unsigned long) i);
15391
15392 printf ("\n");
15393 if (ent == (bfd_vma) -1)
15394 break;
15395 }
15396 printf ("\n");
15397 }
15398
15399 got_print_fail:
15400 if (data)
15401 free (data);
15402 }
15403
15404 if (mips_pltgot != 0 && jmprel != 0 && pltrel != 0 && pltrelsz != 0)
15405 {
15406 bfd_vma ent, end;
15407 size_t offset, rel_offset;
15408 unsigned long count, i;
15409 unsigned char * data;
15410 int addr_size, sym_width;
15411 Elf_Internal_Rela * rels;
15412
15413 rel_offset = offset_from_vma (file, jmprel, pltrelsz);
15414 if (pltrel == DT_RELA)
15415 {
15416 if (!slurp_rela_relocs (file, rel_offset, pltrelsz, &rels, &count))
15417 return 0;
15418 }
15419 else
15420 {
15421 if (!slurp_rel_relocs (file, rel_offset, pltrelsz, &rels, &count))
15422 return 0;
15423 }
15424
15425 ent = mips_pltgot;
15426 addr_size = (is_32bit_elf ? 4 : 8);
15427 end = mips_pltgot + (2 + count) * addr_size;
15428
15429 offset = offset_from_vma (file, mips_pltgot, end - mips_pltgot);
15430 data = (unsigned char *) get_data (NULL, file, offset, end - mips_pltgot,
15431 1, _("Procedure Linkage Table data"));
15432 if (data == NULL)
15433 return 0;
15434
15435 printf ("\nPLT GOT:\n\n");
15436 printf (_(" Reserved entries:\n"));
15437 printf (_(" %*s %*s Purpose\n"),
15438 addr_size * 2, _("Address"), addr_size * 2, _("Initial"));
15439 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
15440 printf (_(" PLT lazy resolver\n"));
15441 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
15442 printf (_(" Module pointer\n"));
15443 printf ("\n");
15444
15445 printf (_(" Entries:\n"));
15446 printf (" %*s %*s %*s %-7s %3s %s\n",
15447 addr_size * 2, _("Address"),
15448 addr_size * 2, _("Initial"),
15449 addr_size * 2, _("Sym.Val."), _("Type"), _("Ndx"), _("Name"));
15450 sym_width = (is_32bit_elf ? 80 : 160) - 17 - addr_size * 6 - 1;
15451 for (i = 0; i < count; i++)
15452 {
15453 unsigned long idx = get_reloc_symindex (rels[i].r_info);
15454
15455 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
15456 printf (" ");
15457
15458 if (idx >= num_dynamic_syms)
15459 printf (_("<corrupt symbol index: %lu>"), idx);
15460 else
15461 {
15462 Elf_Internal_Sym * psym = dynamic_symbols + idx;
15463
15464 print_vma (psym->st_value, LONG_HEX);
15465 printf (" %-7s %3s ",
15466 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
15467 get_symbol_index_type (psym->st_shndx));
15468 if (VALID_DYNAMIC_NAME (psym->st_name))
15469 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
15470 else
15471 printf (_("<corrupt: %14ld>"), psym->st_name);
15472 }
15473 printf ("\n");
15474 }
15475 printf ("\n");
15476
15477 if (data)
15478 free (data);
15479 free (rels);
15480 }
15481
15482 return 1;
15483 }
15484
15485 static int
15486 process_nds32_specific (FILE * file)
15487 {
15488 Elf_Internal_Shdr *sect = NULL;
15489
15490 sect = find_section (".nds32_e_flags");
15491 if (sect != NULL)
15492 {
15493 unsigned int *flag;
15494
15495 printf ("\nNDS32 elf flags section:\n");
15496 flag = get_data (NULL, file, sect->sh_offset, 1,
15497 sect->sh_size, _("NDS32 elf flags section"));
15498
15499 switch ((*flag) & 0x3)
15500 {
15501 case 0:
15502 printf ("(VEC_SIZE):\tNo entry.\n");
15503 break;
15504 case 1:
15505 printf ("(VEC_SIZE):\t4 bytes\n");
15506 break;
15507 case 2:
15508 printf ("(VEC_SIZE):\t16 bytes\n");
15509 break;
15510 case 3:
15511 printf ("(VEC_SIZE):\treserved\n");
15512 break;
15513 }
15514 }
15515
15516 return TRUE;
15517 }
15518
15519 static int
15520 process_gnu_liblist (FILE * file)
15521 {
15522 Elf_Internal_Shdr * section;
15523 Elf_Internal_Shdr * string_sec;
15524 Elf32_External_Lib * elib;
15525 char * strtab;
15526 size_t strtab_size;
15527 size_t cnt;
15528 unsigned i;
15529
15530 if (! do_arch)
15531 return 0;
15532
15533 for (i = 0, section = section_headers;
15534 i < elf_header.e_shnum;
15535 i++, section++)
15536 {
15537 switch (section->sh_type)
15538 {
15539 case SHT_GNU_LIBLIST:
15540 if (section->sh_link >= elf_header.e_shnum)
15541 break;
15542
15543 elib = (Elf32_External_Lib *)
15544 get_data (NULL, file, section->sh_offset, 1, section->sh_size,
15545 _("liblist section data"));
15546
15547 if (elib == NULL)
15548 break;
15549 string_sec = section_headers + section->sh_link;
15550
15551 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
15552 string_sec->sh_size,
15553 _("liblist string table"));
15554 if (strtab == NULL
15555 || section->sh_entsize != sizeof (Elf32_External_Lib))
15556 {
15557 free (elib);
15558 free (strtab);
15559 break;
15560 }
15561 strtab_size = string_sec->sh_size;
15562
15563 printf (_("\nLibrary list section '%s' contains %lu entries:\n"),
15564 printable_section_name (section),
15565 (unsigned long) (section->sh_size / sizeof (Elf32_External_Lib)));
15566
15567 puts (_(" Library Time Stamp Checksum Version Flags"));
15568
15569 for (cnt = 0; cnt < section->sh_size / sizeof (Elf32_External_Lib);
15570 ++cnt)
15571 {
15572 Elf32_Lib liblist;
15573 time_t atime;
15574 char timebuf[128];
15575 struct tm * tmp;
15576
15577 liblist.l_name = BYTE_GET (elib[cnt].l_name);
15578 atime = BYTE_GET (elib[cnt].l_time_stamp);
15579 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
15580 liblist.l_version = BYTE_GET (elib[cnt].l_version);
15581 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
15582
15583 tmp = gmtime (&atime);
15584 snprintf (timebuf, sizeof (timebuf),
15585 "%04u-%02u-%02uT%02u:%02u:%02u",
15586 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
15587 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
15588
15589 printf ("%3lu: ", (unsigned long) cnt);
15590 if (do_wide)
15591 printf ("%-20s", liblist.l_name < strtab_size
15592 ? strtab + liblist.l_name : _("<corrupt>"));
15593 else
15594 printf ("%-20.20s", liblist.l_name < strtab_size
15595 ? strtab + liblist.l_name : _("<corrupt>"));
15596 printf (" %s %#010lx %-7ld %-7ld\n", timebuf, liblist.l_checksum,
15597 liblist.l_version, liblist.l_flags);
15598 }
15599
15600 free (elib);
15601 free (strtab);
15602 }
15603 }
15604
15605 return 1;
15606 }
15607
15608 static const char *
15609 get_note_type (unsigned e_type)
15610 {
15611 static char buff[64];
15612
15613 if (elf_header.e_type == ET_CORE)
15614 switch (e_type)
15615 {
15616 case NT_AUXV:
15617 return _("NT_AUXV (auxiliary vector)");
15618 case NT_PRSTATUS:
15619 return _("NT_PRSTATUS (prstatus structure)");
15620 case NT_FPREGSET:
15621 return _("NT_FPREGSET (floating point registers)");
15622 case NT_PRPSINFO:
15623 return _("NT_PRPSINFO (prpsinfo structure)");
15624 case NT_TASKSTRUCT:
15625 return _("NT_TASKSTRUCT (task structure)");
15626 case NT_PRXFPREG:
15627 return _("NT_PRXFPREG (user_xfpregs structure)");
15628 case NT_PPC_VMX:
15629 return _("NT_PPC_VMX (ppc Altivec registers)");
15630 case NT_PPC_VSX:
15631 return _("NT_PPC_VSX (ppc VSX registers)");
15632 case NT_386_TLS:
15633 return _("NT_386_TLS (x86 TLS information)");
15634 case NT_386_IOPERM:
15635 return _("NT_386_IOPERM (x86 I/O permissions)");
15636 case NT_X86_XSTATE:
15637 return _("NT_X86_XSTATE (x86 XSAVE extended state)");
15638 case NT_S390_HIGH_GPRS:
15639 return _("NT_S390_HIGH_GPRS (s390 upper register halves)");
15640 case NT_S390_TIMER:
