[SCSI] bsg: copy the cmd_type field to the subordinate request for bidi
[deliverable/linux.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
9
10 /*
11 * This handles all read/write requests to block devices
12 */
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/highmem.h>
19 #include <linux/mm.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/completion.h>
24 #include <linux/slab.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/task_io_accounting_ops.h>
28 #include <linux/interrupt.h>
29 #include <linux/cpu.h>
30 #include <linux/blktrace_api.h>
31 #include <linux/fault-inject.h>
32
33 #include "blk.h"
34
35 static int __make_request(struct request_queue *q, struct bio *bio);
36
37 /*
38 * For the allocated request tables
39 */
40 struct kmem_cache *request_cachep;
41
42 /*
43 * For queue allocation
44 */
45 struct kmem_cache *blk_requestq_cachep = NULL;
46
47 /*
48 * Controlling structure to kblockd
49 */
50 static struct workqueue_struct *kblockd_workqueue;
51
52 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
53
54 static void drive_stat_acct(struct request *rq, int new_io)
55 {
56 int rw = rq_data_dir(rq);
57
58 if (!blk_fs_request(rq) || !rq->rq_disk)
59 return;
60
61 if (!new_io) {
62 __disk_stat_inc(rq->rq_disk, merges[rw]);
63 } else {
64 disk_round_stats(rq->rq_disk);
65 rq->rq_disk->in_flight++;
66 }
67 }
68
69 void blk_queue_congestion_threshold(struct request_queue *q)
70 {
71 int nr;
72
73 nr = q->nr_requests - (q->nr_requests / 8) + 1;
74 if (nr > q->nr_requests)
75 nr = q->nr_requests;
76 q->nr_congestion_on = nr;
77
78 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
79 if (nr < 1)
80 nr = 1;
81 q->nr_congestion_off = nr;
82 }
83
84 /**
85 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
86 * @bdev: device
87 *
88 * Locates the passed device's request queue and returns the address of its
89 * backing_dev_info
90 *
91 * Will return NULL if the request queue cannot be located.
92 */
93 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
94 {
95 struct backing_dev_info *ret = NULL;
96 struct request_queue *q = bdev_get_queue(bdev);
97
98 if (q)
99 ret = &q->backing_dev_info;
100 return ret;
101 }
102 EXPORT_SYMBOL(blk_get_backing_dev_info);
103
104 void rq_init(struct request_queue *q, struct request *rq)
105 {
106 INIT_LIST_HEAD(&rq->queuelist);
107 INIT_LIST_HEAD(&rq->donelist);
108
109 rq->errors = 0;
110 rq->bio = rq->biotail = NULL;
111 INIT_HLIST_NODE(&rq->hash);
112 RB_CLEAR_NODE(&rq->rb_node);
113 rq->ioprio = 0;
114 rq->buffer = NULL;
115 rq->ref_count = 1;
116 rq->q = q;
117 rq->special = NULL;
118 rq->data_len = 0;
119 rq->data = NULL;
120 rq->nr_phys_segments = 0;
121 rq->sense = NULL;
122 rq->end_io = NULL;
123 rq->end_io_data = NULL;
124 rq->completion_data = NULL;
125 rq->next_rq = NULL;
126 }
127
128 static void req_bio_endio(struct request *rq, struct bio *bio,
129 unsigned int nbytes, int error)
130 {
131 struct request_queue *q = rq->q;
132
133 if (&q->bar_rq != rq) {
134 if (error)
135 clear_bit(BIO_UPTODATE, &bio->bi_flags);
136 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
137 error = -EIO;
138
139 if (unlikely(nbytes > bio->bi_size)) {
140 printk("%s: want %u bytes done, only %u left\n",
141 __FUNCTION__, nbytes, bio->bi_size);
142 nbytes = bio->bi_size;
143 }
144
145 bio->bi_size -= nbytes;
146 bio->bi_sector += (nbytes >> 9);
147 if (bio->bi_size == 0)
148 bio_endio(bio, error);
149 } else {
150
151 /*
152 * Okay, this is the barrier request in progress, just
153 * record the error;
154 */
155 if (error && !q->orderr)
156 q->orderr = error;
157 }
158 }
159
160 void blk_dump_rq_flags(struct request *rq, char *msg)
161 {
162 int bit;
163
164 printk("%s: dev %s: type=%x, flags=%x\n", msg,
165 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
166 rq->cmd_flags);
167
168 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
169 rq->nr_sectors,
170 rq->current_nr_sectors);
171 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
172
173 if (blk_pc_request(rq)) {
174 printk("cdb: ");
175 for (bit = 0; bit < sizeof(rq->cmd); bit++)
176 printk("%02x ", rq->cmd[bit]);
177 printk("\n");
178 }
179 }
180
181 EXPORT_SYMBOL(blk_dump_rq_flags);
182
183 /*
184 * "plug" the device if there are no outstanding requests: this will
185 * force the transfer to start only after we have put all the requests
186 * on the list.
187 *
188 * This is called with interrupts off and no requests on the queue and
189 * with the queue lock held.
190 */
191 void blk_plug_device(struct request_queue *q)
192 {
193 WARN_ON(!irqs_disabled());
194
195 /*
196 * don't plug a stopped queue, it must be paired with blk_start_queue()
197 * which will restart the queueing
198 */
199 if (blk_queue_stopped(q))
200 return;
201
202 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
203 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
204 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
205 }
206 }
207
208 EXPORT_SYMBOL(blk_plug_device);
209
210 /*
211 * remove the queue from the plugged list, if present. called with
212 * queue lock held and interrupts disabled.
213 */
214 int blk_remove_plug(struct request_queue *q)
215 {
216 WARN_ON(!irqs_disabled());
217
218 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
219 return 0;
220
221 del_timer(&q->unplug_timer);
222 return 1;
223 }
224
225 EXPORT_SYMBOL(blk_remove_plug);
226
227 /*
228 * remove the plug and let it rip..
229 */
230 void __generic_unplug_device(struct request_queue *q)
231 {
232 if (unlikely(blk_queue_stopped(q)))
233 return;
234
235 if (!blk_remove_plug(q))
236 return;
237
238 q->request_fn(q);
239 }
240 EXPORT_SYMBOL(__generic_unplug_device);
241
242 /**
243 * generic_unplug_device - fire a request queue
244 * @q: The &struct request_queue in question
245 *
246 * Description:
247 * Linux uses plugging to build bigger requests queues before letting
248 * the device have at them. If a queue is plugged, the I/O scheduler
249 * is still adding and merging requests on the queue. Once the queue
250 * gets unplugged, the request_fn defined for the queue is invoked and
251 * transfers started.
252 **/
253 void generic_unplug_device(struct request_queue *q)
254 {
255 spin_lock_irq(q->queue_lock);
256 __generic_unplug_device(q);
257 spin_unlock_irq(q->queue_lock);
258 }
259 EXPORT_SYMBOL(generic_unplug_device);
260
261 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
262 struct page *page)
263 {
264 struct request_queue *q = bdi->unplug_io_data;
265
266 blk_unplug(q);
267 }
268
269 void blk_unplug_work(struct work_struct *work)
270 {
271 struct request_queue *q =
272 container_of(work, struct request_queue, unplug_work);
273
274 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
275 q->rq.count[READ] + q->rq.count[WRITE]);
276
277 q->unplug_fn(q);
278 }
279
280 void blk_unplug_timeout(unsigned long data)
281 {
282 struct request_queue *q = (struct request_queue *)data;
283
284 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
285 q->rq.count[READ] + q->rq.count[WRITE]);
286
287 kblockd_schedule_work(&q->unplug_work);
288 }
289
290 void blk_unplug(struct request_queue *q)
291 {
292 /*
293 * devices don't necessarily have an ->unplug_fn defined
294 */
295 if (q->unplug_fn) {
296 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
297 q->rq.count[READ] + q->rq.count[WRITE]);
298
299 q->unplug_fn(q);
300 }
301 }
302 EXPORT_SYMBOL(blk_unplug);
303
304 /**
305 * blk_start_queue - restart a previously stopped queue
306 * @q: The &struct request_queue in question
307 *
308 * Description:
309 * blk_start_queue() will clear the stop flag on the queue, and call
310 * the request_fn for the queue if it was in a stopped state when
311 * entered. Also see blk_stop_queue(). Queue lock must be held.
