MIPS: Get rid of duplicate cpu_idle() prototype.
[deliverable/linux.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/block.h>
33
34 #include "blk.h"
35
36 EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
38
39 static int __make_request(struct request_queue *q, struct bio *bio);
40
41 /*
42 * For the allocated request tables
43 */
44 static struct kmem_cache *request_cachep;
45
46 /*
47 * For queue allocation
48 */
49 struct kmem_cache *blk_requestq_cachep;
50
51 /*
52 * Controlling structure to kblockd
53 */
54 static struct workqueue_struct *kblockd_workqueue;
55
56 static void drive_stat_acct(struct request *rq, int new_io)
57 {
58 struct hd_struct *part;
59 int rw = rq_data_dir(rq);
60 int cpu;
61
62 if (!blk_do_io_stat(rq))
63 return;
64
65 cpu = part_stat_lock();
66 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
67
68 if (!new_io)
69 part_stat_inc(cpu, part, merges[rw]);
70 else {
71 part_round_stats(cpu, part);
72 part_inc_in_flight(part, rw);
73 }
74
75 part_stat_unlock();
76 }
77
78 void blk_queue_congestion_threshold(struct request_queue *q)
79 {
80 int nr;
81
82 nr = q->nr_requests - (q->nr_requests / 8) + 1;
83 if (nr > q->nr_requests)
84 nr = q->nr_requests;
85 q->nr_congestion_on = nr;
86
87 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
88 if (nr < 1)
89 nr = 1;
90 q->nr_congestion_off = nr;
91 }
92
93 /**
94 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
95 * @bdev: device
96 *
97 * Locates the passed device's request queue and returns the address of its
98 * backing_dev_info
99 *
100 * Will return NULL if the request queue cannot be located.
101 */
102 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
103 {
104 struct backing_dev_info *ret = NULL;
105 struct request_queue *q = bdev_get_queue(bdev);
106
107 if (q)
108 ret = &q->backing_dev_info;
109 return ret;
110 }
111 EXPORT_SYMBOL(blk_get_backing_dev_info);
112
113 void blk_rq_init(struct request_queue *q, struct request *rq)
114 {
115 memset(rq, 0, sizeof(*rq));
116
117 INIT_LIST_HEAD(&rq->queuelist);
118 INIT_LIST_HEAD(&rq->timeout_list);
119 rq->cpu = -1;
120 rq->q = q;
121 rq->__sector = (sector_t) -1;
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
124 rq->cmd = rq->__cmd;
125 rq->cmd_len = BLK_MAX_CDB;
126 rq->tag = -1;
127 rq->ref_count = 1;
128 rq->start_time = jiffies;
129 }
130 EXPORT_SYMBOL(blk_rq_init);
131
132 static void req_bio_endio(struct request *rq, struct bio *bio,
133 unsigned int nbytes, int error)
134 {
135 struct request_queue *q = rq->q;
136
137 if (&q->bar_rq != rq) {
138 if (error)
139 clear_bit(BIO_UPTODATE, &bio->bi_flags);
140 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
141 error = -EIO;
142
143 if (unlikely(nbytes > bio->bi_size)) {
144 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
145 __func__, nbytes, bio->bi_size);
146 nbytes = bio->bi_size;
147 }
148
149 if (unlikely(rq->cmd_flags & REQ_QUIET))
150 set_bit(BIO_QUIET, &bio->bi_flags);
151
152 bio->bi_size -= nbytes;
153 bio->bi_sector += (nbytes >> 9);
154
155 if (bio_integrity(bio))
156 bio_integrity_advance(bio, nbytes);
157
158 if (bio->bi_size == 0)
159 bio_endio(bio, error);
160 } else {
161
162 /*
163 * Okay, this is the barrier request in progress, just
164 * record the error;
165 */
166 if (error && !q->orderr)
167 q->orderr = error;
168 }
169 }
170
171 void blk_dump_rq_flags(struct request *rq, char *msg)
172 {
173 int bit;
174
175 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
176 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
177 rq->cmd_flags);
178
179 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
180 (unsigned long long)blk_rq_pos(rq),
181 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
182 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
183 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
184
185 if (blk_pc_request(rq)) {
186 printk(KERN_INFO " cdb: ");
187 for (bit = 0; bit < BLK_MAX_CDB; bit++)
188 printk("%02x ", rq->cmd[bit]);
189 printk("\n");
190 }
191 }
192 EXPORT_SYMBOL(blk_dump_rq_flags);
193
194 /*
195 * "plug" the device if there are no outstanding requests: this will
196 * force the transfer to start only after we have put all the requests
197 * on the list.
198 *
199 * This is called with interrupts off and no requests on the queue and
200 * with the queue lock held.
201 */
202 void blk_plug_device(struct request_queue *q)
203 {
204 WARN_ON(!irqs_disabled());
205
206 /*
207 * don't plug a stopped queue, it must be paired with blk_start_queue()
208 * which will restart the queueing
209 */
210 if (blk_queue_stopped(q))
211 return;
212
213 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
214 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
215 trace_block_plug(q);
216 }
217 }
218 EXPORT_SYMBOL(blk_plug_device);
219
220 /**
221 * blk_plug_device_unlocked - plug a device without queue lock held
222 * @q: The &struct request_queue to plug
223 *
224 * Description:
225 * Like @blk_plug_device(), but grabs the queue lock and disables
226 * interrupts.
227 **/
228 void blk_plug_device_unlocked(struct request_queue *q)
229 {
230 unsigned long flags;
231
232 spin_lock_irqsave(q->queue_lock, flags);
233 blk_plug_device(q);
234 spin_unlock_irqrestore(q->queue_lock, flags);
235 }
236 EXPORT_SYMBOL(blk_plug_device_unlocked);
237
238 /*
239 * remove the queue from the plugged list, if present. called with
240 * queue lock held and interrupts disabled.
241 */
242 int blk_remove_plug(struct request_queue *q)
243 {
244 WARN_ON(!irqs_disabled());
245
246 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
247 return 0;
248
249 del_timer(&q->unplug_timer);
250 return 1;
251 }
252 EXPORT_SYMBOL(blk_remove_plug);
253
254 /*
255 * remove the plug and let it rip..
256 */
257 void __generic_unplug_device(struct request_queue *q)
258 {
259 if (unlikely(blk_queue_stopped(q)))
260 return;
261 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
262 return;
263
264 q->request_fn(q);
265 }
266
267 /**
268 * generic_unplug_device - fire a request queue
269 * @q: The &struct request_queue in question
270 *
271 * Description:
272 * Linux uses plugging to build bigger requests queues before letting
273 * the device have at them. If a queue is plugged, the I/O scheduler
274 * is still adding and merging requests on the queue. Once the queue
275 * gets unplugged, the request_fn defined for the queue is invoked and
276 * transfers started.
277 **/
278 void generic_unplug_device(struct request_queue *q)
279 {
280 if (blk_queue_plugged(q)) {
281 spin_lock_irq(q->queue_lock);
282 __generic_unplug_device(q);
283 spin_unlock_irq(q->queue_lock);
284 }
285 }
286 EXPORT_SYMBOL(generic_unplug_device);
287
288 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
289 struct page *page)
290 {
291 struct request_queue *q = bdi->unplug_io_data;
292
293 blk_unplug(q);
294 }
295
296 void blk_unplug_work(struct work_struct *work)
297 {
298 struct request_queue *q =
299 container_of(work, struct request_queue, unplug_work);
300
301 trace_block_unplug_io(q);
302 q->unplug_fn(q);
303 }
304
305 void blk_unplug_timeout(unsigned long data)
306 {
307 struct request_queue *q = (struct request_queue *)data;
308
309 trace_block_unplug_timer(q);
310 kblockd_schedule_work(q, &q->unplug_work);
311 }
312
313 void blk_unplug(struct request_queue *q)
314 {
315 /*
316 * devices don't necessarily have an ->unplug_fn defined
317 */
318 if (q->unplug_fn) {
319 trace_block_unplug_io(q);
320 q->unplug_fn(q);
321 }
322 }
323 EXPORT_SYMBOL(blk_unplug);
324
325 /**
326 * blk_start_queue - restart a previously stopped queue
327 * @q: The &struct request_queue in question
328 *
329 * Description:
330 * blk_start_queue() will clear the stop flag on the queue, and call
331 * the request_fn for the queue if it was in a stopped state when
332 * entered. Also see blk_stop_queue(). Queue lock must be held.
333 **/
334 void blk_start_queue(struct request_queue *q)
335 {
336 WARN_ON(!irqs_disabled());
337
338 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
339 __blk_run_queue(q);
340 }
341 EXPORT_SYMBOL(blk_start_queue);
342
343 /**
344 * blk_stop_queue - stop a queue
345 * @q: The &struct request_queue in question
346 *
347 * Description:
348 * The Linux block layer assumes that a block driver will consume all
349 * entries on the request queue when the request_fn strategy is called.
350 * Often this will not happen, because of hardware limitations (queue
351 * depth settings). If a device driver gets a 'queue full' response,
352 * or if it simply chooses not to queue more I/O at one point, it can
353 * call this function to prevent the request_fn from being called until
354 * the driver has signalled it's ready to go again. This happens by calling
355 * blk_start_queue() to restart queue operations. Queue lock must be held.
356 **/
357 void blk_stop_queue(struct request_queue *q)
358 {
359 blk_remove_plug(q);
360 queue_flag_set(QUEUE_FLAG_STOPPED, q);
361 }
362 EXPORT_SYMBOL(blk_stop_queue);
363
364 /**
365 * blk_sync_queue - cancel any pending callbacks on a queue
366 * @q: the queue
367 *
368 * Description:
369 * The block layer may perform asynchronous callback activity
370 * on a queue, such as calling the unplug function after a timeout.