15641 return _("NT_S390_TIMER (s390 timer register)");
15642 case NT_S390_TODCMP:
15643 return _("NT_S390_TODCMP (s390 TOD comparator register)");
15644 case NT_S390_TODPREG:
15645 return _("NT_S390_TODPREG (s390 TOD programmable register)");
15646 case NT_S390_CTRS:
15647 return _("NT_S390_CTRS (s390 control registers)");
15648 case NT_S390_PREFIX:
15649 return _("NT_S390_PREFIX (s390 prefix register)");
15650 case NT_S390_LAST_BREAK:
15651 return _("NT_S390_LAST_BREAK (s390 last breaking event address)");
15652 case NT_S390_SYSTEM_CALL:
15653 return _("NT_S390_SYSTEM_CALL (s390 system call restart data)");
15654 case NT_S390_TDB:
15655 return _("NT_S390_TDB (s390 transaction diagnostic block)");
15656 case NT_S390_VXRS_LOW:
15657 return _("NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)");
15658 case NT_S390_VXRS_HIGH:
15659 return _("NT_S390_VXRS_HIGH (s390 vector registers 16-31)");
15660 case NT_ARM_VFP:
15661 return _("NT_ARM_VFP (arm VFP registers)");
15662 case NT_ARM_TLS:
15663 return _("NT_ARM_TLS (AArch TLS registers)");
15664 case NT_ARM_HW_BREAK:
15665 return _("NT_ARM_HW_BREAK (AArch hardware breakpoint registers)");
15666 case NT_ARM_HW_WATCH:
15667 return _("NT_ARM_HW_WATCH (AArch hardware watchpoint registers)");
15668 case NT_PSTATUS:
15669 return _("NT_PSTATUS (pstatus structure)");
15670 case NT_FPREGS:
15671 return _("NT_FPREGS (floating point registers)");
15672 case NT_PSINFO:
15673 return _("NT_PSINFO (psinfo structure)");
15674 case NT_LWPSTATUS:
15675 return _("NT_LWPSTATUS (lwpstatus_t structure)");
15676 case NT_LWPSINFO:
15677 return _("NT_LWPSINFO (lwpsinfo_t structure)");
15678 case NT_WIN32PSTATUS:
15679 return _("NT_WIN32PSTATUS (win32_pstatus structure)");
15680 case NT_SIGINFO:
15681 return _("NT_SIGINFO (siginfo_t data)");
15682 case NT_FILE:
15683 return _("NT_FILE (mapped files)");
15684 default:
15685 break;
15686 }
15687 else
15688 switch (e_type)
15689 {
15690 case NT_VERSION:
15691 return _("NT_VERSION (version)");
15692 case NT_ARCH:
15693 return _("NT_ARCH (architecture)");
15694 default:
15695 break;
15696 }
15697
15698 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
15699 return buff;
15700 }
15701
15702 static int
15703 print_core_note (Elf_Internal_Note *pnote)
15704 {
15705 unsigned int addr_size = is_32bit_elf ? 4 : 8;
15706 bfd_vma count, page_size;
15707 unsigned char *descdata, *filenames, *descend;
15708
15709 if (pnote->type != NT_FILE)
15710 return 1;
15711
15712 #ifndef BFD64
15713 if (!is_32bit_elf)
15714 {
15715 printf (_(" Cannot decode 64-bit note in 32-bit build\n"));
15716 /* Still "successful". */
15717 return 1;
15718 }
15719 #endif
15720
15721 if (pnote->descsz < 2 * addr_size)
15722 {
15723 printf (_(" Malformed note - too short for header\n"));
15724 return 0;
15725 }
15726
15727 descdata = (unsigned char *) pnote->descdata;
15728 descend = descdata + pnote->descsz;
15729
15730 if (descdata[pnote->descsz - 1] != '\0')
15731 {
15732 printf (_(" Malformed note - does not end with \\0\n"));
15733 return 0;
15734 }
15735
15736 count = byte_get (descdata, addr_size);
15737 descdata += addr_size;
15738
15739 page_size = byte_get (descdata, addr_size);
15740 descdata += addr_size;
15741
15742 if (pnote->descsz < 2 * addr_size + count * 3 * addr_size)
15743 {
15744 printf (_(" Malformed note - too short for supplied file count\n"));
15745 return 0;
15746 }
15747
15748 printf (_(" Page size: "));
15749 print_vma (page_size, DEC);
15750 printf ("\n");
15751
15752 printf (_(" %*s%*s%*s\n"),
15753 (int) (2 + 2 * addr_size), _("Start"),
15754 (int) (4 + 2 * addr_size), _("End"),
15755 (int) (4 + 2 * addr_size), _("Page Offset"));
15756 filenames = descdata + count * 3 * addr_size;
15757 while (count-- > 0)
15758 {
15759 bfd_vma start, end, file_ofs;
15760
15761 if (filenames == descend)
15762 {
15763 printf (_(" Malformed note - filenames end too early\n"));
15764 return 0;
15765 }
15766
15767 start = byte_get (descdata, addr_size);
15768 descdata += addr_size;
15769 end = byte_get (descdata, addr_size);
15770 descdata += addr_size;
15771 file_ofs = byte_get (descdata, addr_size);
15772 descdata += addr_size;
15773
15774 printf (" ");
15775 print_vma (start, FULL_HEX);
15776 printf (" ");
15777 print_vma (end, FULL_HEX);
15778 printf (" ");
15779 print_vma (file_ofs, FULL_HEX);
15780 printf ("\n %s\n", filenames);
15781
15782 filenames += 1 + strlen ((char *) filenames);
15783 }
15784
15785 return 1;
15786 }
15787
15788 static const char *
15789 get_gnu_elf_note_type (unsigned e_type)
15790 {
15791 /* NB/ Keep this switch statement in sync with print_gnu_note (). */
15792 switch (e_type)
15793 {
15794 case NT_GNU_ABI_TAG:
15795 return _("NT_GNU_ABI_TAG (ABI version tag)");
15796 case NT_GNU_HWCAP:
15797 return _("NT_GNU_HWCAP (DSO-supplied software HWCAP info)");
15798 case NT_GNU_BUILD_ID:
15799 return _("NT_GNU_BUILD_ID (unique build ID bitstring)");
15800 case NT_GNU_GOLD_VERSION:
15801 return _("NT_GNU_GOLD_VERSION (gold version)");
15802 default:
15803 {
15804 static char buff[64];
15805
15806 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
15807 return buff;
15808 }
15809 }
15810 }
15811
15812 static int
15813 print_gnu_note (Elf_Internal_Note *pnote)
15814 {
15815 /* NB/ Keep this switch statement in sync with get_gnu_elf_note_type (). */
15816 switch (pnote->type)
15817 {
15818 case NT_GNU_BUILD_ID:
15819 {
15820 unsigned long i;
15821
15822 printf (_(" Build ID: "));
15823 for (i = 0; i < pnote->descsz; ++i)
15824 printf ("%02x", pnote->descdata[i] & 0xff);
15825 printf ("\n");
15826 }
15827 break;
15828
15829 case NT_GNU_ABI_TAG:
15830 {
15831 unsigned long os, major, minor, subminor;
15832 const char *osname;
15833
15834 /* PR 17531: file: 030-599401-0.004. */
15835 if (pnote->descsz < 16)
15836 {
15837 printf (_(" <corrupt GNU_ABI_TAG>\n"));
15838 break;
15839 }
15840
15841 os = byte_get ((unsigned char *) pnote->descdata, 4);
15842 major = byte_get ((unsigned char *) pnote->descdata + 4, 4);
15843 minor = byte_get ((unsigned char *) pnote->descdata + 8, 4);
15844 subminor = byte_get ((unsigned char *) pnote->descdata + 12, 4);
15845
15846 switch (os)
15847 {
15848 case GNU_ABI_TAG_LINUX:
15849 osname = "Linux";
15850 break;
15851 case GNU_ABI_TAG_HURD:
15852 osname = "Hurd";
15853 break;
15854 case GNU_ABI_TAG_SOLARIS:
15855 osname = "Solaris";
15856 break;
15857 case GNU_ABI_TAG_FREEBSD:
15858 osname = "FreeBSD";
15859 break;
15860 case GNU_ABI_TAG_NETBSD:
15861 osname = "NetBSD";
15862 break;
15863 case GNU_ABI_TAG_SYLLABLE:
15864 osname = "Syllable";
15865 break;
15866 case GNU_ABI_TAG_NACL:
15867 osname = "NaCl";
15868 break;
15869 default:
15870 osname = "Unknown";
15871 break;
15872 }
15873
15874 printf (_(" OS: %s, ABI: %ld.%ld.%ld\n"), osname,
15875 major, minor, subminor);
15876 }
15877 break;
15878
15879 case NT_GNU_GOLD_VERSION:
15880 {
15881 unsigned long i;
15882
15883 printf (_(" Version: "));
15884 for (i = 0; i < pnote->descsz && pnote->descdata[i] != '\0'; ++i)
15885 printf ("%c", pnote->descdata[i]);
15886 printf ("\n");
15887 }
15888 break;
15889
15890 case NT_GNU_HWCAP:
15891 {
15892 unsigned long num_entries, mask;
15893
15894 /* Hardware capabilities information. Word 0 is the number of entries.