312 **/
313 void blk_start_queue(struct request_queue *q)
314 {
315 WARN_ON(!irqs_disabled());
316
317 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
318
319 /*
320 * one level of recursion is ok and is much faster than kicking
321 * the unplug handling
322 */
323 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
324 q->request_fn(q);
325 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
326 } else {
327 blk_plug_device(q);
328 kblockd_schedule_work(&q->unplug_work);
329 }
330 }
331
332 EXPORT_SYMBOL(blk_start_queue);
333
334 /**
335 * blk_stop_queue - stop a queue
336 * @q: The &struct request_queue in question
337 *
338 * Description:
339 * The Linux block layer assumes that a block driver will consume all
340 * entries on the request queue when the request_fn strategy is called.
341 * Often this will not happen, because of hardware limitations (queue
342 * depth settings). If a device driver gets a 'queue full' response,
343 * or if it simply chooses not to queue more I/O at one point, it can
344 * call this function to prevent the request_fn from being called until
345 * the driver has signalled it's ready to go again. This happens by calling
346 * blk_start_queue() to restart queue operations. Queue lock must be held.
347 **/
348 void blk_stop_queue(struct request_queue *q)
349 {
350 blk_remove_plug(q);
351 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
352 }
353 EXPORT_SYMBOL(blk_stop_queue);
354
355 /**
356 * blk_sync_queue - cancel any pending callbacks on a queue
357 * @q: the queue
358 *
359 * Description:
360 * The block layer may perform asynchronous callback activity
361 * on a queue, such as calling the unplug function after a timeout.
362 * A block device may call blk_sync_queue to ensure that any
363 * such activity is cancelled, thus allowing it to release resources
364 * that the callbacks might use. The caller must already have made sure
365 * that its ->make_request_fn will not re-add plugging prior to calling
366 * this function.
367 *
368 */
369 void blk_sync_queue(struct request_queue *q)
370 {
371 del_timer_sync(&q->unplug_timer);
372 kblockd_flush_work(&q->unplug_work);
373 }
374 EXPORT_SYMBOL(blk_sync_queue);
375
376 /**
377 * blk_run_queue - run a single device queue
378 * @q: The queue to run
379 */
380 void blk_run_queue(struct request_queue *q)
381 {
382 unsigned long flags;
383
384 spin_lock_irqsave(q->queue_lock, flags);
385 blk_remove_plug(q);
386
387 /*
388 * Only recurse once to avoid overrunning the stack, let the unplug
389 * handling reinvoke the handler shortly if we already got there.
390 */
391 if (!elv_queue_empty(q)) {
392 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
393 q->request_fn(q);
394 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
395 } else {
396 blk_plug_device(q);
397 kblockd_schedule_work(&q->unplug_work);
398 }
399 }
400
401 spin_unlock_irqrestore(q->queue_lock, flags);
402 }
403 EXPORT_SYMBOL(blk_run_queue);
404
405 void blk_put_queue(struct request_queue *q)
406 {
407 kobject_put(&q->kobj);
408 }
409 EXPORT_SYMBOL(blk_put_queue);
410
411 void blk_cleanup_queue(struct request_queue * q)
412 {
413 mutex_lock(&q->sysfs_lock);
414 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
415 mutex_unlock(&q->sysfs_lock);
416
417 if (q->elevator)
418 elevator_exit(q->elevator);
419
420 blk_put_queue(q);
421 }
422
423 EXPORT_SYMBOL(blk_cleanup_queue);
424
425 static int blk_init_free_list(struct request_queue *q)
426 {
427 struct request_list *rl = &q->rq;
428
429 rl->count[READ] = rl->count[WRITE] = 0;
430 rl->starved[READ] = rl->starved[WRITE] = 0;
431 rl->elvpriv = 0;
432 init_waitqueue_head(&rl->wait[READ]);
433 init_waitqueue_head(&rl->wait[WRITE]);
434
435 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
436 mempool_free_slab, request_cachep, q->node);
437
438 if (!rl->rq_pool)
439 return -ENOMEM;
440
441 return 0;
442 }
443
444 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
445 {
446 return blk_alloc_queue_node(gfp_mask, -1);
447 }
448 EXPORT_SYMBOL(blk_alloc_queue);
449
450 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
451 {
452 struct request_queue *q;
453 int err;
454
455 q = kmem_cache_alloc_node(blk_requestq_cachep,
456 gfp_mask | __GFP_ZERO, node_id);
457 if (!q)
458 return NULL;
459
460 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
461 q->backing_dev_info.unplug_io_data = q;
462 err = bdi_init(&q->backing_dev_info);
463 if (err) {
464 kmem_cache_free(blk_requestq_cachep, q);
465 return NULL;
466 }
467
468 init_timer(&q->unplug_timer);
469
470 kobject_init(&q->kobj, &blk_queue_ktype);
471
472 mutex_init(&q->sysfs_lock);
473
474 return q;
475 }
476 EXPORT_SYMBOL(blk_alloc_queue_node);
477
478 /**
479 * blk_init_queue - prepare a request queue for use with a block device
480 * @rfn: The function to be called to process requests that have been
481 * placed on the queue.
482 * @lock: Request queue spin lock
483 *
484 * Description:
485 * If a block device wishes to use the standard request handling procedures,
486 * which sorts requests and coalesces adjacent requests, then it must
487 * call blk_init_queue(). The function @rfn will be called when there
488 * are requests on the queue that need to be processed. If the device
489 * supports plugging, then @rfn may not be called immediately when requests
490 * are available on the queue, but may be called at some time later instead.
491 * Plugged queues are generally unplugged when a buffer belonging to one
492 * of the requests on the queue is needed, or due to memory pressure.
493 *
494 * @rfn is not required, or even expected, to remove all requests off the
495 * queue, but only as many as it can handle at a time. If it does leave
496 * requests on the queue, it is responsible for arranging that the requests
497 * get dealt with eventually.
498 *
499 * The queue spin lock must be held while manipulating the requests on the
500 * request queue; this lock will be taken also from interrupt context, so irq
501 * disabling is needed for it.
502 *
503 * Function returns a pointer to the initialized request queue, or NULL if
504 * it didn't succeed.
505 *
506 * Note:
507 * blk_init_queue() must be paired with a blk_cleanup_queue() call
508 * when the block device is deactivated (such as at module unload).