371 * A block device may call blk_sync_queue to ensure that any
372 * such activity is cancelled, thus allowing it to release resources
373 * that the callbacks might use. The caller must already have made sure
374 * that its ->make_request_fn will not re-add plugging prior to calling
375 * this function.
376 *
377 */
378 void blk_sync_queue(struct request_queue *q)
379 {
380 del_timer_sync(&q->unplug_timer);
381 del_timer_sync(&q->timeout);
382 cancel_work_sync(&q->unplug_work);
383 }
384 EXPORT_SYMBOL(blk_sync_queue);
385
386 /**
387 * __blk_run_queue - run a single device queue
388 * @q: The queue to run
389 *
390 * Description:
391 * See @blk_run_queue. This variant must be called with the queue lock
392 * held and interrupts disabled.
393 *
394 */
395 void __blk_run_queue(struct request_queue *q)
396 {
397 blk_remove_plug(q);
398
399 if (unlikely(blk_queue_stopped(q)))
400 return;
401
402 if (elv_queue_empty(q))
403 return;
404
405 /*
406 * Only recurse once to avoid overrunning the stack, let the unplug
407 * handling reinvoke the handler shortly if we already got there.
408 */
409 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
410 q->request_fn(q);
411 queue_flag_clear(QUEUE_FLAG_REENTER, q);
412 } else {
413 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
414 kblockd_schedule_work(q, &q->unplug_work);
415 }
416 }
417 EXPORT_SYMBOL(__blk_run_queue);
418
419 /**
420 * blk_run_queue - run a single device queue
421 * @q: The queue to run
422 *
423 * Description:
424 * Invoke request handling on this queue, if it has pending work to do.
425 * May be used to restart queueing when a request has completed.
426 */
427 void blk_run_queue(struct request_queue *q)
428 {
429 unsigned long flags;
430
431 spin_lock_irqsave(q->queue_lock, flags);
432 __blk_run_queue(q);
433 spin_unlock_irqrestore(q->queue_lock, flags);
434 }
435 EXPORT_SYMBOL(blk_run_queue);
436
437 void blk_put_queue(struct request_queue *q)
438 {
439 kobject_put(&q->kobj);
440 }
441
442 void blk_cleanup_queue(struct request_queue *q)
443 {
444 /*
445 * We know we have process context here, so we can be a little
446 * cautious and ensure that pending block actions on this device
447 * are done before moving on. Going into this function, we should
448 * not have processes doing IO to this device.
449 */
450 blk_sync_queue(q);
451
452 mutex_lock(&q->sysfs_lock);
453 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
454 mutex_unlock(&q->sysfs_lock);
455
456 if (q->elevator)
457 elevator_exit(q->elevator);
458
459 blk_put_queue(q);
460 }
461 EXPORT_SYMBOL(blk_cleanup_queue);
462
463 static int blk_init_free_list(struct request_queue *q)
464 {
465 struct request_list *rl = &q->rq;
466
467 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
468 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
469 rl->elvpriv = 0;
470 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
471 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
472
473 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
474 mempool_free_slab, request_cachep, q->node);
475
476 if (!rl->rq_pool)
477 return -ENOMEM;
478
479 return 0;
480 }
481
482 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
483 {
484 return blk_alloc_queue_node(gfp_mask, -1);
485 }
486 EXPORT_SYMBOL(blk_alloc_queue);
487
488 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
489 {
490 struct request_queue *q;
491 int err;
492
493 q = kmem_cache_alloc_node(blk_requestq_cachep,
494 gfp_mask | __GFP_ZERO, node_id);
495 if (!q)
496 return NULL;
497
498 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
499 q->backing_dev_info.unplug_io_data = q;
500 q->backing_dev_info.ra_pages =
501 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
502 q->backing_dev_info.state = 0;
503 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
504 q->backing_dev_info.name = "block";
505
506 err = bdi_init(&q->backing_dev_info);
507 if (err) {
508 kmem_cache_free(blk_requestq_cachep, q);
509 return NULL;
510 }
511
512 init_timer(&q->unplug_timer);
513 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
514 INIT_LIST_HEAD(&q->timeout_list);
515 INIT_WORK(&q->unplug_work, blk_unplug_work);
516
517 kobject_init(&q->kobj, &blk_queue_ktype);
518
519 mutex_init(&q->sysfs_lock);
520 spin_lock_init(&q->__queue_lock);
521
522 return q;
523 }
524 EXPORT_SYMBOL(blk_alloc_queue_node);
525
526 /**
527 * blk_init_queue - prepare a request queue for use with a block device
528 * @rfn: The function to be called to process requests that have been
529 * placed on the queue.
530 * @lock: Request queue spin lock
531 *
532 * Description:
533 * If a block device wishes to use the standard request handling procedures,
534 * which sorts requests and coalesces adjacent requests, then it must
535 * call blk_init_queue(). The function @rfn will be called when there
536 * are requests on the queue that need to be processed. If the device
537 * supports plugging, then @rfn may not be called immediately when requests
538 * are available on the queue, but may be called at some time later instead.
539 * Plugged queues are generally unplugged when a buffer belonging to one
540 * of the requests on the queue is needed, or due to memory pressure.
541 *
542 * @rfn is not required, or even expected, to remove all requests off the
543 * queue, but only as many as it can handle at a time. If it does leave
544 * requests on the queue, it is responsible for arranging that the requests
545 * get dealt with eventually.
546 *
547 * The queue spin lock must be held while manipulating the requests on the
548 * request queue; this lock will be taken also from interrupt context, so irq
549 * disabling is needed for it.
550 *
551 * Function returns a pointer to the initialized request queue, or %NULL if
552 * it didn't succeed.
553 *
554 * Note:
555 * blk_init_queue() must be paired with a blk_cleanup_queue() call
556 * when the block device is deactivated (such as at module unload).
557 **/
558
559 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
560 {
561 return blk_init_queue_node(rfn, lock, -1);
562 }
563 EXPORT_SYMBOL(blk_init_queue);
564
565 struct request_queue *
566 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
567 {
568 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
569
570 if (!q)
571 return NULL;
572
573 q->node = node_id;
574 if (blk_init_free_list(q)) {
575 kmem_cache_free(blk_requestq_cachep, q);
576 return NULL;
577 }
578
579 q->request_fn = rfn;
580 q->prep_rq_fn = NULL;
581 q->unplug_fn = generic_unplug_device;
582 q->queue_flags = QUEUE_FLAG_DEFAULT;
583 q->queue_lock = lock;
584
585 /*
586 * This also sets hw/phys segments, boundary and size
587 */
588 blk_queue_make_request(q, __make_request);
589
590 q->sg_reserved_size = INT_MAX;
591
592 /*
593 * all done
594 */
595 if (!elevator_init(q, NULL)) {
596 blk_queue_congestion_threshold(q);
597 return q;
598 }
599
600 blk_put_queue(q);
601 return NULL;
602 }
603 EXPORT_SYMBOL(blk_init_queue_node);
604
605 int blk_get_queue(struct request_queue *q)
606 {
607 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
608 kobject_get(&q->kobj);
609 return 0;
610 }
611
612 return 1;
613 }
614
615 static inline void blk_free_request(struct request_queue *q, struct request *rq)
616 {
617 if (rq->cmd_flags & REQ_ELVPRIV)
618 elv_put_request(q, rq);
619 mempool_free(rq, q->rq.rq_pool);
620 }
621
622 static struct request *
623 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
624 {
625 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
626
627 if (!rq)
628 return NULL;
629
630 blk_rq_init(q, rq);
631
632 rq->cmd_flags = flags | REQ_ALLOCED;
633
634 if (priv) {
635 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
636 mempool_free(rq, q->rq.rq_pool);
637 return NULL;
638 }
639 rq->cmd_flags |= REQ_ELVPRIV;
640 }
641
642 return rq;
643 }
644
645 /*
646 * ioc_batching returns true if the ioc is a valid batching request and
647 * should be given priority access to a request.
648 */
649 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
650 {
651 if (!ioc)
652 return 0;
653
654 /*
655 * Make sure the process is able to allocate at least 1 request
656 * even if the batch times out, otherwise we could theoretically
657 * lose wakeups.
658 */
659 return ioc->nr_batch_requests == q->nr_batching ||
660 (ioc->nr_batch_requests > 0
661 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
662 }
663
664 /*
665 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
666 * will cause the process to be a "batcher" on all queues in the system. This
667 * is the behaviour we want though - once it gets a wakeup it should be given
668 * a nice run.
669 */
670 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
671 {
672 if (!ioc || ioc_batching(q, ioc))
673 return;
674
675 ioc->nr_batch_requests = q->nr_batching;
676 ioc->last_waited = jiffies;
677 }
678
679 static void __freed_request(struct request_queue *q, int sync)
680 {
681 struct request_list *rl = &q->rq;
682
683 if (rl->count[sync] < queue_congestion_off_threshold(q))
684 blk_clear_queue_congested(q, sync);
685
686 if (rl->count[sync] + 1 <= q->nr_requests) {
687 if (waitqueue_active(&rl->wait[sync]))
688 wake_up(&rl->wait[sync]);
689
690 blk_clear_queue_full(q, sync);
691 }
692 }
693
694 /*
695 * A request has just been released. Account for it, update the full and
696 * congestion status, wake up any waiters. Called under q->queue_lock.
697 */
698 static void freed_request(struct request_queue *q, int sync, int priv)
699 {
700 struct request_list *rl = &q->rq;
701
702 rl->count[sync]--;
703 if (priv)
704 rl->elvpriv--;
705
706 __freed_request(q, sync);
707
708 if (unlikely(rl->starved[sync ^ 1]))
709 __freed_request(q, sync ^ 1);
710 }
711
712 /*
713 * Get a free request, queue_lock must be held.
