Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[deliverable/linux.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/block.h>
38
39 #include "blk.h"
40 #include "blk-cgroup.h"
41 #include "blk-mq.h"
42
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
48
49 DEFINE_IDA(blk_queue_ida);
50
51 /*
52 * For the allocated request tables
53 */
54 struct kmem_cache *request_cachep = NULL;
55
56 /*
57 * For queue allocation
58 */
59 struct kmem_cache *blk_requestq_cachep;
60
61 /*
62 * Controlling structure to kblockd
63 */
64 static struct workqueue_struct *kblockd_workqueue;
65
66 void blk_queue_congestion_threshold(struct request_queue *q)
67 {
68 int nr;
69
70 nr = q->nr_requests - (q->nr_requests / 8) + 1;
71 if (nr > q->nr_requests)
72 nr = q->nr_requests;
73 q->nr_congestion_on = nr;
74
75 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
76 if (nr < 1)
77 nr = 1;
78 q->nr_congestion_off = nr;
79 }
80
81 /**
82 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
83 * @bdev: device
84 *
85 * Locates the passed device's request queue and returns the address of its
86 * backing_dev_info. This function can only be called if @bdev is opened
87 * and the return value is never NULL.
88 */
89 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
90 {
91 struct request_queue *q = bdev_get_queue(bdev);
92
93 return &q->backing_dev_info;
94 }
95 EXPORT_SYMBOL(blk_get_backing_dev_info);
96
97 void blk_rq_init(struct request_queue *q, struct request *rq)
98 {
99 memset(rq, 0, sizeof(*rq));
100
101 INIT_LIST_HEAD(&rq->queuelist);
102 INIT_LIST_HEAD(&rq->timeout_list);
103 rq->cpu = -1;
104 rq->q = q;
105 rq->__sector = (sector_t) -1;
106 INIT_HLIST_NODE(&rq->hash);
107 RB_CLEAR_NODE(&rq->rb_node);
108 rq->cmd = rq->__cmd;
109 rq->cmd_len = BLK_MAX_CDB;
110 rq->tag = -1;
111 rq->start_time = jiffies;
112 set_start_time_ns(rq);
113 rq->part = NULL;
114 }
115 EXPORT_SYMBOL(blk_rq_init);
116
117 static void req_bio_endio(struct request *rq, struct bio *bio,
118 unsigned int nbytes, int error)
119 {
120 if (error)
121 clear_bit(BIO_UPTODATE, &bio->bi_flags);
122 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
123 error = -EIO;
124
125 if (unlikely(rq->cmd_flags & REQ_QUIET))
126 set_bit(BIO_QUIET, &bio->bi_flags);
127
128 bio_advance(bio, nbytes);
129
130 /* don't actually finish bio if it's part of flush sequence */
131 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
132 bio_endio(bio, error);
133 }
134
135 void blk_dump_rq_flags(struct request *rq, char *msg)
136 {
137 int bit;
138
139 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
140 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
141 (unsigned long long) rq->cmd_flags);
142
143 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
144 (unsigned long long)blk_rq_pos(rq),
145 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
146 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
147 rq->bio, rq->biotail, blk_rq_bytes(rq));
148
149 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
150 printk(KERN_INFO " cdb: ");
151 for (bit = 0; bit < BLK_MAX_CDB; bit++)
152 printk("%02x ", rq->cmd[bit]);
153 printk("\n");
154 }
155 }
156 EXPORT_SYMBOL(blk_dump_rq_flags);
157
158 static void blk_delay_work(struct work_struct *work)
159 {
160 struct request_queue *q;
161
162 q = container_of(work, struct request_queue, delay_work.work);
163 spin_lock_irq(q->queue_lock);
164 __blk_run_queue(q);
165 spin_unlock_irq(q->queue_lock);
166 }
167
168 /**
169 * blk_delay_queue - restart queueing after defined interval
170 * @q: The &struct request_queue in question
171 * @msecs: Delay in msecs
172 *
173 * Description:
174 * Sometimes queueing needs to be postponed for a little while, to allow
175 * resources to come back. This function will make sure that queueing is
176 * restarted around the specified time. Queue lock must be held.
177 */
178 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
179 {
180 if (likely(!blk_queue_dead(q)))
181 queue_delayed_work(kblockd_workqueue, &q->delay_work,
182 msecs_to_jiffies(msecs));
183 }
184 EXPORT_SYMBOL(blk_delay_queue);
185
186 /**
187 * blk_start_queue - restart a previously stopped queue
188 * @q: The &struct request_queue in question
189 *
190 * Description:
191 * blk_start_queue() will clear the stop flag on the queue, and call
192 * the request_fn for the queue if it was in a stopped state when
193 * entered. Also see blk_stop_queue(). Queue lock must be held.
194 **/
195 void blk_start_queue(struct request_queue *q)
196 {
197 WARN_ON(!irqs_disabled());
198
199 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
200 __blk_run_queue(q);
201 }
202 EXPORT_SYMBOL(blk_start_queue);
203
204 /**
205 * blk_stop_queue - stop a queue
206 * @q: The &struct request_queue in question
207 *
208 * Description:
209 * The Linux block layer assumes that a block driver will consume all
210 * entries on the request queue when the request_fn strategy is called.
211 * Often this will not happen, because of hardware limitations (queue
212 * depth settings). If a device driver gets a 'queue full' response,
213 * or if it simply chooses not to queue more I/O at one point, it can
214 * call this function to prevent the request_fn from being called until
215 * the driver has signalled it's ready to go again. This happens by calling
216 * blk_start_queue() to restart queue operations. Queue lock must be held.
217 **/
218 void blk_stop_queue(struct request_queue *q)
219 {
220 cancel_delayed_work(&q->delay_work);
221 queue_flag_set(QUEUE_FLAG_STOPPED, q);
222 }
223 EXPORT_SYMBOL(blk_stop_queue);
224
225 /**
226 * blk_sync_queue - cancel any pending callbacks on a queue
227 * @q: the queue
228 *
229 * Description:
230 * The block layer may perform asynchronous callback activity
231 * on a queue, such as calling the unplug function after a timeout.
232 * A block device may call blk_sync_queue to ensure that any
233 * such activity is cancelled, thus allowing it to release resources
234 * that the callbacks might use. The caller must already have made sure
235 * that its ->make_request_fn will not re-add plugging prior to calling
236 * this function.
237 *
238 * This function does not cancel any asynchronous activity arising
239 * out of elevator or throttling code. That would require elevator_exit()
240 * and blkcg_exit_queue() to be called with queue lock initialized.
241 *
242 */
243 void blk_sync_queue(struct request_queue *q)
244 {
245 del_timer_sync(&q->timeout);
246
247 if (q->mq_ops) {
248 struct blk_mq_hw_ctx *hctx;
249 int i;
250
251 queue_for_each_hw_ctx(q, hctx, i) {
252 cancel_delayed_work_sync(&hctx->run_work);
253 cancel_delayed_work_sync(&hctx->delay_work);
254 }
255 } else {
256 cancel_delayed_work_sync(&q->delay_work);
257 }
258 }
259 EXPORT_SYMBOL(blk_sync_queue);
260
261 /**
262 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
263 * @q: The queue to run
264 *
265 * Description:
266 * Invoke request handling on a queue if there are any pending requests.
267 * May be used to restart request handling after a request has completed.
268 * This variant runs the queue whether or not the queue has been
269 * stopped. Must be called with the queue lock held and interrupts
270 * disabled. See also @blk_run_queue.
271 */
272 inline void __blk_run_queue_uncond(struct request_queue *q)
273 {
274 if (unlikely(blk_queue_dead(q)))
275 return;
276
277 /*
278 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
279 * the queue lock internally. As a result multiple threads may be
280 * running such a request function concurrently. Keep track of the
281 * number of active request_fn invocations such that blk_drain_queue()
282 * can wait until all these request_fn calls have finished.
283 */
284 q->request_fn_active++;
285 q->request_fn(q);
286 q->request_fn_active--;
287 }
288
289 /**
290 * __blk_run_queue - run a single device queue
291 * @q: The queue to run
292 *
293 * Description:
294 * See @blk_run_queue. This variant must be called with the queue lock
295 * held and interrupts disabled.
296 */
297 void __blk_run_queue(struct request_queue *q)
298 {
299 if (unlikely(blk_queue_stopped(q)))
300 return;
301
302 __blk_run_queue_uncond(q);
303 }
304 EXPORT_SYMBOL(__blk_run_queue);
305
306 /**
307 * blk_run_queue_async - run a single device queue in workqueue context
308 * @q: The queue to run
309 *
310 * Description:
311 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
312 * of us. The caller must hold the queue lock.
313 */
314 void blk_run_queue_async(struct request_queue *q)
315 {
316 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
317 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
318 }
319 EXPORT_SYMBOL(blk_run_queue_async);
320
321 /**
322 * blk_run_queue - run a single device queue
323 * @q: The queue to run
324 *
325 * Description:
326 * Invoke request handling on this queue, if it has pending work to do.
327 * May be used to restart queueing when a request has completed.
328 */
329 void blk_run_queue(struct request_queue *q)
330 {
331 unsigned long flags;
332
333 spin_lock_irqsave(q->queue_lock, flags);
334 __blk_run_queue(q);
335 spin_unlock_irqrestore(q->queue_lock, flags);
336 }
337 EXPORT_SYMBOL(blk_run_queue);
338
339 void blk_put_queue(struct request_queue *q)
340 {
341 kobject_put(&q->kobj);
342 }
343 EXPORT_SYMBOL(blk_put_queue);
344
345 /**
346 * __blk_drain_queue - drain requests from request_queue
347 * @q: queue to drain
348 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
349 *
350 * Drain requests from @q. If @drain_all is set, all requests are drained.
351 * If not, only ELVPRIV requests are drained. The caller is responsible
352 * for ensuring that no new requests which need to be drained are queued.
353 */
354 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
355 __releases(q->queue_lock)
356 __acquires(q->queue_lock)
357 {
358 int i;
359
360 lockdep_assert_held(q->queue_lock);
361
362 while (true) {
363 bool drain = false;
364
365 /*
366 * The caller might be trying to drain @q before its
367 * elevator is initialized.
368 */
369 if (q->elevator)
370 elv_drain_elevator(q);
371
372 blkcg_drain_queue(q);
373
374 /*
375 * This function might be called on a queue which failed
376 * driver init after queue creation or is not yet fully
377 * active yet. Some drivers (e.g. fd and loop) get unhappy
378 * in such cases. Kick queue iff dispatch queue has
379 * something on it and @q has request_fn set.
380 */
381 if (!list_empty(&q->queue_head) && q->request_fn)
382 __blk_run_queue(q);
383
384 drain |= q->nr_rqs_elvpriv;
385 drain |= q->request_fn_active;
386
387 /*
388 * Unfortunately, requests are queued at and tracked from
389 * multiple places and there's no single counter which can
390 * be drained. Check all the queues and counters.
391 */
392 if (drain_all) {
393 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
394 drain |= !list_empty(&q->queue_head);
395 for (i = 0; i < 2; i++) {
396 drain |= q->nr_rqs[i];
397 drain |= q->in_flight[i];
398 if (fq)
399 drain |= !list_empty(&fq->flush_queue[i]);
400 }
401 }
402
403 if (!drain)
404 break;
405
406 spin_unlock_irq(q->queue_lock);
407
408 msleep(10);
409
410 spin_lock_irq(q->queue_lock);
411 }
412
413 /*
414 * With queue marked dead, any woken up waiter will fail the
415 * allocation path, so the wakeup chaining is lost and we're
416 * left with hung waiters. We need to wake up those waiters.
417 */
418 if (q->request_fn) {
419 struct request_list *rl;
420
421 blk_queue_for_each_rl(rl, q)
422 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
423 wake_up_all(&rl->wait[i]);
424 }
425 }
426
427 /**
428 * blk_queue_bypass_start - enter queue bypass mode
429 * @q: queue of interest
430 *
431 * In bypass mode, only the dispatch FIFO queue of @q is used. This
432 * function makes @q enter bypass mode and drains all requests which were
433 * throttled or issued before. On return, it's guaranteed that no request
434 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
435 * inside queue or RCU read lock.
436 */
437 void blk_queue_bypass_start(struct request_queue *q)
438 {
439 spin_lock_irq(q->queue_lock);
440 q->bypass_depth++;
441 queue_flag_set(QUEUE_FLAG_BYPASS, q);
442 spin_unlock_irq(q->queue_lock);
443
444 /*
445 * Queues start drained. Skip actual draining till init is
446 * complete. This avoids lenghty delays during queue init which
447 * can happen many times during boot.
448 */
449 if (blk_queue_init_done(q)) {
450 spin_lock_irq(q->queue_lock);
451 __blk_drain_queue(q, false);
452 spin_unlock_irq(q->queue_lock);
453
454 /* ensure blk_queue_bypass() is %true inside RCU read lock */
455 synchronize_rcu();
456 }
457 }
458 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
459
460 /**
461 * blk_queue_bypass_end - leave queue bypass mode
462 * @q: queue of interest
463 *
464 * Leave bypass mode and restore the normal queueing behavior.