15895 Word 1 is a bitmask of enabled entries. The rest of the descriptor
15896 is a series of entries, where each entry is a single byte followed
15897 by a nul terminated string. The byte gives the bit number to test
15898 if enabled in the bitmask. */
15899 printf (_(" Hardware Capabilities: "));
15900 if (pnote->descsz < 8)
15901 {
15902 printf (_("<corrupt GNU_HWCAP>\n"));
15903 break;
15904 }
15905 num_entries = byte_get ((unsigned char *) pnote->descdata, 4);
15906 mask = byte_get ((unsigned char *) pnote->descdata + 4, 4);
15907 printf (_("num entries: %ld, enabled mask: %lx\n"), num_entries, mask);
15908 /* FIXME: Add code to display the entries... */
15909 }
15910 break;
15911
15912 default:
15913 /* Handle unrecognised types. An error message should have already been
15914 created by get_gnu_elf_note_type(), so all that we need to do is to
15915 display the data. */
15916 {
15917 unsigned long i;
15918
15919 printf (_(" Description data: "));
15920 for (i = 0; i < pnote->descsz; ++i)
15921 printf ("%02x ", pnote->descdata[i] & 0xff);
15922 printf ("\n");
15923 }
15924 break;
15925 }
15926
15927 return 1;
15928 }
15929
15930 static const char *
15931 get_v850_elf_note_type (enum v850_notes n_type)
15932 {
15933 static char buff[64];
15934
15935 switch (n_type)
15936 {
15937 case V850_NOTE_ALIGNMENT: return _("Alignment of 8-byte objects");
15938 case V850_NOTE_DATA_SIZE: return _("Sizeof double and long double");
15939 case V850_NOTE_FPU_INFO: return _("Type of FPU support needed");
15940 case V850_NOTE_SIMD_INFO: return _("Use of SIMD instructions");
15941 case V850_NOTE_CACHE_INFO: return _("Use of cache");
15942 case V850_NOTE_MMU_INFO: return _("Use of MMU");
15943 default:
15944 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), n_type);
15945 return buff;
15946 }
15947 }
15948
15949 static int
15950 print_v850_note (Elf_Internal_Note * pnote)
15951 {
15952 unsigned int val;
15953
15954 if (pnote->descsz != 4)
15955 return 0;
15956 val = byte_get ((unsigned char *) pnote->descdata, pnote->descsz);
15957
15958 if (val == 0)
15959 {
15960 printf (_("not set\n"));
15961 return 1;
15962 }
15963
15964 switch (pnote->type)
15965 {
15966 case V850_NOTE_ALIGNMENT:
15967 switch (val)
15968 {
15969 case EF_RH850_DATA_ALIGN4: printf (_("4-byte\n")); return 1;
15970 case EF_RH850_DATA_ALIGN8: printf (_("8-byte\n")); return 1;
15971 }
15972 break;
15973
15974 case V850_NOTE_DATA_SIZE:
15975 switch (val)
15976 {
15977 case EF_RH850_DOUBLE32: printf (_("4-bytes\n")); return 1;
15978 case EF_RH850_DOUBLE64: printf (_("8-bytes\n")); return 1;
15979 }
15980 break;
15981
15982 case V850_NOTE_FPU_INFO:
15983 switch (val)
15984 {
15985 case EF_RH850_FPU20: printf (_("FPU-2.0\n")); return 1;
15986 case EF_RH850_FPU30: printf (_("FPU-3.0\n")); return 1;
15987 }
15988 break;
15989
15990 case V850_NOTE_MMU_INFO:
15991 case V850_NOTE_CACHE_INFO:
15992 case V850_NOTE_SIMD_INFO:
15993 if (val == EF_RH850_SIMD)
15994 {
15995 printf (_("yes\n"));
15996 return 1;
15997 }
15998 break;
15999
16000 default:
16001 /* An 'unknown note type' message will already have been displayed. */
16002 break;
16003 }
16004
16005 printf (_("unknown value: %x\n"), val);
16006 return 0;
16007 }
16008
16009 static int
16010 process_netbsd_elf_note (Elf_Internal_Note * pnote)
16011 {
16012 unsigned int version;
16013
16014 switch (pnote->type)
16015 {
16016 case NT_NETBSD_IDENT:
16017 version = byte_get ((unsigned char *) pnote->descdata, sizeof (version));
16018 if ((version / 10000) % 100)
16019 printf (" NetBSD\t\t0x%08lx\tIDENT %u (%u.%u%s%c)\n", pnote->descsz,
16020 version, version / 100000000, (version / 1000000) % 100,
16021 (version / 10000) % 100 > 26 ? "Z" : "",
16022 'A' + (version / 10000) % 26);
16023 else
16024 printf (" NetBSD\t\t0x%08lx\tIDENT %u (%u.%u.%u)\n", pnote->descsz,
16025 version, version / 100000000, (version / 1000000) % 100,
16026 (version / 100) % 100);
16027 return 1;
16028
16029 case NT_NETBSD_MARCH:
16030 printf (" NetBSD\t0x%08lx\tMARCH <%s>\n", pnote->descsz,
16031 pnote->descdata);
16032 return 1;
16033
16034 default:
16035 break;
16036 }
16037
16038 printf (" NetBSD\t0x%08lx\tUnknown note type: (0x%08lx)\n", pnote->descsz,
16039 pnote->type);
16040 return 1;
16041 }
16042
16043 static const char *
16044 get_freebsd_elfcore_note_type (unsigned e_type)
16045 {
16046 switch (e_type)
16047 {
16048 case NT_FREEBSD_THRMISC:
16049 return _("NT_THRMISC (thrmisc structure)");
16050 case NT_FREEBSD_PROCSTAT_PROC:
16051 return _("NT_PROCSTAT_PROC (proc data)");
16052 case NT_FREEBSD_PROCSTAT_FILES:
16053 return _("NT_PROCSTAT_FILES (files data)");
16054 case NT_FREEBSD_PROCSTAT_VMMAP:
16055 return _("NT_PROCSTAT_VMMAP (vmmap data)");
16056 case NT_FREEBSD_PROCSTAT_GROUPS:
16057 return _("NT_PROCSTAT_GROUPS (groups data)");
16058 case NT_FREEBSD_PROCSTAT_UMASK:
16059 return _("NT_PROCSTAT_UMASK (umask data)");
16060 case NT_FREEBSD_PROCSTAT_RLIMIT:
16061 return _("NT_PROCSTAT_RLIMIT (rlimit data)");
16062 case NT_FREEBSD_PROCSTAT_OSREL:
16063 return _("NT_PROCSTAT_OSREL (osreldate data)");
16064 case NT_FREEBSD_PROCSTAT_PSSTRINGS:
16065 return _("NT_PROCSTAT_PSSTRINGS (ps_strings data)");
16066 case NT_FREEBSD_PROCSTAT_AUXV:
16067 return _("NT_PROCSTAT_AUXV (auxv data)");
16068 }
16069 return get_note_type (e_type);
16070 }
16071
16072 static const char *
16073 get_netbsd_elfcore_note_type (unsigned e_type)
16074 {
16075 static char buff[64];
16076
16077 if (e_type == NT_NETBSDCORE_PROCINFO)
16078 {
16079 /* NetBSD core "procinfo" structure. */
16080 return _("NetBSD procinfo structure");
16081 }
16082
16083 /* As of Jan 2002 there are no other machine-independent notes
16084 defined for NetBSD core files. If the note type is less
16085 than the start of the machine-dependent note types, we don't
16086 understand it. */
16087
16088 if (e_type < NT_NETBSDCORE_FIRSTMACH)
16089 {
16090 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16091 return buff;
16092 }
16093
16094 switch (elf_header.e_machine)
16095 {
16096 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0
16097 and PT_GETFPREGS == mach+2. */
