PR24876, readelf: heap-buffer-overflow in dump_ia64_unwind
[deliverable/binutils-gdb.git] / binutils / readelf.c
1 /* readelf.c -- display contents of an ELF format file
2 Copyright (C) 1998-2019 Free Software Foundation, Inc.
3
4 Originally developed by Eric Youngdale <eric@andante.jic.com>
5 Modifications by Nick Clifton <nickc@redhat.com>
6
7 This file is part of GNU Binutils.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
22 02110-1301, USA. */
23 \f
24 /* The difference between readelf and objdump:
25
26 Both programs are capable of displaying the contents of ELF format files,
27 so why does the binutils project have two file dumpers ?
28
29 The reason is that objdump sees an ELF file through a BFD filter of the
30 world; if BFD has a bug where, say, it disagrees about a machine constant
31 in e_flags, then the odds are good that it will remain internally
32 consistent. The linker sees it the BFD way, objdump sees it the BFD way,
33 GAS sees it the BFD way. There was need for a tool to go find out what
34 the file actually says.
35
36 This is why the readelf program does not link against the BFD library - it
37 exists as an independent program to help verify the correct working of BFD.
38
39 There is also the case that readelf can provide more information about an
40 ELF file than is provided by objdump. In particular it can display DWARF
41 debugging information which (at the moment) objdump cannot. */
42 \f
43 #include "sysdep.h"
44 #include <assert.h>
45 #include <time.h>
46 #include <zlib.h>
47 #ifdef HAVE_WCHAR_H
48 #include <wchar.h>
49 #endif
50
51 #if __GNUC__ >= 2
52 /* Define BFD64 here, even if our default architecture is 32 bit ELF
53 as this will allow us to read in and parse 64bit and 32bit ELF files.
54 Only do this if we believe that the compiler can support a 64 bit
55 data type. For now we only rely on GCC being able to do this. */
56 #define BFD64
57 #endif
58
59 #include "bfd.h"
60 #include "bucomm.h"
61 #include "elfcomm.h"
62 #include "dwarf.h"
63 #include "ctf-api.h"
64
65 #include "elf/common.h"
66 #include "elf/external.h"
67 #include "elf/internal.h"
68
69
70 /* Included here, before RELOC_MACROS_GEN_FUNC is defined, so that
71 we can obtain the H8 reloc numbers. We need these for the
72 get_reloc_size() function. We include h8.h again after defining
73 RELOC_MACROS_GEN_FUNC so that we get the naming function as well. */
74
75 #include "elf/h8.h"
76 #undef _ELF_H8_H
77
78 /* Undo the effects of #including reloc-macros.h. */
79
80 #undef START_RELOC_NUMBERS
81 #undef RELOC_NUMBER
82 #undef FAKE_RELOC
83 #undef EMPTY_RELOC
84 #undef END_RELOC_NUMBERS
85 #undef _RELOC_MACROS_H
86
87 /* The following headers use the elf/reloc-macros.h file to
88 automatically generate relocation recognition functions
89 such as elf_mips_reloc_type() */
90
91 #define RELOC_MACROS_GEN_FUNC
92
93 #include "elf/aarch64.h"
94 #include "elf/alpha.h"
95 #include "elf/arc.h"
96 #include "elf/arm.h"
97 #include "elf/avr.h"
98 #include "elf/bfin.h"
99 #include "elf/cr16.h"
100 #include "elf/cris.h"
101 #include "elf/crx.h"
102 #include "elf/csky.h"
103 #include "elf/d10v.h"
104 #include "elf/d30v.h"
105 #include "elf/dlx.h"
106 #include "elf/bpf.h"
107 #include "elf/epiphany.h"
108 #include "elf/fr30.h"
109 #include "elf/frv.h"
110 #include "elf/ft32.h"
111 #include "elf/h8.h"
112 #include "elf/hppa.h"
113 #include "elf/i386.h"
114 #include "elf/i370.h"
115 #include "elf/i860.h"
116 #include "elf/i960.h"
117 #include "elf/ia64.h"
118 #include "elf/ip2k.h"
119 #include "elf/lm32.h"
120 #include "elf/iq2000.h"
121 #include "elf/m32c.h"
122 #include "elf/m32r.h"
123 #include "elf/m68k.h"
124 #include "elf/m68hc11.h"
125 #include "elf/s12z.h"
126 #include "elf/mcore.h"
127 #include "elf/mep.h"
128 #include "elf/metag.h"
129 #include "elf/microblaze.h"
130 #include "elf/mips.h"
131 #include "elf/mmix.h"
132 #include "elf/mn10200.h"
133 #include "elf/mn10300.h"
134 #include "elf/moxie.h"
135 #include "elf/mt.h"
136 #include "elf/msp430.h"
137 #include "elf/nds32.h"
138 #include "elf/nfp.h"
139 #include "elf/nios2.h"
140 #include "elf/or1k.h"
141 #include "elf/pj.h"
142 #include "elf/ppc.h"
143 #include "elf/ppc64.h"
144 #include "elf/pru.h"
145 #include "elf/riscv.h"
146 #include "elf/rl78.h"
147 #include "elf/rx.h"
148 #include "elf/s390.h"
149 #include "elf/score.h"
150 #include "elf/sh.h"
151 #include "elf/sparc.h"
152 #include "elf/spu.h"
153 #include "elf/tic6x.h"
154 #include "elf/tilegx.h"
155 #include "elf/tilepro.h"
156 #include "elf/v850.h"
157 #include "elf/vax.h"
158 #include "elf/visium.h"
159 #include "elf/wasm32.h"
160 #include "elf/x86-64.h"
161 #include "elf/xc16x.h"
162 #include "elf/xgate.h"
163 #include "elf/xstormy16.h"
164 #include "elf/xtensa.h"
165
166 #include "getopt.h"
167 #include "libiberty.h"
168 #include "safe-ctype.h"
169 #include "filenames.h"
170
171 #ifndef offsetof
172 #define offsetof(TYPE, MEMBER) ((size_t) &(((TYPE *) 0)->MEMBER))
173 #endif
174
175 typedef struct elf_section_list
176 {
177 Elf_Internal_Shdr * hdr;
178 struct elf_section_list * next;
179 } elf_section_list;
180
181 /* Flag bits indicating particular types of dump. */
182 #define HEX_DUMP (1 << 0) /* The -x command line switch. */
183 #define DISASS_DUMP (1 << 1) /* The -i command line switch. */
184 #define DEBUG_DUMP (1 << 2) /* The -w command line switch. */
185 #define STRING_DUMP (1 << 3) /* The -p command line switch. */
186 #define RELOC_DUMP (1 << 4) /* The -R command line switch. */
187 #define CTF_DUMP (1 << 5) /* The --ctf command line switch. */
188
189 typedef unsigned char dump_type;
190
191 /* A linked list of the section names for which dumps were requested. */
192 struct dump_list_entry
193 {
194 char * name;
195 dump_type type;
196 struct dump_list_entry * next;
197 };
198
199 typedef struct filedata
200 {
201 const char * file_name;
202 FILE * handle;
203 bfd_size_type file_size;
204 Elf_Internal_Ehdr file_header;
205 Elf_Internal_Shdr * section_headers;
206 Elf_Internal_Phdr * program_headers;
207 char * string_table;
208 unsigned long string_table_length;
209 /* A dynamic array of flags indicating for which sections a dump of
210 some kind has been requested. It is reset on a per-object file
211 basis and then initialised from the cmdline_dump_sects array,
212 the results of interpreting the -w switch, and the
213 dump_sects_byname list. */
214 dump_type * dump_sects;
215 unsigned int num_dump_sects;
216 } Filedata;
217
218 char * program_name = "readelf";
219
220 static unsigned long archive_file_offset;
221 static unsigned long archive_file_size;
222 static unsigned long dynamic_addr;
223 static bfd_size_type dynamic_size;
224 static size_t dynamic_nent;
225 static char * dynamic_strings;
226 static unsigned long dynamic_strings_length;
227 static unsigned long num_dynamic_syms;
228 static Elf_Internal_Sym * dynamic_symbols;
229 static Elf_Internal_Syminfo * dynamic_syminfo;
230 static unsigned long dynamic_syminfo_offset;
231 static unsigned int dynamic_syminfo_nent;
232 static char program_interpreter[PATH_MAX];
233 static bfd_vma dynamic_info[DT_ENCODING];
234 static bfd_vma dynamic_info_DT_GNU_HASH;
235 static bfd_vma version_info[16];
236 static Elf_Internal_Dyn * dynamic_section;
237 static elf_section_list * symtab_shndx_list;
238 static bfd_boolean show_name = FALSE;
239 static bfd_boolean do_dynamic = FALSE;
240 static bfd_boolean do_syms = FALSE;
241 static bfd_boolean do_dyn_syms = FALSE;
242 static bfd_boolean do_reloc = FALSE;
243 static bfd_boolean do_sections = FALSE;
244 static bfd_boolean do_section_groups = FALSE;
245 static bfd_boolean do_section_details = FALSE;
246 static bfd_boolean do_segments = FALSE;
247 static bfd_boolean do_unwind = FALSE;
248 static bfd_boolean do_using_dynamic = FALSE;
249 static bfd_boolean do_header = FALSE;
250 static bfd_boolean do_dump = FALSE;
251 static bfd_boolean do_version = FALSE;
252 static bfd_boolean do_histogram = FALSE;
253 static bfd_boolean do_debugging = FALSE;
254 static bfd_boolean do_ctf = FALSE;
255 static bfd_boolean do_arch = FALSE;
256 static bfd_boolean do_notes = FALSE;
257 static bfd_boolean do_archive_index = FALSE;
258 static bfd_boolean is_32bit_elf = FALSE;
259 static bfd_boolean decompress_dumps = FALSE;
260
261 static char *dump_ctf_parent_name;
262 static char *dump_ctf_symtab_name;
263 static char *dump_ctf_strtab_name;
264
265 struct group_list
266 {
267 struct group_list * next;
268 unsigned int section_index;
269 };
270
271 struct group
272 {
273 struct group_list * root;
274 unsigned int group_index;
275 };
276
277 static size_t group_count;
278 static struct group * section_groups;
279 static struct group ** section_headers_groups;
280
281 /* A dynamic array of flags indicating for which sections a dump
282 has been requested via command line switches. */
283 static Filedata cmdline;
284
285 static struct dump_list_entry * dump_sects_byname;
286
287 /* How to print a vma value. */
288 typedef enum print_mode
289 {
290 HEX,
291 DEC,
292 DEC_5,
293 UNSIGNED,
294 PREFIX_HEX,
295 FULL_HEX,
296 LONG_HEX
297 }
298 print_mode;
299
300 /* Versioned symbol info. */
301 enum versioned_symbol_info
302 {
303 symbol_undefined,
304 symbol_hidden,
305 symbol_public
306 };
307
308 static const char * get_symbol_version_string
309 (Filedata *, bfd_boolean, const char *, unsigned long, unsigned,
310 Elf_Internal_Sym *, enum versioned_symbol_info *, unsigned short *);
311
312 #define UNKNOWN -1
313
314 #define SECTION_NAME(X) \
315 ((X) == NULL ? _("<none>") \
316 : filedata->string_table == NULL ? _("<no-strings>") \
317 : ((X)->sh_name >= filedata->string_table_length ? _("<corrupt>") \
318 : filedata->string_table + (X)->sh_name))
319
320 #define DT_VERSIONTAGIDX(tag) (DT_VERNEEDNUM - (tag)) /* Reverse order! */
321
322 #define GET_ELF_SYMBOLS(file, section, sym_count) \
323 (is_32bit_elf ? get_32bit_elf_symbols (file, section, sym_count) \
324 : get_64bit_elf_symbols (file, section, sym_count))
325
326 #define VALID_DYNAMIC_NAME(offset) ((dynamic_strings != NULL) && (offset < dynamic_strings_length))
327 /* GET_DYNAMIC_NAME asssumes that VALID_DYNAMIC_NAME has
328 already been called and verified that the string exists. */
329 #define GET_DYNAMIC_NAME(offset) (dynamic_strings + offset)
330
331 #define REMOVE_ARCH_BITS(ADDR) \
332 do \
333 { \
334 if (filedata->file_header.e_machine == EM_ARM) \
335 (ADDR) &= ~1; \
336 } \
337 while (0)
338 \f
339 /* Print a BFD_VMA to an internal buffer, for use in error messages.
340 BFD_FMA_FMT can't be used in translated strings. */
341
342 static const char *
343 bfd_vmatoa (char *fmtch, bfd_vma value)
344 {
345 /* bfd_vmatoa is used more then once in a printf call for output.
346 Cycle through an array of buffers. */
347 static int buf_pos = 0;
348 static struct bfd_vmatoa_buf
349 {
350 char place[64];
351 } buf[4];
352 char *ret;
353 char fmt[32];
354
355 ret = buf[buf_pos++].place;
356 buf_pos %= ARRAY_SIZE (buf);
357
358 sprintf (fmt, "%%%s%s", BFD_VMA_FMT, fmtch);
359 snprintf (ret, sizeof (buf[0].place), fmt, value);
360 return ret;
361 }
362
363 /* Retrieve NMEMB structures, each SIZE bytes long from FILEDATA starting at
364 OFFSET + the offset of the current archive member, if we are examining an
365 archive. Put the retrieved data into VAR, if it is not NULL. Otherwise
366 allocate a buffer using malloc and fill that. In either case return the
367 pointer to the start of the retrieved data or NULL if something went wrong.
368 If something does go wrong and REASON is not NULL then emit an error
369 message using REASON as part of the context. */
370
371 static void *
372 get_data (void * var,
373 Filedata * filedata,
374 unsigned long offset,
375 bfd_size_type size,
376 bfd_size_type nmemb,
377 const char * reason)
378 {
379 void * mvar;
380 bfd_size_type amt = size * nmemb;
381
382 if (size == 0 || nmemb == 0)
383 return NULL;
384
385 /* If the size_t type is smaller than the bfd_size_type, eg because
386 you are building a 32-bit tool on a 64-bit host, then make sure
387 that when the sizes are cast to (size_t) no information is lost. */
388 if (sizeof (size_t) < sizeof (bfd_size_type)
389 && ( (bfd_size_type) ((size_t) size) != size
390 || (bfd_size_type) ((size_t) nmemb) != nmemb))
391 {
392 if (reason)
393 error (_("Size truncation prevents reading %s"
394 " elements of size %s for %s\n"),
395 bfd_vmatoa ("u", nmemb), bfd_vmatoa ("u", size), reason);
396 return NULL;
397 }
398
399 /* Check for size overflow. */
400 if (amt < nmemb)
401 {
402 if (reason)
403 error (_("Size overflow prevents reading %s"
404 " elements of size %s for %s\n"),
405 bfd_vmatoa ("u", nmemb), bfd_vmatoa ("u", size), reason);
406 return NULL;
407 }
408
409 /* Be kind to memory checkers (eg valgrind, address sanitizer) by not
410 attempting to allocate memory when the read is bound to fail. */
411 if (archive_file_offset > filedata->file_size
412 || offset > filedata->file_size - archive_file_offset
413 || amt > filedata->file_size - archive_file_offset - offset)
414 {
415 if (reason)
416 error (_("Reading %s bytes extends past end of file for %s\n"),
417 bfd_vmatoa ("u", amt), reason);
418 return NULL;
419 }
420
421 if (fseek (filedata->handle, archive_file_offset + offset, SEEK_SET))
422 {
423 if (reason)
424 error (_("Unable to seek to 0x%lx for %s\n"),
425 archive_file_offset + offset, reason);
426 return NULL;
427 }
428
429 mvar = var;
430 if (mvar == NULL)
431 {
432 /* Check for overflow. */
433 if (nmemb < (~(bfd_size_type) 0 - 1) / size)
434 /* + 1 so that we can '\0' terminate invalid string table sections. */
435 mvar = malloc ((size_t) amt + 1);
436
437 if (mvar == NULL)
438 {
439 if (reason)
440 error (_("Out of memory allocating %s bytes for %s\n"),
441 bfd_vmatoa ("u", amt), reason);
442 return NULL;
443 }
444
445 ((char *) mvar)[amt] = '\0';
446 }
447
448 if (fread (mvar, (size_t) size, (size_t) nmemb, filedata->handle) != nmemb)
449 {
450 if (reason)
451 error (_("Unable to read in %s bytes of %s\n"),
452 bfd_vmatoa ("u", amt), reason);
453 if (mvar != var)
454 free (mvar);
455 return NULL;
456 }
457
458 return mvar;
459 }
460
461 /* Print a VMA value in the MODE specified.
462 Returns the number of characters displayed. */
463
464 static unsigned int
465 print_vma (bfd_vma vma, print_mode mode)
466 {
467 unsigned int nc = 0;
468
469 switch (mode)
470 {
471 case FULL_HEX:
472 nc = printf ("0x");
473 /* Fall through. */
474 case LONG_HEX:
475 #ifdef BFD64
476 if (is_32bit_elf)
477 return nc + printf ("%8.8" BFD_VMA_FMT "x", vma);
478 #endif
479 printf_vma (vma);
480 return nc + 16;
481
482 case DEC_5:
483 if (vma <= 99999)
484 return printf ("%5" BFD_VMA_FMT "d", vma);
485 /* Fall through. */
486 case PREFIX_HEX:
487 nc = printf ("0x");
488 /* Fall through. */
489 case HEX:
490 return nc + printf ("%" BFD_VMA_FMT "x", vma);
491
492 case DEC:
493 return printf ("%" BFD_VMA_FMT "d", vma);
494
495 case UNSIGNED:
496 return printf ("%" BFD_VMA_FMT "u", vma);
497
498 default:
499 /* FIXME: Report unrecognised mode ? */
500 return 0;
501 }
502 }
503
504 /* Display a symbol on stdout. Handles the display of control characters and
505 multibye characters (assuming the host environment supports them).
506
507 Display at most abs(WIDTH) characters, truncating as necessary, unless do_wide is true.
508
509 If WIDTH is negative then ensure that the output is at least (- WIDTH) characters,
510 padding as necessary.
511
512 Returns the number of emitted characters. */
513
514 static unsigned int
515 print_symbol (signed int width, const char *symbol)
516 {
517 bfd_boolean extra_padding = FALSE;
518 signed int num_printed = 0;
519 #ifdef HAVE_MBSTATE_T
520 mbstate_t state;
521 #endif
522 unsigned int width_remaining;
523
524 if (width < 0)
525 {
526 /* Keep the width positive. This helps the code below. */
527 width = - width;
528 extra_padding = TRUE;
529 }
530 else if (width == 0)
531 return 0;
532
533 if (do_wide)
534 /* Set the remaining width to a very large value.
535 This simplifies the code below. */
536 width_remaining = INT_MAX;
537 else
538 width_remaining = width;
539
540 #ifdef HAVE_MBSTATE_T
541 /* Initialise the multibyte conversion state. */
542 memset (& state, 0, sizeof (state));
543 #endif
544
545 while (width_remaining)
546 {
547 size_t n;
548 const char c = *symbol++;
549
550 if (c == 0)
551 break;
552
553 /* Do not print control characters directly as they can affect terminal
554 settings. Such characters usually appear in the names generated
555 by the assembler for local labels. */
556 if (ISCNTRL (c))
557 {
558 if (width_remaining < 2)
559 break;
560
561 printf ("^%c", c + 0x40);
562 width_remaining -= 2;
563 num_printed += 2;
564 }
565 else if (ISPRINT (c))
566 {
567 putchar (c);
568 width_remaining --;
569 num_printed ++;
570 }
571 else
572 {
573 #ifdef HAVE_MBSTATE_T
574 wchar_t w;
575 #endif
576 /* Let printf do the hard work of displaying multibyte characters. */
577 printf ("%.1s", symbol - 1);
578 width_remaining --;
579 num_printed ++;
580
581 #ifdef HAVE_MBSTATE_T
582 /* Try to find out how many bytes made up the character that was
583 just printed. Advance the symbol pointer past the bytes that
584 were displayed. */
585 n = mbrtowc (& w, symbol - 1, MB_CUR_MAX, & state);
586 #else
587 n = 1;
588 #endif
589 if (n != (size_t) -1 && n != (size_t) -2 && n > 0)
590 symbol += (n - 1);
591 }
592 }
593
594 if (extra_padding && num_printed < width)
595 {
596 /* Fill in the remaining spaces. */
597 printf ("%-*s", width - num_printed, " ");
598 num_printed = width;
599 }
600
601 return num_printed;
602 }
603
604 /* Returns a pointer to a static buffer containing a printable version of
605 the given section's name. Like print_symbol, except that it does not try
606 to print multibyte characters, it just interprets them as hex values. */
607
608 static const char *
609 printable_section_name (Filedata * filedata, const Elf_Internal_Shdr * sec)
610 {
611 #define MAX_PRINT_SEC_NAME_LEN 128
612 static char sec_name_buf [MAX_PRINT_SEC_NAME_LEN + 1];
613 const char * name = SECTION_NAME (sec);
614 char * buf = sec_name_buf;
615 char c;
616 unsigned int remaining = MAX_PRINT_SEC_NAME_LEN;
617
618 while ((c = * name ++) != 0)
619 {
620 if (ISCNTRL (c))
621 {
622 if (remaining < 2)
623 break;
624
625 * buf ++ = '^';
626 * buf ++ = c + 0x40;
627 remaining -= 2;
628 }
629 else if (ISPRINT (c))
630 {
631 * buf ++ = c;
632 remaining -= 1;
633 }
634 else
635 {
636 static char hex[17] = "0123456789ABCDEF";
637
638 if (remaining < 4)
639 break;
640 * buf ++ = '<';
641 * buf ++ = hex[(c & 0xf0) >> 4];
642 * buf ++ = hex[c & 0x0f];
643 * buf ++ = '>';
644 remaining -= 4;
645 }
646
647 if (remaining == 0)
648 break;
649 }
650
651 * buf = 0;
652 return sec_name_buf;
653 }
654
655 static const char *
656 printable_section_name_from_index (Filedata * filedata, unsigned long ndx)
657 {
658 if (ndx >= filedata->file_header.e_shnum)
659 return _("<corrupt>");
660
661 return printable_section_name (filedata, filedata->section_headers + ndx);
662 }
663
664 /* Return a pointer to section NAME, or NULL if no such section exists. */
665
666 static Elf_Internal_Shdr *
667 find_section (Filedata * filedata, const char * name)
668 {
669 unsigned int i;
670
671 if (filedata->section_headers == NULL)
672 return NULL;
673
674 for (i = 0; i < filedata->file_header.e_shnum; i++)
675 if (streq (SECTION_NAME (filedata->section_headers + i), name))
676 return filedata->section_headers + i;
677
678 return NULL;
679 }
680
681 /* Return a pointer to a section containing ADDR, or NULL if no such
682 section exists. */
683
684 static Elf_Internal_Shdr *
685 find_section_by_address (Filedata * filedata, bfd_vma addr)
686 {
687 unsigned int i;
688
689 if (filedata->section_headers == NULL)
690 return NULL;
691
692 for (i = 0; i < filedata->file_header.e_shnum; i++)
693 {
694 Elf_Internal_Shdr *sec = filedata->section_headers + i;
695
696 if (addr >= sec->sh_addr && addr < sec->sh_addr + sec->sh_size)
697 return sec;
698 }
699
700 return NULL;
701 }
702
703 static Elf_Internal_Shdr *
704 find_section_by_type (Filedata * filedata, unsigned int type)
705 {
706 unsigned int i;
707
708 if (filedata->section_headers == NULL)
709 return NULL;
710
711 for (i = 0; i < filedata->file_header.e_shnum; i++)
712 {
713 Elf_Internal_Shdr *sec = filedata->section_headers + i;
714
715 if (sec->sh_type == type)
716 return sec;
717 }
718
719 return NULL;
720 }
721
722 /* Return a pointer to section NAME, or NULL if no such section exists,
723 restricted to the list of sections given in SET. */
724
725 static Elf_Internal_Shdr *
726 find_section_in_set (Filedata * filedata, const char * name, unsigned int * set)
727 {
728 unsigned int i;
729
730 if (filedata->section_headers == NULL)
731 return NULL;
732
733 if (set != NULL)
734 {
735 while ((i = *set++) > 0)
736 {
737 /* See PR 21156 for a reproducer. */
738 if (i >= filedata->file_header.e_shnum)
739 continue; /* FIXME: Should we issue an error message ? */
740
741 if (streq (SECTION_NAME (filedata->section_headers + i), name))
742 return filedata->section_headers + i;
743 }
744 }
745
746 return find_section (filedata, name);
747 }
748
749 /* Read an unsigned LEB128 encoded value from DATA.
750 Set *LENGTH_RETURN to the number of bytes read. */
751
752 static inline unsigned long
753 read_uleb128 (unsigned char * data,
754 unsigned int * length_return,
755 const unsigned char * const end)
756 {
757 return read_leb128 (data, length_return, FALSE, end);
758 }
759
760 /* Return TRUE if the current file is for IA-64 machine and OpenVMS ABI.
761 This OS has so many departures from the ELF standard that we test it at
762 many places. */
763
764 static inline bfd_boolean
765 is_ia64_vms (Filedata * filedata)
766 {
767 return filedata->file_header.e_machine == EM_IA_64
768 && filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS;
769 }
770
771 /* Guess the relocation size commonly used by the specific machines. */
772
773 static bfd_boolean
774 guess_is_rela (unsigned int e_machine)
775 {
776 switch (e_machine)
777 {
778 /* Targets that use REL relocations. */
779 case EM_386:
780 case EM_IAMCU:
781 case EM_960:
782 case EM_ARM:
783 case EM_D10V:
784 case EM_CYGNUS_D10V:
785 case EM_DLX:
786 case EM_MIPS:
787 case EM_MIPS_RS3_LE:
788 case EM_CYGNUS_M32R:
789 case EM_SCORE:
790 case EM_XGATE:
791 case EM_NFP:
792 case EM_BPF:
793 return FALSE;
794
795 /* Targets that use RELA relocations. */
796 case EM_68K:
797 case EM_860:
798 case EM_AARCH64:
799 case EM_ADAPTEVA_EPIPHANY:
800 case EM_ALPHA:
801 case EM_ALTERA_NIOS2:
802 case EM_ARC:
803 case EM_ARC_COMPACT:
804 case EM_ARC_COMPACT2:
805 case EM_AVR:
806 case EM_AVR_OLD:
807 case EM_BLACKFIN:
808 case EM_CR16:
809 case EM_CRIS:
810 case EM_CRX:
811 case EM_CSKY:
812 case EM_D30V:
813 case EM_CYGNUS_D30V:
814 case EM_FR30:
815 case EM_FT32:
816 case EM_CYGNUS_FR30:
817 case EM_CYGNUS_FRV:
818 case EM_H8S:
819 case EM_H8_300:
820 case EM_H8_300H:
821 case EM_IA_64:
822 case EM_IP2K:
823 case EM_IP2K_OLD:
824 case EM_IQ2000:
825 case EM_LATTICEMICO32:
826 case EM_M32C_OLD:
827 case EM_M32C:
828 case EM_M32R:
829 case EM_MCORE:
830 case EM_CYGNUS_MEP:
831 case EM_METAG:
832 case EM_MMIX:
833 case EM_MN10200:
834 case EM_CYGNUS_MN10200:
835 case EM_MN10300:
836 case EM_CYGNUS_MN10300:
837 case EM_MOXIE:
838 case EM_MSP430:
839 case EM_MSP430_OLD:
840 case EM_MT:
841 case EM_NDS32:
842 case EM_NIOS32:
843 case EM_OR1K:
844 case EM_PPC64:
845 case EM_PPC:
846 case EM_TI_PRU:
847 case EM_RISCV:
848 case EM_RL78:
849 case EM_RX:
850 case EM_S390:
851 case EM_S390_OLD:
852 case EM_SH:
853 case EM_SPARC:
854 case EM_SPARC32PLUS:
855 case EM_SPARCV9:
856 case EM_SPU:
857 case EM_TI_C6000:
858 case EM_TILEGX:
859 case EM_TILEPRO:
860 case EM_V800:
861 case EM_V850:
862 case EM_CYGNUS_V850:
863 case EM_VAX:
864 case EM_VISIUM:
865 case EM_X86_64:
866 case EM_L1OM:
867 case EM_K1OM:
868 case EM_XSTORMY16:
869 case EM_XTENSA:
870 case EM_XTENSA_OLD:
871 case EM_MICROBLAZE:
872 case EM_MICROBLAZE_OLD:
873 case EM_WEBASSEMBLY:
874 return TRUE;
875
876 case EM_68HC05:
877 case EM_68HC08:
878 case EM_68HC11:
879 case EM_68HC16:
880 case EM_FX66:
881 case EM_ME16:
882 case EM_MMA:
883 case EM_NCPU:
884 case EM_NDR1:
885 case EM_PCP:
886 case EM_ST100:
887 case EM_ST19:
888 case EM_ST7:
889 case EM_ST9PLUS:
890 case EM_STARCORE:
891 case EM_SVX:
892 case EM_TINYJ:
893 default:
894 warn (_("Don't know about relocations on this machine architecture\n"));
895 return FALSE;
896 }
897 }
898
899 /* Load RELA type relocations from FILEDATA at REL_OFFSET extending for REL_SIZE bytes.
900 Returns TRUE upon success, FALSE otherwise. If successful then a
901 pointer to a malloc'ed buffer containing the relocs is placed in *RELASP,
902 and the number of relocs loaded is placed in *NRELASP. It is the caller's
903 responsibility to free the allocated buffer. */
904
905 static bfd_boolean
906 slurp_rela_relocs (Filedata * filedata,
907 unsigned long rel_offset,
908 unsigned long rel_size,
909 Elf_Internal_Rela ** relasp,
910 unsigned long * nrelasp)
911 {
912 Elf_Internal_Rela * relas;
913 size_t nrelas;
914 unsigned int i;
915
916 if (is_32bit_elf)
917 {
918 Elf32_External_Rela * erelas;
919
920 erelas = (Elf32_External_Rela *) get_data (NULL, filedata, rel_offset, 1,
921 rel_size, _("32-bit relocation data"));
922 if (!erelas)
923 return FALSE;
924
925 nrelas = rel_size / sizeof (Elf32_External_Rela);
926
927 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
928 sizeof (Elf_Internal_Rela));
929
930 if (relas == NULL)
931 {
932 free (erelas);
933 error (_("out of memory parsing relocs\n"));
934 return FALSE;
935 }
936
937 for (i = 0; i < nrelas; i++)
938 {
939 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
940 relas[i].r_info = BYTE_GET (erelas[i].r_info);
941 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
942 }
943
944 free (erelas);
945 }
946 else
947 {
948 Elf64_External_Rela * erelas;
949
950 erelas = (Elf64_External_Rela *) get_data (NULL, filedata, rel_offset, 1,
951 rel_size, _("64-bit relocation data"));
952 if (!erelas)
953 return FALSE;
954
955 nrelas = rel_size / sizeof (Elf64_External_Rela);
956
957 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
958 sizeof (Elf_Internal_Rela));
959
960 if (relas == NULL)
961 {
962 free (erelas);
963 error (_("out of memory parsing relocs\n"));
964 return FALSE;
965 }
966
967 for (i = 0; i < nrelas; i++)
968 {
969 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
970 relas[i].r_info = BYTE_GET (erelas[i].r_info);
971 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
972
973 /* The #ifdef BFD64 below is to prevent a compile time
974 warning. We know that if we do not have a 64 bit data
975 type that we will never execute this code anyway. */
976 #ifdef BFD64
977 if (filedata->file_header.e_machine == EM_MIPS
978 && filedata->file_header.e_ident[EI_DATA] != ELFDATA2MSB)
979 {
980 /* In little-endian objects, r_info isn't really a
981 64-bit little-endian value: it has a 32-bit
982 little-endian symbol index followed by four
983 individual byte fields. Reorder INFO
984 accordingly. */
985 bfd_vma inf = relas[i].r_info;
986 inf = (((inf & 0xffffffff) << 32)
987 | ((inf >> 56) & 0xff)
988 | ((inf >> 40) & 0xff00)
989 | ((inf >> 24) & 0xff0000)
990 | ((inf >> 8) & 0xff000000));
991 relas[i].r_info = inf;
992 }
993 #endif /* BFD64 */
994 }
995
996 free (erelas);
997 }
998
999 *relasp = relas;
1000 *nrelasp = nrelas;
1001 return TRUE;
1002 }
1003
1004 /* Load REL type relocations from FILEDATA at REL_OFFSET extending for REL_SIZE bytes.
1005 Returns TRUE upon success, FALSE otherwise. If successful then a
1006 pointer to a malloc'ed buffer containing the relocs is placed in *RELSP,
1007 and the number of relocs loaded is placed in *NRELSP. It is the caller's
1008 responsibility to free the allocated buffer. */
1009
1010 static bfd_boolean
1011 slurp_rel_relocs (Filedata * filedata,
1012 unsigned long rel_offset,
1013 unsigned long rel_size,
1014 Elf_Internal_Rela ** relsp,
1015 unsigned long * nrelsp)
1016 {
1017 Elf_Internal_Rela * rels;
1018 size_t nrels;
1019 unsigned int i;
1020
1021 if (is_32bit_elf)
1022 {
1023 Elf32_External_Rel * erels;
1024
1025 erels = (Elf32_External_Rel *) get_data (NULL, filedata, rel_offset, 1,
1026 rel_size, _("32-bit relocation data"));
1027 if (!erels)
1028 return FALSE;
1029
1030 nrels = rel_size / sizeof (Elf32_External_Rel);
1031
1032 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
1033
1034 if (rels == NULL)
1035 {
1036 free (erels);
1037 error (_("out of memory parsing relocs\n"));
1038 return FALSE;
1039 }
1040
1041 for (i = 0; i < nrels; i++)
1042 {
1043 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
1044 rels[i].r_info = BYTE_GET (erels[i].r_info);
1045 rels[i].r_addend = 0;
1046 }
1047
1048 free (erels);
1049 }
1050 else
1051 {
1052 Elf64_External_Rel * erels;
1053
1054 erels = (Elf64_External_Rel *) get_data (NULL, filedata, rel_offset, 1,
1055 rel_size, _("64-bit relocation data"));
1056 if (!erels)
1057 return FALSE;
1058
1059 nrels = rel_size / sizeof (Elf64_External_Rel);
1060
1061 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
1062
1063 if (rels == NULL)
1064 {
1065 free (erels);
1066 error (_("out of memory parsing relocs\n"));
1067 return FALSE;
1068 }
1069
1070 for (i = 0; i < nrels; i++)
1071 {
1072 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
1073 rels[i].r_info = BYTE_GET (erels[i].r_info);
1074 rels[i].r_addend = 0;
1075
1076 /* The #ifdef BFD64 below is to prevent a compile time
1077 warning. We know that if we do not have a 64 bit data
1078 type that we will never execute this code anyway. */
1079 #ifdef BFD64
1080 if (filedata->file_header.e_machine == EM_MIPS
1081 && filedata->file_header.e_ident[EI_DATA] != ELFDATA2MSB)
1082 {
1083 /* In little-endian objects, r_info isn't really a
1084 64-bit little-endian value: it has a 32-bit
1085 little-endian symbol index followed by four
1086 individual byte fields. Reorder INFO
1087 accordingly. */
1088 bfd_vma inf = rels[i].r_info;
1089 inf = (((inf & 0xffffffff) << 32)
1090 | ((inf >> 56) & 0xff)
1091 | ((inf >> 40) & 0xff00)
1092 | ((inf >> 24) & 0xff0000)
1093 | ((inf >> 8) & 0xff000000));
1094 rels[i].r_info = inf;
1095 }
1096 #endif /* BFD64 */
1097 }
1098
1099 free (erels);
1100 }
1101
1102 *relsp = rels;
1103 *nrelsp = nrels;
1104 return TRUE;
1105 }
1106
1107 /* Returns the reloc type extracted from the reloc info field. */
1108
1109 static unsigned int
1110 get_reloc_type (Filedata * filedata, bfd_vma reloc_info)
1111 {
1112 if (is_32bit_elf)
1113 return ELF32_R_TYPE (reloc_info);
1114
1115 switch (filedata->file_header.e_machine)
1116 {
1117 case EM_MIPS:
1118 /* Note: We assume that reloc_info has already been adjusted for us. */
1119 return ELF64_MIPS_R_TYPE (reloc_info);
1120
1121 case EM_SPARCV9:
1122 return ELF64_R_TYPE_ID (reloc_info);
1123
1124 default:
1125 return ELF64_R_TYPE (reloc_info);
1126 }
1127 }
1128
1129 /* Return the symbol index extracted from the reloc info field. */
1130
1131 static bfd_vma
1132 get_reloc_symindex (bfd_vma reloc_info)
1133 {
1134 return is_32bit_elf ? ELF32_R_SYM (reloc_info) : ELF64_R_SYM (reloc_info);
1135 }
1136
1137 static inline bfd_boolean
1138 uses_msp430x_relocs (Filedata * filedata)
1139 {
1140 return
1141 filedata->file_header.e_machine == EM_MSP430 /* Paranoia. */
1142 /* GCC uses osabi == ELFOSBI_STANDALONE. */
1143 && (((filedata->file_header.e_flags & EF_MSP430_MACH) == E_MSP430_MACH_MSP430X)
1144 /* TI compiler uses ELFOSABI_NONE. */
1145 || (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_NONE));
1146 }
1147
1148 /* Display the contents of the relocation data found at the specified
1149 offset. */
1150
1151 static bfd_boolean
1152 dump_relocations (Filedata * filedata,
1153 unsigned long rel_offset,
1154 unsigned long rel_size,
1155 Elf_Internal_Sym * symtab,
1156 unsigned long nsyms,
1157 char * strtab,
1158 unsigned long strtablen,
1159 int is_rela,
1160 bfd_boolean is_dynsym)
1161 {
1162 unsigned long i;
1163 Elf_Internal_Rela * rels;
1164 bfd_boolean res = TRUE;
1165
1166 if (is_rela == UNKNOWN)
1167 is_rela = guess_is_rela (filedata->file_header.e_machine);
1168
1169 if (is_rela)
1170 {
1171 if (!slurp_rela_relocs (filedata, rel_offset, rel_size, &rels, &rel_size))
1172 return FALSE;
1173 }
1174 else
1175 {
1176 if (!slurp_rel_relocs (filedata, rel_offset, rel_size, &rels, &rel_size))
1177 return FALSE;
1178 }
1179
1180 if (is_32bit_elf)
1181 {
1182 if (is_rela)
1183 {
1184 if (do_wide)
1185 printf (_(" Offset Info Type Sym. Value Symbol's Name + Addend\n"));
1186 else
1187 printf (_(" Offset Info Type Sym.Value Sym. Name + Addend\n"));
1188 }
1189 else
1190 {
1191 if (do_wide)
1192 printf (_(" Offset Info Type Sym. Value Symbol's Name\n"));
1193 else
1194 printf (_(" Offset Info Type Sym.Value Sym. Name\n"));
1195 }
1196 }
1197 else
1198 {
1199 if (is_rela)
1200 {
1201 if (do_wide)
1202 printf (_(" Offset Info Type Symbol's Value Symbol's Name + Addend\n"));
1203 else
1204 printf (_(" Offset Info Type Sym. Value Sym. Name + Addend\n"));
1205 }
1206 else
1207 {
1208 if (do_wide)
1209 printf (_(" Offset Info Type Symbol's Value Symbol's Name\n"));
1210 else
1211 printf (_(" Offset Info Type Sym. Value Sym. Name\n"));
1212 }
1213 }
1214
1215 for (i = 0; i < rel_size; i++)
1216 {
1217 const char * rtype;
1218 bfd_vma offset;
1219 bfd_vma inf;
1220 bfd_vma symtab_index;
1221 bfd_vma type;
1222
1223 offset = rels[i].r_offset;
1224 inf = rels[i].r_info;
1225
1226 type = get_reloc_type (filedata, inf);
1227 symtab_index = get_reloc_symindex (inf);
1228
1229 if (is_32bit_elf)
1230 {
1231 printf ("%8.8lx %8.8lx ",
1232 (unsigned long) offset & 0xffffffff,
1233 (unsigned long) inf & 0xffffffff);
1234 }
1235 else
1236 {
1237 #if BFD_HOST_64BIT_LONG
1238 printf (do_wide
1239 ? "%16.16lx %16.16lx "
1240 : "%12.12lx %12.12lx ",
1241 offset, inf);
1242 #elif BFD_HOST_64BIT_LONG_LONG
1243 #ifndef __MSVCRT__
1244 printf (do_wide
1245 ? "%16.16llx %16.16llx "
1246 : "%12.12llx %12.12llx ",
1247 offset, inf);
1248 #else
1249 printf (do_wide
1250 ? "%16.16I64x %16.16I64x "
1251 : "%12.12I64x %12.12I64x ",
1252 offset, inf);
1253 #endif
1254 #else
1255 printf (do_wide
1256 ? "%8.8lx%8.8lx %8.8lx%8.8lx "
1257 : "%4.4lx%8.8lx %4.4lx%8.8lx ",
1258 _bfd_int64_high (offset),
1259 _bfd_int64_low (offset),
1260 _bfd_int64_high (inf),
1261 _bfd_int64_low (inf));
1262 #endif
1263 }
1264
1265 switch (filedata->file_header.e_machine)
1266 {
1267 default:
1268 rtype = NULL;
1269 break;
1270
1271 case EM_AARCH64:
1272 rtype = elf_aarch64_reloc_type (type);
1273 break;
1274
1275 case EM_M32R:
1276 case EM_CYGNUS_M32R:
1277 rtype = elf_m32r_reloc_type (type);
1278 break;
1279
1280 case EM_386:
1281 case EM_IAMCU:
1282 rtype = elf_i386_reloc_type (type);
1283 break;
1284
1285 case EM_68HC11:
1286 case EM_68HC12:
1287 rtype = elf_m68hc11_reloc_type (type);
1288 break;
1289
1290 case EM_S12Z:
1291 rtype = elf_s12z_reloc_type (type);
1292 break;
1293
1294 case EM_68K:
1295 rtype = elf_m68k_reloc_type (type);
1296 break;
1297
1298 case EM_960:
1299 rtype = elf_i960_reloc_type (type);
1300 break;
1301
1302 case EM_AVR:
1303 case EM_AVR_OLD:
1304 rtype = elf_avr_reloc_type (type);
1305 break;
1306
1307 case EM_OLD_SPARCV9:
1308 case EM_SPARC32PLUS:
1309 case EM_SPARCV9:
1310 case EM_SPARC:
1311 rtype = elf_sparc_reloc_type (type);
1312 break;
1313
1314 case EM_SPU:
1315 rtype = elf_spu_reloc_type (type);
1316 break;
1317
1318 case EM_V800:
1319 rtype = v800_reloc_type (type);
1320 break;
1321 case EM_V850:
1322 case EM_CYGNUS_V850:
1323 rtype = v850_reloc_type (type);
1324 break;
1325
1326 case EM_D10V:
1327 case EM_CYGNUS_D10V:
1328 rtype = elf_d10v_reloc_type (type);
1329 break;
1330
1331 case EM_D30V:
1332 case EM_CYGNUS_D30V:
1333 rtype = elf_d30v_reloc_type (type);
1334 break;
1335
1336 case EM_DLX:
1337 rtype = elf_dlx_reloc_type (type);
1338 break;
1339
1340 case EM_SH:
1341 rtype = elf_sh_reloc_type (type);
1342 break;
1343
1344 case EM_MN10300:
1345 case EM_CYGNUS_MN10300:
1346 rtype = elf_mn10300_reloc_type (type);
1347 break;
1348
1349 case EM_MN10200:
1350 case EM_CYGNUS_MN10200:
1351 rtype = elf_mn10200_reloc_type (type);
1352 break;
1353
1354 case EM_FR30:
1355 case EM_CYGNUS_FR30:
1356 rtype = elf_fr30_reloc_type (type);
1357 break;
1358
1359 case EM_CYGNUS_FRV:
1360 rtype = elf_frv_reloc_type (type);
1361 break;
1362
1363 case EM_CSKY:
1364 rtype = elf_csky_reloc_type (type);
1365 break;
1366
1367 case EM_FT32:
1368 rtype = elf_ft32_reloc_type (type);
1369 break;
1370
1371 case EM_MCORE:
1372 rtype = elf_mcore_reloc_type (type);
1373 break;
1374
1375 case EM_MMIX:
1376 rtype = elf_mmix_reloc_type (type);
1377 break;
1378
1379 case EM_MOXIE:
1380 rtype = elf_moxie_reloc_type (type);
1381 break;
1382
1383 case EM_MSP430:
1384 if (uses_msp430x_relocs (filedata))
1385 {
1386 rtype = elf_msp430x_reloc_type (type);
1387 break;
1388 }
1389 /* Fall through. */
1390 case EM_MSP430_OLD:
1391 rtype = elf_msp430_reloc_type (type);
1392 break;
1393
1394 case EM_NDS32:
1395 rtype = elf_nds32_reloc_type (type);
1396 break;
1397
1398 case EM_PPC:
1399 rtype = elf_ppc_reloc_type (type);
1400 break;
1401
1402 case EM_PPC64:
1403 rtype = elf_ppc64_reloc_type (type);
1404 break;
1405
1406 case EM_MIPS:
1407 case EM_MIPS_RS3_LE:
1408 rtype = elf_mips_reloc_type (type);
1409 break;
1410
1411 case EM_RISCV:
1412 rtype = elf_riscv_reloc_type (type);
1413 break;
1414
1415 case EM_ALPHA:
1416 rtype = elf_alpha_reloc_type (type);
1417 break;
1418
1419 case EM_ARM:
1420 rtype = elf_arm_reloc_type (type);
1421 break;
1422
1423 case EM_ARC:
1424 case EM_ARC_COMPACT:
1425 case EM_ARC_COMPACT2:
1426 rtype = elf_arc_reloc_type (type);
1427 break;
1428
1429 case EM_PARISC:
1430 rtype = elf_hppa_reloc_type (type);
1431 break;
1432
1433 case EM_H8_300:
1434 case EM_H8_300H:
1435 case EM_H8S:
1436 rtype = elf_h8_reloc_type (type);
1437 break;
1438
1439 case EM_OR1K:
1440 rtype = elf_or1k_reloc_type (type);
1441 break;
1442
1443 case EM_PJ:
1444 case EM_PJ_OLD:
1445 rtype = elf_pj_reloc_type (type);
1446 break;
1447 case EM_IA_64:
1448 rtype = elf_ia64_reloc_type (type);
1449 break;
1450
1451 case EM_CRIS:
1452 rtype = elf_cris_reloc_type (type);
1453 break;
1454
1455 case EM_860:
1456 rtype = elf_i860_reloc_type (type);
1457 break;
1458
1459 case EM_X86_64:
1460 case EM_L1OM:
1461 case EM_K1OM:
1462 rtype = elf_x86_64_reloc_type (type);
1463 break;
1464
1465 case EM_S370:
1466 rtype = i370_reloc_type (type);
1467 break;
1468
1469 case EM_S390_OLD:
1470 case EM_S390:
1471 rtype = elf_s390_reloc_type (type);
1472 break;
1473
1474 case EM_SCORE:
1475 rtype = elf_score_reloc_type (type);
1476 break;
1477
1478 case EM_XSTORMY16:
1479 rtype = elf_xstormy16_reloc_type (type);
1480 break;
1481
1482 case EM_CRX:
1483 rtype = elf_crx_reloc_type (type);
1484 break;
1485
1486 case EM_VAX:
1487 rtype = elf_vax_reloc_type (type);
1488 break;
1489
1490 case EM_VISIUM:
1491 rtype = elf_visium_reloc_type (type);
1492 break;
1493
1494 case EM_BPF:
1495 rtype = elf_bpf_reloc_type (type);
1496 break;
1497
1498 case EM_ADAPTEVA_EPIPHANY:
1499 rtype = elf_epiphany_reloc_type (type);
1500 break;
1501
1502 case EM_IP2K:
1503 case EM_IP2K_OLD:
1504 rtype = elf_ip2k_reloc_type (type);
1505 break;
1506
1507 case EM_IQ2000:
1508 rtype = elf_iq2000_reloc_type (type);
1509 break;
1510
1511 case EM_XTENSA_OLD:
1512 case EM_XTENSA:
1513 rtype = elf_xtensa_reloc_type (type);
1514 break;
1515
1516 case EM_LATTICEMICO32:
1517 rtype = elf_lm32_reloc_type (type);
1518 break;
1519
1520 case EM_M32C_OLD:
1521 case EM_M32C:
1522 rtype = elf_m32c_reloc_type (type);
1523 break;
1524
1525 case EM_MT:
1526 rtype = elf_mt_reloc_type (type);
1527 break;
1528
1529 case EM_BLACKFIN:
1530 rtype = elf_bfin_reloc_type (type);
1531 break;
1532
1533 case EM_CYGNUS_MEP:
1534 rtype = elf_mep_reloc_type (type);
1535 break;
1536
1537 case EM_CR16:
1538 rtype = elf_cr16_reloc_type (type);
1539 break;
1540
1541 case EM_MICROBLAZE:
1542 case EM_MICROBLAZE_OLD:
1543 rtype = elf_microblaze_reloc_type (type);
1544 break;
1545
1546 case EM_RL78:
1547 rtype = elf_rl78_reloc_type (type);
1548 break;
1549
1550 case EM_RX:
1551 rtype = elf_rx_reloc_type (type);
1552 break;
1553
1554 case EM_METAG:
1555 rtype = elf_metag_reloc_type (type);
1556 break;
1557
1558 case EM_XC16X:
1559 case EM_C166:
1560 rtype = elf_xc16x_reloc_type (type);
1561 break;
1562
1563 case EM_TI_C6000:
1564 rtype = elf_tic6x_reloc_type (type);
1565 break;
1566
1567 case EM_TILEGX:
1568 rtype = elf_tilegx_reloc_type (type);
1569 break;
1570
1571 case EM_TILEPRO:
1572 rtype = elf_tilepro_reloc_type (type);
1573 break;
1574
1575 case EM_WEBASSEMBLY:
1576 rtype = elf_wasm32_reloc_type (type);
1577 break;
1578
1579 case EM_XGATE:
1580 rtype = elf_xgate_reloc_type (type);
1581 break;
1582
1583 case EM_ALTERA_NIOS2:
1584 rtype = elf_nios2_reloc_type (type);
1585 break;
1586
1587 case EM_TI_PRU:
1588 rtype = elf_pru_reloc_type (type);
1589 break;
1590
1591 case EM_NFP:
1592 if (EF_NFP_MACH (filedata->file_header.e_flags) == E_NFP_MACH_3200)
1593 rtype = elf_nfp3200_reloc_type (type);
1594 else
1595 rtype = elf_nfp_reloc_type (type);
1596 break;
1597 }
1598
1599 if (rtype == NULL)
1600 printf (_("unrecognized: %-7lx"), (unsigned long) type & 0xffffffff);
1601 else
1602 printf (do_wide ? "%-22s" : "%-17.17s", rtype);
1603
1604 if (filedata->file_header.e_machine == EM_ALPHA
1605 && rtype != NULL
1606 && streq (rtype, "R_ALPHA_LITUSE")
1607 && is_rela)
1608 {
1609 switch (rels[i].r_addend)
1610 {
1611 case LITUSE_ALPHA_ADDR: rtype = "ADDR"; break;
1612 case LITUSE_ALPHA_BASE: rtype = "BASE"; break;
1613 case LITUSE_ALPHA_BYTOFF: rtype = "BYTOFF"; break;
1614 case LITUSE_ALPHA_JSR: rtype = "JSR"; break;
1615 case LITUSE_ALPHA_TLSGD: rtype = "TLSGD"; break;
1616 case LITUSE_ALPHA_TLSLDM: rtype = "TLSLDM"; break;
1617 case LITUSE_ALPHA_JSRDIRECT: rtype = "JSRDIRECT"; break;
1618 default: rtype = NULL;
1619 }
1620
1621 if (rtype)
1622 printf (" (%s)", rtype);
1623 else
1624 {
1625 putchar (' ');
1626 printf (_("<unknown addend: %lx>"),
1627 (unsigned long) rels[i].r_addend);
1628 res = FALSE;
1629 }
1630 }
1631 else if (symtab_index)
1632 {
1633 if (symtab == NULL || symtab_index >= nsyms)
1634 {
1635 error (_(" bad symbol index: %08lx in reloc"), (unsigned long) symtab_index);
1636 res = FALSE;
1637 }
1638 else
1639 {
1640 Elf_Internal_Sym * psym;
1641 const char * version_string;
1642 enum versioned_symbol_info sym_info;
1643 unsigned short vna_other;
1644
1645 psym = symtab + symtab_index;
1646
1647 version_string
1648 = get_symbol_version_string (filedata, is_dynsym,
1649 strtab, strtablen,
1650 symtab_index,
1651 psym,
1652 &sym_info,
1653 &vna_other);
1654
1655 printf (" ");
1656
1657 if (ELF_ST_TYPE (psym->st_info) == STT_GNU_IFUNC)
1658 {
1659 const char * name;
1660 unsigned int len;
1661 unsigned int width = is_32bit_elf ? 8 : 14;
1662
1663 /* Relocations against GNU_IFUNC symbols do not use the value
1664 of the symbol as the address to relocate against. Instead
1665 they invoke the function named by the symbol and use its
1666 result as the address for relocation.
1667
1668 To indicate this to the user, do not display the value of
1669 the symbol in the "Symbols's Value" field. Instead show
1670 its name followed by () as a hint that the symbol is
1671 invoked. */
1672
1673 if (strtab == NULL
1674 || psym->st_name == 0
1675 || psym->st_name >= strtablen)
1676 name = "??";
1677 else
1678 name = strtab + psym->st_name;
1679
1680 len = print_symbol (width, name);
1681 if (version_string)
1682 printf (sym_info == symbol_public ? "@@%s" : "@%s",
1683 version_string);
1684 printf ("()%-*s", len <= width ? (width + 1) - len : 1, " ");
1685 }
1686 else
1687 {
1688 print_vma (psym->st_value, LONG_HEX);
1689
1690 printf (is_32bit_elf ? " " : " ");
1691 }
1692
1693 if (psym->st_name == 0)
1694 {
1695 const char * sec_name = "<null>";
1696 char name_buf[40];
1697
1698 if (ELF_ST_TYPE (psym->st_info) == STT_SECTION)
1699 {
1700 if (psym->st_shndx < filedata->file_header.e_shnum)
1701 sec_name = SECTION_NAME (filedata->section_headers + psym->st_shndx);
1702 else if (psym->st_shndx == SHN_ABS)
1703 sec_name = "ABS";
1704 else if (psym->st_shndx == SHN_COMMON)
1705 sec_name = "COMMON";
1706 else if ((filedata->file_header.e_machine == EM_MIPS
1707 && psym->st_shndx == SHN_MIPS_SCOMMON)
1708 || (filedata->file_header.e_machine == EM_TI_C6000
1709 && psym->st_shndx == SHN_TIC6X_SCOMMON))
1710 sec_name = "SCOMMON";
1711 else if (filedata->file_header.e_machine == EM_MIPS
1712 && psym->st_shndx == SHN_MIPS_SUNDEFINED)
1713 sec_name = "SUNDEF";
1714 else if ((filedata->file_header.e_machine == EM_X86_64
1715 || filedata->file_header.e_machine == EM_L1OM
1716 || filedata->file_header.e_machine == EM_K1OM)
1717 && psym->st_shndx == SHN_X86_64_LCOMMON)
1718 sec_name = "LARGE_COMMON";
1719 else if (filedata->file_header.e_machine == EM_IA_64
1720 && filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_HPUX
1721 && psym->st_shndx == SHN_IA_64_ANSI_COMMON)
1722 sec_name = "ANSI_COM";
1723 else if (is_ia64_vms (filedata)
1724 && psym->st_shndx == SHN_IA_64_VMS_SYMVEC)
1725 sec_name = "VMS_SYMVEC";
1726 else
1727 {
1728 sprintf (name_buf, "<section 0x%x>",
1729 (unsigned int) psym->st_shndx);
1730 sec_name = name_buf;
1731 }
1732 }
1733 print_symbol (22, sec_name);
1734 }
1735 else if (strtab == NULL)
1736 printf (_("<string table index: %3ld>"), psym->st_name);
1737 else if (psym->st_name >= strtablen)
1738 {
1739 error (_("<corrupt string table index: %3ld>"), psym->st_name);
1740 res = FALSE;
1741 }
1742 else
1743 {
1744 print_symbol (22, strtab + psym->st_name);
1745 if (version_string)
1746 printf (sym_info == symbol_public ? "@@%s" : "@%s",
1747 version_string);
1748 }
1749
1750 if (is_rela)
1751 {
1752 bfd_vma off = rels[i].r_addend;
1753
1754 if ((bfd_signed_vma) off < 0)
1755 printf (" - %" BFD_VMA_FMT "x", - off);
1756 else
1757 printf (" + %" BFD_VMA_FMT "x", off);
1758 }
1759 }
1760 }
1761 else if (is_rela)
1762 {
1763 bfd_vma off = rels[i].r_addend;
1764
1765 printf ("%*c", is_32bit_elf ? 12 : 20, ' ');
1766 if ((bfd_signed_vma) off < 0)
1767 printf ("-%" BFD_VMA_FMT "x", - off);
1768 else
1769 printf ("%" BFD_VMA_FMT "x", off);
1770 }
1771
1772 if (filedata->file_header.e_machine == EM_SPARCV9
1773 && rtype != NULL
1774 && streq (rtype, "R_SPARC_OLO10"))
1775 printf (" + %lx", (unsigned long) ELF64_R_TYPE_DATA (inf));
1776
1777 putchar ('\n');
1778
1779 #ifdef BFD64
1780 if (! is_32bit_elf && filedata->file_header.e_machine == EM_MIPS)
1781 {
1782 bfd_vma type2 = ELF64_MIPS_R_TYPE2 (inf);
1783 bfd_vma type3 = ELF64_MIPS_R_TYPE3 (inf);
1784 const char * rtype2 = elf_mips_reloc_type (type2);
1785 const char * rtype3 = elf_mips_reloc_type (type3);
1786
1787 printf (" Type2: ");
1788
1789 if (rtype2 == NULL)
1790 printf (_("unrecognized: %-7lx"),
1791 (unsigned long) type2 & 0xffffffff);
1792 else
1793 printf ("%-17.17s", rtype2);
1794
1795 printf ("\n Type3: ");
1796
1797 if (rtype3 == NULL)
1798 printf (_("unrecognized: %-7lx"),
1799 (unsigned long) type3 & 0xffffffff);
1800 else
1801 printf ("%-17.17s", rtype3);
1802
1803 putchar ('\n');
1804 }
1805 #endif /* BFD64 */
1806 }
1807
1808 free (rels);
1809
1810 return res;
1811 }
1812
1813 static const char *
1814 get_aarch64_dynamic_type (unsigned long type)
1815 {
1816 switch (type)
1817 {
1818 case DT_AARCH64_BTI_PLT: return "AARCH64_BTI_PLT";
1819 case DT_AARCH64_PAC_PLT: return "AARCH64_PAC_PLT";
1820 case DT_AARCH64_VARIANT_PCS: return "AARCH64_VARIANT_PCS";
1821 default:
1822 return NULL;
1823 }
1824 }
1825
1826 static const char *
1827 get_mips_dynamic_type (unsigned long type)
1828 {
1829 switch (type)
1830 {
1831 case DT_MIPS_RLD_VERSION: return "MIPS_RLD_VERSION";
1832 case DT_MIPS_TIME_STAMP: return "MIPS_TIME_STAMP";
1833 case DT_MIPS_ICHECKSUM: return "MIPS_ICHECKSUM";
1834 case DT_MIPS_IVERSION: return "MIPS_IVERSION";
1835 case DT_MIPS_FLAGS: return "MIPS_FLAGS";
1836 case DT_MIPS_BASE_ADDRESS: return "MIPS_BASE_ADDRESS";
1837 case DT_MIPS_MSYM: return "MIPS_MSYM";
1838 case DT_MIPS_CONFLICT: return "MIPS_CONFLICT";
1839 case DT_MIPS_LIBLIST: return "MIPS_LIBLIST";
1840 case DT_MIPS_LOCAL_GOTNO: return "MIPS_LOCAL_GOTNO";
1841 case DT_MIPS_CONFLICTNO: return "MIPS_CONFLICTNO";
1842 case DT_MIPS_LIBLISTNO: return "MIPS_LIBLISTNO";
1843 case DT_MIPS_SYMTABNO: return "MIPS_SYMTABNO";
1844 case DT_MIPS_UNREFEXTNO: return "MIPS_UNREFEXTNO";
1845 case DT_MIPS_GOTSYM: return "MIPS_GOTSYM";
1846 case DT_MIPS_HIPAGENO: return "MIPS_HIPAGENO";
1847 case DT_MIPS_RLD_MAP: return "MIPS_RLD_MAP";
1848 case DT_MIPS_RLD_MAP_REL: return "MIPS_RLD_MAP_REL";
1849 case DT_MIPS_DELTA_CLASS: return "MIPS_DELTA_CLASS";
1850 case DT_MIPS_DELTA_CLASS_NO: return "MIPS_DELTA_CLASS_NO";
1851 case DT_MIPS_DELTA_INSTANCE: return "MIPS_DELTA_INSTANCE";
1852 case DT_MIPS_DELTA_INSTANCE_NO: return "MIPS_DELTA_INSTANCE_NO";
1853 case DT_MIPS_DELTA_RELOC: return "MIPS_DELTA_RELOC";
1854 case DT_MIPS_DELTA_RELOC_NO: return "MIPS_DELTA_RELOC_NO";
1855 case DT_MIPS_DELTA_SYM: return "MIPS_DELTA_SYM";
1856 case DT_MIPS_DELTA_SYM_NO: return "MIPS_DELTA_SYM_NO";
1857 case DT_MIPS_DELTA_CLASSSYM: return "MIPS_DELTA_CLASSSYM";
1858 case DT_MIPS_DELTA_CLASSSYM_NO: return "MIPS_DELTA_CLASSSYM_NO";
1859 case DT_MIPS_CXX_FLAGS: return "MIPS_CXX_FLAGS";
1860 case DT_MIPS_PIXIE_INIT: return "MIPS_PIXIE_INIT";
1861 case DT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
1862 case DT_MIPS_LOCALPAGE_GOTIDX: return "MIPS_LOCALPAGE_GOTIDX";
1863 case DT_MIPS_LOCAL_GOTIDX: return "MIPS_LOCAL_GOTIDX";
1864 case DT_MIPS_HIDDEN_GOTIDX: return "MIPS_HIDDEN_GOTIDX";
1865 case DT_MIPS_PROTECTED_GOTIDX: return "MIPS_PROTECTED_GOTIDX";
1866 case DT_MIPS_OPTIONS: return "MIPS_OPTIONS";
1867 case DT_MIPS_INTERFACE: return "MIPS_INTERFACE";
1868 case DT_MIPS_DYNSTR_ALIGN: return "MIPS_DYNSTR_ALIGN";
1869 case DT_MIPS_INTERFACE_SIZE: return "MIPS_INTERFACE_SIZE";
1870 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: return "MIPS_RLD_TEXT_RESOLVE_ADDR";
1871 case DT_MIPS_PERF_SUFFIX: return "MIPS_PERF_SUFFIX";
1872 case DT_MIPS_COMPACT_SIZE: return "MIPS_COMPACT_SIZE";
1873 case DT_MIPS_GP_VALUE: return "MIPS_GP_VALUE";
1874 case DT_MIPS_AUX_DYNAMIC: return "MIPS_AUX_DYNAMIC";
1875 case DT_MIPS_PLTGOT: return "MIPS_PLTGOT";
1876 case DT_MIPS_RWPLT: return "MIPS_RWPLT";
1877 default:
1878 return NULL;
1879 }
1880 }
1881
1882 static const char *
1883 get_sparc64_dynamic_type (unsigned long type)
1884 {
1885 switch (type)
1886 {
1887 case DT_SPARC_REGISTER: return "SPARC_REGISTER";
1888 default:
1889 return NULL;
1890 }
1891 }
1892
1893 static const char *
1894 get_ppc_dynamic_type (unsigned long type)
1895 {
1896 switch (type)
1897 {
1898 case DT_PPC_GOT: return "PPC_GOT";
1899 case DT_PPC_OPT: return "PPC_OPT";
1900 default:
1901 return NULL;
1902 }
1903 }
1904
1905 static const char *
1906 get_ppc64_dynamic_type (unsigned long type)
1907 {
1908 switch (type)
1909 {
1910 case DT_PPC64_GLINK: return "PPC64_GLINK";
1911 case DT_PPC64_OPD: return "PPC64_OPD";
1912 case DT_PPC64_OPDSZ: return "PPC64_OPDSZ";
1913 case DT_PPC64_OPT: return "PPC64_OPT";
1914 default:
1915 return NULL;
1916 }
1917 }
1918
1919 static const char *
1920 get_parisc_dynamic_type (unsigned long type)
1921 {
1922 switch (type)
1923 {
1924 case DT_HP_LOAD_MAP: return "HP_LOAD_MAP";
1925 case DT_HP_DLD_FLAGS: return "HP_DLD_FLAGS";
1926 case DT_HP_DLD_HOOK: return "HP_DLD_HOOK";
1927 case DT_HP_UX10_INIT: return "HP_UX10_INIT";
1928 case DT_HP_UX10_INITSZ: return "HP_UX10_INITSZ";
1929 case DT_HP_PREINIT: return "HP_PREINIT";
1930 case DT_HP_PREINITSZ: return "HP_PREINITSZ";
1931 case DT_HP_NEEDED: return "HP_NEEDED";
1932 case DT_HP_TIME_STAMP: return "HP_TIME_STAMP";
1933 case DT_HP_CHECKSUM: return "HP_CHECKSUM";
1934 case DT_HP_GST_SIZE: return "HP_GST_SIZE";
1935 case DT_HP_GST_VERSION: return "HP_GST_VERSION";
1936 case DT_HP_GST_HASHVAL: return "HP_GST_HASHVAL";
1937 case DT_HP_EPLTREL: return "HP_GST_EPLTREL";
1938 case DT_HP_EPLTRELSZ: return "HP_GST_EPLTRELSZ";
1939 case DT_HP_FILTERED: return "HP_FILTERED";
1940 case DT_HP_FILTER_TLS: return "HP_FILTER_TLS";
1941 case DT_HP_COMPAT_FILTERED: return "HP_COMPAT_FILTERED";
1942 case DT_HP_LAZYLOAD: return "HP_LAZYLOAD";
1943 case DT_HP_BIND_NOW_COUNT: return "HP_BIND_NOW_COUNT";
1944 case DT_PLT: return "PLT";
1945 case DT_PLT_SIZE: return "PLT_SIZE";
1946 case DT_DLT: return "DLT";
1947 case DT_DLT_SIZE: return "DLT_SIZE";
1948 default:
1949 return NULL;
1950 }
1951 }
1952
1953 static const char *
1954 get_ia64_dynamic_type (unsigned long type)
1955 {
1956 switch (type)
1957 {
1958 case DT_IA_64_PLT_RESERVE: return "IA_64_PLT_RESERVE";
1959 case DT_IA_64_VMS_SUBTYPE: return "VMS_SUBTYPE";
1960 case DT_IA_64_VMS_IMGIOCNT: return "VMS_IMGIOCNT";
1961 case DT_IA_64_VMS_LNKFLAGS: return "VMS_LNKFLAGS";
1962 case DT_IA_64_VMS_VIR_MEM_BLK_SIZ: return "VMS_VIR_MEM_BLK_SIZ";
1963 case DT_IA_64_VMS_IDENT: return "VMS_IDENT";
1964 case DT_IA_64_VMS_NEEDED_IDENT: return "VMS_NEEDED_IDENT";
1965 case DT_IA_64_VMS_IMG_RELA_CNT: return "VMS_IMG_RELA_CNT";
1966 case DT_IA_64_VMS_SEG_RELA_CNT: return "VMS_SEG_RELA_CNT";
1967 case DT_IA_64_VMS_FIXUP_RELA_CNT: return "VMS_FIXUP_RELA_CNT";
1968 case DT_IA_64_VMS_FIXUP_NEEDED: return "VMS_FIXUP_NEEDED";
1969 case DT_IA_64_VMS_SYMVEC_CNT: return "VMS_SYMVEC_CNT";
1970 case DT_IA_64_VMS_XLATED: return "VMS_XLATED";
1971 case DT_IA_64_VMS_STACKSIZE: return "VMS_STACKSIZE";
1972 case DT_IA_64_VMS_UNWINDSZ: return "VMS_UNWINDSZ";
1973 case DT_IA_64_VMS_UNWIND_CODSEG: return "VMS_UNWIND_CODSEG";
1974 case DT_IA_64_VMS_UNWIND_INFOSEG: return "VMS_UNWIND_INFOSEG";
1975 case DT_IA_64_VMS_LINKTIME: return "VMS_LINKTIME";
1976 case DT_IA_64_VMS_SEG_NO: return "VMS_SEG_NO";
1977 case DT_IA_64_VMS_SYMVEC_OFFSET: return "VMS_SYMVEC_OFFSET";
1978 case DT_IA_64_VMS_SYMVEC_SEG: return "VMS_SYMVEC_SEG";
1979 case DT_IA_64_VMS_UNWIND_OFFSET: return "VMS_UNWIND_OFFSET";
1980 case DT_IA_64_VMS_UNWIND_SEG: return "VMS_UNWIND_SEG";
1981 case DT_IA_64_VMS_STRTAB_OFFSET: return "VMS_STRTAB_OFFSET";
1982 case DT_IA_64_VMS_SYSVER_OFFSET: return "VMS_SYSVER_OFFSET";
1983 case DT_IA_64_VMS_IMG_RELA_OFF: return "VMS_IMG_RELA_OFF";
1984 case DT_IA_64_VMS_SEG_RELA_OFF: return "VMS_SEG_RELA_OFF";
1985 case DT_IA_64_VMS_FIXUP_RELA_OFF: return "VMS_FIXUP_RELA_OFF";
1986 case DT_IA_64_VMS_PLTGOT_OFFSET: return "VMS_PLTGOT_OFFSET";
1987 case DT_IA_64_VMS_PLTGOT_SEG: return "VMS_PLTGOT_SEG";
1988 case DT_IA_64_VMS_FPMODE: return "VMS_FPMODE";
1989 default:
1990 return NULL;
1991 }
1992 }
1993
1994 static const char *
1995 get_solaris_section_type (unsigned long type)
1996 {
1997 switch (type)
1998 {
1999 case 0x6fffffee: return "SUNW_ancillary";
2000 case 0x6fffffef: return "SUNW_capchain";
2001 case 0x6ffffff0: return "SUNW_capinfo";
2002 case 0x6ffffff1: return "SUNW_symsort";
2003 case 0x6ffffff2: return "SUNW_tlssort";
2004 case 0x6ffffff3: return "SUNW_LDYNSYM";
2005 case 0x6ffffff4: return "SUNW_dof";
2006 case 0x6ffffff5: return "SUNW_cap";
2007 case 0x6ffffff6: return "SUNW_SIGNATURE";
2008 case 0x6ffffff7: return "SUNW_ANNOTATE";
2009 case 0x6ffffff8: return "SUNW_DEBUGSTR";
2010 case 0x6ffffff9: return "SUNW_DEBUG";
2011 case 0x6ffffffa: return "SUNW_move";
2012 case 0x6ffffffb: return "SUNW_COMDAT";
2013 case 0x6ffffffc: return "SUNW_syminfo";
2014 case 0x6ffffffd: return "SUNW_verdef";
2015 case 0x6ffffffe: return "SUNW_verneed";
2016 case 0x6fffffff: return "SUNW_versym";
2017 case 0x70000000: return "SPARC_GOTDATA";
2018 default: return NULL;
2019 }
2020 }
2021
2022 static const char *
2023 get_alpha_dynamic_type (unsigned long type)
2024 {
2025 switch (type)
2026 {
2027 case DT_ALPHA_PLTRO: return "ALPHA_PLTRO";
2028 default: return NULL;
2029 }
2030 }
2031
2032 static const char *
2033 get_score_dynamic_type (unsigned long type)
2034 {
2035 switch (type)
2036 {
2037 case DT_SCORE_BASE_ADDRESS: return "SCORE_BASE_ADDRESS";
2038 case DT_SCORE_LOCAL_GOTNO: return "SCORE_LOCAL_GOTNO";
2039 case DT_SCORE_SYMTABNO: return "SCORE_SYMTABNO";
2040 case DT_SCORE_GOTSYM: return "SCORE_GOTSYM";
2041 case DT_SCORE_UNREFEXTNO: return "SCORE_UNREFEXTNO";
2042 case DT_SCORE_HIPAGENO: return "SCORE_HIPAGENO";
2043 default: return NULL;
2044 }
2045 }
2046
2047 static const char *
2048 get_tic6x_dynamic_type (unsigned long type)
2049 {
2050 switch (type)
2051 {
2052 case DT_C6000_GSYM_OFFSET: return "C6000_GSYM_OFFSET";
2053 case DT_C6000_GSTR_OFFSET: return "C6000_GSTR_OFFSET";
2054 case DT_C6000_DSBT_BASE: return "C6000_DSBT_BASE";
2055 case DT_C6000_DSBT_SIZE: return "C6000_DSBT_SIZE";
2056 case DT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
2057 case DT_C6000_DSBT_INDEX: return "C6000_DSBT_INDEX";
2058 default: return NULL;
2059 }
2060 }
2061
2062 static const char *
2063 get_nios2_dynamic_type (unsigned long type)
2064 {
2065 switch (type)
2066 {
2067 case DT_NIOS2_GP: return "NIOS2_GP";
2068 default: return NULL;
2069 }
2070 }
2071
2072 static const char *
2073 get_solaris_dynamic_type (unsigned long type)
2074 {
2075 switch (type)
2076 {
2077 case 0x6000000d: return "SUNW_AUXILIARY";
2078 case 0x6000000e: return "SUNW_RTLDINF";
2079 case 0x6000000f: return "SUNW_FILTER";
2080 case 0x60000010: return "SUNW_CAP";
2081 case 0x60000011: return "SUNW_SYMTAB";
2082 case 0x60000012: return "SUNW_SYMSZ";
2083 case 0x60000013: return "SUNW_SORTENT";
2084 case 0x60000014: return "SUNW_SYMSORT";
2085 case 0x60000015: return "SUNW_SYMSORTSZ";
2086 case 0x60000016: return "SUNW_TLSSORT";
2087 case 0x60000017: return "SUNW_TLSSORTSZ";
2088 case 0x60000018: return "SUNW_CAPINFO";
2089 case 0x60000019: return "SUNW_STRPAD";
2090 case 0x6000001a: return "SUNW_CAPCHAIN";
2091 case 0x6000001b: return "SUNW_LDMACH";
2092 case 0x6000001d: return "SUNW_CAPCHAINENT";
2093 case 0x6000001f: return "SUNW_CAPCHAINSZ";
2094 case 0x60000021: return "SUNW_PARENT";
2095 case 0x60000023: return "SUNW_ASLR";
2096 case 0x60000025: return "SUNW_RELAX";
2097 case 0x60000029: return "SUNW_NXHEAP";
2098 case 0x6000002b: return "SUNW_NXSTACK";
2099
2100 case 0x70000001: return "SPARC_REGISTER";
2101 case 0x7ffffffd: return "AUXILIARY";
2102 case 0x7ffffffe: return "USED";
2103 case 0x7fffffff: return "FILTER";
2104
2105 default: return NULL;
2106 }
2107 }
2108
2109 static const char *
2110 get_dynamic_type (Filedata * filedata, unsigned long type)
2111 {
2112 static char buff[64];
2113
2114 switch (type)
2115 {
2116 case DT_NULL: return "NULL";
2117 case DT_NEEDED: return "NEEDED";
2118 case DT_PLTRELSZ: return "PLTRELSZ";
2119 case DT_PLTGOT: return "PLTGOT";
2120 case DT_HASH: return "HASH";
2121 case DT_STRTAB: return "STRTAB";
2122 case DT_SYMTAB: return "SYMTAB";
2123 case DT_RELA: return "RELA";
2124 case DT_RELASZ: return "RELASZ";
2125 case DT_RELAENT: return "RELAENT";
2126 case DT_STRSZ: return "STRSZ";
2127 case DT_SYMENT: return "SYMENT";
2128 case DT_INIT: return "INIT";
2129 case DT_FINI: return "FINI";
2130 case DT_SONAME: return "SONAME";
2131 case DT_RPATH: return "RPATH";
2132 case DT_SYMBOLIC: return "SYMBOLIC";
2133 case DT_REL: return "REL";
2134 case DT_RELSZ: return "RELSZ";
2135 case DT_RELENT: return "RELENT";
2136 case DT_PLTREL: return "PLTREL";
2137 case DT_DEBUG: return "DEBUG";
2138 case DT_TEXTREL: return "TEXTREL";
2139 case DT_JMPREL: return "JMPREL";
2140 case DT_BIND_NOW: return "BIND_NOW";
2141 case DT_INIT_ARRAY: return "INIT_ARRAY";
2142 case DT_FINI_ARRAY: return "FINI_ARRAY";
2143 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ";
2144 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ";
2145 case DT_RUNPATH: return "RUNPATH";
2146 case DT_FLAGS: return "FLAGS";
2147
2148 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY";
2149 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ";
2150 case DT_SYMTAB_SHNDX: return "SYMTAB_SHNDX";
2151
2152 case DT_CHECKSUM: return "CHECKSUM";
2153 case DT_PLTPADSZ: return "PLTPADSZ";
2154 case DT_MOVEENT: return "MOVEENT";
2155 case DT_MOVESZ: return "MOVESZ";
2156 case DT_FEATURE: return "FEATURE";
2157 case DT_POSFLAG_1: return "POSFLAG_1";
2158 case DT_SYMINSZ: return "SYMINSZ";
2159 case DT_SYMINENT: return "SYMINENT"; /* aka VALRNGHI */
2160
2161 case DT_ADDRRNGLO: return "ADDRRNGLO";
2162 case DT_CONFIG: return "CONFIG";
2163 case DT_DEPAUDIT: return "DEPAUDIT";
2164 case DT_AUDIT: return "AUDIT";
2165 case DT_PLTPAD: return "PLTPAD";
2166 case DT_MOVETAB: return "MOVETAB";
2167 case DT_SYMINFO: return "SYMINFO"; /* aka ADDRRNGHI */
2168
2169 case DT_VERSYM: return "VERSYM";
2170
2171 case DT_TLSDESC_GOT: return "TLSDESC_GOT";
2172 case DT_TLSDESC_PLT: return "TLSDESC_PLT";
2173 case DT_RELACOUNT: return "RELACOUNT";
2174 case DT_RELCOUNT: return "RELCOUNT";
2175 case DT_FLAGS_1: return "FLAGS_1";
2176 case DT_VERDEF: return "VERDEF";
2177 case DT_VERDEFNUM: return "VERDEFNUM";
2178 case DT_VERNEED: return "VERNEED";
2179 case DT_VERNEEDNUM: return "VERNEEDNUM";
2180
2181 case DT_AUXILIARY: return "AUXILIARY";
2182 case DT_USED: return "USED";
2183 case DT_FILTER: return "FILTER";
2184
2185 case DT_GNU_PRELINKED: return "GNU_PRELINKED";
2186 case DT_GNU_CONFLICT: return "GNU_CONFLICT";
2187 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ";
2188 case DT_GNU_LIBLIST: return "GNU_LIBLIST";
2189 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ";
2190 case DT_GNU_HASH: return "GNU_HASH";
2191
2192 default:
2193 if ((type >= DT_LOPROC) && (type <= DT_HIPROC))
2194 {
2195 const char * result;
2196
2197 switch (filedata->file_header.e_machine)
2198 {
2199 case EM_AARCH64:
2200 result = get_aarch64_dynamic_type (type);
2201 break;
2202 case EM_MIPS:
2203 case EM_MIPS_RS3_LE:
2204 result = get_mips_dynamic_type (type);
2205 break;
2206 case EM_SPARCV9:
2207 result = get_sparc64_dynamic_type (type);
2208 break;
2209 case EM_PPC:
2210 result = get_ppc_dynamic_type (type);
2211 break;
2212 case EM_PPC64:
2213 result = get_ppc64_dynamic_type (type);
2214 break;
2215 case EM_IA_64:
2216 result = get_ia64_dynamic_type (type);
2217 break;
2218 case EM_ALPHA:
2219 result = get_alpha_dynamic_type (type);
2220 break;
2221 case EM_SCORE:
2222 result = get_score_dynamic_type (type);
2223 break;
2224 case EM_TI_C6000:
2225 result = get_tic6x_dynamic_type (type);
2226 break;
2227 case EM_ALTERA_NIOS2:
2228 result = get_nios2_dynamic_type (type);
2229 break;
2230 default:
2231 if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
2232 result = get_solaris_dynamic_type (type);
2233 else
2234 result = NULL;
2235 break;
2236 }
2237
2238 if (result != NULL)
2239 return result;
2240
2241 snprintf (buff, sizeof (buff), _("Processor Specific: %lx"), type);
2242 }
2243 else if (((type >= DT_LOOS) && (type <= DT_HIOS))
2244 || (filedata->file_header.e_machine == EM_PARISC
2245 && (type >= OLD_DT_LOOS) && (type <= OLD_DT_HIOS)))
2246 {
2247 const char * result;
2248
2249 switch (filedata->file_header.e_machine)
2250 {
2251 case EM_PARISC:
2252 result = get_parisc_dynamic_type (type);
2253 break;
2254 case EM_IA_64:
2255 result = get_ia64_dynamic_type (type);
2256 break;
2257 default:
2258 if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
2259 result = get_solaris_dynamic_type (type);
2260 else
2261 result = NULL;
2262 break;
2263 }
2264
2265 if (result != NULL)
2266 return result;
2267
2268 snprintf (buff, sizeof (buff), _("Operating System specific: %lx"),
2269 type);
2270 }
2271 else
2272 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), type);
2273
2274 return buff;
2275 }
2276 }
2277
2278 static char *
2279 get_file_type (unsigned e_type)
2280 {
2281 static char buff[32];
2282
2283 switch (e_type)
2284 {
2285 case ET_NONE: return _("NONE (None)");
2286 case ET_REL: return _("REL (Relocatable file)");
2287 case ET_EXEC: return _("EXEC (Executable file)");
2288 case ET_DYN: return _("DYN (Shared object file)");
2289 case ET_CORE: return _("CORE (Core file)");
2290
2291 default:
2292 if ((e_type >= ET_LOPROC) && (e_type <= ET_HIPROC))
2293 snprintf (buff, sizeof (buff), _("Processor Specific: (%x)"), e_type);
2294 else if ((e_type >= ET_LOOS) && (e_type <= ET_HIOS))
2295 snprintf (buff, sizeof (buff), _("OS Specific: (%x)"), e_type);
2296 else
2297 snprintf (buff, sizeof (buff), _("<unknown>: %x"), e_type);
2298 return buff;
2299 }
2300 }
2301
2302 static char *
2303 get_machine_name (unsigned e_machine)
2304 {
2305 static char buff[64]; /* XXX */
2306
2307 switch (e_machine)
2308 {
2309 /* Please keep this switch table sorted by increasing EM_ value. */
2310 /* 0 */
2311 case EM_NONE: return _("None");
2312 case EM_M32: return "WE32100";
2313 case EM_SPARC: return "Sparc";
2314 case EM_386: return "Intel 80386";
2315 case EM_68K: return "MC68000";
2316 case EM_88K: return "MC88000";
2317 case EM_IAMCU: return "Intel MCU";
2318 case EM_860: return "Intel 80860";
2319 case EM_MIPS: return "MIPS R3000";
2320 case EM_S370: return "IBM System/370";
2321 /* 10 */
2322 case EM_MIPS_RS3_LE: return "MIPS R4000 big-endian";
2323 case EM_OLD_SPARCV9: return "Sparc v9 (old)";
2324 case EM_PARISC: return "HPPA";
2325 case EM_VPP550: return "Fujitsu VPP500";
2326 case EM_SPARC32PLUS: return "Sparc v8+" ;
2327 case EM_960: return "Intel 80960";
2328 case EM_PPC: return "PowerPC";
2329 /* 20 */
2330 case EM_PPC64: return "PowerPC64";
2331 case EM_S390_OLD:
2332 case EM_S390: return "IBM S/390";
2333 case EM_SPU: return "SPU";
2334 /* 30 */
2335 case EM_V800: return "Renesas V850 (using RH850 ABI)";
2336 case EM_FR20: return "Fujitsu FR20";
2337 case EM_RH32: return "TRW RH32";
2338 case EM_MCORE: return "MCORE";
2339 /* 40 */
2340 case EM_ARM: return "ARM";
2341 case EM_OLD_ALPHA: return "Digital Alpha (old)";
2342 case EM_SH: return "Renesas / SuperH SH";
2343 case EM_SPARCV9: return "Sparc v9";
2344 case EM_TRICORE: return "Siemens Tricore";
2345 case EM_ARC: return "ARC";
2346 case EM_H8_300: return "Renesas H8/300";
2347 case EM_H8_300H: return "Renesas H8/300H";
2348 case EM_H8S: return "Renesas H8S";
2349 case EM_H8_500: return "Renesas H8/500";
2350 /* 50 */
2351 case EM_IA_64: return "Intel IA-64";
2352 case EM_MIPS_X: return "Stanford MIPS-X";
2353 case EM_COLDFIRE: return "Motorola Coldfire";
2354 case EM_68HC12: return "Motorola MC68HC12 Microcontroller";
2355 case EM_MMA: return "Fujitsu Multimedia Accelerator";
2356 case EM_PCP: return "Siemens PCP";
2357 case EM_NCPU: return "Sony nCPU embedded RISC processor";
2358 case EM_NDR1: return "Denso NDR1 microprocesspr";
2359 case EM_STARCORE: return "Motorola Star*Core processor";
2360 case EM_ME16: return "Toyota ME16 processor";
2361 /* 60 */
2362 case EM_ST100: return "STMicroelectronics ST100 processor";
2363 case EM_TINYJ: return "Advanced Logic Corp. TinyJ embedded processor";
2364 case EM_X86_64: return "Advanced Micro Devices X86-64";
2365 case EM_PDSP: return "Sony DSP processor";
2366 case EM_PDP10: return "Digital Equipment Corp. PDP-10";
2367 case EM_PDP11: return "Digital Equipment Corp. PDP-11";
2368 case EM_FX66: return "Siemens FX66 microcontroller";
2369 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 bit microcontroller";
2370 case EM_ST7: return "STMicroelectronics ST7 8-bit microcontroller";
2371 case EM_68HC16: return "Motorola MC68HC16 Microcontroller";
2372 /* 70 */
2373 case EM_68HC11: return "Motorola MC68HC11 Microcontroller";
2374 case EM_68HC08: return "Motorola MC68HC08 Microcontroller";
2375 case EM_68HC05: return "Motorola MC68HC05 Microcontroller";
2376 case EM_SVX: return "Silicon Graphics SVx";
2377 case EM_ST19: return "STMicroelectronics ST19 8-bit microcontroller";
2378 case EM_VAX: return "Digital VAX";
2379 case EM_CRIS: return "Axis Communications 32-bit embedded processor";
2380 case EM_JAVELIN: return "Infineon Technologies 32-bit embedded cpu";
2381 case EM_FIREPATH: return "Element 14 64-bit DSP processor";
2382 case EM_ZSP: return "LSI Logic's 16-bit DSP processor";
2383 /* 80 */
2384 case EM_MMIX: return "Donald Knuth's educational 64-bit processor";
2385 case EM_HUANY: return "Harvard Universitys's machine-independent object format";
2386 case EM_PRISM: return "Vitesse Prism";
2387 case EM_AVR_OLD:
2388 case EM_AVR: return "Atmel AVR 8-bit microcontroller";
2389 case EM_CYGNUS_FR30:
2390 case EM_FR30: return "Fujitsu FR30";
2391 case EM_CYGNUS_D10V:
2392 case EM_D10V: return "d10v";
2393 case EM_CYGNUS_D30V:
2394 case EM_D30V: return "d30v";
2395 case EM_CYGNUS_V850:
2396 case EM_V850: return "Renesas V850";
2397 case EM_CYGNUS_M32R:
2398 case EM_M32R: return "Renesas M32R (formerly Mitsubishi M32r)";
2399 case EM_CYGNUS_MN10300:
2400 case EM_MN10300: return "mn10300";
2401 /* 90 */
2402 case EM_CYGNUS_MN10200:
2403 case EM_MN10200: return "mn10200";
2404 case EM_PJ: return "picoJava";
2405 case EM_OR1K: return "OpenRISC 1000";
2406 case EM_ARC_COMPACT: return "ARCompact";
2407 case EM_XTENSA_OLD:
2408 case EM_XTENSA: return "Tensilica Xtensa Processor";
2409 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor";
2410 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor";
2411 case EM_NS32K: return "National Semiconductor 32000 series";
2412 case EM_TPC: return "Tenor Network TPC processor";
2413 case EM_SNP1K: return "Trebia SNP 1000 processor";
2414 /* 100 */
2415 case EM_ST200: return "STMicroelectronics ST200 microcontroller";
2416 case EM_IP2K_OLD:
2417 case EM_IP2K: return "Ubicom IP2xxx 8-bit microcontrollers";
2418 case EM_MAX: return "MAX Processor";
2419 case EM_CR: return "National Semiconductor CompactRISC";
2420 case EM_F2MC16: return "Fujitsu F2MC16";
2421 case EM_MSP430: return "Texas Instruments msp430 microcontroller";
2422 case EM_BLACKFIN: return "Analog Devices Blackfin";
2423 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors";
2424 case EM_SEP: return "Sharp embedded microprocessor";
2425 case EM_ARCA: return "Arca RISC microprocessor";
2426 /* 110 */
2427 case EM_UNICORE: return "Unicore";
2428 case EM_EXCESS: return "eXcess 16/32/64-bit configurable embedded CPU";
2429 case EM_DXP: return "Icera Semiconductor Inc. Deep Execution Processor";
2430 case EM_ALTERA_NIOS2: return "Altera Nios II";
2431 case EM_CRX: return "National Semiconductor CRX microprocessor";
2432 case EM_XGATE: return "Motorola XGATE embedded processor";
2433 case EM_C166:
2434 case EM_XC16X: return "Infineon Technologies xc16x";
2435 case EM_M16C: return "Renesas M16C series microprocessors";
2436 case EM_DSPIC30F: return "Microchip Technology dsPIC30F Digital Signal Controller";
2437 case EM_CE: return "Freescale Communication Engine RISC core";
2438 /* 120 */
2439 case EM_M32C: return "Renesas M32c";
2440 /* 130 */
2441 case EM_TSK3000: return "Altium TSK3000 core";
2442 case EM_RS08: return "Freescale RS08 embedded processor";
2443 case EM_ECOG2: return "Cyan Technology eCOG2 microprocessor";
2444 case EM_SCORE: return "SUNPLUS S+Core";
2445 case EM_DSP24: return "New Japan Radio (NJR) 24-bit DSP Processor";
2446 case EM_VIDEOCORE3: return "Broadcom VideoCore III processor";
2447 case EM_LATTICEMICO32: return "Lattice Mico32";
2448 case EM_SE_C17: return "Seiko Epson C17 family";
2449 /* 140 */
2450 case EM_TI_C6000: return "Texas Instruments TMS320C6000 DSP family";
2451 case EM_TI_C2000: return "Texas Instruments TMS320C2000 DSP family";
2452 case EM_TI_C5500: return "Texas Instruments TMS320C55x DSP family";
2453 case EM_TI_PRU: return "TI PRU I/O processor";
2454 /* 160 */
2455 case EM_MMDSP_PLUS: return "STMicroelectronics 64bit VLIW Data Signal Processor";
2456 case EM_CYPRESS_M8C: return "Cypress M8C microprocessor";
2457 case EM_R32C: return "Renesas R32C series microprocessors";
2458 case EM_TRIMEDIA: return "NXP Semiconductors TriMedia architecture family";
2459 case EM_QDSP6: return "QUALCOMM DSP6 Processor";
2460 case EM_8051: return "Intel 8051 and variants";
2461 case EM_STXP7X: return "STMicroelectronics STxP7x family";
2462 case EM_NDS32: return "Andes Technology compact code size embedded RISC processor family";
2463 case EM_ECOG1X: return "Cyan Technology eCOG1X family";
2464 case EM_MAXQ30: return "Dallas Semiconductor MAXQ30 Core microcontrollers";
2465 /* 170 */
2466 case EM_XIMO16: return "New Japan Radio (NJR) 16-bit DSP Processor";
2467 case EM_MANIK: return "M2000 Reconfigurable RISC Microprocessor";
2468 case EM_CRAYNV2: return "Cray Inc. NV2 vector architecture";
2469 case EM_RX: return "Renesas RX";
2470 case EM_METAG: return "Imagination Technologies Meta processor architecture";
2471 case EM_MCST_ELBRUS: return "MCST Elbrus general purpose hardware architecture";
2472 case EM_ECOG16: return "Cyan Technology eCOG16 family";
2473 case EM_CR16:
2474 case EM_MICROBLAZE:
2475 case EM_MICROBLAZE_OLD: return "Xilinx MicroBlaze";
2476 case EM_ETPU: return "Freescale Extended Time Processing Unit";
2477 case EM_SLE9X: return "Infineon Technologies SLE9X core";
2478 /* 180 */
2479 case EM_L1OM: return "Intel L1OM";
2480 case EM_K1OM: return "Intel K1OM";
2481 case EM_INTEL182: return "Intel (reserved)";
2482 case EM_AARCH64: return "AArch64";
2483 case EM_ARM184: return "ARM (reserved)";
2484 case EM_AVR32: return "Atmel Corporation 32-bit microprocessor";
2485 case EM_STM8: return "STMicroeletronics STM8 8-bit microcontroller";
2486 case EM_TILE64: return "Tilera TILE64 multicore architecture family";
2487 case EM_TILEPRO: return "Tilera TILEPro multicore architecture family";
2488 /* 190 */
2489 case EM_CUDA: return "NVIDIA CUDA architecture";
2490 case EM_TILEGX: return "Tilera TILE-Gx multicore architecture family";
2491 case EM_CLOUDSHIELD: return "CloudShield architecture family";
2492 case EM_COREA_1ST: return "KIPO-KAIST Core-A 1st generation processor family";
2493 case EM_COREA_2ND: return "KIPO-KAIST Core-A 2nd generation processor family";
2494 case EM_ARC_COMPACT2: return "ARCv2";
2495 case EM_OPEN8: return "Open8 8-bit RISC soft processor core";
2496 case EM_RL78: return "Renesas RL78";
2497 case EM_VIDEOCORE5: return "Broadcom VideoCore V processor";
2498 case EM_78K0R: return "Renesas 78K0R";
2499 /* 200 */
2500 case EM_56800EX: return "Freescale 56800EX Digital Signal Controller (DSC)";
2501 case EM_BA1: return "Beyond BA1 CPU architecture";
2502 case EM_BA2: return "Beyond BA2 CPU architecture";
2503 case EM_XCORE: return "XMOS xCORE processor family";
2504 case EM_MCHP_PIC: return "Microchip 8-bit PIC(r) family";
2505 /* 210 */
2506 case EM_KM32: return "KM211 KM32 32-bit processor";
2507 case EM_KMX32: return "KM211 KMX32 32-bit processor";
2508 case EM_KMX16: return "KM211 KMX16 16-bit processor";
2509 case EM_KMX8: return "KM211 KMX8 8-bit processor";
2510 case EM_KVARC: return "KM211 KVARC processor";
2511 case EM_CDP: return "Paneve CDP architecture family";
2512 case EM_COGE: return "Cognitive Smart Memory Processor";
2513 case EM_COOL: return "Bluechip Systems CoolEngine";
2514 case EM_NORC: return "Nanoradio Optimized RISC";
2515 case EM_CSR_KALIMBA: return "CSR Kalimba architecture family";
2516 /* 220 */
2517 case EM_Z80: return "Zilog Z80";
2518 case EM_VISIUM: return "CDS VISIUMcore processor";
2519 case EM_FT32: return "FTDI Chip FT32";
2520 case EM_MOXIE: return "Moxie";
2521 case EM_AMDGPU: return "AMD GPU";
2522 case EM_RISCV: return "RISC-V";
2523 case EM_LANAI: return "Lanai 32-bit processor";
2524 case EM_BPF: return "Linux BPF";
2525 case EM_NFP: return "Netronome Flow Processor";
2526
2527 /* Large numbers... */
2528 case EM_MT: return "Morpho Techologies MT processor";
2529 case EM_ALPHA: return "Alpha";
2530 case EM_WEBASSEMBLY: return "Web Assembly";
2531 case EM_DLX: return "OpenDLX";
2532 case EM_XSTORMY16: return "Sanyo XStormy16 CPU core";
2533 case EM_IQ2000: return "Vitesse IQ2000";
2534 case EM_M32C_OLD:
2535 case EM_NIOS32: return "Altera Nios";
2536 case EM_CYGNUS_MEP: return "Toshiba MeP Media Engine";
2537 case EM_ADAPTEVA_EPIPHANY: return "Adapteva EPIPHANY";
2538 case EM_CYGNUS_FRV: return "Fujitsu FR-V";
2539 case EM_S12Z: return "Freescale S12Z";
2540 case EM_CSKY: return "C-SKY";
2541
2542 default:
2543 snprintf (buff, sizeof (buff), _("<unknown>: 0x%x"), e_machine);
2544 return buff;
2545 }
2546 }
2547
2548 static void
2549 decode_ARC_machine_flags (unsigned e_flags, unsigned e_machine, char buf[])
2550 {
2551 /* ARC has two machine types EM_ARC_COMPACT and EM_ARC_COMPACT2. Some
2552 other compilers don't a specific architecture type in the e_flags, and
2553 instead use EM_ARC_COMPACT for old ARC600, ARC601, and ARC700
2554 architectures, and switch to EM_ARC_COMPACT2 for newer ARCEM and ARCHS
2555 architectures.