714 * Returns NULL on failure, with queue_lock held.
715 * Returns !NULL on success, with queue_lock *not held*.
716 */
717 static struct request *get_request(struct request_queue *q, int rw_flags,
718 struct bio *bio, gfp_t gfp_mask)
719 {
720 struct request *rq = NULL;
721 struct request_list *rl = &q->rq;
722 struct io_context *ioc = NULL;
723 const bool is_sync = rw_is_sync(rw_flags) != 0;
724 int may_queue, priv;
725
726 may_queue = elv_may_queue(q, rw_flags);
727 if (may_queue == ELV_MQUEUE_NO)
728 goto rq_starved;
729
730 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
731 if (rl->count[is_sync]+1 >= q->nr_requests) {
732 ioc = current_io_context(GFP_ATOMIC, q->node);
733 /*
734 * The queue will fill after this allocation, so set
735 * it as full, and mark this process as "batching".
736 * This process will be allowed to complete a batch of
737 * requests, others will be blocked.
738 */
739 if (!blk_queue_full(q, is_sync)) {
740 ioc_set_batching(q, ioc);
741 blk_set_queue_full(q, is_sync);
742 } else {
743 if (may_queue != ELV_MQUEUE_MUST
744 && !ioc_batching(q, ioc)) {
745 /*
746 * The queue is full and the allocating
747 * process is not a "batcher", and not
748 * exempted by the IO scheduler
749 */
750 goto out;
751 }
752 }
753 }
754 blk_set_queue_congested(q, is_sync);
755 }
756
757 /*
758 * Only allow batching queuers to allocate up to 50% over the defined
759 * limit of requests, otherwise we could have thousands of requests
760 * allocated with any setting of ->nr_requests
761 */
762 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
763 goto out;
764
765 rl->count[is_sync]++;
766 rl->starved[is_sync] = 0;
767
768 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
769 if (priv)
770 rl->elvpriv++;
771
772 if (blk_queue_io_stat(q))
773 rw_flags |= REQ_IO_STAT;
774 spin_unlock_irq(q->queue_lock);
775
776 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
777 if (unlikely(!rq)) {
778 /*
779 * Allocation failed presumably due to memory. Undo anything
780 * we might have messed up.
781 *
782 * Allocating task should really be put onto the front of the
783 * wait queue, but this is pretty rare.
784 */
785 spin_lock_irq(q->queue_lock);
786 freed_request(q, is_sync, priv);
787
788 /*
789 * in the very unlikely event that allocation failed and no
790 * requests for this direction was pending, mark us starved
791 * so that freeing of a request in the other direction will
792 * notice us. another possible fix would be to split the
793 * rq mempool into READ and WRITE
794 */
795 rq_starved:
796 if (unlikely(rl->count[is_sync] == 0))
797 rl->starved[is_sync] = 1;
798
799 goto out;
800 }
801
802 /*
803 * ioc may be NULL here, and ioc_batching will be false. That's
804 * OK, if the queue is under the request limit then requests need
805 * not count toward the nr_batch_requests limit. There will always
806 * be some limit enforced by BLK_BATCH_TIME.
807 */
808 if (ioc_batching(q, ioc))
809 ioc->nr_batch_requests--;
810
811 trace_block_getrq(q, bio, rw_flags & 1);
812 out:
813 return rq;
814 }
815
816 /*
817 * No available requests for this queue, unplug the device and wait for some
818 * requests to become available.
819 *
820 * Called with q->queue_lock held, and returns with it unlocked.
821 */
822 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
823 struct bio *bio)
824 {
825 const bool is_sync = rw_is_sync(rw_flags) != 0;
826 struct request *rq;
827
828 rq = get_request(q, rw_flags, bio, GFP_NOIO);
829 while (!rq) {
830 DEFINE_WAIT(wait);
831 struct io_context *ioc;
832 struct request_list *rl = &q->rq;
833
834 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
835 TASK_UNINTERRUPTIBLE);
836
837 trace_block_sleeprq(q, bio, rw_flags & 1);
838
839 __generic_unplug_device(q);
840 spin_unlock_irq(q->queue_lock);
841 io_schedule();
842
843 /*
844 * After sleeping, we become a "batching" process and
845 * will be able to allocate at least one request, and
846 * up to a big batch of them for a small period time.
847 * See ioc_batching, ioc_set_batching
848 */
849 ioc = current_io_context(GFP_NOIO, q->node);
850 ioc_set_batching(q, ioc);
851
852 spin_lock_irq(q->queue_lock);
853 finish_wait(&rl->wait[is_sync], &wait);
854
855 rq = get_request(q, rw_flags, bio, GFP_NOIO);
856 };
857
858 return rq;
859 }
860
861 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
862 {
863 struct request *rq;
864
865 BUG_ON(rw != READ && rw != WRITE);
866
867 spin_lock_irq(q->queue_lock);
868 if (gfp_mask & __GFP_WAIT) {
869 rq = get_request_wait(q, rw, NULL);
870 } else {
871 rq = get_request(q, rw, NULL, gfp_mask);
872 if (!rq)
873 spin_unlock_irq(q->queue_lock);
874 }
875 /* q->queue_lock is unlocked at this point */
876
877 return rq;
878 }
879 EXPORT_SYMBOL(blk_get_request);
880
881 /**
882 * blk_make_request - given a bio, allocate a corresponding struct request.
883 * @q: target request queue
884 * @bio: The bio describing the memory mappings that will be submitted for IO.
885 * It may be a chained-bio properly constructed by block/bio layer.
886 * @gfp_mask: gfp flags to be used for memory allocation
887 *
888 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
889 * type commands. Where the struct request needs to be farther initialized by
890 * the caller. It is passed a &struct bio, which describes the memory info of
891 * the I/O transfer.
892 *
893 * The caller of blk_make_request must make sure that bi_io_vec
894 * are set to describe the memory buffers. That bio_data_dir() will return
895 * the needed direction of the request. (And all bio's in the passed bio-chain
896 * are properly set accordingly)
897 *
898 * If called under none-sleepable conditions, mapped bio buffers must not
899 * need bouncing, by calling the appropriate masked or flagged allocator,
900 * suitable for the target device. Otherwise the call to blk_queue_bounce will
901 * BUG.
902 *
903 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
904 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
905 * anything but the first bio in the chain. Otherwise you risk waiting for IO
906 * completion of a bio that hasn't been submitted yet, thus resulting in a
907 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
908 * of bio_alloc(), as that avoids the mempool deadlock.
909 * If possible a big IO should be split into smaller parts when allocation
910 * fails. Partial allocation should not be an error, or you risk a live-lock.
911 */
912 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
913 gfp_t gfp_mask)
914 {
915 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
916
917 if (unlikely(!rq))
918 return ERR_PTR(-ENOMEM);
919
920 for_each_bio(bio) {
921 struct bio *bounce_bio = bio;
922 int ret;
923
924 blk_queue_bounce(q, &bounce_bio);
925 ret = blk_rq_append_bio(q, rq, bounce_bio);
926 if (unlikely(ret)) {
927 blk_put_request(rq);
928 return ERR_PTR(ret);
929 }
930 }
931
932 return rq;
933 }
934 EXPORT_SYMBOL(blk_make_request);
935
936 /**
937 * blk_requeue_request - put a request back on queue
938 * @q: request queue where request should be inserted
939 * @rq: request to be inserted
940 *
941 * Description:
942 * Drivers often keep queueing requests until the hardware cannot accept
943 * more, when that condition happens we need to put the request back
944 * on the queue. Must be called with queue lock held.
945 */
946 void blk_requeue_request(struct request_queue *q, struct request *rq)
947 {
948 blk_delete_timer(rq);
949 blk_clear_rq_complete(rq);
950 trace_block_rq_requeue(q, rq);
951
952 if (blk_rq_tagged(rq))
953 blk_queue_end_tag(q, rq);
954
955 BUG_ON(blk_queued_rq(rq));
956
957 elv_requeue_request(q, rq);
958 }
959 EXPORT_SYMBOL(blk_requeue_request);
960
961 /**
962 * blk_insert_request - insert a special request into a request queue
963 * @q: request queue where request should be inserted
964 * @rq: request to be inserted
965 * @at_head: insert request at head or tail of queue
966 * @data: private data
967 *
968 * Description:
969 * Many block devices need to execute commands asynchronously, so they don't
970 * block the whole kernel from preemption during request execution. This is
971 * accomplished normally by inserting aritficial requests tagged as
972 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
973 * be scheduled for actual execution by the request queue.
974 *
975 * We have the option of inserting the head or the tail of the queue.
976 * Typically we use the tail for new ioctls and so forth. We use the head
977 * of the queue for things like a QUEUE_FULL message from a device, or a
978 * host that is unable to accept a particular command.
979 */
980 void blk_insert_request(struct request_queue *q, struct request *rq,
981 int at_head, void *data)
982 {
983 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
984 unsigned long flags;
985
986 /*
987 * tell I/O scheduler that this isn't a regular read/write (ie it
988 * must not attempt merges on this) and that it acts as a soft
989 * barrier
990 */
991 rq->cmd_type = REQ_TYPE_SPECIAL;
992
993 rq->special = data;
994
995 spin_lock_irqsave(q->queue_lock, flags);
996
997 /*
998 * If command is tagged, release the tag
999 */
1000 if (blk_rq_tagged(rq))
1001 blk_queue_end_tag(q, rq);
1002
1003 drive_stat_acct(rq, 1);
1004 __elv_add_request(q, rq, where, 0);
1005 __blk_run_queue(q);
1006 spin_unlock_irqrestore(q->queue_lock, flags);
1007 }
1008 EXPORT_SYMBOL(blk_insert_request);
1009
1010 /*
1011 * add-request adds a request to the linked list.