509 **/
510
511 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
512 {
513 return blk_init_queue_node(rfn, lock, -1);
514 }
515 EXPORT_SYMBOL(blk_init_queue);
516
517 struct request_queue *
518 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
519 {
520 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
521
522 if (!q)
523 return NULL;
524
525 q->node = node_id;
526 if (blk_init_free_list(q)) {
527 kmem_cache_free(blk_requestq_cachep, q);
528 return NULL;
529 }
530
531 /*
532 * if caller didn't supply a lock, they get per-queue locking with
533 * our embedded lock
534 */
535 if (!lock) {
536 spin_lock_init(&q->__queue_lock);
537 lock = &q->__queue_lock;
538 }
539
540 q->request_fn = rfn;
541 q->prep_rq_fn = NULL;
542 q->unplug_fn = generic_unplug_device;
543 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
544 q->queue_lock = lock;
545
546 blk_queue_segment_boundary(q, 0xffffffff);
547
548 blk_queue_make_request(q, __make_request);
549 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
550
551 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
552 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
553
554 q->sg_reserved_size = INT_MAX;
555
556 /*
557 * all done
558 */
559 if (!elevator_init(q, NULL)) {
560 blk_queue_congestion_threshold(q);
561 return q;
562 }
563
564 blk_put_queue(q);
565 return NULL;
566 }
567 EXPORT_SYMBOL(blk_init_queue_node);
568
569 int blk_get_queue(struct request_queue *q)
570 {
571 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
572 kobject_get(&q->kobj);
573 return 0;
574 }
575
576 return 1;
577 }
578
579 EXPORT_SYMBOL(blk_get_queue);
580
581 static inline void blk_free_request(struct request_queue *q, struct request *rq)
582 {
583 if (rq->cmd_flags & REQ_ELVPRIV)
584 elv_put_request(q, rq);
585 mempool_free(rq, q->rq.rq_pool);
586 }
587
588 static struct request *
589 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
590 {
591 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
592
593 if (!rq)
594 return NULL;
595
596 /*
597 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
598 * see bio.h and blkdev.h
599 */
600 rq->cmd_flags = rw | REQ_ALLOCED;
601
602 if (priv) {
603 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
604 mempool_free(rq, q->rq.rq_pool);
605 return NULL;
606 }
607 rq->cmd_flags |= REQ_ELVPRIV;
608 }
609
610 return rq;
611 }
612
613 /*
614 * ioc_batching returns true if the ioc is a valid batching request and
615 * should be given priority access to a request.
616 */
617 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
618 {
619 if (!ioc)
620 return 0;
621
622 /*
623 * Make sure the process is able to allocate at least 1 request
624 * even if the batch times out, otherwise we could theoretically
625 * lose wakeups.
626 */
627 return ioc->nr_batch_requests == q->nr_batching ||
628 (ioc->nr_batch_requests > 0
629 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
630 }
631
632 /*
633 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
634 * will cause the process to be a "batcher" on all queues in the system. This
635 * is the behaviour we want though - once it gets a wakeup it should be given
636 * a nice run.
637 */
638 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
639 {
640 if (!ioc || ioc_batching(q, ioc))
641 return;
642
643 ioc->nr_batch_requests = q->nr_batching;
644 ioc->last_waited = jiffies;
645 }
646
647 static void __freed_request(struct request_queue *q, int rw)
648 {
649 struct request_list *rl = &q->rq;
650
651 if (rl->count[rw] < queue_congestion_off_threshold(q))
652 blk_clear_queue_congested(q, rw);
653
654 if (rl->count[rw] + 1 <= q->nr_requests) {
655 if (waitqueue_active(&rl->wait[rw]))
656 wake_up(&rl->wait[rw]);
657
658 blk_clear_queue_full(q, rw);
659 }
660 }
661
662 /*
663 * A request has just been released. Account for it, update the full and
664 * congestion status, wake up any waiters. Called under q->queue_lock.
665 */
666 static void freed_request(struct request_queue *q, int rw, int priv)
667 {
668 struct request_list *rl = &q->rq;
669
670 rl->count[rw]--;
671 if (priv)
672 rl->elvpriv--;
673
674 __freed_request(q, rw);
675
676 if (unlikely(rl->starved[rw ^ 1]))
677 __freed_request(q, rw ^ 1);
678 }
679
680 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
681 /*
682 * Get a free request, queue_lock must be held.
683 * Returns NULL on failure, with queue_lock held.
684 * Returns !NULL on success, with queue_lock *not held*.
685 */
686 static struct request *get_request(struct request_queue *q, int rw_flags,
687 struct bio *bio, gfp_t gfp_mask)
688 {
689 struct request *rq = NULL;
690 struct request_list *rl = &q->rq;
691 struct io_context *ioc = NULL;
692 const int rw = rw_flags & 0x01;
693 int may_queue, priv;
694
695 may_queue = elv_may_queue(q, rw_flags);
696 if (may_queue == ELV_MQUEUE_NO)
697 goto rq_starved;
698
699 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
700 if (rl->count[rw]+1 >= q->nr_requests) {
701 ioc = current_io_context(GFP_ATOMIC, q->node);
702 /*
703 * The queue will fill after this allocation, so set
704 * it as full, and mark this process as "batching".
705 * This process will be allowed to complete a batch of
706 * requests, others will be blocked.
707 */
708 if (!blk_queue_full(q, rw)) {
709 ioc_set_batching(q, ioc);
710 blk_set_queue_full(q, rw);
711 } else {
712 if (may_queue != ELV_MQUEUE_MUST
713 && !ioc_batching(q, ioc)) {
714 /*
715 * The queue is full and the allocating
716 * process is not a "batcher", and not
717 * exempted by the IO scheduler
718 */
719 goto out;
720 }
721 }
722 }
723 blk_set_queue_congested(q, rw);
724 }
725
726 /*
727 * Only allow batching queuers to allocate up to 50% over the defined
728 * limit of requests, otherwise we could have thousands of requests
729 * allocated with any setting of ->nr_requests
730 */
731 if (rl->count[rw] >= (3 * q->nr_requests / 2))
732 goto out;
733
734 rl->count[rw]++;
735 rl->starved[rw] = 0;
736
737 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
738 if (priv)
739 rl->elvpriv++;
740
741 spin_unlock_irq(q->queue_lock);
742
743 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
744 if (unlikely(!rq)) {
745 /*
746 * Allocation failed presumably due to memory. Undo anything
747 * we might have messed up.
748 *
749 * Allocating task should really be put onto the front of the
750 * wait queue, but this is pretty rare.
751 */
752 spin_lock_irq(q->queue_lock);
753 freed_request(q, rw, priv);
754
755 /*
756 * in the very unlikely event that allocation failed and no
757 * requests for this direction was pending, mark us starved
758 * so that freeing of a request in the other direction will
759 * notice us. another possible fix would be to split the
760 * rq mempool into READ and WRITE
761 */
762 rq_starved:
763 if (unlikely(rl->count[rw] == 0))
764 rl->starved[rw] = 1;
765
766 goto out;
767 }
768
769 /*
770 * ioc may be NULL here, and ioc_batching will be false. That's
771 * OK, if the queue is under the request limit then requests need
772 * not count toward the nr_batch_requests limit. There will always
773 * be some limit enforced by BLK_BATCH_TIME.
774 */
775 if (ioc_batching(q, ioc))
776 ioc->nr_batch_requests--;
777
778 rq_init(q, rq);
779
780 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
781 out:
782 return rq;
783 }
784
785 /*
786 * No available requests for this queue, unplug the device and wait for some
787 * requests to become available.
788 *
789 * Called with q->queue_lock held, and returns with it unlocked.
790 */
791 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
792 struct bio *bio)
793 {
794 const int rw = rw_flags & 0x01;
795 struct request *rq;
796
797 rq = get_request(q, rw_flags, bio, GFP_NOIO);
798 while (!rq) {
799 DEFINE_WAIT(wait);
800 struct request_list *rl = &q->rq;
801
802 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
803 TASK_UNINTERRUPTIBLE);
804
805 rq = get_request(q, rw_flags, bio, GFP_NOIO);
806
807 if (!rq) {
808 struct io_context *ioc;
809
810 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
811
812 __generic_unplug_device(q);
813 spin_unlock_irq(q->queue_lock);
814 io_schedule();
815
816 /*
817 * After sleeping, we become a "batching" process and
818 * will be able to allocate at least one request, and
819 * up to a big batch of them for a small period time.