2556
2557 Th GNU tools follows this use of EM_ARC_COMPACT and EM_ARC_COMPACT2,
2558 but also sets a specific architecture type in the e_flags field.
2559
2560 However, when decoding the flags we don't worry if we see an
2561 unexpected pairing, for example EM_ARC_COMPACT machine type, with
2562 ARCEM architecture type. */
2563
2564 switch (e_flags & EF_ARC_MACH_MSK)
2565 {
2566 /* We only expect these to occur for EM_ARC_COMPACT2. */
2567 case EF_ARC_CPU_ARCV2EM:
2568 strcat (buf, ", ARC EM");
2569 break;
2570 case EF_ARC_CPU_ARCV2HS:
2571 strcat (buf, ", ARC HS");
2572 break;
2573
2574 /* We only expect these to occur for EM_ARC_COMPACT. */
2575 case E_ARC_MACH_ARC600:
2576 strcat (buf, ", ARC600");
2577 break;
2578 case E_ARC_MACH_ARC601:
2579 strcat (buf, ", ARC601");
2580 break;
2581 case E_ARC_MACH_ARC700:
2582 strcat (buf, ", ARC700");
2583 break;
2584
2585 /* The only times we should end up here are (a) A corrupt ELF, (b) A
2586 new ELF with new architecture being read by an old version of
2587 readelf, or (c) An ELF built with non-GNU compiler that does not
2588 set the architecture in the e_flags. */
2589 default:
2590 if (e_machine == EM_ARC_COMPACT)
2591 strcat (buf, ", Unknown ARCompact");
2592 else
2593 strcat (buf, ", Unknown ARC");
2594 break;
2595 }
2596
2597 switch (e_flags & EF_ARC_OSABI_MSK)
2598 {
2599 case E_ARC_OSABI_ORIG:
2600 strcat (buf, ", (ABI:legacy)");
2601 break;
2602 case E_ARC_OSABI_V2:
2603 strcat (buf, ", (ABI:v2)");
2604 break;
2605 /* Only upstream 3.9+ kernels will support ARCv2 ISA. */
2606 case E_ARC_OSABI_V3:
2607 strcat (buf, ", v3 no-legacy-syscalls ABI");
2608 break;
2609 case E_ARC_OSABI_V4:
2610 strcat (buf, ", v4 ABI");
2611 break;
2612 default:
2613 strcat (buf, ", unrecognised ARC OSABI flag");
2614 break;
2615 }
2616 }
2617
2618 static void
2619 decode_ARM_machine_flags (unsigned e_flags, char buf[])
2620 {
2621 unsigned eabi;
2622 bfd_boolean unknown = FALSE;
2623
2624 eabi = EF_ARM_EABI_VERSION (e_flags);
2625 e_flags &= ~ EF_ARM_EABIMASK;
2626
2627 /* Handle "generic" ARM flags. */
2628 if (e_flags & EF_ARM_RELEXEC)
2629 {
2630 strcat (buf, ", relocatable executable");
2631 e_flags &= ~ EF_ARM_RELEXEC;
2632 }
2633
2634 if (e_flags & EF_ARM_PIC)
2635 {
2636 strcat (buf, ", position independent");
2637 e_flags &= ~ EF_ARM_PIC;
2638 }
2639
2640 /* Now handle EABI specific flags. */
2641 switch (eabi)
2642 {
2643 default:
2644 strcat (buf, ", <unrecognized EABI>");
2645 if (e_flags)
2646 unknown = TRUE;
2647 break;
2648
2649 case EF_ARM_EABI_VER1:
2650 strcat (buf, ", Version1 EABI");
2651 while (e_flags)
2652 {
2653 unsigned flag;
2654
2655 /* Process flags one bit at a time. */
2656 flag = e_flags & - e_flags;
2657 e_flags &= ~ flag;
2658
2659 switch (flag)
2660 {
2661 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2662 strcat (buf, ", sorted symbol tables");
2663 break;
2664
2665 default:
2666 unknown = TRUE;
2667 break;
2668 }
2669 }
2670 break;
2671
2672 case EF_ARM_EABI_VER2:
2673 strcat (buf, ", Version2 EABI");
2674 while (e_flags)
2675 {
2676 unsigned flag;
2677
2678 /* Process flags one bit at a time. */
2679 flag = e_flags & - e_flags;
2680 e_flags &= ~ flag;
2681
2682 switch (flag)
2683 {
2684 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2685 strcat (buf, ", sorted symbol tables");
2686 break;
2687
2688 case EF_ARM_DYNSYMSUSESEGIDX:
2689 strcat (buf, ", dynamic symbols use segment index");
2690 break;
2691
2692 case EF_ARM_MAPSYMSFIRST:
2693 strcat (buf, ", mapping symbols precede others");
2694 break;
2695
2696 default:
2697 unknown = TRUE;
2698 break;
2699 }
2700 }
2701 break;
2702
2703 case EF_ARM_EABI_VER3:
2704 strcat (buf, ", Version3 EABI");
2705 break;
2706
2707 case EF_ARM_EABI_VER4:
2708 strcat (buf, ", Version4 EABI");
2709 while (e_flags)
2710 {
2711 unsigned flag;
2712
2713 /* Process flags one bit at a time. */
2714 flag = e_flags & - e_flags;
2715 e_flags &= ~ flag;
2716
2717 switch (flag)
2718 {
2719 case EF_ARM_BE8:
2720 strcat (buf, ", BE8");
2721 break;
2722
2723 case EF_ARM_LE8:
2724 strcat (buf, ", LE8");
2725 break;
2726
2727 default:
2728 unknown = TRUE;
2729 break;
2730 }
2731 }
2732 break;
2733
2734 case EF_ARM_EABI_VER5:
2735 strcat (buf, ", Version5 EABI");
2736 while (e_flags)
2737 {
2738 unsigned flag;
2739
2740 /* Process flags one bit at a time. */
2741 flag = e_flags & - e_flags;
2742 e_flags &= ~ flag;
2743
2744 switch (flag)
2745 {
2746 case EF_ARM_BE8:
2747 strcat (buf, ", BE8");
2748 break;
2749
2750 case EF_ARM_LE8:
2751 strcat (buf, ", LE8");
2752 break;
2753
2754 case EF_ARM_ABI_FLOAT_SOFT: /* Conflicts with EF_ARM_SOFT_FLOAT. */
2755 strcat (buf, ", soft-float ABI");
2756 break;
2757
2758 case EF_ARM_ABI_FLOAT_HARD: /* Conflicts with EF_ARM_VFP_FLOAT. */
2759 strcat (buf, ", hard-float ABI");
2760 break;
2761
2762 default:
2763 unknown = TRUE;
2764 break;
2765 }
2766 }
2767 break;
2768
2769 case EF_ARM_EABI_UNKNOWN:
2770 strcat (buf, ", GNU EABI");
2771 while (e_flags)
2772 {
2773 unsigned flag;
2774
2775 /* Process flags one bit at a time. */
2776 flag = e_flags & - e_flags;
2777 e_flags &= ~ flag;
2778
2779 switch (flag)
2780 {
2781 case EF_ARM_INTERWORK:
2782 strcat (buf, ", interworking enabled");
2783 break;
2784
2785 case EF_ARM_APCS_26:
2786 strcat (buf, ", uses APCS/26");
2787 break;
2788
2789 case EF_ARM_APCS_FLOAT:
2790 strcat (buf, ", uses APCS/float");
2791 break;
2792
2793 case EF_ARM_PIC:
2794 strcat (buf, ", position independent");
2795 break;
2796
2797 case EF_ARM_ALIGN8:
2798 strcat (buf, ", 8 bit structure alignment");
2799 break;
2800
2801 case EF_ARM_NEW_ABI:
2802 strcat (buf, ", uses new ABI");
2803 break;
2804
2805 case EF_ARM_OLD_ABI:
2806 strcat (buf, ", uses old ABI");
2807 break;
2808
2809 case EF_ARM_SOFT_FLOAT:
2810 strcat (buf, ", software FP");
2811 break;
2812
2813 case EF_ARM_VFP_FLOAT:
2814 strcat (buf, ", VFP");
2815 break;
2816
2817 case EF_ARM_MAVERICK_FLOAT:
2818 strcat (buf, ", Maverick FP");
2819 break;
2820
2821 default:
2822 unknown = TRUE;
2823 break;
2824 }
2825 }
2826 }
2827
2828 if (unknown)
2829 strcat (buf,_(", <unknown>"));
2830 }
2831
2832 static void
2833 decode_AVR_machine_flags (unsigned e_flags, char buf[], size_t size)
2834 {
2835 --size; /* Leave space for null terminator. */
2836
2837 switch (e_flags & EF_AVR_MACH)
2838 {
2839 case E_AVR_MACH_AVR1:
2840 strncat (buf, ", avr:1", size);
2841 break;
2842 case E_AVR_MACH_AVR2:
2843 strncat (buf, ", avr:2", size);
2844 break;
2845 case E_AVR_MACH_AVR25:
2846 strncat (buf, ", avr:25", size);
2847 break;
2848 case E_AVR_MACH_AVR3:
2849 strncat (buf, ", avr:3", size);
2850 break;
2851 case E_AVR_MACH_AVR31:
2852 strncat (buf, ", avr:31", size);
2853 break;
2854 case E_AVR_MACH_AVR35:
2855 strncat (buf, ", avr:35", size);
2856 break;
2857 case E_AVR_MACH_AVR4:
2858 strncat (buf, ", avr:4", size);
2859 break;
2860 case E_AVR_MACH_AVR5:
2861 strncat (buf, ", avr:5", size);
2862 break;
2863 case E_AVR_MACH_AVR51:
2864 strncat (buf, ", avr:51", size);
2865 break;
2866 case E_AVR_MACH_AVR6:
2867 strncat (buf, ", avr:6", size);
2868 break;
2869 case E_AVR_MACH_AVRTINY:
2870 strncat (buf, ", avr:100", size);
2871 break;
2872 case E_AVR_MACH_XMEGA1:
2873 strncat (buf, ", avr:101", size);
2874 break;
2875 case E_AVR_MACH_XMEGA2:
2876 strncat (buf, ", avr:102", size);
2877 break;
2878 case E_AVR_MACH_XMEGA3:
2879 strncat (buf, ", avr:103", size);
2880 break;
2881 case E_AVR_MACH_XMEGA4:
2882 strncat (buf, ", avr:104", size);
2883 break;
2884 case E_AVR_MACH_XMEGA5:
2885 strncat (buf, ", avr:105", size);
2886 break;
2887 case E_AVR_MACH_XMEGA6:
2888 strncat (buf, ", avr:106", size);
2889 break;
2890 case E_AVR_MACH_XMEGA7:
2891 strncat (buf, ", avr:107", size);
2892 break;
2893 default:
2894 strncat (buf, ", avr:<unknown>", size);
2895 break;
2896 }
2897
2898 size -= strlen (buf);
2899 if (e_flags & EF_AVR_LINKRELAX_PREPARED)
2900 strncat (buf, ", link-relax", size);
2901 }
2902
2903 static void
2904 decode_NDS32_machine_flags (unsigned e_flags, char buf[], size_t size)
2905 {
2906 unsigned abi;
2907 unsigned arch;
2908 unsigned config;
2909 unsigned version;
2910 bfd_boolean has_fpu = FALSE;
2911 unsigned int r = 0;
2912
2913 static const char *ABI_STRINGS[] =
2914 {
2915 "ABI v0", /* use r5 as return register; only used in N1213HC */
2916 "ABI v1", /* use r0 as return register */
2917 "ABI v2", /* use r0 as return register and don't reserve 24 bytes for arguments */
2918 "ABI v2fp", /* for FPU */
2919 "AABI",
2920 "ABI2 FP+"
2921 };
2922 static const char *VER_STRINGS[] =
2923 {
2924 "Andes ELF V1.3 or older",
2925 "Andes ELF V1.3.1",
2926 "Andes ELF V1.4"
2927 };
2928 static const char *ARCH_STRINGS[] =
2929 {
2930 "",
2931 "Andes Star v1.0",
2932 "Andes Star v2.0",
2933 "Andes Star v3.0",
2934 "Andes Star v3.0m"
2935 };
2936
2937 abi = EF_NDS_ABI & e_flags;
2938 arch = EF_NDS_ARCH & e_flags;
2939 config = EF_NDS_INST & e_flags;
2940 version = EF_NDS32_ELF_VERSION & e_flags;
2941
2942 memset (buf, 0, size);
2943
2944 switch (abi)
2945 {
2946 case E_NDS_ABI_V0:
2947 case E_NDS_ABI_V1:
2948 case E_NDS_ABI_V2:
2949 case E_NDS_ABI_V2FP:
2950 case E_NDS_ABI_AABI:
2951 case E_NDS_ABI_V2FP_PLUS:
2952 /* In case there are holes in the array. */
2953 r += snprintf (buf + r, size - r, ", %s", ABI_STRINGS[abi >> EF_NDS_ABI_SHIFT]);
2954 break;
2955
2956 default:
2957 r += snprintf (buf + r, size - r, ", <unrecognized ABI>");
2958 break;
2959 }
2960
2961 switch (version)
2962 {
2963 case E_NDS32_ELF_VER_1_2:
2964 case E_NDS32_ELF_VER_1_3:
2965 case E_NDS32_ELF_VER_1_4:
2966 r += snprintf (buf + r, size - r, ", %s", VER_STRINGS[version >> EF_NDS32_ELF_VERSION_SHIFT]);
2967 break;
2968
2969 default:
2970 r += snprintf (buf + r, size - r, ", <unrecognized ELF version number>");
2971 break;
2972 }
2973
2974 if (E_NDS_ABI_V0 == abi)
2975 {
2976 /* OLD ABI; only used in N1213HC, has performance extension 1. */
2977 r += snprintf (buf + r, size - r, ", Andes Star v1.0, N1213HC, MAC, PERF1");
2978 if (arch == E_NDS_ARCH_STAR_V1_0)
2979 r += snprintf (buf + r, size -r, ", 16b"); /* has 16-bit instructions */
2980 return;
2981 }
2982
2983 switch (arch)
2984 {
2985 case E_NDS_ARCH_STAR_V1_0:
2986 case E_NDS_ARCH_STAR_V2_0:
2987 case E_NDS_ARCH_STAR_V3_0:
2988 case E_NDS_ARCH_STAR_V3_M:
2989 r += snprintf (buf + r, size - r, ", %s", ARCH_STRINGS[arch >> EF_NDS_ARCH_SHIFT]);
2990 break;
2991
2992 default:
2993 r += snprintf (buf + r, size - r, ", <unrecognized architecture>");
2994 /* ARCH version determines how the e_flags are interpreted.
2995 If it is unknown, we cannot proceed. */
2996 return;
2997 }
2998
2999 /* Newer ABI; Now handle architecture specific flags. */
3000 if (arch == E_NDS_ARCH_STAR_V1_0)
3001 {
3002 if (config & E_NDS32_HAS_MFUSR_PC_INST)
3003 r += snprintf (buf + r, size -r, ", MFUSR_PC");
3004
3005 if (!(config & E_NDS32_HAS_NO_MAC_INST))
3006 r += snprintf (buf + r, size -r, ", MAC");
3007
3008 if (config & E_NDS32_HAS_DIV_INST)
3009 r += snprintf (buf + r, size -r, ", DIV");
3010
3011 if (config & E_NDS32_HAS_16BIT_INST)
3012 r += snprintf (buf + r, size -r, ", 16b");
3013 }
3014 else
3015 {
3016 if (config & E_NDS32_HAS_MFUSR_PC_INST)
3017 {
3018 if (version <= E_NDS32_ELF_VER_1_3)
3019 r += snprintf (buf + r, size -r, ", [B8]");
3020 else
3021 r += snprintf (buf + r, size -r, ", EX9");
3022 }
3023
3024 if (config & E_NDS32_HAS_MAC_DX_INST)
3025 r += snprintf (buf + r, size -r, ", MAC_DX");
3026
3027 if (config & E_NDS32_HAS_DIV_DX_INST)
3028 r += snprintf (buf + r, size -r, ", DIV_DX");
3029
3030 if (config & E_NDS32_HAS_16BIT_INST)
3031 {
3032 if (version <= E_NDS32_ELF_VER_1_3)
3033 r += snprintf (buf + r, size -r, ", 16b");
3034 else
3035 r += snprintf (buf + r, size -r, ", IFC");
3036 }
3037 }
3038
3039 if (config & E_NDS32_HAS_EXT_INST)
3040 r += snprintf (buf + r, size -r, ", PERF1");
3041
3042 if (config & E_NDS32_HAS_EXT2_INST)
3043 r += snprintf (buf + r, size -r, ", PERF2");
3044
3045 if (config & E_NDS32_HAS_FPU_INST)
3046 {
3047 has_fpu = TRUE;
3048 r += snprintf (buf + r, size -r, ", FPU_SP");
3049 }
3050
3051 if (config & E_NDS32_HAS_FPU_DP_INST)
3052 {
3053 has_fpu = TRUE;
3054 r += snprintf (buf + r, size -r, ", FPU_DP");
3055 }
3056
3057 if (config & E_NDS32_HAS_FPU_MAC_INST)
3058 {
3059 has_fpu = TRUE;
3060 r += snprintf (buf + r, size -r, ", FPU_MAC");
3061 }
3062
3063 if (has_fpu)
3064 {
3065 switch ((config & E_NDS32_FPU_REG_CONF) >> E_NDS32_FPU_REG_CONF_SHIFT)
3066 {
3067 case E_NDS32_FPU_REG_8SP_4DP:
3068 r += snprintf (buf + r, size -r, ", FPU_REG:8/4");
3069 break;
3070 case E_NDS32_FPU_REG_16SP_8DP:
3071 r += snprintf (buf + r, size -r, ", FPU_REG:16/8");
3072 break;
3073 case E_NDS32_FPU_REG_32SP_16DP:
3074 r += snprintf (buf + r, size -r, ", FPU_REG:32/16");
3075 break;
3076 case E_NDS32_FPU_REG_32SP_32DP:
3077 r += snprintf (buf + r, size -r, ", FPU_REG:32/32");
3078 break;
3079 }
3080 }
3081
3082 if (config & E_NDS32_HAS_AUDIO_INST)
3083 r += snprintf (buf + r, size -r, ", AUDIO");
3084
3085 if (config & E_NDS32_HAS_STRING_INST)
3086 r += snprintf (buf + r, size -r, ", STR");
3087
3088 if (config & E_NDS32_HAS_REDUCED_REGS)
3089 r += snprintf (buf + r, size -r, ", 16REG");
3090
3091 if (config & E_NDS32_HAS_VIDEO_INST)
3092 {
3093 if (version <= E_NDS32_ELF_VER_1_3)
3094 r += snprintf (buf + r, size -r, ", VIDEO");
3095 else
3096 r += snprintf (buf + r, size -r, ", SATURATION");
3097 }
3098
3099 if (config & E_NDS32_HAS_ENCRIPT_INST)
3100 r += snprintf (buf + r, size -r, ", ENCRP");
3101
3102 if (config & E_NDS32_HAS_L2C_INST)
3103 r += snprintf (buf + r, size -r, ", L2C");
3104 }
3105
3106 static char *
3107 get_machine_flags (Filedata * filedata, unsigned e_flags, unsigned e_machine)
3108 {
3109 static char buf[1024];
3110
3111 buf[0] = '\0';
3112
3113 if (e_flags)
3114 {
3115 switch (e_machine)
3116 {
3117 default:
3118 break;
3119
3120 case EM_ARC_COMPACT2:
3121 case EM_ARC_COMPACT:
3122 decode_ARC_machine_flags (e_flags, e_machine, buf);
3123 break;
3124
3125 case EM_ARM:
3126 decode_ARM_machine_flags (e_flags, buf);
3127 break;
3128
3129 case EM_AVR:
3130 decode_AVR_machine_flags (e_flags, buf, sizeof buf);
3131 break;
3132
3133 case EM_BLACKFIN:
3134 if (e_flags & EF_BFIN_PIC)
3135 strcat (buf, ", PIC");
3136
3137 if (e_flags & EF_BFIN_FDPIC)
3138 strcat (buf, ", FDPIC");
3139
3140 if (e_flags & EF_BFIN_CODE_IN_L1)
3141 strcat (buf, ", code in L1");
3142
3143 if (e_flags & EF_BFIN_DATA_IN_L1)
3144 strcat (buf, ", data in L1");
3145
3146 break;
3147
3148 case EM_CYGNUS_FRV:
3149 switch (e_flags & EF_FRV_CPU_MASK)
3150 {
3151 case EF_FRV_CPU_GENERIC:
3152 break;
3153
3154 default:
3155 strcat (buf, ", fr???");
3156 break;
3157
3158 case EF_FRV_CPU_FR300:
3159 strcat (buf, ", fr300");
3160 break;
3161
3162 case EF_FRV_CPU_FR400:
3163 strcat (buf, ", fr400");
3164 break;
3165 case EF_FRV_CPU_FR405:
3166 strcat (buf, ", fr405");
3167 break;
3168
3169 case EF_FRV_CPU_FR450:
3170 strcat (buf, ", fr450");
3171 break;
3172
3173 case EF_FRV_CPU_FR500:
3174 strcat (buf, ", fr500");
3175 break;
3176 case EF_FRV_CPU_FR550:
3177 strcat (buf, ", fr550");
3178 break;
3179
3180 case EF_FRV_CPU_SIMPLE:
3181 strcat (buf, ", simple");
3182 break;
3183 case EF_FRV_CPU_TOMCAT:
3184 strcat (buf, ", tomcat");
3185 break;
3186 }
3187 break;
3188
3189 case EM_68K:
3190 if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
3191 strcat (buf, ", m68000");
3192 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
3193 strcat (buf, ", cpu32");
3194 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
3195 strcat (buf, ", fido_a");
3196 else
3197 {
3198 char const * isa = _("unknown");
3199 char const * mac = _("unknown mac");
3200 char const * additional = NULL;
3201
3202 switch (e_flags & EF_M68K_CF_ISA_MASK)
3203 {
3204 case EF_M68K_CF_ISA_A_NODIV:
3205 isa = "A";
3206 additional = ", nodiv";
3207 break;
3208 case EF_M68K_CF_ISA_A:
3209 isa = "A";
3210 break;
3211 case EF_M68K_CF_ISA_A_PLUS:
3212 isa = "A+";
3213 break;
3214 case EF_M68K_CF_ISA_B_NOUSP:
3215 isa = "B";
3216 additional = ", nousp";
3217 break;
3218 case EF_M68K_CF_ISA_B:
3219 isa = "B";
3220 break;
3221 case EF_M68K_CF_ISA_C:
3222 isa = "C";
3223 break;
3224 case EF_M68K_CF_ISA_C_NODIV:
3225 isa = "C";
3226 additional = ", nodiv";
3227 break;
3228 }
3229 strcat (buf, ", cf, isa ");
3230 strcat (buf, isa);
3231 if (additional)
3232 strcat (buf, additional);
3233 if (e_flags & EF_M68K_CF_FLOAT)
3234 strcat (buf, ", float");
3235 switch (e_flags & EF_M68K_CF_MAC_MASK)
3236 {
3237 case 0:
3238 mac = NULL;
3239 break;
3240 case EF_M68K_CF_MAC:
3241 mac = "mac";
3242 break;
3243 case EF_M68K_CF_EMAC:
3244 mac = "emac";
3245 break;
3246 case EF_M68K_CF_EMAC_B:
3247 mac = "emac_b";
3248 break;
3249 }
3250 if (mac)
3251 {
3252 strcat (buf, ", ");
3253 strcat (buf, mac);
3254 }
3255 }
3256 break;
3257
3258 case EM_CYGNUS_MEP:
3259 switch (e_flags & EF_MEP_CPU_MASK)
3260 {
3261 case EF_MEP_CPU_MEP: strcat (buf, ", generic MeP"); break;
3262 case EF_MEP_CPU_C2: strcat (buf, ", MeP C2"); break;
3263 case EF_MEP_CPU_C3: strcat (buf, ", MeP C3"); break;
3264 case EF_MEP_CPU_C4: strcat (buf, ", MeP C4"); break;
3265 case EF_MEP_CPU_C5: strcat (buf, ", MeP C5"); break;
3266 case EF_MEP_CPU_H1: strcat (buf, ", MeP H1"); break;
3267 default: strcat (buf, _(", <unknown MeP cpu type>")); break;
3268 }
3269
3270 switch (e_flags & EF_MEP_COP_MASK)
3271 {
3272 case EF_MEP_COP_NONE: break;
3273 case EF_MEP_COP_AVC: strcat (buf, ", AVC coprocessor"); break;
3274 case EF_MEP_COP_AVC2: strcat (buf, ", AVC2 coprocessor"); break;
3275 case EF_MEP_COP_FMAX: strcat (buf, ", FMAX coprocessor"); break;
3276 case EF_MEP_COP_IVC2: strcat (buf, ", IVC2 coprocessor"); break;
3277 default: strcat (buf, _("<unknown MeP copro type>")); break;
3278 }
3279
3280 if (e_flags & EF_MEP_LIBRARY)
3281 strcat (buf, ", Built for Library");
3282
3283 if (e_flags & EF_MEP_INDEX_MASK)
3284 sprintf (buf + strlen (buf), ", Configuration Index: %#x",
3285 e_flags & EF_MEP_INDEX_MASK);
3286
3287 if (e_flags & ~ EF_MEP_ALL_FLAGS)
3288 sprintf (buf + strlen (buf), _(", unknown flags bits: %#x"),
3289 e_flags & ~ EF_MEP_ALL_FLAGS);
3290 break;
3291
3292 case EM_PPC:
3293 if (e_flags & EF_PPC_EMB)
3294 strcat (buf, ", emb");
3295
3296 if (e_flags & EF_PPC_RELOCATABLE)
3297 strcat (buf, _(", relocatable"));
3298
3299 if (e_flags & EF_PPC_RELOCATABLE_LIB)
3300 strcat (buf, _(", relocatable-lib"));
3301 break;
3302
3303 case EM_PPC64:
3304 if (e_flags & EF_PPC64_ABI)
3305 {
3306 char abi[] = ", abiv0";
3307
3308 abi[6] += e_flags & EF_PPC64_ABI;
3309 strcat (buf, abi);
3310 }
3311 break;
3312
3313 case EM_V800:
3314 if ((e_flags & EF_RH850_ABI) == EF_RH850_ABI)
3315 strcat (buf, ", RH850 ABI");
3316
3317 if (e_flags & EF_V800_850E3)
3318 strcat (buf, ", V3 architecture");
3319
3320 if ((e_flags & (EF_RH850_FPU_DOUBLE | EF_RH850_FPU_SINGLE)) == 0)
3321 strcat (buf, ", FPU not used");
3322
3323 if ((e_flags & (EF_RH850_REGMODE22 | EF_RH850_REGMODE32)) == 0)
3324 strcat (buf, ", regmode: COMMON");
3325
3326 if ((e_flags & (EF_RH850_GP_FIX | EF_RH850_GP_NOFIX)) == 0)
3327 strcat (buf, ", r4 not used");
3328
3329 if ((e_flags & (EF_RH850_EP_FIX | EF_RH850_EP_NOFIX)) == 0)
3330 strcat (buf, ", r30 not used");
3331
3332 if ((e_flags & (EF_RH850_TP_FIX | EF_RH850_TP_NOFIX)) == 0)
3333 strcat (buf, ", r5 not used");
3334
3335 if ((e_flags & (EF_RH850_REG2_RESERVE | EF_RH850_REG2_NORESERVE)) == 0)
3336 strcat (buf, ", r2 not used");
3337
3338 for (e_flags &= 0xFFFF; e_flags; e_flags &= ~ (e_flags & - e_flags))
3339 {
3340 switch (e_flags & - e_flags)
3341 {
3342 case EF_RH850_FPU_DOUBLE: strcat (buf, ", double precision FPU"); break;
3343 case EF_RH850_FPU_SINGLE: strcat (buf, ", single precision FPU"); break;
3344 case EF_RH850_REGMODE22: strcat (buf, ", regmode:22"); break;
3345 case EF_RH850_REGMODE32: strcat (buf, ", regmode:23"); break;
3346 case EF_RH850_GP_FIX: strcat (buf, ", r4 fixed"); break;
3347 case EF_RH850_GP_NOFIX: strcat (buf, ", r4 free"); break;
3348 case EF_RH850_EP_FIX: strcat (buf, ", r30 fixed"); break;
3349 case EF_RH850_EP_NOFIX: strcat (buf, ", r30 free"); break;
3350 case EF_RH850_TP_FIX: strcat (buf, ", r5 fixed"); break;
3351 case EF_RH850_TP_NOFIX: strcat (buf, ", r5 free"); break;
3352 case EF_RH850_REG2_RESERVE: strcat (buf, ", r2 fixed"); break;
3353 case EF_RH850_REG2_NORESERVE: strcat (buf, ", r2 free"); break;
3354 default: break;
3355 }
3356 }
3357 break;
3358
3359 case EM_V850:
3360 case EM_CYGNUS_V850:
3361 switch (e_flags & EF_V850_ARCH)
3362 {
3363 case E_V850E3V5_ARCH:
3364 strcat (buf, ", v850e3v5");
3365 break;
3366 case E_V850E2V3_ARCH:
3367 strcat (buf, ", v850e2v3");
3368 break;
3369 case E_V850E2_ARCH:
3370 strcat (buf, ", v850e2");
3371 break;
3372 case E_V850E1_ARCH:
3373 strcat (buf, ", v850e1");
3374 break;
3375 case E_V850E_ARCH:
3376 strcat (buf, ", v850e");
3377 break;
3378 case E_V850_ARCH:
3379 strcat (buf, ", v850");
3380 break;
3381 default:
3382 strcat (buf, _(", unknown v850 architecture variant"));
3383 break;
3384 }
3385 break;
3386
3387 case EM_M32R:
3388 case EM_CYGNUS_M32R:
3389 if ((e_flags & EF_M32R_ARCH) == E_M32R_ARCH)
3390 strcat (buf, ", m32r");
3391 break;
3392
3393 case EM_MIPS:
3394 case EM_MIPS_RS3_LE:
3395 if (e_flags & EF_MIPS_NOREORDER)
3396 strcat (buf, ", noreorder");
3397
3398 if (e_flags & EF_MIPS_PIC)
3399 strcat (buf, ", pic");
3400
3401 if (e_flags & EF_MIPS_CPIC)
3402 strcat (buf, ", cpic");
3403
3404 if (e_flags & EF_MIPS_UCODE)
3405 strcat (buf, ", ugen_reserved");
3406
3407 if (e_flags & EF_MIPS_ABI2)
3408 strcat (buf, ", abi2");
3409
3410 if (e_flags & EF_MIPS_OPTIONS_FIRST)
3411 strcat (buf, ", odk first");
3412
3413 if (e_flags & EF_MIPS_32BITMODE)
3414 strcat (buf, ", 32bitmode");
3415
3416 if (e_flags & EF_MIPS_NAN2008)
3417 strcat (buf, ", nan2008");
3418
3419 if (e_flags & EF_MIPS_FP64)
3420 strcat (buf, ", fp64");
3421
3422 switch ((e_flags & EF_MIPS_MACH))
3423 {
3424 case E_MIPS_MACH_3900: strcat (buf, ", 3900"); break;
3425 case E_MIPS_MACH_4010: strcat (buf, ", 4010"); break;
3426 case E_MIPS_MACH_4100: strcat (buf, ", 4100"); break;
3427 case E_MIPS_MACH_4111: strcat (buf, ", 4111"); break;
3428 case E_MIPS_MACH_4120: strcat (buf, ", 4120"); break;
3429 case E_MIPS_MACH_4650: strcat (buf, ", 4650"); break;
3430 case E_MIPS_MACH_5400: strcat (buf, ", 5400"); break;
3431 case E_MIPS_MACH_5500: strcat (buf, ", 5500"); break;
3432 case E_MIPS_MACH_5900: strcat (buf, ", 5900"); break;
3433 case E_MIPS_MACH_SB1: strcat (buf, ", sb1"); break;
3434 case E_MIPS_MACH_9000: strcat (buf, ", 9000"); break;
3435 case E_MIPS_MACH_LS2E: strcat (buf, ", loongson-2e"); break;
3436 case E_MIPS_MACH_LS2F: strcat (buf, ", loongson-2f"); break;
3437 case E_MIPS_MACH_GS464: strcat (buf, ", gs464"); break;
3438 case E_MIPS_MACH_GS464E: strcat (buf, ", gs464e"); break;
3439 case E_MIPS_MACH_GS264E: strcat (buf, ", gs264e"); break;
3440 case E_MIPS_MACH_OCTEON: strcat (buf, ", octeon"); break;
3441 case E_MIPS_MACH_OCTEON2: strcat (buf, ", octeon2"); break;
3442 case E_MIPS_MACH_OCTEON3: strcat (buf, ", octeon3"); break;
3443 case E_MIPS_MACH_XLR: strcat (buf, ", xlr"); break;
3444 case E_MIPS_MACH_IAMR2: strcat (buf, ", interaptiv-mr2"); break;
3445 case 0:
3446 /* We simply ignore the field in this case to avoid confusion:
3447 MIPS ELF does not specify EF_MIPS_MACH, it is a GNU
3448 extension. */
3449 break;
3450 default: strcat (buf, _(", unknown CPU")); break;
3451 }
3452
3453 switch ((e_flags & EF_MIPS_ABI))
3454 {
3455 case E_MIPS_ABI_O32: strcat (buf, ", o32"); break;
3456 case E_MIPS_ABI_O64: strcat (buf, ", o64"); break;
3457 case E_MIPS_ABI_EABI32: strcat (buf, ", eabi32"); break;
3458 case E_MIPS_ABI_EABI64: strcat (buf, ", eabi64"); break;
3459 case 0:
3460 /* We simply ignore the field in this case to avoid confusion:
3461 MIPS ELF does not specify EF_MIPS_ABI, it is a GNU extension.
3462 This means it is likely to be an o32 file, but not for
3463 sure. */
3464 break;
3465 default: strcat (buf, _(", unknown ABI")); break;
3466 }
3467
3468 if (e_flags & EF_MIPS_ARCH_ASE_MDMX)
3469 strcat (buf, ", mdmx");
3470
3471 if (e_flags & EF_MIPS_ARCH_ASE_M16)
3472 strcat (buf, ", mips16");
3473
3474 if (e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
3475 strcat (buf, ", micromips");
3476
3477 switch ((e_flags & EF_MIPS_ARCH))
3478 {
3479 case E_MIPS_ARCH_1: strcat (buf, ", mips1"); break;
3480 case E_MIPS_ARCH_2: strcat (buf, ", mips2"); break;
3481 case E_MIPS_ARCH_3: strcat (buf, ", mips3"); break;
3482 case E_MIPS_ARCH_4: strcat (buf, ", mips4"); break;
3483 case E_MIPS_ARCH_5: strcat (buf, ", mips5"); break;
3484 case E_MIPS_ARCH_32: strcat (buf, ", mips32"); break;
3485 case E_MIPS_ARCH_32R2: strcat (buf, ", mips32r2"); break;
3486 case E_MIPS_ARCH_32R6: strcat (buf, ", mips32r6"); break;
3487 case E_MIPS_ARCH_64: strcat (buf, ", mips64"); break;
3488 case E_MIPS_ARCH_64R2: strcat (buf, ", mips64r2"); break;
3489 case E_MIPS_ARCH_64R6: strcat (buf, ", mips64r6"); break;
3490 default: strcat (buf, _(", unknown ISA")); break;
3491 }
3492 break;
3493
3494 case EM_NDS32:
3495 decode_NDS32_machine_flags (e_flags, buf, sizeof buf);
3496 break;
3497
3498 case EM_NFP:
3499 switch (EF_NFP_MACH (e_flags))
3500 {
3501 case E_NFP_MACH_3200:
3502 strcat (buf, ", NFP-32xx");
3503 break;
3504 case E_NFP_MACH_6000:
3505 strcat (buf, ", NFP-6xxx");
3506 break;
3507 }
3508 break;
3509
3510 case EM_RISCV:
3511 if (e_flags & EF_RISCV_RVC)
3512 strcat (buf, ", RVC");
3513
3514 if (e_flags & EF_RISCV_RVE)
3515 strcat (buf, ", RVE");
3516
3517 switch (e_flags & EF_RISCV_FLOAT_ABI)
3518 {
3519 case EF_RISCV_FLOAT_ABI_SOFT:
3520 strcat (buf, ", soft-float ABI");
3521 break;
3522
3523 case EF_RISCV_FLOAT_ABI_SINGLE:
3524 strcat (buf, ", single-float ABI");
3525 break;
3526
3527 case EF_RISCV_FLOAT_ABI_DOUBLE:
3528 strcat (buf, ", double-float ABI");
3529 break;
3530
3531 case EF_RISCV_FLOAT_ABI_QUAD:
3532 strcat (buf, ", quad-float ABI");
3533 break;
3534 }
3535 break;
3536
3537 case EM_SH:
3538 switch ((e_flags & EF_SH_MACH_MASK))
3539 {
3540 case EF_SH1: strcat (buf, ", sh1"); break;
3541 case EF_SH2: strcat (buf, ", sh2"); break;
3542 case EF_SH3: strcat (buf, ", sh3"); break;
3543 case EF_SH_DSP: strcat (buf, ", sh-dsp"); break;
3544 case EF_SH3_DSP: strcat (buf, ", sh3-dsp"); break;
3545 case EF_SH4AL_DSP: strcat (buf, ", sh4al-dsp"); break;
3546 case EF_SH3E: strcat (buf, ", sh3e"); break;
3547 case EF_SH4: strcat (buf, ", sh4"); break;
3548 case EF_SH5: strcat (buf, ", sh5"); break;
3549 case EF_SH2E: strcat (buf, ", sh2e"); break;
3550 case EF_SH4A: strcat (buf, ", sh4a"); break;
3551 case EF_SH2A: strcat (buf, ", sh2a"); break;
3552 case EF_SH4_NOFPU: strcat (buf, ", sh4-nofpu"); break;
3553 case EF_SH4A_NOFPU: strcat (buf, ", sh4a-nofpu"); break;
3554 case EF_SH2A_NOFPU: strcat (buf, ", sh2a-nofpu"); break;
3555 case EF_SH3_NOMMU: strcat (buf, ", sh3-nommu"); break;
3556 case EF_SH4_NOMMU_NOFPU: strcat (buf, ", sh4-nommu-nofpu"); break;
3557 case EF_SH2A_SH4_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh4-nommu-nofpu"); break;
3558 case EF_SH2A_SH3_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh3-nommu"); break;
3559 case EF_SH2A_SH4: strcat (buf, ", sh2a-or-sh4"); break;
3560 case EF_SH2A_SH3E: strcat (buf, ", sh2a-or-sh3e"); break;
3561 default: strcat (buf, _(", unknown ISA")); break;
3562 }
3563
3564 if (e_flags & EF_SH_PIC)
3565 strcat (buf, ", pic");
3566
3567 if (e_flags & EF_SH_FDPIC)
3568 strcat (buf, ", fdpic");
3569 break;
3570
3571 case EM_OR1K:
3572 if (e_flags & EF_OR1K_NODELAY)
3573 strcat (buf, ", no delay");
3574 break;
3575
3576 case EM_SPARCV9:
3577 if (e_flags & EF_SPARC_32PLUS)
3578 strcat (buf, ", v8+");
3579
3580 if (e_flags & EF_SPARC_SUN_US1)
3581 strcat (buf, ", ultrasparcI");
3582
3583 if (e_flags & EF_SPARC_SUN_US3)
3584 strcat (buf, ", ultrasparcIII");
3585
3586 if (e_flags & EF_SPARC_HAL_R1)
3587 strcat (buf, ", halr1");
3588
3589 if (e_flags & EF_SPARC_LEDATA)
3590 strcat (buf, ", ledata");
3591
3592 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_TSO)
3593 strcat (buf, ", tso");
3594
3595 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_PSO)
3596 strcat (buf, ", pso");
3597
3598 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_RMO)
3599 strcat (buf, ", rmo");
3600 break;
3601
3602 case EM_PARISC:
3603 switch (e_flags & EF_PARISC_ARCH)
3604 {
3605 case EFA_PARISC_1_0:
3606 strcpy (buf, ", PA-RISC 1.0");
3607 break;
3608 case EFA_PARISC_1_1:
3609 strcpy (buf, ", PA-RISC 1.1");
3610 break;
3611 case EFA_PARISC_2_0:
3612 strcpy (buf, ", PA-RISC 2.0");
3613 break;
3614 default:
3615 break;
3616 }
3617 if (e_flags & EF_PARISC_TRAPNIL)
3618 strcat (buf, ", trapnil");
3619 if (e_flags & EF_PARISC_EXT)
3620 strcat (buf, ", ext");
3621 if (e_flags & EF_PARISC_LSB)
3622 strcat (buf, ", lsb");
3623 if (e_flags & EF_PARISC_WIDE)
3624 strcat (buf, ", wide");
3625 if (e_flags & EF_PARISC_NO_KABP)
3626 strcat (buf, ", no kabp");
3627 if (e_flags & EF_PARISC_LAZYSWAP)
3628 strcat (buf, ", lazyswap");
3629 break;
3630
3631 case EM_PJ:
3632 case EM_PJ_OLD:
3633 if ((e_flags & EF_PICOJAVA_NEWCALLS) == EF_PICOJAVA_NEWCALLS)
3634 strcat (buf, ", new calling convention");
3635
3636 if ((e_flags & EF_PICOJAVA_GNUCALLS) == EF_PICOJAVA_GNUCALLS)
3637 strcat (buf, ", gnu calling convention");
3638 break;
3639
3640 case EM_IA_64:
3641 if ((e_flags & EF_IA_64_ABI64))
3642 strcat (buf, ", 64-bit");
3643 else
3644 strcat (buf, ", 32-bit");
3645 if ((e_flags & EF_IA_64_REDUCEDFP))
3646 strcat (buf, ", reduced fp model");
3647 if ((e_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
3648 strcat (buf, ", no function descriptors, constant gp");
3649 else if ((e_flags & EF_IA_64_CONS_GP))
3650 strcat (buf, ", constant gp");
3651 if ((e_flags & EF_IA_64_ABSOLUTE))
3652 strcat (buf, ", absolute");
3653 if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
3654 {
3655 if ((e_flags & EF_IA_64_VMS_LINKAGES))
3656 strcat (buf, ", vms_linkages");
3657 switch ((e_flags & EF_IA_64_VMS_COMCOD))
3658 {
3659 case EF_IA_64_VMS_COMCOD_SUCCESS:
3660 break;
3661 case EF_IA_64_VMS_COMCOD_WARNING:
3662 strcat (buf, ", warning");
3663 break;
3664 case EF_IA_64_VMS_COMCOD_ERROR:
3665 strcat (buf, ", error");
3666 break;
3667 case EF_IA_64_VMS_COMCOD_ABORT:
3668 strcat (buf, ", abort");
3669 break;
3670 default:
3671 warn (_("Unrecognised IA64 VMS Command Code: %x\n"),
3672 e_flags & EF_IA_64_VMS_COMCOD);
3673 strcat (buf, ", <unknown>");
3674 }
3675 }
3676 break;
3677
3678 case EM_VAX:
3679 if ((e_flags & EF_VAX_NONPIC))
3680 strcat (buf, ", non-PIC");
3681 if ((e_flags & EF_VAX_DFLOAT))
3682 strcat (buf, ", D-Float");
3683 if ((e_flags & EF_VAX_GFLOAT))
3684 strcat (buf, ", G-Float");
3685 break;
3686
3687 case EM_VISIUM:
3688 if (e_flags & EF_VISIUM_ARCH_MCM)
3689 strcat (buf, ", mcm");
3690 else if (e_flags & EF_VISIUM_ARCH_MCM24)
3691 strcat (buf, ", mcm24");
3692 if (e_flags & EF_VISIUM_ARCH_GR6)
3693 strcat (buf, ", gr6");
3694 break;
3695
3696 case EM_RL78:
3697 switch (e_flags & E_FLAG_RL78_CPU_MASK)
3698 {
3699 case E_FLAG_RL78_ANY_CPU: break;
3700 case E_FLAG_RL78_G10: strcat (buf, ", G10"); break;
3701 case E_FLAG_RL78_G13: strcat (buf, ", G13"); break;
3702 case E_FLAG_RL78_G14: strcat (buf, ", G14"); break;
3703 }
3704 if (e_flags & E_FLAG_RL78_64BIT_DOUBLES)
3705 strcat (buf, ", 64-bit doubles");
3706 break;
3707
3708 case EM_RX:
3709 if (e_flags & E_FLAG_RX_64BIT_DOUBLES)
3710 strcat (buf, ", 64-bit doubles");
3711 if (e_flags & E_FLAG_RX_DSP)
3712 strcat (buf, ", dsp");
3713 if (e_flags & E_FLAG_RX_PID)
3714 strcat (buf, ", pid");
3715 if (e_flags & E_FLAG_RX_ABI)
3716 strcat (buf, ", RX ABI");
3717 if (e_flags & E_FLAG_RX_SINSNS_SET)
3718 strcat (buf, e_flags & E_FLAG_RX_SINSNS_YES
3719 ? ", uses String instructions" : ", bans String instructions");
3720 if (e_flags & E_FLAG_RX_V2)
3721 strcat (buf, ", V2");
3722 if (e_flags & E_FLAG_RX_V3)
3723 strcat (buf, ", V3");
3724 break;
3725
3726 case EM_S390:
3727 if (e_flags & EF_S390_HIGH_GPRS)
3728 strcat (buf, ", highgprs");
3729 break;
3730
3731 case EM_TI_C6000:
3732 if ((e_flags & EF_C6000_REL))
3733 strcat (buf, ", relocatable module");
3734 break;
3735
3736 case EM_MSP430:
3737 strcat (buf, _(": architecture variant: "));
3738 switch (e_flags & EF_MSP430_MACH)
3739 {
3740 case E_MSP430_MACH_MSP430x11: strcat (buf, "MSP430x11"); break;
3741 case E_MSP430_MACH_MSP430x11x1 : strcat (buf, "MSP430x11x1 "); break;
3742 case E_MSP430_MACH_MSP430x12: strcat (buf, "MSP430x12"); break;
3743 case E_MSP430_MACH_MSP430x13: strcat (buf, "MSP430x13"); break;
3744 case E_MSP430_MACH_MSP430x14: strcat (buf, "MSP430x14"); break;
3745 case E_MSP430_MACH_MSP430x15: strcat (buf, "MSP430x15"); break;
3746 case E_MSP430_MACH_MSP430x16: strcat (buf, "MSP430x16"); break;
3747 case E_MSP430_MACH_MSP430x31: strcat (buf, "MSP430x31"); break;
3748 case E_MSP430_MACH_MSP430x32: strcat (buf, "MSP430x32"); break;
3749 case E_MSP430_MACH_MSP430x33: strcat (buf, "MSP430x33"); break;
3750 case E_MSP430_MACH_MSP430x41: strcat (buf, "MSP430x41"); break;
3751 case E_MSP430_MACH_MSP430x42: strcat (buf, "MSP430x42"); break;
3752 case E_MSP430_MACH_MSP430x43: strcat (buf, "MSP430x43"); break;
3753 case E_MSP430_MACH_MSP430x44: strcat (buf, "MSP430x44"); break;
3754 case E_MSP430_MACH_MSP430X : strcat (buf, "MSP430X"); break;
3755 default:
3756 strcat (buf, _(": unknown")); break;
3757 }
3758
3759 if (e_flags & ~ EF_MSP430_MACH)
3760 strcat (buf, _(": unknown extra flag bits also present"));
3761 }
3762 }
3763
3764 return buf;
3765 }
3766
3767 static const char *
3768 get_osabi_name (Filedata * filedata, unsigned int osabi)
3769 {
3770 static char buff[32];
3771
3772 switch (osabi)
3773 {
3774 case ELFOSABI_NONE: return "UNIX - System V";
3775 case ELFOSABI_HPUX: return "UNIX - HP-UX";
3776 case ELFOSABI_NETBSD: return "UNIX - NetBSD";
3777 case ELFOSABI_GNU: return "UNIX - GNU";
3778 case ELFOSABI_SOLARIS: return "UNIX - Solaris";
3779 case ELFOSABI_AIX: return "UNIX - AIX";
3780 case ELFOSABI_IRIX: return "UNIX - IRIX";
3781 case ELFOSABI_FREEBSD: return "UNIX - FreeBSD";
3782 case ELFOSABI_TRU64: return "UNIX - TRU64";
3783 case ELFOSABI_MODESTO: return "Novell - Modesto";
3784 case ELFOSABI_OPENBSD: return "UNIX - OpenBSD";
3785 case ELFOSABI_OPENVMS: return "VMS - OpenVMS";
3786 case ELFOSABI_NSK: return "HP - Non-Stop Kernel";
3787 case ELFOSABI_AROS: return "AROS";
3788 case ELFOSABI_FENIXOS: return "FenixOS";
3789 case ELFOSABI_CLOUDABI: return "Nuxi CloudABI";
3790 case ELFOSABI_OPENVOS: return "Stratus Technologies OpenVOS";
3791 default:
3792 if (osabi >= 64)
3793 switch (filedata->file_header.e_machine)
3794 {
3795 case EM_ARM:
3796 switch (osabi)
3797 {
3798 case ELFOSABI_ARM: return "ARM";
3799 case ELFOSABI_ARM_FDPIC: return "ARM FDPIC";
3800 default:
3801 break;
3802 }
3803 break;
3804
3805 case EM_MSP430:
3806 case EM_MSP430_OLD:
3807 case EM_VISIUM:
3808 switch (osabi)
3809 {
3810 case ELFOSABI_STANDALONE: return _("Standalone App");
3811 default:
3812 break;
3813 }
3814 break;
3815
3816 case EM_TI_C6000:
3817 switch (osabi)
3818 {
3819 case ELFOSABI_C6000_ELFABI: return _("Bare-metal C6000");
3820 case ELFOSABI_C6000_LINUX: return "Linux C6000";
3821 default:
3822 break;
3823 }
3824 break;
3825
3826 default:
3827 break;
3828 }
3829 snprintf (buff, sizeof (buff), _("<unknown: %x>"), osabi);
3830 return buff;
3831 }
3832 }
3833
3834 static const char *
3835 get_aarch64_segment_type (unsigned long type)
3836 {
3837 switch (type)
3838 {
3839 case PT_AARCH64_ARCHEXT: return "AARCH64_ARCHEXT";
3840 default: return NULL;
3841 }
3842 }
3843
3844 static const char *
3845 get_arm_segment_type (unsigned long type)
3846 {
3847 switch (type)
3848 {
3849 case PT_ARM_EXIDX: return "EXIDX";
3850 default: return NULL;
3851 }
3852 }
3853
3854 static const char *
3855 get_s390_segment_type (unsigned long type)
3856 {
3857 switch (type)
3858 {
3859 case PT_S390_PGSTE: return "S390_PGSTE";
3860 default: return NULL;
3861 }
3862 }
3863
3864 static const char *
3865 get_mips_segment_type (unsigned long type)
3866 {
3867 switch (type)
3868 {
3869 case PT_MIPS_REGINFO: return "REGINFO";
3870 case PT_MIPS_RTPROC: return "RTPROC";
3871 case PT_MIPS_OPTIONS: return "OPTIONS";
3872 case PT_MIPS_ABIFLAGS: return "ABIFLAGS";
3873 default: return NULL;
3874 }
3875 }
3876
3877 static const char *
3878 get_parisc_segment_type (unsigned long type)
3879 {
3880 switch (type)
3881 {
3882 case PT_PARISC_ARCHEXT: return "PARISC_ARCHEXT";
3883 case PT_PARISC_UNWIND: return "PARISC_UNWIND";
3884 case PT_PARISC_WEAKORDER: return "PARISC_WEAKORDER";
3885 default: return NULL;
3886 }
3887 }
3888
3889 static const char *
3890 get_ia64_segment_type (unsigned long type)
3891 {
3892 switch (type)
3893 {
3894 case PT_IA_64_ARCHEXT: return "IA_64_ARCHEXT";
3895 case PT_IA_64_UNWIND: return "IA_64_UNWIND";
3896 default: return NULL;
3897 }
3898 }
3899
3900 static const char *
3901 get_tic6x_segment_type (unsigned long type)
3902 {
3903 switch (type)
3904 {
3905 case PT_C6000_PHATTR: return "C6000_PHATTR";
3906 default: return NULL;
3907 }
3908 }
3909
3910 static const char *
3911 get_hpux_segment_type (unsigned long type, unsigned e_machine)
3912 {
3913 if (e_machine == EM_PARISC)
3914 switch (type)
3915 {
3916 case PT_HP_TLS: return "HP_TLS";
3917 case PT_HP_CORE_NONE: return "HP_CORE_NONE";
3918 case PT_HP_CORE_VERSION: return "HP_CORE_VERSION";
3919 case PT_HP_CORE_KERNEL: return "HP_CORE_KERNEL";
3920 case PT_HP_CORE_COMM: return "HP_CORE_COMM";
3921 case PT_HP_CORE_PROC: return "HP_CORE_PROC";
3922 case PT_HP_CORE_LOADABLE: return "HP_CORE_LOADABLE";
3923 case PT_HP_CORE_STACK: return "HP_CORE_STACK";
3924 case PT_HP_CORE_SHM: return "HP_CORE_SHM";
3925 case PT_HP_CORE_MMF: return "HP_CORE_MMF";
3926 case PT_HP_PARALLEL: return "HP_PARALLEL";
3927 case PT_HP_FASTBIND: return "HP_FASTBIND";
3928 case PT_HP_OPT_ANNOT: return "HP_OPT_ANNOT";
3929 case PT_HP_HSL_ANNOT: return "HP_HSL_ANNOT";
3930 case PT_HP_STACK: return "HP_STACK";
3931 case PT_HP_CORE_UTSNAME: return "HP_CORE_UTSNAME";
3932 default: return NULL;
3933 }
3934
3935 if (e_machine == EM_IA_64)
3936 switch (type)
3937 {
3938 case PT_HP_TLS: return "HP_TLS";
3939 case PT_IA_64_HP_OPT_ANOT: return "HP_OPT_ANNOT";
3940 case PT_IA_64_HP_HSL_ANOT: return "HP_HSL_ANNOT";
3941 case PT_IA_64_HP_STACK: return "HP_STACK";
3942 default: return NULL;
3943 }
3944
3945 return NULL;
3946 }
3947
3948 static const char *
3949 get_solaris_segment_type (unsigned long type)
3950 {
3951 switch (type)
3952 {
3953 case 0x6464e550: return "PT_SUNW_UNWIND";
3954 case 0x6474e550: return "PT_SUNW_EH_FRAME";
3955 case 0x6ffffff7: return "PT_LOSUNW";
3956 case 0x6ffffffa: return "PT_SUNWBSS";
3957 case 0x6ffffffb: return "PT_SUNWSTACK";
3958 case 0x6ffffffc: return "PT_SUNWDTRACE";
3959 case 0x6ffffffd: return "PT_SUNWCAP";
3960 case 0x6fffffff: return "PT_HISUNW";
3961 default: return NULL;
3962 }
3963 }
3964
3965 static const char *
3966 get_segment_type (Filedata * filedata, unsigned long p_type)
3967 {
3968 static char buff[32];
3969
3970 switch (p_type)
3971 {
3972 case PT_NULL: return "NULL";
3973 case PT_LOAD: return "LOAD";
3974 case PT_DYNAMIC: return "DYNAMIC";
3975 case PT_INTERP: return "INTERP";
3976 case PT_NOTE: return "NOTE";
3977 case PT_SHLIB: return "SHLIB";
3978 case PT_PHDR: return "PHDR";
3979 case PT_TLS: return "TLS";
3980 case PT_GNU_EH_FRAME: return "GNU_EH_FRAME";
3981 case PT_GNU_STACK: return "GNU_STACK";
3982 case PT_GNU_RELRO: return "GNU_RELRO";
3983 case PT_GNU_PROPERTY: return "GNU_PROPERTY";
3984
3985 default:
3986 if ((p_type >= PT_LOPROC) && (p_type <= PT_HIPROC))
3987 {
3988 const char * result;
3989
3990 switch (filedata->file_header.e_machine)
3991 {
3992 case EM_AARCH64:
3993 result = get_aarch64_segment_type (p_type);
3994 break;
3995 case EM_ARM:
3996 result = get_arm_segment_type (p_type);
3997 break;
3998 case EM_MIPS:
3999 case EM_MIPS_RS3_LE:
4000 result = get_mips_segment_type (p_type);
4001 break;
4002 case EM_PARISC:
4003 result = get_parisc_segment_type (p_type);
4004 break;
4005 case EM_IA_64:
4006 result = get_ia64_segment_type (p_type);
4007 break;
4008 case EM_TI_C6000:
4009 result = get_tic6x_segment_type (p_type);
4010 break;
4011 case EM_S390:
4012 case EM_S390_OLD:
4013 result = get_s390_segment_type (p_type);
4014 break;
4015 default:
4016 result = NULL;
4017 break;
4018 }
4019
4020 if (result != NULL)
4021 return result;
4022
4023 sprintf (buff, "LOPROC+%#lx", p_type - PT_LOPROC);
4024 }
4025 else if ((p_type >= PT_LOOS) && (p_type <= PT_HIOS))
4026 {
4027 const char * result = NULL;
4028
4029 switch (filedata->file_header.e_ident[EI_OSABI])
4030 {
4031 case ELFOSABI_GNU:
4032 case ELFOSABI_FREEBSD:
4033 if (p_type >= PT_GNU_MBIND_LO && p_type <= PT_GNU_MBIND_HI)
4034 {
4035 sprintf (buff, "GNU_MBIND+%#lx", p_type - PT_GNU_MBIND_LO);
4036 result = buff;
4037 }
4038 break;
4039 case ELFOSABI_HPUX:
4040 result = get_hpux_segment_type (p_type,
4041 filedata->file_header.e_machine);
4042 break;
4043 case ELFOSABI_SOLARIS:
4044 result = get_solaris_segment_type (p_type);
4045 break;
4046 default:
4047 break;
4048 }
4049 if (result != NULL)
4050 return result;
4051
4052 sprintf (buff, "LOOS+%#lx", p_type - PT_LOOS);
4053 }
4054 else
4055 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), p_type);
4056
4057 return buff;
4058 }
4059 }
4060
4061 static const char *
4062 get_arc_section_type_name (unsigned int sh_type)
4063 {
4064 switch (sh_type)
4065 {
4066 case SHT_ARC_ATTRIBUTES: return "ARC_ATTRIBUTES";
4067 default:
4068 break;
4069 }
4070 return NULL;
4071 }
4072
4073 static const char *
4074 get_mips_section_type_name (unsigned int sh_type)
4075 {
4076 switch (sh_type)
4077 {
4078 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST";
4079 case SHT_MIPS_MSYM: return "MIPS_MSYM";
4080 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT";
4081 case SHT_MIPS_GPTAB: return "MIPS_GPTAB";
4082 case SHT_MIPS_UCODE: return "MIPS_UCODE";
4083 case SHT_MIPS_DEBUG: return "MIPS_DEBUG";
4084 case SHT_MIPS_REGINFO: return "MIPS_REGINFO";
4085 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE";
4086 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM";
4087 case SHT_MIPS_RELD: return "MIPS_RELD";
4088 case SHT_MIPS_IFACE: return "MIPS_IFACE";
4089 case SHT_MIPS_CONTENT: return "MIPS_CONTENT";
4090 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS";
4091 case SHT_MIPS_SHDR: return "MIPS_SHDR";
4092 case SHT_MIPS_FDESC: return "MIPS_FDESC";
4093 case SHT_MIPS_EXTSYM: return "MIPS_EXTSYM";
4094 case SHT_MIPS_DENSE: return "MIPS_DENSE";
4095 case SHT_MIPS_PDESC: return "MIPS_PDESC";
4096 case SHT_MIPS_LOCSYM: return "MIPS_LOCSYM";
4097 case SHT_MIPS_AUXSYM: return "MIPS_AUXSYM";
4098 case SHT_MIPS_OPTSYM: return "MIPS_OPTSYM";
4099 case SHT_MIPS_LOCSTR: return "MIPS_LOCSTR";
4100 case SHT_MIPS_LINE: return "MIPS_LINE";
4101 case SHT_MIPS_RFDESC: return "MIPS_RFDESC";
4102 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM";
4103 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST";
4104 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS";
4105 case SHT_MIPS_DWARF: return "MIPS_DWARF";
4106 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL";
4107 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
4108 case SHT_MIPS_EVENTS: return "MIPS_EVENTS";
4109 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE";
4110 case SHT_MIPS_PIXIE: return "MIPS_PIXIE";
4111 case SHT_MIPS_XLATE: return "MIPS_XLATE";
4112 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG";
4113 case SHT_MIPS_WHIRL: return "MIPS_WHIRL";
4114 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION";
4115 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD";
4116 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION";
4117 case SHT_MIPS_ABIFLAGS: return "MIPS_ABIFLAGS";
4118 default:
4119 break;
4120 }
4121 return NULL;
4122 }
4123
4124 static const char *
4125 get_parisc_section_type_name (unsigned int sh_type)
4126 {
4127 switch (sh_type)
4128 {
4129 case SHT_PARISC_EXT: return "PARISC_EXT";
4130 case SHT_PARISC_UNWIND: return "PARISC_UNWIND";
4131 case SHT_PARISC_DOC: return "PARISC_DOC";
4132 case SHT_PARISC_ANNOT: return "PARISC_ANNOT";
4133 case SHT_PARISC_SYMEXTN: return "PARISC_SYMEXTN";
4134 case SHT_PARISC_STUBS: return "PARISC_STUBS";
4135 case SHT_PARISC_DLKM: return "PARISC_DLKM";
4136 default: return NULL;
4137 }
4138 }
4139
4140 static const char *
4141 get_ia64_section_type_name (Filedata * filedata, unsigned int sh_type)
4142 {
4143 /* If the top 8 bits are 0x78 the next 8 are the os/abi ID. */
4144 if ((sh_type & 0xFF000000) == SHT_IA_64_LOPSREG)
4145 return get_osabi_name (filedata, (sh_type & 0x00FF0000) >> 16);
4146
4147 switch (sh_type)
4148 {
4149 case SHT_IA_64_EXT: return "IA_64_EXT";
4150 case SHT_IA_64_UNWIND: return "IA_64_UNWIND";
4151 case SHT_IA_64_PRIORITY_INIT: return "IA_64_PRIORITY_INIT";
4152 case SHT_IA_64_VMS_TRACE: return "VMS_TRACE";
4153 case SHT_IA_64_VMS_TIE_SIGNATURES: return "VMS_TIE_SIGNATURES";
4154 case SHT_IA_64_VMS_DEBUG: return "VMS_DEBUG";
4155 case SHT_IA_64_VMS_DEBUG_STR: return "VMS_DEBUG_STR";
4156 case SHT_IA_64_VMS_LINKAGES: return "VMS_LINKAGES";
4157 case SHT_IA_64_VMS_SYMBOL_VECTOR: return "VMS_SYMBOL_VECTOR";
4158 case SHT_IA_64_VMS_FIXUP: return "VMS_FIXUP";
4159 default:
4160 break;
4161 }
4162 return NULL;
4163 }
4164
4165 static const char *
4166 get_x86_64_section_type_name (unsigned int sh_type)
4167 {
4168 switch (sh_type)
4169 {
4170 case SHT_X86_64_UNWIND: return "X86_64_UNWIND";
4171 default: return NULL;
4172 }
4173 }
4174
4175 static const char *
4176 get_aarch64_section_type_name (unsigned int sh_type)
4177 {
4178 switch (sh_type)
4179 {
4180 case SHT_AARCH64_ATTRIBUTES: return "AARCH64_ATTRIBUTES";
4181 default: return NULL;
4182 }
4183 }
4184
4185 static const char *
4186 get_arm_section_type_name (unsigned int sh_type)
4187 {
4188 switch (sh_type)
4189 {
4190 case SHT_ARM_EXIDX: return "ARM_EXIDX";
4191 case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP";
4192 case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES";
4193 case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY";
4194 case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION";
4195 default: return NULL;
4196 }
4197 }
4198
4199 static const char *
4200 get_tic6x_section_type_name (unsigned int sh_type)
4201 {
4202 switch (sh_type)
4203 {
4204 case SHT_C6000_UNWIND: return "C6000_UNWIND";
4205 case SHT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
4206 case SHT_C6000_ATTRIBUTES: return "C6000_ATTRIBUTES";
4207 case SHT_TI_ICODE: return "TI_ICODE";
4208 case SHT_TI_XREF: return "TI_XREF";
4209 case SHT_TI_HANDLER: return "TI_HANDLER";
4210 case SHT_TI_INITINFO: return "TI_INITINFO";
4211 case SHT_TI_PHATTRS: return "TI_PHATTRS";
4212 default: return NULL;
4213 }
4214 }
4215
4216 static const char *
4217 get_msp430x_section_type_name (unsigned int sh_type)
4218 {
4219 switch (sh_type)
4220 {
4221 case SHT_MSP430_SEC_FLAGS: return "MSP430_SEC_FLAGS";
4222 case SHT_MSP430_SYM_ALIASES: return "MSP430_SYM_ALIASES";
4223 case SHT_MSP430_ATTRIBUTES: return "MSP430_ATTRIBUTES";
4224 default: return NULL;
4225 }
4226 }
4227
4228 static const char *
4229 get_nfp_section_type_name (unsigned int sh_type)
4230 {
4231 switch (sh_type)
4232 {
4233 case SHT_NFP_MECONFIG: return "NFP_MECONFIG";
4234 case SHT_NFP_INITREG: return "NFP_INITREG";
4235 case SHT_NFP_UDEBUG: return "NFP_UDEBUG";
4236 default: return NULL;
4237 }
4238 }
4239
4240 static const char *
4241 get_v850_section_type_name (unsigned int sh_type)
4242 {
4243 switch (sh_type)
4244 {
4245 case SHT_V850_SCOMMON: return "V850 Small Common";
4246 case SHT_V850_TCOMMON: return "V850 Tiny Common";
4247 case SHT_V850_ZCOMMON: return "V850 Zero Common";
4248 case SHT_RENESAS_IOP: return "RENESAS IOP";
4249 case SHT_RENESAS_INFO: return "RENESAS INFO";
4250 default: return NULL;
4251 }
4252 }
4253
4254 static const char *
4255 get_riscv_section_type_name (unsigned int sh_type)
4256 {
4257 switch (sh_type)
4258 {
4259 case SHT_RISCV_ATTRIBUTES: return "RISCV_ATTRIBUTES";
4260 default: return NULL;
4261 }
4262 }
4263
4264 static const char *
4265 get_section_type_name (Filedata * filedata, unsigned int sh_type)
4266 {
4267 static char buff[32];
4268 const char * result;
4269
4270 switch (sh_type)
4271 {
4272 case SHT_NULL: return "NULL";
4273 case SHT_PROGBITS: return "PROGBITS";
4274 case SHT_SYMTAB: return "SYMTAB";
4275 case SHT_STRTAB: return "STRTAB";
4276 case SHT_RELA: return "RELA";
4277 case SHT_HASH: return "HASH";
4278 case SHT_DYNAMIC: return "DYNAMIC";
4279 case SHT_NOTE: return "NOTE";
4280 case SHT_NOBITS: return "NOBITS";
4281 case SHT_REL: return "REL";
4282 case SHT_SHLIB: return "SHLIB";
4283 case SHT_DYNSYM: return "DYNSYM";
4284 case SHT_INIT_ARRAY: return "INIT_ARRAY";
4285 case SHT_FINI_ARRAY: return "FINI_ARRAY";
4286 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY";
4287 case SHT_GNU_HASH: return "GNU_HASH";
4288 case SHT_GROUP: return "GROUP";
4289 case SHT_SYMTAB_SHNDX: return "SYMTAB SECTION INDICES";
4290 case SHT_GNU_verdef: return "VERDEF";
4291 case SHT_GNU_verneed: return "VERNEED";
4292 case SHT_GNU_versym: return "VERSYM";
4293 case 0x6ffffff0: return "VERSYM";
4294 case 0x6ffffffc: return "VERDEF";
4295 case 0x7ffffffd: return "AUXILIARY";
4296 case 0x7fffffff: return "FILTER";
4297 case SHT_GNU_LIBLIST: return "GNU_LIBLIST";
4298
4299 default:
4300 if ((sh_type >= SHT_LOPROC) && (sh_type <= SHT_HIPROC))
4301 {
4302 switch (filedata->file_header.e_machine)
4303 {
4304 case EM_ARC:
4305 case EM_ARC_COMPACT:
4306 case EM_ARC_COMPACT2:
4307 result = get_arc_section_type_name (sh_type);
4308 break;
4309 case EM_MIPS:
4310 case EM_MIPS_RS3_LE:
4311 result = get_mips_section_type_name (sh_type);
4312 break;
4313 case EM_PARISC:
4314 result = get_parisc_section_type_name (sh_type);
4315 break;
4316 case EM_IA_64:
4317 result = get_ia64_section_type_name (filedata, sh_type);
4318 break;
4319 case EM_X86_64:
4320 case EM_L1OM:
4321 case EM_K1OM:
4322 result = get_x86_64_section_type_name (sh_type);
4323 break;
4324 case EM_AARCH64:
4325 result = get_aarch64_section_type_name (sh_type);
4326 break;
4327 case EM_ARM:
4328 result = get_arm_section_type_name (sh_type);
4329 break;
4330 case EM_TI_C6000:
4331 result = get_tic6x_section_type_name (sh_type);
4332 break;
4333 case EM_MSP430:
4334 result = get_msp430x_section_type_name (sh_type);
4335 break;
4336 case EM_NFP:
4337 result = get_nfp_section_type_name (sh_type);
4338 break;
4339 case EM_V800:
4340 case EM_V850:
4341 case EM_CYGNUS_V850:
4342 result = get_v850_section_type_name (sh_type);
4343 break;
4344 case EM_RISCV:
4345 result = get_riscv_section_type_name (sh_type);
4346 break;
4347 default:
4348 result = NULL;
4349 break;
4350 }
4351
4352 if (result != NULL)
4353 return result;
4354
4355 sprintf (buff, "LOPROC+%#x", sh_type - SHT_LOPROC);
4356 }
4357 else if ((sh_type >= SHT_LOOS) && (sh_type <= SHT_HIOS))
4358 {
4359 switch (filedata->file_header.e_machine)
4360 {
4361 case EM_IA_64:
4362 result = get_ia64_section_type_name (filedata, sh_type);
4363 break;
4364 default:
4365 if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
4366 result = get_solaris_section_type (sh_type);
4367 else
4368 {
4369 switch (sh_type)
4370 {
4371 case SHT_GNU_INCREMENTAL_INPUTS: result = "GNU_INCREMENTAL_INPUTS"; break;
4372 case SHT_GNU_ATTRIBUTES: result = "GNU_ATTRIBUTES"; break;
4373 case SHT_GNU_HASH: result = "GNU_HASH"; break;
4374 case SHT_GNU_LIBLIST: result = "GNU_LIBLIST"; break;
4375 default:
4376 result = NULL;
4377 break;
4378 }
4379 }
4380 break;
4381 }
4382
4383 if (result != NULL)
4384 return result;
4385
4386 sprintf (buff, "LOOS+%#x", sh_type - SHT_LOOS);
4387 }
4388 else if ((sh_type >= SHT_LOUSER) && (sh_type <= SHT_HIUSER))
4389 {
4390 switch (filedata->file_header.e_machine)
4391 {
4392 case EM_V800:
4393 case EM_V850:
4394 case EM_CYGNUS_V850:
4395 result = get_v850_section_type_name (sh_type);
4396 break;
4397 default:
4398 result = NULL;
4399 break;
4400 }
4401
4402 if (result != NULL)
4403 return result;
4404
4405 sprintf (buff, "LOUSER+%#x", sh_type - SHT_LOUSER);
4406 }
4407 else
4408 /* This message is probably going to be displayed in a 15
4409 character wide field, so put the hex value first. */
4410 snprintf (buff, sizeof (buff), _("%08x: <unknown>"), sh_type);
4411
4412 return buff;
4413 }
4414 }
4415
4416 #define OPTION_DEBUG_DUMP 512
4417 #define OPTION_DYN_SYMS 513
4418 #define OPTION_DWARF_DEPTH 514
4419 #define OPTION_DWARF_START 515
4420 #define OPTION_DWARF_CHECK 516
4421 #define OPTION_CTF_DUMP 517
4422 #define OPTION_CTF_PARENT 518
4423 #define OPTION_CTF_SYMBOLS 519
4424 #define OPTION_CTF_STRINGS 520
4425
4426 static struct option options[] =
4427 {
4428 {"all", no_argument, 0, 'a'},
4429 {"file-header", no_argument, 0, 'h'},
4430 {"program-headers", no_argument, 0, 'l'},
4431 {"headers", no_argument, 0, 'e'},
4432 {"histogram", no_argument, 0, 'I'},
4433 {"segments", no_argument, 0, 'l'},
4434 {"sections", no_argument, 0, 'S'},
4435 {"section-headers", no_argument, 0, 'S'},
4436 {"section-groups", no_argument, 0, 'g'},
4437 {"section-details", no_argument, 0, 't'},
4438 {"full-section-name",no_argument, 0, 'N'},
4439 {"symbols", no_argument, 0, 's'},
4440 {"syms", no_argument, 0, 's'},
4441 {"dyn-syms", no_argument, 0, OPTION_DYN_SYMS},
4442 {"relocs", no_argument, 0, 'r'},
4443 {"notes", no_argument, 0, 'n'},
4444 {"dynamic", no_argument, 0, 'd'},
4445 {"arch-specific", no_argument, 0, 'A'},
4446 {"version-info", no_argument, 0, 'V'},
4447 {"use-dynamic", no_argument, 0, 'D'},
4448 {"unwind", no_argument, 0, 'u'},
4449 {"archive-index", no_argument, 0, 'c'},
4450 {"hex-dump", required_argument, 0, 'x'},
4451 {"relocated-dump", required_argument, 0, 'R'},
4452 {"string-dump", required_argument, 0, 'p'},
4453 {"decompress", no_argument, 0, 'z'},
4454 #ifdef SUPPORT_DISASSEMBLY
4455 {"instruction-dump", required_argument, 0, 'i'},
4456 #endif
4457 {"debug-dump", optional_argument, 0, OPTION_DEBUG_DUMP},
4458
4459 {"dwarf-depth", required_argument, 0, OPTION_DWARF_DEPTH},
4460 {"dwarf-start", required_argument, 0, OPTION_DWARF_START},
4461 {"dwarf-check", no_argument, 0, OPTION_DWARF_CHECK},
4462
4463 {"ctf", required_argument, 0, OPTION_CTF_DUMP},
4464
4465 {"ctf-symbols", required_argument, 0, OPTION_CTF_SYMBOLS},
4466 {"ctf-strings", required_argument, 0, OPTION_CTF_STRINGS},
4467 {"ctf-parent", required_argument, 0, OPTION_CTF_PARENT},
4468
4469 {"version", no_argument, 0, 'v'},
4470 {"wide", no_argument, 0, 'W'},
4471 {"help", no_argument, 0, 'H'},
4472 {0, no_argument, 0, 0}
4473 };
4474
4475 static void
4476 usage (FILE * stream)
4477 {
4478 fprintf (stream, _("Usage: readelf <option(s)> elf-file(s)\n"));
4479 fprintf (stream, _(" Display information about the contents of ELF format files\n"));
4480 fprintf (stream, _(" Options are:\n\
4481 -a --all Equivalent to: -h -l -S -s -r -d -V -A -I\n\
4482 -h --file-header Display the ELF file header\n\
4483 -l --program-headers Display the program headers\n\
4484 --segments An alias for --program-headers\n\
4485 -S --section-headers Display the sections' header\n\
4486 --sections An alias for --section-headers\n\
4487 -g --section-groups Display the section groups\n\
4488 -t --section-details Display the section details\n\
4489 -e --headers Equivalent to: -h -l -S\n\
4490 -s --syms Display the symbol table\n\
4491 --symbols An alias for --syms\n\
4492 --dyn-syms Display the dynamic symbol table\n\
4493 -n --notes Display the core notes (if present)\n\
4494 -r --relocs Display the relocations (if present)\n\
4495 -u --unwind Display the unwind info (if present)\n\
4496 -d --dynamic Display the dynamic section (if present)\n\
4497 -V --version-info Display the version sections (if present)\n\
4498 -A --arch-specific Display architecture specific information (if any)\n\
4499 -c --archive-index Display the symbol/file index in an archive\n\
4500 -D --use-dynamic Use the dynamic section info when displaying symbols\n\
4501 -x --hex-dump=<number|name>\n\
4502 Dump the contents of section <number|name> as bytes\n\
4503 -p --string-dump=<number|name>\n\
4504 Dump the contents of section <number|name> as strings\n\
4505 -R --relocated-dump=<number|name>\n\
4506 Dump the contents of section <number|name> as relocated bytes\n\
4507 -z --decompress Decompress section before dumping it\n\
4508 -w[lLiaprmfFsoRtUuTgAckK] or\n\
4509 --debug-dump[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,\n\
4510 =frames-interp,=str,=loc,=Ranges,=pubtypes,\n\
4511 =gdb_index,=trace_info,=trace_abbrev,=trace_aranges,\n\
4512 =addr,=cu_index,=links,=follow-links]\n\
4513 Display the contents of DWARF debug sections\n"));
4514 fprintf (stream, _("\
4515 --dwarf-depth=N Do not display DIEs at depth N or greater\n\
4516 --dwarf-start=N Display DIEs starting with N, at the same depth\n\
4517 or deeper\n"));
4518 fprintf (stream, _("\
4519 --ctf=<number|name> Display CTF info from section <number|name>\n\
4520 --ctf-parent=<number|name>\n\
4521 Use section <number|name> as the CTF parent\n\n\
4522 --ctf-symbols=<number|name>\n\
4523 Use section <number|name> as the CTF external symtab\n\n\
4524 --ctf-strings=<number|name>\n\
4525 Use section <number|name> as the CTF external strtab\n\n"));
4526
4527 #ifdef SUPPORT_DISASSEMBLY
4528 fprintf (stream, _("\
4529 -i --instruction-dump=<number|name>\n\
4530 Disassemble the contents of section <number|name>\n"));
4531 #endif
4532 fprintf (stream, _("\
4533 -I --histogram Display histogram of bucket list lengths\n\
4534 -W --wide Allow output width to exceed 80 characters\n\
4535 @<file> Read options from <file>\n\
4536 -H --help Display this information\n\
4537 -v --version Display the version number of readelf\n"));
4538
4539 if (REPORT_BUGS_TO[0] && stream == stdout)
4540 fprintf (stdout, _("Report bugs to %s\n"), REPORT_BUGS_TO);
4541
4542 exit (stream == stdout ? 0 : 1);
4543 }
4544
4545 /* Record the fact that the user wants the contents of section number
4546 SECTION to be displayed using the method(s) encoded as flags bits
4547 in TYPE. Note, TYPE can be zero if we are creating the array for
4548 the first time. */
4549
4550 static void
4551 request_dump_bynumber (Filedata * filedata, unsigned int section, dump_type type)
4552 {
4553 if (section >= filedata->num_dump_sects)
4554 {
4555 dump_type * new_dump_sects;
4556
4557 new_dump_sects = (dump_type *) calloc (section + 1,
4558 sizeof (* new_dump_sects));
4559
4560 if (new_dump_sects == NULL)
4561 error (_("Out of memory allocating dump request table.\n"));
4562 else
4563 {
4564 if (filedata->dump_sects)
4565 {
4566 /* Copy current flag settings. */
4567 memcpy (new_dump_sects, filedata->dump_sects,
4568 filedata->num_dump_sects * sizeof (* new_dump_sects));
4569
4570 free (filedata->dump_sects);
4571 }
4572
4573 filedata->dump_sects = new_dump_sects;
4574 filedata->num_dump_sects = section + 1;
4575 }
4576 }
4577
4578 if (filedata->dump_sects)
4579 filedata->dump_sects[section] |= type;
4580 }
4581
4582 /* Request a dump by section name. */
4583
4584 static void
4585 request_dump_byname (const char * section, dump_type type)
4586 {
4587 struct dump_list_entry * new_request;
4588
4589 new_request = (struct dump_list_entry *)
4590 malloc (sizeof (struct dump_list_entry));
4591 if (!new_request)
4592 error (_("Out of memory allocating dump request table.\n"));
4593
4594 new_request->name = strdup (section);
4595 if (!new_request->name)
4596 error (_("Out of memory allocating dump request table.\n"));
4597
4598 new_request->type = type;
4599
4600 new_request->next = dump_sects_byname;
4601 dump_sects_byname = new_request;
4602 }
4603
4604 static inline void
4605 request_dump (Filedata * filedata, dump_type type)
4606 {
4607 int section;
4608 char * cp;
4609
4610 do_dump++;
4611 section = strtoul (optarg, & cp, 0);
4612
4613 if (! *cp && section >= 0)
4614 request_dump_bynumber (filedata, section, type);
4615 else
4616 request_dump_byname (optarg, type);
4617 }
4618
4619 static void
4620 parse_args (Filedata * filedata, int argc, char ** argv)
4621 {
4622 int c;
4623
4624 if (argc < 2)
4625 usage (stderr);
4626
4627 while ((c = getopt_long
4628 (argc, argv, "ADHINR:SVWacdeghi:lnp:rstuvw::x:z", options, NULL)) != EOF)
4629 {
4630 switch (c)
4631 {
4632 case 0:
4633 /* Long options. */
4634 break;
4635 case 'H':
4636 usage (stdout);
4637 break;
4638
4639 case 'a':
4640 do_syms = TRUE;
4641 do_reloc = TRUE;
4642 do_unwind = TRUE;
4643 do_dynamic = TRUE;
4644 do_header = TRUE;
4645 do_sections = TRUE;
4646 do_section_groups = TRUE;
4647 do_segments = TRUE;
4648 do_version = TRUE;
4649 do_histogram = TRUE;
4650 do_arch = TRUE;
4651 do_notes = TRUE;
4652 break;
4653 case 'g':
4654 do_section_groups = TRUE;
4655 break;
4656 case 't':
4657 case 'N':
4658 do_sections = TRUE;
4659 do_section_details = TRUE;
4660 break;
4661 case 'e':
4662 do_header = TRUE;
4663 do_sections = TRUE;
4664 do_segments = TRUE;
4665 break;
4666 case 'A':
4667 do_arch = TRUE;
4668 break;
4669 case 'D':
4670 do_using_dynamic = TRUE;
4671 break;
4672 case 'r':
4673 do_reloc = TRUE;
4674 break;
4675 case 'u':
4676 do_unwind = TRUE;
4677 break;
4678 case 'h':
4679 do_header = TRUE;
4680 break;
4681 case 'l':
4682 do_segments = TRUE;
4683 break;
4684 case 's':
4685 do_syms = TRUE;
4686 break;
4687 case 'S':
4688 do_sections = TRUE;
4689 break;
4690 case 'd':
4691 do_dynamic = TRUE;
4692 break;
4693 case 'I':
4694 do_histogram = TRUE;
4695 break;
4696 case 'n':
4697 do_notes = TRUE;
4698 break;
4699 case 'c':
4700 do_archive_index = TRUE;
4701 break;
4702 case 'x':
4703 request_dump (filedata, HEX_DUMP);
4704 break;
4705 case 'p':
4706 request_dump (filedata, STRING_DUMP);
4707 break;
4708 case 'R':
4709 request_dump (filedata, RELOC_DUMP);
4710 break;
4711 case 'z':
4712 decompress_dumps = TRUE;
4713 break;
4714 case 'w':
4715 do_dump = TRUE;
4716 if (optarg == 0)
4717 {
4718 do_debugging = TRUE;
4719 dwarf_select_sections_all ();
4720 }
4721 else
4722 {
4723 do_debugging = FALSE;
4724 dwarf_select_sections_by_letters (optarg);
4725 }
4726 break;
4727 case OPTION_DEBUG_DUMP:
4728 do_dump = TRUE;
4729 if (optarg == 0)
4730 do_debugging = TRUE;
4731 else
4732 {
4733 do_debugging = FALSE;
4734 dwarf_select_sections_by_names (optarg);
4735 }
4736 break;
4737 case OPTION_DWARF_DEPTH:
4738 {
4739 char *cp;
4740
4741 dwarf_cutoff_level = strtoul (optarg, & cp, 0);
4742 }
4743 break;
4744 case OPTION_DWARF_START:
4745 {
4746 char *cp;
4747
4748 dwarf_start_die = strtoul (optarg, & cp, 0);
4749 }
4750 break;
4751 case OPTION_DWARF_CHECK:
4752 dwarf_check = TRUE;
4753 break;
4754 case OPTION_CTF_DUMP:
4755 do_ctf = TRUE;
4756 request_dump (filedata, CTF_DUMP);
4757 break;
4758 case OPTION_CTF_SYMBOLS:
4759 dump_ctf_symtab_name = strdup (optarg);
4760 break;
4761 case OPTION_CTF_STRINGS:
4762 dump_ctf_strtab_name = strdup (optarg);
4763 break;
4764 case OPTION_CTF_PARENT:
4765 dump_ctf_parent_name = strdup (optarg);
4766 break;
4767 case OPTION_DYN_SYMS:
4768 do_dyn_syms = TRUE;
4769 break;
4770 #ifdef SUPPORT_DISASSEMBLY
4771 case 'i':
4772 request_dump (filedata, DISASS_DUMP);
4773 break;
4774 #endif
4775 case 'v':
4776 print_version (program_name);
4777 break;
4778 case 'V':
4779 do_version = TRUE;
4780 break;
4781 case 'W':
4782 do_wide = TRUE;
4783 break;
4784 default:
4785 /* xgettext:c-format */
4786 error (_("Invalid option '-%c'\n"), c);
4787 /* Fall through. */
4788 case '?':
4789 usage (stderr);
4790 }
4791 }
4792
4793 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
4794 && !do_segments && !do_header && !do_dump && !do_version
4795 && !do_histogram && !do_debugging && !do_arch && !do_notes
4796 && !do_section_groups && !do_archive_index
4797 && !do_dyn_syms)
4798 usage (stderr);
4799 }
4800
4801 static const char *
4802 get_elf_class (unsigned int elf_class)
4803 {
4804 static char buff[32];
4805
4806 switch (elf_class)
4807 {
4808 case ELFCLASSNONE: return _("none");
4809 case ELFCLASS32: return "ELF32";
4810 case ELFCLASS64: return "ELF64";
4811 default:
4812 snprintf (buff, sizeof (buff), _("<unknown: %x>"), elf_class);
4813 return buff;
4814 }
4815 }
4816
4817 static const char *
4818 get_data_encoding (unsigned int encoding)
4819 {
4820 static char buff[32];
4821
4822 switch (encoding)
4823 {
4824 case ELFDATANONE: return _("none");
4825 case ELFDATA2LSB: return _("2's complement, little endian");
4826 case ELFDATA2MSB: return _("2's complement, big endian");
4827 default:
4828 snprintf (buff, sizeof (buff), _("<unknown: %x>"), encoding);
4829 return buff;
4830 }
4831 }
4832
4833 /* Decode the data held in 'filedata->file_header'. */
4834
4835 static bfd_boolean
4836 process_file_header (Filedata * filedata)
4837 {
4838 Elf_Internal_Ehdr * header = & filedata->file_header;
4839
4840 if ( header->e_ident[EI_MAG0] != ELFMAG0
4841 || header->e_ident[EI_MAG1] != ELFMAG1
4842 || header->e_ident[EI_MAG2] != ELFMAG2
4843 || header->e_ident[EI_MAG3] != ELFMAG3)
4844 {
4845 error
4846 (_("Not an ELF file - it has the wrong magic bytes at the start\n"));
4847 return FALSE;
4848 }
4849
4850 init_dwarf_regnames (header->e_machine);
4851
4852 if (do_header)
4853 {
4854 unsigned i;
4855
4856 printf (_("ELF Header:\n"));
4857 printf (_(" Magic: "));
4858 for (i = 0; i < EI_NIDENT; i++)
4859 printf ("%2.2x ", header->e_ident[i]);
4860 printf ("\n");
4861 printf (_(" Class: %s\n"),
4862 get_elf_class (header->e_ident[EI_CLASS]));
4863 printf (_(" Data: %s\n"),
4864 get_data_encoding (header->e_ident[EI_DATA]));
4865 printf (_(" Version: %d%s\n"),
4866 header->e_ident[EI_VERSION],
4867 (header->e_ident[EI_VERSION] == EV_CURRENT
4868 ? _(" (current)")
4869 : (header->e_ident[EI_VERSION] != EV_NONE
4870 ? _(" <unknown>")
4871 : "")));
4872 printf (_(" OS/ABI: %s\n"),
4873 get_osabi_name (filedata, header->e_ident[EI_OSABI]));
4874 printf (_(" ABI Version: %d\n"),
4875 header->e_ident[EI_ABIVERSION]);
4876 printf (_(" Type: %s\n"),
4877 get_file_type (header->e_type));
4878 printf (_(" Machine: %s\n"),
4879 get_machine_name (header->e_machine));
4880 printf (_(" Version: 0x%lx\n"),
4881 header->e_version);
4882
4883 printf (_(" Entry point address: "));
4884 print_vma (header->e_entry, PREFIX_HEX);
4885 printf (_("\n Start of program headers: "));
4886 print_vma (header->e_phoff, DEC);
4887 printf (_(" (bytes into file)\n Start of section headers: "));
4888 print_vma (header->e_shoff, DEC);
4889 printf (_(" (bytes into file)\n"));
4890
4891 printf (_(" Flags: 0x%lx%s\n"),
4892 header->e_flags,
4893 get_machine_flags (filedata, header->e_flags, header->e_machine));
4894 printf (_(" Size of this header: %u (bytes)\n"),
4895 header->e_ehsize);
4896 printf (_(" Size of program headers: %u (bytes)\n"),
4897 header->e_phentsize);
4898 printf (_(" Number of program headers: %u"),
4899 header->e_phnum);
4900 if (filedata->section_headers != NULL
4901 && header->e_phnum == PN_XNUM
4902 && filedata->section_headers[0].sh_info != 0)
4903 {
4904 header->e_phnum = filedata->section_headers[0].sh_info;
4905 printf (" (%u)", header->e_phnum);
4906 }
4907 putc ('\n', stdout);
4908 printf (_(" Size of section headers: %u (bytes)\n"),
4909 header->e_shentsize);
4910 printf (_(" Number of section headers: %u"),
4911 header->e_shnum);
4912 if (filedata->section_headers != NULL && header->e_shnum == SHN_UNDEF)
4913 {
4914 header->e_shnum = filedata->section_headers[0].sh_size;
4915 printf (" (%u)", header->e_shnum);
4916 }
4917 putc ('\n', stdout);
4918 printf (_(" Section header string table index: %u"),
4919 header->e_shstrndx);
4920 if (filedata->section_headers != NULL
4921 && header->e_shstrndx == (SHN_XINDEX & 0xffff))
4922 {
4923 header->e_shstrndx = filedata->section_headers[0].sh_link;
4924 printf (" (%u)", header->e_shstrndx);
4925 }
4926 if (header->e_shstrndx != SHN_UNDEF
4927 && header->e_shstrndx >= header->e_shnum)
4928 {
4929 header->e_shstrndx = SHN_UNDEF;
4930 printf (_(" <corrupt: out of range>"));
4931 }
4932 putc ('\n', stdout);
4933 }
4934
4935 if (filedata->section_headers != NULL)
4936 {
4937 if (header->e_phnum == PN_XNUM
4938 && filedata->section_headers[0].sh_info != 0)
4939 header->e_phnum = filedata->section_headers[0].sh_info;
4940 if (header->e_shnum == SHN_UNDEF)
4941 header->e_shnum = filedata->section_headers[0].sh_size;
4942 if (header->e_shstrndx == (SHN_XINDEX & 0xffff))
4943 header->e_shstrndx = filedata->section_headers[0].sh_link;
4944 if (header->e_shstrndx >= header->e_shnum)
4945 header->e_shstrndx = SHN_UNDEF;
4946 free (filedata->section_headers);
4947 filedata->section_headers = NULL;
4948 }
4949
4950 return TRUE;
4951 }
4952
4953 /* Read in the program headers from FILEDATA and store them in PHEADERS.