1012 * queue lock is held and interrupts disabled, as we muck with the
1013 * request queue list.
1014 */
1015 static inline void add_request(struct request_queue *q, struct request *req)
1016 {
1017 drive_stat_acct(req, 1);
1018
1019 /*
1020 * elevator indicated where it wants this request to be
1021 * inserted at elevator_merge time
1022 */
1023 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
1024 }
1025
1026 static void part_round_stats_single(int cpu, struct hd_struct *part,
1027 unsigned long now)
1028 {
1029 if (now == part->stamp)
1030 return;
1031
1032 if (part->in_flight) {
1033 __part_stat_add(cpu, part, time_in_queue,
1034 part_in_flight(part) * (now - part->stamp));
1035 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1036 }
1037 part->stamp = now;
1038 }
1039
1040 /**
1041 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1042 * @cpu: cpu number for stats access
1043 * @part: target partition
1044 *
1045 * The average IO queue length and utilisation statistics are maintained
1046 * by observing the current state of the queue length and the amount of
1047 * time it has been in this state for.
1048 *
1049 * Normally, that accounting is done on IO completion, but that can result
1050 * in more than a second's worth of IO being accounted for within any one
1051 * second, leading to >100% utilisation. To deal with that, we call this
1052 * function to do a round-off before returning the results when reading
1053 * /proc/diskstats. This accounts immediately for all queue usage up to
1054 * the current jiffies and restarts the counters again.
1055 */
1056 void part_round_stats(int cpu, struct hd_struct *part)
1057 {
1058 unsigned long now = jiffies;
1059
1060 if (part->partno)
1061 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1062 part_round_stats_single(cpu, part, now);
1063 }
1064 EXPORT_SYMBOL_GPL(part_round_stats);
1065
1066 /*
1067 * queue lock must be held
1068 */
1069 void __blk_put_request(struct request_queue *q, struct request *req)
1070 {
1071 if (unlikely(!q))
1072 return;
1073 if (unlikely(--req->ref_count))
1074 return;
1075
1076 elv_completed_request(q, req);
1077
1078 /* this is a bio leak */
1079 WARN_ON(req->bio != NULL);
1080
1081 /*
1082 * Request may not have originated from ll_rw_blk. if not,
1083 * it didn't come out of our reserved rq pools
1084 */
1085 if (req->cmd_flags & REQ_ALLOCED) {
1086 int is_sync = rq_is_sync(req) != 0;
1087 int priv = req->cmd_flags & REQ_ELVPRIV;
1088
1089 BUG_ON(!list_empty(&req->queuelist));
1090 BUG_ON(!hlist_unhashed(&req->hash));
1091
1092 blk_free_request(q, req);
1093 freed_request(q, is_sync, priv);
1094 }
1095 }
1096 EXPORT_SYMBOL_GPL(__blk_put_request);
1097
1098 void blk_put_request(struct request *req)
1099 {
1100 unsigned long flags;
1101 struct request_queue *q = req->q;
1102
1103 spin_lock_irqsave(q->queue_lock, flags);
1104 __blk_put_request(q, req);
1105 spin_unlock_irqrestore(q->queue_lock, flags);
1106 }
1107 EXPORT_SYMBOL(blk_put_request);
1108
1109 void init_request_from_bio(struct request *req, struct bio *bio)
1110 {
1111 req->cpu = bio->bi_comp_cpu;
1112 req->cmd_type = REQ_TYPE_FS;
1113
1114 /*
1115 * Inherit FAILFAST from bio (for read-ahead, and explicit
1116 * FAILFAST). FAILFAST flags are identical for req and bio.
1117 */
1118 if (bio_rw_flagged(bio, BIO_RW_AHEAD))
1119 req->cmd_flags |= REQ_FAILFAST_MASK;
1120 else
1121 req->cmd_flags |= bio->bi_rw & REQ_FAILFAST_MASK;
1122
1123 if (unlikely(bio_rw_flagged(bio, BIO_RW_DISCARD))) {
1124 req->cmd_flags |= REQ_DISCARD;
1125 if (bio_rw_flagged(bio, BIO_RW_BARRIER))
1126 req->cmd_flags |= REQ_SOFTBARRIER;
1127 req->q->prepare_discard_fn(req->q, req);
1128 } else if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER)))
1129 req->cmd_flags |= REQ_HARDBARRIER;
1130
1131 if (bio_rw_flagged(bio, BIO_RW_SYNCIO))
1132 req->cmd_flags |= REQ_RW_SYNC;
1133 if (bio_rw_flagged(bio, BIO_RW_META))
1134 req->cmd_flags |= REQ_RW_META;
1135 if (bio_rw_flagged(bio, BIO_RW_NOIDLE))
1136 req->cmd_flags |= REQ_NOIDLE;
1137
1138 req->errors = 0;
1139 req->__sector = bio->bi_sector;
1140 req->ioprio = bio_prio(bio);
1141 blk_rq_bio_prep(req->q, req, bio);
1142 }
1143
1144 /*
1145 * Only disabling plugging for non-rotational devices if it does tagging
1146 * as well, otherwise we do need the proper merging
1147 */
1148 static inline bool queue_should_plug(struct request_queue *q)
1149 {
1150 return !(blk_queue_nonrot(q) && blk_queue_queuing(q));
1151 }
1152
1153 static int __make_request(struct request_queue *q, struct bio *bio)
1154 {
1155 struct request *req;
1156 int el_ret;
1157 unsigned int bytes = bio->bi_size;
1158 const unsigned short prio = bio_prio(bio);
1159 const bool sync = bio_rw_flagged(bio, BIO_RW_SYNCIO);
1160 const bool unplug = bio_rw_flagged(bio, BIO_RW_UNPLUG);
1161 const unsigned int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1162 int rw_flags;
1163
1164 if (bio_rw_flagged(bio, BIO_RW_BARRIER) && bio_has_data(bio) &&
1165 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1166 bio_endio(bio, -EOPNOTSUPP);
1167 return 0;
1168 }
1169 /*
1170 * low level driver can indicate that it wants pages above a
1171 * certain limit bounced to low memory (ie for highmem, or even
1172 * ISA dma in theory)
1173 */
1174 blk_queue_bounce(q, &bio);
1175
1176 spin_lock_irq(q->queue_lock);
1177
1178 if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER)) || elv_queue_empty(q))
1179 goto get_rq;
1180
1181 el_ret = elv_merge(q, &req, bio);
1182 switch (el_ret) {
1183 case ELEVATOR_BACK_MERGE:
1184 BUG_ON(!rq_mergeable(req));
1185
1186 if (!ll_back_merge_fn(q, req, bio))
1187 break;
1188
1189 trace_block_bio_backmerge(q, bio);
1190
1191 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1192 blk_rq_set_mixed_merge(req);
1193
1194 req->biotail->bi_next = bio;
1195 req->biotail = bio;
1196 req->__data_len += bytes;
1197 req->ioprio = ioprio_best(req->ioprio, prio);
1198 if (!blk_rq_cpu_valid(req))
1199 req->cpu = bio->bi_comp_cpu;
1200 drive_stat_acct(req, 0);
1201 if (!attempt_back_merge(q, req))
1202 elv_merged_request(q, req, el_ret);
1203 goto out;
1204
1205 case ELEVATOR_FRONT_MERGE:
1206 BUG_ON(!rq_mergeable(req));
1207
1208 if (!ll_front_merge_fn(q, req, bio))
1209 break;
1210
1211 trace_block_bio_frontmerge(q, bio);
1212
1213 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) {
1214 blk_rq_set_mixed_merge(req);
1215 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1216 req->cmd_flags |= ff;
1217 }
1218
1219 bio->bi_next = req->bio;
1220 req->bio = bio;
1221
1222 /*
1223 * may not be valid. if the low level driver said
1224 * it didn't need a bounce buffer then it better
1225 * not touch req->buffer either...
1226 */
1227 req->buffer = bio_data(bio);
1228 req->__sector = bio->bi_sector;
1229 req->__data_len += bytes;
1230 req->ioprio = ioprio_best(req->ioprio, prio);
1231 if (!blk_rq_cpu_valid(req))
1232 req->cpu = bio->bi_comp_cpu;
1233 drive_stat_acct(req, 0);
1234 if (!attempt_front_merge(q, req))
1235 elv_merged_request(q, req, el_ret);
1236 goto out;
1237
1238 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1239 default:
1240 ;
1241 }
1242
1243 get_rq:
1244 /*
1245 * This sync check and mask will be re-done in init_request_from_bio(),
1246 * but we need to set it earlier to expose the sync flag to the
1247 * rq allocator and io schedulers.
1248 */
1249 rw_flags = bio_data_dir(bio);
1250 if (sync)
1251 rw_flags |= REQ_RW_SYNC;
1252
1253 /*
1254 * Grab a free request. This is might sleep but can not fail.
1255 * Returns with the queue unlocked.
1256 */
1257 req = get_request_wait(q, rw_flags, bio);
1258
1259 /*
1260 * After dropping the lock and possibly sleeping here, our request
1261 * may now be mergeable after it had proven unmergeable (above).
1262 * We don't worry about that case for efficiency. It won't happen
1263 * often, and the elevators are able to handle it.