465 */
466 void blk_queue_bypass_end(struct request_queue *q)
467 {
468 spin_lock_irq(q->queue_lock);
469 if (!--q->bypass_depth)
470 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
471 WARN_ON_ONCE(q->bypass_depth < 0);
472 spin_unlock_irq(q->queue_lock);
473 }
474 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
475
476 void blk_set_queue_dying(struct request_queue *q)
477 {
478 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
479
480 if (q->mq_ops)
481 blk_mq_wake_waiters(q);
482 else {
483 struct request_list *rl;
484
485 blk_queue_for_each_rl(rl, q) {
486 if (rl->rq_pool) {
487 wake_up(&rl->wait[BLK_RW_SYNC]);
488 wake_up(&rl->wait[BLK_RW_ASYNC]);
489 }
490 }
491 }
492 }
493 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
494
495 /**
496 * blk_cleanup_queue - shutdown a request queue
497 * @q: request queue to shutdown
498 *
499 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
500 * put it. All future requests will be failed immediately with -ENODEV.
501 */
502 void blk_cleanup_queue(struct request_queue *q)
503 {
504 spinlock_t *lock = q->queue_lock;
505
506 /* mark @q DYING, no new request or merges will be allowed afterwards */
507 mutex_lock(&q->sysfs_lock);
508 blk_set_queue_dying(q);
509 spin_lock_irq(lock);
510
511 /*
512 * A dying queue is permanently in bypass mode till released. Note
513 * that, unlike blk_queue_bypass_start(), we aren't performing
514 * synchronize_rcu() after entering bypass mode to avoid the delay
515 * as some drivers create and destroy a lot of queues while
516 * probing. This is still safe because blk_release_queue() will be
517 * called only after the queue refcnt drops to zero and nothing,
518 * RCU or not, would be traversing the queue by then.
519 */
520 q->bypass_depth++;
521 queue_flag_set(QUEUE_FLAG_BYPASS, q);
522
523 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
524 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
525 queue_flag_set(QUEUE_FLAG_DYING, q);
526 spin_unlock_irq(lock);
527 mutex_unlock(&q->sysfs_lock);
528
529 /*
530 * Drain all requests queued before DYING marking. Set DEAD flag to
531 * prevent that q->request_fn() gets invoked after draining finished.
532 */
533 if (q->mq_ops) {
534 blk_mq_freeze_queue(q);
535 spin_lock_irq(lock);
536 } else {
537 spin_lock_irq(lock);
538 __blk_drain_queue(q, true);
539 }
540 queue_flag_set(QUEUE_FLAG_DEAD, q);
541 spin_unlock_irq(lock);
542
543 /* @q won't process any more request, flush async actions */
544 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
545 blk_sync_queue(q);
546
547 if (q->mq_ops)
548 blk_mq_free_queue(q);
549
550 spin_lock_irq(lock);
551 if (q->queue_lock != &q->__queue_lock)
552 q->queue_lock = &q->__queue_lock;
553 spin_unlock_irq(lock);
554
555 bdi_destroy(&q->backing_dev_info);
556
557 /* @q is and will stay empty, shutdown and put */
558 blk_put_queue(q);
559 }
560 EXPORT_SYMBOL(blk_cleanup_queue);
561
562 /* Allocate memory local to the request queue */
563 static void *alloc_request_struct(gfp_t gfp_mask, void *data)
564 {
565 int nid = (int)(long)data;
566 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
567 }
568
569 static void free_request_struct(void *element, void *unused)
570 {
571 kmem_cache_free(request_cachep, element);
572 }
573
574 int blk_init_rl(struct request_list *rl, struct request_queue *q,
575 gfp_t gfp_mask)
576 {
577 if (unlikely(rl->rq_pool))
578 return 0;
579
580 rl->q = q;
581 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
582 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
583 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
584 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
585
586 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
587 free_request_struct,
588 (void *)(long)q->node, gfp_mask,
589 q->node);
590 if (!rl->rq_pool)
591 return -ENOMEM;
592
593 return 0;
594 }
595
596 void blk_exit_rl(struct request_list *rl)
597 {
598 if (rl->rq_pool)
599 mempool_destroy(rl->rq_pool);
600 }
601
602 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
603 {
604 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
605 }
606 EXPORT_SYMBOL(blk_alloc_queue);
607
608 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
609 {
610 struct request_queue *q;
611 int err;
612
613 q = kmem_cache_alloc_node(blk_requestq_cachep,
614 gfp_mask | __GFP_ZERO, node_id);
615 if (!q)
616 return NULL;
617
618 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
619 if (q->id < 0)
620 goto fail_q;
621
622 q->backing_dev_info.ra_pages =
623 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
624 q->backing_dev_info.state = 0;
625 q->backing_dev_info.capabilities = 0;
626 q->backing_dev_info.name = "block";
627 q->node = node_id;
628
629 err = bdi_init(&q->backing_dev_info);
630 if (err)
631 goto fail_id;
632
633 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
634 laptop_mode_timer_fn, (unsigned long) q);
635 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
636 INIT_LIST_HEAD(&q->queue_head);
637 INIT_LIST_HEAD(&q->timeout_list);
638 INIT_LIST_HEAD(&q->icq_list);
639 #ifdef CONFIG_BLK_CGROUP
640 INIT_LIST_HEAD(&q->blkg_list);
641 #endif
642 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
643
644 kobject_init(&q->kobj, &blk_queue_ktype);
645
646 mutex_init(&q->sysfs_lock);
647 spin_lock_init(&q->__queue_lock);
648
649 /*
650 * By default initialize queue_lock to internal lock and driver can
651 * override it later if need be.
652 */
653 q->queue_lock = &q->__queue_lock;
654
655 /*
656 * A queue starts its life with bypass turned on to avoid
657 * unnecessary bypass on/off overhead and nasty surprises during
658 * init. The initial bypass will be finished when the queue is
659 * registered by blk_register_queue().
660 */
661 q->bypass_depth = 1;
662 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
663
664 init_waitqueue_head(&q->mq_freeze_wq);
665
666 if (blkcg_init_queue(q))
667 goto fail_bdi;
668
669 return q;
670
671 fail_bdi:
672 bdi_destroy(&q->backing_dev_info);
673 fail_id:
674 ida_simple_remove(&blk_queue_ida, q->id);
675 fail_q:
676 kmem_cache_free(blk_requestq_cachep, q);
677 return NULL;
678 }
679 EXPORT_SYMBOL(blk_alloc_queue_node);
680
681 /**
682 * blk_init_queue - prepare a request queue for use with a block device
683 * @rfn: The function to be called to process requests that have been
684 * placed on the queue.
685 * @lock: Request queue spin lock
686 *
687 * Description:
688 * If a block device wishes to use the standard request handling procedures,
689 * which sorts requests and coalesces adjacent requests, then it must
690 * call blk_init_queue(). The function @rfn will be called when there
691 * are requests on the queue that need to be processed. If the device
692 * supports plugging, then @rfn may not be called immediately when requests
693 * are available on the queue, but may be called at some time later instead.
694 * Plugged queues are generally unplugged when a buffer belonging to one
695 * of the requests on the queue is needed, or due to memory pressure.
696 *
697 * @rfn is not required, or even expected, to remove all requests off the
698 * queue, but only as many as it can handle at a time. If it does leave
699 * requests on the queue, it is responsible for arranging that the requests
700 * get dealt with eventually.
701 *
702 * The queue spin lock must be held while manipulating the requests on the
703 * request queue; this lock will be taken also from interrupt context, so irq
704 * disabling is needed for it.
705 *
706 * Function returns a pointer to the initialized request queue, or %NULL if
707 * it didn't succeed.
708 *
709 * Note:
710 * blk_init_queue() must be paired with a blk_cleanup_queue() call
711 * when the block device is deactivated (such as at module unload).
712 **/
713
714 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
715 {
716 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
717 }
718 EXPORT_SYMBOL(blk_init_queue);
719
720 struct request_queue *
721 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
722 {
723 struct request_queue *uninit_q, *q;
724
725 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
726 if (!uninit_q)
727 return NULL;
728
729 q = blk_init_allocated_queue(uninit_q, rfn, lock);
730 if (!q)
731 blk_cleanup_queue(uninit_q);
732
733 return q;
734 }
735 EXPORT_SYMBOL(blk_init_queue_node);
736
737 struct request_queue *
738 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
739 spinlock_t *lock)
740 {
741 if (!q)
742 return NULL;
743
744 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
745 if (!q->fq)
746 return NULL;
747
748 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
749 goto fail;
750
751 q->request_fn = rfn;
752 q->prep_rq_fn = NULL;
753 q->unprep_rq_fn = NULL;
754 q->queue_flags |= QUEUE_FLAG_DEFAULT;
755
756 /* Override internal queue lock with supplied lock pointer */
757 if (lock)
758 q->queue_lock = lock;
759
760 /*
761 * This also sets hw/phys segments, boundary and size
762 */
763 blk_queue_make_request(q, blk_queue_bio);
764
765 q->sg_reserved_size = INT_MAX;
766
767 /* Protect q->elevator from elevator_change */
768 mutex_lock(&q->sysfs_lock);
769
770 /* init elevator */
771 if (elevator_init(q, NULL)) {
772 mutex_unlock(&q->sysfs_lock);
773 goto fail;
774 }
775
776 mutex_unlock(&q->sysfs_lock);
777
778 return q;
779
780 fail:
781 blk_free_flush_queue(q->fq);
782 return NULL;
783 }
784 EXPORT_SYMBOL(blk_init_allocated_queue);
785
786 bool blk_get_queue(struct request_queue *q)
787 {
788 if (likely(!blk_queue_dying(q))) {
789 __blk_get_queue(q);
790 return true;
791 }
792
793 return false;
794 }
795 EXPORT_SYMBOL(blk_get_queue);
796
797 static inline void blk_free_request(struct request_list *rl, struct request *rq)
798 {
799 if (rq->cmd_flags & REQ_ELVPRIV) {
800 elv_put_request(rl->q, rq);
801 if (rq->elv.icq)
802 put_io_context(rq->elv.icq->ioc);
803 }
804
805 mempool_free(rq, rl->rq_pool);
806 }
807
808 /*
809 * ioc_batching returns true if the ioc is a valid batching request and
810 * should be given priority access to a request.
811 */
812 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
813 {
814 if (!ioc)
815 return 0;
816
817 /*
818 * Make sure the process is able to allocate at least 1 request
819 * even if the batch times out, otherwise we could theoretically
820 * lose wakeups.
821 */
822 return ioc->nr_batch_requests == q->nr_batching ||
823 (ioc->nr_batch_requests > 0
824 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
825 }
826
827 /*
828 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
829 * will cause the process to be a "batcher" on all queues in the system. This
830 * is the behaviour we want though - once it gets a wakeup it should be given
831 * a nice run.
832 */
833 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
834 {
835 if (!ioc || ioc_batching(q, ioc))
836 return;
837
838 ioc->nr_batch_requests = q->nr_batching;
839 ioc->last_waited = jiffies;
840 }
841
842 static void __freed_request(struct request_list *rl, int sync)
843 {
844 struct request_queue *q = rl->q;
845
846 /*
847 * bdi isn't aware of blkcg yet. As all async IOs end up root
848 * blkcg anyway, just use root blkcg state.
849 */
850 if (rl == &q->root_rl &&
851 rl->count[sync] < queue_congestion_off_threshold(q))
852 blk_clear_queue_congested(q, sync);
853
854 if (rl->count[sync] + 1 <= q->nr_requests) {
855 if (waitqueue_active(&rl->wait[sync]))
856 wake_up(&rl->wait[sync]);
857
858 blk_clear_rl_full(rl, sync);
859 }
860 }
861
862 /*
863 * A request has just been released. Account for it, update the full and
864 * congestion status, wake up any waiters. Called under q->queue_lock.