4954 Returns TRUE upon success, FALSE otherwise. Loads 32-bit headers. */
4955
4956 static bfd_boolean
4957 get_32bit_program_headers (Filedata * filedata, Elf_Internal_Phdr * pheaders)
4958 {
4959 Elf32_External_Phdr * phdrs;
4960 Elf32_External_Phdr * external;
4961 Elf_Internal_Phdr * internal;
4962 unsigned int i;
4963 unsigned int size = filedata->file_header.e_phentsize;
4964 unsigned int num = filedata->file_header.e_phnum;
4965
4966 /* PR binutils/17531: Cope with unexpected section header sizes. */
4967 if (size == 0 || num == 0)
4968 return FALSE;
4969 if (size < sizeof * phdrs)
4970 {
4971 error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
4972 return FALSE;
4973 }
4974 if (size > sizeof * phdrs)
4975 warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
4976
4977 phdrs = (Elf32_External_Phdr *) get_data (NULL, filedata, filedata->file_header.e_phoff,
4978 size, num, _("program headers"));
4979 if (phdrs == NULL)
4980 return FALSE;
4981
4982 for (i = 0, internal = pheaders, external = phdrs;
4983 i < filedata->file_header.e_phnum;
4984 i++, internal++, external++)
4985 {
4986 internal->p_type = BYTE_GET (external->p_type);
4987 internal->p_offset = BYTE_GET (external->p_offset);
4988 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4989 internal->p_paddr = BYTE_GET (external->p_paddr);
4990 internal->p_filesz = BYTE_GET (external->p_filesz);
4991 internal->p_memsz = BYTE_GET (external->p_memsz);
4992 internal->p_flags = BYTE_GET (external->p_flags);
4993 internal->p_align = BYTE_GET (external->p_align);
4994 }
4995
4996 free (phdrs);
4997 return TRUE;
4998 }
4999
5000 /* Read in the program headers from FILEDATA and store them in PHEADERS.
5001 Returns TRUE upon success, FALSE otherwise. Loads 64-bit headers. */
5002
5003 static bfd_boolean
5004 get_64bit_program_headers (Filedata * filedata, Elf_Internal_Phdr * pheaders)
5005 {
5006 Elf64_External_Phdr * phdrs;
5007 Elf64_External_Phdr * external;
5008 Elf_Internal_Phdr * internal;
5009 unsigned int i;
5010 unsigned int size = filedata->file_header.e_phentsize;
5011 unsigned int num = filedata->file_header.e_phnum;
5012
5013 /* PR binutils/17531: Cope with unexpected section header sizes. */
5014 if (size == 0 || num == 0)
5015 return FALSE;
5016 if (size < sizeof * phdrs)
5017 {
5018 error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
5019 return FALSE;
5020 }
5021 if (size > sizeof * phdrs)
5022 warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
5023
5024 phdrs = (Elf64_External_Phdr *) get_data (NULL, filedata, filedata->file_header.e_phoff,
5025 size, num, _("program headers"));
5026 if (!phdrs)
5027 return FALSE;
5028
5029 for (i = 0, internal = pheaders, external = phdrs;
5030 i < filedata->file_header.e_phnum;
5031 i++, internal++, external++)
5032 {
5033 internal->p_type = BYTE_GET (external->p_type);
5034 internal->p_flags = BYTE_GET (external->p_flags);
5035 internal->p_offset = BYTE_GET (external->p_offset);
5036 internal->p_vaddr = BYTE_GET (external->p_vaddr);
5037 internal->p_paddr = BYTE_GET (external->p_paddr);
5038 internal->p_filesz = BYTE_GET (external->p_filesz);
5039 internal->p_memsz = BYTE_GET (external->p_memsz);
5040 internal->p_align = BYTE_GET (external->p_align);
5041 }
5042
5043 free (phdrs);
5044 return TRUE;
5045 }
5046
5047 /* Returns TRUE if the program headers were read into `program_headers'. */
5048
5049 static bfd_boolean
5050 get_program_headers (Filedata * filedata)
5051 {
5052 Elf_Internal_Phdr * phdrs;
5053
5054 /* Check cache of prior read. */
5055 if (filedata->program_headers != NULL)
5056 return TRUE;
5057
5058 /* Be kind to memory checkers by looking for
5059 e_phnum values which we know must be invalid. */
5060 if (filedata->file_header.e_phnum
5061 * (is_32bit_elf ? sizeof (Elf32_External_Phdr) : sizeof (Elf64_External_Phdr))
5062 >= filedata->file_size)
5063 {
5064 error (_("Too many program headers - %#x - the file is not that big\n"),
5065 filedata->file_header.e_phnum);
5066 return FALSE;
5067 }
5068
5069 phdrs = (Elf_Internal_Phdr *) cmalloc (filedata->file_header.e_phnum,
5070 sizeof (Elf_Internal_Phdr));
5071 if (phdrs == NULL)
5072 {
5073 error (_("Out of memory reading %u program headers\n"),
5074 filedata->file_header.e_phnum);
5075 return FALSE;
5076 }
5077
5078 if (is_32bit_elf
5079 ? get_32bit_program_headers (filedata, phdrs)
5080 : get_64bit_program_headers (filedata, phdrs))
5081 {
5082 filedata->program_headers = phdrs;
5083 return TRUE;
5084 }
5085
5086 free (phdrs);
5087 return FALSE;
5088 }
5089
5090 /* Returns TRUE if the program headers were loaded. */
5091
5092 static bfd_boolean
5093 process_program_headers (Filedata * filedata)
5094 {
5095 Elf_Internal_Phdr * segment;
5096 unsigned int i;
5097 Elf_Internal_Phdr * previous_load = NULL;
5098
5099 if (filedata->file_header.e_phnum == 0)
5100 {
5101 /* PR binutils/12467. */
5102 if (filedata->file_header.e_phoff != 0)
5103 {
5104 warn (_("possibly corrupt ELF header - it has a non-zero program"
5105 " header offset, but no program headers\n"));
5106 return FALSE;
5107 }
5108 else if (do_segments)
5109 printf (_("\nThere are no program headers in this file.\n"));
5110 return TRUE;
5111 }
5112
5113 if (do_segments && !do_header)
5114 {
5115 printf (_("\nElf file type is %s\n"), get_file_type (filedata->file_header.e_type));
5116 printf (_("Entry point 0x%s\n"), bfd_vmatoa ("x", filedata->file_header.e_entry));
5117 printf (ngettext ("There is %d program header, starting at offset %s\n",
5118 "There are %d program headers, starting at offset %s\n",
5119 filedata->file_header.e_phnum),
5120 filedata->file_header.e_phnum,
5121 bfd_vmatoa ("u", filedata->file_header.e_phoff));
5122 }
5123
5124 if (! get_program_headers (filedata))
5125 return TRUE;
5126
5127 if (do_segments)
5128 {
5129 if (filedata->file_header.e_phnum > 1)
5130 printf (_("\nProgram Headers:\n"));
5131 else
5132 printf (_("\nProgram Headers:\n"));
5133
5134 if (is_32bit_elf)
5135 printf
5136 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
5137 else if (do_wide)
5138 printf
5139 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
5140 else
5141 {
5142 printf
5143 (_(" Type Offset VirtAddr PhysAddr\n"));
5144 printf
5145 (_(" FileSiz MemSiz Flags Align\n"));
5146 }
5147 }
5148
5149 dynamic_addr = 0;
5150 dynamic_size = 0;
5151
5152 for (i = 0, segment = filedata->program_headers;
5153 i < filedata->file_header.e_phnum;
5154 i++, segment++)
5155 {
5156 if (do_segments)
5157 {
5158 printf (" %-14.14s ", get_segment_type (filedata, segment->p_type));
5159
5160 if (is_32bit_elf)
5161 {
5162 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
5163 printf ("0x%8.8lx ", (unsigned long) segment->p_vaddr);
5164 printf ("0x%8.8lx ", (unsigned long) segment->p_paddr);
5165 printf ("0x%5.5lx ", (unsigned long) segment->p_filesz);
5166 printf ("0x%5.5lx ", (unsigned long) segment->p_memsz);
5167 printf ("%c%c%c ",
5168 (segment->p_flags & PF_R ? 'R' : ' '),
5169 (segment->p_flags & PF_W ? 'W' : ' '),
5170 (segment->p_flags & PF_X ? 'E' : ' '));
5171 printf ("%#lx", (unsigned long) segment->p_align);
5172 }
5173 else if (do_wide)
5174 {
5175 if ((unsigned long) segment->p_offset == segment->p_offset)
5176 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
5177 else
5178 {
5179 print_vma (segment->p_offset, FULL_HEX);
5180 putchar (' ');
5181 }
5182
5183 print_vma (segment->p_vaddr, FULL_HEX);
5184 putchar (' ');
5185 print_vma (segment->p_paddr, FULL_HEX);
5186 putchar (' ');
5187
5188 if ((unsigned long) segment->p_filesz == segment->p_filesz)
5189 printf ("0x%6.6lx ", (unsigned long) segment->p_filesz);
5190 else
5191 {
5192 print_vma (segment->p_filesz, FULL_HEX);
5193 putchar (' ');
5194 }
5195
5196 if ((unsigned long) segment->p_memsz == segment->p_memsz)
5197 printf ("0x%6.6lx", (unsigned long) segment->p_memsz);
5198 else
5199 {
5200 print_vma (segment->p_memsz, FULL_HEX);
5201 }
5202
5203 printf (" %c%c%c ",
5204 (segment->p_flags & PF_R ? 'R' : ' '),
5205 (segment->p_flags & PF_W ? 'W' : ' '),
5206 (segment->p_flags & PF_X ? 'E' : ' '));
5207
5208 if ((unsigned long) segment->p_align == segment->p_align)
5209 printf ("%#lx", (unsigned long) segment->p_align);
5210 else
5211 {
5212 print_vma (segment->p_align, PREFIX_HEX);
5213 }
5214 }
5215 else
5216 {
5217 print_vma (segment->p_offset, FULL_HEX);
5218 putchar (' ');
5219 print_vma (segment->p_vaddr, FULL_HEX);
5220 putchar (' ');
5221 print_vma (segment->p_paddr, FULL_HEX);
5222 printf ("\n ");
5223 print_vma (segment->p_filesz, FULL_HEX);
5224 putchar (' ');
5225 print_vma (segment->p_memsz, FULL_HEX);
5226 printf (" %c%c%c ",
5227 (segment->p_flags & PF_R ? 'R' : ' '),
5228 (segment->p_flags & PF_W ? 'W' : ' '),
5229 (segment->p_flags & PF_X ? 'E' : ' '));
5230 print_vma (segment->p_align, PREFIX_HEX);
5231 }
5232
5233 putc ('\n', stdout);
5234 }
5235
5236 switch (segment->p_type)
5237 {
5238 case PT_LOAD:
5239 #if 0 /* Do not warn about out of order PT_LOAD segments. Although officially
5240 required by the ELF standard, several programs, including the Linux
5241 kernel, make use of non-ordered segments. */
5242 if (previous_load
5243 && previous_load->p_vaddr > segment->p_vaddr)
5244 error (_("LOAD segments must be sorted in order of increasing VirtAddr\n"));
5245 #endif
5246 if (segment->p_memsz < segment->p_filesz)
5247 error (_("the segment's file size is larger than its memory size\n"));
5248 previous_load = segment;
5249 break;
5250
5251 case PT_PHDR:
5252 /* PR 20815 - Verify that the program header is loaded into memory. */
5253 if (i > 0 && previous_load != NULL)
5254 error (_("the PHDR segment must occur before any LOAD segment\n"));
5255 if (filedata->file_header.e_machine != EM_PARISC)
5256 {
5257 unsigned int j;
5258
5259 for (j = 1; j < filedata->file_header.e_phnum; j++)
5260 if (filedata->program_headers[j].p_vaddr <= segment->p_vaddr
5261 && (filedata->program_headers[j].p_vaddr
5262 + filedata->program_headers[j].p_memsz)
5263 >= (segment->p_vaddr + segment->p_filesz))
5264 break;
5265 if (j == filedata->file_header.e_phnum)
5266 error (_("the PHDR segment is not covered by a LOAD segment\n"));
5267 }
5268 break;
5269
5270 case PT_DYNAMIC:
5271 if (dynamic_addr)
5272 error (_("more than one dynamic segment\n"));
5273
5274 /* By default, assume that the .dynamic section is the first
5275 section in the DYNAMIC segment. */
5276 dynamic_addr = segment->p_offset;
5277 dynamic_size = segment->p_filesz;
5278
5279 /* Try to locate the .dynamic section. If there is
5280 a section header table, we can easily locate it. */
5281 if (filedata->section_headers != NULL)
5282 {
5283 Elf_Internal_Shdr * sec;
5284
5285 sec = find_section (filedata, ".dynamic");
5286 if (sec == NULL || sec->sh_size == 0)
5287 {
5288 /* A corresponding .dynamic section is expected, but on
5289 IA-64/OpenVMS it is OK for it to be missing. */
5290 if (!is_ia64_vms (filedata))
5291 error (_("no .dynamic section in the dynamic segment\n"));
5292 break;
5293 }
5294
5295 if (sec->sh_type == SHT_NOBITS)
5296 {
5297 dynamic_size = 0;
5298 break;
5299 }
5300
5301 dynamic_addr = sec->sh_offset;
5302 dynamic_size = sec->sh_size;
5303
5304 if (dynamic_addr < segment->p_offset
5305 || dynamic_addr > segment->p_offset + segment->p_filesz)
5306 warn (_("the .dynamic section is not contained"
5307 " within the dynamic segment\n"));
5308 else if (dynamic_addr > segment->p_offset)
5309 warn (_("the .dynamic section is not the first section"
5310 " in the dynamic segment.\n"));
5311 }
5312
5313 /* PR binutils/17512: Avoid corrupt dynamic section info in the
5314 segment. Check this after matching against the section headers
5315 so we don't warn on debuginfo file (which have NOBITS .dynamic
5316 sections). */
5317 if (dynamic_addr > filedata->file_size
5318 || dynamic_size > filedata->file_size - dynamic_addr)
5319 {
5320 error (_("the dynamic segment offset + size exceeds the size of the file\n"));
5321 dynamic_addr = dynamic_size = 0;
5322 }
5323 break;
5324
5325 case PT_INTERP:
5326 if (fseek (filedata->handle, archive_file_offset + (long) segment->p_offset,
5327 SEEK_SET))
5328 error (_("Unable to find program interpreter name\n"));
5329 else
5330 {
5331 char fmt [32];
5332 int ret = snprintf (fmt, sizeof (fmt), "%%%ds", PATH_MAX - 1);
5333
5334 if (ret >= (int) sizeof (fmt) || ret < 0)
5335 error (_("Internal error: failed to create format string to display program interpreter\n"));
5336
5337 program_interpreter[0] = 0;
5338 if (fscanf (filedata->handle, fmt, program_interpreter) <= 0)
5339 error (_("Unable to read program interpreter name\n"));
5340
5341 if (do_segments)
5342 printf (_(" [Requesting program interpreter: %s]\n"),
5343 program_interpreter);
5344 }
5345 break;
5346 }
5347 }
5348
5349 if (do_segments
5350 && filedata->section_headers != NULL
5351 && filedata->string_table != NULL)
5352 {
5353 printf (_("\n Section to Segment mapping:\n"));
5354 printf (_(" Segment Sections...\n"));
5355
5356 for (i = 0; i < filedata->file_header.e_phnum; i++)
5357 {
5358 unsigned int j;
5359 Elf_Internal_Shdr * section;
5360
5361 segment = filedata->program_headers + i;
5362 section = filedata->section_headers + 1;
5363
5364 printf (" %2.2d ", i);
5365
5366 for (j = 1; j < filedata->file_header.e_shnum; j++, section++)
5367 {
5368 if (!ELF_TBSS_SPECIAL (section, segment)
5369 && ELF_SECTION_IN_SEGMENT_STRICT (section, segment))
5370 printf ("%s ", printable_section_name (filedata, section));
5371 }
5372
5373 putc ('\n',stdout);
5374 }
5375 }
5376
5377 return TRUE;
5378 }
5379
5380
5381 /* Find the file offset corresponding to VMA by using the program headers. */
5382
5383 static long
5384 offset_from_vma (Filedata * filedata, bfd_vma vma, bfd_size_type size)
5385 {
5386 Elf_Internal_Phdr * seg;
5387
5388 if (! get_program_headers (filedata))
5389 {
5390 warn (_("Cannot interpret virtual addresses without program headers.\n"));
5391 return (long) vma;
5392 }
5393
5394 for (seg = filedata->program_headers;
5395 seg < filedata->program_headers + filedata->file_header.e_phnum;
5396 ++seg)
5397 {
5398 if (seg->p_type != PT_LOAD)
5399 continue;
5400
5401 if (vma >= (seg->p_vaddr & -seg->p_align)
5402 && vma + size <= seg->p_vaddr + seg->p_filesz)
5403 return vma - seg->p_vaddr + seg->p_offset;
5404 }
5405
5406 warn (_("Virtual address 0x%lx not located in any PT_LOAD segment.\n"),
5407 (unsigned long) vma);
5408 return (long) vma;
5409 }
5410
5411
5412 /* Allocate memory and load the sections headers into FILEDATA->filedata->section_headers.
5413 If PROBE is true, this is just a probe and we do not generate any error
5414 messages if the load fails. */
5415
5416 static bfd_boolean
5417 get_32bit_section_headers (Filedata * filedata, bfd_boolean probe)
5418 {
5419 Elf32_External_Shdr * shdrs;
5420 Elf_Internal_Shdr * internal;
5421 unsigned int i;
5422 unsigned int size = filedata->file_header.e_shentsize;
5423 unsigned int num = probe ? 1 : filedata->file_header.e_shnum;
5424
5425 /* PR binutils/17531: Cope with unexpected section header sizes. */
5426 if (size == 0 || num == 0)
5427 return FALSE;
5428 if (size < sizeof * shdrs)
5429 {
5430 if (! probe)
5431 error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
5432 return FALSE;
5433 }
5434 if (!probe && size > sizeof * shdrs)
5435 warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
5436
5437 shdrs = (Elf32_External_Shdr *) get_data (NULL, filedata, filedata->file_header.e_shoff,
5438 size, num,
5439 probe ? NULL : _("section headers"));
5440 if (shdrs == NULL)
5441 return FALSE;
5442
5443 free (filedata->section_headers);
5444 filedata->section_headers = (Elf_Internal_Shdr *)
5445 cmalloc (num, sizeof (Elf_Internal_Shdr));
5446 if (filedata->section_headers == NULL)
5447 {
5448 if (!probe)
5449 error (_("Out of memory reading %u section headers\n"), num);
5450 free (shdrs);
5451 return FALSE;
5452 }
5453
5454 for (i = 0, internal = filedata->section_headers;
5455 i < num;
5456 i++, internal++)
5457 {
5458 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
5459 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
5460 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
5461 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
5462 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
5463 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
5464 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
5465 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
5466 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
5467 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
5468 if (!probe && internal->sh_link > num)
5469 warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link);
5470 if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num)
5471 warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info);
5472 }
5473
5474 free (shdrs);
5475 return TRUE;
5476 }
5477
5478 /* Like get_32bit_section_headers, except that it fetches 64-bit headers. */
5479
5480 static bfd_boolean
5481 get_64bit_section_headers (Filedata * filedata, bfd_boolean probe)
5482 {
5483 Elf64_External_Shdr * shdrs;
5484 Elf_Internal_Shdr * internal;
5485 unsigned int i;
5486 unsigned int size = filedata->file_header.e_shentsize;
5487 unsigned int num = probe ? 1 : filedata->file_header.e_shnum;
5488
5489 /* PR binutils/17531: Cope with unexpected section header sizes. */
5490 if (size == 0 || num == 0)
5491 return FALSE;
5492
5493 if (size < sizeof * shdrs)
5494 {
5495 if (! probe)
5496 error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
5497 return FALSE;
5498 }
5499
5500 if (! probe && size > sizeof * shdrs)
5501 warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
5502
5503 shdrs = (Elf64_External_Shdr *) get_data (NULL, filedata,
5504 filedata->file_header.e_shoff,
5505 size, num,
5506 probe ? NULL : _("section headers"));
5507 if (shdrs == NULL)
5508 return FALSE;
5509
5510 free (filedata->section_headers);
5511 filedata->section_headers = (Elf_Internal_Shdr *)
5512 cmalloc (num, sizeof (Elf_Internal_Shdr));
5513 if (filedata->section_headers == NULL)
5514 {
5515 if (! probe)
5516 error (_("Out of memory reading %u section headers\n"), num);
5517 free (shdrs);
5518 return FALSE;
5519 }
5520
5521 for (i = 0, internal = filedata->section_headers;
5522 i < num;
5523 i++, internal++)
5524 {
5525 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
5526 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
5527 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
5528 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
5529 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
5530 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
5531 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
5532 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
5533 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
5534 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
5535 if (!probe && internal->sh_link > num)
5536 warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link);
5537 if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num)
5538 warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info);
5539 }
5540
5541 free (shdrs);
5542 return TRUE;
5543 }
5544
5545 static Elf_Internal_Sym *
5546 get_32bit_elf_symbols (Filedata * filedata,
5547 Elf_Internal_Shdr * section,
5548 unsigned long * num_syms_return)
5549 {
5550 unsigned long number = 0;
5551 Elf32_External_Sym * esyms = NULL;
5552 Elf_External_Sym_Shndx * shndx = NULL;
5553 Elf_Internal_Sym * isyms = NULL;
5554 Elf_Internal_Sym * psym;
5555 unsigned int j;
5556 elf_section_list * entry;
5557
5558 if (section->sh_size == 0)
5559 {
5560 if (num_syms_return != NULL)
5561 * num_syms_return = 0;
5562 return NULL;
5563 }
5564
5565 /* Run some sanity checks first. */
5566 if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size)
5567 {
5568 error (_("Section %s has an invalid sh_entsize of 0x%lx\n"),
5569 printable_section_name (filedata, section),
5570 (unsigned long) section->sh_entsize);
5571 goto exit_point;
5572 }
5573
5574 if (section->sh_size > filedata->file_size)
5575 {
5576 error (_("Section %s has an invalid sh_size of 0x%lx\n"),
5577 printable_section_name (filedata, section),
5578 (unsigned long) section->sh_size);
5579 goto exit_point;
5580 }
5581
5582 number = section->sh_size / section->sh_entsize;
5583
5584 if (number * sizeof (Elf32_External_Sym) > section->sh_size + 1)
5585 {
5586 error (_("Size (0x%lx) of section %s is not a multiple of its sh_entsize (0x%lx)\n"),
5587 (unsigned long) section->sh_size,
5588 printable_section_name (filedata, section),
5589 (unsigned long) section->sh_entsize);
5590 goto exit_point;
5591 }
5592
5593 esyms = (Elf32_External_Sym *) get_data (NULL, filedata, section->sh_offset, 1,
5594 section->sh_size, _("symbols"));
5595 if (esyms == NULL)
5596 goto exit_point;
5597
5598 shndx = NULL;
5599 for (entry = symtab_shndx_list; entry != NULL; entry = entry->next)
5600 {
5601 if (entry->hdr->sh_link != (unsigned long) (section - filedata->section_headers))
5602 continue;
5603
5604 if (shndx != NULL)
5605 {
5606 error (_("Multiple symbol table index sections associated with the same symbol section\n"));
5607 free (shndx);
5608 }
5609
5610 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, filedata,
5611 entry->hdr->sh_offset,
5612 1, entry->hdr->sh_size,
5613 _("symbol table section indices"));
5614 if (shndx == NULL)
5615 goto exit_point;
5616
5617 /* PR17531: file: heap-buffer-overflow */
5618 if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number)
5619 {
5620 error (_("Index section %s has an sh_size of 0x%lx - expected 0x%lx\n"),
5621 printable_section_name (filedata, entry->hdr),
5622 (unsigned long) entry->hdr->sh_size,
5623 (unsigned long) section->sh_size);
5624 goto exit_point;
5625 }
5626 }
5627
5628 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
5629
5630 if (isyms == NULL)
5631 {
5632 error (_("Out of memory reading %lu symbols\n"),
5633 (unsigned long) number);
5634 goto exit_point;
5635 }
5636
5637 for (j = 0, psym = isyms; j < number; j++, psym++)
5638 {
5639 psym->st_name = BYTE_GET (esyms[j].st_name);
5640 psym->st_value = BYTE_GET (esyms[j].st_value);
5641 psym->st_size = BYTE_GET (esyms[j].st_size);
5642 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
5643 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
5644 psym->st_shndx
5645 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
5646 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
5647 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
5648 psym->st_info = BYTE_GET (esyms[j].st_info);
5649 psym->st_other = BYTE_GET (esyms[j].st_other);
5650 }
5651
5652 exit_point:
5653 free (shndx);
5654 free (esyms);
5655
5656 if (num_syms_return != NULL)
5657 * num_syms_return = isyms == NULL ? 0 : number;
5658
5659 return isyms;
5660 }
5661
5662 static Elf_Internal_Sym *
5663 get_64bit_elf_symbols (Filedata * filedata,
5664 Elf_Internal_Shdr * section,
5665 unsigned long * num_syms_return)
5666 {
5667 unsigned long number = 0;
5668 Elf64_External_Sym * esyms = NULL;
5669 Elf_External_Sym_Shndx * shndx = NULL;
5670 Elf_Internal_Sym * isyms = NULL;
5671 Elf_Internal_Sym * psym;
5672 unsigned int j;
5673 elf_section_list * entry;
5674
5675 if (section->sh_size == 0)
5676 {
5677 if (num_syms_return != NULL)
5678 * num_syms_return = 0;
5679 return NULL;
5680 }
5681
5682 /* Run some sanity checks first. */
5683 if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size)
5684 {
5685 error (_("Section %s has an invalid sh_entsize of 0x%lx\n"),
5686 printable_section_name (filedata, section),
5687 (unsigned long) section->sh_entsize);
5688 goto exit_point;
5689 }
5690
5691 if (section->sh_size > filedata->file_size)
5692 {
5693 error (_("Section %s has an invalid sh_size of 0x%lx\n"),
5694 printable_section_name (filedata, section),
5695 (unsigned long) section->sh_size);
5696 goto exit_point;
5697 }
5698
5699 number = section->sh_size / section->sh_entsize;
5700
5701 if (number * sizeof (Elf64_External_Sym) > section->sh_size + 1)
5702 {
5703 error (_("Size (0x%lx) of section %s is not a multiple of its sh_entsize (0x%lx)\n"),
5704 (unsigned long) section->sh_size,
5705 printable_section_name (filedata, section),
5706 (unsigned long) section->sh_entsize);
5707 goto exit_point;
5708 }
5709
5710 esyms = (Elf64_External_Sym *) get_data (NULL, filedata, section->sh_offset, 1,
5711 section->sh_size, _("symbols"));
5712 if (!esyms)
5713 goto exit_point;
5714
5715 shndx = NULL;
5716 for (entry = symtab_shndx_list; entry != NULL; entry = entry->next)
5717 {
5718 if (entry->hdr->sh_link != (unsigned long) (section - filedata->section_headers))
5719 continue;
5720
5721 if (shndx != NULL)
5722 {
5723 error (_("Multiple symbol table index sections associated with the same symbol section\n"));
5724 free (shndx);
5725 }
5726
5727 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, filedata,
5728 entry->hdr->sh_offset,
5729 1, entry->hdr->sh_size,
5730 _("symbol table section indices"));
5731 if (shndx == NULL)
5732 goto exit_point;
5733
5734 /* PR17531: file: heap-buffer-overflow */
5735 if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number)
5736 {
5737 error (_("Index section %s has an sh_size of 0x%lx - expected 0x%lx\n"),
5738 printable_section_name (filedata, entry->hdr),
5739 (unsigned long) entry->hdr->sh_size,
5740 (unsigned long) section->sh_size);
5741 goto exit_point;
5742 }
5743 }
5744
5745 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
5746
5747 if (isyms == NULL)
5748 {
5749 error (_("Out of memory reading %lu symbols\n"),
5750 (unsigned long) number);
5751 goto exit_point;
5752 }
5753
5754 for (j = 0, psym = isyms; j < number; j++, psym++)
5755 {
5756 psym->st_name = BYTE_GET (esyms[j].st_name);
5757 psym->st_info = BYTE_GET (esyms[j].st_info);
5758 psym->st_other = BYTE_GET (esyms[j].st_other);
5759 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
5760
5761 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
5762 psym->st_shndx
5763 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
5764 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
5765 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
5766
5767 psym->st_value = BYTE_GET (esyms[j].st_value);
5768 psym->st_size = BYTE_GET (esyms[j].st_size);
5769 }
5770
5771 exit_point:
5772 free (shndx);
5773 free (esyms);
5774
5775 if (num_syms_return != NULL)
5776 * num_syms_return = isyms == NULL ? 0 : number;
5777
5778 return isyms;
5779 }
5780
5781 static const char *
5782 get_elf_section_flags (Filedata * filedata, bfd_vma sh_flags)
5783 {
5784 static char buff[1024];
5785 char * p = buff;
5786 unsigned int field_size = is_32bit_elf ? 8 : 16;
5787 signed int sindex;
5788 unsigned int size = sizeof (buff) - (field_size + 4 + 1);
5789 bfd_vma os_flags = 0;
5790 bfd_vma proc_flags = 0;
5791 bfd_vma unknown_flags = 0;
5792 static const struct
5793 {
5794 const char * str;
5795 unsigned int len;
5796 }
5797 flags [] =
5798 {
5799 /* 0 */ { STRING_COMMA_LEN ("WRITE") },
5800 /* 1 */ { STRING_COMMA_LEN ("ALLOC") },
5801 /* 2 */ { STRING_COMMA_LEN ("EXEC") },
5802 /* 3 */ { STRING_COMMA_LEN ("MERGE") },
5803 /* 4 */ { STRING_COMMA_LEN ("STRINGS") },
5804 /* 5 */ { STRING_COMMA_LEN ("INFO LINK") },
5805 /* 6 */ { STRING_COMMA_LEN ("LINK ORDER") },
5806 /* 7 */ { STRING_COMMA_LEN ("OS NONCONF") },
5807 /* 8 */ { STRING_COMMA_LEN ("GROUP") },
5808 /* 9 */ { STRING_COMMA_LEN ("TLS") },
5809 /* IA-64 specific. */
5810 /* 10 */ { STRING_COMMA_LEN ("SHORT") },
5811 /* 11 */ { STRING_COMMA_LEN ("NORECOV") },
5812 /* IA-64 OpenVMS specific. */
5813 /* 12 */ { STRING_COMMA_LEN ("VMS_GLOBAL") },
5814 /* 13 */ { STRING_COMMA_LEN ("VMS_OVERLAID") },
5815 /* 14 */ { STRING_COMMA_LEN ("VMS_SHARED") },
5816 /* 15 */ { STRING_COMMA_LEN ("VMS_VECTOR") },
5817 /* 16 */ { STRING_COMMA_LEN ("VMS_ALLOC_64BIT") },
5818 /* 17 */ { STRING_COMMA_LEN ("VMS_PROTECTED") },
5819 /* Generic. */
5820 /* 18 */ { STRING_COMMA_LEN ("EXCLUDE") },
5821 /* SPARC specific. */
5822 /* 19 */ { STRING_COMMA_LEN ("ORDERED") },
5823 /* 20 */ { STRING_COMMA_LEN ("COMPRESSED") },
5824 /* ARM specific. */
5825 /* 21 */ { STRING_COMMA_LEN ("ENTRYSECT") },
5826 /* 22 */ { STRING_COMMA_LEN ("ARM_PURECODE") },
5827 /* 23 */ { STRING_COMMA_LEN ("COMDEF") },
5828 /* GNU specific. */
5829 /* 24 */ { STRING_COMMA_LEN ("GNU_MBIND") },
5830 /* VLE specific. */
5831 /* 25 */ { STRING_COMMA_LEN ("VLE") },
5832 };
5833
5834 if (do_section_details)
5835 {
5836 sprintf (buff, "[%*.*lx]: ",
5837 field_size, field_size, (unsigned long) sh_flags);
5838 p += field_size + 4;
5839 }
5840
5841 while (sh_flags)
5842 {
5843 bfd_vma flag;
5844
5845 flag = sh_flags & - sh_flags;
5846 sh_flags &= ~ flag;
5847
5848 if (do_section_details)
5849 {
5850 switch (flag)
5851 {
5852 case SHF_WRITE: sindex = 0; break;
5853 case SHF_ALLOC: sindex = 1; break;
5854 case SHF_EXECINSTR: sindex = 2; break;
5855 case SHF_MERGE: sindex = 3; break;
5856 case SHF_STRINGS: sindex = 4; break;
5857 case SHF_INFO_LINK: sindex = 5; break;
5858 case SHF_LINK_ORDER: sindex = 6; break;
5859 case SHF_OS_NONCONFORMING: sindex = 7; break;
5860 case SHF_GROUP: sindex = 8; break;
5861 case SHF_TLS: sindex = 9; break;
5862 case SHF_EXCLUDE: sindex = 18; break;
5863 case SHF_COMPRESSED: sindex = 20; break;
5864 case SHF_GNU_MBIND: sindex = 24; break;
5865
5866 default:
5867 sindex = -1;
5868 switch (filedata->file_header.e_machine)
5869 {
5870 case EM_IA_64:
5871 if (flag == SHF_IA_64_SHORT)
5872 sindex = 10;
5873 else if (flag == SHF_IA_64_NORECOV)
5874 sindex = 11;
5875 #ifdef BFD64
5876 else if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
5877 switch (flag)
5878 {
5879 case SHF_IA_64_VMS_GLOBAL: sindex = 12; break;
5880 case SHF_IA_64_VMS_OVERLAID: sindex = 13; break;
5881 case SHF_IA_64_VMS_SHARED: sindex = 14; break;
5882 case SHF_IA_64_VMS_VECTOR: sindex = 15; break;
5883 case SHF_IA_64_VMS_ALLOC_64BIT: sindex = 16; break;
5884 case SHF_IA_64_VMS_PROTECTED: sindex = 17; break;
5885 default: break;
5886 }
5887 #endif
5888 break;
5889
5890 case EM_386:
5891 case EM_IAMCU:
5892 case EM_X86_64:
5893 case EM_L1OM:
5894 case EM_K1OM:
5895 case EM_OLD_SPARCV9:
5896 case EM_SPARC32PLUS:
5897 case EM_SPARCV9:
5898 case EM_SPARC:
5899 if (flag == SHF_ORDERED)
5900 sindex = 19;
5901 break;
5902
5903 case EM_ARM:
5904 switch (flag)
5905 {
5906 case SHF_ENTRYSECT: sindex = 21; break;
5907 case SHF_ARM_PURECODE: sindex = 22; break;
5908 case SHF_COMDEF: sindex = 23; break;
5909 default: break;
5910 }
5911 break;
5912 case EM_PPC:
5913 if (flag == SHF_PPC_VLE)
5914 sindex = 25;
5915 break;
5916
5917 default:
5918 break;
5919 }
5920 }
5921
5922 if (sindex != -1)
5923 {
5924 if (p != buff + field_size + 4)
5925 {
5926 if (size < (10 + 2))
5927 {
5928 warn (_("Internal error: not enough buffer room for section flag info"));
5929 return _("<unknown>");
5930 }
5931 size -= 2;
5932 *p++ = ',';
5933 *p++ = ' ';
5934 }
5935
5936 size -= flags [sindex].len;
5937 p = stpcpy (p, flags [sindex].str);
5938 }
5939 else if (flag & SHF_MASKOS)
5940 os_flags |= flag;
5941 else if (flag & SHF_MASKPROC)
5942 proc_flags |= flag;
5943 else
5944 unknown_flags |= flag;
5945 }
5946 else
5947 {
5948 switch (flag)
5949 {
5950 case SHF_WRITE: *p = 'W'; break;
5951 case SHF_ALLOC: *p = 'A'; break;
5952 case SHF_EXECINSTR: *p = 'X'; break;
5953 case SHF_MERGE: *p = 'M'; break;
5954 case SHF_STRINGS: *p = 'S'; break;
5955 case SHF_INFO_LINK: *p = 'I'; break;
5956 case SHF_LINK_ORDER: *p = 'L'; break;
5957 case SHF_OS_NONCONFORMING: *p = 'O'; break;
5958 case SHF_GROUP: *p = 'G'; break;
5959 case SHF_TLS: *p = 'T'; break;
5960 case SHF_EXCLUDE: *p = 'E'; break;
5961 case SHF_COMPRESSED: *p = 'C'; break;
5962 case SHF_GNU_MBIND: *p = 'D'; break;
5963
5964 default:
5965 if ((filedata->file_header.e_machine == EM_X86_64
5966 || filedata->file_header.e_machine == EM_L1OM
5967 || filedata->file_header.e_machine == EM_K1OM)
5968 && flag == SHF_X86_64_LARGE)
5969 *p = 'l';
5970 else if (filedata->file_header.e_machine == EM_ARM
5971 && flag == SHF_ARM_PURECODE)
5972 *p = 'y';
5973 else if (filedata->file_header.e_machine == EM_PPC
5974 && flag == SHF_PPC_VLE)
5975 *p = 'v';
5976 else if (flag & SHF_MASKOS)
5977 {
5978 *p = 'o';
5979 sh_flags &= ~ SHF_MASKOS;
5980 }
5981 else if (flag & SHF_MASKPROC)
5982 {
5983 *p = 'p';
5984 sh_flags &= ~ SHF_MASKPROC;
5985 }
5986 else
5987 *p = 'x';
5988 break;
5989 }
5990 p++;
5991 }
5992 }
5993
5994 if (do_section_details)
5995 {
5996 if (os_flags)
5997 {
5998 size -= 5 + field_size;
5999 if (p != buff + field_size + 4)
6000 {
6001 if (size < (2 + 1))
6002 {
6003 warn (_("Internal error: not enough buffer room for section flag info"));
6004 return _("<unknown>");
6005 }
6006 size -= 2;
6007 *p++ = ',';
6008 *p++ = ' ';
6009 }
6010 sprintf (p, "OS (%*.*lx)", field_size, field_size,
6011 (unsigned long) os_flags);
6012 p += 5 + field_size;
6013 }
6014 if (proc_flags)
6015 {
6016 size -= 7 + field_size;
6017 if (p != buff + field_size + 4)
6018 {
6019 if (size < (2 + 1))
6020 {
6021 warn (_("Internal error: not enough buffer room for section flag info"));
6022 return _("<unknown>");
6023 }
6024 size -= 2;
6025 *p++ = ',';
6026 *p++ = ' ';
6027 }
6028 sprintf (p, "PROC (%*.*lx)", field_size, field_size,
6029 (unsigned long) proc_flags);
6030 p += 7 + field_size;
6031 }
6032 if (unknown_flags)
6033 {
6034 size -= 10 + field_size;
6035 if (p != buff + field_size + 4)
6036 {
6037 if (size < (2 + 1))
6038 {
6039 warn (_("Internal error: not enough buffer room for section flag info"));
6040 return _("<unknown>");
6041 }
6042 size -= 2;
6043 *p++ = ',';
6044 *p++ = ' ';
6045 }
6046 sprintf (p, _("UNKNOWN (%*.*lx)"), field_size, field_size,
6047 (unsigned long) unknown_flags);
6048 p += 10 + field_size;
6049 }
6050 }
6051
6052 *p = '\0';
6053 return buff;
6054 }
6055
6056 static unsigned int
6057 get_compression_header (Elf_Internal_Chdr *chdr, unsigned char *buf, bfd_size_type size)
6058 {
6059 if (is_32bit_elf)
6060 {
6061 Elf32_External_Chdr *echdr = (Elf32_External_Chdr *) buf;
6062
6063 if (size < sizeof (* echdr))
6064 {
6065 error (_("Compressed section is too small even for a compression header\n"));
6066 return 0;
6067 }
6068
6069 chdr->ch_type = BYTE_GET (echdr->ch_type);
6070 chdr->ch_size = BYTE_GET (echdr->ch_size);
6071 chdr->ch_addralign = BYTE_GET (echdr->ch_addralign);
6072 return sizeof (*echdr);
6073 }
6074 else
6075 {
6076 Elf64_External_Chdr *echdr = (Elf64_External_Chdr *) buf;
6077
6078 if (size < sizeof (* echdr))
6079 {
6080 error (_("Compressed section is too small even for a compression header\n"));
6081 return 0;
6082 }
6083
6084 chdr->ch_type = BYTE_GET (echdr->ch_type);
6085 chdr->ch_size = BYTE_GET (echdr->ch_size);
6086 chdr->ch_addralign = BYTE_GET (echdr->ch_addralign);
6087 return sizeof (*echdr);
6088 }
6089 }
6090
6091 static bfd_boolean
6092 process_section_headers (Filedata * filedata)
6093 {
6094 Elf_Internal_Shdr * section;
6095 unsigned int i;
6096
6097 filedata->section_headers = NULL;
6098
6099 if (filedata->file_header.e_shnum == 0)
6100 {
6101 /* PR binutils/12467. */
6102 if (filedata->file_header.e_shoff != 0)
6103 {
6104 warn (_("possibly corrupt ELF file header - it has a non-zero"
6105 " section header offset, but no section headers\n"));
6106 return FALSE;
6107 }
6108 else if (do_sections)
6109 printf (_("\nThere are no sections in this file.\n"));
6110
6111 return TRUE;
6112 }
6113
6114 if (do_sections && !do_header)
6115 printf (ngettext ("There is %d section header, "
6116 "starting at offset 0x%lx:\n",
6117 "There are %d section headers, "
6118 "starting at offset 0x%lx:\n",
6119 filedata->file_header.e_shnum),
6120 filedata->file_header.e_shnum,
6121 (unsigned long) filedata->file_header.e_shoff);
6122
6123 if (is_32bit_elf)
6124 {
6125 if (! get_32bit_section_headers (filedata, FALSE))
6126 return FALSE;
6127 }
6128 else
6129 {
6130 if (! get_64bit_section_headers (filedata, FALSE))
6131 return FALSE;
6132 }
6133
6134 /* Read in the string table, so that we have names to display. */
6135 if (filedata->file_header.e_shstrndx != SHN_UNDEF
6136 && filedata->file_header.e_shstrndx < filedata->file_header.e_shnum)
6137 {
6138 section = filedata->section_headers + filedata->file_header.e_shstrndx;
6139
6140 if (section->sh_size != 0)
6141 {
6142 filedata->string_table = (char *) get_data (NULL, filedata, section->sh_offset,
6143 1, section->sh_size,
6144 _("string table"));
6145
6146 filedata->string_table_length = filedata->string_table != NULL ? section->sh_size : 0;
6147 }
6148 }
6149
6150 /* Scan the sections for the dynamic symbol table
6151 and dynamic string table and debug sections. */
6152 dynamic_symbols = NULL;
6153 dynamic_strings = NULL;
6154 dynamic_syminfo = NULL;
6155 symtab_shndx_list = NULL;
6156
6157 eh_addr_size = is_32bit_elf ? 4 : 8;
6158 switch (filedata->file_header.e_machine)
6159 {
6160 case EM_MIPS:
6161 case EM_MIPS_RS3_LE:
6162 /* The 64-bit MIPS EABI uses a combination of 32-bit ELF and 64-bit
6163 FDE addresses. However, the ABI also has a semi-official ILP32
6164 variant for which the normal FDE address size rules apply.
6165
6166 GCC 4.0 marks EABI64 objects with a dummy .gcc_compiled_longXX
6167 section, where XX is the size of longs in bits. Unfortunately,
6168 earlier compilers provided no way of distinguishing ILP32 objects
6169 from LP64 objects, so if there's any doubt, we should assume that
6170 the official LP64 form is being used. */
6171 if ((filedata->file_header.e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64
6172 && find_section (filedata, ".gcc_compiled_long32") == NULL)
6173 eh_addr_size = 8;
6174 break;
6175
6176 case EM_H8_300:
6177 case EM_H8_300H:
6178 switch (filedata->file_header.e_flags & EF_H8_MACH)
6179 {
6180 case E_H8_MACH_H8300:
6181 case E_H8_MACH_H8300HN:
6182 case E_H8_MACH_H8300SN:
6183 case E_H8_MACH_H8300SXN:
6184 eh_addr_size = 2;
6185 break;
6186 case E_H8_MACH_H8300H:
6187 case E_H8_MACH_H8300S:
6188 case E_H8_MACH_H8300SX:
6189 eh_addr_size = 4;
6190 break;
6191 }
6192 break;
6193
6194 case EM_M32C_OLD:
6195 case EM_M32C:
6196 switch (filedata->file_header.e_flags & EF_M32C_CPU_MASK)
6197 {
6198 case EF_M32C_CPU_M16C:
6199 eh_addr_size = 2;
6200 break;
6201 }
6202 break;
6203 }
6204
6205 #define CHECK_ENTSIZE_VALUES(section, i, size32, size64) \
6206 do \
6207 { \
6208 bfd_size_type expected_entsize = is_32bit_elf ? size32 : size64; \
6209 if (section->sh_entsize != expected_entsize) \
6210 { \
6211 char buf[40]; \
6212 sprintf_vma (buf, section->sh_entsize); \
6213 /* Note: coded this way so that there is a single string for \
6214 translation. */ \
6215 error (_("Section %d has invalid sh_entsize of %s\n"), i, buf); \
6216 error (_("(Using the expected size of %u for the rest of this dump)\n"), \
6217 (unsigned) expected_entsize); \
6218 section->sh_entsize = expected_entsize; \
6219 } \
6220 } \
6221 while (0)
6222
6223 #define CHECK_ENTSIZE(section, i, type) \
6224 CHECK_ENTSIZE_VALUES (section, i, sizeof (Elf32_External_##type), \
6225 sizeof (Elf64_External_##type))
6226
6227 for (i = 0, section = filedata->section_headers;
6228 i < filedata->file_header.e_shnum;
6229 i++, section++)
6230 {
6231 char * name = SECTION_NAME (section);
6232
6233 if (section->sh_type == SHT_DYNSYM)
6234 {
6235 if (dynamic_symbols != NULL)
6236 {
6237 error (_("File contains multiple dynamic symbol tables\n"));
6238 continue;
6239 }
6240
6241 CHECK_ENTSIZE (section, i, Sym);
6242 dynamic_symbols = GET_ELF_SYMBOLS (filedata, section, & num_dynamic_syms);
6243 }
6244 else if (section->sh_type == SHT_STRTAB
6245 && streq (name, ".dynstr"))
6246 {
6247 if (dynamic_strings != NULL)
6248 {
6249 error (_("File contains multiple dynamic string tables\n"));
6250 continue;
6251 }
6252
6253 dynamic_strings = (char *) get_data (NULL, filedata, section->sh_offset,
6254 1, section->sh_size,
6255 _("dynamic strings"));
6256 dynamic_strings_length = dynamic_strings == NULL ? 0 : section->sh_size;
6257 }
6258 else if (section->sh_type == SHT_SYMTAB_SHNDX)
6259 {
6260 elf_section_list * entry = xmalloc (sizeof * entry);
6261
6262 entry->hdr = section;
6263 entry->next = symtab_shndx_list;
6264 symtab_shndx_list = entry;
6265 }
6266 else if (section->sh_type == SHT_SYMTAB)
6267 CHECK_ENTSIZE (section, i, Sym);
6268 else if (section->sh_type == SHT_GROUP)
6269 CHECK_ENTSIZE_VALUES (section, i, GRP_ENTRY_SIZE, GRP_ENTRY_SIZE);
6270 else if (section->sh_type == SHT_REL)
6271 CHECK_ENTSIZE (section, i, Rel);
6272 else if (section->sh_type == SHT_RELA)
6273 CHECK_ENTSIZE (section, i, Rela);
6274 else if ((do_debugging || do_debug_info || do_debug_abbrevs
6275 || do_debug_lines || do_debug_pubnames || do_debug_pubtypes
6276 || do_debug_aranges || do_debug_frames || do_debug_macinfo
6277 || do_debug_str || do_debug_loc || do_debug_ranges
6278 || do_debug_addr || do_debug_cu_index || do_debug_links)
6279 && (const_strneq (name, ".debug_")
6280 || const_strneq (name, ".zdebug_")))
6281 {
6282 if (name[1] == 'z')
6283 name += sizeof (".zdebug_") - 1;
6284 else
6285 name += sizeof (".debug_") - 1;
6286
6287 if (do_debugging
6288 || (do_debug_info && const_strneq (name, "info"))
6289 || (do_debug_info && const_strneq (name, "types"))
6290 || (do_debug_abbrevs && const_strneq (name, "abbrev"))
6291 || (do_debug_lines && strcmp (name, "line") == 0)
6292 || (do_debug_lines && const_strneq (name, "line."))
6293 || (do_debug_pubnames && const_strneq (name, "pubnames"))
6294 || (do_debug_pubtypes && const_strneq (name, "pubtypes"))
6295 || (do_debug_pubnames && const_strneq (name, "gnu_pubnames"))
6296 || (do_debug_pubtypes && const_strneq (name, "gnu_pubtypes"))
6297 || (do_debug_aranges && const_strneq (name, "aranges"))
6298 || (do_debug_ranges && const_strneq (name, "ranges"))
6299 || (do_debug_ranges && const_strneq (name, "rnglists"))
6300 || (do_debug_frames && const_strneq (name, "frame"))
6301 || (do_debug_macinfo && const_strneq (name, "macinfo"))
6302 || (do_debug_macinfo && const_strneq (name, "macro"))
6303 || (do_debug_str && const_strneq (name, "str"))
6304 || (do_debug_loc && const_strneq (name, "loc"))
6305 || (do_debug_loc && const_strneq (name, "loclists"))
6306 || (do_debug_addr && const_strneq (name, "addr"))
6307 || (do_debug_cu_index && const_strneq (name, "cu_index"))
6308 || (do_debug_cu_index && const_strneq (name, "tu_index"))
6309 )
6310 request_dump_bynumber (filedata, i, DEBUG_DUMP);
6311 }
6312 /* Linkonce section to be combined with .debug_info at link time. */
6313 else if ((do_debugging || do_debug_info)
6314 && const_strneq (name, ".gnu.linkonce.wi."))
6315 request_dump_bynumber (filedata, i, DEBUG_DUMP);
6316 else if (do_debug_frames && streq (name, ".eh_frame"))
6317 request_dump_bynumber (filedata, i, DEBUG_DUMP);
6318 else if (do_gdb_index && (streq (name, ".gdb_index")
6319 || streq (name, ".debug_names")))
6320 request_dump_bynumber (filedata, i, DEBUG_DUMP);
6321 /* Trace sections for Itanium VMS. */
6322 else if ((do_debugging || do_trace_info || do_trace_abbrevs
6323 || do_trace_aranges)
6324 && const_strneq (name, ".trace_"))
6325 {
6326 name += sizeof (".trace_") - 1;
6327
6328 if (do_debugging
6329 || (do_trace_info && streq (name, "info"))
6330 || (do_trace_abbrevs && streq (name, "abbrev"))
6331 || (do_trace_aranges && streq (name, "aranges"))
6332 )
6333 request_dump_bynumber (filedata, i, DEBUG_DUMP);
6334 }
6335 else if ((do_debugging || do_debug_links)
6336 && (const_strneq (name, ".gnu_debuglink")
6337 || const_strneq (name, ".gnu_debugaltlink")))
6338 request_dump_bynumber (filedata, i, DEBUG_DUMP);
6339 }
6340
6341 if (! do_sections)
6342 return TRUE;
6343
6344 if (filedata->file_header.e_shnum > 1)
6345 printf (_("\nSection Headers:\n"));
6346 else
6347 printf (_("\nSection Header:\n"));
6348
6349 if (is_32bit_elf)
6350 {
6351 if (do_section_details)
6352 {
6353 printf (_(" [Nr] Name\n"));
6354 printf (_(" Type Addr Off Size ES Lk Inf Al\n"));
6355 }
6356 else
6357 printf
6358 (_(" [Nr] Name Type Addr Off Size ES Flg Lk Inf Al\n"));
6359 }
6360 else if (do_wide)
6361 {
6362 if (do_section_details)
6363 {
6364 printf (_(" [Nr] Name\n"));
6365 printf (_(" Type Address Off Size ES Lk Inf Al\n"));
6366 }
6367 else
6368 printf
6369 (_(" [Nr] Name Type Address Off Size ES Flg Lk Inf Al\n"));
6370 }
6371 else
6372 {
6373 if (do_section_details)
6374 {
6375 printf (_(" [Nr] Name\n"));
6376 printf (_(" Type Address Offset Link\n"));
6377 printf (_(" Size EntSize Info Align\n"));
6378 }
6379 else
6380 {
6381 printf (_(" [Nr] Name Type Address Offset\n"));
6382 printf (_(" Size EntSize Flags Link Info Align\n"));
6383 }
6384 }
6385
6386 if (do_section_details)
6387 printf (_(" Flags\n"));
6388
6389 for (i = 0, section = filedata->section_headers;
6390 i < filedata->file_header.e_shnum;
6391 i++, section++)
6392 {
6393 /* Run some sanity checks on the section header. */
6394
6395 /* Check the sh_link field. */
6396 switch (section->sh_type)
6397 {
6398 case SHT_REL:
6399 case SHT_RELA:
6400 if (section->sh_link == 0
6401 && (filedata->file_header.e_type == ET_EXEC
6402 || filedata->file_header.e_type == ET_DYN))
6403 /* A dynamic relocation section where all entries use a
6404 zero symbol index need not specify a symtab section. */
6405 break;
6406 /* Fall through. */
6407 case SHT_SYMTAB_SHNDX:
6408 case SHT_GROUP:
6409 case SHT_HASH:
6410 case SHT_GNU_HASH:
6411 case SHT_GNU_versym:
6412 if (section->sh_link == 0
6413 || section->sh_link >= filedata->file_header.e_shnum
6414 || (filedata->section_headers[section->sh_link].sh_type != SHT_SYMTAB
6415 && filedata->section_headers[section->sh_link].sh_type != SHT_DYNSYM))
6416 warn (_("[%2u]: Link field (%u) should index a symtab section.\n"),
6417 i, section->sh_link);
6418 break;
6419
6420 case SHT_DYNAMIC:
6421 case SHT_SYMTAB:
6422 case SHT_DYNSYM:
6423 case SHT_GNU_verneed:
6424 case SHT_GNU_verdef:
6425 case SHT_GNU_LIBLIST:
6426 if (section->sh_link == 0
6427 || section->sh_link >= filedata->file_header.e_shnum
6428 || filedata->section_headers[section->sh_link].sh_type != SHT_STRTAB)
6429 warn (_("[%2u]: Link field (%u) should index a string section.\n"),
6430 i, section->sh_link);
6431 break;
6432
6433 case SHT_INIT_ARRAY:
6434 case SHT_FINI_ARRAY:
6435 case SHT_PREINIT_ARRAY:
6436 if (section->sh_type < SHT_LOOS && section->sh_link != 0)
6437 warn (_("[%2u]: Unexpected value (%u) in link field.\n"),
6438 i, section->sh_link);
6439 break;
6440
6441 default:
6442 /* FIXME: Add support for target specific section types. */
6443 #if 0 /* Currently we do not check other section types as there are too
6444 many special cases. Stab sections for example have a type
6445 of SHT_PROGBITS but an sh_link field that links to the .stabstr
6446 section. */
6447 if (section->sh_type < SHT_LOOS && section->sh_link != 0)
6448 warn (_("[%2u]: Unexpected value (%u) in link field.\n"),
6449 i, section->sh_link);
6450 #endif
6451 break;
6452 }
6453
6454 /* Check the sh_info field. */
6455 switch (section->sh_type)
6456 {
6457 case SHT_REL:
6458 case SHT_RELA:
6459 if (section->sh_info == 0
6460 && (filedata->file_header.e_type == ET_EXEC
6461 || filedata->file_header.e_type == ET_DYN))
6462 /* Dynamic relocations apply to segments, so they do not
6463 need to specify the section they relocate. */
6464 break;
6465 if (section->sh_info == 0
6466 || section->sh_info >= filedata->file_header.e_shnum
6467 || (filedata->section_headers[section->sh_info].sh_type != SHT_PROGBITS
6468 && filedata->section_headers[section->sh_info].sh_type != SHT_NOBITS
6469 && filedata->section_headers[section->sh_info].sh_type != SHT_NOTE
6470 && filedata->section_headers[section->sh_info].sh_type != SHT_INIT_ARRAY
6471 && filedata->section_headers[section->sh_info].sh_type != SHT_FINI_ARRAY
6472 && filedata->section_headers[section->sh_info].sh_type != SHT_PREINIT_ARRAY
6473 /* FIXME: Are other section types valid ? */
6474 && filedata->section_headers[section->sh_info].sh_type < SHT_LOOS))
6475 warn (_("[%2u]: Info field (%u) should index a relocatable section.\n"),
6476 i, section->sh_info);
6477 break;
6478
6479 case SHT_DYNAMIC:
6480 case SHT_HASH:
6481 case SHT_SYMTAB_SHNDX:
6482 case SHT_INIT_ARRAY:
6483 case SHT_FINI_ARRAY:
6484 case SHT_PREINIT_ARRAY:
6485 if (section->sh_info != 0)
6486 warn (_("[%2u]: Unexpected value (%u) in info field.\n"),
6487 i, section->sh_info);
6488 break;
6489
6490 case SHT_GROUP:
6491 case SHT_SYMTAB:
6492 case SHT_DYNSYM:
6493 /* A symbol index - we assume that it is valid. */
6494 break;
6495
6496 default:
6497 /* FIXME: Add support for target specific section types. */
6498 if (section->sh_type == SHT_NOBITS)
6499 /* NOBITS section headers with non-zero sh_info fields can be
6500 created when a binary is stripped of everything but its debug
6501 information. The stripped sections have their headers
6502 preserved but their types set to SHT_NOBITS. So do not check
6503 this type of section. */
6504 ;
6505 else if (section->sh_flags & SHF_INFO_LINK)
6506 {
6507 if (section->sh_info < 1 || section->sh_info >= filedata->file_header.e_shnum)
6508 warn (_("[%2u]: Expected link to another section in info field"), i);
6509 }
6510 else if (section->sh_type < SHT_LOOS
6511 && (section->sh_flags & SHF_GNU_MBIND) == 0
6512 && section->sh_info != 0)
6513 warn (_("[%2u]: Unexpected value (%u) in info field.\n"),
6514 i, section->sh_info);
6515 break;
6516 }
6517
6518 /* Check the sh_size field. */
6519 if (section->sh_size > filedata->file_size
6520 && section->sh_type != SHT_NOBITS
6521 && section->sh_type != SHT_NULL
6522 && section->sh_type < SHT_LOOS)
6523 warn (_("Size of section %u is larger than the entire file!\n"), i);
6524
6525 printf (" [%2u] ", i);
6526 if (do_section_details)
6527 printf ("%s\n ", printable_section_name (filedata, section));
6528 else
6529 print_symbol (-17, SECTION_NAME (section));
6530
6531 printf (do_wide ? " %-15s " : " %-15.15s ",
6532 get_section_type_name (filedata, section->sh_type));
6533
6534 if (is_32bit_elf)
6535 {
6536 const char * link_too_big = NULL;
6537
6538 print_vma (section->sh_addr, LONG_HEX);
6539
6540 printf ( " %6.6lx %6.6lx %2.2lx",
6541 (unsigned long) section->sh_offset,
6542 (unsigned long) section->sh_size,
6543 (unsigned long) section->sh_entsize);
6544
6545 if (do_section_details)
6546 fputs (" ", stdout);
6547 else
6548 printf (" %3s ", get_elf_section_flags (filedata, section->sh_flags));
6549
6550 if (section->sh_link >= filedata->file_header.e_shnum)
6551 {
6552 link_too_big = "";
6553 /* The sh_link value is out of range. Normally this indicates
6554 an error but it can have special values in Solaris binaries. */
6555 switch (filedata->file_header.e_machine)
6556 {
6557 case EM_386:
6558 case EM_IAMCU:
6559 case EM_X86_64:
6560 case EM_L1OM:
6561 case EM_K1OM:
6562 case EM_OLD_SPARCV9:
6563 case EM_SPARC32PLUS:
6564 case EM_SPARCV9:
6565 case EM_SPARC:
6566 if (section->sh_link == (SHN_BEFORE & 0xffff))
6567 link_too_big = "BEFORE";
6568 else if (section->sh_link == (SHN_AFTER & 0xffff))
6569 link_too_big = "AFTER";
6570 break;
6571 default:
6572 break;
6573 }
6574 }
6575
6576 if (do_section_details)
6577 {
6578 if (link_too_big != NULL && * link_too_big)
6579 printf ("<%s> ", link_too_big);
6580 else
6581 printf ("%2u ", section->sh_link);
6582 printf ("%3u %2lu\n", section->sh_info,
6583 (unsigned long) section->sh_addralign);
6584 }
6585 else
6586 printf ("%2u %3u %2lu\n",
6587 section->sh_link,
6588 section->sh_info,
6589 (unsigned long) section->sh_addralign);
6590
6591 if (link_too_big && ! * link_too_big)
6592 warn (_("section %u: sh_link value of %u is larger than the number of sections\n"),
6593 i, section->sh_link);
6594 }
6595 else if (do_wide)
6596 {
6597 print_vma (section->sh_addr, LONG_HEX);
6598
6599 if ((long) section->sh_offset == section->sh_offset)
6600 printf (" %6.6lx", (unsigned long) section->sh_offset);
6601 else
6602 {
6603 putchar (' ');
6604 print_vma (section->sh_offset, LONG_HEX);
6605 }
6606
6607 if ((unsigned long) section->sh_size == section->sh_size)
6608 printf (" %6.6lx", (unsigned long) section->sh_size);
6609 else
6610 {
6611 putchar (' ');
6612 print_vma (section->sh_size, LONG_HEX);
6613 }
6614
6615 if ((unsigned long) section->sh_entsize == section->sh_entsize)
6616 printf (" %2.2lx", (unsigned long) section->sh_entsize);
6617 else
6618 {
6619 putchar (' ');
6620 print_vma (section->sh_entsize, LONG_HEX);
6621 }
6622
6623 if (do_section_details)
6624 fputs (" ", stdout);
6625 else
6626 printf (" %3s ", get_elf_section_flags (filedata, section->sh_flags));
6627
6628 printf ("%2u %3u ", section->sh_link, section->sh_info);
6629
6630 if ((unsigned long) section->sh_addralign == section->sh_addralign)
6631 printf ("%2lu\n", (unsigned long) section->sh_addralign);
6632 else
6633 {
6634 print_vma (section->sh_addralign, DEC);
6635 putchar ('\n');
6636 }
6637 }
6638 else if (do_section_details)
6639 {
6640 putchar (' ');
6641 print_vma (section->sh_addr, LONG_HEX);
6642 if ((long) section->sh_offset == section->sh_offset)
6643 printf (" %16.16lx", (unsigned long) section->sh_offset);
6644 else
6645 {
6646 printf (" ");
6647 print_vma (section->sh_offset, LONG_HEX);
6648 }
6649 printf (" %u\n ", section->sh_link);
6650 print_vma (section->sh_size, LONG_HEX);
6651 putchar (' ');
6652 print_vma (section->sh_entsize, LONG_HEX);
6653
6654 printf (" %-16u %lu\n",
6655 section->sh_info,
6656 (unsigned long) section->sh_addralign);
6657 }
6658 else
6659 {
6660 putchar (' ');
6661 print_vma (section->sh_addr, LONG_HEX);
6662 if ((long) section->sh_offset == section->sh_offset)
6663 printf (" %8.8lx", (unsigned long) section->sh_offset);
6664 else
6665 {
6666 printf (" ");
6667 print_vma (section->sh_offset, LONG_HEX);
6668 }
6669 printf ("\n ");
6670 print_vma (section->sh_size, LONG_HEX);
6671 printf (" ");
6672 print_vma (section->sh_entsize, LONG_HEX);
6673
6674 printf (" %3s ", get_elf_section_flags (filedata, section->sh_flags));
6675
6676 printf (" %2u %3u %lu\n",
6677 section->sh_link,
6678 section->sh_info,
6679 (unsigned long) section->sh_addralign);
6680 }
6681
6682 if (do_section_details)
6683 {
6684 printf (" %s\n", get_elf_section_flags (filedata, section->sh_flags));
6685 if ((section->sh_flags & SHF_COMPRESSED) != 0)
6686 {
6687 /* Minimum section size is 12 bytes for 32-bit compression
6688 header + 12 bytes for compressed data header. */
6689 unsigned char buf[24];
6690
6691 assert (sizeof (buf) >= sizeof (Elf64_External_Chdr));
6692 if (get_data (&buf, filedata, section->sh_offset, 1,
6693 sizeof (buf), _("compression header")))
6694 {
6695 Elf_Internal_Chdr chdr;
6696
6697 (void) get_compression_header (&chdr, buf, sizeof (buf));
6698
6699 if (chdr.ch_type == ELFCOMPRESS_ZLIB)
6700 printf (" ZLIB, ");
6701 else
6702 printf (_(" [<unknown>: 0x%x], "),
6703 chdr.ch_type);
6704 print_vma (chdr.ch_size, LONG_HEX);
6705 printf (", %lu\n", (unsigned long) chdr.ch_addralign);
6706 }
6707 }
6708 }
6709 }
6710
6711 if (!do_section_details)
6712 {
6713 /* The ordering of the letters shown here matches the ordering of the
6714 corresponding SHF_xxx values, and hence the order in which these
6715 letters will be displayed to the user. */
6716 printf (_("Key to Flags:\n\
6717 W (write), A (alloc), X (execute), M (merge), S (strings), I (info),\n\
6718 L (link order), O (extra OS processing required), G (group), T (TLS),\n\
6719 C (compressed), x (unknown), o (OS specific), E (exclude),\n "));
6720 if (filedata->file_header.e_machine == EM_X86_64
6721 || filedata->file_header.e_machine == EM_L1OM
6722 || filedata->file_header.e_machine == EM_K1OM)
6723 printf (_("l (large), "));
6724 else if (filedata->file_header.e_machine == EM_ARM)
6725 printf (_("y (purecode), "));
6726 else if (filedata->file_header.e_machine == EM_PPC)
6727 printf (_("v (VLE), "));
6728 printf ("p (processor specific)\n");
6729 }
6730
6731 return TRUE;
6732 }
6733
6734 static const char *
6735 get_group_flags (unsigned int flags)
6736 {
6737 static char buff[128];
6738
6739 if (flags == 0)
6740 return "";
6741 else if (flags == GRP_COMDAT)
6742 return "COMDAT ";
6743
6744 snprintf (buff, 14, _("[0x%x: "), flags);
6745
6746 flags &= ~ GRP_COMDAT;
6747 if (flags & GRP_MASKOS)
6748 {
6749 strcat (buff, "<OS specific>");
6750 flags &= ~ GRP_MASKOS;
6751 }
6752
6753 if (flags & GRP_MASKPROC)
6754 {
6755 strcat (buff, "<PROC specific>");
6756 flags &= ~ GRP_MASKPROC;
6757 }
6758
6759 if (flags)
6760 strcat (buff, "<unknown>");
6761
6762 strcat (buff, "]");
6763 return buff;
6764 }
6765
6766 static bfd_boolean
6767 process_section_groups (Filedata * filedata)
6768 {
6769 Elf_Internal_Shdr * section;
6770 unsigned int i;
6771 struct group * group;
6772 Elf_Internal_Shdr * symtab_sec;
6773 Elf_Internal_Shdr * strtab_sec;
6774 Elf_Internal_Sym * symtab;
6775 unsigned long num_syms;
6776 char * strtab;
6777 size_t strtab_size;
6778
6779 /* Don't process section groups unless needed. */
6780 if (!do_unwind && !do_section_groups)
6781 return TRUE;
6782
6783 if (filedata->file_header.e_shnum == 0)
6784 {
6785 if (do_section_groups)
6786 printf (_("\nThere are no sections to group in this file.\n"));
6787
6788 return TRUE;
6789 }
6790
6791 if (filedata->section_headers == NULL)
6792 {
6793 error (_("Section headers are not available!\n"));
6794 /* PR 13622: This can happen with a corrupt ELF header. */
6795 return FALSE;
6796 }
6797
6798 section_headers_groups = (struct group **) calloc (filedata->file_header.e_shnum,
6799 sizeof (struct group *));
6800
6801 if (section_headers_groups == NULL)
6802 {
6803 error (_("Out of memory reading %u section group headers\n"),
6804 filedata->file_header.e_shnum);
6805 return FALSE;
6806 }
6807
6808 /* Scan the sections for the group section. */
6809 group_count = 0;
6810 for (i = 0, section = filedata->section_headers;
6811 i < filedata->file_header.e_shnum;
6812 i++, section++)
6813 if (section->sh_type == SHT_GROUP)
6814 group_count++;
6815
6816 if (group_count == 0)
6817 {
6818 if (do_section_groups)
6819 printf (_("\nThere are no section groups in this file.\n"));
6820
6821 return TRUE;
6822 }
6823
6824 section_groups = (struct group *) calloc (group_count, sizeof (struct group));
6825
6826 if (section_groups == NULL)
6827 {
6828 error (_("Out of memory reading %lu groups\n"),
6829 (unsigned long) group_count);
6830 return FALSE;
6831 }
6832
6833 symtab_sec = NULL;
6834 strtab_sec = NULL;
6835 symtab = NULL;
6836 num_syms = 0;
6837 strtab = NULL;
6838 strtab_size = 0;
6839 for (i = 0, section = filedata->section_headers, group = section_groups;
6840 i < filedata->file_header.e_shnum;
6841 i++, section++)
6842 {
6843 if (section->sh_type == SHT_GROUP)
6844 {
6845 const char * name = printable_section_name (filedata, section);
6846 const char * group_name;
6847 unsigned char * start;
6848 unsigned char * indices;
6849 unsigned int entry, j, size;
6850 Elf_Internal_Shdr * sec;
6851 Elf_Internal_Sym * sym;
6852
6853 /* Get the symbol table. */
6854 if (section->sh_link >= filedata->file_header.e_shnum
6855 || ((sec = filedata->section_headers + section->sh_link)->sh_type
6856 != SHT_SYMTAB))
6857 {
6858 error (_("Bad sh_link in group section `%s'\n"), name);
6859 continue;
6860 }
6861
6862 if (symtab_sec != sec)
6863 {
6864 symtab_sec = sec;
6865 if (symtab)
6866 free (symtab);
6867 symtab = GET_ELF_SYMBOLS (filedata, symtab_sec, & num_syms);
6868 }
6869
6870 if (symtab == NULL)
6871 {
6872 error (_("Corrupt header in group section `%s'\n"), name);
6873 continue;
6874 }
6875
6876 if (section->sh_info >= num_syms)
6877 {
6878 error (_("Bad sh_info in group section `%s'\n"), name);
6879 continue;
6880 }
6881
6882 sym = symtab + section->sh_info;
6883
6884 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6885 {
6886 if (sym->st_shndx == 0
6887 || sym->st_shndx >= filedata->file_header.e_shnum)
6888 {
6889 error (_("Bad sh_info in group section `%s'\n"), name);
6890 continue;
6891 }
6892
6893 group_name = SECTION_NAME (filedata->section_headers + sym->st_shndx);
6894 strtab_sec = NULL;
6895 if (strtab)
6896 free (strtab);
6897 strtab = NULL;
6898 strtab_size = 0;
6899 }
6900 else
6901 {
6902 /* Get the string table. */
6903 if (symtab_sec->sh_link >= filedata->file_header.e_shnum)
6904 {
6905 strtab_sec = NULL;
6906 if (strtab)
6907 free (strtab);
6908 strtab = NULL;
6909 strtab_size = 0;
6910 }
6911 else if (strtab_sec
6912 != (sec = filedata->section_headers + symtab_sec->sh_link))
6913 {
6914 strtab_sec = sec;
6915 if (strtab)
6916 free (strtab);
6917
6918 strtab = (char *) get_data (NULL, filedata, strtab_sec->sh_offset,
6919 1, strtab_sec->sh_size,
6920 _("string table"));
6921 strtab_size = strtab != NULL ? strtab_sec->sh_size : 0;
6922 }
6923 group_name = sym->st_name < strtab_size
6924 ? strtab + sym->st_name : _("<corrupt>");
6925 }
6926
6927 /* PR 17531: file: loop. */
6928 if (section->sh_entsize > section->sh_size)
6929 {
6930 error (_("Section %s has sh_entsize (0x%lx) which is larger than its size (0x%lx)\n"),
6931 printable_section_name (filedata, section),
6932 (unsigned long) section->sh_entsize,
6933 (unsigned long) section->sh_size);
6934 continue;
6935 }
6936
6937 start = (unsigned char *) get_data (NULL, filedata, section->sh_offset,
6938 1, section->sh_size,
6939 _("section data"));
6940 if (start == NULL)
6941 continue;
6942
6943 indices = start;
6944 size = (section->sh_size / section->sh_entsize) - 1;
6945 entry = byte_get (indices, 4);
6946 indices += 4;
6947
6948 if (do_section_groups)
6949 {
6950 printf (_("\n%sgroup section [%5u] `%s' [%s] contains %u sections:\n"),
6951 get_group_flags (entry), i, name, group_name, size);
6952
6953 printf (_(" [Index] Name\n"));
6954 }
6955
6956 group->group_index = i;
6957
6958 for (j = 0; j < size; j++)
6959 {
6960 struct group_list * g;
6961
6962 entry = byte_get (indices, 4);
6963 indices += 4;
6964
6965 if (entry >= filedata->file_header.e_shnum)
6966 {
6967 static unsigned num_group_errors = 0;
6968
6969 if (num_group_errors ++ < 10)
6970 {
6971 error (_("section [%5u] in group section [%5u] > maximum section [%5u]\n"),
6972 entry, i, filedata->file_header.e_shnum - 1);
6973 if (num_group_errors == 10)
6974 warn (_("Further error messages about overlarge group section indices suppressed\n"));
6975 }
6976 continue;
6977 }
6978
6979 if (section_headers_groups [entry] != NULL)
6980 {
6981 if (entry)
6982 {
6983 static unsigned num_errs = 0;
6984
6985 if (num_errs ++ < 10)
6986 {
6987 error (_("section [%5u] in group section [%5u] already in group section [%5u]\n"),
6988 entry, i,
6989 section_headers_groups [entry]->group_index);
6990 if (num_errs == 10)
6991 warn (_("Further error messages about already contained group sections suppressed\n"));
6992 }
6993 continue;
6994 }
6995 else
6996 {
6997 /* Intel C/C++ compiler may put section 0 in a
6998 section group. We just warn it the first time
6999 and ignore it afterwards. */
7000 static bfd_boolean warned = FALSE;
7001 if (!warned)
7002 {
7003 error (_("section 0 in group section [%5u]\n"),
7004 section_headers_groups [entry]->group_index);
7005 warned = TRUE;
7006 }
7007 }
7008 }
7009
7010 section_headers_groups [entry] = group;
7011
7012 if (do_section_groups)
7013 {
7014 sec = filedata->section_headers + entry;
7015 printf (" [%5u] %s\n", entry, printable_section_name (filedata, sec));
7016 }
7017
7018 g = (struct group_list *) xmalloc (sizeof (struct group_list));
7019 g->section_index = entry;
7020 g->next = group->root;
7021 group->root = g;
7022 }
7023
7024 if (start)
7025 free (start);
7026
7027 group++;
7028 }
7029 }
7030
7031 if (symtab)
7032 free (symtab);
7033 if (strtab)
7034 free (strtab);
7035 return TRUE;
7036 }
7037
7038 /* Data used to display dynamic fixups. */
7039
7040 struct ia64_vms_dynfixup
7041 {
7042 bfd_vma needed_ident; /* Library ident number. */
7043 bfd_vma needed; /* Index in the dstrtab of the library name. */
7044 bfd_vma fixup_needed; /* Index of the library. */
7045 bfd_vma fixup_rela_cnt; /* Number of fixups. */
7046 bfd_vma fixup_rela_off; /* Fixups offset in the dynamic segment. */
7047 };
7048
7049 /* Data used to display dynamic relocations. */
7050
7051 struct ia64_vms_dynimgrela
7052 {
7053 bfd_vma img_rela_cnt; /* Number of relocations. */
7054 bfd_vma img_rela_off; /* Reloc offset in the dynamic segment. */
7055 };
7056
7057 /* Display IA-64 OpenVMS dynamic fixups (used to dynamically link a shared
7058 library). */
7059
7060 static bfd_boolean
7061 dump_ia64_vms_dynamic_fixups (Filedata * filedata,
7062 struct ia64_vms_dynfixup * fixup,
7063 const char * strtab,
7064 unsigned int strtab_sz)
7065 {
7066 Elf64_External_VMS_IMAGE_FIXUP * imfs;
7067 long i;
7068 const char * lib_name;
7069
7070 imfs = get_data (NULL, filedata, dynamic_addr + fixup->fixup_rela_off,
7071 1, fixup->fixup_rela_cnt * sizeof (*imfs),
7072 _("dynamic section image fixups"));
7073 if (!imfs)
7074 return FALSE;
7075
7076 if (fixup->needed < strtab_sz)
7077 lib_name = strtab + fixup->needed;
7078 else
7079 {
7080 warn (_("corrupt library name index of 0x%lx found in dynamic entry"),
7081 (unsigned long) fixup->needed);
7082 lib_name = "???";
7083 }
7084 printf (_("\nImage fixups for needed library #%d: %s - ident: %lx\n"),
7085 (int) fixup->fixup_needed, lib_name, (long) fixup->needed_ident);
7086 printf
7087 (_("Seg Offset Type SymVec DataType\n"));
7088
7089 for (i = 0; i < (long) fixup->fixup_rela_cnt; i++)
7090 {
7091 unsigned int type;
7092 const char *rtype;
7093
7094 printf ("%3u ", (unsigned) BYTE_GET (imfs [i].fixup_seg));
7095 printf_vma ((bfd_vma) BYTE_GET (imfs [i].fixup_offset));
7096 type = BYTE_GET (imfs [i].type);
7097 rtype = elf_ia64_reloc_type (type);
7098 if (rtype == NULL)
7099 printf (" 0x%08x ", type);
7100 else
7101 printf (" %-32s ", rtype);
7102 printf ("%6u ", (unsigned) BYTE_GET (imfs [i].symvec_index));
7103 printf ("0x%08x\n", (unsigned) BYTE_GET (imfs [i].data_type));
7104 }
7105
7106 free (imfs);
7107 return TRUE;
7108 }
7109
7110 /* Display IA-64 OpenVMS dynamic relocations (used to relocate an image). */
7111
7112 static bfd_boolean
7113 dump_ia64_vms_dynamic_relocs (Filedata * filedata, struct ia64_vms_dynimgrela *imgrela)
7114 {
7115 Elf64_External_VMS_IMAGE_RELA *imrs;
7116 long i;
7117
7118 imrs = get_data (NULL, filedata, dynamic_addr + imgrela->img_rela_off,
7119 1, imgrela->img_rela_cnt * sizeof (*imrs),
7120 _("dynamic section image relocations"));
7121 if (!imrs)
7122 return FALSE;
7123
7124 printf (_("\nImage relocs\n"));
7125 printf
7126 (_("Seg Offset Type Addend Seg Sym Off\n"));
7127
7128 for (i = 0; i < (long) imgrela->img_rela_cnt; i++)
7129 {
7130 unsigned int type;
7131 const char *rtype;
7132
7133 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].rela_seg));
7134 printf ("%08" BFD_VMA_FMT "x ",
7135 (bfd_vma) BYTE_GET (imrs [i].rela_offset));
7136 type = BYTE_GET (imrs [i].type);
7137 rtype = elf_ia64_reloc_type (type);
7138 if (rtype == NULL)
7139 printf ("0x%08x ", type);
7140 else
7141 printf ("%-31s ", rtype);
7142 print_vma (BYTE_GET (imrs [i].addend), FULL_HEX);
7143 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].sym_seg));
7144 printf ("%08" BFD_VMA_FMT "x\n",
7145 (bfd_vma) BYTE_GET (imrs [i].sym_offset));
7146 }
7147
7148 free (imrs);
7149 return TRUE;
7150 }
7151
7152 /* Display IA-64 OpenVMS dynamic relocations and fixups. */
7153
7154 static bfd_boolean
7155 process_ia64_vms_dynamic_relocs (Filedata * filedata)
7156 {
7157 struct ia64_vms_dynfixup fixup;
7158 struct ia64_vms_dynimgrela imgrela;
7159 Elf_Internal_Dyn *entry;
7160 bfd_vma strtab_off = 0;
7161 bfd_vma strtab_sz = 0;
7162 char *strtab = NULL;
7163 bfd_boolean res = TRUE;
7164
7165 memset (&fixup, 0, sizeof (fixup));
7166 memset (&imgrela, 0, sizeof (imgrela));
7167
7168 /* Note: the order of the entries is specified by the OpenVMS specs. */
7169 for (entry = dynamic_section;
7170 entry < dynamic_section + dynamic_nent;
7171 entry++)
7172 {
7173 switch (entry->d_tag)
7174 {
7175 case DT_IA_64_VMS_STRTAB_OFFSET:
7176 strtab_off = entry->d_un.d_val;
7177 break;
7178 case DT_STRSZ:
7179 strtab_sz = entry->d_un.d_val;
7180 if (strtab == NULL)
7181 strtab = get_data (NULL, filedata, dynamic_addr + strtab_off,
7182 1, strtab_sz, _("dynamic string section"));
7183 break;
7184
7185 case DT_IA_64_VMS_NEEDED_IDENT:
7186 fixup.needed_ident = entry->d_un.d_val;
7187 break;
7188 case DT_NEEDED:
7189 fixup.needed = entry->d_un.d_val;
7190 break;
7191 case DT_IA_64_VMS_FIXUP_NEEDED:
7192 fixup.fixup_needed = entry->d_un.d_val;
7193 break;
7194 case DT_IA_64_VMS_FIXUP_RELA_CNT:
7195 fixup.fixup_rela_cnt = entry->d_un.d_val;
7196 break;
7197 case DT_IA_64_VMS_FIXUP_RELA_OFF:
7198 fixup.fixup_rela_off = entry->d_un.d_val;
7199 if (! dump_ia64_vms_dynamic_fixups (filedata, &fixup, strtab, strtab_sz))
7200 res = FALSE;
7201 break;
7202 case DT_IA_64_VMS_IMG_RELA_CNT:
7203 imgrela.img_rela_cnt = entry->d_un.d_val;
7204 break;
7205 case DT_IA_64_VMS_IMG_RELA_OFF:
7206 imgrela.img_rela_off = entry->d_un.d_val;
7207 if (! dump_ia64_vms_dynamic_relocs (filedata, &imgrela))
7208 res = FALSE;
7209 break;
7210
7211 default:
7212 break;
7213 }
7214 }
7215
7216 if (strtab != NULL)
7217 free (strtab);
7218
7219 return res;
7220 }
7221
7222 static struct
7223 {
7224 const char * name;
7225 int reloc;
7226 int size;
7227 int rela;
7228 }
7229 dynamic_relocations [] =
7230 {
7231 { "REL", DT_REL, DT_RELSZ, FALSE },
7232 { "RELA", DT_RELA, DT_RELASZ, TRUE },
7233 { "PLT", DT_JMPREL, DT_PLTRELSZ, UNKNOWN }
7234 };
7235
7236 /* Process the reloc section. */
7237
7238 static bfd_boolean
7239 process_relocs (Filedata * filedata)
7240 {
7241 unsigned long rel_size;
7242 unsigned long rel_offset;
7243
7244 if (!do_reloc)
7245 return TRUE;
7246
7247 if (do_using_dynamic)
7248 {
7249 int is_rela;
7250 const char * name;
7251 bfd_boolean has_dynamic_reloc;
7252 unsigned int i;
7253
7254 has_dynamic_reloc = FALSE;
7255
7256 for (i = 0; i < ARRAY_SIZE (dynamic_relocations); i++)
7257 {
7258 is_rela = dynamic_relocations [i].rela;
7259 name = dynamic_relocations [i].name;
7260 rel_size = dynamic_info [dynamic_relocations [i].size];
7261 rel_offset = dynamic_info [dynamic_relocations [i].reloc];
7262
7263 if (rel_size)
7264 has_dynamic_reloc = TRUE;
7265
7266 if (is_rela == UNKNOWN)
7267 {
7268 if (dynamic_relocations [i].reloc == DT_JMPREL)
7269 switch (dynamic_info[DT_PLTREL])
7270 {
7271 case DT_REL:
7272 is_rela = FALSE;
7273 break;
7274 case DT_RELA:
7275 is_rela = TRUE;
7276 break;
7277 }
7278 }
7279
7280 if (rel_size)
7281 {
7282 printf
7283 (_("\n'%s' relocation section at offset 0x%lx contains %ld bytes:\n"),
7284 name, rel_offset, rel_size);
7285
7286 dump_relocations (filedata,
7287 offset_from_vma (filedata, rel_offset, rel_size),
7288 rel_size,
7289 dynamic_symbols, num_dynamic_syms,
7290 dynamic_strings, dynamic_strings_length,
7291 is_rela, TRUE /* is_dynamic */);
7292 }
7293 }
7294
7295 if (is_ia64_vms (filedata))
7296 if (process_ia64_vms_dynamic_relocs (filedata))
7297 has_dynamic_reloc = TRUE;
7298
7299 if (! has_dynamic_reloc)
7300 printf (_("\nThere are no dynamic relocations in this file.\n"));
7301 }
7302 else
7303 {
7304 Elf_Internal_Shdr * section;
7305 unsigned long i;
7306 bfd_boolean found = FALSE;
7307
7308 for (i = 0, section = filedata->section_headers;
7309 i < filedata->file_header.e_shnum;
7310 i++, section++)
7311 {
7312 if ( section->sh_type != SHT_RELA
7313 && section->sh_type != SHT_REL)
7314 continue;
7315
7316 rel_offset = section->sh_offset;