820 * See ioc_batching, ioc_set_batching
821 */
822 ioc = current_io_context(GFP_NOIO, q->node);
823 ioc_set_batching(q, ioc);
824
825 spin_lock_irq(q->queue_lock);
826 }
827 finish_wait(&rl->wait[rw], &wait);
828 }
829
830 return rq;
831 }
832
833 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
834 {
835 struct request *rq;
836
837 BUG_ON(rw != READ && rw != WRITE);
838
839 spin_lock_irq(q->queue_lock);
840 if (gfp_mask & __GFP_WAIT) {
841 rq = get_request_wait(q, rw, NULL);
842 } else {
843 rq = get_request(q, rw, NULL, gfp_mask);
844 if (!rq)
845 spin_unlock_irq(q->queue_lock);
846 }
847 /* q->queue_lock is unlocked at this point */
848
849 return rq;
850 }
851 EXPORT_SYMBOL(blk_get_request);
852
853 /**
854 * blk_start_queueing - initiate dispatch of requests to device
855 * @q: request queue to kick into gear
856 *
857 * This is basically a helper to remove the need to know whether a queue
858 * is plugged or not if someone just wants to initiate dispatch of requests
859 * for this queue.
860 *
861 * The queue lock must be held with interrupts disabled.
862 */
863 void blk_start_queueing(struct request_queue *q)
864 {
865 if (!blk_queue_plugged(q))
866 q->request_fn(q);
867 else
868 __generic_unplug_device(q);
869 }
870 EXPORT_SYMBOL(blk_start_queueing);
871
872 /**
873 * blk_requeue_request - put a request back on queue
874 * @q: request queue where request should be inserted
875 * @rq: request to be inserted
876 *
877 * Description:
878 * Drivers often keep queueing requests until the hardware cannot accept
879 * more, when that condition happens we need to put the request back
880 * on the queue. Must be called with queue lock held.
881 */
882 void blk_requeue_request(struct request_queue *q, struct request *rq)
883 {
884 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
885
886 if (blk_rq_tagged(rq))
887 blk_queue_end_tag(q, rq);
888
889 elv_requeue_request(q, rq);
890 }
891
892 EXPORT_SYMBOL(blk_requeue_request);
893
894 /**
895 * blk_insert_request - insert a special request in to a request queue
896 * @q: request queue where request should be inserted
897 * @rq: request to be inserted
898 * @at_head: insert request at head or tail of queue
899 * @data: private data
900 *
901 * Description:
902 * Many block devices need to execute commands asynchronously, so they don't
903 * block the whole kernel from preemption during request execution. This is
904 * accomplished normally by inserting aritficial requests tagged as
905 * REQ_SPECIAL in to the corresponding request queue, and letting them be
906 * scheduled for actual execution by the request queue.
907 *
908 * We have the option of inserting the head or the tail of the queue.
909 * Typically we use the tail for new ioctls and so forth. We use the head
910 * of the queue for things like a QUEUE_FULL message from a device, or a
911 * host that is unable to accept a particular command.
912 */
913 void blk_insert_request(struct request_queue *q, struct request *rq,
914 int at_head, void *data)
915 {
916 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
917 unsigned long flags;
918
919 /*
920 * tell I/O scheduler that this isn't a regular read/write (ie it
921 * must not attempt merges on this) and that it acts as a soft
922 * barrier
923 */
924 rq->cmd_type = REQ_TYPE_SPECIAL;
925 rq->cmd_flags |= REQ_SOFTBARRIER;
926
927 rq->special = data;
928
929 spin_lock_irqsave(q->queue_lock, flags);
930
931 /*
932 * If command is tagged, release the tag
933 */
934 if (blk_rq_tagged(rq))
935 blk_queue_end_tag(q, rq);
936
937 drive_stat_acct(rq, 1);
938 __elv_add_request(q, rq, where, 0);
939 blk_start_queueing(q);
940 spin_unlock_irqrestore(q->queue_lock, flags);
941 }
942
943 EXPORT_SYMBOL(blk_insert_request);
944
945 /*
946 * add-request adds a request to the linked list.
947 * queue lock is held and interrupts disabled, as we muck with the
948 * request queue list.
949 */
950 static inline void add_request(struct request_queue * q, struct request * req)
951 {
952 drive_stat_acct(req, 1);
953
954 /*
955 * elevator indicated where it wants this request to be
956 * inserted at elevator_merge time
957 */
958 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
959 }
960
961 /*
962 * disk_round_stats() - Round off the performance stats on a struct
963 * disk_stats.
964 *
965 * The average IO queue length and utilisation statistics are maintained
966 * by observing the current state of the queue length and the amount of
967 * time it has been in this state for.
968 *
969 * Normally, that accounting is done on IO completion, but that can result
970 * in more than a second's worth of IO being accounted for within any one
971 * second, leading to >100% utilisation. To deal with that, we call this
972 * function to do a round-off before returning the results when reading
973 * /proc/diskstats. This accounts immediately for all queue usage up to
974 * the current jiffies and restarts the counters again.
975 */
976 void disk_round_stats(struct gendisk *disk)
977 {
978 unsigned long now = jiffies;
979
980 if (now == disk->stamp)
981 return;
982
983 if (disk->in_flight) {
984 __disk_stat_add(disk, time_in_queue,
985 disk->in_flight * (now - disk->stamp));
986 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
987 }
988 disk->stamp = now;
989 }
990
991 EXPORT_SYMBOL_GPL(disk_round_stats);
992
993 /*
994 * queue lock must be held
995 */
996 void __blk_put_request(struct request_queue *q, struct request *req)
997 {
998 if (unlikely(!q))
999 return;
1000 if (unlikely(--req->ref_count))
1001 return;
1002
1003 elv_completed_request(q, req);
1004
1005 /*
1006 * Request may not have originated from ll_rw_blk. if not,
1007 * it didn't come out of our reserved rq pools
1008 */
1009 if (req->cmd_flags & REQ_ALLOCED) {
1010 int rw = rq_data_dir(req);
1011 int priv = req->cmd_flags & REQ_ELVPRIV;
1012
1013 BUG_ON(!list_empty(&req->queuelist));
1014 BUG_ON(!hlist_unhashed(&req->hash));
1015
1016 blk_free_request(q, req);
1017 freed_request(q, rw, priv);
1018 }
1019 }
1020
1021 EXPORT_SYMBOL_GPL(__blk_put_request);
1022
1023 void blk_put_request(struct request *req)
1024 {
1025 unsigned long flags;
1026 struct request_queue *q = req->q;
1027
1028 /*
1029 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
1030 * following if (q) test.
1031 */
1032 if (q) {
1033 spin_lock_irqsave(q->queue_lock, flags);
1034 __blk_put_request(q, req);
1035 spin_unlock_irqrestore(q->queue_lock, flags);
1036 }
1037 }
1038
1039 EXPORT_SYMBOL(blk_put_request);
1040
1041 void init_request_from_bio(struct request *req, struct bio *bio)
1042 {
1043 req->cmd_type = REQ_TYPE_FS;
1044
1045 /*
1046 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1047 */
1048 if (bio_rw_ahead(bio) || bio_failfast(bio))
1049 req->cmd_flags |= REQ_FAILFAST;
1050
1051 /*
1052 * REQ_BARRIER implies no merging, but lets make it explicit
1053 */
1054 if (unlikely(bio_barrier(bio)))
1055 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
1056
1057 if (bio_sync(bio))
1058 req->cmd_flags |= REQ_RW_SYNC;
1059 if (bio_rw_meta(bio))
1060 req->cmd_flags |= REQ_RW_META;
1061
1062 req->errors = 0;
1063 req->hard_sector = req->sector = bio->bi_sector;
1064 req->ioprio = bio_prio(bio);
1065 req->start_time = jiffies;
1066 blk_rq_bio_prep(req->q, req, bio);
1067 }
1068
1069 static int __make_request(struct request_queue *q, struct bio *bio)
1070 {
1071 struct request *req;
1072 int el_ret, nr_sectors, barrier, err;
1073 const unsigned short prio = bio_prio(bio);
1074 const int sync = bio_sync(bio);
1075 int rw_flags;
1076
1077 nr_sectors = bio_sectors(bio);
1078
1079 /*
1080 * low level driver can indicate that it wants pages above a
1081 * certain limit bounced to low memory (ie for highmem, or even
1082 * ISA dma in theory)
1083 */
1084 blk_queue_bounce(q, &bio);
1085
1086 barrier = bio_barrier(bio);
1087 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
1088 err = -EOPNOTSUPP;
1089 goto end_io;
1090 }
1091
1092 spin_lock_irq(q->queue_lock);
1093
1094 if (unlikely(barrier) || elv_queue_empty(q))
1095 goto get_rq;
1096
1097 el_ret = elv_merge(q, &req, bio);
1098 switch (el_ret) {
1099 case ELEVATOR_BACK_MERGE:
1100 BUG_ON(!rq_mergeable(req));
1101
1102 if (!ll_back_merge_fn(q, req, bio))
1103 break;
1104
1105 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
1106
1107 req->biotail->bi_next = bio;
1108 req->biotail = bio;
1109 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1110 req->ioprio = ioprio_best(req->ioprio, prio);
1111 drive_stat_acct(req, 0);
1112 if (!attempt_back_merge(q, req))
1113 elv_merged_request(q, req, el_ret);
1114 goto out;
1115
1116 case ELEVATOR_FRONT_MERGE:
1117 BUG_ON(!rq_mergeable(req));
1118
1119 if (!ll_front_merge_fn(q, req, bio))
1120 break;
1121
1122 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
1123
1124 bio->bi_next = req->bio;
1125 req->bio = bio;
1126
1127 /*
1128 * may not be valid. if the low level driver said
1129 * it didn't need a bounce buffer then it better
1130 * not touch req->buffer either...
