[ARM] Add support for ARMv8-R in assembler and readelf
[deliverable/binutils-gdb.git] / binutils / readelf.c
1 /* readelf.c -- display contents of an ELF format file
2 Copyright (C) 1998-2017 Free Software Foundation, Inc.
3
4 Originally developed by Eric Youngdale <eric@andante.jic.com>
5 Modifications by Nick Clifton <nickc@redhat.com>
6
7 This file is part of GNU Binutils.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
22 02110-1301, USA. */
23 \f
24 /* The difference between readelf and objdump:
25
26 Both programs are capable of displaying the contents of ELF format files,
27 so why does the binutils project have two file dumpers ?
28
29 The reason is that objdump sees an ELF file through a BFD filter of the
30 world; if BFD has a bug where, say, it disagrees about a machine constant
31 in e_flags, then the odds are good that it will remain internally
32 consistent. The linker sees it the BFD way, objdump sees it the BFD way,
33 GAS sees it the BFD way. There was need for a tool to go find out what
34 the file actually says.
35
36 This is why the readelf program does not link against the BFD library - it
37 exists as an independent program to help verify the correct working of BFD.
38
39 There is also the case that readelf can provide more information about an
40 ELF file than is provided by objdump. In particular it can display DWARF
41 debugging information which (at the moment) objdump cannot. */
42 \f
43 #include "sysdep.h"
44 #include <assert.h>
45 #include <time.h>
46 #include <zlib.h>
47 #ifdef HAVE_WCHAR_H
48 #include <wchar.h>
49 #endif
50
51 #if __GNUC__ >= 2
52 /* Define BFD64 here, even if our default architecture is 32 bit ELF
53 as this will allow us to read in and parse 64bit and 32bit ELF files.
54 Only do this if we believe that the compiler can support a 64 bit
55 data type. For now we only rely on GCC being able to do this. */
56 #define BFD64
57 #endif
58
59 #include "bfd.h"
60 #include "bucomm.h"
61 #include "elfcomm.h"
62 #include "dwarf.h"
63
64 #include "elf/common.h"
65 #include "elf/external.h"
66 #include "elf/internal.h"
67
68
69 /* Included here, before RELOC_MACROS_GEN_FUNC is defined, so that
70 we can obtain the H8 reloc numbers. We need these for the
71 get_reloc_size() function. We include h8.h again after defining
72 RELOC_MACROS_GEN_FUNC so that we get the naming function as well. */
73
74 #include "elf/h8.h"
75 #undef _ELF_H8_H
76
77 /* Undo the effects of #including reloc-macros.h. */
78
79 #undef START_RELOC_NUMBERS
80 #undef RELOC_NUMBER
81 #undef FAKE_RELOC
82 #undef EMPTY_RELOC
83 #undef END_RELOC_NUMBERS
84 #undef _RELOC_MACROS_H
85
86 /* The following headers use the elf/reloc-macros.h file to
87 automatically generate relocation recognition functions
88 such as elf_mips_reloc_type() */
89
90 #define RELOC_MACROS_GEN_FUNC
91
92 #include "elf/aarch64.h"
93 #include "elf/alpha.h"
94 #include "elf/arc.h"
95 #include "elf/arm.h"
96 #include "elf/avr.h"
97 #include "elf/bfin.h"
98 #include "elf/cr16.h"
99 #include "elf/cris.h"
100 #include "elf/crx.h"
101 #include "elf/d10v.h"
102 #include "elf/d30v.h"
103 #include "elf/dlx.h"
104 #include "elf/epiphany.h"
105 #include "elf/fr30.h"
106 #include "elf/frv.h"
107 #include "elf/ft32.h"
108 #include "elf/h8.h"
109 #include "elf/hppa.h"
110 #include "elf/i386.h"
111 #include "elf/i370.h"
112 #include "elf/i860.h"
113 #include "elf/i960.h"
114 #include "elf/ia64.h"
115 #include "elf/ip2k.h"
116 #include "elf/lm32.h"
117 #include "elf/iq2000.h"
118 #include "elf/m32c.h"
119 #include "elf/m32r.h"
120 #include "elf/m68k.h"
121 #include "elf/m68hc11.h"
122 #include "elf/mcore.h"
123 #include "elf/mep.h"
124 #include "elf/metag.h"
125 #include "elf/microblaze.h"
126 #include "elf/mips.h"
127 #include "elf/riscv.h"
128 #include "elf/mmix.h"
129 #include "elf/mn10200.h"
130 #include "elf/mn10300.h"
131 #include "elf/moxie.h"
132 #include "elf/mt.h"
133 #include "elf/msp430.h"
134 #include "elf/nds32.h"
135 #include "elf/nios2.h"
136 #include "elf/or1k.h"
137 #include "elf/pj.h"
138 #include "elf/ppc.h"
139 #include "elf/ppc64.h"
140 #include "elf/pru.h"
141 #include "elf/rl78.h"
142 #include "elf/rx.h"
143 #include "elf/s390.h"
144 #include "elf/score.h"
145 #include "elf/sh.h"
146 #include "elf/sparc.h"
147 #include "elf/spu.h"
148 #include "elf/tic6x.h"
149 #include "elf/tilegx.h"
150 #include "elf/tilepro.h"
151 #include "elf/v850.h"
152 #include "elf/vax.h"
153 #include "elf/visium.h"
154 #include "elf/wasm32.h"
155 #include "elf/x86-64.h"
156 #include "elf/xc16x.h"
157 #include "elf/xgate.h"
158 #include "elf/xstormy16.h"
159 #include "elf/xtensa.h"
160
161 #include "getopt.h"
162 #include "libiberty.h"
163 #include "safe-ctype.h"
164 #include "filenames.h"
165
166 #ifndef offsetof
167 #define offsetof(TYPE, MEMBER) ((size_t) &(((TYPE *) 0)->MEMBER))
168 #endif
169
170 typedef struct elf_section_list
171 {
172 Elf_Internal_Shdr * hdr;
173 struct elf_section_list * next;
174 } elf_section_list;
175
176 char * program_name = "readelf";
177 static unsigned long archive_file_offset;
178 static unsigned long archive_file_size;
179 static bfd_size_type current_file_size;
180 static unsigned long dynamic_addr;
181 static bfd_size_type dynamic_size;
182 static size_t dynamic_nent;
183 static char * dynamic_strings;
184 static unsigned long dynamic_strings_length;
185 static char * string_table;
186 static unsigned long string_table_length;
187 static unsigned long num_dynamic_syms;
188 static Elf_Internal_Sym * dynamic_symbols;
189 static Elf_Internal_Syminfo * dynamic_syminfo;
190 static unsigned long dynamic_syminfo_offset;
191 static unsigned int dynamic_syminfo_nent;
192 static char program_interpreter[PATH_MAX];
193 static bfd_vma dynamic_info[DT_ENCODING];
194 static bfd_vma dynamic_info_DT_GNU_HASH;
195 static bfd_vma version_info[16];
196 static Elf_Internal_Ehdr elf_header;
197 static Elf_Internal_Shdr * section_headers;
198 static Elf_Internal_Phdr * program_headers;
199 static Elf_Internal_Dyn * dynamic_section;
200 static elf_section_list * symtab_shndx_list;
201 static bfd_boolean show_name = FALSE;
202 static bfd_boolean do_dynamic = FALSE;
203 static bfd_boolean do_syms = FALSE;
204 static bfd_boolean do_dyn_syms = FALSE;
205 static bfd_boolean do_reloc = FALSE;
206 static bfd_boolean do_sections = FALSE;
207 static bfd_boolean do_section_groups = FALSE;
208 static bfd_boolean do_section_details = FALSE;
209 static bfd_boolean do_segments = FALSE;
210 static bfd_boolean do_unwind = FALSE;
211 static bfd_boolean do_using_dynamic = FALSE;
212 static bfd_boolean do_header = FALSE;
213 static bfd_boolean do_dump = FALSE;
214 static bfd_boolean do_version = FALSE;
215 static bfd_boolean do_histogram = FALSE;
216 static bfd_boolean do_debugging = FALSE;
217 static bfd_boolean do_arch = FALSE;
218 static bfd_boolean do_notes = FALSE;
219 static bfd_boolean do_archive_index = FALSE;
220 static bfd_boolean is_32bit_elf = FALSE;
221 static bfd_boolean decompress_dumps = FALSE;
222
223 struct group_list
224 {
225 struct group_list * next;
226 unsigned int section_index;
227 };
228
229 struct group
230 {
231 struct group_list * root;
232 unsigned int group_index;
233 };
234
235 static size_t group_count;
236 static struct group * section_groups;
237 static struct group ** section_headers_groups;
238
239
240 /* Flag bits indicating particular types of dump. */
241 #define HEX_DUMP (1 << 0) /* The -x command line switch. */
242 #define DISASS_DUMP (1 << 1) /* The -i command line switch. */
243 #define DEBUG_DUMP (1 << 2) /* The -w command line switch. */
244 #define STRING_DUMP (1 << 3) /* The -p command line switch. */
245 #define RELOC_DUMP (1 << 4) /* The -R command line switch. */
246
247 typedef unsigned char dump_type;
248
249 /* A linked list of the section names for which dumps were requested. */
250 struct dump_list_entry
251 {
252 char * name;
253 dump_type type;
254 struct dump_list_entry * next;
255 };
256 static struct dump_list_entry * dump_sects_byname;
257
258 /* A dynamic array of flags indicating for which sections a dump
259 has been requested via command line switches. */
260 static dump_type * cmdline_dump_sects = NULL;
261 static unsigned int num_cmdline_dump_sects = 0;
262
263 /* A dynamic array of flags indicating for which sections a dump of
264 some kind has been requested. It is reset on a per-object file
265 basis and then initialised from the cmdline_dump_sects array,
266 the results of interpreting the -w switch, and the
267 dump_sects_byname list. */
268 static dump_type * dump_sects = NULL;
269 static unsigned int num_dump_sects = 0;
270
271
272 /* How to print a vma value. */
273 typedef enum print_mode
274 {
275 HEX,
276 DEC,
277 DEC_5,
278 UNSIGNED,
279 PREFIX_HEX,
280 FULL_HEX,
281 LONG_HEX
282 }
283 print_mode;
284
285 /* Versioned symbol info. */
286 enum versioned_symbol_info
287 {
288 symbol_undefined,
289 symbol_hidden,
290 symbol_public
291 };
292
293 static const char * get_symbol_version_string
294 (FILE *, bfd_boolean, const char *, unsigned long, unsigned,
295 Elf_Internal_Sym *, enum versioned_symbol_info *, unsigned short *);
296
297 #define UNKNOWN -1
298
299 #define SECTION_NAME(X) \
300 ((X) == NULL ? _("<none>") \
301 : string_table == NULL ? _("<no-name>") \
302 : ((X)->sh_name >= string_table_length ? _("<corrupt>") \
303 : string_table + (X)->sh_name))
304
305 #define DT_VERSIONTAGIDX(tag) (DT_VERNEEDNUM - (tag)) /* Reverse order! */
306
307 #define GET_ELF_SYMBOLS(file, section, sym_count) \
308 (is_32bit_elf ? get_32bit_elf_symbols (file, section, sym_count) \
309 : get_64bit_elf_symbols (file, section, sym_count))
310
311 #define VALID_DYNAMIC_NAME(offset) ((dynamic_strings != NULL) && (offset < dynamic_strings_length))
312 /* GET_DYNAMIC_NAME asssumes that VALID_DYNAMIC_NAME has
313 already been called and verified that the string exists. */
314 #define GET_DYNAMIC_NAME(offset) (dynamic_strings + offset)
315
316 #define REMOVE_ARCH_BITS(ADDR) \
317 do \
318 { \
319 if (elf_header.e_machine == EM_ARM) \
320 (ADDR) &= ~1; \
321 } \
322 while (0)
323 \f
324 /* Retrieve NMEMB structures, each SIZE bytes long from FILE starting at OFFSET +
325 the offset of the current archive member, if we are examining an archive.
326 Put the retrieved data into VAR, if it is not NULL. Otherwise allocate a buffer
327 using malloc and fill that. In either case return the pointer to the start of
328 the retrieved data or NULL if something went wrong. If something does go wrong
329 and REASON is not NULL then emit an error message using REASON as part of the
330 context. */
331
332 static void *
333 get_data (void * var, FILE * file, unsigned long offset, bfd_size_type size,
334 bfd_size_type nmemb, const char * reason)
335 {
336 void * mvar;
337 bfd_size_type amt = size * nmemb;
338
339 if (size == 0 || nmemb == 0)
340 return NULL;
341
342 /* If the size_t type is smaller than the bfd_size_type, eg because
343 you are building a 32-bit tool on a 64-bit host, then make sure
344 that when the sizes are cast to (size_t) no information is lost. */
345 if (sizeof (size_t) < sizeof (bfd_size_type)
346 && ( (bfd_size_type) ((size_t) size) != size
347 || (bfd_size_type) ((size_t) nmemb) != nmemb))
348 {
349 if (reason)
350 error (_("Size truncation prevents reading 0x%" BFD_VMA_FMT "x"
351 " elements of size 0x%" BFD_VMA_FMT "x for %s\n"),
352 nmemb, size, reason);
353 return NULL;
354 }
355
356 /* Check for size overflow. */
357 if (amt < nmemb)
358 {
359 if (reason)
360 error (_("Size overflow prevents reading 0x%" BFD_VMA_FMT "x"
361 " elements of size 0x%" BFD_VMA_FMT "x for %s\n"),
362 nmemb, size, reason);
363 return NULL;
364 }
365
366 /* Be kind to memory chekers (eg valgrind, address sanitizer) by not
367 attempting to allocate memory when the read is bound to fail. */
368 if (amt > current_file_size
369 || offset + archive_file_offset + amt > current_file_size)
370 {
371 if (reason)
372 error (_("Reading 0x%" BFD_VMA_FMT "x"
373 " bytes extends past end of file for %s\n"),
374 amt, reason);
375 return NULL;
376 }
377
378 if (fseek (file, archive_file_offset + offset, SEEK_SET))
379 {
380 if (reason)
381 error (_("Unable to seek to 0x%lx for %s\n"),
382 archive_file_offset + offset, reason);
383 return NULL;
384 }
385
386 mvar = var;
387 if (mvar == NULL)
388 {
389 /* Check for overflow. */
390 if (nmemb < (~(bfd_size_type) 0 - 1) / size)
391 /* + 1 so that we can '\0' terminate invalid string table sections. */
392 mvar = malloc ((size_t) amt + 1);
393
394 if (mvar == NULL)
395 {
396 if (reason)
397 error (_("Out of memory allocating 0x%" BFD_VMA_FMT "x"
398 " bytes for %s\n"),
399 amt, reason);
400 return NULL;
401 }
402
403 ((char *) mvar)[amt] = '\0';
404 }
405
406 if (fread (mvar, (size_t) size, (size_t) nmemb, file) != nmemb)
407 {
408 if (reason)
409 error (_("Unable to read in 0x%" BFD_VMA_FMT "x bytes of %s\n"),
410 amt, reason);
411 if (mvar != var)
412 free (mvar);
413 return NULL;
414 }
415
416 return mvar;
417 }
418
419 /* Print a VMA value in the MODE specified.
420 Returns the number of characters displayed. */
421
422 static unsigned int
423 print_vma (bfd_vma vma, print_mode mode)
424 {
425 unsigned int nc = 0;
426
427 switch (mode)
428 {
429 case FULL_HEX:
430 nc = printf ("0x");
431 /* Fall through. */
432 case LONG_HEX:
433 #ifdef BFD64
434 if (is_32bit_elf)
435 return nc + printf ("%8.8" BFD_VMA_FMT "x", vma);
436 #endif
437 printf_vma (vma);
438 return nc + 16;
439
440 case DEC_5:
441 if (vma <= 99999)
442 return printf ("%5" BFD_VMA_FMT "d", vma);
443 /* Fall through. */
444 case PREFIX_HEX:
445 nc = printf ("0x");
446 /* Fall through. */
447 case HEX:
448 return nc + printf ("%" BFD_VMA_FMT "x", vma);
449
450 case DEC:
451 return printf ("%" BFD_VMA_FMT "d", vma);
452
453 case UNSIGNED:
454 return printf ("%" BFD_VMA_FMT "u", vma);
455
456 default:
457 /* FIXME: Report unrecognised mode ? */
458 return 0;
459 }
460 }
461
462 /* Display a symbol on stdout. Handles the display of control characters and
463 multibye characters (assuming the host environment supports them).
464
465 Display at most abs(WIDTH) characters, truncating as necessary, unless do_wide is true.
466
467 If WIDTH is negative then ensure that the output is at least (- WIDTH) characters,
468 padding as necessary.
469
470 Returns the number of emitted characters. */
471
472 static unsigned int
473 print_symbol (signed int width, const char *symbol)
474 {
475 bfd_boolean extra_padding = FALSE;
476 signed int num_printed = 0;
477 #ifdef HAVE_MBSTATE_T
478 mbstate_t state;
479 #endif
480 unsigned int width_remaining;
481
482 if (width < 0)
483 {
484 /* Keep the width positive. This also helps. */
485 width = - width;
486 extra_padding = TRUE;
487 }
488 assert (width != 0);
489
490 if (do_wide)
491 /* Set the remaining width to a very large value.
492 This simplifies the code below. */
493 width_remaining = INT_MAX;
494 else
495 width_remaining = width;
496
497 #ifdef HAVE_MBSTATE_T
498 /* Initialise the multibyte conversion state. */
499 memset (& state, 0, sizeof (state));
500 #endif
501
502 while (width_remaining)
503 {
504 size_t n;
505 const char c = *symbol++;
506
507 if (c == 0)
508 break;
509
510 /* Do not print control characters directly as they can affect terminal
511 settings. Such characters usually appear in the names generated
512 by the assembler for local labels. */
513 if (ISCNTRL (c))
514 {
515 if (width_remaining < 2)
516 break;
517
518 printf ("^%c", c + 0x40);
519 width_remaining -= 2;
520 num_printed += 2;
521 }
522 else if (ISPRINT (c))
523 {
524 putchar (c);
525 width_remaining --;
526 num_printed ++;
527 }
528 else
529 {
530 #ifdef HAVE_MBSTATE_T
531 wchar_t w;
532 #endif
533 /* Let printf do the hard work of displaying multibyte characters. */
534 printf ("%.1s", symbol - 1);
535 width_remaining --;
536 num_printed ++;
537
538 #ifdef HAVE_MBSTATE_T
539 /* Try to find out how many bytes made up the character that was
540 just printed. Advance the symbol pointer past the bytes that
541 were displayed. */
542 n = mbrtowc (& w, symbol - 1, MB_CUR_MAX, & state);
543 #else
544 n = 1;
545 #endif
546 if (n != (size_t) -1 && n != (size_t) -2 && n > 0)
547 symbol += (n - 1);
548 }
549 }
550
551 if (extra_padding && num_printed < width)
552 {
553 /* Fill in the remaining spaces. */
554 printf ("%-*s", width - num_printed, " ");
555 num_printed = width;
556 }
557
558 return num_printed;
559 }
560
561 /* Returns a pointer to a static buffer containing a printable version of
562 the given section's name. Like print_symbol, except that it does not try
563 to print multibyte characters, it just interprets them as hex values. */
564
565 static const char *
566 printable_section_name (const Elf_Internal_Shdr * sec)
567 {
568 #define MAX_PRINT_SEC_NAME_LEN 128
569 static char sec_name_buf [MAX_PRINT_SEC_NAME_LEN + 1];
570 const char * name = SECTION_NAME (sec);
571 char * buf = sec_name_buf;
572 char c;
573 unsigned int remaining = MAX_PRINT_SEC_NAME_LEN;
574
575 while ((c = * name ++) != 0)
576 {
577 if (ISCNTRL (c))
578 {
579 if (remaining < 2)
580 break;
581
582 * buf ++ = '^';
583 * buf ++ = c + 0x40;
584 remaining -= 2;
585 }
586 else if (ISPRINT (c))
587 {
588 * buf ++ = c;
589 remaining -= 1;
590 }
591 else
592 {
593 static char hex[17] = "0123456789ABCDEF";
594
595 if (remaining < 4)
596 break;
597 * buf ++ = '<';
598 * buf ++ = hex[(c & 0xf0) >> 4];
599 * buf ++ = hex[c & 0x0f];
600 * buf ++ = '>';
601 remaining -= 4;
602 }
603
604 if (remaining == 0)
605 break;
606 }
607
608 * buf = 0;
609 return sec_name_buf;
610 }
611
612 static const char *
613 printable_section_name_from_index (unsigned long ndx)
614 {
615 if (ndx >= elf_header.e_shnum)
616 return _("<corrupt>");
617
618 return printable_section_name (section_headers + ndx);
619 }
620
621 /* Return a pointer to section NAME, or NULL if no such section exists. */
622
623 static Elf_Internal_Shdr *
624 find_section (const char * name)
625 {
626 unsigned int i;
627
628 for (i = 0; i < elf_header.e_shnum; i++)
629 if (streq (SECTION_NAME (section_headers + i), name))
630 return section_headers + i;
631
632 return NULL;
633 }
634
635 /* Return a pointer to a section containing ADDR, or NULL if no such
636 section exists. */
637
638 static Elf_Internal_Shdr *
639 find_section_by_address (bfd_vma addr)
640 {
641 unsigned int i;
642
643 for (i = 0; i < elf_header.e_shnum; i++)
644 {
645 Elf_Internal_Shdr *sec = section_headers + i;
646 if (addr >= sec->sh_addr && addr < sec->sh_addr + sec->sh_size)
647 return sec;
648 }
649
650 return NULL;
651 }
652
653 static Elf_Internal_Shdr *
654 find_section_by_type (unsigned int type)
655 {
656 unsigned int i;
657
658 for (i = 0; i < elf_header.e_shnum; i++)
659 {
660 Elf_Internal_Shdr *sec = section_headers + i;
661 if (sec->sh_type == type)
662 return sec;
663 }
664
665 return NULL;
666 }
667
668 /* Return a pointer to section NAME, or NULL if no such section exists,
669 restricted to the list of sections given in SET. */
670
671 static Elf_Internal_Shdr *
672 find_section_in_set (const char * name, unsigned int * set)
673 {
674 unsigned int i;
675
676 if (set != NULL)
677 {
678 while ((i = *set++) > 0)
679 {
680 /* See PR 21156 for a reproducer. */
681 if (i >= elf_header.e_shnum)
682 continue; /* FIXME: Should we issue an error message ? */
683
684 if (streq (SECTION_NAME (section_headers + i), name))
685 return section_headers + i;
686 }
687 }
688
689 return find_section (name);
690 }
691
692 /* Read an unsigned LEB128 encoded value from DATA.
693 Set *LENGTH_RETURN to the number of bytes read. */
694
695 static inline unsigned long
696 read_uleb128 (unsigned char * data,
697 unsigned int * length_return,
698 const unsigned char * const end)
699 {
700 return read_leb128 (data, length_return, FALSE, end);
701 }
702
703 /* Return TRUE if the current file is for IA-64 machine and OpenVMS ABI.
704 This OS has so many departures from the ELF standard that we test it at
705 many places. */
706
707 static inline bfd_boolean
708 is_ia64_vms (void)
709 {
710 return elf_header.e_machine == EM_IA_64
711 && elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS;
712 }
713
714 /* Guess the relocation size commonly used by the specific machines. */
715
716 static bfd_boolean
717 guess_is_rela (unsigned int e_machine)
718 {
719 switch (e_machine)
720 {
721 /* Targets that use REL relocations. */
722 case EM_386:
723 case EM_IAMCU:
724 case EM_960:
725 case EM_ARM:
726 case EM_D10V:
727 case EM_CYGNUS_D10V:
728 case EM_DLX:
729 case EM_MIPS:
730 case EM_MIPS_RS3_LE:
731 case EM_CYGNUS_M32R:
732 case EM_SCORE:
733 case EM_XGATE:
734 return FALSE;
735
736 /* Targets that use RELA relocations. */
737 case EM_68K:
738 case EM_860:
739 case EM_AARCH64:
740 case EM_ADAPTEVA_EPIPHANY:
741 case EM_ALPHA:
742 case EM_ALTERA_NIOS2:
743 case EM_ARC:
744 case EM_ARC_COMPACT:
745 case EM_ARC_COMPACT2:
746 case EM_AVR:
747 case EM_AVR_OLD:
748 case EM_BLACKFIN:
749 case EM_CR16:
750 case EM_CRIS:
751 case EM_CRX:
752 case EM_D30V:
753 case EM_CYGNUS_D30V:
754 case EM_FR30:
755 case EM_FT32:
756 case EM_CYGNUS_FR30:
757 case EM_CYGNUS_FRV:
758 case EM_H8S:
759 case EM_H8_300:
760 case EM_H8_300H:
761 case EM_IA_64:
762 case EM_IP2K:
763 case EM_IP2K_OLD:
764 case EM_IQ2000:
765 case EM_LATTICEMICO32:
766 case EM_M32C_OLD:
767 case EM_M32C:
768 case EM_M32R:
769 case EM_MCORE:
770 case EM_CYGNUS_MEP:
771 case EM_METAG:
772 case EM_MMIX:
773 case EM_MN10200:
774 case EM_CYGNUS_MN10200:
775 case EM_MN10300:
776 case EM_CYGNUS_MN10300:
777 case EM_MOXIE:
778 case EM_MSP430:
779 case EM_MSP430_OLD:
780 case EM_MT:
781 case EM_NDS32:
782 case EM_NIOS32:
783 case EM_OR1K:
784 case EM_PPC64:
785 case EM_PPC:
786 case EM_TI_PRU:
787 case EM_RISCV:
788 case EM_RL78:
789 case EM_RX:
790 case EM_S390:
791 case EM_S390_OLD:
792 case EM_SH:
793 case EM_SPARC:
794 case EM_SPARC32PLUS:
795 case EM_SPARCV9:
796 case EM_SPU:
797 case EM_TI_C6000:
798 case EM_TILEGX:
799 case EM_TILEPRO:
800 case EM_V800:
801 case EM_V850:
802 case EM_CYGNUS_V850:
803 case EM_VAX:
804 case EM_VISIUM:
805 case EM_X86_64:
806 case EM_L1OM:
807 case EM_K1OM:
808 case EM_XSTORMY16:
809 case EM_XTENSA:
810 case EM_XTENSA_OLD:
811 case EM_MICROBLAZE:
812 case EM_MICROBLAZE_OLD:
813 case EM_WEBASSEMBLY:
814 return TRUE;
815
816 case EM_68HC05:
817 case EM_68HC08:
818 case EM_68HC11:
819 case EM_68HC16:
820 case EM_FX66:
821 case EM_ME16:
822 case EM_MMA:
823 case EM_NCPU:
824 case EM_NDR1:
825 case EM_PCP:
826 case EM_ST100:
827 case EM_ST19:
828 case EM_ST7:
829 case EM_ST9PLUS:
830 case EM_STARCORE:
831 case EM_SVX:
832 case EM_TINYJ:
833 default:
834 warn (_("Don't know about relocations on this machine architecture\n"));
835 return FALSE;
836 }
837 }
838
839 /* Load RELA type relocations from FILE at REL_OFFSET extending for REL_SIZE bytes.
840 Returns TRUE upon success, FALSE otherwise. If successful then a
841 pointer to a malloc'ed buffer containing the relocs is placed in *RELASP,
842 and the number of relocs loaded is placed in *NRELASP. It is the caller's
843 responsibility to free the allocated buffer. */
844
845 static bfd_boolean
846 slurp_rela_relocs (FILE * file,
847 unsigned long rel_offset,
848 unsigned long rel_size,
849 Elf_Internal_Rela ** relasp,
850 unsigned long * nrelasp)
851 {
852 Elf_Internal_Rela * relas;
853 size_t nrelas;
854 unsigned int i;
855
856 if (is_32bit_elf)
857 {
858 Elf32_External_Rela * erelas;
859
860 erelas = (Elf32_External_Rela *) get_data (NULL, file, rel_offset, 1,
861 rel_size, _("32-bit relocation data"));
862 if (!erelas)
863 return FALSE;
864
865 nrelas = rel_size / sizeof (Elf32_External_Rela);
866
867 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
868 sizeof (Elf_Internal_Rela));
869
870 if (relas == NULL)
871 {
872 free (erelas);
873 error (_("out of memory parsing relocs\n"));
874 return FALSE;
875 }
876
877 for (i = 0; i < nrelas; i++)
878 {
879 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
880 relas[i].r_info = BYTE_GET (erelas[i].r_info);
881 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
882 }
883
884 free (erelas);
885 }
886 else
887 {
888 Elf64_External_Rela * erelas;
889
890 erelas = (Elf64_External_Rela *) get_data (NULL, file, rel_offset, 1,
891 rel_size, _("64-bit relocation data"));
892 if (!erelas)
893 return FALSE;
894
895 nrelas = rel_size / sizeof (Elf64_External_Rela);
896
897 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
898 sizeof (Elf_Internal_Rela));
899
900 if (relas == NULL)
901 {
902 free (erelas);
903 error (_("out of memory parsing relocs\n"));
904 return FALSE;
905 }
906
907 for (i = 0; i < nrelas; i++)
908 {
909 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
910 relas[i].r_info = BYTE_GET (erelas[i].r_info);
911 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
912
913 /* The #ifdef BFD64 below is to prevent a compile time
914 warning. We know that if we do not have a 64 bit data
915 type that we will never execute this code anyway. */
916 #ifdef BFD64
917 if (elf_header.e_machine == EM_MIPS
918 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
919 {
920 /* In little-endian objects, r_info isn't really a
921 64-bit little-endian value: it has a 32-bit
922 little-endian symbol index followed by four
923 individual byte fields. Reorder INFO
924 accordingly. */
925 bfd_vma inf = relas[i].r_info;
926 inf = (((inf & 0xffffffff) << 32)
927 | ((inf >> 56) & 0xff)
928 | ((inf >> 40) & 0xff00)
929 | ((inf >> 24) & 0xff0000)
930 | ((inf >> 8) & 0xff000000));
931 relas[i].r_info = inf;
932 }
933 #endif /* BFD64 */
934 }
935
936 free (erelas);
937 }
938
939 *relasp = relas;
940 *nrelasp = nrelas;
941 return TRUE;
942 }
943
944 /* Load REL type relocations from FILE at REL_OFFSET extending for REL_SIZE bytes.
945 Returns TRUE upon success, FALSE otherwise. If successful then a
946 pointer to a malloc'ed buffer containing the relocs is placed in *RELSP,
947 and the number of relocs loaded is placed in *NRELSP. It is the caller's
948 responsibility to free the allocated buffer. */
949
950 static bfd_boolean
951 slurp_rel_relocs (FILE * file,
952 unsigned long rel_offset,
953 unsigned long rel_size,
954 Elf_Internal_Rela ** relsp,
955 unsigned long * nrelsp)
956 {
957 Elf_Internal_Rela * rels;
958 size_t nrels;
959 unsigned int i;
960
961 if (is_32bit_elf)
962 {
963 Elf32_External_Rel * erels;
964
965 erels = (Elf32_External_Rel *) get_data (NULL, file, rel_offset, 1,
966 rel_size, _("32-bit relocation data"));
967 if (!erels)
968 return FALSE;
969
970 nrels = rel_size / sizeof (Elf32_External_Rel);
971
972 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
973
974 if (rels == NULL)
975 {
976 free (erels);
977 error (_("out of memory parsing relocs\n"));
978 return FALSE;
979 }
980
981 for (i = 0; i < nrels; i++)
982 {
983 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
984 rels[i].r_info = BYTE_GET (erels[i].r_info);
985 rels[i].r_addend = 0;
986 }
987
988 free (erels);
989 }
990 else
991 {
992 Elf64_External_Rel * erels;
993
994 erels = (Elf64_External_Rel *) get_data (NULL, file, rel_offset, 1,
995 rel_size, _("64-bit relocation data"));
996 if (!erels)
997 return FALSE;
998
999 nrels = rel_size / sizeof (Elf64_External_Rel);
1000
1001 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
1002
1003 if (rels == NULL)
1004 {
1005 free (erels);
1006 error (_("out of memory parsing relocs\n"));
1007 return FALSE;
1008 }
1009
1010 for (i = 0; i < nrels; i++)
1011 {
1012 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
1013 rels[i].r_info = BYTE_GET (erels[i].r_info);
1014 rels[i].r_addend = 0;
1015
1016 /* The #ifdef BFD64 below is to prevent a compile time
1017 warning. We know that if we do not have a 64 bit data
1018 type that we will never execute this code anyway. */
1019 #ifdef BFD64
1020 if (elf_header.e_machine == EM_MIPS
1021 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
1022 {
1023 /* In little-endian objects, r_info isn't really a
1024 64-bit little-endian value: it has a 32-bit
1025 little-endian symbol index followed by four
1026 individual byte fields. Reorder INFO
1027 accordingly. */
1028 bfd_vma inf = rels[i].r_info;
1029 inf = (((inf & 0xffffffff) << 32)
1030 | ((inf >> 56) & 0xff)
1031 | ((inf >> 40) & 0xff00)
1032 | ((inf >> 24) & 0xff0000)
1033 | ((inf >> 8) & 0xff000000));
1034 rels[i].r_info = inf;
1035 }
1036 #endif /* BFD64 */
1037 }
1038
1039 free (erels);
1040 }
1041
1042 *relsp = rels;
1043 *nrelsp = nrels;
1044 return TRUE;
1045 }
1046
1047 /* Returns the reloc type extracted from the reloc info field. */
1048
1049 static unsigned int
1050 get_reloc_type (bfd_vma reloc_info)
1051 {
1052 if (is_32bit_elf)
1053 return ELF32_R_TYPE (reloc_info);
1054
1055 switch (elf_header.e_machine)
1056 {
1057 case EM_MIPS:
1058 /* Note: We assume that reloc_info has already been adjusted for us. */
1059 return ELF64_MIPS_R_TYPE (reloc_info);
1060
1061 case EM_SPARCV9:
1062 return ELF64_R_TYPE_ID (reloc_info);
1063
1064 default:
1065 return ELF64_R_TYPE (reloc_info);
1066 }
1067 }
1068
1069 /* Return the symbol index extracted from the reloc info field. */
1070
1071 static bfd_vma
1072 get_reloc_symindex (bfd_vma reloc_info)
1073 {
1074 return is_32bit_elf ? ELF32_R_SYM (reloc_info) : ELF64_R_SYM (reloc_info);
1075 }
1076
1077 static inline bfd_boolean
1078 uses_msp430x_relocs (void)
1079 {
1080 return
1081 elf_header.e_machine == EM_MSP430 /* Paranoia. */
1082 /* GCC uses osabi == ELFOSBI_STANDALONE. */
1083 && (((elf_header.e_flags & EF_MSP430_MACH) == E_MSP430_MACH_MSP430X)
1084 /* TI compiler uses ELFOSABI_NONE. */
1085 || (elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE));
1086 }
1087
1088 /* Display the contents of the relocation data found at the specified
1089 offset. */
1090
1091 static bfd_boolean
1092 dump_relocations (FILE * file,
1093 unsigned long rel_offset,
1094 unsigned long rel_size,
1095 Elf_Internal_Sym * symtab,
1096 unsigned long nsyms,
1097 char * strtab,
1098 unsigned long strtablen,
1099 int is_rela,
1100 bfd_boolean is_dynsym)
1101 {
1102 unsigned long i;
1103 Elf_Internal_Rela * rels;
1104 bfd_boolean res = TRUE;
1105
1106 if (is_rela == UNKNOWN)
1107 is_rela = guess_is_rela (elf_header.e_machine);
1108
1109 if (is_rela)
1110 {
1111 if (!slurp_rela_relocs (file, rel_offset, rel_size, &rels, &rel_size))
1112 return FALSE;
1113 }
1114 else
1115 {
1116 if (!slurp_rel_relocs (file, rel_offset, rel_size, &rels, &rel_size))
1117 return FALSE;
1118 }
1119
1120 if (is_32bit_elf)
1121 {
1122 if (is_rela)
1123 {
1124 if (do_wide)
1125 printf (_(" Offset Info Type Sym. Value Symbol's Name + Addend\n"));
1126 else
1127 printf (_(" Offset Info Type Sym.Value Sym. Name + Addend\n"));
1128 }
1129 else
1130 {
1131 if (do_wide)
1132 printf (_(" Offset Info Type Sym. Value Symbol's Name\n"));
1133 else
1134 printf (_(" Offset Info Type Sym.Value Sym. Name\n"));
1135 }
1136 }
1137 else
1138 {
1139 if (is_rela)
1140 {
1141 if (do_wide)
1142 printf (_(" Offset Info Type Symbol's Value Symbol's Name + Addend\n"));
1143 else
1144 printf (_(" Offset Info Type Sym. Value Sym. Name + Addend\n"));
1145 }
1146 else
1147 {
1148 if (do_wide)
1149 printf (_(" Offset Info Type Symbol's Value Symbol's Name\n"));
1150 else
1151 printf (_(" Offset Info Type Sym. Value Sym. Name\n"));
1152 }
1153 }
1154
1155 for (i = 0; i < rel_size; i++)
1156 {
1157 const char * rtype;
1158 bfd_vma offset;
1159 bfd_vma inf;
1160 bfd_vma symtab_index;
1161 bfd_vma type;
1162
1163 offset = rels[i].r_offset;
1164 inf = rels[i].r_info;
1165
1166 type = get_reloc_type (inf);
1167 symtab_index = get_reloc_symindex (inf);
1168
1169 if (is_32bit_elf)
1170 {
1171 printf ("%8.8lx %8.8lx ",
1172 (unsigned long) offset & 0xffffffff,
1173 (unsigned long) inf & 0xffffffff);
1174 }
1175 else
1176 {
1177 #if BFD_HOST_64BIT_LONG
1178 printf (do_wide
1179 ? "%16.16lx %16.16lx "
1180 : "%12.12lx %12.12lx ",
1181 offset, inf);
1182 #elif BFD_HOST_64BIT_LONG_LONG
1183 #ifndef __MSVCRT__
1184 printf (do_wide
1185 ? "%16.16llx %16.16llx "
1186 : "%12.12llx %12.12llx ",
1187 offset, inf);
1188 #else
1189 printf (do_wide
1190 ? "%16.16I64x %16.16I64x "
1191 : "%12.12I64x %12.12I64x ",
1192 offset, inf);
1193 #endif
1194 #else
1195 printf (do_wide
1196 ? "%8.8lx%8.8lx %8.8lx%8.8lx "
1197 : "%4.4lx%8.8lx %4.4lx%8.8lx ",
1198 _bfd_int64_high (offset),
1199 _bfd_int64_low (offset),
1200 _bfd_int64_high (inf),
1201 _bfd_int64_low (inf));
1202 #endif
1203 }
1204
1205 switch (elf_header.e_machine)
1206 {
1207 default:
1208 rtype = NULL;
1209 break;
1210
1211 case EM_AARCH64:
1212 rtype = elf_aarch64_reloc_type (type);
1213 break;
1214
1215 case EM_M32R:
1216 case EM_CYGNUS_M32R:
1217 rtype = elf_m32r_reloc_type (type);
1218 break;
1219
1220 case EM_386:
1221 case EM_IAMCU:
1222 rtype = elf_i386_reloc_type (type);
1223 break;
1224
1225 case EM_68HC11:
1226 case EM_68HC12:
1227 rtype = elf_m68hc11_reloc_type (type);
1228 break;
1229
1230 case EM_68K:
1231 rtype = elf_m68k_reloc_type (type);
1232 break;
1233
1234 case EM_960:
1235 rtype = elf_i960_reloc_type (type);
1236 break;
1237
1238 case EM_AVR:
1239 case EM_AVR_OLD:
1240 rtype = elf_avr_reloc_type (type);
1241 break;
1242
1243 case EM_OLD_SPARCV9:
1244 case EM_SPARC32PLUS:
1245 case EM_SPARCV9:
1246 case EM_SPARC:
1247 rtype = elf_sparc_reloc_type (type);
1248 break;
1249
1250 case EM_SPU:
1251 rtype = elf_spu_reloc_type (type);
1252 break;
1253
1254 case EM_V800:
1255 rtype = v800_reloc_type (type);
1256 break;
1257 case EM_V850:
1258 case EM_CYGNUS_V850:
1259 rtype = v850_reloc_type (type);
1260 break;
1261
1262 case EM_D10V:
1263 case EM_CYGNUS_D10V:
1264 rtype = elf_d10v_reloc_type (type);
1265 break;
1266
1267 case EM_D30V:
1268 case EM_CYGNUS_D30V:
1269 rtype = elf_d30v_reloc_type (type);
1270 break;
1271
1272 case EM_DLX:
1273 rtype = elf_dlx_reloc_type (type);
1274 break;
1275
1276 case EM_SH:
1277 rtype = elf_sh_reloc_type (type);
1278 break;
1279
1280 case EM_MN10300:
1281 case EM_CYGNUS_MN10300:
1282 rtype = elf_mn10300_reloc_type (type);
1283 break;
1284
1285 case EM_MN10200:
1286 case EM_CYGNUS_MN10200:
1287 rtype = elf_mn10200_reloc_type (type);
1288 break;
1289
1290 case EM_FR30:
1291 case EM_CYGNUS_FR30:
1292 rtype = elf_fr30_reloc_type (type);
1293 break;
1294
1295 case EM_CYGNUS_FRV:
1296 rtype = elf_frv_reloc_type (type);
1297 break;
1298
1299 case EM_FT32:
1300 rtype = elf_ft32_reloc_type (type);
1301 break;
1302
1303 case EM_MCORE:
1304 rtype = elf_mcore_reloc_type (type);
1305 break;
1306
1307 case EM_MMIX:
1308 rtype = elf_mmix_reloc_type (type);
1309 break;
1310
1311 case EM_MOXIE:
1312 rtype = elf_moxie_reloc_type (type);
1313 break;
1314
1315 case EM_MSP430:
1316 if (uses_msp430x_relocs ())
1317 {
1318 rtype = elf_msp430x_reloc_type (type);
1319 break;
1320 }
1321 /* Fall through. */
1322 case EM_MSP430_OLD:
1323 rtype = elf_msp430_reloc_type (type);
1324 break;
1325
1326 case EM_NDS32:
1327 rtype = elf_nds32_reloc_type (type);
1328 break;
1329
1330 case EM_PPC:
1331 rtype = elf_ppc_reloc_type (type);
1332 break;
1333
1334 case EM_PPC64:
1335 rtype = elf_ppc64_reloc_type (type);
1336 break;
1337
1338 case EM_MIPS:
1339 case EM_MIPS_RS3_LE:
1340 rtype = elf_mips_reloc_type (type);
1341 break;
1342
1343 case EM_RISCV:
1344 rtype = elf_riscv_reloc_type (type);
1345 break;
1346
1347 case EM_ALPHA:
1348 rtype = elf_alpha_reloc_type (type);
1349 break;
1350
1351 case EM_ARM:
1352 rtype = elf_arm_reloc_type (type);
1353 break;
1354
1355 case EM_ARC:
1356 case EM_ARC_COMPACT:
1357 case EM_ARC_COMPACT2:
1358 rtype = elf_arc_reloc_type (type);
1359 break;
1360
1361 case EM_PARISC:
1362 rtype = elf_hppa_reloc_type (type);
1363 break;
1364
1365 case EM_H8_300:
1366 case EM_H8_300H:
1367 case EM_H8S:
1368 rtype = elf_h8_reloc_type (type);
1369 break;
1370
1371 case EM_OR1K:
1372 rtype = elf_or1k_reloc_type (type);
1373 break;
1374
1375 case EM_PJ:
1376 case EM_PJ_OLD:
1377 rtype = elf_pj_reloc_type (type);
1378 break;
1379 case EM_IA_64:
1380 rtype = elf_ia64_reloc_type (type);
1381 break;
1382
1383 case EM_CRIS:
1384 rtype = elf_cris_reloc_type (type);
1385 break;
1386
1387 case EM_860:
1388 rtype = elf_i860_reloc_type (type);
1389 break;
1390
1391 case EM_X86_64:
1392 case EM_L1OM:
1393 case EM_K1OM:
1394 rtype = elf_x86_64_reloc_type (type);
1395 break;
1396
1397 case EM_S370:
1398 rtype = i370_reloc_type (type);
1399 break;
1400
1401 case EM_S390_OLD:
1402 case EM_S390:
1403 rtype = elf_s390_reloc_type (type);
1404 break;
1405
1406 case EM_SCORE:
1407 rtype = elf_score_reloc_type (type);
1408 break;
1409
1410 case EM_XSTORMY16:
1411 rtype = elf_xstormy16_reloc_type (type);
1412 break;
1413
1414 case EM_CRX:
1415 rtype = elf_crx_reloc_type (type);
1416 break;
1417
1418 case EM_VAX:
1419 rtype = elf_vax_reloc_type (type);
1420 break;
1421
1422 case EM_VISIUM:
1423 rtype = elf_visium_reloc_type (type);
1424 break;
1425
1426 case EM_ADAPTEVA_EPIPHANY:
1427 rtype = elf_epiphany_reloc_type (type);
1428 break;
1429
1430 case EM_IP2K:
1431 case EM_IP2K_OLD:
1432 rtype = elf_ip2k_reloc_type (type);
1433 break;
1434
1435 case EM_IQ2000:
1436 rtype = elf_iq2000_reloc_type (type);
1437 break;
1438
1439 case EM_XTENSA_OLD:
1440 case EM_XTENSA:
1441 rtype = elf_xtensa_reloc_type (type);
1442 break;
1443
1444 case EM_LATTICEMICO32:
1445 rtype = elf_lm32_reloc_type (type);
1446 break;
1447
1448 case EM_M32C_OLD:
1449 case EM_M32C:
1450 rtype = elf_m32c_reloc_type (type);
1451 break;
1452
1453 case EM_MT:
1454 rtype = elf_mt_reloc_type (type);
1455 break;
1456
1457 case EM_BLACKFIN:
1458 rtype = elf_bfin_reloc_type (type);
1459 break;
1460
1461 case EM_CYGNUS_MEP:
1462 rtype = elf_mep_reloc_type (type);
1463 break;
1464
1465 case EM_CR16:
1466 rtype = elf_cr16_reloc_type (type);
1467 break;
1468
1469 case EM_MICROBLAZE:
1470 case EM_MICROBLAZE_OLD:
1471 rtype = elf_microblaze_reloc_type (type);
1472 break;
1473
1474 case EM_RL78:
1475 rtype = elf_rl78_reloc_type (type);
1476 break;
1477
1478 case EM_RX:
1479 rtype = elf_rx_reloc_type (type);
1480 break;
1481
1482 case EM_METAG:
1483 rtype = elf_metag_reloc_type (type);
1484 break;
1485
1486 case EM_XC16X:
1487 case EM_C166:
1488 rtype = elf_xc16x_reloc_type (type);
1489 break;
1490
1491 case EM_TI_C6000:
1492 rtype = elf_tic6x_reloc_type (type);
1493 break;
1494
1495 case EM_TILEGX:
1496 rtype = elf_tilegx_reloc_type (type);
1497 break;
1498
1499 case EM_TILEPRO:
1500 rtype = elf_tilepro_reloc_type (type);
1501 break;
1502
1503 case EM_WEBASSEMBLY:
1504 rtype = elf_wasm32_reloc_type (type);
1505 break;
1506
1507 case EM_XGATE:
1508 rtype = elf_xgate_reloc_type (type);
1509 break;
1510
1511 case EM_ALTERA_NIOS2:
1512 rtype = elf_nios2_reloc_type (type);
1513 break;
1514
1515 case EM_TI_PRU:
1516 rtype = elf_pru_reloc_type (type);
1517 break;
1518 }
1519
1520 if (rtype == NULL)
1521 printf (_("unrecognized: %-7lx"), (unsigned long) type & 0xffffffff);
1522 else
1523 printf (do_wide ? "%-22.22s" : "%-17.17s", rtype);
1524
1525 if (elf_header.e_machine == EM_ALPHA
1526 && rtype != NULL
1527 && streq (rtype, "R_ALPHA_LITUSE")
1528 && is_rela)
1529 {
1530 switch (rels[i].r_addend)
1531 {
1532 case LITUSE_ALPHA_ADDR: rtype = "ADDR"; break;
1533 case LITUSE_ALPHA_BASE: rtype = "BASE"; break;
1534 case LITUSE_ALPHA_BYTOFF: rtype = "BYTOFF"; break;
1535 case LITUSE_ALPHA_JSR: rtype = "JSR"; break;
1536 case LITUSE_ALPHA_TLSGD: rtype = "TLSGD"; break;
1537 case LITUSE_ALPHA_TLSLDM: rtype = "TLSLDM"; break;
1538 case LITUSE_ALPHA_JSRDIRECT: rtype = "JSRDIRECT"; break;
1539 default: rtype = NULL;
1540 }
1541
1542 if (rtype)
1543 printf (" (%s)", rtype);
1544 else
1545 {
1546 putchar (' ');
1547 printf (_("<unknown addend: %lx>"),
1548 (unsigned long) rels[i].r_addend);
1549 res = FALSE;
1550 }
1551 }
1552 else if (symtab_index)
1553 {
1554 if (symtab == NULL || symtab_index >= nsyms)
1555 {
1556 error (_(" bad symbol index: %08lx in reloc"), (unsigned long) symtab_index);
1557 res = FALSE;
1558 }
1559 else
1560 {
1561 Elf_Internal_Sym * psym;
1562 const char * version_string;
1563 enum versioned_symbol_info sym_info;
1564 unsigned short vna_other;
1565
1566 psym = symtab + symtab_index;
1567
1568 version_string
1569 = get_symbol_version_string (file, is_dynsym,
1570 strtab, strtablen,
1571 symtab_index,
1572 psym,
1573 &sym_info,
1574 &vna_other);
1575
1576 printf (" ");
1577
1578 if (ELF_ST_TYPE (psym->st_info) == STT_GNU_IFUNC)
1579 {
1580 const char * name;
1581 unsigned int len;
1582 unsigned int width = is_32bit_elf ? 8 : 14;
1583
1584 /* Relocations against GNU_IFUNC symbols do not use the value
1585 of the symbol as the address to relocate against. Instead
1586 they invoke the function named by the symbol and use its
1587 result as the address for relocation.
1588
1589 To indicate this to the user, do not display the value of
1590 the symbol in the "Symbols's Value" field. Instead show
1591 its name followed by () as a hint that the symbol is
1592 invoked. */
1593
1594 if (strtab == NULL
1595 || psym->st_name == 0
1596 || psym->st_name >= strtablen)
1597 name = "??";
1598 else
1599 name = strtab + psym->st_name;
1600
1601 len = print_symbol (width, name);
1602 if (version_string)
1603 printf (sym_info == symbol_public ? "@@%s" : "@%s",
1604 version_string);
1605 printf ("()%-*s", len <= width ? (width + 1) - len : 1, " ");
1606 }
1607 else
1608 {
1609 print_vma (psym->st_value, LONG_HEX);
1610
1611 printf (is_32bit_elf ? " " : " ");
1612 }
1613
1614 if (psym->st_name == 0)
1615 {
1616 const char * sec_name = "<null>";
1617 char name_buf[40];
1618
1619 if (ELF_ST_TYPE (psym->st_info) == STT_SECTION)
1620 {
1621 if (psym->st_shndx < elf_header.e_shnum)
1622 sec_name = SECTION_NAME (section_headers + psym->st_shndx);
1623 else if (psym->st_shndx == SHN_ABS)
1624 sec_name = "ABS";
1625 else if (psym->st_shndx == SHN_COMMON)
1626 sec_name = "COMMON";
1627 else if ((elf_header.e_machine == EM_MIPS
1628 && psym->st_shndx == SHN_MIPS_SCOMMON)
1629 || (elf_header.e_machine == EM_TI_C6000
1630 && psym->st_shndx == SHN_TIC6X_SCOMMON))
1631 sec_name = "SCOMMON";
1632 else if (elf_header.e_machine == EM_MIPS
1633 && psym->st_shndx == SHN_MIPS_SUNDEFINED)
1634 sec_name = "SUNDEF";
1635 else if ((elf_header.e_machine == EM_X86_64
1636 || elf_header.e_machine == EM_L1OM
1637 || elf_header.e_machine == EM_K1OM)
1638 && psym->st_shndx == SHN_X86_64_LCOMMON)
1639 sec_name = "LARGE_COMMON";
1640 else if (elf_header.e_machine == EM_IA_64
1641 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX
1642 && psym->st_shndx == SHN_IA_64_ANSI_COMMON)
1643 sec_name = "ANSI_COM";
1644 else if (is_ia64_vms ()
1645 && psym->st_shndx == SHN_IA_64_VMS_SYMVEC)
1646 sec_name = "VMS_SYMVEC";
1647 else
1648 {
1649 sprintf (name_buf, "<section 0x%x>",
1650 (unsigned int) psym->st_shndx);
1651 sec_name = name_buf;
1652 }
1653 }
1654 print_symbol (22, sec_name);
1655 }
1656 else if (strtab == NULL)
1657 printf (_("<string table index: %3ld>"), psym->st_name);
1658 else if (psym->st_name >= strtablen)
1659 {
1660 error (_("<corrupt string table index: %3ld>"), psym->st_name);
1661 res = FALSE;
1662 }
1663 else
1664 {
1665 print_symbol (22, strtab + psym->st_name);
1666 if (version_string)
1667 printf (sym_info == symbol_public ? "@@%s" : "@%s",
1668 version_string);
1669 }
1670
1671 if (is_rela)
1672 {
1673 bfd_vma off = rels[i].r_addend;
1674
1675 if ((bfd_signed_vma) off < 0)
1676 printf (" - %" BFD_VMA_FMT "x", - off);
1677 else
1678 printf (" + %" BFD_VMA_FMT "x", off);
1679 }
1680 }
1681 }
1682 else if (is_rela)
1683 {
1684 bfd_vma off = rels[i].r_addend;
1685
1686 printf ("%*c", is_32bit_elf ? 12 : 20, ' ');
1687 if ((bfd_signed_vma) off < 0)
1688 printf ("-%" BFD_VMA_FMT "x", - off);
1689 else
1690 printf ("%" BFD_VMA_FMT "x", off);
1691 }
1692
1693 if (elf_header.e_machine == EM_SPARCV9
1694 && rtype != NULL
1695 && streq (rtype, "R_SPARC_OLO10"))
1696 printf (" + %lx", (unsigned long) ELF64_R_TYPE_DATA (inf));
1697
1698 putchar ('\n');
1699
1700 #ifdef BFD64
1701 if (! is_32bit_elf && elf_header.e_machine == EM_MIPS)
1702 {
1703 bfd_vma type2 = ELF64_MIPS_R_TYPE2 (inf);
1704 bfd_vma type3 = ELF64_MIPS_R_TYPE3 (inf);
1705 const char * rtype2 = elf_mips_reloc_type (type2);
1706 const char * rtype3 = elf_mips_reloc_type (type3);
1707
1708 printf (" Type2: ");
1709
1710 if (rtype2 == NULL)
1711 printf (_("unrecognized: %-7lx"),
1712 (unsigned long) type2 & 0xffffffff);
1713 else
1714 printf ("%-17.17s", rtype2);
1715
1716 printf ("\n Type3: ");
1717
1718 if (rtype3 == NULL)
1719 printf (_("unrecognized: %-7lx"),
1720 (unsigned long) type3 & 0xffffffff);
1721 else
1722 printf ("%-17.17s", rtype3);
1723
1724 putchar ('\n');
1725 }
1726 #endif /* BFD64 */
1727 }
1728
1729 free (rels);
1730
1731 return res;
1732 }
1733
1734 static const char *
1735 get_mips_dynamic_type (unsigned long type)
1736 {
1737 switch (type)
1738 {
1739 case DT_MIPS_RLD_VERSION: return "MIPS_RLD_VERSION";
1740 case DT_MIPS_TIME_STAMP: return "MIPS_TIME_STAMP";
1741 case DT_MIPS_ICHECKSUM: return "MIPS_ICHECKSUM";
1742 case DT_MIPS_IVERSION: return "MIPS_IVERSION";
1743 case DT_MIPS_FLAGS: return "MIPS_FLAGS";
1744 case DT_MIPS_BASE_ADDRESS: return "MIPS_BASE_ADDRESS";
1745 case DT_MIPS_MSYM: return "MIPS_MSYM";
1746 case DT_MIPS_CONFLICT: return "MIPS_CONFLICT";
1747 case DT_MIPS_LIBLIST: return "MIPS_LIBLIST";
1748 case DT_MIPS_LOCAL_GOTNO: return "MIPS_LOCAL_GOTNO";
1749 case DT_MIPS_CONFLICTNO: return "MIPS_CONFLICTNO";
1750 case DT_MIPS_LIBLISTNO: return "MIPS_LIBLISTNO";
1751 case DT_MIPS_SYMTABNO: return "MIPS_SYMTABNO";
1752 case DT_MIPS_UNREFEXTNO: return "MIPS_UNREFEXTNO";
1753 case DT_MIPS_GOTSYM: return "MIPS_GOTSYM";
1754 case DT_MIPS_HIPAGENO: return "MIPS_HIPAGENO";
1755 case DT_MIPS_RLD_MAP: return "MIPS_RLD_MAP";
1756 case DT_MIPS_RLD_MAP_REL: return "MIPS_RLD_MAP_REL";
1757 case DT_MIPS_DELTA_CLASS: return "MIPS_DELTA_CLASS";
1758 case DT_MIPS_DELTA_CLASS_NO: return "MIPS_DELTA_CLASS_NO";
1759 case DT_MIPS_DELTA_INSTANCE: return "MIPS_DELTA_INSTANCE";
1760 case DT_MIPS_DELTA_INSTANCE_NO: return "MIPS_DELTA_INSTANCE_NO";
1761 case DT_MIPS_DELTA_RELOC: return "MIPS_DELTA_RELOC";
1762 case DT_MIPS_DELTA_RELOC_NO: return "MIPS_DELTA_RELOC_NO";
1763 case DT_MIPS_DELTA_SYM: return "MIPS_DELTA_SYM";
1764 case DT_MIPS_DELTA_SYM_NO: return "MIPS_DELTA_SYM_NO";
1765 case DT_MIPS_DELTA_CLASSSYM: return "MIPS_DELTA_CLASSSYM";
1766 case DT_MIPS_DELTA_CLASSSYM_NO: return "MIPS_DELTA_CLASSSYM_NO";
1767 case DT_MIPS_CXX_FLAGS: return "MIPS_CXX_FLAGS";
1768 case DT_MIPS_PIXIE_INIT: return "MIPS_PIXIE_INIT";
1769 case DT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
1770 case DT_MIPS_LOCALPAGE_GOTIDX: return "MIPS_LOCALPAGE_GOTIDX";
1771 case DT_MIPS_LOCAL_GOTIDX: return "MIPS_LOCAL_GOTIDX";
1772 case DT_MIPS_HIDDEN_GOTIDX: return "MIPS_HIDDEN_GOTIDX";
1773 case DT_MIPS_PROTECTED_GOTIDX: return "MIPS_PROTECTED_GOTIDX";
1774 case DT_MIPS_OPTIONS: return "MIPS_OPTIONS";
1775 case DT_MIPS_INTERFACE: return "MIPS_INTERFACE";
1776 case DT_MIPS_DYNSTR_ALIGN: return "MIPS_DYNSTR_ALIGN";
1777 case DT_MIPS_INTERFACE_SIZE: return "MIPS_INTERFACE_SIZE";
1778 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: return "MIPS_RLD_TEXT_RESOLVE_ADDR";
1779 case DT_MIPS_PERF_SUFFIX: return "MIPS_PERF_SUFFIX";
1780 case DT_MIPS_COMPACT_SIZE: return "MIPS_COMPACT_SIZE";
1781 case DT_MIPS_GP_VALUE: return "MIPS_GP_VALUE";
1782 case DT_MIPS_AUX_DYNAMIC: return "MIPS_AUX_DYNAMIC";
1783 case DT_MIPS_PLTGOT: return "MIPS_PLTGOT";
1784 case DT_MIPS_RWPLT: return "MIPS_RWPLT";
1785 default:
1786 return NULL;
1787 }
1788 }
1789
1790 static const char *
1791 get_sparc64_dynamic_type (unsigned long type)
1792 {
1793 switch (type)
1794 {
1795 case DT_SPARC_REGISTER: return "SPARC_REGISTER";
1796 default:
1797 return NULL;
1798 }
1799 }
1800
1801 static const char *
1802 get_ppc_dynamic_type (unsigned long type)
1803 {
1804 switch (type)
1805 {
1806 case DT_PPC_GOT: return "PPC_GOT";
1807 case DT_PPC_OPT: return "PPC_OPT";
1808 default:
1809 return NULL;
1810 }
1811 }
1812
1813 static const char *
1814 get_ppc64_dynamic_type (unsigned long type)
1815 {
1816 switch (type)
1817 {
1818 case DT_PPC64_GLINK: return "PPC64_GLINK";
1819 case DT_PPC64_OPD: return "PPC64_OPD";
1820 case DT_PPC64_OPDSZ: return "PPC64_OPDSZ";
1821 case DT_PPC64_OPT: return "PPC64_OPT";
1822 default:
1823 return NULL;
1824 }
1825 }
1826
1827 static const char *
1828 get_parisc_dynamic_type (unsigned long type)
1829 {
1830 switch (type)
1831 {
1832 case DT_HP_LOAD_MAP: return "HP_LOAD_MAP";
1833 case DT_HP_DLD_FLAGS: return "HP_DLD_FLAGS";
1834 case DT_HP_DLD_HOOK: return "HP_DLD_HOOK";
1835 case DT_HP_UX10_INIT: return "HP_UX10_INIT";
1836 case DT_HP_UX10_INITSZ: return "HP_UX10_INITSZ";
1837 case DT_HP_PREINIT: return "HP_PREINIT";
1838 case DT_HP_PREINITSZ: return "HP_PREINITSZ";
1839 case DT_HP_NEEDED: return "HP_NEEDED";
1840 case DT_HP_TIME_STAMP: return "HP_TIME_STAMP";
1841 case DT_HP_CHECKSUM: return "HP_CHECKSUM";
1842 case DT_HP_GST_SIZE: return "HP_GST_SIZE";
1843 case DT_HP_GST_VERSION: return "HP_GST_VERSION";
1844 case DT_HP_GST_HASHVAL: return "HP_GST_HASHVAL";
1845 case DT_HP_EPLTREL: return "HP_GST_EPLTREL";
1846 case DT_HP_EPLTRELSZ: return "HP_GST_EPLTRELSZ";
1847 case DT_HP_FILTERED: return "HP_FILTERED";
1848 case DT_HP_FILTER_TLS: return "HP_FILTER_TLS";
1849 case DT_HP_COMPAT_FILTERED: return "HP_COMPAT_FILTERED";
1850 case DT_HP_LAZYLOAD: return "HP_LAZYLOAD";
1851 case DT_HP_BIND_NOW_COUNT: return "HP_BIND_NOW_COUNT";
1852 case DT_PLT: return "PLT";
1853 case DT_PLT_SIZE: return "PLT_SIZE";
1854 case DT_DLT: return "DLT";
1855 case DT_DLT_SIZE: return "DLT_SIZE";
1856 default:
1857 return NULL;
1858 }
1859 }
1860
1861 static const char *
1862 get_ia64_dynamic_type (unsigned long type)
1863 {
1864 switch (type)
1865 {
1866 case DT_IA_64_PLT_RESERVE: return "IA_64_PLT_RESERVE";
1867 case DT_IA_64_VMS_SUBTYPE: return "VMS_SUBTYPE";
1868 case DT_IA_64_VMS_IMGIOCNT: return "VMS_IMGIOCNT";
1869 case DT_IA_64_VMS_LNKFLAGS: return "VMS_LNKFLAGS";
1870 case DT_IA_64_VMS_VIR_MEM_BLK_SIZ: return "VMS_VIR_MEM_BLK_SIZ";
1871 case DT_IA_64_VMS_IDENT: return "VMS_IDENT";
1872 case DT_IA_64_VMS_NEEDED_IDENT: return "VMS_NEEDED_IDENT";
1873 case DT_IA_64_VMS_IMG_RELA_CNT: return "VMS_IMG_RELA_CNT";
1874 case DT_IA_64_VMS_SEG_RELA_CNT: return "VMS_SEG_RELA_CNT";
1875 case DT_IA_64_VMS_FIXUP_RELA_CNT: return "VMS_FIXUP_RELA_CNT";
1876 case DT_IA_64_VMS_FIXUP_NEEDED: return "VMS_FIXUP_NEEDED";
1877 case DT_IA_64_VMS_SYMVEC_CNT: return "VMS_SYMVEC_CNT";
1878 case DT_IA_64_VMS_XLATED: return "VMS_XLATED";
1879 case DT_IA_64_VMS_STACKSIZE: return "VMS_STACKSIZE";
1880 case DT_IA_64_VMS_UNWINDSZ: return "VMS_UNWINDSZ";
1881 case DT_IA_64_VMS_UNWIND_CODSEG: return "VMS_UNWIND_CODSEG";
1882 case DT_IA_64_VMS_UNWIND_INFOSEG: return "VMS_UNWIND_INFOSEG";
1883 case DT_IA_64_VMS_LINKTIME: return "VMS_LINKTIME";
1884 case DT_IA_64_VMS_SEG_NO: return "VMS_SEG_NO";
1885 case DT_IA_64_VMS_SYMVEC_OFFSET: return "VMS_SYMVEC_OFFSET";
1886 case DT_IA_64_VMS_SYMVEC_SEG: return "VMS_SYMVEC_SEG";
1887 case DT_IA_64_VMS_UNWIND_OFFSET: return "VMS_UNWIND_OFFSET";
1888 case DT_IA_64_VMS_UNWIND_SEG: return "VMS_UNWIND_SEG";
1889 case DT_IA_64_VMS_STRTAB_OFFSET: return "VMS_STRTAB_OFFSET";
1890 case DT_IA_64_VMS_SYSVER_OFFSET: return "VMS_SYSVER_OFFSET";
1891 case DT_IA_64_VMS_IMG_RELA_OFF: return "VMS_IMG_RELA_OFF";
1892 case DT_IA_64_VMS_SEG_RELA_OFF: return "VMS_SEG_RELA_OFF";
1893 case DT_IA_64_VMS_FIXUP_RELA_OFF: return "VMS_FIXUP_RELA_OFF";
1894 case DT_IA_64_VMS_PLTGOT_OFFSET: return "VMS_PLTGOT_OFFSET";
1895 case DT_IA_64_VMS_PLTGOT_SEG: return "VMS_PLTGOT_SEG";
1896 case DT_IA_64_VMS_FPMODE: return "VMS_FPMODE";
1897 default:
1898 return NULL;
1899 }
1900 }
1901
1902 static const char *
1903 get_solaris_section_type (unsigned long type)
1904 {
1905 switch (type)
1906 {
1907 case 0x6fffffee: return "SUNW_ancillary";
1908 case 0x6fffffef: return "SUNW_capchain";
1909 case 0x6ffffff0: return "SUNW_capinfo";
1910 case 0x6ffffff1: return "SUNW_symsort";
1911 case 0x6ffffff2: return "SUNW_tlssort";
1912 case 0x6ffffff3: return "SUNW_LDYNSYM";
1913 case 0x6ffffff4: return "SUNW_dof";
1914 case 0x6ffffff5: return "SUNW_cap";
1915 case 0x6ffffff6: return "SUNW_SIGNATURE";
1916 case 0x6ffffff7: return "SUNW_ANNOTATE";
1917 case 0x6ffffff8: return "SUNW_DEBUGSTR";
1918 case 0x6ffffff9: return "SUNW_DEBUG";
1919 case 0x6ffffffa: return "SUNW_move";
1920 case 0x6ffffffb: return "SUNW_COMDAT";
1921 case 0x6ffffffc: return "SUNW_syminfo";
1922 case 0x6ffffffd: return "SUNW_verdef";
1923 case 0x6ffffffe: return "SUNW_verneed";
1924 case 0x6fffffff: return "SUNW_versym";
1925 case 0x70000000: return "SPARC_GOTDATA";
1926 default: return NULL;
1927 }
1928 }
1929
1930 static const char *
1931 get_alpha_dynamic_type (unsigned long type)
1932 {
1933 switch (type)
1934 {
1935 case DT_ALPHA_PLTRO: return "ALPHA_PLTRO";
1936 default: return NULL;
1937 }
1938 }
1939
1940 static const char *
1941 get_score_dynamic_type (unsigned long type)
1942 {
1943 switch (type)
1944 {
1945 case DT_SCORE_BASE_ADDRESS: return "SCORE_BASE_ADDRESS";
1946 case DT_SCORE_LOCAL_GOTNO: return "SCORE_LOCAL_GOTNO";
1947 case DT_SCORE_SYMTABNO: return "SCORE_SYMTABNO";
1948 case DT_SCORE_GOTSYM: return "SCORE_GOTSYM";
1949 case DT_SCORE_UNREFEXTNO: return "SCORE_UNREFEXTNO";
1950 case DT_SCORE_HIPAGENO: return "SCORE_HIPAGENO";
1951 default: return NULL;
1952 }
1953 }
1954
1955 static const char *
1956 get_tic6x_dynamic_type (unsigned long type)
1957 {
1958 switch (type)
1959 {
1960 case DT_C6000_GSYM_OFFSET: return "C6000_GSYM_OFFSET";
1961 case DT_C6000_GSTR_OFFSET: return "C6000_GSTR_OFFSET";
1962 case DT_C6000_DSBT_BASE: return "C6000_DSBT_BASE";
1963 case DT_C6000_DSBT_SIZE: return "C6000_DSBT_SIZE";
1964 case DT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
1965 case DT_C6000_DSBT_INDEX: return "C6000_DSBT_INDEX";
1966 default: return NULL;
1967 }
1968 }
1969
1970 static const char *
1971 get_nios2_dynamic_type (unsigned long type)
1972 {
1973 switch (type)
1974 {
1975 case DT_NIOS2_GP: return "NIOS2_GP";
1976 default: return NULL;
1977 }
1978 }
1979
1980 static const char *
1981 get_solaris_dynamic_type (unsigned long type)
1982 {
1983 switch (type)
1984 {
1985 case 0x6000000d: return "SUNW_AUXILIARY";
1986 case 0x6000000e: return "SUNW_RTLDINF";
1987 case 0x6000000f: return "SUNW_FILTER";
1988 case 0x60000010: return "SUNW_CAP";
1989 case 0x60000011: return "SUNW_SYMTAB";
1990 case 0x60000012: return "SUNW_SYMSZ";
1991 case 0x60000013: return "SUNW_SORTENT";
1992 case 0x60000014: return "SUNW_SYMSORT";
1993 case 0x60000015: return "SUNW_SYMSORTSZ";
1994 case 0x60000016: return "SUNW_TLSSORT";
1995 case 0x60000017: return "SUNW_TLSSORTSZ";
1996 case 0x60000018: return "SUNW_CAPINFO";
1997 case 0x60000019: return "SUNW_STRPAD";
1998 case 0x6000001a: return "SUNW_CAPCHAIN";
1999 case 0x6000001b: return "SUNW_LDMACH";
2000 case 0x6000001d: return "SUNW_CAPCHAINENT";
2001 case 0x6000001f: return "SUNW_CAPCHAINSZ";
2002 case 0x60000021: return "SUNW_PARENT";
2003 case 0x60000023: return "SUNW_ASLR";
2004 case 0x60000025: return "SUNW_RELAX";
2005 case 0x60000029: return "SUNW_NXHEAP";
2006 case 0x6000002b: return "SUNW_NXSTACK";
2007
2008 case 0x70000001: return "SPARC_REGISTER";
2009 case 0x7ffffffd: return "AUXILIARY";
2010 case 0x7ffffffe: return "USED";
2011 case 0x7fffffff: return "FILTER";
2012
2013 default: return NULL;
2014 }
2015 }
2016
2017 static const char *
2018 get_dynamic_type (unsigned long type)
2019 {
2020 static char buff[64];
2021
2022 switch (type)
2023 {
2024 case DT_NULL: return "NULL";
2025 case DT_NEEDED: return "NEEDED";
2026 case DT_PLTRELSZ: return "PLTRELSZ";
2027 case DT_PLTGOT: return "PLTGOT";
2028 case DT_HASH: return "HASH";
2029 case DT_STRTAB: return "STRTAB";
2030 case DT_SYMTAB: return "SYMTAB";
2031 case DT_RELA: return "RELA";
2032 case DT_RELASZ: return "RELASZ";
2033 case DT_RELAENT: return "RELAENT";
2034 case DT_STRSZ: return "STRSZ";
2035 case DT_SYMENT: return "SYMENT";
2036 case DT_INIT: return "INIT";
2037 case DT_FINI: return "FINI";
2038 case DT_SONAME: return "SONAME";
2039 case DT_RPATH: return "RPATH";
2040 case DT_SYMBOLIC: return "SYMBOLIC";
2041 case DT_REL: return "REL";
2042 case DT_RELSZ: return "RELSZ";
2043 case DT_RELENT: return "RELENT";
2044 case DT_PLTREL: return "PLTREL";
2045 case DT_DEBUG: return "DEBUG";
2046 case DT_TEXTREL: return "TEXTREL";
2047 case DT_JMPREL: return "JMPREL";
2048 case DT_BIND_NOW: return "BIND_NOW";
2049 case DT_INIT_ARRAY: return "INIT_ARRAY";
2050 case DT_FINI_ARRAY: return "FINI_ARRAY";
2051 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ";
2052 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ";
2053 case DT_RUNPATH: return "RUNPATH";
2054 case DT_FLAGS: return "FLAGS";
2055
2056 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY";
2057 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ";
2058 case DT_SYMTAB_SHNDX: return "SYMTAB_SHNDX";
2059
2060 case DT_CHECKSUM: return "CHECKSUM";
2061 case DT_PLTPADSZ: return "PLTPADSZ";
2062 case DT_MOVEENT: return "MOVEENT";
2063 case DT_MOVESZ: return "MOVESZ";
2064 case DT_FEATURE: return "FEATURE";
2065 case DT_POSFLAG_1: return "POSFLAG_1";
2066 case DT_SYMINSZ: return "SYMINSZ";
2067 case DT_SYMINENT: return "SYMINENT"; /* aka VALRNGHI */
2068
2069 case DT_ADDRRNGLO: return "ADDRRNGLO";
2070 case DT_CONFIG: return "CONFIG";
2071 case DT_DEPAUDIT: return "DEPAUDIT";
2072 case DT_AUDIT: return "AUDIT";
2073 case DT_PLTPAD: return "PLTPAD";
2074 case DT_MOVETAB: return "MOVETAB";
2075 case DT_SYMINFO: return "SYMINFO"; /* aka ADDRRNGHI */
2076
2077 case DT_VERSYM: return "VERSYM";
2078
2079 case DT_TLSDESC_GOT: return "TLSDESC_GOT";
2080 case DT_TLSDESC_PLT: return "TLSDESC_PLT";
2081 case DT_RELACOUNT: return "RELACOUNT";
2082 case DT_RELCOUNT: return "RELCOUNT";
2083 case DT_FLAGS_1: return "FLAGS_1";
2084 case DT_VERDEF: return "VERDEF";
2085 case DT_VERDEFNUM: return "VERDEFNUM";
2086 case DT_VERNEED: return "VERNEED";
2087 case DT_VERNEEDNUM: return "VERNEEDNUM";
2088
2089 case DT_AUXILIARY: return "AUXILIARY";
2090 case DT_USED: return "USED";
2091 case DT_FILTER: return "FILTER";
2092
2093 case DT_GNU_PRELINKED: return "GNU_PRELINKED";
2094 case DT_GNU_CONFLICT: return "GNU_CONFLICT";
2095 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ";
2096 case DT_GNU_LIBLIST: return "GNU_LIBLIST";
2097 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ";
2098 case DT_GNU_HASH: return "GNU_HASH";
2099
2100 default:
2101 if ((type >= DT_LOPROC) && (type <= DT_HIPROC))
2102 {
2103 const char * result;
2104
2105 switch (elf_header.e_machine)
2106 {
2107 case EM_MIPS:
2108 case EM_MIPS_RS3_LE:
2109 result = get_mips_dynamic_type (type);
2110 break;
2111 case EM_SPARCV9:
2112 result = get_sparc64_dynamic_type (type);
2113 break;
2114 case EM_PPC:
2115 result = get_ppc_dynamic_type (type);
2116 break;
2117 case EM_PPC64:
2118 result = get_ppc64_dynamic_type (type);
2119 break;
2120 case EM_IA_64:
2121 result = get_ia64_dynamic_type (type);
2122 break;
2123 case EM_ALPHA:
2124 result = get_alpha_dynamic_type (type);
2125 break;
2126 case EM_SCORE:
2127 result = get_score_dynamic_type (type);
2128 break;
2129 case EM_TI_C6000:
2130 result = get_tic6x_dynamic_type (type);
2131 break;
2132 case EM_ALTERA_NIOS2:
2133 result = get_nios2_dynamic_type (type);
2134 break;
2135 default:
2136 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
2137 result = get_solaris_dynamic_type (type);
2138 else
2139 result = NULL;
2140 break;
2141 }
2142
2143 if (result != NULL)
2144 return result;
2145
2146 snprintf (buff, sizeof (buff), _("Processor Specific: %lx"), type);
2147 }
2148 else if (((type >= DT_LOOS) && (type <= DT_HIOS))
2149 || (elf_header.e_machine == EM_PARISC
2150 && (type >= OLD_DT_LOOS) && (type <= OLD_DT_HIOS)))
2151 {
2152 const char * result;
2153
2154 switch (elf_header.e_machine)
2155 {
2156 case EM_PARISC:
2157 result = get_parisc_dynamic_type (type);
2158 break;
2159 case EM_IA_64:
2160 result = get_ia64_dynamic_type (type);
2161 break;
2162 default:
2163 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
2164 result = get_solaris_dynamic_type (type);
2165 else
2166 result = NULL;
2167 break;
2168 }
2169
2170 if (result != NULL)
2171 return result;
2172
2173 snprintf (buff, sizeof (buff), _("Operating System specific: %lx"),
2174 type);
2175 }
2176 else
2177 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), type);
2178
2179 return buff;
2180 }
2181 }
2182
2183 static char *
2184 get_file_type (unsigned e_type)
2185 {
2186 static char buff[32];
2187
2188 switch (e_type)
2189 {
2190 case ET_NONE: return _("NONE (None)");
2191 case ET_REL: return _("REL (Relocatable file)");
2192 case ET_EXEC: return _("EXEC (Executable file)");
2193 case ET_DYN: return _("DYN (Shared object file)");
2194 case ET_CORE: return _("CORE (Core file)");
2195
2196 default:
2197 if ((e_type >= ET_LOPROC) && (e_type <= ET_HIPROC))
2198 snprintf (buff, sizeof (buff), _("Processor Specific: (%x)"), e_type);
2199 else if ((e_type >= ET_LOOS) && (e_type <= ET_HIOS))
2200 snprintf (buff, sizeof (buff), _("OS Specific: (%x)"), e_type);
2201 else
2202 snprintf (buff, sizeof (buff), _("<unknown>: %x"), e_type);
2203 return buff;
2204 }
2205 }
2206
2207 static char *
2208 get_machine_name (unsigned e_machine)
2209 {
2210 static char buff[64]; /* XXX */
2211
2212 switch (e_machine)
2213 {
2214 /* Please keep this switch table sorted by increasing EM_ value. */
2215 /* 0 */
2216 case EM_NONE: return _("None");
2217 case EM_M32: return "WE32100";
2218 case EM_SPARC: return "Sparc";
2219 case EM_386: return "Intel 80386";
2220 case EM_68K: return "MC68000";
2221 case EM_88K: return "MC88000";
2222 case EM_IAMCU: return "Intel MCU";
2223 case EM_860: return "Intel 80860";
2224 case EM_MIPS: return "MIPS R3000";
2225 case EM_S370: return "IBM System/370";
2226 /* 10 */
2227 case EM_MIPS_RS3_LE: return "MIPS R4000 big-endian";
2228 case EM_OLD_SPARCV9: return "Sparc v9 (old)";
2229 case EM_PARISC: return "HPPA";
2230 case EM_VPP550: return "Fujitsu VPP500";
2231 case EM_SPARC32PLUS: return "Sparc v8+" ;
2232 case EM_960: return "Intel 90860";
2233 case EM_PPC: return "PowerPC";
2234 /* 20 */
2235 case EM_PPC64: return "PowerPC64";
2236 case EM_S390_OLD:
2237 case EM_S390: return "IBM S/390";
2238 case EM_SPU: return "SPU";
2239 /* 30 */
2240 case EM_V800: return "Renesas V850 (using RH850 ABI)";
2241 case EM_FR20: return "Fujitsu FR20";
2242 case EM_RH32: return "TRW RH32";
2243 case EM_MCORE: return "MCORE";
2244 /* 40 */
2245 case EM_ARM: return "ARM";
2246 case EM_OLD_ALPHA: return "Digital Alpha (old)";
2247 case EM_SH: return "Renesas / SuperH SH";
2248 case EM_SPARCV9: return "Sparc v9";
2249 case EM_TRICORE: return "Siemens Tricore";
2250 case EM_ARC: return "ARC";
2251 case EM_H8_300: return "Renesas H8/300";
2252 case EM_H8_300H: return "Renesas H8/300H";
2253 case EM_H8S: return "Renesas H8S";
2254 case EM_H8_500: return "Renesas H8/500";
2255 /* 50 */
2256 case EM_IA_64: return "Intel IA-64";
2257 case EM_MIPS_X: return "Stanford MIPS-X";
2258 case EM_COLDFIRE: return "Motorola Coldfire";
2259 case EM_68HC12: return "Motorola MC68HC12 Microcontroller";
2260 case EM_MMA: return "Fujitsu Multimedia Accelerator";
2261 case EM_PCP: return "Siemens PCP";
2262 case EM_NCPU: return "Sony nCPU embedded RISC processor";
2263 case EM_NDR1: return "Denso NDR1 microprocesspr";
2264 case EM_STARCORE: return "Motorola Star*Core processor";
2265 case EM_ME16: return "Toyota ME16 processor";
2266 /* 60 */
2267 case EM_ST100: return "STMicroelectronics ST100 processor";
2268 case EM_TINYJ: return "Advanced Logic Corp. TinyJ embedded processor";
2269 case EM_X86_64: return "Advanced Micro Devices X86-64";
2270 case EM_PDSP: return "Sony DSP processor";
2271 case EM_PDP10: return "Digital Equipment Corp. PDP-10";
2272 case EM_PDP11: return "Digital Equipment Corp. PDP-11";
2273 case EM_FX66: return "Siemens FX66 microcontroller";
2274 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 bit microcontroller";
2275 case EM_ST7: return "STMicroelectronics ST7 8-bit microcontroller";
2276 case EM_68HC16: return "Motorola MC68HC16 Microcontroller";
2277 /* 70 */
2278 case EM_68HC11: return "Motorola MC68HC11 Microcontroller";
2279 case EM_68HC08: return "Motorola MC68HC08 Microcontroller";
2280 case EM_68HC05: return "Motorola MC68HC05 Microcontroller";
2281 case EM_SVX: return "Silicon Graphics SVx";
2282 case EM_ST19: return "STMicroelectronics ST19 8-bit microcontroller";
2283 case EM_VAX: return "Digital VAX";
2284 case EM_CRIS: return "Axis Communications 32-bit embedded processor";
2285 case EM_JAVELIN: return "Infineon Technologies 32-bit embedded cpu";
2286 case EM_FIREPATH: return "Element 14 64-bit DSP processor";
2287 case EM_ZSP: return "LSI Logic's 16-bit DSP processor";
2288 /* 80 */
2289 case EM_MMIX: return "Donald Knuth's educational 64-bit processor";
2290 case EM_HUANY: return "Harvard Universitys's machine-independent object format";
2291 case EM_PRISM: return "Vitesse Prism";
2292 case EM_AVR_OLD:
2293 case EM_AVR: return "Atmel AVR 8-bit microcontroller";
2294 case EM_CYGNUS_FR30:
2295 case EM_FR30: return "Fujitsu FR30";
2296 case EM_CYGNUS_D10V:
2297 case EM_D10V: return "d10v";
2298 case EM_CYGNUS_D30V:
2299 case EM_D30V: return "d30v";
2300 case EM_CYGNUS_V850:
2301 case EM_V850: return "Renesas V850";
2302 case EM_CYGNUS_M32R:
2303 case EM_M32R: return "Renesas M32R (formerly Mitsubishi M32r)";
2304 case EM_CYGNUS_MN10300:
2305 case EM_MN10300: return "mn10300";
2306 /* 90 */
2307 case EM_CYGNUS_MN10200:
2308 case EM_MN10200: return "mn10200";
2309 case EM_PJ: return "picoJava";
2310 case EM_OR1K: return "OpenRISC 1000";
2311 case EM_ARC_COMPACT: return "ARCompact";
2312 case EM_XTENSA_OLD:
2313 case EM_XTENSA: return "Tensilica Xtensa Processor";
2314 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor";
2315 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor";
2316 case EM_NS32K: return "National Semiconductor 32000 series";
2317 case EM_TPC: return "Tenor Network TPC processor";
2318 case EM_SNP1K: return "Trebia SNP 1000 processor";
2319 /* 100 */
2320 case EM_ST200: return "STMicroelectronics ST200 microcontroller";
2321 case EM_IP2K_OLD:
2322 case EM_IP2K: return "Ubicom IP2xxx 8-bit microcontrollers";
2323 case EM_MAX: return "MAX Processor";
2324 case EM_CR: return "National Semiconductor CompactRISC";
2325 case EM_F2MC16: return "Fujitsu F2MC16";
2326 case EM_MSP430: return "Texas Instruments msp430 microcontroller";
2327 case EM_BLACKFIN: return "Analog Devices Blackfin";
2328 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors";
2329 case EM_SEP: return "Sharp embedded microprocessor";
2330 case EM_ARCA: return "Arca RISC microprocessor";
2331 /* 110 */
2332 case EM_UNICORE: return "Unicore";
2333 case EM_EXCESS: return "eXcess 16/32/64-bit configurable embedded CPU";
2334 case EM_DXP: return "Icera Semiconductor Inc. Deep Execution Processor";
2335 case EM_ALTERA_NIOS2: return "Altera Nios II";
2336 case EM_CRX: return "National Semiconductor CRX microprocessor";
2337 case EM_XGATE: return "Motorola XGATE embedded processor";
2338 case EM_C166:
2339 case EM_XC16X: return "Infineon Technologies xc16x";
2340 case EM_M16C: return "Renesas M16C series microprocessors";
2341 case EM_DSPIC30F: return "Microchip Technology dsPIC30F Digital Signal Controller";
2342 case EM_CE: return "Freescale Communication Engine RISC core";
2343 /* 120 */
2344 case EM_M32C: return "Renesas M32c";
2345 /* 130 */
2346 case EM_TSK3000: return "Altium TSK3000 core";
2347 case EM_RS08: return "Freescale RS08 embedded processor";
2348 case EM_ECOG2: return "Cyan Technology eCOG2 microprocessor";
2349 case EM_SCORE: return "SUNPLUS S+Core";
2350 case EM_DSP24: return "New Japan Radio (NJR) 24-bit DSP Processor";
2351 case EM_VIDEOCORE3: return "Broadcom VideoCore III processor";
2352 case EM_LATTICEMICO32: return "Lattice Mico32";
2353 case EM_SE_C17: return "Seiko Epson C17 family";
2354 /* 140 */
2355 case EM_TI_C6000: return "Texas Instruments TMS320C6000 DSP family";
2356 case EM_TI_C2000: return "Texas Instruments TMS320C2000 DSP family";
2357 case EM_TI_C5500: return "Texas Instruments TMS320C55x DSP family";
2358 case EM_TI_PRU: return "TI PRU I/O processor";
2359 /* 160 */
2360 case EM_MMDSP_PLUS: return "STMicroelectronics 64bit VLIW Data Signal Processor";
2361 case EM_CYPRESS_M8C: return "Cypress M8C microprocessor";
2362 case EM_R32C: return "Renesas R32C series microprocessors";
2363 case EM_TRIMEDIA: return "NXP Semiconductors TriMedia architecture family";
2364 case EM_QDSP6: return "QUALCOMM DSP6 Processor";
2365 case EM_8051: return "Intel 8051 and variants";
2366 case EM_STXP7X: return "STMicroelectronics STxP7x family";
2367 case EM_NDS32: return "Andes Technology compact code size embedded RISC processor family";
2368 case EM_ECOG1X: return "Cyan Technology eCOG1X family";
2369 case EM_MAXQ30: return "Dallas Semiconductor MAXQ30 Core microcontrollers";
2370 /* 170 */
2371 case EM_XIMO16: return "New Japan Radio (NJR) 16-bit DSP Processor";
2372 case EM_MANIK: return "M2000 Reconfigurable RISC Microprocessor";
2373 case EM_CRAYNV2: return "Cray Inc. NV2 vector architecture";
2374 case EM_RX: return "Renesas RX";
2375 case EM_METAG: return "Imagination Technologies Meta processor architecture";
2376 case EM_MCST_ELBRUS: return "MCST Elbrus general purpose hardware architecture";
2377 case EM_ECOG16: return "Cyan Technology eCOG16 family";
2378 case EM_CR16:
2379 case EM_MICROBLAZE:
2380 case EM_MICROBLAZE_OLD: return "Xilinx MicroBlaze";
2381 case EM_ETPU: return "Freescale Extended Time Processing Unit";
2382 case EM_SLE9X: return "Infineon Technologies SLE9X core";
2383 /* 180 */
2384 case EM_L1OM: return "Intel L1OM";
2385 case EM_K1OM: return "Intel K1OM";
2386 case EM_INTEL182: return "Intel (reserved)";
2387 case EM_AARCH64: return "AArch64";
2388 case EM_ARM184: return "ARM (reserved)";
2389 case EM_AVR32: return "Atmel Corporation 32-bit microprocessor";
2390 case EM_STM8: return "STMicroeletronics STM8 8-bit microcontroller";
2391 case EM_TILE64: return "Tilera TILE64 multicore architecture family";
2392 case EM_TILEPRO: return "Tilera TILEPro multicore architecture family";
2393 /* 190 */
2394 case EM_CUDA: return "NVIDIA CUDA architecture";
2395 case EM_TILEGX: return "Tilera TILE-Gx multicore architecture family";
2396 case EM_CLOUDSHIELD: return "CloudShield architecture family";
2397 case EM_COREA_1ST: return "KIPO-KAIST Core-A 1st generation processor family";
2398 case EM_COREA_2ND: return "KIPO-KAIST Core-A 2nd generation processor family";
2399 case EM_ARC_COMPACT2: return "ARCv2";
2400 case EM_OPEN8: return "Open8 8-bit RISC soft processor core";
2401 case EM_RL78: return "Renesas RL78";
2402 case EM_VIDEOCORE5: return "Broadcom VideoCore V processor";
2403 case EM_78K0R: return "Renesas 78K0R";
2404 /* 200 */
2405 case EM_56800EX: return "Freescale 56800EX Digital Signal Controller (DSC)";
2406 case EM_BA1: return "Beyond BA1 CPU architecture";
2407 case EM_BA2: return "Beyond BA2 CPU architecture";
2408 case EM_XCORE: return "XMOS xCORE processor family";
2409 case EM_MCHP_PIC: return "Microchip 8-bit PIC(r) family";
2410 /* 210 */
2411 case EM_KM32: return "KM211 KM32 32-bit processor";
2412 case EM_KMX32: return "KM211 KMX32 32-bit processor";
2413 case EM_KMX16: return "KM211 KMX16 16-bit processor";
2414 case EM_KMX8: return "KM211 KMX8 8-bit processor";
2415 case EM_KVARC: return "KM211 KVARC processor";
2416 case EM_CDP: return "Paneve CDP architecture family";
2417 case EM_COGE: return "Cognitive Smart Memory Processor";
2418 case EM_COOL: return "Bluechip Systems CoolEngine";
2419 case EM_NORC: return "Nanoradio Optimized RISC";
2420 case EM_CSR_KALIMBA: return "CSR Kalimba architecture family";
2421 /* 220 */
2422 case EM_Z80: return "Zilog Z80";
2423 case EM_VISIUM: return "CDS VISIUMcore processor";
2424 case EM_FT32: return "FTDI Chip FT32";
2425 case EM_MOXIE: return "Moxie";
2426 case EM_AMDGPU: return "AMD GPU";
2427 case EM_RISCV: return "RISC-V";
2428 case EM_LANAI: return "Lanai 32-bit processor";
2429 case EM_BPF: return "Linux BPF";
2430
2431 /* Large numbers... */
2432 case EM_MT: return "Morpho Techologies MT processor";
2433 case EM_ALPHA: return "Alpha";
2434 case EM_WEBASSEMBLY: return "Web Assembly";
2435 case EM_DLX: return "OpenDLX";
2436 case EM_XSTORMY16: return "Sanyo XStormy16 CPU core";
2437 case EM_IQ2000: return "Vitesse IQ2000";
2438 case EM_M32C_OLD:
2439 case EM_NIOS32: return "Altera Nios";
2440 case EM_CYGNUS_MEP: return "Toshiba MeP Media Engine";
2441 case EM_ADAPTEVA_EPIPHANY: return "Adapteva EPIPHANY";
2442 case EM_CYGNUS_FRV: return "Fujitsu FR-V";
2443
2444 default:
2445 snprintf (buff, sizeof (buff), _("<unknown>: 0x%x"), e_machine);
2446 return buff;
2447 }
2448 }
2449
2450 static void
2451 decode_ARC_machine_flags (unsigned e_flags, unsigned e_machine, char buf[])
2452 {
2453 /* ARC has two machine types EM_ARC_COMPACT and EM_ARC_COMPACT2. Some
2454 other compilers don't a specific architecture type in the e_flags, and
2455 instead use EM_ARC_COMPACT for old ARC600, ARC601, and ARC700
2456 architectures, and switch to EM_ARC_COMPACT2 for newer ARCEM and ARCHS
2457 architectures.
