block: add request submission interface
[deliverable/linux.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/blktrace_api.h>
30 #include <linux/fault-inject.h>
31
32 #include "blk.h"
33
34 static int __make_request(struct request_queue *q, struct bio *bio);
35
36 /*
37 * For the allocated request tables
38 */
39 static struct kmem_cache *request_cachep;
40
41 /*
42 * For queue allocation
43 */
44 struct kmem_cache *blk_requestq_cachep;
45
46 /*
47 * Controlling structure to kblockd
48 */
49 static struct workqueue_struct *kblockd_workqueue;
50
51 static void drive_stat_acct(struct request *rq, int new_io)
52 {
53 struct hd_struct *part;
54 int rw = rq_data_dir(rq);
55 int cpu;
56
57 if (!blk_fs_request(rq) || !rq->rq_disk)
58 return;
59
60 cpu = part_stat_lock();
61 part = disk_map_sector_rcu(rq->rq_disk, rq->sector);
62
63 if (!new_io)
64 part_stat_inc(cpu, part, merges[rw]);
65 else {
66 part_round_stats(cpu, part);
67 part_inc_in_flight(part);
68 }
69
70 part_stat_unlock();
71 }
72
73 void blk_queue_congestion_threshold(struct request_queue *q)
74 {
75 int nr;
76
77 nr = q->nr_requests - (q->nr_requests / 8) + 1;
78 if (nr > q->nr_requests)
79 nr = q->nr_requests;
80 q->nr_congestion_on = nr;
81
82 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
83 if (nr < 1)
84 nr = 1;
85 q->nr_congestion_off = nr;
86 }
87
88 /**
89 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
90 * @bdev: device
91 *
92 * Locates the passed device's request queue and returns the address of its
93 * backing_dev_info
94 *
95 * Will return NULL if the request queue cannot be located.
96 */
97 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
98 {
99 struct backing_dev_info *ret = NULL;
100 struct request_queue *q = bdev_get_queue(bdev);
101
102 if (q)
103 ret = &q->backing_dev_info;
104 return ret;
105 }
106 EXPORT_SYMBOL(blk_get_backing_dev_info);
107
108 void blk_rq_init(struct request_queue *q, struct request *rq)
109 {
110 memset(rq, 0, sizeof(*rq));
111
112 INIT_LIST_HEAD(&rq->queuelist);
113 INIT_LIST_HEAD(&rq->timeout_list);
114 rq->cpu = -1;
115 rq->q = q;
116 rq->sector = rq->hard_sector = (sector_t) -1;
117 INIT_HLIST_NODE(&rq->hash);
118 RB_CLEAR_NODE(&rq->rb_node);
119 rq->cmd = rq->__cmd;
120 rq->tag = -1;
121 rq->ref_count = 1;
122 }
123 EXPORT_SYMBOL(blk_rq_init);
124
125 static void req_bio_endio(struct request *rq, struct bio *bio,
126 unsigned int nbytes, int error)
127 {
128 struct request_queue *q = rq->q;
129
130 if (&q->bar_rq != rq) {
131 if (error)
132 clear_bit(BIO_UPTODATE, &bio->bi_flags);
133 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
134 error = -EIO;
135
136 if (unlikely(nbytes > bio->bi_size)) {
137 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
138 __func__, nbytes, bio->bi_size);
139 nbytes = bio->bi_size;
140 }
141
142 bio->bi_size -= nbytes;
143 bio->bi_sector += (nbytes >> 9);
144
145 if (bio_integrity(bio))
146 bio_integrity_advance(bio, nbytes);
147
148 if (bio->bi_size == 0)
149 bio_endio(bio, error);
150 } else {
151
152 /*
153 * Okay, this is the barrier request in progress, just
154 * record the error;
155 */
156 if (error && !q->orderr)
157 q->orderr = error;
158 }
159 }
160
161 void blk_dump_rq_flags(struct request *rq, char *msg)
162 {
163 int bit;
164
165 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
166 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
167 rq->cmd_flags);
168
169 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n",
170 (unsigned long long)rq->sector,
171 rq->nr_sectors,
172 rq->current_nr_sectors);
173 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n",
174 rq->bio, rq->biotail,
175 rq->buffer, rq->data,
176 rq->data_len);
177
178 if (blk_pc_request(rq)) {
179 printk(KERN_INFO " cdb: ");
180 for (bit = 0; bit < BLK_MAX_CDB; bit++)
181 printk("%02x ", rq->cmd[bit]);
182 printk("\n");
183 }
184 }
185 EXPORT_SYMBOL(blk_dump_rq_flags);
186
187 /*
188 * "plug" the device if there are no outstanding requests: this will
189 * force the transfer to start only after we have put all the requests
190 * on the list.
191 *
192 * This is called with interrupts off and no requests on the queue and
193 * with the queue lock held.
194 */
195 void blk_plug_device(struct request_queue *q)
196 {
197 WARN_ON(!irqs_disabled());
198
199 /*
200 * don't plug a stopped queue, it must be paired with blk_start_queue()
201 * which will restart the queueing
202 */
203 if (blk_queue_stopped(q))
204 return;
205
206 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
207 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
208 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
209 }
210 }
211 EXPORT_SYMBOL(blk_plug_device);
212
213 /**
214 * blk_plug_device_unlocked - plug a device without queue lock held
215 * @q: The &struct request_queue to plug
216 *
217 * Description:
218 * Like @blk_plug_device(), but grabs the queue lock and disables
219 * interrupts.
220 **/
221 void blk_plug_device_unlocked(struct request_queue *q)
222 {
223 unsigned long flags;
224
225 spin_lock_irqsave(q->queue_lock, flags);
226 blk_plug_device(q);
227 spin_unlock_irqrestore(q->queue_lock, flags);
228 }
229 EXPORT_SYMBOL(blk_plug_device_unlocked);
230
231 /*
232 * remove the queue from the plugged list, if present. called with
233 * queue lock held and interrupts disabled.
234 */
235 int blk_remove_plug(struct request_queue *q)
236 {
237 WARN_ON(!irqs_disabled());
238
239 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
240 return 0;
241
242 del_timer(&q->unplug_timer);
243 return 1;
244 }
245 EXPORT_SYMBOL(blk_remove_plug);
246
247 /*
248 * remove the plug and let it rip..