1131 */
1132 req->buffer = bio_data(bio);
1133 req->current_nr_sectors = bio_cur_sectors(bio);
1134 req->hard_cur_sectors = req->current_nr_sectors;
1135 req->sector = req->hard_sector = bio->bi_sector;
1136 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1137 req->ioprio = ioprio_best(req->ioprio, prio);
1138 drive_stat_acct(req, 0);
1139 if (!attempt_front_merge(q, req))
1140 elv_merged_request(q, req, el_ret);
1141 goto out;
1142
1143 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1144 default:
1145 ;
1146 }
1147
1148 get_rq:
1149 /*
1150 * This sync check and mask will be re-done in init_request_from_bio(),
1151 * but we need to set it earlier to expose the sync flag to the
1152 * rq allocator and io schedulers.
1153 */
1154 rw_flags = bio_data_dir(bio);
1155 if (sync)
1156 rw_flags |= REQ_RW_SYNC;
1157
1158 /*
1159 * Grab a free request. This is might sleep but can not fail.
1160 * Returns with the queue unlocked.
1161 */
1162 req = get_request_wait(q, rw_flags, bio);
1163
1164 /*
1165 * After dropping the lock and possibly sleeping here, our request
1166 * may now be mergeable after it had proven unmergeable (above).
1167 * We don't worry about that case for efficiency. It won't happen
1168 * often, and the elevators are able to handle it.
1169 */
1170 init_request_from_bio(req, bio);
1171
1172 spin_lock_irq(q->queue_lock);
1173 if (elv_queue_empty(q))
1174 blk_plug_device(q);
1175 add_request(q, req);
1176 out:
1177 if (sync)
1178 __generic_unplug_device(q);
1179
1180 spin_unlock_irq(q->queue_lock);
1181 return 0;
1182
1183 end_io:
1184 bio_endio(bio, err);
1185 return 0;
1186 }
1187
1188 /*
1189 * If bio->bi_dev is a partition, remap the location
1190 */
1191 static inline void blk_partition_remap(struct bio *bio)
1192 {
1193 struct block_device *bdev = bio->bi_bdev;
1194
1195 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1196 struct hd_struct *p = bdev->bd_part;
1197 const int rw = bio_data_dir(bio);
1198
1199 p->sectors[rw] += bio_sectors(bio);
1200 p->ios[rw]++;
1201
1202 bio->bi_sector += p->start_sect;
1203 bio->bi_bdev = bdev->bd_contains;
1204
1205 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
1206 bdev->bd_dev, bio->bi_sector,
1207 bio->bi_sector - p->start_sect);
1208 }
1209 }
1210
1211 static void handle_bad_sector(struct bio *bio)
1212 {
1213 char b[BDEVNAME_SIZE];
1214
1215 printk(KERN_INFO "attempt to access beyond end of device\n");
1216 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1217 bdevname(bio->bi_bdev, b),
1218 bio->bi_rw,
1219 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1220 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1221
1222 set_bit(BIO_EOF, &bio->bi_flags);
1223 }
1224
1225 #ifdef CONFIG_FAIL_MAKE_REQUEST
1226
1227 static DECLARE_FAULT_ATTR(fail_make_request);
1228
1229 static int __init setup_fail_make_request(char *str)
1230 {
1231 return setup_fault_attr(&fail_make_request, str);
1232 }
1233 __setup("fail_make_request=", setup_fail_make_request);
1234
1235 static int should_fail_request(struct bio *bio)
1236 {
1237 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
1238 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
1239 return should_fail(&fail_make_request, bio->bi_size);
1240
1241 return 0;
1242 }
1243
1244 static int __init fail_make_request_debugfs(void)
1245 {
1246 return init_fault_attr_dentries(&fail_make_request,
1247 "fail_make_request");
1248 }
1249
1250 late_initcall(fail_make_request_debugfs);
1251
1252 #else /* CONFIG_FAIL_MAKE_REQUEST */
1253
1254 static inline int should_fail_request(struct bio *bio)
1255 {
1256 return 0;
1257 }
1258
1259 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1260
1261 /*
1262 * Check whether this bio extends beyond the end of the device.
1263 */
1264 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1265 {
1266 sector_t maxsector;
1267
1268 if (!nr_sectors)
1269 return 0;
1270
1271 /* Test device or partition size, when known. */
1272 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1273 if (maxsector) {
1274 sector_t sector = bio->bi_sector;
1275
1276 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1277 /*
1278 * This may well happen - the kernel calls bread()
1279 * without checking the size of the device, e.g., when
1280 * mounting a device.
1281 */
1282 handle_bad_sector(bio);
1283 return 1;
1284 }
1285 }
1286
1287 return 0;
1288 }
1289
1290 /**
1291 * generic_make_request: hand a buffer to its device driver for I/O
1292 * @bio: The bio describing the location in memory and on the device.
1293 *
1294 * generic_make_request() is used to make I/O requests of block
1295 * devices. It is passed a &struct bio, which describes the I/O that needs
1296 * to be done.
1297 *
1298 * generic_make_request() does not return any status. The
1299 * success/failure status of the request, along with notification of
1300 * completion, is delivered asynchronously through the bio->bi_end_io
1301 * function described (one day) else where.
1302 *
1303 * The caller of generic_make_request must make sure that bi_io_vec
1304 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1305 * set to describe the device address, and the
1306 * bi_end_io and optionally bi_private are set to describe how
1307 * completion notification should be signaled.
1308 *
1309 * generic_make_request and the drivers it calls may use bi_next if this
1310 * bio happens to be merged with someone else, and may change bi_dev and
1311 * bi_sector for remaps as it sees fit. So the values of these fields
1312 * should NOT be depended on after the call to generic_make_request.
1313 */
1314 static inline void __generic_make_request(struct bio *bio)
1315 {
1316 struct request_queue *q;
1317 sector_t old_sector;
1318 int ret, nr_sectors = bio_sectors(bio);
1319 dev_t old_dev;
1320 int err = -EIO;
1321
1322 might_sleep();
1323
1324 if (bio_check_eod(bio, nr_sectors))
1325 goto end_io;
1326
1327 /*
1328 * Resolve the mapping until finished. (drivers are
1329 * still free to implement/resolve their own stacking
1330 * by explicitly returning 0)
1331 *
1332 * NOTE: we don't repeat the blk_size check for each new device.
1333 * Stacking drivers are expected to know what they are doing.