7317 rel_size = section->sh_size;
7318
7319 if (rel_size)
7320 {
7321 Elf_Internal_Shdr * strsec;
7322 int is_rela;
7323 unsigned long num_rela;
7324
7325 printf (_("\nRelocation section "));
7326
7327 if (filedata->string_table == NULL)
7328 printf ("%d", section->sh_name);
7329 else
7330 printf ("'%s'", printable_section_name (filedata, section));
7331
7332 num_rela = rel_size / section->sh_entsize;
7333 printf (ngettext (" at offset 0x%lx contains %lu entry:\n",
7334 " at offset 0x%lx contains %lu entries:\n",
7335 num_rela),
7336 rel_offset, num_rela);
7337
7338 is_rela = section->sh_type == SHT_RELA;
7339
7340 if (section->sh_link != 0
7341 && section->sh_link < filedata->file_header.e_shnum)
7342 {
7343 Elf_Internal_Shdr * symsec;
7344 Elf_Internal_Sym * symtab;
7345 unsigned long nsyms;
7346 unsigned long strtablen = 0;
7347 char * strtab = NULL;
7348
7349 symsec = filedata->section_headers + section->sh_link;
7350 if (symsec->sh_type != SHT_SYMTAB
7351 && symsec->sh_type != SHT_DYNSYM)
7352 continue;
7353
7354 symtab = GET_ELF_SYMBOLS (filedata, symsec, & nsyms);
7355
7356 if (symtab == NULL)
7357 continue;
7358
7359 if (symsec->sh_link != 0
7360 && symsec->sh_link < filedata->file_header.e_shnum)
7361 {
7362 strsec = filedata->section_headers + symsec->sh_link;
7363
7364 strtab = (char *) get_data (NULL, filedata, strsec->sh_offset,
7365 1, strsec->sh_size,
7366 _("string table"));
7367 strtablen = strtab == NULL ? 0 : strsec->sh_size;
7368 }
7369
7370 dump_relocations (filedata, rel_offset, rel_size,
7371 symtab, nsyms, strtab, strtablen,
7372 is_rela,
7373 symsec->sh_type == SHT_DYNSYM);
7374 if (strtab)
7375 free (strtab);
7376 free (symtab);
7377 }
7378 else
7379 dump_relocations (filedata, rel_offset, rel_size,
7380 NULL, 0, NULL, 0, is_rela,
7381 FALSE /* is_dynamic */);
7382
7383 found = TRUE;
7384 }
7385 }
7386
7387 if (! found)
7388 {
7389 /* Users sometimes forget the -D option, so try to be helpful. */
7390 for (i = 0; i < ARRAY_SIZE (dynamic_relocations); i++)
7391 {
7392 if (dynamic_info [dynamic_relocations [i].size])
7393 {
7394 printf (_("\nThere are no static relocations in this file."));
7395 printf (_("\nTo see the dynamic relocations add --use-dynamic to the command line.\n"));
7396
7397 break;
7398 }
7399 }
7400 if (i == ARRAY_SIZE (dynamic_relocations))
7401 printf (_("\nThere are no relocations in this file.\n"));
7402 }
7403 }
7404
7405 return TRUE;
7406 }
7407
7408 /* An absolute address consists of a section and an offset. If the
7409 section is NULL, the offset itself is the address, otherwise, the
7410 address equals to LOAD_ADDRESS(section) + offset. */
7411
7412 struct absaddr
7413 {
7414 unsigned short section;
7415 bfd_vma offset;
7416 };
7417
7418 /* Find the nearest symbol at or below ADDR. Returns the symbol
7419 name, if found, and the offset from the symbol to ADDR. */
7420
7421 static void
7422 find_symbol_for_address (Filedata * filedata,
7423 Elf_Internal_Sym * symtab,
7424 unsigned long nsyms,
7425 const char * strtab,
7426 unsigned long strtab_size,
7427 struct absaddr addr,
7428 const char ** symname,
7429 bfd_vma * offset)
7430 {
7431 bfd_vma dist = 0x100000;
7432 Elf_Internal_Sym * sym;
7433 Elf_Internal_Sym * beg;
7434 Elf_Internal_Sym * end;
7435 Elf_Internal_Sym * best = NULL;
7436
7437 REMOVE_ARCH_BITS (addr.offset);
7438 beg = symtab;
7439 end = symtab + nsyms;
7440
7441 while (beg < end)
7442 {
7443 bfd_vma value;
7444
7445 sym = beg + (end - beg) / 2;
7446
7447 value = sym->st_value;
7448 REMOVE_ARCH_BITS (value);
7449
7450 if (sym->st_name != 0
7451 && (addr.section == SHN_UNDEF || addr.section == sym->st_shndx)
7452 && addr.offset >= value
7453 && addr.offset - value < dist)
7454 {
7455 best = sym;
7456 dist = addr.offset - value;
7457 if (!dist)
7458 break;
7459 }
7460
7461 if (addr.offset < value)
7462 end = sym;
7463 else
7464 beg = sym + 1;
7465 }
7466
7467 if (best)
7468 {
7469 *symname = (best->st_name >= strtab_size
7470 ? _("<corrupt>") : strtab + best->st_name);
7471 *offset = dist;
7472 return;
7473 }
7474
7475 *symname = NULL;
7476 *offset = addr.offset;
7477 }
7478
7479 static /* signed */ int
7480 symcmp (const void *p, const void *q)
7481 {
7482 Elf_Internal_Sym *sp = (Elf_Internal_Sym *) p;
7483 Elf_Internal_Sym *sq = (Elf_Internal_Sym *) q;
7484
7485 return sp->st_value > sq->st_value ? 1 : (sp->st_value < sq->st_value ? -1 : 0);
7486 }
7487
7488 /* Process the unwind section. */
7489
7490 #include "unwind-ia64.h"
7491
7492 struct ia64_unw_table_entry
7493 {
7494 struct absaddr start;
7495 struct absaddr end;
7496 struct absaddr info;
7497 };
7498
7499 struct ia64_unw_aux_info
7500 {
7501 struct ia64_unw_table_entry * table; /* Unwind table. */
7502 unsigned long table_len; /* Length of unwind table. */
7503 unsigned char * info; /* Unwind info. */
7504 unsigned long info_size; /* Size of unwind info. */
7505 bfd_vma info_addr; /* Starting address of unwind info. */
7506 bfd_vma seg_base; /* Starting address of segment. */
7507 Elf_Internal_Sym * symtab; /* The symbol table. */
7508 unsigned long nsyms; /* Number of symbols. */
7509 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7510 unsigned long nfuns; /* Number of entries in funtab. */
7511 char * strtab; /* The string table. */
7512 unsigned long strtab_size; /* Size of string table. */
7513 };
7514
7515 static bfd_boolean
7516 dump_ia64_unwind (Filedata * filedata, struct ia64_unw_aux_info * aux)
7517 {
7518 struct ia64_unw_table_entry * tp;
7519 unsigned long j, nfuns;
7520 int in_body;
7521 bfd_boolean res = TRUE;
7522
7523 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
7524 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
7525 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
7526 aux->funtab[nfuns++] = aux->symtab[j];
7527 aux->nfuns = nfuns;
7528 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
7529
7530 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
7531 {
7532 bfd_vma stamp;
7533 bfd_vma offset;
7534 const unsigned char * dp;
7535 const unsigned char * head;
7536 const unsigned char * end;
7537 const char * procname;
7538
7539 find_symbol_for_address (filedata, aux->funtab, aux->nfuns, aux->strtab,
7540 aux->strtab_size, tp->start, &procname, &offset);
7541
7542 fputs ("\n<", stdout);
7543
7544 if (procname)
7545 {
7546 fputs (procname, stdout);
7547
7548 if (offset)
7549 printf ("+%lx", (unsigned long) offset);
7550 }
7551
7552 fputs (">: [", stdout);
7553 print_vma (tp->start.offset, PREFIX_HEX);
7554 fputc ('-', stdout);
7555 print_vma (tp->end.offset, PREFIX_HEX);
7556 printf ("], info at +0x%lx\n",
7557 (unsigned long) (tp->info.offset - aux->seg_base));
7558
7559 /* PR 17531: file: 86232b32. */
7560 if (aux->info == NULL)
7561 continue;
7562
7563 offset = tp->info.offset;
7564 if (tp->info.section)
7565 {
7566 if (tp->info.section >= filedata->file_header.e_shnum)
7567 {
7568 warn (_("Invalid section %u in table entry %ld\n"),
7569 tp->info.section, (long) (tp - aux->table));
7570 res = FALSE;
7571 continue;
7572 }
7573 offset += filedata->section_headers[tp->info.section].sh_addr;
7574 }
7575 offset -= aux->info_addr;
7576 /* PR 17531: file: 0997b4d1. */
7577 if (offset >= aux->info_size
7578 || aux->info_size - offset < 8)
7579 {
7580 warn (_("Invalid offset %lx in table entry %ld\n"),
7581 (long) tp->info.offset, (long) (tp - aux->table));
7582 res = FALSE;
7583 continue;
7584 }
7585
7586 head = aux->info + offset;
7587 stamp = byte_get ((unsigned char *) head, sizeof (stamp));
7588
7589 printf (" v%u, flags=0x%lx (%s%s), len=%lu bytes\n",
7590 (unsigned) UNW_VER (stamp),
7591 (unsigned long) ((stamp & UNW_FLAG_MASK) >> 32),
7592 UNW_FLAG_EHANDLER (stamp) ? " ehandler" : "",
7593 UNW_FLAG_UHANDLER (stamp) ? " uhandler" : "",
7594 (unsigned long) (eh_addr_size * UNW_LENGTH (stamp)));
7595
7596 if (UNW_VER (stamp) != 1)
7597 {
7598 printf (_("\tUnknown version.\n"));
7599 continue;
7600 }
7601
7602 in_body = 0;
7603 end = head + 8 + eh_addr_size * UNW_LENGTH (stamp);
7604 /* PR 17531: file: 16ceda89. */
7605 if (end > aux->info + aux->info_size)
7606 end = aux->info + aux->info_size;
7607 for (dp = head + 8; dp < end;)
7608 dp = unw_decode (dp, in_body, & in_body, end);
7609 }
7610
7611 free (aux->funtab);
7612
7613 return res;
7614 }
7615
7616 static bfd_boolean
7617 slurp_ia64_unwind_table (Filedata * filedata,
7618 struct ia64_unw_aux_info * aux,
7619 Elf_Internal_Shdr * sec)
7620 {
7621 unsigned long size, nrelas, i;
7622 Elf_Internal_Phdr * seg;
7623 struct ia64_unw_table_entry * tep;
7624 Elf_Internal_Shdr * relsec;
7625 Elf_Internal_Rela * rela;
7626 Elf_Internal_Rela * rp;
7627 unsigned char * table;
7628 unsigned char * tp;
7629 Elf_Internal_Sym * sym;
7630 const char * relname;
7631
7632 aux->table_len = 0;
7633
7634 /* First, find the starting address of the segment that includes
7635 this section: */
7636
7637 if (filedata->file_header.e_phnum)
7638 {
7639 if (! get_program_headers (filedata))
7640 return FALSE;
7641
7642 for (seg = filedata->program_headers;
7643 seg < filedata->program_headers + filedata->file_header.e_phnum;
7644 ++seg)
7645 {
7646 if (seg->p_type != PT_LOAD)
7647 continue;
7648
7649 if (sec->sh_addr >= seg->p_vaddr
7650 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
7651 {
7652 aux->seg_base = seg->p_vaddr;
7653 break;
7654 }
7655 }
7656 }
7657
7658 /* Second, build the unwind table from the contents of the unwind section: */
7659 size = sec->sh_size;
7660 table = (unsigned char *) get_data (NULL, filedata, sec->sh_offset, 1, size,
7661 _("unwind table"));
7662 if (!table)
7663 return FALSE;
7664
7665 aux->table_len = size / (3 * eh_addr_size);
7666 aux->table = (struct ia64_unw_table_entry *)
7667 xcmalloc (aux->table_len, sizeof (aux->table[0]));
7668 tep = aux->table;
7669
7670 for (tp = table; tp <= table + size - (3 * eh_addr_size); ++tep)
7671 {
7672 tep->start.section = SHN_UNDEF;
7673 tep->end.section = SHN_UNDEF;
7674 tep->info.section = SHN_UNDEF;
7675 tep->start.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7676 tep->end.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7677 tep->info.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7678 tep->start.offset += aux->seg_base;
7679 tep->end.offset += aux->seg_base;
7680 tep->info.offset += aux->seg_base;
7681 }
7682 free (table);
7683
7684 /* Third, apply any relocations to the unwind table: */
7685 for (relsec = filedata->section_headers;
7686 relsec < filedata->section_headers + filedata->file_header.e_shnum;
7687 ++relsec)
7688 {
7689 if (relsec->sh_type != SHT_RELA
7690 || relsec->sh_info >= filedata->file_header.e_shnum
7691 || filedata->section_headers + relsec->sh_info != sec)
7692 continue;
7693
7694 if (!slurp_rela_relocs (filedata, relsec->sh_offset, relsec->sh_size,
7695 & rela, & nrelas))
7696 {
7697 free (aux->table);
7698 aux->table = NULL;
7699 aux->table_len = 0;
7700 return FALSE;
7701 }
7702
7703 for (rp = rela; rp < rela + nrelas; ++rp)
7704 {
7705 unsigned int sym_ndx;
7706 unsigned int r_type = get_reloc_type (filedata, rp->r_info);
7707 relname = elf_ia64_reloc_type (r_type);
7708
7709 /* PR 17531: file: 9fa67536. */
7710 if (relname == NULL)
7711 {
7712 warn (_("Skipping unknown relocation type: %u\n"), r_type);
7713 continue;
7714 }
7715
7716 if (! const_strneq (relname, "R_IA64_SEGREL"))
7717 {
7718 warn (_("Skipping unexpected relocation type: %s\n"), relname);
7719 continue;
7720 }
7721
7722 i = rp->r_offset / (3 * eh_addr_size);
7723
7724 /* PR 17531: file: 5bc8d9bf. */
7725 if (i >= aux->table_len)
7726 {
7727 warn (_("Skipping reloc with overlarge offset: %lx\n"), i);
7728 continue;
7729 }
7730
7731 sym_ndx = get_reloc_symindex (rp->r_info);
7732 if (sym_ndx >= aux->nsyms)
7733 {
7734 warn (_("Skipping reloc with invalid symbol index: %u\n"),
7735 sym_ndx);
7736 continue;
7737 }
7738 sym = aux->symtab + sym_ndx;
7739
7740 switch (rp->r_offset / eh_addr_size % 3)
7741 {
7742 case 0:
7743 aux->table[i].start.section = sym->st_shndx;
7744 aux->table[i].start.offset = rp->r_addend + sym->st_value;
7745 break;
7746 case 1:
7747 aux->table[i].end.section = sym->st_shndx;
7748 aux->table[i].end.offset = rp->r_addend + sym->st_value;
7749 break;
7750 case 2:
7751 aux->table[i].info.section = sym->st_shndx;
7752 aux->table[i].info.offset = rp->r_addend + sym->st_value;
7753 break;
7754 default:
7755 break;
7756 }
7757 }
7758
7759 free (rela);
7760 }
7761
7762 return TRUE;
7763 }
7764
7765 static bfd_boolean
7766 ia64_process_unwind (Filedata * filedata)
7767 {
7768 Elf_Internal_Shdr * sec;
7769 Elf_Internal_Shdr * unwsec = NULL;
7770 Elf_Internal_Shdr * strsec;
7771 unsigned long i, unwcount = 0, unwstart = 0;
7772 struct ia64_unw_aux_info aux;
7773 bfd_boolean res = TRUE;
7774
7775 memset (& aux, 0, sizeof (aux));
7776
7777 for (i = 0, sec = filedata->section_headers; i < filedata->file_header.e_shnum; ++i, ++sec)
7778 {
7779 if (sec->sh_type == SHT_SYMTAB
7780 && sec->sh_link < filedata->file_header.e_shnum)
7781 {
7782 aux.symtab = GET_ELF_SYMBOLS (filedata, sec, & aux.nsyms);
7783
7784 strsec = filedata->section_headers + sec->sh_link;
7785 if (aux.strtab != NULL)
7786 {
7787 error (_("Multiple auxillary string tables encountered\n"));
7788 free (aux.strtab);
7789 res = FALSE;
7790 }
7791 aux.strtab = (char *) get_data (NULL, filedata, strsec->sh_offset,
7792 1, strsec->sh_size,
7793 _("string table"));
7794 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7795 }
7796 else if (sec->sh_type == SHT_IA_64_UNWIND)
7797 unwcount++;
7798 }
7799
7800 if (!unwcount)
7801 printf (_("\nThere are no unwind sections in this file.\n"));
7802
7803 while (unwcount-- > 0)
7804 {
7805 char * suffix;
7806 size_t len, len2;
7807
7808 for (i = unwstart, sec = filedata->section_headers + unwstart, unwsec = NULL;
7809 i < filedata->file_header.e_shnum; ++i, ++sec)
7810 if (sec->sh_type == SHT_IA_64_UNWIND)
7811 {
7812 unwsec = sec;
7813 break;
7814 }
7815 /* We have already counted the number of SHT_IA64_UNWIND
7816 sections so the loop above should never fail. */
7817 assert (unwsec != NULL);
7818
7819 unwstart = i + 1;
7820 len = sizeof (ELF_STRING_ia64_unwind_once) - 1;
7821
7822 if ((unwsec->sh_flags & SHF_GROUP) != 0)
7823 {
7824 /* We need to find which section group it is in. */
7825 struct group_list * g;
7826
7827 if (section_headers_groups == NULL
7828 || section_headers_groups [i] == NULL)
7829 i = filedata->file_header.e_shnum;
7830 else
7831 {
7832 g = section_headers_groups [i]->root;
7833
7834 for (; g != NULL; g = g->next)
7835 {
7836 sec = filedata->section_headers + g->section_index;
7837
7838 if (streq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info))
7839 break;
7840 }
7841
7842 if (g == NULL)
7843 i = filedata->file_header.e_shnum;
7844 }
7845 }
7846 else if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind_once, len))
7847 {
7848 /* .gnu.linkonce.ia64unw.FOO -> .gnu.linkonce.ia64unwi.FOO. */
7849 len2 = sizeof (ELF_STRING_ia64_unwind_info_once) - 1;
7850 suffix = SECTION_NAME (unwsec) + len;
7851 for (i = 0, sec = filedata->section_headers; i < filedata->file_header.e_shnum;
7852 ++i, ++sec)
7853 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info_once, len2)
7854 && streq (SECTION_NAME (sec) + len2, suffix))
7855 break;
7856 }
7857 else
7858 {
7859 /* .IA_64.unwindFOO -> .IA_64.unwind_infoFOO
7860 .IA_64.unwind or BAR -> .IA_64.unwind_info. */
7861 len = sizeof (ELF_STRING_ia64_unwind) - 1;
7862 len2 = sizeof (ELF_STRING_ia64_unwind_info) - 1;
7863 suffix = "";
7864 if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind, len))
7865 suffix = SECTION_NAME (unwsec) + len;
7866 for (i = 0, sec = filedata->section_headers; i < filedata->file_header.e_shnum;
7867 ++i, ++sec)
7868 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info, len2)
7869 && streq (SECTION_NAME (sec) + len2, suffix))
7870 break;
7871 }
7872
7873 if (i == filedata->file_header.e_shnum)
7874 {
7875 printf (_("\nCould not find unwind info section for "));
7876
7877 if (filedata->string_table == NULL)
7878 printf ("%d", unwsec->sh_name);
7879 else
7880 printf ("'%s'", printable_section_name (filedata, unwsec));
7881 }
7882 else
7883 {
7884 aux.info_addr = sec->sh_addr;
7885 aux.info = (unsigned char *) get_data (NULL, filedata, sec->sh_offset, 1,
7886 sec->sh_size,
7887 _("unwind info"));
7888 aux.info_size = aux.info == NULL ? 0 : sec->sh_size;
7889
7890 printf (_("\nUnwind section "));
7891
7892 if (filedata->string_table == NULL)
7893 printf ("%d", unwsec->sh_name);
7894 else
7895 printf ("'%s'", printable_section_name (filedata, unwsec));
7896
7897 printf (_(" at offset 0x%lx contains %lu entries:\n"),
7898 (unsigned long) unwsec->sh_offset,
7899 (unsigned long) (unwsec->sh_size / (3 * eh_addr_size)));
7900
7901 if (slurp_ia64_unwind_table (filedata, & aux, unwsec)
7902 && aux.table_len > 0)
7903 dump_ia64_unwind (filedata, & aux);
7904
7905 if (aux.table)
7906 free ((char *) aux.table);
7907 if (aux.info)
7908 free ((char *) aux.info);
7909 aux.table = NULL;
7910 aux.info = NULL;
7911 }
7912 }
7913
7914 if (aux.symtab)
7915 free (aux.symtab);
7916 if (aux.strtab)
7917 free ((char *) aux.strtab);
7918
7919 return res;
7920 }
7921
7922 struct hppa_unw_table_entry
7923 {
7924 struct absaddr start;
7925 struct absaddr end;
7926 unsigned int Cannot_unwind:1; /* 0 */
7927 unsigned int Millicode:1; /* 1 */
7928 unsigned int Millicode_save_sr0:1; /* 2 */
7929 unsigned int Region_description:2; /* 3..4 */
7930 unsigned int reserved1:1; /* 5 */
7931 unsigned int Entry_SR:1; /* 6 */
7932 unsigned int Entry_FR:4; /* Number saved 7..10 */
7933 unsigned int Entry_GR:5; /* Number saved 11..15 */
7934 unsigned int Args_stored:1; /* 16 */
7935 unsigned int Variable_Frame:1; /* 17 */
7936 unsigned int Separate_Package_Body:1; /* 18 */
7937 unsigned int Frame_Extension_Millicode:1; /* 19 */
7938 unsigned int Stack_Overflow_Check:1; /* 20 */
7939 unsigned int Two_Instruction_SP_Increment:1; /* 21 */
7940 unsigned int Ada_Region:1; /* 22 */
7941 unsigned int cxx_info:1; /* 23 */
7942 unsigned int cxx_try_catch:1; /* 24 */
7943 unsigned int sched_entry_seq:1; /* 25 */
7944 unsigned int reserved2:1; /* 26 */
7945 unsigned int Save_SP:1; /* 27 */
7946 unsigned int Save_RP:1; /* 28 */
7947 unsigned int Save_MRP_in_frame:1; /* 29 */
7948 unsigned int extn_ptr_defined:1; /* 30 */
7949 unsigned int Cleanup_defined:1; /* 31 */
7950
7951 unsigned int MPE_XL_interrupt_marker:1; /* 0 */
7952 unsigned int HP_UX_interrupt_marker:1; /* 1 */
7953 unsigned int Large_frame:1; /* 2 */
7954 unsigned int Pseudo_SP_Set:1; /* 3 */
7955 unsigned int reserved4:1; /* 4 */
7956 unsigned int Total_frame_size:27; /* 5..31 */
7957 };
7958
7959 struct hppa_unw_aux_info
7960 {
7961 struct hppa_unw_table_entry * table; /* Unwind table. */
7962 unsigned long table_len; /* Length of unwind table. */
7963 bfd_vma seg_base; /* Starting address of segment. */
7964 Elf_Internal_Sym * symtab; /* The symbol table. */
7965 unsigned long nsyms; /* Number of symbols. */
7966 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7967 unsigned long nfuns; /* Number of entries in funtab. */
7968 char * strtab; /* The string table. */
7969 unsigned long strtab_size; /* Size of string table. */
7970 };
7971
7972 static bfd_boolean
7973 dump_hppa_unwind (Filedata * filedata, struct hppa_unw_aux_info * aux)
7974 {
7975 struct hppa_unw_table_entry * tp;
7976 unsigned long j, nfuns;
7977 bfd_boolean res = TRUE;
7978
7979 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
7980 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
7981 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
7982 aux->funtab[nfuns++] = aux->symtab[j];
7983 aux->nfuns = nfuns;
7984 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
7985
7986 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
7987 {
7988 bfd_vma offset;
7989 const char * procname;
7990
7991 find_symbol_for_address (filedata, aux->funtab, aux->nfuns, aux->strtab,
7992 aux->strtab_size, tp->start, &procname,
7993 &offset);
7994
7995 fputs ("\n<", stdout);
7996
7997 if (procname)
7998 {
7999 fputs (procname, stdout);
8000
8001 if (offset)
8002 printf ("+%lx", (unsigned long) offset);
8003 }
8004
8005 fputs (">: [", stdout);
8006 print_vma (tp->start.offset, PREFIX_HEX);
8007 fputc ('-', stdout);
8008 print_vma (tp->end.offset, PREFIX_HEX);
8009 printf ("]\n\t");
8010
8011 #define PF(_m) if (tp->_m) printf (#_m " ");
8012 #define PV(_m) if (tp->_m) printf (#_m "=%d ", tp->_m);
8013 PF(Cannot_unwind);
8014 PF(Millicode);
8015 PF(Millicode_save_sr0);
8016 /* PV(Region_description); */
8017 PF(Entry_SR);
8018 PV(Entry_FR);
8019 PV(Entry_GR);
8020 PF(Args_stored);
8021 PF(Variable_Frame);
8022 PF(Separate_Package_Body);
8023 PF(Frame_Extension_Millicode);
8024 PF(Stack_Overflow_Check);
8025 PF(Two_Instruction_SP_Increment);
8026 PF(Ada_Region);
8027 PF(cxx_info);
8028 PF(cxx_try_catch);
8029 PF(sched_entry_seq);
8030 PF(Save_SP);
8031 PF(Save_RP);
8032 PF(Save_MRP_in_frame);
8033 PF(extn_ptr_defined);
8034 PF(Cleanup_defined);
8035 PF(MPE_XL_interrupt_marker);
8036 PF(HP_UX_interrupt_marker);
8037 PF(Large_frame);
8038 PF(Pseudo_SP_Set);
8039 PV(Total_frame_size);
8040 #undef PF
8041 #undef PV
8042 }
8043
8044 printf ("\n");
8045
8046 free (aux->funtab);
8047
8048 return res;
8049 }
8050
8051 static bfd_boolean
8052 slurp_hppa_unwind_table (Filedata * filedata,
8053 struct hppa_unw_aux_info * aux,
8054 Elf_Internal_Shdr * sec)
8055 {
8056 unsigned long size, unw_ent_size, nentries, nrelas, i;
8057 Elf_Internal_Phdr * seg;
8058 struct hppa_unw_table_entry * tep;
8059 Elf_Internal_Shdr * relsec;
8060 Elf_Internal_Rela * rela;
8061 Elf_Internal_Rela * rp;
8062 unsigned char * table;
8063 unsigned char * tp;
8064 Elf_Internal_Sym * sym;
8065 const char * relname;
8066
8067 /* First, find the starting address of the segment that includes
8068 this section. */
8069 if (filedata->file_header.e_phnum)
8070 {
8071 if (! get_program_headers (filedata))
8072 return FALSE;
8073
8074 for (seg = filedata->program_headers;
8075 seg < filedata->program_headers + filedata->file_header.e_phnum;
8076 ++seg)
8077 {
8078 if (seg->p_type != PT_LOAD)
8079 continue;
8080
8081 if (sec->sh_addr >= seg->p_vaddr
8082 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
8083 {
8084 aux->seg_base = seg->p_vaddr;
8085 break;
8086 }
8087 }
8088 }
8089
8090 /* Second, build the unwind table from the contents of the unwind
8091 section. */
8092 size = sec->sh_size;
8093 table = (unsigned char *) get_data (NULL, filedata, sec->sh_offset, 1, size,
8094 _("unwind table"));
8095 if (!table)
8096 return FALSE;
8097
8098 unw_ent_size = 16;
8099 nentries = size / unw_ent_size;
8100 size = unw_ent_size * nentries;
8101
8102 tep = aux->table = (struct hppa_unw_table_entry *)
8103 xcmalloc (nentries, sizeof (aux->table[0]));
8104
8105 for (tp = table; tp < table + size; tp += unw_ent_size, ++tep)
8106 {
8107 unsigned int tmp1, tmp2;
8108
8109 tep->start.section = SHN_UNDEF;
8110 tep->end.section = SHN_UNDEF;
8111
8112 tep->start.offset = byte_get ((unsigned char *) tp + 0, 4);
8113 tep->end.offset = byte_get ((unsigned char *) tp + 4, 4);
8114 tmp1 = byte_get ((unsigned char *) tp + 8, 4);
8115 tmp2 = byte_get ((unsigned char *) tp + 12, 4);
8116
8117 tep->start.offset += aux->seg_base;
8118 tep->end.offset += aux->seg_base;
8119
8120 tep->Cannot_unwind = (tmp1 >> 31) & 0x1;
8121 tep->Millicode = (tmp1 >> 30) & 0x1;
8122 tep->Millicode_save_sr0 = (tmp1 >> 29) & 0x1;
8123 tep->Region_description = (tmp1 >> 27) & 0x3;
8124 tep->reserved1 = (tmp1 >> 26) & 0x1;
8125 tep->Entry_SR = (tmp1 >> 25) & 0x1;
8126 tep->Entry_FR = (tmp1 >> 21) & 0xf;
8127 tep->Entry_GR = (tmp1 >> 16) & 0x1f;
8128 tep->Args_stored = (tmp1 >> 15) & 0x1;
8129 tep->Variable_Frame = (tmp1 >> 14) & 0x1;
8130 tep->Separate_Package_Body = (tmp1 >> 13) & 0x1;
8131 tep->Frame_Extension_Millicode = (tmp1 >> 12) & 0x1;
8132 tep->Stack_Overflow_Check = (tmp1 >> 11) & 0x1;
8133 tep->Two_Instruction_SP_Increment = (tmp1 >> 10) & 0x1;
8134 tep->Ada_Region = (tmp1 >> 9) & 0x1;
8135 tep->cxx_info = (tmp1 >> 8) & 0x1;
8136 tep->cxx_try_catch = (tmp1 >> 7) & 0x1;
8137 tep->sched_entry_seq = (tmp1 >> 6) & 0x1;
8138 tep->reserved2 = (tmp1 >> 5) & 0x1;
8139 tep->Save_SP = (tmp1 >> 4) & 0x1;
8140 tep->Save_RP = (tmp1 >> 3) & 0x1;
8141 tep->Save_MRP_in_frame = (tmp1 >> 2) & 0x1;
8142 tep->extn_ptr_defined = (tmp1 >> 1) & 0x1;
8143 tep->Cleanup_defined = tmp1 & 0x1;
8144
8145 tep->MPE_XL_interrupt_marker = (tmp2 >> 31) & 0x1;
8146 tep->HP_UX_interrupt_marker = (tmp2 >> 30) & 0x1;
8147 tep->Large_frame = (tmp2 >> 29) & 0x1;
8148 tep->Pseudo_SP_Set = (tmp2 >> 28) & 0x1;
8149 tep->reserved4 = (tmp2 >> 27) & 0x1;
8150 tep->Total_frame_size = tmp2 & 0x7ffffff;
8151 }
8152 free (table);
8153
8154 /* Third, apply any relocations to the unwind table. */
8155 for (relsec = filedata->section_headers;
8156 relsec < filedata->section_headers + filedata->file_header.e_shnum;
8157 ++relsec)
8158 {
8159 if (relsec->sh_type != SHT_RELA
8160 || relsec->sh_info >= filedata->file_header.e_shnum
8161 || filedata->section_headers + relsec->sh_info != sec)
8162 continue;
8163
8164 if (!slurp_rela_relocs (filedata, relsec->sh_offset, relsec->sh_size,
8165 & rela, & nrelas))
8166 return FALSE;
8167
8168 for (rp = rela; rp < rela + nrelas; ++rp)
8169 {
8170 unsigned int sym_ndx;
8171 unsigned int r_type = get_reloc_type (filedata, rp->r_info);
8172 relname = elf_hppa_reloc_type (r_type);
8173
8174 if (relname == NULL)
8175 {
8176 warn (_("Skipping unknown relocation type: %u\n"), r_type);
8177 continue;
8178 }
8179
8180 /* R_PARISC_SEGREL32 or R_PARISC_SEGREL64. */
8181 if (! const_strneq (relname, "R_PARISC_SEGREL"))
8182 {
8183 warn (_("Skipping unexpected relocation type: %s\n"), relname);
8184 continue;
8185 }
8186
8187 i = rp->r_offset / unw_ent_size;
8188 if (i >= aux->table_len)
8189 {
8190 warn (_("Skipping reloc with overlarge offset: %lx\n"), i);
8191 continue;
8192 }
8193
8194 sym_ndx = get_reloc_symindex (rp->r_info);
8195 if (sym_ndx >= aux->nsyms)
8196 {
8197 warn (_("Skipping reloc with invalid symbol index: %u\n"),
8198 sym_ndx);
8199 continue;
8200 }
8201 sym = aux->symtab + sym_ndx;
8202
8203 switch ((rp->r_offset % unw_ent_size) / 4)
8204 {
8205 case 0:
8206 aux->table[i].start.section = sym->st_shndx;
8207 aux->table[i].start.offset = sym->st_value + rp->r_addend;
8208 break;
8209 case 1:
8210 aux->table[i].end.section = sym->st_shndx;
8211 aux->table[i].end.offset = sym->st_value + rp->r_addend;
8212 break;
8213 default:
8214 break;
8215 }
8216 }
8217
8218 free (rela);
8219 }
8220
8221 aux->table_len = nentries;
8222
8223 return TRUE;
8224 }
8225
8226 static bfd_boolean
8227 hppa_process_unwind (Filedata * filedata)
8228 {
8229 struct hppa_unw_aux_info aux;
8230 Elf_Internal_Shdr * unwsec = NULL;
8231 Elf_Internal_Shdr * strsec;
8232 Elf_Internal_Shdr * sec;
8233 unsigned long i;
8234 bfd_boolean res = TRUE;
8235
8236 if (filedata->string_table == NULL)
8237 return FALSE;
8238
8239 memset (& aux, 0, sizeof (aux));
8240
8241 for (i = 0, sec = filedata->section_headers; i < filedata->file_header.e_shnum; ++i, ++sec)
8242 {
8243 if (sec->sh_type == SHT_SYMTAB
8244 && sec->sh_link < filedata->file_header.e_shnum)
8245 {
8246 aux.symtab = GET_ELF_SYMBOLS (filedata, sec, & aux.nsyms);
8247
8248 strsec = filedata->section_headers + sec->sh_link;
8249 if (aux.strtab != NULL)
8250 {
8251 error (_("Multiple auxillary string tables encountered\n"));
8252 free (aux.strtab);
8253 res = FALSE;
8254 }
8255 aux.strtab = (char *) get_data (NULL, filedata, strsec->sh_offset,
8256 1, strsec->sh_size,
8257 _("string table"));
8258 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
8259 }
8260 else if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
8261 unwsec = sec;
8262 }
8263
8264 if (!unwsec)
8265 printf (_("\nThere are no unwind sections in this file.\n"));
8266
8267 for (i = 0, sec = filedata->section_headers; i < filedata->file_header.e_shnum; ++i, ++sec)
8268 {
8269 if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
8270 {
8271 unsigned long num_unwind = sec->sh_size / 16;
8272
8273 printf (ngettext ("\nUnwind section '%s' at offset 0x%lx "
8274 "contains %lu entry:\n",
8275 "\nUnwind section '%s' at offset 0x%lx "
8276 "contains %lu entries:\n",
8277 num_unwind),
8278 printable_section_name (filedata, sec),
8279 (unsigned long) sec->sh_offset,
8280 num_unwind);
8281
8282 if (! slurp_hppa_unwind_table (filedata, &aux, sec))
8283 res = FALSE;
8284
8285 if (res && aux.table_len > 0)
8286 {
8287 if (! dump_hppa_unwind (filedata, &aux))
8288 res = FALSE;
8289 }
8290
8291 if (aux.table)
8292 free ((char *) aux.table);
8293 aux.table = NULL;
8294 }
8295 }
8296
8297 if (aux.symtab)
8298 free (aux.symtab);
8299 if (aux.strtab)
8300 free ((char *) aux.strtab);
8301
8302 return res;
8303 }
8304
8305 struct arm_section
8306 {
8307 unsigned char * data; /* The unwind data. */
8308 Elf_Internal_Shdr * sec; /* The cached unwind section header. */
8309 Elf_Internal_Rela * rela; /* The cached relocations for this section. */
8310 unsigned long nrelas; /* The number of relocations. */
8311 unsigned int rel_type; /* REL or RELA ? */
8312 Elf_Internal_Rela * next_rela; /* Cyclic pointer to the next reloc to process. */
8313 };
8314
8315 struct arm_unw_aux_info
8316 {
8317 Filedata * filedata; /* The file containing the unwind sections. */
8318 Elf_Internal_Sym * symtab; /* The file's symbol table. */
8319 unsigned long nsyms; /* Number of symbols. */
8320 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
8321 unsigned long nfuns; /* Number of these symbols. */
8322 char * strtab; /* The file's string table. */
8323 unsigned long strtab_size; /* Size of string table. */
8324 };
8325
8326 static const char *
8327 arm_print_vma_and_name (Filedata * filedata,
8328 struct arm_unw_aux_info * aux,
8329 bfd_vma fn,
8330 struct absaddr addr)
8331 {
8332 const char *procname;
8333 bfd_vma sym_offset;
8334
8335 if (addr.section == SHN_UNDEF)
8336 addr.offset = fn;
8337
8338 find_symbol_for_address (filedata, aux->funtab, aux->nfuns, aux->strtab,
8339 aux->strtab_size, addr, &procname,
8340 &sym_offset);
8341
8342 print_vma (fn, PREFIX_HEX);
8343
8344 if (procname)
8345 {
8346 fputs (" <", stdout);
8347 fputs (procname, stdout);
8348
8349 if (sym_offset)
8350 printf ("+0x%lx", (unsigned long) sym_offset);
8351 fputc ('>', stdout);
8352 }
8353
8354 return procname;
8355 }
8356
8357 static void
8358 arm_free_section (struct arm_section *arm_sec)
8359 {
8360 if (arm_sec->data != NULL)
8361 free (arm_sec->data);
8362
8363 if (arm_sec->rela != NULL)
8364 free (arm_sec->rela);
8365 }
8366
8367 /* 1) If SEC does not match the one cached in ARM_SEC, then free the current
8368 cached section and install SEC instead.
8369 2) Locate the 32-bit word at WORD_OFFSET in unwind section SEC
8370 and return its valued in * WORDP, relocating if necessary.
8371 3) Update the NEXT_RELA field in ARM_SEC and store the section index and
8372 relocation's offset in ADDR.
8373 4) If SYM_NAME is non-NULL and a relocation was applied, record the offset
8374 into the string table of the symbol associated with the reloc. If no
8375 reloc was applied store -1 there.
8376 5) Return TRUE upon success, FALSE otherwise. */
8377
8378 static bfd_boolean
8379 get_unwind_section_word (Filedata * filedata,
8380 struct arm_unw_aux_info * aux,
8381 struct arm_section * arm_sec,
8382 Elf_Internal_Shdr * sec,
8383 bfd_vma word_offset,
8384 unsigned int * wordp,
8385 struct absaddr * addr,
8386 bfd_vma * sym_name)
8387 {
8388 Elf_Internal_Rela *rp;
8389 Elf_Internal_Sym *sym;
8390 const char * relname;
8391 unsigned int word;
8392 bfd_boolean wrapped;
8393
8394 if (sec == NULL || arm_sec == NULL)
8395 return FALSE;
8396
8397 addr->section = SHN_UNDEF;
8398 addr->offset = 0;
8399
8400 if (sym_name != NULL)
8401 *sym_name = (bfd_vma) -1;
8402
8403 /* If necessary, update the section cache. */
8404 if (sec != arm_sec->sec)
8405 {
8406 Elf_Internal_Shdr *relsec;
8407
8408 arm_free_section (arm_sec);
8409
8410 arm_sec->sec = sec;
8411 arm_sec->data = get_data (NULL, aux->filedata, sec->sh_offset, 1,
8412 sec->sh_size, _("unwind data"));
8413 arm_sec->rela = NULL;
8414 arm_sec->nrelas = 0;
8415
8416 for (relsec = filedata->section_headers;
8417 relsec < filedata->section_headers + filedata->file_header.e_shnum;
8418 ++relsec)
8419 {
8420 if (relsec->sh_info >= filedata->file_header.e_shnum
8421 || filedata->section_headers + relsec->sh_info != sec
8422 /* PR 15745: Check the section type as well. */
8423 || (relsec->sh_type != SHT_REL
8424 && relsec->sh_type != SHT_RELA))
8425 continue;
8426
8427 arm_sec->rel_type = relsec->sh_type;
8428 if (relsec->sh_type == SHT_REL)
8429 {
8430 if (!slurp_rel_relocs (aux->filedata, relsec->sh_offset,
8431 relsec->sh_size,
8432 & arm_sec->rela, & arm_sec->nrelas))
8433 return FALSE;
8434 }
8435 else /* relsec->sh_type == SHT_RELA */
8436 {
8437 if (!slurp_rela_relocs (aux->filedata, relsec->sh_offset,
8438 relsec->sh_size,
8439 & arm_sec->rela, & arm_sec->nrelas))
8440 return FALSE;
8441 }
8442 break;
8443 }
8444
8445 arm_sec->next_rela = arm_sec->rela;
8446 }
8447
8448 /* If there is no unwind data we can do nothing. */
8449 if (arm_sec->data == NULL)
8450 return FALSE;
8451
8452 /* If the offset is invalid then fail. */
8453 if (/* PR 21343 *//* PR 18879 */
8454 sec->sh_size < 4
8455 || word_offset > (sec->sh_size - 4)
8456 || ((bfd_signed_vma) word_offset) < 0)
8457 return FALSE;
8458
8459 /* Get the word at the required offset. */
8460 word = byte_get (arm_sec->data + word_offset, 4);
8461
8462 /* PR 17531: file: id:000001,src:001266+003044,op:splice,rep:128. */
8463 if (arm_sec->rela == NULL)
8464 {
8465 * wordp = word;
8466 return TRUE;
8467 }
8468
8469 /* Look through the relocs to find the one that applies to the provided offset. */
8470 wrapped = FALSE;
8471 for (rp = arm_sec->next_rela; rp != arm_sec->rela + arm_sec->nrelas; rp++)
8472 {
8473 bfd_vma prelval, offset;
8474
8475 if (rp->r_offset > word_offset && !wrapped)
8476 {
8477 rp = arm_sec->rela;
8478 wrapped = TRUE;
8479 }
8480 if (rp->r_offset > word_offset)
8481 break;
8482
8483 if (rp->r_offset & 3)
8484 {
8485 warn (_("Skipping unexpected relocation at offset 0x%lx\n"),
8486 (unsigned long) rp->r_offset);
8487 continue;
8488 }
8489
8490 if (rp->r_offset < word_offset)
8491 continue;
8492
8493 /* PR 17531: file: 027-161405-0.004 */
8494 if (aux->symtab == NULL)
8495 continue;
8496
8497 if (arm_sec->rel_type == SHT_REL)
8498 {
8499 offset = word & 0x7fffffff;
8500 if (offset & 0x40000000)
8501 offset |= ~ (bfd_vma) 0x7fffffff;
8502 }
8503 else if (arm_sec->rel_type == SHT_RELA)
8504 offset = rp->r_addend;
8505 else
8506 {
8507 error (_("Unknown section relocation type %d encountered\n"),
8508 arm_sec->rel_type);
8509 break;
8510 }
8511
8512 /* PR 17531 file: 027-1241568-0.004. */
8513 if (ELF32_R_SYM (rp->r_info) >= aux->nsyms)
8514 {
8515 error (_("Bad symbol index in unwind relocation (%lu > %lu)\n"),
8516 (unsigned long) ELF32_R_SYM (rp->r_info), aux->nsyms);
8517 break;
8518 }
8519
8520 sym = aux->symtab + ELF32_R_SYM (rp->r_info);
8521 offset += sym->st_value;
8522 prelval = offset - (arm_sec->sec->sh_addr + rp->r_offset);
8523
8524 /* Check that we are processing the expected reloc type. */
8525 if (filedata->file_header.e_machine == EM_ARM)
8526 {
8527 relname = elf_arm_reloc_type (ELF32_R_TYPE (rp->r_info));
8528 if (relname == NULL)
8529 {
8530 warn (_("Skipping unknown ARM relocation type: %d\n"),
8531 (int) ELF32_R_TYPE (rp->r_info));
8532 continue;
8533 }
8534
8535 if (streq (relname, "R_ARM_NONE"))
8536 continue;
8537
8538 if (! streq (relname, "R_ARM_PREL31"))
8539 {
8540 warn (_("Skipping unexpected ARM relocation type %s\n"), relname);
8541 continue;
8542 }
8543 }
8544 else if (filedata->file_header.e_machine == EM_TI_C6000)
8545 {
8546 relname = elf_tic6x_reloc_type (ELF32_R_TYPE (rp->r_info));
8547 if (relname == NULL)
8548 {
8549 warn (_("Skipping unknown C6000 relocation type: %d\n"),
8550 (int) ELF32_R_TYPE (rp->r_info));
8551 continue;
8552 }
8553
8554 if (streq (relname, "R_C6000_NONE"))
8555 continue;
8556
8557 if (! streq (relname, "R_C6000_PREL31"))
8558 {
8559 warn (_("Skipping unexpected C6000 relocation type %s\n"), relname);
8560 continue;
8561 }
8562
8563 prelval >>= 1;
8564 }
8565 else
8566 {
8567 /* This function currently only supports ARM and TI unwinders. */
8568 warn (_("Only TI and ARM unwinders are currently supported\n"));
8569 break;
8570 }
8571
8572 word = (word & ~ (bfd_vma) 0x7fffffff) | (prelval & 0x7fffffff);
8573 addr->section = sym->st_shndx;
8574 addr->offset = offset;
8575
8576 if (sym_name)
8577 * sym_name = sym->st_name;
8578 break;
8579 }
8580
8581 *wordp = word;
8582 arm_sec->next_rela = rp;
8583
8584 return TRUE;
8585 }
8586
8587 static const char *tic6x_unwind_regnames[16] =
8588 {
8589 "A15", "B15", "B14", "B13", "B12", "B11", "B10", "B3",
8590 "A14", "A13", "A12", "A11", "A10",
8591 "[invalid reg 13]", "[invalid reg 14]", "[invalid reg 15]"
8592 };
8593
8594 static void
8595 decode_tic6x_unwind_regmask (unsigned int mask)
8596 {
8597 int i;
8598
8599 for (i = 12; mask; mask >>= 1, i--)
8600 {
8601 if (mask & 1)
8602 {
8603 fputs (tic6x_unwind_regnames[i], stdout);
8604 if (mask > 1)
8605 fputs (", ", stdout);
8606 }
8607 }
8608 }
8609
8610 #define ADVANCE \
8611 if (remaining == 0 && more_words) \
8612 { \
8613 data_offset += 4; \
8614 if (! get_unwind_section_word (filedata, aux, data_arm_sec, data_sec, \
8615 data_offset, & word, & addr, NULL)) \
8616 return FALSE; \
8617 remaining = 4; \
8618 more_words--; \
8619 } \
8620
8621 #define GET_OP(OP) \
8622 ADVANCE; \
8623 if (remaining) \
8624 { \
8625 remaining--; \
8626 (OP) = word >> 24; \
8627 word <<= 8; \
8628 } \
8629 else \
8630 { \
8631 printf (_("[Truncated opcode]\n")); \
8632 return FALSE; \
8633 } \
8634 printf ("0x%02x ", OP)
8635
8636 static bfd_boolean
8637 decode_arm_unwind_bytecode (Filedata * filedata,
8638 struct arm_unw_aux_info * aux,
8639 unsigned int word,
8640 unsigned int remaining,
8641 unsigned int more_words,
8642 bfd_vma data_offset,
8643 Elf_Internal_Shdr * data_sec,
8644 struct arm_section * data_arm_sec)
8645 {
8646 struct absaddr addr;
8647 bfd_boolean res = TRUE;
8648
8649 /* Decode the unwinding instructions. */
8650 while (1)
8651 {
8652 unsigned int op, op2;
8653
8654 ADVANCE;
8655 if (remaining == 0)
8656 break;
8657 remaining--;
8658 op = word >> 24;
8659 word <<= 8;
8660
8661 printf (" 0x%02x ", op);
8662
8663 if ((op & 0xc0) == 0x00)
8664 {
8665 int offset = ((op & 0x3f) << 2) + 4;
8666
8667 printf (" vsp = vsp + %d", offset);
8668 }
8669 else if ((op & 0xc0) == 0x40)
8670 {
8671 int offset = ((op & 0x3f) << 2) + 4;
8672
8673 printf (" vsp = vsp - %d", offset);
8674 }
8675 else if ((op & 0xf0) == 0x80)
8676 {
8677 GET_OP (op2);
8678 if (op == 0x80 && op2 == 0)
8679 printf (_("Refuse to unwind"));
8680 else
8681 {
8682 unsigned int mask = ((op & 0x0f) << 8) | op2;
8683 bfd_boolean first = TRUE;
8684 int i;
8685
8686 printf ("pop {");
8687 for (i = 0; i < 12; i++)
8688 if (mask & (1 << i))
8689 {
8690 if (first)
8691 first = FALSE;
8692 else
8693 printf (", ");
8694 printf ("r%d", 4 + i);
8695 }
8696 printf ("}");
8697 }
8698 }
8699 else if ((op & 0xf0) == 0x90)
8700 {
8701 if (op == 0x9d || op == 0x9f)
8702 printf (_(" [Reserved]"));
8703 else
8704 printf (" vsp = r%d", op & 0x0f);
8705 }
8706 else if ((op & 0xf0) == 0xa0)
8707 {
8708 int end = 4 + (op & 0x07);
8709 bfd_boolean first = TRUE;
8710 int i;
8711
8712 printf (" pop {");
8713 for (i = 4; i <= end; i++)
8714 {
8715 if (first)
8716 first = FALSE;
8717 else
8718 printf (", ");
8719 printf ("r%d", i);
8720 }
8721 if (op & 0x08)
8722 {
8723 if (!first)
8724 printf (", ");
8725 printf ("r14");
8726 }
8727 printf ("}");
8728 }
8729 else if (op == 0xb0)
8730 printf (_(" finish"));
8731 else if (op == 0xb1)
8732 {
8733 GET_OP (op2);
8734 if (op2 == 0 || (op2 & 0xf0) != 0)
8735 printf (_("[Spare]"));
8736 else
8737 {
8738 unsigned int mask = op2 & 0x0f;
8739 bfd_boolean first = TRUE;
8740 int i;
8741
8742 printf ("pop {");
8743 for (i = 0; i < 12; i++)
8744 if (mask & (1 << i))
8745 {
8746 if (first)
8747 first = FALSE;
8748 else
8749 printf (", ");
8750 printf ("r%d", i);
8751 }
8752 printf ("}");
8753 }
8754 }
8755 else if (op == 0xb2)
8756 {
8757 unsigned char buf[9];
8758 unsigned int i, len;
8759 unsigned long offset;
8760
8761 for (i = 0; i < sizeof (buf); i++)
8762 {
8763 GET_OP (buf[i]);
8764 if ((buf[i] & 0x80) == 0)
8765 break;
8766 }
8767 if (i == sizeof (buf))
8768 {
8769 error (_("corrupt change to vsp"));
8770 res = FALSE;
8771 }
8772 else
8773 {
8774 offset = read_uleb128 (buf, &len, buf + i + 1);
8775 assert (len == i + 1);
8776 offset = offset * 4 + 0x204;
8777 printf ("vsp = vsp + %ld", offset);
8778 }
8779 }
8780 else if (op == 0xb3 || op == 0xc8 || op == 0xc9)
8781 {
8782 unsigned int first, last;
8783
8784 GET_OP (op2);
8785 first = op2 >> 4;
8786 last = op2 & 0x0f;
8787 if (op == 0xc8)
8788 first = first + 16;
8789 printf ("pop {D%d", first);
8790 if (last)
8791 printf ("-D%d", first + last);
8792 printf ("}");
8793 }
8794 else if ((op & 0xf8) == 0xb8 || (op & 0xf8) == 0xd0)
8795 {
8796 unsigned int count = op & 0x07;
8797
8798 printf ("pop {D8");
8799 if (count)
8800 printf ("-D%d", 8 + count);
8801 printf ("}");
8802 }
8803 else if (op >= 0xc0 && op <= 0xc5)
8804 {
8805 unsigned int count = op & 0x07;
8806
8807 printf (" pop {wR10");
8808 if (count)
8809 printf ("-wR%d", 10 + count);
8810 printf ("}");
8811 }
8812 else if (op == 0xc6)
8813 {
8814 unsigned int first, last;
8815
8816 GET_OP (op2);
8817 first = op2 >> 4;
8818 last = op2 & 0x0f;
8819 printf ("pop {wR%d", first);
8820 if (last)
8821 printf ("-wR%d", first + last);
8822 printf ("}");
8823 }
8824 else if (op == 0xc7)
8825 {
8826 GET_OP (op2);
8827 if (op2 == 0 || (op2 & 0xf0) != 0)
8828 printf (_("[Spare]"));
8829 else
8830 {
8831 unsigned int mask = op2 & 0x0f;
8832 bfd_boolean first = TRUE;
8833 int i;
8834
8835 printf ("pop {");
8836 for (i = 0; i < 4; i++)
8837 if (mask & (1 << i))
8838 {
8839 if (first)
8840 first = FALSE;
8841 else
8842 printf (", ");
8843 printf ("wCGR%d", i);
8844 }
8845 printf ("}");
8846 }
8847 }
8848 else
8849 {
8850 printf (_(" [unsupported opcode]"));
8851 res = FALSE;
8852 }
8853
8854 printf ("\n");
8855 }
8856
8857 return res;
8858 }
8859
8860 static bfd_boolean
8861 decode_tic6x_unwind_bytecode (Filedata * filedata,
8862 struct arm_unw_aux_info * aux,
8863 unsigned int word,
8864 unsigned int remaining,
8865 unsigned int more_words,
8866 bfd_vma data_offset,
8867 Elf_Internal_Shdr * data_sec,
8868 struct arm_section * data_arm_sec)
8869 {
8870 struct absaddr addr;
8871
8872 /* Decode the unwinding instructions. */
8873 while (1)
8874 {
8875 unsigned int op, op2;
8876
8877 ADVANCE;
8878 if (remaining == 0)
8879 break;
8880 remaining--;
8881 op = word >> 24;
8882 word <<= 8;
8883
8884 printf (" 0x%02x ", op);
8885
8886 if ((op & 0xc0) == 0x00)
8887 {
8888 int offset = ((op & 0x3f) << 3) + 8;
8889 printf (" sp = sp + %d", offset);
8890 }
8891 else if ((op & 0xc0) == 0x80)
8892 {
8893 GET_OP (op2);
8894 if (op == 0x80 && op2 == 0)
8895 printf (_("Refuse to unwind"));
8896 else
8897 {
8898 unsigned int mask = ((op & 0x1f) << 8) | op2;
8899 if (op & 0x20)
8900 printf ("pop compact {");
8901 else
8902 printf ("pop {");
8903
8904 decode_tic6x_unwind_regmask (mask);
8905 printf("}");
8906 }
8907 }
8908 else if ((op & 0xf0) == 0xc0)
8909 {
8910 unsigned int reg;
8911 unsigned int nregs;
8912 unsigned int i;
8913 const char *name;
8914 struct
8915 {
8916 unsigned int offset;
8917 unsigned int reg;
8918 } regpos[16];
8919
8920 /* Scan entire instruction first so that GET_OP output is not
8921 interleaved with disassembly. */
8922 nregs = 0;
8923 for (i = 0; nregs < (op & 0xf); i++)
8924 {
8925 GET_OP (op2);
8926 reg = op2 >> 4;
8927 if (reg != 0xf)
8928 {
8929 regpos[nregs].offset = i * 2;
8930 regpos[nregs].reg = reg;
8931 nregs++;
8932 }
8933
8934 reg = op2 & 0xf;
8935 if (reg != 0xf)
8936 {
8937 regpos[nregs].offset = i * 2 + 1;
8938 regpos[nregs].reg = reg;
8939 nregs++;
8940 }
8941 }
8942
8943 printf (_("pop frame {"));
8944 if (nregs == 0)
8945 {
8946 printf (_("*corrupt* - no registers specified"));
8947 }
8948 else
8949 {
8950 reg = nregs - 1;
8951 for (i = i * 2; i > 0; i--)
8952 {
8953 if (regpos[reg].offset == i - 1)
8954 {
8955 name = tic6x_unwind_regnames[regpos[reg].reg];
8956 if (reg > 0)
8957 reg--;
8958 }
8959 else
8960 name = _("[pad]");
8961
8962 fputs (name, stdout);
8963 if (i > 1)
8964 printf (", ");
8965 }
8966 }
8967
8968 printf ("}");
8969 }
8970 else if (op == 0xd0)
8971 printf (" MOV FP, SP");
8972 else if (op == 0xd1)
8973 printf (" __c6xabi_pop_rts");
8974 else if (op == 0xd2)
8975 {
8976 unsigned char buf[9];
8977 unsigned int i, len;
8978 unsigned long offset;
8979
8980 for (i = 0; i < sizeof (buf); i++)
8981 {
8982 GET_OP (buf[i]);
8983 if ((buf[i] & 0x80) == 0)
8984 break;
8985 }
8986 /* PR 17531: file: id:000001,src:001906+004739,op:splice,rep:2. */
8987 if (i == sizeof (buf))
8988 {
8989 warn (_("Corrupt stack pointer adjustment detected\n"));
8990 return FALSE;
8991 }
8992
8993 offset = read_uleb128 (buf, &len, buf + i + 1);
8994 assert (len == i + 1);
8995 offset = offset * 8 + 0x408;
8996 printf (_("sp = sp + %ld"), offset);
8997 }
8998 else if ((op & 0xf0) == 0xe0)
8999 {
9000 if ((op & 0x0f) == 7)
9001 printf (" RETURN");
9002 else
9003 printf (" MV %s, B3", tic6x_unwind_regnames[op & 0x0f]);
9004 }
9005 else
9006 {
9007 printf (_(" [unsupported opcode]"));
9008 }
9009 putchar ('\n');
9010 }
9011
9012 return TRUE;
9013 }
9014
9015 static bfd_vma
9016 arm_expand_prel31 (Filedata * filedata, bfd_vma word, bfd_vma where)
9017 {
9018 bfd_vma offset;
9019
9020 offset = word & 0x7fffffff;
9021 if (offset & 0x40000000)
9022 offset |= ~ (bfd_vma) 0x7fffffff;
9023
9024 if (filedata->file_header.e_machine == EM_TI_C6000)
9025 offset <<= 1;
9026
9027 return offset + where;
9028 }
9029
9030 static bfd_boolean
9031 decode_arm_unwind (Filedata * filedata,
9032 struct arm_unw_aux_info * aux,
9033 unsigned int word,
9034 unsigned int remaining,
9035 bfd_vma data_offset,
9036 Elf_Internal_Shdr * data_sec,
9037 struct arm_section * data_arm_sec)
9038 {
9039 int per_index;
9040 unsigned int more_words = 0;
9041 struct absaddr addr;
9042 bfd_vma sym_name = (bfd_vma) -1;
9043 bfd_boolean res = TRUE;
9044
9045 if (remaining == 0)
9046 {
9047 /* Fetch the first word.
9048 Note - when decoding an object file the address extracted
9049 here will always be 0. So we also pass in the sym_name
9050 parameter so that we can find the symbol associated with
9051 the personality routine. */
9052 if (! get_unwind_section_word (filedata, aux, data_arm_sec, data_sec, data_offset,
9053 & word, & addr, & sym_name))
9054 return FALSE;
9055
9056 remaining = 4;
9057 }
9058 else
9059 {
9060 addr.section = SHN_UNDEF;
9061 addr.offset = 0;
9062 }
9063
9064 if ((word & 0x80000000) == 0)
9065 {
9066 /* Expand prel31 for personality routine. */
9067 bfd_vma fn;
9068 const char *procname;
9069
9070 fn = arm_expand_prel31 (filedata, word, data_sec->sh_addr + data_offset);
9071 printf (_(" Personality routine: "));
9072 if (fn == 0
9073 && addr.section == SHN_UNDEF && addr.offset == 0
9074 && sym_name != (bfd_vma) -1 && sym_name < aux->strtab_size)
9075 {
9076 procname = aux->strtab + sym_name;
9077 print_vma (fn, PREFIX_HEX);
9078 if (procname)
9079 {
9080 fputs (" <", stdout);
9081 fputs (procname, stdout);
9082 fputc ('>', stdout);
9083 }
9084 }
9085 else
9086 procname = arm_print_vma_and_name (filedata, aux, fn, addr);
9087 fputc ('\n', stdout);
9088
9089 /* The GCC personality routines use the standard compact
9090 encoding, starting with one byte giving the number of
9091 words. */
9092 if (procname != NULL
9093 && (const_strneq (procname, "__gcc_personality_v0")
9094 || const_strneq (procname, "__gxx_personality_v0")
9095 || const_strneq (procname, "__gcj_personality_v0")
9096 || const_strneq (procname, "__gnu_objc_personality_v0")))
9097 {
9098 remaining = 0;
9099 more_words = 1;
9100 ADVANCE;
9101 if (!remaining)
9102 {
9103 printf (_(" [Truncated data]\n"));
9104 return FALSE;
9105 }
9106 more_words = word >> 24;
9107 word <<= 8;
9108 remaining--;
9109 per_index = -1;
9110 }
9111 else
9112 return TRUE;
9113 }
9114 else
9115 {
9116 /* ARM EHABI Section 6.3:
9117
9118 An exception-handling table entry for the compact model looks like:
9119
9120 31 30-28 27-24 23-0
9121 -- ----- ----- ----
9122 1 0 index Data for personalityRoutine[index] */
9123
9124 if (filedata->file_header.e_machine == EM_ARM
9125 && (word & 0x70000000))
9126 {
9127 warn (_("Corrupt ARM compact model table entry: %x \n"), word);
9128 res = FALSE;
9129 }
9130
9131 per_index = (word >> 24) & 0x7f;
9132 printf (_(" Compact model index: %d\n"), per_index);
9133 if (per_index == 0)
9134 {
9135 more_words = 0;
9136 word <<= 8;
9137 remaining--;
9138 }
9139 else if (per_index < 3)
9140 {
9141 more_words = (word >> 16) & 0xff;
9142 word <<= 16;
9143 remaining -= 2;
9144 }
9145 }
9146
9147 switch (filedata->file_header.e_machine)
9148 {
9149 case EM_ARM:
9150 if (per_index < 3)
9151 {
9152 if (! decode_arm_unwind_bytecode (filedata, aux, word, remaining, more_words,
9153 data_offset, data_sec, data_arm_sec))
9154 res = FALSE;
9155 }
9156 else
9157 {
9158 warn (_("Unknown ARM compact model index encountered\n"));
9159 printf (_(" [reserved]\n"));
9160 res = FALSE;
9161 }
9162 break;
9163
9164 case EM_TI_C6000:
9165 if (per_index < 3)
9166 {
9167 if (! decode_tic6x_unwind_bytecode (filedata, aux, word, remaining, more_words,
9168 data_offset, data_sec, data_arm_sec))
9169 res = FALSE;
9170 }
9171 else if (per_index < 5)
9172 {
9173 if (((word >> 17) & 0x7f) == 0x7f)
9174 printf (_(" Restore stack from frame pointer\n"));
9175 else
9176 printf (_(" Stack increment %d\n"), (word >> 14) & 0x1fc);
9177 printf (_(" Registers restored: "));
9178 if (per_index == 4)
9179 printf (" (compact) ");
9180 decode_tic6x_unwind_regmask ((word >> 4) & 0x1fff);
9181 putchar ('\n');
9182 printf (_(" Return register: %s\n"),
9183 tic6x_unwind_regnames[word & 0xf]);
9184 }
9185 else
9186 printf (_(" [reserved (%d)]\n"), per_index);
9187 break;
9188
9189 default:
9190 error (_("Unsupported architecture type %d encountered when decoding unwind table\n"),
9191 filedata->file_header.e_machine);
9192 res = FALSE;
9193 }
9194
9195 /* Decode the descriptors. Not implemented. */
9196
9197 return res;
9198 }
9199
9200 static bfd_boolean
9201 dump_arm_unwind (Filedata * filedata,
9202 struct arm_unw_aux_info * aux,
9203 Elf_Internal_Shdr * exidx_sec)
9204 {
9205 struct arm_section exidx_arm_sec, extab_arm_sec;
9206 unsigned int i, exidx_len;
9207 unsigned long j, nfuns;
9208 bfd_boolean res = TRUE;
9209
9210 memset (&exidx_arm_sec, 0, sizeof (exidx_arm_sec));
9211 memset (&extab_arm_sec, 0, sizeof (extab_arm_sec));
9212 exidx_len = exidx_sec->sh_size / 8;
9213
9214 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
9215 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
9216 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
9217 aux->funtab[nfuns++] = aux->symtab[j];
9218 aux->nfuns = nfuns;
9219 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
9220
9221 for (i = 0; i < exidx_len; i++)
9222 {
9223 unsigned int exidx_fn, exidx_entry;
9224 struct absaddr fn_addr, entry_addr;
9225 bfd_vma fn;
9226
9227 fputc ('\n', stdout);
9228
9229 if (! get_unwind_section_word (filedata, aux, & exidx_arm_sec, exidx_sec,
9230 8 * i, & exidx_fn, & fn_addr, NULL)
9231 || ! get_unwind_section_word (filedata, aux, & exidx_arm_sec, exidx_sec,
9232 8 * i + 4, & exidx_entry, & entry_addr, NULL))
9233 {
9234 free (aux->funtab);
9235 arm_free_section (& exidx_arm_sec);
9236 arm_free_section (& extab_arm_sec);
9237 return FALSE;
9238 }
9239
9240 /* ARM EHABI, Section 5:
9241 An index table entry consists of 2 words.
9242 The first word contains a prel31 offset to the start of a function, with bit 31 clear. */
9243 if (exidx_fn & 0x80000000)
9244 {
9245 warn (_("corrupt index table entry: %x\n"), exidx_fn);
9246 res = FALSE;
9247 }
9248
9249 fn = arm_expand_prel31 (filedata, exidx_fn, exidx_sec->sh_addr + 8 * i);
9250
9251 arm_print_vma_and_name (filedata, aux, fn, fn_addr);
9252 fputs (": ", stdout);
9253
9254 if (exidx_entry == 1)
9255 {
9256 print_vma (exidx_entry, PREFIX_HEX);
9257 fputs (" [cantunwind]\n", stdout);
9258 }
9259 else if (exidx_entry & 0x80000000)
9260 {
9261 print_vma (exidx_entry, PREFIX_HEX);
9262 fputc ('\n', stdout);
9263 decode_arm_unwind (filedata, aux, exidx_entry, 4, 0, NULL, NULL);
9264 }
9265 else
9266 {
9267 bfd_vma table, table_offset = 0;
9268 Elf_Internal_Shdr *table_sec;
9269
9270 fputs ("@", stdout);
9271 table = arm_expand_prel31 (filedata, exidx_entry, exidx_sec->sh_addr + 8 * i + 4);
9272 print_vma (table, PREFIX_HEX);
9273 printf ("\n");
9274
9275 /* Locate the matching .ARM.extab. */
9276 if (entry_addr.section != SHN_UNDEF
9277 && entry_addr.section < filedata->file_header.e_shnum)
9278 {
9279 table_sec = filedata->section_headers + entry_addr.section;
9280 table_offset = entry_addr.offset;
9281 /* PR 18879 */
9282 if (table_offset > table_sec->sh_size
9283 || ((bfd_signed_vma) table_offset) < 0)
9284 {
9285 warn (_("Unwind entry contains corrupt offset (0x%lx) into section %s\n"),
9286 (unsigned long) table_offset,
9287 printable_section_name (filedata, table_sec));
9288 res = FALSE;
9289 continue;
9290 }
9291 }
9292 else
9293 {
9294 table_sec = find_section_by_address (filedata, table);
9295 if (table_sec != NULL)
9296 table_offset = table - table_sec->sh_addr;
9297 }
9298
9299 if (table_sec == NULL)
9300 {
9301 warn (_("Could not locate .ARM.extab section containing 0x%lx.\n"),
9302 (unsigned long) table);
9303 res = FALSE;
9304 continue;
9305 }
9306
9307 if (! decode_arm_unwind (filedata, aux, 0, 0, table_offset, table_sec,
9308 &extab_arm_sec))
9309 res = FALSE;
9310 }
9311 }
9312
9313 printf ("\n");
9314
9315 free (aux->funtab);
9316 arm_free_section (&exidx_arm_sec);
9317 arm_free_section (&extab_arm_sec);
9318
9319 return res;
9320 }
9321
9322 /* Used for both ARM and C6X unwinding tables. */
9323
9324 static bfd_boolean
9325 arm_process_unwind (Filedata * filedata)
9326 {
9327 struct arm_unw_aux_info aux;
9328 Elf_Internal_Shdr *unwsec = NULL;
9329 Elf_Internal_Shdr *strsec;
9330 Elf_Internal_Shdr *sec;
9331 unsigned long i;
9332 unsigned int sec_type;
9333 bfd_boolean res = TRUE;
9334
9335 switch (filedata->file_header.e_machine)
9336 {
9337 case EM_ARM:
9338 sec_type = SHT_ARM_EXIDX;
9339 break;
9340
9341 case EM_TI_C6000:
9342 sec_type = SHT_C6000_UNWIND;
9343 break;
9344
9345 default:
9346 error (_("Unsupported architecture type %d encountered when processing unwind table\n"),
9347 filedata->file_header.e_machine);
9348 return FALSE;
9349 }
9350
9351 if (filedata->string_table == NULL)
9352 return FALSE;
9353
9354 memset (& aux, 0, sizeof (aux));
9355 aux.filedata = filedata;
9356
9357 for (i = 0, sec = filedata->section_headers; i < filedata->file_header.e_shnum; ++i, ++sec)
9358 {
9359 if (sec->sh_type == SHT_SYMTAB && sec->sh_link < filedata->file_header.e_shnum)
9360 {
9361 aux.symtab = GET_ELF_SYMBOLS (filedata, sec, & aux.nsyms);
9362
9363 strsec = filedata->section_headers + sec->sh_link;
9364
9365 /* PR binutils/17531 file: 011-12666-0.004. */
9366 if (aux.strtab != NULL)
9367 {
9368 error (_("Multiple string tables found in file.\n"));
9369 free (aux.strtab);
9370 res = FALSE;
9371 }
9372 aux.strtab = get_data (NULL, filedata, strsec->sh_offset,
9373 1, strsec->sh_size, _("string table"));
9374 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
9375 }
9376 else if (sec->sh_type == sec_type)
9377 unwsec = sec;
9378 }
9379
9380 if (unwsec == NULL)
9381 printf (_("\nThere are no unwind sections in this file.\n"));
9382 else
9383 for (i = 0, sec = filedata->section_headers; i < filedata->file_header.e_shnum; ++i, ++sec)
9384 {
9385 if (sec->sh_type == sec_type)
9386 {
9387 unsigned long num_unwind = sec->sh_size / (2 * eh_addr_size);
9388 printf (ngettext ("\nUnwind section '%s' at offset 0x%lx "
9389 "contains %lu entry:\n",
9390 "\nUnwind section '%s' at offset 0x%lx "
9391 "contains %lu entries:\n",
9392 num_unwind),
9393 printable_section_name (filedata, sec),
9394 (unsigned long) sec->sh_offset,
9395 num_unwind);
9396
9397 if (! dump_arm_unwind (filedata, &aux, sec))
9398 res = FALSE;
9399 }
9400 }
9401
9402 if (aux.symtab)
9403 free (aux.symtab);
9404 if (aux.strtab)
9405 free ((char *) aux.strtab);
9406
9407 return res;
9408 }
9409
9410 static bfd_boolean
9411 process_unwind (Filedata * filedata)
9412 {
9413 struct unwind_handler
9414 {
9415 unsigned int machtype;
9416 bfd_boolean (* handler)(Filedata *);
9417 } handlers[] =
9418 {
9419 { EM_ARM, arm_process_unwind },
9420 { EM_IA_64, ia64_process_unwind },
9421 { EM_PARISC, hppa_process_unwind },
9422 { EM_TI_C6000, arm_process_unwind },
9423 { 0, NULL }
9424 };
9425 int i;
9426
9427 if (!do_unwind)
9428 return TRUE;
9429
9430 for (i = 0; handlers[i].handler != NULL; i++)
9431 if (filedata->file_header.e_machine == handlers[i].machtype)
9432 return handlers[i].handler (filedata);
9433
9434 printf (_("\nThe decoding of unwind sections for machine type %s is not currently supported.\n"),
9435 get_machine_name (filedata->file_header.e_machine));
9436 return TRUE;
9437 }
9438
9439 static void
9440 dynamic_section_aarch64_val (Elf_Internal_Dyn * entry)
9441 {
9442 switch (entry->d_tag)
9443 {
9444 case DT_AARCH64_BTI_PLT:
9445 case DT_AARCH64_PAC_PLT:
9446 break;
9447 default:
9448 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9449 break;
9450 }
9451 putchar ('\n');
9452 }
9453
9454 static void
9455 dynamic_section_mips_val (Elf_Internal_Dyn * entry)
9456 {
9457 switch (entry->d_tag)
9458 {
9459 case DT_MIPS_FLAGS:
9460 if (entry->d_un.d_val == 0)
9461 printf (_("NONE"));
9462 else
9463 {
9464 static const char * opts[] =
9465 {
9466 "QUICKSTART", "NOTPOT", "NO_LIBRARY_REPLACEMENT",
9467 "NO_MOVE", "SGI_ONLY", "GUARANTEE_INIT", "DELTA_C_PLUS_PLUS",
9468 "GUARANTEE_START_INIT", "PIXIE", "DEFAULT_DELAY_LOAD",
9469 "REQUICKSTART", "REQUICKSTARTED", "CORD", "NO_UNRES_UNDEF",
9470 "RLD_ORDER_SAFE"
9471 };
9472 unsigned int cnt;
9473 bfd_boolean first = TRUE;
9474
9475 for (cnt = 0; cnt < ARRAY_SIZE (opts); ++cnt)
9476 if (entry->d_un.d_val & (1 << cnt))
9477 {
9478 printf ("%s%s", first ? "" : " ", opts[cnt]);
9479 first = FALSE;
9480 }
9481 }
9482 break;
9483
9484 case DT_MIPS_IVERSION:
9485 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
9486 printf (_("Interface Version: %s"), GET_DYNAMIC_NAME (entry->d_un.d_val));
9487 else
9488 {
9489 char buf[40];
9490 sprintf_vma (buf, entry->d_un.d_ptr);
9491 /* Note: coded this way so that there is a single string for translation. */
9492 printf (_("<corrupt: %s>"), buf);
9493 }
9494 break;
9495
9496 case DT_MIPS_TIME_STAMP:
9497 {
9498 char timebuf[128];
9499 struct tm * tmp;
9500 time_t atime = entry->d_un.d_val;
9501
9502 tmp = gmtime (&atime);
9503 /* PR 17531: file: 6accc532. */
9504 if (tmp == NULL)
9505 snprintf (timebuf, sizeof (timebuf), _("<corrupt>"));
9506 else
9507 snprintf (timebuf, sizeof (timebuf), "%04u-%02u-%02uT%02u:%02u:%02u",
9508 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
9509 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
9510 printf (_("Time Stamp: %s"), timebuf);
9511 }
9512 break;
9513
9514 case DT_MIPS_RLD_VERSION:
9515 case DT_MIPS_LOCAL_GOTNO:
9516 case DT_MIPS_CONFLICTNO:
9517 case DT_MIPS_LIBLISTNO:
9518 case DT_MIPS_SYMTABNO:
9519 case DT_MIPS_UNREFEXTNO:
9520 case DT_MIPS_HIPAGENO:
9521 case DT_MIPS_DELTA_CLASS_NO:
9522 case DT_MIPS_DELTA_INSTANCE_NO:
9523 case DT_MIPS_DELTA_RELOC_NO:
9524 case DT_MIPS_DELTA_SYM_NO:
9525 case DT_MIPS_DELTA_CLASSSYM_NO:
9526 case DT_MIPS_COMPACT_SIZE:
9527 print_vma (entry->d_un.d_val, DEC);
9528 break;
9529
9530 default:
9531 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9532 }
9533 putchar ('\n');
9534 }
9535
9536 static void
9537 dynamic_section_parisc_val (Elf_Internal_Dyn * entry)
9538 {
9539 switch (entry->d_tag)
9540 {
9541 case DT_HP_DLD_FLAGS:
9542 {
9543 static struct
9544 {
9545 long int bit;
9546 const char * str;
9547 }
9548 flags[] =
9549 {
9550 { DT_HP_DEBUG_PRIVATE, "HP_DEBUG_PRIVATE" },
9551 { DT_HP_DEBUG_CALLBACK, "HP_DEBUG_CALLBACK" },
9552 { DT_HP_DEBUG_CALLBACK_BOR, "HP_DEBUG_CALLBACK_BOR" },
9553 { DT_HP_NO_ENVVAR, "HP_NO_ENVVAR" },
9554 { DT_HP_BIND_NOW, "HP_BIND_NOW" },
9555 { DT_HP_BIND_NONFATAL, "HP_BIND_NONFATAL" },
9556 { DT_HP_BIND_VERBOSE, "HP_BIND_VERBOSE" },
9557 { DT_HP_BIND_RESTRICTED, "HP_BIND_RESTRICTED" },
9558 { DT_HP_BIND_SYMBOLIC, "HP_BIND_SYMBOLIC" },
9559 { DT_HP_RPATH_FIRST, "HP_RPATH_FIRST" },
9560 { DT_HP_BIND_DEPTH_FIRST, "HP_BIND_DEPTH_FIRST" },
9561 { DT_HP_GST, "HP_GST" },
9562 { DT_HP_SHLIB_FIXED, "HP_SHLIB_FIXED" },
9563 { DT_HP_MERGE_SHLIB_SEG, "HP_MERGE_SHLIB_SEG" },
9564 { DT_HP_NODELETE, "HP_NODELETE" },
9565 { DT_HP_GROUP, "HP_GROUP" },
9566 { DT_HP_PROTECT_LINKAGE_TABLE, "HP_PROTECT_LINKAGE_TABLE" }
9567 };
9568 bfd_boolean first = TRUE;
9569 size_t cnt;
9570 bfd_vma val = entry->d_un.d_val;
9571
9572 for (cnt = 0; cnt < ARRAY_SIZE (flags); ++cnt)
9573 if (val & flags[cnt].bit)
9574 {
9575 if (! first)
9576 putchar (' ');
9577 fputs (flags[cnt].str, stdout);
9578 first = FALSE;
9579 val ^= flags[cnt].bit;
9580 }
9581
9582 if (val != 0 || first)
9583 {
9584 if (! first)
9585 putchar (' ');
9586 print_vma (val, HEX);
9587 }
9588 }
9589 break;
9590
9591 default:
9592 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9593 break;
9594 }
9595 putchar ('\n');
9596 }
9597
9598 #ifdef BFD64
9599
9600 /* VMS vs Unix time offset and factor. */
9601
9602 #define VMS_EPOCH_OFFSET 35067168000000000LL
9603 #define VMS_GRANULARITY_FACTOR 10000000
9604
9605 /* Display a VMS time in a human readable format. */
9606
9607 static void
9608 print_vms_time (bfd_int64_t vmstime)
9609 {
9610 struct tm *tm;
9611 time_t unxtime;
9612
9613 unxtime = (vmstime - VMS_EPOCH_OFFSET) / VMS_GRANULARITY_FACTOR;
9614 tm = gmtime (&unxtime);
9615 printf ("%04u-%02u-%02uT%02u:%02u:%02u",
9616 tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
9617 tm->tm_hour, tm->tm_min, tm->tm_sec);
9618 }
9619 #endif /* BFD64 */
9620
9621 static void
9622 dynamic_section_ia64_val (Elf_Internal_Dyn * entry)
9623 {
9624 switch (entry->d_tag)
9625 {
9626 case DT_IA_64_PLT_RESERVE:
9627 /* First 3 slots reserved. */
9628 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9629 printf (" -- ");
9630 print_vma (entry->d_un.d_ptr + (3 * 8), PREFIX_HEX);
9631 break;
9632
9633 case DT_IA_64_VMS_LINKTIME:
9634 #ifdef BFD64
9635 print_vms_time (entry->d_un.d_val);
9636 #endif
9637 break;
9638
9639 case DT_IA_64_VMS_LNKFLAGS:
9640 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9641 if (entry->d_un.d_val & VMS_LF_CALL_DEBUG)
9642 printf (" CALL_DEBUG");
9643 if (entry->d_un.d_val & VMS_LF_NOP0BUFS)
9644 printf (" NOP0BUFS");
9645 if (entry->d_un.d_val & VMS_LF_P0IMAGE)
9646 printf (" P0IMAGE");
9647 if (entry->d_un.d_val & VMS_LF_MKTHREADS)
9648 printf (" MKTHREADS");
9649 if (entry->d_un.d_val & VMS_LF_UPCALLS)
9650 printf (" UPCALLS");
9651 if (entry->d_un.d_val & VMS_LF_IMGSTA)
9652 printf (" IMGSTA");
9653 if (entry->d_un.d_val & VMS_LF_INITIALIZE)
9654 printf (" INITIALIZE");
9655 if (entry->d_un.d_val & VMS_LF_MAIN)
9656 printf (" MAIN");
9657 if (entry->d_un.d_val & VMS_LF_EXE_INIT)
9658 printf (" EXE_INIT");
9659 if (entry->d_un.d_val & VMS_LF_TBK_IN_IMG)
9660 printf (" TBK_IN_IMG");
9661 if (entry->d_un.d_val & VMS_LF_DBG_IN_IMG)
9662 printf (" DBG_IN_IMG");
9663 if (entry->d_un.d_val & VMS_LF_TBK_IN_DSF)
9664 printf (" TBK_IN_DSF");
9665 if (entry->d_un.d_val & VMS_LF_DBG_IN_DSF)
9666 printf (" DBG_IN_DSF");
9667 if (entry->d_un.d_val & VMS_LF_SIGNATURES)
9668 printf (" SIGNATURES");
9669 if (entry->d_un.d_val & VMS_LF_REL_SEG_OFF)
9670 printf (" REL_SEG_OFF");
9671 break;
9672
9673 default:
9674 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9675 break;
9676 }
9677 putchar ('\n');
9678 }
9679
9680 static bfd_boolean
9681 get_32bit_dynamic_section (Filedata * filedata)
9682 {
9683 Elf32_External_Dyn * edyn;
9684 Elf32_External_Dyn * ext;
9685 Elf_Internal_Dyn * entry;
9686
9687 edyn = (Elf32_External_Dyn *) get_data (NULL, filedata, dynamic_addr, 1,
9688 dynamic_size, _("dynamic section"));
9689 if (!edyn)
9690 return FALSE;
9691
9692 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
9693 might not have the luxury of section headers. Look for the DT_NULL
9694 terminator to determine the number of entries. */
9695 for (ext = edyn, dynamic_nent = 0;
9696 (char *) (ext + 1) <= (char *) edyn + dynamic_size;
9697 ext++)
9698 {
9699 dynamic_nent++;
9700 if (BYTE_GET (ext->d_tag) == DT_NULL)
9701 break;
9702 }
9703
9704 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
9705 sizeof (* entry));
9706 if (dynamic_section == NULL)
9707 {
9708 error (_("Out of memory allocating space for %lu dynamic entries\n"),
9709 (unsigned long) dynamic_nent);
9710 free (edyn);
9711 return FALSE;
9712 }
9713
9714 for (ext = edyn, entry = dynamic_section;
9715 entry < dynamic_section + dynamic_nent;
9716 ext++, entry++)
9717 {
9718 entry->d_tag = BYTE_GET (ext->d_tag);
9719 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
9720 }
9721
9722 free (edyn);
9723
9724 return TRUE;
9725 }
9726
9727 static bfd_boolean
9728 get_64bit_dynamic_section (Filedata * filedata)
9729 {
9730 Elf64_External_Dyn * edyn;
9731 Elf64_External_Dyn * ext;
9732 Elf_Internal_Dyn * entry;
9733
9734 /* Read in the data. */
9735 edyn = (Elf64_External_Dyn *) get_data (NULL, filedata, dynamic_addr, 1,
9736 dynamic_size, _("dynamic section"));
9737 if (!edyn)
9738 return FALSE;
9739
9740 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
9741 might not have the luxury of section headers. Look for the DT_NULL
9742 terminator to determine the number of entries. */
9743 for (ext = edyn, dynamic_nent = 0;
9744 /* PR 17533 file: 033-67080-0.004 - do not read past end of buffer. */
9745 (char *) (ext + 1) <= (char *) edyn + dynamic_size;
9746 ext++)
9747 {
9748 dynamic_nent++;
9749 if (BYTE_GET (ext->d_tag) == DT_NULL)
9750 break;
9751 }
9752
9753 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
9754 sizeof (* entry));
9755 if (dynamic_section == NULL)
9756 {
9757 error (_("Out of memory allocating space for %lu dynamic entries\n"),
9758 (unsigned long) dynamic_nent);
9759 free (edyn);
9760 return FALSE;
9761 }
9762
9763 /* Convert from external to internal formats. */
9764 for (ext = edyn, entry = dynamic_section;
9765 entry < dynamic_section + dynamic_nent;
9766 ext++, entry++)
9767 {
9768 entry->d_tag = BYTE_GET (ext->d_tag);
9769 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
9770 }
9771
9772 free (edyn);
9773
9774 return TRUE;
9775 }
9776
9777 static void
9778 print_dynamic_flags (bfd_vma flags)
9779 {
9780 bfd_boolean first = TRUE;
9781
9782 while (flags)
9783 {
9784 bfd_vma flag;
9785
9786 flag = flags & - flags;
9787 flags &= ~ flag;
9788
9789 if (first)
9790 first = FALSE;
9791 else
9792 putc (' ', stdout);
9793
9794 switch (flag)
9795 {
9796 case DF_ORIGIN: fputs ("ORIGIN", stdout); break;
9797 case DF_SYMBOLIC: fputs ("SYMBOLIC", stdout); break;
9798 case DF_TEXTREL: fputs ("TEXTREL", stdout); break;
9799 case DF_BIND_NOW: fputs ("BIND_NOW", stdout); break;
9800 case DF_STATIC_TLS: fputs ("STATIC_TLS", stdout); break;
9801 default: fputs (_("unknown"), stdout); break;
9802 }
9803 }
9804 puts ("");
9805 }
9806
9807 /* Parse and display the contents of the dynamic section. */
9808
9809 static bfd_boolean
9810 process_dynamic_section (Filedata * filedata)
9811 {
9812 Elf_Internal_Dyn * entry;
9813
9814 if (dynamic_size == 0)
9815 {
9816 if (do_dynamic)
9817 printf (_("\nThere is no dynamic section in this file.\n"));
9818
9819 return TRUE;
9820 }
9821
9822 if (is_32bit_elf)
9823 {
9824 if (! get_32bit_dynamic_section (filedata))
9825 return FALSE;
9826 }
9827 else
9828 {
9829 if (! get_64bit_dynamic_section (filedata))
9830 return FALSE;
9831 }
9832
9833 /* Find the appropriate symbol table. */
9834 if (dynamic_symbols == NULL)
9835 {
9836 for (entry = dynamic_section;
9837 entry < dynamic_section + dynamic_nent;
9838 ++entry)
9839 {
9840 Elf_Internal_Shdr section;
9841
9842 if (entry->d_tag != DT_SYMTAB)
9843 continue;
9844
9845 dynamic_info[DT_SYMTAB] = entry->d_un.d_val;
9846
9847 /* Since we do not know how big the symbol table is,
9848 we default to reading in the entire file (!) and
9849 processing that. This is overkill, I know, but it
9850 should work. */
9851 section.sh_offset = offset_from_vma (filedata, entry->d_un.d_val, 0);
9852 if ((bfd_size_type) section.sh_offset > filedata->file_size)
9853 {
9854 /* See PR 21379 for a reproducer. */
9855 error (_("Invalid DT_SYMTAB entry: %lx"), (long) section.sh_offset);
9856 return FALSE;
9857 }
9858
9859 if (archive_file_offset != 0)
9860 section.sh_size = archive_file_size - section.sh_offset;
9861 else
9862 section.sh_size = filedata->file_size - section.sh_offset;
9863
9864 if (is_32bit_elf)
9865 section.sh_entsize = sizeof (Elf32_External_Sym);
9866 else
9867 section.sh_entsize = sizeof (Elf64_External_Sym);
9868 section.sh_name = filedata->string_table_length;
9869
9870 if (dynamic_symbols != NULL)
9871 {
9872 error (_("Multiple dynamic symbol table sections found\n"));
9873 free (dynamic_symbols);
9874 }
9875 dynamic_symbols = GET_ELF_SYMBOLS (filedata, &section, & num_dynamic_syms);
9876 if (num_dynamic_syms < 1)
9877 {
9878 error (_("Unable to determine the number of symbols to load\n"));
9879 continue;
9880 }
9881 }
9882 }
9883
9884 /* Similarly find a string table. */
9885 if (dynamic_strings == NULL)
9886 {
9887 for (entry = dynamic_section;
9888 entry < dynamic_section + dynamic_nent;
9889 ++entry)
9890 {
9891 unsigned long offset;
9892 long str_tab_len;
9893
9894 if (entry->d_tag != DT_STRTAB)
9895 continue;
9896
9897 dynamic_info[DT_STRTAB] = entry->d_un.d_val;
9898
9899 /* Since we do not know how big the string table is,
9900 we default to reading in the entire file (!) and
9901 processing that. This is overkill, I know, but it
9902 should work. */
9903
9904 offset = offset_from_vma (filedata, entry->d_un.d_val, 0);
9905
9906 if (archive_file_offset != 0)
9907 str_tab_len = archive_file_size - offset;
9908 else
9909 str_tab_len = filedata->file_size - offset;
9910
9911 if (str_tab_len < 1)
9912 {
9913 error
9914 (_("Unable to determine the length of the dynamic string table\n"));
9915 continue;
9916 }
9917
9918 if (dynamic_strings != NULL)
9919 {
9920 error (_("Multiple dynamic string tables found\n"));
9921 free (dynamic_strings);
9922 }
9923
9924 dynamic_strings = (char *) get_data (NULL, filedata, offset, 1,
9925 str_tab_len,
9926 _("dynamic string table"));
9927 dynamic_strings_length = dynamic_strings == NULL ? 0 : str_tab_len;
9928 }
9929 }
9930
9931 /* And find the syminfo section if available. */
9932 if (dynamic_syminfo == NULL)
9933 {
9934 unsigned long syminsz = 0;
9935
9936 for (entry = dynamic_section;
9937 entry < dynamic_section + dynamic_nent;
9938 ++entry)
9939 {
9940 if (entry->d_tag == DT_SYMINENT)
9941 {
9942 /* Note: these braces are necessary to avoid a syntax
9943 error from the SunOS4 C compiler. */
9944 /* PR binutils/17531: A corrupt file can trigger this test.