249 */
250 void __generic_unplug_device(struct request_queue *q)
251 {
252 if (unlikely(blk_queue_stopped(q)))
253 return;
254
255 if (!blk_remove_plug(q))
256 return;
257
258 q->request_fn(q);
259 }
260 EXPORT_SYMBOL(__generic_unplug_device);
261
262 /**
263 * generic_unplug_device - fire a request queue
264 * @q: The &struct request_queue in question
265 *
266 * Description:
267 * Linux uses plugging to build bigger requests queues before letting
268 * the device have at them. If a queue is plugged, the I/O scheduler
269 * is still adding and merging requests on the queue. Once the queue
270 * gets unplugged, the request_fn defined for the queue is invoked and
271 * transfers started.
272 **/
273 void generic_unplug_device(struct request_queue *q)
274 {
275 if (blk_queue_plugged(q)) {
276 spin_lock_irq(q->queue_lock);
277 __generic_unplug_device(q);
278 spin_unlock_irq(q->queue_lock);
279 }
280 }
281 EXPORT_SYMBOL(generic_unplug_device);
282
283 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
284 struct page *page)
285 {
286 struct request_queue *q = bdi->unplug_io_data;
287
288 blk_unplug(q);
289 }
290
291 void blk_unplug_work(struct work_struct *work)
292 {
293 struct request_queue *q =
294 container_of(work, struct request_queue, unplug_work);
295
296 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
297 q->rq.count[READ] + q->rq.count[WRITE]);
298
299 q->unplug_fn(q);
300 }
301
302 void blk_unplug_timeout(unsigned long data)
303 {
304 struct request_queue *q = (struct request_queue *)data;
305
306 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
307 q->rq.count[READ] + q->rq.count[WRITE]);
308
309 kblockd_schedule_work(q, &q->unplug_work);
310 }
311
312 void blk_unplug(struct request_queue *q)
313 {
314 /*
315 * devices don't necessarily have an ->unplug_fn defined
316 */
317 if (q->unplug_fn) {
318 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
319 q->rq.count[READ] + q->rq.count[WRITE]);
320
321 q->unplug_fn(q);
322 }
323 }
324 EXPORT_SYMBOL(blk_unplug);
325
326 static void blk_invoke_request_fn(struct request_queue *q)
327 {
328 /*
329 * one level of recursion is ok and is much faster than kicking
330 * the unplug handling
331 */
332 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
333 q->request_fn(q);
334 queue_flag_clear(QUEUE_FLAG_REENTER, q);
335 } else {
336 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
337 kblockd_schedule_work(q, &q->unplug_work);
338 }
339 }
340
341 /**
342 * blk_start_queue - restart a previously stopped queue
343 * @q: The &struct request_queue in question
344 *
345 * Description:
346 * blk_start_queue() will clear the stop flag on the queue, and call
347 * the request_fn for the queue if it was in a stopped state when
348 * entered. Also see blk_stop_queue(). Queue lock must be held.
349 **/
350 void blk_start_queue(struct request_queue *q)
351 {
352 WARN_ON(!irqs_disabled());
353
354 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
355 blk_invoke_request_fn(q);
356 }
357 EXPORT_SYMBOL(blk_start_queue);
358
359 /**
360 * blk_stop_queue - stop a queue
361 * @q: The &struct request_queue in question
362 *
363 * Description:
364 * The Linux block layer assumes that a block driver will consume all
365 * entries on the request queue when the request_fn strategy is called.
366 * Often this will not happen, because of hardware limitations (queue
367 * depth settings). If a device driver gets a 'queue full' response,
368 * or if it simply chooses not to queue more I/O at one point, it can
369 * call this function to prevent the request_fn from being called until
370 * the driver has signalled it's ready to go again. This happens by calling
371 * blk_start_queue() to restart queue operations. Queue lock must be held.
372 **/
373 void blk_stop_queue(struct request_queue *q)
374 {
375 blk_remove_plug(q);
376 queue_flag_set(QUEUE_FLAG_STOPPED, q);
377 }
378 EXPORT_SYMBOL(blk_stop_queue);
379
380 /**
381 * blk_sync_queue - cancel any pending callbacks on a queue
382 * @q: the queue
383 *
384 * Description:
385 * The block layer may perform asynchronous callback activity
386 * on a queue, such as calling the unplug function after a timeout.
387 * A block device may call blk_sync_queue to ensure that any
388 * such activity is cancelled, thus allowing it to release resources
389 * that the callbacks might use. The caller must already have made sure
390 * that its ->make_request_fn will not re-add plugging prior to calling
391 * this function.
392 *
393 */
394 void blk_sync_queue(struct request_queue *q)
395 {
396 del_timer_sync(&q->unplug_timer);
397 kblockd_flush_work(&q->unplug_work);
398 }
399 EXPORT_SYMBOL(blk_sync_queue);
400
401 /**
402 * blk_run_queue - run a single device queue
403 * @q: The queue to run
404 */
405 void __blk_run_queue(struct request_queue *q)
406 {
407 blk_remove_plug(q);
408
409 /*
410 * Only recurse once to avoid overrunning the stack, let the unplug
411 * handling reinvoke the handler shortly if we already got there.
412 */
413 if (!elv_queue_empty(q))
414 blk_invoke_request_fn(q);
415 }
416 EXPORT_SYMBOL(__blk_run_queue);
417
418 /**
419 * blk_run_queue - run a single device queue
420 * @q: The queue to run
421 */
422 void blk_run_queue(struct request_queue *q)
423 {
424 unsigned long flags;
425
426 spin_lock_irqsave(q->queue_lock, flags);
427 __blk_run_queue(q);
428 spin_unlock_irqrestore(q->queue_lock, flags);
429 }
430 EXPORT_SYMBOL(blk_run_queue);
431
432 void blk_put_queue(struct request_queue *q)
433 {
434 kobject_put(&q->kobj);
435 }
436
437 void blk_cleanup_queue(struct request_queue *q)
438 {
439 /*
440 * We know we have process context here, so we can be a little
441 * cautious and ensure that pending block actions on this device
442 * are done before moving on. Going into this function, we should
443 * not have processes doing IO to this device.