2458
2459 Th GNU tools follows this use of EM_ARC_COMPACT and EM_ARC_COMPACT2,
2460 but also sets a specific architecture type in the e_flags field.
2461
2462 However, when decoding the flags we don't worry if we see an
2463 unexpected pairing, for example EM_ARC_COMPACT machine type, with
2464 ARCEM architecture type. */
2465
2466 switch (e_flags & EF_ARC_MACH_MSK)
2467 {
2468 /* We only expect these to occur for EM_ARC_COMPACT2. */
2469 case EF_ARC_CPU_ARCV2EM:
2470 strcat (buf, ", ARC EM");
2471 break;
2472 case EF_ARC_CPU_ARCV2HS:
2473 strcat (buf, ", ARC HS");
2474 break;
2475
2476 /* We only expect these to occur for EM_ARC_COMPACT. */
2477 case E_ARC_MACH_ARC600:
2478 strcat (buf, ", ARC600");
2479 break;
2480 case E_ARC_MACH_ARC601:
2481 strcat (buf, ", ARC601");
2482 break;
2483 case E_ARC_MACH_ARC700:
2484 strcat (buf, ", ARC700");
2485 break;
2486
2487 /* The only times we should end up here are (a) A corrupt ELF, (b) A
2488 new ELF with new architecture being read by an old version of
2489 readelf, or (c) An ELF built with non-GNU compiler that does not
2490 set the architecture in the e_flags. */
2491 default:
2492 if (e_machine == EM_ARC_COMPACT)
2493 strcat (buf, ", Unknown ARCompact");
2494 else
2495 strcat (buf, ", Unknown ARC");
2496 break;
2497 }
2498
2499 switch (e_flags & EF_ARC_OSABI_MSK)
2500 {
2501 case E_ARC_OSABI_ORIG:
2502 strcat (buf, ", (ABI:legacy)");
2503 break;
2504 case E_ARC_OSABI_V2:
2505 strcat (buf, ", (ABI:v2)");
2506 break;
2507 /* Only upstream 3.9+ kernels will support ARCv2 ISA. */
2508 case E_ARC_OSABI_V3:
2509 strcat (buf, ", v3 no-legacy-syscalls ABI");
2510 break;
2511 case E_ARC_OSABI_V4:
2512 strcat (buf, ", v4 ABI");
2513 break;
2514 default:
2515 strcat (buf, ", unrecognised ARC OSABI flag");
2516 break;
2517 }
2518 }
2519
2520 static void
2521 decode_ARM_machine_flags (unsigned e_flags, char buf[])
2522 {
2523 unsigned eabi;
2524 bfd_boolean unknown = FALSE;
2525
2526 eabi = EF_ARM_EABI_VERSION (e_flags);
2527 e_flags &= ~ EF_ARM_EABIMASK;
2528
2529 /* Handle "generic" ARM flags. */
2530 if (e_flags & EF_ARM_RELEXEC)
2531 {
2532 strcat (buf, ", relocatable executable");
2533 e_flags &= ~ EF_ARM_RELEXEC;
2534 }
2535
2536 /* Now handle EABI specific flags. */
2537 switch (eabi)
2538 {
2539 default:
2540 strcat (buf, ", <unrecognized EABI>");
2541 if (e_flags)
2542 unknown = TRUE;
2543 break;
2544
2545 case EF_ARM_EABI_VER1:
2546 strcat (buf, ", Version1 EABI");
2547 while (e_flags)
2548 {
2549 unsigned flag;
2550
2551 /* Process flags one bit at a time. */
2552 flag = e_flags & - e_flags;
2553 e_flags &= ~ flag;
2554
2555 switch (flag)
2556 {
2557 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2558 strcat (buf, ", sorted symbol tables");
2559 break;
2560
2561 default:
2562 unknown = TRUE;
2563 break;
2564 }
2565 }
2566 break;
2567
2568 case EF_ARM_EABI_VER2:
2569 strcat (buf, ", Version2 EABI");
2570 while (e_flags)
2571 {
2572 unsigned flag;
2573
2574 /* Process flags one bit at a time. */
2575 flag = e_flags & - e_flags;
2576 e_flags &= ~ flag;
2577
2578 switch (flag)
2579 {
2580 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2581 strcat (buf, ", sorted symbol tables");
2582 break;
2583
2584 case EF_ARM_DYNSYMSUSESEGIDX:
2585 strcat (buf, ", dynamic symbols use segment index");
2586 break;
2587
2588 case EF_ARM_MAPSYMSFIRST:
2589 strcat (buf, ", mapping symbols precede others");
2590 break;
2591
2592 default:
2593 unknown = TRUE;
2594 break;
2595 }
2596 }
2597 break;
2598
2599 case EF_ARM_EABI_VER3:
2600 strcat (buf, ", Version3 EABI");
2601 break;
2602
2603 case EF_ARM_EABI_VER4:
2604 strcat (buf, ", Version4 EABI");
2605 while (e_flags)
2606 {
2607 unsigned flag;
2608
2609 /* Process flags one bit at a time. */
2610 flag = e_flags & - e_flags;
2611 e_flags &= ~ flag;
2612
2613 switch (flag)
2614 {
2615 case EF_ARM_BE8:
2616 strcat (buf, ", BE8");
2617 break;
2618
2619 case EF_ARM_LE8:
2620 strcat (buf, ", LE8");
2621 break;
2622
2623 default:
2624 unknown = TRUE;
2625 break;
2626 }
2627 }
2628 break;
2629
2630 case EF_ARM_EABI_VER5:
2631 strcat (buf, ", Version5 EABI");
2632 while (e_flags)
2633 {
2634 unsigned flag;
2635
2636 /* Process flags one bit at a time. */
2637 flag = e_flags & - e_flags;
2638 e_flags &= ~ flag;
2639
2640 switch (flag)
2641 {
2642 case EF_ARM_BE8:
2643 strcat (buf, ", BE8");
2644 break;
2645
2646 case EF_ARM_LE8:
2647 strcat (buf, ", LE8");
2648 break;
2649
2650 case EF_ARM_ABI_FLOAT_SOFT: /* Conflicts with EF_ARM_SOFT_FLOAT. */
2651 strcat (buf, ", soft-float ABI");
2652 break;
2653
2654 case EF_ARM_ABI_FLOAT_HARD: /* Conflicts with EF_ARM_VFP_FLOAT. */
2655 strcat (buf, ", hard-float ABI");
2656 break;
2657
2658 default:
2659 unknown = TRUE;
2660 break;
2661 }
2662 }
2663 break;
2664
2665 case EF_ARM_EABI_UNKNOWN:
2666 strcat (buf, ", GNU EABI");
2667 while (e_flags)
2668 {
2669 unsigned flag;
2670
2671 /* Process flags one bit at a time. */
2672 flag = e_flags & - e_flags;
2673 e_flags &= ~ flag;
2674
2675 switch (flag)
2676 {
2677 case EF_ARM_INTERWORK:
2678 strcat (buf, ", interworking enabled");
2679 break;
2680
2681 case EF_ARM_APCS_26:
2682 strcat (buf, ", uses APCS/26");
2683 break;
2684
2685 case EF_ARM_APCS_FLOAT:
2686 strcat (buf, ", uses APCS/float");
2687 break;
2688
2689 case EF_ARM_PIC:
2690 strcat (buf, ", position independent");
2691 break;
2692
2693 case EF_ARM_ALIGN8:
2694 strcat (buf, ", 8 bit structure alignment");
2695 break;
2696
2697 case EF_ARM_NEW_ABI:
2698 strcat (buf, ", uses new ABI");
2699 break;
2700
2701 case EF_ARM_OLD_ABI:
2702 strcat (buf, ", uses old ABI");
2703 break;
2704
2705 case EF_ARM_SOFT_FLOAT:
2706 strcat (buf, ", software FP");
2707 break;
2708
2709 case EF_ARM_VFP_FLOAT:
2710 strcat (buf, ", VFP");
2711 break;
2712
2713 case EF_ARM_MAVERICK_FLOAT:
2714 strcat (buf, ", Maverick FP");
2715 break;
2716
2717 default:
2718 unknown = TRUE;
2719 break;
2720 }
2721 }
2722 }
2723
2724 if (unknown)
2725 strcat (buf,_(", <unknown>"));
2726 }
2727
2728 static void
2729 decode_AVR_machine_flags (unsigned e_flags, char buf[], size_t size)
2730 {
2731 --size; /* Leave space for null terminator. */
2732
2733 switch (e_flags & EF_AVR_MACH)
2734 {
2735 case E_AVR_MACH_AVR1:
2736 strncat (buf, ", avr:1", size);
2737 break;
2738 case E_AVR_MACH_AVR2:
2739 strncat (buf, ", avr:2", size);
2740 break;
2741 case E_AVR_MACH_AVR25:
2742 strncat (buf, ", avr:25", size);
2743 break;
2744 case E_AVR_MACH_AVR3:
2745 strncat (buf, ", avr:3", size);
2746 break;
2747 case E_AVR_MACH_AVR31:
2748 strncat (buf, ", avr:31", size);
2749 break;
2750 case E_AVR_MACH_AVR35:
2751 strncat (buf, ", avr:35", size);
2752 break;
2753 case E_AVR_MACH_AVR4:
2754 strncat (buf, ", avr:4", size);
2755 break;
2756 case E_AVR_MACH_AVR5:
2757 strncat (buf, ", avr:5", size);
2758 break;
2759 case E_AVR_MACH_AVR51:
2760 strncat (buf, ", avr:51", size);
2761 break;
2762 case E_AVR_MACH_AVR6:
2763 strncat (buf, ", avr:6", size);
2764 break;
2765 case E_AVR_MACH_AVRTINY:
2766 strncat (buf, ", avr:100", size);
2767 break;
2768 case E_AVR_MACH_XMEGA1:
2769 strncat (buf, ", avr:101", size);
2770 break;
2771 case E_AVR_MACH_XMEGA2:
2772 strncat (buf, ", avr:102", size);
2773 break;
2774 case E_AVR_MACH_XMEGA3:
2775 strncat (buf, ", avr:103", size);
2776 break;
2777 case E_AVR_MACH_XMEGA4:
2778 strncat (buf, ", avr:104", size);
2779 break;
2780 case E_AVR_MACH_XMEGA5:
2781 strncat (buf, ", avr:105", size);
2782 break;
2783 case E_AVR_MACH_XMEGA6:
2784 strncat (buf, ", avr:106", size);
2785 break;
2786 case E_AVR_MACH_XMEGA7:
2787 strncat (buf, ", avr:107", size);
2788 break;
2789 default:
2790 strncat (buf, ", avr:<unknown>", size);
2791 break;
2792 }
2793
2794 size -= strlen (buf);
2795 if (e_flags & EF_AVR_LINKRELAX_PREPARED)
2796 strncat (buf, ", link-relax", size);
2797 }
2798
2799 static void
2800 decode_NDS32_machine_flags (unsigned e_flags, char buf[], size_t size)
2801 {
2802 unsigned abi;
2803 unsigned arch;
2804 unsigned config;
2805 unsigned version;
2806 bfd_boolean has_fpu = FALSE;
2807 unsigned int r = 0;
2808
2809 static const char *ABI_STRINGS[] =
2810 {
2811 "ABI v0", /* use r5 as return register; only used in N1213HC */
2812 "ABI v1", /* use r0 as return register */
2813 "ABI v2", /* use r0 as return register and don't reserve 24 bytes for arguments */
2814 "ABI v2fp", /* for FPU */
2815 "AABI",
2816 "ABI2 FP+"
2817 };
2818 static const char *VER_STRINGS[] =
2819 {
2820 "Andes ELF V1.3 or older",
2821 "Andes ELF V1.3.1",
2822 "Andes ELF V1.4"
2823 };
2824 static const char *ARCH_STRINGS[] =
2825 {
2826 "",
2827 "Andes Star v1.0",
2828 "Andes Star v2.0",
2829 "Andes Star v3.0",
2830 "Andes Star v3.0m"
2831 };
2832
2833 abi = EF_NDS_ABI & e_flags;
2834 arch = EF_NDS_ARCH & e_flags;
2835 config = EF_NDS_INST & e_flags;
2836 version = EF_NDS32_ELF_VERSION & e_flags;
2837
2838 memset (buf, 0, size);
2839
2840 switch (abi)
2841 {
2842 case E_NDS_ABI_V0:
2843 case E_NDS_ABI_V1:
2844 case E_NDS_ABI_V2:
2845 case E_NDS_ABI_V2FP:
2846 case E_NDS_ABI_AABI:
2847 case E_NDS_ABI_V2FP_PLUS:
2848 /* In case there are holes in the array. */
2849 r += snprintf (buf + r, size - r, ", %s", ABI_STRINGS[abi >> EF_NDS_ABI_SHIFT]);
2850 break;
2851
2852 default:
2853 r += snprintf (buf + r, size - r, ", <unrecognized ABI>");
2854 break;
2855 }
2856
2857 switch (version)
2858 {
2859 case E_NDS32_ELF_VER_1_2:
2860 case E_NDS32_ELF_VER_1_3:
2861 case E_NDS32_ELF_VER_1_4:
2862 r += snprintf (buf + r, size - r, ", %s", VER_STRINGS[version >> EF_NDS32_ELF_VERSION_SHIFT]);
2863 break;
2864
2865 default:
2866 r += snprintf (buf + r, size - r, ", <unrecognized ELF version number>");
2867 break;
2868 }
2869
2870 if (E_NDS_ABI_V0 == abi)
2871 {
2872 /* OLD ABI; only used in N1213HC, has performance extension 1. */
2873 r += snprintf (buf + r, size - r, ", Andes Star v1.0, N1213HC, MAC, PERF1");
2874 if (arch == E_NDS_ARCH_STAR_V1_0)
2875 r += snprintf (buf + r, size -r, ", 16b"); /* has 16-bit instructions */
2876 return;
2877 }
2878
2879 switch (arch)
2880 {
2881 case E_NDS_ARCH_STAR_V1_0:
2882 case E_NDS_ARCH_STAR_V2_0:
2883 case E_NDS_ARCH_STAR_V3_0:
2884 case E_NDS_ARCH_STAR_V3_M:
2885 r += snprintf (buf + r, size - r, ", %s", ARCH_STRINGS[arch >> EF_NDS_ARCH_SHIFT]);
2886 break;
2887
2888 default:
2889 r += snprintf (buf + r, size - r, ", <unrecognized architecture>");
2890 /* ARCH version determines how the e_flags are interpreted.
2891 If it is unknown, we cannot proceed. */
2892 return;
2893 }
2894
2895 /* Newer ABI; Now handle architecture specific flags. */
2896 if (arch == E_NDS_ARCH_STAR_V1_0)
2897 {
2898 if (config & E_NDS32_HAS_MFUSR_PC_INST)
2899 r += snprintf (buf + r, size -r, ", MFUSR_PC");
2900
2901 if (!(config & E_NDS32_HAS_NO_MAC_INST))
2902 r += snprintf (buf + r, size -r, ", MAC");
2903
2904 if (config & E_NDS32_HAS_DIV_INST)
2905 r += snprintf (buf + r, size -r, ", DIV");
2906
2907 if (config & E_NDS32_HAS_16BIT_INST)
2908 r += snprintf (buf + r, size -r, ", 16b");
2909 }
2910 else
2911 {
2912 if (config & E_NDS32_HAS_MFUSR_PC_INST)
2913 {
2914 if (version <= E_NDS32_ELF_VER_1_3)
2915 r += snprintf (buf + r, size -r, ", [B8]");
2916 else
2917 r += snprintf (buf + r, size -r, ", EX9");
2918 }
2919
2920 if (config & E_NDS32_HAS_MAC_DX_INST)
2921 r += snprintf (buf + r, size -r, ", MAC_DX");
2922
2923 if (config & E_NDS32_HAS_DIV_DX_INST)
2924 r += snprintf (buf + r, size -r, ", DIV_DX");
2925
2926 if (config & E_NDS32_HAS_16BIT_INST)
2927 {
2928 if (version <= E_NDS32_ELF_VER_1_3)
2929 r += snprintf (buf + r, size -r, ", 16b");
2930 else
2931 r += snprintf (buf + r, size -r, ", IFC");
2932 }
2933 }
2934
2935 if (config & E_NDS32_HAS_EXT_INST)
2936 r += snprintf (buf + r, size -r, ", PERF1");
2937
2938 if (config & E_NDS32_HAS_EXT2_INST)
2939 r += snprintf (buf + r, size -r, ", PERF2");
2940
2941 if (config & E_NDS32_HAS_FPU_INST)
2942 {
2943 has_fpu = TRUE;
2944 r += snprintf (buf + r, size -r, ", FPU_SP");
2945 }
2946
2947 if (config & E_NDS32_HAS_FPU_DP_INST)
2948 {
2949 has_fpu = TRUE;
2950 r += snprintf (buf + r, size -r, ", FPU_DP");
2951 }
2952
2953 if (config & E_NDS32_HAS_FPU_MAC_INST)
2954 {
2955 has_fpu = TRUE;
2956 r += snprintf (buf + r, size -r, ", FPU_MAC");
2957 }
2958
2959 if (has_fpu)
2960 {
2961 switch ((config & E_NDS32_FPU_REG_CONF) >> E_NDS32_FPU_REG_CONF_SHIFT)
2962 {
2963 case E_NDS32_FPU_REG_8SP_4DP:
2964 r += snprintf (buf + r, size -r, ", FPU_REG:8/4");
2965 break;
2966 case E_NDS32_FPU_REG_16SP_8DP:
2967 r += snprintf (buf + r, size -r, ", FPU_REG:16/8");
2968 break;
2969 case E_NDS32_FPU_REG_32SP_16DP:
2970 r += snprintf (buf + r, size -r, ", FPU_REG:32/16");
2971 break;
2972 case E_NDS32_FPU_REG_32SP_32DP:
2973 r += snprintf (buf + r, size -r, ", FPU_REG:32/32");
2974 break;
2975 }
2976 }
2977
2978 if (config & E_NDS32_HAS_AUDIO_INST)
2979 r += snprintf (buf + r, size -r, ", AUDIO");
2980
2981 if (config & E_NDS32_HAS_STRING_INST)
2982 r += snprintf (buf + r, size -r, ", STR");
2983
2984 if (config & E_NDS32_HAS_REDUCED_REGS)
2985 r += snprintf (buf + r, size -r, ", 16REG");
2986
2987 if (config & E_NDS32_HAS_VIDEO_INST)
2988 {
2989 if (version <= E_NDS32_ELF_VER_1_3)
2990 r += snprintf (buf + r, size -r, ", VIDEO");
2991 else
2992 r += snprintf (buf + r, size -r, ", SATURATION");
2993 }
2994
2995 if (config & E_NDS32_HAS_ENCRIPT_INST)
2996 r += snprintf (buf + r, size -r, ", ENCRP");
2997
2998 if (config & E_NDS32_HAS_L2C_INST)
2999 r += snprintf (buf + r, size -r, ", L2C");
3000 }
3001
3002 static char *
3003 get_machine_flags (unsigned e_flags, unsigned e_machine)
3004 {
3005 static char buf[1024];
3006
3007 buf[0] = '\0';
3008
3009 if (e_flags)
3010 {
3011 switch (e_machine)
3012 {
3013 default:
3014 break;
3015
3016 case EM_ARC_COMPACT2:
3017 case EM_ARC_COMPACT:
3018 decode_ARC_machine_flags (e_flags, e_machine, buf);
3019 break;
3020
3021 case EM_ARM:
3022 decode_ARM_machine_flags (e_flags, buf);
3023 break;
3024
3025 case EM_AVR:
3026 decode_AVR_machine_flags (e_flags, buf, sizeof buf);
3027 break;
3028
3029 case EM_BLACKFIN:
3030 if (e_flags & EF_BFIN_PIC)
3031 strcat (buf, ", PIC");
3032
3033 if (e_flags & EF_BFIN_FDPIC)
3034 strcat (buf, ", FDPIC");
3035
3036 if (e_flags & EF_BFIN_CODE_IN_L1)
3037 strcat (buf, ", code in L1");
3038
3039 if (e_flags & EF_BFIN_DATA_IN_L1)
3040 strcat (buf, ", data in L1");
3041
3042 break;
3043
3044 case EM_CYGNUS_FRV:
3045 switch (e_flags & EF_FRV_CPU_MASK)
3046 {
3047 case EF_FRV_CPU_GENERIC:
3048 break;
3049
3050 default:
3051 strcat (buf, ", fr???");
3052 break;
3053
3054 case EF_FRV_CPU_FR300:
3055 strcat (buf, ", fr300");
3056 break;
3057
3058 case EF_FRV_CPU_FR400:
3059 strcat (buf, ", fr400");
3060 break;
3061 case EF_FRV_CPU_FR405:
3062 strcat (buf, ", fr405");
3063 break;
3064
3065 case EF_FRV_CPU_FR450:
3066 strcat (buf, ", fr450");
3067 break;
3068
3069 case EF_FRV_CPU_FR500:
3070 strcat (buf, ", fr500");
3071 break;
3072 case EF_FRV_CPU_FR550:
3073 strcat (buf, ", fr550");
3074 break;
3075
3076 case EF_FRV_CPU_SIMPLE:
3077 strcat (buf, ", simple");
3078 break;
3079 case EF_FRV_CPU_TOMCAT:
3080 strcat (buf, ", tomcat");
3081 break;
3082 }
3083 break;
3084
3085 case EM_68K:
3086 if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
3087 strcat (buf, ", m68000");
3088 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
3089 strcat (buf, ", cpu32");
3090 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
3091 strcat (buf, ", fido_a");
3092 else
3093 {
3094 char const * isa = _("unknown");
3095 char const * mac = _("unknown mac");
3096 char const * additional = NULL;
3097
3098 switch (e_flags & EF_M68K_CF_ISA_MASK)
3099 {
3100 case EF_M68K_CF_ISA_A_NODIV:
3101 isa = "A";
3102 additional = ", nodiv";
3103 break;
3104 case EF_M68K_CF_ISA_A:
3105 isa = "A";
3106 break;
3107 case EF_M68K_CF_ISA_A_PLUS:
3108 isa = "A+";
3109 break;
3110 case EF_M68K_CF_ISA_B_NOUSP:
3111 isa = "B";
3112 additional = ", nousp";
3113 break;
3114 case EF_M68K_CF_ISA_B:
3115 isa = "B";
3116 break;
3117 case EF_M68K_CF_ISA_C:
3118 isa = "C";
3119 break;
3120 case EF_M68K_CF_ISA_C_NODIV:
3121 isa = "C";
3122 additional = ", nodiv";
3123 break;
3124 }
3125 strcat (buf, ", cf, isa ");
3126 strcat (buf, isa);
3127 if (additional)
3128 strcat (buf, additional);
3129 if (e_flags & EF_M68K_CF_FLOAT)
3130 strcat (buf, ", float");
3131 switch (e_flags & EF_M68K_CF_MAC_MASK)
3132 {
3133 case 0:
3134 mac = NULL;
3135 break;
3136 case EF_M68K_CF_MAC:
3137 mac = "mac";
3138 break;
3139 case EF_M68K_CF_EMAC:
3140 mac = "emac";
3141 break;
3142 case EF_M68K_CF_EMAC_B:
3143 mac = "emac_b";
3144 break;
3145 }
3146 if (mac)
3147 {
3148 strcat (buf, ", ");
3149 strcat (buf, mac);
3150 }
3151 }
3152 break;
3153
3154 case EM_CYGNUS_MEP:
3155 switch (e_flags & EF_MEP_CPU_MASK)
3156 {
3157 case EF_MEP_CPU_MEP: strcat (buf, ", generic MeP"); break;
3158 case EF_MEP_CPU_C2: strcat (buf, ", MeP C2"); break;
3159 case EF_MEP_CPU_C3: strcat (buf, ", MeP C3"); break;
3160 case EF_MEP_CPU_C4: strcat (buf, ", MeP C4"); break;
3161 case EF_MEP_CPU_C5: strcat (buf, ", MeP C5"); break;
3162 case EF_MEP_CPU_H1: strcat (buf, ", MeP H1"); break;
3163 default: strcat (buf, _(", <unknown MeP cpu type>")); break;
3164 }
3165
3166 switch (e_flags & EF_MEP_COP_MASK)
3167 {
3168 case EF_MEP_COP_NONE: break;
3169 case EF_MEP_COP_AVC: strcat (buf, ", AVC coprocessor"); break;
3170 case EF_MEP_COP_AVC2: strcat (buf, ", AVC2 coprocessor"); break;
3171 case EF_MEP_COP_FMAX: strcat (buf, ", FMAX coprocessor"); break;
3172 case EF_MEP_COP_IVC2: strcat (buf, ", IVC2 coprocessor"); break;
3173 default: strcat (buf, _("<unknown MeP copro type>")); break;
3174 }
3175
3176 if (e_flags & EF_MEP_LIBRARY)
3177 strcat (buf, ", Built for Library");
3178
3179 if (e_flags & EF_MEP_INDEX_MASK)
3180 sprintf (buf + strlen (buf), ", Configuration Index: %#x",
3181 e_flags & EF_MEP_INDEX_MASK);
3182
3183 if (e_flags & ~ EF_MEP_ALL_FLAGS)
3184 sprintf (buf + strlen (buf), _(", unknown flags bits: %#x"),
3185 e_flags & ~ EF_MEP_ALL_FLAGS);
3186 break;
3187
3188 case EM_PPC:
3189 if (e_flags & EF_PPC_EMB)
3190 strcat (buf, ", emb");
3191
3192 if (e_flags & EF_PPC_RELOCATABLE)
3193 strcat (buf, _(", relocatable"));
3194
3195 if (e_flags & EF_PPC_RELOCATABLE_LIB)
3196 strcat (buf, _(", relocatable-lib"));
3197 break;
3198
3199 case EM_PPC64:
3200 if (e_flags & EF_PPC64_ABI)
3201 {
3202 char abi[] = ", abiv0";
3203
3204 abi[6] += e_flags & EF_PPC64_ABI;
3205 strcat (buf, abi);
3206 }
3207 break;
3208
3209 case EM_V800:
3210 if ((e_flags & EF_RH850_ABI) == EF_RH850_ABI)
3211 strcat (buf, ", RH850 ABI");
3212
3213 if (e_flags & EF_V800_850E3)
3214 strcat (buf, ", V3 architecture");
3215
3216 if ((e_flags & (EF_RH850_FPU_DOUBLE | EF_RH850_FPU_SINGLE)) == 0)
3217 strcat (buf, ", FPU not used");
3218
3219 if ((e_flags & (EF_RH850_REGMODE22 | EF_RH850_REGMODE32)) == 0)
3220 strcat (buf, ", regmode: COMMON");
3221
3222 if ((e_flags & (EF_RH850_GP_FIX | EF_RH850_GP_NOFIX)) == 0)
3223 strcat (buf, ", r4 not used");
3224
3225 if ((e_flags & (EF_RH850_EP_FIX | EF_RH850_EP_NOFIX)) == 0)
3226 strcat (buf, ", r30 not used");
3227
3228 if ((e_flags & (EF_RH850_TP_FIX | EF_RH850_TP_NOFIX)) == 0)
3229 strcat (buf, ", r5 not used");
3230
3231 if ((e_flags & (EF_RH850_REG2_RESERVE | EF_RH850_REG2_NORESERVE)) == 0)
3232 strcat (buf, ", r2 not used");
3233
3234 for (e_flags &= 0xFFFF; e_flags; e_flags &= ~ (e_flags & - e_flags))
3235 {
3236 switch (e_flags & - e_flags)
3237 {
3238 case EF_RH850_FPU_DOUBLE: strcat (buf, ", double precision FPU"); break;
3239 case EF_RH850_FPU_SINGLE: strcat (buf, ", single precision FPU"); break;
3240 case EF_RH850_REGMODE22: strcat (buf, ", regmode:22"); break;
3241 case EF_RH850_REGMODE32: strcat (buf, ", regmode:23"); break;
3242 case EF_RH850_GP_FIX: strcat (buf, ", r4 fixed"); break;
3243 case EF_RH850_GP_NOFIX: strcat (buf, ", r4 free"); break;
3244 case EF_RH850_EP_FIX: strcat (buf, ", r30 fixed"); break;
3245 case EF_RH850_EP_NOFIX: strcat (buf, ", r30 free"); break;
3246 case EF_RH850_TP_FIX: strcat (buf, ", r5 fixed"); break;
3247 case EF_RH850_TP_NOFIX: strcat (buf, ", r5 free"); break;
3248 case EF_RH850_REG2_RESERVE: strcat (buf, ", r2 fixed"); break;
3249 case EF_RH850_REG2_NORESERVE: strcat (buf, ", r2 free"); break;
3250 default: break;
3251 }
3252 }
3253 break;
3254
3255 case EM_V850:
3256 case EM_CYGNUS_V850:
3257 switch (e_flags & EF_V850_ARCH)
3258 {
3259 case E_V850E3V5_ARCH:
3260 strcat (buf, ", v850e3v5");
3261 break;
3262 case E_V850E2V3_ARCH:
3263 strcat (buf, ", v850e2v3");
3264 break;
3265 case E_V850E2_ARCH:
3266 strcat (buf, ", v850e2");
3267 break;
3268 case E_V850E1_ARCH:
3269 strcat (buf, ", v850e1");
3270 break;
3271 case E_V850E_ARCH:
3272 strcat (buf, ", v850e");
3273 break;
3274 case E_V850_ARCH:
3275 strcat (buf, ", v850");
3276 break;
3277 default:
3278 strcat (buf, _(", unknown v850 architecture variant"));
3279 break;
3280 }
3281 break;
3282
3283 case EM_M32R:
3284 case EM_CYGNUS_M32R:
3285 if ((e_flags & EF_M32R_ARCH) == E_M32R_ARCH)
3286 strcat (buf, ", m32r");
3287 break;
3288
3289 case EM_MIPS:
3290 case EM_MIPS_RS3_LE:
3291 if (e_flags & EF_MIPS_NOREORDER)
3292 strcat (buf, ", noreorder");
3293
3294 if (e_flags & EF_MIPS_PIC)
3295 strcat (buf, ", pic");
3296
3297 if (e_flags & EF_MIPS_CPIC)
3298 strcat (buf, ", cpic");
3299
3300 if (e_flags & EF_MIPS_UCODE)
3301 strcat (buf, ", ugen_reserved");
3302
3303 if (e_flags & EF_MIPS_ABI2)
3304 strcat (buf, ", abi2");
3305
3306 if (e_flags & EF_MIPS_OPTIONS_FIRST)
3307 strcat (buf, ", odk first");
3308
3309 if (e_flags & EF_MIPS_32BITMODE)
3310 strcat (buf, ", 32bitmode");
3311
3312 if (e_flags & EF_MIPS_NAN2008)
3313 strcat (buf, ", nan2008");
3314
3315 if (e_flags & EF_MIPS_FP64)
3316 strcat (buf, ", fp64");
3317
3318 switch ((e_flags & EF_MIPS_MACH))
3319 {
3320 case E_MIPS_MACH_3900: strcat (buf, ", 3900"); break;
3321 case E_MIPS_MACH_4010: strcat (buf, ", 4010"); break;
3322 case E_MIPS_MACH_4100: strcat (buf, ", 4100"); break;
3323 case E_MIPS_MACH_4111: strcat (buf, ", 4111"); break;
3324 case E_MIPS_MACH_4120: strcat (buf, ", 4120"); break;
3325 case E_MIPS_MACH_4650: strcat (buf, ", 4650"); break;
3326 case E_MIPS_MACH_5400: strcat (buf, ", 5400"); break;
3327 case E_MIPS_MACH_5500: strcat (buf, ", 5500"); break;
3328 case E_MIPS_MACH_SB1: strcat (buf, ", sb1"); break;
3329 case E_MIPS_MACH_9000: strcat (buf, ", 9000"); break;
3330 case E_MIPS_MACH_LS2E: strcat (buf, ", loongson-2e"); break;
3331 case E_MIPS_MACH_LS2F: strcat (buf, ", loongson-2f"); break;
3332 case E_MIPS_MACH_LS3A: strcat (buf, ", loongson-3a"); break;
3333 case E_MIPS_MACH_OCTEON: strcat (buf, ", octeon"); break;
3334 case E_MIPS_MACH_OCTEON2: strcat (buf, ", octeon2"); break;
3335 case E_MIPS_MACH_OCTEON3: strcat (buf, ", octeon3"); break;
3336 case E_MIPS_MACH_XLR: strcat (buf, ", xlr"); break;
3337 case 0:
3338 /* We simply ignore the field in this case to avoid confusion:
3339 MIPS ELF does not specify EF_MIPS_MACH, it is a GNU
3340 extension. */
3341 break;
3342 default: strcat (buf, _(", unknown CPU")); break;
3343 }
3344
3345 switch ((e_flags & EF_MIPS_ABI))
3346 {
3347 case E_MIPS_ABI_O32: strcat (buf, ", o32"); break;
3348 case E_MIPS_ABI_O64: strcat (buf, ", o64"); break;
3349 case E_MIPS_ABI_EABI32: strcat (buf, ", eabi32"); break;
3350 case E_MIPS_ABI_EABI64: strcat (buf, ", eabi64"); break;
3351 case 0:
3352 /* We simply ignore the field in this case to avoid confusion:
3353 MIPS ELF does not specify EF_MIPS_ABI, it is a GNU extension.
3354 This means it is likely to be an o32 file, but not for
3355 sure. */
3356 break;
3357 default: strcat (buf, _(", unknown ABI")); break;
3358 }
3359
3360 if (e_flags & EF_MIPS_ARCH_ASE_MDMX)
3361 strcat (buf, ", mdmx");
3362
3363 if (e_flags & EF_MIPS_ARCH_ASE_M16)
3364 strcat (buf, ", mips16");
3365
3366 if (e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
3367 strcat (buf, ", micromips");
3368
3369 switch ((e_flags & EF_MIPS_ARCH))
3370 {
3371 case E_MIPS_ARCH_1: strcat (buf, ", mips1"); break;
3372 case E_MIPS_ARCH_2: strcat (buf, ", mips2"); break;
3373 case E_MIPS_ARCH_3: strcat (buf, ", mips3"); break;
3374 case E_MIPS_ARCH_4: strcat (buf, ", mips4"); break;
3375 case E_MIPS_ARCH_5: strcat (buf, ", mips5"); break;
3376 case E_MIPS_ARCH_32: strcat (buf, ", mips32"); break;
3377 case E_MIPS_ARCH_32R2: strcat (buf, ", mips32r2"); break;
3378 case E_MIPS_ARCH_32R6: strcat (buf, ", mips32r6"); break;
3379 case E_MIPS_ARCH_64: strcat (buf, ", mips64"); break;
3380 case E_MIPS_ARCH_64R2: strcat (buf, ", mips64r2"); break;
3381 case E_MIPS_ARCH_64R6: strcat (buf, ", mips64r6"); break;
3382 default: strcat (buf, _(", unknown ISA")); break;
3383 }
3384 break;
3385
3386 case EM_NDS32:
3387 decode_NDS32_machine_flags (e_flags, buf, sizeof buf);
3388 break;
3389
3390 case EM_RISCV:
3391 if (e_flags & EF_RISCV_RVC)
3392 strcat (buf, ", RVC");
3393
3394 switch (e_flags & EF_RISCV_FLOAT_ABI)
3395 {
3396 case EF_RISCV_FLOAT_ABI_SOFT:
3397 strcat (buf, ", soft-float ABI");
3398 break;
3399
3400 case EF_RISCV_FLOAT_ABI_SINGLE:
3401 strcat (buf, ", single-float ABI");
3402 break;
3403
3404 case EF_RISCV_FLOAT_ABI_DOUBLE:
3405 strcat (buf, ", double-float ABI");
3406 break;
3407
3408 case EF_RISCV_FLOAT_ABI_QUAD:
3409 strcat (buf, ", quad-float ABI");
3410 break;
3411 }
3412 break;
3413
3414 case EM_SH:
3415 switch ((e_flags & EF_SH_MACH_MASK))
3416 {
3417 case EF_SH1: strcat (buf, ", sh1"); break;
3418 case EF_SH2: strcat (buf, ", sh2"); break;
3419 case EF_SH3: strcat (buf, ", sh3"); break;
3420 case EF_SH_DSP: strcat (buf, ", sh-dsp"); break;
3421 case EF_SH3_DSP: strcat (buf, ", sh3-dsp"); break;
3422 case EF_SH4AL_DSP: strcat (buf, ", sh4al-dsp"); break;
3423 case EF_SH3E: strcat (buf, ", sh3e"); break;
3424 case EF_SH4: strcat (buf, ", sh4"); break;
3425 case EF_SH5: strcat (buf, ", sh5"); break;
3426 case EF_SH2E: strcat (buf, ", sh2e"); break;
3427 case EF_SH4A: strcat (buf, ", sh4a"); break;
3428 case EF_SH2A: strcat (buf, ", sh2a"); break;
3429 case EF_SH4_NOFPU: strcat (buf, ", sh4-nofpu"); break;
3430 case EF_SH4A_NOFPU: strcat (buf, ", sh4a-nofpu"); break;
3431 case EF_SH2A_NOFPU: strcat (buf, ", sh2a-nofpu"); break;
3432 case EF_SH3_NOMMU: strcat (buf, ", sh3-nommu"); break;
3433 case EF_SH4_NOMMU_NOFPU: strcat (buf, ", sh4-nommu-nofpu"); break;
3434 case EF_SH2A_SH4_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh4-nommu-nofpu"); break;
3435 case EF_SH2A_SH3_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh3-nommu"); break;
3436 case EF_SH2A_SH4: strcat (buf, ", sh2a-or-sh4"); break;
3437 case EF_SH2A_SH3E: strcat (buf, ", sh2a-or-sh3e"); break;
3438 default: strcat (buf, _(", unknown ISA")); break;
3439 }
3440
3441 if (e_flags & EF_SH_PIC)
3442 strcat (buf, ", pic");
3443
3444 if (e_flags & EF_SH_FDPIC)
3445 strcat (buf, ", fdpic");
3446 break;
3447
3448 case EM_OR1K:
3449 if (e_flags & EF_OR1K_NODELAY)
3450 strcat (buf, ", no delay");
3451 break;
3452
3453 case EM_SPARCV9:
3454 if (e_flags & EF_SPARC_32PLUS)
3455 strcat (buf, ", v8+");
3456
3457 if (e_flags & EF_SPARC_SUN_US1)
3458 strcat (buf, ", ultrasparcI");
3459
3460 if (e_flags & EF_SPARC_SUN_US3)
3461 strcat (buf, ", ultrasparcIII");
3462
3463 if (e_flags & EF_SPARC_HAL_R1)
3464 strcat (buf, ", halr1");
3465
3466 if (e_flags & EF_SPARC_LEDATA)
3467 strcat (buf, ", ledata");
3468
3469 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_TSO)
3470 strcat (buf, ", tso");
3471
3472 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_PSO)
3473 strcat (buf, ", pso");
3474
3475 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_RMO)
3476 strcat (buf, ", rmo");
3477 break;
3478
3479 case EM_PARISC:
3480 switch (e_flags & EF_PARISC_ARCH)
3481 {
3482 case EFA_PARISC_1_0:
3483 strcpy (buf, ", PA-RISC 1.0");
3484 break;
3485 case EFA_PARISC_1_1:
3486 strcpy (buf, ", PA-RISC 1.1");
3487 break;
3488 case EFA_PARISC_2_0:
3489 strcpy (buf, ", PA-RISC 2.0");
3490 break;
3491 default:
3492 break;
3493 }
3494 if (e_flags & EF_PARISC_TRAPNIL)
3495 strcat (buf, ", trapnil");
3496 if (e_flags & EF_PARISC_EXT)
3497 strcat (buf, ", ext");
3498 if (e_flags & EF_PARISC_LSB)
3499 strcat (buf, ", lsb");
3500 if (e_flags & EF_PARISC_WIDE)
3501 strcat (buf, ", wide");
3502 if (e_flags & EF_PARISC_NO_KABP)
3503 strcat (buf, ", no kabp");
3504 if (e_flags & EF_PARISC_LAZYSWAP)
3505 strcat (buf, ", lazyswap");
3506 break;
3507
3508 case EM_PJ:
3509 case EM_PJ_OLD:
3510 if ((e_flags & EF_PICOJAVA_NEWCALLS) == EF_PICOJAVA_NEWCALLS)
3511 strcat (buf, ", new calling convention");
3512
3513 if ((e_flags & EF_PICOJAVA_GNUCALLS) == EF_PICOJAVA_GNUCALLS)
3514 strcat (buf, ", gnu calling convention");
3515 break;
3516
3517 case EM_IA_64:
3518 if ((e_flags & EF_IA_64_ABI64))
3519 strcat (buf, ", 64-bit");
3520 else
3521 strcat (buf, ", 32-bit");
3522 if ((e_flags & EF_IA_64_REDUCEDFP))
3523 strcat (buf, ", reduced fp model");
3524 if ((e_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
3525 strcat (buf, ", no function descriptors, constant gp");
3526 else if ((e_flags & EF_IA_64_CONS_GP))
3527 strcat (buf, ", constant gp");
3528 if ((e_flags & EF_IA_64_ABSOLUTE))
3529 strcat (buf, ", absolute");
3530 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
3531 {
3532 if ((e_flags & EF_IA_64_VMS_LINKAGES))
3533 strcat (buf, ", vms_linkages");
3534 switch ((e_flags & EF_IA_64_VMS_COMCOD))
3535 {
3536 case EF_IA_64_VMS_COMCOD_SUCCESS:
3537 break;
3538 case EF_IA_64_VMS_COMCOD_WARNING:
3539 strcat (buf, ", warning");
3540 break;
3541 case EF_IA_64_VMS_COMCOD_ERROR:
3542 strcat (buf, ", error");
3543 break;
3544 case EF_IA_64_VMS_COMCOD_ABORT:
3545 strcat (buf, ", abort");
3546 break;
3547 default:
3548 warn (_("Unrecognised IA64 VMS Command Code: %x\n"),
3549 e_flags & EF_IA_64_VMS_COMCOD);
3550 strcat (buf, ", <unknown>");
3551 }
3552 }
3553 break;
3554
3555 case EM_VAX:
3556 if ((e_flags & EF_VAX_NONPIC))
3557 strcat (buf, ", non-PIC");
3558 if ((e_flags & EF_VAX_DFLOAT))
3559 strcat (buf, ", D-Float");
3560 if ((e_flags & EF_VAX_GFLOAT))
3561 strcat (buf, ", G-Float");
3562 break;
3563
3564 case EM_VISIUM:
3565 if (e_flags & EF_VISIUM_ARCH_MCM)
3566 strcat (buf, ", mcm");
3567 else if (e_flags & EF_VISIUM_ARCH_MCM24)
3568 strcat (buf, ", mcm24");
3569 if (e_flags & EF_VISIUM_ARCH_GR6)
3570 strcat (buf, ", gr6");
3571 break;
3572
3573 case EM_RL78:
3574 switch (e_flags & E_FLAG_RL78_CPU_MASK)
3575 {
3576 case E_FLAG_RL78_ANY_CPU: break;
3577 case E_FLAG_RL78_G10: strcat (buf, ", G10"); break;
3578 case E_FLAG_RL78_G13: strcat (buf, ", G13"); break;
3579 case E_FLAG_RL78_G14: strcat (buf, ", G14"); break;
3580 }
3581 if (e_flags & E_FLAG_RL78_64BIT_DOUBLES)
3582 strcat (buf, ", 64-bit doubles");
3583 break;
3584
3585 case EM_RX:
3586 if (e_flags & E_FLAG_RX_64BIT_DOUBLES)
3587 strcat (buf, ", 64-bit doubles");
3588 if (e_flags & E_FLAG_RX_DSP)
3589 strcat (buf, ", dsp");
3590 if (e_flags & E_FLAG_RX_PID)
3591 strcat (buf, ", pid");
3592 if (e_flags & E_FLAG_RX_ABI)
3593 strcat (buf, ", RX ABI");
3594 if (e_flags & E_FLAG_RX_SINSNS_SET)
3595 strcat (buf, e_flags & E_FLAG_RX_SINSNS_YES
3596 ? ", uses String instructions" : ", bans String instructions");
3597 if (e_flags & E_FLAG_RX_V2)
3598 strcat (buf, ", V2");
3599 break;
3600
3601 case EM_S390:
3602 if (e_flags & EF_S390_HIGH_GPRS)
3603 strcat (buf, ", highgprs");
3604 break;
3605
3606 case EM_TI_C6000:
3607 if ((e_flags & EF_C6000_REL))
3608 strcat (buf, ", relocatable module");
3609 break;
3610
3611 case EM_MSP430:
3612 strcat (buf, _(": architecture variant: "));
3613 switch (e_flags & EF_MSP430_MACH)
3614 {
3615 case E_MSP430_MACH_MSP430x11: strcat (buf, "MSP430x11"); break;
3616 case E_MSP430_MACH_MSP430x11x1 : strcat (buf, "MSP430x11x1 "); break;
3617 case E_MSP430_MACH_MSP430x12: strcat (buf, "MSP430x12"); break;
3618 case E_MSP430_MACH_MSP430x13: strcat (buf, "MSP430x13"); break;
3619 case E_MSP430_MACH_MSP430x14: strcat (buf, "MSP430x14"); break;
3620 case E_MSP430_MACH_MSP430x15: strcat (buf, "MSP430x15"); break;
3621 case E_MSP430_MACH_MSP430x16: strcat (buf, "MSP430x16"); break;
3622 case E_MSP430_MACH_MSP430x31: strcat (buf, "MSP430x31"); break;
3623 case E_MSP430_MACH_MSP430x32: strcat (buf, "MSP430x32"); break;
3624 case E_MSP430_MACH_MSP430x33: strcat (buf, "MSP430x33"); break;
3625 case E_MSP430_MACH_MSP430x41: strcat (buf, "MSP430x41"); break;
3626 case E_MSP430_MACH_MSP430x42: strcat (buf, "MSP430x42"); break;
3627 case E_MSP430_MACH_MSP430x43: strcat (buf, "MSP430x43"); break;
3628 case E_MSP430_MACH_MSP430x44: strcat (buf, "MSP430x44"); break;
3629 case E_MSP430_MACH_MSP430X : strcat (buf, "MSP430X"); break;
3630 default:
3631 strcat (buf, _(": unknown")); break;
3632 }
3633
3634 if (e_flags & ~ EF_MSP430_MACH)
3635 strcat (buf, _(": unknown extra flag bits also present"));
3636 }
3637 }
3638
3639 return buf;
3640 }
3641
3642 static const char *
3643 get_osabi_name (unsigned int osabi)
3644 {
3645 static char buff[32];
3646
3647 switch (osabi)
3648 {
3649 case ELFOSABI_NONE: return "UNIX - System V";
3650 case ELFOSABI_HPUX: return "UNIX - HP-UX";
3651 case ELFOSABI_NETBSD: return "UNIX - NetBSD";
3652 case ELFOSABI_GNU: return "UNIX - GNU";
3653 case ELFOSABI_SOLARIS: return "UNIX - Solaris";
3654 case ELFOSABI_AIX: return "UNIX - AIX";
3655 case ELFOSABI_IRIX: return "UNIX - IRIX";
3656 case ELFOSABI_FREEBSD: return "UNIX - FreeBSD";
3657 case ELFOSABI_TRU64: return "UNIX - TRU64";
3658 case ELFOSABI_MODESTO: return "Novell - Modesto";
3659 case ELFOSABI_OPENBSD: return "UNIX - OpenBSD";
3660 case ELFOSABI_OPENVMS: return "VMS - OpenVMS";
3661 case ELFOSABI_NSK: return "HP - Non-Stop Kernel";
3662 case ELFOSABI_AROS: return "AROS";
3663 case ELFOSABI_FENIXOS: return "FenixOS";
3664 case ELFOSABI_CLOUDABI: return "Nuxi CloudABI";
3665 case ELFOSABI_OPENVOS: return "Stratus Technologies OpenVOS";
3666 default:
3667 if (osabi >= 64)
3668 switch (elf_header.e_machine)
3669 {
3670 case EM_ARM:
3671 switch (osabi)
3672 {
3673 case ELFOSABI_ARM: return "ARM";
3674 default:
3675 break;
3676 }
3677 break;
3678
3679 case EM_MSP430:
3680 case EM_MSP430_OLD:
3681 case EM_VISIUM:
3682 switch (osabi)
3683 {
3684 case ELFOSABI_STANDALONE: return _("Standalone App");
3685 default:
3686 break;
3687 }
3688 break;
3689
3690 case EM_TI_C6000:
3691 switch (osabi)
3692 {
3693 case ELFOSABI_C6000_ELFABI: return _("Bare-metal C6000");
3694 case ELFOSABI_C6000_LINUX: return "Linux C6000";
3695 default:
3696 break;
3697 }
3698 break;
3699
3700 default:
3701 break;
3702 }
3703 snprintf (buff, sizeof (buff), _("<unknown: %x>"), osabi);
3704 return buff;
3705 }
3706 }
3707
3708 static const char *
3709 get_aarch64_segment_type (unsigned long type)
3710 {
3711 switch (type)
3712 {
3713 case PT_AARCH64_ARCHEXT: return "AARCH64_ARCHEXT";
3714 default: return NULL;
3715 }
3716 }
3717
3718 static const char *
3719 get_arm_segment_type (unsigned long type)
3720 {
3721 switch (type)
3722 {
3723 case PT_ARM_EXIDX: return "EXIDX";
3724 default: return NULL;
3725 }
3726 }
3727
3728 static const char *
3729 get_s390_segment_type (unsigned long type)
3730 {
3731 switch (type)
3732 {
3733 case PT_S390_PGSTE: return "S390_PGSTE";
3734 default: return NULL;
3735 }
3736 }
3737
3738 static const char *
3739 get_mips_segment_type (unsigned long type)
3740 {
3741 switch (type)
3742 {
3743 case PT_MIPS_REGINFO: return "REGINFO";
3744 case PT_MIPS_RTPROC: return "RTPROC";
3745 case PT_MIPS_OPTIONS: return "OPTIONS";
3746 case PT_MIPS_ABIFLAGS: return "ABIFLAGS";
3747 default: return NULL;
3748 }
3749 }
3750
3751 static const char *
3752 get_parisc_segment_type (unsigned long type)
3753 {
3754 switch (type)
3755 {
3756 case PT_HP_TLS: return "HP_TLS";
3757 case PT_HP_CORE_NONE: return "HP_CORE_NONE";
3758 case PT_HP_CORE_VERSION: return "HP_CORE_VERSION";
3759 case PT_HP_CORE_KERNEL: return "HP_CORE_KERNEL";
3760 case PT_HP_CORE_COMM: return "HP_CORE_COMM";
3761 case PT_HP_CORE_PROC: return "HP_CORE_PROC";
3762 case PT_HP_CORE_LOADABLE: return "HP_CORE_LOADABLE";
3763 case PT_HP_CORE_STACK: return "HP_CORE_STACK";
3764 case PT_HP_CORE_SHM: return "HP_CORE_SHM";
3765 case PT_HP_CORE_MMF: return "HP_CORE_MMF";
3766 case PT_HP_PARALLEL: return "HP_PARALLEL";
3767 case PT_HP_FASTBIND: return "HP_FASTBIND";
3768 case PT_HP_OPT_ANNOT: return "HP_OPT_ANNOT";
3769 case PT_HP_HSL_ANNOT: return "HP_HSL_ANNOT";
3770 case PT_HP_STACK: return "HP_STACK";
3771 case PT_HP_CORE_UTSNAME: return "HP_CORE_UTSNAME";
3772 case PT_PARISC_ARCHEXT: return "PARISC_ARCHEXT";
3773 case PT_PARISC_UNWIND: return "PARISC_UNWIND";
3774 case PT_PARISC_WEAKORDER: return "PARISC_WEAKORDER";
3775 default: return NULL;
3776 }
3777 }
3778
3779 static const char *
3780 get_ia64_segment_type (unsigned long type)
3781 {
3782 switch (type)
3783 {
3784 case PT_IA_64_ARCHEXT: return "IA_64_ARCHEXT";
3785 case PT_IA_64_UNWIND: return "IA_64_UNWIND";
3786 case PT_HP_TLS: return "HP_TLS";
3787 case PT_IA_64_HP_OPT_ANOT: return "HP_OPT_ANNOT";
3788 case PT_IA_64_HP_HSL_ANOT: return "HP_HSL_ANNOT";
3789 case PT_IA_64_HP_STACK: return "HP_STACK";
3790 default: return NULL;
3791 }
3792 }
3793
3794 static const char *
3795 get_tic6x_segment_type (unsigned long type)
3796 {
3797 switch (type)
3798 {
3799 case PT_C6000_PHATTR: return "C6000_PHATTR";
3800 default: return NULL;
3801 }
3802 }
3803
3804 static const char *
3805 get_solaris_segment_type (unsigned long type)
3806 {
3807 switch (type)
3808 {
3809 case 0x6464e550: return "PT_SUNW_UNWIND";
3810 case 0x6474e550: return "PT_SUNW_EH_FRAME";
3811 case 0x6ffffff7: return "PT_LOSUNW";
3812 case 0x6ffffffa: return "PT_SUNWBSS";
3813 case 0x6ffffffb: return "PT_SUNWSTACK";
3814 case 0x6ffffffc: return "PT_SUNWDTRACE";
3815 case 0x6ffffffd: return "PT_SUNWCAP";
3816 case 0x6fffffff: return "PT_HISUNW";
3817 default: return NULL;
3818 }
3819 }
3820
3821 static const char *
3822 get_segment_type (unsigned long p_type)
3823 {
3824 static char buff[32];
3825
3826 switch (p_type)
3827 {
3828 case PT_NULL: return "NULL";
3829 case PT_LOAD: return "LOAD";
3830 case PT_DYNAMIC: return "DYNAMIC";
3831 case PT_INTERP: return "INTERP";
3832 case PT_NOTE: return "NOTE";
3833 case PT_SHLIB: return "SHLIB";
3834 case PT_PHDR: return "PHDR";
3835 case PT_TLS: return "TLS";
3836 case PT_GNU_EH_FRAME: return "GNU_EH_FRAME";
3837 case PT_GNU_STACK: return "GNU_STACK";
3838 case PT_GNU_RELRO: return "GNU_RELRO";
3839
3840 default:
3841 if (p_type >= PT_GNU_MBIND_LO && p_type <= PT_GNU_MBIND_HI)
3842 {
3843 sprintf (buff, "GNU_MBIND+%#lx",
3844 p_type - PT_GNU_MBIND_LO);
3845 }
3846 else if ((p_type >= PT_LOPROC) && (p_type <= PT_HIPROC))
3847 {
3848 const char * result;
3849
3850 switch (elf_header.e_machine)
3851 {
3852 case EM_AARCH64:
3853 result = get_aarch64_segment_type (p_type);
3854 break;
3855 case EM_ARM:
3856 result = get_arm_segment_type (p_type);
3857 break;
3858 case EM_MIPS:
3859 case EM_MIPS_RS3_LE:
3860 result = get_mips_segment_type (p_type);
3861 break;
3862 case EM_PARISC:
3863 result = get_parisc_segment_type (p_type);
3864 break;
3865 case EM_IA_64:
3866 result = get_ia64_segment_type (p_type);
3867 break;
3868 case EM_TI_C6000:
3869 result = get_tic6x_segment_type (p_type);
3870 break;
3871 case EM_S390:
3872 case EM_S390_OLD:
3873 result = get_s390_segment_type (p_type);
3874 break;
3875 default:
3876 result = NULL;
3877 break;
3878 }
3879
3880 if (result != NULL)
3881 return result;
3882
3883 sprintf (buff, "LOPROC+%#lx", p_type - PT_LOPROC);
3884 }
3885 else if ((p_type >= PT_LOOS) && (p_type <= PT_HIOS))
3886 {
3887 const char * result;
3888
3889 switch (elf_header.e_machine)
3890 {
3891 case EM_PARISC:
3892 result = get_parisc_segment_type (p_type);
3893 break;
3894 case EM_IA_64:
3895 result = get_ia64_segment_type (p_type);
3896 break;
3897 default:
3898 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
3899 result = get_solaris_segment_type (p_type);
3900 else
3901 result = NULL;
3902 break;
3903 }
3904
3905 if (result != NULL)
3906 return result;
3907
3908 sprintf (buff, "LOOS+%#lx", p_type - PT_LOOS);
3909 }
3910 else
3911 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), p_type);
3912
3913 return buff;
3914 }
3915 }
3916
3917 static const char *
3918 get_arc_section_type_name (unsigned int sh_type)
3919 {
3920 switch (sh_type)
3921 {
3922 case SHT_ARC_ATTRIBUTES: return "ARC_ATTRIBUTES";
3923 default:
3924 break;
3925 }
3926 return NULL;
3927 }
3928
3929 static const char *
3930 get_mips_section_type_name (unsigned int sh_type)
3931 {
3932 switch (sh_type)
3933 {
3934 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST";
3935 case SHT_MIPS_MSYM: return "MIPS_MSYM";
3936 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT";
3937 case SHT_MIPS_GPTAB: return "MIPS_GPTAB";
3938 case SHT_MIPS_UCODE: return "MIPS_UCODE";
3939 case SHT_MIPS_DEBUG: return "MIPS_DEBUG";
3940 case SHT_MIPS_REGINFO: return "MIPS_REGINFO";
3941 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE";
3942 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM";
3943 case SHT_MIPS_RELD: return "MIPS_RELD";
3944 case SHT_MIPS_IFACE: return "MIPS_IFACE";
3945 case SHT_MIPS_CONTENT: return "MIPS_CONTENT";
3946 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS";
3947 case SHT_MIPS_SHDR: return "MIPS_SHDR";
3948 case SHT_MIPS_FDESC: return "MIPS_FDESC";
3949 case SHT_MIPS_EXTSYM: return "MIPS_EXTSYM";
3950 case SHT_MIPS_DENSE: return "MIPS_DENSE";
3951 case SHT_MIPS_PDESC: return "MIPS_PDESC";
3952 case SHT_MIPS_LOCSYM: return "MIPS_LOCSYM";
3953 case SHT_MIPS_AUXSYM: return "MIPS_AUXSYM";
3954 case SHT_MIPS_OPTSYM: return "MIPS_OPTSYM";
3955 case SHT_MIPS_LOCSTR: return "MIPS_LOCSTR";
3956 case SHT_MIPS_LINE: return "MIPS_LINE";
3957 case SHT_MIPS_RFDESC: return "MIPS_RFDESC";
3958 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM";
3959 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST";
3960 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS";
3961 case SHT_MIPS_DWARF: return "MIPS_DWARF";
3962 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL";
3963 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
3964 case SHT_MIPS_EVENTS: return "MIPS_EVENTS";
3965 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE";
3966 case SHT_MIPS_PIXIE: return "MIPS_PIXIE";
3967 case SHT_MIPS_XLATE: return "MIPS_XLATE";
3968 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG";
3969 case SHT_MIPS_WHIRL: return "MIPS_WHIRL";
3970 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION";
3971 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD";
3972 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION";
3973 case SHT_MIPS_ABIFLAGS: return "MIPS_ABIFLAGS";
3974 default:
3975 break;
3976 }
3977 return NULL;
3978 }
3979
3980 static const char *
3981 get_parisc_section_type_name (unsigned int sh_type)
3982 {
3983 switch (sh_type)
3984 {
3985 case SHT_PARISC_EXT: return "PARISC_EXT";
3986 case SHT_PARISC_UNWIND: return "PARISC_UNWIND";
3987 case SHT_PARISC_DOC: return "PARISC_DOC";
3988 case SHT_PARISC_ANNOT: return "PARISC_ANNOT";
3989 case SHT_PARISC_SYMEXTN: return "PARISC_SYMEXTN";
3990 case SHT_PARISC_STUBS: return "PARISC_STUBS";
3991 case SHT_PARISC_DLKM: return "PARISC_DLKM";
3992 default: return NULL;
3993 }
3994 }
3995
3996 static const char *
3997 get_ia64_section_type_name (unsigned int sh_type)
3998 {
3999 /* If the top 8 bits are 0x78 the next 8 are the os/abi ID. */
4000 if ((sh_type & 0xFF000000) == SHT_IA_64_LOPSREG)
4001 return get_osabi_name ((sh_type & 0x00FF0000) >> 16);
4002
4003 switch (sh_type)
4004 {
4005 case SHT_IA_64_EXT: return "IA_64_EXT";
4006 case SHT_IA_64_UNWIND: return "IA_64_UNWIND";
4007 case SHT_IA_64_PRIORITY_INIT: return "IA_64_PRIORITY_INIT";
4008 case SHT_IA_64_VMS_TRACE: return "VMS_TRACE";
4009 case SHT_IA_64_VMS_TIE_SIGNATURES: return "VMS_TIE_SIGNATURES";
4010 case SHT_IA_64_VMS_DEBUG: return "VMS_DEBUG";
4011 case SHT_IA_64_VMS_DEBUG_STR: return "VMS_DEBUG_STR";
4012 case SHT_IA_64_VMS_LINKAGES: return "VMS_LINKAGES";
4013 case SHT_IA_64_VMS_SYMBOL_VECTOR: return "VMS_SYMBOL_VECTOR";
4014 case SHT_IA_64_VMS_FIXUP: return "VMS_FIXUP";
4015 default:
4016 break;
4017 }
4018 return NULL;
4019 }
4020
4021 static const char *
4022 get_x86_64_section_type_name (unsigned int sh_type)
4023 {
4024 switch (sh_type)
4025 {
4026 case SHT_X86_64_UNWIND: return "X86_64_UNWIND";
4027 default: return NULL;
4028 }
4029 }
4030
4031 static const char *
4032 get_aarch64_section_type_name (unsigned int sh_type)
4033 {
4034 switch (sh_type)
4035 {
4036 case SHT_AARCH64_ATTRIBUTES: return "AARCH64_ATTRIBUTES";
4037 default: return NULL;
4038 }
4039 }
4040
4041 static const char *
4042 get_arm_section_type_name (unsigned int sh_type)
4043 {
4044 switch (sh_type)
4045 {
4046 case SHT_ARM_EXIDX: return "ARM_EXIDX";
4047 case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP";
4048 case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES";
4049 case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY";
4050 case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION";
4051 default: return NULL;
4052 }
4053 }
4054
4055 static const char *
4056 get_tic6x_section_type_name (unsigned int sh_type)
4057 {
4058 switch (sh_type)
4059 {
4060 case SHT_C6000_UNWIND: return "C6000_UNWIND";
4061 case SHT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
4062 case SHT_C6000_ATTRIBUTES: return "C6000_ATTRIBUTES";
4063 case SHT_TI_ICODE: return "TI_ICODE";
4064 case SHT_TI_XREF: return "TI_XREF";
4065 case SHT_TI_HANDLER: return "TI_HANDLER";
4066 case SHT_TI_INITINFO: return "TI_INITINFO";
4067 case SHT_TI_PHATTRS: return "TI_PHATTRS";
4068 default: return NULL;
4069 }
4070 }
4071
4072 static const char *
4073 get_msp430x_section_type_name (unsigned int sh_type)
4074 {
4075 switch (sh_type)
4076 {
4077 case SHT_MSP430_SEC_FLAGS: return "MSP430_SEC_FLAGS";
4078 case SHT_MSP430_SYM_ALIASES: return "MSP430_SYM_ALIASES";
4079 case SHT_MSP430_ATTRIBUTES: return "MSP430_ATTRIBUTES";
4080 default: return NULL;
4081 }
4082 }
4083
4084 static const char *
4085 get_v850_section_type_name (unsigned int sh_type)
4086 {
4087 switch (sh_type)
4088 {
4089 case SHT_V850_SCOMMON: return "V850 Small Common";
4090 case SHT_V850_TCOMMON: return "V850 Tiny Common";
4091 case SHT_V850_ZCOMMON: return "V850 Zero Common";
4092 case SHT_RENESAS_IOP: return "RENESAS IOP";
4093 case SHT_RENESAS_INFO: return "RENESAS INFO";
4094 default: return NULL;
4095 }
4096 }
4097
4098 static const char *
4099 get_section_type_name (unsigned int sh_type)
4100 {
4101 static char buff[32];
4102 const char * result;
4103
4104 switch (sh_type)
4105 {
4106 case SHT_NULL: return "NULL";
4107 case SHT_PROGBITS: return "PROGBITS";
4108 case SHT_SYMTAB: return "SYMTAB";
4109 case SHT_STRTAB: return "STRTAB";
4110 case SHT_RELA: return "RELA";
4111 case SHT_HASH: return "HASH";
4112 case SHT_DYNAMIC: return "DYNAMIC";
4113 case SHT_NOTE: return "NOTE";
4114 case SHT_NOBITS: return "NOBITS";
4115 case SHT_REL: return "REL";
4116 case SHT_SHLIB: return "SHLIB";
4117 case SHT_DYNSYM: return "DYNSYM";
4118 case SHT_INIT_ARRAY: return "INIT_ARRAY";
4119 case SHT_FINI_ARRAY: return "FINI_ARRAY";
4120 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY";
4121 case SHT_GNU_HASH: return "GNU_HASH";
4122 case SHT_GROUP: return "GROUP";
4123 case SHT_SYMTAB_SHNDX: return "SYMTAB SECTION INDICIES";
4124 case SHT_GNU_verdef: return "VERDEF";
4125 case SHT_GNU_verneed: return "VERNEED";
4126 case SHT_GNU_versym: return "VERSYM";
4127 case 0x6ffffff0: return "VERSYM";
4128 case 0x6ffffffc: return "VERDEF";
4129 case 0x7ffffffd: return "AUXILIARY";
4130 case 0x7fffffff: return "FILTER";
4131 case SHT_GNU_LIBLIST: return "GNU_LIBLIST";
4132
4133 default:
4134 if ((sh_type >= SHT_LOPROC) && (sh_type <= SHT_HIPROC))
4135 {
4136 switch (elf_header.e_machine)
4137 {
4138 case EM_ARC:
4139 case EM_ARC_COMPACT:
4140 case EM_ARC_COMPACT2:
4141 result = get_arc_section_type_name (sh_type);
4142 break;
4143 case EM_MIPS:
4144 case EM_MIPS_RS3_LE:
4145 result = get_mips_section_type_name (sh_type);
4146 break;
4147 case EM_PARISC:
4148 result = get_parisc_section_type_name (sh_type);
4149 break;
4150 case EM_IA_64:
4151 result = get_ia64_section_type_name (sh_type);
4152 break;
4153 case EM_X86_64:
4154 case EM_L1OM:
4155 case EM_K1OM:
4156 result = get_x86_64_section_type_name (sh_type);
4157 break;
4158 case EM_AARCH64:
4159 result = get_aarch64_section_type_name (sh_type);
4160 break;
4161 case EM_ARM:
4162 result = get_arm_section_type_name (sh_type);
4163 break;
4164 case EM_TI_C6000:
4165 result = get_tic6x_section_type_name (sh_type);
4166 break;
4167 case EM_MSP430:
4168 result = get_msp430x_section_type_name (sh_type);
4169 break;
4170 case EM_V800:
4171 case EM_V850:
4172 case EM_CYGNUS_V850:
4173 result = get_v850_section_type_name (sh_type);
4174 break;
4175 default:
4176 result = NULL;
4177 break;
4178 }
4179
4180 if (result != NULL)
4181 return result;
4182
4183 sprintf (buff, "LOPROC+%#x", sh_type - SHT_LOPROC);
4184 }
4185 else if ((sh_type >= SHT_LOOS) && (sh_type <= SHT_HIOS))
4186 {
4187 switch (elf_header.e_machine)
4188 {
4189 case EM_IA_64:
4190 result = get_ia64_section_type_name (sh_type);
4191 break;
4192 default:
4193 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
4194 result = get_solaris_section_type (sh_type);
4195 else
4196 {
4197 switch (sh_type)
4198 {
4199 case SHT_GNU_INCREMENTAL_INPUTS: result = "GNU_INCREMENTAL_INPUTS"; break;
4200 case SHT_GNU_ATTRIBUTES: result = "GNU_ATTRIBUTES"; break;
4201 case SHT_GNU_HASH: result = "GNU_HASH"; break;
4202 case SHT_GNU_LIBLIST: result = "GNU_LIBLIST"; break;
4203 default:
4204 result = NULL;
4205 break;
4206 }
4207 }
4208 break;
4209 }
4210
4211 if (result != NULL)
4212 return result;
4213
4214 sprintf (buff, "LOOS+%#x", sh_type - SHT_LOOS);
4215 }
4216 else if ((sh_type >= SHT_LOUSER) && (sh_type <= SHT_HIUSER))
4217 {
4218 switch (elf_header.e_machine)
4219 {
4220 case EM_V800:
4221 case EM_V850:
4222 case EM_CYGNUS_V850:
4223 result = get_v850_section_type_name (sh_type);
4224 break;
4225 default:
4226 result = NULL;
4227 break;
4228 }
4229
4230 if (result != NULL)
4231 return result;
4232
4233 sprintf (buff, "LOUSER+%#x", sh_type - SHT_LOUSER);
4234 }
4235 else
4236 /* This message is probably going to be displayed in a 15
4237 character wide field, so put the hex value first. */
4238 snprintf (buff, sizeof (buff), _("%08x: <unknown>"), sh_type);
4239
4240 return buff;
4241 }
4242 }
4243
4244 #define OPTION_DEBUG_DUMP 512
4245 #define OPTION_DYN_SYMS 513
4246 #define OPTION_DWARF_DEPTH 514
4247 #define OPTION_DWARF_START 515
4248 #define OPTION_DWARF_CHECK 516
4249
4250 static struct option options[] =
4251 {
4252 {"all", no_argument, 0, 'a'},
4253 {"file-header", no_argument, 0, 'h'},
4254 {"program-headers", no_argument, 0, 'l'},
4255 {"headers", no_argument, 0, 'e'},
4256 {"histogram", no_argument, 0, 'I'},
4257 {"segments", no_argument, 0, 'l'},
4258 {"sections", no_argument, 0, 'S'},
4259 {"section-headers", no_argument, 0, 'S'},
4260 {"section-groups", no_argument, 0, 'g'},
4261 {"section-details", no_argument, 0, 't'},
4262 {"full-section-name",no_argument, 0, 'N'},
4263 {"symbols", no_argument, 0, 's'},
4264 {"syms", no_argument, 0, 's'},
4265 {"dyn-syms", no_argument, 0, OPTION_DYN_SYMS},
4266 {"relocs", no_argument, 0, 'r'},
4267 {"notes", no_argument, 0, 'n'},
4268 {"dynamic", no_argument, 0, 'd'},
4269 {"arch-specific", no_argument, 0, 'A'},
4270 {"version-info", no_argument, 0, 'V'},
4271 {"use-dynamic", no_argument, 0, 'D'},
4272 {"unwind", no_argument, 0, 'u'},
4273 {"archive-index", no_argument, 0, 'c'},
4274 {"hex-dump", required_argument, 0, 'x'},
4275 {"relocated-dump", required_argument, 0, 'R'},
4276 {"string-dump", required_argument, 0, 'p'},
4277 {"decompress", no_argument, 0, 'z'},
4278 #ifdef SUPPORT_DISASSEMBLY
4279 {"instruction-dump", required_argument, 0, 'i'},
4280 #endif
4281 {"debug-dump", optional_argument, 0, OPTION_DEBUG_DUMP},
4282
4283 {"dwarf-depth", required_argument, 0, OPTION_DWARF_DEPTH},
4284 {"dwarf-start", required_argument, 0, OPTION_DWARF_START},
4285 {"dwarf-check", no_argument, 0, OPTION_DWARF_CHECK},
4286
4287 {"version", no_argument, 0, 'v'},
4288 {"wide", no_argument, 0, 'W'},
4289 {"help", no_argument, 0, 'H'},
4290 {0, no_argument, 0, 0}
4291 };
4292
4293 static void
4294 usage (FILE * stream)
4295 {
4296 fprintf (stream, _("Usage: readelf <option(s)> elf-file(s)\n"));
4297 fprintf (stream, _(" Display information about the contents of ELF format files\n"));
4298 fprintf (stream, _(" Options are:\n\
4299 -a --all Equivalent to: -h -l -S -s -r -d -V -A -I\n\
4300 -h --file-header Display the ELF file header\n\
4301 -l --program-headers Display the program headers\n\
4302 --segments An alias for --program-headers\n\