9945 So do not use an assert, instead generate an error message. */
9946 if (sizeof (Elf_External_Syminfo) != entry->d_un.d_val)
9947 error (_("Bad value (%d) for SYMINENT entry\n"),
9948 (int) entry->d_un.d_val);
9949 }
9950 else if (entry->d_tag == DT_SYMINSZ)
9951 syminsz = entry->d_un.d_val;
9952 else if (entry->d_tag == DT_SYMINFO)
9953 dynamic_syminfo_offset = offset_from_vma (filedata, entry->d_un.d_val,
9954 syminsz);
9955 }
9956
9957 if (dynamic_syminfo_offset != 0 && syminsz != 0)
9958 {
9959 Elf_External_Syminfo * extsyminfo;
9960 Elf_External_Syminfo * extsym;
9961 Elf_Internal_Syminfo * syminfo;
9962
9963 /* There is a syminfo section. Read the data. */
9964 extsyminfo = (Elf_External_Syminfo *)
9965 get_data (NULL, filedata, dynamic_syminfo_offset, 1, syminsz,
9966 _("symbol information"));
9967 if (!extsyminfo)
9968 return FALSE;
9969
9970 if (dynamic_syminfo != NULL)
9971 {
9972 error (_("Multiple dynamic symbol information sections found\n"));
9973 free (dynamic_syminfo);
9974 }
9975 dynamic_syminfo = (Elf_Internal_Syminfo *) malloc (syminsz);
9976 if (dynamic_syminfo == NULL)
9977 {
9978 error (_("Out of memory allocating %lu byte for dynamic symbol info\n"),
9979 (unsigned long) syminsz);
9980 return FALSE;
9981 }
9982
9983 dynamic_syminfo_nent = syminsz / sizeof (Elf_External_Syminfo);
9984 for (syminfo = dynamic_syminfo, extsym = extsyminfo;
9985 syminfo < dynamic_syminfo + dynamic_syminfo_nent;
9986 ++syminfo, ++extsym)
9987 {
9988 syminfo->si_boundto = BYTE_GET (extsym->si_boundto);
9989 syminfo->si_flags = BYTE_GET (extsym->si_flags);
9990 }
9991
9992 free (extsyminfo);
9993 }
9994 }
9995
9996 if (do_dynamic && dynamic_addr)
9997 printf (ngettext ("\nDynamic section at offset 0x%lx "
9998 "contains %lu entry:\n",
9999 "\nDynamic section at offset 0x%lx "
10000 "contains %lu entries:\n",
10001 dynamic_nent),
10002 dynamic_addr, (unsigned long) dynamic_nent);
10003 if (do_dynamic)
10004 printf (_(" Tag Type Name/Value\n"));
10005
10006 for (entry = dynamic_section;
10007 entry < dynamic_section + dynamic_nent;
10008 entry++)
10009 {
10010 if (do_dynamic)
10011 {
10012 const char * dtype;
10013
10014 putchar (' ');
10015 print_vma (entry->d_tag, FULL_HEX);
10016 dtype = get_dynamic_type (filedata, entry->d_tag);
10017 printf (" (%s)%*s", dtype,
10018 ((is_32bit_elf ? 27 : 19) - (int) strlen (dtype)), " ");
10019 }
10020
10021 switch (entry->d_tag)
10022 {
10023 case DT_FLAGS:
10024 if (do_dynamic)
10025 print_dynamic_flags (entry->d_un.d_val);
10026 break;
10027
10028 case DT_AUXILIARY:
10029 case DT_FILTER:
10030 case DT_CONFIG:
10031 case DT_DEPAUDIT:
10032 case DT_AUDIT:
10033 if (do_dynamic)
10034 {
10035 switch (entry->d_tag)
10036 {
10037 case DT_AUXILIARY:
10038 printf (_("Auxiliary library"));
10039 break;
10040
10041 case DT_FILTER:
10042 printf (_("Filter library"));
10043 break;
10044
10045 case DT_CONFIG:
10046 printf (_("Configuration file"));
10047 break;
10048
10049 case DT_DEPAUDIT:
10050 printf (_("Dependency audit library"));
10051 break;
10052
10053 case DT_AUDIT:
10054 printf (_("Audit library"));
10055 break;
10056 }
10057
10058 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
10059 printf (": [%s]\n", GET_DYNAMIC_NAME (entry->d_un.d_val));
10060 else
10061 {
10062 printf (": ");
10063 print_vma (entry->d_un.d_val, PREFIX_HEX);
10064 putchar ('\n');
10065 }
10066 }
10067 break;
10068
10069 case DT_FEATURE:
10070 if (do_dynamic)
10071 {
10072 printf (_("Flags:"));
10073
10074 if (entry->d_un.d_val == 0)
10075 printf (_(" None\n"));
10076 else
10077 {
10078 unsigned long int val = entry->d_un.d_val;
10079
10080 if (val & DTF_1_PARINIT)
10081 {
10082 printf (" PARINIT");
10083 val ^= DTF_1_PARINIT;
10084 }
10085 if (val & DTF_1_CONFEXP)
10086 {
10087 printf (" CONFEXP");
10088 val ^= DTF_1_CONFEXP;
10089 }
10090 if (val != 0)
10091 printf (" %lx", val);
10092 puts ("");
10093 }
10094 }
10095 break;
10096
10097 case DT_POSFLAG_1:
10098 if (do_dynamic)
10099 {
10100 printf (_("Flags:"));
10101
10102 if (entry->d_un.d_val == 0)
10103 printf (_(" None\n"));
10104 else
10105 {
10106 unsigned long int val = entry->d_un.d_val;
10107
10108 if (val & DF_P1_LAZYLOAD)
10109 {
10110 printf (" LAZYLOAD");
10111 val ^= DF_P1_LAZYLOAD;
10112 }
10113 if (val & DF_P1_GROUPPERM)
10114 {
10115 printf (" GROUPPERM");
10116 val ^= DF_P1_GROUPPERM;
10117 }
10118 if (val != 0)
10119 printf (" %lx", val);
10120 puts ("");
10121 }
10122 }
10123 break;
10124
10125 case DT_FLAGS_1:
10126 if (do_dynamic)
10127 {
10128 printf (_("Flags:"));
10129 if (entry->d_un.d_val == 0)
10130 printf (_(" None\n"));
10131 else
10132 {
10133 unsigned long int val = entry->d_un.d_val;
10134
10135 if (val & DF_1_NOW)
10136 {
10137 printf (" NOW");
10138 val ^= DF_1_NOW;
10139 }
10140 if (val & DF_1_GLOBAL)
10141 {
10142 printf (" GLOBAL");
10143 val ^= DF_1_GLOBAL;
10144 }
10145 if (val & DF_1_GROUP)
10146 {
10147 printf (" GROUP");
10148 val ^= DF_1_GROUP;
10149 }
10150 if (val & DF_1_NODELETE)
10151 {
10152 printf (" NODELETE");
10153 val ^= DF_1_NODELETE;
10154 }
10155 if (val & DF_1_LOADFLTR)
10156 {
10157 printf (" LOADFLTR");
10158 val ^= DF_1_LOADFLTR;
10159 }
10160 if (val & DF_1_INITFIRST)
10161 {
10162 printf (" INITFIRST");
10163 val ^= DF_1_INITFIRST;
10164 }
10165 if (val & DF_1_NOOPEN)
10166 {
10167 printf (" NOOPEN");
10168 val ^= DF_1_NOOPEN;
10169 }
10170 if (val & DF_1_ORIGIN)
10171 {
10172 printf (" ORIGIN");
10173 val ^= DF_1_ORIGIN;
10174 }
10175 if (val & DF_1_DIRECT)
10176 {
10177 printf (" DIRECT");
10178 val ^= DF_1_DIRECT;
10179 }
10180 if (val & DF_1_TRANS)
10181 {
10182 printf (" TRANS");
10183 val ^= DF_1_TRANS;
10184 }
10185 if (val & DF_1_INTERPOSE)
10186 {
10187 printf (" INTERPOSE");
10188 val ^= DF_1_INTERPOSE;
10189 }
10190 if (val & DF_1_NODEFLIB)
10191 {
10192 printf (" NODEFLIB");
10193 val ^= DF_1_NODEFLIB;
10194 }
10195 if (val & DF_1_NODUMP)
10196 {
10197 printf (" NODUMP");
10198 val ^= DF_1_NODUMP;
10199 }
10200 if (val & DF_1_CONFALT)
10201 {
10202 printf (" CONFALT");
10203 val ^= DF_1_CONFALT;
10204 }
10205 if (val & DF_1_ENDFILTEE)
10206 {
10207 printf (" ENDFILTEE");
10208 val ^= DF_1_ENDFILTEE;
10209 }
10210 if (val & DF_1_DISPRELDNE)
10211 {
10212 printf (" DISPRELDNE");
10213 val ^= DF_1_DISPRELDNE;
10214 }
10215 if (val & DF_1_DISPRELPND)
10216 {
10217 printf (" DISPRELPND");
10218 val ^= DF_1_DISPRELPND;
10219 }
10220 if (val & DF_1_NODIRECT)
10221 {
10222 printf (" NODIRECT");
10223 val ^= DF_1_NODIRECT;
10224 }
10225 if (val & DF_1_IGNMULDEF)
10226 {
10227 printf (" IGNMULDEF");
10228 val ^= DF_1_IGNMULDEF;
10229 }
10230 if (val & DF_1_NOKSYMS)
10231 {
10232 printf (" NOKSYMS");
10233 val ^= DF_1_NOKSYMS;
10234 }
10235 if (val & DF_1_NOHDR)
10236 {
10237 printf (" NOHDR");
10238 val ^= DF_1_NOHDR;
10239 }
10240 if (val & DF_1_EDITED)
10241 {
10242 printf (" EDITED");
10243 val ^= DF_1_EDITED;
10244 }
10245 if (val & DF_1_NORELOC)
10246 {
10247 printf (" NORELOC");
10248 val ^= DF_1_NORELOC;
10249 }
10250 if (val & DF_1_SYMINTPOSE)
10251 {
10252 printf (" SYMINTPOSE");
10253 val ^= DF_1_SYMINTPOSE;
10254 }
10255 if (val & DF_1_GLOBAUDIT)
10256 {
10257 printf (" GLOBAUDIT");
10258 val ^= DF_1_GLOBAUDIT;
10259 }
10260 if (val & DF_1_SINGLETON)
10261 {
10262 printf (" SINGLETON");
10263 val ^= DF_1_SINGLETON;
10264 }
10265 if (val & DF_1_STUB)
10266 {
10267 printf (" STUB");
10268 val ^= DF_1_STUB;
10269 }
10270 if (val & DF_1_PIE)
10271 {
10272 printf (" PIE");
10273 val ^= DF_1_PIE;
10274 }
10275 if (val & DF_1_KMOD)
10276 {
10277 printf (" KMOD");
10278 val ^= DF_1_KMOD;
10279 }
10280 if (val & DF_1_WEAKFILTER)
10281 {
10282 printf (" WEAKFILTER");
10283 val ^= DF_1_WEAKFILTER;
10284 }
10285 if (val & DF_1_NOCOMMON)
10286 {
10287 printf (" NOCOMMON");
10288 val ^= DF_1_NOCOMMON;
10289 }
10290 if (val != 0)
10291 printf (" %lx", val);
10292 puts ("");
10293 }
10294 }
10295 break;
10296
10297 case DT_PLTREL:
10298 dynamic_info[entry->d_tag] = entry->d_un.d_val;
10299 if (do_dynamic)
10300 puts (get_dynamic_type (filedata, entry->d_un.d_val));
10301 break;
10302
10303 case DT_NULL :
10304 case DT_NEEDED :
10305 case DT_PLTGOT :
10306 case DT_HASH :
10307 case DT_STRTAB :
10308 case DT_SYMTAB :
10309 case DT_RELA :
10310 case DT_INIT :
10311 case DT_FINI :
10312 case DT_SONAME :
10313 case DT_RPATH :
10314 case DT_SYMBOLIC:
10315 case DT_REL :
10316 case DT_DEBUG :
10317 case DT_TEXTREL :
10318 case DT_JMPREL :
10319 case DT_RUNPATH :
10320 dynamic_info[entry->d_tag] = entry->d_un.d_val;
10321
10322 if (do_dynamic)
10323 {
10324 char * name;
10325
10326 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
10327 name = GET_DYNAMIC_NAME (entry->d_un.d_val);
10328 else
10329 name = NULL;
10330
10331 if (name)
10332 {
10333 switch (entry->d_tag)
10334 {
10335 case DT_NEEDED:
10336 printf (_("Shared library: [%s]"), name);
10337
10338 if (streq (name, program_interpreter))
10339 printf (_(" program interpreter"));
10340 break;
10341
10342 case DT_SONAME:
10343 printf (_("Library soname: [%s]"), name);
10344 break;
10345
10346 case DT_RPATH:
10347 printf (_("Library rpath: [%s]"), name);
10348 break;
10349
10350 case DT_RUNPATH:
10351 printf (_("Library runpath: [%s]"), name);
10352 break;
10353
10354 default:
10355 print_vma (entry->d_un.d_val, PREFIX_HEX);
10356 break;
10357 }
10358 }
10359 else
10360 print_vma (entry->d_un.d_val, PREFIX_HEX);
10361
10362 putchar ('\n');
10363 }
10364 break;
10365
10366 case DT_PLTRELSZ:
10367 case DT_RELASZ :
10368 case DT_STRSZ :
10369 case DT_RELSZ :
10370 case DT_RELAENT :
10371 case DT_SYMENT :
10372 case DT_RELENT :
10373 dynamic_info[entry->d_tag] = entry->d_un.d_val;
10374 /* Fall through. */
10375 case DT_PLTPADSZ:
10376 case DT_MOVEENT :
10377 case DT_MOVESZ :
10378 case DT_INIT_ARRAYSZ:
10379 case DT_FINI_ARRAYSZ:
10380 case DT_GNU_CONFLICTSZ:
10381 case DT_GNU_LIBLISTSZ:
10382 if (do_dynamic)
10383 {
10384 print_vma (entry->d_un.d_val, UNSIGNED);
10385 printf (_(" (bytes)\n"));
10386 }
10387 break;
10388
10389 case DT_VERDEFNUM:
10390 case DT_VERNEEDNUM:
10391 case DT_RELACOUNT:
10392 case DT_RELCOUNT:
10393 if (do_dynamic)
10394 {
10395 print_vma (entry->d_un.d_val, UNSIGNED);
10396 putchar ('\n');
10397 }
10398 break;
10399
10400 case DT_SYMINSZ:
10401 case DT_SYMINENT:
10402 case DT_SYMINFO:
10403 case DT_USED:
10404 case DT_INIT_ARRAY:
10405 case DT_FINI_ARRAY:
10406 if (do_dynamic)
10407 {
10408 if (entry->d_tag == DT_USED
10409 && VALID_DYNAMIC_NAME (entry->d_un.d_val))
10410 {
10411 char * name = GET_DYNAMIC_NAME (entry->d_un.d_val);
10412
10413 if (*name)
10414 {
10415 printf (_("Not needed object: [%s]\n"), name);
10416 break;
10417 }
10418 }
10419
10420 print_vma (entry->d_un.d_val, PREFIX_HEX);
10421 putchar ('\n');
10422 }
10423 break;
10424
10425 case DT_BIND_NOW:
10426 /* The value of this entry is ignored. */
10427 if (do_dynamic)
10428 putchar ('\n');
10429 break;
10430
10431 case DT_GNU_PRELINKED:
10432 if (do_dynamic)
10433 {
10434 struct tm * tmp;
10435 time_t atime = entry->d_un.d_val;
10436
10437 tmp = gmtime (&atime);
10438 /* PR 17533 file: 041-1244816-0.004. */
10439 if (tmp == NULL)
10440 printf (_("<corrupt time val: %lx"),
10441 (unsigned long) atime);
10442 else
10443 printf ("%04u-%02u-%02uT%02u:%02u:%02u\n",
10444 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
10445 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
10446
10447 }
10448 break;
10449
10450 case DT_GNU_HASH:
10451 dynamic_info_DT_GNU_HASH = entry->d_un.d_val;
10452 if (do_dynamic)
10453 {
10454 print_vma (entry->d_un.d_val, PREFIX_HEX);
10455 putchar ('\n');
10456 }
10457 break;
10458
10459 default:
10460 if ((entry->d_tag >= DT_VERSYM) && (entry->d_tag <= DT_VERNEEDNUM))
10461 version_info[DT_VERSIONTAGIDX (entry->d_tag)] =
10462 entry->d_un.d_val;
10463
10464 if (do_dynamic)
10465 {
10466 switch (filedata->file_header.e_machine)
10467 {
10468 case EM_AARCH64:
10469 dynamic_section_aarch64_val (entry);
10470 break;
10471 case EM_MIPS:
10472 case EM_MIPS_RS3_LE:
10473 dynamic_section_mips_val (entry);
10474 break;
10475 case EM_PARISC:
10476 dynamic_section_parisc_val (entry);
10477 break;
10478 case EM_IA_64:
10479 dynamic_section_ia64_val (entry);
10480 break;
10481 default:
10482 print_vma (entry->d_un.d_val, PREFIX_HEX);
10483 putchar ('\n');
10484 }
10485 }
10486 break;
10487 }
10488 }
10489
10490 return TRUE;
10491 }
10492
10493 static char *
10494 get_ver_flags (unsigned int flags)
10495 {
10496 static char buff[128];
10497
10498 buff[0] = 0;
10499
10500 if (flags == 0)
10501 return _("none");
10502
10503 if (flags & VER_FLG_BASE)
10504 strcat (buff, "BASE");
10505
10506 if (flags & VER_FLG_WEAK)
10507 {
10508 if (flags & VER_FLG_BASE)
10509 strcat (buff, " | ");
10510
10511 strcat (buff, "WEAK");
10512 }
10513
10514 if (flags & VER_FLG_INFO)
10515 {
10516 if (flags & (VER_FLG_BASE|VER_FLG_WEAK))
10517 strcat (buff, " | ");
10518
10519 strcat (buff, "INFO");
10520 }
10521
10522 if (flags & ~(VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
10523 {
10524 if (flags & (VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
10525 strcat (buff, " | ");
10526
10527 strcat (buff, _("<unknown>"));
10528 }
10529
10530 return buff;
10531 }
10532
10533 /* Display the contents of the version sections. */
10534
10535 static bfd_boolean
10536 process_version_sections (Filedata * filedata)
10537 {
10538 Elf_Internal_Shdr * section;
10539 unsigned i;
10540 bfd_boolean found = FALSE;
10541
10542 if (! do_version)
10543 return TRUE;
10544
10545 for (i = 0, section = filedata->section_headers;
10546 i < filedata->file_header.e_shnum;
10547 i++, section++)
10548 {
10549 switch (section->sh_type)
10550 {
10551 case SHT_GNU_verdef:
10552 {
10553 Elf_External_Verdef * edefs;
10554 unsigned long idx;
10555 unsigned long cnt;
10556 char * endbuf;
10557
10558 found = TRUE;
10559
10560 printf (ngettext ("\nVersion definition section '%s' "
10561 "contains %u entry:\n",
10562 "\nVersion definition section '%s' "
10563 "contains %u entries:\n",
10564 section->sh_info),
10565 printable_section_name (filedata, section),
10566 section->sh_info);
10567
10568 printf (_(" Addr: 0x"));
10569 printf_vma (section->sh_addr);
10570 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10571 (unsigned long) section->sh_offset, section->sh_link,
10572 printable_section_name_from_index (filedata, section->sh_link));
10573
10574 edefs = (Elf_External_Verdef *)
10575 get_data (NULL, filedata, section->sh_offset, 1,section->sh_size,
10576 _("version definition section"));
10577 if (!edefs)
10578 break;
10579 endbuf = (char *) edefs + section->sh_size;
10580
10581 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
10582 {
10583 char * vstart;
10584 Elf_External_Verdef * edef;
10585 Elf_Internal_Verdef ent;
10586 Elf_External_Verdaux * eaux;
10587 Elf_Internal_Verdaux aux;
10588 unsigned long isum;
10589 int j;
10590
10591 vstart = ((char *) edefs) + idx;
10592 if (vstart + sizeof (*edef) > endbuf)
10593 break;
10594
10595 edef = (Elf_External_Verdef *) vstart;
10596
10597 ent.vd_version = BYTE_GET (edef->vd_version);
10598 ent.vd_flags = BYTE_GET (edef->vd_flags);
10599 ent.vd_ndx = BYTE_GET (edef->vd_ndx);
10600 ent.vd_cnt = BYTE_GET (edef->vd_cnt);
10601 ent.vd_hash = BYTE_GET (edef->vd_hash);
10602 ent.vd_aux = BYTE_GET (edef->vd_aux);
10603 ent.vd_next = BYTE_GET (edef->vd_next);
10604
10605 printf (_(" %#06lx: Rev: %d Flags: %s"),
10606 idx, ent.vd_version, get_ver_flags (ent.vd_flags));
10607
10608 printf (_(" Index: %d Cnt: %d "),
10609 ent.vd_ndx, ent.vd_cnt);
10610
10611 /* Check for overflow. */
10612 if (ent.vd_aux > (size_t) (endbuf - vstart))
10613 break;
10614
10615 vstart += ent.vd_aux;
10616
10617 if (vstart + sizeof (*eaux) > endbuf)
10618 break;
10619 eaux = (Elf_External_Verdaux *) vstart;
10620
10621 aux.vda_name = BYTE_GET (eaux->vda_name);
10622 aux.vda_next = BYTE_GET (eaux->vda_next);
10623
10624 if (VALID_DYNAMIC_NAME (aux.vda_name))
10625 printf (_("Name: %s\n"), GET_DYNAMIC_NAME (aux.vda_name));
10626 else
10627 printf (_("Name index: %ld\n"), aux.vda_name);
10628
10629 isum = idx + ent.vd_aux;
10630
10631 for (j = 1; j < ent.vd_cnt; j++)
10632 {
10633 if (aux.vda_next < sizeof (*eaux)
10634 && !(j == ent.vd_cnt - 1 && aux.vda_next == 0))
10635 {
10636 warn (_("Invalid vda_next field of %lx\n"),
10637 aux.vda_next);
10638 j = ent.vd_cnt;
10639 break;
10640 }
10641 /* Check for overflow. */
10642 if (aux.vda_next > (size_t) (endbuf - vstart))
10643 break;
10644
10645 isum += aux.vda_next;
10646 vstart += aux.vda_next;
10647
10648 if (vstart + sizeof (*eaux) > endbuf)
10649 break;
10650 eaux = (Elf_External_Verdaux *) vstart;
10651
10652 aux.vda_name = BYTE_GET (eaux->vda_name);
10653 aux.vda_next = BYTE_GET (eaux->vda_next);
10654
10655 if (VALID_DYNAMIC_NAME (aux.vda_name))
10656 printf (_(" %#06lx: Parent %d: %s\n"),
10657 isum, j, GET_DYNAMIC_NAME (aux.vda_name));
10658 else
10659 printf (_(" %#06lx: Parent %d, name index: %ld\n"),
10660 isum, j, aux.vda_name);
10661 }
10662
10663 if (j < ent.vd_cnt)
10664 printf (_(" Version def aux past end of section\n"));
10665
10666 /* PR 17531:
10667 file: id:000001,src:000172+005151,op:splice,rep:2. */
10668 if (ent.vd_next < sizeof (*edef)
10669 && !(cnt == section->sh_info - 1 && ent.vd_next == 0))
10670 {
10671 warn (_("Invalid vd_next field of %lx\n"), ent.vd_next);
10672 cnt = section->sh_info;
10673 break;
10674 }
10675 if (ent.vd_next > (size_t) (endbuf - ((char *) edefs + idx)))
10676 break;
10677
10678 idx += ent.vd_next;
10679 }
10680
10681 if (cnt < section->sh_info)
10682 printf (_(" Version definition past end of section\n"));
10683
10684 free (edefs);
10685 }
10686 break;
10687
10688 case SHT_GNU_verneed:
10689 {
10690 Elf_External_Verneed * eneed;
10691 unsigned long idx;
10692 unsigned long cnt;
10693 char * endbuf;
10694
10695 found = TRUE;
10696
10697 printf (ngettext ("\nVersion needs section '%s' "
10698 "contains %u entry:\n",
10699 "\nVersion needs section '%s' "
10700 "contains %u entries:\n",
10701 section->sh_info),
10702 printable_section_name (filedata, section), section->sh_info);
10703
10704 printf (_(" Addr: 0x"));
10705 printf_vma (section->sh_addr);
10706 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10707 (unsigned long) section->sh_offset, section->sh_link,
10708 printable_section_name_from_index (filedata, section->sh_link));
10709
10710 eneed = (Elf_External_Verneed *) get_data (NULL, filedata,
10711 section->sh_offset, 1,
10712 section->sh_size,
10713 _("Version Needs section"));
10714 if (!eneed)
10715 break;
10716 endbuf = (char *) eneed + section->sh_size;
10717
10718 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
10719 {
10720 Elf_External_Verneed * entry;
10721 Elf_Internal_Verneed ent;
10722 unsigned long isum;
10723 int j;
10724 char * vstart;
10725
10726 vstart = ((char *) eneed) + idx;
10727 if (vstart + sizeof (*entry) > endbuf)
10728 break;
10729
10730 entry = (Elf_External_Verneed *) vstart;
10731
10732 ent.vn_version = BYTE_GET (entry->vn_version);
10733 ent.vn_cnt = BYTE_GET (entry->vn_cnt);
10734 ent.vn_file = BYTE_GET (entry->vn_file);
10735 ent.vn_aux = BYTE_GET (entry->vn_aux);
10736 ent.vn_next = BYTE_GET (entry->vn_next);
10737
10738 printf (_(" %#06lx: Version: %d"), idx, ent.vn_version);
10739
10740 if (VALID_DYNAMIC_NAME (ent.vn_file))
10741 printf (_(" File: %s"), GET_DYNAMIC_NAME (ent.vn_file));
10742 else
10743 printf (_(" File: %lx"), ent.vn_file);
10744
10745 printf (_(" Cnt: %d\n"), ent.vn_cnt);
10746
10747 /* Check for overflow. */
10748 if (ent.vn_aux > (size_t) (endbuf - vstart))
10749 break;
10750 vstart += ent.vn_aux;
10751
10752 for (j = 0, isum = idx + ent.vn_aux; j < ent.vn_cnt; ++j)
10753 {
10754 Elf_External_Vernaux * eaux;
10755 Elf_Internal_Vernaux aux;
10756
10757 if (vstart + sizeof (*eaux) > endbuf)
10758 break;
10759 eaux = (Elf_External_Vernaux *) vstart;
10760
10761 aux.vna_hash = BYTE_GET (eaux->vna_hash);
10762 aux.vna_flags = BYTE_GET (eaux->vna_flags);
10763 aux.vna_other = BYTE_GET (eaux->vna_other);
10764 aux.vna_name = BYTE_GET (eaux->vna_name);
10765 aux.vna_next = BYTE_GET (eaux->vna_next);
10766
10767 if (VALID_DYNAMIC_NAME (aux.vna_name))
10768 printf (_(" %#06lx: Name: %s"),
10769 isum, GET_DYNAMIC_NAME (aux.vna_name));
10770 else
10771 printf (_(" %#06lx: Name index: %lx"),
10772 isum, aux.vna_name);
10773
10774 printf (_(" Flags: %s Version: %d\n"),
10775 get_ver_flags (aux.vna_flags), aux.vna_other);
10776
10777 if (aux.vna_next < sizeof (*eaux)
10778 && !(j == ent.vn_cnt - 1 && aux.vna_next == 0))
10779 {
10780 warn (_("Invalid vna_next field of %lx\n"),
10781 aux.vna_next);
10782 j = ent.vn_cnt;
10783 break;
10784 }
10785 /* Check for overflow. */
10786 if (aux.vna_next > (size_t) (endbuf - vstart))
10787 break;
10788 isum += aux.vna_next;
10789 vstart += aux.vna_next;
10790 }
10791
10792 if (j < ent.vn_cnt)
10793 warn (_("Missing Version Needs auxillary information\n"));
10794
10795 if (ent.vn_next < sizeof (*entry)
10796 && !(cnt == section->sh_info - 1 && ent.vn_next == 0))
10797 {
10798 warn (_("Invalid vn_next field of %lx\n"), ent.vn_next);
10799 cnt = section->sh_info;
10800 break;
10801 }
10802 if (ent.vn_next > (size_t) (endbuf - ((char *) eneed + idx)))
10803 break;
10804 idx += ent.vn_next;
10805 }
10806
10807 if (cnt < section->sh_info)
10808 warn (_("Missing Version Needs information\n"));
10809
10810 free (eneed);
10811 }
10812 break;
10813
10814 case SHT_GNU_versym:
10815 {
10816 Elf_Internal_Shdr * link_section;
10817 size_t total;
10818 unsigned int cnt;
10819 unsigned char * edata;
10820 unsigned short * data;
10821 char * strtab;
10822 Elf_Internal_Sym * symbols;
10823 Elf_Internal_Shdr * string_sec;
10824 unsigned long num_syms;
10825 long off;
10826
10827 if (section->sh_link >= filedata->file_header.e_shnum)
10828 break;
10829
10830 link_section = filedata->section_headers + section->sh_link;
10831 total = section->sh_size / sizeof (Elf_External_Versym);
10832
10833 if (link_section->sh_link >= filedata->file_header.e_shnum)
10834 break;
10835
10836 found = TRUE;
10837
10838 symbols = GET_ELF_SYMBOLS (filedata, link_section, & num_syms);
10839 if (symbols == NULL)
10840 break;
10841
10842 string_sec = filedata->section_headers + link_section->sh_link;
10843
10844 strtab = (char *) get_data (NULL, filedata, string_sec->sh_offset, 1,
10845 string_sec->sh_size,
10846 _("version string table"));
10847 if (!strtab)
10848 {
10849 free (symbols);
10850 break;
10851 }
10852
10853 printf (ngettext ("\nVersion symbols section '%s' "
10854 "contains %lu entry:\n",
10855 "\nVersion symbols section '%s' "
10856 "contains %lu entries:\n",
10857 total),
10858 printable_section_name (filedata, section), (unsigned long) total);
10859
10860 printf (_(" Addr: 0x"));
10861 printf_vma (section->sh_addr);
10862 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10863 (unsigned long) section->sh_offset, section->sh_link,
10864 printable_section_name (filedata, link_section));
10865
10866 off = offset_from_vma (filedata,
10867 version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
10868 total * sizeof (short));
10869 edata = (unsigned char *) get_data (NULL, filedata, off, total,
10870 sizeof (short),
10871 _("version symbol data"));
10872 if (!edata)
10873 {
10874 free (strtab);
10875 free (symbols);
10876 break;
10877 }
10878
10879 data = (short unsigned int *) cmalloc (total, sizeof (short));
10880
10881 for (cnt = total; cnt --;)
10882 data[cnt] = byte_get (edata + cnt * sizeof (short),
10883 sizeof (short));
10884
10885 free (edata);
10886
10887 for (cnt = 0; cnt < total; cnt += 4)
10888 {
10889 int j, nn;
10890 char *name;
10891 char *invalid = _("*invalid*");
10892
10893 printf (" %03x:", cnt);
10894
10895 for (j = 0; (j < 4) && (cnt + j) < total; ++j)
10896 switch (data[cnt + j])
10897 {
10898 case 0:
10899 fputs (_(" 0 (*local*) "), stdout);
10900 break;
10901
10902 case 1:
10903 fputs (_(" 1 (*global*) "), stdout);
10904 break;
10905
10906 default:
10907 nn = printf ("%4x%c", data[cnt + j] & VERSYM_VERSION,
10908 data[cnt + j] & VERSYM_HIDDEN ? 'h' : ' ');
10909
10910 /* If this index value is greater than the size of the symbols
10911 array, break to avoid an out-of-bounds read. */
10912 if ((unsigned long)(cnt + j) >= num_syms)
10913 {
10914 warn (_("invalid index into symbol array\n"));
10915 break;
10916 }
10917
10918 name = NULL;
10919 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
10920 {
10921 Elf_Internal_Verneed ivn;
10922 unsigned long offset;
10923
10924 offset = offset_from_vma
10925 (filedata, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
10926 sizeof (Elf_External_Verneed));
10927
10928 do
10929 {
10930 Elf_Internal_Vernaux ivna;
10931 Elf_External_Verneed evn;
10932 Elf_External_Vernaux evna;
10933 unsigned long a_off;
10934
10935 if (get_data (&evn, filedata, offset, sizeof (evn), 1,
10936 _("version need")) == NULL)
10937 break;
10938
10939 ivn.vn_aux = BYTE_GET (evn.vn_aux);
10940 ivn.vn_next = BYTE_GET (evn.vn_next);
10941
10942 a_off = offset + ivn.vn_aux;
10943
10944 do
10945 {
10946 if (get_data (&evna, filedata, a_off, sizeof (evna),
10947 1, _("version need aux (2)")) == NULL)
10948 {
10949 ivna.vna_next = 0;
10950 ivna.vna_other = 0;
10951 }
10952 else
10953 {
10954 ivna.vna_next = BYTE_GET (evna.vna_next);
10955 ivna.vna_other = BYTE_GET (evna.vna_other);
10956 }
10957
10958 a_off += ivna.vna_next;
10959 }
10960 while (ivna.vna_other != data[cnt + j]
10961 && ivna.vna_next != 0);
10962
10963 if (ivna.vna_other == data[cnt + j])
10964 {
10965 ivna.vna_name = BYTE_GET (evna.vna_name);
10966
10967 if (ivna.vna_name >= string_sec->sh_size)
10968 name = invalid;
10969 else
10970 name = strtab + ivna.vna_name;
10971 break;
10972 }
10973
10974 offset += ivn.vn_next;
10975 }
10976 while (ivn.vn_next);
10977 }
10978
10979 if (data[cnt + j] != 0x8001
10980 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
10981 {
10982 Elf_Internal_Verdef ivd;
10983 Elf_External_Verdef evd;
10984 unsigned long offset;
10985
10986 offset = offset_from_vma
10987 (filedata, version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
10988 sizeof evd);
10989
10990 do
10991 {
10992 if (get_data (&evd, filedata, offset, sizeof (evd), 1,
10993 _("version def")) == NULL)
10994 {
10995 ivd.vd_next = 0;
10996 /* PR 17531: file: 046-1082287-0.004. */
10997 ivd.vd_ndx = (data[cnt + j] & VERSYM_VERSION) + 1;
10998 break;
10999 }
11000 else
11001 {
11002 ivd.vd_next = BYTE_GET (evd.vd_next);
11003 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
11004 }
11005
11006 offset += ivd.vd_next;
11007 }
11008 while (ivd.vd_ndx != (data[cnt + j] & VERSYM_VERSION)
11009 && ivd.vd_next != 0);
11010
11011 if (ivd.vd_ndx == (data[cnt + j] & VERSYM_VERSION))
11012 {
11013 Elf_External_Verdaux evda;
11014 Elf_Internal_Verdaux ivda;
11015
11016 ivd.vd_aux = BYTE_GET (evd.vd_aux);
11017
11018 if (get_data (&evda, filedata,
11019 offset - ivd.vd_next + ivd.vd_aux,
11020 sizeof (evda), 1,
11021 _("version def aux")) == NULL)
11022 break;
11023
11024 ivda.vda_name = BYTE_GET (evda.vda_name);
11025
11026 if (ivda.vda_name >= string_sec->sh_size)
11027 name = invalid;
11028 else if (name != NULL && name != invalid)
11029 name = _("*both*");
11030 else
11031 name = strtab + ivda.vda_name;
11032 }
11033 }
11034 if (name != NULL)
11035 nn += printf ("(%s%-*s",
11036 name,
11037 12 - (int) strlen (name),
11038 ")");
11039
11040 if (nn < 18)
11041 printf ("%*c", 18 - nn, ' ');
11042 }
11043
11044 putchar ('\n');
11045 }
11046
11047 free (data);
11048 free (strtab);
11049 free (symbols);
11050 }
11051 break;
11052
11053 default:
11054 break;
11055 }
11056 }
11057
11058 if (! found)
11059 printf (_("\nNo version information found in this file.\n"));
11060
11061 return TRUE;
11062 }
11063
11064 static const char *
11065 get_symbol_binding (Filedata * filedata, unsigned int binding)
11066 {
11067 static char buff[32];
11068
11069 switch (binding)
11070 {
11071 case STB_LOCAL: return "LOCAL";
11072 case STB_GLOBAL: return "GLOBAL";
11073 case STB_WEAK: return "WEAK";
11074 default:
11075 if (binding >= STB_LOPROC && binding <= STB_HIPROC)
11076 snprintf (buff, sizeof (buff), _("<processor specific>: %d"),
11077 binding);
11078 else if (binding >= STB_LOOS && binding <= STB_HIOS)
11079 {
11080 if (binding == STB_GNU_UNIQUE
11081 && filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_GNU)
11082 return "UNIQUE";
11083 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), binding);
11084 }
11085 else
11086 snprintf (buff, sizeof (buff), _("<unknown>: %d"), binding);
11087 return buff;
11088 }
11089 }
11090
11091 static const char *
11092 get_symbol_type (Filedata * filedata, unsigned int type)
11093 {
11094 static char buff[32];
11095
11096 switch (type)
11097 {
11098 case STT_NOTYPE: return "NOTYPE";
11099 case STT_OBJECT: return "OBJECT";
11100 case STT_FUNC: return "FUNC";
11101 case STT_SECTION: return "SECTION";
11102 case STT_FILE: return "FILE";
11103 case STT_COMMON: return "COMMON";
11104 case STT_TLS: return "TLS";
11105 case STT_RELC: return "RELC";
11106 case STT_SRELC: return "SRELC";
11107 default:
11108 if (type >= STT_LOPROC && type <= STT_HIPROC)
11109 {
11110 if (filedata->file_header.e_machine == EM_ARM && type == STT_ARM_TFUNC)
11111 return "THUMB_FUNC";
11112
11113 if (filedata->file_header.e_machine == EM_SPARCV9 && type == STT_REGISTER)
11114 return "REGISTER";
11115
11116 if (filedata->file_header.e_machine == EM_PARISC && type == STT_PARISC_MILLI)
11117 return "PARISC_MILLI";
11118
11119 snprintf (buff, sizeof (buff), _("<processor specific>: %d"), type);
11120 }
11121 else if (type >= STT_LOOS && type <= STT_HIOS)
11122 {
11123 if (filedata->file_header.e_machine == EM_PARISC)
11124 {
11125 if (type == STT_HP_OPAQUE)
11126 return "HP_OPAQUE";
11127 if (type == STT_HP_STUB)
11128 return "HP_STUB";
11129 }
11130
11131 if (type == STT_GNU_IFUNC
11132 && (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_GNU
11133 || filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_FREEBSD))
11134 return "IFUNC";
11135
11136 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), type);
11137 }
11138 else
11139 snprintf (buff, sizeof (buff), _("<unknown>: %d"), type);
11140 return buff;
11141 }
11142 }
11143
11144 static const char *
11145 get_symbol_visibility (unsigned int visibility)
11146 {
11147 switch (visibility)
11148 {
11149 case STV_DEFAULT: return "DEFAULT";
11150 case STV_INTERNAL: return "INTERNAL";
11151 case STV_HIDDEN: return "HIDDEN";
11152 case STV_PROTECTED: return "PROTECTED";
11153 default:
11154 error (_("Unrecognized visibility value: %u"), visibility);
11155 return _("<unknown>");
11156 }
11157 }
11158
11159 static const char *
11160 get_alpha_symbol_other (unsigned int other)
11161 {
11162 switch (other)
11163 {
11164 case STO_ALPHA_NOPV: return "NOPV";
11165 case STO_ALPHA_STD_GPLOAD: return "STD GPLOAD";
11166 default:
11167 error (_("Unrecognized alpah specific other value: %u"), other);
11168 return _("<unknown>");
11169 }
11170 }
11171
11172 static const char *
11173 get_solaris_symbol_visibility (unsigned int visibility)
11174 {
11175 switch (visibility)
11176 {
11177 case 4: return "EXPORTED";
11178 case 5: return "SINGLETON";
11179 case 6: return "ELIMINATE";
11180 default: return get_symbol_visibility (visibility);
11181 }
11182 }
11183
11184 static const char *
11185 get_aarch64_symbol_other (unsigned int other)
11186 {
11187 static char buf[32];
11188
11189 if (other & STO_AARCH64_VARIANT_PCS)
11190 {
11191 other &= ~STO_AARCH64_VARIANT_PCS;
11192 if (other == 0)
11193 return "VARIANT_PCS";
11194 snprintf (buf, sizeof buf, "VARIANT_PCS | %x", other);
11195 return buf;
11196 }
11197 return NULL;
11198 }
11199
11200 static const char *
11201 get_mips_symbol_other (unsigned int other)
11202 {
11203 switch (other)
11204 {
11205 case STO_OPTIONAL: return "OPTIONAL";
11206 case STO_MIPS_PLT: return "MIPS PLT";
11207 case STO_MIPS_PIC: return "MIPS PIC";
11208 case STO_MICROMIPS: return "MICROMIPS";
11209 case STO_MICROMIPS | STO_MIPS_PIC: return "MICROMIPS, MIPS PIC";
11210 case STO_MIPS16: return "MIPS16";
11211 default: return NULL;
11212 }
11213 }
11214
11215 static const char *
11216 get_ia64_symbol_other (Filedata * filedata, unsigned int other)
11217 {
11218 if (is_ia64_vms (filedata))
11219 {
11220 static char res[32];
11221
11222 res[0] = 0;
11223
11224 /* Function types is for images and .STB files only. */
11225 switch (filedata->file_header.e_type)
11226 {
11227 case ET_DYN:
11228 case ET_EXEC:
11229 switch (VMS_ST_FUNC_TYPE (other))
11230 {
11231 case VMS_SFT_CODE_ADDR:
11232 strcat (res, " CA");
11233 break;
11234 case VMS_SFT_SYMV_IDX:
11235 strcat (res, " VEC");
11236 break;
11237 case VMS_SFT_FD:
11238 strcat (res, " FD");
11239 break;
11240 case VMS_SFT_RESERVE:
11241 strcat (res, " RSV");
11242 break;
11243 default:
11244 warn (_("Unrecognized IA64 VMS ST Function type: %d\n"),
11245 VMS_ST_FUNC_TYPE (other));
11246 strcat (res, " <unknown>");
11247 break;
11248 }
11249 break;
11250 default:
11251 break;
11252 }
11253 switch (VMS_ST_LINKAGE (other))
11254 {
11255 case VMS_STL_IGNORE:
11256 strcat (res, " IGN");
11257 break;
11258 case VMS_STL_RESERVE:
11259 strcat (res, " RSV");
11260 break;
11261 case VMS_STL_STD:
11262 strcat (res, " STD");
11263 break;
11264 case VMS_STL_LNK:
11265 strcat (res, " LNK");
11266 break;
11267 default:
11268 warn (_("Unrecognized IA64 VMS ST Linkage: %d\n"),
11269 VMS_ST_LINKAGE (other));
11270 strcat (res, " <unknown>");
11271 break;
11272 }
11273
11274 if (res[0] != 0)
11275 return res + 1;
11276 else
11277 return res;
11278 }
11279 return NULL;
11280 }
11281
11282 static const char *
11283 get_ppc64_symbol_other (unsigned int other)
11284 {
11285 if ((other & ~STO_PPC64_LOCAL_MASK) != 0)
11286 return NULL;
11287
11288 other >>= STO_PPC64_LOCAL_BIT;
11289 if (other <= 6)
11290 {
11291 static char buf[32];
11292 if (other >= 2)
11293 other = ppc64_decode_local_entry (other);
11294 snprintf (buf, sizeof buf, _("<localentry>: %d"), other);
11295 return buf;
11296 }
11297 return NULL;
11298 }
11299
11300 static const char *
11301 get_symbol_other (Filedata * filedata, unsigned int other)
11302 {
11303 const char * result = NULL;
11304 static char buff [32];
11305
11306 if (other == 0)
11307 return "";
11308
11309 switch (filedata->file_header.e_machine)
11310 {
11311 case EM_ALPHA:
11312 result = get_alpha_symbol_other (other);
11313 break;
11314 case EM_AARCH64:
11315 result = get_aarch64_symbol_other (other);
11316 break;
11317 case EM_MIPS:
11318 result = get_mips_symbol_other (other);
11319 break;
11320 case EM_IA_64:
11321 result = get_ia64_symbol_other (filedata, other);
11322 break;
11323 case EM_PPC64:
11324 result = get_ppc64_symbol_other (other);
11325 break;
11326 default:
11327 result = NULL;
11328 break;
11329 }
11330
11331 if (result)
11332 return result;
11333
11334 snprintf (buff, sizeof buff, _("<other>: %x"), other);
11335 return buff;
11336 }
11337
11338 static const char *
11339 get_symbol_index_type (Filedata * filedata, unsigned int type)
11340 {
11341 static char buff[32];
11342
11343 switch (type)
11344 {
11345 case SHN_UNDEF: return "UND";
11346 case SHN_ABS: return "ABS";
11347 case SHN_COMMON: return "COM";
11348 default:
11349 if (type == SHN_IA_64_ANSI_COMMON
11350 && filedata->file_header.e_machine == EM_IA_64
11351 && filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_HPUX)
11352 return "ANSI_COM";
11353 else if ((filedata->file_header.e_machine == EM_X86_64
11354 || filedata->file_header.e_machine == EM_L1OM
11355 || filedata->file_header.e_machine == EM_K1OM)
11356 && type == SHN_X86_64_LCOMMON)
11357 return "LARGE_COM";
11358 else if ((type == SHN_MIPS_SCOMMON
11359 && filedata->file_header.e_machine == EM_MIPS)
11360 || (type == SHN_TIC6X_SCOMMON
11361 && filedata->file_header.e_machine == EM_TI_C6000))
11362 return "SCOM";
11363 else if (type == SHN_MIPS_SUNDEFINED
11364 && filedata->file_header.e_machine == EM_MIPS)
11365 return "SUND";
11366 else if (type >= SHN_LOPROC && type <= SHN_HIPROC)
11367 sprintf (buff, "PRC[0x%04x]", type & 0xffff);
11368 else if (type >= SHN_LOOS && type <= SHN_HIOS)
11369 sprintf (buff, "OS [0x%04x]", type & 0xffff);
11370 else if (type >= SHN_LORESERVE)
11371 sprintf (buff, "RSV[0x%04x]", type & 0xffff);
11372 else if (type >= filedata->file_header.e_shnum)
11373 sprintf (buff, _("bad section index[%3d]"), type);
11374 else
11375 sprintf (buff, "%3d", type);
11376 break;
11377 }
11378
11379 return buff;
11380 }
11381
11382 static bfd_vma *
11383 get_dynamic_data (Filedata * filedata, bfd_size_type number, unsigned int ent_size)
11384 {
11385 unsigned char * e_data;
11386 bfd_vma * i_data;
11387
11388 /* If the size_t type is smaller than the bfd_size_type, eg because
11389 you are building a 32-bit tool on a 64-bit host, then make sure
11390 that when (number) is cast to (size_t) no information is lost. */
11391 if (sizeof (size_t) < sizeof (bfd_size_type)
11392 && (bfd_size_type) ((size_t) number) != number)
11393 {
11394 error (_("Size truncation prevents reading %s elements of size %u\n"),
11395 bfd_vmatoa ("u", number), ent_size);
11396 return NULL;
11397 }
11398
11399 /* Be kind to memory chekers (eg valgrind, address sanitizer) by not
11400 attempting to allocate memory when the read is bound to fail. */
11401 if (ent_size * number > filedata->file_size)
11402 {
11403 error (_("Invalid number of dynamic entries: %s\n"),
11404 bfd_vmatoa ("u", number));
11405 return NULL;
11406 }
11407
11408 e_data = (unsigned char *) cmalloc ((size_t) number, ent_size);
11409 if (e_data == NULL)
11410 {
11411 error (_("Out of memory reading %s dynamic entries\n"),
11412 bfd_vmatoa ("u", number));
11413 return NULL;
11414 }
11415
11416 if (fread (e_data, ent_size, (size_t) number, filedata->handle) != number)
11417 {
11418 error (_("Unable to read in %s bytes of dynamic data\n"),
11419 bfd_vmatoa ("u", number * ent_size));
11420 free (e_data);
11421 return NULL;
11422 }
11423
11424 i_data = (bfd_vma *) cmalloc ((size_t) number, sizeof (*i_data));
11425 if (i_data == NULL)
11426 {
11427 error (_("Out of memory allocating space for %s dynamic entries\n"),
11428 bfd_vmatoa ("u", number));
11429 free (e_data);
11430 return NULL;
11431 }
11432
11433 while (number--)
11434 i_data[number] = byte_get (e_data + number * ent_size, ent_size);
11435
11436 free (e_data);
11437
11438 return i_data;
11439 }
11440
11441 static void
11442 print_dynamic_symbol (Filedata * filedata, bfd_vma si, unsigned long hn)
11443 {
11444 Elf_Internal_Sym * psym;
11445 int n;
11446
11447 n = print_vma (si, DEC_5);
11448 if (n < 5)
11449 fputs (&" "[n], stdout);
11450 printf (" %3lu: ", hn);
11451
11452 if (dynamic_symbols == NULL || si >= num_dynamic_syms)
11453 {
11454 printf (_("<No info available for dynamic symbol number %lu>\n"),
11455 (unsigned long) si);
11456 return;
11457 }
11458
11459 psym = dynamic_symbols + si;
11460 print_vma (psym->st_value, LONG_HEX);
11461 putchar (' ');
11462 print_vma (psym->st_size, DEC_5);
11463
11464 printf (" %-7s", get_symbol_type (filedata, ELF_ST_TYPE (psym->st_info)));
11465 printf (" %-6s", get_symbol_binding (filedata, ELF_ST_BIND (psym->st_info)));
11466
11467 if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
11468 printf (" %-7s", get_solaris_symbol_visibility (psym->st_other));
11469 else
11470 {
11471 unsigned int vis = ELF_ST_VISIBILITY (psym->st_other);
11472
11473 printf (" %-7s", get_symbol_visibility (vis));
11474 /* Check to see if any other bits in the st_other field are set.
11475 Note - displaying this information disrupts the layout of the
11476 table being generated, but for the moment this case is very
11477 rare. */
11478 if (psym->st_other ^ vis)
11479 printf (" [%s] ", get_symbol_other (filedata, psym->st_other ^ vis));
11480 }
11481
11482 printf (" %3.3s ", get_symbol_index_type (filedata, psym->st_shndx));
11483 if (VALID_DYNAMIC_NAME (psym->st_name))
11484 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
11485 else
11486 printf (_(" <corrupt: %14ld>"), psym->st_name);
11487 putchar ('\n');
11488 }
11489
11490 static const char *
11491 get_symbol_version_string (Filedata * filedata,
11492 bfd_boolean is_dynsym,
11493 const char * strtab,
11494 unsigned long int strtab_size,
11495 unsigned int si,
11496 Elf_Internal_Sym * psym,
11497 enum versioned_symbol_info * sym_info,
11498 unsigned short * vna_other)
11499 {
11500 unsigned char data[2];
11501 unsigned short vers_data;
11502 unsigned long offset;
11503 unsigned short max_vd_ndx;
11504
11505 if (!is_dynsym
11506 || version_info[DT_VERSIONTAGIDX (DT_VERSYM)] == 0)
11507 return NULL;
11508
11509 offset = offset_from_vma (filedata, version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
11510 sizeof data + si * sizeof (vers_data));
11511
11512 if (get_data (&data, filedata, offset + si * sizeof (vers_data),
11513 sizeof (data), 1, _("version data")) == NULL)
11514 return NULL;
11515
11516 vers_data = byte_get (data, 2);
11517
11518 if ((vers_data & VERSYM_HIDDEN) == 0 && vers_data == 0)
11519 return NULL;
11520
11521 max_vd_ndx = 0;
11522
11523 /* Usually we'd only see verdef for defined symbols, and verneed for
11524 undefined symbols. However, symbols defined by the linker in
11525 .dynbss for variables copied from a shared library in order to
11526 avoid text relocations are defined yet have verneed. We could
11527 use a heuristic to detect the special case, for example, check
11528 for verneed first on symbols defined in SHT_NOBITS sections, but
11529 it is simpler and more reliable to just look for both verdef and
11530 verneed. .dynbss might not be mapped to a SHT_NOBITS section. */
11531
11532 if (psym->st_shndx != SHN_UNDEF
11533 && vers_data != 0x8001
11534 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
11535 {
11536 Elf_Internal_Verdef ivd;
11537 Elf_Internal_Verdaux ivda;
11538 Elf_External_Verdaux evda;
11539 unsigned long off;
11540
11541 off = offset_from_vma (filedata,
11542 version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
11543 sizeof (Elf_External_Verdef));
11544
11545 do
11546 {
11547 Elf_External_Verdef evd;
11548
11549 if (get_data (&evd, filedata, off, sizeof (evd), 1,
11550 _("version def")) == NULL)
11551 {
11552 ivd.vd_ndx = 0;
11553 ivd.vd_aux = 0;
11554 ivd.vd_next = 0;
11555 ivd.vd_flags = 0;
11556 }
11557 else
11558 {
11559 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
11560 ivd.vd_aux = BYTE_GET (evd.vd_aux);
11561 ivd.vd_next = BYTE_GET (evd.vd_next);
11562 ivd.vd_flags = BYTE_GET (evd.vd_flags);
11563 }
11564
11565 if ((ivd.vd_ndx & VERSYM_VERSION) > max_vd_ndx)
11566 max_vd_ndx = ivd.vd_ndx & VERSYM_VERSION;
11567
11568 off += ivd.vd_next;
11569 }
11570 while (ivd.vd_ndx != (vers_data & VERSYM_VERSION) && ivd.vd_next != 0);
11571
11572 if (ivd.vd_ndx == (vers_data & VERSYM_VERSION))
11573 {
11574 if (ivd.vd_ndx == 1 && ivd.vd_flags == VER_FLG_BASE)
11575 return NULL;
11576
11577 off -= ivd.vd_next;
11578 off += ivd.vd_aux;
11579
11580 if (get_data (&evda, filedata, off, sizeof (evda), 1,
11581 _("version def aux")) != NULL)
11582 {
11583 ivda.vda_name = BYTE_GET (evda.vda_name);
11584
11585 if (psym->st_name != ivda.vda_name)
11586 {
11587 *sym_info = ((vers_data & VERSYM_HIDDEN) != 0
11588 ? symbol_hidden : symbol_public);
11589 return (ivda.vda_name < strtab_size
11590 ? strtab + ivda.vda_name : _("<corrupt>"));
11591 }
11592 }
11593 }
11594 }
11595
11596 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
11597 {
11598 Elf_External_Verneed evn;
11599 Elf_Internal_Verneed ivn;
11600 Elf_Internal_Vernaux ivna;
11601
11602 offset = offset_from_vma (filedata,
11603 version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
11604 sizeof evn);
11605 do
11606 {
11607 unsigned long vna_off;
11608
11609 if (get_data (&evn, filedata, offset, sizeof (evn), 1,
11610 _("version need")) == NULL)
11611 {
11612 ivna.vna_next = 0;
11613 ivna.vna_other = 0;
11614 ivna.vna_name = 0;
11615 break;
11616 }
11617
11618 ivn.vn_aux = BYTE_GET (evn.vn_aux);
11619 ivn.vn_next = BYTE_GET (evn.vn_next);
11620
11621 vna_off = offset + ivn.vn_aux;
11622
11623 do
11624 {
11625 Elf_External_Vernaux evna;
11626
11627 if (get_data (&evna, filedata, vna_off, sizeof (evna), 1,
11628 _("version need aux (3)")) == NULL)
11629 {
11630 ivna.vna_next = 0;
11631 ivna.vna_other = 0;
11632 ivna.vna_name = 0;
11633 }
11634 else
11635 {
11636 ivna.vna_other = BYTE_GET (evna.vna_other);
11637 ivna.vna_next = BYTE_GET (evna.vna_next);
11638 ivna.vna_name = BYTE_GET (evna.vna_name);
11639 }
11640
11641 vna_off += ivna.vna_next;
11642 }
11643 while (ivna.vna_other != vers_data && ivna.vna_next != 0);
11644
11645 if (ivna.vna_other == vers_data)
11646 break;
11647
11648 offset += ivn.vn_next;
11649 }
11650 while (ivn.vn_next != 0);
11651
11652 if (ivna.vna_other == vers_data)
11653 {
11654 *sym_info = symbol_undefined;
11655 *vna_other = ivna.vna_other;
11656 return (ivna.vna_name < strtab_size
11657 ? strtab + ivna.vna_name : _("<corrupt>"));
11658 }
11659 else if ((max_vd_ndx || (vers_data & VERSYM_VERSION) != 1)
11660 && (vers_data & VERSYM_VERSION) > max_vd_ndx)
11661 return _("<corrupt>");
11662 }
11663 return NULL;
11664 }
11665
11666 /* Dump the symbol table. */
11667 static bfd_boolean
11668 process_symbol_table (Filedata * filedata)
11669 {
11670 Elf_Internal_Shdr * section;
11671 bfd_size_type nbuckets = 0;
11672 bfd_size_type nchains = 0;
11673 bfd_vma * buckets = NULL;
11674 bfd_vma * chains = NULL;
11675 bfd_vma ngnubuckets = 0;
11676 bfd_vma * gnubuckets = NULL;
11677 bfd_vma * gnuchains = NULL;
11678 bfd_vma gnusymidx = 0;
11679 bfd_size_type ngnuchains = 0;
11680
11681 if (!do_syms && !do_dyn_syms && !do_histogram)
11682 return TRUE;
11683
11684 if (dynamic_info[DT_HASH]
11685 && (do_histogram
11686 || (do_using_dynamic
11687 && !do_dyn_syms
11688 && dynamic_strings != NULL)))
11689 {
11690 unsigned char nb[8];
11691 unsigned char nc[8];
11692 unsigned int hash_ent_size = 4;
11693
11694 if ((filedata->file_header.e_machine == EM_ALPHA
11695 || filedata->file_header.e_machine == EM_S390
11696 || filedata->file_header.e_machine == EM_S390_OLD)
11697 && filedata->file_header.e_ident[EI_CLASS] == ELFCLASS64)
11698 hash_ent_size = 8;
11699
11700 if (fseek (filedata->handle,
11701 (archive_file_offset
11702 + offset_from_vma (filedata, dynamic_info[DT_HASH],
11703 sizeof nb + sizeof nc)),
11704 SEEK_SET))
11705 {
11706 error (_("Unable to seek to start of dynamic information\n"));
11707 goto no_hash;
11708 }
11709
11710 if (fread (nb, hash_ent_size, 1, filedata->handle) != 1)
11711 {
11712 error (_("Failed to read in number of buckets\n"));
11713 goto no_hash;
11714 }
11715
11716 if (fread (nc, hash_ent_size, 1, filedata->handle) != 1)
11717 {
11718 error (_("Failed to read in number of chains\n"));
11719 goto no_hash;
11720 }
11721
11722 nbuckets = byte_get (nb, hash_ent_size);
11723 nchains = byte_get (nc, hash_ent_size);
11724
11725 buckets = get_dynamic_data (filedata, nbuckets, hash_ent_size);
11726 chains = get_dynamic_data (filedata, nchains, hash_ent_size);
11727
11728 no_hash:
11729 if (buckets == NULL || chains == NULL)
11730 {
11731 if (do_using_dynamic)
11732 return FALSE;
11733 free (buckets);
11734 free (chains);
11735 buckets = NULL;
11736 chains = NULL;
11737 nbuckets = 0;
11738 nchains = 0;
11739 }
11740 }
11741
11742 if (dynamic_info_DT_GNU_HASH
11743 && (do_histogram
11744 || (do_using_dynamic
11745 && !do_dyn_syms
11746 && dynamic_strings != NULL)))
11747 {
11748 unsigned char nb[16];
11749 bfd_vma i, maxchain = 0xffffffff, bitmaskwords;
11750 bfd_vma buckets_vma;
11751
11752 if (fseek (filedata->handle,
11753 (archive_file_offset
11754 + offset_from_vma (filedata, dynamic_info_DT_GNU_HASH,
11755 sizeof nb)),
11756 SEEK_SET))
11757 {
11758 error (_("Unable to seek to start of dynamic information\n"));
11759 goto no_gnu_hash;
11760 }
11761
11762 if (fread (nb, 16, 1, filedata->handle) != 1)
11763 {
11764 error (_("Failed to read in number of buckets\n"));
11765 goto no_gnu_hash;
11766 }
11767
11768 ngnubuckets = byte_get (nb, 4);
11769 gnusymidx = byte_get (nb + 4, 4);
11770 bitmaskwords = byte_get (nb + 8, 4);
11771 buckets_vma = dynamic_info_DT_GNU_HASH + 16;
11772 if (is_32bit_elf)
11773 buckets_vma += bitmaskwords * 4;
11774 else
11775 buckets_vma += bitmaskwords * 8;
11776
11777 if (fseek (filedata->handle,
11778 (archive_file_offset
11779 + offset_from_vma (filedata, buckets_vma, 4)),
11780 SEEK_SET))
11781 {
11782 error (_("Unable to seek to start of dynamic information\n"));
11783 goto no_gnu_hash;
11784 }
11785
11786 gnubuckets = get_dynamic_data (filedata, ngnubuckets, 4);
11787
11788 if (gnubuckets == NULL)
11789 goto no_gnu_hash;
11790
11791 for (i = 0; i < ngnubuckets; i++)
11792 if (gnubuckets[i] != 0)
11793 {
11794 if (gnubuckets[i] < gnusymidx)
11795 return FALSE;
11796
11797 if (maxchain == 0xffffffff || gnubuckets[i] > maxchain)
11798 maxchain = gnubuckets[i];
11799 }
11800
11801 if (maxchain == 0xffffffff)
11802 goto no_gnu_hash;
11803
11804 maxchain -= gnusymidx;
11805
11806 if (fseek (filedata->handle,
11807 (archive_file_offset
11808 + offset_from_vma (filedata, buckets_vma
11809 + 4 * (ngnubuckets + maxchain), 4)),
11810 SEEK_SET))
11811 {
11812 error (_("Unable to seek to start of dynamic information\n"));
11813 goto no_gnu_hash;
11814 }
11815
11816 do
11817 {
11818 if (fread (nb, 4, 1, filedata->handle) != 1)
11819 {
11820 error (_("Failed to determine last chain length\n"));
11821 goto no_gnu_hash;
11822 }
11823
11824 if (maxchain + 1 == 0)
11825 goto no_gnu_hash;
11826
11827 ++maxchain;
11828 }
11829 while ((byte_get (nb, 4) & 1) == 0);
11830
11831 if (fseek (filedata->handle,
11832 (archive_file_offset
11833 + offset_from_vma (filedata, buckets_vma + 4 * ngnubuckets, 4)),
11834 SEEK_SET))
11835 {
11836 error (_("Unable to seek to start of dynamic information\n"));
11837 goto no_gnu_hash;
11838 }
11839
11840 gnuchains = get_dynamic_data (filedata, maxchain, 4);
11841 ngnuchains = maxchain;
11842
11843 no_gnu_hash:
11844 if (gnuchains == NULL)
11845 {
11846 free (gnubuckets);
11847 gnubuckets = NULL;
11848 ngnubuckets = 0;
11849 if (do_using_dynamic)
11850 return FALSE;
11851 }
11852 }
11853
11854 if ((dynamic_info[DT_HASH] || dynamic_info_DT_GNU_HASH)
11855 && do_syms
11856 && do_using_dynamic
11857 && dynamic_strings != NULL
11858 && dynamic_symbols != NULL)
11859 {
11860 unsigned long hn;
11861
11862 if (dynamic_info[DT_HASH])
11863 {
11864 bfd_vma si;
11865 char *visited;
11866
11867 printf (_("\nSymbol table for image:\n"));
11868 if (is_32bit_elf)
11869 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11870 else
11871 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11872
11873 visited = xcmalloc (nchains, 1);
11874 memset (visited, 0, nchains);
11875 for (hn = 0; hn < nbuckets; hn++)
11876 {
11877 for (si = buckets[hn]; si > 0; si = chains[si])
11878 {
11879 print_dynamic_symbol (filedata, si, hn);
11880 if (si >= nchains || visited[si])
11881 {
11882 error (_("histogram chain is corrupt\n"));
11883 break;
11884 }
11885 visited[si] = 1;
11886 }
11887 }
11888 free (visited);
11889 }
11890
11891 if (dynamic_info_DT_GNU_HASH)
11892 {
11893 printf (_("\nSymbol table of `.gnu.hash' for image:\n"));
11894 if (is_32bit_elf)
11895 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11896 else
11897 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11898
11899 for (hn = 0; hn < ngnubuckets; ++hn)
11900 if (gnubuckets[hn] != 0)
11901 {
11902 bfd_vma si = gnubuckets[hn];
11903 bfd_vma off = si - gnusymidx;
11904
11905 do
11906 {
11907 print_dynamic_symbol (filedata, si, hn);
11908 si++;
11909 }
11910 while (off < ngnuchains && (gnuchains[off++] & 1) == 0);
11911 }
11912 }
11913 }
11914 else if ((do_dyn_syms || (do_syms && !do_using_dynamic))
11915 && filedata->section_headers != NULL)
11916 {
11917 unsigned int i;
11918
11919 for (i = 0, section = filedata->section_headers;
11920 i < filedata->file_header.e_shnum;
11921 i++, section++)
11922 {
11923 unsigned int si;
11924 char * strtab = NULL;
11925 unsigned long int strtab_size = 0;
11926 Elf_Internal_Sym * symtab;
11927 Elf_Internal_Sym * psym;
11928 unsigned long num_syms;
11929
11930 if ((section->sh_type != SHT_SYMTAB
11931 && section->sh_type != SHT_DYNSYM)
11932 || (!do_syms
11933 && section->sh_type == SHT_SYMTAB))
11934 continue;
11935
11936 if (section->sh_entsize == 0)
11937 {
11938 printf (_("\nSymbol table '%s' has a sh_entsize of zero!\n"),
11939 printable_section_name (filedata, section));
11940 continue;
11941 }
11942
11943 num_syms = section->sh_size / section->sh_entsize;
11944 printf (ngettext ("\nSymbol table '%s' contains %lu entry:\n",
11945 "\nSymbol table '%s' contains %lu entries:\n",
11946 num_syms),
11947 printable_section_name (filedata, section),
11948 num_syms);
11949
11950 if (is_32bit_elf)
11951 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
11952 else
11953 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
11954
11955 symtab = GET_ELF_SYMBOLS (filedata, section, & num_syms);
11956 if (symtab == NULL)
11957 continue;
11958
11959 if (section->sh_link == filedata->file_header.e_shstrndx)
11960 {
11961 strtab = filedata->string_table;
11962 strtab_size = filedata->string_table_length;
11963 }
11964 else if (section->sh_link < filedata->file_header.e_shnum)
11965 {
11966 Elf_Internal_Shdr * string_sec;
11967
11968 string_sec = filedata->section_headers + section->sh_link;
11969
11970 strtab = (char *) get_data (NULL, filedata, string_sec->sh_offset,
11971 1, string_sec->sh_size,
11972 _("string table"));
11973 strtab_size = strtab != NULL ? string_sec->sh_size : 0;
11974 }
11975
11976 for (si = 0, psym = symtab; si < num_syms; si++, psym++)
11977 {
11978 const char *version_string;
11979 enum versioned_symbol_info sym_info;
11980 unsigned short vna_other;
11981
11982 printf ("%6d: ", si);
11983 print_vma (psym->st_value, LONG_HEX);
11984 putchar (' ');
11985 print_vma (psym->st_size, DEC_5);
11986 printf (" %-7s", get_symbol_type (filedata, ELF_ST_TYPE (psym->st_info)));
11987 printf (" %-6s", get_symbol_binding (filedata, ELF_ST_BIND (psym->st_info)));
11988 if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
11989 printf (" %-7s", get_solaris_symbol_visibility (psym->st_other));
11990 else
11991 {
11992 unsigned int vis = ELF_ST_VISIBILITY (psym->st_other);
11993
11994 printf (" %-7s", get_symbol_visibility (vis));
11995 /* Check to see if any other bits in the st_other field are set.
11996 Note - displaying this information disrupts the layout of the
11997 table being generated, but for the moment this case is very rare. */
11998 if (psym->st_other ^ vis)
11999 printf (" [%s] ", get_symbol_other (filedata, psym->st_other ^ vis));
12000 }
12001 printf (" %4s ", get_symbol_index_type (filedata, psym->st_shndx));
12002 print_symbol (25, psym->st_name < strtab_size
12003 ? strtab + psym->st_name : _("<corrupt>"));
12004
12005 version_string
12006 = get_symbol_version_string (filedata,
12007 section->sh_type == SHT_DYNSYM,
12008 strtab, strtab_size, si,
12009 psym, &sym_info, &vna_other);
12010 if (version_string)
12011 {
12012 if (sym_info == symbol_undefined)
12013 printf ("@%s (%d)", version_string, vna_other);
12014 else
12015 printf (sym_info == symbol_hidden ? "@%s" : "@@%s",
12016 version_string);
12017 }
12018
12019 putchar ('\n');
12020
12021 if (ELF_ST_BIND (psym->st_info) == STB_LOCAL
12022 && si >= section->sh_info
12023 /* Irix 5 and 6 MIPS binaries are known to ignore this requirement. */
12024 && filedata->file_header.e_machine != EM_MIPS
12025 /* Solaris binaries have been found to violate this requirement as
12026 well. Not sure if this is a bug or an ABI requirement. */
12027 && filedata->file_header.e_ident[EI_OSABI] != ELFOSABI_SOLARIS)
12028 warn (_("local symbol %u found at index >= %s's sh_info value of %u\n"),
12029 si, printable_section_name (filedata, section), section->sh_info);
12030 }
12031
12032 free (symtab);
12033 if (strtab != filedata->string_table)
12034 free (strtab);
12035 }
12036 }
12037 else if (do_syms)
12038 printf
12039 (_("\nDynamic symbol information is not available for displaying symbols.\n"));
12040
12041 if (do_histogram && buckets != NULL)
12042 {
12043 unsigned long * lengths;
12044 unsigned long * counts;
12045 unsigned long hn;
12046 bfd_vma si;
12047 unsigned long maxlength = 0;
12048 unsigned long nzero_counts = 0;
12049 unsigned long nsyms = 0;
12050 char *visited;
12051
12052 printf (ngettext ("\nHistogram for bucket list length "
12053 "(total of %lu bucket):\n",
12054 "\nHistogram for bucket list length "
12055 "(total of %lu buckets):\n",
12056 (unsigned long) nbuckets),
12057 (unsigned long) nbuckets);
12058
12059 lengths = (unsigned long *) calloc (nbuckets, sizeof (*lengths));
12060 if (lengths == NULL)
12061 {
12062 error (_("Out of memory allocating space for histogram buckets\n"));
12063 return FALSE;
12064 }
12065 visited = xcmalloc (nchains, 1);
12066 memset (visited, 0, nchains);
12067
12068 printf (_(" Length Number %% of total Coverage\n"));
12069 for (hn = 0; hn < nbuckets; ++hn)
12070 {
12071 for (si = buckets[hn]; si > 0; si = chains[si])
12072 {
12073 ++nsyms;
12074 if (maxlength < ++lengths[hn])
12075 ++maxlength;
12076 if (si >= nchains || visited[si])
12077 {
12078 error (_("histogram chain is corrupt\n"));
12079 break;
12080 }
12081 visited[si] = 1;
12082 }
12083 }
12084 free (visited);
12085
12086 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
12087 if (counts == NULL)
12088 {
12089 free (lengths);
12090 error (_("Out of memory allocating space for histogram counts\n"));
12091 return FALSE;
12092 }
12093
12094 for (hn = 0; hn < nbuckets; ++hn)
12095 ++counts[lengths[hn]];
12096
12097 if (nbuckets > 0)
12098 {
12099 unsigned long i;
12100 printf (" 0 %-10lu (%5.1f%%)\n",
12101 counts[0], (counts[0] * 100.0) / nbuckets);
12102 for (i = 1; i <= maxlength; ++i)
12103 {
12104 nzero_counts += counts[i] * i;
12105 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
12106 i, counts[i], (counts[i] * 100.0) / nbuckets,
12107 (nzero_counts * 100.0) / nsyms);
12108 }
12109 }
12110
12111 free (counts);
12112 free (lengths);
12113 }
12114
12115 if (buckets != NULL)
12116 {
12117 free (buckets);
12118 free (chains);
12119 }
12120
12121 if (do_histogram && gnubuckets != NULL)
12122 {
12123 unsigned long * lengths;
12124 unsigned long * counts;
12125 unsigned long hn;
12126 unsigned long maxlength = 0;
12127 unsigned long nzero_counts = 0;
12128 unsigned long nsyms = 0;
12129
12130 printf (ngettext ("\nHistogram for `.gnu.hash' bucket list length "
12131 "(total of %lu bucket):\n",
12132 "\nHistogram for `.gnu.hash' bucket list length "
12133 "(total of %lu buckets):\n",
12134 (unsigned long) ngnubuckets),
12135 (unsigned long) ngnubuckets);
12136
12137 lengths = (unsigned long *) calloc (ngnubuckets, sizeof (*lengths));
12138 if (lengths == NULL)
12139 {
12140 error (_("Out of memory allocating space for gnu histogram buckets\n"));
12141 return FALSE;
12142 }
12143
12144 printf (_(" Length Number %% of total Coverage\n"));
12145
12146 for (hn = 0; hn < ngnubuckets; ++hn)
12147 if (gnubuckets[hn] != 0)
12148 {
12149 bfd_vma off, length = 1;
12150
12151 for (off = gnubuckets[hn] - gnusymidx;
12152 /* PR 17531 file: 010-77222-0.004. */
12153 off < ngnuchains && (gnuchains[off] & 1) == 0;
12154 ++off)
12155 ++length;
12156 lengths[hn] = length;
12157 if (length > maxlength)
12158 maxlength = length;
12159 nsyms += length;
12160 }
12161
12162 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
12163 if (counts == NULL)
12164 {
12165 free (lengths);
12166 error (_("Out of memory allocating space for gnu histogram counts\n"));
12167 return FALSE;
12168 }
12169
12170 for (hn = 0; hn < ngnubuckets; ++hn)
12171 ++counts[lengths[hn]];
12172
12173 if (ngnubuckets > 0)
12174 {
12175 unsigned long j;
12176 printf (" 0 %-10lu (%5.1f%%)\n",
12177 counts[0], (counts[0] * 100.0) / ngnubuckets);
12178 for (j = 1; j <= maxlength; ++j)
12179 {
12180 nzero_counts += counts[j] * j;
12181 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
12182 j, counts[j], (counts[j] * 100.0) / ngnubuckets,
12183 (nzero_counts * 100.0) / nsyms);
12184 }
12185 }
12186
12187 free (counts);
12188 free (lengths);
12189 free (gnubuckets);
12190 free (gnuchains);
12191 }
12192
12193 return TRUE;
12194 }
12195
12196 static bfd_boolean
12197 process_syminfo (Filedata * filedata ATTRIBUTE_UNUSED)
12198 {
12199 unsigned int i;
12200
12201 if (dynamic_syminfo == NULL
12202 || !do_dynamic)
12203 /* No syminfo, this is ok. */
12204 return TRUE;
12205
12206 /* There better should be a dynamic symbol section. */
12207 if (dynamic_symbols == NULL || dynamic_strings == NULL)
12208 return FALSE;
12209
12210 if (dynamic_addr)
12211 printf (ngettext ("\nDynamic info segment at offset 0x%lx "
12212 "contains %d entry:\n",
12213 "\nDynamic info segment at offset 0x%lx "
12214 "contains %d entries:\n",
12215 dynamic_syminfo_nent),
12216 dynamic_syminfo_offset, dynamic_syminfo_nent);
12217
12218 printf (_(" Num: Name BoundTo Flags\n"));
12219 for (i = 0; i < dynamic_syminfo_nent; ++i)
12220 {
12221 unsigned short int flags = dynamic_syminfo[i].si_flags;
12222
12223 printf ("%4d: ", i);
12224 if (i >= num_dynamic_syms)
12225 printf (_("<corrupt index>"));
12226 else if (VALID_DYNAMIC_NAME (dynamic_symbols[i].st_name))
12227 print_symbol (30, GET_DYNAMIC_NAME (dynamic_symbols[i].st_name));
12228 else
12229 printf (_("<corrupt: %19ld>"), dynamic_symbols[i].st_name);
12230 putchar (' ');
12231
12232 switch (dynamic_syminfo[i].si_boundto)
12233 {
12234 case SYMINFO_BT_SELF:
12235 fputs ("SELF ", stdout);
12236 break;
12237 case SYMINFO_BT_PARENT:
12238 fputs ("PARENT ", stdout);
12239 break;
12240 default:
12241 if (dynamic_syminfo[i].si_boundto > 0
12242 && dynamic_syminfo[i].si_boundto < dynamic_nent
12243 && VALID_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val))
12244 {
12245 print_symbol (10, GET_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val));
12246 putchar (' ' );
12247 }
12248 else
12249 printf ("%-10d ", dynamic_syminfo[i].si_boundto);
12250 break;
12251 }
12252
12253 if (flags & SYMINFO_FLG_DIRECT)
12254 printf (" DIRECT");
12255 if (flags & SYMINFO_FLG_PASSTHRU)
12256 printf (" PASSTHRU");
12257 if (flags & SYMINFO_FLG_COPY)
12258 printf (" COPY");
12259 if (flags & SYMINFO_FLG_LAZYLOAD)
12260 printf (" LAZYLOAD");
12261
12262 puts ("");
12263 }
12264
12265 return TRUE;
12266 }
12267
12268 #define IN_RANGE(START,END,ADDR,OFF) \
12269 (((ADDR) >= (START)) && ((ADDR) + (OFF) < (END)))
12270
12271 /* Check to see if the given reloc needs to be handled in a target specific
12272 manner. If so then process the reloc and return TRUE otherwise return
12273 FALSE.
12274
12275 If called with reloc == NULL, then this is a signal that reloc processing
12276 for the current section has finished, and any saved state should be
12277 discarded. */
12278
12279 static bfd_boolean
12280 target_specific_reloc_handling (Filedata * filedata,
12281 Elf_Internal_Rela * reloc,
12282 unsigned char * start,
12283 unsigned char * end,
12284 Elf_Internal_Sym * symtab,
12285 unsigned long num_syms)
12286 {
12287 unsigned int reloc_type = 0;
12288 unsigned long sym_index = 0;
12289
12290 if (reloc)
12291 {
12292 reloc_type = get_reloc_type (filedata, reloc->r_info);
12293 sym_index = get_reloc_symindex (reloc->r_info);
12294 }
12295
12296 switch (filedata->file_header.e_machine)
12297 {
12298 case EM_MSP430:
12299 case EM_MSP430_OLD:
12300 {
12301 static Elf_Internal_Sym * saved_sym = NULL;
12302
12303 if (reloc == NULL)
12304 {
12305 saved_sym = NULL;
12306 return TRUE;
12307 }
12308
12309 switch (reloc_type)
12310 {
12311 case 10: /* R_MSP430_SYM_DIFF */
12312 if (uses_msp430x_relocs (filedata))
12313 break;
12314 /* Fall through. */
12315 case 21: /* R_MSP430X_SYM_DIFF */
12316 /* PR 21139. */
12317 if (sym_index >= num_syms)
12318 error (_("MSP430 SYM_DIFF reloc contains invalid symbol index %lu\n"),
12319 sym_index);
12320 else
12321 saved_sym = symtab + sym_index;
12322 return TRUE;
12323
12324 case 1: /* R_MSP430_32 or R_MSP430_ABS32 */
12325 case 3: /* R_MSP430_16 or R_MSP430_ABS8 */
12326 goto handle_sym_diff;
12327
12328 case 5: /* R_MSP430_16_BYTE */
12329 case 9: /* R_MSP430_8 */
12330 if (uses_msp430x_relocs (filedata))
12331 break;
12332 goto handle_sym_diff;
12333
12334 case 2: /* R_MSP430_ABS16 */
12335 case 15: /* R_MSP430X_ABS16 */
12336 if (! uses_msp430x_relocs (filedata))
12337 break;
12338 goto handle_sym_diff;
12339
12340 handle_sym_diff:
12341 if (saved_sym != NULL)
12342 {
12343 int reloc_size = reloc_type == 1 ? 4 : 2;
12344 bfd_vma value;
12345
12346 if (sym_index >= num_syms)
12347 error (_("MSP430 reloc contains invalid symbol index %lu\n"),
12348 sym_index);
12349 else
12350 {
12351 value = reloc->r_addend + (symtab[sym_index].st_value
12352 - saved_sym->st_value);
12353
12354 if (IN_RANGE (start, end, start + reloc->r_offset, reloc_size))
12355 byte_put (start + reloc->r_offset, value, reloc_size);
12356 else
12357 /* PR 21137 */
12358 error (_("MSP430 sym diff reloc contains invalid offset: 0x%lx\n"),
12359 (long) reloc->r_offset);
12360 }
12361
12362 saved_sym = NULL;
12363 return TRUE;
12364 }
12365 break;
12366
12367 default:
12368 if (saved_sym != NULL)
12369 error (_("Unhandled MSP430 reloc type found after SYM_DIFF reloc\n"));
12370 break;
12371 }
12372 break;
12373 }
12374
12375 case EM_MN10300:
12376 case EM_CYGNUS_MN10300:
12377 {
12378 static Elf_Internal_Sym * saved_sym = NULL;
12379
12380 if (reloc == NULL)
12381 {
12382 saved_sym = NULL;
12383 return TRUE;
12384 }
12385
12386 switch (reloc_type)
12387 {
12388 case 34: /* R_MN10300_ALIGN */
12389 return TRUE;
12390 case 33: /* R_MN10300_SYM_DIFF */
12391 if (sym_index >= num_syms)
12392 error (_("MN10300_SYM_DIFF reloc contains invalid symbol index %lu\n"),
12393 sym_index);
12394 else
12395 saved_sym = symtab + sym_index;
12396 return TRUE;
12397
12398 case 1: /* R_MN10300_32 */
12399 case 2: /* R_MN10300_16 */
12400 if (saved_sym != NULL)
12401 {
12402 int reloc_size = reloc_type == 1 ? 4 : 2;
12403 bfd_vma value;
12404
12405 if (sym_index >= num_syms)
12406 error (_("MN10300 reloc contains invalid symbol index %lu\n"),
12407 sym_index);
12408 else
12409 {
12410 value = reloc->r_addend + (symtab[sym_index].st_value
12411 - saved_sym->st_value);
12412
12413 if (IN_RANGE (start, end, start + reloc->r_offset, reloc_size))
12414 byte_put (start + reloc->r_offset, value, reloc_size);
12415 else
12416 error (_("MN10300 sym diff reloc contains invalid offset: 0x%lx\n"),
12417 (long) reloc->r_offset);
12418 }
12419
12420 saved_sym = NULL;
12421 return TRUE;
12422 }
12423 break;
12424 default:
12425 if (saved_sym != NULL)
12426 error (_("Unhandled MN10300 reloc type found after SYM_DIFF reloc\n"));
12427 break;
12428 }
12429 break;
12430 }
12431
12432 case EM_RL78:
12433 {
12434 static bfd_vma saved_sym1 = 0;
12435 static bfd_vma saved_sym2 = 0;
12436 static bfd_vma value;
12437
12438 if (reloc == NULL)
12439 {
12440 saved_sym1 = saved_sym2 = 0;
12441 return TRUE;
12442 }
12443
12444 switch (reloc_type)
12445 {
12446 case 0x80: /* R_RL78_SYM. */
12447 saved_sym1 = saved_sym2;
12448 if (sym_index >= num_syms)
12449 error (_("RL78_SYM reloc contains invalid symbol index %lu\n"),
12450 sym_index);
12451 else
12452 {
12453 saved_sym2 = symtab[sym_index].st_value;
12454 saved_sym2 += reloc->r_addend;
12455 }
12456 return TRUE;
12457
12458 case 0x83: /* R_RL78_OPsub. */
12459 value = saved_sym1 - saved_sym2;
12460 saved_sym2 = saved_sym1 = 0;
12461 return TRUE;
12462 break;
12463
12464 case 0x41: /* R_RL78_ABS32. */
12465 if (IN_RANGE (start, end, start + reloc->r_offset, 4))
12466 byte_put (start + reloc->r_offset, value, 4);
12467 else
12468 error (_("RL78 sym diff reloc contains invalid offset: 0x%lx\n"),
12469 (long) reloc->r_offset);
12470 value = 0;
12471 return TRUE;
12472
12473 case 0x43: /* R_RL78_ABS16. */
12474 if (IN_RANGE (start, end, start + reloc->r_offset, 2))
12475 byte_put (start + reloc->r_offset, value, 2);
12476 else
12477 error (_("RL78 sym diff reloc contains invalid offset: 0x%lx\n"),
12478 (long) reloc->r_offset);
12479 value = 0;
12480 return TRUE;
12481
12482 default:
12483 break;
12484 }
12485 break;
12486 }
12487 }
12488
12489 return FALSE;
12490 }
12491
12492 /* Returns TRUE iff RELOC_TYPE is a 32-bit absolute RELA relocation used in
12493 DWARF debug sections. This is a target specific test. Note - we do not
12494 go through the whole including-target-headers-multiple-times route, (as
12495 we have already done with <elf/h8.h>) because this would become very
12496 messy and even then this function would have to contain target specific
12497 information (the names of the relocs instead of their numeric values).