444 */
445 blk_sync_queue(q);
446
447 mutex_lock(&q->sysfs_lock);
448 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
449 mutex_unlock(&q->sysfs_lock);
450
451 if (q->elevator)
452 elevator_exit(q->elevator);
453
454 blk_put_queue(q);
455 }
456 EXPORT_SYMBOL(blk_cleanup_queue);
457
458 static int blk_init_free_list(struct request_queue *q)
459 {
460 struct request_list *rl = &q->rq;
461
462 rl->count[READ] = rl->count[WRITE] = 0;
463 rl->starved[READ] = rl->starved[WRITE] = 0;
464 rl->elvpriv = 0;
465 init_waitqueue_head(&rl->wait[READ]);
466 init_waitqueue_head(&rl->wait[WRITE]);
467
468 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
469 mempool_free_slab, request_cachep, q->node);
470
471 if (!rl->rq_pool)
472 return -ENOMEM;
473
474 return 0;
475 }
476
477 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
478 {
479 return blk_alloc_queue_node(gfp_mask, -1);
480 }
481 EXPORT_SYMBOL(blk_alloc_queue);
482
483 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
484 {
485 struct request_queue *q;
486 int err;
487
488 q = kmem_cache_alloc_node(blk_requestq_cachep,
489 gfp_mask | __GFP_ZERO, node_id);
490 if (!q)
491 return NULL;
492
493 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
494 q->backing_dev_info.unplug_io_data = q;
495 err = bdi_init(&q->backing_dev_info);
496 if (err) {
497 kmem_cache_free(blk_requestq_cachep, q);
498 return NULL;
499 }
500
501 init_timer(&q->unplug_timer);
502 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
503 INIT_LIST_HEAD(&q->timeout_list);
504
505 kobject_init(&q->kobj, &blk_queue_ktype);
506
507 mutex_init(&q->sysfs_lock);
508 spin_lock_init(&q->__queue_lock);
509
510 return q;
511 }
512 EXPORT_SYMBOL(blk_alloc_queue_node);
513
514 /**
515 * blk_init_queue - prepare a request queue for use with a block device
516 * @rfn: The function to be called to process requests that have been
517 * placed on the queue.
518 * @lock: Request queue spin lock
519 *
520 * Description:
521 * If a block device wishes to use the standard request handling procedures,
522 * which sorts requests and coalesces adjacent requests, then it must
523 * call blk_init_queue(). The function @rfn will be called when there
524 * are requests on the queue that need to be processed. If the device
525 * supports plugging, then @rfn may not be called immediately when requests
526 * are available on the queue, but may be called at some time later instead.
527 * Plugged queues are generally unplugged when a buffer belonging to one
528 * of the requests on the queue is needed, or due to memory pressure.
529 *
530 * @rfn is not required, or even expected, to remove all requests off the
531 * queue, but only as many as it can handle at a time. If it does leave
532 * requests on the queue, it is responsible for arranging that the requests
533 * get dealt with eventually.
534 *
535 * The queue spin lock must be held while manipulating the requests on the
536 * request queue; this lock will be taken also from interrupt context, so irq
537 * disabling is needed for it.
538 *
539 * Function returns a pointer to the initialized request queue, or %NULL if
540 * it didn't succeed.
541 *
542 * Note:
543 * blk_init_queue() must be paired with a blk_cleanup_queue() call
544 * when the block device is deactivated (such as at module unload).
545 **/
546
547 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
548 {
549 return blk_init_queue_node(rfn, lock, -1);
550 }
551 EXPORT_SYMBOL(blk_init_queue);
552
553 struct request_queue *
554 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
555 {
556 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
557
558 if (!q)
559 return NULL;
560
561 q->node = node_id;
562 if (blk_init_free_list(q)) {
563 kmem_cache_free(blk_requestq_cachep, q);
564 return NULL;
565 }
566
567 /*
568 * if caller didn't supply a lock, they get per-queue locking with
569 * our embedded lock
570 */
571 if (!lock)
572 lock = &q->__queue_lock;
573
574 q->request_fn = rfn;
575 q->prep_rq_fn = NULL;
576 q->unplug_fn = generic_unplug_device;
577 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
578 q->queue_lock = lock;
579
580 blk_queue_segment_boundary(q, 0xffffffff);
581
582 blk_queue_make_request(q, __make_request);
583 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
584
585 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
586 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
587
588 q->sg_reserved_size = INT_MAX;
589
590 blk_set_cmd_filter_defaults(&q->cmd_filter);
591
592 /*
593 * all done
594 */
595 if (!elevator_init(q, NULL)) {
596 blk_queue_congestion_threshold(q);
597 return q;
598 }
599
600 blk_put_queue(q);
601 return NULL;
602 }
603 EXPORT_SYMBOL(blk_init_queue_node);
604
605 int blk_get_queue(struct request_queue *q)
606 {
607 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
608 kobject_get(&q->kobj);
609 return 0;
610 }
611
612 return 1;
613 }
614
615 static inline void blk_free_request(struct request_queue *q, struct request *rq)
616 {
617 if (rq->cmd_flags & REQ_ELVPRIV)
618 elv_put_request(q, rq);
619 mempool_free(rq, q->rq.rq_pool);
620 }
621
622 static struct request *
623 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
624 {
625 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
626
627 if (!rq)
628 return NULL;
629
630 blk_rq_init(q, rq);
631
632 rq->cmd_flags = rw | REQ_ALLOCED;
633
634 if (priv) {
635 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
636 mempool_free(rq, q->rq.rq_pool);
637 return NULL;
638 }
639 rq->cmd_flags |= REQ_ELVPRIV;
640 }
641
642 return rq;
643 }
644
645 /*
646 * ioc_batching returns true if the ioc is a valid batching request and
647 * should be given priority access to a request.
648 */
649 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
650 {
651 if (!ioc)
652 return 0;
653
654 /*
655 * Make sure the process is able to allocate at least 1 request
656 * even if the batch times out, otherwise we could theoretically
657 * lose wakeups.
658 */
659 return ioc->nr_batch_requests == q->nr_batching ||
660 (ioc->nr_batch_requests > 0
661 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
662 }
663
664 /*
665 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
666 * will cause the process to be a "batcher" on all queues in the system. This
667 * is the behaviour we want though - once it gets a wakeup it should be given
668 * a nice run.