4303 -S --section-headers Display the sections' header\n\
4304 --sections An alias for --section-headers\n\
4305 -g --section-groups Display the section groups\n\
4306 -t --section-details Display the section details\n\
4307 -e --headers Equivalent to: -h -l -S\n\
4308 -s --syms Display the symbol table\n\
4309 --symbols An alias for --syms\n\
4310 --dyn-syms Display the dynamic symbol table\n\
4311 -n --notes Display the core notes (if present)\n\
4312 -r --relocs Display the relocations (if present)\n\
4313 -u --unwind Display the unwind info (if present)\n\
4314 -d --dynamic Display the dynamic section (if present)\n\
4315 -V --version-info Display the version sections (if present)\n\
4316 -A --arch-specific Display architecture specific information (if any)\n\
4317 -c --archive-index Display the symbol/file index in an archive\n\
4318 -D --use-dynamic Use the dynamic section info when displaying symbols\n\
4319 -x --hex-dump=<number|name>\n\
4320 Dump the contents of section <number|name> as bytes\n\
4321 -p --string-dump=<number|name>\n\
4322 Dump the contents of section <number|name> as strings\n\
4323 -R --relocated-dump=<number|name>\n\
4324 Dump the contents of section <number|name> as relocated bytes\n\
4325 -z --decompress Decompress section before dumping it\n\
4326 -w[lLiaprmfFsoRt] or\n\
4327 --debug-dump[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,\n\
4328 =frames-interp,=str,=loc,=Ranges,=pubtypes,\n\
4329 =gdb_index,=trace_info,=trace_abbrev,=trace_aranges,\n\
4330 =addr,=cu_index]\n\
4331 Display the contents of DWARF2 debug sections\n"));
4332 fprintf (stream, _("\
4333 --dwarf-depth=N Do not display DIEs at depth N or greater\n\
4334 --dwarf-start=N Display DIEs starting with N, at the same depth\n\
4335 or deeper\n"));
4336 #ifdef SUPPORT_DISASSEMBLY
4337 fprintf (stream, _("\
4338 -i --instruction-dump=<number|name>\n\
4339 Disassemble the contents of section <number|name>\n"));
4340 #endif
4341 fprintf (stream, _("\
4342 -I --histogram Display histogram of bucket list lengths\n\
4343 -W --wide Allow output width to exceed 80 characters\n\
4344 @<file> Read options from <file>\n\
4345 -H --help Display this information\n\
4346 -v --version Display the version number of readelf\n"));
4347
4348 if (REPORT_BUGS_TO[0] && stream == stdout)
4349 fprintf (stdout, _("Report bugs to %s\n"), REPORT_BUGS_TO);
4350
4351 exit (stream == stdout ? 0 : 1);
4352 }
4353
4354 /* Record the fact that the user wants the contents of section number
4355 SECTION to be displayed using the method(s) encoded as flags bits
4356 in TYPE. Note, TYPE can be zero if we are creating the array for
4357 the first time. */
4358
4359 static void
4360 request_dump_bynumber (unsigned int section, dump_type type)
4361 {
4362 if (section >= num_dump_sects)
4363 {
4364 dump_type * new_dump_sects;
4365
4366 new_dump_sects = (dump_type *) calloc (section + 1,
4367 sizeof (* dump_sects));
4368
4369 if (new_dump_sects == NULL)
4370 error (_("Out of memory allocating dump request table.\n"));
4371 else
4372 {
4373 if (dump_sects)
4374 {
4375 /* Copy current flag settings. */
4376 memcpy (new_dump_sects, dump_sects, num_dump_sects * sizeof (* dump_sects));
4377
4378 free (dump_sects);
4379 }
4380
4381 dump_sects = new_dump_sects;
4382 num_dump_sects = section + 1;
4383 }
4384 }
4385
4386 if (dump_sects)
4387 dump_sects[section] |= type;
4388
4389 return;
4390 }
4391
4392 /* Request a dump by section name. */
4393
4394 static void
4395 request_dump_byname (const char * section, dump_type type)
4396 {
4397 struct dump_list_entry * new_request;
4398
4399 new_request = (struct dump_list_entry *)
4400 malloc (sizeof (struct dump_list_entry));
4401 if (!new_request)
4402 error (_("Out of memory allocating dump request table.\n"));
4403
4404 new_request->name = strdup (section);
4405 if (!new_request->name)
4406 error (_("Out of memory allocating dump request table.\n"));
4407
4408 new_request->type = type;
4409
4410 new_request->next = dump_sects_byname;
4411 dump_sects_byname = new_request;
4412 }
4413
4414 static inline void
4415 request_dump (dump_type type)
4416 {
4417 int section;
4418 char * cp;
4419
4420 do_dump++;
4421 section = strtoul (optarg, & cp, 0);
4422
4423 if (! *cp && section >= 0)
4424 request_dump_bynumber (section, type);
4425 else
4426 request_dump_byname (optarg, type);
4427 }
4428
4429
4430 static void
4431 parse_args (int argc, char ** argv)
4432 {
4433 int c;
4434
4435 if (argc < 2)
4436 usage (stderr);
4437
4438 while ((c = getopt_long
4439 (argc, argv, "ADHINR:SVWacdeghi:lnp:rstuvw::x:z", options, NULL)) != EOF)
4440 {
4441 switch (c)
4442 {
4443 case 0:
4444 /* Long options. */
4445 break;
4446 case 'H':
4447 usage (stdout);
4448 break;
4449
4450 case 'a':
4451 do_syms = TRUE;
4452 do_reloc = TRUE;
4453 do_unwind = TRUE;
4454 do_dynamic = TRUE;
4455 do_header = TRUE;
4456 do_sections = TRUE;
4457 do_section_groups = TRUE;
4458 do_segments = TRUE;
4459 do_version = TRUE;
4460 do_histogram = TRUE;
4461 do_arch = TRUE;
4462 do_notes = TRUE;
4463 break;
4464 case 'g':
4465 do_section_groups = TRUE;
4466 break;
4467 case 't':
4468 case 'N':
4469 do_sections = TRUE;
4470 do_section_details = TRUE;
4471 break;
4472 case 'e':
4473 do_header = TRUE;
4474 do_sections = TRUE;
4475 do_segments = TRUE;
4476 break;
4477 case 'A':
4478 do_arch = TRUE;
4479 break;
4480 case 'D':
4481 do_using_dynamic = TRUE;
4482 break;
4483 case 'r':
4484 do_reloc = TRUE;
4485 break;
4486 case 'u':
4487 do_unwind = TRUE;
4488 break;
4489 case 'h':
4490 do_header = TRUE;
4491 break;
4492 case 'l':
4493 do_segments = TRUE;
4494 break;
4495 case 's':
4496 do_syms = TRUE;
4497 break;
4498 case 'S':
4499 do_sections = TRUE;
4500 break;
4501 case 'd':
4502 do_dynamic = TRUE;
4503 break;
4504 case 'I':
4505 do_histogram = TRUE;
4506 break;
4507 case 'n':
4508 do_notes = TRUE;
4509 break;
4510 case 'c':
4511 do_archive_index = TRUE;
4512 break;
4513 case 'x':
4514 request_dump (HEX_DUMP);
4515 break;
4516 case 'p':
4517 request_dump (STRING_DUMP);
4518 break;
4519 case 'R':
4520 request_dump (RELOC_DUMP);
4521 break;
4522 case 'z':
4523 decompress_dumps = TRUE;
4524 break;
4525 case 'w':
4526 do_dump = TRUE;
4527 if (optarg == 0)
4528 {
4529 do_debugging = TRUE;
4530 dwarf_select_sections_all ();
4531 }
4532 else
4533 {
4534 do_debugging = FALSE;
4535 dwarf_select_sections_by_letters (optarg);
4536 }
4537 break;
4538 case OPTION_DEBUG_DUMP:
4539 do_dump = TRUE;
4540 if (optarg == 0)
4541 do_debugging = TRUE;
4542 else
4543 {
4544 do_debugging = FALSE;
4545 dwarf_select_sections_by_names (optarg);
4546 }
4547 break;
4548 case OPTION_DWARF_DEPTH:
4549 {
4550 char *cp;
4551
4552 dwarf_cutoff_level = strtoul (optarg, & cp, 0);
4553 }
4554 break;
4555 case OPTION_DWARF_START:
4556 {
4557 char *cp;
4558
4559 dwarf_start_die = strtoul (optarg, & cp, 0);
4560 }
4561 break;
4562 case OPTION_DWARF_CHECK:
4563 dwarf_check = TRUE;
4564 break;
4565 case OPTION_DYN_SYMS:
4566 do_dyn_syms = TRUE;
4567 break;
4568 #ifdef SUPPORT_DISASSEMBLY
4569 case 'i':
4570 request_dump (DISASS_DUMP);
4571 break;
4572 #endif
4573 case 'v':
4574 print_version (program_name);
4575 break;
4576 case 'V':
4577 do_version = TRUE;
4578 break;
4579 case 'W':
4580 do_wide = TRUE;
4581 break;
4582 default:
4583 /* xgettext:c-format */
4584 error (_("Invalid option '-%c'\n"), c);
4585 /* Fall through. */
4586 case '?':
4587 usage (stderr);
4588 }
4589 }
4590
4591 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
4592 && !do_segments && !do_header && !do_dump && !do_version
4593 && !do_histogram && !do_debugging && !do_arch && !do_notes
4594 && !do_section_groups && !do_archive_index
4595 && !do_dyn_syms)
4596 usage (stderr);
4597 }
4598
4599 static const char *
4600 get_elf_class (unsigned int elf_class)
4601 {
4602 static char buff[32];
4603
4604 switch (elf_class)
4605 {
4606 case ELFCLASSNONE: return _("none");
4607 case ELFCLASS32: return "ELF32";
4608 case ELFCLASS64: return "ELF64";
4609 default:
4610 snprintf (buff, sizeof (buff), _("<unknown: %x>"), elf_class);
4611 return buff;
4612 }
4613 }
4614
4615 static const char *
4616 get_data_encoding (unsigned int encoding)
4617 {
4618 static char buff[32];
4619
4620 switch (encoding)
4621 {
4622 case ELFDATANONE: return _("none");
4623 case ELFDATA2LSB: return _("2's complement, little endian");
4624 case ELFDATA2MSB: return _("2's complement, big endian");
4625 default:
4626 snprintf (buff, sizeof (buff), _("<unknown: %x>"), encoding);
4627 return buff;
4628 }
4629 }
4630
4631 /* Decode the data held in 'elf_header'. */
4632
4633 static bfd_boolean
4634 process_file_header (void)
4635 {
4636 if ( elf_header.e_ident[EI_MAG0] != ELFMAG0
4637 || elf_header.e_ident[EI_MAG1] != ELFMAG1
4638 || elf_header.e_ident[EI_MAG2] != ELFMAG2
4639 || elf_header.e_ident[EI_MAG3] != ELFMAG3)
4640 {
4641 error
4642 (_("Not an ELF file - it has the wrong magic bytes at the start\n"));
4643 return FALSE;
4644 }
4645
4646 init_dwarf_regnames (elf_header.e_machine);
4647
4648 if (do_header)
4649 {
4650 unsigned i;
4651
4652 printf (_("ELF Header:\n"));
4653 printf (_(" Magic: "));
4654 for (i = 0; i < EI_NIDENT; i++)
4655 printf ("%2.2x ", elf_header.e_ident[i]);
4656 printf ("\n");
4657 printf (_(" Class: %s\n"),
4658 get_elf_class (elf_header.e_ident[EI_CLASS]));
4659 printf (_(" Data: %s\n"),
4660 get_data_encoding (elf_header.e_ident[EI_DATA]));
4661 printf (_(" Version: %d %s\n"),
4662 elf_header.e_ident[EI_VERSION],
4663 (elf_header.e_ident[EI_VERSION] == EV_CURRENT
4664 ? "(current)"
4665 : (elf_header.e_ident[EI_VERSION] != EV_NONE
4666 ? _("<unknown: %lx>")
4667 : "")));
4668 printf (_(" OS/ABI: %s\n"),
4669 get_osabi_name (elf_header.e_ident[EI_OSABI]));
4670 printf (_(" ABI Version: %d\n"),
4671 elf_header.e_ident[EI_ABIVERSION]);
4672 printf (_(" Type: %s\n"),
4673 get_file_type (elf_header.e_type));
4674 printf (_(" Machine: %s\n"),
4675 get_machine_name (elf_header.e_machine));
4676 printf (_(" Version: 0x%lx\n"),
4677 (unsigned long) elf_header.e_version);
4678
4679 printf (_(" Entry point address: "));
4680 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
4681 printf (_("\n Start of program headers: "));
4682 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
4683 printf (_(" (bytes into file)\n Start of section headers: "));
4684 print_vma ((bfd_vma) elf_header.e_shoff, DEC);
4685 printf (_(" (bytes into file)\n"));
4686
4687 printf (_(" Flags: 0x%lx%s\n"),
4688 (unsigned long) elf_header.e_flags,
4689 get_machine_flags (elf_header.e_flags, elf_header.e_machine));
4690 printf (_(" Size of this header: %ld (bytes)\n"),
4691 (long) elf_header.e_ehsize);
4692 printf (_(" Size of program headers: %ld (bytes)\n"),
4693 (long) elf_header.e_phentsize);
4694 printf (_(" Number of program headers: %ld"),
4695 (long) elf_header.e_phnum);
4696 if (section_headers != NULL
4697 && elf_header.e_phnum == PN_XNUM
4698 && section_headers[0].sh_info != 0)
4699 printf (" (%ld)", (long) section_headers[0].sh_info);
4700 putc ('\n', stdout);
4701 printf (_(" Size of section headers: %ld (bytes)\n"),
4702 (long) elf_header.e_shentsize);
4703 printf (_(" Number of section headers: %ld"),
4704 (long) elf_header.e_shnum);
4705 if (section_headers != NULL && elf_header.e_shnum == SHN_UNDEF)
4706 printf (" (%ld)", (long) section_headers[0].sh_size);
4707 putc ('\n', stdout);
4708 printf (_(" Section header string table index: %ld"),
4709 (long) elf_header.e_shstrndx);
4710 if (section_headers != NULL
4711 && elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
4712 printf (" (%u)", section_headers[0].sh_link);
4713 else if (elf_header.e_shstrndx != SHN_UNDEF
4714 && elf_header.e_shstrndx >= elf_header.e_shnum)
4715 printf (_(" <corrupt: out of range>"));
4716 putc ('\n', stdout);
4717 }
4718
4719 if (section_headers != NULL)
4720 {
4721 if (elf_header.e_phnum == PN_XNUM
4722 && section_headers[0].sh_info != 0)
4723 elf_header.e_phnum = section_headers[0].sh_info;
4724 if (elf_header.e_shnum == SHN_UNDEF)
4725 elf_header.e_shnum = section_headers[0].sh_size;
4726 if (elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
4727 elf_header.e_shstrndx = section_headers[0].sh_link;
4728 else if (elf_header.e_shstrndx >= elf_header.e_shnum)
4729 elf_header.e_shstrndx = SHN_UNDEF;
4730 free (section_headers);
4731 section_headers = NULL;
4732 }
4733
4734 return TRUE;
4735 }
4736
4737 static bfd_boolean
4738 get_32bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
4739 {
4740 Elf32_External_Phdr * phdrs;
4741 Elf32_External_Phdr * external;
4742 Elf_Internal_Phdr * internal;
4743 unsigned int i;
4744 unsigned int size = elf_header.e_phentsize;
4745 unsigned int num = elf_header.e_phnum;
4746
4747 /* PR binutils/17531: Cope with unexpected section header sizes. */
4748 if (size == 0 || num == 0)
4749 return FALSE;
4750 if (size < sizeof * phdrs)
4751 {
4752 error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
4753 return FALSE;
4754 }
4755 if (size > sizeof * phdrs)
4756 warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
4757
4758 phdrs = (Elf32_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
4759 size, num, _("program headers"));
4760 if (phdrs == NULL)
4761 return FALSE;
4762
4763 for (i = 0, internal = pheaders, external = phdrs;
4764 i < elf_header.e_phnum;
4765 i++, internal++, external++)
4766 {
4767 internal->p_type = BYTE_GET (external->p_type);
4768 internal->p_offset = BYTE_GET (external->p_offset);
4769 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4770 internal->p_paddr = BYTE_GET (external->p_paddr);
4771 internal->p_filesz = BYTE_GET (external->p_filesz);
4772 internal->p_memsz = BYTE_GET (external->p_memsz);
4773 internal->p_flags = BYTE_GET (external->p_flags);
4774 internal->p_align = BYTE_GET (external->p_align);
4775 }
4776
4777 free (phdrs);
4778 return TRUE;
4779 }
4780
4781 static bfd_boolean
4782 get_64bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
4783 {
4784 Elf64_External_Phdr * phdrs;
4785 Elf64_External_Phdr * external;
4786 Elf_Internal_Phdr * internal;
4787 unsigned int i;
4788 unsigned int size = elf_header.e_phentsize;
4789 unsigned int num = elf_header.e_phnum;
4790
4791 /* PR binutils/17531: Cope with unexpected section header sizes. */
4792 if (size == 0 || num == 0)
4793 return FALSE;
4794 if (size < sizeof * phdrs)
4795 {
4796 error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
4797 return FALSE;
4798 }
4799 if (size > sizeof * phdrs)
4800 warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
4801
4802 phdrs = (Elf64_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
4803 size, num, _("program headers"));
4804 if (!phdrs)
4805 return FALSE;
4806
4807 for (i = 0, internal = pheaders, external = phdrs;
4808 i < elf_header.e_phnum;
4809 i++, internal++, external++)
4810 {
4811 internal->p_type = BYTE_GET (external->p_type);
4812 internal->p_flags = BYTE_GET (external->p_flags);
4813 internal->p_offset = BYTE_GET (external->p_offset);
4814 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4815 internal->p_paddr = BYTE_GET (external->p_paddr);
4816 internal->p_filesz = BYTE_GET (external->p_filesz);
4817 internal->p_memsz = BYTE_GET (external->p_memsz);
4818 internal->p_align = BYTE_GET (external->p_align);
4819 }
4820
4821 free (phdrs);
4822 return TRUE;
4823 }
4824
4825 /* Returns TRUE if the program headers were read into `program_headers'. */
4826
4827 static bfd_boolean
4828 get_program_headers (FILE * file)
4829 {
4830 Elf_Internal_Phdr * phdrs;
4831
4832 /* Check cache of prior read. */
4833 if (program_headers != NULL)
4834 return TRUE;
4835
4836 /* Be kind to memory checkers by looking for
4837 e_phnum values which we know must be invalid. */
4838 if (elf_header.e_phnum
4839 * (is_32bit_elf ? sizeof (Elf32_External_Phdr) : sizeof (Elf64_External_Phdr))
4840 >= current_file_size)
4841 {
4842 error (_("Too many program headers - %#x - the file is not that big\n"),
4843 elf_header.e_phnum);
4844 return FALSE;
4845 }
4846
4847 phdrs = (Elf_Internal_Phdr *) cmalloc (elf_header.e_phnum,
4848 sizeof (Elf_Internal_Phdr));
4849 if (phdrs == NULL)
4850 {
4851 error (_("Out of memory reading %u program headers\n"),
4852 elf_header.e_phnum);
4853 return FALSE;
4854 }
4855
4856 if (is_32bit_elf
4857 ? get_32bit_program_headers (file, phdrs)
4858 : get_64bit_program_headers (file, phdrs))
4859 {
4860 program_headers = phdrs;
4861 return TRUE;
4862 }
4863
4864 free (phdrs);
4865 return FALSE;
4866 }
4867
4868 /* Returns TRUE if the program headers were loaded. */
4869
4870 static bfd_boolean
4871 process_program_headers (FILE * file)
4872 {
4873 Elf_Internal_Phdr * segment;
4874 unsigned int i;
4875 Elf_Internal_Phdr * previous_load = NULL;
4876
4877 if (elf_header.e_phnum == 0)
4878 {
4879 /* PR binutils/12467. */
4880 if (elf_header.e_phoff != 0)
4881 {
4882 warn (_("possibly corrupt ELF header - it has a non-zero program"
4883 " header offset, but no program headers\n"));
4884 return FALSE;
4885 }
4886 else if (do_segments)
4887 printf (_("\nThere are no program headers in this file.\n"));
4888 return TRUE;
4889 }
4890
4891 if (do_segments && !do_header)
4892 {
4893 printf (_("\nElf file type is %s\n"), get_file_type (elf_header.e_type));
4894 printf (_("Entry point "));
4895 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
4896 printf (_("\nThere are %d program headers, starting at offset "),
4897 elf_header.e_phnum);
4898 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
4899 printf ("\n");
4900 }
4901
4902 if (! get_program_headers (file))
4903 return TRUE;
4904
4905 if (do_segments)
4906 {
4907 if (elf_header.e_phnum > 1)
4908 printf (_("\nProgram Headers:\n"));
4909 else
4910 printf (_("\nProgram Headers:\n"));
4911
4912 if (is_32bit_elf)
4913 printf
4914 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4915 else if (do_wide)
4916 printf
4917 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4918 else
4919 {
4920 printf
4921 (_(" Type Offset VirtAddr PhysAddr\n"));
4922 printf
4923 (_(" FileSiz MemSiz Flags Align\n"));
4924 }
4925 }
4926
4927 dynamic_addr = 0;
4928 dynamic_size = 0;
4929
4930 for (i = 0, segment = program_headers;
4931 i < elf_header.e_phnum;
4932 i++, segment++)
4933 {
4934 if (do_segments)
4935 {
4936 printf (" %-14.14s ", get_segment_type (segment->p_type));
4937
4938 if (is_32bit_elf)
4939 {
4940 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4941 printf ("0x%8.8lx ", (unsigned long) segment->p_vaddr);
4942 printf ("0x%8.8lx ", (unsigned long) segment->p_paddr);
4943 printf ("0x%5.5lx ", (unsigned long) segment->p_filesz);
4944 printf ("0x%5.5lx ", (unsigned long) segment->p_memsz);
4945 printf ("%c%c%c ",
4946 (segment->p_flags & PF_R ? 'R' : ' '),
4947 (segment->p_flags & PF_W ? 'W' : ' '),
4948 (segment->p_flags & PF_X ? 'E' : ' '));
4949 printf ("%#lx", (unsigned long) segment->p_align);
4950 }
4951 else if (do_wide)
4952 {
4953 if ((unsigned long) segment->p_offset == segment->p_offset)
4954 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4955 else
4956 {
4957 print_vma (segment->p_offset, FULL_HEX);
4958 putchar (' ');
4959 }
4960
4961 print_vma (segment->p_vaddr, FULL_HEX);
4962 putchar (' ');
4963 print_vma (segment->p_paddr, FULL_HEX);
4964 putchar (' ');
4965
4966 if ((unsigned long) segment->p_filesz == segment->p_filesz)
4967 printf ("0x%6.6lx ", (unsigned long) segment->p_filesz);
4968 else
4969 {
4970 print_vma (segment->p_filesz, FULL_HEX);
4971 putchar (' ');
4972 }
4973
4974 if ((unsigned long) segment->p_memsz == segment->p_memsz)
4975 printf ("0x%6.6lx", (unsigned long) segment->p_memsz);
4976 else
4977 {
4978 print_vma (segment->p_memsz, FULL_HEX);
4979 }
4980
4981 printf (" %c%c%c ",
4982 (segment->p_flags & PF_R ? 'R' : ' '),
4983 (segment->p_flags & PF_W ? 'W' : ' '),
4984 (segment->p_flags & PF_X ? 'E' : ' '));
4985
4986 if ((unsigned long) segment->p_align == segment->p_align)
4987 printf ("%#lx", (unsigned long) segment->p_align);
4988 else
4989 {
4990 print_vma (segment->p_align, PREFIX_HEX);
4991 }
4992 }
4993 else
4994 {
4995 print_vma (segment->p_offset, FULL_HEX);
4996 putchar (' ');
4997 print_vma (segment->p_vaddr, FULL_HEX);
4998 putchar (' ');
4999 print_vma (segment->p_paddr, FULL_HEX);
5000 printf ("\n ");
5001 print_vma (segment->p_filesz, FULL_HEX);
5002 putchar (' ');
5003 print_vma (segment->p_memsz, FULL_HEX);
5004 printf (" %c%c%c ",
5005 (segment->p_flags & PF_R ? 'R' : ' '),
5006 (segment->p_flags & PF_W ? 'W' : ' '),
5007 (segment->p_flags & PF_X ? 'E' : ' '));
5008 print_vma (segment->p_align, PREFIX_HEX);
5009 }
5010
5011 putc ('\n', stdout);
5012 }
5013
5014 switch (segment->p_type)
5015 {
5016 case PT_LOAD:
5017 #if 0 /* Do not warn about out of order PT_LOAD segments. Although officially
5018 required by the ELF standard, several programs, including the Linux
5019 kernel, make use of non-ordered segments. */
5020 if (previous_load
5021 && previous_load->p_vaddr > segment->p_vaddr)
5022 error (_("LOAD segments must be sorted in order of increasing VirtAddr\n"));
5023 #endif
5024 if (segment->p_memsz < segment->p_filesz)
5025 error (_("the segment's file size is larger than its memory size\n"));
5026 previous_load = segment;
5027 break;
5028
5029 case PT_PHDR:
5030 /* PR 20815 - Verify that the program header is loaded into memory. */
5031 if (i > 0 && previous_load != NULL)
5032 error (_("the PHDR segment must occur before any LOAD segment\n"));
5033 if (elf_header.e_machine != EM_PARISC)
5034 {
5035 unsigned int j;
5036
5037 for (j = 1; j < elf_header.e_phnum; j++)
5038 if (program_headers[j].p_vaddr <= segment->p_vaddr
5039 && (program_headers[j].p_vaddr + program_headers[j].p_memsz)
5040 >= (segment->p_vaddr + segment->p_filesz))
5041 break;
5042 if (j == elf_header.e_phnum)
5043 error (_("the PHDR segment is not covered by a LOAD segment\n"));
5044 }
5045 break;
5046
5047 case PT_DYNAMIC:
5048 if (dynamic_addr)
5049 error (_("more than one dynamic segment\n"));
5050
5051 /* By default, assume that the .dynamic section is the first
5052 section in the DYNAMIC segment. */
5053 dynamic_addr = segment->p_offset;
5054 dynamic_size = segment->p_filesz;
5055
5056 /* Try to locate the .dynamic section. If there is
5057 a section header table, we can easily locate it. */
5058 if (section_headers != NULL)
5059 {
5060 Elf_Internal_Shdr * sec;
5061
5062 sec = find_section (".dynamic");
5063 if (sec == NULL || sec->sh_size == 0)
5064 {
5065 /* A corresponding .dynamic section is expected, but on
5066 IA-64/OpenVMS it is OK for it to be missing. */
5067 if (!is_ia64_vms ())
5068 error (_("no .dynamic section in the dynamic segment\n"));
5069 break;
5070 }
5071
5072 if (sec->sh_type == SHT_NOBITS)
5073 {
5074 dynamic_size = 0;
5075 break;
5076 }
5077
5078 dynamic_addr = sec->sh_offset;
5079 dynamic_size = sec->sh_size;
5080
5081 if (dynamic_addr < segment->p_offset
5082 || dynamic_addr > segment->p_offset + segment->p_filesz)
5083 warn (_("the .dynamic section is not contained"
5084 " within the dynamic segment\n"));
5085 else if (dynamic_addr > segment->p_offset)
5086 warn (_("the .dynamic section is not the first section"
5087 " in the dynamic segment.\n"));
5088 }
5089
5090 /* PR binutils/17512: Avoid corrupt dynamic section info in the
5091 segment. Check this after matching against the section headers
5092 so we don't warn on debuginfo file (which have NOBITS .dynamic
5093 sections). */
5094 if (dynamic_addr + dynamic_size >= current_file_size)
5095 {
5096 error (_("the dynamic segment offset + size exceeds the size of the file\n"));
5097 dynamic_addr = dynamic_size = 0;
5098 }
5099 break;
5100
5101 case PT_INTERP:
5102 if (fseek (file, archive_file_offset + (long) segment->p_offset,
5103 SEEK_SET))
5104 error (_("Unable to find program interpreter name\n"));
5105 else
5106 {
5107 char fmt [32];
5108 int ret = snprintf (fmt, sizeof (fmt), "%%%ds", PATH_MAX - 1);
5109
5110 if (ret >= (int) sizeof (fmt) || ret < 0)
5111 error (_("Internal error: failed to create format string to display program interpreter\n"));
5112
5113 program_interpreter[0] = 0;
5114 if (fscanf (file, fmt, program_interpreter) <= 0)
5115 error (_("Unable to read program interpreter name\n"));
5116
5117 if (do_segments)
5118 printf (_(" [Requesting program interpreter: %s]\n"),
5119 program_interpreter);
5120 }
5121 break;
5122 }
5123 }
5124
5125 if (do_segments && section_headers != NULL && string_table != NULL)
5126 {
5127 printf (_("\n Section to Segment mapping:\n"));
5128 printf (_(" Segment Sections...\n"));
5129
5130 for (i = 0; i < elf_header.e_phnum; i++)
5131 {
5132 unsigned int j;
5133 Elf_Internal_Shdr * section;
5134
5135 segment = program_headers + i;
5136 section = section_headers + 1;
5137
5138 printf (" %2.2d ", i);
5139
5140 for (j = 1; j < elf_header.e_shnum; j++, section++)
5141 {
5142 if (!ELF_TBSS_SPECIAL (section, segment)
5143 && ELF_SECTION_IN_SEGMENT_STRICT (section, segment))
5144 printf ("%s ", printable_section_name (section));
5145 }
5146
5147 putc ('\n',stdout);
5148 }
5149 }
5150
5151 return TRUE;
5152 }
5153
5154
5155 /* Find the file offset corresponding to VMA by using the program headers. */
5156
5157 static long
5158 offset_from_vma (FILE * file, bfd_vma vma, bfd_size_type size)
5159 {
5160 Elf_Internal_Phdr * seg;
5161
5162 if (! get_program_headers (file))
5163 {
5164 warn (_("Cannot interpret virtual addresses without program headers.\n"));
5165 return (long) vma;
5166 }
5167
5168 for (seg = program_headers;
5169 seg < program_headers + elf_header.e_phnum;
5170 ++seg)
5171 {
5172 if (seg->p_type != PT_LOAD)
5173 continue;
5174
5175 if (vma >= (seg->p_vaddr & -seg->p_align)
5176 && vma + size <= seg->p_vaddr + seg->p_filesz)
5177 return vma - seg->p_vaddr + seg->p_offset;
5178 }
5179
5180 warn (_("Virtual address 0x%lx not located in any PT_LOAD segment.\n"),
5181 (unsigned long) vma);
5182 return (long) vma;
5183 }
5184
5185
5186 /* Allocate memory and load the sections headers into the global pointer
5187 SECTION_HEADERS. If PROBE is true, this is just a probe and we do not
5188 generate any error messages if the load fails. */
5189
5190 static bfd_boolean
5191 get_32bit_section_headers (FILE * file, bfd_boolean probe)
5192 {
5193 Elf32_External_Shdr * shdrs;
5194 Elf_Internal_Shdr * internal;
5195 unsigned int i;
5196 unsigned int size = elf_header.e_shentsize;
5197 unsigned int num = probe ? 1 : elf_header.e_shnum;
5198
5199 /* PR binutils/17531: Cope with unexpected section header sizes. */
5200 if (size == 0 || num == 0)
5201 return FALSE;
5202 if (size < sizeof * shdrs)
5203 {
5204 if (! probe)
5205 error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
5206 return FALSE;
5207 }
5208 if (!probe && size > sizeof * shdrs)
5209 warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
5210
5211 shdrs = (Elf32_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
5212 size, num,
5213 probe ? NULL : _("section headers"));
5214 if (shdrs == NULL)
5215 return FALSE;
5216
5217 if (section_headers != NULL)
5218 free (section_headers);
5219 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
5220 sizeof (Elf_Internal_Shdr));
5221 if (section_headers == NULL)
5222 {
5223 if (!probe)
5224 error (_("Out of memory reading %u section headers\n"), num);
5225 return FALSE;
5226 }
5227
5228 for (i = 0, internal = section_headers;
5229 i < num;
5230 i++, internal++)
5231 {
5232 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
5233 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
5234 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
5235 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
5236 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
5237 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
5238 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
5239 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
5240 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
5241 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
5242 if (!probe && internal->sh_link > num)
5243 warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link);
5244 if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num)
5245 warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info);
5246 }
5247
5248 free (shdrs);
5249 return TRUE;
5250 }
5251
5252 static bfd_boolean
5253 get_64bit_section_headers (FILE * file, bfd_boolean probe)
5254 {
5255 Elf64_External_Shdr * shdrs;
5256 Elf_Internal_Shdr * internal;
5257 unsigned int i;
5258 unsigned int size = elf_header.e_shentsize;
5259 unsigned int num = probe ? 1 : elf_header.e_shnum;
5260
5261 /* PR binutils/17531: Cope with unexpected section header sizes. */
5262 if (size == 0 || num == 0)
5263 return FALSE;
5264 if (size < sizeof * shdrs)
5265 {
5266 if (! probe)
5267 error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
5268 return FALSE;
5269 }
5270 if (! probe && size > sizeof * shdrs)
5271 warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
5272
5273 shdrs = (Elf64_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
5274 size, num,
5275 probe ? NULL : _("section headers"));
5276 if (shdrs == NULL)
5277 return FALSE;
5278
5279 if (section_headers != NULL)
5280 free (section_headers);
5281 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
5282 sizeof (Elf_Internal_Shdr));
5283 if (section_headers == NULL)
5284 {
5285 if (! probe)
5286 error (_("Out of memory reading %u section headers\n"), num);
5287 return FALSE;
5288 }
5289
5290 for (i = 0, internal = section_headers;
5291 i < num;
5292 i++, internal++)
5293 {
5294 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
5295 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
5296 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
5297 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
5298 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
5299 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
5300 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
5301 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
5302 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
5303 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
5304 if (!probe && internal->sh_link > num)
5305 warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link);
5306 if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num)
5307 warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info);
5308 }
5309
5310 free (shdrs);
5311 return TRUE;
5312 }
5313
5314 static Elf_Internal_Sym *
5315 get_32bit_elf_symbols (FILE * file,
5316 Elf_Internal_Shdr * section,
5317 unsigned long * num_syms_return)
5318 {
5319 unsigned long number = 0;
5320 Elf32_External_Sym * esyms = NULL;
5321 Elf_External_Sym_Shndx * shndx = NULL;
5322 Elf_Internal_Sym * isyms = NULL;
5323 Elf_Internal_Sym * psym;
5324 unsigned int j;
5325
5326 if (section->sh_size == 0)
5327 {
5328 if (num_syms_return != NULL)
5329 * num_syms_return = 0;
5330 return NULL;
5331 }
5332
5333 /* Run some sanity checks first. */
5334 if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size)
5335 {
5336 error (_("Section %s has an invalid sh_entsize of 0x%lx\n"),
5337 printable_section_name (section), (unsigned long) section->sh_entsize);
5338 goto exit_point;
5339 }
5340
5341 if (section->sh_size > current_file_size)
5342 {
5343 error (_("Section %s has an invalid sh_size of 0x%lx\n"),
5344 printable_section_name (section), (unsigned long) section->sh_size);
5345 goto exit_point;
5346 }
5347
5348 number = section->sh_size / section->sh_entsize;
5349
5350 if (number * sizeof (Elf32_External_Sym) > section->sh_size + 1)
5351 {
5352 error (_("Size (0x%lx) of section %s is not a multiple of its sh_entsize (0x%lx)\n"),
5353 (unsigned long) section->sh_size,
5354 printable_section_name (section),
5355 (unsigned long) section->sh_entsize);
5356 goto exit_point;
5357 }
5358
5359 esyms = (Elf32_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
5360 section->sh_size, _("symbols"));
5361 if (esyms == NULL)
5362 goto exit_point;
5363
5364 {
5365 elf_section_list * entry;
5366
5367 shndx = NULL;
5368 for (entry = symtab_shndx_list; entry != NULL; entry = entry->next)
5369 if (entry->hdr->sh_link == (unsigned long) (section - section_headers))
5370 {
5371 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
5372 entry->hdr->sh_offset,
5373 1, entry->hdr->sh_size,
5374 _("symbol table section indicies"));
5375 if (shndx == NULL)
5376 goto exit_point;
5377 /* PR17531: file: heap-buffer-overflow */
5378 else if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number)
5379 {
5380 error (_("Index section %s has an sh_size of 0x%lx - expected 0x%lx\n"),
5381 printable_section_name (entry->hdr),
5382 (unsigned long) entry->hdr->sh_size,
5383 (unsigned long) section->sh_size);
5384 goto exit_point;
5385 }
5386 }
5387 }
5388
5389 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
5390
5391 if (isyms == NULL)
5392 {
5393 error (_("Out of memory reading %lu symbols\n"),
5394 (unsigned long) number);
5395 goto exit_point;
5396 }
5397
5398 for (j = 0, psym = isyms; j < number; j++, psym++)
5399 {
5400 psym->st_name = BYTE_GET (esyms[j].st_name);
5401 psym->st_value = BYTE_GET (esyms[j].st_value);
5402 psym->st_size = BYTE_GET (esyms[j].st_size);
5403 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
5404 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
5405 psym->st_shndx
5406 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
5407 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
5408 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
5409 psym->st_info = BYTE_GET (esyms[j].st_info);
5410 psym->st_other = BYTE_GET (esyms[j].st_other);
5411 }
5412
5413 exit_point:
5414 if (shndx != NULL)
5415 free (shndx);
5416 if (esyms != NULL)
5417 free (esyms);
5418
5419 if (num_syms_return != NULL)
5420 * num_syms_return = isyms == NULL ? 0 : number;
5421
5422 return isyms;
5423 }
5424
5425 static Elf_Internal_Sym *
5426 get_64bit_elf_symbols (FILE * file,
5427 Elf_Internal_Shdr * section,
5428 unsigned long * num_syms_return)
5429 {
5430 unsigned long number = 0;
5431 Elf64_External_Sym * esyms = NULL;
5432 Elf_External_Sym_Shndx * shndx = NULL;
5433 Elf_Internal_Sym * isyms = NULL;
5434 Elf_Internal_Sym * psym;
5435 unsigned int j;
5436
5437 if (section->sh_size == 0)
5438 {
5439 if (num_syms_return != NULL)
5440 * num_syms_return = 0;
5441 return NULL;
5442 }
5443
5444 /* Run some sanity checks first. */
5445 if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size)
5446 {
5447 error (_("Section %s has an invalid sh_entsize of 0x%lx\n"),
5448 printable_section_name (section),
5449 (unsigned long) section->sh_entsize);
5450 goto exit_point;
5451 }
5452
5453 if (section->sh_size > current_file_size)
5454 {
5455 error (_("Section %s has an invalid sh_size of 0x%lx\n"),
5456 printable_section_name (section),
5457 (unsigned long) section->sh_size);
5458 goto exit_point;
5459 }
5460
5461 number = section->sh_size / section->sh_entsize;
5462
5463 if (number * sizeof (Elf64_External_Sym) > section->sh_size + 1)
5464 {
5465 error (_("Size (0x%lx) of section %s is not a multiple of its sh_entsize (0x%lx)\n"),
5466 (unsigned long) section->sh_size,
5467 printable_section_name (section),
5468 (unsigned long) section->sh_entsize);
5469 goto exit_point;
5470 }
5471
5472 esyms = (Elf64_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
5473 section->sh_size, _("symbols"));
5474 if (!esyms)
5475 goto exit_point;
5476
5477 {
5478 elf_section_list * entry;
5479
5480 shndx = NULL;
5481 for (entry = symtab_shndx_list; entry != NULL; entry = entry->next)
5482 if (entry->hdr->sh_link == (unsigned long) (section - section_headers))
5483 {
5484 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
5485 entry->hdr->sh_offset,
5486 1, entry->hdr->sh_size,
5487 _("symbol table section indicies"));
5488 if (shndx == NULL)
5489 goto exit_point;
5490 /* PR17531: file: heap-buffer-overflow */
5491 else if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number)
5492 {
5493 error (_("Index section %s has an sh_size of 0x%lx - expected 0x%lx\n"),
5494 printable_section_name (entry->hdr),
5495 (unsigned long) entry->hdr->sh_size,
5496 (unsigned long) section->sh_size);
5497 goto exit_point;
5498 }
5499 }
5500 }
5501
5502 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
5503
5504 if (isyms == NULL)
5505 {
5506 error (_("Out of memory reading %lu symbols\n"),
5507 (unsigned long) number);
5508 goto exit_point;
5509 }
5510
5511 for (j = 0, psym = isyms; j < number; j++, psym++)
5512 {
5513 psym->st_name = BYTE_GET (esyms[j].st_name);
5514 psym->st_info = BYTE_GET (esyms[j].st_info);
5515 psym->st_other = BYTE_GET (esyms[j].st_other);
5516 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
5517
5518 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
5519 psym->st_shndx
5520 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
5521 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
5522 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
5523
5524 psym->st_value = BYTE_GET (esyms[j].st_value);
5525 psym->st_size = BYTE_GET (esyms[j].st_size);
5526 }
5527
5528 exit_point:
5529 if (shndx != NULL)
5530 free (shndx);
5531 if (esyms != NULL)
5532 free (esyms);
5533
5534 if (num_syms_return != NULL)
5535 * num_syms_return = isyms == NULL ? 0 : number;
5536
5537 return isyms;
5538 }
5539
5540 static const char *
5541 get_elf_section_flags (bfd_vma sh_flags)
5542 {
5543 static char buff[1024];
5544 char * p = buff;
5545 unsigned int field_size = is_32bit_elf ? 8 : 16;
5546 signed int sindex;
5547 unsigned int size = sizeof (buff) - (field_size + 4 + 1);
5548 bfd_vma os_flags = 0;
5549 bfd_vma proc_flags = 0;
5550 bfd_vma unknown_flags = 0;
5551 static const struct
5552 {
5553 const char * str;
5554 unsigned int len;
5555 }
5556 flags [] =
5557 {
5558 /* 0 */ { STRING_COMMA_LEN ("WRITE") },
5559 /* 1 */ { STRING_COMMA_LEN ("ALLOC") },
5560 /* 2 */ { STRING_COMMA_LEN ("EXEC") },
5561 /* 3 */ { STRING_COMMA_LEN ("MERGE") },
5562 /* 4 */ { STRING_COMMA_LEN ("STRINGS") },
5563 /* 5 */ { STRING_COMMA_LEN ("INFO LINK") },
5564 /* 6 */ { STRING_COMMA_LEN ("LINK ORDER") },
5565 /* 7 */ { STRING_COMMA_LEN ("OS NONCONF") },
5566 /* 8 */ { STRING_COMMA_LEN ("GROUP") },
5567 /* 9 */ { STRING_COMMA_LEN ("TLS") },
5568 /* IA-64 specific. */
5569 /* 10 */ { STRING_COMMA_LEN ("SHORT") },
5570 /* 11 */ { STRING_COMMA_LEN ("NORECOV") },
5571 /* IA-64 OpenVMS specific. */
5572 /* 12 */ { STRING_COMMA_LEN ("VMS_GLOBAL") },
5573 /* 13 */ { STRING_COMMA_LEN ("VMS_OVERLAID") },
5574 /* 14 */ { STRING_COMMA_LEN ("VMS_SHARED") },
5575 /* 15 */ { STRING_COMMA_LEN ("VMS_VECTOR") },
5576 /* 16 */ { STRING_COMMA_LEN ("VMS_ALLOC_64BIT") },
5577 /* 17 */ { STRING_COMMA_LEN ("VMS_PROTECTED") },
5578 /* Generic. */
5579 /* 18 */ { STRING_COMMA_LEN ("EXCLUDE") },
5580 /* SPARC specific. */
5581 /* 19 */ { STRING_COMMA_LEN ("ORDERED") },
5582 /* 20 */ { STRING_COMMA_LEN ("COMPRESSED") },
5583 /* ARM specific. */
5584 /* 21 */ { STRING_COMMA_LEN ("ENTRYSECT") },
5585 /* 22 */ { STRING_COMMA_LEN ("ARM_PURECODE") },
5586 /* 23 */ { STRING_COMMA_LEN ("COMDEF") },
5587 /* GNU specific. */
5588 /* 24 */ { STRING_COMMA_LEN ("GNU_MBIND") },
5589 };
5590
5591 if (do_section_details)
5592 {
5593 sprintf (buff, "[%*.*lx]: ",
5594 field_size, field_size, (unsigned long) sh_flags);
5595 p += field_size + 4;
5596 }
5597
5598 while (sh_flags)
5599 {
5600 bfd_vma flag;
5601
5602 flag = sh_flags & - sh_flags;
5603 sh_flags &= ~ flag;
5604
5605 if (do_section_details)
5606 {
5607 switch (flag)
5608 {
5609 case SHF_WRITE: sindex = 0; break;
5610 case SHF_ALLOC: sindex = 1; break;
5611 case SHF_EXECINSTR: sindex = 2; break;
5612 case SHF_MERGE: sindex = 3; break;
5613 case SHF_STRINGS: sindex = 4; break;
5614 case SHF_INFO_LINK: sindex = 5; break;
5615 case SHF_LINK_ORDER: sindex = 6; break;
5616 case SHF_OS_NONCONFORMING: sindex = 7; break;
5617 case SHF_GROUP: sindex = 8; break;
5618 case SHF_TLS: sindex = 9; break;
5619 case SHF_EXCLUDE: sindex = 18; break;
5620 case SHF_COMPRESSED: sindex = 20; break;
5621 case SHF_GNU_MBIND: sindex = 24; break;
5622
5623 default:
5624 sindex = -1;
5625 switch (elf_header.e_machine)
5626 {
5627 case EM_IA_64:
5628 if (flag == SHF_IA_64_SHORT)
5629 sindex = 10;
5630 else if (flag == SHF_IA_64_NORECOV)
5631 sindex = 11;
5632 #ifdef BFD64
5633 else if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
5634 switch (flag)
5635 {
5636 case SHF_IA_64_VMS_GLOBAL: sindex = 12; break;
5637 case SHF_IA_64_VMS_OVERLAID: sindex = 13; break;
5638 case SHF_IA_64_VMS_SHARED: sindex = 14; break;
5639 case SHF_IA_64_VMS_VECTOR: sindex = 15; break;
5640 case SHF_IA_64_VMS_ALLOC_64BIT: sindex = 16; break;
5641 case SHF_IA_64_VMS_PROTECTED: sindex = 17; break;
5642 default: break;
5643 }
5644 #endif
5645 break;
5646
5647 case EM_386:
5648 case EM_IAMCU:
5649 case EM_X86_64:
5650 case EM_L1OM:
5651 case EM_K1OM:
5652 case EM_OLD_SPARCV9:
5653 case EM_SPARC32PLUS:
5654 case EM_SPARCV9:
5655 case EM_SPARC:
5656 if (flag == SHF_ORDERED)
5657 sindex = 19;
5658 break;
5659
5660 case EM_ARM:
5661 switch (flag)
5662 {
5663 case SHF_ENTRYSECT: sindex = 21; break;
5664 case SHF_ARM_PURECODE: sindex = 22; break;
5665 case SHF_COMDEF: sindex = 23; break;
5666 default: break;
5667 }
5668 break;
5669
5670 default:
5671 break;
5672 }
5673 }
5674
5675 if (sindex != -1)
5676 {
5677 if (p != buff + field_size + 4)
5678 {
5679 if (size < (10 + 2))
5680 {
5681 warn (_("Internal error: not enough buffer room for section flag info"));
5682 return _("<unknown>");
5683 }
5684 size -= 2;
5685 *p++ = ',';
5686 *p++ = ' ';
5687 }
5688
5689 size -= flags [sindex].len;
5690 p = stpcpy (p, flags [sindex].str);
5691 }
5692 else if (flag & SHF_MASKOS)
5693 os_flags |= flag;
5694 else if (flag & SHF_MASKPROC)
5695 proc_flags |= flag;
5696 else
5697 unknown_flags |= flag;
5698 }
5699 else
5700 {
5701 switch (flag)
5702 {
5703 case SHF_WRITE: *p = 'W'; break;
5704 case SHF_ALLOC: *p = 'A'; break;
5705 case SHF_EXECINSTR: *p = 'X'; break;
5706 case SHF_MERGE: *p = 'M'; break;
5707 case SHF_STRINGS: *p = 'S'; break;
5708 case SHF_INFO_LINK: *p = 'I'; break;
5709 case SHF_LINK_ORDER: *p = 'L'; break;
5710 case SHF_OS_NONCONFORMING: *p = 'O'; break;
5711 case SHF_GROUP: *p = 'G'; break;
5712 case SHF_TLS: *p = 'T'; break;
5713 case SHF_EXCLUDE: *p = 'E'; break;
5714 case SHF_COMPRESSED: *p = 'C'; break;
5715 case SHF_GNU_MBIND: *p = 'D'; break;
5716
5717 default:
5718 if ((elf_header.e_machine == EM_X86_64
5719 || elf_header.e_machine == EM_L1OM
5720 || elf_header.e_machine == EM_K1OM)
5721 && flag == SHF_X86_64_LARGE)
5722 *p = 'l';
5723 else if (elf_header.e_machine == EM_ARM
5724 && flag == SHF_ARM_PURECODE)
5725 *p = 'y';
5726 else if (flag & SHF_MASKOS)
5727 {
5728 *p = 'o';
5729 sh_flags &= ~ SHF_MASKOS;
5730 }
5731 else if (flag & SHF_MASKPROC)
5732 {
5733 *p = 'p';
5734 sh_flags &= ~ SHF_MASKPROC;
5735 }
5736 else
5737 *p = 'x';
5738 break;
5739 }
5740 p++;
5741 }
5742 }
5743
5744 if (do_section_details)
5745 {
5746 if (os_flags)
5747 {
5748 size -= 5 + field_size;
5749 if (p != buff + field_size + 4)
5750 {
5751 if (size < (2 + 1))
5752 {
5753 warn (_("Internal error: not enough buffer room for section flag info"));
5754 return _("<unknown>");
5755 }
5756 size -= 2;
5757 *p++ = ',';
5758 *p++ = ' ';
5759 }
5760 sprintf (p, "OS (%*.*lx)", field_size, field_size,
5761 (unsigned long) os_flags);
5762 p += 5 + field_size;
5763 }
5764 if (proc_flags)
5765 {
5766 size -= 7 + field_size;
5767 if (p != buff + field_size + 4)
5768 {
5769 if (size < (2 + 1))
5770 {
5771 warn (_("Internal error: not enough buffer room for section flag info"));
5772 return _("<unknown>");
5773 }
5774 size -= 2;
5775 *p++ = ',';
5776 *p++ = ' ';
5777 }
5778 sprintf (p, "PROC (%*.*lx)", field_size, field_size,
5779 (unsigned long) proc_flags);
5780 p += 7 + field_size;
5781 }
5782 if (unknown_flags)
5783 {
5784 size -= 10 + field_size;
5785 if (p != buff + field_size + 4)
5786 {
5787 if (size < (2 + 1))
5788 {
5789 warn (_("Internal error: not enough buffer room for section flag info"));
5790 return _("<unknown>");
5791 }
5792 size -= 2;
5793 *p++ = ',';
5794 *p++ = ' ';
5795 }
5796 sprintf (p, _("UNKNOWN (%*.*lx)"), field_size, field_size,
5797 (unsigned long) unknown_flags);
5798 p += 10 + field_size;
5799 }
5800 }
5801
5802 *p = '\0';
5803 return buff;
5804 }
5805
5806 static unsigned int
5807 get_compression_header (Elf_Internal_Chdr *chdr, unsigned char *buf, bfd_size_type size)
5808 {
5809 if (is_32bit_elf)
5810 {
5811 Elf32_External_Chdr *echdr = (Elf32_External_Chdr *) buf;
5812
5813 if (size < sizeof (* echdr))
5814 {
5815 error (_("Compressed section is too small even for a compression header\n"));
5816 return 0;
5817 }
5818
5819 chdr->ch_type = BYTE_GET (echdr->ch_type);
5820 chdr->ch_size = BYTE_GET (echdr->ch_size);
5821 chdr->ch_addralign = BYTE_GET (echdr->ch_addralign);
5822 return sizeof (*echdr);
5823 }
5824 else
5825 {
5826 Elf64_External_Chdr *echdr = (Elf64_External_Chdr *) buf;
5827
5828 if (size < sizeof (* echdr))
5829 {
5830 error (_("Compressed section is too small even for a compression header\n"));
5831 return 0;
5832 }
5833
5834 chdr->ch_type = BYTE_GET (echdr->ch_type);
5835 chdr->ch_size = BYTE_GET (echdr->ch_size);
5836 chdr->ch_addralign = BYTE_GET (echdr->ch_addralign);
5837 return sizeof (*echdr);
5838 }
5839 }
5840
5841 static bfd_boolean
5842 process_section_headers (FILE * file)
5843 {
5844 Elf_Internal_Shdr * section;
5845 unsigned int i;
5846
5847 section_headers = NULL;
5848
5849 if (elf_header.e_shnum == 0)
5850 {
5851 /* PR binutils/12467. */
5852 if (elf_header.e_shoff != 0)
5853 {
5854 warn (_("possibly corrupt ELF file header - it has a non-zero"
5855 " section header offset, but no section headers\n"));
5856 return FALSE;
5857 }
5858 else if (do_sections)
5859 printf (_("\nThere are no sections in this file.\n"));
5860
5861 return TRUE;
5862 }
5863
5864 if (do_sections && !do_header)
5865 printf (_("There are %d section headers, starting at offset 0x%lx:\n"),
5866 elf_header.e_shnum, (unsigned long) elf_header.e_shoff);
5867
5868 if (is_32bit_elf)
5869 {
5870 if (! get_32bit_section_headers (file, FALSE))
5871 return FALSE;
5872 }
5873 else
5874 {
5875 if (! get_64bit_section_headers (file, FALSE))
5876 return FALSE;
5877 }
5878
5879 /* Read in the string table, so that we have names to display. */
5880 if (elf_header.e_shstrndx != SHN_UNDEF
5881 && elf_header.e_shstrndx < elf_header.e_shnum)
5882 {
5883 section = section_headers + elf_header.e_shstrndx;
5884
5885 if (section->sh_size != 0)
5886 {
5887 string_table = (char *) get_data (NULL, file, section->sh_offset,
5888 1, section->sh_size,
5889 _("string table"));
5890
5891 string_table_length = string_table != NULL ? section->sh_size : 0;
5892 }
5893 }
5894
5895 /* Scan the sections for the dynamic symbol table
5896 and dynamic string table and debug sections. */
5897 dynamic_symbols = NULL;
5898 dynamic_strings = NULL;
5899 dynamic_syminfo = NULL;
5900 symtab_shndx_list = NULL;
5901
5902 eh_addr_size = is_32bit_elf ? 4 : 8;
5903 switch (elf_header.e_machine)
5904 {
5905 case EM_MIPS:
5906 case EM_MIPS_RS3_LE:
5907 /* The 64-bit MIPS EABI uses a combination of 32-bit ELF and 64-bit
5908 FDE addresses. However, the ABI also has a semi-official ILP32
5909 variant for which the normal FDE address size rules apply.
5910
5911 GCC 4.0 marks EABI64 objects with a dummy .gcc_compiled_longXX
5912 section, where XX is the size of longs in bits. Unfortunately,
5913 earlier compilers provided no way of distinguishing ILP32 objects
5914 from LP64 objects, so if there's any doubt, we should assume that
5915 the official LP64 form is being used. */
5916 if ((elf_header.e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64
5917 && find_section (".gcc_compiled_long32") == NULL)
5918 eh_addr_size = 8;
5919 break;
5920
5921 case EM_H8_300:
5922 case EM_H8_300H:
5923 switch (elf_header.e_flags & EF_H8_MACH)
5924 {
5925 case E_H8_MACH_H8300:
5926 case E_H8_MACH_H8300HN:
5927 case E_H8_MACH_H8300SN:
5928 case E_H8_MACH_H8300SXN:
5929 eh_addr_size = 2;
5930 break;
5931 case E_H8_MACH_H8300H:
5932 case E_H8_MACH_H8300S:
5933 case E_H8_MACH_H8300SX:
5934 eh_addr_size = 4;
5935 break;
5936 }
5937 break;
5938
5939 case EM_M32C_OLD:
5940 case EM_M32C:
5941 switch (elf_header.e_flags & EF_M32C_CPU_MASK)
5942 {
5943 case EF_M32C_CPU_M16C:
5944 eh_addr_size = 2;
5945 break;
5946 }
5947 break;
5948 }
5949
5950 #define CHECK_ENTSIZE_VALUES(section, i, size32, size64) \
5951 do \
5952 { \
5953 bfd_size_type expected_entsize = is_32bit_elf ? size32 : size64; \
5954 if (section->sh_entsize != expected_entsize) \
5955 { \
5956 char buf[40]; \
5957 sprintf_vma (buf, section->sh_entsize); \
5958 /* Note: coded this way so that there is a single string for \
5959 translation. */ \
5960 error (_("Section %d has invalid sh_entsize of %s\n"), i, buf); \
5961 error (_("(Using the expected size of %u for the rest of this dump)\n"), \
5962 (unsigned) expected_entsize); \
5963 section->sh_entsize = expected_entsize; \
5964 } \
5965 } \
5966 while (0)
5967
5968 #define CHECK_ENTSIZE(section, i, type) \
5969 CHECK_ENTSIZE_VALUES (section, i, sizeof (Elf32_External_##type), \
5970 sizeof (Elf64_External_##type))
5971
5972 for (i = 0, section = section_headers;
5973 i < elf_header.e_shnum;
5974 i++, section++)
5975 {
5976 char * name = SECTION_NAME (section);
5977
5978 if (section->sh_type == SHT_DYNSYM)
5979 {
5980 if (dynamic_symbols != NULL)
5981 {
5982 error (_("File contains multiple dynamic symbol tables\n"));
5983 continue;
5984 }
5985
5986 CHECK_ENTSIZE (section, i, Sym);
5987 dynamic_symbols = GET_ELF_SYMBOLS (file, section, & num_dynamic_syms);
5988 }
5989 else if (section->sh_type == SHT_STRTAB
5990 && streq (name, ".dynstr"))
5991 {
5992 if (dynamic_strings != NULL)
5993 {
5994 error (_("File contains multiple dynamic string tables\n"));
5995 continue;
5996 }
5997
5998 dynamic_strings = (char *) get_data (NULL, file, section->sh_offset,
5999 1, section->sh_size,
6000 _("dynamic strings"));
6001 dynamic_strings_length = dynamic_strings == NULL ? 0 : section->sh_size;
6002 }
6003 else if (section->sh_type == SHT_SYMTAB_SHNDX)
6004 {
6005 elf_section_list * entry = xmalloc (sizeof * entry);
6006 entry->hdr = section;
6007 entry->next = symtab_shndx_list;
6008 symtab_shndx_list = entry;
6009 }
6010 else if (section->sh_type == SHT_SYMTAB)
6011 CHECK_ENTSIZE (section, i, Sym);
6012 else if (section->sh_type == SHT_GROUP)
6013 CHECK_ENTSIZE_VALUES (section, i, GRP_ENTRY_SIZE, GRP_ENTRY_SIZE);
6014 else if (section->sh_type == SHT_REL)
6015 CHECK_ENTSIZE (section, i, Rel);
6016 else if (section->sh_type == SHT_RELA)
6017 CHECK_ENTSIZE (section, i, Rela);
6018 else if ((do_debugging || do_debug_info || do_debug_abbrevs
6019 || do_debug_lines || do_debug_pubnames || do_debug_pubtypes
6020 || do_debug_aranges || do_debug_frames || do_debug_macinfo
6021 || do_debug_str || do_debug_loc || do_debug_ranges
6022 || do_debug_addr || do_debug_cu_index)
6023 && (const_strneq (name, ".debug_")
6024 || const_strneq (name, ".zdebug_")))
6025 {
6026 if (name[1] == 'z')
6027 name += sizeof (".zdebug_") - 1;
6028 else
6029 name += sizeof (".debug_") - 1;
6030
6031 if (do_debugging
6032 || (do_debug_info && const_strneq (name, "info"))
6033 || (do_debug_info && const_strneq (name, "types"))
6034 || (do_debug_abbrevs && const_strneq (name, "abbrev"))
6035 || (do_debug_lines && strcmp (name, "line") == 0)
6036 || (do_debug_lines && const_strneq (name, "line."))
6037 || (do_debug_pubnames && const_strneq (name, "pubnames"))
6038 || (do_debug_pubtypes && const_strneq (name, "pubtypes"))
6039 || (do_debug_pubnames && const_strneq (name, "gnu_pubnames"))
6040 || (do_debug_pubtypes && const_strneq (name, "gnu_pubtypes"))
6041 || (do_debug_aranges && const_strneq (name, "aranges"))
6042 || (do_debug_ranges && const_strneq (name, "ranges"))
6043 || (do_debug_ranges && const_strneq (name, "rnglists"))
6044 || (do_debug_frames && const_strneq (name, "frame"))
6045 || (do_debug_macinfo && const_strneq (name, "macinfo"))
6046 || (do_debug_macinfo && const_strneq (name, "macro"))
6047 || (do_debug_str && const_strneq (name, "str"))
6048 || (do_debug_loc && const_strneq (name, "loc"))
6049 || (do_debug_loc && const_strneq (name, "loclists"))
6050 || (do_debug_addr && const_strneq (name, "addr"))
6051 || (do_debug_cu_index && const_strneq (name, "cu_index"))
6052 || (do_debug_cu_index && const_strneq (name, "tu_index"))
6053 )
6054 request_dump_bynumber (i, DEBUG_DUMP);
6055 }
6056 /* Linkonce section to be combined with .debug_info at link time. */
6057 else if ((do_debugging || do_debug_info)
6058 && const_strneq (name, ".gnu.linkonce.wi."))