1334 */
1335 old_sector = -1;
1336 old_dev = 0;
1337 do {
1338 char b[BDEVNAME_SIZE];
1339
1340 q = bdev_get_queue(bio->bi_bdev);
1341 if (!q) {
1342 printk(KERN_ERR
1343 "generic_make_request: Trying to access "
1344 "nonexistent block-device %s (%Lu)\n",
1345 bdevname(bio->bi_bdev, b),
1346 (long long) bio->bi_sector);
1347 end_io:
1348 bio_endio(bio, err);
1349 break;
1350 }
1351
1352 if (unlikely(nr_sectors > q->max_hw_sectors)) {
1353 printk("bio too big device %s (%u > %u)\n",
1354 bdevname(bio->bi_bdev, b),
1355 bio_sectors(bio),
1356 q->max_hw_sectors);
1357 goto end_io;
1358 }
1359
1360 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1361 goto end_io;
1362
1363 if (should_fail_request(bio))
1364 goto end_io;
1365
1366 /*
1367 * If this device has partitions, remap block n
1368 * of partition p to block n+start(p) of the disk.
1369 */
1370 blk_partition_remap(bio);
1371
1372 if (old_sector != -1)
1373 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
1374 old_sector);
1375
1376 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
1377
1378 old_sector = bio->bi_sector;
1379 old_dev = bio->bi_bdev->bd_dev;
1380
1381 if (bio_check_eod(bio, nr_sectors))
1382 goto end_io;
1383 if (bio_empty_barrier(bio) && !q->prepare_flush_fn) {
1384 err = -EOPNOTSUPP;
1385 goto end_io;
1386 }
1387
1388 ret = q->make_request_fn(q, bio);
1389 } while (ret);
1390 }
1391
1392 /*
1393 * We only want one ->make_request_fn to be active at a time,
1394 * else stack usage with stacked devices could be a problem.
1395 * So use current->bio_{list,tail} to keep a list of requests
1396 * submited by a make_request_fn function.
1397 * current->bio_tail is also used as a flag to say if
1398 * generic_make_request is currently active in this task or not.
1399 * If it is NULL, then no make_request is active. If it is non-NULL,
1400 * then a make_request is active, and new requests should be added
1401 * at the tail
1402 */
1403 void generic_make_request(struct bio *bio)
1404 {
1405 if (current->bio_tail) {
1406 /* make_request is active */
1407 *(current->bio_tail) = bio;
1408 bio->bi_next = NULL;
1409 current->bio_tail = &bio->bi_next;
1410 return;
1411 }
1412 /* following loop may be a bit non-obvious, and so deserves some
1413 * explanation.
1414 * Before entering the loop, bio->bi_next is NULL (as all callers
1415 * ensure that) so we have a list with a single bio.
1416 * We pretend that we have just taken it off a longer list, so
1417 * we assign bio_list to the next (which is NULL) and bio_tail
1418 * to &bio_list, thus initialising the bio_list of new bios to be
1419 * added. __generic_make_request may indeed add some more bios
1420 * through a recursive call to generic_make_request. If it
1421 * did, we find a non-NULL value in bio_list and re-enter the loop
1422 * from the top. In this case we really did just take the bio
1423 * of the top of the list (no pretending) and so fixup bio_list and
1424 * bio_tail or bi_next, and call into __generic_make_request again.
1425 *
1426 * The loop was structured like this to make only one call to
1427 * __generic_make_request (which is important as it is large and
1428 * inlined) and to keep the structure simple.
1429 */
1430 BUG_ON(bio->bi_next);
1431 do {
1432 current->bio_list = bio->bi_next;
1433 if (bio->bi_next == NULL)
1434 current->bio_tail = &current->bio_list;
1435 else
1436 bio->bi_next = NULL;
1437 __generic_make_request(bio);
1438 bio = current->bio_list;
1439 } while (bio);
1440 current->bio_tail = NULL; /* deactivate */
1441 }
1442
1443 EXPORT_SYMBOL(generic_make_request);
1444
1445 /**
1446 * submit_bio: submit a bio to the block device layer for I/O
1447 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1448 * @bio: The &struct bio which describes the I/O
1449 *
1450 * submit_bio() is very similar in purpose to generic_make_request(), and
1451 * uses that function to do most of the work. Both are fairly rough
1452 * interfaces, @bio must be presetup and ready for I/O.
1453 *
1454 */
1455 void submit_bio(int rw, struct bio *bio)
1456 {
1457 int count = bio_sectors(bio);
1458
1459 bio->bi_rw |= rw;
1460
1461 /*
1462 * If it's a regular read/write or a barrier with data attached,
1463 * go through the normal accounting stuff before submission.
1464 */
1465 if (!bio_empty_barrier(bio)) {
1466
1467 BIO_BUG_ON(!bio->bi_size);
1468 BIO_BUG_ON(!bio->bi_io_vec);
1469
1470 if (rw & WRITE) {
1471 count_vm_events(PGPGOUT, count);
1472 } else {
1473 task_io_account_read(bio->bi_size);
1474 count_vm_events(PGPGIN, count);
1475 }
1476
1477 if (unlikely(block_dump)) {
1478 char b[BDEVNAME_SIZE];
1479 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1480 current->comm, task_pid_nr(current),
1481 (rw & WRITE) ? "WRITE" : "READ",
1482 (unsigned long long)bio->bi_sector,
1483 bdevname(bio->bi_bdev,b));
1484 }
1485 }
1486
1487 generic_make_request(bio);
1488 }
1489
1490 EXPORT_SYMBOL(submit_bio);
1491
1492 /**
1493 * __end_that_request_first - end I/O on a request
1494 * @req: the request being processed
1495 * @error: 0 for success, < 0 for error
1496 * @nr_bytes: number of bytes to complete
1497 *
1498 * Description:
1499 * Ends I/O on a number of bytes attached to @req, and sets it up
1500 * for the next range of segments (if any) in the cluster.
1501 *
1502 * Return:
1503 * 0 - we are done with this request, call end_that_request_last()
1504 * 1 - still buffers pending for this request
1505 **/
1506 static int __end_that_request_first(struct request *req, int error,
1507 int nr_bytes)
1508 {
1509 int total_bytes, bio_nbytes, next_idx = 0;
1510 struct bio *bio;
1511
1512 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
1513
1514 /*
1515 * for a REQ_BLOCK_PC request, we want to carry any eventual
1516 * sense key with us all the way through
1517 */
1518 if (!blk_pc_request(req))
1519 req->errors = 0;
1520
1521 if (error) {
1522 if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
1523 printk("end_request: I/O error, dev %s, sector %llu\n",
1524 req->rq_disk ? req->rq_disk->disk_name : "?",
1525 (unsigned long long)req->sector);
1526 }
1527
1528 if (blk_fs_request(req) && req->rq_disk) {
1529 const int rw = rq_data_dir(req);
1530
1531 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
1532 }
1533
1534 total_bytes = bio_nbytes = 0;
1535 while ((bio = req->bio) != NULL) {
1536 int nbytes;
1537
1538 /*
1539 * For an empty barrier request, the low level driver must
1540 * store a potential error location in ->sector. We pass
1541 * that back up in ->bi_sector.