669 */
670 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
671 {
672 if (!ioc || ioc_batching(q, ioc))
673 return;
674
675 ioc->nr_batch_requests = q->nr_batching;
676 ioc->last_waited = jiffies;
677 }
678
679 static void __freed_request(struct request_queue *q, int rw)
680 {
681 struct request_list *rl = &q->rq;
682
683 if (rl->count[rw] < queue_congestion_off_threshold(q))
684 blk_clear_queue_congested(q, rw);
685
686 if (rl->count[rw] + 1 <= q->nr_requests) {
687 if (waitqueue_active(&rl->wait[rw]))
688 wake_up(&rl->wait[rw]);
689
690 blk_clear_queue_full(q, rw);
691 }
692 }
693
694 /*
695 * A request has just been released. Account for it, update the full and
696 * congestion status, wake up any waiters. Called under q->queue_lock.
697 */
698 static void freed_request(struct request_queue *q, int rw, int priv)
699 {
700 struct request_list *rl = &q->rq;
701
702 rl->count[rw]--;
703 if (priv)
704 rl->elvpriv--;
705
706 __freed_request(q, rw);
707
708 if (unlikely(rl->starved[rw ^ 1]))
709 __freed_request(q, rw ^ 1);
710 }
711
712 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
713 /*
714 * Get a free request, queue_lock must be held.
715 * Returns NULL on failure, with queue_lock held.
716 * Returns !NULL on success, with queue_lock *not held*.
717 */
718 static struct request *get_request(struct request_queue *q, int rw_flags,
719 struct bio *bio, gfp_t gfp_mask)
720 {
721 struct request *rq = NULL;
722 struct request_list *rl = &q->rq;
723 struct io_context *ioc = NULL;
724 const int rw = rw_flags & 0x01;
725 int may_queue, priv;
726
727 may_queue = elv_may_queue(q, rw_flags);
728 if (may_queue == ELV_MQUEUE_NO)
729 goto rq_starved;
730
731 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
732 if (rl->count[rw]+1 >= q->nr_requests) {
733 ioc = current_io_context(GFP_ATOMIC, q->node);
734 /*
735 * The queue will fill after this allocation, so set
736 * it as full, and mark this process as "batching".
737 * This process will be allowed to complete a batch of
738 * requests, others will be blocked.
739 */
740 if (!blk_queue_full(q, rw)) {
741 ioc_set_batching(q, ioc);
742 blk_set_queue_full(q, rw);
743 } else {
744 if (may_queue != ELV_MQUEUE_MUST
745 && !ioc_batching(q, ioc)) {
746 /*
747 * The queue is full and the allocating
748 * process is not a "batcher", and not
749 * exempted by the IO scheduler
750 */
751 goto out;
752 }
753 }
754 }
755 blk_set_queue_congested(q, rw);
756 }
757
758 /*
759 * Only allow batching queuers to allocate up to 50% over the defined
760 * limit of requests, otherwise we could have thousands of requests
761 * allocated with any setting of ->nr_requests
762 */
763 if (rl->count[rw] >= (3 * q->nr_requests / 2))
764 goto out;
765
766 rl->count[rw]++;
767 rl->starved[rw] = 0;
768
769 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
770 if (priv)
771 rl->elvpriv++;
772
773 spin_unlock_irq(q->queue_lock);
774
775 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
776 if (unlikely(!rq)) {
777 /*
778 * Allocation failed presumably due to memory. Undo anything
779 * we might have messed up.
780 *
781 * Allocating task should really be put onto the front of the
782 * wait queue, but this is pretty rare.
783 */
784 spin_lock_irq(q->queue_lock);
785 freed_request(q, rw, priv);
786
787 /*
788 * in the very unlikely event that allocation failed and no
789 * requests for this direction was pending, mark us starved
790 * so that freeing of a request in the other direction will
791 * notice us. another possible fix would be to split the
792 * rq mempool into READ and WRITE
793 */
794 rq_starved:
795 if (unlikely(rl->count[rw] == 0))
796 rl->starved[rw] = 1;
797
798 goto out;
799 }
800
801 /*
802 * ioc may be NULL here, and ioc_batching will be false. That's
803 * OK, if the queue is under the request limit then requests need
804 * not count toward the nr_batch_requests limit. There will always
805 * be some limit enforced by BLK_BATCH_TIME.
806 */
807 if (ioc_batching(q, ioc))
808 ioc->nr_batch_requests--;
809
810 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
811 out:
812 return rq;
813 }
814
815 /*
816 * No available requests for this queue, unplug the device and wait for some
817 * requests to become available.
818 *
819 * Called with q->queue_lock held, and returns with it unlocked.
820 */
821 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
822 struct bio *bio)
823 {
824 const int rw = rw_flags & 0x01;
825 struct request *rq;
826
827 rq = get_request(q, rw_flags, bio, GFP_NOIO);
828 while (!rq) {
829 DEFINE_WAIT(wait);
830 struct io_context *ioc;
831 struct request_list *rl = &q->rq;
832
833 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
834 TASK_UNINTERRUPTIBLE);
835
836 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
837
838 __generic_unplug_device(q);
839 spin_unlock_irq(q->queue_lock);
840 io_schedule();
841
842 /*
843 * After sleeping, we become a "batching" process and
844 * will be able to allocate at least one request, and
845 * up to a big batch of them for a small period time.
846 * See ioc_batching, ioc_set_batching
847 */
848 ioc = current_io_context(GFP_NOIO, q->node);
849 ioc_set_batching(q, ioc);
850
851 spin_lock_irq(q->queue_lock);
852 finish_wait(&rl->wait[rw], &wait);
853
854 rq = get_request(q, rw_flags, bio, GFP_NOIO);
855 };
856
857 return rq;
858 }
859
860 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
861 {
862 struct request *rq;
863
864 BUG_ON(rw != READ && rw != WRITE);
865
866 spin_lock_irq(q->queue_lock);
867 if (gfp_mask & __GFP_WAIT) {
868 rq = get_request_wait(q, rw, NULL);
869 } else {
870 rq = get_request(q, rw, NULL, gfp_mask);
871 if (!rq)
872 spin_unlock_irq(q->queue_lock);
873 }
874 /* q->queue_lock is unlocked at this point */
875
876 return rq;
877 }
878 EXPORT_SYMBOL(blk_get_request);
879
880 /**
881 * blk_start_queueing - initiate dispatch of requests to device
882 * @q: request queue to kick into gear
883 *
884 * This is basically a helper to remove the need to know whether a queue
885 * is plugged or not if someone just wants to initiate dispatch of requests
886 * for this queue.