1264 */
1265 init_request_from_bio(req, bio);
1266
1267 spin_lock_irq(q->queue_lock);
1268 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1269 bio_flagged(bio, BIO_CPU_AFFINE))
1270 req->cpu = blk_cpu_to_group(smp_processor_id());
1271 if (queue_should_plug(q) && elv_queue_empty(q))
1272 blk_plug_device(q);
1273 add_request(q, req);
1274 out:
1275 if (unplug || !queue_should_plug(q))
1276 __generic_unplug_device(q);
1277 spin_unlock_irq(q->queue_lock);
1278 return 0;
1279 }
1280
1281 /*
1282 * If bio->bi_dev is a partition, remap the location
1283 */
1284 static inline void blk_partition_remap(struct bio *bio)
1285 {
1286 struct block_device *bdev = bio->bi_bdev;
1287
1288 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1289 struct hd_struct *p = bdev->bd_part;
1290
1291 bio->bi_sector += p->start_sect;
1292 bio->bi_bdev = bdev->bd_contains;
1293
1294 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
1295 bdev->bd_dev,
1296 bio->bi_sector - p->start_sect);
1297 }
1298 }
1299
1300 static void handle_bad_sector(struct bio *bio)
1301 {
1302 char b[BDEVNAME_SIZE];
1303
1304 printk(KERN_INFO "attempt to access beyond end of device\n");
1305 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1306 bdevname(bio->bi_bdev, b),
1307 bio->bi_rw,
1308 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1309 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1310
1311 set_bit(BIO_EOF, &bio->bi_flags);
1312 }
1313
1314 #ifdef CONFIG_FAIL_MAKE_REQUEST
1315
1316 static DECLARE_FAULT_ATTR(fail_make_request);
1317
1318 static int __init setup_fail_make_request(char *str)
1319 {
1320 return setup_fault_attr(&fail_make_request, str);
1321 }
1322 __setup("fail_make_request=", setup_fail_make_request);
1323
1324 static int should_fail_request(struct bio *bio)
1325 {
1326 struct hd_struct *part = bio->bi_bdev->bd_part;
1327
1328 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1329 return should_fail(&fail_make_request, bio->bi_size);
1330
1331 return 0;
1332 }
1333
1334 static int __init fail_make_request_debugfs(void)
1335 {
1336 return init_fault_attr_dentries(&fail_make_request,
1337 "fail_make_request");
1338 }
1339
1340 late_initcall(fail_make_request_debugfs);
1341
1342 #else /* CONFIG_FAIL_MAKE_REQUEST */
1343
1344 static inline int should_fail_request(struct bio *bio)
1345 {
1346 return 0;
1347 }
1348
1349 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1350
1351 /*
1352 * Check whether this bio extends beyond the end of the device.
1353 */
1354 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1355 {
1356 sector_t maxsector;
1357
1358 if (!nr_sectors)
1359 return 0;
1360
1361 /* Test device or partition size, when known. */
1362 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1363 if (maxsector) {
1364 sector_t sector = bio->bi_sector;
1365
1366 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1367 /*
1368 * This may well happen - the kernel calls bread()
1369 * without checking the size of the device, e.g., when
1370 * mounting a device.
1371 */
1372 handle_bad_sector(bio);
1373 return 1;
1374 }
1375 }
1376
1377 return 0;
1378 }
1379
1380 /**
1381 * generic_make_request - hand a buffer to its device driver for I/O
1382 * @bio: The bio describing the location in memory and on the device.
1383 *
1384 * generic_make_request() is used to make I/O requests of block
1385 * devices. It is passed a &struct bio, which describes the I/O that needs
1386 * to be done.
1387 *
1388 * generic_make_request() does not return any status. The
1389 * success/failure status of the request, along with notification of
1390 * completion, is delivered asynchronously through the bio->bi_end_io
1391 * function described (one day) else where.
1392 *
1393 * The caller of generic_make_request must make sure that bi_io_vec
1394 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1395 * set to describe the device address, and the
1396 * bi_end_io and optionally bi_private are set to describe how
1397 * completion notification should be signaled.
1398 *
1399 * generic_make_request and the drivers it calls may use bi_next if this
1400 * bio happens to be merged with someone else, and may change bi_dev and
1401 * bi_sector for remaps as it sees fit. So the values of these fields
1402 * should NOT be depended on after the call to generic_make_request.
1403 */
1404 static inline void __generic_make_request(struct bio *bio)
1405 {
1406 struct request_queue *q;
1407 sector_t old_sector;
1408 int ret, nr_sectors = bio_sectors(bio);
1409 dev_t old_dev;
1410 int err = -EIO;
1411
1412 might_sleep();
1413
1414 if (bio_check_eod(bio, nr_sectors))
1415 goto end_io;
1416
1417 /*
1418 * Resolve the mapping until finished. (drivers are
1419 * still free to implement/resolve their own stacking
1420 * by explicitly returning 0)
1421 *
1422 * NOTE: we don't repeat the blk_size check for each new device.
1423 * Stacking drivers are expected to know what they are doing.
1424 */
1425 old_sector = -1;
1426 old_dev = 0;
1427 do {
1428 char b[BDEVNAME_SIZE];
1429
1430 q = bdev_get_queue(bio->bi_bdev);
1431 if (unlikely(!q)) {
1432 printk(KERN_ERR
1433 "generic_make_request: Trying to access "
1434 "nonexistent block-device %s (%Lu)\n",
1435 bdevname(bio->bi_bdev, b),
1436 (long long) bio->bi_sector);
1437 goto end_io;
1438 }
1439
1440 if (unlikely(nr_sectors > queue_max_hw_sectors(q))) {
1441 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1442 bdevname(bio->bi_bdev, b),
1443 bio_sectors(bio),
1444 queue_max_hw_sectors(q));
1445 goto end_io;
1446 }
1447
1448 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1449 goto end_io;
1450
1451 if (should_fail_request(bio))
1452 goto end_io;
1453
1454 /*
1455 * If this device has partitions, remap block n
1456 * of partition p to block n+start(p) of the disk.
1457 */
1458 blk_partition_remap(bio);
1459
1460 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1461 goto end_io;
1462
1463 if (old_sector != -1)
1464 trace_block_remap(q, bio, old_dev, old_sector);
1465
1466 old_sector = bio->bi_sector;
1467 old_dev = bio->bi_bdev->bd_dev;
1468
1469 if (bio_check_eod(bio, nr_sectors))
1470 goto end_io;
1471
1472 if (bio_rw_flagged(bio, BIO_RW_DISCARD) &&
1473 !q->prepare_discard_fn) {
1474 err = -EOPNOTSUPP;
1475 goto end_io;
1476 }
1477
1478 trace_block_bio_queue(q, bio);
1479
1480 ret = q->make_request_fn(q, bio);
1481 } while (ret);
1482
1483 return;
1484
1485 end_io:
1486 bio_endio(bio, err);
1487 }
1488
1489 /*
1490 * We only want one ->make_request_fn to be active at a time,
1491 * else stack usage with stacked devices could be a problem.
1492 * So use current->bio_{list,tail} to keep a list of requests
1493 * submited by a make_request_fn function.
1494 * current->bio_tail is also used as a flag to say if
1495 * generic_make_request is currently active in this task or not.
1496 * If it is NULL, then no make_request is active. If it is non-NULL,
1497 * then a make_request is active, and new requests should be added
1498 * at the tail
1499 */
1500 void generic_make_request(struct bio *bio)
1501 {
1502 if (current->bio_tail) {
1503 /* make_request is active */
1504 *(current->bio_tail) = bio;
1505 bio->bi_next = NULL;
1506 current->bio_tail = &bio->bi_next;
1507 return;
1508 }
1509 /* following loop may be a bit non-obvious, and so deserves some
1510 * explanation.
1511 * Before entering the loop, bio->bi_next is NULL (as all callers
1512 * ensure that) so we have a list with a single bio.
1513 * We pretend that we have just taken it off a longer list, so
1514 * we assign bio_list to the next (which is NULL) and bio_tail
1515 * to &bio_list, thus initialising the bio_list of new bios to be
1516 * added. __generic_make_request may indeed add some more bios
1517 * through a recursive call to generic_make_request. If it
1518 * did, we find a non-NULL value in bio_list and re-enter the loop
1519 * from the top. In this case we really did just take the bio
1520 * of the top of the list (no pretending) and so fixup bio_list and
1521 * bio_tail or bi_next, and call into __generic_make_request again.
1522 *
1523 * The loop was structured like this to make only one call to
1524 * __generic_make_request (which is important as it is large and
1525 * inlined) and to keep the structure simple.
1526 */
1527 BUG_ON(bio->bi_next);
1528 do {
1529 current->bio_list = bio->bi_next;
1530 if (bio->bi_next == NULL)
1531 current->bio_tail = &current->bio_list;
1532 else
1533 bio->bi_next = NULL;
1534 __generic_make_request(bio);
1535 bio = current->bio_list;
1536 } while (bio);
1537 current->bio_tail = NULL; /* deactivate */
1538 }
1539 EXPORT_SYMBOL(generic_make_request);
1540
1541 /**
1542 * submit_bio - submit a bio to the block device layer for I/O
1543 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1544 * @bio: The &struct bio which describes the I/O
1545 *
1546 * submit_bio() is very similar in purpose to generic_make_request(), and
1547 * uses that function to do most of the work. Both are fairly rough
1548 * interfaces; @bio must be presetup and ready for I/O.
1549 *
1550 */
1551 void submit_bio(int rw, struct bio *bio)
1552 {
1553 int count = bio_sectors(bio);
1554
1555 bio->bi_rw |= rw;
1556
1557 /*
1558 * If it's a regular read/write or a barrier with data attached,
1559 * go through the normal accounting stuff before submission.