6059 request_dump_bynumber (i, DEBUG_DUMP);
6060 else if (do_debug_frames && streq (name, ".eh_frame"))
6061 request_dump_bynumber (i, DEBUG_DUMP);
6062 else if (do_gdb_index && streq (name, ".gdb_index"))
6063 request_dump_bynumber (i, DEBUG_DUMP);
6064 /* Trace sections for Itanium VMS. */
6065 else if ((do_debugging || do_trace_info || do_trace_abbrevs
6066 || do_trace_aranges)
6067 && const_strneq (name, ".trace_"))
6068 {
6069 name += sizeof (".trace_") - 1;
6070
6071 if (do_debugging
6072 || (do_trace_info && streq (name, "info"))
6073 || (do_trace_abbrevs && streq (name, "abbrev"))
6074 || (do_trace_aranges && streq (name, "aranges"))
6075 )
6076 request_dump_bynumber (i, DEBUG_DUMP);
6077 }
6078 }
6079
6080 if (! do_sections)
6081 return TRUE;
6082
6083 if (elf_header.e_shnum > 1)
6084 printf (_("\nSection Headers:\n"));
6085 else
6086 printf (_("\nSection Header:\n"));
6087
6088 if (is_32bit_elf)
6089 {
6090 if (do_section_details)
6091 {
6092 printf (_(" [Nr] Name\n"));
6093 printf (_(" Type Addr Off Size ES Lk Inf Al\n"));
6094 }
6095 else
6096 printf
6097 (_(" [Nr] Name Type Addr Off Size ES Flg Lk Inf Al\n"));
6098 }
6099 else if (do_wide)
6100 {
6101 if (do_section_details)
6102 {
6103 printf (_(" [Nr] Name\n"));
6104 printf (_(" Type Address Off Size ES Lk Inf Al\n"));
6105 }
6106 else
6107 printf
6108 (_(" [Nr] Name Type Address Off Size ES Flg Lk Inf Al\n"));
6109 }
6110 else
6111 {
6112 if (do_section_details)
6113 {
6114 printf (_(" [Nr] Name\n"));
6115 printf (_(" Type Address Offset Link\n"));
6116 printf (_(" Size EntSize Info Align\n"));
6117 }
6118 else
6119 {
6120 printf (_(" [Nr] Name Type Address Offset\n"));
6121 printf (_(" Size EntSize Flags Link Info Align\n"));
6122 }
6123 }
6124
6125 if (do_section_details)
6126 printf (_(" Flags\n"));
6127
6128 for (i = 0, section = section_headers;
6129 i < elf_header.e_shnum;
6130 i++, section++)
6131 {
6132 /* Run some sanity checks on the section header. */
6133
6134 /* Check the sh_link field. */
6135 switch (section->sh_type)
6136 {
6137 case SHT_SYMTAB_SHNDX:
6138 case SHT_GROUP:
6139 case SHT_HASH:
6140 case SHT_GNU_HASH:
6141 case SHT_GNU_versym:
6142 case SHT_REL:
6143 case SHT_RELA:
6144 if (section->sh_link < 1
6145 || section->sh_link >= elf_header.e_shnum
6146 || (section_headers[section->sh_link].sh_type != SHT_SYMTAB
6147 && section_headers[section->sh_link].sh_type != SHT_DYNSYM))
6148 warn (_("[%2u]: Link field (%u) should index a symtab section.\n"),
6149 i, section->sh_link);
6150 break;
6151
6152 case SHT_DYNAMIC:
6153 case SHT_SYMTAB:
6154 case SHT_DYNSYM:
6155 case SHT_GNU_verneed:
6156 case SHT_GNU_verdef:
6157 case SHT_GNU_LIBLIST:
6158 if (section->sh_link < 1
6159 || section->sh_link >= elf_header.e_shnum
6160 || section_headers[section->sh_link].sh_type != SHT_STRTAB)
6161 warn (_("[%2u]: Link field (%u) should index a string section.\n"),
6162 i, section->sh_link);
6163 break;
6164
6165 case SHT_INIT_ARRAY:
6166 case SHT_FINI_ARRAY:
6167 case SHT_PREINIT_ARRAY:
6168 if (section->sh_type < SHT_LOOS && section->sh_link != 0)
6169 warn (_("[%2u]: Unexpected value (%u) in link field.\n"),
6170 i, section->sh_link);
6171 break;
6172
6173 default:
6174 /* FIXME: Add support for target specific section types. */
6175 #if 0 /* Currently we do not check other section types as there are too
6176 many special cases. Stab sections for example have a type
6177 of SHT_PROGBITS but an sh_link field that links to the .stabstr
6178 section. */
6179 if (section->sh_type < SHT_LOOS && section->sh_link != 0)
6180 warn (_("[%2u]: Unexpected value (%u) in link field.\n"),
6181 i, section->sh_link);
6182 #endif
6183 break;
6184 }
6185
6186 /* Check the sh_info field. */
6187 switch (section->sh_type)
6188 {
6189 case SHT_REL:
6190 case SHT_RELA:
6191 if (section->sh_info < 1
6192 || section->sh_info >= elf_header.e_shnum
6193 || (section_headers[section->sh_info].sh_type != SHT_PROGBITS
6194 && section_headers[section->sh_info].sh_type != SHT_NOBITS
6195 && section_headers[section->sh_info].sh_type != SHT_NOTE
6196 && section_headers[section->sh_info].sh_type != SHT_INIT_ARRAY
6197 /* FIXME: Are other section types valid ? */
6198 && section_headers[section->sh_info].sh_type < SHT_LOOS))
6199 {
6200 if (section->sh_info == 0
6201 && (streq (SECTION_NAME (section), ".rel.dyn")
6202 || streq (SECTION_NAME (section), ".rela.dyn")))
6203 /* The .rel.dyn and .rela.dyn sections have an sh_info field
6204 of zero. The relocations in these sections may apply
6205 to many different sections. */
6206 ;
6207 else
6208 warn (_("[%2u]: Info field (%u) should index a relocatable section.\n"),
6209 i, section->sh_info);
6210 }
6211 break;
6212
6213 case SHT_DYNAMIC:
6214 case SHT_HASH:
6215 case SHT_SYMTAB_SHNDX:
6216 case SHT_INIT_ARRAY:
6217 case SHT_FINI_ARRAY:
6218 case SHT_PREINIT_ARRAY:
6219 if (section->sh_info != 0)
6220 warn (_("[%2u]: Unexpected value (%u) in info field.\n"),
6221 i, section->sh_info);
6222 break;
6223
6224 case SHT_GROUP:
6225 case SHT_SYMTAB:
6226 case SHT_DYNSYM:
6227 /* A symbol index - we assume that it is valid. */
6228 break;
6229
6230 default:
6231 /* FIXME: Add support for target specific section types. */
6232 if (section->sh_type == SHT_NOBITS)
6233 /* NOBITS section headers with non-zero sh_info fields can be
6234 created when a binary is stripped of everything but its debug
6235 information. The stripped sections have their headers
6236 preserved but their types set to SHT_NOBITS. So do not check
6237 this type of section. */
6238 ;
6239 else if (section->sh_flags & SHF_INFO_LINK)
6240 {
6241 if (section->sh_info < 1 || section->sh_info >= elf_header.e_shnum)
6242 warn (_("[%2u]: Expected link to another section in info field"), i);
6243 }
6244 else if (section->sh_type < SHT_LOOS
6245 && (section->sh_flags & SHF_GNU_MBIND) == 0
6246 && section->sh_info != 0)
6247 warn (_("[%2u]: Unexpected value (%u) in info field.\n"),
6248 i, section->sh_info);
6249 break;
6250 }
6251
6252 /* Check the sh_size field. */
6253 if (section->sh_size > current_file_size
6254 && section->sh_type != SHT_NOBITS
6255 && section->sh_type != SHT_NULL
6256 && section->sh_type < SHT_LOOS)
6257 warn (_("Size of section %u is larger than the entire file!\n"), i);
6258
6259 printf (" [%2u] ", i);
6260 if (do_section_details)
6261 printf ("%s\n ", printable_section_name (section));
6262 else
6263 print_symbol (-17, SECTION_NAME (section));
6264
6265 printf (do_wide ? " %-15s " : " %-15.15s ",
6266 get_section_type_name (section->sh_type));
6267
6268 if (is_32bit_elf)
6269 {
6270 const char * link_too_big = NULL;
6271
6272 print_vma (section->sh_addr, LONG_HEX);
6273
6274 printf ( " %6.6lx %6.6lx %2.2lx",
6275 (unsigned long) section->sh_offset,
6276 (unsigned long) section->sh_size,
6277 (unsigned long) section->sh_entsize);
6278
6279 if (do_section_details)
6280 fputs (" ", stdout);
6281 else
6282 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6283
6284 if (section->sh_link >= elf_header.e_shnum)
6285 {
6286 link_too_big = "";
6287 /* The sh_link value is out of range. Normally this indicates
6288 an error but it can have special values in Solaris binaries. */
6289 switch (elf_header.e_machine)
6290 {
6291 case EM_386:
6292 case EM_IAMCU:
6293 case EM_X86_64:
6294 case EM_L1OM:
6295 case EM_K1OM:
6296 case EM_OLD_SPARCV9:
6297 case EM_SPARC32PLUS:
6298 case EM_SPARCV9:
6299 case EM_SPARC:
6300 if (section->sh_link == (SHN_BEFORE & 0xffff))
6301 link_too_big = "BEFORE";
6302 else if (section->sh_link == (SHN_AFTER & 0xffff))
6303 link_too_big = "AFTER";
6304 break;
6305 default:
6306 break;
6307 }
6308 }
6309
6310 if (do_section_details)
6311 {
6312 if (link_too_big != NULL && * link_too_big)
6313 printf ("<%s> ", link_too_big);
6314 else
6315 printf ("%2u ", section->sh_link);
6316 printf ("%3u %2lu\n", section->sh_info,
6317 (unsigned long) section->sh_addralign);
6318 }
6319 else
6320 printf ("%2u %3u %2lu\n",
6321 section->sh_link,
6322 section->sh_info,
6323 (unsigned long) section->sh_addralign);
6324
6325 if (link_too_big && ! * link_too_big)
6326 warn (_("section %u: sh_link value of %u is larger than the number of sections\n"),
6327 i, section->sh_link);
6328 }
6329 else if (do_wide)
6330 {
6331 print_vma (section->sh_addr, LONG_HEX);
6332
6333 if ((long) section->sh_offset == section->sh_offset)
6334 printf (" %6.6lx", (unsigned long) section->sh_offset);
6335 else
6336 {
6337 putchar (' ');
6338 print_vma (section->sh_offset, LONG_HEX);
6339 }
6340
6341 if ((unsigned long) section->sh_size == section->sh_size)
6342 printf (" %6.6lx", (unsigned long) section->sh_size);
6343 else
6344 {
6345 putchar (' ');
6346 print_vma (section->sh_size, LONG_HEX);
6347 }
6348
6349 if ((unsigned long) section->sh_entsize == section->sh_entsize)
6350 printf (" %2.2lx", (unsigned long) section->sh_entsize);
6351 else
6352 {
6353 putchar (' ');
6354 print_vma (section->sh_entsize, LONG_HEX);
6355 }
6356
6357 if (do_section_details)
6358 fputs (" ", stdout);
6359 else
6360 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6361
6362 printf ("%2u %3u ", section->sh_link, section->sh_info);
6363
6364 if ((unsigned long) section->sh_addralign == section->sh_addralign)
6365 printf ("%2lu\n", (unsigned long) section->sh_addralign);
6366 else
6367 {
6368 print_vma (section->sh_addralign, DEC);
6369 putchar ('\n');
6370 }
6371 }
6372 else if (do_section_details)
6373 {
6374 printf (" %-15.15s ",
6375 get_section_type_name (section->sh_type));
6376 print_vma (section->sh_addr, LONG_HEX);
6377 if ((long) section->sh_offset == section->sh_offset)
6378 printf (" %16.16lx", (unsigned long) section->sh_offset);
6379 else
6380 {
6381 printf (" ");
6382 print_vma (section->sh_offset, LONG_HEX);
6383 }
6384 printf (" %u\n ", section->sh_link);
6385 print_vma (section->sh_size, LONG_HEX);
6386 putchar (' ');
6387 print_vma (section->sh_entsize, LONG_HEX);
6388
6389 printf (" %-16u %lu\n",
6390 section->sh_info,
6391 (unsigned long) section->sh_addralign);
6392 }
6393 else
6394 {
6395 putchar (' ');
6396 print_vma (section->sh_addr, LONG_HEX);
6397 if ((long) section->sh_offset == section->sh_offset)
6398 printf (" %8.8lx", (unsigned long) section->sh_offset);
6399 else
6400 {
6401 printf (" ");
6402 print_vma (section->sh_offset, LONG_HEX);
6403 }
6404 printf ("\n ");
6405 print_vma (section->sh_size, LONG_HEX);
6406 printf (" ");
6407 print_vma (section->sh_entsize, LONG_HEX);
6408
6409 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6410
6411 printf (" %2u %3u %lu\n",
6412 section->sh_link,
6413 section->sh_info,
6414 (unsigned long) section->sh_addralign);
6415 }
6416
6417 if (do_section_details)
6418 {
6419 printf (" %s\n", get_elf_section_flags (section->sh_flags));
6420 if ((section->sh_flags & SHF_COMPRESSED) != 0)
6421 {
6422 /* Minimum section size is 12 bytes for 32-bit compression
6423 header + 12 bytes for compressed data header. */
6424 unsigned char buf[24];
6425
6426 assert (sizeof (buf) >= sizeof (Elf64_External_Chdr));
6427 if (get_data (&buf, (FILE *) file, section->sh_offset, 1,
6428 sizeof (buf), _("compression header")))
6429 {
6430 Elf_Internal_Chdr chdr;
6431
6432 (void) get_compression_header (&chdr, buf, sizeof (buf));
6433
6434 if (chdr.ch_type == ELFCOMPRESS_ZLIB)
6435 printf (" ZLIB, ");
6436 else
6437 printf (_(" [<unknown>: 0x%x], "),
6438 chdr.ch_type);
6439 print_vma (chdr.ch_size, LONG_HEX);
6440 printf (", %lu\n", (unsigned long) chdr.ch_addralign);
6441 }
6442 }
6443 }
6444 }
6445
6446 if (!do_section_details)
6447 {
6448 /* The ordering of the letters shown here matches the ordering of the
6449 corresponding SHF_xxx values, and hence the order in which these
6450 letters will be displayed to the user. */
6451 printf (_("Key to Flags:\n\
6452 W (write), A (alloc), X (execute), M (merge), S (strings), I (info),\n\
6453 L (link order), O (extra OS processing required), G (group), T (TLS),\n\
6454 C (compressed), x (unknown), o (OS specific), E (exclude),\n "));
6455 if (elf_header.e_machine == EM_X86_64
6456 || elf_header.e_machine == EM_L1OM
6457 || elf_header.e_machine == EM_K1OM)
6458 printf (_("l (large), "));
6459 else if (elf_header.e_machine == EM_ARM)
6460 printf (_("y (purecode), "));
6461 printf ("p (processor specific)\n");
6462 }
6463
6464 return TRUE;
6465 }
6466
6467 static const char *
6468 get_group_flags (unsigned int flags)
6469 {
6470 static char buff[128];
6471
6472 if (flags == 0)
6473 return "";
6474 else if (flags == GRP_COMDAT)
6475 return "COMDAT ";
6476
6477 snprintf (buff, 14, _("[0x%x: "), flags);
6478
6479 flags &= ~ GRP_COMDAT;
6480 if (flags & GRP_MASKOS)
6481 {
6482 strcat (buff, "<OS specific>");
6483 flags &= ~ GRP_MASKOS;
6484 }
6485
6486 if (flags & GRP_MASKPROC)
6487 {
6488 strcat (buff, "<PROC specific>");
6489 flags &= ~ GRP_MASKPROC;
6490 }
6491
6492 if (flags)
6493 strcat (buff, "<unknown>");
6494
6495 strcat (buff, "]");
6496 return buff;
6497 }
6498
6499 static bfd_boolean
6500 process_section_groups (FILE * file)
6501 {
6502 Elf_Internal_Shdr * section;
6503 unsigned int i;
6504 struct group * group;
6505 Elf_Internal_Shdr * symtab_sec;
6506 Elf_Internal_Shdr * strtab_sec;
6507 Elf_Internal_Sym * symtab;
6508 unsigned long num_syms;
6509 char * strtab;
6510 size_t strtab_size;
6511
6512 /* Don't process section groups unless needed. */
6513 if (!do_unwind && !do_section_groups)
6514 return TRUE;
6515
6516 if (elf_header.e_shnum == 0)
6517 {
6518 if (do_section_groups)
6519 printf (_("\nThere are no sections to group in this file.\n"));
6520
6521 return TRUE;
6522 }
6523
6524 if (section_headers == NULL)
6525 {
6526 error (_("Section headers are not available!\n"));
6527 /* PR 13622: This can happen with a corrupt ELF header. */
6528 return FALSE;
6529 }
6530
6531 section_headers_groups = (struct group **) calloc (elf_header.e_shnum,
6532 sizeof (struct group *));
6533
6534 if (section_headers_groups == NULL)
6535 {
6536 error (_("Out of memory reading %u section group headers\n"),
6537 elf_header.e_shnum);
6538 return FALSE;
6539 }
6540
6541 /* Scan the sections for the group section. */
6542 group_count = 0;
6543 for (i = 0, section = section_headers;
6544 i < elf_header.e_shnum;
6545 i++, section++)
6546 if (section->sh_type == SHT_GROUP)
6547 group_count++;
6548
6549 if (group_count == 0)
6550 {
6551 if (do_section_groups)
6552 printf (_("\nThere are no section groups in this file.\n"));
6553
6554 return TRUE;
6555 }
6556
6557 section_groups = (struct group *) calloc (group_count, sizeof (struct group));
6558
6559 if (section_groups == NULL)
6560 {
6561 error (_("Out of memory reading %lu groups\n"),
6562 (unsigned long) group_count);
6563 return FALSE;
6564 }
6565
6566 symtab_sec = NULL;
6567 strtab_sec = NULL;
6568 symtab = NULL;
6569 num_syms = 0;
6570 strtab = NULL;
6571 strtab_size = 0;
6572 for (i = 0, section = section_headers, group = section_groups;
6573 i < elf_header.e_shnum;
6574 i++, section++)
6575 {
6576 if (section->sh_type == SHT_GROUP)
6577 {
6578 const char * name = printable_section_name (section);
6579 const char * group_name;
6580 unsigned char * start;
6581 unsigned char * indices;
6582 unsigned int entry, j, size;
6583 Elf_Internal_Shdr * sec;
6584 Elf_Internal_Sym * sym;
6585
6586 /* Get the symbol table. */
6587 if (section->sh_link >= elf_header.e_shnum
6588 || ((sec = section_headers + section->sh_link)->sh_type
6589 != SHT_SYMTAB))
6590 {
6591 error (_("Bad sh_link in group section `%s'\n"), name);
6592 continue;
6593 }
6594
6595 if (symtab_sec != sec)
6596 {
6597 symtab_sec = sec;
6598 if (symtab)
6599 free (symtab);
6600 symtab = GET_ELF_SYMBOLS (file, symtab_sec, & num_syms);
6601 }
6602
6603 if (symtab == NULL)
6604 {
6605 error (_("Corrupt header in group section `%s'\n"), name);
6606 continue;
6607 }
6608
6609 if (section->sh_info >= num_syms)
6610 {
6611 error (_("Bad sh_info in group section `%s'\n"), name);
6612 continue;
6613 }
6614
6615 sym = symtab + section->sh_info;
6616
6617 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6618 {
6619 if (sym->st_shndx == 0
6620 || sym->st_shndx >= elf_header.e_shnum)
6621 {
6622 error (_("Bad sh_info in group section `%s'\n"), name);
6623 continue;
6624 }
6625
6626 group_name = SECTION_NAME (section_headers + sym->st_shndx);
6627 strtab_sec = NULL;
6628 if (strtab)
6629 free (strtab);
6630 strtab = NULL;
6631 strtab_size = 0;
6632 }
6633 else
6634 {
6635 /* Get the string table. */
6636 if (symtab_sec->sh_link >= elf_header.e_shnum)
6637 {
6638 strtab_sec = NULL;
6639 if (strtab)
6640 free (strtab);
6641 strtab = NULL;
6642 strtab_size = 0;
6643 }
6644 else if (strtab_sec
6645 != (sec = section_headers + symtab_sec->sh_link))
6646 {
6647 strtab_sec = sec;
6648 if (strtab)
6649 free (strtab);
6650
6651 strtab = (char *) get_data (NULL, file, strtab_sec->sh_offset,
6652 1, strtab_sec->sh_size,
6653 _("string table"));
6654 strtab_size = strtab != NULL ? strtab_sec->sh_size : 0;
6655 }
6656 group_name = sym->st_name < strtab_size
6657 ? strtab + sym->st_name : _("<corrupt>");
6658 }
6659
6660 /* PR 17531: file: loop. */
6661 if (section->sh_entsize > section->sh_size)
6662 {
6663 error (_("Section %s has sh_entsize (0x%lx) which is larger than its size (0x%lx)\n"),
6664 printable_section_name (section),
6665 (unsigned long) section->sh_entsize,
6666 (unsigned long) section->sh_size);
6667 break;
6668 }
6669
6670 start = (unsigned char *) get_data (NULL, file, section->sh_offset,
6671 1, section->sh_size,
6672 _("section data"));
6673 if (start == NULL)
6674 continue;
6675
6676 indices = start;
6677 size = (section->sh_size / section->sh_entsize) - 1;
6678 entry = byte_get (indices, 4);
6679 indices += 4;
6680
6681 if (do_section_groups)
6682 {
6683 printf (_("\n%sgroup section [%5u] `%s' [%s] contains %u sections:\n"),
6684 get_group_flags (entry), i, name, group_name, size);
6685
6686 printf (_(" [Index] Name\n"));
6687 }
6688
6689 group->group_index = i;
6690
6691 for (j = 0; j < size; j++)
6692 {
6693 struct group_list * g;
6694
6695 entry = byte_get (indices, 4);
6696 indices += 4;
6697
6698 if (entry >= elf_header.e_shnum)
6699 {
6700 static unsigned num_group_errors = 0;
6701
6702 if (num_group_errors ++ < 10)
6703 {
6704 error (_("section [%5u] in group section [%5u] > maximum section [%5u]\n"),
6705 entry, i, elf_header.e_shnum - 1);
6706 if (num_group_errors == 10)
6707 warn (_("Futher error messages about overlarge group section indicies suppressed\n"));
6708 }
6709 continue;
6710 }
6711
6712 if (section_headers_groups [entry] != NULL)
6713 {
6714 if (entry)
6715 {
6716 static unsigned num_errs = 0;
6717
6718 if (num_errs ++ < 10)
6719 {
6720 error (_("section [%5u] in group section [%5u] already in group section [%5u]\n"),
6721 entry, i,
6722 section_headers_groups [entry]->group_index);
6723 if (num_errs == 10)
6724 warn (_("Further error messages about already contained group sections suppressed\n"));
6725 }
6726 continue;
6727 }
6728 else
6729 {
6730 /* Intel C/C++ compiler may put section 0 in a
6731 section group. We just warn it the first time
6732 and ignore it afterwards. */
6733 static bfd_boolean warned = FALSE;
6734 if (!warned)
6735 {
6736 error (_("section 0 in group section [%5u]\n"),
6737 section_headers_groups [entry]->group_index);
6738 warned = TRUE;
6739 }
6740 }
6741 }
6742
6743 section_headers_groups [entry] = group;
6744
6745 if (do_section_groups)
6746 {
6747 sec = section_headers + entry;
6748 printf (" [%5u] %s\n", entry, printable_section_name (sec));
6749 }
6750
6751 g = (struct group_list *) xmalloc (sizeof (struct group_list));
6752 g->section_index = entry;
6753 g->next = group->root;
6754 group->root = g;
6755 }
6756
6757 if (start)
6758 free (start);
6759
6760 group++;
6761 }
6762 }
6763
6764 if (symtab)
6765 free (symtab);
6766 if (strtab)
6767 free (strtab);
6768 return TRUE;
6769 }
6770
6771 /* Data used to display dynamic fixups. */
6772
6773 struct ia64_vms_dynfixup
6774 {
6775 bfd_vma needed_ident; /* Library ident number. */
6776 bfd_vma needed; /* Index in the dstrtab of the library name. */
6777 bfd_vma fixup_needed; /* Index of the library. */
6778 bfd_vma fixup_rela_cnt; /* Number of fixups. */
6779 bfd_vma fixup_rela_off; /* Fixups offset in the dynamic segment. */
6780 };
6781
6782 /* Data used to display dynamic relocations. */
6783
6784 struct ia64_vms_dynimgrela
6785 {
6786 bfd_vma img_rela_cnt; /* Number of relocations. */
6787 bfd_vma img_rela_off; /* Reloc offset in the dynamic segment. */
6788 };
6789
6790 /* Display IA-64 OpenVMS dynamic fixups (used to dynamically link a shared
6791 library). */
6792
6793 static bfd_boolean
6794 dump_ia64_vms_dynamic_fixups (FILE * file,
6795 struct ia64_vms_dynfixup * fixup,
6796 const char * strtab,
6797 unsigned int strtab_sz)
6798 {
6799 Elf64_External_VMS_IMAGE_FIXUP * imfs;
6800 long i;
6801 const char * lib_name;
6802
6803 imfs = get_data (NULL, file, dynamic_addr + fixup->fixup_rela_off,
6804 1, fixup->fixup_rela_cnt * sizeof (*imfs),
6805 _("dynamic section image fixups"));
6806 if (!imfs)
6807 return FALSE;
6808
6809 if (fixup->needed < strtab_sz)
6810 lib_name = strtab + fixup->needed;
6811 else
6812 {
6813 warn (_("corrupt library name index of 0x%lx found in dynamic entry"),
6814 (unsigned long) fixup->needed);
6815 lib_name = "???";
6816 }
6817 printf (_("\nImage fixups for needed library #%d: %s - ident: %lx\n"),
6818 (int) fixup->fixup_needed, lib_name, (long) fixup->needed_ident);
6819 printf
6820 (_("Seg Offset Type SymVec DataType\n"));
6821
6822 for (i = 0; i < (long) fixup->fixup_rela_cnt; i++)
6823 {
6824 unsigned int type;
6825 const char *rtype;
6826
6827 printf ("%3u ", (unsigned) BYTE_GET (imfs [i].fixup_seg));
6828 printf_vma ((bfd_vma) BYTE_GET (imfs [i].fixup_offset));
6829 type = BYTE_GET (imfs [i].type);
6830 rtype = elf_ia64_reloc_type (type);
6831 if (rtype == NULL)
6832 printf (" 0x%08x ", type);
6833 else
6834 printf (" %-32s ", rtype);
6835 printf ("%6u ", (unsigned) BYTE_GET (imfs [i].symvec_index));
6836 printf ("0x%08x\n", (unsigned) BYTE_GET (imfs [i].data_type));
6837 }
6838
6839 free (imfs);
6840 return TRUE;
6841 }
6842
6843 /* Display IA-64 OpenVMS dynamic relocations (used to relocate an image). */
6844
6845 static bfd_boolean
6846 dump_ia64_vms_dynamic_relocs (FILE *file, struct ia64_vms_dynimgrela *imgrela)
6847 {
6848 Elf64_External_VMS_IMAGE_RELA *imrs;
6849 long i;
6850
6851 imrs = get_data (NULL, file, dynamic_addr + imgrela->img_rela_off,
6852 1, imgrela->img_rela_cnt * sizeof (*imrs),
6853 _("dynamic section image relocations"));
6854 if (!imrs)
6855 return FALSE;
6856
6857 printf (_("\nImage relocs\n"));
6858 printf
6859 (_("Seg Offset Type Addend Seg Sym Off\n"));
6860
6861 for (i = 0; i < (long) imgrela->img_rela_cnt; i++)
6862 {
6863 unsigned int type;
6864 const char *rtype;
6865
6866 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].rela_seg));
6867 printf ("%08" BFD_VMA_FMT "x ",
6868 (bfd_vma) BYTE_GET (imrs [i].rela_offset));
6869 type = BYTE_GET (imrs [i].type);
6870 rtype = elf_ia64_reloc_type (type);
6871 if (rtype == NULL)
6872 printf ("0x%08x ", type);
6873 else
6874 printf ("%-31s ", rtype);
6875 print_vma (BYTE_GET (imrs [i].addend), FULL_HEX);
6876 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].sym_seg));
6877 printf ("%08" BFD_VMA_FMT "x\n",
6878 (bfd_vma) BYTE_GET (imrs [i].sym_offset));
6879 }
6880
6881 free (imrs);
6882 return TRUE;
6883 }
6884
6885 /* Display IA-64 OpenVMS dynamic relocations and fixups. */
6886
6887 static bfd_boolean
6888 process_ia64_vms_dynamic_relocs (FILE *file)
6889 {
6890 struct ia64_vms_dynfixup fixup;
6891 struct ia64_vms_dynimgrela imgrela;
6892 Elf_Internal_Dyn *entry;
6893 bfd_vma strtab_off = 0;
6894 bfd_vma strtab_sz = 0;
6895 char *strtab = NULL;
6896 bfd_boolean res = TRUE;
6897
6898 memset (&fixup, 0, sizeof (fixup));
6899 memset (&imgrela, 0, sizeof (imgrela));
6900
6901 /* Note: the order of the entries is specified by the OpenVMS specs. */
6902 for (entry = dynamic_section;
6903 entry < dynamic_section + dynamic_nent;
6904 entry++)
6905 {
6906 switch (entry->d_tag)
6907 {
6908 case DT_IA_64_VMS_STRTAB_OFFSET:
6909 strtab_off = entry->d_un.d_val;
6910 break;
6911 case DT_STRSZ:
6912 strtab_sz = entry->d_un.d_val;
6913 if (strtab == NULL)
6914 strtab = get_data (NULL, file, dynamic_addr + strtab_off,
6915 1, strtab_sz, _("dynamic string section"));
6916 break;
6917
6918 case DT_IA_64_VMS_NEEDED_IDENT:
6919 fixup.needed_ident = entry->d_un.d_val;
6920 break;
6921 case DT_NEEDED:
6922 fixup.needed = entry->d_un.d_val;
6923 break;
6924 case DT_IA_64_VMS_FIXUP_NEEDED:
6925 fixup.fixup_needed = entry->d_un.d_val;
6926 break;
6927 case DT_IA_64_VMS_FIXUP_RELA_CNT:
6928 fixup.fixup_rela_cnt = entry->d_un.d_val;
6929 break;
6930 case DT_IA_64_VMS_FIXUP_RELA_OFF:
6931 fixup.fixup_rela_off = entry->d_un.d_val;
6932 if (! dump_ia64_vms_dynamic_fixups (file, &fixup, strtab, strtab_sz))
6933 res = FALSE;
6934 break;
6935 case DT_IA_64_VMS_IMG_RELA_CNT:
6936 imgrela.img_rela_cnt = entry->d_un.d_val;
6937 break;
6938 case DT_IA_64_VMS_IMG_RELA_OFF:
6939 imgrela.img_rela_off = entry->d_un.d_val;
6940 if (! dump_ia64_vms_dynamic_relocs (file, &imgrela))
6941 res = FALSE;
6942 break;
6943
6944 default:
6945 break;
6946 }
6947 }
6948
6949 if (strtab != NULL)
6950 free (strtab);
6951
6952 return res;
6953 }
6954
6955 static struct
6956 {
6957 const char * name;
6958 int reloc;
6959 int size;
6960 int rela;
6961 }
6962 dynamic_relocations [] =
6963 {
6964 { "REL", DT_REL, DT_RELSZ, FALSE },
6965 { "RELA", DT_RELA, DT_RELASZ, TRUE },
6966 { "PLT", DT_JMPREL, DT_PLTRELSZ, UNKNOWN }
6967 };
6968
6969 /* Process the reloc section. */
6970
6971 static bfd_boolean
6972 process_relocs (FILE * file)
6973 {
6974 unsigned long rel_size;
6975 unsigned long rel_offset;
6976
6977 if (!do_reloc)
6978 return TRUE;
6979
6980 if (do_using_dynamic)
6981 {
6982 int is_rela;
6983 const char * name;
6984 bfd_boolean has_dynamic_reloc;
6985 unsigned int i;
6986
6987 has_dynamic_reloc = FALSE;
6988
6989 for (i = 0; i < ARRAY_SIZE (dynamic_relocations); i++)
6990 {
6991 is_rela = dynamic_relocations [i].rela;
6992 name = dynamic_relocations [i].name;
6993 rel_size = dynamic_info [dynamic_relocations [i].size];
6994 rel_offset = dynamic_info [dynamic_relocations [i].reloc];
6995
6996 if (rel_size)
6997 has_dynamic_reloc = TRUE;
6998
6999 if (is_rela == UNKNOWN)
7000 {
7001 if (dynamic_relocations [i].reloc == DT_JMPREL)
7002 switch (dynamic_info[DT_PLTREL])
7003 {
7004 case DT_REL:
7005 is_rela = FALSE;
7006 break;
7007 case DT_RELA:
7008 is_rela = TRUE;
7009 break;
7010 }
7011 }
7012
7013 if (rel_size)
7014 {
7015 printf
7016 (_("\n'%s' relocation section at offset 0x%lx contains %ld bytes:\n"),
7017 name, rel_offset, rel_size);
7018
7019 dump_relocations (file,
7020 offset_from_vma (file, rel_offset, rel_size),
7021 rel_size,
7022 dynamic_symbols, num_dynamic_syms,
7023 dynamic_strings, dynamic_strings_length,
7024 is_rela, TRUE /* is_dynamic */);
7025 }
7026 }
7027
7028 if (is_ia64_vms ())
7029 if (process_ia64_vms_dynamic_relocs (file))
7030 has_dynamic_reloc = TRUE;
7031
7032 if (! has_dynamic_reloc)
7033 printf (_("\nThere are no dynamic relocations in this file.\n"));
7034 }
7035 else
7036 {
7037 Elf_Internal_Shdr * section;
7038 unsigned long i;
7039 bfd_boolean found = FALSE;
7040
7041 for (i = 0, section = section_headers;
7042 i < elf_header.e_shnum;
7043 i++, section++)
7044 {
7045 if ( section->sh_type != SHT_RELA
7046 && section->sh_type != SHT_REL)
7047 continue;
7048
7049 rel_offset = section->sh_offset;
7050 rel_size = section->sh_size;
7051
7052 if (rel_size)
7053 {
7054 Elf_Internal_Shdr * strsec;
7055 int is_rela;
7056
7057 printf (_("\nRelocation section "));
7058
7059 if (string_table == NULL)
7060 printf ("%d", section->sh_name);
7061 else
7062 printf ("'%s'", printable_section_name (section));
7063
7064 printf (_(" at offset 0x%lx contains %lu entries:\n"),
7065 rel_offset, (unsigned long) (rel_size / section->sh_entsize));
7066
7067 is_rela = section->sh_type == SHT_RELA;
7068
7069 if (section->sh_link != 0
7070 && section->sh_link < elf_header.e_shnum)
7071 {
7072 Elf_Internal_Shdr * symsec;
7073 Elf_Internal_Sym * symtab;
7074 unsigned long nsyms;
7075 unsigned long strtablen = 0;
7076 char * strtab = NULL;
7077
7078 symsec = section_headers + section->sh_link;
7079 if (symsec->sh_type != SHT_SYMTAB
7080 && symsec->sh_type != SHT_DYNSYM)
7081 continue;
7082
7083 symtab = GET_ELF_SYMBOLS (file, symsec, & nsyms);
7084
7085 if (symtab == NULL)
7086 continue;
7087
7088 if (symsec->sh_link != 0
7089 && symsec->sh_link < elf_header.e_shnum)
7090 {
7091 strsec = section_headers + symsec->sh_link;
7092
7093 strtab = (char *) get_data (NULL, file, strsec->sh_offset,
7094 1, strsec->sh_size,
7095 _("string table"));
7096 strtablen = strtab == NULL ? 0 : strsec->sh_size;
7097 }
7098
7099 dump_relocations (file, rel_offset, rel_size,
7100 symtab, nsyms, strtab, strtablen,
7101 is_rela,
7102 symsec->sh_type == SHT_DYNSYM);
7103 if (strtab)
7104 free (strtab);
7105 free (symtab);
7106 }
7107 else
7108 dump_relocations (file, rel_offset, rel_size,
7109 NULL, 0, NULL, 0, is_rela,
7110 FALSE /* is_dynamic */);
7111
7112 found = TRUE;
7113 }
7114 }
7115
7116 if (! found)
7117 printf (_("\nThere are no relocations in this file.\n"));
7118 }
7119
7120 return TRUE;
7121 }
7122
7123 /* An absolute address consists of a section and an offset. If the
7124 section is NULL, the offset itself is the address, otherwise, the
7125 address equals to LOAD_ADDRESS(section) + offset. */
7126
7127 struct absaddr
7128 {
7129 unsigned short section;
7130 bfd_vma offset;
7131 };
7132
7133 #define ABSADDR(a) \
7134 ((a).section \
7135 ? section_headers [(a).section].sh_addr + (a).offset \
7136 : (a).offset)
7137
7138 /* Find the nearest symbol at or below ADDR. Returns the symbol
7139 name, if found, and the offset from the symbol to ADDR. */
7140
7141 static void
7142 find_symbol_for_address (Elf_Internal_Sym * symtab,
7143 unsigned long nsyms,
7144 const char * strtab,
7145 unsigned long strtab_size,
7146 struct absaddr addr,
7147 const char ** symname,
7148 bfd_vma * offset)
7149 {
7150 bfd_vma dist = 0x100000;
7151 Elf_Internal_Sym * sym;
7152 Elf_Internal_Sym * beg;
7153 Elf_Internal_Sym * end;
7154 Elf_Internal_Sym * best = NULL;
7155
7156 REMOVE_ARCH_BITS (addr.offset);
7157 beg = symtab;
7158 end = symtab + nsyms;
7159
7160 while (beg < end)
7161 {
7162 bfd_vma value;
7163
7164 sym = beg + (end - beg) / 2;
7165
7166 value = sym->st_value;
7167 REMOVE_ARCH_BITS (value);
7168
7169 if (sym->st_name != 0
7170 && (addr.section == SHN_UNDEF || addr.section == sym->st_shndx)
7171 && addr.offset >= value
7172 && addr.offset - value < dist)
7173 {
7174 best = sym;
7175 dist = addr.offset - value;
7176 if (!dist)
7177 break;
7178 }
7179
7180 if (addr.offset < value)
7181 end = sym;
7182 else
7183 beg = sym + 1;
7184 }
7185
7186 if (best)
7187 {
7188 *symname = (best->st_name >= strtab_size
7189 ? _("<corrupt>") : strtab + best->st_name);
7190 *offset = dist;
7191 return;
7192 }
7193
7194 *symname = NULL;
7195 *offset = addr.offset;
7196 }
7197
7198 static /* signed */ int
7199 symcmp (const void *p, const void *q)
7200 {
7201 Elf_Internal_Sym *sp = (Elf_Internal_Sym *) p;
7202 Elf_Internal_Sym *sq = (Elf_Internal_Sym *) q;
7203
7204 return sp->st_value > sq->st_value ? 1 : (sp->st_value < sq->st_value ? -1 : 0);
7205 }
7206
7207 /* Process the unwind section. */
7208
7209 #include "unwind-ia64.h"
7210
7211 struct ia64_unw_table_entry
7212 {
7213 struct absaddr start;
7214 struct absaddr end;
7215 struct absaddr info;
7216 };
7217
7218 struct ia64_unw_aux_info
7219 {
7220 struct ia64_unw_table_entry * table; /* Unwind table. */
7221 unsigned long table_len; /* Length of unwind table. */
7222 unsigned char * info; /* Unwind info. */
7223 unsigned long info_size; /* Size of unwind info. */
7224 bfd_vma info_addr; /* Starting address of unwind info. */
7225 bfd_vma seg_base; /* Starting address of segment. */
7226 Elf_Internal_Sym * symtab; /* The symbol table. */
7227 unsigned long nsyms; /* Number of symbols. */
7228 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7229 unsigned long nfuns; /* Number of entries in funtab. */
7230 char * strtab; /* The string table. */
7231 unsigned long strtab_size; /* Size of string table. */
7232 };
7233
7234 static bfd_boolean
7235 dump_ia64_unwind (struct ia64_unw_aux_info * aux)
7236 {
7237 struct ia64_unw_table_entry * tp;
7238 unsigned long j, nfuns;
7239 int in_body;
7240 bfd_boolean res = TRUE;
7241
7242 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
7243 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
7244 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
7245 aux->funtab[nfuns++] = aux->symtab[j];
7246 aux->nfuns = nfuns;
7247 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
7248
7249 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
7250 {
7251 bfd_vma stamp;
7252 bfd_vma offset;
7253 const unsigned char * dp;
7254 const unsigned char * head;
7255 const unsigned char * end;
7256 const char * procname;
7257
7258 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
7259 aux->strtab_size, tp->start, &procname, &offset);
7260
7261 fputs ("\n<", stdout);
7262
7263 if (procname)
7264 {
7265 fputs (procname, stdout);
7266
7267 if (offset)
7268 printf ("+%lx", (unsigned long) offset);
7269 }
7270
7271 fputs (">: [", stdout);
7272 print_vma (tp->start.offset, PREFIX_HEX);
7273 fputc ('-', stdout);
7274 print_vma (tp->end.offset, PREFIX_HEX);
7275 printf ("], info at +0x%lx\n",
7276 (unsigned long) (tp->info.offset - aux->seg_base));
7277
7278 /* PR 17531: file: 86232b32. */
7279 if (aux->info == NULL)
7280 continue;
7281
7282 /* PR 17531: file: 0997b4d1. */
7283 if ((ABSADDR (tp->info) - aux->info_addr) >= aux->info_size)
7284 {
7285 warn (_("Invalid offset %lx in table entry %ld\n"),
7286 (long) tp->info.offset, (long) (tp - aux->table));
7287 res = FALSE;
7288 continue;
7289 }
7290
7291 head = aux->info + (ABSADDR (tp->info) - aux->info_addr);
7292 stamp = byte_get ((unsigned char *) head, sizeof (stamp));
7293
7294 printf (" v%u, flags=0x%lx (%s%s), len=%lu bytes\n",
7295 (unsigned) UNW_VER (stamp),
7296 (unsigned long) ((stamp & UNW_FLAG_MASK) >> 32),
7297 UNW_FLAG_EHANDLER (stamp) ? " ehandler" : "",
7298 UNW_FLAG_UHANDLER (stamp) ? " uhandler" : "",
7299 (unsigned long) (eh_addr_size * UNW_LENGTH (stamp)));
7300
7301 if (UNW_VER (stamp) != 1)
7302 {
7303 printf (_("\tUnknown version.\n"));
7304 continue;
7305 }
7306
7307 in_body = 0;
7308 end = head + 8 + eh_addr_size * UNW_LENGTH (stamp);
7309 /* PR 17531: file: 16ceda89. */
7310 if (end > aux->info + aux->info_size)
7311 end = aux->info + aux->info_size;
7312 for (dp = head + 8; dp < end;)
7313 dp = unw_decode (dp, in_body, & in_body, end);
7314 }
7315
7316 free (aux->funtab);
7317
7318 return res;
7319 }
7320
7321 static bfd_boolean
7322 slurp_ia64_unwind_table (FILE * file,
7323 struct ia64_unw_aux_info * aux,
7324 Elf_Internal_Shdr * sec)
7325 {
7326 unsigned long size, nrelas, i;
7327 Elf_Internal_Phdr * seg;
7328 struct ia64_unw_table_entry * tep;
7329 Elf_Internal_Shdr * relsec;
7330 Elf_Internal_Rela * rela;
7331 Elf_Internal_Rela * rp;
7332 unsigned char * table;
7333 unsigned char * tp;
7334 Elf_Internal_Sym * sym;
7335 const char * relname;
7336
7337 aux->table_len = 0;
7338
7339 /* First, find the starting address of the segment that includes
7340 this section: */
7341
7342 if (elf_header.e_phnum)
7343 {
7344 if (! get_program_headers (file))
7345 return FALSE;
7346
7347 for (seg = program_headers;
7348 seg < program_headers + elf_header.e_phnum;
7349 ++seg)
7350 {
7351 if (seg->p_type != PT_LOAD)
7352 continue;
7353
7354 if (sec->sh_addr >= seg->p_vaddr
7355 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
7356 {
7357 aux->seg_base = seg->p_vaddr;
7358 break;
7359 }
7360 }
7361 }
7362
7363 /* Second, build the unwind table from the contents of the unwind section: */
7364 size = sec->sh_size;
7365 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
7366 _("unwind table"));
7367 if (!table)
7368 return FALSE;
7369
7370 aux->table_len = size / (3 * eh_addr_size);
7371 aux->table = (struct ia64_unw_table_entry *)
7372 xcmalloc (aux->table_len, sizeof (aux->table[0]));
7373 tep = aux->table;
7374
7375 for (tp = table; tp <= table + size - (3 * eh_addr_size); ++tep)
7376 {
7377 tep->start.section = SHN_UNDEF;
7378 tep->end.section = SHN_UNDEF;
7379 tep->info.section = SHN_UNDEF;
7380 tep->start.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7381 tep->end.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7382 tep->info.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7383 tep->start.offset += aux->seg_base;
7384 tep->end.offset += aux->seg_base;
7385 tep->info.offset += aux->seg_base;
7386 }
7387 free (table);
7388
7389 /* Third, apply any relocations to the unwind table: */
7390 for (relsec = section_headers;
7391 relsec < section_headers + elf_header.e_shnum;
7392 ++relsec)
7393 {
7394 if (relsec->sh_type != SHT_RELA
7395 || relsec->sh_info >= elf_header.e_shnum
7396 || section_headers + relsec->sh_info != sec)
7397 continue;
7398
7399 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
7400 & rela, & nrelas))
7401 {
7402 free (aux->table);
7403 aux->table = NULL;
7404 aux->table_len = 0;
7405 return FALSE;
7406 }
7407
7408 for (rp = rela; rp < rela + nrelas; ++rp)
7409 {
7410 relname = elf_ia64_reloc_type (get_reloc_type (rp->r_info));
7411 sym = aux->symtab + get_reloc_symindex (rp->r_info);
7412
7413 /* PR 17531: file: 9fa67536. */
7414 if (relname == NULL)
7415 {
7416 warn (_("Skipping unknown relocation type: %u\n"), get_reloc_type (rp->r_info));
7417 continue;
7418 }
7419
7420 if (! const_strneq (relname, "R_IA64_SEGREL"))
7421 {
7422 warn (_("Skipping unexpected relocation type: %s\n"), relname);
7423 continue;
7424 }
7425
7426 i = rp->r_offset / (3 * eh_addr_size);
7427
7428 /* PR 17531: file: 5bc8d9bf. */
7429 if (i >= aux->table_len)
7430 {
7431 warn (_("Skipping reloc with overlarge offset: %lx\n"), i);
7432 continue;
7433 }
7434
7435 switch (rp->r_offset / eh_addr_size % 3)
7436 {
7437 case 0:
7438 aux->table[i].start.section = sym->st_shndx;
7439 aux->table[i].start.offset = rp->r_addend + sym->st_value;
7440 break;
7441 case 1:
7442 aux->table[i].end.section = sym->st_shndx;
7443 aux->table[i].end.offset = rp->r_addend + sym->st_value;
7444 break;
7445 case 2:
7446 aux->table[i].info.section = sym->st_shndx;
7447 aux->table[i].info.offset = rp->r_addend + sym->st_value;
7448 break;
7449 default:
7450 break;
7451 }
7452 }
7453
7454 free (rela);
7455 }
7456
7457 return TRUE;
7458 }
7459
7460 static bfd_boolean
7461 ia64_process_unwind (FILE * file)
7462 {
7463 Elf_Internal_Shdr * sec;
7464 Elf_Internal_Shdr * unwsec = NULL;
7465 Elf_Internal_Shdr * strsec;
7466 unsigned long i, unwcount = 0, unwstart = 0;
7467 struct ia64_unw_aux_info aux;
7468 bfd_boolean res = TRUE;
7469
7470 memset (& aux, 0, sizeof (aux));
7471
7472 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7473 {
7474 if (sec->sh_type == SHT_SYMTAB
7475 && sec->sh_link < elf_header.e_shnum)
7476 {
7477 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
7478
7479 strsec = section_headers + sec->sh_link;
7480 if (aux.strtab != NULL)
7481 {
7482 error (_("Multiple auxillary string tables encountered\n"));
7483 free (aux.strtab);
7484 res = FALSE;
7485 }
7486 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
7487 1, strsec->sh_size,
7488 _("string table"));
7489 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7490 }
7491 else if (sec->sh_type == SHT_IA_64_UNWIND)
7492 unwcount++;
7493 }
7494
7495 if (!unwcount)
7496 printf (_("\nThere are no unwind sections in this file.\n"));
7497
7498 while (unwcount-- > 0)
7499 {
7500 char * suffix;
7501 size_t len, len2;
7502
7503 for (i = unwstart, sec = section_headers + unwstart, unwsec = NULL;
7504 i < elf_header.e_shnum; ++i, ++sec)
7505 if (sec->sh_type == SHT_IA_64_UNWIND)
7506 {
7507 unwsec = sec;
7508 break;
7509 }
7510 /* We have already counted the number of SHT_IA64_UNWIND
7511 sections so the loop above should never fail. */
7512 assert (unwsec != NULL);
7513
7514 unwstart = i + 1;
7515 len = sizeof (ELF_STRING_ia64_unwind_once) - 1;
7516
7517 if ((unwsec->sh_flags & SHF_GROUP) != 0)
7518 {
7519 /* We need to find which section group it is in. */
7520 struct group_list * g;
7521
7522 if (section_headers_groups == NULL
7523 || section_headers_groups [i] == NULL)
7524 i = elf_header.e_shnum;
7525 else
7526 {
7527 g = section_headers_groups [i]->root;
7528
7529 for (; g != NULL; g = g->next)
7530 {
7531 sec = section_headers + g->section_index;
7532
7533 if (streq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info))
7534 break;
7535 }
7536
7537 if (g == NULL)
7538 i = elf_header.e_shnum;
7539 }
7540 }
7541 else if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind_once, len))
7542 {
7543 /* .gnu.linkonce.ia64unw.FOO -> .gnu.linkonce.ia64unwi.FOO. */
7544 len2 = sizeof (ELF_STRING_ia64_unwind_info_once) - 1;
7545 suffix = SECTION_NAME (unwsec) + len;
7546 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
7547 ++i, ++sec)
7548 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info_once, len2)
7549 && streq (SECTION_NAME (sec) + len2, suffix))
7550 break;
7551 }
7552 else
7553 {
7554 /* .IA_64.unwindFOO -> .IA_64.unwind_infoFOO
7555 .IA_64.unwind or BAR -> .IA_64.unwind_info. */
7556 len = sizeof (ELF_STRING_ia64_unwind) - 1;
7557 len2 = sizeof (ELF_STRING_ia64_unwind_info) - 1;
7558 suffix = "";
7559 if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind, len))
7560 suffix = SECTION_NAME (unwsec) + len;
7561 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
7562 ++i, ++sec)
7563 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info, len2)
7564 && streq (SECTION_NAME (sec) + len2, suffix))
7565 break;
7566 }
7567
7568 if (i == elf_header.e_shnum)
7569 {
7570 printf (_("\nCould not find unwind info section for "));
7571
7572 if (string_table == NULL)
7573 printf ("%d", unwsec->sh_name);
7574 else
7575 printf ("'%s'", printable_section_name (unwsec));
7576 }
7577 else
7578 {
7579 aux.info_addr = sec->sh_addr;
7580 aux.info = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1,
7581 sec->sh_size,
7582 _("unwind info"));
7583 aux.info_size = aux.info == NULL ? 0 : sec->sh_size;
7584
7585 printf (_("\nUnwind section "));
7586
7587 if (string_table == NULL)
7588 printf ("%d", unwsec->sh_name);
7589 else
7590 printf ("'%s'", printable_section_name (unwsec));
7591
7592 printf (_(" at offset 0x%lx contains %lu entries:\n"),
7593 (unsigned long) unwsec->sh_offset,
7594 (unsigned long) (unwsec->sh_size / (3 * eh_addr_size)));
7595
7596 if (slurp_ia64_unwind_table (file, & aux, unwsec)
7597 && aux.table_len > 0)
7598 dump_ia64_unwind (& aux);
7599
7600 if (aux.table)
7601 free ((char *) aux.table);
7602 if (aux.info)
7603 free ((char *) aux.info);
7604 aux.table = NULL;
7605 aux.info = NULL;
7606 }
7607 }
7608
7609 if (aux.symtab)
7610 free (aux.symtab);
7611 if (aux.strtab)
7612 free ((char *) aux.strtab);
7613
7614 return res;
7615 }
7616
7617 struct hppa_unw_table_entry
7618 {
7619 struct absaddr start;
7620 struct absaddr end;
7621 unsigned int Cannot_unwind:1; /* 0 */
7622 unsigned int Millicode:1; /* 1 */
7623 unsigned int Millicode_save_sr0:1; /* 2 */
7624 unsigned int Region_description:2; /* 3..4 */
7625 unsigned int reserved1:1; /* 5 */
7626 unsigned int Entry_SR:1; /* 6 */
7627 unsigned int Entry_FR:4; /* Number saved 7..10 */
7628 unsigned int Entry_GR:5; /* Number saved 11..15 */
7629 unsigned int Args_stored:1; /* 16 */
7630 unsigned int Variable_Frame:1; /* 17 */
7631 unsigned int Separate_Package_Body:1; /* 18 */
7632 unsigned int Frame_Extension_Millicode:1; /* 19 */
7633 unsigned int Stack_Overflow_Check:1; /* 20 */
7634 unsigned int Two_Instruction_SP_Increment:1; /* 21 */
7635 unsigned int Ada_Region:1; /* 22 */
7636 unsigned int cxx_info:1; /* 23 */
7637 unsigned int cxx_try_catch:1; /* 24 */
7638 unsigned int sched_entry_seq:1; /* 25 */
7639 unsigned int reserved2:1; /* 26 */
7640 unsigned int Save_SP:1; /* 27 */
7641 unsigned int Save_RP:1; /* 28 */
7642 unsigned int Save_MRP_in_frame:1; /* 29 */
7643 unsigned int extn_ptr_defined:1; /* 30 */
7644 unsigned int Cleanup_defined:1; /* 31 */
7645
7646 unsigned int MPE_XL_interrupt_marker:1; /* 0 */
7647 unsigned int HP_UX_interrupt_marker:1; /* 1 */
7648 unsigned int Large_frame:1; /* 2 */
7649 unsigned int Pseudo_SP_Set:1; /* 3 */
7650 unsigned int reserved4:1; /* 4 */
7651 unsigned int Total_frame_size:27; /* 5..31 */
7652 };
7653
7654 struct hppa_unw_aux_info
7655 {
7656 struct hppa_unw_table_entry * table; /* Unwind table. */
7657 unsigned long table_len; /* Length of unwind table. */
7658 bfd_vma seg_base; /* Starting address of segment. */
7659 Elf_Internal_Sym * symtab; /* The symbol table. */
7660 unsigned long nsyms; /* Number of symbols. */
7661 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7662 unsigned long nfuns; /* Number of entries in funtab. */
7663 char * strtab; /* The string table. */
7664 unsigned long strtab_size; /* Size of string table. */
7665 };
7666
7667 static bfd_boolean
7668 dump_hppa_unwind (struct hppa_unw_aux_info * aux)
7669 {
7670 struct hppa_unw_table_entry * tp;
7671 unsigned long j, nfuns;
7672 bfd_boolean res = TRUE;
7673
7674 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
7675 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
7676 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
7677 aux->funtab[nfuns++] = aux->symtab[j];
7678 aux->nfuns = nfuns;
7679 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
7680
7681 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
7682 {
7683 bfd_vma offset;
7684 const char * procname;
7685
7686 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
7687 aux->strtab_size, tp->start, &procname,
7688 &offset);
7689
7690 fputs ("\n<", stdout);
7691
7692 if (procname)
7693 {
7694 fputs (procname, stdout);
7695
7696 if (offset)
7697 printf ("+%lx", (unsigned long) offset);
7698 }
7699
7700 fputs (">: [", stdout);
7701 print_vma (tp->start.offset, PREFIX_HEX);
7702 fputc ('-', stdout);
7703 print_vma (tp->end.offset, PREFIX_HEX);
7704 printf ("]\n\t");
7705
7706 #define PF(_m) if (tp->_m) printf (#_m " ");
7707 #define PV(_m) if (tp->_m) printf (#_m "=%d ", tp->_m);
7708 PF(Cannot_unwind);
7709 PF(Millicode);
7710 PF(Millicode_save_sr0);
7711 /* PV(Region_description); */
7712 PF(Entry_SR);
7713 PV(Entry_FR);
7714 PV(Entry_GR);
7715 PF(Args_stored);
7716 PF(Variable_Frame);
7717 PF(Separate_Package_Body);
7718 PF(Frame_Extension_Millicode);
7719 PF(Stack_Overflow_Check);
7720 PF(Two_Instruction_SP_Increment);
7721 PF(Ada_Region);
7722 PF(cxx_info);
7723 PF(cxx_try_catch);
7724 PF(sched_entry_seq);
7725 PF(Save_SP);
7726 PF(Save_RP);
7727 PF(Save_MRP_in_frame);
7728 PF(extn_ptr_defined);
7729 PF(Cleanup_defined);
7730 PF(MPE_XL_interrupt_marker);
7731 PF(HP_UX_interrupt_marker);
7732 PF(Large_frame);
7733 PF(Pseudo_SP_Set);
7734 PV(Total_frame_size);
7735 #undef PF
7736 #undef PV
7737 }
7738
7739 printf ("\n");
7740
7741 free (aux->funtab);
7742
7743 return res;
7744 }
7745
7746 static bfd_boolean
7747 slurp_hppa_unwind_table (FILE * file,
7748 struct hppa_unw_aux_info * aux,
7749 Elf_Internal_Shdr * sec)
7750 {
7751 unsigned long size, unw_ent_size, nentries, nrelas, i;
7752 Elf_Internal_Phdr * seg;
7753 struct hppa_unw_table_entry * tep;
7754 Elf_Internal_Shdr * relsec;
7755 Elf_Internal_Rela * rela;
7756 Elf_Internal_Rela * rp;
7757 unsigned char * table;
7758 unsigned char * tp;
7759 Elf_Internal_Sym * sym;
7760 const char * relname;
7761
7762 /* First, find the starting address of the segment that includes
7763 this section. */
7764 if (elf_header.e_phnum)
7765 {
7766 if (! get_program_headers (file))
7767 return FALSE;
7768
7769 for (seg = program_headers;
7770 seg < program_headers + elf_header.e_phnum;
7771 ++seg)
7772 {
7773 if (seg->p_type != PT_LOAD)
7774 continue;
7775
7776 if (sec->sh_addr >= seg->p_vaddr
7777 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
7778 {
7779 aux->seg_base = seg->p_vaddr;
7780 break;
7781 }
7782 }
7783 }
7784
7785 /* Second, build the unwind table from the contents of the unwind
7786 section. */
7787 size = sec->sh_size;
7788 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
7789 _("unwind table"));
7790 if (!table)
7791 return FALSE;
7792
7793 unw_ent_size = 16;
7794 nentries = size / unw_ent_size;
7795 size = unw_ent_size * nentries;
7796
7797 tep = aux->table = (struct hppa_unw_table_entry *)
7798 xcmalloc (nentries, sizeof (aux->table[0]));
7799
7800 for (tp = table; tp < table + size; tp += unw_ent_size, ++tep)
7801 {
7802 unsigned int tmp1, tmp2;
7803
7804 tep->start.section = SHN_UNDEF;
7805 tep->end.section = SHN_UNDEF;
7806
7807 tep->start.offset = byte_get ((unsigned char *) tp + 0, 4);
7808 tep->end.offset = byte_get ((unsigned char *) tp + 4, 4);
7809 tmp1 = byte_get ((unsigned char *) tp + 8, 4);
7810 tmp2 = byte_get ((unsigned char *) tp + 12, 4);
7811
7812 tep->start.offset += aux->seg_base;
7813 tep->end.offset += aux->seg_base;
7814
7815 tep->Cannot_unwind = (tmp1 >> 31) & 0x1;
7816 tep->Millicode = (tmp1 >> 30) & 0x1;
7817 tep->Millicode_save_sr0 = (tmp1 >> 29) & 0x1;
7818 tep->Region_description = (tmp1 >> 27) & 0x3;
7819 tep->reserved1 = (tmp1 >> 26) & 0x1;
7820 tep->Entry_SR = (tmp1 >> 25) & 0x1;
7821 tep->Entry_FR = (tmp1 >> 21) & 0xf;
7822 tep->Entry_GR = (tmp1 >> 16) & 0x1f;
7823 tep->Args_stored = (tmp1 >> 15) & 0x1;
7824 tep->Variable_Frame = (tmp1 >> 14) & 0x1;
7825 tep->Separate_Package_Body = (tmp1 >> 13) & 0x1;
7826 tep->Frame_Extension_Millicode = (tmp1 >> 12) & 0x1;
7827 tep->Stack_Overflow_Check = (tmp1 >> 11) & 0x1;
7828 tep->Two_Instruction_SP_Increment = (tmp1 >> 10) & 0x1;
7829 tep->Ada_Region = (tmp1 >> 9) & 0x1;
7830 tep->cxx_info = (tmp1 >> 8) & 0x1;
7831 tep->cxx_try_catch = (tmp1 >> 7) & 0x1;
7832 tep->sched_entry_seq = (tmp1 >> 6) & 0x1;
7833 tep->reserved2 = (tmp1 >> 5) & 0x1;
7834 tep->Save_SP = (tmp1 >> 4) & 0x1;
7835 tep->Save_RP = (tmp1 >> 3) & 0x1;
7836 tep->Save_MRP_in_frame = (tmp1 >> 2) & 0x1;
7837 tep->extn_ptr_defined = (tmp1 >> 1) & 0x1;
7838 tep->Cleanup_defined = tmp1 & 0x1;
7839
7840 tep->MPE_XL_interrupt_marker = (tmp2 >> 31) & 0x1;
7841 tep->HP_UX_interrupt_marker = (tmp2 >> 30) & 0x1;
7842 tep->Large_frame = (tmp2 >> 29) & 0x1;
7843 tep->Pseudo_SP_Set = (tmp2 >> 28) & 0x1;
7844 tep->reserved4 = (tmp2 >> 27) & 0x1;
7845 tep->Total_frame_size = tmp2 & 0x7ffffff;
7846 }
7847 free (table);
7848
7849 /* Third, apply any relocations to the unwind table. */
7850 for (relsec = section_headers;
7851 relsec < section_headers + elf_header.e_shnum;
7852 ++relsec)
7853 {
7854 if (relsec->sh_type != SHT_RELA
7855 || relsec->sh_info >= elf_header.e_shnum
7856 || section_headers + relsec->sh_info != sec)
7857 continue;
7858
7859 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
7860 & rela, & nrelas))
7861 return FALSE;
7862
7863 for (rp = rela; rp < rela + nrelas; ++rp)
7864 {
7865 relname = elf_hppa_reloc_type (get_reloc_type (rp->r_info));
7866 sym = aux->symtab + get_reloc_symindex (rp->r_info);
7867
7868 /* R_PARISC_SEGREL32 or R_PARISC_SEGREL64. */
7869 if (! const_strneq (relname, "R_PARISC_SEGREL"))
7870 {
7871 warn (_("Skipping unexpected relocation type %s\n"), relname);
7872 continue;
7873 }
7874
7875 i = rp->r_offset / unw_ent_size;
7876
7877 switch ((rp->r_offset % unw_ent_size) / eh_addr_size)
7878 {
7879 case 0:
7880 aux->table[i].start.section = sym->st_shndx;
7881 aux->table[i].start.offset = sym->st_value + rp->r_addend;
7882 break;
7883 case 1:
7884 aux->table[i].end.section = sym->st_shndx;
7885 aux->table[i].end.offset = sym->st_value + rp->r_addend;
7886 break;
7887 default:
7888 break;
7889 }
7890 }
7891
7892 free (rela);
7893 }
7894
7895 aux->table_len = nentries;
7896
7897 return TRUE;
7898 }
7899
7900 static bfd_boolean
7901 hppa_process_unwind (FILE * file)
7902 {
7903 struct hppa_unw_aux_info aux;
7904 Elf_Internal_Shdr * unwsec = NULL;
7905 Elf_Internal_Shdr * strsec;
7906 Elf_Internal_Shdr * sec;
7907 unsigned long i;
7908 bfd_boolean res = TRUE;
7909
7910 if (string_table == NULL)
7911 return FALSE;
7912
7913 memset (& aux, 0, sizeof (aux));
7914
7915 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7916 {
7917 if (sec->sh_type == SHT_SYMTAB
7918 && sec->sh_link < elf_header.e_shnum)
7919 {
7920 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
7921
7922 strsec = section_headers + sec->sh_link;
7923 if (aux.strtab != NULL)
7924 {
7925 error (_("Multiple auxillary string tables encountered\n"));
7926 free (aux.strtab);
7927 res = FALSE;
7928 }
7929 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
7930 1, strsec->sh_size,
7931 _("string table"));
7932 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7933 }
7934 else if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
7935 unwsec = sec;
7936 }
7937
7938 if (!unwsec)
7939 printf (_("\nThere are no unwind sections in this file.\n"));
7940
7941 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7942 {
7943 if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
7944 {
7945 printf (_("\nUnwind section '%s' at offset 0x%lx contains %lu entries:\n"),
7946 printable_section_name (sec),
7947 (unsigned long) sec->sh_offset,
7948 (unsigned long) (sec->sh_size / (2 * eh_addr_size + 8)));
7949
7950 if (! slurp_hppa_unwind_table (file, &aux, sec))
7951 res = FALSE;
7952
7953 if (aux.table_len > 0)
7954 {
7955 if (! dump_hppa_unwind (&aux))
7956 res = FALSE;
7957 }
7958
7959 if (aux.table)
7960 free ((char *) aux.table);
7961 aux.table = NULL;
7962 }
7963 }
7964
7965 if (aux.symtab)
7966 free (aux.symtab);
7967 if (aux.strtab)
7968 free ((char *) aux.strtab);
7969
7970 return res;
7971 }
7972
7973 struct arm_section
7974 {
7975 unsigned char * data; /* The unwind data. */
7976 Elf_Internal_Shdr * sec; /* The cached unwind section header. */
7977 Elf_Internal_Rela * rela; /* The cached relocations for this section. */
7978 unsigned long nrelas; /* The number of relocations. */
7979 unsigned int rel_type; /* REL or RELA ? */
7980 Elf_Internal_Rela * next_rela; /* Cyclic pointer to the next reloc to process. */
7981 };
7982
7983 struct arm_unw_aux_info
7984 {
7985 FILE * file; /* The file containing the unwind sections. */
7986 Elf_Internal_Sym * symtab; /* The file's symbol table. */
7987 unsigned long nsyms; /* Number of symbols. */
7988 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7989 unsigned long nfuns; /* Number of these symbols. */
7990 char * strtab; /* The file's string table. */
7991 unsigned long strtab_size; /* Size of string table. */
7992 };
7993
7994 static const char *
7995 arm_print_vma_and_name (struct arm_unw_aux_info *aux,
7996 bfd_vma fn, struct absaddr addr)
7997 {
7998 const char *procname;
7999 bfd_vma sym_offset;
8000
8001 if (addr.section == SHN_UNDEF)
8002 addr.offset = fn;
8003
8004 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
8005 aux->strtab_size, addr, &procname,
8006 &sym_offset);
8007
8008 print_vma (fn, PREFIX_HEX);
8009
8010 if (procname)
8011 {
8012 fputs (" <", stdout);
8013 fputs (procname, stdout);
8014
8015 if (sym_offset)
8016 printf ("+0x%lx", (unsigned long) sym_offset);
8017 fputc ('>', stdout);
8018 }
8019
8020 return procname;
8021 }
8022
8023 static void
8024 arm_free_section (struct arm_section *arm_sec)
8025 {
8026 if (arm_sec->data != NULL)
8027 free (arm_sec->data);
8028
8029 if (arm_sec->rela != NULL)
8030 free (arm_sec->rela);
8031 }
8032
8033 /* 1) If SEC does not match the one cached in ARM_SEC, then free the current
8034 cached section and install SEC instead.
8035 2) Locate the 32-bit word at WORD_OFFSET in unwind section SEC
8036 and return its valued in * WORDP, relocating if necessary.
8037 3) Update the NEXT_RELA field in ARM_SEC and store the section index and
8038 relocation's offset in ADDR.
8039 4) If SYM_NAME is non-NULL and a relocation was applied, record the offset
8040 into the string table of the symbol associated with the reloc. If no
8041 reloc was applied store -1 there.
8042 5) Return TRUE upon success, FALSE otherwise. */
8043
8044 static bfd_boolean
8045 get_unwind_section_word (struct arm_unw_aux_info * aux,
8046 struct arm_section * arm_sec,
8047 Elf_Internal_Shdr * sec,
8048 bfd_vma word_offset,
8049 unsigned int * wordp,
8050 struct absaddr * addr,
8051 bfd_vma * sym_name)
8052 {
8053 Elf_Internal_Rela *rp;
8054 Elf_Internal_Sym *sym;
8055 const char * relname;
8056 unsigned int word;
8057 bfd_boolean wrapped;
8058
8059 if (sec == NULL || arm_sec == NULL)
8060 return FALSE;
8061
8062 addr->section = SHN_UNDEF;
8063 addr->offset = 0;
8064
8065 if (sym_name != NULL)
8066 *sym_name = (bfd_vma) -1;
8067
8068 /* If necessary, update the section cache. */
8069 if (sec != arm_sec->sec)
8070 {
8071 Elf_Internal_Shdr *relsec;
8072
8073 arm_free_section (arm_sec);
8074
8075 arm_sec->sec = sec;
8076 arm_sec->data = get_data (NULL, aux->file, sec->sh_offset, 1,
8077 sec->sh_size, _("unwind data"));
8078 arm_sec->rela = NULL;
8079 arm_sec->nrelas = 0;
8080
8081 for (relsec = section_headers;
8082 relsec < section_headers + elf_header.e_shnum;
8083 ++relsec)
8084 {
8085 if (relsec->sh_info >= elf_header.e_shnum
8086 || section_headers + relsec->sh_info != sec
8087 /* PR 15745: Check the section type as well. */
8088 || (relsec->sh_type != SHT_REL
8089 && relsec->sh_type != SHT_RELA))
8090 continue;
8091
8092 arm_sec->rel_type = relsec->sh_type;
8093 if (relsec->sh_type == SHT_REL)
8094 {
8095 if (!slurp_rel_relocs (aux->file, relsec->sh_offset,
8096 relsec->sh_size,
8097 & arm_sec->rela, & arm_sec->nrelas))
8098 return FALSE;
8099 }
8100 else /* relsec->sh_type == SHT_RELA */
8101 {
8102 if (!slurp_rela_relocs (aux->file, relsec->sh_offset,
8103 relsec->sh_size,
8104 & arm_sec->rela, & arm_sec->nrelas))
8105 return FALSE;
8106 }
8107 break;
8108 }
8109
8110 arm_sec->next_rela = arm_sec->rela;
8111 }
8112
8113 /* If there is no unwind data we can do nothing. */
8114 if (arm_sec->data == NULL)
8115 return FALSE;
8116
8117 /* If the offset is invalid then fail. */
8118 if (/* PR 21343 *//* PR 18879 */
8119 sec->sh_size < 4
8120 || word_offset > (sec->sh_size - 4)
8121 || ((bfd_signed_vma) word_offset) < 0)
8122 return FALSE;
8123
8124 /* Get the word at the required offset. */
8125 word = byte_get (arm_sec->data + word_offset, 4);
8126
8127 /* PR 17531: file: id:000001,src:001266+003044,op:splice,rep:128. */
8128 if (arm_sec->rela == NULL)
8129 {
8130 * wordp = word;
8131 return TRUE;
8132 }
8133
8134 /* Look through the relocs to find the one that applies to the provided offset. */
8135 wrapped = FALSE;
8136 for (rp = arm_sec->next_rela; rp != arm_sec->rela + arm_sec->nrelas; rp++)
8137 {
8138 bfd_vma prelval, offset;
8139
8140 if (rp->r_offset > word_offset && !wrapped)
8141 {
8142 rp = arm_sec->rela;
8143 wrapped = TRUE;
8144 }
8145 if (rp->r_offset > word_offset)
8146 break;
8147
8148 if (rp->r_offset & 3)
8149 {
8150 warn (_("Skipping unexpected relocation at offset 0x%lx\n"),
8151 (unsigned long) rp->r_offset);
8152 continue;
8153 }
8154
8155 if (rp->r_offset < word_offset)
8156 continue;
8157
8158 /* PR 17531: file: 027-161405-0.004 */
8159 if (aux->symtab == NULL)
8160 continue;
8161
8162 if (arm_sec->rel_type == SHT_REL)
8163 {
8164 offset = word & 0x7fffffff;
8165 if (offset & 0x40000000)
8166 offset |= ~ (bfd_vma) 0x7fffffff;
8167 }
8168 else if (arm_sec->rel_type == SHT_RELA)
8169 offset = rp->r_addend;
8170 else
8171 {
8172 error (_("Unknown section relocation type %d encountered\n"),
8173 arm_sec->rel_type);
8174 break;
8175 }
8176
8177 /* PR 17531 file: 027-1241568-0.004. */
8178 if (ELF32_R_SYM (rp->r_info) >= aux->nsyms)
8179 {
8180 error (_("Bad symbol index in unwind relocation (%lu > %lu)\n"),
8181 (unsigned long) ELF32_R_SYM (rp->r_info), aux->nsyms);
8182 break;
8183 }
8184
8185 sym = aux->symtab + ELF32_R_SYM (rp->r_info);
8186 offset += sym->st_value;
8187 prelval = offset - (arm_sec->sec->sh_addr + rp->r_offset);
8188
8189 /* Check that we are processing the expected reloc type. */
8190 if (elf_header.e_machine == EM_ARM)
8191 {
8192 relname = elf_arm_reloc_type (ELF32_R_TYPE (rp->r_info));
8193 if (relname == NULL)
8194 {
8195 warn (_("Skipping unknown ARM relocation type: %d\n"),
8196 (int) ELF32_R_TYPE (rp->r_info));
8197 continue;
8198 }
8199
8200 if (streq (relname, "R_ARM_NONE"))
8201 continue;
8202
8203 if (! streq (relname, "R_ARM_PREL31"))
8204 {
8205 warn (_("Skipping unexpected ARM relocation type %s\n"), relname);
8206 continue;
8207 }
8208 }
8209 else if (elf_header.e_machine == EM_TI_C6000)
8210 {
8211 relname = elf_tic6x_reloc_type (ELF32_R_TYPE (rp->r_info));
8212 if (relname == NULL)
8213 {
8214 warn (_("Skipping unknown C6000 relocation type: %d\n"),
8215 (int) ELF32_R_TYPE (rp->r_info));
8216 continue;
8217 }
8218
8219 if (streq (relname, "R_C6000_NONE"))
8220 continue;
8221
8222 if (! streq (relname, "R_C6000_PREL31"))
8223 {
8224 warn (_("Skipping unexpected C6000 relocation type %s\n"), relname);
8225 continue;
8226 }
8227
8228 prelval >>= 1;
8229 }
8230 else
8231 {
8232 /* This function currently only supports ARM and TI unwinders. */
8233 warn (_("Only TI and ARM unwinders are currently supported\n"));
8234 break;
8235 }
8236
8237 word = (word & ~ (bfd_vma) 0x7fffffff) | (prelval & 0x7fffffff);
8238 addr->section = sym->st_shndx;
8239 addr->offset = offset;
8240
8241 if (sym_name)
8242 * sym_name = sym->st_name;
8243 break;
8244 }
8245
8246 *wordp = word;
8247 arm_sec->next_rela = rp;
8248
8249 return TRUE;
8250 }
8251
8252 static const char *tic6x_unwind_regnames[16] =
8253 {
8254 "A15", "B15", "B14", "B13", "B12", "B11", "B10", "B3",
8255 "A14", "A13", "A12", "A11", "A10",
8256 "[invalid reg 13]", "[invalid reg 14]", "[invalid reg 15]"
8257 };
8258
8259 static void
8260 decode_tic6x_unwind_regmask (unsigned int mask)
8261 {
8262 int i;
8263
8264 for (i = 12; mask; mask >>= 1, i--)
8265 {
8266 if (mask & 1)
8267 {
8268 fputs (tic6x_unwind_regnames[i], stdout);
8269 if (mask > 1)
8270 fputs (", ", stdout);
8271 }
8272 }
8273 }
8274
8275 #define ADVANCE \
8276 if (remaining == 0 && more_words) \
8277 { \
8278 data_offset += 4; \
8279 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, \
8280 data_offset, & word, & addr, NULL)) \
8281 return FALSE; \
8282 remaining = 4; \
8283 more_words--; \
8284 } \
8285
8286 #define GET_OP(OP) \
8287 ADVANCE; \
8288 if (remaining) \
8289 { \
8290 remaining--; \
8291 (OP) = word >> 24; \
8292 word <<= 8; \
8293 } \
8294 else \
8295 { \
8296 printf (_("[Truncated opcode]\n")); \
8297 return FALSE; \
8298 } \
8299 printf ("0x%02x ", OP)
8300
8301 static bfd_boolean
8302 decode_arm_unwind_bytecode (struct arm_unw_aux_info * aux,
8303 unsigned int word,
8304 unsigned int remaining,
8305 unsigned int more_words,
8306 bfd_vma data_offset,
8307 Elf_Internal_Shdr * data_sec,
8308 struct arm_section * data_arm_sec)
8309 {
8310 struct absaddr addr;
8311 bfd_boolean res = TRUE;
8312
8313 /* Decode the unwinding instructions. */
8314 while (1)
8315 {
8316 unsigned int op, op2;
8317
8318 ADVANCE;
8319 if (remaining == 0)
8320 break;
8321 remaining--;
8322 op = word >> 24;
8323 word <<= 8;
8324
8325 printf (" 0x%02x ", op);
8326
8327 if ((op & 0xc0) == 0x00)
8328 {
8329 int offset = ((op & 0x3f) << 2) + 4;
8330
8331 printf (" vsp = vsp + %d", offset);
8332 }
8333 else if ((op & 0xc0) == 0x40)
8334 {
8335 int offset = ((op & 0x3f) << 2) + 4;
8336
8337 printf (" vsp = vsp - %d", offset);
8338 }
8339 else if ((op & 0xf0) == 0x80)
8340 {
8341 GET_OP (op2);
8342 if (op == 0x80 && op2 == 0)
8343 printf (_("Refuse to unwind"));
8344 else
8345 {
8346 unsigned int mask = ((op & 0x0f) << 8) | op2;
8347 bfd_boolean first = TRUE;
8348 int i;
8349
8350 printf ("pop {");
8351 for (i = 0; i < 12; i++)
8352 if (mask & (1 << i))
8353 {
8354 if (first)
8355 first = FALSE;
8356 else
8357 printf (", ");
8358 printf ("r%d", 4 + i);
8359 }
8360 printf ("}");
8361 }
8362 }
8363 else if ((op & 0xf0) == 0x90)
8364 {
8365 if (op == 0x9d || op == 0x9f)
8366 printf (_(" [Reserved]"));
8367 else
8368 printf (" vsp = r%d", op & 0x0f);
8369 }
8370 else if ((op & 0xf0) == 0xa0)
8371 {
8372 int end = 4 + (op & 0x07);
8373 bfd_boolean first = TRUE;
8374 int i;
8375
8376 printf (" pop {");
8377 for (i = 4; i <= end; i++)
8378 {
8379 if (first)
8380 first = FALSE;
8381 else
8382 printf (", ");
8383 printf ("r%d", i);
8384 }
8385 if (op & 0x08)
8386 {
8387 if (!first)
8388 printf (", ");
8389 printf ("r14");
8390 }
8391 printf ("}");
8392 }
8393 else if (op == 0xb0)
8394 printf (_(" finish"));
8395 else if (op == 0xb1)
8396 {
8397 GET_OP (op2);
8398 if (op2 == 0 || (op2 & 0xf0) != 0)
8399 printf (_("[Spare]"));
8400 else
8401 {
8402 unsigned int mask = op2 & 0x0f;
8403 bfd_boolean first = TRUE;
8404 int i;
8405
8406 printf ("pop {");
8407 for (i = 0; i < 12; i++)
8408 if (mask & (1 << i))
8409 {
8410 if (first)
8411 first = FALSE;
8412 else
8413 printf (", ");
8414 printf ("r%d", i);
8415 }
8416 printf ("}");
8417 }
8418 }
8419 else if (op == 0xb2)
8420 {
8421 unsigned char buf[9];
8422 unsigned int i, len;
8423 unsigned long offset;
8424
8425 for (i = 0; i < sizeof (buf); i++)
8426 {
8427 GET_OP (buf[i]);
8428 if ((buf[i] & 0x80) == 0)
8429 break;
8430 }
8431 if (i == sizeof (buf))
8432 {
8433 error (_("corrupt change to vsp"));
8434 res = FALSE;
8435 }
8436 else
8437 {
8438 offset = read_uleb128 (buf, &len, buf + i + 1);
8439 assert (len == i + 1);
8440 offset = offset * 4 + 0x204;
8441 printf ("vsp = vsp + %ld", offset);
8442 }
8443 }
8444 else if (op == 0xb3 || op == 0xc8 || op == 0xc9)
8445 {
8446 unsigned int first, last;
8447
8448 GET_OP (op2);
8449 first = op2 >> 4;
8450 last = op2 & 0x0f;
8451 if (op == 0xc8)
8452 first = first + 16;
8453 printf ("pop {D%d", first);
8454 if (last)
8455 printf ("-D%d", first + last);
8456 printf ("}");
8457 }
8458 else if ((op & 0xf8) == 0xb8 || (op & 0xf8) == 0xd0)
8459 {
8460 unsigned int count = op & 0x07;
8461
8462 printf ("pop {D8");
8463 if (count)
8464 printf ("-D%d", 8 + count);
8465 printf ("}");
8466 }
8467 else if (op >= 0xc0 && op <= 0xc5)
8468 {
8469 unsigned int count = op & 0x07;
8470
8471 printf (" pop {wR10");
8472 if (count)
8473 printf ("-wR%d", 10 + count);
8474 printf ("}");
8475 }
8476 else if (op == 0xc6)
8477 {
8478 unsigned int first, last;
8479
8480 GET_OP (op2);
8481 first = op2 >> 4;
8482 last = op2 & 0x0f;
8483 printf ("pop {wR%d", first);
8484 if (last)
8485 printf ("-wR%d", first + last);
8486 printf ("}");
8487 }
8488 else if (op == 0xc7)
8489 {
8490 GET_OP (op2);
8491 if (op2 == 0 || (op2 & 0xf0) != 0)
8492 printf (_("[Spare]"));
8493 else
8494 {
8495 unsigned int mask = op2 & 0x0f;
8496 bfd_boolean first = TRUE;
8497 int i;
8498
8499 printf ("pop {");
8500 for (i = 0; i < 4; i++)
8501 if (mask & (1 << i))
8502 {
8503 if (first)
8504 first = FALSE;
8505 else
8506 printf (", ");
8507 printf ("wCGR%d", i);
8508 }
8509 printf ("}");
8510 }
8511 }
8512 else
8513 {
8514 printf (_(" [unsupported opcode]"));
8515 res = FALSE;
8516 }
8517
8518 printf ("\n");
8519 }
8520
8521 return res;
8522 }
8523
8524 static bfd_boolean
8525 decode_tic6x_unwind_bytecode (struct arm_unw_aux_info * aux,
8526 unsigned int word,
8527 unsigned int remaining,
8528 unsigned int more_words,
8529 bfd_vma data_offset,
8530 Elf_Internal_Shdr * data_sec,
8531 struct arm_section * data_arm_sec)
8532 {
8533 struct absaddr addr;
8534
8535 /* Decode the unwinding instructions. */
8536 while (1)
8537 {
8538 unsigned int op, op2;
8539
8540 ADVANCE;
8541 if (remaining == 0)
8542 break;
8543 remaining--;
8544 op = word >> 24;
8545 word <<= 8;
8546
8547 printf (" 0x%02x ", op);
8548
8549 if ((op & 0xc0) == 0x00)
8550 {
8551 int offset = ((op & 0x3f) << 3) + 8;
8552 printf (" sp = sp + %d", offset);
8553 }
8554 else if ((op & 0xc0) == 0x80)
8555 {
8556 GET_OP (op2);
8557 if (op == 0x80 && op2 == 0)
8558 printf (_("Refuse to unwind"));
8559 else
8560 {
8561 unsigned int mask = ((op & 0x1f) << 8) | op2;
8562 if (op & 0x20)
8563 printf ("pop compact {");
8564 else
8565 printf ("pop {");
8566
8567 decode_tic6x_unwind_regmask (mask);
8568 printf("}");
8569 }
8570 }
8571 else if ((op & 0xf0) == 0xc0)
8572 {
8573 unsigned int reg;
8574 unsigned int nregs;
8575 unsigned int i;
8576 const char *name;
8577 struct
8578 {
8579 unsigned int offset;
8580 unsigned int reg;
8581 } regpos[16];
8582
8583 /* Scan entire instruction first so that GET_OP output is not
8584 interleaved with disassembly. */
8585 nregs = 0;
8586 for (i = 0; nregs < (op & 0xf); i++)
8587 {
8588 GET_OP (op2);
8589 reg = op2 >> 4;
8590 if (reg != 0xf)
8591 {
8592 regpos[nregs].offset = i * 2;
8593 regpos[nregs].reg = reg;
8594 nregs++;
8595 }
8596
8597 reg = op2 & 0xf;
8598 if (reg != 0xf)
8599 {
8600 regpos[nregs].offset = i * 2 + 1;
8601 regpos[nregs].reg = reg;
8602 nregs++;
8603 }
8604 }
8605
8606 printf (_("pop frame {"));
8607 reg = nregs - 1;
8608 for (i = i * 2; i > 0; i--)
8609 {
8610 if (regpos[reg].offset == i - 1)
8611 {
8612 name = tic6x_unwind_regnames[regpos[reg].reg];
8613 if (reg > 0)
8614 reg--;
8615 }
8616 else
8617 name = _("[pad]");
8618
8619 fputs (name, stdout);
8620 if (i > 1)
8621 printf (", ");
8622 }
8623
8624 printf ("}");
8625 }
8626 else if (op == 0xd0)
8627 printf (" MOV FP, SP");
8628 else if (op == 0xd1)
8629 printf (" __c6xabi_pop_rts");
8630 else if (op == 0xd2)
8631 {
8632 unsigned char buf[9];
8633 unsigned int i, len;
8634 unsigned long offset;
8635
8636 for (i = 0; i < sizeof (buf); i++)
8637 {
8638 GET_OP (buf[i]);
8639 if ((buf[i] & 0x80) == 0)
8640 break;
8641 }
8642 /* PR 17531: file: id:000001,src:001906+004739,op:splice,rep:2. */
8643 if (i == sizeof (buf))
8644 {
8645 warn (_("Corrupt stack pointer adjustment detected\n"));
8646 return FALSE;
8647 }
8648
8649 offset = read_uleb128 (buf, &len, buf + i + 1);
8650 assert (len == i + 1);
8651 offset = offset * 8 + 0x408;
8652 printf (_("sp = sp + %ld"), offset);
8653 }
8654 else if ((op & 0xf0) == 0xe0)
8655 {
8656 if ((op & 0x0f) == 7)
8657 printf (" RETURN");
8658 else
8659 printf (" MV %s, B3", tic6x_unwind_regnames[op & 0x0f]);
8660 }
8661 else
8662 {
8663 printf (_(" [unsupported opcode]"));
8664 }
8665 putchar ('\n');
8666 }
8667
8668 return TRUE;
8669 }
8670
8671 static bfd_vma
8672 arm_expand_prel31 (bfd_vma word, bfd_vma where)
8673 {
8674 bfd_vma offset;
8675
8676 offset = word & 0x7fffffff;
8677 if (offset & 0x40000000)
8678 offset |= ~ (bfd_vma) 0x7fffffff;
8679
8680 if (elf_header.e_machine == EM_TI_C6000)
8681 offset <<= 1;
8682
8683 return offset + where;
8684 }
8685
8686 static bfd_boolean
8687 decode_arm_unwind (struct arm_unw_aux_info * aux,
8688 unsigned int word,
8689 unsigned int remaining,
8690 bfd_vma data_offset,
8691 Elf_Internal_Shdr * data_sec,
8692 struct arm_section * data_arm_sec)
8693 {
8694 int per_index;
8695 unsigned int more_words = 0;
8696 struct absaddr addr;
8697 bfd_vma sym_name = (bfd_vma) -1;
8698 bfd_boolean res = FALSE;
8699
8700 if (remaining == 0)
8701 {
8702 /* Fetch the first word.