16098
16099 case EM_OLD_ALPHA:
16100 case EM_ALPHA:
16101 case EM_SPARC:
16102 case EM_SPARC32PLUS:
16103 case EM_SPARCV9:
16104 switch (e_type)
16105 {
16106 case NT_NETBSDCORE_FIRSTMACH + 0:
16107 return _("PT_GETREGS (reg structure)");
16108 case NT_NETBSDCORE_FIRSTMACH + 2:
16109 return _("PT_GETFPREGS (fpreg structure)");
16110 default:
16111 break;
16112 }
16113 break;
16114
16115 /* On all other arch's, PT_GETREGS == mach+1 and
16116 PT_GETFPREGS == mach+3. */
16117 default:
16118 switch (e_type)
16119 {
16120 case NT_NETBSDCORE_FIRSTMACH + 1:
16121 return _("PT_GETREGS (reg structure)");
16122 case NT_NETBSDCORE_FIRSTMACH + 3:
16123 return _("PT_GETFPREGS (fpreg structure)");
16124 default:
16125 break;
16126 }
16127 }
16128
16129 snprintf (buff, sizeof (buff), "PT_FIRSTMACH+%d",
16130 e_type - NT_NETBSDCORE_FIRSTMACH);
16131 return buff;
16132 }
16133
16134 static const char *
16135 get_stapsdt_note_type (unsigned e_type)
16136 {
16137 static char buff[64];
16138
16139 switch (e_type)
16140 {
16141 case NT_STAPSDT:
16142 return _("NT_STAPSDT (SystemTap probe descriptors)");
16143
16144 default:
16145 break;
16146 }
16147
16148 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16149 return buff;
16150 }
16151
16152 static int
16153 print_stapsdt_note (Elf_Internal_Note *pnote)
16154 {
16155 int addr_size = is_32bit_elf ? 4 : 8;
16156 char *data = pnote->descdata;
16157 char *data_end = pnote->descdata + pnote->descsz;
16158 bfd_vma pc, base_addr, semaphore;
16159 char *provider, *probe, *arg_fmt;
16160
16161 pc = byte_get ((unsigned char *) data, addr_size);
16162 data += addr_size;
16163 base_addr = byte_get ((unsigned char *) data, addr_size);
16164 data += addr_size;
16165 semaphore = byte_get ((unsigned char *) data, addr_size);
16166 data += addr_size;
16167
16168 provider = data;
16169 data += strlen (data) + 1;
16170 probe = data;
16171 data += strlen (data) + 1;
16172 arg_fmt = data;
16173 data += strlen (data) + 1;
16174
16175 printf (_(" Provider: %s\n"), provider);
16176 printf (_(" Name: %s\n"), probe);
16177 printf (_(" Location: "));
16178 print_vma (pc, FULL_HEX);
16179 printf (_(", Base: "));
16180 print_vma (base_addr, FULL_HEX);
16181 printf (_(", Semaphore: "));
16182 print_vma (semaphore, FULL_HEX);
16183 printf ("\n");
16184 printf (_(" Arguments: %s\n"), arg_fmt);
16185
16186 return data == data_end;
16187 }
16188
16189 static const char *
16190 get_ia64_vms_note_type (unsigned e_type)
16191 {
16192 static char buff[64];
16193
16194 switch (e_type)
16195 {
16196 case NT_VMS_MHD:
16197 return _("NT_VMS_MHD (module header)");
16198 case NT_VMS_LNM:
16199 return _("NT_VMS_LNM (language name)");
16200 case NT_VMS_SRC:
16201 return _("NT_VMS_SRC (source files)");
16202 case NT_VMS_TITLE:
16203 return "NT_VMS_TITLE";
16204 case NT_VMS_EIDC:
16205 return _("NT_VMS_EIDC (consistency check)");
16206 case NT_VMS_FPMODE:
16207 return _("NT_VMS_FPMODE (FP mode)");
16208 case NT_VMS_LINKTIME:
16209 return "NT_VMS_LINKTIME";
16210 case NT_VMS_IMGNAM:
16211 return _("NT_VMS_IMGNAM (image name)");
16212 case NT_VMS_IMGID:
16213 return _("NT_VMS_IMGID (image id)");
16214 case NT_VMS_LINKID:
16215 return _("NT_VMS_LINKID (link id)");
16216 case NT_VMS_IMGBID:
16217 return _("NT_VMS_IMGBID (build id)");
16218 case NT_VMS_GSTNAM:
16219 return _("NT_VMS_GSTNAM (sym table name)");
16220 case NT_VMS_ORIG_DYN:
16221 return "NT_VMS_ORIG_DYN";
16222 case NT_VMS_PATCHTIME:
16223 return "NT_VMS_PATCHTIME";
16224 default:
16225 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16226 return buff;
16227 }
16228 }
16229
16230 static int
16231 print_ia64_vms_note (Elf_Internal_Note * pnote)
16232 {
16233 switch (pnote->type)
16234 {
16235 case NT_VMS_MHD:
16236 if (pnote->descsz > 36)
16237 {
16238 size_t l = strlen (pnote->descdata + 34);
16239 printf (_(" Creation date : %.17s\n"), pnote->descdata);
16240 printf (_(" Last patch date: %.17s\n"), pnote->descdata + 17);
16241 printf (_(" Module name : %s\n"), pnote->descdata + 34);
16242 printf (_(" Module version : %s\n"), pnote->descdata + 34 + l + 1);
16243 }
16244 else
16245 printf (_(" Invalid size\n"));
16246 break;
16247 case NT_VMS_LNM:
16248 printf (_(" Language: %s\n"), pnote->descdata);
16249 break;
16250 #ifdef BFD64
16251 case NT_VMS_FPMODE:
16252 printf (_(" Floating Point mode: "));
16253 printf ("0x%016" BFD_VMA_FMT "x\n",
16254 (bfd_vma) byte_get ((unsigned char *)pnote->descdata, 8));
16255 break;
16256 case NT_VMS_LINKTIME:
16257 printf (_(" Link time: "));
16258 print_vms_time
16259 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
16260 printf ("\n");
16261 break;
16262 case NT_VMS_PATCHTIME:
16263 printf (_(" Patch time: "));
16264 print_vms_time
16265 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
16266 printf ("\n");
16267 break;
16268 case NT_VMS_ORIG_DYN:
16269 printf (_(" Major id: %u, minor id: %u\n"),
16270 (unsigned) byte_get ((unsigned char *)pnote->descdata, 4),
16271 (unsigned) byte_get ((unsigned char *)pnote->descdata + 4, 4));
16272 printf (_(" Last modified : "));
16273 print_vms_time
16274 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata + 8, 8));
16275 printf (_("\n Link flags : "));
16276 printf ("0x%016" BFD_VMA_FMT "x\n",
16277 (bfd_vma) byte_get ((unsigned char *)pnote->descdata + 16, 8));
16278 printf (_(" Header flags: 0x%08x\n"),
16279 (unsigned) byte_get ((unsigned char *)pnote->descdata + 24, 4));
16280 printf (_(" Image id : %s\n"), pnote->descdata + 32);
16281 break;
16282 #endif
16283 case NT_VMS_IMGNAM:
16284 printf (_(" Image name: %s\n"), pnote->descdata);
16285 break;
16286 case NT_VMS_GSTNAM:
16287 printf (_(" Global symbol table name: %s\n"), pnote->descdata);
16288 break;
16289 case NT_VMS_IMGID:
16290 printf (_(" Image id: %s\n"), pnote->descdata);
16291 break;
16292 case NT_VMS_LINKID:
16293 printf (_(" Linker id: %s\n"), pnote->descdata);
16294 break;
16295 default:
16296 break;
16297 }
16298 return 1;
16299 }
16300
16301 /* Note that by the ELF standard, the name field is already null byte
16302 terminated, and namesz includes the terminating null byte.