865 */
866 static void freed_request(struct request_list *rl, unsigned int flags)
867 {
868 struct request_queue *q = rl->q;
869 int sync = rw_is_sync(flags);
870
871 q->nr_rqs[sync]--;
872 rl->count[sync]--;
873 if (flags & REQ_ELVPRIV)
874 q->nr_rqs_elvpriv--;
875
876 __freed_request(rl, sync);
877
878 if (unlikely(rl->starved[sync ^ 1]))
879 __freed_request(rl, sync ^ 1);
880 }
881
882 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
883 {
884 struct request_list *rl;
885
886 spin_lock_irq(q->queue_lock);
887 q->nr_requests = nr;
888 blk_queue_congestion_threshold(q);
889
890 /* congestion isn't cgroup aware and follows root blkcg for now */
891 rl = &q->root_rl;
892
893 if (rl->count[BLK_RW_SYNC] >= queue_congestion_on_threshold(q))
894 blk_set_queue_congested(q, BLK_RW_SYNC);
895 else if (rl->count[BLK_RW_SYNC] < queue_congestion_off_threshold(q))
896 blk_clear_queue_congested(q, BLK_RW_SYNC);
897
898 if (rl->count[BLK_RW_ASYNC] >= queue_congestion_on_threshold(q))
899 blk_set_queue_congested(q, BLK_RW_ASYNC);
900 else if (rl->count[BLK_RW_ASYNC] < queue_congestion_off_threshold(q))
901 blk_clear_queue_congested(q, BLK_RW_ASYNC);
902
903 blk_queue_for_each_rl(rl, q) {
904 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
905 blk_set_rl_full(rl, BLK_RW_SYNC);
906 } else {
907 blk_clear_rl_full(rl, BLK_RW_SYNC);
908 wake_up(&rl->wait[BLK_RW_SYNC]);
909 }
910
911 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
912 blk_set_rl_full(rl, BLK_RW_ASYNC);
913 } else {
914 blk_clear_rl_full(rl, BLK_RW_ASYNC);
915 wake_up(&rl->wait[BLK_RW_ASYNC]);
916 }
917 }
918
919 spin_unlock_irq(q->queue_lock);
920 return 0;
921 }
922
923 /*
924 * Determine if elevator data should be initialized when allocating the
925 * request associated with @bio.
926 */
927 static bool blk_rq_should_init_elevator(struct bio *bio)
928 {
929 if (!bio)
930 return true;
931
932 /*
933 * Flush requests do not use the elevator so skip initialization.
934 * This allows a request to share the flush and elevator data.
935 */
936 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
937 return false;
938
939 return true;
940 }
941
942 /**
943 * rq_ioc - determine io_context for request allocation
944 * @bio: request being allocated is for this bio (can be %NULL)
945 *
946 * Determine io_context to use for request allocation for @bio. May return
947 * %NULL if %current->io_context doesn't exist.
948 */
949 static struct io_context *rq_ioc(struct bio *bio)
950 {
951 #ifdef CONFIG_BLK_CGROUP
952 if (bio && bio->bi_ioc)
953 return bio->bi_ioc;
954 #endif
955 return current->io_context;
956 }
957
958 /**
959 * __get_request - get a free request
960 * @rl: request list to allocate from
961 * @rw_flags: RW and SYNC flags
962 * @bio: bio to allocate request for (can be %NULL)
963 * @gfp_mask: allocation mask
964 *
965 * Get a free request from @q. This function may fail under memory
966 * pressure or if @q is dead.
967 *
968 * Must be called with @q->queue_lock held and,
969 * Returns ERR_PTR on failure, with @q->queue_lock held.
970 * Returns request pointer on success, with @q->queue_lock *not held*.
971 */
972 static struct request *__get_request(struct request_list *rl, int rw_flags,
973 struct bio *bio, gfp_t gfp_mask)
974 {
975 struct request_queue *q = rl->q;
976 struct request *rq;
977 struct elevator_type *et = q->elevator->type;
978 struct io_context *ioc = rq_ioc(bio);
979 struct io_cq *icq = NULL;
980 const bool is_sync = rw_is_sync(rw_flags) != 0;
981 int may_queue;
982
983 if (unlikely(blk_queue_dying(q)))
984 return ERR_PTR(-ENODEV);
985
986 may_queue = elv_may_queue(q, rw_flags);
987 if (may_queue == ELV_MQUEUE_NO)
988 goto rq_starved;
989
990 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
991 if (rl->count[is_sync]+1 >= q->nr_requests) {
992 /*
993 * The queue will fill after this allocation, so set
994 * it as full, and mark this process as "batching".
995 * This process will be allowed to complete a batch of
996 * requests, others will be blocked.
997 */
998 if (!blk_rl_full(rl, is_sync)) {
999 ioc_set_batching(q, ioc);
1000 blk_set_rl_full(rl, is_sync);
1001 } else {
1002 if (may_queue != ELV_MQUEUE_MUST
1003 && !ioc_batching(q, ioc)) {
1004 /*
1005 * The queue is full and the allocating
1006 * process is not a "batcher", and not
1007 * exempted by the IO scheduler
1008 */
1009 return ERR_PTR(-ENOMEM);
1010 }
1011 }
1012 }
1013 /*
1014 * bdi isn't aware of blkcg yet. As all async IOs end up
1015 * root blkcg anyway, just use root blkcg state.
1016 */
1017 if (rl == &q->root_rl)
1018 blk_set_queue_congested(q, is_sync);
1019 }
1020
1021 /*
1022 * Only allow batching queuers to allocate up to 50% over the defined
1023 * limit of requests, otherwise we could have thousands of requests
1024 * allocated with any setting of ->nr_requests
1025 */
1026 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1027 return ERR_PTR(-ENOMEM);
1028
1029 q->nr_rqs[is_sync]++;
1030 rl->count[is_sync]++;
1031 rl->starved[is_sync] = 0;
1032
1033 /*
1034 * Decide whether the new request will be managed by elevator. If
1035 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
1036 * prevent the current elevator from being destroyed until the new
1037 * request is freed. This guarantees icq's won't be destroyed and
1038 * makes creating new ones safe.
1039 *
1040 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1041 * it will be created after releasing queue_lock.
1042 */
1043 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1044 rw_flags |= REQ_ELVPRIV;
1045 q->nr_rqs_elvpriv++;
1046 if (et->icq_cache && ioc)
1047 icq = ioc_lookup_icq(ioc, q);
1048 }
1049
1050 if (blk_queue_io_stat(q))
1051 rw_flags |= REQ_IO_STAT;
1052 spin_unlock_irq(q->queue_lock);
1053
1054 /* allocate and init request */
1055 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1056 if (!rq)
1057 goto fail_alloc;
1058
1059 blk_rq_init(q, rq);
1060 blk_rq_set_rl(rq, rl);
1061 rq->cmd_flags = rw_flags | REQ_ALLOCED;
1062
1063 /* init elvpriv */
1064 if (rw_flags & REQ_ELVPRIV) {
1065 if (unlikely(et->icq_cache && !icq)) {
1066 if (ioc)
1067 icq = ioc_create_icq(ioc, q, gfp_mask);
1068 if (!icq)
1069 goto fail_elvpriv;
1070 }
1071
1072 rq->elv.icq = icq;
1073 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1074 goto fail_elvpriv;
1075
1076 /* @rq->elv.icq holds io_context until @rq is freed */
1077 if (icq)
1078 get_io_context(icq->ioc);
1079 }
1080 out:
1081 /*
1082 * ioc may be NULL here, and ioc_batching will be false. That's
1083 * OK, if the queue is under the request limit then requests need
1084 * not count toward the nr_batch_requests limit. There will always
1085 * be some limit enforced by BLK_BATCH_TIME.
1086 */
1087 if (ioc_batching(q, ioc))
1088 ioc->nr_batch_requests--;
1089
1090 trace_block_getrq(q, bio, rw_flags & 1);
1091 return rq;
1092
1093 fail_elvpriv:
1094 /*
1095 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1096 * and may fail indefinitely under memory pressure and thus
1097 * shouldn't stall IO. Treat this request as !elvpriv. This will
1098 * disturb iosched and blkcg but weird is bettern than dead.
1099 */
1100 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1101 __func__, dev_name(q->backing_dev_info.dev));
1102
1103 rq->cmd_flags &= ~REQ_ELVPRIV;
1104 rq->elv.icq = NULL;
1105
1106 spin_lock_irq(q->queue_lock);
1107 q->nr_rqs_elvpriv--;
1108 spin_unlock_irq(q->queue_lock);
1109 goto out;
1110
1111 fail_alloc:
1112 /*
1113 * Allocation failed presumably due to memory. Undo anything we
1114 * might have messed up.
1115 *
1116 * Allocating task should really be put onto the front of the wait
1117 * queue, but this is pretty rare.
1118 */
1119 spin_lock_irq(q->queue_lock);
1120 freed_request(rl, rw_flags);
1121
1122 /*
1123 * in the very unlikely event that allocation failed and no
1124 * requests for this direction was pending, mark us starved so that
1125 * freeing of a request in the other direction will notice
1126 * us. another possible fix would be to split the rq mempool into
1127 * READ and WRITE
1128 */
1129 rq_starved:
1130 if (unlikely(rl->count[is_sync] == 0))
1131 rl->starved[is_sync] = 1;
1132 return ERR_PTR(-ENOMEM);
1133 }
1134
1135 /**
1136 * get_request - get a free request
1137 * @q: request_queue to allocate request from
1138 * @rw_flags: RW and SYNC flags
1139 * @bio: bio to allocate request for (can be %NULL)
1140 * @gfp_mask: allocation mask
1141 *
1142 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1143 * function keeps retrying under memory pressure and fails iff @q is dead.
1144 *
1145 * Must be called with @q->queue_lock held and,
1146 * Returns ERR_PTR on failure, with @q->queue_lock held.
1147 * Returns request pointer on success, with @q->queue_lock *not held*.
1148 */
1149 static struct request *get_request(struct request_queue *q, int rw_flags,
1150 struct bio *bio, gfp_t gfp_mask)
1151 {
1152 const bool is_sync = rw_is_sync(rw_flags) != 0;
1153 DEFINE_WAIT(wait);
1154 struct request_list *rl;
1155 struct request *rq;
1156
1157 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1158 retry:
1159 rq = __get_request(rl, rw_flags, bio, gfp_mask);
1160 if (!IS_ERR(rq))
1161 return rq;
1162
1163 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1164 blk_put_rl(rl);
1165 return rq;
1166 }
1167
1168 /* wait on @rl and retry */
1169 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1170 TASK_UNINTERRUPTIBLE);
1171
1172 trace_block_sleeprq(q, bio, rw_flags & 1);
1173
1174 spin_unlock_irq(q->queue_lock);
1175 io_schedule();
1176
1177 /*
1178 * After sleeping, we become a "batching" process and will be able
1179 * to allocate at least one request, and up to a big batch of them
1180 * for a small period time. See ioc_batching, ioc_set_batching
1181 */
1182 ioc_set_batching(q, current->io_context);
1183
1184 spin_lock_irq(q->queue_lock);
1185 finish_wait(&rl->wait[is_sync], &wait);
1186
1187 goto retry;
1188 }
1189
1190 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1191 gfp_t gfp_mask)
1192 {
1193 struct request *rq;
1194
1195 BUG_ON(rw != READ && rw != WRITE);
1196
1197 /* create ioc upfront */
1198 create_io_context(gfp_mask, q->node);
1199
1200 spin_lock_irq(q->queue_lock);
1201 rq = get_request(q, rw, NULL, gfp_mask);
1202 if (IS_ERR(rq))
1203 spin_unlock_irq(q->queue_lock);
1204 /* q->queue_lock is unlocked at this point */
1205
1206 return rq;
1207 }
1208
1209 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1210 {
1211 if (q->mq_ops)
1212 return blk_mq_alloc_request(q, rw, gfp_mask, false);
1213 else
1214 return blk_old_get_request(q, rw, gfp_mask);
1215 }
1216 EXPORT_SYMBOL(blk_get_request);
1217
1218 /**
1219 * blk_make_request - given a bio, allocate a corresponding struct request.
1220 * @q: target request queue
1221 * @bio: The bio describing the memory mappings that will be submitted for IO.
1222 * It may be a chained-bio properly constructed by block/bio layer.
1223 * @gfp_mask: gfp flags to be used for memory allocation
1224 *
1225 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1226 * type commands. Where the struct request needs to be farther initialized by
1227 * the caller. It is passed a &struct bio, which describes the memory info of
1228 * the I/O transfer.
1229 *
1230 * The caller of blk_make_request must make sure that bi_io_vec
1231 * are set to describe the memory buffers. That bio_data_dir() will return
1232 * the needed direction of the request. (And all bio's in the passed bio-chain
1233 * are properly set accordingly)
1234 *
1235 * If called under none-sleepable conditions, mapped bio buffers must not
1236 * need bouncing, by calling the appropriate masked or flagged allocator,
1237 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1238 * BUG.
1239 *
1240 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1241 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1242 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1243 * completion of a bio that hasn't been submitted yet, thus resulting in a
1244 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1245 * of bio_alloc(), as that avoids the mempool deadlock.
1246 * If possible a big IO should be split into smaller parts when allocation
1247 * fails. Partial allocation should not be an error, or you risk a live-lock.