1560 */
1561 if (bio_has_data(bio)) {
1562 if (rw & WRITE) {
1563 count_vm_events(PGPGOUT, count);
1564 } else {
1565 task_io_account_read(bio->bi_size);
1566 count_vm_events(PGPGIN, count);
1567 }
1568
1569 if (unlikely(block_dump)) {
1570 char b[BDEVNAME_SIZE];
1571 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1572 current->comm, task_pid_nr(current),
1573 (rw & WRITE) ? "WRITE" : "READ",
1574 (unsigned long long)bio->bi_sector,
1575 bdevname(bio->bi_bdev, b));
1576 }
1577 }
1578
1579 generic_make_request(bio);
1580 }
1581 EXPORT_SYMBOL(submit_bio);
1582
1583 /**
1584 * blk_rq_check_limits - Helper function to check a request for the queue limit
1585 * @q: the queue
1586 * @rq: the request being checked
1587 *
1588 * Description:
1589 * @rq may have been made based on weaker limitations of upper-level queues
1590 * in request stacking drivers, and it may violate the limitation of @q.
1591 * Since the block layer and the underlying device driver trust @rq
1592 * after it is inserted to @q, it should be checked against @q before
1593 * the insertion using this generic function.
1594 *
1595 * This function should also be useful for request stacking drivers
1596 * in some cases below, so export this fuction.
1597 * Request stacking drivers like request-based dm may change the queue
1598 * limits while requests are in the queue (e.g. dm's table swapping).
1599 * Such request stacking drivers should check those requests agaist
1600 * the new queue limits again when they dispatch those requests,
1601 * although such checkings are also done against the old queue limits
1602 * when submitting requests.
1603 */
1604 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1605 {
1606 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1607 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1608 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1609 return -EIO;
1610 }
1611
1612 /*
1613 * queue's settings related to segment counting like q->bounce_pfn
1614 * may differ from that of other stacking queues.
1615 * Recalculate it to check the request correctly on this queue's
1616 * limitation.
1617 */
1618 blk_recalc_rq_segments(rq);
1619 if (rq->nr_phys_segments > queue_max_phys_segments(q) ||
1620 rq->nr_phys_segments > queue_max_hw_segments(q)) {
1621 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1622 return -EIO;
1623 }
1624
1625 return 0;
1626 }
1627 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1628
1629 /**
1630 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1631 * @q: the queue to submit the request
1632 * @rq: the request being queued
1633 */
1634 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1635 {
1636 unsigned long flags;
1637
1638 if (blk_rq_check_limits(q, rq))
1639 return -EIO;
1640
1641 #ifdef CONFIG_FAIL_MAKE_REQUEST
1642 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1643 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1644 return -EIO;
1645 #endif
1646
1647 spin_lock_irqsave(q->queue_lock, flags);
1648
1649 /*
1650 * Submitting request must be dequeued before calling this function
1651 * because it will be linked to another request_queue
1652 */
1653 BUG_ON(blk_queued_rq(rq));
1654
1655 drive_stat_acct(rq, 1);
1656 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1657
1658 spin_unlock_irqrestore(q->queue_lock, flags);
1659
1660 return 0;
1661 }
1662 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1663
1664 /**
1665 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1666 * @rq: request to examine
1667 *
1668 * Description:
1669 * A request could be merge of IOs which require different failure
1670 * handling. This function determines the number of bytes which
1671 * can be failed from the beginning of the request without
1672 * crossing into area which need to be retried further.
1673 *
1674 * Return:
1675 * The number of bytes to fail.
1676 *
1677 * Context:
1678 * queue_lock must be held.
1679 */
1680 unsigned int blk_rq_err_bytes(const struct request *rq)
1681 {
1682 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1683 unsigned int bytes = 0;
1684 struct bio *bio;
1685
1686 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1687 return blk_rq_bytes(rq);
1688
1689 /*
1690 * Currently the only 'mixing' which can happen is between
1691 * different fastfail types. We can safely fail portions
1692 * which have all the failfast bits that the first one has -
1693 * the ones which are at least as eager to fail as the first
1694 * one.
1695 */
1696 for (bio = rq->bio; bio; bio = bio->bi_next) {
1697 if ((bio->bi_rw & ff) != ff)
1698 break;
1699 bytes += bio->bi_size;
1700 }
1701
1702 /* this could lead to infinite loop */
1703 BUG_ON(blk_rq_bytes(rq) && !bytes);
1704 return bytes;
1705 }
1706 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1707
1708 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1709 {
1710 if (blk_do_io_stat(req)) {
1711 const int rw = rq_data_dir(req);
1712 struct hd_struct *part;
1713 int cpu;
1714
1715 cpu = part_stat_lock();
1716 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
1717 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1718 part_stat_unlock();
1719 }
1720 }
1721
1722 static void blk_account_io_done(struct request *req)
1723 {
1724 /*
1725 * Account IO completion. bar_rq isn't accounted as a normal
1726 * IO on queueing nor completion. Accounting the containing
1727 * request is enough.
1728 */
1729 if (blk_do_io_stat(req) && req != &req->q->bar_rq) {
1730 unsigned long duration = jiffies - req->start_time;
1731 const int rw = rq_data_dir(req);
1732 struct hd_struct *part;
1733 int cpu;
1734
1735 cpu = part_stat_lock();
1736 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
1737
1738 part_stat_inc(cpu, part, ios[rw]);
1739 part_stat_add(cpu, part, ticks[rw], duration);
1740 part_round_stats(cpu, part);
1741 part_dec_in_flight(part, rw);
1742
1743 part_stat_unlock();
1744 }
1745 }
1746
1747 /**
1748 * blk_peek_request - peek at the top of a request queue
1749 * @q: request queue to peek at
1750 *
1751 * Description:
1752 * Return the request at the top of @q. The returned request
1753 * should be started using blk_start_request() before LLD starts
1754 * processing it.
1755 *
1756 * Return:
1757 * Pointer to the request at the top of @q if available. Null
1758 * otherwise.
1759 *
1760 * Context:
1761 * queue_lock must be held.
1762 */
1763 struct request *blk_peek_request(struct request_queue *q)
1764 {
1765 struct request *rq;
1766 int ret;
1767
1768 while ((rq = __elv_next_request(q)) != NULL) {
1769 if (!(rq->cmd_flags & REQ_STARTED)) {
1770 /*
1771 * This is the first time the device driver
1772 * sees this request (possibly after
1773 * requeueing). Notify IO scheduler.
1774 */
1775 if (blk_sorted_rq(rq))
1776 elv_activate_rq(q, rq);
1777
1778 /*
1779 * just mark as started even if we don't start
1780 * it, a request that has been delayed should
1781 * not be passed by new incoming requests
1782 */
1783 rq->cmd_flags |= REQ_STARTED;
1784 trace_block_rq_issue(q, rq);
1785 }
1786
1787 if (!q->boundary_rq || q->boundary_rq == rq) {
1788 q->end_sector = rq_end_sector(rq);
1789 q->boundary_rq = NULL;
1790 }
1791
1792 if (rq->cmd_flags & REQ_DONTPREP)
1793 break;
1794
1795 if (q->dma_drain_size && blk_rq_bytes(rq)) {
1796 /*
1797 * make sure space for the drain appears we
1798 * know we can do this because max_hw_segments
1799 * has been adjusted to be one fewer than the
1800 * device can handle
1801 */
1802 rq->nr_phys_segments++;
1803 }
1804
1805 if (!q->prep_rq_fn)
1806 break;
1807
1808 ret = q->prep_rq_fn(q, rq);
1809 if (ret == BLKPREP_OK) {
1810 break;
1811 } else if (ret == BLKPREP_DEFER) {
1812 /*
1813 * the request may have been (partially) prepped.
1814 * we need to keep this request in the front to
1815 * avoid resource deadlock. REQ_STARTED will
1816 * prevent other fs requests from passing this one.
1817 */
1818 if (q->dma_drain_size && blk_rq_bytes(rq) &&
1819 !(rq->cmd_flags & REQ_DONTPREP)) {
1820 /*
1821 * remove the space for the drain we added
1822 * so that we don't add it again
1823 */
1824 --rq->nr_phys_segments;
1825 }
1826
1827 rq = NULL;
1828 break;
1829 } else if (ret == BLKPREP_KILL) {
1830 rq->cmd_flags |= REQ_QUIET;
1831 /*
1832 * Mark this request as started so we don't trigger
1833 * any debug logic in the end I/O path.
1834 */
1835 blk_start_request(rq);
1836 __blk_end_request_all(rq, -EIO);
1837 } else {
1838 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1839 break;
1840 }
1841 }
1842
1843 return rq;
1844 }
1845 EXPORT_SYMBOL(blk_peek_request);
1846
1847 void blk_dequeue_request(struct request *rq)
1848 {
1849 struct request_queue *q = rq->q;
1850
1851 BUG_ON(list_empty(&rq->queuelist));
1852 BUG_ON(ELV_ON_HASH(rq));
1853
1854 list_del_init(&rq->queuelist);
1855
1856 /*
1857 * the time frame between a request being removed from the lists
1858 * and to it is freed is accounted as io that is in progress at
1859 * the driver side.
1860 */
1861 if (blk_account_rq(rq)) {
1862 q->in_flight[rq_is_sync(rq)]++;
1863 /*
1864 * Mark this device as supporting hardware queuing, if
1865 * we have more IOs in flight than 4.
1866 */
1867 if (!blk_queue_queuing(q) && queue_in_flight(q) > 4)
1868 set_bit(QUEUE_FLAG_CQ, &q->queue_flags);
1869 }
1870 }
1871
1872 /**
1873 * blk_start_request - start request processing on the driver
1874 * @req: request to dequeue
1875 *
1876 * Description:
1877 * Dequeue @req and start timeout timer on it. This hands off the
1878 * request to the driver.
1879 *
1880 * Block internal functions which don't want to start timer should
1881 * call blk_dequeue_request().
1882 *
1883 * Context:
1884 * queue_lock must be held.