16303 I.E. the value of namesz for the name "FSF" is 4.
16304
16305 If the value of namesz is zero, there is no name present. */
16306 static int
16307 process_note (Elf_Internal_Note * pnote,
16308 FILE * file ATTRIBUTE_UNUSED,
16309 Elf_Internal_Shdr * section ATTRIBUTE_UNUSED)
16310 {
16311 const char * name = pnote->namesz ? pnote->namedata : "(NONE)";
16312 const char * nt;
16313
16314 if (pnote->namesz == 0)
16315 /* If there is no note name, then use the default set of
16316 note type strings. */
16317 nt = get_note_type (pnote->type);
16318
16319 else if (const_strneq (pnote->namedata, "GNU"))
16320 /* GNU-specific object file notes. */
16321 nt = get_gnu_elf_note_type (pnote->type);
16322
16323 else if (const_strneq (pnote->namedata, "FreeBSD"))
16324 /* FreeBSD-specific core file notes. */
16325 nt = get_freebsd_elfcore_note_type (pnote->type);
16326
16327 else if (const_strneq (pnote->namedata, "NetBSD-CORE"))
16328 /* NetBSD-specific core file notes. */
16329 nt = get_netbsd_elfcore_note_type (pnote->type);
16330
16331 else if (const_strneq (pnote->namedata, "NetBSD"))
16332 /* NetBSD-specific core file notes. */
16333 return process_netbsd_elf_note (pnote);
16334
16335 else if (strneq (pnote->namedata, "SPU/", 4))
16336 {
16337 /* SPU-specific core file notes. */
16338 nt = pnote->namedata + 4;
16339 name = "SPU";
16340 }
16341
16342 else if (const_strneq (pnote->namedata, "IPF/VMS"))
16343 /* VMS/ia64-specific file notes. */
16344 nt = get_ia64_vms_note_type (pnote->type);
16345
16346 else if (const_strneq (pnote->namedata, "stapsdt"))
16347 nt = get_stapsdt_note_type (pnote->type);
16348
16349 else
16350 /* Don't recognize this note name; just use the default set of
16351 note type strings. */
16352 nt = get_note_type (pnote->type);
16353
16354 printf (" ");
16355 print_symbol (-20, name);
16356 printf (" 0x%08lx\t%s\n", pnote->descsz, nt);
16357
16358 if (const_strneq (pnote->namedata, "IPF/VMS"))
16359 return print_ia64_vms_note (pnote);
16360 else if (const_strneq (pnote->namedata, "GNU"))
16361 return print_gnu_note (pnote);
16362 else if (const_strneq (pnote->namedata, "stapsdt"))
16363 return print_stapsdt_note (pnote);
16364 else if (const_strneq (pnote->namedata, "CORE"))
16365 return print_core_note (pnote);
16366
16367 else if (pnote->descsz)
16368 {
16369 unsigned long i;
16370
16371 printf (_(" description data: "));
16372 for (i = 0; i < pnote->descsz; i++)
16373 printf ("%02x ", pnote->descdata[i]);
16374 printf ("\n");
16375 }
16376
16377 return 1;
16378 }
16379
16380 static int
16381 process_notes_at (FILE * file,
16382 Elf_Internal_Shdr * section,
16383 bfd_vma offset,
16384 bfd_vma length)
16385 {
16386 Elf_External_Note * pnotes;
16387 Elf_External_Note * external;
16388 char * end;
16389 int res = 1;
16390
16391 if (length <= 0)
16392 return 0;
16393
16394 if (section)
16395 {
16396 pnotes = (Elf_External_Note *) get_section_contents (section, file);
16397 if (pnotes)
16398 apply_relocations (file, section, (unsigned char *) pnotes, length, NULL, NULL);
16399 }
16400 else
16401 pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
16402 _("notes"));
16403 if (pnotes == NULL)
16404 return 0;
16405
16406 external = pnotes;
16407
16408 if (section)
16409 printf (_("\nDisplaying notes found in: %s\n"), printable_section_name (section));
16410 else
16411 printf (_("\nDisplaying notes found at file offset 0x%08lx with length 0x%08lx:\n"),
16412 (unsigned long) offset, (unsigned long) length);
16413
16414 printf (_(" %-20s %10s\tDescription\n"), _("Owner"), _("Data size"));
16415
16416 end = (char *) pnotes + length;
16417 while ((char *) external < end)
16418 {
16419 Elf_Internal_Note inote;
16420 size_t min_notesz;
16421 char *next;
16422 char * temp = NULL;
16423 size_t data_remaining = end - (char *) external;
16424
16425 if (!is_ia64_vms ())
16426 {
16427 /* PR binutils/15191
16428 Make sure that there is enough data to read. */
16429 min_notesz = offsetof (Elf_External_Note, name);
16430 if (data_remaining < min_notesz)
16431 {
16432 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
16433 (int) data_remaining);
16434 break;
16435 }
16436 inote.type = BYTE_GET (external->type);
16437 inote.namesz = BYTE_GET (external->namesz);
16438 inote.namedata = external->name;
16439 inote.descsz = BYTE_GET (external->descsz);
16440 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
16441 /* PR 17531: file: 3443835e. */
16442 if (inote.descdata < (char *) pnotes || inote.descdata > end)
16443 {
16444 warn (_("Corrupt note: name size is too big: %lx\n"), inote.namesz);
16445 inote.descdata = inote.namedata;
16446 inote.namesz = 0;
16447 }
16448
16449 inote.descpos = offset + (inote.descdata - (char *) pnotes);
16450 next = inote.descdata + align_power (inote.descsz, 2);
16451 }
16452 else
16453 {
16454 Elf64_External_VMS_Note *vms_external;
16455
16456 /* PR binutils/15191
16457 Make sure that there is enough data to read. */
16458 min_notesz = offsetof (Elf64_External_VMS_Note, name);
16459 if (data_remaining < min_notesz)
16460 {
16461 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
16462 (int) data_remaining);
16463 break;
16464 }
16465
16466 vms_external = (Elf64_External_VMS_Note *) external;
16467 inote.type = BYTE_GET (vms_external->type);
16468 inote.namesz = BYTE_GET (vms_external->namesz);
16469 inote.namedata = vms_external->name;
16470 inote.descsz = BYTE_GET (vms_external->descsz);
16471 inote.descdata = inote.namedata + align_power (inote.namesz, 3);
16472 inote.descpos = offset + (inote.descdata - (char *) pnotes);
16473 next = inote.descdata + align_power (inote.descsz, 3);
16474 }
16475
16476 if (inote.descdata < (char *) external + min_notesz
16477 || next < (char *) external + min_notesz
16478 /* PR binutils/17531: file: id:000000,sig:11,src:006986,op:havoc,rep:4. */
16479 || inote.namedata + inote.namesz < inote.namedata
16480 || inote.descdata + inote.descsz < inote.descdata
16481 || data_remaining < (size_t)(next - (char *) external))
16482 {
16483 warn (_("note with invalid namesz and/or descsz found at offset 0x%lx\n"),
16484 (unsigned long) ((char *) external - (char *) pnotes));
16485 warn (_(" type: 0x%lx, namesize: 0x%08lx, descsize: 0x%08lx\n"),
16486 inote.type, inote.namesz, inote.descsz);
16487 break;
16488 }
16489
16490 external = (Elf_External_Note *) next;
16491
16492 /* Verify that name is null terminated. It appears that at least
16493 one version of Linux (RedHat 6.0) generates corefiles that don't
16494 comply with the ELF spec by failing to include the null byte in
16495 namesz. */
16496 if (inote.namedata[inote.namesz - 1] != '\0')
16497 {
16498 temp = (char *) malloc (inote.namesz + 1);
16499 if (temp == NULL)
16500 {
16501 error (_("Out of memory allocating space for inote name\n"));
16502 res = 0;
16503 break;
16504 }
16505
16506 strncpy (temp, inote.namedata, inote.namesz);
16507 temp[inote.namesz] = 0;
16508
16509 /* warn (_("'%s' NOTE name not properly null terminated\n"), temp); */
16510 inote.namedata = temp;
16511 }
16512
16513 res &= process_note (& inote, file, section);
16514
16515 if (temp != NULL)
16516 {
16517 free (temp);
16518 temp = NULL;
16519 }
16520 }
16521
16522 free (pnotes);
16523
16524 return res;
16525 }
16526
16527 static int
16528 process_corefile_note_segments (FILE * file)
16529 {
16530 Elf_Internal_Phdr * segment;
16531 unsigned int i;
16532 int res = 1;
16533
16534 if (! get_program_headers (file))
16535 return 0;
16536
16537 for (i = 0, segment = program_headers;
16538 i < elf_header.e_phnum;
16539 i++, segment++)
16540 {
16541 if (segment->p_type == PT_NOTE)
16542 res &= process_notes_at (file, NULL,
16543 (bfd_vma) segment->p_offset,
16544 (bfd_vma) segment->p_filesz);
16545 }
16546
16547 return res;
16548 }
16549
16550 static int
16551 process_v850_notes (FILE * file, bfd_vma offset, bfd_vma length)
16552 {
16553 Elf_External_Note * pnotes;
16554 Elf_External_Note * external;
16555 char * end;
16556 int res = 1;
16557
16558 if (length <= 0)
16559 return 0;
16560
16561 pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
16562 _("v850 notes"));
16563 if (pnotes == NULL)
16564 return 0;
16565
16566 external = pnotes;
16567 end = (char*) pnotes + length;
16568
16569 printf (_("\nDisplaying contents of Renesas V850 notes section at offset 0x%lx with length 0x%lx:\n"),
16570 (unsigned long) offset, (unsigned long) length);
16571
16572 while ((char *) external + sizeof (Elf_External_Note) < end)
16573 {
16574 Elf_External_Note * next;
16575 Elf_Internal_Note inote;
16576
16577 inote.type = BYTE_GET (external->type);
16578 inote.namesz = BYTE_GET (external->namesz);