1542 */
1543 if (blk_empty_barrier(req))
1544 bio->bi_sector = req->sector;
1545
1546 if (nr_bytes >= bio->bi_size) {
1547 req->bio = bio->bi_next;
1548 nbytes = bio->bi_size;
1549 req_bio_endio(req, bio, nbytes, error);
1550 next_idx = 0;
1551 bio_nbytes = 0;
1552 } else {
1553 int idx = bio->bi_idx + next_idx;
1554
1555 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1556 blk_dump_rq_flags(req, "__end_that");
1557 printk("%s: bio idx %d >= vcnt %d\n",
1558 __FUNCTION__,
1559 bio->bi_idx, bio->bi_vcnt);
1560 break;
1561 }
1562
1563 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1564 BIO_BUG_ON(nbytes > bio->bi_size);
1565
1566 /*
1567 * not a complete bvec done
1568 */
1569 if (unlikely(nbytes > nr_bytes)) {
1570 bio_nbytes += nr_bytes;
1571 total_bytes += nr_bytes;
1572 break;
1573 }
1574
1575 /*
1576 * advance to the next vector
1577 */
1578 next_idx++;
1579 bio_nbytes += nbytes;
1580 }
1581
1582 total_bytes += nbytes;
1583 nr_bytes -= nbytes;
1584
1585 if ((bio = req->bio)) {
1586 /*
1587 * end more in this run, or just return 'not-done'
1588 */
1589 if (unlikely(nr_bytes <= 0))
1590 break;
1591 }
1592 }
1593
1594 /*
1595 * completely done
1596 */
1597 if (!req->bio)
1598 return 0;
1599
1600 /*
1601 * if the request wasn't completed, update state
1602 */
1603 if (bio_nbytes) {
1604 req_bio_endio(req, bio, bio_nbytes, error);
1605 bio->bi_idx += next_idx;
1606 bio_iovec(bio)->bv_offset += nr_bytes;
1607 bio_iovec(bio)->bv_len -= nr_bytes;
1608 }
1609
1610 blk_recalc_rq_sectors(req, total_bytes >> 9);
1611 blk_recalc_rq_segments(req);
1612 return 1;
1613 }
1614
1615 /*
1616 * splice the completion data to a local structure and hand off to
1617 * process_completion_queue() to complete the requests
1618 */
1619 static void blk_done_softirq(struct softirq_action *h)
1620 {
1621 struct list_head *cpu_list, local_list;
1622
1623 local_irq_disable();
1624 cpu_list = &__get_cpu_var(blk_cpu_done);
1625 list_replace_init(cpu_list, &local_list);
1626 local_irq_enable();
1627
1628 while (!list_empty(&local_list)) {
1629 struct request *rq = list_entry(local_list.next, struct request, donelist);
1630
1631 list_del_init(&rq->donelist);
1632 rq->q->softirq_done_fn(rq);
1633 }
1634 }
1635
1636 static int __cpuinit blk_cpu_notify(struct notifier_block *self, unsigned long action,
1637 void *hcpu)
1638 {
1639 /*
1640 * If a CPU goes away, splice its entries to the current CPU
1641 * and trigger a run of the softirq
1642 */
1643 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1644 int cpu = (unsigned long) hcpu;
1645
1646 local_irq_disable();
1647 list_splice_init(&per_cpu(blk_cpu_done, cpu),
1648 &__get_cpu_var(blk_cpu_done));
1649 raise_softirq_irqoff(BLOCK_SOFTIRQ);
1650 local_irq_enable();
1651 }
1652
1653 return NOTIFY_OK;
1654 }
1655
1656
1657 static struct notifier_block blk_cpu_notifier __cpuinitdata = {
1658 .notifier_call = blk_cpu_notify,
1659 };
1660
1661 /**
1662 * blk_complete_request - end I/O on a request
1663 * @req: the request being processed
1664 *
1665 * Description:
1666 * Ends all I/O on a request. It does not handle partial completions,
1667 * unless the driver actually implements this in its completion callback
1668 * through requeueing. The actual completion happens out-of-order,
1669 * through a softirq handler. The user must have registered a completion
1670 * callback through blk_queue_softirq_done().
1671 **/
1672
1673 void blk_complete_request(struct request *req)
1674 {
1675 struct list_head *cpu_list;
1676 unsigned long flags;
1677
1678 BUG_ON(!req->q->softirq_done_fn);
1679
1680 local_irq_save(flags);
1681
1682 cpu_list = &__get_cpu_var(blk_cpu_done);
1683 list_add_tail(&req->donelist, cpu_list);
1684 raise_softirq_irqoff(BLOCK_SOFTIRQ);
1685
1686 local_irq_restore(flags);
1687 }
1688
1689 EXPORT_SYMBOL(blk_complete_request);
1690
1691 /*
1692 * queue lock must be held
1693 */
1694 static void end_that_request_last(struct request *req, int error)
1695 {
1696 struct gendisk *disk = req->rq_disk;
1697
1698 if (blk_rq_tagged(req))
1699 blk_queue_end_tag(req->q, req);
1700
1701 if (blk_queued_rq(req))
1702 blkdev_dequeue_request(req);
1703
1704 if (unlikely(laptop_mode) && blk_fs_request(req))
1705 laptop_io_completion();
1706
1707 /*
1708 * Account IO completion. bar_rq isn't accounted as a normal
1709 * IO on queueing nor completion. Accounting the containing
1710 * request is enough.
1711 */
1712 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1713 unsigned long duration = jiffies - req->start_time;
1714 const int rw = rq_data_dir(req);
1715
1716 __disk_stat_inc(disk, ios[rw]);
1717 __disk_stat_add(disk, ticks[rw], duration);
1718 disk_round_stats(disk);
1719 disk->in_flight--;
1720 }
1721
1722 if (req->end_io)
1723 req->end_io(req, error);
1724 else {
1725 if (blk_bidi_rq(req))
1726 __blk_put_request(req->next_rq->q, req->next_rq);
1727
1728 __blk_put_request(req->q, req);
1729 }
1730 }
1731
1732 static inline void __end_request(struct request *rq, int uptodate,
1733 unsigned int nr_bytes)
1734 {
1735 int error = 0;
1736
1737 if (uptodate <= 0)
1738 error = uptodate ? uptodate : -EIO;
1739
1740 __blk_end_request(rq, error, nr_bytes);
1741 }
1742
1743 /**
1744 * blk_rq_bytes - Returns bytes left to complete in the entire request
1745 **/
1746 unsigned int blk_rq_bytes(struct request *rq)
1747 {
1748 if (blk_fs_request(rq))
1749 return rq->hard_nr_sectors << 9;
1750
1751 return rq->data_len;
1752 }
1753 EXPORT_SYMBOL_GPL(blk_rq_bytes);
1754
1755 /**
1756 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
1757 **/
1758 unsigned int blk_rq_cur_bytes(struct request *rq)
1759 {
1760 if (blk_fs_request(rq))
1761 return rq->current_nr_sectors << 9;
1762
1763 if (rq->bio)
1764 return rq->bio->bi_size;
1765
1766 return rq->data_len;
1767 }
1768 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
1769
1770 /**
1771 * end_queued_request - end all I/O on a queued request
1772 * @rq: the request being processed
1773 * @uptodate: error value or 0/1 uptodate flag
1774 *
1775 * Description:
1776 * Ends all I/O on a request, and removes it from the block layer queues.
1777 * Not suitable for normal IO completion, unless the driver still has
1778 * the request attached to the block layer.
1779 *
1780 **/
1781 void end_queued_request(struct request *rq, int uptodate)
1782 {
1783 __end_request(rq, uptodate, blk_rq_bytes(rq));
1784 }
1785 EXPORT_SYMBOL(end_queued_request);
1786
1787 /**
1788 * end_dequeued_request - end all I/O on a dequeued request
1789 * @rq: the request being processed
1790 * @uptodate: error value or 0/1 uptodate flag
1791 *
1792 * Description:
1793 * Ends all I/O on a request. The request must already have been
1794 * dequeued using blkdev_dequeue_request(), as is normally the case
1795 * for most drivers.
1796 *
1797 **/
1798 void end_dequeued_request(struct request *rq, int uptodate)
1799 {
1800 __end_request(rq, uptodate, blk_rq_bytes(rq));
1801 }
1802 EXPORT_SYMBOL(end_dequeued_request);
1803
1804
1805 /**
1806 * end_request - end I/O on the current segment of the request
1807 * @req: the request being processed
1808 * @uptodate: error value or 0/1 uptodate flag
1809 *
1810 * Description:
1811 * Ends I/O on the current segment of a request. If that is the only
1812 * remaining segment, the request is also completed and freed.
1813 *
1814 * This is a remnant of how older block drivers handled IO completions.