8703 Note - when decoding an object file the address extracted
8704 here will always be 0. So we also pass in the sym_name
8705 parameter so that we can find the symbol associated with
8706 the personality routine. */
8707 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, data_offset,
8708 & word, & addr, & sym_name))
8709 return FALSE;
8710
8711 remaining = 4;
8712 }
8713
8714 if ((word & 0x80000000) == 0)
8715 {
8716 /* Expand prel31 for personality routine. */
8717 bfd_vma fn;
8718 const char *procname;
8719
8720 fn = arm_expand_prel31 (word, data_sec->sh_addr + data_offset);
8721 printf (_(" Personality routine: "));
8722 if (fn == 0
8723 && addr.section == SHN_UNDEF && addr.offset == 0
8724 && sym_name != (bfd_vma) -1 && sym_name < aux->strtab_size)
8725 {
8726 procname = aux->strtab + sym_name;
8727 print_vma (fn, PREFIX_HEX);
8728 if (procname)
8729 {
8730 fputs (" <", stdout);
8731 fputs (procname, stdout);
8732 fputc ('>', stdout);
8733 }
8734 }
8735 else
8736 procname = arm_print_vma_and_name (aux, fn, addr);
8737 fputc ('\n', stdout);
8738
8739 /* The GCC personality routines use the standard compact
8740 encoding, starting with one byte giving the number of
8741 words. */
8742 if (procname != NULL
8743 && (const_strneq (procname, "__gcc_personality_v0")
8744 || const_strneq (procname, "__gxx_personality_v0")
8745 || const_strneq (procname, "__gcj_personality_v0")
8746 || const_strneq (procname, "__gnu_objc_personality_v0")))
8747 {
8748 remaining = 0;
8749 more_words = 1;
8750 ADVANCE;
8751 if (!remaining)
8752 {
8753 printf (_(" [Truncated data]\n"));
8754 return FALSE;
8755 }
8756 more_words = word >> 24;
8757 word <<= 8;
8758 remaining--;
8759 per_index = -1;
8760 }
8761 else
8762 return TRUE;
8763 }
8764 else
8765 {
8766 /* ARM EHABI Section 6.3:
8767
8768 An exception-handling table entry for the compact model looks like:
8769
8770 31 30-28 27-24 23-0
8771 -- ----- ----- ----
8772 1 0 index Data for personalityRoutine[index] */
8773
8774 if (elf_header.e_machine == EM_ARM
8775 && (word & 0x70000000))
8776 {
8777 warn (_("Corrupt ARM compact model table entry: %x \n"), word);
8778 res = FALSE;
8779 }
8780
8781 per_index = (word >> 24) & 0x7f;
8782 printf (_(" Compact model index: %d\n"), per_index);
8783 if (per_index == 0)
8784 {
8785 more_words = 0;
8786 word <<= 8;
8787 remaining--;
8788 }
8789 else if (per_index < 3)
8790 {
8791 more_words = (word >> 16) & 0xff;
8792 word <<= 16;
8793 remaining -= 2;
8794 }
8795 }
8796
8797 switch (elf_header.e_machine)
8798 {
8799 case EM_ARM:
8800 if (per_index < 3)
8801 {
8802 if (! decode_arm_unwind_bytecode (aux, word, remaining, more_words,
8803 data_offset, data_sec, data_arm_sec))
8804 res = FALSE;
8805 }
8806 else
8807 {
8808 warn (_("Unknown ARM compact model index encountered\n"));
8809 printf (_(" [reserved]\n"));
8810 res = FALSE;
8811 }
8812 break;
8813
8814 case EM_TI_C6000:
8815 if (per_index < 3)
8816 {
8817 if (! decode_tic6x_unwind_bytecode (aux, word, remaining, more_words,
8818 data_offset, data_sec, data_arm_sec))
8819 res = FALSE;
8820 }
8821 else if (per_index < 5)
8822 {
8823 if (((word >> 17) & 0x7f) == 0x7f)
8824 printf (_(" Restore stack from frame pointer\n"));
8825 else
8826 printf (_(" Stack increment %d\n"), (word >> 14) & 0x1fc);
8827 printf (_(" Registers restored: "));
8828 if (per_index == 4)
8829 printf (" (compact) ");
8830 decode_tic6x_unwind_regmask ((word >> 4) & 0x1fff);
8831 putchar ('\n');
8832 printf (_(" Return register: %s\n"),
8833 tic6x_unwind_regnames[word & 0xf]);
8834 }
8835 else
8836 printf (_(" [reserved (%d)]\n"), per_index);
8837 break;
8838
8839 default:
8840 error (_("Unsupported architecture type %d encountered when decoding unwind table\n"),
8841 elf_header.e_machine);
8842 res = FALSE;
8843 }
8844
8845 /* Decode the descriptors. Not implemented. */
8846
8847 return res;
8848 }
8849
8850 static bfd_boolean
8851 dump_arm_unwind (struct arm_unw_aux_info *aux, Elf_Internal_Shdr *exidx_sec)
8852 {
8853 struct arm_section exidx_arm_sec, extab_arm_sec;
8854 unsigned int i, exidx_len;
8855 unsigned long j, nfuns;
8856 bfd_boolean res = TRUE;
8857
8858 memset (&exidx_arm_sec, 0, sizeof (exidx_arm_sec));
8859 memset (&extab_arm_sec, 0, sizeof (extab_arm_sec));
8860 exidx_len = exidx_sec->sh_size / 8;
8861
8862 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
8863 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
8864 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
8865 aux->funtab[nfuns++] = aux->symtab[j];
8866 aux->nfuns = nfuns;
8867 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
8868
8869 for (i = 0; i < exidx_len; i++)
8870 {
8871 unsigned int exidx_fn, exidx_entry;
8872 struct absaddr fn_addr, entry_addr;
8873 bfd_vma fn;
8874
8875 fputc ('\n', stdout);
8876
8877 if (! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
8878 8 * i, & exidx_fn, & fn_addr, NULL)
8879 || ! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
8880 8 * i + 4, & exidx_entry, & entry_addr, NULL))
8881 {
8882 free (aux->funtab);
8883 arm_free_section (& exidx_arm_sec);
8884 arm_free_section (& extab_arm_sec);
8885 return FALSE;
8886 }
8887
8888 /* ARM EHABI, Section 5:
8889 An index table entry consists of 2 words.
8890 The first word contains a prel31 offset to the start of a function, with bit 31 clear. */
8891 if (exidx_fn & 0x80000000)
8892 {
8893 warn (_("corrupt index table entry: %x\n"), exidx_fn);
8894 res = FALSE;
8895 }
8896
8897 fn = arm_expand_prel31 (exidx_fn, exidx_sec->sh_addr + 8 * i);
8898
8899 arm_print_vma_and_name (aux, fn, fn_addr);
8900 fputs (": ", stdout);
8901
8902 if (exidx_entry == 1)
8903 {
8904 print_vma (exidx_entry, PREFIX_HEX);
8905 fputs (" [cantunwind]\n", stdout);
8906 }
8907 else if (exidx_entry & 0x80000000)
8908 {
8909 print_vma (exidx_entry, PREFIX_HEX);
8910 fputc ('\n', stdout);
8911 decode_arm_unwind (aux, exidx_entry, 4, 0, NULL, NULL);
8912 }
8913 else
8914 {
8915 bfd_vma table, table_offset = 0;
8916 Elf_Internal_Shdr *table_sec;
8917
8918 fputs ("@", stdout);
8919 table = arm_expand_prel31 (exidx_entry, exidx_sec->sh_addr + 8 * i + 4);
8920 print_vma (table, PREFIX_HEX);
8921 printf ("\n");
8922
8923 /* Locate the matching .ARM.extab. */
8924 if (entry_addr.section != SHN_UNDEF
8925 && entry_addr.section < elf_header.e_shnum)
8926 {
8927 table_sec = section_headers + entry_addr.section;
8928 table_offset = entry_addr.offset;
8929 /* PR 18879 */
8930 if (table_offset > table_sec->sh_size
8931 || ((bfd_signed_vma) table_offset) < 0)
8932 {
8933 warn (_("Unwind entry contains corrupt offset (0x%lx) into section %s\n"),
8934 (unsigned long) table_offset,
8935 printable_section_name (table_sec));
8936 res = FALSE;
8937 continue;
8938 }
8939 }
8940 else
8941 {
8942 table_sec = find_section_by_address (table);
8943 if (table_sec != NULL)
8944 table_offset = table - table_sec->sh_addr;
8945 }
8946
8947 if (table_sec == NULL)
8948 {
8949 warn (_("Could not locate .ARM.extab section containing 0x%lx.\n"),
8950 (unsigned long) table);
8951 res = FALSE;
8952 continue;
8953 }
8954
8955 if (! decode_arm_unwind (aux, 0, 0, table_offset, table_sec,
8956 &extab_arm_sec))
8957 res = FALSE;
8958 }
8959 }
8960
8961 printf ("\n");
8962
8963 free (aux->funtab);
8964 arm_free_section (&exidx_arm_sec);
8965 arm_free_section (&extab_arm_sec);
8966
8967 return res;
8968 }
8969
8970 /* Used for both ARM and C6X unwinding tables. */
8971
8972 static bfd_boolean
8973 arm_process_unwind (FILE *file)
8974 {
8975 struct arm_unw_aux_info aux;
8976 Elf_Internal_Shdr *unwsec = NULL;
8977 Elf_Internal_Shdr *strsec;
8978 Elf_Internal_Shdr *sec;
8979 unsigned long i;
8980 unsigned int sec_type;
8981 bfd_boolean res = TRUE;
8982
8983 switch (elf_header.e_machine)
8984 {
8985 case EM_ARM:
8986 sec_type = SHT_ARM_EXIDX;
8987 break;
8988
8989 case EM_TI_C6000:
8990 sec_type = SHT_C6000_UNWIND;
8991 break;
8992
8993 default:
8994 error (_("Unsupported architecture type %d encountered when processing unwind table\n"),
8995 elf_header.e_machine);
8996 return FALSE;
8997 }
8998
8999 if (string_table == NULL)
9000 return FALSE;
9001
9002 memset (& aux, 0, sizeof (aux));
9003 aux.file = file;
9004
9005 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
9006 {
9007 if (sec->sh_type == SHT_SYMTAB && sec->sh_link < elf_header.e_shnum)
9008 {
9009 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
9010
9011 strsec = section_headers + sec->sh_link;
9012
9013 /* PR binutils/17531 file: 011-12666-0.004. */
9014 if (aux.strtab != NULL)
9015 {
9016 error (_("Multiple string tables found in file.\n"));
9017 free (aux.strtab);
9018 res = FALSE;
9019 }
9020 aux.strtab = get_data (NULL, file, strsec->sh_offset,
9021 1, strsec->sh_size, _("string table"));
9022 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
9023 }
9024 else if (sec->sh_type == sec_type)
9025 unwsec = sec;
9026 }
9027
9028 if (unwsec == NULL)
9029 printf (_("\nThere are no unwind sections in this file.\n"));
9030 else
9031 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
9032 {
9033 if (sec->sh_type == sec_type)
9034 {
9035 printf (_("\nUnwind table index '%s' at offset 0x%lx contains %lu entries:\n"),
9036 printable_section_name (sec),
9037 (unsigned long) sec->sh_offset,
9038 (unsigned long) (sec->sh_size / (2 * eh_addr_size)));
9039
9040 if (! dump_arm_unwind (&aux, sec))
9041 res = FALSE;
9042 }
9043 }
9044
9045 if (aux.symtab)
9046 free (aux.symtab);
9047 if (aux.strtab)
9048 free ((char *) aux.strtab);
9049
9050 return res;
9051 }
9052
9053 static bfd_boolean
9054 process_unwind (FILE * file)
9055 {
9056 struct unwind_handler
9057 {
9058 unsigned int machtype;
9059 bfd_boolean (* handler)(FILE *);
9060 } handlers[] =
9061 {
9062 { EM_ARM, arm_process_unwind },
9063 { EM_IA_64, ia64_process_unwind },
9064 { EM_PARISC, hppa_process_unwind },
9065 { EM_TI_C6000, arm_process_unwind },
9066 { 0, NULL }
9067 };
9068 int i;
9069
9070 if (!do_unwind)
9071 return TRUE;
9072
9073 for (i = 0; handlers[i].handler != NULL; i++)
9074 if (elf_header.e_machine == handlers[i].machtype)
9075 return handlers[i].handler (file);
9076
9077 printf (_("\nThe decoding of unwind sections for machine type %s is not currently supported.\n"),
9078 get_machine_name (elf_header.e_machine));
9079 return TRUE;
9080 }
9081
9082 static void
9083 dynamic_section_mips_val (Elf_Internal_Dyn * entry)
9084 {
9085 switch (entry->d_tag)
9086 {
9087 case DT_MIPS_FLAGS:
9088 if (entry->d_un.d_val == 0)
9089 printf (_("NONE"));
9090 else
9091 {
9092 static const char * opts[] =
9093 {
9094 "QUICKSTART", "NOTPOT", "NO_LIBRARY_REPLACEMENT",
9095 "NO_MOVE", "SGI_ONLY", "GUARANTEE_INIT", "DELTA_C_PLUS_PLUS",
9096 "GUARANTEE_START_INIT", "PIXIE", "DEFAULT_DELAY_LOAD",
9097 "REQUICKSTART", "REQUICKSTARTED", "CORD", "NO_UNRES_UNDEF",
9098 "RLD_ORDER_SAFE"
9099 };
9100 unsigned int cnt;
9101 bfd_boolean first = TRUE;
9102
9103 for (cnt = 0; cnt < ARRAY_SIZE (opts); ++cnt)
9104 if (entry->d_un.d_val & (1 << cnt))
9105 {
9106 printf ("%s%s", first ? "" : " ", opts[cnt]);
9107 first = FALSE;
9108 }
9109 }
9110 break;
9111
9112 case DT_MIPS_IVERSION:
9113 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
9114 printf (_("Interface Version: %s"), GET_DYNAMIC_NAME (entry->d_un.d_val));
9115 else
9116 {
9117 char buf[40];
9118 sprintf_vma (buf, entry->d_un.d_ptr);
9119 /* Note: coded this way so that there is a single string for translation. */
9120 printf (_("<corrupt: %s>"), buf);
9121 }
9122 break;
9123
9124 case DT_MIPS_TIME_STAMP:
9125 {
9126 char timebuf[128];
9127 struct tm * tmp;
9128 time_t atime = entry->d_un.d_val;
9129
9130 tmp = gmtime (&atime);
9131 /* PR 17531: file: 6accc532. */
9132 if (tmp == NULL)
9133 snprintf (timebuf, sizeof (timebuf), _("<corrupt>"));
9134 else
9135 snprintf (timebuf, sizeof (timebuf), "%04u-%02u-%02uT%02u:%02u:%02u",
9136 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
9137 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
9138 printf (_("Time Stamp: %s"), timebuf);
9139 }
9140 break;
9141
9142 case DT_MIPS_RLD_VERSION:
9143 case DT_MIPS_LOCAL_GOTNO:
9144 case DT_MIPS_CONFLICTNO:
9145 case DT_MIPS_LIBLISTNO:
9146 case DT_MIPS_SYMTABNO:
9147 case DT_MIPS_UNREFEXTNO:
9148 case DT_MIPS_HIPAGENO:
9149 case DT_MIPS_DELTA_CLASS_NO:
9150 case DT_MIPS_DELTA_INSTANCE_NO:
9151 case DT_MIPS_DELTA_RELOC_NO:
9152 case DT_MIPS_DELTA_SYM_NO:
9153 case DT_MIPS_DELTA_CLASSSYM_NO:
9154 case DT_MIPS_COMPACT_SIZE:
9155 print_vma (entry->d_un.d_val, DEC);
9156 break;
9157
9158 default:
9159 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9160 }
9161 putchar ('\n');
9162 }
9163
9164 static void
9165 dynamic_section_parisc_val (Elf_Internal_Dyn * entry)
9166 {
9167 switch (entry->d_tag)
9168 {
9169 case DT_HP_DLD_FLAGS:
9170 {
9171 static struct
9172 {
9173 long int bit;
9174 const char * str;
9175 }
9176 flags[] =
9177 {
9178 { DT_HP_DEBUG_PRIVATE, "HP_DEBUG_PRIVATE" },
9179 { DT_HP_DEBUG_CALLBACK, "HP_DEBUG_CALLBACK" },
9180 { DT_HP_DEBUG_CALLBACK_BOR, "HP_DEBUG_CALLBACK_BOR" },
9181 { DT_HP_NO_ENVVAR, "HP_NO_ENVVAR" },
9182 { DT_HP_BIND_NOW, "HP_BIND_NOW" },
9183 { DT_HP_BIND_NONFATAL, "HP_BIND_NONFATAL" },
9184 { DT_HP_BIND_VERBOSE, "HP_BIND_VERBOSE" },
9185 { DT_HP_BIND_RESTRICTED, "HP_BIND_RESTRICTED" },
9186 { DT_HP_BIND_SYMBOLIC, "HP_BIND_SYMBOLIC" },
9187 { DT_HP_RPATH_FIRST, "HP_RPATH_FIRST" },
9188 { DT_HP_BIND_DEPTH_FIRST, "HP_BIND_DEPTH_FIRST" },
9189 { DT_HP_GST, "HP_GST" },
9190 { DT_HP_SHLIB_FIXED, "HP_SHLIB_FIXED" },
9191 { DT_HP_MERGE_SHLIB_SEG, "HP_MERGE_SHLIB_SEG" },
9192 { DT_HP_NODELETE, "HP_NODELETE" },
9193 { DT_HP_GROUP, "HP_GROUP" },
9194 { DT_HP_PROTECT_LINKAGE_TABLE, "HP_PROTECT_LINKAGE_TABLE" }
9195 };
9196 bfd_boolean first = TRUE;
9197 size_t cnt;
9198 bfd_vma val = entry->d_un.d_val;
9199
9200 for (cnt = 0; cnt < ARRAY_SIZE (flags); ++cnt)
9201 if (val & flags[cnt].bit)
9202 {
9203 if (! first)
9204 putchar (' ');
9205 fputs (flags[cnt].str, stdout);
9206 first = FALSE;
9207 val ^= flags[cnt].bit;
9208 }
9209
9210 if (val != 0 || first)
9211 {
9212 if (! first)
9213 putchar (' ');
9214 print_vma (val, HEX);
9215 }
9216 }
9217 break;
9218
9219 default:
9220 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9221 break;
9222 }
9223 putchar ('\n');
9224 }
9225
9226 #ifdef BFD64
9227
9228 /* VMS vs Unix time offset and factor. */
9229
9230 #define VMS_EPOCH_OFFSET 35067168000000000LL
9231 #define VMS_GRANULARITY_FACTOR 10000000
9232
9233 /* Display a VMS time in a human readable format. */
9234
9235 static void
9236 print_vms_time (bfd_int64_t vmstime)
9237 {
9238 struct tm *tm;
9239 time_t unxtime;
9240
9241 unxtime = (vmstime - VMS_EPOCH_OFFSET) / VMS_GRANULARITY_FACTOR;
9242 tm = gmtime (&unxtime);
9243 printf ("%04u-%02u-%02uT%02u:%02u:%02u",
9244 tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
9245 tm->tm_hour, tm->tm_min, tm->tm_sec);
9246 }
9247 #endif /* BFD64 */
9248
9249 static void
9250 dynamic_section_ia64_val (Elf_Internal_Dyn * entry)
9251 {
9252 switch (entry->d_tag)
9253 {
9254 case DT_IA_64_PLT_RESERVE:
9255 /* First 3 slots reserved. */
9256 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9257 printf (" -- ");
9258 print_vma (entry->d_un.d_ptr + (3 * 8), PREFIX_HEX);
9259 break;
9260
9261 case DT_IA_64_VMS_LINKTIME:
9262 #ifdef BFD64
9263 print_vms_time (entry->d_un.d_val);
9264 #endif
9265 break;
9266
9267 case DT_IA_64_VMS_LNKFLAGS:
9268 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9269 if (entry->d_un.d_val & VMS_LF_CALL_DEBUG)
9270 printf (" CALL_DEBUG");
9271 if (entry->d_un.d_val & VMS_LF_NOP0BUFS)
9272 printf (" NOP0BUFS");
9273 if (entry->d_un.d_val & VMS_LF_P0IMAGE)
9274 printf (" P0IMAGE");
9275 if (entry->d_un.d_val & VMS_LF_MKTHREADS)
9276 printf (" MKTHREADS");
9277 if (entry->d_un.d_val & VMS_LF_UPCALLS)
9278 printf (" UPCALLS");
9279 if (entry->d_un.d_val & VMS_LF_IMGSTA)
9280 printf (" IMGSTA");
9281 if (entry->d_un.d_val & VMS_LF_INITIALIZE)
9282 printf (" INITIALIZE");
9283 if (entry->d_un.d_val & VMS_LF_MAIN)
9284 printf (" MAIN");
9285 if (entry->d_un.d_val & VMS_LF_EXE_INIT)
9286 printf (" EXE_INIT");
9287 if (entry->d_un.d_val & VMS_LF_TBK_IN_IMG)
9288 printf (" TBK_IN_IMG");
9289 if (entry->d_un.d_val & VMS_LF_DBG_IN_IMG)
9290 printf (" DBG_IN_IMG");
9291 if (entry->d_un.d_val & VMS_LF_TBK_IN_DSF)
9292 printf (" TBK_IN_DSF");
9293 if (entry->d_un.d_val & VMS_LF_DBG_IN_DSF)
9294 printf (" DBG_IN_DSF");
9295 if (entry->d_un.d_val & VMS_LF_SIGNATURES)
9296 printf (" SIGNATURES");
9297 if (entry->d_un.d_val & VMS_LF_REL_SEG_OFF)
9298 printf (" REL_SEG_OFF");
9299 break;
9300
9301 default:
9302 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9303 break;
9304 }
9305 putchar ('\n');
9306 }
9307
9308 static bfd_boolean
9309 get_32bit_dynamic_section (FILE * file)
9310 {
9311 Elf32_External_Dyn * edyn;
9312 Elf32_External_Dyn * ext;
9313 Elf_Internal_Dyn * entry;
9314
9315 edyn = (Elf32_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
9316 dynamic_size, _("dynamic section"));
9317 if (!edyn)
9318 return FALSE;
9319
9320 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
9321 might not have the luxury of section headers. Look for the DT_NULL
9322 terminator to determine the number of entries. */
9323 for (ext = edyn, dynamic_nent = 0;
9324 (char *) (ext + 1) <= (char *) edyn + dynamic_size;
9325 ext++)
9326 {
9327 dynamic_nent++;
9328 if (BYTE_GET (ext->d_tag) == DT_NULL)
9329 break;
9330 }
9331
9332 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
9333 sizeof (* entry));
9334 if (dynamic_section == NULL)
9335 {
9336 error (_("Out of memory allocating space for %lu dynamic entries\n"),
9337 (unsigned long) dynamic_nent);
9338 free (edyn);
9339 return FALSE;
9340 }
9341
9342 for (ext = edyn, entry = dynamic_section;
9343 entry < dynamic_section + dynamic_nent;
9344 ext++, entry++)
9345 {
9346 entry->d_tag = BYTE_GET (ext->d_tag);
9347 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
9348 }
9349
9350 free (edyn);
9351
9352 return TRUE;
9353 }
9354
9355 static bfd_boolean
9356 get_64bit_dynamic_section (FILE * file)
9357 {
9358 Elf64_External_Dyn * edyn;
9359 Elf64_External_Dyn * ext;
9360 Elf_Internal_Dyn * entry;
9361
9362 /* Read in the data. */
9363 edyn = (Elf64_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
9364 dynamic_size, _("dynamic section"));
9365 if (!edyn)
9366 return FALSE;
9367
9368 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
9369 might not have the luxury of section headers. Look for the DT_NULL
9370 terminator to determine the number of entries. */
9371 for (ext = edyn, dynamic_nent = 0;
9372 /* PR 17533 file: 033-67080-0.004 - do not read past end of buffer. */
9373 (char *) (ext + 1) <= (char *) edyn + dynamic_size;
9374 ext++)
9375 {
9376 dynamic_nent++;
9377 if (BYTE_GET (ext->d_tag) == DT_NULL)
9378 break;
9379 }
9380
9381 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
9382 sizeof (* entry));
9383 if (dynamic_section == NULL)
9384 {
9385 error (_("Out of memory allocating space for %lu dynamic entries\n"),
9386 (unsigned long) dynamic_nent);
9387 free (edyn);
9388 return FALSE;
9389 }
9390
9391 /* Convert from external to internal formats. */
9392 for (ext = edyn, entry = dynamic_section;
9393 entry < dynamic_section + dynamic_nent;
9394 ext++, entry++)
9395 {
9396 entry->d_tag = BYTE_GET (ext->d_tag);
9397 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
9398 }
9399
9400 free (edyn);
9401
9402 return TRUE;
9403 }
9404
9405 static void
9406 print_dynamic_flags (bfd_vma flags)
9407 {
9408 bfd_boolean first = TRUE;
9409
9410 while (flags)
9411 {
9412 bfd_vma flag;
9413
9414 flag = flags & - flags;
9415 flags &= ~ flag;
9416
9417 if (first)
9418 first = FALSE;
9419 else
9420 putc (' ', stdout);
9421
9422 switch (flag)
9423 {
9424 case DF_ORIGIN: fputs ("ORIGIN", stdout); break;
9425 case DF_SYMBOLIC: fputs ("SYMBOLIC", stdout); break;
9426 case DF_TEXTREL: fputs ("TEXTREL", stdout); break;
9427 case DF_BIND_NOW: fputs ("BIND_NOW", stdout); break;
9428 case DF_STATIC_TLS: fputs ("STATIC_TLS", stdout); break;
9429 default: fputs (_("unknown"), stdout); break;
9430 }
9431 }
9432 puts ("");
9433 }
9434
9435 /* Parse and display the contents of the dynamic section. */
9436
9437 static bfd_boolean
9438 process_dynamic_section (FILE * file)
9439 {
9440 Elf_Internal_Dyn * entry;
9441
9442 if (dynamic_size == 0)
9443 {
9444 if (do_dynamic)
9445 printf (_("\nThere is no dynamic section in this file.\n"));
9446
9447 return TRUE;
9448 }
9449
9450 if (is_32bit_elf)
9451 {
9452 if (! get_32bit_dynamic_section (file))
9453 return FALSE;
9454 }
9455 else
9456 {
9457 if (! get_64bit_dynamic_section (file))
9458 return FALSE;
9459 }
9460
9461 /* Find the appropriate symbol table. */
9462 if (dynamic_symbols == NULL)
9463 {
9464 for (entry = dynamic_section;
9465 entry < dynamic_section + dynamic_nent;
9466 ++entry)
9467 {
9468 Elf_Internal_Shdr section;
9469
9470 if (entry->d_tag != DT_SYMTAB)
9471 continue;
9472
9473 dynamic_info[DT_SYMTAB] = entry->d_un.d_val;
9474
9475 /* Since we do not know how big the symbol table is,
9476 we default to reading in the entire file (!) and
9477 processing that. This is overkill, I know, but it
9478 should work. */
9479 section.sh_offset = offset_from_vma (file, entry->d_un.d_val, 0);
9480 if ((bfd_size_type) section.sh_offset > current_file_size)
9481 {
9482 /* See PR 21379 for a reproducer. */
9483 error (_("Invalid DT_SYMTAB entry: %lx"), (long) section.sh_offset);
9484 return FALSE;
9485 }
9486
9487 if (archive_file_offset != 0)
9488 section.sh_size = archive_file_size - section.sh_offset;
9489 else
9490 {
9491 if (fseek (file, 0, SEEK_END))
9492 error (_("Unable to seek to end of file!\n"));
9493
9494 section.sh_size = ftell (file) - section.sh_offset;
9495 }
9496
9497 if (is_32bit_elf)
9498 section.sh_entsize = sizeof (Elf32_External_Sym);
9499 else
9500 section.sh_entsize = sizeof (Elf64_External_Sym);
9501 section.sh_name = string_table_length;
9502
9503 dynamic_symbols = GET_ELF_SYMBOLS (file, &section, & num_dynamic_syms);
9504 if (num_dynamic_syms < 1)
9505 {
9506 error (_("Unable to determine the number of symbols to load\n"));
9507 continue;
9508 }
9509 }
9510 }
9511
9512 /* Similarly find a string table. */
9513 if (dynamic_strings == NULL)
9514 {
9515 for (entry = dynamic_section;
9516 entry < dynamic_section + dynamic_nent;
9517 ++entry)
9518 {
9519 unsigned long offset;
9520 long str_tab_len;
9521
9522 if (entry->d_tag != DT_STRTAB)
9523 continue;
9524
9525 dynamic_info[DT_STRTAB] = entry->d_un.d_val;
9526
9527 /* Since we do not know how big the string table is,
9528 we default to reading in the entire file (!) and
9529 processing that. This is overkill, I know, but it
9530 should work. */
9531
9532 offset = offset_from_vma (file, entry->d_un.d_val, 0);
9533
9534 if (archive_file_offset != 0)
9535 str_tab_len = archive_file_size - offset;
9536 else
9537 {
9538 if (fseek (file, 0, SEEK_END))
9539 error (_("Unable to seek to end of file\n"));
9540 str_tab_len = ftell (file) - offset;
9541 }
9542
9543 if (str_tab_len < 1)
9544 {
9545 error
9546 (_("Unable to determine the length of the dynamic string table\n"));
9547 continue;
9548 }
9549
9550 dynamic_strings = (char *) get_data (NULL, file, offset, 1,
9551 str_tab_len,
9552 _("dynamic string table"));
9553 dynamic_strings_length = dynamic_strings == NULL ? 0 : str_tab_len;
9554 break;
9555 }
9556 }
9557
9558 /* And find the syminfo section if available. */
9559 if (dynamic_syminfo == NULL)
9560 {
9561 unsigned long syminsz = 0;
9562
9563 for (entry = dynamic_section;
9564 entry < dynamic_section + dynamic_nent;
9565 ++entry)
9566 {
9567 if (entry->d_tag == DT_SYMINENT)
9568 {
9569 /* Note: these braces are necessary to avoid a syntax
9570 error from the SunOS4 C compiler. */
9571 /* PR binutils/17531: A corrupt file can trigger this test.
9572 So do not use an assert, instead generate an error message. */
9573 if (sizeof (Elf_External_Syminfo) != entry->d_un.d_val)
9574 error (_("Bad value (%d) for SYMINENT entry\n"),
9575 (int) entry->d_un.d_val);
9576 }
9577 else if (entry->d_tag == DT_SYMINSZ)
9578 syminsz = entry->d_un.d_val;
9579 else if (entry->d_tag == DT_SYMINFO)
9580 dynamic_syminfo_offset = offset_from_vma (file, entry->d_un.d_val,
9581 syminsz);
9582 }
9583
9584 if (dynamic_syminfo_offset != 0 && syminsz != 0)
9585 {
9586 Elf_External_Syminfo * extsyminfo;
9587 Elf_External_Syminfo * extsym;
9588 Elf_Internal_Syminfo * syminfo;
9589
9590 /* There is a syminfo section. Read the data. */
9591 extsyminfo = (Elf_External_Syminfo *)
9592 get_data (NULL, file, dynamic_syminfo_offset, 1, syminsz,
9593 _("symbol information"));
9594 if (!extsyminfo)
9595 return FALSE;
9596
9597 dynamic_syminfo = (Elf_Internal_Syminfo *) malloc (syminsz);
9598 if (dynamic_syminfo == NULL)
9599 {
9600 error (_("Out of memory allocating %lu byte for dynamic symbol info\n"),
9601 (unsigned long) syminsz);
9602 return FALSE;
9603 }
9604
9605 dynamic_syminfo_nent = syminsz / sizeof (Elf_External_Syminfo);
9606 for (syminfo = dynamic_syminfo, extsym = extsyminfo;
9607 syminfo < dynamic_syminfo + dynamic_syminfo_nent;
9608 ++syminfo, ++extsym)
9609 {
9610 syminfo->si_boundto = BYTE_GET (extsym->si_boundto);
9611 syminfo->si_flags = BYTE_GET (extsym->si_flags);
9612 }
9613
9614 free (extsyminfo);
9615 }
9616 }
9617
9618 if (do_dynamic && dynamic_addr)
9619 printf (_("\nDynamic section at offset 0x%lx contains %lu entries:\n"),
9620 dynamic_addr, (unsigned long) dynamic_nent);
9621 if (do_dynamic)
9622 printf (_(" Tag Type Name/Value\n"));
9623
9624 for (entry = dynamic_section;
9625 entry < dynamic_section + dynamic_nent;
9626 entry++)
9627 {
9628 if (do_dynamic)
9629 {
9630 const char * dtype;
9631
9632 putchar (' ');
9633 print_vma (entry->d_tag, FULL_HEX);
9634 dtype = get_dynamic_type (entry->d_tag);
9635 printf (" (%s)%*s", dtype,
9636 ((is_32bit_elf ? 27 : 19) - (int) strlen (dtype)), " ");
9637 }
9638
9639 switch (entry->d_tag)
9640 {
9641 case DT_FLAGS:
9642 if (do_dynamic)
9643 print_dynamic_flags (entry->d_un.d_val);
9644 break;
9645
9646 case DT_AUXILIARY:
9647 case DT_FILTER:
9648 case DT_CONFIG:
9649 case DT_DEPAUDIT:
9650 case DT_AUDIT:
9651 if (do_dynamic)
9652 {
9653 switch (entry->d_tag)
9654 {
9655 case DT_AUXILIARY:
9656 printf (_("Auxiliary library"));
9657 break;
9658
9659 case DT_FILTER:
9660 printf (_("Filter library"));
9661 break;
9662
9663 case DT_CONFIG:
9664 printf (_("Configuration file"));
9665 break;
9666
9667 case DT_DEPAUDIT:
9668 printf (_("Dependency audit library"));
9669 break;
9670
9671 case DT_AUDIT:
9672 printf (_("Audit library"));
9673 break;
9674 }
9675
9676 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
9677 printf (": [%s]\n", GET_DYNAMIC_NAME (entry->d_un.d_val));
9678 else
9679 {
9680 printf (": ");
9681 print_vma (entry->d_un.d_val, PREFIX_HEX);
9682 putchar ('\n');
9683 }
9684 }
9685 break;
9686
9687 case DT_FEATURE:
9688 if (do_dynamic)
9689 {
9690 printf (_("Flags:"));
9691
9692 if (entry->d_un.d_val == 0)
9693 printf (_(" None\n"));
9694 else
9695 {
9696 unsigned long int val = entry->d_un.d_val;
9697
9698 if (val & DTF_1_PARINIT)
9699 {
9700 printf (" PARINIT");
9701 val ^= DTF_1_PARINIT;
9702 }
9703 if (val & DTF_1_CONFEXP)
9704 {
9705 printf (" CONFEXP");
9706 val ^= DTF_1_CONFEXP;
9707 }
9708 if (val != 0)
9709 printf (" %lx", val);
9710 puts ("");
9711 }
9712 }
9713 break;
9714
9715 case DT_POSFLAG_1:
9716 if (do_dynamic)
9717 {
9718 printf (_("Flags:"));
9719
9720 if (entry->d_un.d_val == 0)
9721 printf (_(" None\n"));
9722 else
9723 {
9724 unsigned long int val = entry->d_un.d_val;
9725
9726 if (val & DF_P1_LAZYLOAD)
9727 {
9728 printf (" LAZYLOAD");
9729 val ^= DF_P1_LAZYLOAD;
9730 }
9731 if (val & DF_P1_GROUPPERM)
9732 {
9733 printf (" GROUPPERM");
9734 val ^= DF_P1_GROUPPERM;
9735 }
9736 if (val != 0)
9737 printf (" %lx", val);
9738 puts ("");
9739 }
9740 }
9741 break;
9742
9743 case DT_FLAGS_1:
9744 if (do_dynamic)
9745 {
9746 printf (_("Flags:"));
9747 if (entry->d_un.d_val == 0)
9748 printf (_(" None\n"));
9749 else
9750 {
9751 unsigned long int val = entry->d_un.d_val;
9752
9753 if (val & DF_1_NOW)
9754 {
9755 printf (" NOW");
9756 val ^= DF_1_NOW;
9757 }
9758 if (val & DF_1_GLOBAL)
9759 {
9760 printf (" GLOBAL");
9761 val ^= DF_1_GLOBAL;
9762 }
9763 if (val & DF_1_GROUP)
9764 {
9765 printf (" GROUP");
9766 val ^= DF_1_GROUP;
9767 }
9768 if (val & DF_1_NODELETE)
9769 {
9770 printf (" NODELETE");
9771 val ^= DF_1_NODELETE;
9772 }
9773 if (val & DF_1_LOADFLTR)
9774 {
9775 printf (" LOADFLTR");
9776 val ^= DF_1_LOADFLTR;
9777 }
9778 if (val & DF_1_INITFIRST)
9779 {
9780 printf (" INITFIRST");
9781 val ^= DF_1_INITFIRST;
9782 }
9783 if (val & DF_1_NOOPEN)
9784 {
9785 printf (" NOOPEN");
9786 val ^= DF_1_NOOPEN;
9787 }
9788 if (val & DF_1_ORIGIN)
9789 {
9790 printf (" ORIGIN");
9791 val ^= DF_1_ORIGIN;
9792 }
9793 if (val & DF_1_DIRECT)
9794 {
9795 printf (" DIRECT");
9796 val ^= DF_1_DIRECT;
9797 }
9798 if (val & DF_1_TRANS)
9799 {
9800 printf (" TRANS");
9801 val ^= DF_1_TRANS;
9802 }
9803 if (val & DF_1_INTERPOSE)
9804 {
9805 printf (" INTERPOSE");
9806 val ^= DF_1_INTERPOSE;
9807 }
9808 if (val & DF_1_NODEFLIB)
9809 {
9810 printf (" NODEFLIB");
9811 val ^= DF_1_NODEFLIB;
9812 }
9813 if (val & DF_1_NODUMP)
9814 {
9815 printf (" NODUMP");
9816 val ^= DF_1_NODUMP;
9817 }
9818 if (val & DF_1_CONFALT)
9819 {
9820 printf (" CONFALT");
9821 val ^= DF_1_CONFALT;
9822 }
9823 if (val & DF_1_ENDFILTEE)
9824 {
9825 printf (" ENDFILTEE");
9826 val ^= DF_1_ENDFILTEE;
9827 }
9828 if (val & DF_1_DISPRELDNE)
9829 {
9830 printf (" DISPRELDNE");
9831 val ^= DF_1_DISPRELDNE;
9832 }
9833 if (val & DF_1_DISPRELPND)
9834 {
9835 printf (" DISPRELPND");
9836 val ^= DF_1_DISPRELPND;
9837 }
9838 if (val & DF_1_NODIRECT)
9839 {
9840 printf (" NODIRECT");
9841 val ^= DF_1_NODIRECT;
9842 }
9843 if (val & DF_1_IGNMULDEF)
9844 {
9845 printf (" IGNMULDEF");
9846 val ^= DF_1_IGNMULDEF;
9847 }
9848 if (val & DF_1_NOKSYMS)
9849 {
9850 printf (" NOKSYMS");
9851 val ^= DF_1_NOKSYMS;
9852 }
9853 if (val & DF_1_NOHDR)
9854 {
9855 printf (" NOHDR");
9856 val ^= DF_1_NOHDR;
9857 }
9858 if (val & DF_1_EDITED)
9859 {
9860 printf (" EDITED");
9861 val ^= DF_1_EDITED;
9862 }
9863 if (val & DF_1_NORELOC)
9864 {
9865 printf (" NORELOC");
9866 val ^= DF_1_NORELOC;
9867 }
9868 if (val & DF_1_SYMINTPOSE)
9869 {
9870 printf (" SYMINTPOSE");
9871 val ^= DF_1_SYMINTPOSE;
9872 }
9873 if (val & DF_1_GLOBAUDIT)
9874 {
9875 printf (" GLOBAUDIT");
9876 val ^= DF_1_GLOBAUDIT;
9877 }
9878 if (val & DF_1_SINGLETON)
9879 {
9880 printf (" SINGLETON");
9881 val ^= DF_1_SINGLETON;
9882 }
9883 if (val & DF_1_STUB)
9884 {
9885 printf (" STUB");
9886 val ^= DF_1_STUB;
9887 }
9888 if (val & DF_1_PIE)
9889 {
9890 printf (" PIE");
9891 val ^= DF_1_PIE;
9892 }
9893 if (val != 0)
9894 printf (" %lx", val);
9895 puts ("");
9896 }
9897 }
9898 break;
9899
9900 case DT_PLTREL:
9901 dynamic_info[entry->d_tag] = entry->d_un.d_val;
9902 if (do_dynamic)
9903 puts (get_dynamic_type (entry->d_un.d_val));
9904 break;
9905
9906 case DT_NULL :
9907 case DT_NEEDED :
9908 case DT_PLTGOT :
9909 case DT_HASH :
9910 case DT_STRTAB :
9911 case DT_SYMTAB :
9912 case DT_RELA :
9913 case DT_INIT :
9914 case DT_FINI :
9915 case DT_SONAME :
9916 case DT_RPATH :
9917 case DT_SYMBOLIC:
9918 case DT_REL :
9919 case DT_DEBUG :
9920 case DT_TEXTREL :
9921 case DT_JMPREL :
9922 case DT_RUNPATH :
9923 dynamic_info[entry->d_tag] = entry->d_un.d_val;
9924
9925 if (do_dynamic)
9926 {
9927 char * name;
9928
9929 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
9930 name = GET_DYNAMIC_NAME (entry->d_un.d_val);
9931 else
9932 name = NULL;
9933
9934 if (name)
9935 {
9936 switch (entry->d_tag)
9937 {
9938 case DT_NEEDED:
9939 printf (_("Shared library: [%s]"), name);
9940
9941 if (streq (name, program_interpreter))
9942 printf (_(" program interpreter"));
9943 break;
9944
9945 case DT_SONAME:
9946 printf (_("Library soname: [%s]"), name);
9947 break;
9948
9949 case DT_RPATH:
9950 printf (_("Library rpath: [%s]"), name);
9951 break;
9952
9953 case DT_RUNPATH:
9954 printf (_("Library runpath: [%s]"), name);
9955 break;
9956
9957 default:
9958 print_vma (entry->d_un.d_val, PREFIX_HEX);
9959 break;
9960 }
9961 }
9962 else
9963 print_vma (entry->d_un.d_val, PREFIX_HEX);
9964
9965 putchar ('\n');
9966 }
9967 break;
9968
9969 case DT_PLTRELSZ:
9970 case DT_RELASZ :
9971 case DT_STRSZ :
9972 case DT_RELSZ :
9973 case DT_RELAENT :
9974 case DT_SYMENT :
9975 case DT_RELENT :
9976 dynamic_info[entry->d_tag] = entry->d_un.d_val;
9977 /* Fall through. */
9978 case DT_PLTPADSZ:
9979 case DT_MOVEENT :
9980 case DT_MOVESZ :
9981 case DT_INIT_ARRAYSZ:
9982 case DT_FINI_ARRAYSZ:
9983 case DT_GNU_CONFLICTSZ:
9984 case DT_GNU_LIBLISTSZ:
9985 if (do_dynamic)
9986 {
9987 print_vma (entry->d_un.d_val, UNSIGNED);
9988 printf (_(" (bytes)\n"));
9989 }
9990 break;
9991
9992 case DT_VERDEFNUM:
9993 case DT_VERNEEDNUM:
9994 case DT_RELACOUNT:
9995 case DT_RELCOUNT:
9996 if (do_dynamic)
9997 {
9998 print_vma (entry->d_un.d_val, UNSIGNED);
9999 putchar ('\n');
10000 }
10001 break;
10002
10003 case DT_SYMINSZ:
10004 case DT_SYMINENT:
10005 case DT_SYMINFO:
10006 case DT_USED:
10007 case DT_INIT_ARRAY:
10008 case DT_FINI_ARRAY:
10009 if (do_dynamic)
10010 {
10011 if (entry->d_tag == DT_USED
10012 && VALID_DYNAMIC_NAME (entry->d_un.d_val))
10013 {
10014 char * name = GET_DYNAMIC_NAME (entry->d_un.d_val);
10015
10016 if (*name)
10017 {
10018 printf (_("Not needed object: [%s]\n"), name);
10019 break;
10020 }
10021 }
10022
10023 print_vma (entry->d_un.d_val, PREFIX_HEX);
10024 putchar ('\n');
10025 }
10026 break;
10027
10028 case DT_BIND_NOW:
10029 /* The value of this entry is ignored. */
10030 if (do_dynamic)
10031 putchar ('\n');
10032 break;
10033
10034 case DT_GNU_PRELINKED:
10035 if (do_dynamic)
10036 {
10037 struct tm * tmp;
10038 time_t atime = entry->d_un.d_val;
10039
10040 tmp = gmtime (&atime);
10041 /* PR 17533 file: 041-1244816-0.004. */
10042 if (tmp == NULL)
10043 printf (_("<corrupt time val: %lx"),
10044 (unsigned long) atime);
10045 else
10046 printf ("%04u-%02u-%02uT%02u:%02u:%02u\n",
10047 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
10048 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
10049
10050 }
10051 break;
10052
10053 case DT_GNU_HASH:
10054 dynamic_info_DT_GNU_HASH = entry->d_un.d_val;
10055 if (do_dynamic)
10056 {
10057 print_vma (entry->d_un.d_val, PREFIX_HEX);
10058 putchar ('\n');
10059 }
10060 break;
10061
10062 default:
10063 if ((entry->d_tag >= DT_VERSYM) && (entry->d_tag <= DT_VERNEEDNUM))
10064 version_info[DT_VERSIONTAGIDX (entry->d_tag)] =
10065 entry->d_un.d_val;
10066
10067 if (do_dynamic)
10068 {
10069 switch (elf_header.e_machine)
10070 {
10071 case EM_MIPS:
10072 case EM_MIPS_RS3_LE:
10073 dynamic_section_mips_val (entry);
10074 break;
10075 case EM_PARISC:
10076 dynamic_section_parisc_val (entry);
10077 break;
10078 case EM_IA_64:
10079 dynamic_section_ia64_val (entry);
10080 break;
10081 default:
10082 print_vma (entry->d_un.d_val, PREFIX_HEX);
10083 putchar ('\n');
10084 }
10085 }
10086 break;
10087 }
10088 }
10089
10090 return TRUE;
10091 }
10092
10093 static char *
10094 get_ver_flags (unsigned int flags)
10095 {
10096 static char buff[32];
10097
10098 buff[0] = 0;
10099
10100 if (flags == 0)
10101 return _("none");
10102
10103 if (flags & VER_FLG_BASE)
10104 strcat (buff, "BASE");
10105
10106 if (flags & VER_FLG_WEAK)
10107 {
10108 if (flags & VER_FLG_BASE)
10109 strcat (buff, " | ");
10110
10111 strcat (buff, "WEAK");
10112 }
10113
10114 if (flags & VER_FLG_INFO)
10115 {
10116 if (flags & (VER_FLG_BASE|VER_FLG_WEAK))
10117 strcat (buff, " | ");
10118
10119 strcat (buff, "INFO");
10120 }
10121
10122 if (flags & ~(VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
10123 {
10124 if (flags & (VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
10125 strcat (buff, " | ");
10126
10127 strcat (buff, _("<unknown>"));
10128 }
10129
10130 return buff;
10131 }
10132
10133 /* Display the contents of the version sections. */
10134
10135 static bfd_boolean
10136 process_version_sections (FILE * file)
10137 {
10138 Elf_Internal_Shdr * section;
10139 unsigned i;
10140 bfd_boolean found = FALSE;
10141
10142 if (! do_version)
10143 return TRUE;
10144
10145 for (i = 0, section = section_headers;
10146 i < elf_header.e_shnum;
10147 i++, section++)
10148 {
10149 switch (section->sh_type)
10150 {
10151 case SHT_GNU_verdef:
10152 {
10153 Elf_External_Verdef * edefs;
10154 unsigned int idx;
10155 unsigned int cnt;
10156 unsigned int end;
10157 char * endbuf;
10158
10159 found = TRUE;
10160
10161 printf (_("\nVersion definition section '%s' contains %u entries:\n"),
10162 printable_section_name (section),
10163 section->sh_info);
10164
10165 printf (_(" Addr: 0x"));
10166 printf_vma (section->sh_addr);
10167 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10168 (unsigned long) section->sh_offset, section->sh_link,
10169 printable_section_name_from_index (section->sh_link));
10170
10171 edefs = (Elf_External_Verdef *)
10172 get_data (NULL, file, section->sh_offset, 1,section->sh_size,
10173 _("version definition section"));
10174 if (!edefs)
10175 break;
10176 endbuf = (char *) edefs + section->sh_size;
10177
10178 /* PR 17531: file: id:000001,src:000172+005151,op:splice,rep:2. */
10179 end = (section->sh_info < section->sh_size
10180 ? section->sh_info : section->sh_size);
10181 for (idx = cnt = 0; cnt < end; ++cnt)
10182 {
10183 char * vstart;
10184 Elf_External_Verdef * edef;
10185 Elf_Internal_Verdef ent;
10186 Elf_External_Verdaux * eaux;
10187 Elf_Internal_Verdaux aux;
10188 unsigned int isum;
10189 int j;
10190
10191 /* Check for very large indices. */
10192 if (idx > (size_t) (endbuf - (char *) edefs))
10193 break;
10194
10195 vstart = ((char *) edefs) + idx;
10196 if (vstart + sizeof (*edef) > endbuf)
10197 break;
10198
10199 edef = (Elf_External_Verdef *) vstart;
10200
10201 ent.vd_version = BYTE_GET (edef->vd_version);
10202 ent.vd_flags = BYTE_GET (edef->vd_flags);
10203 ent.vd_ndx = BYTE_GET (edef->vd_ndx);
10204 ent.vd_cnt = BYTE_GET (edef->vd_cnt);
10205 ent.vd_hash = BYTE_GET (edef->vd_hash);
10206 ent.vd_aux = BYTE_GET (edef->vd_aux);
10207 ent.vd_next = BYTE_GET (edef->vd_next);
10208
10209 printf (_(" %#06x: Rev: %d Flags: %s"),
10210 idx, ent.vd_version, get_ver_flags (ent.vd_flags));
10211
10212 printf (_(" Index: %d Cnt: %d "),
10213 ent.vd_ndx, ent.vd_cnt);
10214
10215 /* Check for overflow and underflow. */
10216 if (ent.vd_aux + sizeof (* eaux) > (size_t) (endbuf - vstart)
10217 || (vstart + ent.vd_aux < vstart))
10218 break;
10219
10220 vstart += ent.vd_aux;
10221
10222 eaux = (Elf_External_Verdaux *) vstart;
10223
10224 aux.vda_name = BYTE_GET (eaux->vda_name);
10225 aux.vda_next = BYTE_GET (eaux->vda_next);
10226
10227 if (VALID_DYNAMIC_NAME (aux.vda_name))
10228 printf (_("Name: %s\n"), GET_DYNAMIC_NAME (aux.vda_name));
10229 else
10230 printf (_("Name index: %ld\n"), aux.vda_name);
10231
10232 isum = idx + ent.vd_aux;
10233
10234 for (j = 1; j < ent.vd_cnt; j++)
10235 {
10236 /* Check for overflow. */
10237 if (aux.vda_next > (size_t) (endbuf - vstart))
10238 break;
10239
10240 isum += aux.vda_next;
10241 vstart += aux.vda_next;
10242
10243 eaux = (Elf_External_Verdaux *) vstart;
10244 if (vstart + sizeof (*eaux) > endbuf)
10245 break;
10246
10247 aux.vda_name = BYTE_GET (eaux->vda_name);
10248 aux.vda_next = BYTE_GET (eaux->vda_next);
10249
10250 if (VALID_DYNAMIC_NAME (aux.vda_name))
10251 printf (_(" %#06x: Parent %d: %s\n"),
10252 isum, j, GET_DYNAMIC_NAME (aux.vda_name));
10253 else
10254 printf (_(" %#06x: Parent %d, name index: %ld\n"),
10255 isum, j, aux.vda_name);
10256 }
10257
10258 if (j < ent.vd_cnt)
10259 printf (_(" Version def aux past end of section\n"));
10260
10261 /* PR 17531:
10262 file: id:000001,src:000172+005151,op:splice,rep:2. */
10263 if (idx + ent.vd_next < idx)
10264 break;
10265
10266 idx += ent.vd_next;
10267 }
10268
10269 if (cnt < section->sh_info)
10270 printf (_(" Version definition past end of section\n"));
10271
10272 free (edefs);
10273 }
10274 break;
10275
10276 case SHT_GNU_verneed:
10277 {
10278 Elf_External_Verneed * eneed;
10279 unsigned int idx;
10280 unsigned int cnt;
10281 char * endbuf;
10282
10283 found = TRUE;
10284
10285 printf (_("\nVersion needs section '%s' contains %u entries:\n"),
10286 printable_section_name (section), section->sh_info);
10287
10288 printf (_(" Addr: 0x"));
10289 printf_vma (section->sh_addr);
10290 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10291 (unsigned long) section->sh_offset, section->sh_link,
10292 printable_section_name_from_index (section->sh_link));
10293
10294 eneed = (Elf_External_Verneed *) get_data (NULL, file,
10295 section->sh_offset, 1,
10296 section->sh_size,
10297 _("Version Needs section"));
10298 if (!eneed)
10299 break;
10300 endbuf = (char *) eneed + section->sh_size;
10301
10302 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
10303 {
10304 Elf_External_Verneed * entry;
10305 Elf_Internal_Verneed ent;
10306 unsigned int isum;
10307 int j;
10308 char * vstart;
10309
10310 if (idx > (size_t) (endbuf - (char *) eneed))
10311 break;
10312
10313 vstart = ((char *) eneed) + idx;
10314 if (vstart + sizeof (*entry) > endbuf)
10315 break;
10316
10317 entry = (Elf_External_Verneed *) vstart;
10318
10319 ent.vn_version = BYTE_GET (entry->vn_version);
10320 ent.vn_cnt = BYTE_GET (entry->vn_cnt);
10321 ent.vn_file = BYTE_GET (entry->vn_file);
10322 ent.vn_aux = BYTE_GET (entry->vn_aux);
10323 ent.vn_next = BYTE_GET (entry->vn_next);
10324
10325 printf (_(" %#06x: Version: %d"), idx, ent.vn_version);
10326
10327 if (VALID_DYNAMIC_NAME (ent.vn_file))
10328 printf (_(" File: %s"), GET_DYNAMIC_NAME (ent.vn_file));
10329 else
10330 printf (_(" File: %lx"), ent.vn_file);
10331
10332 printf (_(" Cnt: %d\n"), ent.vn_cnt);
10333
10334 /* Check for overflow. */
10335 if (ent.vn_aux > (size_t) (endbuf - vstart))
10336 break;
10337 vstart += ent.vn_aux;
10338
10339 for (j = 0, isum = idx + ent.vn_aux; j < ent.vn_cnt; ++j)
10340 {
10341 Elf_External_Vernaux * eaux;
10342 Elf_Internal_Vernaux aux;
10343
10344 if (vstart + sizeof (*eaux) > endbuf)
10345 break;
10346 eaux = (Elf_External_Vernaux *) vstart;
10347
10348 aux.vna_hash = BYTE_GET (eaux->vna_hash);
10349 aux.vna_flags = BYTE_GET (eaux->vna_flags);
10350 aux.vna_other = BYTE_GET (eaux->vna_other);
10351 aux.vna_name = BYTE_GET (eaux->vna_name);
10352 aux.vna_next = BYTE_GET (eaux->vna_next);
10353
10354 if (VALID_DYNAMIC_NAME (aux.vna_name))
10355 printf (_(" %#06x: Name: %s"),
10356 isum, GET_DYNAMIC_NAME (aux.vna_name));
10357 else
10358 printf (_(" %#06x: Name index: %lx"),
10359 isum, aux.vna_name);
10360
10361 printf (_(" Flags: %s Version: %d\n"),
10362 get_ver_flags (aux.vna_flags), aux.vna_other);
10363
10364 /* Check for overflow. */
10365 if (aux.vna_next > (size_t) (endbuf - vstart)
10366 || (aux.vna_next == 0 && j < ent.vn_cnt - 1))
10367 {
10368 warn (_("Invalid vna_next field of %lx\n"),
10369 aux.vna_next);
10370 j = ent.vn_cnt;
10371 break;
10372 }
10373 isum += aux.vna_next;
10374 vstart += aux.vna_next;
10375 }
10376
10377 if (j < ent.vn_cnt)
10378 warn (_("Missing Version Needs auxillary information\n"));
10379
10380 if (ent.vn_next == 0 && cnt < section->sh_info - 1)
10381 {
10382 warn (_("Corrupt Version Needs structure - offset to next structure is zero with entries still left to be processed\n"));
10383 cnt = section->sh_info;
10384 break;
10385 }
10386 idx += ent.vn_next;
10387 }
10388
10389 if (cnt < section->sh_info)
10390 warn (_("Missing Version Needs information\n"));
10391
10392 free (eneed);
10393 }
10394 break;
10395
10396 case SHT_GNU_versym:
10397 {
10398 Elf_Internal_Shdr * link_section;
10399 size_t total;
10400 unsigned int cnt;
10401 unsigned char * edata;
10402 unsigned short * data;
10403 char * strtab;
10404 Elf_Internal_Sym * symbols;
10405 Elf_Internal_Shdr * string_sec;
10406 unsigned long num_syms;
10407 long off;
10408
10409 if (section->sh_link >= elf_header.e_shnum)
10410 break;
10411
10412 link_section = section_headers + section->sh_link;
10413 total = section->sh_size / sizeof (Elf_External_Versym);
10414
10415 if (link_section->sh_link >= elf_header.e_shnum)
10416 break;
10417
10418 found = TRUE;
10419
10420 symbols = GET_ELF_SYMBOLS (file, link_section, & num_syms);
10421 if (symbols == NULL)
10422 break;
10423
10424 string_sec = section_headers + link_section->sh_link;
10425
10426 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
10427 string_sec->sh_size,
10428 _("version string table"));
10429 if (!strtab)
10430 {
10431 free (symbols);
10432 break;
10433 }
10434
10435 printf (_("\nVersion symbols section '%s' contains %lu entries:\n"),
10436 printable_section_name (section), (unsigned long) total);
10437
10438 printf (_(" Addr: "));
10439 printf_vma (section->sh_addr);
10440 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10441 (unsigned long) section->sh_offset, section->sh_link,
10442 printable_section_name (link_section));
10443
10444 off = offset_from_vma (file,
10445 version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
10446 total * sizeof (short));
10447 edata = (unsigned char *) get_data (NULL, file, off, total,
10448 sizeof (short),
10449 _("version symbol data"));
10450 if (!edata)
10451 {
10452 free (strtab);
10453 free (symbols);
10454 break;
10455 }
10456
10457 data = (short unsigned int *) cmalloc (total, sizeof (short));
10458
10459 for (cnt = total; cnt --;)
10460 data[cnt] = byte_get (edata + cnt * sizeof (short),
10461 sizeof (short));
10462
10463 free (edata);
10464
10465 for (cnt = 0; cnt < total; cnt += 4)
10466 {
10467 int j, nn;
10468 char *name;
10469 char *invalid = _("*invalid*");
10470
10471 printf (" %03x:", cnt);
10472
10473 for (j = 0; (j < 4) && (cnt + j) < total; ++j)
10474 switch (data[cnt + j])
10475 {
10476 case 0:
10477 fputs (_(" 0 (*local*) "), stdout);
10478 break;
10479
10480 case 1:
10481 fputs (_(" 1 (*global*) "), stdout);
10482 break;
10483
10484 default:
10485 nn = printf ("%4x%c", data[cnt + j] & VERSYM_VERSION,
10486 data[cnt + j] & VERSYM_HIDDEN ? 'h' : ' ');
10487
10488 /* If this index value is greater than the size of the symbols
10489 array, break to avoid an out-of-bounds read. */
10490 if ((unsigned long)(cnt + j) >= num_syms)
10491 {
10492 warn (_("invalid index into symbol array\n"));
10493 break;
10494 }
10495
10496 name = NULL;
10497 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
10498 {
10499 Elf_Internal_Verneed ivn;
10500 unsigned long offset;
10501
10502 offset = offset_from_vma
10503 (file, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
10504 sizeof (Elf_External_Verneed));
10505
10506 do
10507 {
10508 Elf_Internal_Vernaux ivna;
10509 Elf_External_Verneed evn;
10510 Elf_External_Vernaux evna;
10511 unsigned long a_off;
10512
10513 if (get_data (&evn, file, offset, sizeof (evn), 1,
10514 _("version need")) == NULL)
10515 break;
10516
10517 ivn.vn_aux = BYTE_GET (evn.vn_aux);
10518 ivn.vn_next = BYTE_GET (evn.vn_next);
10519
10520 a_off = offset + ivn.vn_aux;
10521
10522 do
10523 {
10524 if (get_data (&evna, file, a_off, sizeof (evna),
10525 1, _("version need aux (2)")) == NULL)
10526 {
10527 ivna.vna_next = 0;
10528 ivna.vna_other = 0;
10529 }
10530 else
10531 {
10532 ivna.vna_next = BYTE_GET (evna.vna_next);
10533 ivna.vna_other = BYTE_GET (evna.vna_other);
10534 }
10535
10536 a_off += ivna.vna_next;
10537 }
10538 while (ivna.vna_other != data[cnt + j]
10539 && ivna.vna_next != 0);
10540
10541 if (ivna.vna_other == data[cnt + j])
10542 {
10543 ivna.vna_name = BYTE_GET (evna.vna_name);
10544
10545 if (ivna.vna_name >= string_sec->sh_size)
10546 name = invalid;
10547 else
10548 name = strtab + ivna.vna_name;
10549 break;
10550 }
10551
10552 offset += ivn.vn_next;
10553 }
10554 while (ivn.vn_next);
10555 }
10556
10557 if (data[cnt + j] != 0x8001
10558 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
10559 {
10560 Elf_Internal_Verdef ivd;
10561 Elf_External_Verdef evd;
10562 unsigned long offset;
10563
10564 offset = offset_from_vma
10565 (file, version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
10566 sizeof evd);
10567
10568 do
10569 {
10570 if (get_data (&evd, file, offset, sizeof (evd), 1,
10571 _("version def")) == NULL)
10572 {
10573 ivd.vd_next = 0;
10574 /* PR 17531: file: 046-1082287-0.004. */
10575 ivd.vd_ndx = (data[cnt + j] & VERSYM_VERSION) + 1;
10576 break;
10577 }
10578 else
10579 {
10580 ivd.vd_next = BYTE_GET (evd.vd_next);
10581 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
10582 }
10583
10584 offset += ivd.vd_next;
10585 }
10586 while (ivd.vd_ndx != (data[cnt + j] & VERSYM_VERSION)
10587 && ivd.vd_next != 0);
10588
10589 if (ivd.vd_ndx == (data[cnt + j] & VERSYM_VERSION))
10590 {
10591 Elf_External_Verdaux evda;
10592 Elf_Internal_Verdaux ivda;
10593
10594 ivd.vd_aux = BYTE_GET (evd.vd_aux);
10595
10596 if (get_data (&evda, file,
10597 offset - ivd.vd_next + ivd.vd_aux,
10598 sizeof (evda), 1,
10599 _("version def aux")) == NULL)
10600 break;
10601
10602 ivda.vda_name = BYTE_GET (evda.vda_name);
10603
10604 if (ivda.vda_name >= string_sec->sh_size)
10605 name = invalid;
10606 else if (name != NULL && name != invalid)
10607 name = _("*both*");
10608 else
10609 name = strtab + ivda.vda_name;
10610 }
10611 }
10612 if (name != NULL)
10613 nn += printf ("(%s%-*s",
10614 name,
10615 12 - (int) strlen (name),
10616 ")");
10617
10618 if (nn < 18)
10619 printf ("%*c", 18 - nn, ' ');
10620 }
10621
10622 putchar ('\n');
10623 }
10624
10625 free (data);
10626 free (strtab);
10627 free (symbols);
10628 }
10629 break;
10630
10631 default:
10632 break;
10633 }
10634 }
10635
10636 if (! found)
10637 printf (_("\nNo version information found in this file.\n"));
10638
10639 return TRUE;
10640 }
10641
10642 static const char *
10643 get_symbol_binding (unsigned int binding)
10644 {
10645 static char buff[32];
10646
10647 switch (binding)
10648 {
10649 case STB_LOCAL: return "LOCAL";
10650 case STB_GLOBAL: return "GLOBAL";
10651 case STB_WEAK: return "WEAK";
10652 default:
10653 if (binding >= STB_LOPROC && binding <= STB_HIPROC)
10654 snprintf (buff, sizeof (buff), _("<processor specific>: %d"),
10655 binding);
10656 else if (binding >= STB_LOOS && binding <= STB_HIOS)
10657 {
10658 if (binding == STB_GNU_UNIQUE
10659 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
10660 /* GNU is still using the default value 0. */
10661 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
10662 return "UNIQUE";
10663 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), binding);
10664 }
10665 else
10666 snprintf (buff, sizeof (buff), _("<unknown>: %d"), binding);
10667 return buff;
10668 }
10669 }
10670
10671 static const char *
10672 get_symbol_type (unsigned int type)
10673 {
10674 static char buff[32];
10675
10676 switch (type)
10677 {
10678 case STT_NOTYPE: return "NOTYPE";
10679 case STT_OBJECT: return "OBJECT";
10680 case STT_FUNC: return "FUNC";
10681 case STT_SECTION: return "SECTION";
10682 case STT_FILE: return "FILE";
10683 case STT_COMMON: return "COMMON";
10684 case STT_TLS: return "TLS";
10685 case STT_RELC: return "RELC";
10686 case STT_SRELC: return "SRELC";
10687 default:
10688 if (type >= STT_LOPROC && type <= STT_HIPROC)
10689 {
10690 if (elf_header.e_machine == EM_ARM && type == STT_ARM_TFUNC)
10691 return "THUMB_FUNC";
10692
10693 if (elf_header.e_machine == EM_SPARCV9 && type == STT_REGISTER)
10694 return "REGISTER";
10695
10696 if (elf_header.e_machine == EM_PARISC && type == STT_PARISC_MILLI)
10697 return "PARISC_MILLI";
10698
10699 snprintf (buff, sizeof (buff), _("<processor specific>: %d"), type);
10700 }
10701 else if (type >= STT_LOOS && type <= STT_HIOS)
10702 {
10703 if (elf_header.e_machine == EM_PARISC)
10704 {
10705 if (type == STT_HP_OPAQUE)
10706 return "HP_OPAQUE";
10707 if (type == STT_HP_STUB)
10708 return "HP_STUB";
10709 }
10710
10711 if (type == STT_GNU_IFUNC
10712 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
10713 || elf_header.e_ident[EI_OSABI] == ELFOSABI_FREEBSD
10714 /* GNU is still using the default value 0. */
10715 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
10716 return "IFUNC";
10717
10718 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), type);
10719 }
10720 else
10721 snprintf (buff, sizeof (buff), _("<unknown>: %d"), type);
10722 return buff;
10723 }
10724 }
10725
10726 static const char *
10727 get_symbol_visibility (unsigned int visibility)
10728 {
10729 switch (visibility)
10730 {
10731 case STV_DEFAULT: return "DEFAULT";
10732 case STV_INTERNAL: return "INTERNAL";
10733 case STV_HIDDEN: return "HIDDEN";
10734 case STV_PROTECTED: return "PROTECTED";
10735 default:
10736 error (_("Unrecognized visibility value: %u"), visibility);
10737 return _("<unknown>");
10738 }
10739 }
10740
10741 static const char *
10742 get_solaris_symbol_visibility (unsigned int visibility)
10743 {
10744 switch (visibility)
10745 {
10746 case 4: return "EXPORTED";
10747 case 5: return "SINGLETON";
10748 case 6: return "ELIMINATE";
10749 default: return get_symbol_visibility (visibility);
10750 }
10751 }
10752
10753 static const char *
10754 get_mips_symbol_other (unsigned int other)
10755 {
10756 switch (other)
10757 {
10758 case STO_OPTIONAL: return "OPTIONAL";
10759 case STO_MIPS_PLT: return "MIPS PLT";
10760 case STO_MIPS_PIC: return "MIPS PIC";
10761 case STO_MICROMIPS: return "MICROMIPS";
10762 case STO_MICROMIPS | STO_MIPS_PIC: return "MICROMIPS, MIPS PIC";
10763 case STO_MIPS16: return "MIPS16";
10764 default: return NULL;
10765 }
10766 }
10767
10768 static const char *
10769 get_ia64_symbol_other (unsigned int other)
10770 {
10771 if (is_ia64_vms ())
10772 {
10773 static char res[32];
10774
10775 res[0] = 0;
10776
10777 /* Function types is for images and .STB files only. */
10778 switch (elf_header.e_type)
10779 {
10780 case ET_DYN:
10781 case ET_EXEC:
10782 switch (VMS_ST_FUNC_TYPE (other))
10783 {
10784 case VMS_SFT_CODE_ADDR:
10785 strcat (res, " CA");
10786 break;
10787 case VMS_SFT_SYMV_IDX:
10788 strcat (res, " VEC");
10789 break;
10790 case VMS_SFT_FD:
10791 strcat (res, " FD");
10792 break;
10793 case VMS_SFT_RESERVE:
10794 strcat (res, " RSV");
10795 break;
10796 default:
10797 warn (_("Unrecognized IA64 VMS ST Function type: %d\n"),
10798 VMS_ST_FUNC_TYPE (other));
10799 strcat (res, " <unknown>");
10800 break;
10801 }
10802 break;
10803 default:
10804 break;
10805 }
10806 switch (VMS_ST_LINKAGE (other))
10807 {
10808 case VMS_STL_IGNORE:
10809 strcat (res, " IGN");
10810 break;
10811 case VMS_STL_RESERVE:
10812 strcat (res, " RSV");
10813 break;
10814 case VMS_STL_STD:
10815 strcat (res, " STD");
10816 break;
10817 case VMS_STL_LNK:
10818 strcat (res, " LNK");
10819 break;
10820 default:
10821 warn (_("Unrecognized IA64 VMS ST Linkage: %d\n"),
10822 VMS_ST_LINKAGE (other));
10823 strcat (res, " <unknown>");
10824 break;
10825 }
10826
10827 if (res[0] != 0)
10828 return res + 1;
10829 else
10830 return res;
10831 }
10832 return NULL;
10833 }
10834
10835 static const char *
10836 get_ppc64_symbol_other (unsigned int other)
10837 {
10838 if (PPC64_LOCAL_ENTRY_OFFSET (other) != 0)
10839 {
10840 static char buf[32];
10841 snprintf (buf, sizeof buf, _("<localentry>: %d"),
10842 PPC64_LOCAL_ENTRY_OFFSET (other));
10843 return buf;
10844 }
10845 return NULL;
10846 }
10847
10848 static const char *
10849 get_symbol_other (unsigned int other)
10850 {
10851 const char * result = NULL;
10852 static char buff [32];
10853
10854 if (other == 0)
10855 return "";
10856
10857 switch (elf_header.e_machine)
10858 {
10859 case EM_MIPS:
10860 result = get_mips_symbol_other (other);
10861 break;
10862 case EM_IA_64:
10863 result = get_ia64_symbol_other (other);
10864 break;
10865 case EM_PPC64:
10866 result = get_ppc64_symbol_other (other);
10867 break;
10868 default:
10869 result = NULL;
10870 break;
10871 }
10872
10873 if (result)
10874 return result;
10875
10876 snprintf (buff, sizeof buff, _("<other>: %x"), other);
10877 return buff;
10878 }
10879
10880 static const char *
10881 get_symbol_index_type (unsigned int type)
10882 {
10883 static char buff[32];
10884
10885 switch (type)
10886 {
10887 case SHN_UNDEF: return "UND";
10888 case SHN_ABS: return "ABS";
10889 case SHN_COMMON: return "COM";
10890 default:
10891 if (type == SHN_IA_64_ANSI_COMMON
10892 && elf_header.e_machine == EM_IA_64
10893 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX)
10894 return "ANSI_COM";
10895 else if ((elf_header.e_machine == EM_X86_64
10896 || elf_header.e_machine == EM_L1OM
10897 || elf_header.e_machine == EM_K1OM)
10898 && type == SHN_X86_64_LCOMMON)
10899 return "LARGE_COM";
10900 else if ((type == SHN_MIPS_SCOMMON
10901 && elf_header.e_machine == EM_MIPS)
10902 || (type == SHN_TIC6X_SCOMMON
10903 && elf_header.e_machine == EM_TI_C6000))
10904 return "SCOM";
10905 else if (type == SHN_MIPS_SUNDEFINED
10906 && elf_header.e_machine == EM_MIPS)
10907 return "SUND";
10908 else if (type >= SHN_LOPROC && type <= SHN_HIPROC)
10909 sprintf (buff, "PRC[0x%04x]", type & 0xffff);
10910 else if (type >= SHN_LOOS && type <= SHN_HIOS)
10911 sprintf (buff, "OS [0x%04x]", type & 0xffff);
10912 else if (type >= SHN_LORESERVE)
10913 sprintf (buff, "RSV[0x%04x]", type & 0xffff);
10914 else if (type >= elf_header.e_shnum)
10915 sprintf (buff, _("bad section index[%3d]"), type);
10916 else
10917 sprintf (buff, "%3d", type);
10918 break;
10919 }
10920
10921 return buff;
10922 }
10923
10924 static bfd_vma *
10925 get_dynamic_data (FILE * file, bfd_size_type number, unsigned int ent_size)
10926 {
10927 unsigned char * e_data;
10928 bfd_vma * i_data;
10929
10930 /* If the size_t type is smaller than the bfd_size_type, eg because
10931 you are building a 32-bit tool on a 64-bit host, then make sure
10932 that when (number) is cast to (size_t) no information is lost. */
10933 if (sizeof (size_t) < sizeof (bfd_size_type)
10934 && (bfd_size_type) ((size_t) number) != number)
10935 {
10936 error (_("Size truncation prevents reading %" BFD_VMA_FMT "u"
10937 " elements of size %u\n"),
10938 number, ent_size);
10939 return NULL;
10940 }
10941
10942 /* Be kind to memory chekers (eg valgrind, address sanitizer) by not
10943 attempting to allocate memory when the read is bound to fail. */
10944 if (ent_size * number > current_file_size)
10945 {
10946 error (_("Invalid number of dynamic entries: %" BFD_VMA_FMT "u\n"),
10947 number);
10948 return NULL;
10949 }
10950
10951 e_data = (unsigned char *) cmalloc ((size_t) number, ent_size);
10952 if (e_data == NULL)
10953 {
10954 error (_("Out of memory reading %" BFD_VMA_FMT "u dynamic entries\n"),
10955 number);
10956 return NULL;
10957 }
10958
10959 if (fread (e_data, ent_size, (size_t) number, file) != number)
10960 {
10961 error (_("Unable to read in %" BFD_VMA_FMT "u bytes of dynamic data\n"),
10962 number * ent_size);
10963 free (e_data);
10964 return NULL;
10965 }
10966
10967 i_data = (bfd_vma *) cmalloc ((size_t) number, sizeof (*i_data));
10968 if (i_data == NULL)
10969 {
10970 error (_("Out of memory allocating space for %" BFD_VMA_FMT "u"
10971 " dynamic entries\n"),
10972 number);
10973 free (e_data);
10974 return NULL;
10975 }
10976
10977 while (number--)
10978 i_data[number] = byte_get (e_data + number * ent_size, ent_size);
10979
10980 free (e_data);
10981
10982 return i_data;
10983 }
10984
10985 static void
10986 print_dynamic_symbol (bfd_vma si, unsigned long hn)
10987 {
10988 Elf_Internal_Sym * psym;
10989 int n;
10990
10991 n = print_vma (si, DEC_5);
10992 if (n < 5)
10993 fputs (&" "[n], stdout);
10994 printf (" %3lu: ", hn);
10995
10996 if (dynamic_symbols == NULL || si >= num_dynamic_syms)
10997 {
10998 printf (_("<No info available for dynamic symbol number %lu>\n"),
10999 (unsigned long) si);
11000 return;
11001 }
11002
11003 psym = dynamic_symbols + si;
11004 print_vma (psym->st_value, LONG_HEX);
11005 putchar (' ');
11006 print_vma (psym->st_size, DEC_5);
11007
11008 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
11009 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
11010
11011 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
11012 printf (" %-7s", get_solaris_symbol_visibility (psym->st_other));
11013 else
11014 {
11015 unsigned int vis = ELF_ST_VISIBILITY (psym->st_other);
11016
11017 printf (" %-7s", get_symbol_visibility (vis));
11018 /* Check to see if any other bits in the st_other field are set.
11019 Note - displaying this information disrupts the layout of the
11020 table being generated, but for the moment this case is very
11021 rare. */
11022 if (psym->st_other ^ vis)
11023 printf (" [%s] ", get_symbol_other (psym->st_other ^ vis));
11024 }
11025
11026 printf (" %3.3s ", get_symbol_index_type (psym->st_shndx));
11027 if (VALID_DYNAMIC_NAME (psym->st_name))
11028 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
11029 else
11030 printf (_(" <corrupt: %14ld>"), psym->st_name);
11031 putchar ('\n');
11032 }
11033
11034 static const char *
11035 get_symbol_version_string (FILE * file,
11036 bfd_boolean is_dynsym,
11037 const char * strtab,
11038 unsigned long int strtab_size,
11039 unsigned int si,
11040 Elf_Internal_Sym * psym,
11041 enum versioned_symbol_info * sym_info,
11042 unsigned short * vna_other)
11043 {
11044 unsigned char data[2];
11045 unsigned short vers_data;
11046 unsigned long offset;
11047
11048 if (!is_dynsym
11049 || version_info[DT_VERSIONTAGIDX (DT_VERSYM)] == 0)
11050 return NULL;
11051
11052 offset = offset_from_vma (file, version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
11053 sizeof data + si * sizeof (vers_data));
11054
11055 if (get_data (&data, file, offset + si * sizeof (vers_data),
11056 sizeof (data), 1, _("version data")) == NULL)
11057 return NULL;
11058
11059 vers_data = byte_get (data, 2);
11060
11061 if ((vers_data & VERSYM_HIDDEN) == 0 && vers_data <= 1)
11062 return NULL;
11063
11064 /* Usually we'd only see verdef for defined symbols, and verneed for
11065 undefined symbols. However, symbols defined by the linker in
11066 .dynbss for variables copied from a shared library in order to
11067 avoid text relocations are defined yet have verneed. We could
11068 use a heuristic to detect the special case, for example, check
11069 for verneed first on symbols defined in SHT_NOBITS sections, but
11070 it is simpler and more reliable to just look for both verdef and
11071 verneed. .dynbss might not be mapped to a SHT_NOBITS section. */
11072
11073 if (psym->st_shndx != SHN_UNDEF
11074 && vers_data != 0x8001
11075 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
11076 {
11077 Elf_Internal_Verdef ivd;
11078 Elf_Internal_Verdaux ivda;
11079 Elf_External_Verdaux evda;
11080 unsigned long off;
11081
11082 off = offset_from_vma (file,
11083 version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
11084 sizeof (Elf_External_Verdef));
11085
11086 do
11087 {
11088 Elf_External_Verdef evd;
11089
11090 if (get_data (&evd, file, off, sizeof (evd), 1,
11091 _("version def")) == NULL)
11092 {
11093 ivd.vd_ndx = 0;
11094 ivd.vd_aux = 0;
11095 ivd.vd_next = 0;
11096 }
11097 else
11098 {
11099 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
11100 ivd.vd_aux = BYTE_GET (evd.vd_aux);
11101 ivd.vd_next = BYTE_GET (evd.vd_next);
11102 }
11103
11104 off += ivd.vd_next;
11105 }
11106 while (ivd.vd_ndx != (vers_data & VERSYM_VERSION) && ivd.vd_next != 0);
11107
11108 if (ivd.vd_ndx == (vers_data & VERSYM_VERSION))
11109 {
11110 off -= ivd.vd_next;
11111 off += ivd.vd_aux;
11112
11113 if (get_data (&evda, file, off, sizeof (evda), 1,
11114 _("version def aux")) != NULL)
11115 {
11116 ivda.vda_name = BYTE_GET (evda.vda_name);
11117
11118 if (psym->st_name != ivda.vda_name)
11119 {
11120 *sym_info = ((vers_data & VERSYM_HIDDEN) != 0
11121 ? symbol_hidden : symbol_public);
11122 return (ivda.vda_name < strtab_size
11123 ? strtab + ivda.vda_name : _("<corrupt>"));
11124 }
11125 }
11126 }
11127 }
11128
11129 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
11130 {
11131 Elf_External_Verneed evn;
11132 Elf_Internal_Verneed ivn;
11133 Elf_Internal_Vernaux ivna;
11134
11135 offset = offset_from_vma (file,
11136 version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
11137 sizeof evn);
11138 do
11139 {
11140 unsigned long vna_off;
11141
11142 if (get_data (&evn, file, offset, sizeof (evn), 1,
11143 _("version need")) == NULL)
11144 {
11145 ivna.vna_next = 0;
11146 ivna.vna_other = 0;
11147 ivna.vna_name = 0;
11148 break;
11149 }
11150
11151 ivn.vn_aux = BYTE_GET (evn.vn_aux);
11152 ivn.vn_next = BYTE_GET (evn.vn_next);
11153
11154 vna_off = offset + ivn.vn_aux;
11155
11156 do
11157 {
11158 Elf_External_Vernaux evna;
11159
11160 if (get_data (&evna, file, vna_off, sizeof (evna), 1,
11161 _("version need aux (3)")) == NULL)
11162 {
11163 ivna.vna_next = 0;
11164 ivna.vna_other = 0;
11165 ivna.vna_name = 0;
11166 }
11167 else
11168 {
11169 ivna.vna_other = BYTE_GET (evna.vna_other);
11170 ivna.vna_next = BYTE_GET (evna.vna_next);
11171 ivna.vna_name = BYTE_GET (evna.vna_name);
11172 }
11173
11174 vna_off += ivna.vna_next;
11175 }
11176 while (ivna.vna_other != vers_data && ivna.vna_next != 0);
11177
11178 if (ivna.vna_other == vers_data)
11179 break;
11180
11181 offset += ivn.vn_next;
11182 }
11183 while (ivn.vn_next != 0);
11184
11185 if (ivna.vna_other == vers_data)
11186 {
11187 *sym_info = symbol_undefined;
11188 *vna_other = ivna.vna_other;
11189 return (ivna.vna_name < strtab_size
11190 ? strtab + ivna.vna_name : _("<corrupt>"));
11191 }
11192 }
11193 return NULL;
11194 }
11195
11196 /* Dump the symbol table. */
11197 static bfd_boolean
11198 process_symbol_table (FILE * file)
11199 {
11200 Elf_Internal_Shdr * section;
11201 bfd_size_type nbuckets = 0;
11202 bfd_size_type nchains = 0;
11203 bfd_vma * buckets = NULL;
11204 bfd_vma * chains = NULL;
11205 bfd_vma ngnubuckets = 0;
11206 bfd_vma * gnubuckets = NULL;
11207 bfd_vma * gnuchains = NULL;
11208 bfd_vma gnusymidx = 0;
11209 bfd_size_type ngnuchains = 0;
11210
11211 if (!do_syms && !do_dyn_syms && !do_histogram)
11212 return TRUE;
11213
11214 if (dynamic_info[DT_HASH]
11215 && (do_histogram
11216 || (do_using_dynamic
11217 && !do_dyn_syms
11218 && dynamic_strings != NULL)))
11219 {
11220 unsigned char nb[8];
11221 unsigned char nc[8];
11222 unsigned int hash_ent_size = 4;
11223
11224 if ((elf_header.e_machine == EM_ALPHA
11225 || elf_header.e_machine == EM_S390
11226 || elf_header.e_machine == EM_S390_OLD)
11227 && elf_header.e_ident[EI_CLASS] == ELFCLASS64)
11228 hash_ent_size = 8;
11229
11230 if (fseek (file,
11231 (archive_file_offset
11232 + offset_from_vma (file, dynamic_info[DT_HASH],
11233 sizeof nb + sizeof nc)),
11234 SEEK_SET))
11235 {
11236 error (_("Unable to seek to start of dynamic information\n"));
11237 goto no_hash;
11238 }
11239
11240 if (fread (nb, hash_ent_size, 1, file) != 1)
11241 {
11242 error (_("Failed to read in number of buckets\n"));
11243 goto no_hash;
11244 }
11245
11246 if (fread (nc, hash_ent_size, 1, file) != 1)
11247 {
11248 error (_("Failed to read in number of chains\n"));
11249 goto no_hash;
11250 }
11251
11252 nbuckets = byte_get (nb, hash_ent_size);
11253 nchains = byte_get (nc, hash_ent_size);
11254
11255 buckets = get_dynamic_data (file, nbuckets, hash_ent_size);
11256 chains = get_dynamic_data (file, nchains, hash_ent_size);
11257
11258 no_hash:
11259 if (buckets == NULL || chains == NULL)
11260 {
11261 if (do_using_dynamic)
11262 return FALSE;
11263 free (buckets);
11264 free (chains);
11265 buckets = NULL;
11266 chains = NULL;
11267 nbuckets = 0;
11268 nchains = 0;
11269 }
11270 }
11271
11272 if (dynamic_info_DT_GNU_HASH
11273 && (do_histogram
11274 || (do_using_dynamic
11275 && !do_dyn_syms
11276 && dynamic_strings != NULL)))
11277 {
11278 unsigned char nb[16];
11279 bfd_vma i, maxchain = 0xffffffff, bitmaskwords;
11280 bfd_vma buckets_vma;
11281
11282 if (fseek (file,
11283 (archive_file_offset
11284 + offset_from_vma (file, dynamic_info_DT_GNU_HASH,
11285 sizeof nb)),
11286 SEEK_SET))
11287 {
11288 error (_("Unable to seek to start of dynamic information\n"));
11289 goto no_gnu_hash;
11290 }
11291
11292 if (fread (nb, 16, 1, file) != 1)
11293 {
11294 error (_("Failed to read in number of buckets\n"));
11295 goto no_gnu_hash;
11296 }
11297
11298 ngnubuckets = byte_get (nb, 4);
11299 gnusymidx = byte_get (nb + 4, 4);
11300 bitmaskwords = byte_get (nb + 8, 4);
11301 buckets_vma = dynamic_info_DT_GNU_HASH + 16;
11302 if (is_32bit_elf)
11303 buckets_vma += bitmaskwords * 4;
11304 else
11305 buckets_vma += bitmaskwords * 8;
11306
11307 if (fseek (file,
11308 (archive_file_offset
11309 + offset_from_vma (file, buckets_vma, 4)),
11310 SEEK_SET))
11311 {
11312 error (_("Unable to seek to start of dynamic information\n"));
11313 goto no_gnu_hash;
11314 }
11315
11316 gnubuckets = get_dynamic_data (file, ngnubuckets, 4);
11317
11318 if (gnubuckets == NULL)
11319 goto no_gnu_hash;
11320
11321 for (i = 0; i < ngnubuckets; i++)
11322 if (gnubuckets[i] != 0)
11323 {
11324 if (gnubuckets[i] < gnusymidx)
11325 return FALSE;
11326
11327 if (maxchain == 0xffffffff || gnubuckets[i] > maxchain)
11328 maxchain = gnubuckets[i];
11329 }
11330
11331 if (maxchain == 0xffffffff)
11332 goto no_gnu_hash;
11333
11334 maxchain -= gnusymidx;
11335
11336 if (fseek (file,
11337 (archive_file_offset
11338 + offset_from_vma (file, buckets_vma
11339 + 4 * (ngnubuckets + maxchain), 4)),
11340 SEEK_SET))
11341 {
11342 error (_("Unable to seek to start of dynamic information\n"));
11343 goto no_gnu_hash;
11344 }
11345
11346 do
11347 {
11348 if (fread (nb, 4, 1, file) != 1)
11349 {
11350 error (_("Failed to determine last chain length\n"));
11351 goto no_gnu_hash;
11352 }
11353
11354 if (maxchain + 1 == 0)
11355 goto no_gnu_hash;
11356
11357 ++maxchain;
11358 }
11359 while ((byte_get (nb, 4) & 1) == 0);
11360
11361 if (fseek (file,
11362 (archive_file_offset
11363 + offset_from_vma (file, buckets_vma + 4 * ngnubuckets, 4)),
11364 SEEK_SET))
11365 {
11366 error (_("Unable to seek to start of dynamic information\n"));
11367 goto no_gnu_hash;
11368 }
11369
11370 gnuchains = get_dynamic_data (file, maxchain, 4);
11371 ngnuchains = maxchain;
11372
11373 no_gnu_hash:
11374 if (gnuchains == NULL)
11375 {
11376 free (gnubuckets);
11377 gnubuckets = NULL;
11378 ngnubuckets = 0;
11379 if (do_using_dynamic)
11380 return FALSE;
11381 }
11382 }
11383
11384 if ((dynamic_info[DT_HASH] || dynamic_info_DT_GNU_HASH)
11385 && do_syms
11386 && do_using_dynamic
11387 && dynamic_strings != NULL
11388 && dynamic_symbols != NULL)
11389 {
11390 unsigned long hn;
11391
11392 if (dynamic_info[DT_HASH])
11393 {
11394 bfd_vma si;
11395
11396 printf (_("\nSymbol table for image:\n"));
11397 if (is_32bit_elf)
11398 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11399 else
11400 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11401
11402 for (hn = 0; hn < nbuckets; hn++)
11403 {
11404 if (! buckets[hn])
11405 continue;
11406
11407 for (si = buckets[hn]; si < nchains && si > 0; si = chains[si])
11408 print_dynamic_symbol (si, hn);
11409 }
11410 }
11411
11412 if (dynamic_info_DT_GNU_HASH)
11413 {
11414 printf (_("\nSymbol table of `.gnu.hash' for image:\n"));
11415 if (is_32bit_elf)
11416 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11417 else
11418 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11419
11420 for (hn = 0; hn < ngnubuckets; ++hn)
11421 if (gnubuckets[hn] != 0)
11422 {
11423 bfd_vma si = gnubuckets[hn];
11424 bfd_vma off = si - gnusymidx;
11425
11426 do
11427 {
11428 print_dynamic_symbol (si, hn);
11429 si++;
11430 }
11431 while (off < ngnuchains && (gnuchains[off++] & 1) == 0);
11432 }
11433 }
11434 }
11435 else if ((do_dyn_syms || (do_syms && !do_using_dynamic))
11436 && section_headers != NULL)
11437 {
11438 unsigned int i;
11439
11440 for (i = 0, section = section_headers;
11441 i < elf_header.e_shnum;
11442 i++, section++)
11443 {
11444 unsigned int si;
11445 char * strtab = NULL;
11446 unsigned long int strtab_size = 0;
11447 Elf_Internal_Sym * symtab;
11448 Elf_Internal_Sym * psym;
11449 unsigned long num_syms;
11450
11451 if ((section->sh_type != SHT_SYMTAB
11452 && section->sh_type != SHT_DYNSYM)
11453 || (!do_syms
11454 && section->sh_type == SHT_SYMTAB))
11455 continue;
11456
11457 if (section->sh_entsize == 0)
11458 {
11459 printf (_("\nSymbol table '%s' has a sh_entsize of zero!\n"),
11460 printable_section_name (section));
11461 continue;
11462 }
11463
11464 printf (_("\nSymbol table '%s' contains %lu entries:\n"),
11465 printable_section_name (section),
11466 (unsigned long) (section->sh_size / section->sh_entsize));
11467
11468 if (is_32bit_elf)
11469 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
11470 else
11471 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
11472
11473 symtab = GET_ELF_SYMBOLS (file, section, & num_syms);
11474 if (symtab == NULL)
11475 continue;
11476
11477 if (section->sh_link == elf_header.e_shstrndx)
11478 {
11479 strtab = string_table;
11480 strtab_size = string_table_length;
11481 }
11482 else if (section->sh_link < elf_header.e_shnum)
11483 {
11484 Elf_Internal_Shdr * string_sec;
11485
11486 string_sec = section_headers + section->sh_link;
11487
11488 strtab = (char *) get_data (NULL, file, string_sec->sh_offset,
11489 1, string_sec->sh_size,
11490 _("string table"));
11491 strtab_size = strtab != NULL ? string_sec->sh_size : 0;
11492 }
11493
11494 for (si = 0, psym = symtab; si < num_syms; si++, psym++)
11495 {
11496 const char *version_string;
11497 enum versioned_symbol_info sym_info;
11498 unsigned short vna_other;
11499
11500 printf ("%6d: ", si);
11501 print_vma (psym->st_value, LONG_HEX);
11502 putchar (' ');
11503 print_vma (psym->st_size, DEC_5);
11504 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
11505 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
11506 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
11507 printf (" %-7s", get_solaris_symbol_visibility (psym->st_other));
11508 else
11509 {
11510 unsigned int vis = ELF_ST_VISIBILITY (psym->st_other);
11511
11512 printf (" %-7s", get_symbol_visibility (vis));
11513 /* Check to see if any other bits in the st_other field are set.