1885 */
1886 void blk_start_request(struct request *req)
1887 {
1888 blk_dequeue_request(req);
1889
1890 /*
1891 * We are now handing the request to the hardware, initialize
1892 * resid_len to full count and add the timeout handler.
1893 */
1894 req->resid_len = blk_rq_bytes(req);
1895 if (unlikely(blk_bidi_rq(req)))
1896 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1897
1898 blk_add_timer(req);
1899 }
1900 EXPORT_SYMBOL(blk_start_request);
1901
1902 /**
1903 * blk_fetch_request - fetch a request from a request queue
1904 * @q: request queue to fetch a request from
1905 *
1906 * Description:
1907 * Return the request at the top of @q. The request is started on
1908 * return and LLD can start processing it immediately.
1909 *
1910 * Return:
1911 * Pointer to the request at the top of @q if available. Null
1912 * otherwise.
1913 *
1914 * Context:
1915 * queue_lock must be held.
1916 */
1917 struct request *blk_fetch_request(struct request_queue *q)
1918 {
1919 struct request *rq;
1920
1921 rq = blk_peek_request(q);
1922 if (rq)
1923 blk_start_request(rq);
1924 return rq;
1925 }
1926 EXPORT_SYMBOL(blk_fetch_request);
1927
1928 /**
1929 * blk_update_request - Special helper function for request stacking drivers
1930 * @req: the request being processed
1931 * @error: %0 for success, < %0 for error
1932 * @nr_bytes: number of bytes to complete @req
1933 *
1934 * Description:
1935 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1936 * the request structure even if @req doesn't have leftover.
1937 * If @req has leftover, sets it up for the next range of segments.
1938 *
1939 * This special helper function is only for request stacking drivers
1940 * (e.g. request-based dm) so that they can handle partial completion.
1941 * Actual device drivers should use blk_end_request instead.
1942 *
1943 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1944 * %false return from this function.
1945 *
1946 * Return:
1947 * %false - this request doesn't have any more data
1948 * %true - this request has more data
1949 **/
1950 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1951 {
1952 int total_bytes, bio_nbytes, next_idx = 0;
1953 struct bio *bio;
1954
1955 if (!req->bio)
1956 return false;
1957
1958 trace_block_rq_complete(req->q, req);
1959
1960 /*
1961 * For fs requests, rq is just carrier of independent bio's
1962 * and each partial completion should be handled separately.
1963 * Reset per-request error on each partial completion.
1964 *
1965 * TODO: tj: This is too subtle. It would be better to let
1966 * low level drivers do what they see fit.
1967 */
1968 if (blk_fs_request(req))
1969 req->errors = 0;
1970
1971 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1972 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1973 req->rq_disk ? req->rq_disk->disk_name : "?",
1974 (unsigned long long)blk_rq_pos(req));
1975 }
1976
1977 blk_account_io_completion(req, nr_bytes);
1978
1979 total_bytes = bio_nbytes = 0;
1980 while ((bio = req->bio) != NULL) {
1981 int nbytes;
1982
1983 if (nr_bytes >= bio->bi_size) {
1984 req->bio = bio->bi_next;
1985 nbytes = bio->bi_size;
1986 req_bio_endio(req, bio, nbytes, error);
1987 next_idx = 0;
1988 bio_nbytes = 0;
1989 } else {
1990 int idx = bio->bi_idx + next_idx;
1991
1992 if (unlikely(idx >= bio->bi_vcnt)) {
1993 blk_dump_rq_flags(req, "__end_that");
1994 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
1995 __func__, idx, bio->bi_vcnt);
1996 break;
1997 }
1998
1999 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2000 BIO_BUG_ON(nbytes > bio->bi_size);
2001
2002 /*
2003 * not a complete bvec done
2004 */
2005 if (unlikely(nbytes > nr_bytes)) {
2006 bio_nbytes += nr_bytes;
2007 total_bytes += nr_bytes;
2008 break;
2009 }
2010
2011 /*
2012 * advance to the next vector
2013 */
2014 next_idx++;
2015 bio_nbytes += nbytes;
2016 }
2017
2018 total_bytes += nbytes;
2019 nr_bytes -= nbytes;
2020
2021 bio = req->bio;
2022 if (bio) {
2023 /*
2024 * end more in this run, or just return 'not-done'
2025 */
2026 if (unlikely(nr_bytes <= 0))
2027 break;
2028 }
2029 }
2030
2031 /*
2032 * completely done
2033 */
2034 if (!req->bio) {
2035 /*
2036 * Reset counters so that the request stacking driver
2037 * can find how many bytes remain in the request
2038 * later.
2039 */
2040 req->__data_len = 0;
2041 return false;
2042 }
2043
2044 /*
2045 * if the request wasn't completed, update state
2046 */
2047 if (bio_nbytes) {
2048 req_bio_endio(req, bio, bio_nbytes, error);
2049 bio->bi_idx += next_idx;
2050 bio_iovec(bio)->bv_offset += nr_bytes;
2051 bio_iovec(bio)->bv_len -= nr_bytes;
2052 }
2053
2054 req->__data_len -= total_bytes;
2055 req->buffer = bio_data(req->bio);
2056
2057 /* update sector only for requests with clear definition of sector */
2058 if (blk_fs_request(req) || blk_discard_rq(req))
2059 req->__sector += total_bytes >> 9;
2060
2061 /* mixed attributes always follow the first bio */
2062 if (req->cmd_flags & REQ_MIXED_MERGE) {
2063 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2064 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2065 }
2066
2067 /*
2068 * If total number of sectors is less than the first segment
2069 * size, something has gone terribly wrong.
2070 */
2071 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2072 printk(KERN_ERR "blk: request botched\n");
2073 req->__data_len = blk_rq_cur_bytes(req);
2074 }
2075
2076 /* recalculate the number of segments */
2077 blk_recalc_rq_segments(req);
2078
2079 return true;
2080 }
2081 EXPORT_SYMBOL_GPL(blk_update_request);
2082
2083 static bool blk_update_bidi_request(struct request *rq, int error,
2084 unsigned int nr_bytes,
2085 unsigned int bidi_bytes)
2086 {
2087 if (blk_update_request(rq, error, nr_bytes))
2088 return true;
2089
2090 /* Bidi request must be completed as a whole */
2091 if (unlikely(blk_bidi_rq(rq)) &&
2092 blk_update_request(rq->next_rq, error, bidi_bytes))
2093 return true;
2094
2095 add_disk_randomness(rq->rq_disk);
2096
2097 return false;
2098 }
2099
2100 /*
2101 * queue lock must be held
2102 */
2103 static void blk_finish_request(struct request *req, int error)
2104 {
2105 if (blk_rq_tagged(req))
2106 blk_queue_end_tag(req->q, req);
2107
2108 BUG_ON(blk_queued_rq(req));
2109
2110 if (unlikely(laptop_mode) && blk_fs_request(req))
2111 laptop_io_completion();
2112
2113 blk_delete_timer(req);
2114
2115 blk_account_io_done(req);
2116
2117 if (req->end_io)
2118 req->end_io(req, error);
2119 else {
2120 if (blk_bidi_rq(req))
2121 __blk_put_request(req->next_rq->q, req->next_rq);
2122
2123 __blk_put_request(req->q, req);
2124 }
2125 }
2126
2127 /**
2128 * blk_end_bidi_request - Complete a bidi request
2129 * @rq: the request to complete
2130 * @error: %0 for success, < %0 for error
2131 * @nr_bytes: number of bytes to complete @rq
2132 * @bidi_bytes: number of bytes to complete @rq->next_rq
2133 *
2134 * Description:
2135 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2136 * Drivers that supports bidi can safely call this member for any
2137 * type of request, bidi or uni. In the later case @bidi_bytes is
2138 * just ignored.
2139 *
2140 * Return:
2141 * %false - we are done with this request
2142 * %true - still buffers pending for this request
2143 **/
2144 static bool blk_end_bidi_request(struct request *rq, int error,
2145 unsigned int nr_bytes, unsigned int bidi_bytes)
2146 {
2147 struct request_queue *q = rq->q;
2148 unsigned long flags;
2149
2150 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2151 return true;
2152
2153 spin_lock_irqsave(q->queue_lock, flags);
2154 blk_finish_request(rq, error);
2155 spin_unlock_irqrestore(q->queue_lock, flags);
2156
2157 return false;
2158 }
2159
2160 /**
2161 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2162 * @rq: the request to complete
2163 * @error: %0 for success, < %0 for error
2164 * @nr_bytes: number of bytes to complete @rq
2165 * @bidi_bytes: number of bytes to complete @rq->next_rq
2166 *
2167 * Description:
2168 * Identical to blk_end_bidi_request() except that queue lock is
2169 * assumed to be locked on entry and remains so on return.
2170 *
2171 * Return:
2172 * %false - we are done with this request
2173 * %true - still buffers pending for this request
2174 **/
2175 static bool __blk_end_bidi_request(struct request *rq, int error,
2176 unsigned int nr_bytes, unsigned int bidi_bytes)
2177 {
2178 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2179 return true;
2180
2181 blk_finish_request(rq, error);
2182
2183 return false;
2184 }
2185
2186 /**
2187 * blk_end_request - Helper function for drivers to complete the request.
2188 * @rq: the request being processed
2189 * @error: %0 for success, < %0 for error
2190 * @nr_bytes: number of bytes to complete
2191 *
2192 * Description:
2193 * Ends I/O on a number of bytes attached to @rq.
2194 * If @rq has leftover, sets it up for the next range of segments.
2195 *
2196 * Return:
2197 * %false - we are done with this request
2198 * %true - still buffers pending for this request
2199 **/
2200 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2201 {
2202 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2203 }
2204 EXPORT_SYMBOL(blk_end_request);
2205
2206 /**
2207 * blk_end_request_all - Helper function for drives to finish the request.