12498 FIXME: This is not the correct way to solve this problem. The proper way
12499 is to have target specific reloc sizing and typing functions created by
12500 the reloc-macros.h header, in the same way that it already creates the
12501 reloc naming functions. */
12502
12503 static bfd_boolean
12504 is_32bit_abs_reloc (Filedata * filedata, unsigned int reloc_type)
12505 {
12506 /* Please keep this table alpha-sorted for ease of visual lookup. */
12507 switch (filedata->file_header.e_machine)
12508 {
12509 case EM_386:
12510 case EM_IAMCU:
12511 return reloc_type == 1; /* R_386_32. */
12512 case EM_68K:
12513 return reloc_type == 1; /* R_68K_32. */
12514 case EM_860:
12515 return reloc_type == 1; /* R_860_32. */
12516 case EM_960:
12517 return reloc_type == 2; /* R_960_32. */
12518 case EM_AARCH64:
12519 return (reloc_type == 258
12520 || reloc_type == 1); /* R_AARCH64_ABS32 || R_AARCH64_P32_ABS32 */
12521 case EM_BPF:
12522 return reloc_type == 11; /* R_BPF_DATA_32 */
12523 case EM_ADAPTEVA_EPIPHANY:
12524 return reloc_type == 3;
12525 case EM_ALPHA:
12526 return reloc_type == 1; /* R_ALPHA_REFLONG. */
12527 case EM_ARC:
12528 return reloc_type == 1; /* R_ARC_32. */
12529 case EM_ARC_COMPACT:
12530 case EM_ARC_COMPACT2:
12531 return reloc_type == 4; /* R_ARC_32. */
12532 case EM_ARM:
12533 return reloc_type == 2; /* R_ARM_ABS32 */
12534 case EM_AVR_OLD:
12535 case EM_AVR:
12536 return reloc_type == 1;
12537 case EM_BLACKFIN:
12538 return reloc_type == 0x12; /* R_byte4_data. */
12539 case EM_CRIS:
12540 return reloc_type == 3; /* R_CRIS_32. */
12541 case EM_CR16:
12542 return reloc_type == 3; /* R_CR16_NUM32. */
12543 case EM_CRX:
12544 return reloc_type == 15; /* R_CRX_NUM32. */
12545 case EM_CSKY:
12546 return reloc_type == 1; /* R_CKCORE_ADDR32. */
12547 case EM_CYGNUS_FRV:
12548 return reloc_type == 1;
12549 case EM_CYGNUS_D10V:
12550 case EM_D10V:
12551 return reloc_type == 6; /* R_D10V_32. */
12552 case EM_CYGNUS_D30V:
12553 case EM_D30V:
12554 return reloc_type == 12; /* R_D30V_32_NORMAL. */
12555 case EM_DLX:
12556 return reloc_type == 3; /* R_DLX_RELOC_32. */
12557 case EM_CYGNUS_FR30:
12558 case EM_FR30:
12559 return reloc_type == 3; /* R_FR30_32. */
12560 case EM_FT32:
12561 return reloc_type == 1; /* R_FT32_32. */
12562 case EM_H8S:
12563 case EM_H8_300:
12564 case EM_H8_300H:
12565 return reloc_type == 1; /* R_H8_DIR32. */
12566 case EM_IA_64:
12567 return (reloc_type == 0x64 /* R_IA64_SECREL32MSB. */
12568 || reloc_type == 0x65 /* R_IA64_SECREL32LSB. */
12569 || reloc_type == 0x24 /* R_IA64_DIR32MSB. */
12570 || reloc_type == 0x25 /* R_IA64_DIR32LSB. */);
12571 case EM_IP2K_OLD:
12572 case EM_IP2K:
12573 return reloc_type == 2; /* R_IP2K_32. */
12574 case EM_IQ2000:
12575 return reloc_type == 2; /* R_IQ2000_32. */
12576 case EM_LATTICEMICO32:
12577 return reloc_type == 3; /* R_LM32_32. */
12578 case EM_M32C_OLD:
12579 case EM_M32C:
12580 return reloc_type == 3; /* R_M32C_32. */
12581 case EM_M32R:
12582 return reloc_type == 34; /* R_M32R_32_RELA. */
12583 case EM_68HC11:
12584 case EM_68HC12:
12585 return reloc_type == 6; /* R_M68HC11_32. */
12586 case EM_S12Z:
12587 return reloc_type == 7 || /* R_S12Z_EXT32 */
12588 reloc_type == 6; /* R_S12Z_CW32. */
12589 case EM_MCORE:
12590 return reloc_type == 1; /* R_MCORE_ADDR32. */
12591 case EM_CYGNUS_MEP:
12592 return reloc_type == 4; /* R_MEP_32. */
12593 case EM_METAG:
12594 return reloc_type == 2; /* R_METAG_ADDR32. */
12595 case EM_MICROBLAZE:
12596 return reloc_type == 1; /* R_MICROBLAZE_32. */
12597 case EM_MIPS:
12598 return reloc_type == 2; /* R_MIPS_32. */
12599 case EM_MMIX:
12600 return reloc_type == 4; /* R_MMIX_32. */
12601 case EM_CYGNUS_MN10200:
12602 case EM_MN10200:
12603 return reloc_type == 1; /* R_MN10200_32. */
12604 case EM_CYGNUS_MN10300:
12605 case EM_MN10300:
12606 return reloc_type == 1; /* R_MN10300_32. */
12607 case EM_MOXIE:
12608 return reloc_type == 1; /* R_MOXIE_32. */
12609 case EM_MSP430_OLD:
12610 case EM_MSP430:
12611 return reloc_type == 1; /* R_MSP430_32 or R_MSP320_ABS32. */
12612 case EM_MT:
12613 return reloc_type == 2; /* R_MT_32. */
12614 case EM_NDS32:
12615 return reloc_type == 20; /* R_NDS32_RELA. */
12616 case EM_ALTERA_NIOS2:
12617 return reloc_type == 12; /* R_NIOS2_BFD_RELOC_32. */
12618 case EM_NIOS32:
12619 return reloc_type == 1; /* R_NIOS_32. */
12620 case EM_OR1K:
12621 return reloc_type == 1; /* R_OR1K_32. */
12622 case EM_PARISC:
12623 return (reloc_type == 1 /* R_PARISC_DIR32. */
12624 || reloc_type == 2 /* R_PARISC_DIR21L. */
12625 || reloc_type == 41); /* R_PARISC_SECREL32. */
12626 case EM_PJ:
12627 case EM_PJ_OLD:
12628 return reloc_type == 1; /* R_PJ_DATA_DIR32. */
12629 case EM_PPC64:
12630 return reloc_type == 1; /* R_PPC64_ADDR32. */
12631 case EM_PPC:
12632 return reloc_type == 1; /* R_PPC_ADDR32. */
12633 case EM_TI_PRU:
12634 return reloc_type == 11; /* R_PRU_BFD_RELOC_32. */
12635 case EM_RISCV:
12636 return reloc_type == 1; /* R_RISCV_32. */
12637 case EM_RL78:
12638 return reloc_type == 1; /* R_RL78_DIR32. */
12639 case EM_RX:
12640 return reloc_type == 1; /* R_RX_DIR32. */
12641 case EM_S370:
12642 return reloc_type == 1; /* R_I370_ADDR31. */
12643 case EM_S390_OLD:
12644 case EM_S390:
12645 return reloc_type == 4; /* R_S390_32. */
12646 case EM_SCORE:
12647 return reloc_type == 8; /* R_SCORE_ABS32. */
12648 case EM_SH:
12649 return reloc_type == 1; /* R_SH_DIR32. */
12650 case EM_SPARC32PLUS:
12651 case EM_SPARCV9:
12652 case EM_SPARC:
12653 return reloc_type == 3 /* R_SPARC_32. */
12654 || reloc_type == 23; /* R_SPARC_UA32. */
12655 case EM_SPU:
12656 return reloc_type == 6; /* R_SPU_ADDR32 */
12657 case EM_TI_C6000:
12658 return reloc_type == 1; /* R_C6000_ABS32. */
12659 case EM_TILEGX:
12660 return reloc_type == 2; /* R_TILEGX_32. */
12661 case EM_TILEPRO:
12662 return reloc_type == 1; /* R_TILEPRO_32. */
12663 case EM_CYGNUS_V850:
12664 case EM_V850:
12665 return reloc_type == 6; /* R_V850_ABS32. */
12666 case EM_V800:
12667 return reloc_type == 0x33; /* R_V810_WORD. */
12668 case EM_VAX:
12669 return reloc_type == 1; /* R_VAX_32. */
12670 case EM_VISIUM:
12671 return reloc_type == 3; /* R_VISIUM_32. */
12672 case EM_WEBASSEMBLY:
12673 return reloc_type == 1; /* R_WASM32_32. */
12674 case EM_X86_64:
12675 case EM_L1OM:
12676 case EM_K1OM:
12677 return reloc_type == 10; /* R_X86_64_32. */
12678 case EM_XC16X:
12679 case EM_C166:
12680 return reloc_type == 3; /* R_XC16C_ABS_32. */
12681 case EM_XGATE:
12682 return reloc_type == 4; /* R_XGATE_32. */
12683 case EM_XSTORMY16:
12684 return reloc_type == 1; /* R_XSTROMY16_32. */
12685 case EM_XTENSA_OLD:
12686 case EM_XTENSA:
12687 return reloc_type == 1; /* R_XTENSA_32. */
12688 default:
12689 {
12690 static unsigned int prev_warn = 0;
12691
12692 /* Avoid repeating the same warning multiple times. */
12693 if (prev_warn != filedata->file_header.e_machine)
12694 error (_("Missing knowledge of 32-bit reloc types used in DWARF sections of machine number %d\n"),
12695 filedata->file_header.e_machine);
12696 prev_warn = filedata->file_header.e_machine;
12697 return FALSE;
12698 }
12699 }
12700 }
12701
12702 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12703 a 32-bit pc-relative RELA relocation used in DWARF debug sections. */
12704
12705 static bfd_boolean
12706 is_32bit_pcrel_reloc (Filedata * filedata, unsigned int reloc_type)
12707 {
12708 switch (filedata->file_header.e_machine)
12709 /* Please keep this table alpha-sorted for ease of visual lookup. */
12710 {
12711 case EM_386:
12712 case EM_IAMCU:
12713 return reloc_type == 2; /* R_386_PC32. */
12714 case EM_68K:
12715 return reloc_type == 4; /* R_68K_PC32. */
12716 case EM_AARCH64:
12717 return reloc_type == 261; /* R_AARCH64_PREL32 */
12718 case EM_ADAPTEVA_EPIPHANY:
12719 return reloc_type == 6;
12720 case EM_ALPHA:
12721 return reloc_type == 10; /* R_ALPHA_SREL32. */
12722 case EM_ARC_COMPACT:
12723 case EM_ARC_COMPACT2:
12724 return reloc_type == 49; /* R_ARC_32_PCREL. */
12725 case EM_ARM:
12726 return reloc_type == 3; /* R_ARM_REL32 */
12727 case EM_AVR_OLD:
12728 case EM_AVR:
12729 return reloc_type == 36; /* R_AVR_32_PCREL. */
12730 case EM_MICROBLAZE:
12731 return reloc_type == 2; /* R_MICROBLAZE_32_PCREL. */
12732 case EM_OR1K:
12733 return reloc_type == 9; /* R_OR1K_32_PCREL. */
12734 case EM_PARISC:
12735 return reloc_type == 9; /* R_PARISC_PCREL32. */
12736 case EM_PPC:
12737 return reloc_type == 26; /* R_PPC_REL32. */
12738 case EM_PPC64:
12739 return reloc_type == 26; /* R_PPC64_REL32. */
12740 case EM_RISCV:
12741 return reloc_type == 57; /* R_RISCV_32_PCREL. */
12742 case EM_S390_OLD:
12743 case EM_S390:
12744 return reloc_type == 5; /* R_390_PC32. */
12745 case EM_SH:
12746 return reloc_type == 2; /* R_SH_REL32. */
12747 case EM_SPARC32PLUS:
12748 case EM_SPARCV9:
12749 case EM_SPARC:
12750 return reloc_type == 6; /* R_SPARC_DISP32. */
12751 case EM_SPU:
12752 return reloc_type == 13; /* R_SPU_REL32. */
12753 case EM_TILEGX:
12754 return reloc_type == 6; /* R_TILEGX_32_PCREL. */
12755 case EM_TILEPRO:
12756 return reloc_type == 4; /* R_TILEPRO_32_PCREL. */
12757 case EM_VISIUM:
12758 return reloc_type == 6; /* R_VISIUM_32_PCREL */
12759 case EM_X86_64:
12760 case EM_L1OM:
12761 case EM_K1OM:
12762 return reloc_type == 2; /* R_X86_64_PC32. */
12763 case EM_VAX:
12764 return reloc_type == 4; /* R_VAX_PCREL32. */
12765 case EM_XTENSA_OLD:
12766 case EM_XTENSA:
12767 return reloc_type == 14; /* R_XTENSA_32_PCREL. */
12768 default:
12769 /* Do not abort or issue an error message here. Not all targets use
12770 pc-relative 32-bit relocs in their DWARF debug information and we
12771 have already tested for target coverage in is_32bit_abs_reloc. A
12772 more helpful warning message will be generated by apply_relocations
12773 anyway, so just return. */
12774 return FALSE;
12775 }
12776 }
12777
12778 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12779 a 64-bit absolute RELA relocation used in DWARF debug sections. */
12780
12781 static bfd_boolean
12782 is_64bit_abs_reloc (Filedata * filedata, unsigned int reloc_type)
12783 {
12784 switch (filedata->file_header.e_machine)
12785 {
12786 case EM_AARCH64:
12787 return reloc_type == 257; /* R_AARCH64_ABS64. */
12788 case EM_ALPHA:
12789 return reloc_type == 2; /* R_ALPHA_REFQUAD. */
12790 case EM_IA_64:
12791 return (reloc_type == 0x26 /* R_IA64_DIR64MSB. */
12792 || reloc_type == 0x27 /* R_IA64_DIR64LSB. */);
12793 case EM_PARISC:
12794 return reloc_type == 80; /* R_PARISC_DIR64. */
12795 case EM_PPC64:
12796 return reloc_type == 38; /* R_PPC64_ADDR64. */
12797 case EM_RISCV:
12798 return reloc_type == 2; /* R_RISCV_64. */
12799 case EM_SPARC32PLUS:
12800 case EM_SPARCV9:
12801 case EM_SPARC:
12802 return reloc_type == 32 /* R_SPARC_64. */
12803 || reloc_type == 54; /* R_SPARC_UA64. */
12804 case EM_X86_64:
12805 case EM_L1OM:
12806 case EM_K1OM:
12807 return reloc_type == 1; /* R_X86_64_64. */
12808 case EM_S390_OLD:
12809 case EM_S390:
12810 return reloc_type == 22; /* R_S390_64. */
12811 case EM_TILEGX:
12812 return reloc_type == 1; /* R_TILEGX_64. */
12813 case EM_MIPS:
12814 return reloc_type == 18; /* R_MIPS_64. */
12815 default:
12816 return FALSE;
12817 }
12818 }
12819
12820 /* Like is_32bit_pcrel_reloc except that it returns TRUE iff RELOC_TYPE is
12821 a 64-bit pc-relative RELA relocation used in DWARF debug sections. */
12822
12823 static bfd_boolean
12824 is_64bit_pcrel_reloc (Filedata * filedata, unsigned int reloc_type)
12825 {
12826 switch (filedata->file_header.e_machine)
12827 {
12828 case EM_AARCH64:
12829 return reloc_type == 260; /* R_AARCH64_PREL64. */
12830 case EM_ALPHA:
12831 return reloc_type == 11; /* R_ALPHA_SREL64. */
12832 case EM_IA_64:
12833 return (reloc_type == 0x4e /* R_IA64_PCREL64MSB. */
12834 || reloc_type == 0x4f /* R_IA64_PCREL64LSB. */);
12835 case EM_PARISC:
12836 return reloc_type == 72; /* R_PARISC_PCREL64. */
12837 case EM_PPC64:
12838 return reloc_type == 44; /* R_PPC64_REL64. */
12839 case EM_SPARC32PLUS:
12840 case EM_SPARCV9:
12841 case EM_SPARC:
12842 return reloc_type == 46; /* R_SPARC_DISP64. */
12843 case EM_X86_64:
12844 case EM_L1OM:
12845 case EM_K1OM:
12846 return reloc_type == 24; /* R_X86_64_PC64. */
12847 case EM_S390_OLD:
12848 case EM_S390:
12849 return reloc_type == 23; /* R_S390_PC64. */
12850 case EM_TILEGX:
12851 return reloc_type == 5; /* R_TILEGX_64_PCREL. */
12852 default:
12853 return FALSE;
12854 }
12855 }
12856
12857 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12858 a 24-bit absolute RELA relocation used in DWARF debug sections. */
12859
12860 static bfd_boolean
12861 is_24bit_abs_reloc (Filedata * filedata, unsigned int reloc_type)
12862 {
12863 switch (filedata->file_header.e_machine)
12864 {
12865 case EM_CYGNUS_MN10200:
12866 case EM_MN10200:
12867 return reloc_type == 4; /* R_MN10200_24. */
12868 case EM_FT32:
12869 return reloc_type == 5; /* R_FT32_20. */
12870 default:
12871 return FALSE;
12872 }
12873 }
12874
12875 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12876 a 16-bit absolute RELA relocation used in DWARF debug sections. */
12877
12878 static bfd_boolean
12879 is_16bit_abs_reloc (Filedata * filedata, unsigned int reloc_type)
12880 {
12881 /* Please keep this table alpha-sorted for ease of visual lookup. */
12882 switch (filedata->file_header.e_machine)
12883 {
12884 case EM_ARC:
12885 case EM_ARC_COMPACT:
12886 case EM_ARC_COMPACT2:
12887 return reloc_type == 2; /* R_ARC_16. */
12888 case EM_ADAPTEVA_EPIPHANY:
12889 return reloc_type == 5;
12890 case EM_AVR_OLD:
12891 case EM_AVR:
12892 return reloc_type == 4; /* R_AVR_16. */
12893 case EM_CYGNUS_D10V:
12894 case EM_D10V:
12895 return reloc_type == 3; /* R_D10V_16. */
12896 case EM_FT32:
12897 return reloc_type == 2; /* R_FT32_16. */
12898 case EM_H8S:
12899 case EM_H8_300:
12900 case EM_H8_300H:
12901 return reloc_type == R_H8_DIR16;
12902 case EM_IP2K_OLD:
12903 case EM_IP2K:
12904 return reloc_type == 1; /* R_IP2K_16. */
12905 case EM_M32C_OLD:
12906 case EM_M32C:
12907 return reloc_type == 1; /* R_M32C_16 */
12908 case EM_CYGNUS_MN10200:
12909 case EM_MN10200:
12910 return reloc_type == 2; /* R_MN10200_16. */
12911 case EM_CYGNUS_MN10300:
12912 case EM_MN10300:
12913 return reloc_type == 2; /* R_MN10300_16. */
12914 case EM_MSP430:
12915 if (uses_msp430x_relocs (filedata))
12916 return reloc_type == 2; /* R_MSP430_ABS16. */
12917 /* Fall through. */
12918 case EM_MSP430_OLD:
12919 return reloc_type == 5; /* R_MSP430_16_BYTE. */
12920 case EM_NDS32:
12921 return reloc_type == 19; /* R_NDS32_RELA. */
12922 case EM_ALTERA_NIOS2:
12923 return reloc_type == 13; /* R_NIOS2_BFD_RELOC_16. */
12924 case EM_NIOS32:
12925 return reloc_type == 9; /* R_NIOS_16. */
12926 case EM_OR1K:
12927 return reloc_type == 2; /* R_OR1K_16. */
12928 case EM_RISCV:
12929 return reloc_type == 55; /* R_RISCV_SET16. */
12930 case EM_TI_PRU:
12931 return reloc_type == 8; /* R_PRU_BFD_RELOC_16. */
12932 case EM_TI_C6000:
12933 return reloc_type == 2; /* R_C6000_ABS16. */
12934 case EM_VISIUM:
12935 return reloc_type == 2; /* R_VISIUM_16. */
12936 case EM_XC16X:
12937 case EM_C166:
12938 return reloc_type == 2; /* R_XC16C_ABS_16. */
12939 case EM_XGATE:
12940 return reloc_type == 3; /* R_XGATE_16. */
12941 default:
12942 return FALSE;
12943 }
12944 }
12945
12946 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12947 a 8-bit absolute RELA relocation used in DWARF debug sections. */
12948
12949 static bfd_boolean
12950 is_8bit_abs_reloc (Filedata * filedata, unsigned int reloc_type)
12951 {
12952 switch (filedata->file_header.e_machine)
12953 {
12954 case EM_RISCV:
12955 return reloc_type == 54; /* R_RISCV_SET8. */
12956 default:
12957 return FALSE;
12958 }
12959 }
12960
12961 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12962 a 6-bit absolute RELA relocation used in DWARF debug sections. */
12963
12964 static bfd_boolean
12965 is_6bit_abs_reloc (Filedata * filedata, unsigned int reloc_type)
12966 {
12967 switch (filedata->file_header.e_machine)
12968 {
12969 case EM_RISCV:
12970 return reloc_type == 53; /* R_RISCV_SET6. */
12971 default:
12972 return FALSE;
12973 }
12974 }
12975
12976 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12977 a 32-bit inplace add RELA relocation used in DWARF debug sections. */
12978
12979 static bfd_boolean
12980 is_32bit_inplace_add_reloc (Filedata * filedata, unsigned int reloc_type)
12981 {
12982 /* Please keep this table alpha-sorted for ease of visual lookup. */
12983 switch (filedata->file_header.e_machine)
12984 {
12985 case EM_RISCV:
12986 return reloc_type == 35; /* R_RISCV_ADD32. */
12987 default:
12988 return FALSE;
12989 }
12990 }
12991
12992 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12993 a 32-bit inplace sub RELA relocation used in DWARF debug sections. */
12994
12995 static bfd_boolean
12996 is_32bit_inplace_sub_reloc (Filedata * filedata, unsigned int reloc_type)
12997 {
12998 /* Please keep this table alpha-sorted for ease of visual lookup. */
12999 switch (filedata->file_header.e_machine)
13000 {
13001 case EM_RISCV:
13002 return reloc_type == 39; /* R_RISCV_SUB32. */
13003 default:
13004 return FALSE;
13005 }
13006 }
13007
13008 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
13009 a 64-bit inplace add RELA relocation used in DWARF debug sections. */
13010
13011 static bfd_boolean
13012 is_64bit_inplace_add_reloc (Filedata * filedata, unsigned int reloc_type)
13013 {
13014 /* Please keep this table alpha-sorted for ease of visual lookup. */
13015 switch (filedata->file_header.e_machine)
13016 {
13017 case EM_RISCV:
13018 return reloc_type == 36; /* R_RISCV_ADD64. */
13019 default:
13020 return FALSE;
13021 }
13022 }
13023
13024 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
13025 a 64-bit inplace sub RELA relocation used in DWARF debug sections. */
13026
13027 static bfd_boolean
13028 is_64bit_inplace_sub_reloc (Filedata * filedata, unsigned int reloc_type)
13029 {
13030 /* Please keep this table alpha-sorted for ease of visual lookup. */
13031 switch (filedata->file_header.e_machine)
13032 {
13033 case EM_RISCV:
13034 return reloc_type == 40; /* R_RISCV_SUB64. */
13035 default:
13036 return FALSE;
13037 }
13038 }
13039
13040 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
13041 a 16-bit inplace add RELA relocation used in DWARF debug sections. */
13042
13043 static bfd_boolean
13044 is_16bit_inplace_add_reloc (Filedata * filedata, unsigned int reloc_type)
13045 {
13046 /* Please keep this table alpha-sorted for ease of visual lookup. */
13047 switch (filedata->file_header.e_machine)
13048 {
13049 case EM_RISCV:
13050 return reloc_type == 34; /* R_RISCV_ADD16. */
13051 default:
13052 return FALSE;
13053 }
13054 }
13055
13056 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
13057 a 16-bit inplace sub RELA relocation used in DWARF debug sections. */
13058
13059 static bfd_boolean
13060 is_16bit_inplace_sub_reloc (Filedata * filedata, unsigned int reloc_type)
13061 {
13062 /* Please keep this table alpha-sorted for ease of visual lookup. */
13063 switch (filedata->file_header.e_machine)
13064 {
13065 case EM_RISCV:
13066 return reloc_type == 38; /* R_RISCV_SUB16. */
13067 default:
13068 return FALSE;
13069 }
13070 }
13071
13072 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
13073 a 8-bit inplace add RELA relocation used in DWARF debug sections. */
13074
13075 static bfd_boolean
13076 is_8bit_inplace_add_reloc (Filedata * filedata, unsigned int reloc_type)
13077 {
13078 /* Please keep this table alpha-sorted for ease of visual lookup. */
13079 switch (filedata->file_header.e_machine)
13080 {
13081 case EM_RISCV:
13082 return reloc_type == 33; /* R_RISCV_ADD8. */
13083 default:
13084 return FALSE;
13085 }
13086 }
13087
13088 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
13089 a 8-bit inplace sub RELA relocation used in DWARF debug sections. */
13090
13091 static bfd_boolean
13092 is_8bit_inplace_sub_reloc (Filedata * filedata, unsigned int reloc_type)
13093 {
13094 /* Please keep this table alpha-sorted for ease of visual lookup. */
13095 switch (filedata->file_header.e_machine)
13096 {
13097 case EM_RISCV:
13098 return reloc_type == 37; /* R_RISCV_SUB8. */
13099 default:
13100 return FALSE;
13101 }
13102 }
13103
13104 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
13105 a 6-bit inplace sub RELA relocation used in DWARF debug sections. */
13106
13107 static bfd_boolean
13108 is_6bit_inplace_sub_reloc (Filedata * filedata, unsigned int reloc_type)
13109 {
13110 switch (filedata->file_header.e_machine)
13111 {
13112 case EM_RISCV:
13113 return reloc_type == 52; /* R_RISCV_SUB6. */
13114 default:
13115 return FALSE;
13116 }
13117 }
13118
13119 /* Returns TRUE iff RELOC_TYPE is a NONE relocation used for discarded
13120 relocation entries (possibly formerly used for SHT_GROUP sections). */
13121
13122 static bfd_boolean
13123 is_none_reloc (Filedata * filedata, unsigned int reloc_type)
13124 {
13125 switch (filedata->file_header.e_machine)
13126 {
13127 case EM_386: /* R_386_NONE. */
13128 case EM_68K: /* R_68K_NONE. */
13129 case EM_ADAPTEVA_EPIPHANY:
13130 case EM_ALPHA: /* R_ALPHA_NONE. */
13131 case EM_ALTERA_NIOS2: /* R_NIOS2_NONE. */
13132 case EM_ARC: /* R_ARC_NONE. */
13133 case EM_ARC_COMPACT2: /* R_ARC_NONE. */
13134 case EM_ARC_COMPACT: /* R_ARC_NONE. */
13135 case EM_ARM: /* R_ARM_NONE. */
13136 case EM_C166: /* R_XC16X_NONE. */
13137 case EM_CRIS: /* R_CRIS_NONE. */
13138 case EM_FT32: /* R_FT32_NONE. */
13139 case EM_IA_64: /* R_IA64_NONE. */
13140 case EM_K1OM: /* R_X86_64_NONE. */
13141 case EM_L1OM: /* R_X86_64_NONE. */
13142 case EM_M32R: /* R_M32R_NONE. */
13143 case EM_MIPS: /* R_MIPS_NONE. */
13144 case EM_MN10300: /* R_MN10300_NONE. */
13145 case EM_MOXIE: /* R_MOXIE_NONE. */
13146 case EM_NIOS32: /* R_NIOS_NONE. */
13147 case EM_OR1K: /* R_OR1K_NONE. */
13148 case EM_PARISC: /* R_PARISC_NONE. */
13149 case EM_PPC64: /* R_PPC64_NONE. */
13150 case EM_PPC: /* R_PPC_NONE. */
13151 case EM_RISCV: /* R_RISCV_NONE. */
13152 case EM_S390: /* R_390_NONE. */
13153 case EM_S390_OLD:
13154 case EM_SH: /* R_SH_NONE. */
13155 case EM_SPARC32PLUS:
13156 case EM_SPARC: /* R_SPARC_NONE. */
13157 case EM_SPARCV9:
13158 case EM_TILEGX: /* R_TILEGX_NONE. */
13159 case EM_TILEPRO: /* R_TILEPRO_NONE. */
13160 case EM_TI_C6000:/* R_C6000_NONE. */
13161 case EM_X86_64: /* R_X86_64_NONE. */
13162 case EM_XC16X:
13163 case EM_WEBASSEMBLY: /* R_WASM32_NONE. */
13164 return reloc_type == 0;
13165
13166 case EM_AARCH64:
13167 return reloc_type == 0 || reloc_type == 256;
13168 case EM_AVR_OLD:
13169 case EM_AVR:
13170 return (reloc_type == 0 /* R_AVR_NONE. */
13171 || reloc_type == 30 /* R_AVR_DIFF8. */
13172 || reloc_type == 31 /* R_AVR_DIFF16. */
13173 || reloc_type == 32 /* R_AVR_DIFF32. */);
13174 case EM_METAG:
13175 return reloc_type == 3; /* R_METAG_NONE. */
13176 case EM_NDS32:
13177 return (reloc_type == 0 /* R_XTENSA_NONE. */
13178 || reloc_type == 204 /* R_NDS32_DIFF8. */
13179 || reloc_type == 205 /* R_NDS32_DIFF16. */
13180 || reloc_type == 206 /* R_NDS32_DIFF32. */
13181 || reloc_type == 207 /* R_NDS32_ULEB128. */);
13182 case EM_TI_PRU:
13183 return (reloc_type == 0 /* R_PRU_NONE. */
13184 || reloc_type == 65 /* R_PRU_DIFF8. */
13185 || reloc_type == 66 /* R_PRU_DIFF16. */
13186 || reloc_type == 67 /* R_PRU_DIFF32. */);
13187 case EM_XTENSA_OLD:
13188 case EM_XTENSA:
13189 return (reloc_type == 0 /* R_XTENSA_NONE. */
13190 || reloc_type == 17 /* R_XTENSA_DIFF8. */
13191 || reloc_type == 18 /* R_XTENSA_DIFF16. */
13192 || reloc_type == 19 /* R_XTENSA_DIFF32. */);
13193 }
13194 return FALSE;
13195 }
13196
13197 /* Returns TRUE if there is a relocation against
13198 section NAME at OFFSET bytes. */
13199
13200 bfd_boolean
13201 reloc_at (struct dwarf_section * dsec, dwarf_vma offset)
13202 {
13203 Elf_Internal_Rela * relocs;
13204 Elf_Internal_Rela * rp;
13205
13206 if (dsec == NULL || dsec->reloc_info == NULL)
13207 return FALSE;
13208
13209 relocs = (Elf_Internal_Rela *) dsec->reloc_info;
13210
13211 for (rp = relocs; rp < relocs + dsec->num_relocs; ++rp)
13212 if (rp->r_offset == offset)
13213 return TRUE;
13214
13215 return FALSE;
13216 }
13217
13218 /* Apply relocations to a section.
13219 Returns TRUE upon success, FALSE otherwise.
13220 If RELOCS_RETURN is non-NULL then it is set to point to the loaded relocs.
13221 It is then the caller's responsibility to free them. NUM_RELOCS_RETURN
13222 will be set to the number of relocs loaded.
13223
13224 Note: So far support has been added only for those relocations
13225 which can be found in debug sections. FIXME: Add support for
13226 more relocations ? */
13227
13228 static bfd_boolean
13229 apply_relocations (Filedata * filedata,
13230 const Elf_Internal_Shdr * section,
13231 unsigned char * start,
13232 bfd_size_type size,
13233 void ** relocs_return,
13234 unsigned long * num_relocs_return)
13235 {
13236 Elf_Internal_Shdr * relsec;
13237 unsigned char * end = start + size;
13238
13239 if (relocs_return != NULL)
13240 {
13241 * (Elf_Internal_Rela **) relocs_return = NULL;
13242 * num_relocs_return = 0;
13243 }
13244
13245 if (filedata->file_header.e_type != ET_REL)
13246 /* No relocs to apply. */
13247 return TRUE;
13248
13249 /* Find the reloc section associated with the section. */
13250 for (relsec = filedata->section_headers;
13251 relsec < filedata->section_headers + filedata->file_header.e_shnum;
13252 ++relsec)
13253 {
13254 bfd_boolean is_rela;
13255 unsigned long num_relocs;
13256 Elf_Internal_Rela * relocs;
13257 Elf_Internal_Rela * rp;
13258 Elf_Internal_Shdr * symsec;
13259 Elf_Internal_Sym * symtab;
13260 unsigned long num_syms;
13261 Elf_Internal_Sym * sym;
13262
13263 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
13264 || relsec->sh_info >= filedata->file_header.e_shnum
13265 || filedata->section_headers + relsec->sh_info != section
13266 || relsec->sh_size == 0
13267 || relsec->sh_link >= filedata->file_header.e_shnum)
13268 continue;
13269
13270 is_rela = relsec->sh_type == SHT_RELA;
13271
13272 if (is_rela)
13273 {
13274 if (!slurp_rela_relocs (filedata, relsec->sh_offset,
13275 relsec->sh_size, & relocs, & num_relocs))
13276 return FALSE;
13277 }
13278 else
13279 {
13280 if (!slurp_rel_relocs (filedata, relsec->sh_offset,
13281 relsec->sh_size, & relocs, & num_relocs))
13282 return FALSE;
13283 }
13284
13285 /* SH uses RELA but uses in place value instead of the addend field. */
13286 if (filedata->file_header.e_machine == EM_SH)
13287 is_rela = FALSE;
13288
13289 symsec = filedata->section_headers + relsec->sh_link;
13290 if (symsec->sh_type != SHT_SYMTAB
13291 && symsec->sh_type != SHT_DYNSYM)
13292 return FALSE;
13293 symtab = GET_ELF_SYMBOLS (filedata, symsec, & num_syms);
13294
13295 for (rp = relocs; rp < relocs + num_relocs; ++rp)
13296 {
13297 bfd_vma addend;
13298 unsigned int reloc_type;
13299 unsigned int reloc_size;
13300 bfd_boolean reloc_inplace = FALSE;
13301 bfd_boolean reloc_subtract = FALSE;
13302 unsigned char * rloc;
13303 unsigned long sym_index;
13304
13305 reloc_type = get_reloc_type (filedata, rp->r_info);
13306
13307 if (target_specific_reloc_handling (filedata, rp, start, end, symtab, num_syms))
13308 continue;
13309 else if (is_none_reloc (filedata, reloc_type))
13310 continue;
13311 else if (is_32bit_abs_reloc (filedata, reloc_type)
13312 || is_32bit_pcrel_reloc (filedata, reloc_type))
13313 reloc_size = 4;
13314 else if (is_64bit_abs_reloc (filedata, reloc_type)
13315 || is_64bit_pcrel_reloc (filedata, reloc_type))
13316 reloc_size = 8;
13317 else if (is_24bit_abs_reloc (filedata, reloc_type))
13318 reloc_size = 3;
13319 else if (is_16bit_abs_reloc (filedata, reloc_type))
13320 reloc_size = 2;
13321 else if (is_8bit_abs_reloc (filedata, reloc_type)
13322 || is_6bit_abs_reloc (filedata, reloc_type))
13323 reloc_size = 1;
13324 else if ((reloc_subtract = is_32bit_inplace_sub_reloc (filedata,
13325 reloc_type))
13326 || is_32bit_inplace_add_reloc (filedata, reloc_type))
13327 {
13328 reloc_size = 4;
13329 reloc_inplace = TRUE;
13330 }
13331 else if ((reloc_subtract = is_64bit_inplace_sub_reloc (filedata,
13332 reloc_type))
13333 || is_64bit_inplace_add_reloc (filedata, reloc_type))
13334 {
13335 reloc_size = 8;
13336 reloc_inplace = TRUE;
13337 }
13338 else if ((reloc_subtract = is_16bit_inplace_sub_reloc (filedata,
13339 reloc_type))
13340 || is_16bit_inplace_add_reloc (filedata, reloc_type))
13341 {
13342 reloc_size = 2;
13343 reloc_inplace = TRUE;
13344 }
13345 else if ((reloc_subtract = is_8bit_inplace_sub_reloc (filedata,
13346 reloc_type))
13347 || is_8bit_inplace_add_reloc (filedata, reloc_type))
13348 {
13349 reloc_size = 1;
13350 reloc_inplace = TRUE;
13351 }
13352 else if ((reloc_subtract = is_6bit_inplace_sub_reloc (filedata,
13353 reloc_type)))
13354 {
13355 reloc_size = 1;
13356 reloc_inplace = TRUE;
13357 }
13358 else
13359 {
13360 static unsigned int prev_reloc = 0;
13361
13362 if (reloc_type != prev_reloc)
13363 warn (_("unable to apply unsupported reloc type %d to section %s\n"),
13364 reloc_type, printable_section_name (filedata, section));
13365 prev_reloc = reloc_type;
13366 continue;
13367 }
13368
13369 rloc = start + rp->r_offset;
13370 if (rloc >= end || (rloc + reloc_size) > end || (rloc < start))
13371 {
13372 warn (_("skipping invalid relocation offset 0x%lx in section %s\n"),
13373 (unsigned long) rp->r_offset,
13374 printable_section_name (filedata, section));
13375 continue;
13376 }
13377
13378 sym_index = (unsigned long) get_reloc_symindex (rp->r_info);
13379 if (sym_index >= num_syms)
13380 {
13381 warn (_("skipping invalid relocation symbol index 0x%lx in section %s\n"),
13382 sym_index, printable_section_name (filedata, section));
13383 continue;
13384 }
13385 sym = symtab + sym_index;
13386
13387 /* If the reloc has a symbol associated with it,
13388 make sure that it is of an appropriate type.
13389
13390 Relocations against symbols without type can happen.
13391 Gcc -feliminate-dwarf2-dups may generate symbols
13392 without type for debug info.
13393
13394 Icc generates relocations against function symbols
13395 instead of local labels.
13396
13397 Relocations against object symbols can happen, eg when
13398 referencing a global array. For an example of this see
13399 the _clz.o binary in libgcc.a. */
13400 if (sym != symtab
13401 && ELF_ST_TYPE (sym->st_info) != STT_COMMON
13402 && ELF_ST_TYPE (sym->st_info) > STT_SECTION)
13403 {
13404 warn (_("skipping unexpected symbol type %s in section %s relocation %ld\n"),
13405 get_symbol_type (filedata, ELF_ST_TYPE (sym->st_info)),
13406 printable_section_name (filedata, relsec),
13407 (long int)(rp - relocs));
13408 continue;
13409 }
13410
13411 addend = 0;
13412 if (is_rela)
13413 addend += rp->r_addend;
13414 /* R_XTENSA_32, R_PJ_DATA_DIR32 and R_D30V_32_NORMAL are
13415 partial_inplace. */
13416 if (!is_rela
13417 || (filedata->file_header.e_machine == EM_XTENSA
13418 && reloc_type == 1)
13419 || ((filedata->file_header.e_machine == EM_PJ
13420 || filedata->file_header.e_machine == EM_PJ_OLD)
13421 && reloc_type == 1)
13422 || ((filedata->file_header.e_machine == EM_D30V
13423 || filedata->file_header.e_machine == EM_CYGNUS_D30V)
13424 && reloc_type == 12)
13425 || reloc_inplace)
13426 {
13427 if (is_6bit_inplace_sub_reloc (filedata, reloc_type))
13428 addend += byte_get (rloc, reloc_size) & 0x3f;
13429 else
13430 addend += byte_get (rloc, reloc_size);
13431 }
13432
13433 if (is_32bit_pcrel_reloc (filedata, reloc_type)
13434 || is_64bit_pcrel_reloc (filedata, reloc_type))
13435 {
13436 /* On HPPA, all pc-relative relocations are biased by 8. */
13437 if (filedata->file_header.e_machine == EM_PARISC)
13438 addend -= 8;
13439 byte_put (rloc, (addend + sym->st_value) - rp->r_offset,
13440 reloc_size);
13441 }
13442 else if (is_6bit_abs_reloc (filedata, reloc_type)
13443 || is_6bit_inplace_sub_reloc (filedata, reloc_type))
13444 {
13445 if (reloc_subtract)
13446 addend -= sym->st_value;
13447 else
13448 addend += sym->st_value;
13449 addend = (addend & 0x3f) | (byte_get (rloc, reloc_size) & 0xc0);
13450 byte_put (rloc, addend, reloc_size);
13451 }
13452 else if (reloc_subtract)
13453 byte_put (rloc, addend - sym->st_value, reloc_size);
13454 else
13455 byte_put (rloc, addend + sym->st_value, reloc_size);
13456 }
13457
13458 free (symtab);
13459 /* Let the target specific reloc processing code know that
13460 we have finished with these relocs. */
13461 target_specific_reloc_handling (filedata, NULL, NULL, NULL, NULL, 0);
13462
13463 if (relocs_return)
13464 {
13465 * (Elf_Internal_Rela **) relocs_return = relocs;
13466 * num_relocs_return = num_relocs;
13467 }
13468 else
13469 free (relocs);
13470
13471 break;
13472 }
13473
13474 return TRUE;
13475 }
13476
13477 #ifdef SUPPORT_DISASSEMBLY
13478 static bfd_boolean
13479 disassemble_section (Elf_Internal_Shdr * section, Filedata * filedata)
13480 {
13481 printf (_("\nAssembly dump of section %s\n"), printable_section_name (filedata, section));
13482
13483 /* FIXME: XXX -- to be done --- XXX */
13484
13485 return TRUE;
13486 }
13487 #endif
13488
13489 /* Reads in the contents of SECTION from FILE, returning a pointer
13490 to a malloc'ed buffer or NULL if something went wrong. */
13491
13492 static char *
13493 get_section_contents (Elf_Internal_Shdr * section, Filedata * filedata)
13494 {
13495 bfd_size_type num_bytes = section->sh_size;
13496
13497 if (num_bytes == 0 || section->sh_type == SHT_NOBITS)
13498 {
13499 printf (_("Section '%s' has no data to dump.\n"),
13500 printable_section_name (filedata, section));
13501 return NULL;
13502 }
13503
13504 return (char *) get_data (NULL, filedata, section->sh_offset, 1, num_bytes,
13505 _("section contents"));
13506 }
13507
13508 /* Uncompresses a section that was compressed using zlib, in place. */
13509
13510 static bfd_boolean
13511 uncompress_section_contents (unsigned char ** buffer,
13512 dwarf_size_type uncompressed_size,
13513 dwarf_size_type * size)
13514 {
13515 dwarf_size_type compressed_size = *size;
13516 unsigned char * compressed_buffer = *buffer;
13517 unsigned char * uncompressed_buffer;
13518 z_stream strm;
13519 int rc;
13520
13521 /* It is possible the section consists of several compressed
13522 buffers concatenated together, so we uncompress in a loop. */
13523 /* PR 18313: The state field in the z_stream structure is supposed
13524 to be invisible to the user (ie us), but some compilers will
13525 still complain about it being used without initialisation. So
13526 we first zero the entire z_stream structure and then set the fields
13527 that we need. */
13528 memset (& strm, 0, sizeof strm);
13529 strm.avail_in = compressed_size;
13530 strm.next_in = (Bytef *) compressed_buffer;
13531 strm.avail_out = uncompressed_size;
13532 uncompressed_buffer = (unsigned char *) xmalloc (uncompressed_size);
13533
13534 rc = inflateInit (& strm);
13535 while (strm.avail_in > 0)
13536 {
13537 if (rc != Z_OK)
13538 goto fail;
13539 strm.next_out = ((Bytef *) uncompressed_buffer
13540 + (uncompressed_size - strm.avail_out));
13541 rc = inflate (&strm, Z_FINISH);
13542 if (rc != Z_STREAM_END)
13543 goto fail;
13544 rc = inflateReset (& strm);
13545 }
13546 rc = inflateEnd (& strm);
13547 if (rc != Z_OK
13548 || strm.avail_out != 0)
13549 goto fail;
13550
13551 *buffer = uncompressed_buffer;
13552 *size = uncompressed_size;
13553 return TRUE;
13554
13555 fail:
13556 free (uncompressed_buffer);
13557 /* Indicate decompression failure. */
13558 *buffer = NULL;
13559 return FALSE;
13560 }
13561
13562 static bfd_boolean
13563 dump_section_as_strings (Elf_Internal_Shdr * section, Filedata * filedata)
13564 {
13565 Elf_Internal_Shdr * relsec;
13566 bfd_size_type num_bytes;
13567 unsigned char * data;
13568 unsigned char * end;
13569 unsigned char * real_start;
13570 unsigned char * start;
13571 bfd_boolean some_strings_shown;
13572
13573 real_start = start = (unsigned char *) get_section_contents (section, filedata);
13574 if (start == NULL)
13575 /* PR 21820: Do not fail if the section was empty. */
13576 return (section->sh_size == 0 || section->sh_type == SHT_NOBITS) ? TRUE : FALSE;
13577
13578 num_bytes = section->sh_size;
13579
13580 printf (_("\nString dump of section '%s':\n"), printable_section_name (filedata, section));
13581
13582 if (decompress_dumps)
13583 {
13584 dwarf_size_type new_size = num_bytes;
13585 dwarf_size_type uncompressed_size = 0;
13586
13587 if ((section->sh_flags & SHF_COMPRESSED) != 0)
13588 {
13589 Elf_Internal_Chdr chdr;
13590 unsigned int compression_header_size
13591 = get_compression_header (& chdr, (unsigned char *) start,
13592 num_bytes);
13593
13594 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
13595 {
13596 warn (_("section '%s' has unsupported compress type: %d\n"),
13597 printable_section_name (filedata, section), chdr.ch_type);
13598 return FALSE;
13599 }
13600 uncompressed_size = chdr.ch_size;
13601 start += compression_header_size;
13602 new_size -= compression_header_size;
13603 }
13604 else if (new_size > 12 && streq ((char *) start, "ZLIB"))
13605 {
13606 /* Read the zlib header. In this case, it should be "ZLIB"
13607 followed by the uncompressed section size, 8 bytes in
13608 big-endian order. */
13609 uncompressed_size = start[4]; uncompressed_size <<= 8;
13610 uncompressed_size += start[5]; uncompressed_size <<= 8;
13611 uncompressed_size += start[6]; uncompressed_size <<= 8;
13612 uncompressed_size += start[7]; uncompressed_size <<= 8;
13613 uncompressed_size += start[8]; uncompressed_size <<= 8;
13614 uncompressed_size += start[9]; uncompressed_size <<= 8;
13615 uncompressed_size += start[10]; uncompressed_size <<= 8;
13616 uncompressed_size += start[11];
13617 start += 12;
13618 new_size -= 12;
13619 }
13620
13621 if (uncompressed_size)
13622 {
13623 if (uncompress_section_contents (& start,
13624 uncompressed_size, & new_size))
13625 num_bytes = new_size;
13626 else
13627 {
13628 error (_("Unable to decompress section %s\n"),
13629 printable_section_name (filedata, section));
13630 return FALSE;
13631 }
13632 }
13633 else
13634 start = real_start;
13635 }
13636
13637 /* If the section being dumped has relocations against it the user might
13638 be expecting these relocations to have been applied. Check for this
13639 case and issue a warning message in order to avoid confusion.
13640 FIXME: Maybe we ought to have an option that dumps a section with
13641 relocs applied ? */
13642 for (relsec = filedata->section_headers;
13643 relsec < filedata->section_headers + filedata->file_header.e_shnum;
13644 ++relsec)
13645 {
13646 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
13647 || relsec->sh_info >= filedata->file_header.e_shnum
13648 || filedata->section_headers + relsec->sh_info != section
13649 || relsec->sh_size == 0
13650 || relsec->sh_link >= filedata->file_header.e_shnum)
13651 continue;
13652
13653 printf (_(" Note: This section has relocations against it, but these have NOT been applied to this dump.\n"));
13654 break;
13655 }
13656
13657 data = start;
13658 end = start + num_bytes;
13659 some_strings_shown = FALSE;
13660
13661 while (data < end)
13662 {
13663 while (!ISPRINT (* data))
13664 if (++ data >= end)
13665 break;
13666
13667 if (data < end)
13668 {
13669 size_t maxlen = end - data;
13670
13671 #ifndef __MSVCRT__
13672 /* PR 11128: Use two separate invocations in order to work
13673 around bugs in the Solaris 8 implementation of printf. */
13674 printf (" [%6tx] ", data - start);
13675 #else
13676 printf (" [%6Ix] ", (size_t) (data - start));
13677 #endif
13678 if (maxlen > 0)
13679 {
13680 print_symbol ((int) maxlen, (const char *) data);
13681 putchar ('\n');
13682 data += strnlen ((const char *) data, maxlen);
13683 }
13684 else
13685 {
13686 printf (_("<corrupt>\n"));
13687 data = end;
13688 }
13689 some_strings_shown = TRUE;
13690 }
13691 }
13692
13693 if (! some_strings_shown)
13694 printf (_(" No strings found in this section."));
13695
13696 free (real_start);
13697
13698 putchar ('\n');
13699 return TRUE;
13700 }
13701
13702 static bfd_boolean
13703 dump_section_as_bytes (Elf_Internal_Shdr * section,
13704 Filedata * filedata,
13705 bfd_boolean relocate)
13706 {
13707 Elf_Internal_Shdr * relsec;
13708 bfd_size_type bytes;
13709 bfd_size_type section_size;
13710 bfd_vma addr;
13711 unsigned char * data;
13712 unsigned char * real_start;
13713 unsigned char * start;
13714
13715 real_start = start = (unsigned char *) get_section_contents (section, filedata);
13716 if (start == NULL)
13717 /* PR 21820: Do not fail if the section was empty. */
13718 return (section->sh_size == 0 || section->sh_type == SHT_NOBITS) ? TRUE : FALSE;
13719
13720 section_size = section->sh_size;
13721
13722 printf (_("\nHex dump of section '%s':\n"), printable_section_name (filedata, section));
13723
13724 if (decompress_dumps)
13725 {
13726 dwarf_size_type new_size = section_size;
13727 dwarf_size_type uncompressed_size = 0;
13728
13729 if ((section->sh_flags & SHF_COMPRESSED) != 0)
13730 {
13731 Elf_Internal_Chdr chdr;
13732 unsigned int compression_header_size
13733 = get_compression_header (& chdr, start, section_size);
13734
13735 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
13736 {
13737 warn (_("section '%s' has unsupported compress type: %d\n"),
13738 printable_section_name (filedata, section), chdr.ch_type);
13739 return FALSE;
13740 }
13741 uncompressed_size = chdr.ch_size;
13742 start += compression_header_size;
13743 new_size -= compression_header_size;
13744 }
13745 else if (new_size > 12 && streq ((char *) start, "ZLIB"))
13746 {
13747 /* Read the zlib header. In this case, it should be "ZLIB"
13748 followed by the uncompressed section size, 8 bytes in
13749 big-endian order. */
13750 uncompressed_size = start[4]; uncompressed_size <<= 8;
13751 uncompressed_size += start[5]; uncompressed_size <<= 8;
13752 uncompressed_size += start[6]; uncompressed_size <<= 8;
13753 uncompressed_size += start[7]; uncompressed_size <<= 8;
13754 uncompressed_size += start[8]; uncompressed_size <<= 8;
13755 uncompressed_size += start[9]; uncompressed_size <<= 8;
13756 uncompressed_size += start[10]; uncompressed_size <<= 8;
13757 uncompressed_size += start[11];
13758 start += 12;
13759 new_size -= 12;
13760 }
13761
13762 if (uncompressed_size)
13763 {
13764 if (uncompress_section_contents (& start, uncompressed_size,
13765 & new_size))
13766 {
13767 section_size = new_size;
13768 }
13769 else
13770 {
13771 error (_("Unable to decompress section %s\n"),
13772 printable_section_name (filedata, section));
13773 /* FIXME: Print the section anyway ? */
13774 return FALSE;
13775 }
13776 }
13777 else
13778 start = real_start;
13779 }
13780
13781 if (relocate)
13782 {
13783 if (! apply_relocations (filedata, section, start, section_size, NULL, NULL))
13784 return FALSE;
13785 }
13786 else
13787 {
13788 /* If the section being dumped has relocations against it the user might
13789 be expecting these relocations to have been applied. Check for this
13790 case and issue a warning message in order to avoid confusion.
13791 FIXME: Maybe we ought to have an option that dumps a section with
13792 relocs applied ? */
13793 for (relsec = filedata->section_headers;
13794 relsec < filedata->section_headers + filedata->file_header.e_shnum;
13795 ++relsec)
13796 {
13797 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
13798 || relsec->sh_info >= filedata->file_header.e_shnum
13799 || filedata->section_headers + relsec->sh_info != section
13800 || relsec->sh_size == 0
13801 || relsec->sh_link >= filedata->file_header.e_shnum)
13802 continue;
13803
13804 printf (_(" NOTE: This section has relocations against it, but these have NOT been applied to this dump.\n"));
13805 break;
13806 }
13807 }
13808
13809 addr = section->sh_addr;
13810 bytes = section_size;
13811 data = start;
13812
13813 while (bytes)
13814 {
13815 int j;
13816 int k;
13817 int lbytes;
13818
13819 lbytes = (bytes > 16 ? 16 : bytes);
13820
13821 printf (" 0x%8.8lx ", (unsigned long) addr);
13822
13823 for (j = 0; j < 16; j++)
13824 {
13825 if (j < lbytes)
13826 printf ("%2.2x", data[j]);
13827 else
13828 printf (" ");
13829
13830 if ((j & 3) == 3)
13831 printf (" ");
13832 }
13833
13834 for (j = 0; j < lbytes; j++)
13835 {
13836 k = data[j];
13837 if (k >= ' ' && k < 0x7f)
13838 printf ("%c", k);
13839 else
13840 printf (".");
13841 }
13842
13843 putchar ('\n');
13844
13845 data += lbytes;
13846 addr += lbytes;
13847 bytes -= lbytes;
13848 }
13849
13850 free (real_start);
13851
13852 putchar ('\n');
13853 return TRUE;
13854 }
13855
13856 static ctf_sect_t *
13857 shdr_to_ctf_sect (ctf_sect_t *buf, Elf_Internal_Shdr *shdr, Filedata *filedata)
13858 {
13859 buf->cts_name = SECTION_NAME (shdr);
13860 buf->cts_size = shdr->sh_size;
13861 buf->cts_entsize = shdr->sh_entsize;
13862
13863 return buf;
13864 }
13865
13866 /* Formatting callback function passed to ctf_dump. Returns either the pointer
13867 it is passed, or a pointer to newly-allocated storage, in which case
13868 dump_ctf() will free it when it no longer needs it. */
13869
13870 static char *dump_ctf_indent_lines (ctf_sect_names_t sect ATTRIBUTE_UNUSED,
13871 char *s, void *arg)
13872 {
13873 const char *blanks = arg;
13874 char *new_s;
13875
13876 if (asprintf (&new_s, "%s%s", blanks, s) < 0)
13877 return s;
13878 return new_s;
13879 }
13880
13881 static bfd_boolean
13882 dump_section_as_ctf (Elf_Internal_Shdr * section, Filedata * filedata)
13883 {
13884 Elf_Internal_Shdr * parent_sec = NULL;
13885 Elf_Internal_Shdr * symtab_sec = NULL;
13886 Elf_Internal_Shdr * strtab_sec = NULL;
13887 void * data = NULL;
13888 void * symdata = NULL;
13889 void * strdata = NULL;
13890 void * parentdata = NULL;
13891 ctf_sect_t ctfsect, symsect, strsect, parentsect;
13892 ctf_sect_t * symsectp = NULL;
13893 ctf_sect_t * strsectp = NULL;
13894 ctf_file_t * ctf = NULL;
13895 ctf_file_t * parent = NULL;
13896
13897 const char *things[] = {"Labels", "Data objects", "Function objects",
13898 "Variables", "Types", "Strings", ""};
13899 const char **thing;
13900 int err;
13901 bfd_boolean ret = FALSE;
13902 size_t i;
13903
13904 shdr_to_ctf_sect (&ctfsect, section, filedata);
13905 data = get_section_contents (section, filedata);
13906 ctfsect.cts_data = data;
13907
13908 if (dump_ctf_symtab_name)
13909 {
13910 if ((symtab_sec = find_section (filedata, dump_ctf_symtab_name)) == NULL)
13911 {
13912 error (_("No symbol section named %s\n"), dump_ctf_symtab_name);
13913 goto fail;
13914 }
13915 if ((symdata = (void *) get_data (NULL, filedata,
13916 symtab_sec->sh_offset, 1,
13917 symtab_sec->sh_size,
13918 _("symbols"))) == NULL)
13919 goto fail;
13920 symsectp = shdr_to_ctf_sect (&symsect, symtab_sec, filedata);
13921 symsect.cts_data = symdata;
13922 }
13923 if (dump_ctf_strtab_name)
13924 {
13925 if ((strtab_sec = find_section (filedata, dump_ctf_strtab_name)) == NULL)
13926 {
13927 error (_("No string table section named %s\n"),
13928 dump_ctf_strtab_name);
13929 goto fail;
13930 }
13931 if ((strdata = (void *) get_data (NULL, filedata,
13932 strtab_sec->sh_offset, 1,
13933 strtab_sec->sh_size,
13934 _("strings"))) == NULL)
13935 goto fail;
13936 strsectp = shdr_to_ctf_sect (&strsect, strtab_sec, filedata);
13937 strsect.cts_data = strdata;
13938 }
13939 if (dump_ctf_parent_name)
13940 {
13941 if ((parent_sec = find_section (filedata, dump_ctf_parent_name)) == NULL)
13942 {
13943 error (_("No CTF parent section named %s\n"), dump_ctf_parent_name);
13944 goto fail;
13945 }
13946 if ((parentdata = (void *) get_data (NULL, filedata,
13947 parent_sec->sh_offset, 1,
13948 parent_sec->sh_size,
13949 _("CTF parent"))) == NULL)
13950 goto fail;
13951 shdr_to_ctf_sect (&parentsect, parent_sec, filedata);
13952 parentsect.cts_data = parentdata;
13953 }
13954
13955 /* Load the CTF file and dump it. */
13956
13957 if ((ctf = ctf_bufopen (&ctfsect, symsectp, strsectp, &err)) == NULL)
13958 {
13959 error (_("CTF open failure: %s\n"), ctf_errmsg (err));
13960 goto fail;
13961 }
13962
13963 if (parentdata)
13964 {
13965 if ((parent = ctf_bufopen (&parentsect, symsectp, strsectp, &err)) == NULL)
13966 {
13967 error (_("CTF open failure: %s\n"), ctf_errmsg (err));
13968 goto fail;
13969 }
13970
13971 ctf_import (ctf, parent);
13972 }
13973
13974 ret = TRUE;
13975
13976 printf (_("\nDump of CTF section '%s':\n"),
13977 printable_section_name (filedata, section));
13978
13979 for (i = 1, thing = things; *thing[0]; thing++, i++)
13980 {
13981 ctf_dump_state_t *s = NULL;
13982 char *item;
13983
13984 printf ("\n %s:\n", *thing);
13985 while ((item = ctf_dump (ctf, &s, i, dump_ctf_indent_lines,
13986 (void *) " ")) != NULL)
13987 {
13988 printf ("%s\n", item);
13989 free (item);
13990 }
13991
13992 if (ctf_errno (ctf))
13993 {
13994 error (_("Iteration failed: %s, %s\n"), *thing,
13995 ctf_errmsg (ctf_errno (ctf)));
13996 ret = FALSE;
13997 }
13998 }
13999
14000 fail:
14001 ctf_file_close (ctf);
14002 ctf_file_close (parent);
14003 free (parentdata);
14004 free (data);
14005 free (symdata);
14006 free (strdata);
14007 return ret;
14008 }
14009
14010 static bfd_boolean
14011 load_specific_debug_section (enum dwarf_section_display_enum debug,
14012 const Elf_Internal_Shdr * sec,
14013 void * data)
14014 {
14015 struct dwarf_section * section = &debug_displays [debug].section;
14016 char buf [64];
14017 Filedata * filedata = (Filedata *) data;
14018
14019 if (section->start != NULL)
14020 {
14021 /* If it is already loaded, do nothing. */
14022 if (streq (section->filename, filedata->file_name))
14023 return TRUE;
14024 free (section->start);
14025 }
14026
14027 snprintf (buf, sizeof (buf), _("%s section data"), section->name);
14028 section->address = sec->sh_addr;
14029 section->user_data = NULL;
14030 section->filename = filedata->file_name;
14031 section->start = (unsigned char *) get_data (NULL, filedata,
14032 sec->sh_offset, 1,
14033 sec->sh_size, buf);
14034 if (section->start == NULL)
14035 section->size = 0;
14036 else
14037 {
14038 unsigned char *start = section->start;
14039 dwarf_size_type size = sec->sh_size;
14040 dwarf_size_type uncompressed_size = 0;
14041
14042 if ((sec->sh_flags & SHF_COMPRESSED) != 0)
14043 {
14044 Elf_Internal_Chdr chdr;
14045 unsigned int compression_header_size;
14046
14047 if (size < (is_32bit_elf
14048 ? sizeof (Elf32_External_Chdr)
14049 : sizeof (Elf64_External_Chdr)))
14050 {
14051 warn (_("compressed section %s is too small to contain a compression header"),
14052 section->name);
14053 return FALSE;
14054 }
14055
14056 compression_header_size = get_compression_header (&chdr, start, size);
14057
14058 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
14059 {
14060 warn (_("section '%s' has unsupported compress type: %d\n"),
14061 section->name, chdr.ch_type);
14062 return FALSE;
14063 }
14064 uncompressed_size = chdr.ch_size;
14065 start += compression_header_size;
14066 size -= compression_header_size;
14067 }
14068 else if (size > 12 && streq ((char *) start, "ZLIB"))
14069 {
14070 /* Read the zlib header. In this case, it should be "ZLIB"
14071 followed by the uncompressed section size, 8 bytes in
14072 big-endian order. */
14073 uncompressed_size = start[4]; uncompressed_size <<= 8;
14074 uncompressed_size += start[5]; uncompressed_size <<= 8;
14075 uncompressed_size += start[6]; uncompressed_size <<= 8;
14076 uncompressed_size += start[7]; uncompressed_size <<= 8;
14077 uncompressed_size += start[8]; uncompressed_size <<= 8;
14078 uncompressed_size += start[9]; uncompressed_size <<= 8;
14079 uncompressed_size += start[10]; uncompressed_size <<= 8;
14080 uncompressed_size += start[11];
14081 start += 12;
14082 size -= 12;
14083 }
14084
14085 if (uncompressed_size)
14086 {
14087 if (uncompress_section_contents (&start, uncompressed_size,
14088 &size))
14089 {
14090 /* Free the compressed buffer, update the section buffer
14091 and the section size if uncompress is successful. */
14092 free (section->start);
14093 section->start = start;
14094 }
14095 else
14096 {
14097 error (_("Unable to decompress section %s\n"),
14098 printable_section_name (filedata, sec));
14099 return FALSE;
14100 }
14101 }
14102
14103 section->size = size;
14104 }
14105
14106 if (section->start == NULL)
14107 return FALSE;
14108
14109 if (debug_displays [debug].relocate)
14110 {
14111 if (! apply_relocations (filedata, sec, section->start, section->size,
14112 & section->reloc_info, & section->num_relocs))
14113 return FALSE;
14114 }
14115 else
14116 {
14117 section->reloc_info = NULL;
14118 section->num_relocs = 0;
14119 }
14120
14121 return TRUE;
14122 }
14123
14124 /* If this is not NULL, load_debug_section will only look for sections
14125 within the list of sections given here. */
14126 static unsigned int * section_subset = NULL;
14127
14128 bfd_boolean
14129 load_debug_section (enum dwarf_section_display_enum debug, void * data)
14130 {
14131 struct dwarf_section * section = &debug_displays [debug].section;
14132 Elf_Internal_Shdr * sec;
14133 Filedata * filedata = (Filedata *) data;
14134
14135 /* Without section headers we cannot find any sections. */
14136 if (filedata->section_headers == NULL)
14137 return FALSE;
14138
14139 if (filedata->string_table == NULL
14140 && filedata->file_header.e_shstrndx != SHN_UNDEF
14141 && filedata->file_header.e_shstrndx < filedata->file_header.e_shnum)
14142 {
14143 Elf_Internal_Shdr * strs;
14144
14145 /* Read in the string table, so that we have section names to scan. */
14146 strs = filedata->section_headers + filedata->file_header.e_shstrndx;
14147
14148 if (strs != NULL && strs->sh_size != 0)
14149 {
14150 filedata->string_table
14151 = (char *) get_data (NULL, filedata, strs->sh_offset,
14152 1, strs->sh_size, _("string table"));
14153
14154 filedata->string_table_length
14155 = filedata->string_table != NULL ? strs->sh_size : 0;
14156 }
14157 }
14158
14159 /* Locate the debug section. */
14160 sec = find_section_in_set (filedata, section->uncompressed_name, section_subset);
14161 if (sec != NULL)
14162 section->name = section->uncompressed_name;
14163 else
14164 {
14165 sec = find_section_in_set (filedata, section->compressed_name, section_subset);
14166 if (sec != NULL)
14167 section->name = section->compressed_name;
14168 }
14169 if (sec == NULL)
14170 return FALSE;
14171
14172 /* If we're loading from a subset of sections, and we've loaded
14173 a section matching this name before, it's likely that it's a
14174 different one. */
14175 if (section_subset != NULL)
14176 free_debug_section (debug);
14177
14178 return load_specific_debug_section (debug, sec, data);
14179 }
14180
14181 void
14182 free_debug_section (enum dwarf_section_display_enum debug)
14183 {
14184 struct dwarf_section * section = &debug_displays [debug].section;
14185
14186 if (section->start == NULL)
14187 return;
14188
14189 free ((char *) section->start);
14190 section->start = NULL;
14191 section->address = 0;
14192 section->size = 0;
14193 }
14194
14195 static bfd_boolean
14196 display_debug_section (int shndx, Elf_Internal_Shdr * section, Filedata * filedata)
14197 {
14198 char * name = SECTION_NAME (section);
14199 const char * print_name = printable_section_name (filedata, section);
14200 bfd_size_type length;
14201 bfd_boolean result = TRUE;
14202 int i;
14203
14204 length = section->sh_size;
14205 if (length == 0)
14206 {
14207 printf (_("\nSection '%s' has no debugging data.\n"), print_name);
14208 return TRUE;
14209 }
14210 if (section->sh_type == SHT_NOBITS)
14211 {
14212 /* There is no point in dumping the contents of a debugging section
14213 which has the NOBITS type - the bits in the file will be random.
14214 This can happen when a file containing a .eh_frame section is
14215 stripped with the --only-keep-debug command line option. */
14216 printf (_("section '%s' has the NOBITS type - its contents are unreliable.\n"),
14217 print_name);
14218 return FALSE;
14219 }
14220
14221 if (const_strneq (name, ".gnu.linkonce.wi."))
14222 name = ".debug_info";
14223
14224 /* See if we know how to display the contents of this section. */
14225 for (i = 0; i < max; i++)
14226 {
14227 enum dwarf_section_display_enum id = (enum dwarf_section_display_enum) i;
14228 struct dwarf_section_display * display = debug_displays + i;
14229 struct dwarf_section * sec = & display->section;
14230
14231 if (streq (sec->uncompressed_name, name)
14232 || (id == line && const_strneq (name, ".debug_line."))
14233 || streq (sec->compressed_name, name))
14234 {
14235 bfd_boolean secondary = (section != find_section (filedata, name));
14236
14237 if (secondary)
14238 free_debug_section (id);
14239
14240 if (i == line && const_strneq (name, ".debug_line."))
14241 sec->name = name;
14242 else if (streq (sec->uncompressed_name, name))
14243 sec->name = sec->uncompressed_name;
14244 else
14245 sec->name = sec->compressed_name;
14246
14247 if (load_specific_debug_section (id, section, filedata))
14248 {
14249 /* If this debug section is part of a CU/TU set in a .dwp file,
14250 restrict load_debug_section to the sections in that set. */
14251 section_subset = find_cu_tu_set (filedata, shndx);
14252
14253 result &= display->display (sec, filedata);
14254
14255 section_subset = NULL;
14256
14257 if (secondary || (id != info && id != abbrev))
14258 free_debug_section (id);
14259 }
14260 break;
14261 }
14262 }
14263
14264 if (i == max)
14265 {
14266 printf (_("Unrecognized debug section: %s\n"), print_name);
14267 result = FALSE;
14268 }
14269
14270 return result;
14271 }
14272
14273 /* Set DUMP_SECTS for all sections where dumps were requested
14274 based on section name. */
14275
14276 static void
14277 initialise_dumps_byname (Filedata * filedata)
14278 {
14279 struct dump_list_entry * cur;
14280
14281 for (cur = dump_sects_byname; cur; cur = cur->next)
14282 {
14283 unsigned int i;
14284 bfd_boolean any = FALSE;
14285
14286 for (i = 0; i < filedata->file_header.e_shnum; i++)
14287 if (streq (SECTION_NAME (filedata->section_headers + i), cur->name))
14288 {
14289 request_dump_bynumber (filedata, i, cur->type);
14290 any = TRUE;
14291 }
14292
14293 if (!any)
14294 warn (_("Section '%s' was not dumped because it does not exist!\n"),
14295 cur->name);
14296 }
14297 }
14298
14299 static bfd_boolean
14300 process_section_contents (Filedata * filedata)
14301 {
14302 Elf_Internal_Shdr * section;
14303 unsigned int i;
14304 bfd_boolean res = TRUE;
14305
14306 if (! do_dump)
14307 return TRUE;
14308
14309 initialise_dumps_byname (filedata);
14310
14311 for (i = 0, section = filedata->section_headers;
14312 i < filedata->file_header.e_shnum && i < filedata->num_dump_sects;
14313 i++, section++)
14314 {
14315 dump_type dump = filedata->dump_sects[i];
14316
14317 #ifdef SUPPORT_DISASSEMBLY
14318 if (dump & DISASS_DUMP)
14319 {
14320 if (! disassemble_section (section, filedata))
14321 res = FALSE;
14322 }
14323 #endif
14324 if (dump & HEX_DUMP)
14325 {
14326 if (! dump_section_as_bytes (section, filedata, FALSE))
14327 res = FALSE;
14328 }
14329
14330 if (dump & RELOC_DUMP)
14331 {
14332 if (! dump_section_as_bytes (section, filedata, TRUE))
14333 res = FALSE;
14334 }
14335
14336 if (dump & STRING_DUMP)
14337 {
14338 if (! dump_section_as_strings (section, filedata))
14339 res = FALSE;
14340 }
14341
14342 if (dump & DEBUG_DUMP)
14343 {
14344 if (! display_debug_section (i, section, filedata))
14345 res = FALSE;
14346 }
14347
14348 if (dump & CTF_DUMP)
14349 {
14350 if (! dump_section_as_ctf (section, filedata))
14351 res = FALSE;
14352 }
14353 }
14354
14355 /* Check to see if the user requested a
14356 dump of a section that does not exist. */
14357 while (i < filedata->num_dump_sects)
14358 {
14359 if (filedata->dump_sects[i])
14360 {
14361 warn (_("Section %d was not dumped because it does not exist!\n"), i);
14362 res = FALSE;
14363 }
14364 i++;
14365 }
14366
14367 return res;
14368 }
14369
14370 static void
14371 process_mips_fpe_exception (int mask)
14372 {
14373 if (mask)
14374 {
14375 bfd_boolean first = TRUE;
14376
14377 if (mask & OEX_FPU_INEX)
14378 fputs ("INEX", stdout), first = FALSE;
14379 if (mask & OEX_FPU_UFLO)
14380 printf ("%sUFLO", first ? "" : "|"), first = FALSE;
14381 if (mask & OEX_FPU_OFLO)
14382 printf ("%sOFLO", first ? "" : "|"), first = FALSE;
14383 if (mask & OEX_FPU_DIV0)
14384 printf ("%sDIV0", first ? "" : "|"), first = FALSE;
14385 if (mask & OEX_FPU_INVAL)
14386 printf ("%sINVAL", first ? "" : "|");
14387 }
14388 else
14389 fputs ("0", stdout);
14390 }
14391
14392 /* Display's the value of TAG at location P. If TAG is
14393 greater than 0 it is assumed to be an unknown tag, and
14394 a message is printed to this effect. Otherwise it is
14395 assumed that a message has already been printed.
14396
14397 If the bottom bit of TAG is set it assumed to have a
14398 string value, otherwise it is assumed to have an integer
14399 value.
14400
14401 Returns an updated P pointing to the first unread byte
14402 beyond the end of TAG's value.