11514 Note - displaying this information disrupts the layout of the
11515 table being generated, but for the moment this case is very rare. */
11516 if (psym->st_other ^ vis)
11517 printf (" [%s] ", get_symbol_other (psym->st_other ^ vis));
11518 }
11519 printf (" %4s ", get_symbol_index_type (psym->st_shndx));
11520 print_symbol (25, psym->st_name < strtab_size
11521 ? strtab + psym->st_name : _("<corrupt>"));
11522
11523 version_string
11524 = get_symbol_version_string (file,
11525 section->sh_type == SHT_DYNSYM,
11526 strtab, strtab_size, si,
11527 psym, &sym_info, &vna_other);
11528 if (version_string)
11529 {
11530 if (sym_info == symbol_undefined)
11531 printf ("@%s (%d)", version_string, vna_other);
11532 else
11533 printf (sym_info == symbol_hidden ? "@%s" : "@@%s",
11534 version_string);
11535 }
11536
11537 putchar ('\n');
11538
11539 if (ELF_ST_BIND (psym->st_info) == STB_LOCAL
11540 && si >= section->sh_info
11541 /* Irix 5 and 6 MIPS binaries are known to ignore this requirement. */
11542 && elf_header.e_machine != EM_MIPS
11543 /* Solaris binaries have been found to violate this requirement as
11544 well. Not sure if this is a bug or an ABI requirement. */
11545 && elf_header.e_ident[EI_OSABI] != ELFOSABI_SOLARIS)
11546 warn (_("local symbol %u found at index >= %s's sh_info value of %u\n"),
11547 si, printable_section_name (section), section->sh_info);
11548 }
11549
11550 free (symtab);
11551 if (strtab != string_table)
11552 free (strtab);
11553 }
11554 }
11555 else if (do_syms)
11556 printf
11557 (_("\nDynamic symbol information is not available for displaying symbols.\n"));
11558
11559 if (do_histogram && buckets != NULL)
11560 {
11561 unsigned long * lengths;
11562 unsigned long * counts;
11563 unsigned long hn;
11564 bfd_vma si;
11565 unsigned long maxlength = 0;
11566 unsigned long nzero_counts = 0;
11567 unsigned long nsyms = 0;
11568 unsigned long chained;
11569
11570 printf (_("\nHistogram for bucket list length (total of %lu buckets):\n"),
11571 (unsigned long) nbuckets);
11572
11573 lengths = (unsigned long *) calloc (nbuckets, sizeof (*lengths));
11574 if (lengths == NULL)
11575 {
11576 error (_("Out of memory allocating space for histogram buckets\n"));
11577 return FALSE;
11578 }
11579
11580 printf (_(" Length Number %% of total Coverage\n"));
11581 for (hn = 0; hn < nbuckets; ++hn)
11582 {
11583 for (si = buckets[hn], chained = 0;
11584 si > 0 && si < nchains && si < nbuckets && chained <= nchains;
11585 si = chains[si], ++chained)
11586 {
11587 ++nsyms;
11588 if (maxlength < ++lengths[hn])
11589 ++maxlength;
11590 }
11591
11592 /* PR binutils/17531: A corrupt binary could contain broken
11593 histogram data. Do not go into an infinite loop trying
11594 to process it. */
11595 if (chained > nchains)
11596 {
11597 error (_("histogram chain is corrupt\n"));
11598 break;
11599 }
11600 }
11601
11602 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
11603 if (counts == NULL)
11604 {
11605 free (lengths);
11606 error (_("Out of memory allocating space for histogram counts\n"));
11607 return FALSE;
11608 }
11609
11610 for (hn = 0; hn < nbuckets; ++hn)
11611 ++counts[lengths[hn]];
11612
11613 if (nbuckets > 0)
11614 {
11615 unsigned long i;
11616 printf (" 0 %-10lu (%5.1f%%)\n",
11617 counts[0], (counts[0] * 100.0) / nbuckets);
11618 for (i = 1; i <= maxlength; ++i)
11619 {
11620 nzero_counts += counts[i] * i;
11621 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
11622 i, counts[i], (counts[i] * 100.0) / nbuckets,
11623 (nzero_counts * 100.0) / nsyms);
11624 }
11625 }
11626
11627 free (counts);
11628 free (lengths);
11629 }
11630
11631 if (buckets != NULL)
11632 {
11633 free (buckets);
11634 free (chains);
11635 }
11636
11637 if (do_histogram && gnubuckets != NULL)
11638 {
11639 unsigned long * lengths;
11640 unsigned long * counts;
11641 unsigned long hn;
11642 unsigned long maxlength = 0;
11643 unsigned long nzero_counts = 0;
11644 unsigned long nsyms = 0;
11645
11646 printf (_("\nHistogram for `.gnu.hash' bucket list length (total of %lu buckets):\n"),
11647 (unsigned long) ngnubuckets);
11648
11649 lengths = (unsigned long *) calloc (ngnubuckets, sizeof (*lengths));
11650 if (lengths == NULL)
11651 {
11652 error (_("Out of memory allocating space for gnu histogram buckets\n"));
11653 return FALSE;
11654 }
11655
11656 printf (_(" Length Number %% of total Coverage\n"));
11657
11658 for (hn = 0; hn < ngnubuckets; ++hn)
11659 if (gnubuckets[hn] != 0)
11660 {
11661 bfd_vma off, length = 1;
11662
11663 for (off = gnubuckets[hn] - gnusymidx;
11664 /* PR 17531 file: 010-77222-0.004. */
11665 off < ngnuchains && (gnuchains[off] & 1) == 0;
11666 ++off)
11667 ++length;
11668 lengths[hn] = length;
11669 if (length > maxlength)
11670 maxlength = length;
11671 nsyms += length;
11672 }
11673
11674 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
11675 if (counts == NULL)
11676 {
11677 free (lengths);
11678 error (_("Out of memory allocating space for gnu histogram counts\n"));
11679 return FALSE;
11680 }
11681
11682 for (hn = 0; hn < ngnubuckets; ++hn)
11683 ++counts[lengths[hn]];
11684
11685 if (ngnubuckets > 0)
11686 {
11687 unsigned long j;
11688 printf (" 0 %-10lu (%5.1f%%)\n",
11689 counts[0], (counts[0] * 100.0) / ngnubuckets);
11690 for (j = 1; j <= maxlength; ++j)
11691 {
11692 nzero_counts += counts[j] * j;
11693 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
11694 j, counts[j], (counts[j] * 100.0) / ngnubuckets,
11695 (nzero_counts * 100.0) / nsyms);
11696 }
11697 }
11698
11699 free (counts);
11700 free (lengths);
11701 free (gnubuckets);
11702 free (gnuchains);
11703 }
11704
11705 return TRUE;
11706 }
11707
11708 static bfd_boolean
11709 process_syminfo (FILE * file ATTRIBUTE_UNUSED)
11710 {
11711 unsigned int i;
11712
11713 if (dynamic_syminfo == NULL
11714 || !do_dynamic)
11715 /* No syminfo, this is ok. */
11716 return TRUE;
11717
11718 /* There better should be a dynamic symbol section. */
11719 if (dynamic_symbols == NULL || dynamic_strings == NULL)
11720 return FALSE;
11721
11722 if (dynamic_addr)
11723 printf (_("\nDynamic info segment at offset 0x%lx contains %d entries:\n"),
11724 dynamic_syminfo_offset, dynamic_syminfo_nent);
11725
11726 printf (_(" Num: Name BoundTo Flags\n"));
11727 for (i = 0; i < dynamic_syminfo_nent; ++i)
11728 {
11729 unsigned short int flags = dynamic_syminfo[i].si_flags;
11730
11731 printf ("%4d: ", i);
11732 if (i >= num_dynamic_syms)
11733 printf (_("<corrupt index>"));
11734 else if (VALID_DYNAMIC_NAME (dynamic_symbols[i].st_name))
11735 print_symbol (30, GET_DYNAMIC_NAME (dynamic_symbols[i].st_name));
11736 else
11737 printf (_("<corrupt: %19ld>"), dynamic_symbols[i].st_name);
11738 putchar (' ');
11739
11740 switch (dynamic_syminfo[i].si_boundto)
11741 {
11742 case SYMINFO_BT_SELF:
11743 fputs ("SELF ", stdout);
11744 break;
11745 case SYMINFO_BT_PARENT:
11746 fputs ("PARENT ", stdout);
11747 break;
11748 default:
11749 if (dynamic_syminfo[i].si_boundto > 0
11750 && dynamic_syminfo[i].si_boundto < dynamic_nent
11751 && VALID_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val))
11752 {
11753 print_symbol (10, GET_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val));
11754 putchar (' ' );
11755 }
11756 else
11757 printf ("%-10d ", dynamic_syminfo[i].si_boundto);
11758 break;
11759 }
11760
11761 if (flags & SYMINFO_FLG_DIRECT)
11762 printf (" DIRECT");
11763 if (flags & SYMINFO_FLG_PASSTHRU)
11764 printf (" PASSTHRU");
11765 if (flags & SYMINFO_FLG_COPY)
11766 printf (" COPY");
11767 if (flags & SYMINFO_FLG_LAZYLOAD)
11768 printf (" LAZYLOAD");
11769
11770 puts ("");
11771 }
11772
11773 return TRUE;
11774 }
11775
11776 #define IN_RANGE(START,END,ADDR,OFF) \
11777 (((ADDR) >= (START)) && ((ADDR) + (OFF) < (END)))
11778
11779 /* Check to see if the given reloc needs to be handled in a target specific
11780 manner. If so then process the reloc and return TRUE otherwise return
11781 FALSE.
11782
11783 If called with reloc == NULL, then this is a signal that reloc processing
11784 for the current section has finished, and any saved state should be
11785 discarded. */
11786
11787 static bfd_boolean
11788 target_specific_reloc_handling (Elf_Internal_Rela * reloc,
11789 unsigned char * start,
11790 unsigned char * end,
11791 Elf_Internal_Sym * symtab,
11792 unsigned long num_syms)
11793 {
11794 unsigned int reloc_type = 0;
11795 unsigned long sym_index = 0;
11796
11797 if (reloc)
11798 {
11799 reloc_type = get_reloc_type (reloc->r_info);
11800 sym_index = get_reloc_symindex (reloc->r_info);
11801 }
11802
11803 switch (elf_header.e_machine)
11804 {
11805 case EM_MSP430:
11806 case EM_MSP430_OLD:
11807 {
11808 static Elf_Internal_Sym * saved_sym = NULL;
11809
11810 if (reloc == NULL)
11811 {
11812 saved_sym = NULL;
11813 return TRUE;
11814 }
11815
11816 switch (reloc_type)
11817 {
11818 case 10: /* R_MSP430_SYM_DIFF */
11819 if (uses_msp430x_relocs ())
11820 break;
11821 /* Fall through. */
11822 case 21: /* R_MSP430X_SYM_DIFF */
11823 /* PR 21139. */
11824 if (sym_index >= num_syms)
11825 error (_("MSP430 SYM_DIFF reloc contains invalid symbol index %lu\n"),
11826 sym_index);
11827 else
11828 saved_sym = symtab + sym_index;
11829 return TRUE;
11830
11831 case 1: /* R_MSP430_32 or R_MSP430_ABS32 */
11832 case 3: /* R_MSP430_16 or R_MSP430_ABS8 */
11833 goto handle_sym_diff;
11834
11835 case 5: /* R_MSP430_16_BYTE */
11836 case 9: /* R_MSP430_8 */
11837 if (uses_msp430x_relocs ())
11838 break;
11839 goto handle_sym_diff;
11840
11841 case 2: /* R_MSP430_ABS16 */
11842 case 15: /* R_MSP430X_ABS16 */
11843 if (! uses_msp430x_relocs ())
11844 break;
11845 goto handle_sym_diff;
11846
11847 handle_sym_diff:
11848 if (saved_sym != NULL)
11849 {
11850 int reloc_size = reloc_type == 1 ? 4 : 2;
11851 bfd_vma value;
11852
11853 if (sym_index >= num_syms)
11854 error (_("MSP430 reloc contains invalid symbol index %lu\n"),
11855 sym_index);
11856 else
11857 {
11858 value = reloc->r_addend + (symtab[sym_index].st_value
11859 - saved_sym->st_value);
11860
11861 if (IN_RANGE (start, end, start + reloc->r_offset, reloc_size))
11862 byte_put (start + reloc->r_offset, value, reloc_size);
11863 else
11864 /* PR 21137 */
11865 error (_("MSP430 sym diff reloc contains invalid offset: 0x%lx\n"),
11866 (long) reloc->r_offset);
11867 }
11868
11869 saved_sym = NULL;
11870 return TRUE;
11871 }
11872 break;
11873
11874 default:
11875 if (saved_sym != NULL)
11876 error (_("Unhandled MSP430 reloc type found after SYM_DIFF reloc\n"));
11877 break;
11878 }
11879 break;
11880 }
11881
11882 case EM_MN10300:
11883 case EM_CYGNUS_MN10300:
11884 {
11885 static Elf_Internal_Sym * saved_sym = NULL;
11886
11887 if (reloc == NULL)
11888 {
11889 saved_sym = NULL;
11890 return TRUE;
11891 }
11892
11893 switch (reloc_type)
11894 {
11895 case 34: /* R_MN10300_ALIGN */
11896 return TRUE;
11897 case 33: /* R_MN10300_SYM_DIFF */
11898 if (sym_index >= num_syms)
11899 error (_("MN10300_SYM_DIFF reloc contains invalid symbol index %lu\n"),
11900 sym_index);
11901 else
11902 saved_sym = symtab + sym_index;
11903 return TRUE;
11904
11905 case 1: /* R_MN10300_32 */
11906 case 2: /* R_MN10300_16 */
11907 if (saved_sym != NULL)
11908 {
11909 int reloc_size = reloc_type == 1 ? 4 : 2;
11910 bfd_vma value;
11911
11912 if (sym_index >= num_syms)
11913 error (_("MN10300 reloc contains invalid symbol index %lu\n"),
11914 sym_index);
11915 else
11916 {
11917 value = reloc->r_addend + (symtab[sym_index].st_value
11918 - saved_sym->st_value);
11919
11920 if (IN_RANGE (start, end, start + reloc->r_offset, reloc_size))
11921 byte_put (start + reloc->r_offset, value, reloc_size);
11922 else
11923 error (_("MN10300 sym diff reloc contains invalid offset: 0x%lx\n"),
11924 (long) reloc->r_offset);
11925 }
11926
11927 saved_sym = NULL;
11928 return TRUE;
11929 }
11930 break;
11931 default:
11932 if (saved_sym != NULL)
11933 error (_("Unhandled MN10300 reloc type found after SYM_DIFF reloc\n"));
11934 break;
11935 }
11936 break;
11937 }
11938
11939 case EM_RL78:
11940 {
11941 static bfd_vma saved_sym1 = 0;
11942 static bfd_vma saved_sym2 = 0;
11943 static bfd_vma value;
11944
11945 if (reloc == NULL)
11946 {
11947 saved_sym1 = saved_sym2 = 0;
11948 return TRUE;
11949 }
11950
11951 switch (reloc_type)
11952 {
11953 case 0x80: /* R_RL78_SYM. */
11954 saved_sym1 = saved_sym2;
11955 if (sym_index >= num_syms)
11956 error (_("RL78_SYM reloc contains invalid symbol index %lu\n"),
11957 sym_index);
11958 else
11959 {
11960 saved_sym2 = symtab[sym_index].st_value;
11961 saved_sym2 += reloc->r_addend;
11962 }
11963 return TRUE;
11964
11965 case 0x83: /* R_RL78_OPsub. */
11966 value = saved_sym1 - saved_sym2;
11967 saved_sym2 = saved_sym1 = 0;
11968 return TRUE;
11969 break;
11970
11971 case 0x41: /* R_RL78_ABS32. */
11972 if (IN_RANGE (start, end, start + reloc->r_offset, 4))
11973 byte_put (start + reloc->r_offset, value, 4);
11974 else
11975 error (_("RL78 sym diff reloc contains invalid offset: 0x%lx\n"),
11976 (long) reloc->r_offset);
11977 value = 0;
11978 return TRUE;
11979
11980 case 0x43: /* R_RL78_ABS16. */
11981 if (IN_RANGE (start, end, start + reloc->r_offset, 2))
11982 byte_put (start + reloc->r_offset, value, 2);
11983 else
11984 error (_("RL78 sym diff reloc contains invalid offset: 0x%lx\n"),
11985 (long) reloc->r_offset);
11986 value = 0;
11987 return TRUE;
11988
11989 default:
11990 break;
11991 }
11992 break;
11993 }
11994 }
11995
11996 return FALSE;
11997 }
11998
11999 /* Returns TRUE iff RELOC_TYPE is a 32-bit absolute RELA relocation used in
12000 DWARF debug sections. This is a target specific test. Note - we do not
12001 go through the whole including-target-headers-multiple-times route, (as
12002 we have already done with <elf/h8.h>) because this would become very
12003 messy and even then this function would have to contain target specific
12004 information (the names of the relocs instead of their numeric values).
12005 FIXME: This is not the correct way to solve this problem. The proper way
12006 is to have target specific reloc sizing and typing functions created by
12007 the reloc-macros.h header, in the same way that it already creates the
12008 reloc naming functions. */
12009
12010 static bfd_boolean
12011 is_32bit_abs_reloc (unsigned int reloc_type)
12012 {
12013 /* Please keep this table alpha-sorted for ease of visual lookup. */
12014 switch (elf_header.e_machine)
12015 {
12016 case EM_386:
12017 case EM_IAMCU:
12018 return reloc_type == 1; /* R_386_32. */
12019 case EM_68K:
12020 return reloc_type == 1; /* R_68K_32. */
12021 case EM_860:
12022 return reloc_type == 1; /* R_860_32. */
12023 case EM_960:
12024 return reloc_type == 2; /* R_960_32. */
12025 case EM_AARCH64:
12026 return (reloc_type == 258
12027 || reloc_type == 1); /* R_AARCH64_ABS32 || R_AARCH64_P32_ABS32 */
12028 case EM_ADAPTEVA_EPIPHANY:
12029 return reloc_type == 3;
12030 case EM_ALPHA:
12031 return reloc_type == 1; /* R_ALPHA_REFLONG. */
12032 case EM_ARC:
12033 return reloc_type == 1; /* R_ARC_32. */
12034 case EM_ARC_COMPACT:
12035 case EM_ARC_COMPACT2:
12036 return reloc_type == 4; /* R_ARC_32. */
12037 case EM_ARM:
12038 return reloc_type == 2; /* R_ARM_ABS32 */
12039 case EM_AVR_OLD:
12040 case EM_AVR:
12041 return reloc_type == 1;
12042 case EM_BLACKFIN:
12043 return reloc_type == 0x12; /* R_byte4_data. */
12044 case EM_CRIS:
12045 return reloc_type == 3; /* R_CRIS_32. */
12046 case EM_CR16:
12047 return reloc_type == 3; /* R_CR16_NUM32. */
12048 case EM_CRX:
12049 return reloc_type == 15; /* R_CRX_NUM32. */
12050 case EM_CYGNUS_FRV:
12051 return reloc_type == 1;
12052 case EM_CYGNUS_D10V:
12053 case EM_D10V:
12054 return reloc_type == 6; /* R_D10V_32. */
12055 case EM_CYGNUS_D30V:
12056 case EM_D30V:
12057 return reloc_type == 12; /* R_D30V_32_NORMAL. */
12058 case EM_DLX:
12059 return reloc_type == 3; /* R_DLX_RELOC_32. */
12060 case EM_CYGNUS_FR30:
12061 case EM_FR30:
12062 return reloc_type == 3; /* R_FR30_32. */
12063 case EM_FT32:
12064 return reloc_type == 1; /* R_FT32_32. */
12065 case EM_H8S:
12066 case EM_H8_300:
12067 case EM_H8_300H:
12068 return reloc_type == 1; /* R_H8_DIR32. */
12069 case EM_IA_64:
12070 return reloc_type == 0x65 /* R_IA64_SECREL32LSB. */
12071 || reloc_type == 0x25; /* R_IA64_DIR32LSB. */
12072 case EM_IP2K_OLD:
12073 case EM_IP2K:
12074 return reloc_type == 2; /* R_IP2K_32. */
12075 case EM_IQ2000:
12076 return reloc_type == 2; /* R_IQ2000_32. */
12077 case EM_LATTICEMICO32:
12078 return reloc_type == 3; /* R_LM32_32. */
12079 case EM_M32C_OLD:
12080 case EM_M32C:
12081 return reloc_type == 3; /* R_M32C_32. */
12082 case EM_M32R:
12083 return reloc_type == 34; /* R_M32R_32_RELA. */
12084 case EM_68HC11:
12085 case EM_68HC12:
12086 return reloc_type == 6; /* R_M68HC11_32. */
12087 case EM_MCORE:
12088 return reloc_type == 1; /* R_MCORE_ADDR32. */
12089 case EM_CYGNUS_MEP:
12090 return reloc_type == 4; /* R_MEP_32. */
12091 case EM_METAG:
12092 return reloc_type == 2; /* R_METAG_ADDR32. */
12093 case EM_MICROBLAZE:
12094 return reloc_type == 1; /* R_MICROBLAZE_32. */
12095 case EM_MIPS:
12096 return reloc_type == 2; /* R_MIPS_32. */
12097 case EM_MMIX:
12098 return reloc_type == 4; /* R_MMIX_32. */
12099 case EM_CYGNUS_MN10200:
12100 case EM_MN10200:
12101 return reloc_type == 1; /* R_MN10200_32. */
12102 case EM_CYGNUS_MN10300:
12103 case EM_MN10300:
12104 return reloc_type == 1; /* R_MN10300_32. */
12105 case EM_MOXIE:
12106 return reloc_type == 1; /* R_MOXIE_32. */
12107 case EM_MSP430_OLD:
12108 case EM_MSP430:
12109 return reloc_type == 1; /* R_MSP430_32 or R_MSP320_ABS32. */
12110 case EM_MT:
12111 return reloc_type == 2; /* R_MT_32. */
12112 case EM_NDS32:
12113 return reloc_type == 20; /* R_NDS32_RELA. */
12114 case EM_ALTERA_NIOS2:
12115 return reloc_type == 12; /* R_NIOS2_BFD_RELOC_32. */
12116 case EM_NIOS32:
12117 return reloc_type == 1; /* R_NIOS_32. */
12118 case EM_OR1K:
12119 return reloc_type == 1; /* R_OR1K_32. */
12120 case EM_PARISC:
12121 return (reloc_type == 1 /* R_PARISC_DIR32. */
12122 || reloc_type == 41); /* R_PARISC_SECREL32. */
12123 case EM_PJ:
12124 case EM_PJ_OLD:
12125 return reloc_type == 1; /* R_PJ_DATA_DIR32. */
12126 case EM_PPC64:
12127 return reloc_type == 1; /* R_PPC64_ADDR32. */
12128 case EM_PPC:
12129 return reloc_type == 1; /* R_PPC_ADDR32. */
12130 case EM_TI_PRU:
12131 return reloc_type == 11; /* R_PRU_BFD_RELOC_32. */
12132 case EM_RISCV:
12133 return reloc_type == 1; /* R_RISCV_32. */
12134 case EM_RL78:
12135 return reloc_type == 1; /* R_RL78_DIR32. */
12136 case EM_RX:
12137 return reloc_type == 1; /* R_RX_DIR32. */
12138 case EM_S370:
12139 return reloc_type == 1; /* R_I370_ADDR31. */
12140 case EM_S390_OLD:
12141 case EM_S390:
12142 return reloc_type == 4; /* R_S390_32. */
12143 case EM_SCORE:
12144 return reloc_type == 8; /* R_SCORE_ABS32. */
12145 case EM_SH:
12146 return reloc_type == 1; /* R_SH_DIR32. */
12147 case EM_SPARC32PLUS:
12148 case EM_SPARCV9:
12149 case EM_SPARC:
12150 return reloc_type == 3 /* R_SPARC_32. */
12151 || reloc_type == 23; /* R_SPARC_UA32. */
12152 case EM_SPU:
12153 return reloc_type == 6; /* R_SPU_ADDR32 */
12154 case EM_TI_C6000:
12155 return reloc_type == 1; /* R_C6000_ABS32. */
12156 case EM_TILEGX:
12157 return reloc_type == 2; /* R_TILEGX_32. */
12158 case EM_TILEPRO:
12159 return reloc_type == 1; /* R_TILEPRO_32. */
12160 case EM_CYGNUS_V850:
12161 case EM_V850:
12162 return reloc_type == 6; /* R_V850_ABS32. */
12163 case EM_V800:
12164 return reloc_type == 0x33; /* R_V810_WORD. */
12165 case EM_VAX:
12166 return reloc_type == 1; /* R_VAX_32. */
12167 case EM_VISIUM:
12168 return reloc_type == 3; /* R_VISIUM_32. */
12169 case EM_WEBASSEMBLY:
12170 return reloc_type == 1; /* R_WASM32_32. */
12171 case EM_X86_64:
12172 case EM_L1OM:
12173 case EM_K1OM:
12174 return reloc_type == 10; /* R_X86_64_32. */
12175 case EM_XC16X:
12176 case EM_C166:
12177 return reloc_type == 3; /* R_XC16C_ABS_32. */
12178 case EM_XGATE:
12179 return reloc_type == 4; /* R_XGATE_32. */
12180 case EM_XSTORMY16:
12181 return reloc_type == 1; /* R_XSTROMY16_32. */
12182 case EM_XTENSA_OLD:
12183 case EM_XTENSA:
12184 return reloc_type == 1; /* R_XTENSA_32. */
12185 default:
12186 {
12187 static unsigned int prev_warn = 0;
12188
12189 /* Avoid repeating the same warning multiple times. */
12190 if (prev_warn != elf_header.e_machine)
12191 error (_("Missing knowledge of 32-bit reloc types used in DWARF sections of machine number %d\n"),
12192 elf_header.e_machine);
12193 prev_warn = elf_header.e_machine;
12194 return FALSE;
12195 }
12196 }
12197 }
12198
12199 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12200 a 32-bit pc-relative RELA relocation used in DWARF debug sections. */
12201
12202 static bfd_boolean
12203 is_32bit_pcrel_reloc (unsigned int reloc_type)
12204 {
12205 switch (elf_header.e_machine)
12206 /* Please keep this table alpha-sorted for ease of visual lookup. */
12207 {
12208 case EM_386:
12209 case EM_IAMCU:
12210 return reloc_type == 2; /* R_386_PC32. */
12211 case EM_68K:
12212 return reloc_type == 4; /* R_68K_PC32. */
12213 case EM_AARCH64:
12214 return reloc_type == 261; /* R_AARCH64_PREL32 */
12215 case EM_ADAPTEVA_EPIPHANY:
12216 return reloc_type == 6;
12217 case EM_ALPHA:
12218 return reloc_type == 10; /* R_ALPHA_SREL32. */
12219 case EM_ARC_COMPACT:
12220 case EM_ARC_COMPACT2:
12221 return reloc_type == 49; /* R_ARC_32_PCREL. */
12222 case EM_ARM:
12223 return reloc_type == 3; /* R_ARM_REL32 */
12224 case EM_AVR_OLD:
12225 case EM_AVR:
12226 return reloc_type == 36; /* R_AVR_32_PCREL. */
12227 case EM_MICROBLAZE:
12228 return reloc_type == 2; /* R_MICROBLAZE_32_PCREL. */
12229 case EM_OR1K:
12230 return reloc_type == 9; /* R_OR1K_32_PCREL. */
12231 case EM_PARISC:
12232 return reloc_type == 9; /* R_PARISC_PCREL32. */
12233 case EM_PPC:
12234 return reloc_type == 26; /* R_PPC_REL32. */
12235 case EM_PPC64:
12236 return reloc_type == 26; /* R_PPC64_REL32. */
12237 case EM_S390_OLD:
12238 case EM_S390:
12239 return reloc_type == 5; /* R_390_PC32. */
12240 case EM_SH:
12241 return reloc_type == 2; /* R_SH_REL32. */
12242 case EM_SPARC32PLUS:
12243 case EM_SPARCV9:
12244 case EM_SPARC:
12245 return reloc_type == 6; /* R_SPARC_DISP32. */
12246 case EM_SPU:
12247 return reloc_type == 13; /* R_SPU_REL32. */
12248 case EM_TILEGX:
12249 return reloc_type == 6; /* R_TILEGX_32_PCREL. */
12250 case EM_TILEPRO:
12251 return reloc_type == 4; /* R_TILEPRO_32_PCREL. */
12252 case EM_VISIUM:
12253 return reloc_type == 6; /* R_VISIUM_32_PCREL */
12254 case EM_X86_64:
12255 case EM_L1OM:
12256 case EM_K1OM:
12257 return reloc_type == 2; /* R_X86_64_PC32. */
12258 case EM_XTENSA_OLD:
12259 case EM_XTENSA:
12260 return reloc_type == 14; /* R_XTENSA_32_PCREL. */
12261 default:
12262 /* Do not abort or issue an error message here. Not all targets use
12263 pc-relative 32-bit relocs in their DWARF debug information and we
12264 have already tested for target coverage in is_32bit_abs_reloc. A
12265 more helpful warning message will be generated by apply_relocations
12266 anyway, so just return. */
12267 return FALSE;
12268 }
12269 }
12270
12271 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12272 a 64-bit absolute RELA relocation used in DWARF debug sections. */
12273
12274 static bfd_boolean
12275 is_64bit_abs_reloc (unsigned int reloc_type)
12276 {
12277 switch (elf_header.e_machine)
12278 {
12279 case EM_AARCH64:
12280 return reloc_type == 257; /* R_AARCH64_ABS64. */
12281 case EM_ALPHA:
12282 return reloc_type == 2; /* R_ALPHA_REFQUAD. */
12283 case EM_IA_64:
12284 return reloc_type == 0x27; /* R_IA64_DIR64LSB. */
12285 case EM_PARISC:
12286 return reloc_type == 80; /* R_PARISC_DIR64. */
12287 case EM_PPC64:
12288 return reloc_type == 38; /* R_PPC64_ADDR64. */
12289 case EM_RISCV:
12290 return reloc_type == 2; /* R_RISCV_64. */
12291 case EM_SPARC32PLUS:
12292 case EM_SPARCV9:
12293 case EM_SPARC:
12294 return reloc_type == 54; /* R_SPARC_UA64. */
12295 case EM_X86_64:
12296 case EM_L1OM:
12297 case EM_K1OM:
12298 return reloc_type == 1; /* R_X86_64_64. */
12299 case EM_S390_OLD:
12300 case EM_S390:
12301 return reloc_type == 22; /* R_S390_64. */
12302 case EM_TILEGX:
12303 return reloc_type == 1; /* R_TILEGX_64. */
12304 case EM_MIPS:
12305 return reloc_type == 18; /* R_MIPS_64. */
12306 default:
12307 return FALSE;
12308 }
12309 }
12310
12311 /* Like is_32bit_pcrel_reloc except that it returns TRUE iff RELOC_TYPE is
12312 a 64-bit pc-relative RELA relocation used in DWARF debug sections. */
12313
12314 static bfd_boolean
12315 is_64bit_pcrel_reloc (unsigned int reloc_type)
12316 {
12317 switch (elf_header.e_machine)
12318 {
12319 case EM_AARCH64:
12320 return reloc_type == 260; /* R_AARCH64_PREL64. */
12321 case EM_ALPHA:
12322 return reloc_type == 11; /* R_ALPHA_SREL64. */
12323 case EM_IA_64:
12324 return reloc_type == 0x4f; /* R_IA64_PCREL64LSB. */
12325 case EM_PARISC:
12326 return reloc_type == 72; /* R_PARISC_PCREL64. */
12327 case EM_PPC64:
12328 return reloc_type == 44; /* R_PPC64_REL64. */
12329 case EM_SPARC32PLUS:
12330 case EM_SPARCV9:
12331 case EM_SPARC:
12332 return reloc_type == 46; /* R_SPARC_DISP64. */
12333 case EM_X86_64:
12334 case EM_L1OM:
12335 case EM_K1OM:
12336 return reloc_type == 24; /* R_X86_64_PC64. */
12337 case EM_S390_OLD:
12338 case EM_S390:
12339 return reloc_type == 23; /* R_S390_PC64. */
12340 case EM_TILEGX:
12341 return reloc_type == 5; /* R_TILEGX_64_PCREL. */
12342 default:
12343 return FALSE;
12344 }
12345 }
12346
12347 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12348 a 24-bit absolute RELA relocation used in DWARF debug sections. */
12349
12350 static bfd_boolean
12351 is_24bit_abs_reloc (unsigned int reloc_type)
12352 {
12353 switch (elf_header.e_machine)
12354 {
12355 case EM_CYGNUS_MN10200:
12356 case EM_MN10200:
12357 return reloc_type == 4; /* R_MN10200_24. */
12358 case EM_FT32:
12359 return reloc_type == 5; /* R_FT32_20. */
12360 default:
12361 return FALSE;
12362 }
12363 }
12364
12365 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12366 a 16-bit absolute RELA relocation used in DWARF debug sections. */
12367
12368 static bfd_boolean
12369 is_16bit_abs_reloc (unsigned int reloc_type)
12370 {
12371 /* Please keep this table alpha-sorted for ease of visual lookup. */
12372 switch (elf_header.e_machine)
12373 {
12374 case EM_ARC:
12375 case EM_ARC_COMPACT:
12376 case EM_ARC_COMPACT2:
12377 return reloc_type == 2; /* R_ARC_16. */
12378 case EM_ADAPTEVA_EPIPHANY:
12379 return reloc_type == 5;
12380 case EM_AVR_OLD:
12381 case EM_AVR:
12382 return reloc_type == 4; /* R_AVR_16. */
12383 case EM_CYGNUS_D10V:
12384 case EM_D10V:
12385 return reloc_type == 3; /* R_D10V_16. */
12386 case EM_H8S:
12387 case EM_H8_300:
12388 case EM_H8_300H:
12389 return reloc_type == R_H8_DIR16;
12390 case EM_IP2K_OLD:
12391 case EM_IP2K:
12392 return reloc_type == 1; /* R_IP2K_16. */
12393 case EM_M32C_OLD:
12394 case EM_M32C:
12395 return reloc_type == 1; /* R_M32C_16 */
12396 case EM_CYGNUS_MN10200:
12397 case EM_MN10200:
12398 return reloc_type == 2; /* R_MN10200_16. */
12399 case EM_CYGNUS_MN10300:
12400 case EM_MN10300:
12401 return reloc_type == 2; /* R_MN10300_16. */
12402 case EM_MSP430:
12403 if (uses_msp430x_relocs ())
12404 return reloc_type == 2; /* R_MSP430_ABS16. */
12405 /* Fall through. */
12406 case EM_MSP430_OLD:
12407 return reloc_type == 5; /* R_MSP430_16_BYTE. */
12408 case EM_NDS32:
12409 return reloc_type == 19; /* R_NDS32_RELA. */
12410 case EM_ALTERA_NIOS2:
12411 return reloc_type == 13; /* R_NIOS2_BFD_RELOC_16. */
12412 case EM_NIOS32:
12413 return reloc_type == 9; /* R_NIOS_16. */
12414 case EM_OR1K:
12415 return reloc_type == 2; /* R_OR1K_16. */
12416 case EM_TI_PRU:
12417 return reloc_type == 8; /* R_PRU_BFD_RELOC_16. */
12418 case EM_TI_C6000:
12419 return reloc_type == 2; /* R_C6000_ABS16. */
12420 case EM_VISIUM:
12421 return reloc_type == 2; /* R_VISIUM_16. */
12422 case EM_XC16X:
12423 case EM_C166:
12424 return reloc_type == 2; /* R_XC16C_ABS_16. */
12425 case EM_XGATE:
12426 return reloc_type == 3; /* R_XGATE_16. */
12427 default:
12428 return FALSE;
12429 }
12430 }
12431
12432 /* Returns TRUE iff RELOC_TYPE is a NONE relocation used for discarded
12433 relocation entries (possibly formerly used for SHT_GROUP sections). */
12434
12435 static bfd_boolean
12436 is_none_reloc (unsigned int reloc_type)
12437 {
12438 switch (elf_header.e_machine)
12439 {
12440 case EM_386: /* R_386_NONE. */
12441 case EM_68K: /* R_68K_NONE. */
12442 case EM_ADAPTEVA_EPIPHANY:
12443 case EM_ALPHA: /* R_ALPHA_NONE. */
12444 case EM_ALTERA_NIOS2: /* R_NIOS2_NONE. */
12445 case EM_ARC: /* R_ARC_NONE. */
12446 case EM_ARC_COMPACT2: /* R_ARC_NONE. */
12447 case EM_ARC_COMPACT: /* R_ARC_NONE. */
12448 case EM_ARM: /* R_ARM_NONE. */
12449 case EM_C166: /* R_XC16X_NONE. */
12450 case EM_CRIS: /* R_CRIS_NONE. */
12451 case EM_FT32: /* R_FT32_NONE. */
12452 case EM_IA_64: /* R_IA64_NONE. */
12453 case EM_K1OM: /* R_X86_64_NONE. */
12454 case EM_L1OM: /* R_X86_64_NONE. */
12455 case EM_M32R: /* R_M32R_NONE. */
12456 case EM_MIPS: /* R_MIPS_NONE. */
12457 case EM_MN10300: /* R_MN10300_NONE. */
12458 case EM_MOXIE: /* R_MOXIE_NONE. */
12459 case EM_NIOS32: /* R_NIOS_NONE. */
12460 case EM_OR1K: /* R_OR1K_NONE. */
12461 case EM_PARISC: /* R_PARISC_NONE. */
12462 case EM_PPC64: /* R_PPC64_NONE. */
12463 case EM_PPC: /* R_PPC_NONE. */
12464 case EM_RISCV: /* R_RISCV_NONE. */
12465 case EM_S390: /* R_390_NONE. */
12466 case EM_S390_OLD:
12467 case EM_SH: /* R_SH_NONE. */
12468 case EM_SPARC32PLUS:
12469 case EM_SPARC: /* R_SPARC_NONE. */
12470 case EM_SPARCV9:
12471 case EM_TILEGX: /* R_TILEGX_NONE. */
12472 case EM_TILEPRO: /* R_TILEPRO_NONE. */
12473 case EM_TI_C6000:/* R_C6000_NONE. */
12474 case EM_X86_64: /* R_X86_64_NONE. */
12475 case EM_XC16X:
12476 case EM_WEBASSEMBLY: /* R_WASM32_NONE. */
12477 return reloc_type == 0;
12478
12479 case EM_AARCH64:
12480 return reloc_type == 0 || reloc_type == 256;
12481 case EM_AVR_OLD:
12482 case EM_AVR:
12483 return (reloc_type == 0 /* R_AVR_NONE. */
12484 || reloc_type == 30 /* R_AVR_DIFF8. */
12485 || reloc_type == 31 /* R_AVR_DIFF16. */
12486 || reloc_type == 32 /* R_AVR_DIFF32. */);
12487 case EM_METAG:
12488 return reloc_type == 3; /* R_METAG_NONE. */
12489 case EM_NDS32:
12490 return (reloc_type == 0 /* R_XTENSA_NONE. */
12491 || reloc_type == 204 /* R_NDS32_DIFF8. */
12492 || reloc_type == 205 /* R_NDS32_DIFF16. */
12493 || reloc_type == 206 /* R_NDS32_DIFF32. */
12494 || reloc_type == 207 /* R_NDS32_ULEB128. */);
12495 case EM_TI_PRU:
12496 return (reloc_type == 0 /* R_PRU_NONE. */
12497 || reloc_type == 65 /* R_PRU_DIFF8. */
12498 || reloc_type == 66 /* R_PRU_DIFF16. */
12499 || reloc_type == 67 /* R_PRU_DIFF32. */);
12500 case EM_XTENSA_OLD:
12501 case EM_XTENSA:
12502 return (reloc_type == 0 /* R_XTENSA_NONE. */
12503 || reloc_type == 17 /* R_XTENSA_DIFF8. */
12504 || reloc_type == 18 /* R_XTENSA_DIFF16. */
12505 || reloc_type == 19 /* R_XTENSA_DIFF32. */);
12506 }
12507 return FALSE;
12508 }
12509
12510 /* Returns TRUE if there is a relocation against
12511 section NAME at OFFSET bytes. */
12512
12513 bfd_boolean
12514 reloc_at (struct dwarf_section * dsec, dwarf_vma offset)
12515 {
12516 Elf_Internal_Rela * relocs;
12517 Elf_Internal_Rela * rp;
12518
12519 if (dsec == NULL || dsec->reloc_info == NULL)
12520 return FALSE;
12521
12522 relocs = (Elf_Internal_Rela *) dsec->reloc_info;
12523
12524 for (rp = relocs; rp < relocs + dsec->num_relocs; ++rp)
12525 if (rp->r_offset == offset)
12526 return TRUE;
12527
12528 return FALSE;
12529 }
12530
12531 /* Apply relocations to a section.
12532 Returns TRUE upon success, FALSE otherwise.
12533 If RELOCS_RETURN is non-NULL then it is set to point to the loaded relocs.
12534 It is then the caller's responsibility to free them. NUM_RELOCS_RETURN
12535 will be set to the number of relocs loaded.
12536
12537 Note: So far support has been added only for those relocations
12538 which can be found in debug sections. FIXME: Add support for
12539 more relocations ? */
12540
12541 static bfd_boolean
12542 apply_relocations (void * file,
12543 const Elf_Internal_Shdr * section,
12544 unsigned char * start,
12545 bfd_size_type size,
12546 void ** relocs_return,
12547 unsigned long * num_relocs_return)
12548 {
12549 Elf_Internal_Shdr * relsec;
12550 unsigned char * end = start + size;
12551 bfd_boolean res = TRUE;
12552
12553 if (relocs_return != NULL)
12554 {
12555 * (Elf_Internal_Rela **) relocs_return = NULL;
12556 * num_relocs_return = 0;
12557 }
12558
12559 if (elf_header.e_type != ET_REL)
12560 /* No relocs to apply. */
12561 return TRUE;
12562
12563 /* Find the reloc section associated with the section. */
12564 for (relsec = section_headers;
12565 relsec < section_headers + elf_header.e_shnum;
12566 ++relsec)
12567 {
12568 bfd_boolean is_rela;
12569 unsigned long num_relocs;
12570 Elf_Internal_Rela * relocs;
12571 Elf_Internal_Rela * rp;
12572 Elf_Internal_Shdr * symsec;
12573 Elf_Internal_Sym * symtab;
12574 unsigned long num_syms;
12575 Elf_Internal_Sym * sym;
12576
12577 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
12578 || relsec->sh_info >= elf_header.e_shnum
12579 || section_headers + relsec->sh_info != section
12580 || relsec->sh_size == 0
12581 || relsec->sh_link >= elf_header.e_shnum)
12582 continue;
12583
12584 is_rela = relsec->sh_type == SHT_RELA;
12585
12586 if (is_rela)
12587 {
12588 if (!slurp_rela_relocs ((FILE *) file, relsec->sh_offset,
12589 relsec->sh_size, & relocs, & num_relocs))
12590 return FALSE;
12591 }
12592 else
12593 {
12594 if (!slurp_rel_relocs ((FILE *) file, relsec->sh_offset,
12595 relsec->sh_size, & relocs, & num_relocs))
12596 return FALSE;
12597 }
12598
12599 /* SH uses RELA but uses in place value instead of the addend field. */
12600 if (elf_header.e_machine == EM_SH)
12601 is_rela = FALSE;
12602
12603 symsec = section_headers + relsec->sh_link;
12604 if (symsec->sh_type != SHT_SYMTAB
12605 && symsec->sh_type != SHT_DYNSYM)
12606 return FALSE;
12607 symtab = GET_ELF_SYMBOLS ((FILE *) file, symsec, & num_syms);
12608
12609 for (rp = relocs; rp < relocs + num_relocs; ++rp)
12610 {
12611 bfd_vma addend;
12612 unsigned int reloc_type;
12613 unsigned int reloc_size;
12614 unsigned char * rloc;
12615 unsigned long sym_index;
12616
12617 reloc_type = get_reloc_type (rp->r_info);
12618
12619 if (target_specific_reloc_handling (rp, start, end, symtab, num_syms))
12620 continue;
12621 else if (is_none_reloc (reloc_type))
12622 continue;
12623 else if (is_32bit_abs_reloc (reloc_type)
12624 || is_32bit_pcrel_reloc (reloc_type))
12625 reloc_size = 4;
12626 else if (is_64bit_abs_reloc (reloc_type)
12627 || is_64bit_pcrel_reloc (reloc_type))
12628 reloc_size = 8;
12629 else if (is_24bit_abs_reloc (reloc_type))
12630 reloc_size = 3;
12631 else if (is_16bit_abs_reloc (reloc_type))
12632 reloc_size = 2;
12633 else
12634 {
12635 static unsigned int prev_reloc = 0;
12636 if (reloc_type != prev_reloc)
12637 warn (_("unable to apply unsupported reloc type %d to section %s\n"),
12638 reloc_type, printable_section_name (section));
12639 prev_reloc = reloc_type;
12640 res = FALSE;
12641 continue;
12642 }
12643
12644 rloc = start + rp->r_offset;
12645 if ((rloc + reloc_size) > end || (rloc < start))
12646 {
12647 warn (_("skipping invalid relocation offset 0x%lx in section %s\n"),
12648 (unsigned long) rp->r_offset,
12649 printable_section_name (section));
12650 res = FALSE;
12651 continue;
12652 }
12653
12654 sym_index = (unsigned long) get_reloc_symindex (rp->r_info);
12655 if (sym_index >= num_syms)
12656 {
12657 warn (_("skipping invalid relocation symbol index 0x%lx in section %s\n"),
12658 sym_index, printable_section_name (section));
12659 res = FALSE;
12660 continue;
12661 }
12662 sym = symtab + sym_index;
12663
12664 /* If the reloc has a symbol associated with it,
12665 make sure that it is of an appropriate type.
12666
12667 Relocations against symbols without type can happen.
12668 Gcc -feliminate-dwarf2-dups may generate symbols
12669 without type for debug info.
12670
12671 Icc generates relocations against function symbols
12672 instead of local labels.
12673
12674 Relocations against object symbols can happen, eg when
12675 referencing a global array. For an example of this see
12676 the _clz.o binary in libgcc.a. */
12677 if (sym != symtab
12678 && ELF_ST_TYPE (sym->st_info) != STT_COMMON
12679 && ELF_ST_TYPE (sym->st_info) > STT_SECTION)
12680 {
12681 warn (_("skipping unexpected symbol type %s in %ld'th relocation in section %s\n"),
12682 get_symbol_type (ELF_ST_TYPE (sym->st_info)),
12683 (long int)(rp - relocs),
12684 printable_section_name (relsec));
12685 res = FALSE;
12686 continue;
12687 }
12688
12689 addend = 0;
12690 if (is_rela)
12691 addend += rp->r_addend;
12692 /* R_XTENSA_32, R_PJ_DATA_DIR32 and R_D30V_32_NORMAL are
12693 partial_inplace. */
12694 if (!is_rela
12695 || (elf_header.e_machine == EM_XTENSA
12696 && reloc_type == 1)
12697 || ((elf_header.e_machine == EM_PJ
12698 || elf_header.e_machine == EM_PJ_OLD)
12699 && reloc_type == 1)
12700 || ((elf_header.e_machine == EM_D30V
12701 || elf_header.e_machine == EM_CYGNUS_D30V)
12702 && reloc_type == 12))
12703 addend += byte_get (rloc, reloc_size);
12704
12705 if (is_32bit_pcrel_reloc (reloc_type)
12706 || is_64bit_pcrel_reloc (reloc_type))
12707 {
12708 /* On HPPA, all pc-relative relocations are biased by 8. */
12709 if (elf_header.e_machine == EM_PARISC)
12710 addend -= 8;
12711 byte_put (rloc, (addend + sym->st_value) - rp->r_offset,
12712 reloc_size);
12713 }
12714 else
12715 byte_put (rloc, addend + sym->st_value, reloc_size);
12716 }
12717
12718 free (symtab);
12719 /* Let the target specific reloc processing code know that
12720 we have finished with these relocs. */
12721 target_specific_reloc_handling (NULL, NULL, NULL, NULL, 0);
12722
12723 if (relocs_return)
12724 {
12725 * (Elf_Internal_Rela **) relocs_return = relocs;
12726 * num_relocs_return = num_relocs;
12727 }
12728 else
12729 free (relocs);
12730
12731 break;
12732 }
12733
12734 return res;
12735 }
12736
12737 #ifdef SUPPORT_DISASSEMBLY
12738 static bfd_boolean
12739 disassemble_section (Elf_Internal_Shdr * section, FILE * file)
12740 {
12741 printf (_("\nAssembly dump of section %s\n"), printable_section_name (section));
12742
12743 /* FIXME: XXX -- to be done --- XXX */
12744
12745 return TRUE;
12746 }
12747 #endif
12748
12749 /* Reads in the contents of SECTION from FILE, returning a pointer
12750 to a malloc'ed buffer or NULL if something went wrong. */
12751
12752 static char *
12753 get_section_contents (Elf_Internal_Shdr * section, FILE * file)
12754 {
12755 bfd_size_type num_bytes;
12756
12757 num_bytes = section->sh_size;
12758
12759 if (num_bytes == 0 || section->sh_type == SHT_NOBITS)
12760 {
12761 printf (_("\nSection '%s' has no data to dump.\n"),
12762 printable_section_name (section));
12763 return NULL;
12764 }
12765
12766 return (char *) get_data (NULL, file, section->sh_offset, 1, num_bytes,
12767 _("section contents"));
12768 }
12769
12770 /* Uncompresses a section that was compressed using zlib, in place. */
12771
12772 static bfd_boolean
12773 uncompress_section_contents (unsigned char **buffer,
12774 dwarf_size_type uncompressed_size,
12775 dwarf_size_type *size)
12776 {
12777 dwarf_size_type compressed_size = *size;
12778 unsigned char * compressed_buffer = *buffer;
12779 unsigned char * uncompressed_buffer;
12780 z_stream strm;
12781 int rc;
12782
12783 /* It is possible the section consists of several compressed
12784 buffers concatenated together, so we uncompress in a loop. */
12785 /* PR 18313: The state field in the z_stream structure is supposed
12786 to be invisible to the user (ie us), but some compilers will
12787 still complain about it being used without initialisation. So
12788 we first zero the entire z_stream structure and then set the fields
12789 that we need. */
12790 memset (& strm, 0, sizeof strm);
12791 strm.avail_in = compressed_size;
12792 strm.next_in = (Bytef *) compressed_buffer;
12793 strm.avail_out = uncompressed_size;
12794 uncompressed_buffer = (unsigned char *) xmalloc (uncompressed_size);
12795
12796 rc = inflateInit (& strm);
12797 while (strm.avail_in > 0)
12798 {
12799 if (rc != Z_OK)
12800 goto fail;
12801 strm.next_out = ((Bytef *) uncompressed_buffer
12802 + (uncompressed_size - strm.avail_out));
12803 rc = inflate (&strm, Z_FINISH);
12804 if (rc != Z_STREAM_END)
12805 goto fail;
12806 rc = inflateReset (& strm);
12807 }
12808 rc = inflateEnd (& strm);
12809 if (rc != Z_OK
12810 || strm.avail_out != 0)
12811 goto fail;
12812
12813 *buffer = uncompressed_buffer;
12814 *size = uncompressed_size;
12815 return TRUE;
12816
12817 fail:
12818 free (uncompressed_buffer);
12819 /* Indicate decompression failure. */
12820 *buffer = NULL;
12821 return FALSE;
12822 }
12823
12824 static bfd_boolean
12825 dump_section_as_strings (Elf_Internal_Shdr * section, FILE * file)
12826 {
12827 Elf_Internal_Shdr * relsec;
12828 bfd_size_type num_bytes;
12829 unsigned char * data;
12830 unsigned char * end;
12831 unsigned char * real_start;
12832 unsigned char * start;
12833 bfd_boolean some_strings_shown;
12834
12835 real_start = start = (unsigned char *) get_section_contents (section,
12836 file);
12837 if (start == NULL)
12838 return FALSE;
12839 num_bytes = section->sh_size;
12840
12841 printf (_("\nString dump of section '%s':\n"), printable_section_name (section));
12842
12843 if (decompress_dumps)
12844 {
12845 dwarf_size_type new_size = num_bytes;
12846 dwarf_size_type uncompressed_size = 0;
12847
12848 if ((section->sh_flags & SHF_COMPRESSED) != 0)
12849 {
12850 Elf_Internal_Chdr chdr;
12851 unsigned int compression_header_size
12852 = get_compression_header (& chdr, (unsigned char *) start,
12853 num_bytes);
12854
12855 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
12856 {
12857 warn (_("section '%s' has unsupported compress type: %d\n"),
12858 printable_section_name (section), chdr.ch_type);
12859 return FALSE;
12860 }
12861 else if (chdr.ch_addralign != section->sh_addralign)
12862 {
12863 warn (_("compressed section '%s' is corrupted\n"),
12864 printable_section_name (section));
12865 return FALSE;
12866 }
12867 uncompressed_size = chdr.ch_size;
12868 start += compression_header_size;
12869 new_size -= compression_header_size;
12870 }
12871 else if (new_size > 12 && streq ((char *) start, "ZLIB"))
12872 {
12873 /* Read the zlib header. In this case, it should be "ZLIB"
12874 followed by the uncompressed section size, 8 bytes in
12875 big-endian order. */
12876 uncompressed_size = start[4]; uncompressed_size <<= 8;
12877 uncompressed_size += start[5]; uncompressed_size <<= 8;
12878 uncompressed_size += start[6]; uncompressed_size <<= 8;
12879 uncompressed_size += start[7]; uncompressed_size <<= 8;
12880 uncompressed_size += start[8]; uncompressed_size <<= 8;
12881 uncompressed_size += start[9]; uncompressed_size <<= 8;
12882 uncompressed_size += start[10]; uncompressed_size <<= 8;
12883 uncompressed_size += start[11];
12884 start += 12;
12885 new_size -= 12;
12886 }
12887
12888 if (uncompressed_size)
12889 {
12890 if (uncompress_section_contents (& start,
12891 uncompressed_size, & new_size))
12892 num_bytes = new_size;
12893 else
12894 {
12895 error (_("Unable to decompress section %s\n"),
12896 printable_section_name (section));
12897 return FALSE;
12898 }
12899 }
12900 else
12901 start = real_start;
12902 }
12903
12904 /* If the section being dumped has relocations against it the user might
12905 be expecting these relocations to have been applied. Check for this
12906 case and issue a warning message in order to avoid confusion.
12907 FIXME: Maybe we ought to have an option that dumps a section with
12908 relocs applied ? */
12909 for (relsec = section_headers;
12910 relsec < section_headers + elf_header.e_shnum;
12911 ++relsec)
12912 {
12913 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
12914 || relsec->sh_info >= elf_header.e_shnum
12915 || section_headers + relsec->sh_info != section
12916 || relsec->sh_size == 0
12917 || relsec->sh_link >= elf_header.e_shnum)
12918 continue;
12919
12920 printf (_(" Note: This section has relocations against it, but these have NOT been applied to this dump.\n"));
12921 break;
12922 }
12923
12924 data = start;
12925 end = start + num_bytes;
12926 some_strings_shown = FALSE;
12927
12928 while (data < end)
12929 {
12930 while (!ISPRINT (* data))
12931 if (++ data >= end)
12932 break;
12933
12934 if (data < end)
12935 {
12936 size_t maxlen = end - data;
12937
12938 #ifndef __MSVCRT__
12939 /* PR 11128: Use two separate invocations in order to work
12940 around bugs in the Solaris 8 implementation of printf. */
12941 printf (" [%6tx] ", data - start);
12942 #else
12943 printf (" [%6Ix] ", (size_t) (data - start));
12944 #endif
12945 if (maxlen > 0)
12946 {
12947 print_symbol ((int) maxlen, (const char *) data);
12948 putchar ('\n');
12949 data += strnlen ((const char *) data, maxlen);
12950 }
12951 else
12952 {
12953 printf (_("<corrupt>\n"));
12954 data = end;
12955 }
12956 some_strings_shown = TRUE;
12957 }
12958 }
12959
12960 if (! some_strings_shown)
12961 printf (_(" No strings found in this section."));
12962
12963 free (real_start);
12964
12965 putchar ('\n');
12966 return TRUE;
12967 }
12968
12969 static bfd_boolean
12970 dump_section_as_bytes (Elf_Internal_Shdr * section,
12971 FILE * file,
12972 bfd_boolean relocate)
12973 {
12974 Elf_Internal_Shdr * relsec;
12975 bfd_size_type bytes;
12976 bfd_size_type section_size;
12977 bfd_vma addr;
12978 unsigned char * data;
12979 unsigned char * real_start;
12980 unsigned char * start;
12981
12982 real_start = start = (unsigned char *) get_section_contents (section, file);
12983 if (start == NULL)
12984 return FALSE;
12985
12986 section_size = section->sh_size;
12987
12988 printf (_("\nHex dump of section '%s':\n"), printable_section_name (section));
12989
12990 if (decompress_dumps)
12991 {
12992 dwarf_size_type new_size = section_size;
12993 dwarf_size_type uncompressed_size = 0;
12994
12995 if ((section->sh_flags & SHF_COMPRESSED) != 0)
12996 {
12997 Elf_Internal_Chdr chdr;
12998 unsigned int compression_header_size
12999 = get_compression_header (& chdr, start, section_size);
13000
13001 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
13002 {
13003 warn (_("section '%s' has unsupported compress type: %d\n"),
13004 printable_section_name (section), chdr.ch_type);
13005 return FALSE;
13006 }
13007 else if (chdr.ch_addralign != section->sh_addralign)
13008 {
13009 warn (_("compressed section '%s' is corrupted\n"),
13010 printable_section_name (section));
13011 return FALSE;
13012 }
13013 uncompressed_size = chdr.ch_size;
13014 start += compression_header_size;
13015 new_size -= compression_header_size;
13016 }
13017 else if (new_size > 12 && streq ((char *) start, "ZLIB"))
13018 {
13019 /* Read the zlib header. In this case, it should be "ZLIB"
13020 followed by the uncompressed section size, 8 bytes in
13021 big-endian order. */
13022 uncompressed_size = start[4]; uncompressed_size <<= 8;
13023 uncompressed_size += start[5]; uncompressed_size <<= 8;
13024 uncompressed_size += start[6]; uncompressed_size <<= 8;
13025 uncompressed_size += start[7]; uncompressed_size <<= 8;
13026 uncompressed_size += start[8]; uncompressed_size <<= 8;
13027 uncompressed_size += start[9]; uncompressed_size <<= 8;
13028 uncompressed_size += start[10]; uncompressed_size <<= 8;
13029 uncompressed_size += start[11];
13030 start += 12;
13031 new_size -= 12;
13032 }
13033
13034 if (uncompressed_size)
13035 {
13036 if (uncompress_section_contents (& start, uncompressed_size,
13037 & new_size))
13038 {
13039 section_size = new_size;
13040 }
13041 else
13042 {
13043 error (_("Unable to decompress section %s\n"),
13044 printable_section_name (section));
13045 /* FIXME: Print the section anyway ? */
13046 return FALSE;
13047 }
13048 }
13049 else
13050 start = real_start;
13051 }
13052
13053 if (relocate)
13054 {
13055 if (! apply_relocations (file, section, start, section_size, NULL, NULL))
13056 return FALSE;
13057 }
13058 else
13059 {
13060 /* If the section being dumped has relocations against it the user might
13061 be expecting these relocations to have been applied. Check for this
13062 case and issue a warning message in order to avoid confusion.
13063 FIXME: Maybe we ought to have an option that dumps a section with
13064 relocs applied ? */
13065 for (relsec = section_headers;
13066 relsec < section_headers + elf_header.e_shnum;
13067 ++relsec)
13068 {
13069 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
13070 || relsec->sh_info >= elf_header.e_shnum
13071 || section_headers + relsec->sh_info != section
13072 || relsec->sh_size == 0
13073 || relsec->sh_link >= elf_header.e_shnum)
13074 continue;
13075
13076 printf (_(" NOTE: This section has relocations against it, but these have NOT been applied to this dump.\n"));
13077 break;
13078 }
13079 }
13080
13081 addr = section->sh_addr;
13082 bytes = section_size;
13083 data = start;
13084
13085 while (bytes)
13086 {
13087 int j;
13088 int k;
13089 int lbytes;
13090
13091 lbytes = (bytes > 16 ? 16 : bytes);
13092
13093 printf (" 0x%8.8lx ", (unsigned long) addr);
13094
13095 for (j = 0; j < 16; j++)
13096 {
13097 if (j < lbytes)
13098 printf ("%2.2x", data[j]);
13099 else
13100 printf (" ");
13101
13102 if ((j & 3) == 3)
13103 printf (" ");
13104 }
13105
13106 for (j = 0; j < lbytes; j++)
13107 {
13108 k = data[j];
13109 if (k >= ' ' && k < 0x7f)
13110 printf ("%c", k);
13111 else
13112 printf (".");
13113 }
13114
13115 putchar ('\n');
13116
13117 data += lbytes;
13118 addr += lbytes;
13119 bytes -= lbytes;
13120 }
13121
13122 free (real_start);
13123
13124 putchar ('\n');
13125 return TRUE;
13126 }
13127
13128 static bfd_boolean
13129 load_specific_debug_section (enum dwarf_section_display_enum debug,
13130 const Elf_Internal_Shdr * sec, void * file)
13131 {
13132 struct dwarf_section * section = &debug_displays [debug].section;
13133 char buf [64];
13134
13135 /* If it is already loaded, do nothing. */
13136 if (section->start != NULL)
13137 return TRUE;
13138
13139 snprintf (buf, sizeof (buf), _("%s section data"), section->name);
13140 section->address = sec->sh_addr;
13141 section->user_data = NULL;
13142 section->start = (unsigned char *) get_data (NULL, (FILE *) file,
13143 sec->sh_offset, 1,
13144 sec->sh_size, buf);
13145 if (section->start == NULL)
13146 section->size = 0;
13147 else
13148 {
13149 unsigned char *start = section->start;
13150 dwarf_size_type size = sec->sh_size;
13151 dwarf_size_type uncompressed_size = 0;
13152
13153 if ((sec->sh_flags & SHF_COMPRESSED) != 0)
13154 {
13155 Elf_Internal_Chdr chdr;
13156 unsigned int compression_header_size;
13157
13158 if (size < (is_32bit_elf
13159 ? sizeof (Elf32_External_Chdr)
13160 : sizeof (Elf64_External_Chdr)))
13161 {
13162 warn (_("compressed section %s is too small to contain a compression header"),
13163 section->name);
13164 return FALSE;
13165 }
13166
13167 compression_header_size = get_compression_header (&chdr, start, size);
13168
13169 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
13170 {
13171 warn (_("section '%s' has unsupported compress type: %d\n"),
13172 section->name, chdr.ch_type);
13173 return FALSE;
13174 }
13175 else if (chdr.ch_addralign != sec->sh_addralign)
13176 {
13177 warn (_("compressed section '%s' is corrupted\n"),
13178 section->name);
13179 return FALSE;
13180 }
13181 uncompressed_size = chdr.ch_size;
13182 start += compression_header_size;
13183 size -= compression_header_size;
13184 }
13185 else if (size > 12 && streq ((char *) start, "ZLIB"))
13186 {
13187 /* Read the zlib header. In this case, it should be "ZLIB"
13188 followed by the uncompressed section size, 8 bytes in
13189 big-endian order. */
13190 uncompressed_size = start[4]; uncompressed_size <<= 8;
13191 uncompressed_size += start[5]; uncompressed_size <<= 8;
13192 uncompressed_size += start[6]; uncompressed_size <<= 8;
13193 uncompressed_size += start[7]; uncompressed_size <<= 8;
13194 uncompressed_size += start[8]; uncompressed_size <<= 8;
13195 uncompressed_size += start[9]; uncompressed_size <<= 8;
13196 uncompressed_size += start[10]; uncompressed_size <<= 8;
13197 uncompressed_size += start[11];
13198 start += 12;
13199 size -= 12;
13200 }
13201
13202 if (uncompressed_size)
13203 {
13204 if (uncompress_section_contents (&start, uncompressed_size,
13205 &size))
13206 {
13207 /* Free the compressed buffer, update the section buffer
13208 and the section size if uncompress is successful. */
13209 free (section->start);
13210 section->start = start;
13211 }
13212 else
13213 {
13214 error (_("Unable to decompress section %s\n"),
13215 printable_section_name (sec));
13216 return FALSE;
13217 }
13218 }
13219
13220 section->size = size;
13221 }
13222
13223 if (section->start == NULL)
13224 return FALSE;
13225
13226 if (debug_displays [debug].relocate)
13227 {
13228 if (! apply_relocations ((FILE *) file, sec, section->start, section->size,
13229 & section->reloc_info, & section->num_relocs))
13230 return FALSE;
13231 }
13232 else
13233 {
13234 section->reloc_info = NULL;
13235 section->num_relocs = 0;
13236 }
13237
13238 return TRUE;
13239 }
13240
13241 /* If this is not NULL, load_debug_section will only look for sections
13242 within the list of sections given here. */
13243 static unsigned int * section_subset = NULL;
13244
13245 bfd_boolean
13246 load_debug_section (enum dwarf_section_display_enum debug, void * file)
13247 {
13248 struct dwarf_section * section = &debug_displays [debug].section;
13249 Elf_Internal_Shdr * sec;
13250
13251 /* Locate the debug section. */
13252 sec = find_section_in_set (section->uncompressed_name, section_subset);
13253 if (sec != NULL)
13254 section->name = section->uncompressed_name;
13255 else
13256 {
13257 sec = find_section_in_set (section->compressed_name, section_subset);
13258 if (sec != NULL)
13259 section->name = section->compressed_name;
13260 }
13261 if (sec == NULL)
13262 return FALSE;
13263
13264 /* If we're loading from a subset of sections, and we've loaded
13265 a section matching this name before, it's likely that it's a
13266 different one. */
13267 if (section_subset != NULL)
13268 free_debug_section (debug);
13269
13270 return load_specific_debug_section (debug, sec, (FILE *) file);
13271 }
13272
13273 void
13274 free_debug_section (enum dwarf_section_display_enum debug)
13275 {
13276 struct dwarf_section * section = &debug_displays [debug].section;
13277
13278 if (section->start == NULL)
13279 return;
13280
13281 free ((char *) section->start);
13282 section->start = NULL;
13283 section->address = 0;
13284 section->size = 0;
13285 }
13286
13287 static bfd_boolean
13288 display_debug_section (int shndx, Elf_Internal_Shdr * section, FILE * file)
13289 {
13290 char * name = SECTION_NAME (section);
13291 const char * print_name = printable_section_name (section);
13292 bfd_size_type length;
13293 bfd_boolean result = TRUE;
13294 int i;
13295
13296 length = section->sh_size;
13297 if (length == 0)
13298 {
13299 printf (_("\nSection '%s' has no debugging data.\n"), print_name);
13300 return TRUE;
13301 }
13302 if (section->sh_type == SHT_NOBITS)
13303 {
13304 /* There is no point in dumping the contents of a debugging section
13305 which has the NOBITS type - the bits in the file will be random.
13306 This can happen when a file containing a .eh_frame section is
13307 stripped with the --only-keep-debug command line option. */
13308 printf (_("section '%s' has the NOBITS type - its contents are unreliable.\n"),
13309 print_name);
13310 return FALSE;
13311 }
13312
13313 if (const_strneq (name, ".gnu.linkonce.wi."))
13314 name = ".debug_info";
13315
13316 /* See if we know how to display the contents of this section. */
13317 for (i = 0; i < max; i++)
13318 if (streq (debug_displays[i].section.uncompressed_name, name)
13319 || (i == line && const_strneq (name, ".debug_line."))
13320 || streq (debug_displays[i].section.compressed_name, name))
13321 {
13322 struct dwarf_section * sec = &debug_displays [i].section;
13323 int secondary = (section != find_section (name));
13324
13325 if (secondary)
13326 free_debug_section ((enum dwarf_section_display_enum) i);
13327
13328 if (i == line && const_strneq (name, ".debug_line."))
13329 sec->name = name;
13330 else if (streq (sec->uncompressed_name, name))
13331 sec->name = sec->uncompressed_name;
13332 else
13333 sec->name = sec->compressed_name;
13334 if (load_specific_debug_section ((enum dwarf_section_display_enum) i,
13335 section, file))
13336 {
13337 /* If this debug section is part of a CU/TU set in a .dwp file,
13338 restrict load_debug_section to the sections in that set. */
13339 section_subset = find_cu_tu_set (file, shndx);
13340
13341 result &= debug_displays[i].display (sec, file);
13342
13343 section_subset = NULL;
13344
13345 if (secondary || (i != info && i != abbrev))
13346 free_debug_section ((enum dwarf_section_display_enum) i);
13347 }
13348
13349 break;
13350 }
13351
13352 if (i == max)
13353 {
13354 printf (_("Unrecognized debug section: %s\n"), print_name);
13355 result = FALSE;
13356 }
13357
13358 return result;
13359 }
13360
13361 /* Set DUMP_SECTS for all sections where dumps were requested
13362 based on section name. */
13363
13364 static void
13365 initialise_dumps_byname (void)
13366 {
13367 struct dump_list_entry * cur;
13368
13369 for (cur = dump_sects_byname; cur; cur = cur->next)
13370 {
13371 unsigned int i;
13372 bfd_boolean any = FALSE;
13373
13374 for (i = 0; i < elf_header.e_shnum; i++)
13375 if (streq (SECTION_NAME (section_headers + i), cur->name))
13376 {
13377 request_dump_bynumber (i, cur->type);
13378 any = TRUE;
13379 }
13380
13381 if (!any)
13382 warn (_("Section '%s' was not dumped because it does not exist!\n"),
13383 cur->name);
13384 }
13385 }
13386
13387 static bfd_boolean
13388 process_section_contents (FILE * file)
13389 {
13390 Elf_Internal_Shdr * section;
13391 unsigned int i;
13392 bfd_boolean res = TRUE;
13393
13394 if (! do_dump)
13395 return TRUE;
13396
13397 initialise_dumps_byname ();
13398
13399 for (i = 0, section = section_headers;
13400 i < elf_header.e_shnum && i < num_dump_sects;
13401 i++, section++)
13402 {
13403 #ifdef SUPPORT_DISASSEMBLY
13404 if (dump_sects[i] & DISASS_DUMP)
13405 disassemble_section (section, file);
13406 #endif
13407 if (dump_sects[i] & HEX_DUMP)
13408 {
13409 if (! dump_section_as_bytes (section, file, FALSE))
13410 res = FALSE;
13411 }
13412
13413 if (dump_sects[i] & RELOC_DUMP)
13414 {
13415 if (! dump_section_as_bytes (section, file, TRUE))
13416 res = FALSE;
13417 }
13418
13419 if (dump_sects[i] & STRING_DUMP)
13420 {
13421 if (! dump_section_as_strings (section, file))
13422 res = FALSE;
13423 }
13424
13425 if (dump_sects[i] & DEBUG_DUMP)
13426 {
13427 if (! display_debug_section (i, section, file))
13428 res = FALSE;
13429 }
13430 }
13431
13432 /* Check to see if the user requested a
13433 dump of a section that does not exist. */
13434 while (i < num_dump_sects)
13435 {
13436 if (dump_sects[i])
13437 {
13438 warn (_("Section %d was not dumped because it does not exist!\n"), i);
13439 res = FALSE;
13440 }
13441 i++;
13442 }
13443
13444 return res;
13445 }
13446
13447 static void
13448 process_mips_fpe_exception (int mask)
13449 {
13450 if (mask)
13451 {
13452 bfd_boolean first = TRUE;
13453
13454 if (mask & OEX_FPU_INEX)
13455 fputs ("INEX", stdout), first = FALSE;
13456 if (mask & OEX_FPU_UFLO)
13457 printf ("%sUFLO", first ? "" : "|"), first = FALSE;
13458 if (mask & OEX_FPU_OFLO)
13459 printf ("%sOFLO", first ? "" : "|"), first = FALSE;
13460 if (mask & OEX_FPU_DIV0)
13461 printf ("%sDIV0", first ? "" : "|"), first = FALSE;
13462 if (mask & OEX_FPU_INVAL)
13463 printf ("%sINVAL", first ? "" : "|");
13464 }
13465 else
13466 fputs ("0", stdout);
13467 }
13468
13469 /* Display's the value of TAG at location P. If TAG is
13470 greater than 0 it is assumed to be an unknown tag, and
13471 a message is printed to this effect. Otherwise it is
13472 assumed that a message has already been printed.
13473
13474 If the bottom bit of TAG is set it assumed to have a
13475 string value, otherwise it is assumed to have an integer
13476 value.
13477
13478 Returns an updated P pointing to the first unread byte
13479 beyond the end of TAG's value.