16579 inote.namedata = external->name;
16580 inote.descsz = BYTE_GET (external->descsz);
16581 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
16582 inote.descpos = offset + (inote.descdata - (char *) pnotes);
16583
16584 if (inote.descdata < (char *) pnotes || inote.descdata >= end)
16585 {
16586 warn (_("Corrupt note: name size is too big: %lx\n"), inote.namesz);
16587 inote.descdata = inote.namedata;
16588 inote.namesz = 0;
16589 }
16590
16591 next = (Elf_External_Note *) (inote.descdata + align_power (inote.descsz, 2));
16592
16593 if ( ((char *) next > end)
16594 || ((char *) next < (char *) pnotes))
16595 {
16596 warn (_("corrupt descsz found in note at offset 0x%lx\n"),
16597 (unsigned long) ((char *) external - (char *) pnotes));
16598 warn (_(" type: 0x%lx, namesize: 0x%lx, descsize: 0x%lx\n"),
16599 inote.type, inote.namesz, inote.descsz);
16600 break;
16601 }
16602
16603 external = next;
16604
16605 /* Prevent out-of-bounds indexing. */
16606 if ( inote.namedata + inote.namesz > end
16607 || inote.namedata + inote.namesz < inote.namedata)
16608 {
16609 warn (_("corrupt namesz found in note at offset 0x%lx\n"),
16610 (unsigned long) ((char *) external - (char *) pnotes));
16611 warn (_(" type: 0x%lx, namesize: 0x%lx, descsize: 0x%lx\n"),
16612 inote.type, inote.namesz, inote.descsz);
16613 break;
16614 }
16615
16616 printf (" %s: ", get_v850_elf_note_type (inote.type));
16617
16618 if (! print_v850_note (& inote))
16619 {
16620 res = 0;
16621 printf ("<corrupt sizes: namesz: %lx, descsz: %lx>\n",
16622 inote.namesz, inote.descsz);
16623 }
16624 }
16625
16626 free (pnotes);
16627
16628 return res;
16629 }
16630
16631 static int
16632 process_note_sections (FILE * file)
16633 {
16634 Elf_Internal_Shdr * section;
16635 unsigned long i;
16636 int n = 0;
16637 int res = 1;
16638
16639 for (i = 0, section = section_headers;
16640 i < elf_header.e_shnum && section != NULL;
16641 i++, section++)
16642 {
16643 if (section->sh_type == SHT_NOTE)
16644 {
16645 res &= process_notes_at (file, section,
16646 (bfd_vma) section->sh_offset,
16647 (bfd_vma) section->sh_size);
16648 n++;
16649 }
16650
16651 if (( elf_header.e_machine == EM_V800
16652 || elf_header.e_machine == EM_V850
16653 || elf_header.e_machine == EM_CYGNUS_V850)
16654 && section->sh_type == SHT_RENESAS_INFO)
16655 {
16656 res &= process_v850_notes (file,
16657 (bfd_vma) section->sh_offset,
16658 (bfd_vma) section->sh_size);
16659 n++;
16660 }
16661 }
16662
16663 if (n == 0)
16664 /* Try processing NOTE segments instead. */
16665 return process_corefile_note_segments (file);
16666
16667 return res;
16668 }
16669
16670 static int
16671 process_notes (FILE * file)
16672 {
16673 /* If we have not been asked to display the notes then do nothing. */
16674 if (! do_notes)
16675 return 1;
16676
16677 if (elf_header.e_type != ET_CORE)
16678 return process_note_sections (file);
16679
16680 /* No program headers means no NOTE segment. */
16681 if (elf_header.e_phnum > 0)
16682 return process_corefile_note_segments (file);
16683
16684 printf (_("No note segments present in the core file.\n"));
16685 return 1;
16686 }
16687
16688 static unsigned char *
16689 display_public_gnu_attributes (unsigned char * start,
16690 const unsigned char * const end)
16691 {
16692 printf (_(" Unknown GNU attribute: %s\n"), start);
16693
16694 start += strnlen ((char *) start, end - start);
16695 display_raw_attribute (start, end);
16696
16697 return (unsigned char *) end;
16698 }
16699
16700 static unsigned char *
16701 display_generic_attribute (unsigned char * start,
16702 unsigned int tag,
16703 const unsigned char * const end)
16704 {
16705 if (tag == 0)
16706 return (unsigned char *) end;
16707
16708 return display_tag_value (tag, start, end);
16709 }
16710
16711 static int
16712 process_arch_specific (FILE * file)
16713 {
16714 if (! do_arch)
16715 return 1;
16716
16717 switch (elf_header.e_machine)
16718 {
16719 case EM_ARM:
16720 return process_attributes (file, "aeabi", SHT_ARM_ATTRIBUTES,
16721 display_arm_attribute,
16722 display_generic_attribute);
16723
16724 case EM_MIPS:
16725 case EM_MIPS_RS3_LE:
16726 return process_mips_specific (file);
16727
16728 case EM_MSP430:
16729 return process_attributes (file, "mspabi", SHT_MSP430_ATTRIBUTES,
16730 display_msp430x_attribute,
16731 display_generic_attribute);
16732
16733 case EM_NDS32:
16734 return process_nds32_specific (file);
16735
16736 case EM_PPC:
16737 case EM_PPC64:
16738 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
16739 display_power_gnu_attribute);
16740
16741 case EM_S390:
16742 case EM_S390_OLD:
16743 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
16744 display_s390_gnu_attribute);
16745
16746 case EM_SPARC:
16747 case EM_SPARC32PLUS:
16748 case EM_SPARCV9:
16749 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
16750 display_sparc_gnu_attribute);
16751
16752 case EM_TI_C6000:
16753 return process_attributes (file, "c6xabi", SHT_C6000_ATTRIBUTES,
16754 display_tic6x_attribute,
16755 display_generic_attribute);
16756
16757 default:
16758 return process_attributes (file, "gnu", SHT_GNU_ATTRIBUTES,
16759 display_public_gnu_attributes,
16760 display_generic_attribute);
16761 }
16762 }
16763
16764 static int
16765 get_file_header (FILE * file)
16766 {
16767 /* Read in the identity array. */
16768 if (fread (elf_header.e_ident, EI_NIDENT, 1, file) != 1)
16769 return 0;
16770
16771 /* Determine how to read the rest of the header. */
16772 switch (elf_header.e_ident[EI_DATA])
16773 {
16774 default:
16775 case ELFDATANONE:
16776 case ELFDATA2LSB:
16777 byte_get = byte_get_little_endian;
16778 byte_put = byte_put_little_endian;
16779 break;
16780 case ELFDATA2MSB:
16781 byte_get = byte_get_big_endian;
16782 byte_put = byte_put_big_endian;
16783 break;
16784 }
16785
16786 /* For now we only support 32 bit and 64 bit ELF files. */
16787 is_32bit_elf = (elf_header.e_ident[EI_CLASS] != ELFCLASS64);
16788
16789 /* Read in the rest of the header. */
16790 if (is_32bit_elf)
16791 {
16792 Elf32_External_Ehdr ehdr32;
16793
16794 if (fread (ehdr32.e_type, sizeof (ehdr32) - EI_NIDENT, 1, file) != 1)
16795 return 0;
16796
16797 elf_header.e_type = BYTE_GET (ehdr32.e_type);
16798 elf_header.e_machine = BYTE_GET (ehdr32.e_machine);
16799 elf_header.e_version = BYTE_GET (ehdr32.e_version);
16800 elf_header.e_entry = BYTE_GET (ehdr32.e_entry);
16801 elf_header.e_phoff = BYTE_GET (ehdr32.e_phoff);
16802 elf_header.e_shoff = BYTE_GET (ehdr32.e_shoff);
16803 elf_header.e_flags = BYTE_GET (ehdr32.e_flags);
16804 elf_header.e_ehsize = BYTE_GET (ehdr32.e_ehsize);
16805 elf_header.e_phentsize = BYTE_GET (ehdr32.e_phentsize);
16806 elf_header.e_phnum = BYTE_GET (ehdr32.e_phnum);
16807 elf_header.e_shentsize = BYTE_GET (ehdr32.e_shentsize);
16808 elf_header.e_shnum = BYTE_GET (ehdr32.e_shnum);
16809 elf_header.e_shstrndx = BYTE_GET (ehdr32.e_shstrndx);
16810 }
16811 else
16812 {
16813 Elf64_External_Ehdr ehdr64;
16814
16815 /* If we have been compiled with sizeof (bfd_vma) == 4, then
16816 we will not be able to cope with the 64bit data found in
16817 64 ELF files. Detect this now and abort before we start
16818 overwriting things. */
16819 if (sizeof (bfd_vma) < 8)
16820 {
16821 error (_("This instance of readelf has been built without support for a\n\
16822 64 bit data type and so it cannot read 64 bit ELF files.\n"));
16823 return 0;
16824 }
16825
16826 if (fread (ehdr64.e_type, sizeof (ehdr64) - EI_NIDENT, 1, file) != 1)
16827 return 0;
16828
16829 elf_header.e_type = BYTE_GET (ehdr64.e_type);
16830 elf_header.e_machine = BYTE_GET (ehdr64.e_machine);
16831 elf_header.e_version = BYTE_GET (ehdr64.e_version);
16832 elf_header.e_entry = BYTE_GET (ehdr64.e_entry);
16833 elf_header.e_phoff = BYTE_GET (ehdr64.e_phoff);
16834 elf_header.e_shoff = BYTE_GET (ehdr64.e_shoff);
16835 elf_header.e_flags = BYTE_GET (ehdr64.e_flags);
16836 elf_header.e_ehsize = BYTE_GET (ehdr64.e_ehsize);
16837 elf_header.e_phentsize = BYTE_GET (ehdr64.e_phentsize);
16838 elf_header.e_phnum = BYTE_GET (ehdr64.e_phnum);
16839 elf_header.e_shentsize = BYTE_GET (ehdr64.e_shentsize);
16840 elf_header.e_shnum = BYTE_GET (ehdr64.e_shnum);
16841 elf_header.e_shstrndx = BYTE_GET (ehdr64.e_shstrndx);
16842 }
16843
16844 if (elf_header.e_shoff)
16845 {
16846 /* There may be some extensions in the first section header. Don't
16847 bomb if we can't read it. */
16848 if (is_32bit_elf)
16849 get_32bit_section_headers (file, TRUE);
16850 else
16851 get_64bit_section_headers (file, TRUE);
16852 }
16853
16854 return 1;
16855 }
16856
16857 /* Process one ELF object file according to the command line options.