1248 */
1249 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1250 gfp_t gfp_mask)
1251 {
1252 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1253
1254 if (IS_ERR(rq))
1255 return rq;
1256
1257 blk_rq_set_block_pc(rq);
1258
1259 for_each_bio(bio) {
1260 struct bio *bounce_bio = bio;
1261 int ret;
1262
1263 blk_queue_bounce(q, &bounce_bio);
1264 ret = blk_rq_append_bio(q, rq, bounce_bio);
1265 if (unlikely(ret)) {
1266 blk_put_request(rq);
1267 return ERR_PTR(ret);
1268 }
1269 }
1270
1271 return rq;
1272 }
1273 EXPORT_SYMBOL(blk_make_request);
1274
1275 /**
1276 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1277 * @rq: request to be initialized
1278 *
1279 */
1280 void blk_rq_set_block_pc(struct request *rq)
1281 {
1282 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1283 rq->__data_len = 0;
1284 rq->__sector = (sector_t) -1;
1285 rq->bio = rq->biotail = NULL;
1286 memset(rq->__cmd, 0, sizeof(rq->__cmd));
1287 }
1288 EXPORT_SYMBOL(blk_rq_set_block_pc);
1289
1290 /**
1291 * blk_requeue_request - put a request back on queue
1292 * @q: request queue where request should be inserted
1293 * @rq: request to be inserted
1294 *
1295 * Description:
1296 * Drivers often keep queueing requests until the hardware cannot accept
1297 * more, when that condition happens we need to put the request back
1298 * on the queue. Must be called with queue lock held.
1299 */
1300 void blk_requeue_request(struct request_queue *q, struct request *rq)
1301 {
1302 blk_delete_timer(rq);
1303 blk_clear_rq_complete(rq);
1304 trace_block_rq_requeue(q, rq);
1305
1306 if (rq->cmd_flags & REQ_QUEUED)
1307 blk_queue_end_tag(q, rq);
1308
1309 BUG_ON(blk_queued_rq(rq));
1310
1311 elv_requeue_request(q, rq);
1312 }
1313 EXPORT_SYMBOL(blk_requeue_request);
1314
1315 static void add_acct_request(struct request_queue *q, struct request *rq,
1316 int where)
1317 {
1318 blk_account_io_start(rq, true);
1319 __elv_add_request(q, rq, where);
1320 }
1321
1322 static void part_round_stats_single(int cpu, struct hd_struct *part,
1323 unsigned long now)
1324 {
1325 int inflight;
1326
1327 if (now == part->stamp)
1328 return;
1329
1330 inflight = part_in_flight(part);
1331 if (inflight) {
1332 __part_stat_add(cpu, part, time_in_queue,
1333 inflight * (now - part->stamp));
1334 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1335 }
1336 part->stamp = now;
1337 }
1338
1339 /**
1340 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1341 * @cpu: cpu number for stats access
1342 * @part: target partition
1343 *
1344 * The average IO queue length and utilisation statistics are maintained
1345 * by observing the current state of the queue length and the amount of
1346 * time it has been in this state for.
1347 *
1348 * Normally, that accounting is done on IO completion, but that can result
1349 * in more than a second's worth of IO being accounted for within any one
1350 * second, leading to >100% utilisation. To deal with that, we call this
1351 * function to do a round-off before returning the results when reading
1352 * /proc/diskstats. This accounts immediately for all queue usage up to
1353 * the current jiffies and restarts the counters again.
1354 */
1355 void part_round_stats(int cpu, struct hd_struct *part)
1356 {
1357 unsigned long now = jiffies;
1358
1359 if (part->partno)
1360 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1361 part_round_stats_single(cpu, part, now);
1362 }
1363 EXPORT_SYMBOL_GPL(part_round_stats);
1364
1365 #ifdef CONFIG_PM
1366 static void blk_pm_put_request(struct request *rq)
1367 {
1368 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1369 pm_runtime_mark_last_busy(rq->q->dev);
1370 }
1371 #else
1372 static inline void blk_pm_put_request(struct request *rq) {}
1373 #endif
1374
1375 /*
1376 * queue lock must be held
1377 */
1378 void __blk_put_request(struct request_queue *q, struct request *req)
1379 {
1380 if (unlikely(!q))
1381 return;
1382
1383 if (q->mq_ops) {
1384 blk_mq_free_request(req);
1385 return;
1386 }
1387
1388 blk_pm_put_request(req);
1389
1390 elv_completed_request(q, req);
1391
1392 /* this is a bio leak */
1393 WARN_ON(req->bio != NULL);
1394
1395 /*
1396 * Request may not have originated from ll_rw_blk. if not,
1397 * it didn't come out of our reserved rq pools
1398 */
1399 if (req->cmd_flags & REQ_ALLOCED) {
1400 unsigned int flags = req->cmd_flags;
1401 struct request_list *rl = blk_rq_rl(req);
1402
1403 BUG_ON(!list_empty(&req->queuelist));
1404 BUG_ON(ELV_ON_HASH(req));
1405
1406 blk_free_request(rl, req);
1407 freed_request(rl, flags);
1408 blk_put_rl(rl);
1409 }
1410 }
1411 EXPORT_SYMBOL_GPL(__blk_put_request);
1412
1413 void blk_put_request(struct request *req)
1414 {
1415 struct request_queue *q = req->q;
1416
1417 if (q->mq_ops)
1418 blk_mq_free_request(req);
1419 else {
1420 unsigned long flags;
1421
1422 spin_lock_irqsave(q->queue_lock, flags);
1423 __blk_put_request(q, req);
1424 spin_unlock_irqrestore(q->queue_lock, flags);
1425 }
1426 }
1427 EXPORT_SYMBOL(blk_put_request);
1428
1429 /**
1430 * blk_add_request_payload - add a payload to a request
1431 * @rq: request to update
1432 * @page: page backing the payload
1433 * @len: length of the payload.
1434 *
1435 * This allows to later add a payload to an already submitted request by
1436 * a block driver. The driver needs to take care of freeing the payload
1437 * itself.
1438 *
1439 * Note that this is a quite horrible hack and nothing but handling of
1440 * discard requests should ever use it.
1441 */
1442 void blk_add_request_payload(struct request *rq, struct page *page,
1443 unsigned int len)
1444 {
1445 struct bio *bio = rq->bio;
1446
1447 bio->bi_io_vec->bv_page = page;
1448 bio->bi_io_vec->bv_offset = 0;
1449 bio->bi_io_vec->bv_len = len;
1450
1451 bio->bi_iter.bi_size = len;
1452 bio->bi_vcnt = 1;
1453 bio->bi_phys_segments = 1;
1454
1455 rq->__data_len = rq->resid_len = len;
1456 rq->nr_phys_segments = 1;
1457 }
1458 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1459
1460 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1461 struct bio *bio)
1462 {
1463 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1464
1465 if (!ll_back_merge_fn(q, req, bio))
1466 return false;
1467
1468 trace_block_bio_backmerge(q, req, bio);
1469
1470 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1471 blk_rq_set_mixed_merge(req);
1472
1473 req->biotail->bi_next = bio;
1474 req->biotail = bio;
1475 req->__data_len += bio->bi_iter.bi_size;
1476 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1477
1478 blk_account_io_start(req, false);
1479 return true;
1480 }
1481
1482 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1483 struct bio *bio)
1484 {
1485 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1486
1487 if (!ll_front_merge_fn(q, req, bio))
1488 return false;
1489
1490 trace_block_bio_frontmerge(q, req, bio);
1491
1492 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1493 blk_rq_set_mixed_merge(req);
1494
1495 bio->bi_next = req->bio;
1496 req->bio = bio;
1497
1498 req->__sector = bio->bi_iter.bi_sector;
1499 req->__data_len += bio->bi_iter.bi_size;
1500 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1501
1502 blk_account_io_start(req, false);
1503 return true;
1504 }
1505
1506 /**
1507 * blk_attempt_plug_merge - try to merge with %current's plugged list
1508 * @q: request_queue new bio is being queued at
1509 * @bio: new bio being queued
1510 * @request_count: out parameter for number of traversed plugged requests
1511 *
1512 * Determine whether @bio being queued on @q can be merged with a request
1513 * on %current's plugged list. Returns %true if merge was successful,
1514 * otherwise %false.
1515 *
1516 * Plugging coalesces IOs from the same issuer for the same purpose without
1517 * going through @q->queue_lock. As such it's more of an issuing mechanism
1518 * than scheduling, and the request, while may have elvpriv data, is not
1519 * added on the elevator at this point. In addition, we don't have
1520 * reliable access to the elevator outside queue lock. Only check basic
1521 * merging parameters without querying the elevator.
1522 *
1523 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1524 */
1525 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1526 unsigned int *request_count)
1527 {
1528 struct blk_plug *plug;
1529 struct request *rq;
1530 bool ret = false;
1531 struct list_head *plug_list;
1532
1533 plug = current->plug;
1534 if (!plug)
1535 goto out;
1536 *request_count = 0;
1537
1538 if (q->mq_ops)
1539 plug_list = &plug->mq_list;
1540 else
1541 plug_list = &plug->list;
1542
1543 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1544 int el_ret;
1545
1546 if (rq->q == q)
1547 (*request_count)++;
1548
1549 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1550 continue;
1551
1552 el_ret = blk_try_merge(rq, bio);
1553 if (el_ret == ELEVATOR_BACK_MERGE) {
1554 ret = bio_attempt_back_merge(q, rq, bio);
1555 if (ret)
1556 break;
1557 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1558 ret = bio_attempt_front_merge(q, rq, bio);
1559 if (ret)
1560 break;
1561 }
1562 }
1563 out:
1564 return ret;
1565 }
1566
1567 void init_request_from_bio(struct request *req, struct bio *bio)
1568 {
1569 req->cmd_type = REQ_TYPE_FS;
1570
1571 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1572 if (bio->bi_rw & REQ_RAHEAD)
1573 req->cmd_flags |= REQ_FAILFAST_MASK;
1574
1575 req->errors = 0;
1576 req->__sector = bio->bi_iter.bi_sector;
1577 req->ioprio = bio_prio(bio);
1578 blk_rq_bio_prep(req->q, req, bio);
1579 }
1580
1581 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1582 {
1583 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1584 struct blk_plug *plug;
1585 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1586 struct request *req;
1587 unsigned int request_count = 0;
1588
1589 /*
1590 * low level driver can indicate that it wants pages above a
1591 * certain limit bounced to low memory (ie for highmem, or even
1592 * ISA dma in theory)
1593 */
1594 blk_queue_bounce(q, &bio);
1595
1596 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1597 bio_endio(bio, -EIO);
1598 return;
1599 }
1600
1601 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1602 spin_lock_irq(q->queue_lock);
1603 where = ELEVATOR_INSERT_FLUSH;
1604 goto get_rq;
1605 }
1606
1607 /*
1608 * Check if we can merge with the plugged list before grabbing
1609 * any locks.
1610 */
1611 if (!blk_queue_nomerges(q) &&
1612 blk_attempt_plug_merge(q, bio, &request_count))
1613 return;
1614
1615 spin_lock_irq(q->queue_lock);
1616
1617 el_ret = elv_merge(q, &req, bio);
1618 if (el_ret == ELEVATOR_BACK_MERGE) {
1619 if (bio_attempt_back_merge(q, req, bio)) {
1620 elv_bio_merged(q, req, bio);
1621 if (!attempt_back_merge(q, req))
1622 elv_merged_request(q, req, el_ret);
1623 goto out_unlock;
1624 }
1625 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1626 if (bio_attempt_front_merge(q, req, bio)) {
1627 elv_bio_merged(q, req, bio);
1628 if (!attempt_front_merge(q, req))
1629 elv_merged_request(q, req, el_ret);
1630 goto out_unlock;
1631 }
1632 }
1633
1634 get_rq:
1635 /*
1636 * This sync check and mask will be re-done in init_request_from_bio(),
1637 * but we need to set it earlier to expose the sync flag to the
1638 * rq allocator and io schedulers.
1639 */
1640 rw_flags = bio_data_dir(bio);
1641 if (sync)
1642 rw_flags |= REQ_SYNC;
1643
1644 /*
1645 * Grab a free request. This is might sleep but can not fail.
1646 * Returns with the queue unlocked.
1647 */
1648 req = get_request(q, rw_flags, bio, GFP_NOIO);
1649 if (IS_ERR(req)) {
1650 bio_endio(bio, PTR_ERR(req)); /* @q is dead */
1651 goto out_unlock;
1652 }
1653
1654 /*
1655 * After dropping the lock and possibly sleeping here, our request
1656 * may now be mergeable after it had proven unmergeable (above).
1657 * We don't worry about that case for efficiency. It won't happen
1658 * often, and the elevators are able to handle it.
1659 */
1660 init_request_from_bio(req, bio);
1661
1662 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1663 req->cpu = raw_smp_processor_id();
1664
1665 plug = current->plug;
1666 if (plug) {
1667 /*
1668 * If this is the first request added after a plug, fire
1669 * of a plug trace.