887 *
888 * The queue lock must be held with interrupts disabled.
889 */
890 void blk_start_queueing(struct request_queue *q)
891 {
892 if (!blk_queue_plugged(q))
893 q->request_fn(q);
894 else
895 __generic_unplug_device(q);
896 }
897 EXPORT_SYMBOL(blk_start_queueing);
898
899 /**
900 * blk_requeue_request - put a request back on queue
901 * @q: request queue where request should be inserted
902 * @rq: request to be inserted
903 *
904 * Description:
905 * Drivers often keep queueing requests until the hardware cannot accept
906 * more, when that condition happens we need to put the request back
907 * on the queue. Must be called with queue lock held.
908 */
909 void blk_requeue_request(struct request_queue *q, struct request *rq)
910 {
911 blk_delete_timer(rq);
912 blk_clear_rq_complete(rq);
913 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
914
915 if (blk_rq_tagged(rq))
916 blk_queue_end_tag(q, rq);
917
918 elv_requeue_request(q, rq);
919 }
920 EXPORT_SYMBOL(blk_requeue_request);
921
922 /**
923 * blk_insert_request - insert a special request into a request queue
924 * @q: request queue where request should be inserted
925 * @rq: request to be inserted
926 * @at_head: insert request at head or tail of queue
927 * @data: private data
928 *
929 * Description:
930 * Many block devices need to execute commands asynchronously, so they don't
931 * block the whole kernel from preemption during request execution. This is
932 * accomplished normally by inserting aritficial requests tagged as
933 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
934 * be scheduled for actual execution by the request queue.
935 *
936 * We have the option of inserting the head or the tail of the queue.
937 * Typically we use the tail for new ioctls and so forth. We use the head
938 * of the queue for things like a QUEUE_FULL message from a device, or a
939 * host that is unable to accept a particular command.
940 */
941 void blk_insert_request(struct request_queue *q, struct request *rq,
942 int at_head, void *data)
943 {
944 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
945 unsigned long flags;
946
947 /*
948 * tell I/O scheduler that this isn't a regular read/write (ie it
949 * must not attempt merges on this) and that it acts as a soft
950 * barrier
951 */
952 rq->cmd_type = REQ_TYPE_SPECIAL;
953 rq->cmd_flags |= REQ_SOFTBARRIER;
954
955 rq->special = data;
956
957 spin_lock_irqsave(q->queue_lock, flags);
958
959 /*
960 * If command is tagged, release the tag
961 */
962 if (blk_rq_tagged(rq))
963 blk_queue_end_tag(q, rq);
964
965 drive_stat_acct(rq, 1);
966 __elv_add_request(q, rq, where, 0);
967 blk_start_queueing(q);
968 spin_unlock_irqrestore(q->queue_lock, flags);
969 }
970 EXPORT_SYMBOL(blk_insert_request);
971
972 /*
973 * add-request adds a request to the linked list.
974 * queue lock is held and interrupts disabled, as we muck with the
975 * request queue list.
976 */
977 static inline void add_request(struct request_queue *q, struct request *req)
978 {
979 drive_stat_acct(req, 1);
980
981 /*
982 * elevator indicated where it wants this request to be
983 * inserted at elevator_merge time
984 */
985 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
986 }
987
988 static void part_round_stats_single(int cpu, struct hd_struct *part,
989 unsigned long now)
990 {
991 if (now == part->stamp)
992 return;
993
994 if (part->in_flight) {
995 __part_stat_add(cpu, part, time_in_queue,
996 part->in_flight * (now - part->stamp));
997 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
998 }
999 part->stamp = now;
1000 }
1001
1002 /**
1003 * part_round_stats() - Round off the performance stats on a struct
1004 * disk_stats.
1005 *
1006 * The average IO queue length and utilisation statistics are maintained
1007 * by observing the current state of the queue length and the amount of
1008 * time it has been in this state for.
1009 *
1010 * Normally, that accounting is done on IO completion, but that can result
1011 * in more than a second's worth of IO being accounted for within any one
1012 * second, leading to >100% utilisation. To deal with that, we call this
1013 * function to do a round-off before returning the results when reading
1014 * /proc/diskstats. This accounts immediately for all queue usage up to
1015 * the current jiffies and restarts the counters again.
1016 */
1017 void part_round_stats(int cpu, struct hd_struct *part)
1018 {
1019 unsigned long now = jiffies;
1020
1021 if (part->partno)
1022 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1023 part_round_stats_single(cpu, part, now);
1024 }
1025 EXPORT_SYMBOL_GPL(part_round_stats);
1026
1027 /*
1028 * queue lock must be held
1029 */
1030 void __blk_put_request(struct request_queue *q, struct request *req)
1031 {
1032 if (unlikely(!q))
1033 return;
1034 if (unlikely(--req->ref_count))
1035 return;
1036
1037 elv_completed_request(q, req);
1038
1039 /*
1040 * Request may not have originated from ll_rw_blk. if not,
1041 * it didn't come out of our reserved rq pools
1042 */
1043 if (req->cmd_flags & REQ_ALLOCED) {
1044 int rw = rq_data_dir(req);
1045 int priv = req->cmd_flags & REQ_ELVPRIV;
1046
1047 BUG_ON(!list_empty(&req->queuelist));
1048 BUG_ON(!hlist_unhashed(&req->hash));
1049
1050 blk_free_request(q, req);
1051 freed_request(q, rw, priv);
1052 }
1053 }
1054 EXPORT_SYMBOL_GPL(__blk_put_request);
1055
1056 void blk_put_request(struct request *req)
1057 {
1058 unsigned long flags;
1059 struct request_queue *q = req->q;
1060
1061 spin_lock_irqsave(q->queue_lock, flags);
1062 __blk_put_request(q, req);
1063 spin_unlock_irqrestore(q->queue_lock, flags);
1064 }
1065 EXPORT_SYMBOL(blk_put_request);
1066
1067 void init_request_from_bio(struct request *req, struct bio *bio)
1068 {
1069 req->cpu = bio->bi_comp_cpu;
1070 req->cmd_type = REQ_TYPE_FS;
1071
1072 /*
1073 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1074 */
1075 if (bio_rw_ahead(bio) || bio_failfast(bio))
1076 req->cmd_flags |= REQ_FAILFAST;
1077
1078 /*
1079 * REQ_BARRIER implies no merging, but lets make it explicit
1080 */
1081 if (unlikely(bio_discard(bio))) {
1082 req->cmd_flags |= REQ_DISCARD;
1083 if (bio_barrier(bio))
1084 req->cmd_flags |= REQ_SOFTBARRIER;
1085 req->q->prepare_discard_fn(req->q, req);