16858 This file may actually be stored in an archive. The file is
16859 positioned at the start of the ELF object. */
16860
16861 static int
16862 process_object (char * file_name, FILE * file)
16863 {
16864 unsigned int i;
16865
16866 if (! get_file_header (file))
16867 {
16868 error (_("%s: Failed to read file header\n"), file_name);
16869 return 1;
16870 }
16871
16872 /* Initialise per file variables. */
16873 for (i = ARRAY_SIZE (version_info); i--;)
16874 version_info[i] = 0;
16875
16876 for (i = ARRAY_SIZE (dynamic_info); i--;)
16877 dynamic_info[i] = 0;
16878 dynamic_info_DT_GNU_HASH = 0;
16879
16880 /* Process the file. */
16881 if (show_name)
16882 printf (_("\nFile: %s\n"), file_name);
16883
16884 /* Initialise the dump_sects array from the cmdline_dump_sects array.
16885 Note we do this even if cmdline_dump_sects is empty because we
16886 must make sure that the dump_sets array is zeroed out before each
16887 object file is processed. */
16888 if (num_dump_sects > num_cmdline_dump_sects)
16889 memset (dump_sects, 0, num_dump_sects * sizeof (* dump_sects));
16890
16891 if (num_cmdline_dump_sects > 0)
16892 {
16893 if (num_dump_sects == 0)
16894 /* A sneaky way of allocating the dump_sects array. */
16895 request_dump_bynumber (num_cmdline_dump_sects, 0);
16896
16897 assert (num_dump_sects >= num_cmdline_dump_sects);
16898 memcpy (dump_sects, cmdline_dump_sects,
16899 num_cmdline_dump_sects * sizeof (* dump_sects));
16900 }
16901
16902 if (! process_file_header ())
16903 return 1;
16904
16905 if (! process_section_headers (file))
16906 {
16907 /* Without loaded section headers we cannot process lots of
16908 things. */
16909 do_unwind = do_version = do_dump = do_arch = 0;
16910
16911 if (! do_using_dynamic)
16912 do_syms = do_dyn_syms = do_reloc = 0;
16913 }
16914
16915 if (! process_section_groups (file))
16916 {
16917 /* Without loaded section groups we cannot process unwind. */
16918 do_unwind = 0;
16919 }
16920
16921 if (process_program_headers (file))
16922 process_dynamic_section (file);
16923
16924 process_relocs (file);
16925
16926 process_unwind (file);
16927
16928 process_symbol_table (file);
16929
16930 process_syminfo (file);
16931
16932 process_version_sections (file);
16933
16934 process_section_contents (file);
16935
16936 process_notes (file);
16937
16938 process_gnu_liblist (file);
16939
16940 process_arch_specific (file);
16941
16942 if (program_headers)
16943 {
16944 free (program_headers);
16945 program_headers = NULL;
16946 }
16947
16948 if (section_headers)
16949 {
16950 free (section_headers);
16951 section_headers = NULL;
16952 }
16953
16954 if (string_table)
16955 {
16956 free (string_table);
16957 string_table = NULL;
16958 string_table_length = 0;
16959 }
16960
16961 if (dynamic_strings)
16962 {
16963 free (dynamic_strings);
16964 dynamic_strings = NULL;
16965 dynamic_strings_length = 0;
16966 }
16967
16968 if (dynamic_symbols)
16969 {
16970 free (dynamic_symbols);
16971 dynamic_symbols = NULL;
16972 num_dynamic_syms = 0;
16973 }
16974
16975 if (dynamic_syminfo)
16976 {
16977 free (dynamic_syminfo);
16978 dynamic_syminfo = NULL;
16979 }
16980
16981 if (dynamic_section)
16982 {
16983 free (dynamic_section);
16984 dynamic_section = NULL;
16985 }
16986
16987 if (section_headers_groups)
16988 {
16989 free (section_headers_groups);
16990 section_headers_groups = NULL;
16991 }
16992
16993 if (section_groups)
16994 {
16995 struct group_list * g;
16996 struct group_list * next;
16997
16998 for (i = 0; i < group_count; i++)
16999 {
17000 for (g = section_groups [i].root; g != NULL; g = next)
17001 {
17002 next = g->next;
17003 free (g);
17004 }
17005 }
17006
17007 free (section_groups);
17008 section_groups = NULL;
17009 }
17010
17011 free_debug_memory ();
17012
17013 return 0;
17014 }
17015
17016 /* Process an ELF archive.
17017 On entry the file is positioned just after the ARMAG string. */
17018
17019 static int
17020 process_archive (char * file_name, FILE * file, bfd_boolean is_thin_archive)
17021 {
17022 struct archive_info arch;
17023 struct archive_info nested_arch;
17024 size_t got;
17025 int ret;
17026
17027 show_name = 1;
17028
17029 /* The ARCH structure is used to hold information about this archive. */
17030 arch.file_name = NULL;
17031 arch.file = NULL;
17032 arch.index_array = NULL;
17033 arch.sym_table = NULL;
17034 arch.longnames = NULL;
17035
17036 /* The NESTED_ARCH structure is used as a single-item cache of information
17037 about a nested archive (when members of a thin archive reside within
17038 another regular archive file). */
17039 nested_arch.file_name = NULL;
17040 nested_arch.file = NULL;
17041 nested_arch.index_array = NULL;
17042 nested_arch.sym_table = NULL;
17043 nested_arch.longnames = NULL;
17044
17045 if (setup_archive (&arch, file_name, file, is_thin_archive, do_archive_index) != 0)
17046 {
17047 ret = 1;
17048 goto out;
17049 }
17050
17051 if (do_archive_index)
17052 {
17053 if (arch.sym_table == NULL)
17054 error (_("%s: unable to dump the index as none was found\n"), file_name);
17055 else
17056 {
17057 unsigned long i, l;
17058 unsigned long current_pos;
17059
17060 printf (_("Index of archive %s: (%lu entries, 0x%lx bytes in the symbol table)\n"),
17061 file_name, (unsigned long) arch.index_num, arch.sym_size);
17062 current_pos = ftell (file);
17063
17064 for (i = l = 0; i < arch.index_num; i++)
17065 {
17066 if ((i == 0) || ((i > 0) && (arch.index_array[i] != arch.index_array[i - 1])))
17067 {
17068 char * member_name;
17069
17070 member_name = get_archive_member_name_at (&arch, arch.index_array[i], &nested_arch);
17071
17072 if (member_name != NULL)
17073 {
17074 char * qualified_name = make_qualified_name (&arch, &nested_arch, member_name);
17075
17076 if (qualified_name != NULL)
17077 {
17078 printf (_("Contents of binary %s at offset "), qualified_name);
17079 (void) print_vma (arch.index_array[i], PREFIX_HEX);
17080 putchar ('\n');
17081 free (qualified_name);
17082 }
17083 }
17084 }
17085
17086 if (l >= arch.sym_size)
17087 {
17088 error (_("%s: end of the symbol table reached before the end of the index\n"),
17089 file_name);
17090 break;
17091 }
17092 /* PR 17531: file: 0b6630b2. */
17093 printf ("\t%.*s\n", (int) (arch.sym_size - l), arch.sym_table + l);
17094 l += strnlen (arch.sym_table + l, arch.sym_size - l) + 1;
17095 }
17096
17097 if (arch.uses_64bit_indicies)
17098 l = (l + 7) & ~ 7;
17099 else
17100 l += l & 1;
17101
17102 if (l < arch.sym_size)
17103 error (_("%s: %ld bytes remain in the symbol table, but without corresponding entries in the index table\n"),
17104 file_name, arch.sym_size - l);
17105
17106 if (fseek (file, current_pos, SEEK_SET) != 0)
17107 {
17108 error (_("%s: failed to seek back to start of object files in the archive\n"), file_name);
17109 ret = 1;
17110 goto out;
17111 }
17112 }
17113
17114 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
17115 && !do_segments && !do_header && !do_dump && !do_version
17116 && !do_histogram && !do_debugging && !do_arch && !do_notes