1670 */
1671 if (!request_count)
1672 trace_block_plug(q);
1673 else {
1674 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1675 blk_flush_plug_list(plug, false);
1676 trace_block_plug(q);
1677 }
1678 }
1679 list_add_tail(&req->queuelist, &plug->list);
1680 blk_account_io_start(req, true);
1681 } else {
1682 spin_lock_irq(q->queue_lock);
1683 add_acct_request(q, req, where);
1684 __blk_run_queue(q);
1685 out_unlock:
1686 spin_unlock_irq(q->queue_lock);
1687 }
1688 }
1689 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1690
1691 /*
1692 * If bio->bi_dev is a partition, remap the location
1693 */
1694 static inline void blk_partition_remap(struct bio *bio)
1695 {
1696 struct block_device *bdev = bio->bi_bdev;
1697
1698 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1699 struct hd_struct *p = bdev->bd_part;
1700
1701 bio->bi_iter.bi_sector += p->start_sect;
1702 bio->bi_bdev = bdev->bd_contains;
1703
1704 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1705 bdev->bd_dev,
1706 bio->bi_iter.bi_sector - p->start_sect);
1707 }
1708 }
1709
1710 static void handle_bad_sector(struct bio *bio)
1711 {
1712 char b[BDEVNAME_SIZE];
1713
1714 printk(KERN_INFO "attempt to access beyond end of device\n");
1715 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1716 bdevname(bio->bi_bdev, b),
1717 bio->bi_rw,
1718 (unsigned long long)bio_end_sector(bio),
1719 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1720
1721 set_bit(BIO_EOF, &bio->bi_flags);
1722 }
1723
1724 #ifdef CONFIG_FAIL_MAKE_REQUEST
1725
1726 static DECLARE_FAULT_ATTR(fail_make_request);
1727
1728 static int __init setup_fail_make_request(char *str)
1729 {
1730 return setup_fault_attr(&fail_make_request, str);
1731 }
1732 __setup("fail_make_request=", setup_fail_make_request);
1733
1734 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1735 {
1736 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1737 }
1738
1739 static int __init fail_make_request_debugfs(void)
1740 {
1741 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1742 NULL, &fail_make_request);
1743
1744 return PTR_ERR_OR_ZERO(dir);
1745 }
1746
1747 late_initcall(fail_make_request_debugfs);
1748
1749 #else /* CONFIG_FAIL_MAKE_REQUEST */
1750
1751 static inline bool should_fail_request(struct hd_struct *part,
1752 unsigned int bytes)
1753 {
1754 return false;
1755 }
1756
1757 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1758
1759 /*
1760 * Check whether this bio extends beyond the end of the device.
1761 */
1762 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1763 {
1764 sector_t maxsector;
1765
1766 if (!nr_sectors)
1767 return 0;
1768
1769 /* Test device or partition size, when known. */
1770 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1771 if (maxsector) {
1772 sector_t sector = bio->bi_iter.bi_sector;
1773
1774 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1775 /*
1776 * This may well happen - the kernel calls bread()
1777 * without checking the size of the device, e.g., when
1778 * mounting a device.
1779 */
1780 handle_bad_sector(bio);
1781 return 1;
1782 }
1783 }
1784
1785 return 0;
1786 }
1787
1788 static noinline_for_stack bool
1789 generic_make_request_checks(struct bio *bio)
1790 {
1791 struct request_queue *q;
1792 int nr_sectors = bio_sectors(bio);
1793 int err = -EIO;
1794 char b[BDEVNAME_SIZE];
1795 struct hd_struct *part;
1796
1797 might_sleep();
1798
1799 if (bio_check_eod(bio, nr_sectors))
1800 goto end_io;
1801
1802 q = bdev_get_queue(bio->bi_bdev);
1803 if (unlikely(!q)) {
1804 printk(KERN_ERR
1805 "generic_make_request: Trying to access "
1806 "nonexistent block-device %s (%Lu)\n",
1807 bdevname(bio->bi_bdev, b),
1808 (long long) bio->bi_iter.bi_sector);
1809 goto end_io;
1810 }
1811
1812 if (likely(bio_is_rw(bio) &&
1813 nr_sectors > queue_max_hw_sectors(q))) {
1814 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1815 bdevname(bio->bi_bdev, b),
1816 bio_sectors(bio),
1817 queue_max_hw_sectors(q));
1818 goto end_io;
1819 }
1820
1821 part = bio->bi_bdev->bd_part;
1822 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1823 should_fail_request(&part_to_disk(part)->part0,
1824 bio->bi_iter.bi_size))
1825 goto end_io;
1826
1827 /*
1828 * If this device has partitions, remap block n
1829 * of partition p to block n+start(p) of the disk.
1830 */
1831 blk_partition_remap(bio);
1832
1833 if (bio_check_eod(bio, nr_sectors))
1834 goto end_io;
1835
1836 /*
1837 * Filter flush bio's early so that make_request based
1838 * drivers without flush support don't have to worry
1839 * about them.
1840 */
1841 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1842 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1843 if (!nr_sectors) {
1844 err = 0;
1845 goto end_io;
1846 }
1847 }
1848
1849 if ((bio->bi_rw & REQ_DISCARD) &&
1850 (!blk_queue_discard(q) ||
1851 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1852 err = -EOPNOTSUPP;
1853 goto end_io;
1854 }
1855
1856 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1857 err = -EOPNOTSUPP;
1858 goto end_io;
1859 }
1860
1861 /*
1862 * Various block parts want %current->io_context and lazy ioc
1863 * allocation ends up trading a lot of pain for a small amount of
1864 * memory. Just allocate it upfront. This may fail and block
1865 * layer knows how to live with it.
1866 */
1867 create_io_context(GFP_ATOMIC, q->node);
1868
1869 if (blk_throtl_bio(q, bio))
1870 return false; /* throttled, will be resubmitted later */
1871
1872 trace_block_bio_queue(q, bio);
1873 return true;
1874
1875 end_io:
1876 bio_endio(bio, err);
1877 return false;
1878 }
1879
1880 /**
1881 * generic_make_request - hand a buffer to its device driver for I/O
1882 * @bio: The bio describing the location in memory and on the device.
1883 *
1884 * generic_make_request() is used to make I/O requests of block
1885 * devices. It is passed a &struct bio, which describes the I/O that needs
1886 * to be done.
1887 *
1888 * generic_make_request() does not return any status. The
1889 * success/failure status of the request, along with notification of
1890 * completion, is delivered asynchronously through the bio->bi_end_io
1891 * function described (one day) else where.
1892 *
1893 * The caller of generic_make_request must make sure that bi_io_vec
1894 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1895 * set to describe the device address, and the
1896 * bi_end_io and optionally bi_private are set to describe how
1897 * completion notification should be signaled.
1898 *
1899 * generic_make_request and the drivers it calls may use bi_next if this
1900 * bio happens to be merged with someone else, and may resubmit the bio to
1901 * a lower device by calling into generic_make_request recursively, which
1902 * means the bio should NOT be touched after the call to ->make_request_fn.
1903 */
1904 void generic_make_request(struct bio *bio)
1905 {
1906 struct bio_list bio_list_on_stack;
1907
1908 if (!generic_make_request_checks(bio))
1909 return;
1910
1911 /*
1912 * We only want one ->make_request_fn to be active at a time, else
1913 * stack usage with stacked devices could be a problem. So use
1914 * current->bio_list to keep a list of requests submited by a
1915 * make_request_fn function. current->bio_list is also used as a
1916 * flag to say if generic_make_request is currently active in this
1917 * task or not. If it is NULL, then no make_request is active. If
1918 * it is non-NULL, then a make_request is active, and new requests
1919 * should be added at the tail
1920 */
1921 if (current->bio_list) {
1922 bio_list_add(current->bio_list, bio);
1923 return;
1924 }
1925
1926 /* following loop may be a bit non-obvious, and so deserves some
1927 * explanation.
1928 * Before entering the loop, bio->bi_next is NULL (as all callers
1929 * ensure that) so we have a list with a single bio.
1930 * We pretend that we have just taken it off a longer list, so
1931 * we assign bio_list to a pointer to the bio_list_on_stack,
1932 * thus initialising the bio_list of new bios to be
1933 * added. ->make_request() may indeed add some more bios
1934 * through a recursive call to generic_make_request. If it
1935 * did, we find a non-NULL value in bio_list and re-enter the loop
1936 * from the top. In this case we really did just take the bio
1937 * of the top of the list (no pretending) and so remove it from
1938 * bio_list, and call into ->make_request() again.
1939 */
1940 BUG_ON(bio->bi_next);
1941 bio_list_init(&bio_list_on_stack);
1942 current->bio_list = &bio_list_on_stack;
1943 do {
1944 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1945
1946 q->make_request_fn(q, bio);
1947
1948 bio = bio_list_pop(current->bio_list);
1949 } while (bio);
1950 current->bio_list = NULL; /* deactivate */
1951 }
1952 EXPORT_SYMBOL(generic_make_request);
1953
1954 /**
1955 * submit_bio - submit a bio to the block device layer for I/O
1956 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1957 * @bio: The &struct bio which describes the I/O
1958 *
1959 * submit_bio() is very similar in purpose to generic_make_request(), and
1960 * uses that function to do most of the work. Both are fairly rough
1961 * interfaces; @bio must be presetup and ready for I/O.
1962 *
1963 */
1964 void submit_bio(int rw, struct bio *bio)
1965 {
1966 bio->bi_rw |= rw;
1967
1968 /*
1969 * If it's a regular read/write or a barrier with data attached,
1970 * go through the normal accounting stuff before submission.
1971 */
1972 if (bio_has_data(bio)) {
1973 unsigned int count;
1974
1975 if (unlikely(rw & REQ_WRITE_SAME))
1976 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1977 else
1978 count = bio_sectors(bio);
1979
1980 if (rw & WRITE) {
1981 count_vm_events(PGPGOUT, count);
1982 } else {
1983 task_io_account_read(bio->bi_iter.bi_size);
1984 count_vm_events(PGPGIN, count);
1985 }
1986
1987 if (unlikely(block_dump)) {
1988 char b[BDEVNAME_SIZE];
1989 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1990 current->comm, task_pid_nr(current),
1991 (rw & WRITE) ? "WRITE" : "READ",
1992 (unsigned long long)bio->bi_iter.bi_sector,
1993 bdevname(bio->bi_bdev, b),
1994 count);
1995 }
1996 }
1997
1998 generic_make_request(bio);
1999 }
2000 EXPORT_SYMBOL(submit_bio);
2001
2002 /**
2003 * blk_rq_check_limits - Helper function to check a request for the queue limit
2004 * @q: the queue
2005 * @rq: the request being checked
2006 *
2007 * Description:
2008 * @rq may have been made based on weaker limitations of upper-level queues
2009 * in request stacking drivers, and it may violate the limitation of @q.
2010 * Since the block layer and the underlying device driver trust @rq
2011 * after it is inserted to @q, it should be checked against @q before
2012 * the insertion using this generic function.
2013 *
2014 * This function should also be useful for request stacking drivers
2015 * in some cases below, so export this function.
2016 * Request stacking drivers like request-based dm may change the queue
2017 * limits while requests are in the queue (e.g. dm's table swapping).
2018 * Such request stacking drivers should check those requests against
2019 * the new queue limits again when they dispatch those requests,
2020 * although such checkings are also done against the old queue limits
2021 * when submitting requests.
2022 */
2023 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
2024 {
2025 if (!rq_mergeable(rq))
2026 return 0;
2027
2028 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
2029 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2030 return -EIO;
2031 }
2032
2033 /*
2034 * queue's settings related to segment counting like q->bounce_pfn
2035 * may differ from that of other stacking queues.
2036 * Recalculate it to check the request correctly on this queue's
2037 * limitation.
2038 */
2039 blk_recalc_rq_segments(rq);
2040 if (rq->nr_phys_segments > queue_max_segments(q)) {
2041 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2042 return -EIO;
2043 }
2044
2045 return 0;
2046 }
2047 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
2048
2049 /**
2050 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2051 * @q: the queue to submit the request
2052 * @rq: the request being queued
2053 */
2054 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2055 {
2056 unsigned long flags;
2057 int where = ELEVATOR_INSERT_BACK;
2058
2059 if (blk_rq_check_limits(q, rq))
2060 return -EIO;
2061
2062 if (rq->rq_disk &&
2063 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2064 return -EIO;
2065
2066 if (q->mq_ops) {
2067 if (blk_queue_io_stat(q))
2068 blk_account_io_start(rq, true);
2069 blk_mq_insert_request(rq, false, true, true);
2070 return 0;
2071 }
2072
2073 spin_lock_irqsave(q->queue_lock, flags);
2074 if (unlikely(blk_queue_dying(q))) {
2075 spin_unlock_irqrestore(q->queue_lock, flags);
2076 return -ENODEV;
2077 }
2078
2079 /*
2080 * Submitting request must be dequeued before calling this function
2081 * because it will be linked to another request_queue
2082 */
2083 BUG_ON(blk_queued_rq(rq));
2084
2085 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2086 where = ELEVATOR_INSERT_FLUSH;
2087
2088 add_acct_request(q, rq, where);
2089 if (where == ELEVATOR_INSERT_FLUSH)
2090 __blk_run_queue(q);
2091 spin_unlock_irqrestore(q->queue_lock, flags);
2092
2093 return 0;
2094 }
2095 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2096
2097 /**
2098 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2099 * @rq: request to examine
2100 *
2101 * Description:
2102 * A request could be merge of IOs which require different failure
2103 * handling. This function determines the number of bytes which
2104 * can be failed from the beginning of the request without
2105 * crossing into area which need to be retried further.