1086 } else if (unlikely(bio_barrier(bio)))
1087 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
1088
1089 if (bio_sync(bio))
1090 req->cmd_flags |= REQ_RW_SYNC;
1091 if (bio_rw_meta(bio))
1092 req->cmd_flags |= REQ_RW_META;
1093
1094 req->errors = 0;
1095 req->hard_sector = req->sector = bio->bi_sector;
1096 req->ioprio = bio_prio(bio);
1097 req->start_time = jiffies;
1098 blk_rq_bio_prep(req->q, req, bio);
1099 }
1100
1101 static int __make_request(struct request_queue *q, struct bio *bio)
1102 {
1103 struct request *req;
1104 int el_ret, nr_sectors, barrier, discard, err;
1105 const unsigned short prio = bio_prio(bio);
1106 const int sync = bio_sync(bio);
1107 int rw_flags;
1108
1109 nr_sectors = bio_sectors(bio);
1110
1111 /*
1112 * low level driver can indicate that it wants pages above a
1113 * certain limit bounced to low memory (ie for highmem, or even
1114 * ISA dma in theory)
1115 */
1116 blk_queue_bounce(q, &bio);
1117
1118 barrier = bio_barrier(bio);
1119 if (unlikely(barrier) && bio_has_data(bio) &&
1120 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1121 err = -EOPNOTSUPP;
1122 goto end_io;
1123 }
1124
1125 discard = bio_discard(bio);
1126 if (unlikely(discard) && !q->prepare_discard_fn) {
1127 err = -EOPNOTSUPP;
1128 goto end_io;
1129 }
1130
1131 spin_lock_irq(q->queue_lock);
1132
1133 if (unlikely(barrier) || elv_queue_empty(q))
1134 goto get_rq;
1135
1136 el_ret = elv_merge(q, &req, bio);
1137 switch (el_ret) {
1138 case ELEVATOR_BACK_MERGE:
1139 BUG_ON(!rq_mergeable(req));
1140
1141 if (!ll_back_merge_fn(q, req, bio))
1142 break;
1143
1144 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
1145
1146 req->biotail->bi_next = bio;
1147 req->biotail = bio;
1148 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1149 req->ioprio = ioprio_best(req->ioprio, prio);
1150 if (!blk_rq_cpu_valid(req))
1151 req->cpu = bio->bi_comp_cpu;
1152 drive_stat_acct(req, 0);
1153 if (!attempt_back_merge(q, req))
1154 elv_merged_request(q, req, el_ret);
1155 goto out;
1156
1157 case ELEVATOR_FRONT_MERGE:
1158 BUG_ON(!rq_mergeable(req));
1159
1160 if (!ll_front_merge_fn(q, req, bio))
1161 break;
1162
1163 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
1164
1165 bio->bi_next = req->bio;
1166 req->bio = bio;
1167
1168 /*
1169 * may not be valid. if the low level driver said
1170 * it didn't need a bounce buffer then it better
1171 * not touch req->buffer either...
1172 */
1173 req->buffer = bio_data(bio);
1174 req->current_nr_sectors = bio_cur_sectors(bio);
1175 req->hard_cur_sectors = req->current_nr_sectors;
1176 req->sector = req->hard_sector = bio->bi_sector;
1177 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1178 req->ioprio = ioprio_best(req->ioprio, prio);
1179 if (!blk_rq_cpu_valid(req))
1180 req->cpu = bio->bi_comp_cpu;
1181 drive_stat_acct(req, 0);
1182 if (!attempt_front_merge(q, req))
1183 elv_merged_request(q, req, el_ret);
1184 goto out;
1185
1186 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1187 default:
1188 ;
1189 }
1190
1191 get_rq:
1192 /*
1193 * This sync check and mask will be re-done in init_request_from_bio(),
1194 * but we need to set it earlier to expose the sync flag to the
1195 * rq allocator and io schedulers.
1196 */
1197 rw_flags = bio_data_dir(bio);
1198 if (sync)
1199 rw_flags |= REQ_RW_SYNC;
1200
1201 /*
1202 * Grab a free request. This is might sleep but can not fail.
1203 * Returns with the queue unlocked.
1204 */
1205 req = get_request_wait(q, rw_flags, bio);
1206
1207 /*
1208 * After dropping the lock and possibly sleeping here, our request
1209 * may now be mergeable after it had proven unmergeable (above).
1210 * We don't worry about that case for efficiency. It won't happen
1211 * often, and the elevators are able to handle it.
1212 */
1213 init_request_from_bio(req, bio);
1214
1215 spin_lock_irq(q->queue_lock);
1216 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1217 bio_flagged(bio, BIO_CPU_AFFINE))
1218 req->cpu = blk_cpu_to_group(smp_processor_id());
1219 if (elv_queue_empty(q))
1220 blk_plug_device(q);
1221 add_request(q, req);
1222 out:
1223 if (sync)
1224 __generic_unplug_device(q);
1225 spin_unlock_irq(q->queue_lock);
1226 return 0;
1227
1228 end_io:
1229 bio_endio(bio, err);
1230 return 0;
1231 }
1232
1233 /*
1234 * If bio->bi_dev is a partition, remap the location
1235 */
1236 static inline void blk_partition_remap(struct bio *bio)
1237 {
1238 struct block_device *bdev = bio->bi_bdev;
1239
1240 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1241 struct hd_struct *p = bdev->bd_part;
1242
1243 bio->bi_sector += p->start_sect;
1244 bio->bi_bdev = bdev->bd_contains;
1245
1246 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
1247 bdev->bd_dev, bio->bi_sector,
1248 bio->bi_sector - p->start_sect);
1249 }
1250 }
1251
1252 static void handle_bad_sector(struct bio *bio)
1253 {
1254 char b[BDEVNAME_SIZE];
1255
1256 printk(KERN_INFO "attempt to access beyond end of device\n");
1257 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1258 bdevname(bio->bi_bdev, b),
1259 bio->bi_rw,
1260 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1261 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1262
1263 set_bit(BIO_EOF, &bio->bi_flags);
1264 }
1265
1266 #ifdef CONFIG_FAIL_MAKE_REQUEST
1267
1268 static DECLARE_FAULT_ATTR(fail_make_request);
1269
1270 static int __init setup_fail_make_request(char *str)
1271 {
1272 return setup_fault_attr(&fail_make_request, str);
1273 }
1274 __setup("fail_make_request=", setup_fail_make_request);
1275
1276 static int should_fail_request(struct bio *bio)
1277 {
1278 struct hd_struct *part = bio->bi_bdev->bd_part;
1279
1280 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1281 return should_fail(&fail_make_request, bio->bi_size);
1282
1283 return 0;
1284 }
1285
1286 static int __init fail_make_request_debugfs(void)
1287 {
1288 return init_fault_attr_dentries(&fail_make_request,
1289 "fail_make_request");
1290 }
1291
1292 late_initcall(fail_make_request_debugfs);
1293
1294 #else /* CONFIG_FAIL_MAKE_REQUEST */
1295
1296 static inline int should_fail_request(struct bio *bio)
1297 {
1298 return 0;
1299 }
1300
1301 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1302
1303 /*
1304 * Check whether this bio extends beyond the end of the device.