1815 * Modern drivers typically end IO on the full request in one go, unless
1816 * they have a residual value to account for. For that case this function
1817 * isn't really useful, unless the residual just happens to be the
1818 * full current segment. In other words, don't use this function in new
1819 * code. Either use end_request_completely(), or the
1820 * end_that_request_chunk() (along with end_that_request_last()) for
1821 * partial completions.
1822 *
1823 **/
1824 void end_request(struct request *req, int uptodate)
1825 {
1826 __end_request(req, uptodate, req->hard_cur_sectors << 9);
1827 }
1828 EXPORT_SYMBOL(end_request);
1829
1830 /**
1831 * blk_end_io - Generic end_io function to complete a request.
1832 * @rq: the request being processed
1833 * @error: 0 for success, < 0 for error
1834 * @nr_bytes: number of bytes to complete @rq
1835 * @bidi_bytes: number of bytes to complete @rq->next_rq
1836 * @drv_callback: function called between completion of bios in the request
1837 * and completion of the request.
1838 * If the callback returns non 0, this helper returns without
1839 * completion of the request.
1840 *
1841 * Description:
1842 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1843 * If @rq has leftover, sets it up for the next range of segments.
1844 *
1845 * Return:
1846 * 0 - we are done with this request
1847 * 1 - this request is not freed yet, it still has pending buffers.
1848 **/
1849 static int blk_end_io(struct request *rq, int error, int nr_bytes,
1850 int bidi_bytes, int (drv_callback)(struct request *))
1851 {
1852 struct request_queue *q = rq->q;
1853 unsigned long flags = 0UL;
1854
1855 if (blk_fs_request(rq) || blk_pc_request(rq)) {
1856 if (__end_that_request_first(rq, error, nr_bytes))
1857 return 1;
1858
1859 /* Bidi request must be completed as a whole */
1860 if (blk_bidi_rq(rq) &&
1861 __end_that_request_first(rq->next_rq, error, bidi_bytes))
1862 return 1;
1863 }
1864
1865 /* Special feature for tricky drivers */
1866 if (drv_callback && drv_callback(rq))
1867 return 1;
1868
1869 add_disk_randomness(rq->rq_disk);
1870
1871 spin_lock_irqsave(q->queue_lock, flags);
1872 end_that_request_last(rq, error);
1873 spin_unlock_irqrestore(q->queue_lock, flags);
1874
1875 return 0;
1876 }
1877
1878 /**
1879 * blk_end_request - Helper function for drivers to complete the request.
1880 * @rq: the request being processed
1881 * @error: 0 for success, < 0 for error
1882 * @nr_bytes: number of bytes to complete
1883 *
1884 * Description:
1885 * Ends I/O on a number of bytes attached to @rq.
1886 * If @rq has leftover, sets it up for the next range of segments.
1887 *
1888 * Return:
1889 * 0 - we are done with this request
1890 * 1 - still buffers pending for this request
1891 **/
1892 int blk_end_request(struct request *rq, int error, int nr_bytes)
1893 {
1894 return blk_end_io(rq, error, nr_bytes, 0, NULL);
1895 }
1896 EXPORT_SYMBOL_GPL(blk_end_request);
1897
1898 /**
1899 * __blk_end_request - Helper function for drivers to complete the request.
1900 * @rq: the request being processed
1901 * @error: 0 for success, < 0 for error
1902 * @nr_bytes: number of bytes to complete
1903 *
1904 * Description:
1905 * Must be called with queue lock held unlike blk_end_request().
1906 *
1907 * Return:
1908 * 0 - we are done with this request
1909 * 1 - still buffers pending for this request
1910 **/
1911 int __blk_end_request(struct request *rq, int error, int nr_bytes)
1912 {
1913 if (blk_fs_request(rq) || blk_pc_request(rq)) {
1914 if (__end_that_request_first(rq, error, nr_bytes))
1915 return 1;
1916 }
1917
1918 add_disk_randomness(rq->rq_disk);
1919
1920 end_that_request_last(rq, error);
1921
1922 return 0;
1923 }
1924 EXPORT_SYMBOL_GPL(__blk_end_request);
1925
1926 /**
1927 * blk_end_bidi_request - Helper function for drivers to complete bidi request.
1928 * @rq: the bidi request being processed
1929 * @error: 0 for success, < 0 for error
1930 * @nr_bytes: number of bytes to complete @rq
1931 * @bidi_bytes: number of bytes to complete @rq->next_rq
1932 *
1933 * Description:
1934 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1935 *
1936 * Return:
1937 * 0 - we are done with this request
1938 * 1 - still buffers pending for this request
1939 **/
1940 int blk_end_bidi_request(struct request *rq, int error, int nr_bytes,
1941 int bidi_bytes)
1942 {
1943 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
1944 }
1945 EXPORT_SYMBOL_GPL(blk_end_bidi_request);
1946
1947 /**
1948 * blk_end_request_callback - Special helper function for tricky drivers
1949 * @rq: the request being processed
1950 * @error: 0 for success, < 0 for error
1951 * @nr_bytes: number of bytes to complete
1952 * @drv_callback: function called between completion of bios in the request
1953 * and completion of the request.
1954 * If the callback returns non 0, this helper returns without
1955 * completion of the request.
1956 *
1957 * Description:
1958 * Ends I/O on a number of bytes attached to @rq.
1959 * If @rq has leftover, sets it up for the next range of segments.
1960 *
1961 * This special helper function is used only for existing tricky drivers.
1962 * (e.g. cdrom_newpc_intr() of ide-cd)
1963 * This interface will be removed when such drivers are rewritten.
1964 * Don't use this interface in other places anymore.
1965 *
1966 * Return:
1967 * 0 - we are done with this request
1968 * 1 - this request is not freed yet.
1969 * this request still has pending buffers or
1970 * the driver doesn't want to finish this request yet.
1971 **/
1972 int blk_end_request_callback(struct request *rq, int error, int nr_bytes,
1973 int (drv_callback)(struct request *))
1974 {
1975 return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
1976 }
1977 EXPORT_SYMBOL_GPL(blk_end_request_callback);
1978
1979 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
1980 struct bio *bio)
1981 {
1982 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
1983 rq->cmd_flags |= (bio->bi_rw & 3);
1984
1985 rq->nr_phys_segments = bio_phys_segments(q, bio);
1986 rq->nr_hw_segments = bio_hw_segments(q, bio);
1987 rq->current_nr_sectors = bio_cur_sectors(bio);
1988 rq->hard_cur_sectors = rq->current_nr_sectors;
1989 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
1990 rq->buffer = bio_data(bio);
1991 rq->data_len = bio->bi_size;
1992
1993 rq->bio = rq->biotail = bio;
1994
1995 if (bio->bi_bdev)
1996 rq->rq_disk = bio->bi_bdev->bd_disk;
1997 }
1998
1999 int kblockd_schedule_work(struct work_struct *work)
2000 {
2001 return queue_work(kblockd_workqueue, work);
2002 }
2003
2004 EXPORT_SYMBOL(kblockd_schedule_work);
2005
2006 void kblockd_flush_work(struct work_struct *work)
2007 {
2008 cancel_work_sync(work);
2009 }
2010 EXPORT_SYMBOL(kblockd_flush_work);
2011
2012 int __init blk_dev_init(void)
2013 {
2014 int i;
2015
2016 kblockd_workqueue = create_workqueue("kblockd");
2017 if (!kblockd_workqueue)
2018 panic("Failed to create kblockd\n");
2019
2020 request_cachep = kmem_cache_create("blkdev_requests",
2021 sizeof(struct request), 0, SLAB_PANIC, NULL);
2022
2023 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2024 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2025
2026 for_each_possible_cpu(i)
2027 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
2028
2029 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
2030 register_hotcpu_notifier(&blk_cpu_notifier);
2031
2032 return 0;
2033 }
2034
This page took 0.072333 seconds and 5 git commands to generate.