2106 *
2107 * Return:
2108 * The number of bytes to fail.
2109 *
2110 * Context:
2111 * queue_lock must be held.
2112 */
2113 unsigned int blk_rq_err_bytes(const struct request *rq)
2114 {
2115 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2116 unsigned int bytes = 0;
2117 struct bio *bio;
2118
2119 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2120 return blk_rq_bytes(rq);
2121
2122 /*
2123 * Currently the only 'mixing' which can happen is between
2124 * different fastfail types. We can safely fail portions
2125 * which have all the failfast bits that the first one has -
2126 * the ones which are at least as eager to fail as the first
2127 * one.
2128 */
2129 for (bio = rq->bio; bio; bio = bio->bi_next) {
2130 if ((bio->bi_rw & ff) != ff)
2131 break;
2132 bytes += bio->bi_iter.bi_size;
2133 }
2134
2135 /* this could lead to infinite loop */
2136 BUG_ON(blk_rq_bytes(rq) && !bytes);
2137 return bytes;
2138 }
2139 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2140
2141 void blk_account_io_completion(struct request *req, unsigned int bytes)
2142 {
2143 if (blk_do_io_stat(req)) {
2144 const int rw = rq_data_dir(req);
2145 struct hd_struct *part;
2146 int cpu;
2147
2148 cpu = part_stat_lock();
2149 part = req->part;
2150 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2151 part_stat_unlock();
2152 }
2153 }
2154
2155 void blk_account_io_done(struct request *req)
2156 {
2157 /*
2158 * Account IO completion. flush_rq isn't accounted as a
2159 * normal IO on queueing nor completion. Accounting the
2160 * containing request is enough.
2161 */
2162 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2163 unsigned long duration = jiffies - req->start_time;
2164 const int rw = rq_data_dir(req);
2165 struct hd_struct *part;
2166 int cpu;
2167
2168 cpu = part_stat_lock();
2169 part = req->part;
2170
2171 part_stat_inc(cpu, part, ios[rw]);
2172 part_stat_add(cpu, part, ticks[rw], duration);
2173 part_round_stats(cpu, part);
2174 part_dec_in_flight(part, rw);
2175
2176 hd_struct_put(part);
2177 part_stat_unlock();
2178 }
2179 }
2180
2181 #ifdef CONFIG_PM
2182 /*
2183 * Don't process normal requests when queue is suspended
2184 * or in the process of suspending/resuming
2185 */
2186 static struct request *blk_pm_peek_request(struct request_queue *q,
2187 struct request *rq)
2188 {
2189 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2190 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2191 return NULL;
2192 else
2193 return rq;
2194 }
2195 #else
2196 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2197 struct request *rq)
2198 {
2199 return rq;
2200 }
2201 #endif
2202
2203 void blk_account_io_start(struct request *rq, bool new_io)
2204 {
2205 struct hd_struct *part;
2206 int rw = rq_data_dir(rq);
2207 int cpu;
2208
2209 if (!blk_do_io_stat(rq))
2210 return;
2211
2212 cpu = part_stat_lock();
2213
2214 if (!new_io) {
2215 part = rq->part;
2216 part_stat_inc(cpu, part, merges[rw]);
2217 } else {
2218 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2219 if (!hd_struct_try_get(part)) {
2220 /*
2221 * The partition is already being removed,
2222 * the request will be accounted on the disk only
2223 *
2224 * We take a reference on disk->part0 although that
2225 * partition will never be deleted, so we can treat
2226 * it as any other partition.
2227 */
2228 part = &rq->rq_disk->part0;
2229 hd_struct_get(part);
2230 }
2231 part_round_stats(cpu, part);
2232 part_inc_in_flight(part, rw);
2233 rq->part = part;
2234 }
2235
2236 part_stat_unlock();
2237 }
2238
2239 /**
2240 * blk_peek_request - peek at the top of a request queue
2241 * @q: request queue to peek at
2242 *
2243 * Description:
2244 * Return the request at the top of @q. The returned request
2245 * should be started using blk_start_request() before LLD starts
2246 * processing it.
2247 *
2248 * Return:
2249 * Pointer to the request at the top of @q if available. Null
2250 * otherwise.
2251 *
2252 * Context:
2253 * queue_lock must be held.
2254 */
2255 struct request *blk_peek_request(struct request_queue *q)
2256 {
2257 struct request *rq;
2258 int ret;
2259
2260 while ((rq = __elv_next_request(q)) != NULL) {
2261
2262 rq = blk_pm_peek_request(q, rq);
2263 if (!rq)
2264 break;
2265
2266 if (!(rq->cmd_flags & REQ_STARTED)) {
2267 /*
2268 * This is the first time the device driver
2269 * sees this request (possibly after
2270 * requeueing). Notify IO scheduler.
2271 */
2272 if (rq->cmd_flags & REQ_SORTED)
2273 elv_activate_rq(q, rq);
2274
2275 /*
2276 * just mark as started even if we don't start
2277 * it, a request that has been delayed should
2278 * not be passed by new incoming requests
2279 */
2280 rq->cmd_flags |= REQ_STARTED;
2281 trace_block_rq_issue(q, rq);
2282 }
2283
2284 if (!q->boundary_rq || q->boundary_rq == rq) {
2285 q->end_sector = rq_end_sector(rq);
2286 q->boundary_rq = NULL;
2287 }
2288
2289 if (rq->cmd_flags & REQ_DONTPREP)
2290 break;
2291
2292 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2293 /*
2294 * make sure space for the drain appears we
2295 * know we can do this because max_hw_segments
2296 * has been adjusted to be one fewer than the
2297 * device can handle
2298 */
2299 rq->nr_phys_segments++;
2300 }
2301
2302 if (!q->prep_rq_fn)
2303 break;
2304
2305 ret = q->prep_rq_fn(q, rq);
2306 if (ret == BLKPREP_OK) {
2307 break;
2308 } else if (ret == BLKPREP_DEFER) {
2309 /*
2310 * the request may have been (partially) prepped.
2311 * we need to keep this request in the front to
2312 * avoid resource deadlock. REQ_STARTED will
2313 * prevent other fs requests from passing this one.
2314 */
2315 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2316 !(rq->cmd_flags & REQ_DONTPREP)) {
2317 /*
2318 * remove the space for the drain we added
2319 * so that we don't add it again
2320 */
2321 --rq->nr_phys_segments;
2322 }
2323
2324 rq = NULL;
2325 break;
2326 } else if (ret == BLKPREP_KILL) {
2327 rq->cmd_flags |= REQ_QUIET;
2328 /*
2329 * Mark this request as started so we don't trigger
2330 * any debug logic in the end I/O path.
2331 */
2332 blk_start_request(rq);
2333 __blk_end_request_all(rq, -EIO);
2334 } else {
2335 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2336 break;
2337 }
2338 }
2339
2340 return rq;
2341 }
2342 EXPORT_SYMBOL(blk_peek_request);
2343
2344 void blk_dequeue_request(struct request *rq)
2345 {
2346 struct request_queue *q = rq->q;
2347
2348 BUG_ON(list_empty(&rq->queuelist));
2349 BUG_ON(ELV_ON_HASH(rq));
2350
2351 list_del_init(&rq->queuelist);
2352
2353 /*
2354 * the time frame between a request being removed from the lists
2355 * and to it is freed is accounted as io that is in progress at
2356 * the driver side.
2357 */
2358 if (blk_account_rq(rq)) {
2359 q->in_flight[rq_is_sync(rq)]++;
2360 set_io_start_time_ns(rq);
2361 }
2362 }
2363
2364 /**
2365 * blk_start_request - start request processing on the driver
2366 * @req: request to dequeue
2367 *
2368 * Description:
2369 * Dequeue @req and start timeout timer on it. This hands off the
2370 * request to the driver.
2371 *
2372 * Block internal functions which don't want to start timer should
2373 * call blk_dequeue_request().
2374 *
2375 * Context:
2376 * queue_lock must be held.
2377 */
2378 void blk_start_request(struct request *req)
2379 {
2380 blk_dequeue_request(req);
2381
2382 /*
2383 * We are now handing the request to the hardware, initialize
2384 * resid_len to full count and add the timeout handler.
2385 */
2386 req->resid_len = blk_rq_bytes(req);
2387 if (unlikely(blk_bidi_rq(req)))
2388 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2389
2390 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2391 blk_add_timer(req);
2392 }
2393 EXPORT_SYMBOL(blk_start_request);
2394
2395 /**
2396 * blk_fetch_request - fetch a request from a request queue
2397 * @q: request queue to fetch a request from
2398 *
2399 * Description:
2400 * Return the request at the top of @q. The request is started on
2401 * return and LLD can start processing it immediately.
2402 *
2403 * Return:
2404 * Pointer to the request at the top of @q if available. Null
2405 * otherwise.
2406 *
2407 * Context:
2408 * queue_lock must be held.
2409 */
2410 struct request *blk_fetch_request(struct request_queue *q)
2411 {
2412 struct request *rq;
2413
2414 rq = blk_peek_request(q);
2415 if (rq)
2416 blk_start_request(rq);
2417 return rq;
2418 }
2419 EXPORT_SYMBOL(blk_fetch_request);
2420
2421 /**
2422 * blk_update_request - Special helper function for request stacking drivers
2423 * @req: the request being processed
2424 * @error: %0 for success, < %0 for error
2425 * @nr_bytes: number of bytes to complete @req
2426 *
2427 * Description:
2428 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2429 * the request structure even if @req doesn't have leftover.
2430 * If @req has leftover, sets it up for the next range of segments.
2431 *
2432 * This special helper function is only for request stacking drivers
2433 * (e.g. request-based dm) so that they can handle partial completion.
2434 * Actual device drivers should use blk_end_request instead.
2435 *
2436 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2437 * %false return from this function.
2438 *
2439 * Return:
2440 * %false - this request doesn't have any more data
2441 * %true - this request has more data
2442 **/
2443 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2444 {
2445 int total_bytes;
2446
2447 trace_block_rq_complete(req->q, req, nr_bytes);
2448
2449 if (!req->bio)
2450 return false;
2451
2452 /*
2453 * For fs requests, rq is just carrier of independent bio's
2454 * and each partial completion should be handled separately.
2455 * Reset per-request error on each partial completion.
2456 *
2457 * TODO: tj: This is too subtle. It would be better to let
2458 * low level drivers do what they see fit.
2459 */
2460 if (req->cmd_type == REQ_TYPE_FS)
2461 req->errors = 0;
2462
2463 if (error && req->cmd_type == REQ_TYPE_FS &&
2464 !(req->cmd_flags & REQ_QUIET)) {
2465 char *error_type;
2466
2467 switch (error) {
2468 case -ENOLINK:
2469 error_type = "recoverable transport";
2470 break;
2471 case -EREMOTEIO:
2472 error_type = "critical target";
2473 break;
2474 case -EBADE:
2475 error_type = "critical nexus";
2476 break;
2477 case -ETIMEDOUT:
2478 error_type = "timeout";
2479 break;
2480 case -ENOSPC:
2481 error_type = "critical space allocation";
2482 break;
2483 case -ENODATA:
2484 error_type = "critical medium";
2485 break;
2486 case -EIO:
2487 default:
2488 error_type = "I/O";
2489 break;
2490 }
2491 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2492 __func__, error_type, req->rq_disk ?
2493 req->rq_disk->disk_name : "?",
2494 (unsigned long long)blk_rq_pos(req));
2495
2496 }
2497
2498 blk_account_io_completion(req, nr_bytes);
2499
2500 total_bytes = 0;
2501 while (req->bio) {
2502 struct bio *bio = req->bio;
2503 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2504
2505 if (bio_bytes == bio->bi_iter.bi_size)
2506 req->bio = bio->bi_next;
2507
2508 req_bio_endio(req, bio, bio_bytes, error);
2509
2510 total_bytes += bio_bytes;
2511 nr_bytes -= bio_bytes;
2512
2513 if (!nr_bytes)
2514 break;
2515 }
2516
2517 /*
2518 * completely done
2519 */
2520 if (!req->bio) {
2521 /*
2522 * Reset counters so that the request stacking driver
2523 * can find how many bytes remain in the request
2524 * later.
2525 */
2526 req->__data_len = 0;
2527 return false;
2528 }
2529
2530 req->__data_len -= total_bytes;
2531
2532 /* update sector only for requests with clear definition of sector */
2533 if (req->cmd_type == REQ_TYPE_FS)
2534 req->__sector += total_bytes >> 9;
2535
2536 /* mixed attributes always follow the first bio */
2537 if (req->cmd_flags & REQ_MIXED_MERGE) {
2538 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2539 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2540 }
2541
2542 /*
2543 * If total number of sectors is less than the first segment
2544 * size, something has gone terribly wrong.