1305 */
1306 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1307 {
1308 sector_t maxsector;
1309
1310 if (!nr_sectors)
1311 return 0;
1312
1313 /* Test device or partition size, when known. */
1314 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1315 if (maxsector) {
1316 sector_t sector = bio->bi_sector;
1317
1318 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1319 /*
1320 * This may well happen - the kernel calls bread()
1321 * without checking the size of the device, e.g., when
1322 * mounting a device.
1323 */
1324 handle_bad_sector(bio);
1325 return 1;
1326 }
1327 }
1328
1329 return 0;
1330 }
1331
1332 /**
1333 * generic_make_request - hand a buffer to its device driver for I/O
1334 * @bio: The bio describing the location in memory and on the device.
1335 *
1336 * generic_make_request() is used to make I/O requests of block
1337 * devices. It is passed a &struct bio, which describes the I/O that needs
1338 * to be done.
1339 *
1340 * generic_make_request() does not return any status. The
1341 * success/failure status of the request, along with notification of
1342 * completion, is delivered asynchronously through the bio->bi_end_io
1343 * function described (one day) else where.
1344 *
1345 * The caller of generic_make_request must make sure that bi_io_vec
1346 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1347 * set to describe the device address, and the
1348 * bi_end_io and optionally bi_private are set to describe how
1349 * completion notification should be signaled.
1350 *
1351 * generic_make_request and the drivers it calls may use bi_next if this
1352 * bio happens to be merged with someone else, and may change bi_dev and
1353 * bi_sector for remaps as it sees fit. So the values of these fields
1354 * should NOT be depended on after the call to generic_make_request.
1355 */
1356 static inline void __generic_make_request(struct bio *bio)
1357 {
1358 struct request_queue *q;
1359 sector_t old_sector;
1360 int ret, nr_sectors = bio_sectors(bio);
1361 dev_t old_dev;
1362 int err = -EIO;
1363
1364 might_sleep();
1365
1366 if (bio_check_eod(bio, nr_sectors))
1367 goto end_io;
1368
1369 /*
1370 * Resolve the mapping until finished. (drivers are
1371 * still free to implement/resolve their own stacking
1372 * by explicitly returning 0)
1373 *
1374 * NOTE: we don't repeat the blk_size check for each new device.
1375 * Stacking drivers are expected to know what they are doing.
1376 */
1377 old_sector = -1;
1378 old_dev = 0;
1379 do {
1380 char b[BDEVNAME_SIZE];
1381
1382 q = bdev_get_queue(bio->bi_bdev);
1383 if (!q) {
1384 printk(KERN_ERR
1385 "generic_make_request: Trying to access "
1386 "nonexistent block-device %s (%Lu)\n",
1387 bdevname(bio->bi_bdev, b),
1388 (long long) bio->bi_sector);
1389 end_io:
1390 bio_endio(bio, err);
1391 break;
1392 }
1393
1394 if (unlikely(nr_sectors > q->max_hw_sectors)) {
1395 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1396 bdevname(bio->bi_bdev, b),
1397 bio_sectors(bio),
1398 q->max_hw_sectors);
1399 goto end_io;
1400 }
1401
1402 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1403 goto end_io;
1404
1405 if (should_fail_request(bio))
1406 goto end_io;
1407
1408 /*
1409 * If this device has partitions, remap block n
1410 * of partition p to block n+start(p) of the disk.
1411 */
1412 blk_partition_remap(bio);
1413
1414 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1415 goto end_io;
1416
1417 if (old_sector != -1)
1418 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
1419 old_sector);
1420
1421 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
1422
1423 old_sector = bio->bi_sector;
1424 old_dev = bio->bi_bdev->bd_dev;
1425
1426 if (bio_check_eod(bio, nr_sectors))
1427 goto end_io;
1428 if ((bio_empty_barrier(bio) && !q->prepare_flush_fn) ||
1429 (bio_discard(bio) && !q->prepare_discard_fn)) {
1430 err = -EOPNOTSUPP;
1431 goto end_io;
1432 }
1433
1434 ret = q->make_request_fn(q, bio);
1435 } while (ret);
1436 }
1437
1438 /*
1439 * We only want one ->make_request_fn to be active at a time,
1440 * else stack usage with stacked devices could be a problem.
1441 * So use current->bio_{list,tail} to keep a list of requests
1442 * submited by a make_request_fn function.
1443 * current->bio_tail is also used as a flag to say if
1444 * generic_make_request is currently active in this task or not.
1445 * If it is NULL, then no make_request is active. If it is non-NULL,
1446 * then a make_request is active, and new requests should be added
1447 * at the tail
1448 */
1449 void generic_make_request(struct bio *bio)
1450 {
1451 if (current->bio_tail) {
1452 /* make_request is active */
1453 *(current->bio_tail) = bio;
1454 bio->bi_next = NULL;
1455 current->bio_tail = &bio->bi_next;
1456 return;
1457 }
1458 /* following loop may be a bit non-obvious, and so deserves some
1459 * explanation.
1460 * Before entering the loop, bio->bi_next is NULL (as all callers
1461 * ensure that) so we have a list with a single bio.