14403
14404 Reads at or beyond END will not be made. */
14405
14406 static unsigned char *
14407 display_tag_value (signed int tag,
14408 unsigned char * p,
14409 const unsigned char * const end)
14410 {
14411 unsigned long val;
14412
14413 if (tag > 0)
14414 printf (" Tag_unknown_%d: ", tag);
14415
14416 if (p >= end)
14417 {
14418 warn (_("<corrupt tag>\n"));
14419 }
14420 else if (tag & 1)
14421 {
14422 /* PR 17531 file: 027-19978-0.004. */
14423 size_t maxlen = (end - p) - 1;
14424
14425 putchar ('"');
14426 if (maxlen > 0)
14427 {
14428 print_symbol ((int) maxlen, (const char *) p);
14429 p += strnlen ((char *) p, maxlen) + 1;
14430 }
14431 else
14432 {
14433 printf (_("<corrupt string tag>"));
14434 p = (unsigned char *) end;
14435 }
14436 printf ("\"\n");
14437 }
14438 else
14439 {
14440 unsigned int len;
14441
14442 val = read_uleb128 (p, &len, end);
14443 p += len;
14444 printf ("%ld (0x%lx)\n", val, val);
14445 }
14446
14447 assert (p <= end);
14448 return p;
14449 }
14450
14451 /* ARC ABI attributes section. */
14452
14453 static unsigned char *
14454 display_arc_attribute (unsigned char * p,
14455 const unsigned char * const end)
14456 {
14457 unsigned int tag;
14458 unsigned int len;
14459 unsigned int val;
14460
14461 tag = read_uleb128 (p, &len, end);
14462 p += len;
14463
14464 switch (tag)
14465 {
14466 case Tag_ARC_PCS_config:
14467 val = read_uleb128 (p, &len, end);
14468 p += len;
14469 printf (" Tag_ARC_PCS_config: ");
14470 switch (val)
14471 {
14472 case 0:
14473 printf (_("Absent/Non standard\n"));
14474 break;
14475 case 1:
14476 printf (_("Bare metal/mwdt\n"));
14477 break;
14478 case 2:
14479 printf (_("Bare metal/newlib\n"));
14480 break;
14481 case 3:
14482 printf (_("Linux/uclibc\n"));
14483 break;
14484 case 4:
14485 printf (_("Linux/glibc\n"));
14486 break;
14487 default:
14488 printf (_("Unknown\n"));
14489 break;
14490 }
14491 break;
14492
14493 case Tag_ARC_CPU_base:
14494 val = read_uleb128 (p, &len, end);
14495 p += len;
14496 printf (" Tag_ARC_CPU_base: ");
14497 switch (val)
14498 {
14499 default:
14500 case TAG_CPU_NONE:
14501 printf (_("Absent\n"));
14502 break;
14503 case TAG_CPU_ARC6xx:
14504 printf ("ARC6xx\n");
14505 break;
14506 case TAG_CPU_ARC7xx:
14507 printf ("ARC7xx\n");
14508 break;
14509 case TAG_CPU_ARCEM:
14510 printf ("ARCEM\n");
14511 break;
14512 case TAG_CPU_ARCHS:
14513 printf ("ARCHS\n");
14514 break;
14515 }
14516 break;
14517
14518 case Tag_ARC_CPU_variation:
14519 val = read_uleb128 (p, &len, end);
14520 p += len;
14521 printf (" Tag_ARC_CPU_variation: ");
14522 switch (val)
14523 {
14524 default:
14525 if (val > 0 && val < 16)
14526 printf ("Core%d\n", val);
14527 else
14528 printf ("Unknown\n");
14529 break;
14530
14531 case 0:
14532 printf (_("Absent\n"));
14533 break;
14534 }
14535 break;
14536
14537 case Tag_ARC_CPU_name:
14538 printf (" Tag_ARC_CPU_name: ");
14539 p = display_tag_value (-1, p, end);
14540 break;
14541
14542 case Tag_ARC_ABI_rf16:
14543 val = read_uleb128 (p, &len, end);
14544 p += len;
14545 printf (" Tag_ARC_ABI_rf16: %s\n", val ? _("yes") : _("no"));
14546 break;
14547
14548 case Tag_ARC_ABI_osver:
14549 val = read_uleb128 (p, &len, end);
14550 p += len;
14551 printf (" Tag_ARC_ABI_osver: v%d\n", val);
14552 break;
14553
14554 case Tag_ARC_ABI_pic:
14555 case Tag_ARC_ABI_sda:
14556 val = read_uleb128 (p, &len, end);
14557 p += len;
14558 printf (tag == Tag_ARC_ABI_sda ? " Tag_ARC_ABI_sda: "
14559 : " Tag_ARC_ABI_pic: ");
14560 switch (val)
14561 {
14562 case 0:
14563 printf (_("Absent\n"));
14564 break;
14565 case 1:
14566 printf ("MWDT\n");
14567 break;
14568 case 2:
14569 printf ("GNU\n");
14570 break;
14571 default:
14572 printf (_("Unknown\n"));
14573 break;
14574 }
14575 break;
14576
14577 case Tag_ARC_ABI_tls:
14578 val = read_uleb128 (p, &len, end);
14579 p += len;
14580 printf (" Tag_ARC_ABI_tls: %s\n", val ? "r25": "none");
14581 break;
14582
14583 case Tag_ARC_ABI_enumsize:
14584 val = read_uleb128 (p, &len, end);
14585 p += len;
14586 printf (" Tag_ARC_ABI_enumsize: %s\n", val ? _("default") :
14587 _("smallest"));
14588 break;
14589
14590 case Tag_ARC_ABI_exceptions:
14591 val = read_uleb128 (p, &len, end);
14592 p += len;
14593 printf (" Tag_ARC_ABI_exceptions: %s\n", val ? _("OPTFP")
14594 : _("default"));
14595 break;
14596
14597 case Tag_ARC_ABI_double_size:
14598 val = read_uleb128 (p, &len, end);
14599 p += len;
14600 printf (" Tag_ARC_ABI_double_size: %d\n", val);
14601 break;
14602
14603 case Tag_ARC_ISA_config:
14604 printf (" Tag_ARC_ISA_config: ");
14605 p = display_tag_value (-1, p, end);
14606 break;
14607
14608 case Tag_ARC_ISA_apex:
14609 printf (" Tag_ARC_ISA_apex: ");
14610 p = display_tag_value (-1, p, end);
14611 break;
14612
14613 case Tag_ARC_ISA_mpy_option:
14614 val = read_uleb128 (p, &len, end);
14615 p += len;
14616 printf (" Tag_ARC_ISA_mpy_option: %d\n", val);
14617 break;
14618
14619 case Tag_ARC_ATR_version:
14620 val = read_uleb128 (p, &len, end);
14621 p += len;
14622 printf (" Tag_ARC_ATR_version: %d\n", val);
14623 break;
14624
14625 default:
14626 return display_tag_value (tag & 1, p, end);
14627 }
14628
14629 return p;
14630 }
14631
14632 /* ARM EABI attributes section. */
14633 typedef struct
14634 {
14635 unsigned int tag;
14636 const char * name;
14637 /* 0 = special, 1 = string, 2 = uleb123, > 0x80 == table lookup. */
14638 unsigned int type;
14639 const char ** table;
14640 } arm_attr_public_tag;
14641
14642 static const char * arm_attr_tag_CPU_arch[] =
14643 {"Pre-v4", "v4", "v4T", "v5T", "v5TE", "v5TEJ", "v6", "v6KZ", "v6T2",
14644 "v6K", "v7", "v6-M", "v6S-M", "v7E-M", "v8", "v8-R", "v8-M.baseline",
14645 "v8-M.mainline", "", "", "", "v8.1-M.mainline"};
14646 static const char * arm_attr_tag_ARM_ISA_use[] = {"No", "Yes"};
14647 static const char * arm_attr_tag_THUMB_ISA_use[] =
14648 {"No", "Thumb-1", "Thumb-2", "Yes"};
14649 static const char * arm_attr_tag_FP_arch[] =
14650 {"No", "VFPv1", "VFPv2", "VFPv3", "VFPv3-D16", "VFPv4", "VFPv4-D16",
14651 "FP for ARMv8", "FPv5/FP-D16 for ARMv8"};
14652 static const char * arm_attr_tag_WMMX_arch[] = {"No", "WMMXv1", "WMMXv2"};
14653 static const char * arm_attr_tag_Advanced_SIMD_arch[] =
14654 {"No", "NEONv1", "NEONv1 with Fused-MAC", "NEON for ARMv8",
14655 "NEON for ARMv8.1"};
14656 static const char * arm_attr_tag_PCS_config[] =
14657 {"None", "Bare platform", "Linux application", "Linux DSO", "PalmOS 2004",
14658 "PalmOS (reserved)", "SymbianOS 2004", "SymbianOS (reserved)"};
14659 static const char * arm_attr_tag_ABI_PCS_R9_use[] =
14660 {"V6", "SB", "TLS", "Unused"};
14661 static const char * arm_attr_tag_ABI_PCS_RW_data[] =
14662 {"Absolute", "PC-relative", "SB-relative", "None"};
14663 static const char * arm_attr_tag_ABI_PCS_RO_data[] =
14664 {"Absolute", "PC-relative", "None"};
14665 static const char * arm_attr_tag_ABI_PCS_GOT_use[] =
14666 {"None", "direct", "GOT-indirect"};
14667 static const char * arm_attr_tag_ABI_PCS_wchar_t[] =
14668 {"None", "??? 1", "2", "??? 3", "4"};
14669 static const char * arm_attr_tag_ABI_FP_rounding[] = {"Unused", "Needed"};
14670 static const char * arm_attr_tag_ABI_FP_denormal[] =
14671 {"Unused", "Needed", "Sign only"};
14672 static const char * arm_attr_tag_ABI_FP_exceptions[] = {"Unused", "Needed"};
14673 static const char * arm_attr_tag_ABI_FP_user_exceptions[] = {"Unused", "Needed"};
14674 static const char * arm_attr_tag_ABI_FP_number_model[] =
14675 {"Unused", "Finite", "RTABI", "IEEE 754"};
14676 static const char * arm_attr_tag_ABI_enum_size[] =
14677 {"Unused", "small", "int", "forced to int"};
14678 static const char * arm_attr_tag_ABI_HardFP_use[] =
14679 {"As Tag_FP_arch", "SP only", "Reserved", "Deprecated"};
14680 static const char * arm_attr_tag_ABI_VFP_args[] =
14681 {"AAPCS", "VFP registers", "custom", "compatible"};
14682 static const char * arm_attr_tag_ABI_WMMX_args[] =
14683 {"AAPCS", "WMMX registers", "custom"};
14684 static const char * arm_attr_tag_ABI_optimization_goals[] =
14685 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
14686 "Aggressive Size", "Prefer Debug", "Aggressive Debug"};
14687 static const char * arm_attr_tag_ABI_FP_optimization_goals[] =
14688 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
14689 "Aggressive Size", "Prefer Accuracy", "Aggressive Accuracy"};
14690 static const char * arm_attr_tag_CPU_unaligned_access[] = {"None", "v6"};
14691 static const char * arm_attr_tag_FP_HP_extension[] =
14692 {"Not Allowed", "Allowed"};
14693 static const char * arm_attr_tag_ABI_FP_16bit_format[] =
14694 {"None", "IEEE 754", "Alternative Format"};
14695 static const char * arm_attr_tag_DSP_extension[] =
14696 {"Follow architecture", "Allowed"};
14697 static const char * arm_attr_tag_MPextension_use[] =
14698 {"Not Allowed", "Allowed"};
14699 static const char * arm_attr_tag_DIV_use[] =
14700 {"Allowed in Thumb-ISA, v7-R or v7-M", "Not allowed",
14701 "Allowed in v7-A with integer division extension"};
14702 static const char * arm_attr_tag_T2EE_use[] = {"Not Allowed", "Allowed"};
14703 static const char * arm_attr_tag_Virtualization_use[] =
14704 {"Not Allowed", "TrustZone", "Virtualization Extensions",
14705 "TrustZone and Virtualization Extensions"};
14706 static const char * arm_attr_tag_MPextension_use_legacy[] =
14707 {"Not Allowed", "Allowed"};
14708
14709 static const char * arm_attr_tag_MVE_arch[] =
14710 {"No MVE", "MVE Integer only", "MVE Integer and FP"};
14711
14712 #define LOOKUP(id, name) \
14713 {id, #name, 0x80 | ARRAY_SIZE(arm_attr_tag_##name), arm_attr_tag_##name}
14714 static arm_attr_public_tag arm_attr_public_tags[] =
14715 {
14716 {4, "CPU_raw_name", 1, NULL},
14717 {5, "CPU_name", 1, NULL},
14718 LOOKUP(6, CPU_arch),
14719 {7, "CPU_arch_profile", 0, NULL},
14720 LOOKUP(8, ARM_ISA_use),
14721 LOOKUP(9, THUMB_ISA_use),
14722 LOOKUP(10, FP_arch),
14723 LOOKUP(11, WMMX_arch),
14724 LOOKUP(12, Advanced_SIMD_arch),
14725 LOOKUP(13, PCS_config),
14726 LOOKUP(14, ABI_PCS_R9_use),
14727 LOOKUP(15, ABI_PCS_RW_data),
14728 LOOKUP(16, ABI_PCS_RO_data),
14729 LOOKUP(17, ABI_PCS_GOT_use),
14730 LOOKUP(18, ABI_PCS_wchar_t),
14731 LOOKUP(19, ABI_FP_rounding),
14732 LOOKUP(20, ABI_FP_denormal),
14733 LOOKUP(21, ABI_FP_exceptions),
14734 LOOKUP(22, ABI_FP_user_exceptions),
14735 LOOKUP(23, ABI_FP_number_model),
14736 {24, "ABI_align_needed", 0, NULL},
14737 {25, "ABI_align_preserved", 0, NULL},
14738 LOOKUP(26, ABI_enum_size),
14739 LOOKUP(27, ABI_HardFP_use),
14740 LOOKUP(28, ABI_VFP_args),
14741 LOOKUP(29, ABI_WMMX_args),
14742 LOOKUP(30, ABI_optimization_goals),
14743 LOOKUP(31, ABI_FP_optimization_goals),
14744 {32, "compatibility", 0, NULL},
14745 LOOKUP(34, CPU_unaligned_access),
14746 LOOKUP(36, FP_HP_extension),
14747 LOOKUP(38, ABI_FP_16bit_format),
14748 LOOKUP(42, MPextension_use),
14749 LOOKUP(44, DIV_use),
14750 LOOKUP(46, DSP_extension),
14751 LOOKUP(48, MVE_arch),
14752 {64, "nodefaults", 0, NULL},
14753 {65, "also_compatible_with", 0, NULL},
14754 LOOKUP(66, T2EE_use),
14755 {67, "conformance", 1, NULL},
14756 LOOKUP(68, Virtualization_use),
14757 LOOKUP(70, MPextension_use_legacy)
14758 };
14759 #undef LOOKUP
14760
14761 static unsigned char *
14762 display_arm_attribute (unsigned char * p,
14763 const unsigned char * const end)
14764 {
14765 unsigned int tag;
14766 unsigned int len;
14767 unsigned int val;
14768 arm_attr_public_tag * attr;
14769 unsigned i;
14770 unsigned int type;
14771
14772 tag = read_uleb128 (p, &len, end);
14773 p += len;
14774 attr = NULL;
14775 for (i = 0; i < ARRAY_SIZE (arm_attr_public_tags); i++)
14776 {
14777 if (arm_attr_public_tags[i].tag == tag)
14778 {
14779 attr = &arm_attr_public_tags[i];
14780 break;
14781 }
14782 }
14783
14784 if (attr)
14785 {
14786 printf (" Tag_%s: ", attr->name);
14787 switch (attr->type)
14788 {
14789 case 0:
14790 switch (tag)
14791 {
14792 case 7: /* Tag_CPU_arch_profile. */
14793 val = read_uleb128 (p, &len, end);
14794 p += len;
14795 switch (val)
14796 {
14797 case 0: printf (_("None\n")); break;
14798 case 'A': printf (_("Application\n")); break;
14799 case 'R': printf (_("Realtime\n")); break;
14800 case 'M': printf (_("Microcontroller\n")); break;
14801 case 'S': printf (_("Application or Realtime\n")); break;
14802 default: printf ("??? (%d)\n", val); break;
14803 }
14804 break;
14805
14806 case 24: /* Tag_align_needed. */
14807 val = read_uleb128 (p, &len, end);
14808 p += len;
14809 switch (val)
14810 {
14811 case 0: printf (_("None\n")); break;
14812 case 1: printf (_("8-byte\n")); break;
14813 case 2: printf (_("4-byte\n")); break;
14814 case 3: printf ("??? 3\n"); break;
14815 default:
14816 if (val <= 12)
14817 printf (_("8-byte and up to %d-byte extended\n"),
14818 1 << val);
14819 else
14820 printf ("??? (%d)\n", val);
14821 break;
14822 }
14823 break;
14824
14825 case 25: /* Tag_align_preserved. */
14826 val = read_uleb128 (p, &len, end);
14827 p += len;
14828 switch (val)
14829 {
14830 case 0: printf (_("None\n")); break;
14831 case 1: printf (_("8-byte, except leaf SP\n")); break;
14832 case 2: printf (_("8-byte\n")); break;
14833 case 3: printf ("??? 3\n"); break;
14834 default:
14835 if (val <= 12)
14836 printf (_("8-byte and up to %d-byte extended\n"),
14837 1 << val);
14838 else
14839 printf ("??? (%d)\n", val);
14840 break;
14841 }
14842 break;
14843
14844 case 32: /* Tag_compatibility. */
14845 {
14846 val = read_uleb128 (p, &len, end);
14847 p += len;
14848 printf (_("flag = %d, vendor = "), val);
14849 if (p < end - 1)
14850 {
14851 size_t maxlen = (end - p) - 1;
14852
14853 print_symbol ((int) maxlen, (const char *) p);
14854 p += strnlen ((char *) p, maxlen) + 1;
14855 }
14856 else
14857 {
14858 printf (_("<corrupt>"));
14859 p = (unsigned char *) end;
14860 }
14861 putchar ('\n');
14862 }
14863 break;
14864
14865 case 64: /* Tag_nodefaults. */
14866 /* PR 17531: file: 001-505008-0.01. */
14867 if (p < end)
14868 p++;
14869 printf (_("True\n"));
14870 break;
14871
14872 case 65: /* Tag_also_compatible_with. */
14873 val = read_uleb128 (p, &len, end);
14874 p += len;
14875 if (val == 6 /* Tag_CPU_arch. */)
14876 {
14877 val = read_uleb128 (p, &len, end);
14878 p += len;
14879 if ((unsigned int) val >= ARRAY_SIZE (arm_attr_tag_CPU_arch))
14880 printf ("??? (%d)\n", val);
14881 else
14882 printf ("%s\n", arm_attr_tag_CPU_arch[val]);
14883 }
14884 else
14885 printf ("???\n");
14886 while (p < end && *(p++) != '\0' /* NUL terminator. */)
14887 ;
14888 break;
14889
14890 default:
14891 printf (_("<unknown: %d>\n"), tag);
14892 break;
14893 }
14894 return p;
14895
14896 case 1:
14897 return display_tag_value (-1, p, end);
14898 case 2:
14899 return display_tag_value (0, p, end);
14900
14901 default:
14902 assert (attr->type & 0x80);
14903 val = read_uleb128 (p, &len, end);
14904 p += len;
14905 type = attr->type & 0x7f;
14906 if (val >= type)
14907 printf ("??? (%d)\n", val);
14908 else
14909 printf ("%s\n", attr->table[val]);
14910 return p;
14911 }
14912 }
14913
14914 return display_tag_value (tag, p, end);
14915 }
14916
14917 static unsigned char *
14918 display_gnu_attribute (unsigned char * p,
14919 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, unsigned int, const unsigned char * const),
14920 const unsigned char * const end)
14921 {
14922 int tag;
14923 unsigned int len;
14924 unsigned int val;
14925
14926 tag = read_uleb128 (p, &len, end);
14927 p += len;
14928
14929 /* Tag_compatibility is the only generic GNU attribute defined at
14930 present. */
14931 if (tag == 32)
14932 {
14933 val = read_uleb128 (p, &len, end);
14934 p += len;
14935
14936 printf (_("flag = %d, vendor = "), val);
14937 if (p == end)
14938 {
14939 printf (_("<corrupt>\n"));
14940 warn (_("corrupt vendor attribute\n"));
14941 }
14942 else
14943 {
14944 if (p < end - 1)
14945 {
14946 size_t maxlen = (end - p) - 1;
14947
14948 print_symbol ((int) maxlen, (const char *) p);
14949 p += strnlen ((char *) p, maxlen) + 1;
14950 }
14951 else
14952 {
14953 printf (_("<corrupt>"));
14954 p = (unsigned char *) end;
14955 }
14956 putchar ('\n');
14957 }
14958 return p;
14959 }
14960
14961 if ((tag & 2) == 0 && display_proc_gnu_attribute)
14962 return display_proc_gnu_attribute (p, tag, end);
14963
14964 return display_tag_value (tag, p, end);
14965 }
14966
14967 static unsigned char *
14968 display_power_gnu_attribute (unsigned char * p,
14969 unsigned int tag,
14970 const unsigned char * const end)
14971 {
14972 unsigned int len;
14973 unsigned int val;
14974
14975 if (tag == Tag_GNU_Power_ABI_FP)
14976 {
14977 val = read_uleb128 (p, &len, end);
14978 p += len;
14979 printf (" Tag_GNU_Power_ABI_FP: ");
14980 if (len == 0)
14981 {
14982 printf (_("<corrupt>\n"));
14983 return p;
14984 }
14985
14986 if (val > 15)
14987 printf ("(%#x), ", val);
14988
14989 switch (val & 3)
14990 {
14991 case 0:
14992 printf (_("unspecified hard/soft float, "));
14993 break;
14994 case 1:
14995 printf (_("hard float, "));
14996 break;
14997 case 2:
14998 printf (_("soft float, "));
14999 break;
15000 case 3:
15001 printf (_("single-precision hard float, "));
15002 break;
15003 }
15004
15005 switch (val & 0xC)
15006 {
15007 case 0:
15008 printf (_("unspecified long double\n"));
15009 break;
15010 case 4:
15011 printf (_("128-bit IBM long double\n"));
15012 break;
15013 case 8:
15014 printf (_("64-bit long double\n"));
15015 break;
15016 case 12:
15017 printf (_("128-bit IEEE long double\n"));
15018 break;
15019 }
15020 return p;
15021 }
15022
15023 if (tag == Tag_GNU_Power_ABI_Vector)
15024 {
15025 val = read_uleb128 (p, &len, end);
15026 p += len;
15027 printf (" Tag_GNU_Power_ABI_Vector: ");
15028 if (len == 0)
15029 {
15030 printf (_("<corrupt>\n"));
15031 return p;
15032 }
15033
15034 if (val > 3)
15035 printf ("(%#x), ", val);
15036
15037 switch (val & 3)
15038 {
15039 case 0:
15040 printf (_("unspecified\n"));
15041 break;
15042 case 1:
15043 printf (_("generic\n"));
15044 break;
15045 case 2:
15046 printf ("AltiVec\n");
15047 break;
15048 case 3:
15049 printf ("SPE\n");
15050 break;
15051 }
15052 return p;
15053 }
15054
15055 if (tag == Tag_GNU_Power_ABI_Struct_Return)
15056 {
15057 val = read_uleb128 (p, &len, end);
15058 p += len;
15059 printf (" Tag_GNU_Power_ABI_Struct_Return: ");
15060 if (len == 0)
15061 {
15062 printf (_("<corrupt>\n"));
15063 return p;
15064 }
15065
15066 if (val > 2)
15067 printf ("(%#x), ", val);
15068
15069 switch (val & 3)
15070 {
15071 case 0:
15072 printf (_("unspecified\n"));
15073 break;
15074 case 1:
15075 printf ("r3/r4\n");
15076 break;
15077 case 2:
15078 printf (_("memory\n"));
15079 break;
15080 case 3:
15081 printf ("???\n");
15082 break;
15083 }
15084 return p;
15085 }
15086
15087 return display_tag_value (tag & 1, p, end);
15088 }
15089
15090 static unsigned char *
15091 display_s390_gnu_attribute (unsigned char * p,
15092 unsigned int tag,
15093 const unsigned char * const end)
15094 {
15095 unsigned int len;
15096 int val;
15097
15098 if (tag == Tag_GNU_S390_ABI_Vector)
15099 {
15100 val = read_uleb128 (p, &len, end);
15101 p += len;
15102 printf (" Tag_GNU_S390_ABI_Vector: ");
15103
15104 switch (val)
15105 {
15106 case 0:
15107 printf (_("any\n"));
15108 break;
15109 case 1:
15110 printf (_("software\n"));
15111 break;
15112 case 2:
15113 printf (_("hardware\n"));
15114 break;
15115 default:
15116 printf ("??? (%d)\n", val);
15117 break;
15118 }
15119 return p;
15120 }
15121
15122 return display_tag_value (tag & 1, p, end);
15123 }
15124
15125 static void
15126 display_sparc_hwcaps (unsigned int mask)
15127 {
15128 if (mask)
15129 {
15130 bfd_boolean first = TRUE;
15131
15132 if (mask & ELF_SPARC_HWCAP_MUL32)
15133 fputs ("mul32", stdout), first = FALSE;
15134 if (mask & ELF_SPARC_HWCAP_DIV32)
15135 printf ("%sdiv32", first ? "" : "|"), first = FALSE;
15136 if (mask & ELF_SPARC_HWCAP_FSMULD)
15137 printf ("%sfsmuld", first ? "" : "|"), first = FALSE;
15138 if (mask & ELF_SPARC_HWCAP_V8PLUS)
15139 printf ("%sv8plus", first ? "" : "|"), first = FALSE;
15140 if (mask & ELF_SPARC_HWCAP_POPC)
15141 printf ("%spopc", first ? "" : "|"), first = FALSE;
15142 if (mask & ELF_SPARC_HWCAP_VIS)
15143 printf ("%svis", first ? "" : "|"), first = FALSE;
15144 if (mask & ELF_SPARC_HWCAP_VIS2)
15145 printf ("%svis2", first ? "" : "|"), first = FALSE;
15146 if (mask & ELF_SPARC_HWCAP_ASI_BLK_INIT)
15147 printf ("%sASIBlkInit", first ? "" : "|"), first = FALSE;
15148 if (mask & ELF_SPARC_HWCAP_FMAF)
15149 printf ("%sfmaf", first ? "" : "|"), first = FALSE;
15150 if (mask & ELF_SPARC_HWCAP_VIS3)
15151 printf ("%svis3", first ? "" : "|"), first = FALSE;
15152 if (mask & ELF_SPARC_HWCAP_HPC)
15153 printf ("%shpc", first ? "" : "|"), first = FALSE;
15154 if (mask & ELF_SPARC_HWCAP_RANDOM)
15155 printf ("%srandom", first ? "" : "|"), first = FALSE;
15156 if (mask & ELF_SPARC_HWCAP_TRANS)
15157 printf ("%strans", first ? "" : "|"), first = FALSE;
15158 if (mask & ELF_SPARC_HWCAP_FJFMAU)
15159 printf ("%sfjfmau", first ? "" : "|"), first = FALSE;
15160 if (mask & ELF_SPARC_HWCAP_IMA)
15161 printf ("%sima", first ? "" : "|"), first = FALSE;
15162 if (mask & ELF_SPARC_HWCAP_ASI_CACHE_SPARING)
15163 printf ("%scspare", first ? "" : "|"), first = FALSE;
15164 }
15165 else
15166 fputc ('0', stdout);
15167 fputc ('\n', stdout);
15168 }
15169
15170 static void
15171 display_sparc_hwcaps2 (unsigned int mask)
15172 {
15173 if (mask)
15174 {
15175 bfd_boolean first = TRUE;
15176
15177 if (mask & ELF_SPARC_HWCAP2_FJATHPLUS)
15178 fputs ("fjathplus", stdout), first = FALSE;
15179 if (mask & ELF_SPARC_HWCAP2_VIS3B)
15180 printf ("%svis3b", first ? "" : "|"), first = FALSE;
15181 if (mask & ELF_SPARC_HWCAP2_ADP)
15182 printf ("%sadp", first ? "" : "|"), first = FALSE;
15183 if (mask & ELF_SPARC_HWCAP2_SPARC5)
15184 printf ("%ssparc5", first ? "" : "|"), first = FALSE;
15185 if (mask & ELF_SPARC_HWCAP2_MWAIT)
15186 printf ("%smwait", first ? "" : "|"), first = FALSE;
15187 if (mask & ELF_SPARC_HWCAP2_XMPMUL)
15188 printf ("%sxmpmul", first ? "" : "|"), first = FALSE;
15189 if (mask & ELF_SPARC_HWCAP2_XMONT)
15190 printf ("%sxmont2", first ? "" : "|"), first = FALSE;
15191 if (mask & ELF_SPARC_HWCAP2_NSEC)
15192 printf ("%snsec", first ? "" : "|"), first = FALSE;
15193 if (mask & ELF_SPARC_HWCAP2_FJATHHPC)
15194 printf ("%sfjathhpc", first ? "" : "|"), first = FALSE;
15195 if (mask & ELF_SPARC_HWCAP2_FJDES)
15196 printf ("%sfjdes", first ? "" : "|"), first = FALSE;
15197 if (mask & ELF_SPARC_HWCAP2_FJAES)
15198 printf ("%sfjaes", first ? "" : "|"), first = FALSE;
15199 }
15200 else
15201 fputc ('0', stdout);
15202 fputc ('\n', stdout);
15203 }
15204
15205 static unsigned char *
15206 display_sparc_gnu_attribute (unsigned char * p,
15207 unsigned int tag,
15208 const unsigned char * const end)
15209 {
15210 unsigned int len;
15211 int val;
15212
15213 if (tag == Tag_GNU_Sparc_HWCAPS)
15214 {
15215 val = read_uleb128 (p, &len, end);
15216 p += len;
15217 printf (" Tag_GNU_Sparc_HWCAPS: ");
15218 display_sparc_hwcaps (val);
15219 return p;
15220 }
15221 if (tag == Tag_GNU_Sparc_HWCAPS2)
15222 {
15223 val = read_uleb128 (p, &len, end);
15224 p += len;
15225 printf (" Tag_GNU_Sparc_HWCAPS2: ");
15226 display_sparc_hwcaps2 (val);
15227 return p;
15228 }
15229
15230 return display_tag_value (tag, p, end);
15231 }
15232
15233 static void
15234 print_mips_fp_abi_value (unsigned int val)
15235 {
15236 switch (val)
15237 {
15238 case Val_GNU_MIPS_ABI_FP_ANY:
15239 printf (_("Hard or soft float\n"));
15240 break;
15241 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15242 printf (_("Hard float (double precision)\n"));
15243 break;
15244 case Val_GNU_MIPS_ABI_FP_SINGLE:
15245 printf (_("Hard float (single precision)\n"));
15246 break;
15247 case Val_GNU_MIPS_ABI_FP_SOFT:
15248 printf (_("Soft float\n"));
15249 break;
15250 case Val_GNU_MIPS_ABI_FP_OLD_64:
15251 printf (_("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15252 break;
15253 case Val_GNU_MIPS_ABI_FP_XX:
15254 printf (_("Hard float (32-bit CPU, Any FPU)\n"));
15255 break;
15256 case Val_GNU_MIPS_ABI_FP_64:
15257 printf (_("Hard float (32-bit CPU, 64-bit FPU)\n"));
15258 break;
15259 case Val_GNU_MIPS_ABI_FP_64A:
15260 printf (_("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15261 break;
15262 case Val_GNU_MIPS_ABI_FP_NAN2008:
15263 printf (_("NaN 2008 compatibility\n"));
15264 break;
15265 default:
15266 printf ("??? (%d)\n", val);
15267 break;
15268 }
15269 }
15270
15271 static unsigned char *
15272 display_mips_gnu_attribute (unsigned char * p,
15273 unsigned int tag,
15274 const unsigned char * const end)
15275 {
15276 if (tag == Tag_GNU_MIPS_ABI_FP)
15277 {
15278 unsigned int len;
15279 unsigned int val;
15280
15281 val = read_uleb128 (p, &len, end);
15282 p += len;
15283 printf (" Tag_GNU_MIPS_ABI_FP: ");
15284
15285 print_mips_fp_abi_value (val);
15286
15287 return p;
15288 }
15289
15290 if (tag == Tag_GNU_MIPS_ABI_MSA)
15291 {
15292 unsigned int len;
15293 unsigned int val;
15294
15295 val = read_uleb128 (p, &len, end);
15296 p += len;
15297 printf (" Tag_GNU_MIPS_ABI_MSA: ");
15298
15299 switch (val)
15300 {
15301 case Val_GNU_MIPS_ABI_MSA_ANY:
15302 printf (_("Any MSA or not\n"));
15303 break;
15304 case Val_GNU_MIPS_ABI_MSA_128:
15305 printf (_("128-bit MSA\n"));
15306 break;
15307 default:
15308 printf ("??? (%d)\n", val);
15309 break;
15310 }
15311 return p;
15312 }
15313
15314 return display_tag_value (tag & 1, p, end);
15315 }
15316
15317 static unsigned char *
15318 display_tic6x_attribute (unsigned char * p,
15319 const unsigned char * const end)
15320 {
15321 unsigned int tag;
15322 unsigned int len;
15323 int val;
15324
15325 tag = read_uleb128 (p, &len, end);
15326 p += len;
15327
15328 switch (tag)
15329 {
15330 case Tag_ISA:
15331 val = read_uleb128 (p, &len, end);
15332 p += len;
15333 printf (" Tag_ISA: ");
15334
15335 switch (val)
15336 {
15337 case C6XABI_Tag_ISA_none:
15338 printf (_("None\n"));
15339 break;
15340 case C6XABI_Tag_ISA_C62X:
15341 printf ("C62x\n");
15342 break;
15343 case C6XABI_Tag_ISA_C67X:
15344 printf ("C67x\n");
15345 break;
15346 case C6XABI_Tag_ISA_C67XP:
15347 printf ("C67x+\n");
15348 break;
15349 case C6XABI_Tag_ISA_C64X:
15350 printf ("C64x\n");
15351 break;
15352 case C6XABI_Tag_ISA_C64XP:
15353 printf ("C64x+\n");
15354 break;
15355 case C6XABI_Tag_ISA_C674X:
15356 printf ("C674x\n");
15357 break;
15358 default:
15359 printf ("??? (%d)\n", val);
15360 break;
15361 }
15362 return p;
15363
15364 case Tag_ABI_wchar_t:
15365 val = read_uleb128 (p, &len, end);
15366 p += len;
15367 printf (" Tag_ABI_wchar_t: ");
15368 switch (val)
15369 {
15370 case 0:
15371 printf (_("Not used\n"));
15372 break;
15373 case 1:
15374 printf (_("2 bytes\n"));
15375 break;
15376 case 2:
15377 printf (_("4 bytes\n"));
15378 break;
15379 default:
15380 printf ("??? (%d)\n", val);
15381 break;
15382 }
15383 return p;
15384
15385 case Tag_ABI_stack_align_needed:
15386 val = read_uleb128 (p, &len, end);
15387 p += len;
15388 printf (" Tag_ABI_stack_align_needed: ");
15389 switch (val)
15390 {
15391 case 0:
15392 printf (_("8-byte\n"));
15393 break;
15394 case 1:
15395 printf (_("16-byte\n"));
15396 break;
15397 default:
15398 printf ("??? (%d)\n", val);
15399 break;
15400 }
15401 return p;
15402
15403 case Tag_ABI_stack_align_preserved:
15404 val = read_uleb128 (p, &len, end);
15405 p += len;
15406 printf (" Tag_ABI_stack_align_preserved: ");
15407 switch (val)
15408 {
15409 case 0:
15410 printf (_("8-byte\n"));
15411 break;
15412 case 1:
15413 printf (_("16-byte\n"));
15414 break;
15415 default:
15416 printf ("??? (%d)\n", val);
15417 break;
15418 }
15419 return p;
15420
15421 case Tag_ABI_DSBT:
15422 val = read_uleb128 (p, &len, end);
15423 p += len;
15424 printf (" Tag_ABI_DSBT: ");
15425 switch (val)
15426 {
15427 case 0:
15428 printf (_("DSBT addressing not used\n"));
15429 break;
15430 case 1:
15431 printf (_("DSBT addressing used\n"));
15432 break;
15433 default:
15434 printf ("??? (%d)\n", val);
15435 break;
15436 }
15437 return p;
15438
15439 case Tag_ABI_PID:
15440 val = read_uleb128 (p, &len, end);
15441 p += len;
15442 printf (" Tag_ABI_PID: ");
15443 switch (val)
15444 {
15445 case 0:
15446 printf (_("Data addressing position-dependent\n"));
15447 break;
15448 case 1:
15449 printf (_("Data addressing position-independent, GOT near DP\n"));
15450 break;
15451 case 2:
15452 printf (_("Data addressing position-independent, GOT far from DP\n"));
15453 break;
15454 default:
15455 printf ("??? (%d)\n", val);
15456 break;
15457 }
15458 return p;
15459
15460 case Tag_ABI_PIC:
15461 val = read_uleb128 (p, &len, end);
15462 p += len;
15463 printf (" Tag_ABI_PIC: ");
15464 switch (val)
15465 {
15466 case 0:
15467 printf (_("Code addressing position-dependent\n"));
15468 break;
15469 case 1:
15470 printf (_("Code addressing position-independent\n"));
15471 break;
15472 default:
15473 printf ("??? (%d)\n", val);
15474 break;
15475 }
15476 return p;
15477
15478 case Tag_ABI_array_object_alignment:
15479 val = read_uleb128 (p, &len, end);
15480 p += len;
15481 printf (" Tag_ABI_array_object_alignment: ");
15482 switch (val)
15483 {
15484 case 0:
15485 printf (_("8-byte\n"));
15486 break;
15487 case 1:
15488 printf (_("4-byte\n"));
15489 break;
15490 case 2:
15491 printf (_("16-byte\n"));
15492 break;
15493 default:
15494 printf ("??? (%d)\n", val);
15495 break;
15496 }
15497 return p;
15498
15499 case Tag_ABI_array_object_align_expected:
15500 val = read_uleb128 (p, &len, end);
15501 p += len;
15502 printf (" Tag_ABI_array_object_align_expected: ");
15503 switch (val)
15504 {
15505 case 0:
15506 printf (_("8-byte\n"));
15507 break;
15508 case 1:
15509 printf (_("4-byte\n"));
15510 break;
15511 case 2:
15512 printf (_("16-byte\n"));
15513 break;
15514 default:
15515 printf ("??? (%d)\n", val);
15516 break;
15517 }
15518 return p;
15519
15520 case Tag_ABI_compatibility:
15521 {
15522 val = read_uleb128 (p, &len, end);
15523 p += len;
15524 printf (" Tag_ABI_compatibility: ");
15525 printf (_("flag = %d, vendor = "), val);
15526 if (p < end - 1)
15527 {
15528 size_t maxlen = (end - p) - 1;
15529
15530 print_symbol ((int) maxlen, (const char *) p);
15531 p += strnlen ((char *) p, maxlen) + 1;
15532 }
15533 else
15534 {
15535 printf (_("<corrupt>"));
15536 p = (unsigned char *) end;
15537 }
15538 putchar ('\n');
15539 return p;
15540 }
15541
15542 case Tag_ABI_conformance:
15543 {
15544 printf (" Tag_ABI_conformance: \"");
15545 if (p < end - 1)
15546 {
15547 size_t maxlen = (end - p) - 1;
15548
15549 print_symbol ((int) maxlen, (const char *) p);
15550 p += strnlen ((char *) p, maxlen) + 1;
15551 }
15552 else
15553 {
15554 printf (_("<corrupt>"));
15555 p = (unsigned char *) end;
15556 }
15557 printf ("\"\n");
15558 return p;
15559 }
15560 }
15561
15562 return display_tag_value (tag, p, end);
15563 }
15564
15565 static void
15566 display_raw_attribute (unsigned char * p, unsigned char const * const end)
15567 {
15568 unsigned long addr = 0;
15569 size_t bytes = end - p;
15570
15571 assert (end >= p);
15572 while (bytes)
15573 {
15574 int j;
15575 int k;
15576 int lbytes = (bytes > 16 ? 16 : bytes);
15577
15578 printf (" 0x%8.8lx ", addr);
15579
15580 for (j = 0; j < 16; j++)
15581 {
15582 if (j < lbytes)
15583 printf ("%2.2x", p[j]);
15584 else
15585 printf (" ");
15586
15587 if ((j & 3) == 3)
15588 printf (" ");
15589 }
15590
15591 for (j = 0; j < lbytes; j++)
15592 {
15593 k = p[j];
15594 if (k >= ' ' && k < 0x7f)
15595 printf ("%c", k);
15596 else
15597 printf (".");
15598 }
15599
15600 putchar ('\n');
15601
15602 p += lbytes;
15603 bytes -= lbytes;
15604 addr += lbytes;
15605 }
15606
15607 putchar ('\n');
15608 }
15609
15610 static unsigned char *
15611 display_msp430x_attribute (unsigned char * p,
15612 const unsigned char * const end)
15613 {
15614 unsigned int len;
15615 unsigned int val;
15616 unsigned int tag;
15617
15618 tag = read_uleb128 (p, & len, end);
15619 p += len;
15620
15621 switch (tag)
15622 {
15623 case OFBA_MSPABI_Tag_ISA:
15624 val = read_uleb128 (p, &len, end);
15625 p += len;
15626 printf (" Tag_ISA: ");
15627 switch (val)
15628 {
15629 case 0: printf (_("None\n")); break;
15630 case 1: printf (_("MSP430\n")); break;
15631 case 2: printf (_("MSP430X\n")); break;
15632 default: printf ("??? (%d)\n", val); break;
15633 }
15634 break;
15635
15636 case OFBA_MSPABI_Tag_Code_Model:
15637 val = read_uleb128 (p, &len, end);
15638 p += len;
15639 printf (" Tag_Code_Model: ");
15640 switch (val)
15641 {
15642 case 0: printf (_("None\n")); break;
15643 case 1: printf (_("Small\n")); break;
15644 case 2: printf (_("Large\n")); break;
15645 default: printf ("??? (%d)\n", val); break;
15646 }
15647 break;
15648
15649 case OFBA_MSPABI_Tag_Data_Model:
15650 val = read_uleb128 (p, &len, end);
15651 p += len;
15652 printf (" Tag_Data_Model: ");
15653 switch (val)
15654 {
15655 case 0: printf (_("None\n")); break;
15656 case 1: printf (_("Small\n")); break;
15657 case 2: printf (_("Large\n")); break;
15658 case 3: printf (_("Restricted Large\n")); break;
15659 default: printf ("??? (%d)\n", val); break;
15660 }
15661 break;
15662
15663 default:
15664 printf (_(" <unknown tag %d>: "), tag);
15665
15666 if (tag & 1)
15667 {
15668 putchar ('"');
15669 if (p < end - 1)
15670 {
15671 size_t maxlen = (end - p) - 1;
15672
15673 print_symbol ((int) maxlen, (const char *) p);
15674 p += strnlen ((char *) p, maxlen) + 1;
15675 }
15676 else
15677 {
15678 printf (_("<corrupt>"));
15679 p = (unsigned char *) end;
15680 }
15681 printf ("\"\n");
15682 }
15683 else
15684 {
15685 val = read_uleb128 (p, &len, end);
15686 p += len;
15687 printf ("%d (0x%x)\n", val, val);
15688 }
15689 break;
15690 }
15691
15692 assert (p <= end);
15693 return p;
15694 }
15695
15696 struct riscv_attr_tag_t {
15697 const char *name;
15698 int tag;
15699 };
15700
15701 static struct riscv_attr_tag_t riscv_attr_tag[] =
15702 {
15703 #define T(tag) {"Tag_RISCV_" #tag, Tag_RISCV_##tag}
15704 T(arch),
15705 T(priv_spec),
15706 T(priv_spec_minor),
15707 T(priv_spec_revision),
15708 T(unaligned_access),
15709 T(stack_align),
15710 #undef T
15711 };
15712
15713 static unsigned char *
15714 display_riscv_attribute (unsigned char *p,
15715 const unsigned char * const end)
15716 {
15717 unsigned int len;
15718 int val;
15719 int tag;
15720 struct riscv_attr_tag_t *attr = NULL;
15721 unsigned i;
15722
15723 tag = read_uleb128 (p, &len, end);
15724 p += len;
15725
15726 /* Find the name of attribute. */
15727 for (i = 0; i < ARRAY_SIZE (riscv_attr_tag); i++)
15728 {
15729 if (riscv_attr_tag[i].tag == tag)
15730 {
15731 attr = &riscv_attr_tag[i];
15732 break;
15733 }
15734 }
15735
15736 if (attr)
15737 printf (" %s: ", attr->name);
15738 else
15739 return display_tag_value (tag, p, end);
15740
15741 switch (tag)
15742 {
15743 case Tag_RISCV_priv_spec:
15744 case Tag_RISCV_priv_spec_minor:
15745 case Tag_RISCV_priv_spec_revision:
15746 val = read_uleb128 (p, &len, end);
15747 p += len;
15748 printf (_("%d\n"), val);
15749 break;
15750 case Tag_RISCV_unaligned_access:
15751 val = read_uleb128 (p, &len, end);
15752 p += len;
15753 switch (val)
15754 {
15755 case 0:
15756 printf (_("No unaligned access\n"));
15757 break;
15758 case 1:
15759 printf (_("Unaligned access\n"));
15760 break;
15761 }
15762 break;
15763 case Tag_RISCV_stack_align:
15764 val = read_uleb128 (p, &len, end);
15765 p += len;
15766 printf (_("%d-bytes\n"), val);
15767 break;
15768 case Tag_RISCV_arch:
15769 p = display_tag_value (-1, p, end);
15770 break;
15771 default:
15772 return display_tag_value (tag, p, end);
15773 }
15774
15775 return p;
15776 }
15777
15778 static bfd_boolean
15779 process_attributes (Filedata * filedata,
15780 const char * public_name,
15781 unsigned int proc_type,
15782 unsigned char * (* display_pub_attribute) (unsigned char *, const unsigned char * const),
15783 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, unsigned int, const unsigned char * const))
15784 {
15785 Elf_Internal_Shdr * sect;
15786 unsigned i;
15787 bfd_boolean res = TRUE;
15788
15789 /* Find the section header so that we get the size. */
15790 for (i = 0, sect = filedata->section_headers;
15791 i < filedata->file_header.e_shnum;
15792 i++, sect++)
15793 {
15794 unsigned char * contents;
15795 unsigned char * p;
15796
15797 if (sect->sh_type != proc_type && sect->sh_type != SHT_GNU_ATTRIBUTES)
15798 continue;
15799
15800 contents = (unsigned char *) get_data (NULL, filedata, sect->sh_offset, 1,
15801 sect->sh_size, _("attributes"));
15802 if (contents == NULL)
15803 {
15804 res = FALSE;
15805 continue;
15806 }
15807
15808 p = contents;
15809 /* The first character is the version of the attributes.
15810 Currently only version 1, (aka 'A') is recognised here. */
15811 if (*p != 'A')
15812 {
15813 printf (_("Unknown attributes version '%c'(%d) - expecting 'A'\n"), *p, *p);
15814 res = FALSE;
15815 }
15816 else
15817 {
15818 bfd_vma section_len;
15819
15820 section_len = sect->sh_size - 1;
15821 p++;
15822
15823 while (section_len > 0)
15824 {
15825 bfd_vma attr_len;
15826 unsigned int namelen;
15827 bfd_boolean public_section;
15828 bfd_boolean gnu_section;
15829
15830 if (section_len <= 4)
15831 {
15832 error (_("Tag section ends prematurely\n"));
15833 res = FALSE;
15834 break;
15835 }
15836 attr_len = byte_get (p, 4);
15837 p += 4;
15838
15839 if (attr_len > section_len)
15840 {
15841 error (_("Bad attribute length (%u > %u)\n"),
15842 (unsigned) attr_len, (unsigned) section_len);
15843 attr_len = section_len;
15844 res = FALSE;
15845 }
15846 /* PR 17531: file: 001-101425-0.004 */
15847 else if (attr_len < 5)
15848 {
15849 error (_("Attribute length of %u is too small\n"), (unsigned) attr_len);
15850 res = FALSE;
15851 break;
15852 }
15853
15854 section_len -= attr_len;
15855 attr_len -= 4;
15856
15857 namelen = strnlen ((char *) p, attr_len) + 1;
15858 if (namelen == 0 || namelen >= attr_len)
15859 {
15860 error (_("Corrupt attribute section name\n"));
15861 res = FALSE;
15862 break;
15863 }
15864
15865 printf (_("Attribute Section: "));
15866 print_symbol (INT_MAX, (const char *) p);
15867 putchar ('\n');
15868
15869 if (public_name && streq ((char *) p, public_name))
15870 public_section = TRUE;
15871 else
15872 public_section = FALSE;
15873
15874 if (streq ((char *) p, "gnu"))
15875 gnu_section = TRUE;
15876 else
15877 gnu_section = FALSE;
15878
15879 p += namelen;
15880 attr_len -= namelen;
15881
15882 while (attr_len > 0 && p < contents + sect->sh_size)
15883 {
15884 int tag;
15885 int val;
15886 bfd_vma size;
15887 unsigned char * end;
15888
15889 /* PR binutils/17531: Safe handling of corrupt files. */
15890 if (attr_len < 6)
15891 {
15892 error (_("Unused bytes at end of section\n"));
15893 res = FALSE;
15894 section_len = 0;
15895 break;
15896 }
15897
15898 tag = *(p++);
15899 size = byte_get (p, 4);
15900 if (size > attr_len)
15901 {
15902 error (_("Bad subsection length (%u > %u)\n"),
15903 (unsigned) size, (unsigned) attr_len);
15904 res = FALSE;
15905 size = attr_len;
15906 }
15907 /* PR binutils/17531: Safe handling of corrupt files. */
15908 if (size < 6)
15909 {
15910 error (_("Bad subsection length (%u < 6)\n"),
15911 (unsigned) size);
15912 res = FALSE;
15913 section_len = 0;
15914 break;
15915 }
15916
15917 attr_len -= size;
15918 end = p + size - 1;
15919 assert (end <= contents + sect->sh_size);
15920 p += 4;
15921
15922 switch (tag)
15923 {
15924 case 1:
15925 printf (_("File Attributes\n"));
15926 break;
15927 case 2:
15928 printf (_("Section Attributes:"));
15929 goto do_numlist;
15930 case 3:
15931 printf (_("Symbol Attributes:"));
15932 /* Fall through. */
15933 do_numlist:
15934 for (;;)
15935 {
15936 unsigned int j;
15937
15938 val = read_uleb128 (p, &j, end);
15939 p += j;
15940 if (val == 0)
15941 break;
15942 printf (" %d", val);
15943 }
15944 printf ("\n");
15945 break;
15946 default:
15947 printf (_("Unknown tag: %d\n"), tag);
15948 public_section = FALSE;
15949 break;
15950 }
15951
15952 if (public_section && display_pub_attribute != NULL)
15953 {
15954 while (p < end)
15955 p = display_pub_attribute (p, end);
15956 assert (p == end);
15957 }
15958 else if (gnu_section && display_proc_gnu_attribute != NULL)
15959 {
15960 while (p < end)
15961 p = display_gnu_attribute (p,
15962 display_proc_gnu_attribute,
15963 end);
15964 assert (p == end);
15965 }
15966 else if (p < end)
15967 {
15968 printf (_(" Unknown attribute:\n"));
15969 display_raw_attribute (p, end);
15970 p = end;
15971 }
15972 else
15973 attr_len = 0;
15974 }
15975 }
15976 }
15977
15978 free (contents);
15979 }
15980
15981 return res;
15982 }
15983
15984 /* DATA points to the contents of a MIPS GOT that starts at VMA PLTGOT.
15985 Print the Address, Access and Initial fields of an entry at VMA ADDR
15986 and return the VMA of the next entry, or -1 if there was a problem.
15987 Does not read from DATA_END or beyond. */
15988
15989 static bfd_vma
15990 print_mips_got_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr,
15991 unsigned char * data_end)
15992 {
15993 printf (" ");
15994 print_vma (addr, LONG_HEX);
15995 printf (" ");
15996 if (addr < pltgot + 0xfff0)
15997 printf ("%6d(gp)", (int) (addr - pltgot - 0x7ff0));
15998 else
15999 printf ("%10s", "");
16000 printf (" ");
16001 if (data == NULL)
16002 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
16003 else
16004 {
16005 bfd_vma entry;
16006 unsigned char * from = data + addr - pltgot;
16007
16008 if (from + (is_32bit_elf ? 4 : 8) > data_end)
16009 {
16010 warn (_("MIPS GOT entry extends beyond the end of available data\n"));
16011 printf ("%*s", is_32bit_elf ? 8 : 16, _("<corrupt>"));
16012 return (bfd_vma) -1;
16013 }
16014 else
16015 {
16016 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
16017 print_vma (entry, LONG_HEX);
16018 }
16019 }
16020 return addr + (is_32bit_elf ? 4 : 8);
16021 }
16022
16023 /* DATA points to the contents of a MIPS PLT GOT that starts at VMA
16024 PLTGOT. Print the Address and Initial fields of an entry at VMA
16025 ADDR and return the VMA of the next entry. */
16026
16027 static bfd_vma
16028 print_mips_pltgot_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
16029 {
16030 printf (" ");
16031 print_vma (addr, LONG_HEX);
16032 printf (" ");
16033 if (data == NULL)
16034 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
16035 else
16036 {
16037 bfd_vma entry;
16038
16039 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
16040 print_vma (entry, LONG_HEX);
16041 }
16042 return addr + (is_32bit_elf ? 4 : 8);
16043 }
16044
16045 static void
16046 print_mips_ases (unsigned int mask)
16047 {
16048 if (mask & AFL_ASE_DSP)
16049 fputs ("\n\tDSP ASE", stdout);
16050 if (mask & AFL_ASE_DSPR2)
16051 fputs ("\n\tDSP R2 ASE", stdout);
16052 if (mask & AFL_ASE_DSPR3)
16053 fputs ("\n\tDSP R3 ASE", stdout);
16054 if (mask & AFL_ASE_EVA)
16055 fputs ("\n\tEnhanced VA Scheme", stdout);
16056 if (mask & AFL_ASE_MCU)
16057 fputs ("\n\tMCU (MicroController) ASE", stdout);
16058 if (mask & AFL_ASE_MDMX)
16059 fputs ("\n\tMDMX ASE", stdout);
16060 if (mask & AFL_ASE_MIPS3D)
16061 fputs ("\n\tMIPS-3D ASE", stdout);
16062 if (mask & AFL_ASE_MT)
16063 fputs ("\n\tMT ASE", stdout);
16064 if (mask & AFL_ASE_SMARTMIPS)
16065 fputs ("\n\tSmartMIPS ASE", stdout);
16066 if (mask & AFL_ASE_VIRT)
16067 fputs ("\n\tVZ ASE", stdout);
16068 if (mask & AFL_ASE_MSA)
16069 fputs ("\n\tMSA ASE", stdout);
16070 if (mask & AFL_ASE_MIPS16)
16071 fputs ("\n\tMIPS16 ASE", stdout);
16072 if (mask & AFL_ASE_MICROMIPS)
16073 fputs ("\n\tMICROMIPS ASE", stdout);
16074 if (mask & AFL_ASE_XPA)
16075 fputs ("\n\tXPA ASE", stdout);
16076 if (mask & AFL_ASE_MIPS16E2)
16077 fputs ("\n\tMIPS16e2 ASE", stdout);
16078 if (mask & AFL_ASE_CRC)
16079 fputs ("\n\tCRC ASE", stdout);
16080 if (mask & AFL_ASE_GINV)
16081 fputs ("\n\tGINV ASE", stdout);
16082 if (mask & AFL_ASE_LOONGSON_MMI)
16083 fputs ("\n\tLoongson MMI ASE", stdout);
16084 if (mask & AFL_ASE_LOONGSON_CAM)
16085 fputs ("\n\tLoongson CAM ASE", stdout);
16086 if (mask & AFL_ASE_LOONGSON_EXT)
16087 fputs ("\n\tLoongson EXT ASE", stdout);
16088 if (mask & AFL_ASE_LOONGSON_EXT2)
16089 fputs ("\n\tLoongson EXT2 ASE", stdout);
16090 if (mask == 0)
16091 fprintf (stdout, "\n\t%s", _("None"));
16092 else if ((mask & ~AFL_ASE_MASK) != 0)
16093 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
16094 }
16095
16096 static void
16097 print_mips_isa_ext (unsigned int isa_ext)
16098 {
16099 switch (isa_ext)
16100 {
16101 case 0:
16102 fputs (_("None"), stdout);
16103 break;
16104 case AFL_EXT_XLR:
16105 fputs ("RMI XLR", stdout);
16106 break;
16107 case AFL_EXT_OCTEON3:
16108 fputs ("Cavium Networks Octeon3", stdout);
16109 break;
16110 case AFL_EXT_OCTEON2:
16111 fputs ("Cavium Networks Octeon2", stdout);
16112 break;
16113 case AFL_EXT_OCTEONP:
16114 fputs ("Cavium Networks OcteonP", stdout);
16115 break;
16116 case AFL_EXT_OCTEON:
16117 fputs ("Cavium Networks Octeon", stdout);
16118 break;
16119 case AFL_EXT_5900:
16120 fputs ("Toshiba R5900", stdout);
16121 break;
16122 case AFL_EXT_4650:
16123 fputs ("MIPS R4650", stdout);
16124 break;
16125 case AFL_EXT_4010:
16126 fputs ("LSI R4010", stdout);
16127 break;
16128 case AFL_EXT_4100:
16129 fputs ("NEC VR4100", stdout);
16130 break;
16131 case AFL_EXT_3900:
16132 fputs ("Toshiba R3900", stdout);
16133 break;
16134 case AFL_EXT_10000:
16135 fputs ("MIPS R10000", stdout);
16136 break;
16137 case AFL_EXT_SB1:
16138 fputs ("Broadcom SB-1", stdout);
16139 break;
16140 case AFL_EXT_4111:
16141 fputs ("NEC VR4111/VR4181", stdout);
16142 break;
16143 case AFL_EXT_4120:
16144 fputs ("NEC VR4120", stdout);
16145 break;
16146 case AFL_EXT_5400:
16147 fputs ("NEC VR5400", stdout);
16148 break;
16149 case AFL_EXT_5500:
16150 fputs ("NEC VR5500", stdout);
16151 break;
16152 case AFL_EXT_LOONGSON_2E:
16153 fputs ("ST Microelectronics Loongson 2E", stdout);
16154 break;
16155 case AFL_EXT_LOONGSON_2F:
16156 fputs ("ST Microelectronics Loongson 2F", stdout);
16157 break;
16158 case AFL_EXT_INTERAPTIV_MR2:
16159 fputs ("Imagination interAptiv MR2", stdout);
16160 break;
16161 default:
16162 fprintf (stdout, "%s (%d)", _("Unknown"), isa_ext);
16163 }
16164 }
16165
16166 static signed int
16167 get_mips_reg_size (int reg_size)
16168 {
16169 return (reg_size == AFL_REG_NONE) ? 0
16170 : (reg_size == AFL_REG_32) ? 32
16171 : (reg_size == AFL_REG_64) ? 64
16172 : (reg_size == AFL_REG_128) ? 128
16173 : -1;
16174 }
16175
16176 static bfd_boolean
16177 process_mips_specific (Filedata * filedata)
16178 {
16179 Elf_Internal_Dyn * entry;
16180 Elf_Internal_Shdr *sect = NULL;
16181 size_t liblist_offset = 0;
16182 size_t liblistno = 0;
16183 size_t conflictsno = 0;
16184 size_t options_offset = 0;
16185 size_t conflicts_offset = 0;
16186 size_t pltrelsz = 0;
16187 size_t pltrel = 0;
16188 bfd_vma pltgot = 0;
16189 bfd_vma mips_pltgot = 0;
16190 bfd_vma jmprel = 0;
16191 bfd_vma local_gotno = 0;
16192 bfd_vma gotsym = 0;
16193 bfd_vma symtabno = 0;
16194 bfd_boolean res = TRUE;
16195
16196 if (! process_attributes (filedata, NULL, SHT_GNU_ATTRIBUTES, NULL,
16197 display_mips_gnu_attribute))
16198 res = FALSE;
16199
16200 sect = find_section (filedata, ".MIPS.abiflags");
16201
16202 if (sect != NULL)
16203 {
16204 Elf_External_ABIFlags_v0 *abiflags_ext;
16205 Elf_Internal_ABIFlags_v0 abiflags_in;
16206
16207 if (sizeof (Elf_External_ABIFlags_v0) != sect->sh_size)
16208 {
16209 error (_("Corrupt MIPS ABI Flags section.\n"));
16210 res = FALSE;
16211 }
16212 else
16213 {
16214 abiflags_ext = get_data (NULL, filedata, sect->sh_offset, 1,
16215 sect->sh_size, _("MIPS ABI Flags section"));
16216 if (abiflags_ext)
16217 {
16218 abiflags_in.version = BYTE_GET (abiflags_ext->version);
16219 abiflags_in.isa_level = BYTE_GET (abiflags_ext->isa_level);
16220 abiflags_in.isa_rev = BYTE_GET (abiflags_ext->isa_rev);
16221 abiflags_in.gpr_size = BYTE_GET (abiflags_ext->gpr_size);
16222 abiflags_in.cpr1_size = BYTE_GET (abiflags_ext->cpr1_size);
16223 abiflags_in.cpr2_size = BYTE_GET (abiflags_ext->cpr2_size);
16224 abiflags_in.fp_abi = BYTE_GET (abiflags_ext->fp_abi);
16225 abiflags_in.isa_ext = BYTE_GET (abiflags_ext->isa_ext);
16226 abiflags_in.ases = BYTE_GET (abiflags_ext->ases);
16227 abiflags_in.flags1 = BYTE_GET (abiflags_ext->flags1);
16228 abiflags_in.flags2 = BYTE_GET (abiflags_ext->flags2);
16229
16230 printf ("\nMIPS ABI Flags Version: %d\n", abiflags_in.version);
16231 printf ("\nISA: MIPS%d", abiflags_in.isa_level);
16232 if (abiflags_in.isa_rev > 1)
16233 printf ("r%d", abiflags_in.isa_rev);
16234 printf ("\nGPR size: %d",
16235 get_mips_reg_size (abiflags_in.gpr_size));
16236 printf ("\nCPR1 size: %d",
16237 get_mips_reg_size (abiflags_in.cpr1_size));
16238 printf ("\nCPR2 size: %d",
16239 get_mips_reg_size (abiflags_in.cpr2_size));
16240 fputs ("\nFP ABI: ", stdout);
16241 print_mips_fp_abi_value (abiflags_in.fp_abi);
16242 fputs ("ISA Extension: ", stdout);
16243 print_mips_isa_ext (abiflags_in.isa_ext);
16244 fputs ("\nASEs:", stdout);
16245 print_mips_ases (abiflags_in.ases);
16246 printf ("\nFLAGS 1: %8.8lx", abiflags_in.flags1);
16247 printf ("\nFLAGS 2: %8.8lx", abiflags_in.flags2);
16248 fputc ('\n', stdout);
16249 free (abiflags_ext);
16250 }
16251 }
16252 }
16253
16254 /* We have a lot of special sections. Thanks SGI! */
16255 if (dynamic_section == NULL)
16256 {
16257 /* No dynamic information available. See if there is static GOT. */
16258 sect = find_section (filedata, ".got");
16259 if (sect != NULL)
16260 {
16261 unsigned char *data_end;
16262 unsigned char *data;
16263 bfd_vma ent, end;
16264 int addr_size;
16265
16266 pltgot = sect->sh_addr;
16267
16268 ent = pltgot;
16269 addr_size = (is_32bit_elf ? 4 : 8);
16270 end = pltgot + sect->sh_size;
16271
16272 data = (unsigned char *) get_data (NULL, filedata, sect->sh_offset,
16273 end - pltgot, 1,
16274 _("Global Offset Table data"));
16275 /* PR 12855: Null data is handled gracefully throughout. */
16276 data_end = data + (end - pltgot);
16277
16278 printf (_("\nStatic GOT:\n"));
16279 printf (_(" Canonical gp value: "));
16280 print_vma (ent + 0x7ff0, LONG_HEX);
16281 printf ("\n\n");
16282
16283 /* In a dynamic binary GOT[0] is reserved for the dynamic
16284 loader to store the lazy resolver pointer, however in
16285 a static binary it may well have been omitted and GOT
16286 reduced to a table of addresses.
16287 PR 21344: Check for the entry being fully available
16288 before fetching it. */
16289 if (data
16290 && data + ent - pltgot + addr_size <= data_end
16291 && byte_get (data + ent - pltgot, addr_size) == 0)
16292 {
16293 printf (_(" Reserved entries:\n"));
16294 printf (_(" %*s %10s %*s\n"),
16295 addr_size * 2, _("Address"), _("Access"),
16296 addr_size * 2, _("Value"));
16297 ent = print_mips_got_entry (data, pltgot, ent, data_end);
16298 printf ("\n");
16299 if (ent == (bfd_vma) -1)
16300 goto sgot_print_fail;
16301
16302 /* Check for the MSB of GOT[1] being set, identifying a
16303 GNU object. This entry will be used by some runtime
16304 loaders, to store the module pointer. Otherwise this
16305 is an ordinary local entry.
16306 PR 21344: Check for the entry being fully available
16307 before fetching it. */
16308 if (data
16309 && data + ent - pltgot + addr_size <= data_end
16310 && (byte_get (data + ent - pltgot, addr_size)
16311 >> (addr_size * 8 - 1)) != 0)
16312 {
16313 ent = print_mips_got_entry (data, pltgot, ent, data_end);
16314 printf ("\n");
16315 if (ent == (bfd_vma) -1)
16316 goto sgot_print_fail;
16317 }
16318 printf ("\n");
16319 }
16320
16321 if (data != NULL && ent < end)
16322 {
16323 printf (_(" Local entries:\n"));
16324 printf (" %*s %10s %*s\n",
16325 addr_size * 2, _("Address"), _("Access"),
16326 addr_size * 2, _("Value"));
16327 while (ent < end)
16328 {
16329 ent = print_mips_got_entry (data, pltgot, ent, data_end);
16330 printf ("\n");
16331 if (ent == (bfd_vma) -1)
16332 goto sgot_print_fail;
16333 }
16334 printf ("\n");
16335 }
16336
16337 sgot_print_fail:
16338 if (data)
16339 free (data);
16340 }
16341 return res;
16342 }
16343
16344 for (entry = dynamic_section;
16345 /* PR 17531 file: 012-50589-0.004. */
16346 entry < dynamic_section + dynamic_nent && entry->d_tag != DT_NULL;
16347 ++entry)
16348 switch (entry->d_tag)
16349 {
16350 case DT_MIPS_LIBLIST:
16351 liblist_offset
16352 = offset_from_vma (filedata, entry->d_un.d_val,
16353 liblistno * sizeof (Elf32_External_Lib));
16354 break;
16355 case DT_MIPS_LIBLISTNO:
16356 liblistno = entry->d_un.d_val;
16357 break;
16358 case DT_MIPS_OPTIONS:
16359 options_offset = offset_from_vma (filedata, entry->d_un.d_val, 0);
16360 break;
16361 case DT_MIPS_CONFLICT:
16362 conflicts_offset
16363 = offset_from_vma (filedata, entry->d_un.d_val,
16364 conflictsno * sizeof (Elf32_External_Conflict));
16365 break;
16366 case DT_MIPS_CONFLICTNO:
16367 conflictsno = entry->d_un.d_val;
16368 break;
16369 case DT_PLTGOT:
16370 pltgot = entry->d_un.d_ptr;
16371 break;
16372 case DT_MIPS_LOCAL_GOTNO:
16373 local_gotno = entry->d_un.d_val;
16374 break;
16375 case DT_MIPS_GOTSYM:
16376 gotsym = entry->d_un.d_val;
16377 break;
16378 case DT_MIPS_SYMTABNO:
16379 symtabno = entry->d_un.d_val;
16380 break;
16381 case DT_MIPS_PLTGOT:
16382 mips_pltgot = entry->d_un.d_ptr;
16383 break;
16384 case DT_PLTREL:
16385 pltrel = entry->d_un.d_val;
16386 break;
16387 case DT_PLTRELSZ:
16388 pltrelsz = entry->d_un.d_val;
16389 break;
16390 case DT_JMPREL:
16391 jmprel = entry->d_un.d_ptr;
16392 break;
16393 default:
16394 break;
16395 }
16396
16397 if (liblist_offset != 0 && liblistno != 0 && do_dynamic)
16398 {
16399 Elf32_External_Lib * elib;
16400 size_t cnt;
16401
16402 elib = (Elf32_External_Lib *) get_data (NULL, filedata, liblist_offset,
16403 liblistno,
16404 sizeof (Elf32_External_Lib),
16405 _("liblist section data"));
16406 if (elib)
16407 {
16408 printf (ngettext ("\nSection '.liblist' contains %lu entry:\n",
16409 "\nSection '.liblist' contains %lu entries:\n",
16410 (unsigned long) liblistno),
16411 (unsigned long) liblistno);
16412 fputs (_(" Library Time Stamp Checksum Version Flags\n"),
16413 stdout);
16414
16415 for (cnt = 0; cnt < liblistno; ++cnt)
16416 {
16417 Elf32_Lib liblist;
16418 time_t atime;
16419 char timebuf[128];
16420 struct tm * tmp;
16421
16422 liblist.l_name = BYTE_GET (elib[cnt].l_name);
16423 atime = BYTE_GET (elib[cnt].l_time_stamp);
16424 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
16425 liblist.l_version = BYTE_GET (elib[cnt].l_version);
16426 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
16427
16428 tmp = gmtime (&atime);
16429 snprintf (timebuf, sizeof (timebuf),
16430 "%04u-%02u-%02uT%02u:%02u:%02u",
16431 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
16432 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
16433
16434 printf ("%3lu: ", (unsigned long) cnt);
16435 if (VALID_DYNAMIC_NAME (liblist.l_name))
16436 print_symbol (20, GET_DYNAMIC_NAME (liblist.l_name));
16437 else
16438 printf (_("<corrupt: %9ld>"), liblist.l_name);
16439 printf (" %s %#10lx %-7ld", timebuf, liblist.l_checksum,
16440 liblist.l_version);
16441
16442 if (liblist.l_flags == 0)
16443 puts (_(" NONE"));
16444 else
16445 {
16446 static const struct
16447 {
16448 const char * name;
16449 int bit;
16450 }
16451 l_flags_vals[] =
16452 {
16453 { " EXACT_MATCH", LL_EXACT_MATCH },
16454 { " IGNORE_INT_VER", LL_IGNORE_INT_VER },
16455 { " REQUIRE_MINOR", LL_REQUIRE_MINOR },
16456 { " EXPORTS", LL_EXPORTS },
16457 { " DELAY_LOAD", LL_DELAY_LOAD },
16458 { " DELTA", LL_DELTA }
16459 };
16460 int flags = liblist.l_flags;
16461 size_t fcnt;
16462
16463 for (fcnt = 0; fcnt < ARRAY_SIZE (l_flags_vals); ++fcnt)
16464 if ((flags & l_flags_vals[fcnt].bit) != 0)
16465 {
16466 fputs (l_flags_vals[fcnt].name, stdout);
16467 flags ^= l_flags_vals[fcnt].bit;
16468 }
16469 if (flags != 0)
16470 printf (" %#x", (unsigned int) flags);
16471
16472 puts ("");
16473 }
16474 }
16475
16476 free (elib);
16477 }
16478 else
16479 res = FALSE;
16480 }
16481
16482 if (options_offset != 0)
16483 {
16484 Elf_External_Options * eopt;
16485 size_t offset;
16486 int cnt;
16487 sect = filedata->section_headers;
16488
16489 /* Find the section header so that we get the size. */
16490 sect = find_section_by_type (filedata, SHT_MIPS_OPTIONS);
16491 /* PR 17533 file: 012-277276-0.004. */
16492 if (sect == NULL)
16493 {
16494 error (_("No MIPS_OPTIONS header found\n"));
16495 return FALSE;
16496 }
16497 /* PR 24243 */
16498 if (sect->sh_size < sizeof (* eopt))
16499 {
16500 error (_("The MIPS options section is too small.\n"));
16501 return FALSE;
16502 }
16503
16504 eopt = (Elf_External_Options *) get_data (NULL, filedata, options_offset, 1,
16505 sect->sh_size, _("options"));
16506 if (eopt)
16507 {
16508 Elf_Internal_Options * iopt;
16509 Elf_Internal_Options * option;
16510 Elf_Internal_Options * iopt_end;
16511
16512 iopt = (Elf_Internal_Options *)
16513 cmalloc ((sect->sh_size / sizeof (eopt)), sizeof (* iopt));
16514 if (iopt == NULL)
16515 {
16516 error (_("Out of memory allocating space for MIPS options\n"));
16517 return FALSE;
16518 }
16519
16520 offset = cnt = 0;
16521 option = iopt;
16522 iopt_end = iopt + (sect->sh_size / sizeof (eopt));
16523
16524 while (offset <= sect->sh_size - sizeof (* eopt))
16525 {
16526 Elf_External_Options * eoption;
16527
16528 eoption = (Elf_External_Options *) ((char *) eopt + offset);
16529
16530 option->kind = BYTE_GET (eoption->kind);
16531 option->size = BYTE_GET (eoption->size);
16532 option->section = BYTE_GET (eoption->section);
16533 option->info = BYTE_GET (eoption->info);
16534
16535 /* PR 17531: file: ffa0fa3b. */
16536 if (option->size < sizeof (* eopt)
16537 || offset + option->size > sect->sh_size)
16538 {
16539 error (_("Invalid size (%u) for MIPS option\n"), option->size);
16540 return FALSE;
16541 }
16542 offset += option->size;
16543
16544 ++option;
16545 ++cnt;
16546 }
16547
16548 printf (ngettext ("\nSection '%s' contains %d entry:\n",
16549 "\nSection '%s' contains %d entries:\n",
16550 cnt),
16551 printable_section_name (filedata, sect), cnt);
16552
16553 option = iopt;
16554 offset = 0;
16555
16556 while (cnt-- > 0)
16557 {
16558 size_t len;
16559
16560 switch (option->kind)
16561 {
16562 case ODK_NULL:
16563 /* This shouldn't happen. */
16564 printf (" NULL %d %lx", option->section, option->info);
16565 break;
16566
16567 case ODK_REGINFO:
16568 printf (" REGINFO ");
16569 if (filedata->file_header.e_machine == EM_MIPS)
16570 {
16571 Elf32_External_RegInfo * ereg;
16572 Elf32_RegInfo reginfo;
16573
16574 /* 32bit form. */
16575 if (option + 2 > iopt_end)
16576 {
16577 printf (_("<corrupt>\n"));
16578 error (_("Truncated MIPS REGINFO option\n"));
16579 cnt = 0;
16580 break;
16581 }
16582
16583 ereg = (Elf32_External_RegInfo *) (option + 1);
16584
16585 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
16586 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
16587 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
16588 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
16589 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
16590 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
16591
16592 printf ("GPR %08lx GP 0x%lx\n",
16593 reginfo.ri_gprmask,
16594 (unsigned long) reginfo.ri_gp_value);
16595 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
16596 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
16597 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
16598 }
16599 else
16600 {
16601 /* 64 bit form. */
16602 Elf64_External_RegInfo * ereg;
16603 Elf64_Internal_RegInfo reginfo;
16604
16605 if (option + 2 > iopt_end)
16606 {
16607 printf (_("<corrupt>\n"));
16608 error (_("Truncated MIPS REGINFO option\n"));
16609 cnt = 0;
16610 break;
16611 }
16612
16613 ereg = (Elf64_External_RegInfo *) (option + 1);
16614 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
16615 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
16616 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
16617 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
16618 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
16619 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
16620
16621 printf ("GPR %08lx GP 0x",
16622 reginfo.ri_gprmask);
16623 printf_vma (reginfo.ri_gp_value);
16624 printf ("\n");
16625
16626 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
16627 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
16628 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
16629 }
16630 ++option;
16631 continue;
16632
16633 case ODK_EXCEPTIONS:
16634 fputs (" EXCEPTIONS fpe_min(", stdout);
16635 process_mips_fpe_exception (option->info & OEX_FPU_MIN);
16636 fputs (") fpe_max(", stdout);
16637 process_mips_fpe_exception ((option->info & OEX_FPU_MAX) >> 8);
16638 fputs (")", stdout);
16639
16640 if (option->info & OEX_PAGE0)
16641 fputs (" PAGE0", stdout);
16642 if (option->info & OEX_SMM)
16643 fputs (" SMM", stdout);
16644 if (option->info & OEX_FPDBUG)
16645 fputs (" FPDBUG", stdout);
16646 if (option->info & OEX_DISMISS)
16647 fputs (" DISMISS", stdout);
16648 break;
16649
16650 case ODK_PAD:
16651 fputs (" PAD ", stdout);
16652 if (option->info & OPAD_PREFIX)
16653 fputs (" PREFIX", stdout);
16654 if (option->info & OPAD_POSTFIX)
16655 fputs (" POSTFIX", stdout);
16656 if (option->info & OPAD_SYMBOL)
16657 fputs (" SYMBOL", stdout);
16658 break;
16659
16660 case ODK_HWPATCH:
16661 fputs (" HWPATCH ", stdout);
16662 if (option->info & OHW_R4KEOP)
16663 fputs (" R4KEOP", stdout);
16664 if (option->info & OHW_R8KPFETCH)
16665 fputs (" R8KPFETCH", stdout);
16666 if (option->info & OHW_R5KEOP)
16667 fputs (" R5KEOP", stdout);
16668 if (option->info & OHW_R5KCVTL)
16669 fputs (" R5KCVTL", stdout);
16670 break;
16671
16672 case ODK_FILL:
16673 fputs (" FILL ", stdout);
16674 /* XXX Print content of info word? */
16675 break;
16676
16677 case ODK_TAGS:
16678 fputs (" TAGS ", stdout);
16679 /* XXX Print content of info word? */
16680 break;
16681
16682 case ODK_HWAND:
16683 fputs (" HWAND ", stdout);
16684 if (option->info & OHWA0_R4KEOP_CHECKED)
16685 fputs (" R4KEOP_CHECKED", stdout);
16686 if (option->info & OHWA0_R4KEOP_CLEAN)
16687 fputs (" R4KEOP_CLEAN", stdout);
16688 break;
16689
16690 case ODK_HWOR:
16691 fputs (" HWOR ", stdout);
16692 if (option->info & OHWA0_R4KEOP_CHECKED)
16693 fputs (" R4KEOP_CHECKED", stdout);
16694 if (option->info & OHWA0_R4KEOP_CLEAN)
16695 fputs (" R4KEOP_CLEAN", stdout);
16696 break;
16697
16698 case ODK_GP_GROUP:
16699 printf (" GP_GROUP %#06lx self-contained %#06lx",
16700 option->info & OGP_GROUP,
16701 (option->info & OGP_SELF) >> 16);
16702 break;
16703
16704 case ODK_IDENT:
16705 printf (" IDENT %#06lx self-contained %#06lx",
16706 option->info & OGP_GROUP,
16707 (option->info & OGP_SELF) >> 16);
16708 break;
16709
16710 default:
16711 /* This shouldn't happen. */
16712 printf (" %3d ??? %d %lx",
16713 option->kind, option->section, option->info);
16714 break;
16715 }
16716
16717 len = sizeof (* eopt);
16718 while (len < option->size)
16719 {
16720 unsigned char datum = * ((unsigned char *) eopt + offset + len);
16721
16722 if (ISPRINT (datum))
16723 printf ("%c", datum);
16724 else
16725 printf ("\\%03o", datum);
16726 len ++;
16727 }
16728 fputs ("\n", stdout);
16729
16730 offset += option->size;
16731 ++option;
16732 }
16733
16734 free (eopt);
16735 }
16736 else
16737 res = FALSE;
16738 }
16739
16740 if (conflicts_offset != 0 && conflictsno != 0)
16741 {
16742 Elf32_Conflict * iconf;
16743 size_t cnt;
16744
16745 if (dynamic_symbols == NULL)
16746 {
16747 error (_("conflict list found without a dynamic symbol table\n"));
16748 return FALSE;
16749 }
16750
16751 /* PR 21345 - print a slightly more helpful error message
16752 if we are sure that the cmalloc will fail. */
16753 if (conflictsno * sizeof (* iconf) > filedata->file_size)
16754 {
16755 error (_("Overlarge number of conflicts detected: %lx\n"),
16756 (long) conflictsno);
16757 return FALSE;
16758 }
16759
16760 iconf = (Elf32_Conflict *) cmalloc (conflictsno, sizeof (* iconf));
16761 if (iconf == NULL)
16762 {
16763 error (_("Out of memory allocating space for dynamic conflicts\n"));
16764 return FALSE;
16765 }
16766
16767 if (is_32bit_elf)
16768 {
16769 Elf32_External_Conflict * econf32;
16770
16771 econf32 = (Elf32_External_Conflict *)
16772 get_data (NULL, filedata, conflicts_offset, conflictsno,
16773 sizeof (* econf32), _("conflict"));
16774 if (!econf32)
16775 return FALSE;
16776
16777 for (cnt = 0; cnt < conflictsno; ++cnt)
16778 iconf[cnt] = BYTE_GET (econf32[cnt]);
16779
16780 free (econf32);
16781 }
16782 else
16783 {
16784 Elf64_External_Conflict * econf64;
16785
16786 econf64 = (Elf64_External_Conflict *)
16787 get_data (NULL, filedata, conflicts_offset, conflictsno,
16788 sizeof (* econf64), _("conflict"));
16789 if (!econf64)
16790 return FALSE;
16791
16792 for (cnt = 0; cnt < conflictsno; ++cnt)
16793 iconf[cnt] = BYTE_GET (econf64[cnt]);
16794
16795 free (econf64);
16796 }
16797
16798 printf (ngettext ("\nSection '.conflict' contains %lu entry:\n",
16799 "\nSection '.conflict' contains %lu entries:\n",
16800 (unsigned long) conflictsno),
16801 (unsigned long) conflictsno);
16802 puts (_(" Num: Index Value Name"));
16803
16804 for (cnt = 0; cnt < conflictsno; ++cnt)
16805 {
16806 printf ("%5lu: %8lu ", (unsigned long) cnt, iconf[cnt]);
16807
16808 if (iconf[cnt] >= num_dynamic_syms)
16809 printf (_("<corrupt symbol index>"));
16810 else
16811 {
16812 Elf_Internal_Sym * psym;
16813
16814 psym = & dynamic_symbols[iconf[cnt]];
16815 print_vma (psym->st_value, FULL_HEX);
16816 putchar (' ');
16817 if (VALID_DYNAMIC_NAME (psym->st_name))
16818 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
16819 else
16820 printf (_("<corrupt: %14ld>"), psym->st_name);
16821 }
16822 putchar ('\n');
16823 }
16824
16825 free (iconf);
16826 }
16827
16828 if (pltgot != 0 && local_gotno != 0)
16829 {
16830 bfd_vma ent, local_end, global_end;
16831 size_t i, offset;
16832 unsigned char * data;
16833 unsigned char * data_end;
16834 int addr_size;
16835
16836 ent = pltgot;
16837 addr_size = (is_32bit_elf ? 4 : 8);
16838 local_end = pltgot + local_gotno * addr_size;
16839
16840 /* PR binutils/17533 file: 012-111227-0.004 */
16841 if (symtabno < gotsym)
16842 {
16843 error (_("The GOT symbol offset (%lu) is greater than the symbol table size (%lu)\n"),
16844 (unsigned long) gotsym, (unsigned long) symtabno);
16845 return FALSE;
16846 }
16847
16848 global_end = local_end + (symtabno - gotsym) * addr_size;
16849 /* PR 17531: file: 54c91a34. */
16850 if (global_end < local_end)
16851 {
16852 error (_("Too many GOT symbols: %lu\n"), (unsigned long) symtabno);
16853 return FALSE;
16854 }
16855
16856 offset = offset_from_vma (filedata, pltgot, global_end - pltgot);
16857 data = (unsigned char *) get_data (NULL, filedata, offset,
16858 global_end - pltgot, 1,
16859 _("Global Offset Table data"));
16860 /* PR 12855: Null data is handled gracefully throughout. */
16861 data_end = data + (global_end - pltgot);
16862
16863 printf (_("\nPrimary GOT:\n"));
16864 printf (_(" Canonical gp value: "));
16865 print_vma (pltgot + 0x7ff0, LONG_HEX);
16866 printf ("\n\n");
16867
16868 printf (_(" Reserved entries:\n"));
16869 printf (_(" %*s %10s %*s Purpose\n"),
16870 addr_size * 2, _("Address"), _("Access"),
16871 addr_size * 2, _("Initial"));
16872 ent = print_mips_got_entry (data, pltgot, ent, data_end);
16873 printf (_(" Lazy resolver\n"));
16874 if (ent == (bfd_vma) -1)
16875 goto got_print_fail;
16876
16877 /* Check for the MSB of GOT[1] being set, denoting a GNU object.
16878 This entry will be used by some runtime loaders, to store the
16879 module pointer. Otherwise this is an ordinary local entry.
16880 PR 21344: Check for the entry being fully available before
16881 fetching it. */
16882 if (data
16883 && data + ent - pltgot + addr_size <= data_end
16884 && (byte_get (data + ent - pltgot, addr_size)
16885 >> (addr_size * 8 - 1)) != 0)
16886 {
16887 ent = print_mips_got_entry (data, pltgot, ent, data_end);
16888 printf (_(" Module pointer (GNU extension)\n"));
16889 if (ent == (bfd_vma) -1)
16890 goto got_print_fail;
16891 }
16892 printf ("\n");
16893
16894 if (data != NULL && ent < local_end)
16895 {
16896 printf (_(" Local entries:\n"));
16897 printf (" %*s %10s %*s\n",
16898 addr_size * 2, _("Address"), _("Access"),
16899 addr_size * 2, _("Initial"));
16900 while (ent < local_end)
16901 {
16902 ent = print_mips_got_entry (data, pltgot, ent, data_end);
16903 printf ("\n");
16904 if (ent == (bfd_vma) -1)
16905 goto got_print_fail;
16906 }
16907 printf ("\n");
16908 }
16909
16910 if (data != NULL && gotsym < symtabno)
16911 {
16912 int sym_width;
16913
16914 printf (_(" Global entries:\n"));
16915 printf (" %*s %10s %*s %*s %-7s %3s %s\n",
16916 addr_size * 2, _("Address"),
16917 _("Access"),
16918 addr_size * 2, _("Initial"),
16919 addr_size * 2, _("Sym.Val."),
16920 _("Type"),
16921 /* Note for translators: "Ndx" = abbreviated form of "Index". */
16922 _("Ndx"), _("Name"));
16923
16924 sym_width = (is_32bit_elf ? 80 : 160) - 28 - addr_size * 6 - 1;
16925
16926 for (i = gotsym; i < symtabno; i++)
16927 {
16928 ent = print_mips_got_entry (data, pltgot, ent, data_end);
16929 printf (" ");
16930
16931 if (dynamic_symbols == NULL)
16932 printf (_("<no dynamic symbols>"));
16933 else if (i < num_dynamic_syms)
16934 {
16935 Elf_Internal_Sym * psym = dynamic_symbols + i;
16936
16937 print_vma (psym->st_value, LONG_HEX);
16938 printf (" %-7s %3s ",
16939 get_symbol_type (filedata, ELF_ST_TYPE (psym->st_info)),
16940 get_symbol_index_type (filedata, psym->st_shndx));
16941
16942 if (VALID_DYNAMIC_NAME (psym->st_name))
16943 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
16944 else
16945 printf (_("<corrupt: %14ld>"), psym->st_name);
16946 }
16947 else
16948 printf (_("<symbol index %lu exceeds number of dynamic symbols>"),
16949 (unsigned long) i);
16950
16951 printf ("\n");
16952 if (ent == (bfd_vma) -1)
16953 break;
16954 }
16955 printf ("\n");
16956 }
16957
16958 got_print_fail:
16959 if (data)
16960 free (data);
16961 }
16962
16963 if (mips_pltgot != 0 && jmprel != 0 && pltrel != 0 && pltrelsz != 0)
16964 {
16965 bfd_vma ent, end;
16966 size_t offset, rel_offset;
16967 unsigned long count, i;
16968 unsigned char * data;
16969 int addr_size, sym_width;
16970 Elf_Internal_Rela * rels;
16971
16972 rel_offset = offset_from_vma (filedata, jmprel, pltrelsz);
16973 if (pltrel == DT_RELA)
16974 {
16975 if (!slurp_rela_relocs (filedata, rel_offset, pltrelsz, &rels, &count))
16976 return FALSE;
16977 }
16978 else
16979 {
16980 if (!slurp_rel_relocs (filedata, rel_offset, pltrelsz, &rels, &count))
16981 return FALSE;
16982 }
16983
16984 ent = mips_pltgot;
16985 addr_size = (is_32bit_elf ? 4 : 8);
16986 end = mips_pltgot + (2 + count) * addr_size;
16987
16988 offset = offset_from_vma (filedata, mips_pltgot, end - mips_pltgot);
16989 data = (unsigned char *) get_data (NULL, filedata, offset, end - mips_pltgot,
16990 1, _("Procedure Linkage Table data"));
16991 if (data == NULL)
16992 return FALSE;
16993
16994 printf ("\nPLT GOT:\n\n");
16995 printf (_(" Reserved entries:\n"));
16996 printf (_(" %*s %*s Purpose\n"),
16997 addr_size * 2, _("Address"), addr_size * 2, _("Initial"));
16998 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
16999 printf (_(" PLT lazy resolver\n"));
17000 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
17001 printf (_(" Module pointer\n"));
17002 printf ("\n");
17003
17004 printf (_(" Entries:\n"));
17005 printf (" %*s %*s %*s %-7s %3s %s\n",
17006 addr_size * 2, _("Address"),
17007 addr_size * 2, _("Initial"),
17008 addr_size * 2, _("Sym.Val."), _("Type"), _("Ndx"), _("Name"));
17009 sym_width = (is_32bit_elf ? 80 : 160) - 17 - addr_size * 6 - 1;
17010 for (i = 0; i < count; i++)
17011 {
17012 unsigned long idx = get_reloc_symindex (rels[i].r_info);
17013
17014 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
17015 printf (" ");
17016
17017 if (idx >= num_dynamic_syms)
17018 printf (_("<corrupt symbol index: %lu>"), idx);
17019 else
17020 {
17021 Elf_Internal_Sym * psym = dynamic_symbols + idx;
17022
17023 print_vma (psym->st_value, LONG_HEX);
17024 printf (" %-7s %3s ",
17025 get_symbol_type (filedata, ELF_ST_TYPE (psym->st_info)),
17026 get_symbol_index_type (filedata, psym->st_shndx));
17027 if (VALID_DYNAMIC_NAME (psym->st_name))
17028 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
17029 else
17030 printf (_("<corrupt: %14ld>"), psym->st_name);
17031 }
17032 printf ("\n");
17033 }
17034 printf ("\n");
17035
17036 if (data)
17037 free (data);
17038 free (rels);
17039 }
17040
17041 return res;
17042 }
17043
17044 static bfd_boolean
17045 process_nds32_specific (Filedata * filedata)
17046 {
17047 Elf_Internal_Shdr *sect = NULL;
17048
17049 sect = find_section (filedata, ".nds32_e_flags");
17050 if (sect != NULL)
17051 {
17052 unsigned int *flag;
17053
17054 printf ("\nNDS32 elf flags section:\n");
17055 flag = get_data (NULL, filedata, sect->sh_offset, 1,
17056 sect->sh_size, _("NDS32 elf flags section"));
17057
17058 if (! flag)
17059 return FALSE;
17060
17061 switch ((*flag) & 0x3)
17062 {
17063 case 0:
17064 printf ("(VEC_SIZE):\tNo entry.\n");
17065 break;
17066 case 1:
17067 printf ("(VEC_SIZE):\t4 bytes\n");
17068 break;
17069 case 2:
17070 printf ("(VEC_SIZE):\t16 bytes\n");
17071 break;
17072 case 3:
17073 printf ("(VEC_SIZE):\treserved\n");
17074 break;
17075 }
17076 }
17077
17078 return TRUE;
17079 }
17080
17081 static bfd_boolean
17082 process_gnu_liblist (Filedata * filedata)
17083 {
17084 Elf_Internal_Shdr * section;
17085 Elf_Internal_Shdr * string_sec;
17086 Elf32_External_Lib * elib;
17087 char * strtab;
17088 size_t strtab_size;
17089 size_t cnt;
17090 unsigned long num_liblist;
17091 unsigned i;
17092 bfd_boolean res = TRUE;
17093
17094 if (! do_arch)
17095 return TRUE;
17096
17097 for (i = 0, section = filedata->section_headers;
17098 i < filedata->file_header.e_shnum;
17099 i++, section++)
17100 {
17101 switch (section->sh_type)
17102 {
17103 case SHT_GNU_LIBLIST:
17104 if (section->sh_link >= filedata->file_header.e_shnum)
17105 break;
17106
17107 elib = (Elf32_External_Lib *)
17108 get_data (NULL, filedata, section->sh_offset, 1, section->sh_size,
17109 _("liblist section data"));
17110
17111 if (elib == NULL)
17112 {
17113 res = FALSE;
17114 break;
17115 }
17116
17117 string_sec = filedata->section_headers + section->sh_link;
17118 strtab = (char *) get_data (NULL, filedata, string_sec->sh_offset, 1,
17119 string_sec->sh_size,
17120 _("liblist string table"));
17121 if (strtab == NULL
17122 || section->sh_entsize != sizeof (Elf32_External_Lib))
17123 {
17124 free (elib);
17125 free (strtab);
17126 res = FALSE;
17127 break;
17128 }
17129 strtab_size = string_sec->sh_size;
17130
17131 num_liblist = section->sh_size / sizeof (Elf32_External_Lib);
17132 printf (ngettext ("\nLibrary list section '%s' contains %lu entries:\n",
17133 "\nLibrary list section '%s' contains %lu entries:\n",
17134 num_liblist),
17135 printable_section_name (filedata, section),
17136 num_liblist);
17137
17138 puts (_(" Library Time Stamp Checksum Version Flags"));
17139
17140 for (cnt = 0; cnt < section->sh_size / sizeof (Elf32_External_Lib);
17141 ++cnt)
17142 {
17143 Elf32_Lib liblist;
17144 time_t atime;
17145 char timebuf[128];
17146 struct tm * tmp;
17147
17148 liblist.l_name = BYTE_GET (elib[cnt].l_name);
17149 atime = BYTE_GET (elib[cnt].l_time_stamp);
17150 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
17151 liblist.l_version = BYTE_GET (elib[cnt].l_version);
17152 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
17153
17154 tmp = gmtime (&atime);
17155 snprintf (timebuf, sizeof (timebuf),
17156 "%04u-%02u-%02uT%02u:%02u:%02u",
17157 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
17158 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
17159
17160 printf ("%3lu: ", (unsigned long) cnt);
17161 if (do_wide)
17162 printf ("%-20s", liblist.l_name < strtab_size
17163 ? strtab + liblist.l_name : _("<corrupt>"));
17164 else
17165 printf ("%-20.20s", liblist.l_name < strtab_size
17166 ? strtab + liblist.l_name : _("<corrupt>"));
17167 printf (" %s %#010lx %-7ld %-7ld\n", timebuf, liblist.l_checksum,
17168 liblist.l_version, liblist.l_flags);
17169 }
17170
17171 free (elib);
17172 free (strtab);
17173 }
17174 }
17175
17176 return res;
17177 }
17178
17179 static const char *
17180 get_note_type (Filedata * filedata, unsigned e_type)
17181 {
17182 static char buff[64];
17183
17184 if (filedata->file_header.e_type == ET_CORE)
17185 switch (e_type)
17186 {
17187 case NT_AUXV:
17188 return _("NT_AUXV (auxiliary vector)");
17189 case NT_PRSTATUS:
17190 return _("NT_PRSTATUS (prstatus structure)");
17191 case NT_FPREGSET:
17192 return _("NT_FPREGSET (floating point registers)");
17193 case NT_PRPSINFO:
17194 return _("NT_PRPSINFO (prpsinfo structure)");
17195 case NT_TASKSTRUCT:
17196 return _("NT_TASKSTRUCT (task structure)");
17197 case NT_PRXFPREG:
17198 return _("NT_PRXFPREG (user_xfpregs structure)");
17199 case NT_PPC_VMX:
17200 return _("NT_PPC_VMX (ppc Altivec registers)");
17201 case NT_PPC_VSX:
17202 return _("NT_PPC_VSX (ppc VSX registers)");
17203 case NT_PPC_TAR:
17204 return _("NT_PPC_TAR (ppc TAR register)");
17205 case NT_PPC_PPR:
17206 return _("NT_PPC_PPR (ppc PPR register)");
17207 case NT_PPC_DSCR:
17208 return _("NT_PPC_DSCR (ppc DSCR register)");
17209 case NT_PPC_EBB:
17210 return _("NT_PPC_EBB (ppc EBB registers)");
17211 case NT_PPC_PMU:
17212 return _("NT_PPC_PMU (ppc PMU registers)");
17213 case NT_PPC_TM_CGPR:
17214 return _("NT_PPC_TM_CGPR (ppc checkpointed GPR registers)");
17215 case NT_PPC_TM_CFPR:
17216 return _("NT_PPC_TM_CFPR (ppc checkpointed floating point registers)");
17217 case NT_PPC_TM_CVMX:
17218 return _("NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)");
17219 case NT_PPC_TM_CVSX:
17220 return _("NT_PPC_TM_CVSX (ppc checkpointed VSX registers)");
17221 case NT_PPC_TM_SPR:
17222 return _("NT_PPC_TM_SPR (ppc TM special purpose registers)");
17223 case NT_PPC_TM_CTAR:
17224 return _("NT_PPC_TM_CTAR (ppc checkpointed TAR register)");
17225 case NT_PPC_TM_CPPR:
17226 return _("NT_PPC_TM_CPPR (ppc checkpointed PPR register)");
17227 case NT_PPC_TM_CDSCR:
17228 return _("NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)");
17229 case NT_386_TLS:
17230 return _("NT_386_TLS (x86 TLS information)");
17231 case NT_386_IOPERM:
17232 return _("NT_386_IOPERM (x86 I/O permissions)");
17233 case NT_X86_XSTATE:
17234 return _("NT_X86_XSTATE (x86 XSAVE extended state)");
17235 case NT_S390_HIGH_GPRS:
17236 return _("NT_S390_HIGH_GPRS (s390 upper register halves)");
17237 case NT_S390_TIMER:
17238 return _("NT_S390_TIMER (s390 timer register)");
17239 case NT_S390_TODCMP:
17240 return _("NT_S390_TODCMP (s390 TOD comparator register)");
17241 case NT_S390_TODPREG:
17242 return _("NT_S390_TODPREG (s390 TOD programmable register)");
17243 case NT_S390_CTRS:
17244 return _("NT_S390_CTRS (s390 control registers)");
17245 case NT_S390_PREFIX:
17246 return _("NT_S390_PREFIX (s390 prefix register)");
17247 case NT_S390_LAST_BREAK:
17248 return _("NT_S390_LAST_BREAK (s390 last breaking event address)");
17249 case NT_S390_SYSTEM_CALL:
17250 return _("NT_S390_SYSTEM_CALL (s390 system call restart data)");
17251 case NT_S390_TDB:
17252 return _("NT_S390_TDB (s390 transaction diagnostic block)");
17253 case NT_S390_VXRS_LOW:
17254 return _("NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)");
17255 case NT_S390_VXRS_HIGH:
17256 return _("NT_S390_VXRS_HIGH (s390 vector registers 16-31)");
17257 case NT_S390_GS_CB:
17258 return _("NT_S390_GS_CB (s390 guarded-storage registers)");
17259 case NT_S390_GS_BC:
17260 return _("NT_S390_GS_BC (s390 guarded-storage broadcast control)");
17261 case NT_ARM_VFP:
17262 return _("NT_ARM_VFP (arm VFP registers)");
17263 case NT_ARM_TLS:
17264 return _("NT_ARM_TLS (AArch TLS registers)");
17265 case NT_ARM_HW_BREAK:
17266 return _("NT_ARM_HW_BREAK (AArch hardware breakpoint registers)");
17267 case NT_ARM_HW_WATCH:
17268 return _("NT_ARM_HW_WATCH (AArch hardware watchpoint registers)");
17269 case NT_PSTATUS:
17270 return _("NT_PSTATUS (pstatus structure)");
17271 case NT_FPREGS:
17272 return _("NT_FPREGS (floating point registers)");
17273 case NT_PSINFO:
17274 return _("NT_PSINFO (psinfo structure)");
17275 case NT_LWPSTATUS:
17276 return _("NT_LWPSTATUS (lwpstatus_t structure)");
17277 case NT_LWPSINFO:
17278 return _("NT_LWPSINFO (lwpsinfo_t structure)");
17279 case NT_WIN32PSTATUS:
17280 return _("NT_WIN32PSTATUS (win32_pstatus structure)");
17281 case NT_SIGINFO:
17282 return _("NT_SIGINFO (siginfo_t data)");
17283 case NT_FILE:
17284 return _("NT_FILE (mapped files)");
17285 default:
17286 break;
17287 }
17288 else
17289 switch (e_type)
17290 {
17291 case NT_VERSION:
17292 return _("NT_VERSION (version)");
17293 case NT_ARCH:
17294 return _("NT_ARCH (architecture)");
17295 case NT_GNU_BUILD_ATTRIBUTE_OPEN:
17296 return _("OPEN");
17297 case NT_GNU_BUILD_ATTRIBUTE_FUNC:
17298 return _("func");
17299 default:
17300 break;
17301 }
17302
17303 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
17304 return buff;
17305 }
17306
17307 static bfd_boolean
17308 print_core_note (Elf_Internal_Note *pnote)
17309 {
17310 unsigned int addr_size = is_32bit_elf ? 4 : 8;
17311 bfd_vma count, page_size;
17312 unsigned char *descdata, *filenames, *descend;
17313
17314 if (pnote->type != NT_FILE)
17315 {
17316 if (do_wide)
17317 printf ("\n");
17318 return TRUE;
17319 }
17320
17321 #ifndef BFD64
17322 if (!is_32bit_elf)
17323 {
17324 printf (_(" Cannot decode 64-bit note in 32-bit build\n"));
17325 /* Still "successful". */
17326 return TRUE;
17327 }
17328 #endif
17329
17330 if (pnote->descsz < 2 * addr_size)
17331 {
17332 error (_(" Malformed note - too short for header\n"));
17333 return FALSE;
17334 }
17335
17336 descdata = (unsigned char *) pnote->descdata;
17337 descend = descdata + pnote->descsz;
17338
17339 if (descdata[pnote->descsz - 1] != '\0')
17340 {
17341 error (_(" Malformed note - does not end with \\0\n"));
17342 return FALSE;
17343 }
17344
17345 count = byte_get (descdata, addr_size);
17346 descdata += addr_size;
17347
17348 page_size = byte_get (descdata, addr_size);
17349 descdata += addr_size;
17350
17351 if (count > ((bfd_vma) -1 - 2 * addr_size) / (3 * addr_size)
17352 || pnote->descsz < 2 * addr_size + count * 3 * addr_size)
17353 {
17354 error (_(" Malformed note - too short for supplied file count\n"));
17355 return FALSE;
17356 }
17357
17358 printf (_(" Page size: "));
17359 print_vma (page_size, DEC);
17360 printf ("\n");
17361
17362 printf (_(" %*s%*s%*s\n"),
17363 (int) (2 + 2 * addr_size), _("Start"),
17364 (int) (4 + 2 * addr_size), _("End"),
17365 (int) (4 + 2 * addr_size), _("Page Offset"));
17366 filenames = descdata + count * 3 * addr_size;
17367 while (count-- > 0)
17368 {
17369 bfd_vma start, end, file_ofs;
17370
17371 if (filenames == descend)
17372 {
17373 error (_(" Malformed note - filenames end too early\n"));
17374 return FALSE;
17375 }
17376
17377 start = byte_get (descdata, addr_size);
17378 descdata += addr_size;
17379 end = byte_get (descdata, addr_size);
17380 descdata += addr_size;
17381 file_ofs = byte_get (descdata, addr_size);
17382 descdata += addr_size;
17383
17384 printf (" ");
17385 print_vma (start, FULL_HEX);
17386 printf (" ");
17387 print_vma (end, FULL_HEX);
17388 printf (" ");
17389 print_vma (file_ofs, FULL_HEX);
17390 printf ("\n %s\n", filenames);
17391
17392 filenames += 1 + strlen ((char *) filenames);
17393 }
17394
17395 return TRUE;
17396 }
17397
17398 static const char *
17399 get_gnu_elf_note_type (unsigned e_type)
17400 {
17401 /* NB/ Keep this switch statement in sync with print_gnu_note (). */
17402 switch (e_type)
17403 {
17404 case NT_GNU_ABI_TAG:
17405 return _("NT_GNU_ABI_TAG (ABI version tag)");
17406 case NT_GNU_HWCAP:
17407 return _("NT_GNU_HWCAP (DSO-supplied software HWCAP info)");
17408 case NT_GNU_BUILD_ID:
17409 return _("NT_GNU_BUILD_ID (unique build ID bitstring)");
17410 case NT_GNU_GOLD_VERSION:
17411 return _("NT_GNU_GOLD_VERSION (gold version)");
17412 case NT_GNU_PROPERTY_TYPE_0:
17413 return _("NT_GNU_PROPERTY_TYPE_0");
17414 case NT_GNU_BUILD_ATTRIBUTE_OPEN:
17415 return _("NT_GNU_BUILD_ATTRIBUTE_OPEN");
17416 case NT_GNU_BUILD_ATTRIBUTE_FUNC:
17417 return _("NT_GNU_BUILD_ATTRIBUTE_FUNC");
17418 default:
17419 {
17420 static char buff[64];
17421
17422 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
17423 return buff;
17424 }
17425 }
17426 }
17427
17428 static void
17429 decode_x86_compat_isa (unsigned int bitmask)
17430 {
17431 while (bitmask)
17432 {
17433 unsigned int bit = bitmask & (- bitmask);
17434
17435 bitmask &= ~ bit;
17436 switch (bit)
17437 {
17438 case GNU_PROPERTY_X86_COMPAT_ISA_1_486:
17439 printf ("i486");
17440 break;
17441 case GNU_PROPERTY_X86_COMPAT_ISA_1_586:
17442 printf ("586");
17443 break;
17444 case GNU_PROPERTY_X86_COMPAT_ISA_1_686:
17445 printf ("686");
17446 break;
17447 case GNU_PROPERTY_X86_COMPAT_ISA_1_SSE:
17448 printf ("SSE");
17449 break;
17450 case GNU_PROPERTY_X86_COMPAT_ISA_1_SSE2:
17451 printf ("SSE2");
17452 break;
17453 case GNU_PROPERTY_X86_COMPAT_ISA_1_SSE3:
17454 printf ("SSE3");
17455 break;
17456 case GNU_PROPERTY_X86_COMPAT_ISA_1_SSSE3:
17457 printf ("SSSE3");
17458 break;
17459 case GNU_PROPERTY_X86_COMPAT_ISA_1_SSE4_1:
17460 printf ("SSE4_1");
17461 break;
17462 case GNU_PROPERTY_X86_COMPAT_ISA_1_SSE4_2:
17463 printf ("SSE4_2");
17464 break;
17465 case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX:
17466 printf ("AVX");
17467 break;
17468 case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX2:
17469 printf ("AVX2");
17470 break;
17471 case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX512F:
17472 printf ("AVX512F");
17473 break;
17474 case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX512CD:
17475 printf ("AVX512CD");
17476 break;
17477 case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX512ER:
17478 printf ("AVX512ER");
17479 break;
17480 case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX512PF:
17481 printf ("AVX512PF");
17482 break;
17483 case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX512VL:
17484 printf ("AVX512VL");
17485 break;
17486 case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX512DQ:
17487 printf ("AVX512DQ");
17488 break;
17489 case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX512BW:
17490 printf ("AVX512BW");
17491 break;
17492 default:
17493 printf (_("<unknown: %x>"), bit);
17494 break;
17495 }
17496 if (bitmask)
17497 printf (", ");
17498 }
17499 }
17500
17501 static void
17502 decode_x86_isa (unsigned int bitmask)
17503 {
17504 if (!bitmask)
17505 {
17506 printf (_("<None>"));
17507 return;
17508 }
17509
17510 while (bitmask)
17511 {
17512 unsigned int bit = bitmask & (- bitmask);
17513
17514 bitmask &= ~ bit;
17515 switch (bit)
17516 {
17517 case GNU_PROPERTY_X86_ISA_1_CMOV:
17518 printf ("CMOV");
17519 break;
17520 case GNU_PROPERTY_X86_ISA_1_SSE:
17521 printf ("SSE");
17522 break;
17523 case GNU_PROPERTY_X86_ISA_1_SSE2:
17524 printf ("SSE2");
17525 break;
17526 case GNU_PROPERTY_X86_ISA_1_SSE3:
17527 printf ("SSE3");
17528 break;
17529 case GNU_PROPERTY_X86_ISA_1_SSSE3:
17530 printf ("SSSE3");
17531 break;
17532 case GNU_PROPERTY_X86_ISA_1_SSE4_1:
17533 printf ("SSE4_1");
17534 break;
17535 case GNU_PROPERTY_X86_ISA_1_SSE4_2:
17536 printf ("SSE4_2");
17537 break;
17538 case GNU_PROPERTY_X86_ISA_1_AVX:
17539 printf ("AVX");
17540 break;
17541 case GNU_PROPERTY_X86_ISA_1_AVX2:
17542 printf ("AVX2");
17543 break;
17544 case GNU_PROPERTY_X86_ISA_1_FMA:
17545 printf ("FMA");
17546 break;
17547 case GNU_PROPERTY_X86_ISA_1_AVX512F:
17548 printf ("AVX512F");
17549 break;
17550 case GNU_PROPERTY_X86_ISA_1_AVX512CD:
17551 printf ("AVX512CD");
17552 break;
17553 case GNU_PROPERTY_X86_ISA_1_AVX512ER:
17554 printf ("AVX512ER");
17555 break;
17556 case GNU_PROPERTY_X86_ISA_1_AVX512PF:
17557 printf ("AVX512PF");
17558 break;
17559 case GNU_PROPERTY_X86_ISA_1_AVX512VL:
17560 printf ("AVX512VL");
17561 break;
17562 case GNU_PROPERTY_X86_ISA_1_AVX512DQ:
17563 printf ("AVX512DQ");
17564 break;
17565 case GNU_PROPERTY_X86_ISA_1_AVX512BW:
17566 printf ("AVX512BW");
17567 break;
17568 case GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS:
17569 printf ("AVX512_4FMAPS");
17570 break;
17571 case GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW:
17572 printf ("AVX512_4VNNIW");
17573 break;
17574 case GNU_PROPERTY_X86_ISA_1_AVX512_BITALG:
17575 printf ("AVX512_BITALG");
17576 break;
17577 case GNU_PROPERTY_X86_ISA_1_AVX512_IFMA:
17578 printf ("AVX512_IFMA");
17579 break;
17580 case GNU_PROPERTY_X86_ISA_1_AVX512_VBMI:
17581 printf ("AVX512_VBMI");
17582 break;
17583 case GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2:
17584 printf ("AVX512_VBMI2");
17585 break;
17586 case GNU_PROPERTY_X86_ISA_1_AVX512_VNNI:
17587 printf ("AVX512_VNNI");
17588 break;
17589 case GNU_PROPERTY_X86_ISA_1_AVX512_BF16:
17590 printf ("AVX512_BF16");
17591 break;
17592 default:
17593 printf (_("<unknown: %x>"), bit);
17594 break;
17595 }
17596 if (bitmask)
17597 printf (", ");
17598 }
17599 }
17600
17601 static void
17602 decode_x86_feature_1 (unsigned int bitmask)
17603 {
17604 if (!bitmask)
17605 {
17606 printf (_("<None>"));
17607 return;
17608 }
17609
17610 while (bitmask)
17611 {
17612 unsigned int bit = bitmask & (- bitmask);
17613
17614 bitmask &= ~ bit;
17615 switch (bit)
17616 {
17617 case GNU_PROPERTY_X86_FEATURE_1_IBT:
17618 printf ("IBT");
17619 break;
17620 case GNU_PROPERTY_X86_FEATURE_1_SHSTK:
17621 printf ("SHSTK");
17622 break;
17623 default:
17624 printf (_("<unknown: %x>"), bit);
17625 break;
17626 }
17627 if (bitmask)
17628 printf (", ");
17629 }
17630 }
17631
17632 static void
17633 decode_x86_feature_2 (unsigned int bitmask)
17634 {
17635 if (!bitmask)
17636 {
17637 printf (_("<None>"));
17638 return;
17639 }
17640
17641 while (bitmask)
17642 {
17643 unsigned int bit = bitmask & (- bitmask);
17644
17645 bitmask &= ~ bit;
17646 switch (bit)
17647 {
17648 case GNU_PROPERTY_X86_FEATURE_2_X86:
17649 printf ("x86");
17650 break;
17651 case GNU_PROPERTY_X86_FEATURE_2_X87:
17652 printf ("x87");
17653 break;
17654 case GNU_PROPERTY_X86_FEATURE_2_MMX:
17655 printf ("MMX");
17656 break;
17657 case GNU_PROPERTY_X86_FEATURE_2_XMM:
17658 printf ("XMM");
17659 break;
17660 case GNU_PROPERTY_X86_FEATURE_2_YMM:
17661 printf ("YMM");
17662 break;
17663 case GNU_PROPERTY_X86_FEATURE_2_ZMM:
17664 printf ("ZMM");
17665 break;
17666 case GNU_PROPERTY_X86_FEATURE_2_FXSR:
17667 printf ("FXSR");
17668 break;
17669 case GNU_PROPERTY_X86_FEATURE_2_XSAVE:
17670 printf ("XSAVE");
17671 break;
17672 case GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT:
17673 printf ("XSAVEOPT");
17674 break;
17675 case GNU_PROPERTY_X86_FEATURE_2_XSAVEC:
17676 printf ("XSAVEC");
17677 break;
17678 default:
17679 printf (_("<unknown: %x>"), bit);
17680 break;
17681 }
17682 if (bitmask)
17683 printf (", ");
17684 }
17685 }
17686
17687 static void
17688 decode_aarch64_feature_1_and (unsigned int bitmask)
17689 {
17690 while (bitmask)
17691 {
17692 unsigned int bit = bitmask & (- bitmask);
17693
17694 bitmask &= ~ bit;
17695 switch (bit)
17696 {
17697 case GNU_PROPERTY_AARCH64_FEATURE_1_BTI:
17698 printf ("BTI");
17699 break;
17700
17701 case GNU_PROPERTY_AARCH64_FEATURE_1_PAC:
17702 printf ("PAC");
17703 break;
17704
17705 default:
17706 printf (_("<unknown: %x>"), bit);
17707 break;
17708 }
17709 if (bitmask)
17710 printf (", ");
17711 }
17712 }
17713
17714 static void
17715 print_gnu_property_note (Filedata * filedata, Elf_Internal_Note * pnote)
17716 {
17717 unsigned char * ptr = (unsigned char *) pnote->descdata;
17718 unsigned char * ptr_end = ptr + pnote->descsz;
17719 unsigned int size = is_32bit_elf ? 4 : 8;
17720
17721 printf (_(" Properties: "));
17722
17723 if (pnote->descsz < 8 || (pnote->descsz % size) != 0)
17724 {
17725 printf (_("<corrupt GNU_PROPERTY_TYPE, size = %#lx>\n"), pnote->descsz);
17726 return;
17727 }
17728
17729 while (ptr < ptr_end)
17730 {
17731 unsigned int j;
17732 unsigned int type;
17733 unsigned int datasz;
17734
17735 if ((size_t) (ptr_end - ptr) < 8)
17736 {
17737 printf (_("<corrupt descsz: %#lx>\n"), pnote->descsz);
17738 break;
17739 }
17740
17741 type = byte_get (ptr, 4);
17742 datasz = byte_get (ptr + 4, 4);
17743
17744 ptr += 8;
17745
17746 if (datasz > (size_t) (ptr_end - ptr))
17747 {
17748 printf (_("<corrupt type (%#x) datasz: %#x>\n"),
17749 type, datasz);
17750 break;
17751 }
17752
17753 if (type >= GNU_PROPERTY_LOPROC && type <= GNU_PROPERTY_HIPROC)
17754 {
17755 if (filedata->file_header.e_machine == EM_X86_64
17756 || filedata->file_header.e_machine == EM_IAMCU
17757 || filedata->file_header.e_machine == EM_386)
17758 {
17759 unsigned int bitmask;
17760
17761 if (datasz == 4)
17762 bitmask = byte_get (ptr, 4);
17763 else
17764 bitmask = 0;
17765
17766 switch (type)
17767 {
17768 case GNU_PROPERTY_X86_ISA_1_USED:
17769 if (datasz != 4)
17770 printf (_("x86 ISA used: <corrupt length: %#x> "),
17771 datasz);
17772 else
17773 {
17774 printf ("x86 ISA used: ");
17775 decode_x86_isa (bitmask);
17776 }
17777 goto next;
17778
17779 case GNU_PROPERTY_X86_ISA_1_NEEDED:
17780 if (datasz != 4)
17781 printf (_("x86 ISA needed: <corrupt length: %#x> "),
17782 datasz);
17783 else
17784 {
17785 printf ("x86 ISA needed: ");
17786 decode_x86_isa (bitmask);
17787 }
17788 goto next;
17789
17790 case GNU_PROPERTY_X86_FEATURE_1_AND:
17791 if (datasz != 4)
17792 printf (_("x86 feature: <corrupt length: %#x> "),
17793 datasz);
17794 else
17795 {
17796 printf ("x86 feature: ");
17797 decode_x86_feature_1 (bitmask);
17798 }
17799 goto next;
17800
17801 case GNU_PROPERTY_X86_FEATURE_2_USED:
17802 if (datasz != 4)
17803 printf (_("x86 feature used: <corrupt length: %#x> "),
17804 datasz);
17805 else
17806 {
17807 printf ("x86 feature used: ");
17808 decode_x86_feature_2 (bitmask);
17809 }
17810 goto next;
17811
17812 case GNU_PROPERTY_X86_FEATURE_2_NEEDED:
17813 if (datasz != 4)
17814 printf (_("x86 feature needed: <corrupt length: %#x> "), datasz);
17815 else
17816 {
17817 printf ("x86 feature needed: ");
17818 decode_x86_feature_2 (bitmask);
17819 }
17820 goto next;
17821
17822 case GNU_PROPERTY_X86_COMPAT_ISA_1_USED:
17823 if (datasz != 4)
17824 printf (_("x86 ISA used: <corrupt length: %#x> "),
17825 datasz);
17826 else
17827 {
17828 printf ("x86 ISA used: ");
17829 decode_x86_compat_isa (bitmask);
17830 }
17831 goto next;
17832
17833 case GNU_PROPERTY_X86_COMPAT_ISA_1_NEEDED:
17834 if (datasz != 4)
17835 printf (_("x86 ISA needed: <corrupt length: %#x> "),
17836 datasz);
17837 else
17838 {
17839 printf ("x86 ISA needed: ");
17840 decode_x86_compat_isa (bitmask);
17841 }
17842 goto next;
17843
17844 default:
17845 break;
17846 }
17847 }
17848 else if (filedata->file_header.e_machine == EM_AARCH64)
17849 {
17850 if (type == GNU_PROPERTY_AARCH64_FEATURE_1_AND)
17851 {
17852 printf ("AArch64 feature: ");
17853 if (datasz != 4)
17854 printf (_("<corrupt length: %#x> "), datasz);
17855 else
17856 decode_aarch64_feature_1_and (byte_get (ptr, 4));
17857 goto next;
17858 }
17859 }
17860 }
17861 else
17862 {
17863 switch (type)
17864 {
17865 case GNU_PROPERTY_STACK_SIZE:
17866 printf (_("stack size: "));
17867 if (datasz != size)
17868 printf (_("<corrupt length: %#x> "), datasz);
17869 else
17870 printf ("%#lx", (unsigned long) byte_get (ptr, size));
17871 goto next;
17872
17873 case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
17874 printf ("no copy on protected ");
17875 if (datasz)
17876 printf (_("<corrupt length: %#x> "), datasz);
17877 goto next;
17878
17879 default:
17880 break;
17881 }
17882 }
17883
17884 if (type < GNU_PROPERTY_LOPROC)
17885 printf (_("<unknown type %#x data: "), type);
17886 else if (type < GNU_PROPERTY_LOUSER)
17887 printf (_("<procesor-specific type %#x data: "), type);
17888 else
17889 printf (_("<application-specific type %#x data: "), type);
17890 for (j = 0; j < datasz; ++j)
17891 printf ("%02x ", ptr[j] & 0xff);
17892 printf (">");
17893
17894 next:
17895 ptr += ((datasz + (size - 1)) & ~ (size - 1));
17896 if (ptr == ptr_end)
17897 break;
17898
17899 if (do_wide)
17900 printf (", ");
17901 else
17902 printf ("\n\t");
17903 }
17904
17905 printf ("\n");
17906 }
17907
17908 static bfd_boolean
17909 print_gnu_note (Filedata * filedata, Elf_Internal_Note *pnote)
17910 {
17911 /* NB/ Keep this switch statement in sync with get_gnu_elf_note_type (). */
17912 switch (pnote->type)
17913 {
17914 case NT_GNU_BUILD_ID:
17915 {
17916 unsigned long i;
17917
17918 printf (_(" Build ID: "));
17919 for (i = 0; i < pnote->descsz; ++i)
17920 printf ("%02x", pnote->descdata[i] & 0xff);
17921 printf ("\n");
17922 }
17923 break;
17924
17925 case NT_GNU_ABI_TAG:
17926 {
17927 unsigned long os, major, minor, subminor;
17928 const char *osname;
17929
17930 /* PR 17531: file: 030-599401-0.004. */
17931 if (pnote->descsz < 16)
17932 {
17933 printf (_(" <corrupt GNU_ABI_TAG>\n"));
17934 break;
17935 }
17936
17937 os = byte_get ((unsigned char *) pnote->descdata, 4);
17938 major = byte_get ((unsigned char *) pnote->descdata + 4, 4);
17939 minor = byte_get ((unsigned char *) pnote->descdata + 8, 4);
17940 subminor = byte_get ((unsigned char *) pnote->descdata + 12, 4);
17941
17942 switch (os)
17943 {
17944 case GNU_ABI_TAG_LINUX:
17945 osname = "Linux";
17946 break;
17947 case GNU_ABI_TAG_HURD:
17948 osname = "Hurd";
17949 break;
17950 case GNU_ABI_TAG_SOLARIS:
17951 osname = "Solaris";
17952 break;
17953 case GNU_ABI_TAG_FREEBSD:
17954 osname = "FreeBSD";
17955 break;
17956 case GNU_ABI_TAG_NETBSD:
17957 osname = "NetBSD";
17958 break;
17959 case GNU_ABI_TAG_SYLLABLE:
17960 osname = "Syllable";
17961 break;
17962 case GNU_ABI_TAG_NACL:
17963 osname = "NaCl";
17964 break;
17965 default:
17966 osname = "Unknown";
17967 break;
17968 }
17969
17970 printf (_(" OS: %s, ABI: %ld.%ld.%ld\n"), osname,
17971 major, minor, subminor);
17972 }
17973 break;
17974
17975 case NT_GNU_GOLD_VERSION:
17976 {
17977 unsigned long i;
17978
17979 printf (_(" Version: "));
17980 for (i = 0; i < pnote->descsz && pnote->descdata[i] != '\0'; ++i)
17981 printf ("%c", pnote->descdata[i]);
17982 printf ("\n");
17983 }
17984 break;
17985
17986 case NT_GNU_HWCAP:
17987 {
17988 unsigned long num_entries, mask;
17989
17990 /* Hardware capabilities information. Word 0 is the number of entries.