2545 */
2546 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2547 blk_dump_rq_flags(req, "request botched");
2548 req->__data_len = blk_rq_cur_bytes(req);
2549 }
2550
2551 /* recalculate the number of segments */
2552 blk_recalc_rq_segments(req);
2553
2554 return true;
2555 }
2556 EXPORT_SYMBOL_GPL(blk_update_request);
2557
2558 static bool blk_update_bidi_request(struct request *rq, int error,
2559 unsigned int nr_bytes,
2560 unsigned int bidi_bytes)
2561 {
2562 if (blk_update_request(rq, error, nr_bytes))
2563 return true;
2564
2565 /* Bidi request must be completed as a whole */
2566 if (unlikely(blk_bidi_rq(rq)) &&
2567 blk_update_request(rq->next_rq, error, bidi_bytes))
2568 return true;
2569
2570 if (blk_queue_add_random(rq->q))
2571 add_disk_randomness(rq->rq_disk);
2572
2573 return false;
2574 }
2575
2576 /**
2577 * blk_unprep_request - unprepare a request
2578 * @req: the request
2579 *
2580 * This function makes a request ready for complete resubmission (or
2581 * completion). It happens only after all error handling is complete,
2582 * so represents the appropriate moment to deallocate any resources
2583 * that were allocated to the request in the prep_rq_fn. The queue
2584 * lock is held when calling this.
2585 */
2586 void blk_unprep_request(struct request *req)
2587 {
2588 struct request_queue *q = req->q;
2589
2590 req->cmd_flags &= ~REQ_DONTPREP;
2591 if (q->unprep_rq_fn)
2592 q->unprep_rq_fn(q, req);
2593 }
2594 EXPORT_SYMBOL_GPL(blk_unprep_request);
2595
2596 /*
2597 * queue lock must be held
2598 */
2599 void blk_finish_request(struct request *req, int error)
2600 {
2601 if (req->cmd_flags & REQ_QUEUED)
2602 blk_queue_end_tag(req->q, req);
2603
2604 BUG_ON(blk_queued_rq(req));
2605
2606 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2607 laptop_io_completion(&req->q->backing_dev_info);
2608
2609 blk_delete_timer(req);
2610
2611 if (req->cmd_flags & REQ_DONTPREP)
2612 blk_unprep_request(req);
2613
2614 blk_account_io_done(req);
2615
2616 if (req->end_io)
2617 req->end_io(req, error);
2618 else {
2619 if (blk_bidi_rq(req))
2620 __blk_put_request(req->next_rq->q, req->next_rq);
2621
2622 __blk_put_request(req->q, req);
2623 }
2624 }
2625 EXPORT_SYMBOL(blk_finish_request);
2626
2627 /**
2628 * blk_end_bidi_request - Complete a bidi request
2629 * @rq: the request to complete
2630 * @error: %0 for success, < %0 for error
2631 * @nr_bytes: number of bytes to complete @rq
2632 * @bidi_bytes: number of bytes to complete @rq->next_rq
2633 *
2634 * Description:
2635 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2636 * Drivers that supports bidi can safely call this member for any
2637 * type of request, bidi or uni. In the later case @bidi_bytes is
2638 * just ignored.
2639 *
2640 * Return:
2641 * %false - we are done with this request
2642 * %true - still buffers pending for this request
2643 **/
2644 static bool blk_end_bidi_request(struct request *rq, int error,
2645 unsigned int nr_bytes, unsigned int bidi_bytes)
2646 {
2647 struct request_queue *q = rq->q;
2648 unsigned long flags;
2649
2650 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2651 return true;
2652
2653 spin_lock_irqsave(q->queue_lock, flags);
2654 blk_finish_request(rq, error);
2655 spin_unlock_irqrestore(q->queue_lock, flags);
2656
2657 return false;
2658 }
2659
2660 /**
2661 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2662 * @rq: the request to complete
2663 * @error: %0 for success, < %0 for error
2664 * @nr_bytes: number of bytes to complete @rq
2665 * @bidi_bytes: number of bytes to complete @rq->next_rq
2666 *
2667 * Description:
2668 * Identical to blk_end_bidi_request() except that queue lock is
2669 * assumed to be locked on entry and remains so on return.
2670 *
2671 * Return:
2672 * %false - we are done with this request
2673 * %true - still buffers pending for this request
2674 **/
2675 bool __blk_end_bidi_request(struct request *rq, int error,
2676 unsigned int nr_bytes, unsigned int bidi_bytes)
2677 {
2678 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2679 return true;
2680
2681 blk_finish_request(rq, error);
2682
2683 return false;
2684 }
2685
2686 /**
2687 * blk_end_request - Helper function for drivers to complete the request.
2688 * @rq: the request being processed
2689 * @error: %0 for success, < %0 for error
2690 * @nr_bytes: number of bytes to complete
2691 *
2692 * Description:
2693 * Ends I/O on a number of bytes attached to @rq.
2694 * If @rq has leftover, sets it up for the next range of segments.
2695 *
2696 * Return:
2697 * %false - we are done with this request
2698 * %true - still buffers pending for this request
2699 **/
2700 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2701 {
2702 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2703 }
2704 EXPORT_SYMBOL(blk_end_request);
2705
2706 /**
2707 * blk_end_request_all - Helper function for drives to finish the request.
2708 * @rq: the request to finish
2709 * @error: %0 for success, < %0 for error
2710 *
2711 * Description:
2712 * Completely finish @rq.
2713 */
2714 void blk_end_request_all(struct request *rq, int error)
2715 {
2716 bool pending;
2717 unsigned int bidi_bytes = 0;
2718
2719 if (unlikely(blk_bidi_rq(rq)))
2720 bidi_bytes = blk_rq_bytes(rq->next_rq);
2721
2722 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2723 BUG_ON(pending);
2724 }
2725 EXPORT_SYMBOL(blk_end_request_all);
2726
2727 /**
2728 * blk_end_request_cur - Helper function to finish the current request chunk.
2729 * @rq: the request to finish the current chunk for
2730 * @error: %0 for success, < %0 for error
2731 *
2732 * Description:
2733 * Complete the current consecutively mapped chunk from @rq.
2734 *
2735 * Return:
2736 * %false - we are done with this request
2737 * %true - still buffers pending for this request
2738 */
2739 bool blk_end_request_cur(struct request *rq, int error)
2740 {
2741 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2742 }
2743 EXPORT_SYMBOL(blk_end_request_cur);
2744
2745 /**
2746 * blk_end_request_err - Finish a request till the next failure boundary.
2747 * @rq: the request to finish till the next failure boundary for
2748 * @error: must be negative errno
2749 *
2750 * Description:
2751 * Complete @rq till the next failure boundary.
2752 *
2753 * Return:
2754 * %false - we are done with this request
2755 * %true - still buffers pending for this request
2756 */
2757 bool blk_end_request_err(struct request *rq, int error)
2758 {
2759 WARN_ON(error >= 0);
2760 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2761 }
2762 EXPORT_SYMBOL_GPL(blk_end_request_err);
2763
2764 /**
2765 * __blk_end_request - Helper function for drivers to complete the request.
2766 * @rq: the request being processed
2767 * @error: %0 for success, < %0 for error
2768 * @nr_bytes: number of bytes to complete
2769 *
2770 * Description:
2771 * Must be called with queue lock held unlike blk_end_request().
2772 *
2773 * Return:
2774 * %false - we are done with this request
2775 * %true - still buffers pending for this request
2776 **/
2777 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2778 {
2779 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2780 }
2781 EXPORT_SYMBOL(__blk_end_request);
2782
2783 /**
2784 * __blk_end_request_all - Helper function for drives to finish the request.
2785 * @rq: the request to finish
2786 * @error: %0 for success, < %0 for error
2787 *
2788 * Description:
2789 * Completely finish @rq. Must be called with queue lock held.
2790 */
2791 void __blk_end_request_all(struct request *rq, int error)
2792 {
2793 bool pending;
2794 unsigned int bidi_bytes = 0;
2795
2796 if (unlikely(blk_bidi_rq(rq)))
2797 bidi_bytes = blk_rq_bytes(rq->next_rq);
2798
2799 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2800 BUG_ON(pending);
2801 }
2802 EXPORT_SYMBOL(__blk_end_request_all);
2803
2804 /**
2805 * __blk_end_request_cur - Helper function to finish the current request chunk.
2806 * @rq: the request to finish the current chunk for
2807 * @error: %0 for success, < %0 for error
2808 *
2809 * Description:
2810 * Complete the current consecutively mapped chunk from @rq. Must
2811 * be called with queue lock held.
2812 *
2813 * Return:
2814 * %false - we are done with this request
2815 * %true - still buffers pending for this request
2816 */
2817 bool __blk_end_request_cur(struct request *rq, int error)
2818 {
2819 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2820 }
2821 EXPORT_SYMBOL(__blk_end_request_cur);
2822
2823 /**
2824 * __blk_end_request_err - Finish a request till the next failure boundary.
2825 * @rq: the request to finish till the next failure boundary for
2826 * @error: must be negative errno
2827 *
2828 * Description:
2829 * Complete @rq till the next failure boundary. Must be called
2830 * with queue lock held.
2831 *
2832 * Return:
2833 * %false - we are done with this request
2834 * %true - still buffers pending for this request
2835 */
2836 bool __blk_end_request_err(struct request *rq, int error)
2837 {
2838 WARN_ON(error >= 0);
2839 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2840 }
2841 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2842
2843 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2844 struct bio *bio)
2845 {
2846 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2847 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2848
2849 if (bio_has_data(bio))
2850 rq->nr_phys_segments = bio_phys_segments(q, bio);
2851
2852 rq->__data_len = bio->bi_iter.bi_size;
2853 rq->bio = rq->biotail = bio;
2854
2855 if (bio->bi_bdev)
2856 rq->rq_disk = bio->bi_bdev->bd_disk;
2857 }
2858
2859 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2860 /**
2861 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2862 * @rq: the request to be flushed
2863 *
2864 * Description:
2865 * Flush all pages in @rq.
2866 */
2867 void rq_flush_dcache_pages(struct request *rq)
2868 {
2869 struct req_iterator iter;
2870 struct bio_vec bvec;
2871
2872 rq_for_each_segment(bvec, rq, iter)
2873 flush_dcache_page(bvec.bv_page);
2874 }
2875 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2876 #endif
2877
2878 /**
2879 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2880 * @q : the queue of the device being checked
2881 *
2882 * Description:
2883 * Check if underlying low-level drivers of a device are busy.
2884 * If the drivers want to export their busy state, they must set own
2885 * exporting function using blk_queue_lld_busy() first.
2886 *
2887 * Basically, this function is used only by request stacking drivers
2888 * to stop dispatching requests to underlying devices when underlying
2889 * devices are busy. This behavior helps more I/O merging on the queue
2890 * of the request stacking driver and prevents I/O throughput regression
2891 * on burst I/O load.
2892 *
2893 * Return:
2894 * 0 - Not busy (The request stacking driver should dispatch request)
2895 * 1 - Busy (The request stacking driver should stop dispatching request)
2896 */
2897 int blk_lld_busy(struct request_queue *q)
2898 {
2899 if (q->lld_busy_fn)
2900 return q->lld_busy_fn(q);
2901
2902 return 0;
2903 }
2904 EXPORT_SYMBOL_GPL(blk_lld_busy);
2905
2906 /**
2907 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2908 * @rq: the clone request to be cleaned up
2909 *
2910 * Description:
2911 * Free all bios in @rq for a cloned request.
2912 */
2913 void blk_rq_unprep_clone(struct request *rq)
2914 {
2915 struct bio *bio;
2916
2917 while ((bio = rq->bio) != NULL) {
2918 rq->bio = bio->bi_next;
2919
2920 bio_put(bio);
2921 }
2922 }
2923 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2924
2925 /*
2926 * Copy attributes of the original request to the clone request.
2927 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
2928 */
2929 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2930 {
2931 dst->cpu = src->cpu;
2932 dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2933 dst->cmd_type = src->cmd_type;
2934 dst->__sector = blk_rq_pos(src);
2935 dst->__data_len = blk_rq_bytes(src);
2936 dst->nr_phys_segments = src->nr_phys_segments;
2937 dst->ioprio = src->ioprio;
2938 dst->extra_len = src->extra_len;
2939 }
2940
2941 /**
2942 * blk_rq_prep_clone - Helper function to setup clone request
2943 * @rq: the request to be setup
2944 * @rq_src: original request to be cloned
2945 * @bs: bio_set that bios for clone are allocated from
2946 * @gfp_mask: memory allocation mask for bio
2947 * @bio_ctr: setup function to be called for each clone bio.
2948 * Returns %0 for success, non %0 for failure.
2949 * @data: private data to be passed to @bio_ctr
2950 *
2951 * Description:
2952 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2953 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
2954 * are not copied, and copying such parts is the caller's responsibility.
2955 * Also, pages which the original bios are pointing to are not copied
2956 * and the cloned bios just point same pages.