17117 && !do_section_groups && !do_dyn_syms)
17118 {
17119 ret = 0; /* Archive index only. */
17120 goto out;
17121 }
17122 }
17123
17124 ret = 0;
17125
17126 while (1)
17127 {
17128 char * name;
17129 size_t namelen;
17130 char * qualified_name;
17131
17132 /* Read the next archive header. */
17133 if (fseek (file, arch.next_arhdr_offset, SEEK_SET) != 0)
17134 {
17135 error (_("%s: failed to seek to next archive header\n"), file_name);
17136 return 1;
17137 }
17138 got = fread (&arch.arhdr, 1, sizeof arch.arhdr, file);
17139 if (got != sizeof arch.arhdr)
17140 {
17141 if (got == 0)
17142 break;
17143 error (_("%s: failed to read archive header\n"), file_name);
17144 ret = 1;
17145 break;
17146 }
17147 if (memcmp (arch.arhdr.ar_fmag, ARFMAG, 2) != 0)
17148 {
17149 error (_("%s: did not find a valid archive header\n"), arch.file_name);
17150 ret = 1;
17151 break;
17152 }
17153
17154 arch.next_arhdr_offset += sizeof arch.arhdr;
17155
17156 archive_file_size = strtoul (arch.arhdr.ar_size, NULL, 10);
17157 if (archive_file_size & 01)
17158 ++archive_file_size;
17159
17160 name = get_archive_member_name (&arch, &nested_arch);
17161 if (name == NULL)
17162 {
17163 error (_("%s: bad archive file name\n"), file_name);
17164 ret = 1;
17165 break;
17166 }
17167 namelen = strlen (name);
17168
17169 qualified_name = make_qualified_name (&arch, &nested_arch, name);
17170 if (qualified_name == NULL)
17171 {
17172 error (_("%s: bad archive file name\n"), file_name);
17173 ret = 1;
17174 break;
17175 }
17176
17177 if (is_thin_archive && arch.nested_member_origin == 0)
17178 {
17179 /* This is a proxy for an external member of a thin archive. */
17180 FILE * member_file;
17181 char * member_file_name = adjust_relative_path (file_name, name, namelen);
17182 if (member_file_name == NULL)
17183 {
17184 ret = 1;
17185 break;
17186 }
17187
17188 member_file = fopen (member_file_name, "rb");
17189 if (member_file == NULL)
17190 {
17191 error (_("Input file '%s' is not readable.\n"), member_file_name);
17192 free (member_file_name);
17193 ret = 1;
17194 break;
17195 }
17196
17197 archive_file_offset = arch.nested_member_origin;
17198
17199 ret |= process_object (qualified_name, member_file);
17200
17201 fclose (member_file);
17202 free (member_file_name);
17203 }
17204 else if (is_thin_archive)
17205 {
17206 /* PR 15140: Allow for corrupt thin archives. */
17207 if (nested_arch.file == NULL)
17208 {
17209 error (_("%s: contains corrupt thin archive: %s\n"),
17210 file_name, name);
17211 ret = 1;
17212 break;
17213 }
17214
17215 /* This is a proxy for a member of a nested archive. */
17216 archive_file_offset = arch.nested_member_origin + sizeof arch.arhdr;
17217
17218 /* The nested archive file will have been opened and setup by
17219 get_archive_member_name. */
17220 if (fseek (nested_arch.file, archive_file_offset, SEEK_SET) != 0)
17221 {
17222 error (_("%s: failed to seek to archive member.\n"), nested_arch.file_name);
17223 ret = 1;
17224 break;
17225 }
17226
17227 ret |= process_object (qualified_name, nested_arch.file);
17228 }
17229 else
17230 {
17231 archive_file_offset = arch.next_arhdr_offset;
17232 arch.next_arhdr_offset += archive_file_size;
17233
17234 ret |= process_object (qualified_name, file);
17235 }
17236
17237 if (dump_sects != NULL)
17238 {
17239 free (dump_sects);
17240 dump_sects = NULL;
17241 num_dump_sects = 0;
17242 }
17243
17244 free (qualified_name);
17245 }
17246
17247 out:
17248 if (nested_arch.file != NULL)
17249 fclose (nested_arch.file);
17250 release_archive (&nested_arch);
17251 release_archive (&arch);
17252
17253 return ret;
17254 }
17255
17256 static int
17257 process_file (char * file_name)
17258 {
17259 FILE * file;
17260 struct stat statbuf;
17261 char armag[SARMAG];
17262 int ret;
17263
17264 if (stat (file_name, &statbuf) < 0)
17265 {
17266 if (errno == ENOENT)
17267 error (_("'%s': No such file\n"), file_name);
17268 else
17269 error (_("Could not locate '%s'. System error message: %s\n"),
17270 file_name, strerror (errno));
17271 return 1;
17272 }
17273
17274 if (! S_ISREG (statbuf.st_mode))
17275 {
17276 error (_("'%s' is not an ordinary file\n"), file_name);
17277 return 1;
17278 }
17279
17280 file = fopen (file_name, "rb");
17281 if (file == NULL)
17282 {
17283 error (_("Input file '%s' is not readable.\n"), file_name);
17284 return 1;
17285 }
17286
17287 if (fread (armag, SARMAG, 1, file) != 1)
17288 {
17289 error (_("%s: Failed to read file's magic number\n"), file_name);
17290 fclose (file);
17291 return 1;
17292 }
17293
17294 current_file_size = (bfd_size_type) statbuf.st_size;
17295
17296 if (memcmp (armag, ARMAG, SARMAG) == 0)
17297 ret = process_archive (file_name, file, FALSE);
17298 else if (memcmp (armag, ARMAGT, SARMAG) == 0)
17299 ret = process_archive (file_name, file, TRUE);
17300 else
17301 {
17302 if (do_archive_index)
17303 error (_("File %s is not an archive so its index cannot be displayed.\n"),
17304 file_name);
17305
17306 rewind (file);
17307 archive_file_size = archive_file_offset = 0;
17308 ret = process_object (file_name, file);
17309 }
17310
17311 fclose (file);
17312
17313 current_file_size = 0;
17314 return ret;
17315 }
17316
17317 #ifdef SUPPORT_DISASSEMBLY
17318 /* Needed by the i386 disassembler. For extra credit, someone could
17319 fix this so that we insert symbolic addresses here, esp for GOT/PLT
17320 symbols. */
17321
17322 void
17323 print_address (unsigned int addr, FILE * outfile)
17324 {
17325 fprintf (outfile,"0x%8.8x", addr);
17326 }
17327
17328 /* Needed by the i386 disassembler. */
17329 void
17330 db_task_printsym (unsigned int addr)
17331 {
17332 print_address (addr, stderr);
17333 }
17334 #endif
17335
17336 int
17337 main (int argc, char ** argv)
17338 {
17339 int err;
17340
17341 #if defined (HAVE_SETLOCALE) && defined (HAVE_LC_MESSAGES)
17342 setlocale (LC_MESSAGES, "");
17343 #endif
17344 #if defined (HAVE_SETLOCALE)
17345 setlocale (LC_CTYPE, "");
17346 #endif
17347 bindtextdomain (PACKAGE, LOCALEDIR);
17348 textdomain (PACKAGE);
17349
17350 expandargv (&argc, &argv);
17351
17352 parse_args (argc, argv);
17353
17354 if (num_dump_sects > 0)
17355 {
17356 /* Make a copy of the dump_sects array. */
17357 cmdline_dump_sects = (dump_type *)
17358 malloc (num_dump_sects * sizeof (* dump_sects));
17359 if (cmdline_dump_sects == NULL)
17360 error (_("Out of memory allocating dump request table.\n"));
17361 else
17362 {
17363 memcpy (cmdline_dump_sects, dump_sects,
17364 num_dump_sects * sizeof (* dump_sects));
17365 num_cmdline_dump_sects = num_dump_sects;
17366 }
17367 }
17368
17369 if (optind < (argc - 1))
17370 show_name = 1;
17371 else if (optind >= argc)
17372 {
17373 warn (_("Nothing to do.\n"));
17374 usage (stderr);
17375 }
17376
17377 err = 0;
17378 while (optind < argc)
17379 err |= process_file (argv[optind++]);
17380
17381 if (dump_sects != NULL)
17382 free (dump_sects);
17383 if (cmdline_dump_sects != NULL)
17384 free (cmdline_dump_sects);
17385
17386 return err;
17387 }
This page took 0.817986 seconds and 5 git commands to generate.