13480
13481 Reads at or beyond END will not be made. */
13482
13483 static unsigned char *
13484 display_tag_value (signed int tag,
13485 unsigned char * p,
13486 const unsigned char * const end)
13487 {
13488 unsigned long val;
13489
13490 if (tag > 0)
13491 printf (" Tag_unknown_%d: ", tag);
13492
13493 if (p >= end)
13494 {
13495 warn (_("<corrupt tag>\n"));
13496 }
13497 else if (tag & 1)
13498 {
13499 /* PR 17531 file: 027-19978-0.004. */
13500 size_t maxlen = (end - p) - 1;
13501
13502 putchar ('"');
13503 if (maxlen > 0)
13504 {
13505 print_symbol ((int) maxlen, (const char *) p);
13506 p += strnlen ((char *) p, maxlen) + 1;
13507 }
13508 else
13509 {
13510 printf (_("<corrupt string tag>"));
13511 p = (unsigned char *) end;
13512 }
13513 printf ("\"\n");
13514 }
13515 else
13516 {
13517 unsigned int len;
13518
13519 val = read_uleb128 (p, &len, end);
13520 p += len;
13521 printf ("%ld (0x%lx)\n", val, val);
13522 }
13523
13524 assert (p <= end);
13525 return p;
13526 }
13527
13528 /* ARC ABI attributes section. */
13529
13530 static unsigned char *
13531 display_arc_attribute (unsigned char * p,
13532 const unsigned char * const end)
13533 {
13534 unsigned int tag;
13535 unsigned int len;
13536 unsigned int val;
13537
13538 tag = read_uleb128 (p, &len, end);
13539 p += len;
13540
13541 switch (tag)
13542 {
13543 case Tag_ARC_PCS_config:
13544 val = read_uleb128 (p, &len, end);
13545 p += len;
13546 printf (" Tag_ARC_PCS_config: ");
13547 switch (val)
13548 {
13549 case 0:
13550 printf (_("Absent/Non standard\n"));
13551 break;
13552 case 1:
13553 printf (_("Bare metal/mwdt\n"));
13554 break;
13555 case 2:
13556 printf (_("Bare metal/newlib\n"));
13557 break;
13558 case 3:
13559 printf (_("Linux/uclibc\n"));
13560 break;
13561 case 4:
13562 printf (_("Linux/glibc\n"));
13563 break;
13564 default:
13565 printf (_("Unknown\n"));
13566 break;
13567 }
13568 break;
13569
13570 case Tag_ARC_CPU_base:
13571 val = read_uleb128 (p, &len, end);
13572 p += len;
13573 printf (" Tag_ARC_CPU_base: ");
13574 switch (val)
13575 {
13576 default:
13577 case TAG_CPU_NONE:
13578 printf (_("Absent\n"));
13579 break;
13580 case TAG_CPU_ARC6xx:
13581 printf ("ARC6xx\n");
13582 break;
13583 case TAG_CPU_ARC7xx:
13584 printf ("ARC7xx\n");
13585 break;
13586 case TAG_CPU_ARCEM:
13587 printf ("ARCEM\n");
13588 break;
13589 case TAG_CPU_ARCHS:
13590 printf ("ARCHS\n");
13591 break;
13592 }
13593 break;
13594
13595 case Tag_ARC_CPU_variation:
13596 val = read_uleb128 (p, &len, end);
13597 p += len;
13598 printf (" Tag_ARC_CPU_variation: ");
13599 switch (val)
13600 {
13601 default:
13602 if (val > 0 && val < 16)
13603 printf ("Core%d\n", val);
13604 else
13605 printf ("Unknown\n");
13606 break;
13607
13608 case 0:
13609 printf (_("Absent\n"));
13610 break;
13611 }
13612 break;
13613
13614 case Tag_ARC_CPU_name:
13615 printf (" Tag_ARC_CPU_name: ");
13616 p = display_tag_value (-1, p, end);
13617 break;
13618
13619 case Tag_ARC_ABI_rf16:
13620 val = read_uleb128 (p, &len, end);
13621 p += len;
13622 printf (" Tag_ARC_ABI_rf16: %s\n", val ? _("yes") : _("no"));
13623 break;
13624
13625 case Tag_ARC_ABI_osver:
13626 val = read_uleb128 (p, &len, end);
13627 p += len;
13628 printf (" Tag_ARC_ABI_osver: v%d\n", val);
13629 break;
13630
13631 case Tag_ARC_ABI_pic:
13632 case Tag_ARC_ABI_sda:
13633 val = read_uleb128 (p, &len, end);
13634 p += len;
13635 printf (tag == Tag_ARC_ABI_sda ? " Tag_ARC_ABI_sda: "
13636 : " Tag_ARC_ABI_pic: ");
13637 switch (val)
13638 {
13639 case 0:
13640 printf (_("Absent\n"));
13641 break;
13642 case 1:
13643 printf ("MWDT\n");
13644 break;
13645 case 2:
13646 printf ("GNU\n");
13647 break;
13648 default:
13649 printf (_("Unknown\n"));
13650 break;
13651 }
13652 break;
13653
13654 case Tag_ARC_ABI_tls:
13655 val = read_uleb128 (p, &len, end);
13656 p += len;
13657 printf (" Tag_ARC_ABI_tls: %s\n", val ? "r25": "none");
13658 break;
13659
13660 case Tag_ARC_ABI_enumsize:
13661 val = read_uleb128 (p, &len, end);
13662 p += len;
13663 printf (" Tag_ARC_ABI_enumsize: %s\n", val ? _("default") :
13664 _("smallest"));
13665 break;
13666
13667 case Tag_ARC_ABI_exceptions:
13668 val = read_uleb128 (p, &len, end);
13669 p += len;
13670 printf (" Tag_ARC_ABI_exceptions: %s\n", val ? _("OPTFP")
13671 : _("default"));
13672 break;
13673
13674 case Tag_ARC_ABI_double_size:
13675 val = read_uleb128 (p, &len, end);
13676 p += len;
13677 printf (" Tag_ARC_ABI_double_size: %d\n", val);
13678 break;
13679
13680 case Tag_ARC_ISA_config:
13681 printf (" Tag_ARC_ISA_config: ");
13682 p = display_tag_value (-1, p, end);
13683 break;
13684
13685 case Tag_ARC_ISA_apex:
13686 printf (" Tag_ARC_ISA_apex: ");
13687 p = display_tag_value (-1, p, end);
13688 break;
13689
13690 case Tag_ARC_ISA_mpy_option:
13691 val = read_uleb128 (p, &len, end);
13692 p += len;
13693 printf (" Tag_ARC_ISA_mpy_option: %d\n", val);
13694 break;
13695
13696 default:
13697 return display_tag_value (tag & 1, p, end);
13698 }
13699
13700 return p;
13701 }
13702
13703 /* ARM EABI attributes section. */
13704 typedef struct
13705 {
13706 unsigned int tag;
13707 const char * name;
13708 /* 0 = special, 1 = string, 2 = uleb123, > 0x80 == table lookup. */
13709 unsigned int type;
13710 const char ** table;
13711 } arm_attr_public_tag;
13712
13713 static const char * arm_attr_tag_CPU_arch[] =
13714 {"Pre-v4", "v4", "v4T", "v5T", "v5TE", "v5TEJ", "v6", "v6KZ", "v6T2",
13715 "v6K", "v7", "v6-M", "v6S-M", "v7E-M", "v8", "v8-R", "v8-M.baseline",
13716 "v8-M.mainline"};
13717 static const char * arm_attr_tag_ARM_ISA_use[] = {"No", "Yes"};
13718 static const char * arm_attr_tag_THUMB_ISA_use[] =
13719 {"No", "Thumb-1", "Thumb-2", "Yes"};
13720 static const char * arm_attr_tag_FP_arch[] =
13721 {"No", "VFPv1", "VFPv2", "VFPv3", "VFPv3-D16", "VFPv4", "VFPv4-D16",
13722 "FP for ARMv8", "FPv5/FP-D16 for ARMv8"};
13723 static const char * arm_attr_tag_WMMX_arch[] = {"No", "WMMXv1", "WMMXv2"};
13724 static const char * arm_attr_tag_Advanced_SIMD_arch[] =
13725 {"No", "NEONv1", "NEONv1 with Fused-MAC", "NEON for ARMv8",
13726 "NEON for ARMv8.1"};
13727 static const char * arm_attr_tag_PCS_config[] =
13728 {"None", "Bare platform", "Linux application", "Linux DSO", "PalmOS 2004",
13729 "PalmOS (reserved)", "SymbianOS 2004", "SymbianOS (reserved)"};
13730 static const char * arm_attr_tag_ABI_PCS_R9_use[] =
13731 {"V6", "SB", "TLS", "Unused"};
13732 static const char * arm_attr_tag_ABI_PCS_RW_data[] =
13733 {"Absolute", "PC-relative", "SB-relative", "None"};
13734 static const char * arm_attr_tag_ABI_PCS_RO_data[] =
13735 {"Absolute", "PC-relative", "None"};
13736 static const char * arm_attr_tag_ABI_PCS_GOT_use[] =
13737 {"None", "direct", "GOT-indirect"};
13738 static const char * arm_attr_tag_ABI_PCS_wchar_t[] =
13739 {"None", "??? 1", "2", "??? 3", "4"};
13740 static const char * arm_attr_tag_ABI_FP_rounding[] = {"Unused", "Needed"};
13741 static const char * arm_attr_tag_ABI_FP_denormal[] =
13742 {"Unused", "Needed", "Sign only"};
13743 static const char * arm_attr_tag_ABI_FP_exceptions[] = {"Unused", "Needed"};
13744 static const char * arm_attr_tag_ABI_FP_user_exceptions[] = {"Unused", "Needed"};
13745 static const char * arm_attr_tag_ABI_FP_number_model[] =
13746 {"Unused", "Finite", "RTABI", "IEEE 754"};
13747 static const char * arm_attr_tag_ABI_enum_size[] =
13748 {"Unused", "small", "int", "forced to int"};
13749 static const char * arm_attr_tag_ABI_HardFP_use[] =
13750 {"As Tag_FP_arch", "SP only", "Reserved", "Deprecated"};
13751 static const char * arm_attr_tag_ABI_VFP_args[] =
13752 {"AAPCS", "VFP registers", "custom", "compatible"};
13753 static const char * arm_attr_tag_ABI_WMMX_args[] =
13754 {"AAPCS", "WMMX registers", "custom"};
13755 static const char * arm_attr_tag_ABI_optimization_goals[] =
13756 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
13757 "Aggressive Size", "Prefer Debug", "Aggressive Debug"};
13758 static const char * arm_attr_tag_ABI_FP_optimization_goals[] =
13759 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
13760 "Aggressive Size", "Prefer Accuracy", "Aggressive Accuracy"};
13761 static const char * arm_attr_tag_CPU_unaligned_access[] = {"None", "v6"};
13762 static const char * arm_attr_tag_FP_HP_extension[] =
13763 {"Not Allowed", "Allowed"};
13764 static const char * arm_attr_tag_ABI_FP_16bit_format[] =
13765 {"None", "IEEE 754", "Alternative Format"};
13766 static const char * arm_attr_tag_DSP_extension[] =
13767 {"Follow architecture", "Allowed"};
13768 static const char * arm_attr_tag_MPextension_use[] =
13769 {"Not Allowed", "Allowed"};
13770 static const char * arm_attr_tag_DIV_use[] =
13771 {"Allowed in Thumb-ISA, v7-R or v7-M", "Not allowed",
13772 "Allowed in v7-A with integer division extension"};
13773 static const char * arm_attr_tag_T2EE_use[] = {"Not Allowed", "Allowed"};
13774 static const char * arm_attr_tag_Virtualization_use[] =
13775 {"Not Allowed", "TrustZone", "Virtualization Extensions",
13776 "TrustZone and Virtualization Extensions"};
13777 static const char * arm_attr_tag_MPextension_use_legacy[] =
13778 {"Not Allowed", "Allowed"};
13779
13780 #define LOOKUP(id, name) \
13781 {id, #name, 0x80 | ARRAY_SIZE(arm_attr_tag_##name), arm_attr_tag_##name}
13782 static arm_attr_public_tag arm_attr_public_tags[] =
13783 {
13784 {4, "CPU_raw_name", 1, NULL},
13785 {5, "CPU_name", 1, NULL},
13786 LOOKUP(6, CPU_arch),
13787 {7, "CPU_arch_profile", 0, NULL},
13788 LOOKUP(8, ARM_ISA_use),
13789 LOOKUP(9, THUMB_ISA_use),
13790 LOOKUP(10, FP_arch),
13791 LOOKUP(11, WMMX_arch),
13792 LOOKUP(12, Advanced_SIMD_arch),
13793 LOOKUP(13, PCS_config),
13794 LOOKUP(14, ABI_PCS_R9_use),
13795 LOOKUP(15, ABI_PCS_RW_data),
13796 LOOKUP(16, ABI_PCS_RO_data),
13797 LOOKUP(17, ABI_PCS_GOT_use),
13798 LOOKUP(18, ABI_PCS_wchar_t),
13799 LOOKUP(19, ABI_FP_rounding),
13800 LOOKUP(20, ABI_FP_denormal),
13801 LOOKUP(21, ABI_FP_exceptions),
13802 LOOKUP(22, ABI_FP_user_exceptions),
13803 LOOKUP(23, ABI_FP_number_model),
13804 {24, "ABI_align_needed", 0, NULL},
13805 {25, "ABI_align_preserved", 0, NULL},
13806 LOOKUP(26, ABI_enum_size),
13807 LOOKUP(27, ABI_HardFP_use),
13808 LOOKUP(28, ABI_VFP_args),
13809 LOOKUP(29, ABI_WMMX_args),
13810 LOOKUP(30, ABI_optimization_goals),
13811 LOOKUP(31, ABI_FP_optimization_goals),
13812 {32, "compatibility", 0, NULL},
13813 LOOKUP(34, CPU_unaligned_access),
13814 LOOKUP(36, FP_HP_extension),
13815 LOOKUP(38, ABI_FP_16bit_format),
13816 LOOKUP(42, MPextension_use),
13817 LOOKUP(44, DIV_use),
13818 LOOKUP(46, DSP_extension),
13819 {64, "nodefaults", 0, NULL},
13820 {65, "also_compatible_with", 0, NULL},
13821 LOOKUP(66, T2EE_use),
13822 {67, "conformance", 1, NULL},
13823 LOOKUP(68, Virtualization_use),
13824 LOOKUP(70, MPextension_use_legacy)
13825 };
13826 #undef LOOKUP
13827
13828 static unsigned char *
13829 display_arm_attribute (unsigned char * p,
13830 const unsigned char * const end)
13831 {
13832 unsigned int tag;
13833 unsigned int len;
13834 unsigned int val;
13835 arm_attr_public_tag * attr;
13836 unsigned i;
13837 unsigned int type;
13838
13839 tag = read_uleb128 (p, &len, end);
13840 p += len;
13841 attr = NULL;
13842 for (i = 0; i < ARRAY_SIZE (arm_attr_public_tags); i++)
13843 {
13844 if (arm_attr_public_tags[i].tag == tag)
13845 {
13846 attr = &arm_attr_public_tags[i];
13847 break;
13848 }
13849 }
13850
13851 if (attr)
13852 {
13853 printf (" Tag_%s: ", attr->name);
13854 switch (attr->type)
13855 {
13856 case 0:
13857 switch (tag)
13858 {
13859 case 7: /* Tag_CPU_arch_profile. */
13860 val = read_uleb128 (p, &len, end);
13861 p += len;
13862 switch (val)
13863 {
13864 case 0: printf (_("None\n")); break;
13865 case 'A': printf (_("Application\n")); break;
13866 case 'R': printf (_("Realtime\n")); break;
13867 case 'M': printf (_("Microcontroller\n")); break;
13868 case 'S': printf (_("Application or Realtime\n")); break;
13869 default: printf ("??? (%d)\n", val); break;
13870 }
13871 break;
13872
13873 case 24: /* Tag_align_needed. */
13874 val = read_uleb128 (p, &len, end);
13875 p += len;
13876 switch (val)
13877 {
13878 case 0: printf (_("None\n")); break;
13879 case 1: printf (_("8-byte\n")); break;
13880 case 2: printf (_("4-byte\n")); break;
13881 case 3: printf ("??? 3\n"); break;
13882 default:
13883 if (val <= 12)
13884 printf (_("8-byte and up to %d-byte extended\n"),
13885 1 << val);
13886 else
13887 printf ("??? (%d)\n", val);
13888 break;
13889 }
13890 break;
13891
13892 case 25: /* Tag_align_preserved. */
13893 val = read_uleb128 (p, &len, end);
13894 p += len;
13895 switch (val)
13896 {
13897 case 0: printf (_("None\n")); break;
13898 case 1: printf (_("8-byte, except leaf SP\n")); break;
13899 case 2: printf (_("8-byte\n")); break;
13900 case 3: printf ("??? 3\n"); break;
13901 default:
13902 if (val <= 12)
13903 printf (_("8-byte and up to %d-byte extended\n"),
13904 1 << val);
13905 else
13906 printf ("??? (%d)\n", val);
13907 break;
13908 }
13909 break;
13910
13911 case 32: /* Tag_compatibility. */
13912 {
13913 val = read_uleb128 (p, &len, end);
13914 p += len;
13915 printf (_("flag = %d, vendor = "), val);
13916 if (p < end - 1)
13917 {
13918 size_t maxlen = (end - p) - 1;
13919
13920 print_symbol ((int) maxlen, (const char *) p);
13921 p += strnlen ((char *) p, maxlen) + 1;
13922 }
13923 else
13924 {
13925 printf (_("<corrupt>"));
13926 p = (unsigned char *) end;
13927 }
13928 putchar ('\n');
13929 }
13930 break;
13931
13932 case 64: /* Tag_nodefaults. */
13933 /* PR 17531: file: 001-505008-0.01. */
13934 if (p < end)
13935 p++;
13936 printf (_("True\n"));
13937 break;
13938
13939 case 65: /* Tag_also_compatible_with. */
13940 val = read_uleb128 (p, &len, end);
13941 p += len;
13942 if (val == 6 /* Tag_CPU_arch. */)
13943 {
13944 val = read_uleb128 (p, &len, end);
13945 p += len;
13946 if ((unsigned int) val >= ARRAY_SIZE (arm_attr_tag_CPU_arch))
13947 printf ("??? (%d)\n", val);
13948 else
13949 printf ("%s\n", arm_attr_tag_CPU_arch[val]);
13950 }
13951 else
13952 printf ("???\n");
13953 while (p < end && *(p++) != '\0' /* NUL terminator. */)
13954 ;
13955 break;
13956
13957 default:
13958 printf (_("<unknown: %d>\n"), tag);
13959 break;
13960 }
13961 return p;
13962
13963 case 1:
13964 return display_tag_value (-1, p, end);
13965 case 2:
13966 return display_tag_value (0, p, end);
13967
13968 default:
13969 assert (attr->type & 0x80);
13970 val = read_uleb128 (p, &len, end);
13971 p += len;
13972 type = attr->type & 0x7f;
13973 if (val >= type)
13974 printf ("??? (%d)\n", val);
13975 else
13976 printf ("%s\n", attr->table[val]);
13977 return p;
13978 }
13979 }
13980
13981 return display_tag_value (tag, p, end);
13982 }
13983
13984 static unsigned char *
13985 display_gnu_attribute (unsigned char * p,
13986 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, unsigned int, const unsigned char * const),
13987 const unsigned char * const end)
13988 {
13989 int tag;
13990 unsigned int len;
13991 unsigned int val;
13992
13993 tag = read_uleb128 (p, &len, end);
13994 p += len;
13995
13996 /* Tag_compatibility is the only generic GNU attribute defined at
13997 present. */
13998 if (tag == 32)
13999 {
14000 val = read_uleb128 (p, &len, end);
14001 p += len;
14002
14003 printf (_("flag = %d, vendor = "), val);
14004 if (p == end)
14005 {
14006 printf (_("<corrupt>\n"));
14007 warn (_("corrupt vendor attribute\n"));
14008 }
14009 else
14010 {
14011 if (p < end - 1)
14012 {
14013 size_t maxlen = (end - p) - 1;
14014
14015 print_symbol ((int) maxlen, (const char *) p);
14016 p += strnlen ((char *) p, maxlen) + 1;
14017 }
14018 else
14019 {
14020 printf (_("<corrupt>"));
14021 p = (unsigned char *) end;
14022 }
14023 putchar ('\n');
14024 }
14025 return p;
14026 }
14027
14028 if ((tag & 2) == 0 && display_proc_gnu_attribute)
14029 return display_proc_gnu_attribute (p, tag, end);
14030
14031 return display_tag_value (tag, p, end);
14032 }
14033
14034 static unsigned char *
14035 display_power_gnu_attribute (unsigned char * p,
14036 unsigned int tag,
14037 const unsigned char * const end)
14038 {
14039 unsigned int len;
14040 unsigned int val;
14041
14042 if (tag == Tag_GNU_Power_ABI_FP)
14043 {
14044 val = read_uleb128 (p, &len, end);
14045 p += len;
14046 printf (" Tag_GNU_Power_ABI_FP: ");
14047 if (len == 0)
14048 {
14049 printf (_("<corrupt>\n"));
14050 return p;
14051 }
14052
14053 if (val > 15)
14054 printf ("(%#x), ", val);
14055
14056 switch (val & 3)
14057 {
14058 case 0:
14059 printf (_("unspecified hard/soft float, "));
14060 break;
14061 case 1:
14062 printf (_("hard float, "));
14063 break;
14064 case 2:
14065 printf (_("soft float, "));
14066 break;
14067 case 3:
14068 printf (_("single-precision hard float, "));
14069 break;
14070 }
14071
14072 switch (val & 0xC)
14073 {
14074 case 0:
14075 printf (_("unspecified long double\n"));
14076 break;
14077 case 4:
14078 printf (_("128-bit IBM long double\n"));
14079 break;
14080 case 8:
14081 printf (_("64-bit long double\n"));
14082 break;
14083 case 12:
14084 printf (_("128-bit IEEE long double\n"));
14085 break;
14086 }
14087 return p;
14088 }
14089
14090 if (tag == Tag_GNU_Power_ABI_Vector)
14091 {
14092 val = read_uleb128 (p, &len, end);
14093 p += len;
14094 printf (" Tag_GNU_Power_ABI_Vector: ");
14095 if (len == 0)
14096 {
14097 printf (_("<corrupt>\n"));
14098 return p;
14099 }
14100
14101 if (val > 3)
14102 printf ("(%#x), ", val);
14103
14104 switch (val & 3)
14105 {
14106 case 0:
14107 printf (_("unspecified\n"));
14108 break;
14109 case 1:
14110 printf (_("generic\n"));
14111 break;
14112 case 2:
14113 printf ("AltiVec\n");
14114 break;
14115 case 3:
14116 printf ("SPE\n");
14117 break;
14118 }
14119 return p;
14120 }
14121
14122 if (tag == Tag_GNU_Power_ABI_Struct_Return)
14123 {
14124 val = read_uleb128 (p, &len, end);
14125 p += len;
14126 printf (" Tag_GNU_Power_ABI_Struct_Return: ");
14127 if (len == 0)
14128 {
14129 printf (_("<corrupt>\n"));
14130 return p;
14131 }
14132
14133 if (val > 2)
14134 printf ("(%#x), ", val);
14135
14136 switch (val & 3)
14137 {
14138 case 0:
14139 printf (_("unspecified\n"));
14140 break;
14141 case 1:
14142 printf ("r3/r4\n");
14143 break;
14144 case 2:
14145 printf (_("memory\n"));
14146 break;
14147 case 3:
14148 printf ("???\n");
14149 break;
14150 }
14151 return p;
14152 }
14153
14154 return display_tag_value (tag & 1, p, end);
14155 }
14156
14157 static unsigned char *
14158 display_s390_gnu_attribute (unsigned char * p,
14159 unsigned int tag,
14160 const unsigned char * const end)
14161 {
14162 unsigned int len;
14163 int val;
14164
14165 if (tag == Tag_GNU_S390_ABI_Vector)
14166 {
14167 val = read_uleb128 (p, &len, end);
14168 p += len;
14169 printf (" Tag_GNU_S390_ABI_Vector: ");
14170
14171 switch (val)
14172 {
14173 case 0:
14174 printf (_("any\n"));
14175 break;
14176 case 1:
14177 printf (_("software\n"));
14178 break;
14179 case 2:
14180 printf (_("hardware\n"));
14181 break;
14182 default:
14183 printf ("??? (%d)\n", val);
14184 break;
14185 }
14186 return p;
14187 }
14188
14189 return display_tag_value (tag & 1, p, end);
14190 }
14191
14192 static void
14193 display_sparc_hwcaps (unsigned int mask)
14194 {
14195 if (mask)
14196 {
14197 bfd_boolean first = TRUE;
14198
14199 if (mask & ELF_SPARC_HWCAP_MUL32)
14200 fputs ("mul32", stdout), first = FALSE;
14201 if (mask & ELF_SPARC_HWCAP_DIV32)
14202 printf ("%sdiv32", first ? "" : "|"), first = FALSE;
14203 if (mask & ELF_SPARC_HWCAP_FSMULD)
14204 printf ("%sfsmuld", first ? "" : "|"), first = FALSE;
14205 if (mask & ELF_SPARC_HWCAP_V8PLUS)
14206 printf ("%sv8plus", first ? "" : "|"), first = FALSE;
14207 if (mask & ELF_SPARC_HWCAP_POPC)
14208 printf ("%spopc", first ? "" : "|"), first = FALSE;
14209 if (mask & ELF_SPARC_HWCAP_VIS)
14210 printf ("%svis", first ? "" : "|"), first = FALSE;
14211 if (mask & ELF_SPARC_HWCAP_VIS2)
14212 printf ("%svis2", first ? "" : "|"), first = FALSE;
14213 if (mask & ELF_SPARC_HWCAP_ASI_BLK_INIT)
14214 printf ("%sASIBlkInit", first ? "" : "|"), first = FALSE;
14215 if (mask & ELF_SPARC_HWCAP_FMAF)
14216 printf ("%sfmaf", first ? "" : "|"), first = FALSE;
14217 if (mask & ELF_SPARC_HWCAP_VIS3)
14218 printf ("%svis3", first ? "" : "|"), first = FALSE;
14219 if (mask & ELF_SPARC_HWCAP_HPC)
14220 printf ("%shpc", first ? "" : "|"), first = FALSE;
14221 if (mask & ELF_SPARC_HWCAP_RANDOM)
14222 printf ("%srandom", first ? "" : "|"), first = FALSE;
14223 if (mask & ELF_SPARC_HWCAP_TRANS)
14224 printf ("%strans", first ? "" : "|"), first = FALSE;
14225 if (mask & ELF_SPARC_HWCAP_FJFMAU)
14226 printf ("%sfjfmau", first ? "" : "|"), first = FALSE;
14227 if (mask & ELF_SPARC_HWCAP_IMA)
14228 printf ("%sima", first ? "" : "|"), first = FALSE;
14229 if (mask & ELF_SPARC_HWCAP_ASI_CACHE_SPARING)
14230 printf ("%scspare", first ? "" : "|"), first = FALSE;
14231 }
14232 else
14233 fputc ('0', stdout);
14234 fputc ('\n', stdout);
14235 }
14236
14237 static void
14238 display_sparc_hwcaps2 (unsigned int mask)
14239 {
14240 if (mask)
14241 {
14242 bfd_boolean first = TRUE;
14243
14244 if (mask & ELF_SPARC_HWCAP2_FJATHPLUS)
14245 fputs ("fjathplus", stdout), first = FALSE;
14246 if (mask & ELF_SPARC_HWCAP2_VIS3B)
14247 printf ("%svis3b", first ? "" : "|"), first = FALSE;
14248 if (mask & ELF_SPARC_HWCAP2_ADP)
14249 printf ("%sadp", first ? "" : "|"), first = FALSE;
14250 if (mask & ELF_SPARC_HWCAP2_SPARC5)
14251 printf ("%ssparc5", first ? "" : "|"), first = FALSE;
14252 if (mask & ELF_SPARC_HWCAP2_MWAIT)
14253 printf ("%smwait", first ? "" : "|"), first = FALSE;
14254 if (mask & ELF_SPARC_HWCAP2_XMPMUL)
14255 printf ("%sxmpmul", first ? "" : "|"), first = FALSE;
14256 if (mask & ELF_SPARC_HWCAP2_XMONT)
14257 printf ("%sxmont2", first ? "" : "|"), first = FALSE;
14258 if (mask & ELF_SPARC_HWCAP2_NSEC)
14259 printf ("%snsec", first ? "" : "|"), first = FALSE;
14260 if (mask & ELF_SPARC_HWCAP2_FJATHHPC)
14261 printf ("%sfjathhpc", first ? "" : "|"), first = FALSE;
14262 if (mask & ELF_SPARC_HWCAP2_FJDES)
14263 printf ("%sfjdes", first ? "" : "|"), first = FALSE;
14264 if (mask & ELF_SPARC_HWCAP2_FJAES)
14265 printf ("%sfjaes", first ? "" : "|"), first = FALSE;
14266 }
14267 else
14268 fputc ('0', stdout);
14269 fputc ('\n', stdout);
14270 }
14271
14272 static unsigned char *
14273 display_sparc_gnu_attribute (unsigned char * p,
14274 unsigned int tag,
14275 const unsigned char * const end)
14276 {
14277 unsigned int len;
14278 int val;
14279
14280 if (tag == Tag_GNU_Sparc_HWCAPS)
14281 {
14282 val = read_uleb128 (p, &len, end);
14283 p += len;
14284 printf (" Tag_GNU_Sparc_HWCAPS: ");
14285 display_sparc_hwcaps (val);
14286 return p;
14287 }
14288 if (tag == Tag_GNU_Sparc_HWCAPS2)
14289 {
14290 val = read_uleb128 (p, &len, end);
14291 p += len;
14292 printf (" Tag_GNU_Sparc_HWCAPS2: ");
14293 display_sparc_hwcaps2 (val);
14294 return p;
14295 }
14296
14297 return display_tag_value (tag, p, end);
14298 }
14299
14300 static void
14301 print_mips_fp_abi_value (unsigned int val)
14302 {
14303 switch (val)
14304 {
14305 case Val_GNU_MIPS_ABI_FP_ANY:
14306 printf (_("Hard or soft float\n"));
14307 break;
14308 case Val_GNU_MIPS_ABI_FP_DOUBLE:
14309 printf (_("Hard float (double precision)\n"));
14310 break;
14311 case Val_GNU_MIPS_ABI_FP_SINGLE:
14312 printf (_("Hard float (single precision)\n"));
14313 break;
14314 case Val_GNU_MIPS_ABI_FP_SOFT:
14315 printf (_("Soft float\n"));
14316 break;
14317 case Val_GNU_MIPS_ABI_FP_OLD_64:
14318 printf (_("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
14319 break;
14320 case Val_GNU_MIPS_ABI_FP_XX:
14321 printf (_("Hard float (32-bit CPU, Any FPU)\n"));
14322 break;
14323 case Val_GNU_MIPS_ABI_FP_64:
14324 printf (_("Hard float (32-bit CPU, 64-bit FPU)\n"));
14325 break;
14326 case Val_GNU_MIPS_ABI_FP_64A:
14327 printf (_("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
14328 break;
14329 case Val_GNU_MIPS_ABI_FP_NAN2008:
14330 printf (_("NaN 2008 compatibility\n"));
14331 break;
14332 default:
14333 printf ("??? (%d)\n", val);
14334 break;
14335 }
14336 }
14337
14338 static unsigned char *
14339 display_mips_gnu_attribute (unsigned char * p,
14340 unsigned int tag,
14341 const unsigned char * const end)
14342 {
14343 if (tag == Tag_GNU_MIPS_ABI_FP)
14344 {
14345 unsigned int len;
14346 unsigned int val;
14347
14348 val = read_uleb128 (p, &len, end);
14349 p += len;
14350 printf (" Tag_GNU_MIPS_ABI_FP: ");
14351
14352 print_mips_fp_abi_value (val);
14353
14354 return p;
14355 }
14356
14357 if (tag == Tag_GNU_MIPS_ABI_MSA)
14358 {
14359 unsigned int len;
14360 unsigned int val;
14361
14362 val = read_uleb128 (p, &len, end);
14363 p += len;
14364 printf (" Tag_GNU_MIPS_ABI_MSA: ");
14365
14366 switch (val)
14367 {
14368 case Val_GNU_MIPS_ABI_MSA_ANY:
14369 printf (_("Any MSA or not\n"));
14370 break;
14371 case Val_GNU_MIPS_ABI_MSA_128:
14372 printf (_("128-bit MSA\n"));
14373 break;
14374 default:
14375 printf ("??? (%d)\n", val);
14376 break;
14377 }
14378 return p;
14379 }
14380
14381 return display_tag_value (tag & 1, p, end);
14382 }
14383
14384 static unsigned char *
14385 display_tic6x_attribute (unsigned char * p,
14386 const unsigned char * const end)
14387 {
14388 unsigned int tag;
14389 unsigned int len;
14390 int val;
14391
14392 tag = read_uleb128 (p, &len, end);
14393 p += len;
14394
14395 switch (tag)
14396 {
14397 case Tag_ISA:
14398 val = read_uleb128 (p, &len, end);
14399 p += len;
14400 printf (" Tag_ISA: ");
14401
14402 switch (val)
14403 {
14404 case C6XABI_Tag_ISA_none:
14405 printf (_("None\n"));
14406 break;
14407 case C6XABI_Tag_ISA_C62X:
14408 printf ("C62x\n");
14409 break;
14410 case C6XABI_Tag_ISA_C67X:
14411 printf ("C67x\n");
14412 break;
14413 case C6XABI_Tag_ISA_C67XP:
14414 printf ("C67x+\n");
14415 break;
14416 case C6XABI_Tag_ISA_C64X:
14417 printf ("C64x\n");
14418 break;
14419 case C6XABI_Tag_ISA_C64XP:
14420 printf ("C64x+\n");
14421 break;
14422 case C6XABI_Tag_ISA_C674X:
14423 printf ("C674x\n");
14424 break;
14425 default:
14426 printf ("??? (%d)\n", val);
14427 break;
14428 }
14429 return p;
14430
14431 case Tag_ABI_wchar_t:
14432 val = read_uleb128 (p, &len, end);
14433 p += len;
14434 printf (" Tag_ABI_wchar_t: ");
14435 switch (val)
14436 {
14437 case 0:
14438 printf (_("Not used\n"));
14439 break;
14440 case 1:
14441 printf (_("2 bytes\n"));
14442 break;
14443 case 2:
14444 printf (_("4 bytes\n"));
14445 break;
14446 default:
14447 printf ("??? (%d)\n", val);
14448 break;
14449 }
14450 return p;
14451
14452 case Tag_ABI_stack_align_needed:
14453 val = read_uleb128 (p, &len, end);
14454 p += len;
14455 printf (" Tag_ABI_stack_align_needed: ");
14456 switch (val)
14457 {
14458 case 0:
14459 printf (_("8-byte\n"));
14460 break;
14461 case 1:
14462 printf (_("16-byte\n"));
14463 break;
14464 default:
14465 printf ("??? (%d)\n", val);
14466 break;
14467 }
14468 return p;
14469
14470 case Tag_ABI_stack_align_preserved:
14471 val = read_uleb128 (p, &len, end);
14472 p += len;
14473 printf (" Tag_ABI_stack_align_preserved: ");
14474 switch (val)
14475 {
14476 case 0:
14477 printf (_("8-byte\n"));
14478 break;
14479 case 1:
14480 printf (_("16-byte\n"));
14481 break;
14482 default:
14483 printf ("??? (%d)\n", val);
14484 break;
14485 }
14486 return p;
14487
14488 case Tag_ABI_DSBT:
14489 val = read_uleb128 (p, &len, end);
14490 p += len;
14491 printf (" Tag_ABI_DSBT: ");
14492 switch (val)
14493 {
14494 case 0:
14495 printf (_("DSBT addressing not used\n"));
14496 break;
14497 case 1:
14498 printf (_("DSBT addressing used\n"));
14499 break;
14500 default:
14501 printf ("??? (%d)\n", val);
14502 break;
14503 }
14504 return p;
14505
14506 case Tag_ABI_PID:
14507 val = read_uleb128 (p, &len, end);
14508 p += len;
14509 printf (" Tag_ABI_PID: ");
14510 switch (val)
14511 {
14512 case 0:
14513 printf (_("Data addressing position-dependent\n"));
14514 break;
14515 case 1:
14516 printf (_("Data addressing position-independent, GOT near DP\n"));
14517 break;
14518 case 2:
14519 printf (_("Data addressing position-independent, GOT far from DP\n"));
14520 break;
14521 default:
14522 printf ("??? (%d)\n", val);
14523 break;
14524 }
14525 return p;
14526
14527 case Tag_ABI_PIC:
14528 val = read_uleb128 (p, &len, end);
14529 p += len;
14530 printf (" Tag_ABI_PIC: ");
14531 switch (val)
14532 {
14533 case 0:
14534 printf (_("Code addressing position-dependent\n"));
14535 break;
14536 case 1:
14537 printf (_("Code addressing position-independent\n"));
14538 break;
14539 default:
14540 printf ("??? (%d)\n", val);
14541 break;
14542 }
14543 return p;
14544
14545 case Tag_ABI_array_object_alignment:
14546 val = read_uleb128 (p, &len, end);
14547 p += len;
14548 printf (" Tag_ABI_array_object_alignment: ");
14549 switch (val)
14550 {
14551 case 0:
14552 printf (_("8-byte\n"));
14553 break;
14554 case 1:
14555 printf (_("4-byte\n"));
14556 break;
14557 case 2:
14558 printf (_("16-byte\n"));
14559 break;
14560 default:
14561 printf ("??? (%d)\n", val);
14562 break;
14563 }
14564 return p;
14565
14566 case Tag_ABI_array_object_align_expected:
14567 val = read_uleb128 (p, &len, end);
14568 p += len;
14569 printf (" Tag_ABI_array_object_align_expected: ");
14570 switch (val)
14571 {
14572 case 0:
14573 printf (_("8-byte\n"));
14574 break;
14575 case 1:
14576 printf (_("4-byte\n"));
14577 break;
14578 case 2:
14579 printf (_("16-byte\n"));
14580 break;
14581 default:
14582 printf ("??? (%d)\n", val);
14583 break;
14584 }
14585 return p;
14586
14587 case Tag_ABI_compatibility:
14588 {
14589 val = read_uleb128 (p, &len, end);
14590 p += len;
14591 printf (" Tag_ABI_compatibility: ");
14592 printf (_("flag = %d, vendor = "), val);
14593 if (p < end - 1)
14594 {
14595 size_t maxlen = (end - p) - 1;
14596
14597 print_symbol ((int) maxlen, (const char *) p);
14598 p += strnlen ((char *) p, maxlen) + 1;
14599 }
14600 else
14601 {
14602 printf (_("<corrupt>"));
14603 p = (unsigned char *) end;
14604 }
14605 putchar ('\n');
14606 return p;
14607 }
14608
14609 case Tag_ABI_conformance:
14610 {
14611 printf (" Tag_ABI_conformance: \"");
14612 if (p < end - 1)
14613 {
14614 size_t maxlen = (end - p) - 1;
14615
14616 print_symbol ((int) maxlen, (const char *) p);
14617 p += strnlen ((char *) p, maxlen) + 1;
14618 }
14619 else
14620 {
14621 printf (_("<corrupt>"));
14622 p = (unsigned char *) end;
14623 }
14624 printf ("\"\n");
14625 return p;
14626 }
14627 }
14628
14629 return display_tag_value (tag, p, end);
14630 }
14631
14632 static void
14633 display_raw_attribute (unsigned char * p, unsigned char const * const end)
14634 {
14635 unsigned long addr = 0;
14636 size_t bytes = end - p;
14637
14638 assert (end > p);
14639 while (bytes)
14640 {
14641 int j;
14642 int k;
14643 int lbytes = (bytes > 16 ? 16 : bytes);
14644
14645 printf (" 0x%8.8lx ", addr);
14646
14647 for (j = 0; j < 16; j++)
14648 {
14649 if (j < lbytes)
14650 printf ("%2.2x", p[j]);
14651 else
14652 printf (" ");
14653
14654 if ((j & 3) == 3)
14655 printf (" ");
14656 }
14657
14658 for (j = 0; j < lbytes; j++)
14659 {
14660 k = p[j];
14661 if (k >= ' ' && k < 0x7f)
14662 printf ("%c", k);
14663 else
14664 printf (".");
14665 }
14666
14667 putchar ('\n');
14668
14669 p += lbytes;
14670 bytes -= lbytes;
14671 addr += lbytes;
14672 }
14673
14674 putchar ('\n');
14675 }
14676
14677 static unsigned char *
14678 display_msp430x_attribute (unsigned char * p,
14679 const unsigned char * const end)
14680 {
14681 unsigned int len;
14682 unsigned int val;
14683 unsigned int tag;
14684
14685 tag = read_uleb128 (p, & len, end);
14686 p += len;
14687
14688 switch (tag)
14689 {
14690 case OFBA_MSPABI_Tag_ISA:
14691 val = read_uleb128 (p, &len, end);
14692 p += len;
14693 printf (" Tag_ISA: ");
14694 switch (val)
14695 {
14696 case 0: printf (_("None\n")); break;
14697 case 1: printf (_("MSP430\n")); break;
14698 case 2: printf (_("MSP430X\n")); break;
14699 default: printf ("??? (%d)\n", val); break;
14700 }
14701 break;
14702
14703 case OFBA_MSPABI_Tag_Code_Model:
14704 val = read_uleb128 (p, &len, end);
14705 p += len;
14706 printf (" Tag_Code_Model: ");
14707 switch (val)
14708 {
14709 case 0: printf (_("None\n")); break;
14710 case 1: printf (_("Small\n")); break;
14711 case 2: printf (_("Large\n")); break;
14712 default: printf ("??? (%d)\n", val); break;
14713 }
14714 break;
14715
14716 case OFBA_MSPABI_Tag_Data_Model:
14717 val = read_uleb128 (p, &len, end);
14718 p += len;
14719 printf (" Tag_Data_Model: ");
14720 switch (val)
14721 {
14722 case 0: printf (_("None\n")); break;
14723 case 1: printf (_("Small\n")); break;
14724 case 2: printf (_("Large\n")); break;
14725 case 3: printf (_("Restricted Large\n")); break;
14726 default: printf ("??? (%d)\n", val); break;
14727 }
14728 break;
14729
14730 default:
14731 printf (_(" <unknown tag %d>: "), tag);
14732
14733 if (tag & 1)
14734 {
14735 putchar ('"');
14736 if (p < end - 1)
14737 {
14738 size_t maxlen = (end - p) - 1;
14739
14740 print_symbol ((int) maxlen, (const char *) p);
14741 p += strnlen ((char *) p, maxlen) + 1;
14742 }
14743 else
14744 {
14745 printf (_("<corrupt>"));
14746 p = (unsigned char *) end;
14747 }
14748 printf ("\"\n");
14749 }
14750 else
14751 {
14752 val = read_uleb128 (p, &len, end);
14753 p += len;
14754 printf ("%d (0x%x)\n", val, val);
14755 }
14756 break;
14757 }
14758
14759 assert (p <= end);
14760 return p;
14761 }
14762
14763 static bfd_boolean
14764 process_attributes (FILE * file,
14765 const char * public_name,
14766 unsigned int proc_type,
14767 unsigned char * (* display_pub_attribute) (unsigned char *, const unsigned char * const),
14768 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, unsigned int, const unsigned char * const))
14769 {
14770 Elf_Internal_Shdr * sect;
14771 unsigned i;
14772 bfd_boolean res = TRUE;
14773
14774 /* Find the section header so that we get the size. */
14775 for (i = 0, sect = section_headers;
14776 i < elf_header.e_shnum;
14777 i++, sect++)
14778 {
14779 unsigned char * contents;
14780 unsigned char * p;
14781
14782 if (sect->sh_type != proc_type && sect->sh_type != SHT_GNU_ATTRIBUTES)
14783 continue;
14784
14785 contents = (unsigned char *) get_data (NULL, file, sect->sh_offset, 1,
14786 sect->sh_size, _("attributes"));
14787 if (contents == NULL)
14788 {
14789 res = FALSE;
14790 continue;
14791 }
14792
14793 p = contents;
14794 /* The first character is the version of the attributes.
14795 Currently only version 1, (aka 'A') is recognised here. */
14796 if (*p != 'A')
14797 {
14798 printf (_("Unknown attributes version '%c'(%d) - expecting 'A'\n"), *p, *p);
14799 res = FALSE;
14800 }
14801 else
14802 {
14803 bfd_vma section_len;
14804
14805 section_len = sect->sh_size - 1;
14806 p++;
14807
14808 while (section_len > 0)
14809 {
14810 bfd_vma attr_len;
14811 unsigned int namelen;
14812 bfd_boolean public_section;
14813 bfd_boolean gnu_section;
14814
14815 if (section_len <= 4)
14816 {
14817 error (_("Tag section ends prematurely\n"));
14818 res = FALSE;
14819 break;
14820 }
14821 attr_len = byte_get (p, 4);
14822 p += 4;
14823
14824 if (attr_len > section_len)
14825 {
14826 error (_("Bad attribute length (%u > %u)\n"),
14827 (unsigned) attr_len, (unsigned) section_len);
14828 attr_len = section_len;
14829 res = FALSE;
14830 }
14831 /* PR 17531: file: 001-101425-0.004 */
14832 else if (attr_len < 5)
14833 {
14834 error (_("Attribute length of %u is too small\n"), (unsigned) attr_len);
14835 res = FALSE;
14836 break;
14837 }
14838
14839 section_len -= attr_len;
14840 attr_len -= 4;
14841
14842 namelen = strnlen ((char *) p, attr_len) + 1;
14843 if (namelen == 0 || namelen >= attr_len)
14844 {
14845 error (_("Corrupt attribute section name\n"));
14846 res = FALSE;
14847 break;
14848 }
14849
14850 printf (_("Attribute Section: "));
14851 print_symbol (INT_MAX, (const char *) p);
14852 putchar ('\n');
14853
14854 if (public_name && streq ((char *) p, public_name))
14855 public_section = TRUE;
14856 else
14857 public_section = FALSE;
14858
14859 if (streq ((char *) p, "gnu"))
14860 gnu_section = TRUE;
14861 else
14862 gnu_section = FALSE;
14863
14864 p += namelen;
14865 attr_len -= namelen;
14866
14867 while (attr_len > 0 && p < contents + sect->sh_size)
14868 {
14869 int tag;
14870 int val;
14871 bfd_vma size;
14872 unsigned char * end;
14873
14874 /* PR binutils/17531: Safe handling of corrupt files. */
14875 if (attr_len < 6)
14876 {
14877 error (_("Unused bytes at end of section\n"));
14878 res = FALSE;
14879 section_len = 0;
14880 break;
14881 }
14882
14883 tag = *(p++);
14884 size = byte_get (p, 4);
14885 if (size > attr_len)
14886 {
14887 error (_("Bad subsection length (%u > %u)\n"),
14888 (unsigned) size, (unsigned) attr_len);
14889 res = FALSE;
14890 size = attr_len;
14891 }
14892 /* PR binutils/17531: Safe handling of corrupt files. */
14893 if (size < 6)
14894 {
14895 error (_("Bad subsection length (%u < 6)\n"),
14896 (unsigned) size);
14897 res = FALSE;
14898 section_len = 0;
14899 break;
14900 }
14901
14902 attr_len -= size;
14903 end = p + size - 1;
14904 assert (end <= contents + sect->sh_size);
14905 p += 4;
14906
14907 switch (tag)
14908 {
14909 case 1:
14910 printf (_("File Attributes\n"));
14911 break;
14912 case 2:
14913 printf (_("Section Attributes:"));
14914 goto do_numlist;
14915 case 3:
14916 printf (_("Symbol Attributes:"));
14917 /* Fall through. */
14918 do_numlist:
14919 for (;;)
14920 {
14921 unsigned int j;
14922
14923 val = read_uleb128 (p, &j, end);
14924 p += j;
14925 if (val == 0)
14926 break;
14927 printf (" %d", val);
14928 }
14929 printf ("\n");
14930 break;
14931 default:
14932 printf (_("Unknown tag: %d\n"), tag);
14933 public_section = FALSE;
14934 break;
14935 }
14936
14937 if (public_section && display_pub_attribute != NULL)
14938 {
14939 while (p < end)
14940 p = display_pub_attribute (p, end);
14941 assert (p == end);
14942 }
14943 else if (gnu_section && display_proc_gnu_attribute != NULL)
14944 {
14945 while (p < end)
14946 p = display_gnu_attribute (p,
14947 display_proc_gnu_attribute,
14948 end);
14949 assert (p == end);
14950 }
14951 else if (p < end)
14952 {
14953 printf (_(" Unknown attribute:\n"));
14954 display_raw_attribute (p, end);
14955 p = end;
14956 }
14957 else
14958 attr_len = 0;
14959 }
14960 }
14961 }
14962
14963 free (contents);
14964 }
14965
14966 return res;
14967 }
14968
14969 /* DATA points to the contents of a MIPS GOT that starts at VMA PLTGOT.
14970 Print the Address, Access and Initial fields of an entry at VMA ADDR
14971 and return the VMA of the next entry, or -1 if there was a problem.
14972 Does not read from DATA_END or beyond. */
14973
14974 static bfd_vma
14975 print_mips_got_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr,
14976 unsigned char * data_end)
14977 {
14978 printf (" ");
14979 print_vma (addr, LONG_HEX);
14980 printf (" ");
14981 if (addr < pltgot + 0xfff0)
14982 printf ("%6d(gp)", (int) (addr - pltgot - 0x7ff0));
14983 else
14984 printf ("%10s", "");
14985 printf (" ");
14986 if (data == NULL)
14987 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
14988 else
14989 {
14990 bfd_vma entry;
14991 unsigned char * from = data + addr - pltgot;
14992
14993 if (from + (is_32bit_elf ? 4 : 8) > data_end)
14994 {
14995 warn (_("MIPS GOT entry extends beyond the end of available data\n"));
14996 printf ("%*s", is_32bit_elf ? 8 : 16, _("<corrupt>"));
14997 return (bfd_vma) -1;
14998 }
14999 else
15000 {
15001 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
15002 print_vma (entry, LONG_HEX);
15003 }
15004 }
15005 return addr + (is_32bit_elf ? 4 : 8);
15006 }
15007
15008 /* DATA points to the contents of a MIPS PLT GOT that starts at VMA
15009 PLTGOT. Print the Address and Initial fields of an entry at VMA
15010 ADDR and return the VMA of the next entry. */
15011
15012 static bfd_vma
15013 print_mips_pltgot_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
15014 {
15015 printf (" ");
15016 print_vma (addr, LONG_HEX);
15017 printf (" ");
15018 if (data == NULL)
15019 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
15020 else
15021 {
15022 bfd_vma entry;
15023
15024 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
15025 print_vma (entry, LONG_HEX);
15026 }
15027 return addr + (is_32bit_elf ? 4 : 8);
15028 }
15029
15030 static void
15031 print_mips_ases (unsigned int mask)
15032 {
15033 if (mask & AFL_ASE_DSP)
15034 fputs ("\n\tDSP ASE", stdout);
15035 if (mask & AFL_ASE_DSPR2)
15036 fputs ("\n\tDSP R2 ASE", stdout);
15037 if (mask & AFL_ASE_DSPR3)
15038 fputs ("\n\tDSP R3 ASE", stdout);
15039 if (mask & AFL_ASE_EVA)
15040 fputs ("\n\tEnhanced VA Scheme", stdout);
15041 if (mask & AFL_ASE_MCU)
15042 fputs ("\n\tMCU (MicroController) ASE", stdout);
15043 if (mask & AFL_ASE_MDMX)
15044 fputs ("\n\tMDMX ASE", stdout);
15045 if (mask & AFL_ASE_MIPS3D)
15046 fputs ("\n\tMIPS-3D ASE", stdout);
15047 if (mask & AFL_ASE_MT)
15048 fputs ("\n\tMT ASE", stdout);
15049 if (mask & AFL_ASE_SMARTMIPS)
15050 fputs ("\n\tSmartMIPS ASE", stdout);
15051 if (mask & AFL_ASE_VIRT)
15052 fputs ("\n\tVZ ASE", stdout);
15053 if (mask & AFL_ASE_MSA)
15054 fputs ("\n\tMSA ASE", stdout);
15055 if (mask & AFL_ASE_MIPS16)
15056 fputs ("\n\tMIPS16 ASE", stdout);
15057 if (mask & AFL_ASE_MICROMIPS)
15058 fputs ("\n\tMICROMIPS ASE", stdout);
15059 if (mask & AFL_ASE_XPA)
15060 fputs ("\n\tXPA ASE", stdout);
15061 if (mask & AFL_ASE_MIPS16E2)
15062 fputs ("\n\tMIPS16e2 ASE", stdout);
15063 if (mask == 0)
15064 fprintf (stdout, "\n\t%s", _("None"));
15065 else if ((mask & ~AFL_ASE_MASK) != 0)
15066 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15067 }
15068
15069 static void
15070 print_mips_isa_ext (unsigned int isa_ext)
15071 {
15072 switch (isa_ext)
15073 {
15074 case 0:
15075 fputs (_("None"), stdout);
15076 break;
15077 case AFL_EXT_XLR:
15078 fputs ("RMI XLR", stdout);
15079 break;
15080 case AFL_EXT_OCTEON3:
15081 fputs ("Cavium Networks Octeon3", stdout);
15082 break;
15083 case AFL_EXT_OCTEON2:
15084 fputs ("Cavium Networks Octeon2", stdout);
15085 break;
15086 case AFL_EXT_OCTEONP:
15087 fputs ("Cavium Networks OcteonP", stdout);
15088 break;
15089 case AFL_EXT_LOONGSON_3A:
15090 fputs ("Loongson 3A", stdout);
15091 break;
15092 case AFL_EXT_OCTEON:
15093 fputs ("Cavium Networks Octeon", stdout);
15094 break;
15095 case AFL_EXT_5900:
15096 fputs ("Toshiba R5900", stdout);
15097 break;
15098 case AFL_EXT_4650:
15099 fputs ("MIPS R4650", stdout);
15100 break;
15101 case AFL_EXT_4010:
15102 fputs ("LSI R4010", stdout);
15103 break;
15104 case AFL_EXT_4100:
15105 fputs ("NEC VR4100", stdout);
15106 break;
15107 case AFL_EXT_3900:
15108 fputs ("Toshiba R3900", stdout);
15109 break;
15110 case AFL_EXT_10000:
15111 fputs ("MIPS R10000", stdout);
15112 break;
15113 case AFL_EXT_SB1:
15114 fputs ("Broadcom SB-1", stdout);
15115 break;
15116 case AFL_EXT_4111:
15117 fputs ("NEC VR4111/VR4181", stdout);
15118 break;
15119 case AFL_EXT_4120:
15120 fputs ("NEC VR4120", stdout);
15121 break;
15122 case AFL_EXT_5400:
15123 fputs ("NEC VR5400", stdout);
15124 break;
15125 case AFL_EXT_5500:
15126 fputs ("NEC VR5500", stdout);
15127 break;
15128 case AFL_EXT_LOONGSON_2E:
15129 fputs ("ST Microelectronics Loongson 2E", stdout);
15130 break;
15131 case AFL_EXT_LOONGSON_2F:
15132 fputs ("ST Microelectronics Loongson 2F", stdout);
15133 break;
15134 default:
15135 fprintf (stdout, "%s (%d)", _("Unknown"), isa_ext);
15136 }
15137 }
15138
15139 static signed int
15140 get_mips_reg_size (int reg_size)
15141 {
15142 return (reg_size == AFL_REG_NONE) ? 0
15143 : (reg_size == AFL_REG_32) ? 32
15144 : (reg_size == AFL_REG_64) ? 64
15145 : (reg_size == AFL_REG_128) ? 128
15146 : -1;
15147 }
15148
15149 static bfd_boolean
15150 process_mips_specific (FILE * file)
15151 {
15152 Elf_Internal_Dyn * entry;
15153 Elf_Internal_Shdr *sect = NULL;
15154 size_t liblist_offset = 0;
15155 size_t liblistno = 0;
15156 size_t conflictsno = 0;
15157 size_t options_offset = 0;
15158 size_t conflicts_offset = 0;
15159 size_t pltrelsz = 0;
15160 size_t pltrel = 0;
15161 bfd_vma pltgot = 0;
15162 bfd_vma mips_pltgot = 0;
15163 bfd_vma jmprel = 0;
15164 bfd_vma local_gotno = 0;
15165 bfd_vma gotsym = 0;
15166 bfd_vma symtabno = 0;
15167 bfd_boolean res = TRUE;
15168
15169 if (! process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
15170 display_mips_gnu_attribute))
15171 res = FALSE;
15172
15173 sect = find_section (".MIPS.abiflags");
15174
15175 if (sect != NULL)
15176 {
15177 Elf_External_ABIFlags_v0 *abiflags_ext;
15178 Elf_Internal_ABIFlags_v0 abiflags_in;
15179
15180 if (sizeof (Elf_External_ABIFlags_v0) != sect->sh_size)
15181 {
15182 error (_("Corrupt MIPS ABI Flags section.\n"));
15183 res = FALSE;
15184 }
15185 else
15186 {
15187 abiflags_ext = get_data (NULL, file, sect->sh_offset, 1,
15188 sect->sh_size, _("MIPS ABI Flags section"));
15189 if (abiflags_ext)
15190 {
15191 abiflags_in.version = BYTE_GET (abiflags_ext->version);
15192 abiflags_in.isa_level = BYTE_GET (abiflags_ext->isa_level);
15193 abiflags_in.isa_rev = BYTE_GET (abiflags_ext->isa_rev);
15194 abiflags_in.gpr_size = BYTE_GET (abiflags_ext->gpr_size);
15195 abiflags_in.cpr1_size = BYTE_GET (abiflags_ext->cpr1_size);
15196 abiflags_in.cpr2_size = BYTE_GET (abiflags_ext->cpr2_size);
15197 abiflags_in.fp_abi = BYTE_GET (abiflags_ext->fp_abi);
15198 abiflags_in.isa_ext = BYTE_GET (abiflags_ext->isa_ext);
15199 abiflags_in.ases = BYTE_GET (abiflags_ext->ases);
15200 abiflags_in.flags1 = BYTE_GET (abiflags_ext->flags1);
15201 abiflags_in.flags2 = BYTE_GET (abiflags_ext->flags2);
15202
15203 printf ("\nMIPS ABI Flags Version: %d\n", abiflags_in.version);
15204 printf ("\nISA: MIPS%d", abiflags_in.isa_level);
15205 if (abiflags_in.isa_rev > 1)
15206 printf ("r%d", abiflags_in.isa_rev);
15207 printf ("\nGPR size: %d",
15208 get_mips_reg_size (abiflags_in.gpr_size));
15209 printf ("\nCPR1 size: %d",
15210 get_mips_reg_size (abiflags_in.cpr1_size));
15211 printf ("\nCPR2 size: %d",
15212 get_mips_reg_size (abiflags_in.cpr2_size));
15213 fputs ("\nFP ABI: ", stdout);
15214 print_mips_fp_abi_value (abiflags_in.fp_abi);
15215 fputs ("ISA Extension: ", stdout);
15216 print_mips_isa_ext (abiflags_in.isa_ext);
15217 fputs ("\nASEs:", stdout);
15218 print_mips_ases (abiflags_in.ases);
15219 printf ("\nFLAGS 1: %8.8lx", abiflags_in.flags1);
15220 printf ("\nFLAGS 2: %8.8lx", abiflags_in.flags2);
15221 fputc ('\n', stdout);
15222 free (abiflags_ext);
15223 }
15224 }
15225 }
15226
15227 /* We have a lot of special sections. Thanks SGI! */
15228 if (dynamic_section == NULL)
15229 {
15230 /* No dynamic information available. See if there is static GOT. */
15231 sect = find_section (".got");
15232 if (sect != NULL)
15233 {
15234 unsigned char *data_end;
15235 unsigned char *data;
15236 bfd_vma ent, end;
15237 int addr_size;
15238
15239 pltgot = sect->sh_addr;
15240
15241 ent = pltgot;
15242 addr_size = (is_32bit_elf ? 4 : 8);
15243 end = pltgot + sect->sh_size;
15244
15245 data = (unsigned char *) get_data (NULL, file, sect->sh_offset,
15246 end - pltgot, 1,
15247 _("Global Offset Table data"));
15248 /* PR 12855: Null data is handled gracefully throughout. */
15249 data_end = data + (end - pltgot);
15250
15251 printf (_("\nStatic GOT:\n"));
15252 printf (_(" Canonical gp value: "));
15253 print_vma (ent + 0x7ff0, LONG_HEX);
15254 printf ("\n\n");
15255
15256 /* In a dynamic binary GOT[0] is reserved for the dynamic
15257 loader to store the lazy resolver pointer, however in
15258 a static binary it may well have been omitted and GOT
15259 reduced to a table of addresses.
15260 PR 21344: Check for the entry being fully available
15261 before fetching it. */
15262 if (data
15263 && data + ent - pltgot + addr_size <= data_end
15264 && byte_get (data + ent - pltgot, addr_size) == 0)
15265 {
15266 printf (_(" Reserved entries:\n"));
15267 printf (_(" %*s %10s %*s\n"),
15268 addr_size * 2, _("Address"), _("Access"),
15269 addr_size * 2, _("Value"));
15270 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15271 printf ("\n");
15272 if (ent == (bfd_vma) -1)
15273 goto sgot_print_fail;
15274
15275 /* Check for the MSB of GOT[1] being set, identifying a
15276 GNU object. This entry will be used by some runtime
15277 loaders, to store the module pointer. Otherwise this
15278 is an ordinary local entry.
15279 PR 21344: Check for the entry being fully available
15280 before fetching it. */
15281 if (data
15282 && data + ent - pltgot + addr_size <= data_end
15283 && (byte_get (data + ent - pltgot, addr_size)
15284 >> (addr_size * 8 - 1)) != 0)
15285 {
15286 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15287 printf ("\n");
15288 if (ent == (bfd_vma) -1)
15289 goto sgot_print_fail;
15290 }
15291 printf ("\n");
15292 }
15293
15294 if (ent < end)
15295 {
15296 printf (_(" Local entries:\n"));
15297 printf (" %*s %10s %*s\n",
15298 addr_size * 2, _("Address"), _("Access"),
15299 addr_size * 2, _("Value"));
15300 while (ent < end)
15301 {
15302 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15303 printf ("\n");
15304 if (ent == (bfd_vma) -1)
15305 goto sgot_print_fail;
15306 }
15307 printf ("\n");
15308 }
15309
15310 sgot_print_fail:
15311 if (data)
15312 free (data);
15313 }
15314 return res;
15315 }
15316
15317 for (entry = dynamic_section;
15318 /* PR 17531 file: 012-50589-0.004. */
15319 entry < dynamic_section + dynamic_nent && entry->d_tag != DT_NULL;
15320 ++entry)
15321 switch (entry->d_tag)
15322 {
15323 case DT_MIPS_LIBLIST:
15324 liblist_offset
15325 = offset_from_vma (file, entry->d_un.d_val,
15326 liblistno * sizeof (Elf32_External_Lib));
15327 break;
15328 case DT_MIPS_LIBLISTNO:
15329 liblistno = entry->d_un.d_val;
15330 break;
15331 case DT_MIPS_OPTIONS:
15332 options_offset = offset_from_vma (file, entry->d_un.d_val, 0);
15333 break;
15334 case DT_MIPS_CONFLICT:
15335 conflicts_offset
15336 = offset_from_vma (file, entry->d_un.d_val,
15337 conflictsno * sizeof (Elf32_External_Conflict));
15338 break;
15339 case DT_MIPS_CONFLICTNO:
15340 conflictsno = entry->d_un.d_val;
15341 break;
15342 case DT_PLTGOT:
15343 pltgot = entry->d_un.d_ptr;
15344 break;
15345 case DT_MIPS_LOCAL_GOTNO:
15346 local_gotno = entry->d_un.d_val;
15347 break;
15348 case DT_MIPS_GOTSYM:
15349 gotsym = entry->d_un.d_val;
15350 break;
15351 case DT_MIPS_SYMTABNO:
15352 symtabno = entry->d_un.d_val;
15353 break;
15354 case DT_MIPS_PLTGOT:
15355 mips_pltgot = entry->d_un.d_ptr;
15356 break;
15357 case DT_PLTREL:
15358 pltrel = entry->d_un.d_val;
15359 break;
15360 case DT_PLTRELSZ:
15361 pltrelsz = entry->d_un.d_val;
15362 break;
15363 case DT_JMPREL:
15364 jmprel = entry->d_un.d_ptr;
15365 break;
15366 default:
15367 break;
15368 }
15369
15370 if (liblist_offset != 0 && liblistno != 0 && do_dynamic)
15371 {
15372 Elf32_External_Lib * elib;
15373 size_t cnt;
15374
15375 elib = (Elf32_External_Lib *) get_data (NULL, file, liblist_offset,
15376 liblistno,
15377 sizeof (Elf32_External_Lib),
15378 _("liblist section data"));
15379 if (elib)
15380 {
15381 printf (_("\nSection '.liblist' contains %lu entries:\n"),
15382 (unsigned long) liblistno);
15383 fputs (_(" Library Time Stamp Checksum Version Flags\n"),
15384 stdout);
15385
15386 for (cnt = 0; cnt < liblistno; ++cnt)
15387 {
15388 Elf32_Lib liblist;
15389 time_t atime;
15390 char timebuf[128];
15391 struct tm * tmp;
15392
15393 liblist.l_name = BYTE_GET (elib[cnt].l_name);
15394 atime = BYTE_GET (elib[cnt].l_time_stamp);
15395 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
15396 liblist.l_version = BYTE_GET (elib[cnt].l_version);
15397 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
15398
15399 tmp = gmtime (&atime);
15400 snprintf (timebuf, sizeof (timebuf),
15401 "%04u-%02u-%02uT%02u:%02u:%02u",
15402 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
15403 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
15404
15405 printf ("%3lu: ", (unsigned long) cnt);
15406 if (VALID_DYNAMIC_NAME (liblist.l_name))
15407 print_symbol (20, GET_DYNAMIC_NAME (liblist.l_name));
15408 else
15409 printf (_("<corrupt: %9ld>"), liblist.l_name);
15410 printf (" %s %#10lx %-7ld", timebuf, liblist.l_checksum,
15411 liblist.l_version);
15412
15413 if (liblist.l_flags == 0)
15414 puts (_(" NONE"));
15415 else
15416 {
15417 static const struct
15418 {
15419 const char * name;
15420 int bit;
15421 }
15422 l_flags_vals[] =
15423 {
15424 { " EXACT_MATCH", LL_EXACT_MATCH },
15425 { " IGNORE_INT_VER", LL_IGNORE_INT_VER },
15426 { " REQUIRE_MINOR", LL_REQUIRE_MINOR },
15427 { " EXPORTS", LL_EXPORTS },
15428 { " DELAY_LOAD", LL_DELAY_LOAD },
15429 { " DELTA", LL_DELTA }
15430 };
15431 int flags = liblist.l_flags;
15432 size_t fcnt;
15433
15434 for (fcnt = 0; fcnt < ARRAY_SIZE (l_flags_vals); ++fcnt)
15435 if ((flags & l_flags_vals[fcnt].bit) != 0)
15436 {
15437 fputs (l_flags_vals[fcnt].name, stdout);
15438 flags ^= l_flags_vals[fcnt].bit;
15439 }
15440 if (flags != 0)
15441 printf (" %#x", (unsigned int) flags);
15442
15443 puts ("");
15444 }
15445 }
15446
15447 free (elib);
15448 }
15449 else
15450 res = FALSE;
15451 }
15452
15453 if (options_offset != 0)
15454 {
15455 Elf_External_Options * eopt;
15456 Elf_Internal_Options * iopt;
15457 Elf_Internal_Options * option;
15458 size_t offset;
15459 int cnt;
15460 sect = section_headers;
15461
15462 /* Find the section header so that we get the size. */
15463 sect = find_section_by_type (SHT_MIPS_OPTIONS);
15464 /* PR 17533 file: 012-277276-0.004. */
15465 if (sect == NULL)
15466 {
15467 error (_("No MIPS_OPTIONS header found\n"));
15468 return FALSE;
15469 }
15470
15471 eopt = (Elf_External_Options *) get_data (NULL, file, options_offset, 1,
15472 sect->sh_size, _("options"));
15473 if (eopt)
15474 {
15475 iopt = (Elf_Internal_Options *)
15476 cmalloc ((sect->sh_size / sizeof (eopt)), sizeof (* iopt));
15477 if (iopt == NULL)
15478 {
15479 error (_("Out of memory allocating space for MIPS options\n"));
15480 return FALSE;
15481 }
15482
15483 offset = cnt = 0;
15484 option = iopt;
15485
15486 while (offset <= sect->sh_size - sizeof (* eopt))
15487 {
15488 Elf_External_Options * eoption;
15489
15490 eoption = (Elf_External_Options *) ((char *) eopt + offset);
15491
15492 option->kind = BYTE_GET (eoption->kind);
15493 option->size = BYTE_GET (eoption->size);
15494 option->section = BYTE_GET (eoption->section);
15495 option->info = BYTE_GET (eoption->info);
15496
15497 /* PR 17531: file: ffa0fa3b. */
15498 if (option->size < sizeof (* eopt)
15499 || offset + option->size > sect->sh_size)
15500 {
15501 error (_("Invalid size (%u) for MIPS option\n"), option->size);
15502 return FALSE;
15503 }
15504 offset += option->size;
15505
15506 ++option;
15507 ++cnt;
15508 }
15509
15510 printf (_("\nSection '%s' contains %d entries:\n"),
15511 printable_section_name (sect), cnt);
15512
15513 option = iopt;
15514 offset = 0;
15515
15516 while (cnt-- > 0)
15517 {
15518 size_t len;
15519
15520 switch (option->kind)
15521 {
15522 case ODK_NULL:
15523 /* This shouldn't happen. */
15524 printf (" NULL %d %lx", option->section, option->info);
15525 break;
15526 case ODK_REGINFO:
15527 printf (" REGINFO ");
15528 if (elf_header.e_machine == EM_MIPS)
15529 {
15530 /* 32bit form. */
15531 Elf32_External_RegInfo * ereg;
15532 Elf32_RegInfo reginfo;
15533
15534 ereg = (Elf32_External_RegInfo *) (option + 1);
15535 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
15536 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
15537 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
15538 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
15539 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
15540 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
15541
15542 printf ("GPR %08lx GP 0x%lx\n",
15543 reginfo.ri_gprmask,
15544 (unsigned long) reginfo.ri_gp_value);
15545 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
15546 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
15547 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
15548 }
15549 else
15550 {
15551 /* 64 bit form. */
15552 Elf64_External_RegInfo * ereg;
15553 Elf64_Internal_RegInfo reginfo;
15554
15555 ereg = (Elf64_External_RegInfo *) (option + 1);
15556 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
15557 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
15558 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
15559 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
15560 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
15561 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
15562
15563 printf ("GPR %08lx GP 0x",
15564 reginfo.ri_gprmask);
15565 printf_vma (reginfo.ri_gp_value);
15566 printf ("\n");
15567
15568 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
15569 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
15570 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
15571 }
15572 ++option;
15573 continue;
15574 case ODK_EXCEPTIONS:
15575 fputs (" EXCEPTIONS fpe_min(", stdout);
15576 process_mips_fpe_exception (option->info & OEX_FPU_MIN);
15577 fputs (") fpe_max(", stdout);
15578 process_mips_fpe_exception ((option->info & OEX_FPU_MAX) >> 8);
15579 fputs (")", stdout);
15580
15581 if (option->info & OEX_PAGE0)
15582 fputs (" PAGE0", stdout);
15583 if (option->info & OEX_SMM)
15584 fputs (" SMM", stdout);
15585 if (option->info & OEX_FPDBUG)
15586 fputs (" FPDBUG", stdout);
15587 if (option->info & OEX_DISMISS)
15588 fputs (" DISMISS", stdout);
15589 break;
15590 case ODK_PAD:
15591 fputs (" PAD ", stdout);
15592 if (option->info & OPAD_PREFIX)
15593 fputs (" PREFIX", stdout);
15594 if (option->info & OPAD_POSTFIX)
15595 fputs (" POSTFIX", stdout);
15596 if (option->info & OPAD_SYMBOL)
15597 fputs (" SYMBOL", stdout);
15598 break;
15599 case ODK_HWPATCH:
15600 fputs (" HWPATCH ", stdout);
15601 if (option->info & OHW_R4KEOP)
15602 fputs (" R4KEOP", stdout);
15603 if (option->info & OHW_R8KPFETCH)
15604 fputs (" R8KPFETCH", stdout);
15605 if (option->info & OHW_R5KEOP)
15606 fputs (" R5KEOP", stdout);
15607 if (option->info & OHW_R5KCVTL)
15608 fputs (" R5KCVTL", stdout);
15609 break;
15610 case ODK_FILL:
15611 fputs (" FILL ", stdout);
15612 /* XXX Print content of info word? */
15613 break;
15614 case ODK_TAGS:
15615 fputs (" TAGS ", stdout);
15616 /* XXX Print content of info word? */
15617 break;
15618 case ODK_HWAND:
15619 fputs (" HWAND ", stdout);
15620 if (option->info & OHWA0_R4KEOP_CHECKED)
15621 fputs (" R4KEOP_CHECKED", stdout);
15622 if (option->info & OHWA0_R4KEOP_CLEAN)
15623 fputs (" R4KEOP_CLEAN", stdout);
15624 break;
15625 case ODK_HWOR:
15626 fputs (" HWOR ", stdout);
15627 if (option->info & OHWA0_R4KEOP_CHECKED)
15628 fputs (" R4KEOP_CHECKED", stdout);
15629 if (option->info & OHWA0_R4KEOP_CLEAN)
15630 fputs (" R4KEOP_CLEAN", stdout);
15631 break;
15632 case ODK_GP_GROUP:
15633 printf (" GP_GROUP %#06lx self-contained %#06lx",
15634 option->info & OGP_GROUP,
15635 (option->info & OGP_SELF) >> 16);
15636 break;
15637 case ODK_IDENT:
15638 printf (" IDENT %#06lx self-contained %#06lx",
15639 option->info & OGP_GROUP,
15640 (option->info & OGP_SELF) >> 16);
15641 break;
15642 default:
15643 /* This shouldn't happen. */
15644 printf (" %3d ??? %d %lx",
15645 option->kind, option->section, option->info);
15646 break;
15647 }
15648
15649 len = sizeof (* eopt);
15650 while (len < option->size)
15651 {
15652 unsigned char datum = * ((unsigned char *) eopt + offset + len);
15653
15654 if (ISPRINT (datum))
15655 printf ("%c", datum);
15656 else
15657 printf ("\\%03o", datum);
15658 len ++;
15659 }
15660 fputs ("\n", stdout);
15661
15662 offset += option->size;
15663 ++option;
15664 }
15665
15666 free (eopt);
15667 }
15668 else
15669 res = FALSE;
15670 }
15671
15672 if (conflicts_offset != 0 && conflictsno != 0)
15673 {
15674 Elf32_Conflict * iconf;
15675 size_t cnt;
15676
15677 if (dynamic_symbols == NULL)
15678 {
15679 error (_("conflict list found without a dynamic symbol table\n"));
15680 return FALSE;
15681 }
15682
15683 /* PR 21345 - print a slightly more helpful error message
15684 if we are sure that the cmalloc will fail. */
15685 if (conflictsno * sizeof (* iconf) > current_file_size)
15686 {
15687 error (_("Overlarge number of conflicts detected: %lx\n"),
15688 (long) conflictsno);
15689 return FALSE;
15690 }
15691
15692 iconf = (Elf32_Conflict *) cmalloc (conflictsno, sizeof (* iconf));
15693 if (iconf == NULL)
15694 {
15695 error (_("Out of memory allocating space for dynamic conflicts\n"));
15696 return FALSE;
15697 }
15698
15699 if (is_32bit_elf)
15700 {
15701 Elf32_External_Conflict * econf32;
15702
15703 econf32 = (Elf32_External_Conflict *)
15704 get_data (NULL, file, conflicts_offset, conflictsno,
15705 sizeof (* econf32), _("conflict"));
15706 if (!econf32)
15707 return FALSE;
15708
15709 for (cnt = 0; cnt < conflictsno; ++cnt)
15710 iconf[cnt] = BYTE_GET (econf32[cnt]);
15711
15712 free (econf32);
15713 }
15714 else
15715 {
15716 Elf64_External_Conflict * econf64;
15717
15718 econf64 = (Elf64_External_Conflict *)
15719 get_data (NULL, file, conflicts_offset, conflictsno,
15720 sizeof (* econf64), _("conflict"));
15721 if (!econf64)
15722 return FALSE;
15723
15724 for (cnt = 0; cnt < conflictsno; ++cnt)
15725 iconf[cnt] = BYTE_GET (econf64[cnt]);
15726
15727 free (econf64);
15728 }
15729
15730 printf (_("\nSection '.conflict' contains %lu entries:\n"),
15731 (unsigned long) conflictsno);
15732 puts (_(" Num: Index Value Name"));
15733
15734 for (cnt = 0; cnt < conflictsno; ++cnt)
15735 {
15736 printf ("%5lu: %8lu ", (unsigned long) cnt, iconf[cnt]);
15737
15738 if (iconf[cnt] >= num_dynamic_syms)
15739 printf (_("<corrupt symbol index>"));
15740 else
15741 {
15742 Elf_Internal_Sym * psym;
15743
15744 psym = & dynamic_symbols[iconf[cnt]];
15745 print_vma (psym->st_value, FULL_HEX);
15746 putchar (' ');
15747 if (VALID_DYNAMIC_NAME (psym->st_name))
15748 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
15749 else
15750 printf (_("<corrupt: %14ld>"), psym->st_name);
15751 }
15752 putchar ('\n');
15753 }
15754
15755 free (iconf);
15756 }
15757
15758 if (pltgot != 0 && local_gotno != 0)
15759 {
15760 bfd_vma ent, local_end, global_end;
15761 size_t i, offset;
15762 unsigned char * data;
15763 unsigned char * data_end;
15764 int addr_size;
15765
15766 ent = pltgot;
15767 addr_size = (is_32bit_elf ? 4 : 8);
15768 local_end = pltgot + local_gotno * addr_size;
15769
15770 /* PR binutils/17533 file: 012-111227-0.004 */
15771 if (symtabno < gotsym)
15772 {
15773 error (_("The GOT symbol offset (%lu) is greater than the symbol table size (%lu)\n"),
15774 (unsigned long) gotsym, (unsigned long) symtabno);
15775 return FALSE;
15776 }
15777
15778 global_end = local_end + (symtabno - gotsym) * addr_size;
15779 /* PR 17531: file: 54c91a34. */
15780 if (global_end < local_end)
15781 {
15782 error (_("Too many GOT symbols: %lu\n"), (unsigned long) symtabno);
15783 return FALSE;
15784 }
15785
15786 offset = offset_from_vma (file, pltgot, global_end - pltgot);
15787 data = (unsigned char *) get_data (NULL, file, offset,
15788 global_end - pltgot, 1,
15789 _("Global Offset Table data"));
15790 /* PR 12855: Null data is handled gracefully throughout. */
15791 data_end = data + (global_end - pltgot);
15792
15793 printf (_("\nPrimary GOT:\n"));
15794 printf (_(" Canonical gp value: "));
15795 print_vma (pltgot + 0x7ff0, LONG_HEX);
15796 printf ("\n\n");
15797
15798 printf (_(" Reserved entries:\n"));
15799 printf (_(" %*s %10s %*s Purpose\n"),
15800 addr_size * 2, _("Address"), _("Access"),
15801 addr_size * 2, _("Initial"));
15802 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15803 printf (_(" Lazy resolver\n"));
15804 if (ent == (bfd_vma) -1)
15805 goto got_print_fail;
15806
15807 /* Check for the MSB of GOT[1] being set, denoting a GNU object.
15808 This entry will be used by some runtime loaders, to store the
15809 module pointer. Otherwise this is an ordinary local entry.