2957 * So cloned bios must be completed before original bios, which means
2958 * the caller must complete @rq before @rq_src.
2959 */
2960 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2961 struct bio_set *bs, gfp_t gfp_mask,
2962 int (*bio_ctr)(struct bio *, struct bio *, void *),
2963 void *data)
2964 {
2965 struct bio *bio, *bio_src;
2966
2967 if (!bs)
2968 bs = fs_bio_set;
2969
2970 __rq_for_each_bio(bio_src, rq_src) {
2971 bio = bio_clone_fast(bio_src, gfp_mask, bs);
2972 if (!bio)
2973 goto free_and_out;
2974
2975 if (bio_ctr && bio_ctr(bio, bio_src, data))
2976 goto free_and_out;
2977
2978 if (rq->bio) {
2979 rq->biotail->bi_next = bio;
2980 rq->biotail = bio;
2981 } else
2982 rq->bio = rq->biotail = bio;
2983 }
2984
2985 __blk_rq_prep_clone(rq, rq_src);
2986
2987 return 0;
2988
2989 free_and_out:
2990 if (bio)
2991 bio_put(bio);
2992 blk_rq_unprep_clone(rq);
2993
2994 return -ENOMEM;
2995 }
2996 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2997
2998 int kblockd_schedule_work(struct work_struct *work)
2999 {
3000 return queue_work(kblockd_workqueue, work);
3001 }
3002 EXPORT_SYMBOL(kblockd_schedule_work);
3003
3004 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3005 unsigned long delay)
3006 {
3007 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3008 }
3009 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3010
3011 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3012 unsigned long delay)
3013 {
3014 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3015 }
3016 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3017
3018 /**
3019 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3020 * @plug: The &struct blk_plug that needs to be initialized
3021 *
3022 * Description:
3023 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3024 * pending I/O should the task end up blocking between blk_start_plug() and
3025 * blk_finish_plug(). This is important from a performance perspective, but
3026 * also ensures that we don't deadlock. For instance, if the task is blocking
3027 * for a memory allocation, memory reclaim could end up wanting to free a
3028 * page belonging to that request that is currently residing in our private
3029 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3030 * this kind of deadlock.
3031 */
3032 void blk_start_plug(struct blk_plug *plug)
3033 {
3034 struct task_struct *tsk = current;
3035
3036 INIT_LIST_HEAD(&plug->list);
3037 INIT_LIST_HEAD(&plug->mq_list);
3038 INIT_LIST_HEAD(&plug->cb_list);
3039
3040 /*
3041 * If this is a nested plug, don't actually assign it. It will be
3042 * flushed on its own.
3043 */
3044 if (!tsk->plug) {
3045 /*
3046 * Store ordering should not be needed here, since a potential
3047 * preempt will imply a full memory barrier
3048 */
3049 tsk->plug = plug;
3050 }
3051 }
3052 EXPORT_SYMBOL(blk_start_plug);
3053
3054 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3055 {
3056 struct request *rqa = container_of(a, struct request, queuelist);
3057 struct request *rqb = container_of(b, struct request, queuelist);
3058
3059 return !(rqa->q < rqb->q ||
3060 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3061 }
3062
3063 /*
3064 * If 'from_schedule' is true, then postpone the dispatch of requests
3065 * until a safe kblockd context. We due this to avoid accidental big
3066 * additional stack usage in driver dispatch, in places where the originally
3067 * plugger did not intend it.
3068 */
3069 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3070 bool from_schedule)
3071 __releases(q->queue_lock)
3072 {
3073 trace_block_unplug(q, depth, !from_schedule);
3074
3075 if (from_schedule)
3076 blk_run_queue_async(q);
3077 else
3078 __blk_run_queue(q);
3079 spin_unlock(q->queue_lock);
3080 }
3081
3082 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3083 {
3084 LIST_HEAD(callbacks);
3085
3086 while (!list_empty(&plug->cb_list)) {
3087 list_splice_init(&plug->cb_list, &callbacks);
3088
3089 while (!list_empty(&callbacks)) {
3090 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3091 struct blk_plug_cb,
3092 list);
3093 list_del(&cb->list);
3094 cb->callback(cb, from_schedule);
3095 }
3096 }
3097 }
3098
3099 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3100 int size)
3101 {
3102 struct blk_plug *plug = current->plug;
3103 struct blk_plug_cb *cb;
3104
3105 if (!plug)
3106 return NULL;
3107
3108 list_for_each_entry(cb, &plug->cb_list, list)
3109 if (cb->callback == unplug && cb->data == data)
3110 return cb;
3111
3112 /* Not currently on the callback list */
3113 BUG_ON(size < sizeof(*cb));
3114 cb = kzalloc(size, GFP_ATOMIC);
3115 if (cb) {
3116 cb->data = data;
3117 cb->callback = unplug;
3118 list_add(&cb->list, &plug->cb_list);
3119 }
3120 return cb;
3121 }
3122 EXPORT_SYMBOL(blk_check_plugged);
3123
3124 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3125 {
3126 struct request_queue *q;
3127 unsigned long flags;
3128 struct request *rq;
3129 LIST_HEAD(list);
3130 unsigned int depth;
3131
3132 flush_plug_callbacks(plug, from_schedule);
3133
3134 if (!list_empty(&plug->mq_list))
3135 blk_mq_flush_plug_list(plug, from_schedule);
3136
3137 if (list_empty(&plug->list))
3138 return;
3139
3140 list_splice_init(&plug->list, &list);
3141
3142 list_sort(NULL, &list, plug_rq_cmp);
3143
3144 q = NULL;
3145 depth = 0;
3146
3147 /*
3148 * Save and disable interrupts here, to avoid doing it for every
3149 * queue lock we have to take.
3150 */
3151 local_irq_save(flags);
3152 while (!list_empty(&list)) {
3153 rq = list_entry_rq(list.next);
3154 list_del_init(&rq->queuelist);
3155 BUG_ON(!rq->q);
3156 if (rq->q != q) {
3157 /*
3158 * This drops the queue lock
3159 */
3160 if (q)
3161 queue_unplugged(q, depth, from_schedule);
3162 q = rq->q;
3163 depth = 0;
3164 spin_lock(q->queue_lock);
3165 }
3166
3167 /*
3168 * Short-circuit if @q is dead
3169 */
3170 if (unlikely(blk_queue_dying(q))) {
3171 __blk_end_request_all(rq, -ENODEV);
3172 continue;
3173 }
3174
3175 /*
3176 * rq is already accounted, so use raw insert
3177 */
3178 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3179 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3180 else
3181 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3182
3183 depth++;
3184 }
3185
3186 /*
3187 * This drops the queue lock
3188 */
3189 if (q)
3190 queue_unplugged(q, depth, from_schedule);
3191
3192 local_irq_restore(flags);
3193 }
3194
3195 void blk_finish_plug(struct blk_plug *plug)
3196 {
3197 blk_flush_plug_list(plug, false);
3198
3199 if (plug == current->plug)
3200 current->plug = NULL;
3201 }
3202 EXPORT_SYMBOL(blk_finish_plug);
3203
3204 #ifdef CONFIG_PM
3205 /**
3206 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3207 * @q: the queue of the device
3208 * @dev: the device the queue belongs to
3209 *
3210 * Description:
3211 * Initialize runtime-PM-related fields for @q and start auto suspend for
3212 * @dev. Drivers that want to take advantage of request-based runtime PM
3213 * should call this function after @dev has been initialized, and its
3214 * request queue @q has been allocated, and runtime PM for it can not happen
3215 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3216 * cases, driver should call this function before any I/O has taken place.
3217 *
3218 * This function takes care of setting up using auto suspend for the device,
3219 * the autosuspend delay is set to -1 to make runtime suspend impossible
3220 * until an updated value is either set by user or by driver. Drivers do
3221 * not need to touch other autosuspend settings.
3222 *
3223 * The block layer runtime PM is request based, so only works for drivers
3224 * that use request as their IO unit instead of those directly use bio's.
3225 */
3226 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3227 {
3228 q->dev = dev;
3229 q->rpm_status = RPM_ACTIVE;
3230 pm_runtime_set_autosuspend_delay(q->dev, -1);
3231 pm_runtime_use_autosuspend(q->dev);
3232 }
3233 EXPORT_SYMBOL(blk_pm_runtime_init);
3234
3235 /**
3236 * blk_pre_runtime_suspend - Pre runtime suspend check
3237 * @q: the queue of the device
3238 *
3239 * Description:
3240 * This function will check if runtime suspend is allowed for the device
3241 * by examining if there are any requests pending in the queue. If there
3242 * are requests pending, the device can not be runtime suspended; otherwise,
3243 * the queue's status will be updated to SUSPENDING and the driver can
3244 * proceed to suspend the device.
3245 *
3246 * For the not allowed case, we mark last busy for the device so that
3247 * runtime PM core will try to autosuspend it some time later.
3248 *
3249 * This function should be called near the start of the device's
3250 * runtime_suspend callback.
3251 *
3252 * Return:
3253 * 0 - OK to runtime suspend the device
3254 * -EBUSY - Device should not be runtime suspended
3255 */
3256 int blk_pre_runtime_suspend(struct request_queue *q)
3257 {
3258 int ret = 0;
3259
3260 spin_lock_irq(q->queue_lock);
3261 if (q->nr_pending) {
3262 ret = -EBUSY;
3263 pm_runtime_mark_last_busy(q->dev);
3264 } else {
3265 q->rpm_status = RPM_SUSPENDING;
3266 }
3267 spin_unlock_irq(q->queue_lock);
3268 return ret;
3269 }
3270 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3271
3272 /**
3273 * blk_post_runtime_suspend - Post runtime suspend processing
3274 * @q: the queue of the device
3275 * @err: return value of the device's runtime_suspend function
3276 *
3277 * Description:
3278 * Update the queue's runtime status according to the return value of the
3279 * device's runtime suspend function and mark last busy for the device so
3280 * that PM core will try to auto suspend the device at a later time.
3281 *
3282 * This function should be called near the end of the device's
3283 * runtime_suspend callback.
3284 */
3285 void blk_post_runtime_suspend(struct request_queue *q, int err)
3286 {
3287 spin_lock_irq(q->queue_lock);
3288 if (!err) {
3289 q->rpm_status = RPM_SUSPENDED;
3290 } else {
3291 q->rpm_status = RPM_ACTIVE;
3292 pm_runtime_mark_last_busy(q->dev);
3293 }
3294 spin_unlock_irq(q->queue_lock);
3295 }
3296 EXPORT_SYMBOL(blk_post_runtime_suspend);
3297
3298 /**
3299 * blk_pre_runtime_resume - Pre runtime resume processing
3300 * @q: the queue of the device
3301 *
3302 * Description:
3303 * Update the queue's runtime status to RESUMING in preparation for the
3304 * runtime resume of the device.
3305 *
3306 * This function should be called near the start of the device's
3307 * runtime_resume callback.
3308 */
3309 void blk_pre_runtime_resume(struct request_queue *q)
3310 {
3311 spin_lock_irq(q->queue_lock);
3312 q->rpm_status = RPM_RESUMING;
3313 spin_unlock_irq(q->queue_lock);
3314 }
3315 EXPORT_SYMBOL(blk_pre_runtime_resume);
3316
3317 /**
3318 * blk_post_runtime_resume - Post runtime resume processing
3319 * @q: the queue of the device
3320 * @err: return value of the device's runtime_resume function
3321 *
3322 * Description:
3323 * Update the queue's runtime status according to the return value of the
3324 * device's runtime_resume function. If it is successfully resumed, process
3325 * the requests that are queued into the device's queue when it is resuming
3326 * and then mark last busy and initiate autosuspend for it.
3327 *
3328 * This function should be called near the end of the device's
3329 * runtime_resume callback.
3330 */
3331 void blk_post_runtime_resume(struct request_queue *q, int err)
3332 {
3333 spin_lock_irq(q->queue_lock);
3334 if (!err) {
3335 q->rpm_status = RPM_ACTIVE;
3336 __blk_run_queue(q);
3337 pm_runtime_mark_last_busy(q->dev);
3338 pm_request_autosuspend(q->dev);
3339 } else {
3340 q->rpm_status = RPM_SUSPENDED;
3341 }
3342 spin_unlock_irq(q->queue_lock);
3343 }
3344 EXPORT_SYMBOL(blk_post_runtime_resume);
3345 #endif
3346
3347 int __init blk_dev_init(void)
3348 {
3349 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3350 sizeof(((struct request *)0)->cmd_flags));
3351
3352 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3353 kblockd_workqueue = alloc_workqueue("kblockd",
3354 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3355 if (!kblockd_workqueue)
3356 panic("Failed to create kblockd\n");
3357
3358 request_cachep = kmem_cache_create("blkdev_requests",
3359 sizeof(struct request), 0, SLAB_PANIC, NULL);
3360
3361 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3362 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3363
3364 return 0;
3365 }
This page took 0.093563 seconds and 6 git commands to generate.