17991 Word 1 is a bitmask of enabled entries. The rest of the descriptor
17992 is a series of entries, where each entry is a single byte followed
17993 by a nul terminated string. The byte gives the bit number to test
17994 if enabled in the bitmask. */
17995 printf (_(" Hardware Capabilities: "));
17996 if (pnote->descsz < 8)
17997 {
17998 error (_("<corrupt GNU_HWCAP>\n"));
17999 return FALSE;
18000 }
18001 num_entries = byte_get ((unsigned char *) pnote->descdata, 4);
18002 mask = byte_get ((unsigned char *) pnote->descdata + 4, 4);
18003 printf (_("num entries: %ld, enabled mask: %lx\n"), num_entries, mask);
18004 /* FIXME: Add code to display the entries... */
18005 }
18006 break;
18007
18008 case NT_GNU_PROPERTY_TYPE_0:
18009 print_gnu_property_note (filedata, pnote);
18010 break;
18011
18012 default:
18013 /* Handle unrecognised types. An error message should have already been
18014 created by get_gnu_elf_note_type(), so all that we need to do is to
18015 display the data. */
18016 {
18017 unsigned long i;
18018
18019 printf (_(" Description data: "));
18020 for (i = 0; i < pnote->descsz; ++i)
18021 printf ("%02x ", pnote->descdata[i] & 0xff);
18022 printf ("\n");
18023 }
18024 break;
18025 }
18026
18027 return TRUE;
18028 }
18029
18030 static const char *
18031 get_v850_elf_note_type (enum v850_notes n_type)
18032 {
18033 static char buff[64];
18034
18035 switch (n_type)
18036 {
18037 case V850_NOTE_ALIGNMENT: return _("Alignment of 8-byte objects");
18038 case V850_NOTE_DATA_SIZE: return _("Sizeof double and long double");
18039 case V850_NOTE_FPU_INFO: return _("Type of FPU support needed");
18040 case V850_NOTE_SIMD_INFO: return _("Use of SIMD instructions");
18041 case V850_NOTE_CACHE_INFO: return _("Use of cache");
18042 case V850_NOTE_MMU_INFO: return _("Use of MMU");
18043 default:
18044 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), n_type);
18045 return buff;
18046 }
18047 }
18048
18049 static bfd_boolean
18050 print_v850_note (Elf_Internal_Note * pnote)
18051 {
18052 unsigned int val;
18053
18054 if (pnote->descsz != 4)
18055 return FALSE;
18056
18057 val = byte_get ((unsigned char *) pnote->descdata, pnote->descsz);
18058
18059 if (val == 0)
18060 {
18061 printf (_("not set\n"));
18062 return TRUE;
18063 }
18064
18065 switch (pnote->type)
18066 {
18067 case V850_NOTE_ALIGNMENT:
18068 switch (val)
18069 {
18070 case EF_RH850_DATA_ALIGN4: printf (_("4-byte\n")); return TRUE;
18071 case EF_RH850_DATA_ALIGN8: printf (_("8-byte\n")); return TRUE;
18072 }
18073 break;
18074
18075 case V850_NOTE_DATA_SIZE:
18076 switch (val)
18077 {
18078 case EF_RH850_DOUBLE32: printf (_("4-bytes\n")); return TRUE;
18079 case EF_RH850_DOUBLE64: printf (_("8-bytes\n")); return TRUE;
18080 }
18081 break;
18082
18083 case V850_NOTE_FPU_INFO:
18084 switch (val)
18085 {
18086 case EF_RH850_FPU20: printf (_("FPU-2.0\n")); return TRUE;
18087 case EF_RH850_FPU30: printf (_("FPU-3.0\n")); return TRUE;
18088 }
18089 break;
18090
18091 case V850_NOTE_MMU_INFO:
18092 case V850_NOTE_CACHE_INFO:
18093 case V850_NOTE_SIMD_INFO:
18094 if (val == EF_RH850_SIMD)
18095 {
18096 printf (_("yes\n"));
18097 return TRUE;
18098 }
18099 break;
18100
18101 default:
18102 /* An 'unknown note type' message will already have been displayed. */
18103 break;
18104 }
18105
18106 printf (_("unknown value: %x\n"), val);
18107 return FALSE;
18108 }
18109
18110 static bfd_boolean
18111 process_netbsd_elf_note (Elf_Internal_Note * pnote)
18112 {
18113 unsigned int version;
18114
18115 switch (pnote->type)
18116 {
18117 case NT_NETBSD_IDENT:
18118 version = byte_get ((unsigned char *) pnote->descdata, sizeof (version));
18119 if ((version / 10000) % 100)
18120 printf (" NetBSD\t\t0x%08lx\tIDENT %u (%u.%u%s%c)\n", pnote->descsz,
18121 version, version / 100000000, (version / 1000000) % 100,
18122 (version / 10000) % 100 > 26 ? "Z" : "",
18123 'A' + (version / 10000) % 26);
18124 else
18125 printf (" NetBSD\t\t0x%08lx\tIDENT %u (%u.%u.%u)\n", pnote->descsz,
18126 version, version / 100000000, (version / 1000000) % 100,
18127 (version / 100) % 100);
18128 return TRUE;
18129
18130 case NT_NETBSD_MARCH:
18131 printf (" NetBSD\t\t0x%08lx\tMARCH <%s>\n", pnote->descsz,
18132 pnote->descdata);
18133 return TRUE;
18134
18135 #ifdef NT_NETBSD_PAX
18136 case NT_NETBSD_PAX:
18137 version = byte_get ((unsigned char *) pnote->descdata, sizeof (version));
18138 printf (" NetBSD\t\t0x%08lx\tPaX <%s%s%s%s%s%s>\n", pnote->descsz,
18139 ((version & NT_NETBSD_PAX_MPROTECT) ? "+mprotect" : ""),
18140 ((version & NT_NETBSD_PAX_NOMPROTECT) ? "-mprotect" : ""),
18141 ((version & NT_NETBSD_PAX_GUARD) ? "+guard" : ""),
18142 ((version & NT_NETBSD_PAX_NOGUARD) ? "-guard" : ""),
18143 ((version & NT_NETBSD_PAX_ASLR) ? "+ASLR" : ""),
18144 ((version & NT_NETBSD_PAX_NOASLR) ? "-ASLR" : ""));
18145 return TRUE;
18146 #endif
18147
18148 default:
18149 printf (" NetBSD\t0x%08lx\tUnknown note type: (0x%08lx)\n", pnote->descsz,
18150 pnote->type);
18151 return FALSE;
18152 }
18153 }
18154
18155 static const char *
18156 get_freebsd_elfcore_note_type (Filedata * filedata, unsigned e_type)
18157 {
18158 switch (e_type)
18159 {
18160 case NT_FREEBSD_THRMISC:
18161 return _("NT_THRMISC (thrmisc structure)");
18162 case NT_FREEBSD_PROCSTAT_PROC:
18163 return _("NT_PROCSTAT_PROC (proc data)");
18164 case NT_FREEBSD_PROCSTAT_FILES:
18165 return _("NT_PROCSTAT_FILES (files data)");
18166 case NT_FREEBSD_PROCSTAT_VMMAP:
18167 return _("NT_PROCSTAT_VMMAP (vmmap data)");
18168 case NT_FREEBSD_PROCSTAT_GROUPS:
18169 return _("NT_PROCSTAT_GROUPS (groups data)");
18170 case NT_FREEBSD_PROCSTAT_UMASK:
18171 return _("NT_PROCSTAT_UMASK (umask data)");
18172 case NT_FREEBSD_PROCSTAT_RLIMIT:
18173 return _("NT_PROCSTAT_RLIMIT (rlimit data)");
18174 case NT_FREEBSD_PROCSTAT_OSREL:
18175 return _("NT_PROCSTAT_OSREL (osreldate data)");
18176 case NT_FREEBSD_PROCSTAT_PSSTRINGS:
18177 return _("NT_PROCSTAT_PSSTRINGS (ps_strings data)");
18178 case NT_FREEBSD_PROCSTAT_AUXV:
18179 return _("NT_PROCSTAT_AUXV (auxv data)");
18180 case NT_FREEBSD_PTLWPINFO:
18181 return _("NT_PTLWPINFO (ptrace_lwpinfo structure)");
18182 }
18183 return get_note_type (filedata, e_type);
18184 }
18185
18186 static const char *
18187 get_netbsd_elfcore_note_type (Filedata * filedata, unsigned e_type)
18188 {
18189 static char buff[64];
18190
18191 switch (e_type)
18192 {
18193 case NT_NETBSDCORE_PROCINFO:
18194 /* NetBSD core "procinfo" structure. */
18195 return _("NetBSD procinfo structure");
18196
18197 #ifdef NT_NETBSDCORE_AUXV
18198 case NT_NETBSDCORE_AUXV:
18199 return _("NetBSD ELF auxiliary vector data");
18200 #endif
18201
18202 default:
18203 /* As of Jan 2002 there are no other machine-independent notes
18204 defined for NetBSD core files. If the note type is less
18205 than the start of the machine-dependent note types, we don't
18206 understand it. */
18207
18208 if (e_type < NT_NETBSDCORE_FIRSTMACH)
18209 {
18210 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
18211 return buff;
18212 }
18213 break;
18214 }
18215
18216 switch (filedata->file_header.e_machine)
18217 {
18218 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0
18219 and PT_GETFPREGS == mach+2. */
18220
18221 case EM_OLD_ALPHA:
18222 case EM_ALPHA:
18223 case EM_SPARC:
18224 case EM_SPARC32PLUS:
18225 case EM_SPARCV9:
18226 switch (e_type)
18227 {
18228 case NT_NETBSDCORE_FIRSTMACH + 0:
18229 return _("PT_GETREGS (reg structure)");
18230 case NT_NETBSDCORE_FIRSTMACH + 2:
18231 return _("PT_GETFPREGS (fpreg structure)");
18232 default:
18233 break;
18234 }
18235 break;
18236
18237 /* On SuperH, PT_GETREGS == mach+3 and PT_GETFPREGS == mach+5.
18238 There's also old PT___GETREGS40 == mach + 1 for old reg
18239 structure which lacks GBR. */
18240 case EM_SH:
18241 switch (e_type)
18242 {
18243 case NT_NETBSDCORE_FIRSTMACH + 1:
18244 return _("PT___GETREGS40 (old reg structure)");
18245 case NT_NETBSDCORE_FIRSTMACH + 3:
18246 return _("PT_GETREGS (reg structure)");
18247 case NT_NETBSDCORE_FIRSTMACH + 5:
18248 return _("PT_GETFPREGS (fpreg structure)");
18249 default:
18250 break;
18251 }
18252 break;
18253
18254 /* On all other arch's, PT_GETREGS == mach+1 and
18255 PT_GETFPREGS == mach+3. */
18256 default:
18257 switch (e_type)
18258 {
18259 case NT_NETBSDCORE_FIRSTMACH + 1:
18260 return _("PT_GETREGS (reg structure)");
18261 case NT_NETBSDCORE_FIRSTMACH + 3:
18262 return _("PT_GETFPREGS (fpreg structure)");
18263 default:
18264 break;
18265 }
18266 }
18267
18268 snprintf (buff, sizeof (buff), "PT_FIRSTMACH+%d",
18269 e_type - NT_NETBSDCORE_FIRSTMACH);
18270 return buff;
18271 }
18272
18273 static const char *
18274 get_stapsdt_note_type (unsigned e_type)
18275 {
18276 static char buff[64];
18277
18278 switch (e_type)
18279 {
18280 case NT_STAPSDT:
18281 return _("NT_STAPSDT (SystemTap probe descriptors)");
18282
18283 default:
18284 break;
18285 }
18286
18287 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
18288 return buff;
18289 }
18290
18291 static bfd_boolean
18292 print_stapsdt_note (Elf_Internal_Note *pnote)
18293 {
18294 size_t len, maxlen;
18295 unsigned long addr_size = is_32bit_elf ? 4 : 8;
18296 char *data = pnote->descdata;
18297 char *data_end = pnote->descdata + pnote->descsz;
18298 bfd_vma pc, base_addr, semaphore;
18299 char *provider, *probe, *arg_fmt;
18300
18301 if (pnote->descsz < (addr_size * 3))
18302 goto stapdt_note_too_small;
18303
18304 pc = byte_get ((unsigned char *) data, addr_size);
18305 data += addr_size;
18306
18307 base_addr = byte_get ((unsigned char *) data, addr_size);
18308 data += addr_size;
18309
18310 semaphore = byte_get ((unsigned char *) data, addr_size);
18311 data += addr_size;
18312
18313 if (data >= data_end)
18314 goto stapdt_note_too_small;
18315 maxlen = data_end - data;
18316 len = strnlen (data, maxlen);
18317 if (len < maxlen)
18318 {
18319 provider = data;
18320 data += len + 1;
18321 }
18322 else
18323 goto stapdt_note_too_small;
18324
18325 if (data >= data_end)
18326 goto stapdt_note_too_small;
18327 maxlen = data_end - data;
18328 len = strnlen (data, maxlen);
18329 if (len < maxlen)
18330 {
18331 probe = data;
18332 data += len + 1;
18333 }
18334 else
18335 goto stapdt_note_too_small;
18336
18337 if (data >= data_end)
18338 goto stapdt_note_too_small;
18339 maxlen = data_end - data;
18340 len = strnlen (data, maxlen);
18341 if (len < maxlen)
18342 {
18343 arg_fmt = data;
18344 data += len + 1;
18345 }
18346 else
18347 goto stapdt_note_too_small;
18348
18349 printf (_(" Provider: %s\n"), provider);
18350 printf (_(" Name: %s\n"), probe);
18351 printf (_(" Location: "));
18352 print_vma (pc, FULL_HEX);
18353 printf (_(", Base: "));
18354 print_vma (base_addr, FULL_HEX);
18355 printf (_(", Semaphore: "));
18356 print_vma (semaphore, FULL_HEX);
18357 printf ("\n");
18358 printf (_(" Arguments: %s\n"), arg_fmt);
18359
18360 return data == data_end;
18361
18362 stapdt_note_too_small:
18363 printf (_(" <corrupt - note is too small>\n"));
18364 error (_("corrupt stapdt note - the data size is too small\n"));
18365 return FALSE;
18366 }
18367
18368 static const char *
18369 get_ia64_vms_note_type (unsigned e_type)
18370 {
18371 static char buff[64];
18372
18373 switch (e_type)
18374 {
18375 case NT_VMS_MHD:
18376 return _("NT_VMS_MHD (module header)");
18377 case NT_VMS_LNM:
18378 return _("NT_VMS_LNM (language name)");
18379 case NT_VMS_SRC:
18380 return _("NT_VMS_SRC (source files)");
18381 case NT_VMS_TITLE:
18382 return "NT_VMS_TITLE";
18383 case NT_VMS_EIDC:
18384 return _("NT_VMS_EIDC (consistency check)");
18385 case NT_VMS_FPMODE:
18386 return _("NT_VMS_FPMODE (FP mode)");
18387 case NT_VMS_LINKTIME:
18388 return "NT_VMS_LINKTIME";
18389 case NT_VMS_IMGNAM:
18390 return _("NT_VMS_IMGNAM (image name)");
18391 case NT_VMS_IMGID:
18392 return _("NT_VMS_IMGID (image id)");
18393 case NT_VMS_LINKID:
18394 return _("NT_VMS_LINKID (link id)");
18395 case NT_VMS_IMGBID:
18396 return _("NT_VMS_IMGBID (build id)");
18397 case NT_VMS_GSTNAM:
18398 return _("NT_VMS_GSTNAM (sym table name)");
18399 case NT_VMS_ORIG_DYN:
18400 return "NT_VMS_ORIG_DYN";
18401 case NT_VMS_PATCHTIME:
18402 return "NT_VMS_PATCHTIME";
18403 default:
18404 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
18405 return buff;
18406 }
18407 }
18408
18409 static bfd_boolean
18410 print_ia64_vms_note (Elf_Internal_Note * pnote)
18411 {
18412 int maxlen = pnote->descsz;
18413
18414 if (maxlen < 2 || (unsigned long) maxlen != pnote->descsz)
18415 goto desc_size_fail;
18416
18417 switch (pnote->type)
18418 {
18419 case NT_VMS_MHD:
18420 if (maxlen <= 36)
18421 goto desc_size_fail;
18422
18423 int l = (int) strnlen (pnote->descdata + 34, maxlen - 34);
18424
18425 printf (_(" Creation date : %.17s\n"), pnote->descdata);
18426 printf (_(" Last patch date: %.17s\n"), pnote->descdata + 17);
18427 if (l + 34 < maxlen)
18428 {
18429 printf (_(" Module name : %s\n"), pnote->descdata + 34);
18430 if (l + 35 < maxlen)
18431 printf (_(" Module version : %s\n"), pnote->descdata + 34 + l + 1);
18432 else
18433 printf (_(" Module version : <missing>\n"));
18434 }
18435 else
18436 {
18437 printf (_(" Module name : <missing>\n"));
18438 printf (_(" Module version : <missing>\n"));
18439 }
18440 break;
18441
18442 case NT_VMS_LNM:
18443 printf (_(" Language: %.*s\n"), maxlen, pnote->descdata);
18444 break;
18445
18446 #ifdef BFD64
18447 case NT_VMS_FPMODE:
18448 printf (_(" Floating Point mode: "));
18449 if (maxlen < 8)
18450 goto desc_size_fail;
18451 /* FIXME: Generate an error if descsz > 8 ? */
18452
18453 printf ("0x%016" BFD_VMA_FMT "x\n",
18454 (bfd_vma) byte_get ((unsigned char *)pnote->descdata, 8));
18455 break;
18456
18457 case NT_VMS_LINKTIME:
18458 printf (_(" Link time: "));
18459 if (maxlen < 8)
18460 goto desc_size_fail;
18461 /* FIXME: Generate an error if descsz > 8 ? */
18462
18463 print_vms_time
18464 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
18465 printf ("\n");
18466 break;
18467
18468 case NT_VMS_PATCHTIME:
18469 printf (_(" Patch time: "));
18470 if (maxlen < 8)
18471 goto desc_size_fail;
18472 /* FIXME: Generate an error if descsz > 8 ? */
18473
18474 print_vms_time
18475 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
18476 printf ("\n");
18477 break;
18478
18479 case NT_VMS_ORIG_DYN:
18480 if (maxlen < 34)
18481 goto desc_size_fail;
18482
18483 printf (_(" Major id: %u, minor id: %u\n"),
18484 (unsigned) byte_get ((unsigned char *)pnote->descdata, 4),
18485 (unsigned) byte_get ((unsigned char *)pnote->descdata + 4, 4));
18486 printf (_(" Last modified : "));
18487 print_vms_time
18488 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata + 8, 8));
18489 printf (_("\n Link flags : "));
18490 printf ("0x%016" BFD_VMA_FMT "x\n",
18491 (bfd_vma) byte_get ((unsigned char *)pnote->descdata + 16, 8));
18492 printf (_(" Header flags: 0x%08x\n"),
18493 (unsigned) byte_get ((unsigned char *)pnote->descdata + 24, 4));
18494 printf (_(" Image id : %.*s\n"), maxlen - 32, pnote->descdata + 32);
18495 break;
18496 #endif
18497
18498 case NT_VMS_IMGNAM:
18499 printf (_(" Image name: %.*s\n"), maxlen, pnote->descdata);
18500 break;
18501
18502 case NT_VMS_GSTNAM:
18503 printf (_(" Global symbol table name: %.*s\n"), maxlen, pnote->descdata);
18504 break;
18505
18506 case NT_VMS_IMGID:
18507 printf (_(" Image id: %.*s\n"), maxlen, pnote->descdata);
18508 break;
18509
18510 case NT_VMS_LINKID:
18511 printf (_(" Linker id: %.*s\n"), maxlen, pnote->descdata);
18512 break;
18513
18514 default:
18515 return FALSE;
18516 }
18517
18518 return TRUE;
18519
18520 desc_size_fail:
18521 printf (_(" <corrupt - data size is too small>\n"));
18522 error (_("corrupt IA64 note: data size is too small\n"));
18523 return FALSE;
18524 }
18525
18526 /* Find the symbol associated with a build attribute that is attached
18527 to address OFFSET. If PNAME is non-NULL then store the name of
18528 the symbol (if found) in the provided pointer, Returns NULL if a
18529 symbol could not be found. */
18530
18531 static Elf_Internal_Sym *
18532 get_symbol_for_build_attribute (Filedata * filedata,
18533 unsigned long offset,
18534 bfd_boolean is_open_attr,
18535 const char ** pname)
18536 {
18537 static Filedata * saved_filedata = NULL;
18538 static char * strtab;
18539 static unsigned long strtablen;
18540 static Elf_Internal_Sym * symtab;
18541 static unsigned long nsyms;
18542 Elf_Internal_Sym * saved_sym = NULL;
18543 Elf_Internal_Sym * sym;
18544
18545 if (filedata->section_headers != NULL
18546 && (saved_filedata == NULL || filedata != saved_filedata))
18547 {
18548 Elf_Internal_Shdr * symsec;
18549
18550 /* Load the symbol and string sections. */
18551 for (symsec = filedata->section_headers;
18552 symsec < filedata->section_headers + filedata->file_header.e_shnum;
18553 symsec ++)
18554 {
18555 if (symsec->sh_type == SHT_SYMTAB)
18556 {
18557 symtab = GET_ELF_SYMBOLS (filedata, symsec, & nsyms);
18558
18559 if (symsec->sh_link < filedata->file_header.e_shnum)
18560 {
18561 Elf_Internal_Shdr * strtab_sec = filedata->section_headers + symsec->sh_link;
18562
18563 strtab = (char *) get_data (NULL, filedata, strtab_sec->sh_offset,
18564 1, strtab_sec->sh_size,
18565 _("string table"));
18566 strtablen = strtab != NULL ? strtab_sec->sh_size : 0;
18567 }
18568 }
18569 }
18570 saved_filedata = filedata;
18571 }
18572
18573 if (symtab == NULL || strtab == NULL)
18574 return NULL;
18575
18576 /* Find a symbol whose value matches offset. */
18577 for (sym = symtab; sym < symtab + nsyms; sym ++)
18578 if (sym->st_value == offset)
18579 {
18580 if (sym->st_name >= strtablen)
18581 /* Huh ? This should not happen. */
18582 continue;
18583
18584 if (strtab[sym->st_name] == 0)
18585 continue;
18586
18587 /* The AArch64 and ARM architectures define mapping symbols
18588 (eg $d, $x, $t) which we want to ignore. */
18589 if (strtab[sym->st_name] == '$'
18590 && strtab[sym->st_name + 1] != 0
18591 && strtab[sym->st_name + 2] == 0)
18592 continue;
18593
18594 if (is_open_attr)
18595 {
18596 /* For OPEN attributes we prefer GLOBAL over LOCAL symbols
18597 and FILE or OBJECT symbols over NOTYPE symbols. We skip
18598 FUNC symbols entirely. */
18599 switch (ELF_ST_TYPE (sym->st_info))
18600 {
18601 case STT_OBJECT:
18602 case STT_FILE:
18603 saved_sym = sym;
18604 if (sym->st_size)
18605 {
18606 /* If the symbol has a size associated
18607 with it then we can stop searching. */
18608 sym = symtab + nsyms;
18609 }
18610 continue;
18611
18612 case STT_FUNC:
18613 /* Ignore function symbols. */
18614 continue;
18615
18616 default:
18617 break;
18618 }
18619
18620 switch (ELF_ST_BIND (sym->st_info))
18621 {
18622 case STB_GLOBAL:
18623 if (saved_sym == NULL
18624 || ELF_ST_TYPE (saved_sym->st_info) != STT_OBJECT)
18625 saved_sym = sym;
18626 break;
18627
18628 case STB_LOCAL:
18629 if (saved_sym == NULL)
18630 saved_sym = sym;
18631 break;
18632
18633 default:
18634 break;
18635 }
18636 }
18637 else
18638 {
18639 if (ELF_ST_TYPE (sym->st_info) != STT_FUNC)
18640 continue;
18641
18642 saved_sym = sym;
18643 break;
18644 }
18645 }
18646
18647 if (saved_sym && pname)
18648 * pname = strtab + saved_sym->st_name;
18649
18650 return saved_sym;
18651 }
18652
18653 /* Returns true iff addr1 and addr2 are in the same section. */
18654
18655 static bfd_boolean
18656 same_section (Filedata * filedata, unsigned long addr1, unsigned long addr2)
18657 {
18658 Elf_Internal_Shdr * a1;
18659 Elf_Internal_Shdr * a2;
18660
18661 a1 = find_section_by_address (filedata, addr1);
18662 a2 = find_section_by_address (filedata, addr2);
18663
18664 return a1 == a2 && a1 != NULL;
18665 }
18666
18667 static bfd_boolean
18668 print_gnu_build_attribute_description (Elf_Internal_Note * pnote,
18669 Filedata * filedata)
18670 {
18671 static unsigned long global_offset = 0;
18672 static unsigned long global_end = 0;
18673 static unsigned long func_offset = 0;
18674 static unsigned long func_end = 0;
18675
18676 Elf_Internal_Sym * sym;
18677 const char * name;
18678 unsigned long start;
18679 unsigned long end;
18680 bfd_boolean is_open_attr = pnote->type == NT_GNU_BUILD_ATTRIBUTE_OPEN;
18681
18682 switch (pnote->descsz)
18683 {
18684 case 0:
18685 /* A zero-length description means that the range of
18686 the previous note of the same type should be used. */
18687 if (is_open_attr)
18688 {
18689 if (global_end > global_offset)
18690 printf (_(" Applies to region from %#lx to %#lx\n"),
18691 global_offset, global_end);
18692 else
18693 printf (_(" Applies to region from %#lx\n"), global_offset);
18694 }
18695 else
18696 {
18697 if (func_end > func_offset)
18698 printf (_(" Applies to region from %#lx to %#lx\n"), func_offset, func_end);
18699 else
18700 printf (_(" Applies to region from %#lx\n"), func_offset);
18701 }
18702 return TRUE;
18703
18704 case 4:
18705 start = byte_get ((unsigned char *) pnote->descdata, 4);
18706 end = 0;
18707 break;
18708
18709 case 8:
18710 if (is_32bit_elf)
18711 {
18712 /* FIXME: We should check that version 3+ notes are being used here... */
18713 start = byte_get ((unsigned char *) pnote->descdata, 4);
18714 end = byte_get ((unsigned char *) pnote->descdata + 4, 4);
18715 }
18716 else
18717 {
18718 start = byte_get ((unsigned char *) pnote->descdata, 8);
18719 end = 0;
18720 }
18721 break;
18722
18723 case 16:
18724 start = byte_get ((unsigned char *) pnote->descdata, 8);
18725 end = byte_get ((unsigned char *) pnote->descdata + 8, 8);
18726 break;
18727
18728 default:
18729 error (_(" <invalid description size: %lx>\n"), pnote->descsz);
18730 printf (_(" <invalid descsz>"));
18731 return FALSE;
18732 }
18733
18734 name = NULL;
18735 sym = get_symbol_for_build_attribute (filedata, start, is_open_attr, & name);
18736 /* As of version 5 of the annobin plugin, filename symbols are biased by 2
18737 in order to avoid them being confused with the start address of the
18738 first function in the file... */
18739 if (sym == NULL && is_open_attr)
18740 sym = get_symbol_for_build_attribute (filedata, start + 2, is_open_attr,
18741 & name);
18742
18743 if (end == 0 && sym != NULL && sym->st_size > 0)
18744 end = start + sym->st_size;
18745
18746 if (is_open_attr)
18747 {
18748 /* FIXME: Need to properly allow for section alignment.
18749 16 is just the alignment used on x86_64. */
18750 if (global_end > 0
18751 && start > BFD_ALIGN (global_end, 16)
18752 /* Build notes are not guaranteed to be organised in order of
18753 increasing address, but we should find the all of the notes
18754 for one section in the same place. */
18755 && same_section (filedata, start, global_end))
18756 warn (_("Gap in build notes detected from %#lx to %#lx\n"),
18757 global_end + 1, start - 1);
18758
18759 printf (_(" Applies to region from %#lx"), start);
18760 global_offset = start;
18761
18762 if (end)
18763 {
18764 printf (_(" to %#lx"), end);
18765 global_end = end;
18766 }
18767 }
18768 else
18769 {
18770 printf (_(" Applies to region from %#lx"), start);
18771 func_offset = start;
18772
18773 if (end)
18774 {
18775 printf (_(" to %#lx"), end);
18776 func_end = end;
18777 }
18778 }
18779
18780 if (sym && name)
18781 printf (_(" (%s)"), name);
18782
18783 printf ("\n");
18784 return TRUE;
18785 }
18786
18787 static bfd_boolean
18788 print_gnu_build_attribute_name (Elf_Internal_Note * pnote)
18789 {
18790 static const char string_expected [2] = { GNU_BUILD_ATTRIBUTE_TYPE_STRING, 0 };
18791 static const char number_expected [2] = { GNU_BUILD_ATTRIBUTE_TYPE_NUMERIC, 0 };
18792 static const char bool_expected [3] = { GNU_BUILD_ATTRIBUTE_TYPE_BOOL_TRUE, GNU_BUILD_ATTRIBUTE_TYPE_BOOL_FALSE, 0 };
18793 char name_type;
18794 char name_attribute;
18795 const char * expected_types;
18796 const char * name = pnote->namedata;
18797 const char * text;
18798 signed int left;
18799
18800 if (name == NULL || pnote->namesz < 2)
18801 {
18802 error (_("corrupt name field in GNU build attribute note: size = %ld\n"), pnote->namesz);
18803 print_symbol (-20, _(" <corrupt name>"));
18804 return FALSE;
18805 }
18806
18807 if (do_wide)
18808 left = 28;
18809 else
18810 left = 20;
18811
18812 /* Version 2 of the spec adds a "GA" prefix to the name field. */
18813 if (name[0] == 'G' && name[1] == 'A')
18814 {
18815 if (pnote->namesz < 4)
18816 {
18817 error (_("corrupt name field in GNU build attribute note: size = %ld\n"), pnote->namesz);
18818 print_symbol (-20, _(" <corrupt name>"));
18819 return FALSE;
18820 }
18821
18822 printf ("GA");
18823 name += 2;
18824 left -= 2;
18825 }
18826
18827 switch ((name_type = * name))
18828 {
18829 case GNU_BUILD_ATTRIBUTE_TYPE_NUMERIC:
18830 case GNU_BUILD_ATTRIBUTE_TYPE_STRING:
18831 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_TRUE:
18832 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_FALSE:
18833 printf ("%c", * name);
18834 left --;
18835 break;
18836 default:
18837 error (_("unrecognised attribute type in name field: %d\n"), name_type);
18838 print_symbol (-20, _("<unknown name type>"));
18839 return FALSE;
18840 }
18841
18842 ++ name;
18843 text = NULL;
18844
18845 switch ((name_attribute = * name))
18846 {
18847 case GNU_BUILD_ATTRIBUTE_VERSION:
18848 text = _("<version>");
18849 expected_types = string_expected;
18850 ++ name;
18851 break;
18852 case GNU_BUILD_ATTRIBUTE_STACK_PROT:
18853 text = _("<stack prot>");
18854 expected_types = "!+*";
18855 ++ name;
18856 break;
18857 case GNU_BUILD_ATTRIBUTE_RELRO:
18858 text = _("<relro>");
18859 expected_types = bool_expected;
18860 ++ name;
18861 break;
18862 case GNU_BUILD_ATTRIBUTE_STACK_SIZE:
18863 text = _("<stack size>");
18864 expected_types = number_expected;
18865 ++ name;
18866 break;
18867 case GNU_BUILD_ATTRIBUTE_TOOL:
18868 text = _("<tool>");
18869 expected_types = string_expected;
18870 ++ name;
18871 break;
18872 case GNU_BUILD_ATTRIBUTE_ABI:
18873 text = _("<ABI>");
18874 expected_types = "$*";
18875 ++ name;
18876 break;
18877 case GNU_BUILD_ATTRIBUTE_PIC:
18878 text = _("<PIC>");
18879 expected_types = number_expected;
18880 ++ name;
18881 break;
18882 case GNU_BUILD_ATTRIBUTE_SHORT_ENUM:
18883 text = _("<short enum>");
18884 expected_types = bool_expected;
18885 ++ name;
18886 break;
18887 default:
18888 if (ISPRINT (* name))
18889 {
18890 int len = strnlen (name, pnote->namesz - (name - pnote->namedata)) + 1;
18891
18892 if (len > left && ! do_wide)
18893 len = left;
18894 printf ("%.*s:", len, name);
18895 left -= len;
18896 name += len;
18897 }
18898 else
18899 {
18900 static char tmpbuf [128];
18901
18902 error (_("unrecognised byte in name field: %d\n"), * name);
18903 sprintf (tmpbuf, _("<unknown:_%d>"), * name);
18904 text = tmpbuf;
18905 name ++;
18906 }
18907 expected_types = "*$!+";
18908 break;
18909 }
18910
18911 if (text)
18912 left -= printf ("%s", text);
18913
18914 if (strchr (expected_types, name_type) == NULL)
18915 warn (_("attribute does not have an expected type (%c)\n"), name_type);
18916
18917 if ((unsigned long)(name - pnote->namedata) > pnote->namesz)
18918 {
18919 error (_("corrupt name field: namesz: %lu but parsing gets to %ld\n"),
18920 (unsigned long) pnote->namesz,
18921 (long) (name - pnote->namedata));
18922 return FALSE;
18923 }
18924
18925 if (left < 1 && ! do_wide)
18926 return TRUE;
18927
18928 switch (name_type)
18929 {
18930 case GNU_BUILD_ATTRIBUTE_TYPE_NUMERIC:
18931 {
18932 unsigned int bytes;
18933 unsigned long long val = 0;
18934 unsigned int shift = 0;
18935 char * decoded = NULL;
18936
18937 bytes = pnote->namesz - (name - pnote->namedata);
18938 if (bytes > 0)
18939 /* The -1 is because the name field is always 0 terminated, and we
18940 want to be able to ensure that the shift in the while loop below
18941 will not overflow. */
18942 -- bytes;
18943
18944 if (bytes > sizeof (val))
18945 {
18946 error (_("corrupt numeric name field: too many bytes in the value: %x\n"),
18947 bytes);
18948 bytes = sizeof (val);
18949 }
18950 /* We do not bother to warn if bytes == 0 as this can
18951 happen with some early versions of the gcc plugin. */
18952
18953 while (bytes --)
18954 {
18955 unsigned long byte = (* name ++) & 0xff;
18956
18957 val |= byte << shift;
18958 shift += 8;
18959 }
18960
18961 switch (name_attribute)
18962 {
18963 case GNU_BUILD_ATTRIBUTE_PIC:
18964 switch (val)
18965 {
18966 case 0: decoded = "static"; break;
18967 case 1: decoded = "pic"; break;
18968 case 2: decoded = "PIC"; break;
18969 case 3: decoded = "pie"; break;
18970 case 4: decoded = "PIE"; break;
18971 default: break;
18972 }
18973 break;
18974 case GNU_BUILD_ATTRIBUTE_STACK_PROT:
18975 switch (val)
18976 {
18977 /* Based upon the SPCT_FLAG_xxx enum values in gcc/cfgexpand.c. */
18978 case 0: decoded = "off"; break;
18979 case 1: decoded = "on"; break;
18980 case 2: decoded = "all"; break;
18981 case 3: decoded = "strong"; break;
18982 case 4: decoded = "explicit"; break;
18983 default: break;
18984 }
18985 break;
18986 default:
18987 break;
18988 }
18989
18990 if (decoded != NULL)
18991 {
18992 print_symbol (-left, decoded);
18993 left = 0;
18994 }
18995 else if (val == 0)
18996 {
18997 printf ("0x0");
18998 left -= 3;
18999 }
19000 else
19001 {
19002 if (do_wide)
19003 left -= printf ("0x%llx", val);
19004 else
19005 left -= printf ("0x%-.*llx", left, val);
19006 }
19007 }
19008 break;
19009 case GNU_BUILD_ATTRIBUTE_TYPE_STRING:
19010 left -= print_symbol (- left, name);
19011 break;
19012 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_TRUE:
19013 left -= print_symbol (- left, "true");
19014 break;
19015 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_FALSE:
19016 left -= print_symbol (- left, "false");
19017 break;
19018 }
19019
19020 if (do_wide && left > 0)
19021 printf ("%-*s", left, " ");
19022
19023 return TRUE;
19024 }
19025
19026 /* Note that by the ELF standard, the name field is already null byte
19027 terminated, and namesz includes the terminating null byte.
19028 I.E. the value of namesz for the name "FSF" is 4.
19029
19030 If the value of namesz is zero, there is no name present. */
19031
19032 static bfd_boolean
19033 process_note (Elf_Internal_Note * pnote,
19034 Filedata * filedata)
19035 {
19036 const char * name = pnote->namesz ? pnote->namedata : "(NONE)";
19037 const char * nt;
19038
19039 if (pnote->namesz == 0)
19040 /* If there is no note name, then use the default set of
19041 note type strings. */
19042 nt = get_note_type (filedata, pnote->type);
19043
19044 else if (const_strneq (pnote->namedata, "GNU"))
19045 /* GNU-specific object file notes. */
19046 nt = get_gnu_elf_note_type (pnote->type);
19047
19048 else if (const_strneq (pnote->namedata, "FreeBSD"))
19049 /* FreeBSD-specific core file notes. */
19050 nt = get_freebsd_elfcore_note_type (filedata, pnote->type);
19051
19052 else if (const_strneq (pnote->namedata, "NetBSD-CORE"))
19053 /* NetBSD-specific core file notes. */
19054 nt = get_netbsd_elfcore_note_type (filedata, pnote->type);
19055
19056 else if (const_strneq (pnote->namedata, "NetBSD"))
19057 /* NetBSD-specific core file notes. */
19058 return process_netbsd_elf_note (pnote);
19059
19060 else if (const_strneq (pnote->namedata, "PaX"))
19061 /* NetBSD-specific core file notes. */
19062 return process_netbsd_elf_note (pnote);
19063
19064 else if (strneq (pnote->namedata, "SPU/", 4))
19065 {
19066 /* SPU-specific core file notes. */
19067 nt = pnote->namedata + 4;
19068 name = "SPU";
19069 }
19070
19071 else if (const_strneq (pnote->namedata, "IPF/VMS"))
19072 /* VMS/ia64-specific file notes. */
19073 nt = get_ia64_vms_note_type (pnote->type);
19074
19075 else if (const_strneq (pnote->namedata, "stapsdt"))
19076 nt = get_stapsdt_note_type (pnote->type);
19077
19078 else
19079 /* Don't recognize this note name; just use the default set of
19080 note type strings. */
19081 nt = get_note_type (filedata, pnote->type);
19082
19083 printf (" ");
19084
19085 if (((const_strneq (pnote->namedata, "GA")
19086 && strchr ("*$!+", pnote->namedata[2]) != NULL)
19087 || strchr ("*$!+", pnote->namedata[0]) != NULL)
19088 && (pnote->type == NT_GNU_BUILD_ATTRIBUTE_OPEN
19089 || pnote->type == NT_GNU_BUILD_ATTRIBUTE_FUNC))
19090 print_gnu_build_attribute_name (pnote);
19091 else
19092 print_symbol (-20, name);
19093
19094 if (do_wide)
19095 printf (" 0x%08lx\t%s\t", pnote->descsz, nt);
19096 else
19097 printf (" 0x%08lx\t%s\n", pnote->descsz, nt);
19098
19099 if (const_strneq (pnote->namedata, "IPF/VMS"))
19100 return print_ia64_vms_note (pnote);
19101 else if (const_strneq (pnote->namedata, "GNU"))
19102 return print_gnu_note (filedata, pnote);
19103 else if (const_strneq (pnote->namedata, "stapsdt"))
19104 return print_stapsdt_note (pnote);
19105 else if (const_strneq (pnote->namedata, "CORE"))
19106 return print_core_note (pnote);
19107 else if (((const_strneq (pnote->namedata, "GA")
19108 && strchr ("*$!+", pnote->namedata[2]) != NULL)
19109 || strchr ("*$!+", pnote->namedata[0]) != NULL)
19110 && (pnote->type == NT_GNU_BUILD_ATTRIBUTE_OPEN
19111 || pnote->type == NT_GNU_BUILD_ATTRIBUTE_FUNC))
19112 return print_gnu_build_attribute_description (pnote, filedata);
19113
19114 if (pnote->descsz)
19115 {
19116 unsigned long i;
19117
19118 printf (_(" description data: "));
19119 for (i = 0; i < pnote->descsz; i++)
19120 printf ("%02x ", pnote->descdata[i]);
19121 if (!do_wide)
19122 printf ("\n");
19123 }
19124
19125 if (do_wide)
19126 printf ("\n");
19127
19128 return TRUE;
19129 }
19130
19131 static bfd_boolean
19132 process_notes_at (Filedata * filedata,
19133 Elf_Internal_Shdr * section,
19134 bfd_vma offset,
19135 bfd_vma length,
19136 bfd_vma align)
19137 {
19138 Elf_External_Note * pnotes;
19139 Elf_External_Note * external;
19140 char * end;
19141 bfd_boolean res = TRUE;
19142
19143 if (length <= 0)
19144 return FALSE;
19145
19146 if (section)
19147 {
19148 pnotes = (Elf_External_Note *) get_section_contents (section, filedata);
19149 if (pnotes)
19150 {
19151 if (! apply_relocations (filedata, section, (unsigned char *) pnotes, length, NULL, NULL))
19152 return FALSE;
19153 }
19154 }
19155 else
19156 pnotes = (Elf_External_Note *) get_data (NULL, filedata, offset, 1, length,
19157 _("notes"));
19158
19159 if (pnotes == NULL)
19160 return FALSE;
19161
19162 external = pnotes;
19163
19164 if (section)
19165 printf (_("\nDisplaying notes found in: %s\n"), printable_section_name (filedata, section));
19166 else
19167 printf (_("\nDisplaying notes found at file offset 0x%08lx with length 0x%08lx:\n"),
19168 (unsigned long) offset, (unsigned long) length);
19169
19170 /* NB: Some note sections may have alignment value of 0 or 1. gABI
19171 specifies that notes should be aligned to 4 bytes in 32-bit
19172 objects and to 8 bytes in 64-bit objects. As a Linux extension,
19173 we also support 4 byte alignment in 64-bit objects. If section
19174 alignment is less than 4, we treate alignment as 4 bytes. */
19175 if (align < 4)
19176 align = 4;
19177 else if (align != 4 && align != 8)
19178 {
19179 warn (_("Corrupt note: alignment %ld, expecting 4 or 8\n"),
19180 (long) align);
19181 return FALSE;
19182 }
19183
19184 printf (_(" %-20s %10s\tDescription\n"), _("Owner"), _("Data size"));
19185
19186 end = (char *) pnotes + length;
19187 while ((char *) external < end)
19188 {
19189 Elf_Internal_Note inote;
19190 size_t min_notesz;
19191 char * next;
19192 char * temp = NULL;
19193 size_t data_remaining = end - (char *) external;
19194
19195 if (!is_ia64_vms (filedata))
19196 {
19197 /* PR binutils/15191
19198 Make sure that there is enough data to read. */
19199 min_notesz = offsetof (Elf_External_Note, name);
19200 if (data_remaining < min_notesz)
19201 {
19202 warn (ngettext ("Corrupt note: only %ld byte remains, "
19203 "not enough for a full note\n",
19204 "Corrupt note: only %ld bytes remain, "
19205 "not enough for a full note\n",
19206 data_remaining),
19207 (long) data_remaining);
19208 break;
19209 }
19210 data_remaining -= min_notesz;
19211
19212 inote.type = BYTE_GET (external->type);
19213 inote.namesz = BYTE_GET (external->namesz);
19214 inote.namedata = external->name;
19215 inote.descsz = BYTE_GET (external->descsz);
19216 inote.descdata = ((char *) external
19217 + ELF_NOTE_DESC_OFFSET (inote.namesz, align));
19218 inote.descpos = offset + (inote.descdata - (char *) pnotes);
19219 next = ((char *) external
19220 + ELF_NOTE_NEXT_OFFSET (inote.namesz, inote.descsz, align));
19221 }
19222 else
19223 {
19224 Elf64_External_VMS_Note *vms_external;
19225
19226 /* PR binutils/15191
19227 Make sure that there is enough data to read. */
19228 min_notesz = offsetof (Elf64_External_VMS_Note, name);
19229 if (data_remaining < min_notesz)
19230 {
19231 warn (ngettext ("Corrupt note: only %ld byte remains, "
19232 "not enough for a full note\n",
19233 "Corrupt note: only %ld bytes remain, "
19234 "not enough for a full note\n",
19235 data_remaining),
19236 (long) data_remaining);
19237 break;
19238 }
19239 data_remaining -= min_notesz;
19240
19241 vms_external = (Elf64_External_VMS_Note *) external;
19242 inote.type = BYTE_GET (vms_external->type);
19243 inote.namesz = BYTE_GET (vms_external->namesz);
19244 inote.namedata = vms_external->name;
19245 inote.descsz = BYTE_GET (vms_external->descsz);
19246 inote.descdata = inote.namedata + align_power (inote.namesz, 3);
19247 inote.descpos = offset + (inote.descdata - (char *) pnotes);
19248 next = inote.descdata + align_power (inote.descsz, 3);
19249 }
19250
19251 /* PR 17531: file: 3443835e. */
19252 /* PR 17531: file: id:000000,sig:11,src:006986,op:havoc,rep:4. */
19253 if ((size_t) (inote.descdata - inote.namedata) < inote.namesz
19254 || (size_t) (inote.descdata - inote.namedata) > data_remaining
19255 || (size_t) (next - inote.descdata) < inote.descsz
19256 || ((size_t) (next - inote.descdata)
19257 > data_remaining - (size_t) (inote.descdata - inote.namedata)))
19258 {
19259 warn (_("note with invalid namesz and/or descsz found at offset 0x%lx\n"),
19260 (unsigned long) ((char *) external - (char *) pnotes));
19261 warn (_(" type: 0x%lx, namesize: 0x%08lx, descsize: 0x%08lx, alignment: %u\n"),
19262 inote.type, inote.namesz, inote.descsz, (int) align);
19263 break;
19264 }
19265
19266 external = (Elf_External_Note *) next;
19267
19268 /* Verify that name is null terminated. It appears that at least
19269 one version of Linux (RedHat 6.0) generates corefiles that don't
19270 comply with the ELF spec by failing to include the null byte in
19271 namesz. */
19272 if (inote.namesz > 0 && inote.namedata[inote.namesz - 1] != '\0')
19273 {
19274 if ((size_t) (inote.descdata - inote.namedata) == inote.namesz)
19275 {
19276 temp = (char *) malloc (inote.namesz + 1);
19277 if (temp == NULL)
19278 {
19279 error (_("Out of memory allocating space for inote name\n"));
19280 res = FALSE;
19281 break;
19282 }
19283
19284 memcpy (temp, inote.namedata, inote.namesz);
19285 inote.namedata = temp;
19286 }
19287 inote.namedata[inote.namesz] = 0;
19288 }
19289
19290 if (! process_note (& inote, filedata))
19291 res = FALSE;
19292
19293 if (temp != NULL)
19294 {
19295 free (temp);
19296 temp = NULL;
19297 }
19298 }
19299
19300 free (pnotes);
19301
19302 return res;
19303 }
19304
19305 static bfd_boolean
19306 process_corefile_note_segments (Filedata * filedata)
19307 {
19308 Elf_Internal_Phdr * segment;
19309 unsigned int i;
19310 bfd_boolean res = TRUE;
19311
19312 if (! get_program_headers (filedata))
19313 return TRUE;
19314
19315 for (i = 0, segment = filedata->program_headers;
19316 i < filedata->file_header.e_phnum;
19317 i++, segment++)
19318 {
19319 if (segment->p_type == PT_NOTE)
19320 if (! process_notes_at (filedata, NULL,
19321 (bfd_vma) segment->p_offset,
19322 (bfd_vma) segment->p_filesz,
19323 (bfd_vma) segment->p_align))
19324 res = FALSE;
19325 }
19326
19327 return res;
19328 }
19329
19330 static bfd_boolean
19331 process_v850_notes (Filedata * filedata, bfd_vma offset, bfd_vma length)
19332 {
19333 Elf_External_Note * pnotes;
19334 Elf_External_Note * external;
19335 char * end;
19336 bfd_boolean res = TRUE;
19337
19338 if (length <= 0)
19339 return FALSE;
19340
19341 pnotes = (Elf_External_Note *) get_data (NULL, filedata, offset, 1, length,
19342 _("v850 notes"));
19343 if (pnotes == NULL)
19344 return FALSE;
19345
19346 external = pnotes;
19347 end = (char*) pnotes + length;
19348
19349 printf (_("\nDisplaying contents of Renesas V850 notes section at offset 0x%lx with length 0x%lx:\n"),
19350 (unsigned long) offset, (unsigned long) length);
19351
19352 while ((char *) external + sizeof (Elf_External_Note) < end)
19353 {
19354 Elf_External_Note * next;
19355 Elf_Internal_Note inote;
19356
19357 inote.type = BYTE_GET (external->type);
19358 inote.namesz = BYTE_GET (external->namesz);
19359 inote.namedata = external->name;
19360 inote.descsz = BYTE_GET (external->descsz);
19361 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
19362 inote.descpos = offset + (inote.descdata - (char *) pnotes);
19363
19364 if (inote.descdata < (char *) pnotes || inote.descdata >= end)
19365 {
19366 warn (_("Corrupt note: name size is too big: %lx\n"), inote.namesz);
19367 inote.descdata = inote.namedata;
19368 inote.namesz = 0;
19369 }
19370
19371 next = (Elf_External_Note *) (inote.descdata + align_power (inote.descsz, 2));
19372
19373 if ( ((char *) next > end)
19374 || ((char *) next < (char *) pnotes))
19375 {
19376 warn (_("corrupt descsz found in note at offset 0x%lx\n"),
19377 (unsigned long) ((char *) external - (char *) pnotes));
19378 warn (_(" type: 0x%lx, namesize: 0x%lx, descsize: 0x%lx\n"),
19379 inote.type, inote.namesz, inote.descsz);
19380 break;
19381 }
19382
19383 external = next;
19384
19385 /* Prevent out-of-bounds indexing. */
19386 if ( inote.namedata + inote.namesz > end
19387 || inote.namedata + inote.namesz < inote.namedata)
19388 {
19389 warn (_("corrupt namesz found in note at offset 0x%lx\n"),
19390 (unsigned long) ((char *) external - (char *) pnotes));
19391 warn (_(" type: 0x%lx, namesize: 0x%lx, descsize: 0x%lx\n"),
19392 inote.type, inote.namesz, inote.descsz);
19393 break;
19394 }
19395
19396 printf (" %s: ", get_v850_elf_note_type (inote.type));
19397
19398 if (! print_v850_note (& inote))
19399 {
19400 res = FALSE;
19401 printf ("<corrupt sizes: namesz: %lx, descsz: %lx>\n",
19402 inote.namesz, inote.descsz);
19403 }
19404 }
19405
19406 free (pnotes);
19407
19408 return res;
19409 }
19410
19411 static bfd_boolean
19412 process_note_sections (Filedata * filedata)
19413 {
19414 Elf_Internal_Shdr * section;
19415 unsigned long i;
19416 unsigned int n = 0;
19417 bfd_boolean res = TRUE;
19418
19419 for (i = 0, section = filedata->section_headers;
19420 i < filedata->file_header.e_shnum && section != NULL;
19421 i++, section++)
19422 {
19423 if (section->sh_type == SHT_NOTE)
19424 {
19425 if (! process_notes_at (filedata, section,
19426 (bfd_vma) section->sh_offset,
19427 (bfd_vma) section->sh_size,
19428 (bfd_vma) section->sh_addralign))
19429 res = FALSE;
19430 n++;
19431 }
19432
19433 if (( filedata->file_header.e_machine == EM_V800
19434 || filedata->file_header.e_machine == EM_V850
19435 || filedata->file_header.e_machine == EM_CYGNUS_V850)
19436 && section->sh_type == SHT_RENESAS_INFO)
19437 {
19438 if (! process_v850_notes (filedata,
19439 (bfd_vma) section->sh_offset,
19440 (bfd_vma) section->sh_size))
19441 res = FALSE;
19442 n++;
19443 }
19444 }
19445
19446 if (n == 0)
19447 /* Try processing NOTE segments instead. */
19448 return process_corefile_note_segments (filedata);
19449
19450 return res;
19451 }
19452
19453 static bfd_boolean
19454 process_notes (Filedata * filedata)
19455 {
19456 /* If we have not been asked to display the notes then do nothing. */
19457 if (! do_notes)
19458 return TRUE;
19459
19460 if (filedata->file_header.e_type != ET_CORE)
19461 return process_note_sections (filedata);
19462
19463 /* No program headers means no NOTE segment. */
19464 if (filedata->file_header.e_phnum > 0)
19465 return process_corefile_note_segments (filedata);
19466
19467 printf (_("No note segments present in the core file.\n"));
19468 return TRUE;
19469 }
19470
19471 static unsigned char *
19472 display_public_gnu_attributes (unsigned char * start,
19473 const unsigned char * const end)
19474 {
19475 printf (_(" Unknown GNU attribute: %s\n"), start);
19476
19477 start += strnlen ((char *) start, end - start);
19478 display_raw_attribute (start, end);
19479
19480 return (unsigned char *) end;
19481 }
19482
19483 static unsigned char *
19484 display_generic_attribute (unsigned char * start,
19485 unsigned int tag,
19486 const unsigned char * const end)
19487 {
19488 if (tag == 0)
19489 return (unsigned char *) end;
19490
19491 return display_tag_value (tag, start, end);
19492 }
19493
19494 static bfd_boolean
19495 process_arch_specific (Filedata * filedata)
19496 {
19497 if (! do_arch)
19498 return TRUE;
19499
19500 switch (filedata->file_header.e_machine)
19501 {
19502 case EM_ARC:
19503 case EM_ARC_COMPACT:
19504 case EM_ARC_COMPACT2:
19505 return process_attributes (filedata, "ARC", SHT_ARC_ATTRIBUTES,
19506 display_arc_attribute,
19507 display_generic_attribute);
19508 case EM_ARM:
19509 return process_attributes (filedata, "aeabi", SHT_ARM_ATTRIBUTES,
19510 display_arm_attribute,
19511 display_generic_attribute);
19512
19513 case EM_MIPS:
19514 case EM_MIPS_RS3_LE:
19515 return process_mips_specific (filedata);
19516
19517 case EM_MSP430:
19518 return process_attributes (filedata, "mspabi", SHT_MSP430_ATTRIBUTES,
19519 display_msp430x_attribute,
19520 display_generic_attribute);
19521
19522 case EM_RISCV:
19523 return process_attributes (filedata, "riscv", SHT_RISCV_ATTRIBUTES,
19524 display_riscv_attribute,
19525 display_generic_attribute);
19526
19527 case EM_NDS32:
19528 return process_nds32_specific (filedata);
19529
19530 case EM_PPC:
19531 case EM_PPC64:
19532 return process_attributes (filedata, NULL, SHT_GNU_ATTRIBUTES, NULL,
19533 display_power_gnu_attribute);
19534
19535 case EM_S390:
19536 case EM_S390_OLD:
19537 return process_attributes (filedata, NULL, SHT_GNU_ATTRIBUTES, NULL,
19538 display_s390_gnu_attribute);
19539
19540 case EM_SPARC:
19541 case EM_SPARC32PLUS:
19542 case EM_SPARCV9:
19543 return process_attributes (filedata, NULL, SHT_GNU_ATTRIBUTES, NULL,
19544 display_sparc_gnu_attribute);
19545
19546 case EM_TI_C6000:
19547 return process_attributes (filedata, "c6xabi", SHT_C6000_ATTRIBUTES,
19548 display_tic6x_attribute,
19549 display_generic_attribute);
19550
19551 default:
19552 return process_attributes (filedata, "gnu", SHT_GNU_ATTRIBUTES,
19553 display_public_gnu_attributes,
19554 display_generic_attribute);
19555 }
19556 }
19557
19558 static bfd_boolean
19559 get_file_header (Filedata * filedata)
19560 {
19561 /* Read in the identity array. */
19562 if (fread (filedata->file_header.e_ident, EI_NIDENT, 1, filedata->handle) != 1)
19563 return FALSE;
19564
19565 /* Determine how to read the rest of the header. */
19566 switch (filedata->file_header.e_ident[EI_DATA])
19567 {
19568 default:
19569 case ELFDATANONE:
19570 case ELFDATA2LSB:
19571 byte_get = byte_get_little_endian;
19572 byte_put = byte_put_little_endian;
19573 break;
19574 case ELFDATA2MSB:
19575 byte_get = byte_get_big_endian;
19576 byte_put = byte_put_big_endian;
19577 break;
19578 }
19579
19580 /* For now we only support 32 bit and 64 bit ELF files. */
19581 is_32bit_elf = (filedata->file_header.e_ident[EI_CLASS] != ELFCLASS64);
19582
19583 /* Read in the rest of the header. */
19584 if (is_32bit_elf)
19585 {
19586 Elf32_External_Ehdr ehdr32;
19587
19588 if (fread (ehdr32.e_type, sizeof (ehdr32) - EI_NIDENT, 1, filedata->handle) != 1)
19589 return FALSE;
19590
19591 filedata->file_header.e_type = BYTE_GET (ehdr32.e_type);
19592 filedata->file_header.e_machine = BYTE_GET (ehdr32.e_machine);
19593 filedata->file_header.e_version = BYTE_GET (ehdr32.e_version);
19594 filedata->file_header.e_entry = BYTE_GET (ehdr32.e_entry);
19595 filedata->file_header.e_phoff = BYTE_GET (ehdr32.e_phoff);
19596 filedata->file_header.e_shoff = BYTE_GET (ehdr32.e_shoff);
19597 filedata->file_header.e_flags = BYTE_GET (ehdr32.e_flags);
19598 filedata->file_header.e_ehsize = BYTE_GET (ehdr32.e_ehsize);
19599 filedata->file_header.e_phentsize = BYTE_GET (ehdr32.e_phentsize);
19600 filedata->file_header.e_phnum = BYTE_GET (ehdr32.e_phnum);
19601 filedata->file_header.e_shentsize = BYTE_GET (ehdr32.e_shentsize);
19602 filedata->file_header.e_shnum = BYTE_GET (ehdr32.e_shnum);
19603 filedata->file_header.e_shstrndx = BYTE_GET (ehdr32.e_shstrndx);
19604 }
19605 else
19606 {
19607 Elf64_External_Ehdr ehdr64;
19608
19609 /* If we have been compiled with sizeof (bfd_vma) == 4, then
19610 we will not be able to cope with the 64bit data found in
19611 64 ELF files. Detect this now and abort before we start
19612 overwriting things. */
19613 if (sizeof (bfd_vma) < 8)
19614 {
19615 error (_("This instance of readelf has been built without support for a\n\
19616 64 bit data type and so it cannot read 64 bit ELF files.\n"));
19617 return FALSE;
19618 }
19619
19620 if (fread (ehdr64.e_type, sizeof (ehdr64) - EI_NIDENT, 1, filedata->handle) != 1)
19621 return FALSE;
19622
19623 filedata->file_header.e_type = BYTE_GET (ehdr64.e_type);
19624 filedata->file_header.e_machine = BYTE_GET (ehdr64.e_machine);
19625 filedata->file_header.e_version = BYTE_GET (ehdr64.e_version);
19626 filedata->file_header.e_entry = BYTE_GET (ehdr64.e_entry);
19627 filedata->file_header.e_phoff = BYTE_GET (ehdr64.e_phoff);
19628 filedata->file_header.e_shoff = BYTE_GET (ehdr64.e_shoff);
19629 filedata->file_header.e_flags = BYTE_GET (ehdr64.e_flags);
19630 filedata->file_header.e_ehsize = BYTE_GET (ehdr64.e_ehsize);
19631 filedata->file_header.e_phentsize = BYTE_GET (ehdr64.e_phentsize);
19632 filedata->file_header.e_phnum = BYTE_GET (ehdr64.e_phnum);
19633 filedata->file_header.e_shentsize = BYTE_GET (ehdr64.e_shentsize);
19634 filedata->file_header.e_shnum = BYTE_GET (ehdr64.e_shnum);
19635 filedata->file_header.e_shstrndx = BYTE_GET (ehdr64.e_shstrndx);
19636 }
19637
19638 if (filedata->file_header.e_shoff)
19639 {
19640 /* There may be some extensions in the first section header. Don't
19641 bomb if we can't read it. */
19642 if (is_32bit_elf)
19643 get_32bit_section_headers (filedata, TRUE);
19644 else
19645 get_64bit_section_headers (filedata, TRUE);
19646 }
19647
19648 return TRUE;
19649 }
19650
19651 static void
19652 close_file (Filedata * filedata)
19653 {
19654 if (filedata)
19655 {
19656 if (filedata->handle)
19657 fclose (filedata->handle);
19658 free (filedata);
19659 }
19660 }
19661
19662 void
19663 close_debug_file (void * data)
19664 {
19665 close_file ((Filedata *) data);
19666 }
19667
19668 static Filedata *
19669 open_file (const char * pathname)
19670 {
19671 struct stat statbuf;
19672 Filedata * filedata = NULL;
19673
19674 if (stat (pathname, & statbuf) < 0
19675 || ! S_ISREG (statbuf.st_mode))
19676 goto fail;
19677
19678 filedata = calloc (1, sizeof * filedata);
19679 if (filedata == NULL)
19680 goto fail;
19681
19682 filedata->handle = fopen (pathname, "rb");
19683 if (filedata->handle == NULL)
19684 goto fail;
19685
19686 filedata->file_size = (bfd_size_type) statbuf.st_size;
19687 filedata->file_name = pathname;
19688
19689 if (! get_file_header (filedata))
19690 goto fail;
19691
19692 if (filedata->file_header.e_shoff)
19693 {
19694 bfd_boolean res;
19695
19696 /* Read the section headers again, this time for real. */
19697 if (is_32bit_elf)
19698 res = get_32bit_section_headers (filedata, FALSE);
19699 else
19700 res = get_64bit_section_headers (filedata, FALSE);
19701
19702 if (!res)
19703 goto fail;
19704 }
19705
19706 return filedata;
19707
19708 fail:
19709 if (filedata)
19710 {
19711 if (filedata->handle)
19712 fclose (filedata->handle);
19713 free (filedata);
19714 }
19715 return NULL;
19716 }
19717
19718 void *
19719 open_debug_file (const char * pathname)
19720 {
19721 return open_file (pathname);
19722 }
19723
19724 /* Process one ELF object file according to the command line options.
19725 This file may actually be stored in an archive. The file is
19726 positioned at the start of the ELF object. Returns TRUE if no
19727 problems were encountered, FALSE otherwise. */
19728
19729 static bfd_boolean
19730 process_object (Filedata * filedata)
19731 {
19732 bfd_boolean have_separate_files;
19733 unsigned int i;
19734 bfd_boolean res = TRUE;
19735
19736 if (! get_file_header (filedata))
19737 {
19738 error (_("%s: Failed to read file header\n"), filedata->file_name);
19739 return FALSE;
19740 }
19741
19742 /* Initialise per file variables. */
19743 for (i = ARRAY_SIZE (version_info); i--;)
19744 version_info[i] = 0;
19745
19746 for (i = ARRAY_SIZE (dynamic_info); i--;)
19747 dynamic_info[i] = 0;
19748 dynamic_info_DT_GNU_HASH = 0;
19749
19750 /* Process the file. */
19751 if (show_name)
19752 printf (_("\nFile: %s\n"), filedata->file_name);
19753
19754 /* Initialise the dump_sects array from the cmdline_dump_sects array.
19755 Note we do this even if cmdline_dump_sects is empty because we
19756 must make sure that the dump_sets array is zeroed out before each
19757 object file is processed. */
19758 if (filedata->num_dump_sects > cmdline.num_dump_sects)
19759 memset (filedata->dump_sects, 0, filedata->num_dump_sects * sizeof (* filedata->dump_sects));
19760
19761 if (cmdline.num_dump_sects > 0)
19762 {
19763 if (filedata->num_dump_sects == 0)
19764 /* A sneaky way of allocating the dump_sects array. */
19765 request_dump_bynumber (filedata, cmdline.num_dump_sects, 0);
19766
19767 assert (filedata->num_dump_sects >= cmdline.num_dump_sects);
19768 memcpy (filedata->dump_sects, cmdline.dump_sects,
19769 cmdline.num_dump_sects * sizeof (* filedata->dump_sects));
19770 }
19771
19772 if (! process_file_header (filedata))
19773 return FALSE;
19774
19775 if (! process_section_headers (filedata))
19776 {
19777 /* Without loaded section headers we cannot process lots of things. */
19778 do_unwind = do_version = do_dump = do_arch = FALSE;
19779
19780 if (! do_using_dynamic)
19781 do_syms = do_dyn_syms = do_reloc = FALSE;
19782 }
19783
19784 if (! process_section_groups (filedata))
19785 /* Without loaded section groups we cannot process unwind. */
19786 do_unwind = FALSE;
19787
19788 if (process_program_headers (filedata))
19789 process_dynamic_section (filedata);
19790 else
19791 res = FALSE;
19792
19793 if (! process_relocs (filedata))
19794 res = FALSE;
19795
19796 if (! process_unwind (filedata))
19797 res = FALSE;
19798
19799 if (! process_symbol_table (filedata))
19800 res = FALSE;
19801
19802 if (! process_syminfo (filedata))
19803 res = FALSE;
19804
19805 if (! process_version_sections (filedata))
19806 res = FALSE;
19807
19808 if (filedata->file_header.e_shstrndx != SHN_UNDEF)
19809 have_separate_files = load_separate_debug_files (filedata, filedata->file_name);
19810 else
19811 have_separate_files = FALSE;
19812
19813 if (! process_section_contents (filedata))
19814 res = FALSE;
19815
19816 if (have_separate_files)
19817 {
19818 separate_info * d;
19819
19820 for (d = first_separate_info; d != NULL; d = d->next)
19821 {
19822 if (! process_section_headers (d->handle))
19823 res = FALSE;
19824 else if (! process_section_contents (d->handle))
19825 res = FALSE;
19826 }
19827
19828 /* The file handles are closed by the call to free_debug_memory() below. */
19829 }
19830
19831 if (! process_notes (filedata))
19832 res = FALSE;
19833
19834 if (! process_gnu_liblist (filedata))
19835 res = FALSE;
19836
19837 if (! process_arch_specific (filedata))
19838 res = FALSE;
19839
19840 free (filedata->program_headers);
19841 filedata->program_headers = NULL;
19842
19843 free (filedata->section_headers);
19844 filedata->section_headers = NULL;
19845
19846 free (filedata->string_table);
19847 filedata->string_table = NULL;
19848 filedata->string_table_length = 0;
19849
19850 if (dynamic_strings)
19851 {
19852 free (dynamic_strings);
19853 dynamic_strings = NULL;
19854 dynamic_strings_length = 0;
19855 }
19856
19857 if (dynamic_symbols)
19858 {
19859 free (dynamic_symbols);
19860 dynamic_symbols = NULL;
19861 num_dynamic_syms = 0;
19862 }
19863
19864 if (dynamic_syminfo)
19865 {
19866 free (dynamic_syminfo);
19867 dynamic_syminfo = NULL;
19868 }
19869
19870 if (dynamic_section)
19871 {
19872 free (dynamic_section);
19873 dynamic_section = NULL;
19874 }
19875
19876 if (section_headers_groups)
19877 {
19878 free (section_headers_groups);
19879 section_headers_groups = NULL;
19880 }
19881
19882 if (section_groups)
19883 {
19884 struct group_list * g;
19885 struct group_list * next;
19886
19887 for (i = 0; i < group_count; i++)
19888 {
19889 for (g = section_groups [i].root; g != NULL; g = next)
19890 {
19891 next = g->next;
19892 free (g);
19893 }
19894 }
19895
19896 free (section_groups);
19897 section_groups = NULL;
19898 }
19899
19900 free_debug_memory ();
19901
19902 return res;
19903 }
19904
19905 /* Process an ELF archive.
19906 On entry the file is positioned just after the ARMAG string.
19907 Returns TRUE upon success, FALSE otherwise. */
19908
19909 static bfd_boolean
19910 process_archive (Filedata * filedata, bfd_boolean is_thin_archive)
19911 {
19912 struct archive_info arch;
19913 struct archive_info nested_arch;
19914 size_t got;
19915 bfd_boolean ret = TRUE;
19916
19917 show_name = TRUE;
19918
19919 /* The ARCH structure is used to hold information about this archive. */
19920 arch.file_name = NULL;
19921 arch.file = NULL;
19922 arch.index_array = NULL;
19923 arch.sym_table = NULL;
19924 arch.longnames = NULL;
19925
19926 /* The NESTED_ARCH structure is used as a single-item cache of information
19927 about a nested archive (when members of a thin archive reside within
19928 another regular archive file). */
19929 nested_arch.file_name = NULL;
19930 nested_arch.file = NULL;
19931 nested_arch.index_array = NULL;
19932 nested_arch.sym_table = NULL;
19933 nested_arch.longnames = NULL;
19934
19935 if (setup_archive (&arch, filedata->file_name, filedata->handle,
19936 is_thin_archive, do_archive_index) != 0)
19937 {
19938 ret = FALSE;
19939 goto out;
19940 }
19941
19942 if (do_archive_index)
19943 {
19944 if (arch.sym_table == NULL)
19945 error (_("%s: unable to dump the index as none was found\n"), filedata->file_name);
19946 else
19947 {
19948 unsigned long i, l;
19949 unsigned long current_pos;
19950
19951 printf (_("Index of archive %s: (%lu entries, 0x%lx bytes in the symbol table)\n"),
19952 filedata->file_name, (unsigned long) arch.index_num, arch.sym_size);
19953
19954 current_pos = ftell (filedata->handle);
19955
19956 for (i = l = 0; i < arch.index_num; i++)
19957 {
19958 if ((i == 0) || ((i > 0) && (arch.index_array[i] != arch.index_array[i - 1])))
19959 {
19960 char * member_name;
19961
19962 member_name = get_archive_member_name_at (&arch, arch.index_array[i], &nested_arch);
19963
19964 if (member_name != NULL)
19965 {
19966 char * qualified_name = make_qualified_name (&arch, &nested_arch, member_name);
19967
19968 if (qualified_name != NULL)
19969 {
19970 printf (_("Contents of binary %s at offset "), qualified_name);
19971 (void) print_vma (arch.index_array[i], PREFIX_HEX);
19972 putchar ('\n');
19973 free (qualified_name);
19974 }
19975 }
19976 }
19977
19978 if (l >= arch.sym_size)
19979 {
19980 error (_("%s: end of the symbol table reached before the end of the index\n"),
19981 filedata->file_name);
19982 ret = FALSE;
19983 break;
19984 }
19985 /* PR 17531: file: 0b6630b2. */
19986 printf ("\t%.*s\n", (int) (arch.sym_size - l), arch.sym_table + l);
19987 l += strnlen (arch.sym_table + l, arch.sym_size - l) + 1;
19988 }
19989
19990 if (arch.uses_64bit_indices)
19991 l = (l + 7) & ~ 7;
19992 else
19993 l += l & 1;
19994
19995 if (l < arch.sym_size)
19996 {
19997 error (ngettext ("%s: %ld byte remains in the symbol table, "
19998 "but without corresponding entries in "
19999 "the index table\n",
20000 "%s: %ld bytes remain in the symbol table, "
20001 "but without corresponding entries in "
20002 "the index table\n",
20003 arch.sym_size - l),
20004 filedata->file_name, arch.sym_size - l);
20005 ret = FALSE;
20006 }
20007
20008 if (fseek (filedata->handle, current_pos, SEEK_SET) != 0)
20009 {
20010 error (_("%s: failed to seek back to start of object files in the archive\n"),
20011 filedata->file_name);
20012 ret = FALSE;
20013 goto out;
20014 }
20015 }
20016
20017 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
20018 && !do_segments && !do_header && !do_dump && !do_version
20019 && !do_histogram && !do_debugging && !do_arch && !do_notes
20020 && !do_section_groups && !do_dyn_syms)
20021 {
20022 ret = TRUE; /* Archive index only. */
20023 goto out;
20024 }
20025 }
20026
20027 while (1)
20028 {
20029 char * name;
20030 size_t namelen;
20031 char * qualified_name;
20032
20033 /* Read the next archive header. */
20034 if (fseek (filedata->handle, arch.next_arhdr_offset, SEEK_SET) != 0)
20035 {
20036 error (_("%s: failed to seek to next archive header\n"), arch.file_name);
20037 return FALSE;
20038 }
20039 got = fread (&arch.arhdr, 1, sizeof arch.arhdr, filedata->handle);
20040 if (got != sizeof arch.arhdr)
20041 {
20042 if (got == 0)
20043 break;
20044 /* PR 24049 - we cannot use filedata->file_name as this will
20045 have already been freed. */
20046 error (_("%s: failed to read archive header\n"), arch.file_name);
20047
20048 ret = FALSE;
20049 break;
20050 }
20051 if (memcmp (arch.arhdr.ar_fmag, ARFMAG, 2) != 0)
20052 {
20053 error (_("%s: did not find a valid archive header\n"), arch.file_name);
20054 ret = FALSE;
20055 break;
20056 }
20057
20058 arch.next_arhdr_offset += sizeof arch.arhdr;
20059
20060 archive_file_size = strtoul (arch.arhdr.ar_size, NULL, 10);
20061 if (archive_file_size & 01)
20062 ++archive_file_size;
20063
20064 name = get_archive_member_name (&arch, &nested_arch);
20065 if (name == NULL)
20066 {
20067 error (_("%s: bad archive file name\n"), arch.file_name);
20068 ret = FALSE;
20069 break;
20070 }
20071 namelen = strlen (name);
20072
20073 qualified_name = make_qualified_name (&arch, &nested_arch, name);
20074 if (qualified_name == NULL)
20075 {
20076 error (_("%s: bad archive file name\n"), arch.file_name);
20077 ret = FALSE;
20078 break;
20079 }
20080
20081 if (is_thin_archive && arch.nested_member_origin == 0)
20082 {
20083 /* This is a proxy for an external member of a thin archive. */
20084 Filedata * member_filedata;
20085 char * member_file_name = adjust_relative_path
20086 (filedata->file_name, name, namelen);
20087
20088 if (member_file_name == NULL)
20089 {
20090 ret = FALSE;
20091 break;
20092 }
20093
20094 member_filedata = open_file (member_file_name);
20095 if (member_filedata == NULL)
20096 {
20097 error (_("Input file '%s' is not readable.\n"), member_file_name);
20098 free (member_file_name);
20099 ret = FALSE;
20100 break;
20101 }
20102
20103 archive_file_offset = arch.nested_member_origin;
20104 member_filedata->file_name = qualified_name;
20105
20106 if (! process_object (member_filedata))
20107 ret = FALSE;
20108
20109 close_file (member_filedata);
20110 free (member_file_name);
20111 }
20112 else if (is_thin_archive)
20113 {
20114 Filedata thin_filedata;
20115
20116 memset (&thin_filedata, 0, sizeof (thin_filedata));
20117
20118 /* PR 15140: Allow for corrupt thin archives. */
20119 if (nested_arch.file == NULL)
20120 {
20121 error (_("%s: contains corrupt thin archive: %s\n"),
20122 qualified_name, name);
20123 ret = FALSE;
20124 break;
20125 }
20126
20127 /* This is a proxy for a member of a nested archive. */
20128 archive_file_offset = arch.nested_member_origin + sizeof arch.arhdr;
20129
20130 /* The nested archive file will have been opened and setup by
20131 get_archive_member_name. */
20132 if (fseek (nested_arch.file, archive_file_offset, SEEK_SET) != 0)
20133 {
20134 error (_("%s: failed to seek to archive member.\n"), nested_arch.file_name);
20135 ret = FALSE;
20136 break;
20137 }
20138
20139 thin_filedata.handle = nested_arch.file;
20140 thin_filedata.file_name = qualified_name;
20141
20142 if (! process_object (& thin_filedata))
20143 ret = FALSE;
20144 }
20145 else
20146 {
20147 archive_file_offset = arch.next_arhdr_offset;
20148 arch.next_arhdr_offset += archive_file_size;
20149
20150 filedata->file_name = qualified_name;
20151 if (! process_object (filedata))
20152 ret = FALSE;
20153 }
20154
20155 if (filedata->dump_sects != NULL)
20156 {
20157 free (filedata->dump_sects);
20158 filedata->dump_sects = NULL;
20159 filedata->num_dump_sects = 0;
20160 }
20161
20162 free (qualified_name);
20163 }
20164
20165 out:
20166 if (nested_arch.file != NULL)
20167 fclose (nested_arch.file);
20168 release_archive (&nested_arch);
20169 release_archive (&arch);
20170
20171 return ret;
20172 }
20173
20174 static bfd_boolean
20175 process_file (char * file_name)
20176 {
20177 Filedata * filedata = NULL;
20178 struct stat statbuf;
20179 char armag[SARMAG];
20180 bfd_boolean ret = TRUE;
20181
20182 if (stat (file_name, &statbuf) < 0)
20183 {
20184 if (errno == ENOENT)
20185 error (_("'%s': No such file\n"), file_name);
20186 else
20187 error (_("Could not locate '%s'. System error message: %s\n"),
20188 file_name, strerror (errno));
20189 return FALSE;
20190 }
20191
20192 if (! S_ISREG (statbuf.st_mode))
20193 {
20194 error (_("'%s' is not an ordinary file\n"), file_name);
20195 return FALSE;
20196 }
20197
20198 filedata = calloc (1, sizeof * filedata);
20199 if (filedata == NULL)
20200 {
20201 error (_("Out of memory allocating file data structure\n"));
20202 return FALSE;
20203 }
20204
20205 filedata->file_name = file_name;
20206 filedata->handle = fopen (file_name, "rb");
20207 if (filedata->handle == NULL)
20208 {
20209 error (_("Input file '%s' is not readable.\n"), file_name);
20210 free (filedata);
20211 return FALSE;
20212 }
20213
20214 if (fread (armag, SARMAG, 1, filedata->handle) != 1)
20215 {
20216 error (_("%s: Failed to read file's magic number\n"), file_name);
20217 fclose (filedata->handle);
20218 free (filedata);
20219 return FALSE;
20220 }
20221
20222 filedata->file_size = (bfd_size_type) statbuf.st_size;
20223
20224 if (memcmp (armag, ARMAG, SARMAG) == 0)
20225 {
20226 if (! process_archive (filedata, FALSE))
20227 ret = FALSE;
20228 }
20229 else if (memcmp (armag, ARMAGT, SARMAG) == 0)
20230 {
20231 if ( ! process_archive (filedata, TRUE))
20232 ret = FALSE;
20233 }
20234 else
20235 {
20236 if (do_archive_index)
20237 error (_("File %s is not an archive so its index cannot be displayed.\n"),
20238 file_name);
20239
20240 rewind (filedata->handle);
20241 archive_file_size = archive_file_offset = 0;
20242
20243 if (! process_object (filedata))
20244 ret = FALSE;
20245 }
20246
20247 fclose (filedata->handle);
20248 free (filedata);
20249
20250 return ret;
20251 }
20252
20253 #ifdef SUPPORT_DISASSEMBLY
20254 /* Needed by the i386 disassembler. For extra credit, someone could
20255 fix this so that we insert symbolic addresses here, esp for GOT/PLT
20256 symbols. */
20257
20258 void
20259 print_address (unsigned int addr, FILE * outfile)
20260 {
20261 fprintf (outfile,"0x%8.8x", addr);
20262 }
20263
20264 /* Needed by the i386 disassembler. */
20265
20266 void
20267 db_task_printsym (unsigned int addr)
20268 {
20269 print_address (addr, stderr);
20270 }
20271 #endif
20272
20273 int
20274 main (int argc, char ** argv)
20275 {
20276 int err;
20277
20278 #if defined (HAVE_SETLOCALE) && defined (HAVE_LC_MESSAGES)
20279 setlocale (LC_MESSAGES, "");
20280 #endif
20281 #if defined (HAVE_SETLOCALE)
20282 setlocale (LC_CTYPE, "");
20283 #endif
20284 bindtextdomain (PACKAGE, LOCALEDIR);
20285 textdomain (PACKAGE);
20286
20287 expandargv (&argc, &argv);
20288
20289 cmdline.file_name = "<cmdline>";
20290 parse_args (& cmdline, argc, argv);
20291
20292 if (optind < (argc - 1))
20293 show_name = TRUE;
20294 else if (optind >= argc)
20295 {
20296 warn (_("Nothing to do.\n"));
20297 usage (stderr);
20298 }
20299
20300 err = FALSE;
20301 while (optind < argc)
20302 if (! process_file (argv[optind++]))
20303 err = TRUE;
20304
20305 if (cmdline.dump_sects != NULL)
20306 free (cmdline.dump_sects);
20307
20308 free (dump_ctf_symtab_name);
20309 free (dump_ctf_strtab_name);
20310 free (dump_ctf_parent_name);
20311
20312 return err ? EXIT_FAILURE : EXIT_SUCCESS;
20313 }
This page took 0.461701 seconds and 5 git commands to generate.