15810 PR 21344: Check for the entry being fully available before
15811 fetching it. */
15812 if (data
15813 && data + ent - pltgot + addr_size <= data_end
15814 && (byte_get (data + ent - pltgot, addr_size)
15815 >> (addr_size * 8 - 1)) != 0)
15816 {
15817 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15818 printf (_(" Module pointer (GNU extension)\n"));
15819 if (ent == (bfd_vma) -1)
15820 goto got_print_fail;
15821 }
15822 printf ("\n");
15823
15824 if (ent < local_end)
15825 {
15826 printf (_(" Local entries:\n"));
15827 printf (" %*s %10s %*s\n",
15828 addr_size * 2, _("Address"), _("Access"),
15829 addr_size * 2, _("Initial"));
15830 while (ent < local_end)
15831 {
15832 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15833 printf ("\n");
15834 if (ent == (bfd_vma) -1)
15835 goto got_print_fail;
15836 }
15837 printf ("\n");
15838 }
15839
15840 if (gotsym < symtabno)
15841 {
15842 int sym_width;
15843
15844 printf (_(" Global entries:\n"));
15845 printf (" %*s %10s %*s %*s %-7s %3s %s\n",
15846 addr_size * 2, _("Address"),
15847 _("Access"),
15848 addr_size * 2, _("Initial"),
15849 addr_size * 2, _("Sym.Val."),
15850 _("Type"),
15851 /* Note for translators: "Ndx" = abbreviated form of "Index". */
15852 _("Ndx"), _("Name"));
15853
15854 sym_width = (is_32bit_elf ? 80 : 160) - 28 - addr_size * 6 - 1;
15855
15856 for (i = gotsym; i < symtabno; i++)
15857 {
15858 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15859 printf (" ");
15860
15861 if (dynamic_symbols == NULL)
15862 printf (_("<no dynamic symbols>"));
15863 else if (i < num_dynamic_syms)
15864 {
15865 Elf_Internal_Sym * psym = dynamic_symbols + i;
15866
15867 print_vma (psym->st_value, LONG_HEX);
15868 printf (" %-7s %3s ",
15869 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
15870 get_symbol_index_type (psym->st_shndx));
15871
15872 if (VALID_DYNAMIC_NAME (psym->st_name))
15873 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
15874 else
15875 printf (_("<corrupt: %14ld>"), psym->st_name);
15876 }
15877 else
15878 printf (_("<symbol index %lu exceeds number of dynamic symbols>"),
15879 (unsigned long) i);
15880
15881 printf ("\n");
15882 if (ent == (bfd_vma) -1)
15883 break;
15884 }
15885 printf ("\n");
15886 }
15887
15888 got_print_fail:
15889 if (data)
15890 free (data);
15891 }
15892
15893 if (mips_pltgot != 0 && jmprel != 0 && pltrel != 0 && pltrelsz != 0)
15894 {
15895 bfd_vma ent, end;
15896 size_t offset, rel_offset;
15897 unsigned long count, i;
15898 unsigned char * data;
15899 int addr_size, sym_width;
15900 Elf_Internal_Rela * rels;
15901
15902 rel_offset = offset_from_vma (file, jmprel, pltrelsz);
15903 if (pltrel == DT_RELA)
15904 {
15905 if (!slurp_rela_relocs (file, rel_offset, pltrelsz, &rels, &count))
15906 return FALSE;
15907 }
15908 else
15909 {
15910 if (!slurp_rel_relocs (file, rel_offset, pltrelsz, &rels, &count))
15911 return FALSE;
15912 }
15913
15914 ent = mips_pltgot;
15915 addr_size = (is_32bit_elf ? 4 : 8);
15916 end = mips_pltgot + (2 + count) * addr_size;
15917
15918 offset = offset_from_vma (file, mips_pltgot, end - mips_pltgot);
15919 data = (unsigned char *) get_data (NULL, file, offset, end - mips_pltgot,
15920 1, _("Procedure Linkage Table data"));
15921 if (data == NULL)
15922 return FALSE;
15923
15924 printf ("\nPLT GOT:\n\n");
15925 printf (_(" Reserved entries:\n"));
15926 printf (_(" %*s %*s Purpose\n"),
15927 addr_size * 2, _("Address"), addr_size * 2, _("Initial"));
15928 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
15929 printf (_(" PLT lazy resolver\n"));
15930 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
15931 printf (_(" Module pointer\n"));
15932 printf ("\n");
15933
15934 printf (_(" Entries:\n"));
15935 printf (" %*s %*s %*s %-7s %3s %s\n",
15936 addr_size * 2, _("Address"),
15937 addr_size * 2, _("Initial"),
15938 addr_size * 2, _("Sym.Val."), _("Type"), _("Ndx"), _("Name"));
15939 sym_width = (is_32bit_elf ? 80 : 160) - 17 - addr_size * 6 - 1;
15940 for (i = 0; i < count; i++)
15941 {
15942 unsigned long idx = get_reloc_symindex (rels[i].r_info);
15943
15944 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
15945 printf (" ");
15946
15947 if (idx >= num_dynamic_syms)
15948 printf (_("<corrupt symbol index: %lu>"), idx);
15949 else
15950 {
15951 Elf_Internal_Sym * psym = dynamic_symbols + idx;
15952
15953 print_vma (psym->st_value, LONG_HEX);
15954 printf (" %-7s %3s ",
15955 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
15956 get_symbol_index_type (psym->st_shndx));
15957 if (VALID_DYNAMIC_NAME (psym->st_name))
15958 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
15959 else
15960 printf (_("<corrupt: %14ld>"), psym->st_name);
15961 }
15962 printf ("\n");
15963 }
15964 printf ("\n");
15965
15966 if (data)
15967 free (data);
15968 free (rels);
15969 }
15970
15971 return res;
15972 }
15973
15974 static bfd_boolean
15975 process_nds32_specific (FILE * file)
15976 {
15977 Elf_Internal_Shdr *sect = NULL;
15978
15979 sect = find_section (".nds32_e_flags");
15980 if (sect != NULL)
15981 {
15982 unsigned int *flag;
15983
15984 printf ("\nNDS32 elf flags section:\n");
15985 flag = get_data (NULL, file, sect->sh_offset, 1,
15986 sect->sh_size, _("NDS32 elf flags section"));
15987
15988 if (! flag)
15989 return FALSE;
15990
15991 switch ((*flag) & 0x3)
15992 {
15993 case 0:
15994 printf ("(VEC_SIZE):\tNo entry.\n");
15995 break;
15996 case 1:
15997 printf ("(VEC_SIZE):\t4 bytes\n");
15998 break;
15999 case 2:
16000 printf ("(VEC_SIZE):\t16 bytes\n");
16001 break;
16002 case 3:
16003 printf ("(VEC_SIZE):\treserved\n");
16004 break;
16005 }
16006 }
16007
16008 return TRUE;
16009 }
16010
16011 static bfd_boolean
16012 process_gnu_liblist (FILE * file)
16013 {
16014 Elf_Internal_Shdr * section;
16015 Elf_Internal_Shdr * string_sec;
16016 Elf32_External_Lib * elib;
16017 char * strtab;
16018 size_t strtab_size;
16019 size_t cnt;
16020 unsigned i;
16021 bfd_boolean res = TRUE;
16022
16023 if (! do_arch)
16024 return TRUE;
16025
16026 for (i = 0, section = section_headers;
16027 i < elf_header.e_shnum;
16028 i++, section++)
16029 {
16030 switch (section->sh_type)
16031 {
16032 case SHT_GNU_LIBLIST:
16033 if (section->sh_link >= elf_header.e_shnum)
16034 break;
16035
16036 elib = (Elf32_External_Lib *)
16037 get_data (NULL, file, section->sh_offset, 1, section->sh_size,
16038 _("liblist section data"));
16039
16040 if (elib == NULL)
16041 {
16042 res = FALSE;
16043 break;
16044 }
16045
16046 string_sec = section_headers + section->sh_link;
16047 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
16048 string_sec->sh_size,
16049 _("liblist string table"));
16050 if (strtab == NULL
16051 || section->sh_entsize != sizeof (Elf32_External_Lib))
16052 {
16053 free (elib);
16054 free (strtab);
16055 res = FALSE;
16056 break;
16057 }
16058 strtab_size = string_sec->sh_size;
16059
16060 printf (_("\nLibrary list section '%s' contains %lu entries:\n"),
16061 printable_section_name (section),
16062 (unsigned long) (section->sh_size / sizeof (Elf32_External_Lib)));
16063
16064 puts (_(" Library Time Stamp Checksum Version Flags"));
16065
16066 for (cnt = 0; cnt < section->sh_size / sizeof (Elf32_External_Lib);
16067 ++cnt)
16068 {
16069 Elf32_Lib liblist;
16070 time_t atime;
16071 char timebuf[128];
16072 struct tm * tmp;
16073
16074 liblist.l_name = BYTE_GET (elib[cnt].l_name);
16075 atime = BYTE_GET (elib[cnt].l_time_stamp);
16076 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
16077 liblist.l_version = BYTE_GET (elib[cnt].l_version);
16078 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
16079
16080 tmp = gmtime (&atime);
16081 snprintf (timebuf, sizeof (timebuf),
16082 "%04u-%02u-%02uT%02u:%02u:%02u",
16083 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
16084 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
16085
16086 printf ("%3lu: ", (unsigned long) cnt);
16087 if (do_wide)
16088 printf ("%-20s", liblist.l_name < strtab_size
16089 ? strtab + liblist.l_name : _("<corrupt>"));
16090 else
16091 printf ("%-20.20s", liblist.l_name < strtab_size
16092 ? strtab + liblist.l_name : _("<corrupt>"));
16093 printf (" %s %#010lx %-7ld %-7ld\n", timebuf, liblist.l_checksum,
16094 liblist.l_version, liblist.l_flags);
16095 }
16096
16097 free (elib);
16098 free (strtab);
16099 }
16100 }
16101
16102 return res;
16103 }
16104
16105 static const char *
16106 get_note_type (unsigned e_type)
16107 {
16108 static char buff[64];
16109
16110 if (elf_header.e_type == ET_CORE)
16111 switch (e_type)
16112 {
16113 case NT_AUXV:
16114 return _("NT_AUXV (auxiliary vector)");
16115 case NT_PRSTATUS:
16116 return _("NT_PRSTATUS (prstatus structure)");
16117 case NT_FPREGSET:
16118 return _("NT_FPREGSET (floating point registers)");
16119 case NT_PRPSINFO:
16120 return _("NT_PRPSINFO (prpsinfo structure)");
16121 case NT_TASKSTRUCT:
16122 return _("NT_TASKSTRUCT (task structure)");
16123 case NT_PRXFPREG:
16124 return _("NT_PRXFPREG (user_xfpregs structure)");
16125 case NT_PPC_VMX:
16126 return _("NT_PPC_VMX (ppc Altivec registers)");
16127 case NT_PPC_VSX:
16128 return _("NT_PPC_VSX (ppc VSX registers)");
16129 case NT_386_TLS:
16130 return _("NT_386_TLS (x86 TLS information)");
16131 case NT_386_IOPERM:
16132 return _("NT_386_IOPERM (x86 I/O permissions)");
16133 case NT_X86_XSTATE:
16134 return _("NT_X86_XSTATE (x86 XSAVE extended state)");
16135 case NT_S390_HIGH_GPRS:
16136 return _("NT_S390_HIGH_GPRS (s390 upper register halves)");
16137 case NT_S390_TIMER:
16138 return _("NT_S390_TIMER (s390 timer register)");
16139 case NT_S390_TODCMP:
16140 return _("NT_S390_TODCMP (s390 TOD comparator register)");
16141 case NT_S390_TODPREG:
16142 return _("NT_S390_TODPREG (s390 TOD programmable register)");
16143 case NT_S390_CTRS:
16144 return _("NT_S390_CTRS (s390 control registers)");
16145 case NT_S390_PREFIX:
16146 return _("NT_S390_PREFIX (s390 prefix register)");
16147 case NT_S390_LAST_BREAK:
16148 return _("NT_S390_LAST_BREAK (s390 last breaking event address)");
16149 case NT_S390_SYSTEM_CALL:
16150 return _("NT_S390_SYSTEM_CALL (s390 system call restart data)");
16151 case NT_S390_TDB:
16152 return _("NT_S390_TDB (s390 transaction diagnostic block)");
16153 case NT_S390_VXRS_LOW:
16154 return _("NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)");
16155 case NT_S390_VXRS_HIGH:
16156 return _("NT_S390_VXRS_HIGH (s390 vector registers 16-31)");
16157 case NT_ARM_VFP:
16158 return _("NT_ARM_VFP (arm VFP registers)");
16159 case NT_ARM_TLS:
16160 return _("NT_ARM_TLS (AArch TLS registers)");
16161 case NT_ARM_HW_BREAK:
16162 return _("NT_ARM_HW_BREAK (AArch hardware breakpoint registers)");
16163 case NT_ARM_HW_WATCH:
16164 return _("NT_ARM_HW_WATCH (AArch hardware watchpoint registers)");
16165 case NT_PSTATUS:
16166 return _("NT_PSTATUS (pstatus structure)");
16167 case NT_FPREGS:
16168 return _("NT_FPREGS (floating point registers)");
16169 case NT_PSINFO:
16170 return _("NT_PSINFO (psinfo structure)");
16171 case NT_LWPSTATUS:
16172 return _("NT_LWPSTATUS (lwpstatus_t structure)");
16173 case NT_LWPSINFO:
16174 return _("NT_LWPSINFO (lwpsinfo_t structure)");
16175 case NT_WIN32PSTATUS:
16176 return _("NT_WIN32PSTATUS (win32_pstatus structure)");
16177 case NT_SIGINFO:
16178 return _("NT_SIGINFO (siginfo_t data)");
16179 case NT_FILE:
16180 return _("NT_FILE (mapped files)");
16181 default:
16182 break;
16183 }
16184 else
16185 switch (e_type)
16186 {
16187 case NT_VERSION:
16188 return _("NT_VERSION (version)");
16189 case NT_ARCH:
16190 return _("NT_ARCH (architecture)");
16191 case NT_GNU_BUILD_ATTRIBUTE_OPEN:
16192 return _("NT_GNU_BUILD_ATTRIBUTE_OPEN");
16193 case NT_GNU_BUILD_ATTRIBUTE_FUNC:
16194 return _("NT_GNU_BUILD_ATTRIBUTE_FUNC");
16195 default:
16196 break;
16197 }
16198
16199 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16200 return buff;
16201 }
16202
16203 static bfd_boolean
16204 print_core_note (Elf_Internal_Note *pnote)
16205 {
16206 unsigned int addr_size = is_32bit_elf ? 4 : 8;
16207 bfd_vma count, page_size;
16208 unsigned char *descdata, *filenames, *descend;
16209
16210 if (pnote->type != NT_FILE)
16211 return TRUE;
16212
16213 #ifndef BFD64
16214 if (!is_32bit_elf)
16215 {
16216 printf (_(" Cannot decode 64-bit note in 32-bit build\n"));
16217 /* Still "successful". */
16218 return TRUE;
16219 }
16220 #endif
16221
16222 if (pnote->descsz < 2 * addr_size)
16223 {
16224 error (_(" Malformed note - too short for header\n"));
16225 return FALSE;
16226 }
16227
16228 descdata = (unsigned char *) pnote->descdata;
16229 descend = descdata + pnote->descsz;
16230
16231 if (descdata[pnote->descsz - 1] != '\0')
16232 {
16233 error (_(" Malformed note - does not end with \\0\n"));
16234 return FALSE;
16235 }
16236
16237 count = byte_get (descdata, addr_size);
16238 descdata += addr_size;
16239
16240 page_size = byte_get (descdata, addr_size);
16241 descdata += addr_size;
16242
16243 if (pnote->descsz < 2 * addr_size + count * 3 * addr_size)
16244 {
16245 error (_(" Malformed note - too short for supplied file count\n"));
16246 return FALSE;
16247 }
16248
16249 printf (_(" Page size: "));
16250 print_vma (page_size, DEC);
16251 printf ("\n");
16252
16253 printf (_(" %*s%*s%*s\n"),
16254 (int) (2 + 2 * addr_size), _("Start"),
16255 (int) (4 + 2 * addr_size), _("End"),
16256 (int) (4 + 2 * addr_size), _("Page Offset"));
16257 filenames = descdata + count * 3 * addr_size;
16258 while (count-- > 0)
16259 {
16260 bfd_vma start, end, file_ofs;
16261
16262 if (filenames == descend)
16263 {
16264 error (_(" Malformed note - filenames end too early\n"));
16265 return FALSE;
16266 }
16267
16268 start = byte_get (descdata, addr_size);
16269 descdata += addr_size;
16270 end = byte_get (descdata, addr_size);
16271 descdata += addr_size;
16272 file_ofs = byte_get (descdata, addr_size);
16273 descdata += addr_size;
16274
16275 printf (" ");
16276 print_vma (start, FULL_HEX);
16277 printf (" ");
16278 print_vma (end, FULL_HEX);
16279 printf (" ");
16280 print_vma (file_ofs, FULL_HEX);
16281 printf ("\n %s\n", filenames);
16282
16283 filenames += 1 + strlen ((char *) filenames);
16284 }
16285
16286 return TRUE;
16287 }
16288
16289 static const char *
16290 get_gnu_elf_note_type (unsigned e_type)
16291 {
16292 /* NB/ Keep this switch statement in sync with print_gnu_note (). */
16293 switch (e_type)
16294 {
16295 case NT_GNU_ABI_TAG:
16296 return _("NT_GNU_ABI_TAG (ABI version tag)");
16297 case NT_GNU_HWCAP:
16298 return _("NT_GNU_HWCAP (DSO-supplied software HWCAP info)");
16299 case NT_GNU_BUILD_ID:
16300 return _("NT_GNU_BUILD_ID (unique build ID bitstring)");
16301 case NT_GNU_GOLD_VERSION:
16302 return _("NT_GNU_GOLD_VERSION (gold version)");
16303 case NT_GNU_PROPERTY_TYPE_0:
16304 return _("NT_GNU_PROPERTY_TYPE_0");
16305 case NT_GNU_BUILD_ATTRIBUTE_OPEN:
16306 return _("NT_GNU_BUILD_ATTRIBUTE_OPEN");
16307 case NT_GNU_BUILD_ATTRIBUTE_FUNC:
16308 return _("NT_GNU_BUILD_ATTRIBUTE_FUNC");
16309 default:
16310 {
16311 static char buff[64];
16312
16313 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16314 return buff;
16315 }
16316 }
16317 }
16318
16319 static void
16320 decode_x86_isa (unsigned int bitmask)
16321 {
16322 while (bitmask)
16323 {
16324 unsigned int bit = bitmask & (- bitmask);
16325
16326 bitmask &= ~ bit;
16327 switch (bit)
16328 {
16329 case GNU_PROPERTY_X86_ISA_1_486: printf ("i486"); break;
16330 case GNU_PROPERTY_X86_ISA_1_586: printf ("586"); break;
16331 case GNU_PROPERTY_X86_ISA_1_686: printf ("686"); break;
16332 case GNU_PROPERTY_X86_ISA_1_SSE: printf ("SSE"); break;
16333 case GNU_PROPERTY_X86_ISA_1_SSE2: printf ("SSE2"); break;
16334 case GNU_PROPERTY_X86_ISA_1_SSE3: printf ("SSE3"); break;
16335 case GNU_PROPERTY_X86_ISA_1_SSSE3: printf ("SSSE3"); break;
16336 case GNU_PROPERTY_X86_ISA_1_SSE4_1: printf ("SSE4_1"); break;
16337 case GNU_PROPERTY_X86_ISA_1_SSE4_2: printf ("SSE4_2"); break;
16338 case GNU_PROPERTY_X86_ISA_1_AVX: printf ("AVX"); break;
16339 case GNU_PROPERTY_X86_ISA_1_AVX2: printf ("AVX2"); break;
16340 case GNU_PROPERTY_X86_ISA_1_AVX512F: printf ("AVX512F"); break;
16341 case GNU_PROPERTY_X86_ISA_1_AVX512CD: printf ("AVX512CD"); break;
16342 case GNU_PROPERTY_X86_ISA_1_AVX512ER: printf ("AVX512ER"); break;
16343 case GNU_PROPERTY_X86_ISA_1_AVX512PF: printf ("AVX512PF"); break;
16344 case GNU_PROPERTY_X86_ISA_1_AVX512VL: printf ("AVX512VL"); break;
16345 case GNU_PROPERTY_X86_ISA_1_AVX512DQ: printf ("AVX512DQ"); break;
16346 case GNU_PROPERTY_X86_ISA_1_AVX512BW: printf ("AVX512BW"); break;
16347 default: printf (_("<unknown: %x>"), bit); break;
16348 }
16349 if (bitmask)
16350 printf (", ");
16351 }
16352 }
16353
16354 static void
16355 decode_x86_feature (unsigned int type, unsigned int bitmask)
16356 {
16357 while (bitmask)
16358 {
16359 unsigned int bit = bitmask & (- bitmask);
16360
16361 bitmask &= ~ bit;
16362 switch (bit)
16363 {
16364 case GNU_PROPERTY_X86_FEATURE_1_IBT:
16365 switch (type)
16366 {
16367 case GNU_PROPERTY_X86_FEATURE_1_AND:
16368 printf ("IBT");
16369 break;
16370 default:
16371 /* This should never happen. */
16372 abort ();
16373 }
16374 break;
16375 case GNU_PROPERTY_X86_FEATURE_1_SHSTK:
16376 switch (type)
16377 {
16378 case GNU_PROPERTY_X86_FEATURE_1_AND:
16379 printf ("SHSTK");
16380 break;
16381 default:
16382 /* This should never happen. */
16383 abort ();
16384 }
16385 break;
16386 default:
16387 printf (_("<unknown: %x>"), bit);
16388 break;
16389 }
16390 if (bitmask)
16391 printf (", ");
16392 }
16393 }
16394
16395 static void
16396 print_gnu_property_note (Elf_Internal_Note * pnote)
16397 {
16398 unsigned char * ptr = (unsigned char *) pnote->descdata;
16399 unsigned char * ptr_end = ptr + pnote->descsz;
16400 unsigned int size = is_32bit_elf ? 4 : 8;
16401
16402 printf (_(" Properties: "));
16403
16404 if (pnote->descsz < 8 || (pnote->descsz % size) != 0)
16405 {
16406 printf (_("<corrupt GNU_PROPERTY_TYPE, size = %#lx>\n"), pnote->descsz);
16407 return;
16408 }
16409
16410 while (1)
16411 {
16412 unsigned int j;
16413 unsigned int type = byte_get (ptr, 4);
16414 unsigned int datasz = byte_get (ptr + 4, 4);
16415
16416 ptr += 8;
16417
16418 if ((ptr + datasz) > ptr_end)
16419 {
16420 printf (_("<corrupt type (%#x) datasz: %#x>\n"),
16421 type, datasz);
16422 break;
16423 }
16424
16425 if (type >= GNU_PROPERTY_LOPROC && type <= GNU_PROPERTY_HIPROC)
16426 {
16427 if (elf_header.e_machine == EM_X86_64
16428 || elf_header.e_machine == EM_IAMCU
16429 || elf_header.e_machine == EM_386)
16430 {
16431 switch (type)
16432 {
16433 case GNU_PROPERTY_X86_ISA_1_USED:
16434 printf ("x86 ISA used: ");
16435 if (datasz != 4)
16436 printf (_("<corrupt length: %#x> "), datasz);
16437 else
16438 decode_x86_isa (byte_get (ptr, 4));
16439 goto next;
16440
16441 case GNU_PROPERTY_X86_ISA_1_NEEDED:
16442 printf ("x86 ISA needed: ");
16443 if (datasz != 4)
16444 printf (_("<corrupt length: %#x> "), datasz);
16445 else
16446 decode_x86_isa (byte_get (ptr, 4));
16447 goto next;
16448
16449 case GNU_PROPERTY_X86_FEATURE_1_AND:
16450 printf ("x86 feature: ");
16451 if (datasz != 4)
16452 printf (_("<corrupt length: %#x> "), datasz);
16453 else
16454 decode_x86_feature (type, byte_get (ptr, 4));
16455 goto next;
16456
16457 default:
16458 break;
16459 }
16460 }
16461 }
16462 else
16463 {
16464 switch (type)
16465 {
16466 case GNU_PROPERTY_STACK_SIZE:
16467 printf (_("stack size: "));
16468 if (datasz != size)
16469 printf (_("<corrupt length: %#x> "), datasz);
16470 else
16471 printf ("%#lx", (unsigned long) byte_get (ptr, size));
16472 goto next;
16473
16474 case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
16475 printf ("no copy on protected ");
16476 if (datasz)
16477 printf (_("<corrupt length: %#x> "), datasz);
16478 goto next;
16479
16480 default:
16481 break;
16482 }
16483 }
16484
16485 if (type < GNU_PROPERTY_LOPROC)
16486 printf (_("<unknown type %#x data: "), type);
16487 else if (type < GNU_PROPERTY_LOUSER)
16488 printf (_("<procesor-specific type %#x data: "), type);
16489 else
16490 printf (_("<application-specific type %#x data: "), type);
16491 for (j = 0; j < datasz; ++j)
16492 printf ("%02x ", ptr[j] & 0xff);
16493 printf (">");
16494
16495 next:
16496 ptr += ((datasz + (size - 1)) & ~ (size - 1));
16497 if (ptr == ptr_end)
16498 break;
16499 else
16500 {
16501 if (do_wide)
16502 printf (", ");
16503 else
16504 printf ("\n\t");
16505 }
16506
16507 if (ptr > (ptr_end - 8))
16508 {
16509 printf (_("<corrupt descsz: %#lx>\n"), pnote->descsz);
16510 break;
16511 }
16512 }
16513
16514 printf ("\n");
16515 }
16516
16517 static bfd_boolean
16518 print_gnu_note (Elf_Internal_Note *pnote)
16519 {
16520 /* NB/ Keep this switch statement in sync with get_gnu_elf_note_type (). */
16521 switch (pnote->type)
16522 {
16523 case NT_GNU_BUILD_ID:
16524 {
16525 unsigned long i;
16526
16527 printf (_(" Build ID: "));
16528 for (i = 0; i < pnote->descsz; ++i)
16529 printf ("%02x", pnote->descdata[i] & 0xff);
16530 printf ("\n");
16531 }
16532 break;
16533
16534 case NT_GNU_ABI_TAG:
16535 {
16536 unsigned long os, major, minor, subminor;
16537 const char *osname;
16538
16539 /* PR 17531: file: 030-599401-0.004. */
16540 if (pnote->descsz < 16)
16541 {
16542 printf (_(" <corrupt GNU_ABI_TAG>\n"));
16543 break;
16544 }
16545
16546 os = byte_get ((unsigned char *) pnote->descdata, 4);
16547 major = byte_get ((unsigned char *) pnote->descdata + 4, 4);
16548 minor = byte_get ((unsigned char *) pnote->descdata + 8, 4);
16549 subminor = byte_get ((unsigned char *) pnote->descdata + 12, 4);
16550
16551 switch (os)
16552 {
16553 case GNU_ABI_TAG_LINUX:
16554 osname = "Linux";
16555 break;
16556 case GNU_ABI_TAG_HURD:
16557 osname = "Hurd";
16558 break;
16559 case GNU_ABI_TAG_SOLARIS:
16560 osname = "Solaris";
16561 break;
16562 case GNU_ABI_TAG_FREEBSD:
16563 osname = "FreeBSD";
16564 break;
16565 case GNU_ABI_TAG_NETBSD:
16566 osname = "NetBSD";
16567 break;
16568 case GNU_ABI_TAG_SYLLABLE:
16569 osname = "Syllable";
16570 break;
16571 case GNU_ABI_TAG_NACL:
16572 osname = "NaCl";
16573 break;
16574 default:
16575 osname = "Unknown";
16576 break;
16577 }
16578
16579 printf (_(" OS: %s, ABI: %ld.%ld.%ld\n"), osname,
16580 major, minor, subminor);
16581 }
16582 break;
16583
16584 case NT_GNU_GOLD_VERSION:
16585 {
16586 unsigned long i;
16587
16588 printf (_(" Version: "));
16589 for (i = 0; i < pnote->descsz && pnote->descdata[i] != '\0'; ++i)
16590 printf ("%c", pnote->descdata[i]);
16591 printf ("\n");
16592 }
16593 break;
16594
16595 case NT_GNU_HWCAP:
16596 {
16597 unsigned long num_entries, mask;
16598
16599 /* Hardware capabilities information. Word 0 is the number of entries.
16600 Word 1 is a bitmask of enabled entries. The rest of the descriptor
16601 is a series of entries, where each entry is a single byte followed
16602 by a nul terminated string. The byte gives the bit number to test
16603 if enabled in the bitmask. */
16604 printf (_(" Hardware Capabilities: "));
16605 if (pnote->descsz < 8)
16606 {
16607 error (_("<corrupt GNU_HWCAP>\n"));
16608 return FALSE;
16609 }
16610 num_entries = byte_get ((unsigned char *) pnote->descdata, 4);
16611 mask = byte_get ((unsigned char *) pnote->descdata + 4, 4);
16612 printf (_("num entries: %ld, enabled mask: %lx\n"), num_entries, mask);
16613 /* FIXME: Add code to display the entries... */
16614 }
16615 break;
16616
16617 case NT_GNU_PROPERTY_TYPE_0:
16618 print_gnu_property_note (pnote);
16619 break;
16620
16621 default:
16622 /* Handle unrecognised types. An error message should have already been
16623 created by get_gnu_elf_note_type(), so all that we need to do is to
16624 display the data. */
16625 {
16626 unsigned long i;
16627
16628 printf (_(" Description data: "));
16629 for (i = 0; i < pnote->descsz; ++i)
16630 printf ("%02x ", pnote->descdata[i] & 0xff);
16631 printf ("\n");
16632 }
16633 break;
16634 }
16635
16636 return TRUE;
16637 }
16638
16639 static const char *
16640 get_v850_elf_note_type (enum v850_notes n_type)
16641 {
16642 static char buff[64];
16643
16644 switch (n_type)
16645 {
16646 case V850_NOTE_ALIGNMENT: return _("Alignment of 8-byte objects");
16647 case V850_NOTE_DATA_SIZE: return _("Sizeof double and long double");
16648 case V850_NOTE_FPU_INFO: return _("Type of FPU support needed");
16649 case V850_NOTE_SIMD_INFO: return _("Use of SIMD instructions");
16650 case V850_NOTE_CACHE_INFO: return _("Use of cache");
16651 case V850_NOTE_MMU_INFO: return _("Use of MMU");
16652 default:
16653 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), n_type);
16654 return buff;
16655 }
16656 }
16657
16658 static bfd_boolean
16659 print_v850_note (Elf_Internal_Note * pnote)
16660 {
16661 unsigned int val;
16662
16663 if (pnote->descsz != 4)
16664 return FALSE;
16665
16666 val = byte_get ((unsigned char *) pnote->descdata, pnote->descsz);
16667
16668 if (val == 0)
16669 {
16670 printf (_("not set\n"));
16671 return TRUE;
16672 }
16673
16674 switch (pnote->type)
16675 {
16676 case V850_NOTE_ALIGNMENT:
16677 switch (val)
16678 {
16679 case EF_RH850_DATA_ALIGN4: printf (_("4-byte\n")); return TRUE;
16680 case EF_RH850_DATA_ALIGN8: printf (_("8-byte\n")); return TRUE;
16681 }
16682 break;
16683
16684 case V850_NOTE_DATA_SIZE:
16685 switch (val)
16686 {
16687 case EF_RH850_DOUBLE32: printf (_("4-bytes\n")); return TRUE;
16688 case EF_RH850_DOUBLE64: printf (_("8-bytes\n")); return TRUE;
16689 }
16690 break;
16691
16692 case V850_NOTE_FPU_INFO:
16693 switch (val)
16694 {
16695 case EF_RH850_FPU20: printf (_("FPU-2.0\n")); return TRUE;
16696 case EF_RH850_FPU30: printf (_("FPU-3.0\n")); return TRUE;
16697 }
16698 break;
16699
16700 case V850_NOTE_MMU_INFO:
16701 case V850_NOTE_CACHE_INFO:
16702 case V850_NOTE_SIMD_INFO:
16703 if (val == EF_RH850_SIMD)
16704 {
16705 printf (_("yes\n"));
16706 return TRUE;
16707 }
16708 break;
16709
16710 default:
16711 /* An 'unknown note type' message will already have been displayed. */
16712 break;
16713 }
16714
16715 printf (_("unknown value: %x\n"), val);
16716 return FALSE;
16717 }
16718
16719 static bfd_boolean
16720 process_netbsd_elf_note (Elf_Internal_Note * pnote)
16721 {
16722 unsigned int version;
16723
16724 switch (pnote->type)
16725 {
16726 case NT_NETBSD_IDENT:
16727 version = byte_get ((unsigned char *) pnote->descdata, sizeof (version));
16728 if ((version / 10000) % 100)
16729 printf (" NetBSD\t\t0x%08lx\tIDENT %u (%u.%u%s%c)\n", pnote->descsz,
16730 version, version / 100000000, (version / 1000000) % 100,
16731 (version / 10000) % 100 > 26 ? "Z" : "",
16732 'A' + (version / 10000) % 26);
16733 else
16734 printf (" NetBSD\t\t0x%08lx\tIDENT %u (%u.%u.%u)\n", pnote->descsz,
16735 version, version / 100000000, (version / 1000000) % 100,
16736 (version / 100) % 100);
16737 return TRUE;
16738
16739 case NT_NETBSD_MARCH:
16740 printf (" NetBSD\t0x%08lx\tMARCH <%s>\n", pnote->descsz,
16741 pnote->descdata);
16742 return TRUE;
16743
16744 default:
16745 printf (" NetBSD\t0x%08lx\tUnknown note type: (0x%08lx)\n", pnote->descsz,
16746 pnote->type);
16747 return FALSE;
16748 }
16749 }
16750
16751 static const char *
16752 get_freebsd_elfcore_note_type (unsigned e_type)
16753 {
16754 switch (e_type)
16755 {
16756 case NT_FREEBSD_THRMISC:
16757 return _("NT_THRMISC (thrmisc structure)");
16758 case NT_FREEBSD_PROCSTAT_PROC:
16759 return _("NT_PROCSTAT_PROC (proc data)");
16760 case NT_FREEBSD_PROCSTAT_FILES:
16761 return _("NT_PROCSTAT_FILES (files data)");
16762 case NT_FREEBSD_PROCSTAT_VMMAP:
16763 return _("NT_PROCSTAT_VMMAP (vmmap data)");
16764 case NT_FREEBSD_PROCSTAT_GROUPS:
16765 return _("NT_PROCSTAT_GROUPS (groups data)");
16766 case NT_FREEBSD_PROCSTAT_UMASK:
16767 return _("NT_PROCSTAT_UMASK (umask data)");
16768 case NT_FREEBSD_PROCSTAT_RLIMIT:
16769 return _("NT_PROCSTAT_RLIMIT (rlimit data)");
16770 case NT_FREEBSD_PROCSTAT_OSREL:
16771 return _("NT_PROCSTAT_OSREL (osreldate data)");
16772 case NT_FREEBSD_PROCSTAT_PSSTRINGS:
16773 return _("NT_PROCSTAT_PSSTRINGS (ps_strings data)");
16774 case NT_FREEBSD_PROCSTAT_AUXV:
16775 return _("NT_PROCSTAT_AUXV (auxv data)");
16776 }
16777 return get_note_type (e_type);
16778 }
16779
16780 static const char *
16781 get_netbsd_elfcore_note_type (unsigned e_type)
16782 {
16783 static char buff[64];
16784
16785 if (e_type == NT_NETBSDCORE_PROCINFO)
16786 {
16787 /* NetBSD core "procinfo" structure. */
16788 return _("NetBSD procinfo structure");
16789 }
16790
16791 /* As of Jan 2002 there are no other machine-independent notes
16792 defined for NetBSD core files. If the note type is less
16793 than the start of the machine-dependent note types, we don't
16794 understand it. */
16795
16796 if (e_type < NT_NETBSDCORE_FIRSTMACH)
16797 {
16798 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16799 return buff;
16800 }
16801
16802 switch (elf_header.e_machine)
16803 {
16804 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0
16805 and PT_GETFPREGS == mach+2. */
16806
16807 case EM_OLD_ALPHA:
16808 case EM_ALPHA:
16809 case EM_SPARC:
16810 case EM_SPARC32PLUS:
16811 case EM_SPARCV9:
16812 switch (e_type)
16813 {
16814 case NT_NETBSDCORE_FIRSTMACH + 0:
16815 return _("PT_GETREGS (reg structure)");
16816 case NT_NETBSDCORE_FIRSTMACH + 2:
16817 return _("PT_GETFPREGS (fpreg structure)");
16818 default:
16819 break;
16820 }
16821 break;
16822
16823 /* On all other arch's, PT_GETREGS == mach+1 and
16824 PT_GETFPREGS == mach+3. */
16825 default:
16826 switch (e_type)
16827 {
16828 case NT_NETBSDCORE_FIRSTMACH + 1:
16829 return _("PT_GETREGS (reg structure)");
16830 case NT_NETBSDCORE_FIRSTMACH + 3:
16831 return _("PT_GETFPREGS (fpreg structure)");
16832 default:
16833 break;
16834 }
16835 }
16836
16837 snprintf (buff, sizeof (buff), "PT_FIRSTMACH+%d",
16838 e_type - NT_NETBSDCORE_FIRSTMACH);
16839 return buff;
16840 }
16841
16842 static const char *
16843 get_stapsdt_note_type (unsigned e_type)
16844 {
16845 static char buff[64];
16846
16847 switch (e_type)
16848 {
16849 case NT_STAPSDT:
16850 return _("NT_STAPSDT (SystemTap probe descriptors)");
16851
16852 default:
16853 break;
16854 }
16855
16856 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16857 return buff;
16858 }
16859
16860 static bfd_boolean
16861 print_stapsdt_note (Elf_Internal_Note *pnote)
16862 {
16863 int addr_size = is_32bit_elf ? 4 : 8;
16864 char *data = pnote->descdata;
16865 char *data_end = pnote->descdata + pnote->descsz;
16866 bfd_vma pc, base_addr, semaphore;
16867 char *provider, *probe, *arg_fmt;
16868
16869 pc = byte_get ((unsigned char *) data, addr_size);
16870 data += addr_size;
16871 base_addr = byte_get ((unsigned char *) data, addr_size);
16872 data += addr_size;
16873 semaphore = byte_get ((unsigned char *) data, addr_size);
16874 data += addr_size;
16875
16876 provider = data;
16877 data += strlen (data) + 1;
16878 probe = data;
16879 data += strlen (data) + 1;
16880 arg_fmt = data;
16881 data += strlen (data) + 1;
16882
16883 printf (_(" Provider: %s\n"), provider);
16884 printf (_(" Name: %s\n"), probe);
16885 printf (_(" Location: "));
16886 print_vma (pc, FULL_HEX);
16887 printf (_(", Base: "));
16888 print_vma (base_addr, FULL_HEX);
16889 printf (_(", Semaphore: "));
16890 print_vma (semaphore, FULL_HEX);
16891 printf ("\n");
16892 printf (_(" Arguments: %s\n"), arg_fmt);
16893
16894 return data == data_end;
16895 }
16896
16897 static const char *
16898 get_ia64_vms_note_type (unsigned e_type)
16899 {
16900 static char buff[64];
16901
16902 switch (e_type)
16903 {
16904 case NT_VMS_MHD:
16905 return _("NT_VMS_MHD (module header)");
16906 case NT_VMS_LNM:
16907 return _("NT_VMS_LNM (language name)");
16908 case NT_VMS_SRC:
16909 return _("NT_VMS_SRC (source files)");
16910 case NT_VMS_TITLE:
16911 return "NT_VMS_TITLE";
16912 case NT_VMS_EIDC:
16913 return _("NT_VMS_EIDC (consistency check)");
16914 case NT_VMS_FPMODE:
16915 return _("NT_VMS_FPMODE (FP mode)");
16916 case NT_VMS_LINKTIME:
16917 return "NT_VMS_LINKTIME";
16918 case NT_VMS_IMGNAM:
16919 return _("NT_VMS_IMGNAM (image name)");
16920 case NT_VMS_IMGID:
16921 return _("NT_VMS_IMGID (image id)");
16922 case NT_VMS_LINKID:
16923 return _("NT_VMS_LINKID (link id)");
16924 case NT_VMS_IMGBID:
16925 return _("NT_VMS_IMGBID (build id)");
16926 case NT_VMS_GSTNAM:
16927 return _("NT_VMS_GSTNAM (sym table name)");
16928 case NT_VMS_ORIG_DYN:
16929 return "NT_VMS_ORIG_DYN";
16930 case NT_VMS_PATCHTIME:
16931 return "NT_VMS_PATCHTIME";
16932 default:
16933 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16934 return buff;
16935 }
16936 }
16937
16938 static bfd_boolean
16939 print_ia64_vms_note (Elf_Internal_Note * pnote)
16940 {
16941 switch (pnote->type)
16942 {
16943 case NT_VMS_MHD:
16944 if (pnote->descsz > 36)
16945 {
16946 size_t l = strlen (pnote->descdata + 34);
16947 printf (_(" Creation date : %.17s\n"), pnote->descdata);
16948 printf (_(" Last patch date: %.17s\n"), pnote->descdata + 17);
16949 printf (_(" Module name : %s\n"), pnote->descdata + 34);
16950 printf (_(" Module version : %s\n"), pnote->descdata + 34 + l + 1);
16951 }
16952 else
16953 printf (_(" Invalid size\n"));
16954 break;
16955 case NT_VMS_LNM:
16956 printf (_(" Language: %s\n"), pnote->descdata);
16957 break;
16958 #ifdef BFD64
16959 case NT_VMS_FPMODE:
16960 printf (_(" Floating Point mode: "));
16961 printf ("0x%016" BFD_VMA_FMT "x\n",
16962 (bfd_vma) byte_get ((unsigned char *)pnote->descdata, 8));
16963 break;
16964 case NT_VMS_LINKTIME:
16965 printf (_(" Link time: "));
16966 print_vms_time
16967 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
16968 printf ("\n");
16969 break;
16970 case NT_VMS_PATCHTIME:
16971 printf (_(" Patch time: "));
16972 print_vms_time
16973 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
16974 printf ("\n");
16975 break;
16976 case NT_VMS_ORIG_DYN:
16977 printf (_(" Major id: %u, minor id: %u\n"),
16978 (unsigned) byte_get ((unsigned char *)pnote->descdata, 4),
16979 (unsigned) byte_get ((unsigned char *)pnote->descdata + 4, 4));
16980 printf (_(" Last modified : "));
16981 print_vms_time
16982 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata + 8, 8));
16983 printf (_("\n Link flags : "));
16984 printf ("0x%016" BFD_VMA_FMT "x\n",
16985 (bfd_vma) byte_get ((unsigned char *)pnote->descdata + 16, 8));
16986 printf (_(" Header flags: 0x%08x\n"),
16987 (unsigned) byte_get ((unsigned char *)pnote->descdata + 24, 4));
16988 printf (_(" Image id : %s\n"), pnote->descdata + 32);
16989 break;
16990 #endif
16991 case NT_VMS_IMGNAM:
16992 printf (_(" Image name: %s\n"), pnote->descdata);
16993 break;
16994 case NT_VMS_GSTNAM:
16995 printf (_(" Global symbol table name: %s\n"), pnote->descdata);
16996 break;
16997 case NT_VMS_IMGID:
16998 printf (_(" Image id: %s\n"), pnote->descdata);
16999 break;
17000 case NT_VMS_LINKID:
17001 printf (_(" Linker id: %s\n"), pnote->descdata);
17002 break;
17003 default:
17004 return FALSE;
17005 }
17006 return TRUE;
17007 }
17008
17009 /* Print the name of the symbol associated with a build attribute
17010 that is attached to address OFFSET. */
17011
17012 static bfd_boolean
17013 print_symbol_for_build_attribute (FILE * file,
17014 unsigned long offset,
17015 bfd_boolean is_open_attr)
17016 {
17017 static FILE * saved_file = NULL;
17018 static char * strtab;
17019 static unsigned long strtablen;
17020 static Elf_Internal_Sym * symtab;
17021 static unsigned long nsyms;
17022 Elf_Internal_Sym * saved_sym = NULL;
17023 Elf_Internal_Sym * sym;
17024
17025 if (section_headers != NULL
17026 && (saved_file == NULL || file != saved_file))
17027 {
17028 Elf_Internal_Shdr * symsec;
17029
17030 /* Load the symbol and string sections. */
17031 for (symsec = section_headers;
17032 symsec < section_headers + elf_header.e_shnum;
17033 symsec ++)
17034 {
17035 if (symsec->sh_type == SHT_SYMTAB)
17036 {
17037 symtab = GET_ELF_SYMBOLS (file, symsec, & nsyms);
17038
17039 if (symsec->sh_link < elf_header.e_shnum)
17040 {
17041 Elf_Internal_Shdr * strtab_sec = section_headers + symsec->sh_link;
17042
17043 strtab = (char *) get_data (NULL, file, strtab_sec->sh_offset,
17044 1, strtab_sec->sh_size,
17045 _("string table"));
17046 strtablen = strtab != NULL ? strtab_sec->sh_size : 0;
17047 }
17048 }
17049 }
17050 saved_file = file;
17051 }
17052
17053 if (symtab == NULL || strtab == NULL)
17054 {
17055 printf ("\n");
17056 return FALSE;
17057 }
17058
17059 /* Find a symbol whose value matches offset. */
17060 for (sym = symtab; sym < symtab + nsyms; sym ++)
17061 if (sym->st_value == offset)
17062 {
17063 if (sym->st_name >= strtablen)
17064 /* Huh ? This should not happen. */
17065 continue;
17066
17067 if (strtab[sym->st_name] == 0)
17068 continue;
17069
17070 if (is_open_attr)
17071 {
17072 /* For OPEN attributes we prefer GLOBAL over LOCAL symbols
17073 and FILE or OBJECT symbols over NOTYPE symbols. We skip
17074 FUNC symbols entirely. */
17075 switch (ELF_ST_TYPE (sym->st_info))
17076 {
17077 case STT_FILE:
17078 saved_sym = sym;
17079 /* We can stop searching now. */
17080 sym = symtab + nsyms;
17081 continue;
17082
17083 case STT_OBJECT:
17084 saved_sym = sym;
17085 continue;
17086
17087 case STT_FUNC:
17088 /* Ignore function symbols. */
17089 continue;
17090
17091 default:
17092 break;
17093 }
17094
17095 switch (ELF_ST_BIND (sym->st_info))
17096 {
17097 case STB_GLOBAL:
17098 if (saved_sym == NULL
17099 || ELF_ST_TYPE (saved_sym->st_info) != STT_OBJECT)
17100 saved_sym = sym;
17101 break;
17102
17103 case STB_LOCAL:
17104 if (saved_sym == NULL)
17105 saved_sym = sym;
17106 break;
17107
17108 default:
17109 break;
17110 }
17111 }
17112 else
17113 {
17114 if (ELF_ST_TYPE (sym->st_info) != STT_FUNC)
17115 continue;
17116
17117 saved_sym = sym;
17118 break;
17119 }
17120 }
17121
17122 printf (" (%s: %s)\n",
17123 is_open_attr ? _("file") : _("func"),
17124 saved_sym ? strtab + saved_sym->st_name : _("<no symbol found>)"));
17125 return TRUE;
17126 }
17127
17128 static bfd_boolean
17129 print_gnu_build_attribute_description (Elf_Internal_Note * pnote,
17130 FILE * file)
17131 {
17132 static unsigned long global_offset = 0;
17133 unsigned long offset;
17134 unsigned int desc_size = is_32bit_elf ? 4 : 8;
17135 bfd_boolean is_open_attr = pnote->type == NT_GNU_BUILD_ATTRIBUTE_OPEN;
17136
17137 if (pnote->descsz == 0)
17138 {
17139 if (is_open_attr)
17140 {
17141 printf (_(" Applies from offset %#lx\n"), global_offset);
17142 return TRUE;
17143 }
17144 else
17145 {
17146 printf (_(" Applies to func at %#lx"), global_offset);
17147 return print_symbol_for_build_attribute (file, global_offset, is_open_attr);
17148 }
17149 }
17150
17151 if (pnote->descsz != desc_size)
17152 {
17153 error (_(" <invalid description size: %lx>\n"), pnote->descsz);
17154 printf (_(" <invalid descsz>"));
17155 return FALSE;
17156 }
17157
17158 offset = byte_get ((unsigned char *) pnote->descdata, desc_size);
17159
17160 if (is_open_attr)
17161 {
17162 printf (_(" Applies from offset %#lx"), offset);
17163 global_offset = offset;
17164 }
17165 else
17166 {
17167 printf (_(" Applies to func at %#lx"), offset);
17168 }
17169
17170 return print_symbol_for_build_attribute (file, offset, is_open_attr);
17171 }
17172
17173 static bfd_boolean
17174 print_gnu_build_attribute_name (Elf_Internal_Note * pnote)
17175 {
17176 static const char string_expected [2] = { GNU_BUILD_ATTRIBUTE_TYPE_STRING, 0 };
17177 static const char number_expected [2] = { GNU_BUILD_ATTRIBUTE_TYPE_NUMERIC, 0 };
17178 static const char bool_expected [3] = { GNU_BUILD_ATTRIBUTE_TYPE_BOOL_TRUE, GNU_BUILD_ATTRIBUTE_TYPE_BOOL_FALSE, 0 };
17179 char name_type;
17180 char name_attribute;
17181 const char * expected_types;
17182 const char * name = pnote->namedata;
17183 const char * text;
17184 int left;
17185
17186 if (name == NULL || pnote->namesz < 2)
17187 {
17188 error (_("corrupt name field in GNU build attribute note: size = %ld\n"), pnote->namesz);
17189 print_symbol (-20, _(" <corrupt name>"));
17190 return FALSE;
17191 }
17192
17193 switch ((name_type = * name))
17194 {
17195 case GNU_BUILD_ATTRIBUTE_TYPE_NUMERIC:
17196 case GNU_BUILD_ATTRIBUTE_TYPE_STRING:
17197 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_TRUE:
17198 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_FALSE:
17199 printf ("%c", * name);
17200 break;
17201 default:
17202 error (_("unrecognised attribute type in name field: %d\n"), name_type);
17203 print_symbol (-20, _("<unknown name type>"));
17204 return FALSE;
17205 }
17206
17207 left = 19;
17208 ++ name;
17209 text = NULL;
17210
17211 switch ((name_attribute = * name))
17212 {
17213 case GNU_BUILD_ATTRIBUTE_VERSION:
17214 text = _("<version>");
17215 expected_types = string_expected;
17216 ++ name;
17217 break;
17218 case GNU_BUILD_ATTRIBUTE_STACK_PROT:
17219 text = _("<stack prot>");
17220 expected_types = "!+*";
17221 ++ name;
17222 break;
17223 case GNU_BUILD_ATTRIBUTE_RELRO:
17224 text = _("<relro>");
17225 expected_types = bool_expected;
17226 ++ name;
17227 break;
17228 case GNU_BUILD_ATTRIBUTE_STACK_SIZE:
17229 text = _("<stack size>");
17230 expected_types = number_expected;
17231 ++ name;
17232 break;
17233 case GNU_BUILD_ATTRIBUTE_TOOL:
17234 text = _("<tool>");
17235 expected_types = string_expected;
17236 ++ name;
17237 break;
17238 case GNU_BUILD_ATTRIBUTE_ABI:
17239 text = _("<ABI>");
17240 expected_types = "$*";
17241 ++ name;
17242 break;
17243 case GNU_BUILD_ATTRIBUTE_PIC:
17244 text = _("<PIC>");
17245 expected_types = number_expected;
17246 ++ name;
17247 break;
17248 case GNU_BUILD_ATTRIBUTE_SHORT_ENUM:
17249 text = _("<short enum>");
17250 expected_types = bool_expected;
17251 ++ name;
17252 break;
17253 default:
17254 if (ISPRINT (* name))
17255 {
17256 int len = strnlen (name, pnote->namesz - (name - pnote->namedata)) + 1;
17257
17258 if (len > left && ! do_wide)
17259 len = left;
17260 printf ("%.*s:", len, name);
17261 left -= len;
17262 name += len;
17263 }
17264 else
17265 {
17266 static char tmpbuf [128];
17267 error (_("unrecognised byte in name field: %d\n"), * name);
17268 sprintf (tmpbuf, _("<unknown:_%d>"), * name);
17269 text = tmpbuf;
17270 name ++;
17271 }
17272 expected_types = "*$!+";
17273 break;
17274 }
17275
17276 if (text)
17277 {
17278 printf ("%s", text);
17279 left -= strlen (text);
17280 }
17281
17282 if (strchr (expected_types, name_type) == NULL)
17283 warn (_("attribute does not have an expected type (%c)\n"), name_type);
17284
17285 if ((unsigned long)(name - pnote->namedata) > pnote->namesz)
17286 {
17287 error (_("corrupt name field: namesz: %lu but parsing gets to %ld\n"),
17288 (unsigned long) pnote->namesz,
17289 (long) (name - pnote->namedata));
17290 return FALSE;
17291 }
17292
17293 if (left < 1 && ! do_wide)
17294 return TRUE;
17295
17296 switch (name_type)
17297 {
17298 case GNU_BUILD_ATTRIBUTE_TYPE_NUMERIC:
17299 {
17300 unsigned int bytes;
17301 unsigned long long val = 0;
17302 unsigned int shift = 0;
17303 char * decoded = NULL;
17304
17305 bytes = pnote->namesz - (name - pnote->namedata);
17306 if (bytes > 0)
17307 /* The -1 is because the name field is always 0 terminated, and we
17308 want to be able to ensure that the shift in the while loop below
17309 will not overflow. */
17310 -- bytes;
17311
17312 if (bytes > sizeof (val))
17313 {
17314 fprintf (stderr, "namesz %lx name %p namedata %p\n",
17315 pnote->namesz, name, pnote->namedata);
17316 error (_("corrupt numeric name field: too many bytes in the value: %x\n"),
17317 bytes);
17318 bytes = sizeof (val);
17319 }
17320 /* We do not bother to warn if bytes == 0 as this can
17321 happen with some early versions of the gcc plugin. */
17322
17323 while (bytes --)
17324 {
17325 unsigned long byte = (* name ++) & 0xff;
17326
17327 val |= byte << shift;
17328 shift += 8;
17329 }
17330
17331 switch (name_attribute)
17332 {
17333 case GNU_BUILD_ATTRIBUTE_PIC:
17334 switch (val)
17335 {
17336 case 0: decoded = "static"; break;
17337 case 1: decoded = "pic"; break;
17338 case 2: decoded = "PIC"; break;
17339 case 3: decoded = "pie"; break;
17340 case 4: decoded = "PIE"; break;
17341 default: break;
17342 }
17343 break;
17344 case GNU_BUILD_ATTRIBUTE_STACK_PROT:
17345 switch (val)
17346 {
17347 /* Based upon the SPCT_FLAG_xxx enum values in gcc/cfgexpand.c. */
17348 case 0: decoded = "off"; break;
17349 case 1: decoded = "on"; break;
17350 case 2: decoded = "all"; break;
17351 case 3: decoded = "strong"; break;
17352 case 4: decoded = "explicit"; break;
17353 default: break;
17354 }
17355 break;
17356 default:
17357 break;
17358 }
17359
17360 if (decoded != NULL)
17361 {
17362 print_symbol (-left, decoded);
17363 left = 0;
17364 }
17365 else if (val == 0)
17366 {
17367 printf ("0x0");
17368 left -= 3;
17369 }
17370 else
17371 {
17372 if (do_wide)
17373 left -= printf ("0x%llx", val);
17374 else
17375 left -= printf ("0x%-.*llx", left, val);
17376 }
17377 }
17378 break;
17379 case GNU_BUILD_ATTRIBUTE_TYPE_STRING:
17380 left -= print_symbol (- left, name);
17381 break;
17382 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_TRUE:
17383 left -= print_symbol (- left, "true");
17384 break;
17385 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_FALSE:
17386 left -= print_symbol (- left, "false");
17387 break;
17388 }
17389
17390 if (do_wide && left > 0)
17391 printf ("%-*s", left, " ");
17392
17393 return TRUE;
17394 }
17395
17396 /* Note that by the ELF standard, the name field is already null byte
17397 terminated, and namesz includes the terminating null byte.
17398 I.E. the value of namesz for the name "FSF" is 4.
17399
17400 If the value of namesz is zero, there is no name present. */
17401
17402 static bfd_boolean
17403 process_note (Elf_Internal_Note * pnote,
17404 FILE * file)
17405 {
17406 const char * name = pnote->namesz ? pnote->namedata : "(NONE)";
17407 const char * nt;
17408
17409 if (pnote->namesz == 0)
17410 /* If there is no note name, then use the default set of
17411 note type strings. */
17412 nt = get_note_type (pnote->type);
17413
17414 else if (const_strneq (pnote->namedata, "GNU"))
17415 /* GNU-specific object file notes. */
17416 nt = get_gnu_elf_note_type (pnote->type);
17417
17418 else if (const_strneq (pnote->namedata, "FreeBSD"))
17419 /* FreeBSD-specific core file notes. */
17420 nt = get_freebsd_elfcore_note_type (pnote->type);
17421
17422 else if (const_strneq (pnote->namedata, "NetBSD-CORE"))
17423 /* NetBSD-specific core file notes. */
17424 nt = get_netbsd_elfcore_note_type (pnote->type);
17425
17426 else if (const_strneq (pnote->namedata, "NetBSD"))
17427 /* NetBSD-specific core file notes. */
17428 return process_netbsd_elf_note (pnote);
17429
17430 else if (strneq (pnote->namedata, "SPU/", 4))
17431 {
17432 /* SPU-specific core file notes. */
17433 nt = pnote->namedata + 4;
17434 name = "SPU";
17435 }
17436
17437 else if (const_strneq (pnote->namedata, "IPF/VMS"))
17438 /* VMS/ia64-specific file notes. */
17439 nt = get_ia64_vms_note_type (pnote->type);
17440
17441 else if (const_strneq (pnote->namedata, "stapsdt"))
17442 nt = get_stapsdt_note_type (pnote->type);
17443
17444 else
17445 /* Don't recognize this note name; just use the default set of
17446 note type strings. */
17447 nt = get_note_type (pnote->type);
17448
17449 printf (" ");
17450
17451 if (pnote->type == NT_GNU_BUILD_ATTRIBUTE_OPEN
17452 || pnote->type == NT_GNU_BUILD_ATTRIBUTE_FUNC)
17453 print_gnu_build_attribute_name (pnote);
17454 else
17455 print_symbol (-20, name);
17456
17457 if (do_wide)
17458 printf (" 0x%08lx\t%s\t", pnote->descsz, nt);
17459 else
17460 printf (" 0x%08lx\t%s\n", pnote->descsz, nt);
17461
17462 if (const_strneq (pnote->namedata, "IPF/VMS"))
17463 return print_ia64_vms_note (pnote);
17464 else if (const_strneq (pnote->namedata, "GNU"))
17465 return print_gnu_note (pnote);
17466 else if (const_strneq (pnote->namedata, "stapsdt"))
17467 return print_stapsdt_note (pnote);
17468 else if (const_strneq (pnote->namedata, "CORE"))
17469 return print_core_note (pnote);
17470 else if (pnote->type == NT_GNU_BUILD_ATTRIBUTE_OPEN
17471 || pnote->type == NT_GNU_BUILD_ATTRIBUTE_FUNC)
17472 return print_gnu_build_attribute_description (pnote, file);
17473
17474 if (pnote->descsz)
17475 {
17476 unsigned long i;
17477
17478 printf (_(" description data: "));
17479 for (i = 0; i < pnote->descsz; i++)
17480 printf ("%02x ", pnote->descdata[i]);
17481 }
17482
17483 if (do_wide)
17484 printf ("\n");
17485
17486 return TRUE;
17487 }
17488
17489 static bfd_boolean
17490 process_notes_at (FILE * file,
17491 Elf_Internal_Shdr * section,
17492 bfd_vma offset,
17493 bfd_vma length)
17494 {
17495 Elf_External_Note * pnotes;
17496 Elf_External_Note * external;
17497 char * end;
17498 bfd_boolean res = TRUE;
17499
17500 if (length <= 0)
17501 return FALSE;
17502
17503 if (section)
17504 {
17505 pnotes = (Elf_External_Note *) get_section_contents (section, file);
17506 if (pnotes)
17507 {
17508 if (! apply_relocations (file, section, (unsigned char *) pnotes, length, NULL, NULL))
17509 return FALSE;
17510 }
17511 }
17512 else
17513 pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
17514 _("notes"));
17515 if (pnotes == NULL)
17516 return FALSE;
17517
17518 external = pnotes;
17519
17520 if (section)
17521 printf (_("\nDisplaying notes found in: %s\n"), printable_section_name (section));
17522 else
17523 printf (_("\nDisplaying notes found at file offset 0x%08lx with length 0x%08lx:\n"),
17524 (unsigned long) offset, (unsigned long) length);
17525
17526 printf (_(" %-20s %10s\tDescription\n"), _("Owner"), _("Data size"));
17527
17528 end = (char *) pnotes + length;
17529 while ((char *) external < end)
17530 {
17531 Elf_Internal_Note inote;
17532 size_t min_notesz;
17533 char *next;
17534 char * temp = NULL;
17535 size_t data_remaining = end - (char *) external;
17536
17537 if (!is_ia64_vms ())
17538 {
17539 /* PR binutils/15191
17540 Make sure that there is enough data to read. */
17541 min_notesz = offsetof (Elf_External_Note, name);
17542 if (data_remaining < min_notesz)
17543 {
17544 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
17545 (int) data_remaining);
17546 break;
17547 }
17548 inote.type = BYTE_GET (external->type);
17549 inote.namesz = BYTE_GET (external->namesz);
17550 inote.namedata = external->name;
17551 inote.descsz = BYTE_GET (external->descsz);
17552 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
17553 /* PR 17531: file: 3443835e. */
17554 if (inote.descdata < (char *) pnotes || inote.descdata > end)
17555 {
17556 warn (_("Corrupt note: name size is too big: (got: %lx, expected no more than: %lx)\n"),
17557 inote.namesz, (long)(end - inote.namedata));
17558 inote.descdata = inote.namedata;
17559 inote.namesz = 0;
17560 }
17561
17562 inote.descpos = offset + (inote.descdata - (char *) pnotes);
17563 next = inote.descdata + align_power (inote.descsz, 2);
17564 }
17565 else
17566 {
17567 Elf64_External_VMS_Note *vms_external;
17568
17569 /* PR binutils/15191
17570 Make sure that there is enough data to read. */
17571 min_notesz = offsetof (Elf64_External_VMS_Note, name);
17572 if (data_remaining < min_notesz)
17573 {
17574 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
17575 (int) data_remaining);
17576 break;
17577 }
17578
17579 vms_external = (Elf64_External_VMS_Note *) external;
17580 inote.type = BYTE_GET (vms_external->type);
17581 inote.namesz = BYTE_GET (vms_external->namesz);
17582 inote.namedata = vms_external->name;
17583 inote.descsz = BYTE_GET (vms_external->descsz);
17584 inote.descdata = inote.namedata + align_power (inote.namesz, 3);
17585 inote.descpos = offset + (inote.descdata - (char *) pnotes);
17586 next = inote.descdata + align_power (inote.descsz, 3);
17587 }
17588
17589 if (inote.descdata < (char *) external + min_notesz
17590 || next < (char *) external + min_notesz
17591 /* PR binutils/17531: file: id:000000,sig:11,src:006986,op:havoc,rep:4. */
17592 || inote.namedata + inote.namesz < inote.namedata
17593 || inote.descdata + inote.descsz < inote.descdata
17594 || data_remaining < (size_t)(next - (char *) external))
17595 {
17596 warn (_("note with invalid namesz and/or descsz found at offset 0x%lx\n"),
17597 (unsigned long) ((char *) external - (char *) pnotes));
17598 warn (_(" type: 0x%lx, namesize: 0x%08lx, descsize: 0x%08lx\n"),
17599 inote.type, inote.namesz, inote.descsz);
17600 break;
17601 }
17602
17603 external = (Elf_External_Note *) next;
17604
17605 /* Verify that name is null terminated. It appears that at least
17606 one version of Linux (RedHat 6.0) generates corefiles that don't
17607 comply with the ELF spec by failing to include the null byte in
17608 namesz. */
17609 if (inote.namedata[inote.namesz - 1] != '\0')
17610 {
17611 temp = (char *) malloc (inote.namesz + 1);
17612 if (temp == NULL)
17613 {
17614 error (_("Out of memory allocating space for inote name\n"));
17615 res = FALSE;
17616 break;
17617 }
17618
17619 memcpy (temp, inote.namedata, inote.namesz);
17620 temp[inote.namesz] = 0;
17621
17622 /* warn (_("'%s' NOTE name not properly null terminated\n"), temp); */
17623 inote.namedata = temp;
17624 }
17625
17626 if (! process_note (& inote, file))
17627 res = FALSE;
17628
17629 if (temp != NULL)
17630 {
17631 free (temp);
17632 temp = NULL;
17633 }
17634 }
17635
17636 free (pnotes);
17637
17638 return res;
17639 }
17640
17641 static bfd_boolean
17642 process_corefile_note_segments (FILE * file)
17643 {
17644 Elf_Internal_Phdr * segment;
17645 unsigned int i;
17646 bfd_boolean res = TRUE;
17647
17648 if (! get_program_headers (file))
17649 return TRUE;
17650
17651 for (i = 0, segment = program_headers;
17652 i < elf_header.e_phnum;
17653 i++, segment++)
17654 {
17655 if (segment->p_type == PT_NOTE)
17656 if (! process_notes_at (file, NULL,
17657 (bfd_vma) segment->p_offset,
17658 (bfd_vma) segment->p_filesz))
17659 res = FALSE;
17660 }
17661
17662 return res;
17663 }
17664
17665 static bfd_boolean
17666 process_v850_notes (FILE * file, bfd_vma offset, bfd_vma length)
17667 {
17668 Elf_External_Note * pnotes;
17669 Elf_External_Note * external;
17670 char * end;
17671 bfd_boolean res = TRUE;
17672
17673 if (length <= 0)
17674 return FALSE;
17675
17676 pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
17677 _("v850 notes"));
17678 if (pnotes == NULL)
17679 return FALSE;
17680
17681 external = pnotes;
17682 end = (char*) pnotes + length;
17683
17684 printf (_("\nDisplaying contents of Renesas V850 notes section at offset 0x%lx with length 0x%lx:\n"),
17685 (unsigned long) offset, (unsigned long) length);
17686
17687 while ((char *) external + sizeof (Elf_External_Note) < end)
17688 {
17689 Elf_External_Note * next;
17690 Elf_Internal_Note inote;
17691
17692 inote.type = BYTE_GET (external->type);
17693 inote.namesz = BYTE_GET (external->namesz);
17694 inote.namedata = external->name;
17695 inote.descsz = BYTE_GET (external->descsz);
17696 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
17697 inote.descpos = offset + (inote.descdata - (char *) pnotes);
17698
17699 if (inote.descdata < (char *) pnotes || inote.descdata >= end)
17700 {
17701 warn (_("Corrupt note: name size is too big: %lx\n"), inote.namesz);
17702 inote.descdata = inote.namedata;
17703 inote.namesz = 0;
17704 }
17705
17706 next = (Elf_External_Note *) (inote.descdata + align_power (inote.descsz, 2));
17707
17708 if ( ((char *) next > end)
17709 || ((char *) next < (char *) pnotes))
17710 {
17711 warn (_("corrupt descsz found in note at offset 0x%lx\n"),
17712 (unsigned long) ((char *) external - (char *) pnotes));
17713 warn (_(" type: 0x%lx, namesize: 0x%lx, descsize: 0x%lx\n"),
17714 inote.type, inote.namesz, inote.descsz);
17715 break;
17716 }
17717
17718 external = next;
17719
17720 /* Prevent out-of-bounds indexing. */
17721 if ( inote.namedata + inote.namesz > end
17722 || inote.namedata + inote.namesz < inote.namedata)
17723 {
17724 warn (_("corrupt namesz found in note at offset 0x%lx\n"),
17725 (unsigned long) ((char *) external - (char *) pnotes));
17726 warn (_(" type: 0x%lx, namesize: 0x%lx, descsize: 0x%lx\n"),
17727 inote.type, inote.namesz, inote.descsz);
17728 break;
17729 }
17730
17731 printf (" %s: ", get_v850_elf_note_type (inote.type));
17732
17733 if (! print_v850_note (& inote))
17734 {
17735 res = FALSE;
17736 printf ("<corrupt sizes: namesz: %lx, descsz: %lx>\n",
17737 inote.namesz, inote.descsz);
17738 }
17739 }
17740
17741 free (pnotes);
17742
17743 return res;
17744 }
17745
17746 static bfd_boolean
17747 process_note_sections (FILE * file)
17748 {
17749 Elf_Internal_Shdr * section;
17750 unsigned long i;
17751 unsigned int n = 0;
17752 bfd_boolean res = TRUE;
17753
17754 for (i = 0, section = section_headers;
17755 i < elf_header.e_shnum && section != NULL;
17756 i++, section++)
17757 {
17758 if (section->sh_type == SHT_NOTE)
17759 {
17760 if (! process_notes_at (file, section,
17761 (bfd_vma) section->sh_offset,
17762 (bfd_vma) section->sh_size))
17763 res = FALSE;
17764 n++;
17765 }
17766
17767 if (( elf_header.e_machine == EM_V800
17768 || elf_header.e_machine == EM_V850
17769 || elf_header.e_machine == EM_CYGNUS_V850)
17770 && section->sh_type == SHT_RENESAS_INFO)
17771 {
17772 if (! process_v850_notes (file,
17773 (bfd_vma) section->sh_offset,
17774 (bfd_vma) section->sh_size))
17775 res = FALSE;
17776 n++;
17777 }
17778 }
17779
17780 if (n == 0)
17781 /* Try processing NOTE segments instead. */
17782 return process_corefile_note_segments (file);
17783
17784 return res;
17785 }
17786
17787 static bfd_boolean
17788 process_notes (FILE * file)
17789 {
17790 /* If we have not been asked to display the notes then do nothing. */
17791 if (! do_notes)
17792 return TRUE;
17793
17794 if (elf_header.e_type != ET_CORE)
17795 return process_note_sections (file);
17796
17797 /* No program headers means no NOTE segment. */
17798 if (elf_header.e_phnum > 0)
17799 return process_corefile_note_segments (file);
17800
17801 printf (_("No note segments present in the core file.\n"));
17802 return TRUE;
17803 }
17804
17805 static unsigned char *
17806 display_public_gnu_attributes (unsigned char * start,
17807 const unsigned char * const end)
17808 {
17809 printf (_(" Unknown GNU attribute: %s\n"), start);
17810
17811 start += strnlen ((char *) start, end - start);
17812 display_raw_attribute (start, end);
17813
17814 return (unsigned char *) end;
17815 }
17816
17817 static unsigned char *
17818 display_generic_attribute (unsigned char * start,
17819 unsigned int tag,
17820 const unsigned char * const end)
17821 {
17822 if (tag == 0)
17823 return (unsigned char *) end;
17824
17825 return display_tag_value (tag, start, end);
17826 }
17827
17828 static bfd_boolean
17829 process_arch_specific (FILE * file)
17830 {
17831 if (! do_arch)
17832 return TRUE;
17833
17834 switch (elf_header.e_machine)
17835 {
17836 case EM_ARC:
17837 case EM_ARC_COMPACT:
17838 case EM_ARC_COMPACT2:
17839 return process_attributes (file, "ARC", SHT_ARC_ATTRIBUTES,
17840 display_arc_attribute,
17841 display_generic_attribute);
17842 case EM_ARM:
17843 return process_attributes (file, "aeabi", SHT_ARM_ATTRIBUTES,
17844 display_arm_attribute,
17845 display_generic_attribute);
17846
17847 case EM_MIPS:
17848 case EM_MIPS_RS3_LE:
17849 return process_mips_specific (file);
17850
17851 case EM_MSP430:
17852 return process_attributes (file, "mspabi", SHT_MSP430_ATTRIBUTES,
17853 display_msp430x_attribute,
17854 display_generic_attribute);
17855
17856 case EM_NDS32:
17857 return process_nds32_specific (file);
17858
17859 case EM_PPC:
17860 case EM_PPC64:
17861 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
17862 display_power_gnu_attribute);
17863
17864 case EM_S390:
17865 case EM_S390_OLD:
17866 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
17867 display_s390_gnu_attribute);
17868
17869 case EM_SPARC:
17870 case EM_SPARC32PLUS:
17871 case EM_SPARCV9:
17872 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
17873 display_sparc_gnu_attribute);
17874
17875 case EM_TI_C6000:
17876 return process_attributes (file, "c6xabi", SHT_C6000_ATTRIBUTES,
17877 display_tic6x_attribute,
17878 display_generic_attribute);
17879
17880 default:
17881 return process_attributes (file, "gnu", SHT_GNU_ATTRIBUTES,
17882 display_public_gnu_attributes,
17883 display_generic_attribute);
17884 }
17885 }
17886
17887 static bfd_boolean
17888 get_file_header (FILE * file)
17889 {
17890 /* Read in the identity array. */
17891 if (fread (elf_header.e_ident, EI_NIDENT, 1, file) != 1)
17892 return FALSE;
17893
17894 /* Determine how to read the rest of the header. */
17895 switch (elf_header.e_ident[EI_DATA])
17896 {
17897 default:
17898 case ELFDATANONE:
17899 case ELFDATA2LSB:
17900 byte_get = byte_get_little_endian;
17901 byte_put = byte_put_little_endian;
17902 break;
17903 case ELFDATA2MSB:
17904 byte_get = byte_get_big_endian;
17905 byte_put = byte_put_big_endian;
17906 break;
17907 }
17908
17909 /* For now we only support 32 bit and 64 bit ELF files. */
17910 is_32bit_elf = (elf_header.e_ident[EI_CLASS] != ELFCLASS64);
17911
17912 /* Read in the rest of the header. */
17913 if (is_32bit_elf)
17914 {
17915 Elf32_External_Ehdr ehdr32;
17916
17917 if (fread (ehdr32.e_type, sizeof (ehdr32) - EI_NIDENT, 1, file) != 1)
17918 return FALSE;
17919
17920 elf_header.e_type = BYTE_GET (ehdr32.e_type);
17921 elf_header.e_machine = BYTE_GET (ehdr32.e_machine);
17922 elf_header.e_version = BYTE_GET (ehdr32.e_version);
17923 elf_header.e_entry = BYTE_GET (ehdr32.e_entry);
17924 elf_header.e_phoff = BYTE_GET (ehdr32.e_phoff);
17925 elf_header.e_shoff = BYTE_GET (ehdr32.e_shoff);
17926 elf_header.e_flags = BYTE_GET (ehdr32.e_flags);
17927 elf_header.e_ehsize = BYTE_GET (ehdr32.e_ehsize);
17928 elf_header.e_phentsize = BYTE_GET (ehdr32.e_phentsize);
17929 elf_header.e_phnum = BYTE_GET (ehdr32.e_phnum);
17930 elf_header.e_shentsize = BYTE_GET (ehdr32.e_shentsize);
17931 elf_header.e_shnum = BYTE_GET (ehdr32.e_shnum);
17932 elf_header.e_shstrndx = BYTE_GET (ehdr32.e_shstrndx);
17933 }
17934 else
17935 {
17936 Elf64_External_Ehdr ehdr64;
17937
17938 /* If we have been compiled with sizeof (bfd_vma) == 4, then
17939 we will not be able to cope with the 64bit data found in
17940 64 ELF files. Detect this now and abort before we start
17941 overwriting things. */
17942 if (sizeof (bfd_vma) < 8)
17943 {
17944 error (_("This instance of readelf has been built without support for a\n\
17945 64 bit data type and so it cannot read 64 bit ELF files.\n"));
17946 return FALSE;
17947 }
17948
17949 if (fread (ehdr64.e_type, sizeof (ehdr64) - EI_NIDENT, 1, file) != 1)
17950 return FALSE;
17951
17952 elf_header.e_type = BYTE_GET (ehdr64.e_type);
17953 elf_header.e_machine = BYTE_GET (ehdr64.e_machine);
17954 elf_header.e_version = BYTE_GET (ehdr64.e_version);
17955 elf_header.e_entry = BYTE_GET (ehdr64.e_entry);
17956 elf_header.e_phoff = BYTE_GET (ehdr64.e_phoff);
17957 elf_header.e_shoff = BYTE_GET (ehdr64.e_shoff);
17958 elf_header.e_flags = BYTE_GET (ehdr64.e_flags);
17959 elf_header.e_ehsize = BYTE_GET (ehdr64.e_ehsize);
17960 elf_header.e_phentsize = BYTE_GET (ehdr64.e_phentsize);
17961 elf_header.e_phnum = BYTE_GET (ehdr64.e_phnum);
17962 elf_header.e_shentsize = BYTE_GET (ehdr64.e_shentsize);
17963 elf_header.e_shnum = BYTE_GET (ehdr64.e_shnum);
17964 elf_header.e_shstrndx = BYTE_GET (ehdr64.e_shstrndx);
17965 }
17966
17967 if (elf_header.e_shoff)
17968 {
17969 /* There may be some extensions in the first section header. Don't
17970 bomb if we can't read it. */
17971 if (is_32bit_elf)
17972 get_32bit_section_headers (file, TRUE);
17973 else
17974 get_64bit_section_headers (file, TRUE);
17975 }
17976
17977 return TRUE;
17978 }
17979
17980 /* Process one ELF object file according to the command line options.
17981 This file may actually be stored in an archive. The file is
17982 positioned at the start of the ELF object. Returns TRUE if no
17983 problems were encountered, FALSE otherwise. */
17984
17985 static bfd_boolean
17986 process_object (char * file_name, FILE * file)
17987 {
17988 unsigned int i;
17989 bfd_boolean res = TRUE;
17990
17991 if (! get_file_header (file))
17992 {
17993 error (_("%s: Failed to read file header\n"), file_name);
17994 return FALSE;
17995 }
17996
17997 /* Initialise per file variables. */
17998 for (i = ARRAY_SIZE (version_info); i--;)
17999 version_info[i] = 0;
18000
18001 for (i = ARRAY_SIZE (dynamic_info); i--;)
18002 dynamic_info[i] = 0;
18003 dynamic_info_DT_GNU_HASH = 0;
18004
18005 /* Process the file. */
18006 if (show_name)
18007 printf (_("\nFile: %s\n"), file_name);
18008
18009 /* Initialise the dump_sects array from the cmdline_dump_sects array.
18010 Note we do this even if cmdline_dump_sects is empty because we
18011 must make sure that the dump_sets array is zeroed out before each
18012 object file is processed. */
18013 if (num_dump_sects > num_cmdline_dump_sects)
18014 memset (dump_sects, 0, num_dump_sects * sizeof (* dump_sects));
18015
18016 if (num_cmdline_dump_sects > 0)
18017 {
18018 if (num_dump_sects == 0)
18019 /* A sneaky way of allocating the dump_sects array. */
18020 request_dump_bynumber (num_cmdline_dump_sects, 0);
18021
18022 assert (num_dump_sects >= num_cmdline_dump_sects);
18023 memcpy (dump_sects, cmdline_dump_sects,
18024 num_cmdline_dump_sects * sizeof (* dump_sects));
18025 }
18026
18027 if (! process_file_header ())
18028 return FALSE;
18029
18030 if (! process_section_headers (file))
18031 {
18032 /* Without loaded section headers we cannot process lots of things. */
18033 do_unwind = do_version = do_dump = do_arch = FALSE;
18034
18035 if (! do_using_dynamic)
18036 do_syms = do_dyn_syms = do_reloc = FALSE;
18037 }
18038
18039 if (! process_section_groups (file))
18040 /* Without loaded section groups we cannot process unwind. */
18041 do_unwind = FALSE;
18042
18043 if (process_program_headers (file))
18044 process_dynamic_section (file);
18045 else
18046 res = FALSE;
18047
18048 if (! process_relocs (file))
18049 res = FALSE;
18050
18051 if (! process_unwind (file))
18052 res = FALSE;
18053
18054 if (! process_symbol_table (file))
18055 res = FALSE;
18056
18057 if (! process_syminfo (file))
18058 res = FALSE;
18059
18060 if (! process_version_sections (file))
18061 res = FALSE;
18062
18063 if (! process_section_contents (file))
18064 res = FALSE;
18065
18066 if (! process_notes (file))
18067 res = FALSE;
18068
18069 if (! process_gnu_liblist (file))
18070 res = FALSE;
18071
18072 if (! process_arch_specific (file))
18073 res = FALSE;
18074
18075 if (program_headers)
18076 {
18077 free (program_headers);
18078 program_headers = NULL;
18079 }
18080
18081 if (section_headers)
18082 {
18083 free (section_headers);
18084 section_headers = NULL;
18085 }
18086
18087 if (string_table)
18088 {
18089 free (string_table);
18090 string_table = NULL;
18091 string_table_length = 0;
18092 }
18093
18094 if (dynamic_strings)
18095 {
18096 free (dynamic_strings);
18097 dynamic_strings = NULL;
18098 dynamic_strings_length = 0;
18099 }
18100
18101 if (dynamic_symbols)
18102 {
18103 free (dynamic_symbols);
18104 dynamic_symbols = NULL;
18105 num_dynamic_syms = 0;
18106 }
18107
18108 if (dynamic_syminfo)
18109 {
18110 free (dynamic_syminfo);
18111 dynamic_syminfo = NULL;
18112 }
18113
18114 if (dynamic_section)
18115 {
18116 free (dynamic_section);
18117 dynamic_section = NULL;
18118 }
18119
18120 if (section_headers_groups)
18121 {
18122 free (section_headers_groups);
18123 section_headers_groups = NULL;
18124 }
18125
18126 if (section_groups)
18127 {
18128 struct group_list * g;
18129 struct group_list * next;
18130
18131 for (i = 0; i < group_count; i++)
18132 {
18133 for (g = section_groups [i].root; g != NULL; g = next)
18134 {
18135 next = g->next;
18136 free (g);
18137 }
18138 }
18139
18140 free (section_groups);
18141 section_groups = NULL;
18142 }
18143
18144 free_debug_memory ();
18145
18146 return res;
18147 }
18148
18149 /* Process an ELF archive.
18150 On entry the file is positioned just after the ARMAG string.
18151 Returns TRUE upon success, FALSE otherwise. */
18152
18153 static bfd_boolean
18154 process_archive (char * file_name, FILE * file, bfd_boolean is_thin_archive)
18155 {
18156 struct archive_info arch;
18157 struct archive_info nested_arch;
18158 size_t got;
18159 bfd_boolean ret = TRUE;
18160
18161 show_name = TRUE;
18162
18163 /* The ARCH structure is used to hold information about this archive. */
18164 arch.file_name = NULL;
18165 arch.file = NULL;
18166 arch.index_array = NULL;
18167 arch.sym_table = NULL;
18168 arch.longnames = NULL;
18169
18170 /* The NESTED_ARCH structure is used as a single-item cache of information
18171 about a nested archive (when members of a thin archive reside within
18172 another regular archive file). */
18173 nested_arch.file_name = NULL;
18174 nested_arch.file = NULL;
18175 nested_arch.index_array = NULL;
18176 nested_arch.sym_table = NULL;
18177 nested_arch.longnames = NULL;
18178
18179 if (setup_archive (&arch, file_name, file, is_thin_archive, do_archive_index) != 0)
18180 {
18181 ret = FALSE;
18182 goto out;
18183 }
18184
18185 if (do_archive_index)
18186 {
18187 if (arch.sym_table == NULL)
18188 error (_("%s: unable to dump the index as none was found\n"), file_name);
18189 else
18190 {
18191 unsigned long i, l;
18192 unsigned long current_pos;
18193
18194 printf (_("Index of archive %s: (%lu entries, 0x%lx bytes in the symbol table)\n"),
18195 file_name, (unsigned long) arch.index_num, arch.sym_size);
18196 current_pos = ftell (file);
18197
18198 for (i = l = 0; i < arch.index_num; i++)
18199 {
18200 if ((i == 0) || ((i > 0) && (arch.index_array[i] != arch.index_array[i - 1])))
18201 {
18202 char * member_name;
18203
18204 member_name = get_archive_member_name_at (&arch, arch.index_array[i], &nested_arch);
18205
18206 if (member_name != NULL)
18207 {
18208 char * qualified_name = make_qualified_name (&arch, &nested_arch, member_name);
18209
18210 if (qualified_name != NULL)
18211 {
18212 printf (_("Contents of binary %s at offset "), qualified_name);
18213 (void) print_vma (arch.index_array[i], PREFIX_HEX);
18214 putchar ('\n');
18215 free (qualified_name);
18216 }
18217 }
18218 }
18219
18220 if (l >= arch.sym_size)
18221 {
18222 error (_("%s: end of the symbol table reached before the end of the index\n"),
18223 file_name);
18224 ret = FALSE;
18225 break;
18226 }
18227 /* PR 17531: file: 0b6630b2. */
18228 printf ("\t%.*s\n", (int) (arch.sym_size - l), arch.sym_table + l);
18229 l += strnlen (arch.sym_table + l, arch.sym_size - l) + 1;
18230 }
18231
18232 if (arch.uses_64bit_indicies)
18233 l = (l + 7) & ~ 7;
18234 else
18235 l += l & 1;
18236
18237 if (l < arch.sym_size)
18238 {
18239 error (_("%s: %ld bytes remain in the symbol table, but without corresponding entries in the index table\n"),
18240 file_name, arch.sym_size - l);
18241 ret = FALSE;
18242 }
18243
18244 if (fseek (file, current_pos, SEEK_SET) != 0)
18245 {
18246 error (_("%s: failed to seek back to start of object files in the archive\n"), file_name);
18247 ret = FALSE;
18248 goto out;
18249 }
18250 }
18251
18252 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
18253 && !do_segments && !do_header && !do_dump && !do_version
18254 && !do_histogram && !do_debugging && !do_arch && !do_notes
18255 && !do_section_groups && !do_dyn_syms)
18256 {
18257 ret = TRUE; /* Archive index only. */
18258 goto out;
18259 }
18260 }
18261
18262 while (1)
18263 {
18264 char * name;
18265 size_t namelen;
18266 char * qualified_name;
18267
18268 /* Read the next archive header. */
18269 if (fseek (file, arch.next_arhdr_offset, SEEK_SET) != 0)
18270 {
18271 error (_("%s: failed to seek to next archive header\n"), file_name);
18272 return FALSE;
18273 }
18274 got = fread (&arch.arhdr, 1, sizeof arch.arhdr, file);
18275 if (got != sizeof arch.arhdr)
18276 {
18277 if (got == 0)
18278 break;
18279 error (_("%s: failed to read archive header\n"), file_name);
18280 ret = FALSE;
18281 break;
18282 }
18283 if (memcmp (arch.arhdr.ar_fmag, ARFMAG, 2) != 0)
18284 {
18285 error (_("%s: did not find a valid archive header\n"), arch.file_name);
18286 ret = FALSE;
18287 break;
18288 }
18289
18290 arch.next_arhdr_offset += sizeof arch.arhdr;
18291
18292 archive_file_size = strtoul (arch.arhdr.ar_size, NULL, 10);
18293 if (archive_file_size & 01)
18294 ++archive_file_size;
18295
18296 name = get_archive_member_name (&arch, &nested_arch);
18297 if (name == NULL)
18298 {
18299 error (_("%s: bad archive file name\n"), file_name);
18300 ret = FALSE;
18301 break;
18302 }
18303 namelen = strlen (name);
18304
18305 qualified_name = make_qualified_name (&arch, &nested_arch, name);
18306 if (qualified_name == NULL)
18307 {
18308 error (_("%s: bad archive file name\n"), file_name);
18309 ret = FALSE;
18310 break;
18311 }
18312
18313 if (is_thin_archive && arch.nested_member_origin == 0)
18314 {
18315 /* This is a proxy for an external member of a thin archive. */
18316 FILE * member_file;
18317 char * member_file_name = adjust_relative_path (file_name, name, namelen);
18318
18319 if (member_file_name == NULL)
18320 {
18321 ret = FALSE;
18322 break;
18323 }
18324
18325 member_file = fopen (member_file_name, "rb");
18326 if (member_file == NULL)
18327 {
18328 error (_("Input file '%s' is not readable.\n"), member_file_name);
18329 free (member_file_name);
18330 ret = FALSE;
18331 break;
18332 }
18333
18334 archive_file_offset = arch.nested_member_origin;
18335
18336 if (! process_object (qualified_name, member_file))
18337 ret = FALSE;
18338
18339 fclose (member_file);
18340 free (member_file_name);
18341 }
18342 else if (is_thin_archive)
18343 {
18344 /* PR 15140: Allow for corrupt thin archives. */
18345 if (nested_arch.file == NULL)
18346 {
18347 error (_("%s: contains corrupt thin archive: %s\n"),
18348 file_name, name);
18349 ret = FALSE;
18350 break;
18351 }
18352
18353 /* This is a proxy for a member of a nested archive. */
18354 archive_file_offset = arch.nested_member_origin + sizeof arch.arhdr;
18355
18356 /* The nested archive file will have been opened and setup by
18357 get_archive_member_name. */
18358 if (fseek (nested_arch.file, archive_file_offset, SEEK_SET) != 0)
18359 {
18360 error (_("%s: failed to seek to archive member.\n"), nested_arch.file_name);
18361 ret = FALSE;
18362 break;
18363 }
18364
18365 if (! process_object (qualified_name, nested_arch.file))
18366 ret = FALSE;
18367 }
18368 else
18369 {
18370 archive_file_offset = arch.next_arhdr_offset;
18371 arch.next_arhdr_offset += archive_file_size;
18372
18373 if (! process_object (qualified_name, file))
18374 ret = FALSE;
18375 }
18376
18377 if (dump_sects != NULL)
18378 {
18379 free (dump_sects);
18380 dump_sects = NULL;
18381 num_dump_sects = 0;
18382 }
18383
18384 free (qualified_name);
18385 }
18386
18387 out:
18388 if (nested_arch.file != NULL)
18389 fclose (nested_arch.file);
18390 release_archive (&nested_arch);
18391 release_archive (&arch);
18392
18393 return ret;
18394 }
18395
18396 static bfd_boolean
18397 process_file (char * file_name)
18398 {
18399 FILE * file;
18400 struct stat statbuf;
18401 char armag[SARMAG];
18402 bfd_boolean ret = TRUE;
18403
18404 if (stat (file_name, &statbuf) < 0)
18405 {
18406 if (errno == ENOENT)
18407 error (_("'%s': No such file\n"), file_name);
18408 else
18409 error (_("Could not locate '%s'. System error message: %s\n"),
18410 file_name, strerror (errno));
18411 return FALSE;
18412 }
18413
18414 if (! S_ISREG (statbuf.st_mode))
18415 {
18416 error (_("'%s' is not an ordinary file\n"), file_name);
18417 return FALSE;
18418 }
18419
18420 file = fopen (file_name, "rb");
18421 if (file == NULL)
18422 {
18423 error (_("Input file '%s' is not readable.\n"), file_name);
18424 return FALSE;
18425 }
18426
18427 if (fread (armag, SARMAG, 1, file) != 1)
18428 {
18429 error (_("%s: Failed to read file's magic number\n"), file_name);
18430 fclose (file);
18431 return FALSE;
18432 }
18433
18434 current_file_size = (bfd_size_type) statbuf.st_size;
18435
18436 if (memcmp (armag, ARMAG, SARMAG) == 0)
18437 {
18438 if (! process_archive (file_name, file, FALSE))
18439 ret = FALSE;
18440 }
18441 else if (memcmp (armag, ARMAGT, SARMAG) == 0)
18442 {
18443 if ( ! process_archive (file_name, file, TRUE))
18444 ret = FALSE;
18445 }
18446 else
18447 {
18448 if (do_archive_index)
18449 error (_("File %s is not an archive so its index cannot be displayed.\n"),
18450 file_name);
18451
18452 rewind (file);
18453 archive_file_size = archive_file_offset = 0;
18454
18455 if (! process_object (file_name, file))
18456 ret = FALSE;
18457 }
18458
18459 fclose (file);
18460 current_file_size = 0;
18461
18462 return ret;
18463 }
18464
18465 #ifdef SUPPORT_DISASSEMBLY
18466 /* Needed by the i386 disassembler. For extra credit, someone could
18467 fix this so that we insert symbolic addresses here, esp for GOT/PLT
18468 symbols. */
18469
18470 void
18471 print_address (unsigned int addr, FILE * outfile)
18472 {
18473 fprintf (outfile,"0x%8.8x", addr);
18474 }
18475
18476 /* Needed by the i386 disassembler. */
18477 void
18478 db_task_printsym (unsigned int addr)
18479 {
18480 print_address (addr, stderr);
18481 }
18482 #endif
18483
18484 int
18485 main (int argc, char ** argv)
18486 {
18487 int err;
18488
18489 #if defined (HAVE_SETLOCALE) && defined (HAVE_LC_MESSAGES)
18490 setlocale (LC_MESSAGES, "");
18491 #endif
18492 #if defined (HAVE_SETLOCALE)
18493 setlocale (LC_CTYPE, "");
18494 #endif
18495 bindtextdomain (PACKAGE, LOCALEDIR);
18496 textdomain (PACKAGE);
18497
18498 expandargv (&argc, &argv);
18499
18500 parse_args (argc, argv);
18501
18502 if (num_dump_sects > 0)
18503 {
18504 /* Make a copy of the dump_sects array. */
18505 cmdline_dump_sects = (dump_type *)
18506 malloc (num_dump_sects * sizeof (* dump_sects));
18507 if (cmdline_dump_sects == NULL)
18508 error (_("Out of memory allocating dump request table.\n"));
18509 else
18510 {
18511 memcpy (cmdline_dump_sects, dump_sects,
18512 num_dump_sects * sizeof (* dump_sects));
18513 num_cmdline_dump_sects = num_dump_sects;
18514 }
18515 }
18516
18517 if (optind < (argc - 1))
18518 show_name = TRUE;
18519 else if (optind >= argc)
18520 {
18521 warn (_("Nothing to do.\n"));
18522 usage (stderr);
18523 }
18524
18525 err = FALSE;
18526 while (optind < argc)
18527 if (! process_file (argv[optind++]))
18528 err = TRUE;
18529
18530 if (dump_sects != NULL)
18531 free (dump_sects);
18532 if (cmdline_dump_sects != NULL)
18533 free (cmdline_dump_sects);
18534
18535 return err ? EXIT_FAILURE : EXIT_SUCCESS;
18536 }
This page took 0.56302 seconds and 5 git commands to generate.