2208 * @rq: the request to finish
2209 * @error: %0 for success, < %0 for error
2210 *
2211 * Description:
2212 * Completely finish @rq.
2213 */
2214 void blk_end_request_all(struct request *rq, int error)
2215 {
2216 bool pending;
2217 unsigned int bidi_bytes = 0;
2218
2219 if (unlikely(blk_bidi_rq(rq)))
2220 bidi_bytes = blk_rq_bytes(rq->next_rq);
2221
2222 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2223 BUG_ON(pending);
2224 }
2225 EXPORT_SYMBOL(blk_end_request_all);
2226
2227 /**
2228 * blk_end_request_cur - Helper function to finish the current request chunk.
2229 * @rq: the request to finish the current chunk for
2230 * @error: %0 for success, < %0 for error
2231 *
2232 * Description:
2233 * Complete the current consecutively mapped chunk from @rq.
2234 *
2235 * Return:
2236 * %false - we are done with this request
2237 * %true - still buffers pending for this request
2238 */
2239 bool blk_end_request_cur(struct request *rq, int error)
2240 {
2241 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2242 }
2243 EXPORT_SYMBOL(blk_end_request_cur);
2244
2245 /**
2246 * blk_end_request_err - Finish a request till the next failure boundary.
2247 * @rq: the request to finish till the next failure boundary for
2248 * @error: must be negative errno
2249 *
2250 * Description:
2251 * Complete @rq till the next failure boundary.
2252 *
2253 * Return:
2254 * %false - we are done with this request
2255 * %true - still buffers pending for this request
2256 */
2257 bool blk_end_request_err(struct request *rq, int error)
2258 {
2259 WARN_ON(error >= 0);
2260 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2261 }
2262 EXPORT_SYMBOL_GPL(blk_end_request_err);
2263
2264 /**
2265 * __blk_end_request - Helper function for drivers to complete the request.
2266 * @rq: the request being processed
2267 * @error: %0 for success, < %0 for error
2268 * @nr_bytes: number of bytes to complete
2269 *
2270 * Description:
2271 * Must be called with queue lock held unlike blk_end_request().
2272 *
2273 * Return:
2274 * %false - we are done with this request
2275 * %true - still buffers pending for this request
2276 **/
2277 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2278 {
2279 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2280 }
2281 EXPORT_SYMBOL(__blk_end_request);
2282
2283 /**
2284 * __blk_end_request_all - Helper function for drives to finish the request.
2285 * @rq: the request to finish
2286 * @error: %0 for success, < %0 for error
2287 *
2288 * Description:
2289 * Completely finish @rq. Must be called with queue lock held.
2290 */
2291 void __blk_end_request_all(struct request *rq, int error)
2292 {
2293 bool pending;
2294 unsigned int bidi_bytes = 0;
2295
2296 if (unlikely(blk_bidi_rq(rq)))
2297 bidi_bytes = blk_rq_bytes(rq->next_rq);
2298
2299 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2300 BUG_ON(pending);
2301 }
2302 EXPORT_SYMBOL(__blk_end_request_all);
2303
2304 /**
2305 * __blk_end_request_cur - Helper function to finish the current request chunk.
2306 * @rq: the request to finish the current chunk for
2307 * @error: %0 for success, < %0 for error
2308 *
2309 * Description:
2310 * Complete the current consecutively mapped chunk from @rq. Must
2311 * be called with queue lock held.
2312 *
2313 * Return:
2314 * %false - we are done with this request
2315 * %true - still buffers pending for this request
2316 */
2317 bool __blk_end_request_cur(struct request *rq, int error)
2318 {
2319 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2320 }
2321 EXPORT_SYMBOL(__blk_end_request_cur);
2322
2323 /**
2324 * __blk_end_request_err - Finish a request till the next failure boundary.
2325 * @rq: the request to finish till the next failure boundary for
2326 * @error: must be negative errno
2327 *
2328 * Description:
2329 * Complete @rq till the next failure boundary. Must be called
2330 * with queue lock held.
2331 *
2332 * Return:
2333 * %false - we are done with this request
2334 * %true - still buffers pending for this request
2335 */
2336 bool __blk_end_request_err(struct request *rq, int error)
2337 {
2338 WARN_ON(error >= 0);
2339 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2340 }
2341 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2342
2343 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2344 struct bio *bio)
2345 {
2346 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2347 rq->cmd_flags |= bio->bi_rw & REQ_RW;
2348
2349 if (bio_has_data(bio)) {
2350 rq->nr_phys_segments = bio_phys_segments(q, bio);
2351 rq->buffer = bio_data(bio);
2352 }
2353 rq->__data_len = bio->bi_size;
2354 rq->bio = rq->biotail = bio;
2355
2356 if (bio->bi_bdev)
2357 rq->rq_disk = bio->bi_bdev->bd_disk;
2358 }
2359
2360 /**
2361 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2362 * @q : the queue of the device being checked
2363 *
2364 * Description:
2365 * Check if underlying low-level drivers of a device are busy.
2366 * If the drivers want to export their busy state, they must set own
2367 * exporting function using blk_queue_lld_busy() first.
2368 *
2369 * Basically, this function is used only by request stacking drivers
2370 * to stop dispatching requests to underlying devices when underlying
2371 * devices are busy. This behavior helps more I/O merging on the queue
2372 * of the request stacking driver and prevents I/O throughput regression
2373 * on burst I/O load.
2374 *
2375 * Return:
2376 * 0 - Not busy (The request stacking driver should dispatch request)
2377 * 1 - Busy (The request stacking driver should stop dispatching request)
2378 */
2379 int blk_lld_busy(struct request_queue *q)
2380 {
2381 if (q->lld_busy_fn)
2382 return q->lld_busy_fn(q);
2383
2384 return 0;
2385 }
2386 EXPORT_SYMBOL_GPL(blk_lld_busy);
2387
2388 /**
2389 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2390 * @rq: the clone request to be cleaned up
2391 *
2392 * Description:
2393 * Free all bios in @rq for a cloned request.
2394 */
2395 void blk_rq_unprep_clone(struct request *rq)
2396 {
2397 struct bio *bio;
2398
2399 while ((bio = rq->bio) != NULL) {
2400 rq->bio = bio->bi_next;
2401
2402 bio_put(bio);
2403 }
2404 }
2405 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2406
2407 /*
2408 * Copy attributes of the original request to the clone request.
2409 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2410 */
2411 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2412 {
2413 dst->cpu = src->cpu;
2414 dst->cmd_flags = (rq_data_dir(src) | REQ_NOMERGE);
2415 dst->cmd_type = src->cmd_type;
2416 dst->__sector = blk_rq_pos(src);
2417 dst->__data_len = blk_rq_bytes(src);
2418 dst->nr_phys_segments = src->nr_phys_segments;
2419 dst->ioprio = src->ioprio;
2420 dst->extra_len = src->extra_len;
2421 }
2422
2423 /**
2424 * blk_rq_prep_clone - Helper function to setup clone request
2425 * @rq: the request to be setup
2426 * @rq_src: original request to be cloned
2427 * @bs: bio_set that bios for clone are allocated from
2428 * @gfp_mask: memory allocation mask for bio
2429 * @bio_ctr: setup function to be called for each clone bio.
2430 * Returns %0 for success, non %0 for failure.
2431 * @data: private data to be passed to @bio_ctr
2432 *
2433 * Description:
2434 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2435 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2436 * are not copied, and copying such parts is the caller's responsibility.
2437 * Also, pages which the original bios are pointing to are not copied
2438 * and the cloned bios just point same pages.
2439 * So cloned bios must be completed before original bios, which means
2440 * the caller must complete @rq before @rq_src.
2441 */
2442 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2443 struct bio_set *bs, gfp_t gfp_mask,
2444 int (*bio_ctr)(struct bio *, struct bio *, void *),
2445 void *data)
2446 {
2447 struct bio *bio, *bio_src;
2448
2449 if (!bs)
2450 bs = fs_bio_set;
2451
2452 blk_rq_init(NULL, rq);
2453
2454 __rq_for_each_bio(bio_src, rq_src) {
2455 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2456 if (!bio)
2457 goto free_and_out;
2458
2459 __bio_clone(bio, bio_src);
2460
2461 if (bio_integrity(bio_src) &&
2462 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2463 goto free_and_out;
2464
2465 if (bio_ctr && bio_ctr(bio, bio_src, data))
2466 goto free_and_out;
2467
2468 if (rq->bio) {
2469 rq->biotail->bi_next = bio;
2470 rq->biotail = bio;
2471 } else
2472 rq->bio = rq->biotail = bio;
2473 }
2474
2475 __blk_rq_prep_clone(rq, rq_src);
2476
2477 return 0;
2478
2479 free_and_out:
2480 if (bio)
2481 bio_free(bio, bs);
2482 blk_rq_unprep_clone(rq);
2483
2484 return -ENOMEM;
2485 }
2486 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2487
2488 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2489 {
2490 return queue_work(kblockd_workqueue, work);
2491 }
2492 EXPORT_SYMBOL(kblockd_schedule_work);
2493
2494 int __init blk_dev_init(void)
2495 {
2496 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2497 sizeof(((struct request *)0)->cmd_flags));
2498
2499 kblockd_workqueue = create_workqueue("kblockd");
2500 if (!kblockd_workqueue)
2501 panic("Failed to create kblockd\n");
2502
2503 request_cachep = kmem_cache_create("blkdev_requests",
2504 sizeof(struct request), 0, SLAB_PANIC, NULL);
2505
2506 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2507 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2508
2509 return 0;
2510 }
2511
This page took 0.088868 seconds and 5 git commands to generate.