1462 * We pretend that we have just taken it off a longer list, so
1463 * we assign bio_list to the next (which is NULL) and bio_tail
1464 * to &bio_list, thus initialising the bio_list of new bios to be
1465 * added. __generic_make_request may indeed add some more bios
1466 * through a recursive call to generic_make_request. If it
1467 * did, we find a non-NULL value in bio_list and re-enter the loop
1468 * from the top. In this case we really did just take the bio
1469 * of the top of the list (no pretending) and so fixup bio_list and
1470 * bio_tail or bi_next, and call into __generic_make_request again.
1471 *
1472 * The loop was structured like this to make only one call to
1473 * __generic_make_request (which is important as it is large and
1474 * inlined) and to keep the structure simple.
1475 */
1476 BUG_ON(bio->bi_next);
1477 do {
1478 current->bio_list = bio->bi_next;
1479 if (bio->bi_next == NULL)
1480 current->bio_tail = &current->bio_list;
1481 else
1482 bio->bi_next = NULL;
1483 __generic_make_request(bio);
1484 bio = current->bio_list;
1485 } while (bio);
1486 current->bio_tail = NULL; /* deactivate */
1487 }
1488 EXPORT_SYMBOL(generic_make_request);
1489
1490 /**
1491 * submit_bio - submit a bio to the block device layer for I/O
1492 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1493 * @bio: The &struct bio which describes the I/O
1494 *
1495 * submit_bio() is very similar in purpose to generic_make_request(), and
1496 * uses that function to do most of the work. Both are fairly rough
1497 * interfaces; @bio must be presetup and ready for I/O.
1498 *
1499 */
1500 void submit_bio(int rw, struct bio *bio)
1501 {
1502 int count = bio_sectors(bio);
1503
1504 bio->bi_rw |= rw;
1505
1506 /*
1507 * If it's a regular read/write or a barrier with data attached,
1508 * go through the normal accounting stuff before submission.
1509 */
1510 if (bio_has_data(bio)) {
1511 if (rw & WRITE) {
1512 count_vm_events(PGPGOUT, count);
1513 } else {
1514 task_io_account_read(bio->bi_size);
1515 count_vm_events(PGPGIN, count);
1516 }
1517
1518 if (unlikely(block_dump)) {
1519 char b[BDEVNAME_SIZE];
1520 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1521 current->comm, task_pid_nr(current),
1522 (rw & WRITE) ? "WRITE" : "READ",
1523 (unsigned long long)bio->bi_sector,
1524 bdevname(bio->bi_bdev, b));
1525 }
1526 }
1527
1528 generic_make_request(bio);
1529 }
1530 EXPORT_SYMBOL(submit_bio);
1531
1532 /**
1533 * blk_rq_check_limits - Helper function to check a request for the queue limit
1534 * @q: the queue
1535 * @rq: the request being checked
1536 *
1537 * Description:
1538 * @rq may have been made based on weaker limitations of upper-level queues
1539 * in request stacking drivers, and it may violate the limitation of @q.
1540 * Since the block layer and the underlying device driver trust @rq
1541 * after it is inserted to @q, it should be checked against @q before
1542 * the insertion using this generic function.
1543 *
1544 * This function should also be useful for request stacking drivers
1545 * in some cases below, so export this fuction.
1546 * Request stacking drivers like request-based dm may change the queue
1547 * limits while requests are in the queue (e.g. dm's table swapping).
1548 * Such request stacking drivers should check those requests agaist
1549 * the new queue limits again when they dispatch those requests,
1550 * although such checkings are also done against the old queue limits
1551 * when submitting requests.
1552 */
1553 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1554 {
1555 if (rq->nr_sectors > q->max_sectors ||
1556 rq->data_len > q->max_hw_sectors << 9) {
1557 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1558 return -EIO;
1559 }
1560
1561 /*
1562 * queue's settings related to segment counting like q->bounce_pfn
1563 * may differ from that of other stacking queues.
1564 * Recalculate it to check the request correctly on this queue's
1565 * limitation.
1566 */
1567 blk_recalc_rq_segments(rq);
1568 if (rq->nr_phys_segments > q->max_phys_segments ||
1569 rq->nr_phys_segments > q->max_hw_segments) {
1570 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1571 return -EIO;
1572 }
1573
1574 return 0;
1575 }
1576 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1577
1578 /**
1579 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1580 * @q: the queue to submit the request
1581 * @rq: the request being queued
1582 */
1583 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1584 {
1585 unsigned long flags;
1586
1587 if (blk_rq_check_limits(q, rq))
1588 return -EIO;
1589
1590 #ifdef CONFIG_FAIL_MAKE_REQUEST
1591 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1592 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1593 return -EIO;
1594 #endif
1595
1596 spin_lock_irqsave(q->queue_lock, flags);
1597
1598 /*
1599 * Submitting request must be dequeued before calling this function
1600 * because it will be linked to another request_queue
1601 */
1602 BUG_ON(blk_queued_rq(rq));
1603
1604 drive_stat_acct(rq, 1);
1605 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1606
1607 spin_unlock_irqrestore(q->queue_lock, flags);
1608
1609 return 0;
1610 }
1611 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1612
1613 /**
1614 * __end_that_request_first - end I/O on a request
1615 * @req: the request being processed
1616 * @error: %0 for success, < %0 for error
1617 * @nr_bytes: number of bytes to complete
1618 *
1619 * Description:
1620 * Ends I/O on a number of bytes attached to @req, and sets it up
1621 * for the next range of segments (if any) in the cluster.
1622 *
1623 * Return:
1624 * %0 - we are done with this request, call end_that_request_last()
1625 * %1 - still buffers pending for this request
1626 **/
1627 static int __end_that_request_first(struct request *req, int error,
1628 int nr_bytes)
1629 {
1630 int total_bytes, bio_nbytes, next_idx = 0;
1631 struct bio *bio;
1632
1633 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
1634
1635 /*
1636 * for a REQ_TYPE_BLOCK_PC request, we want to carry any eventual
1637 * sense key with us all the way through
1638 */
1639 if (!blk_pc_request(req))
1640 req->errors = 0;
1641
1642 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1643 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1644 req->rq_disk ? req->rq_disk->disk_name : "?",
1645 (unsigned long long)req->sector);
1646 }
1647
1648 if (blk_fs_request(req) && req->rq_disk) {
1649 const int rw = rq_data_dir(req);
1650 struct hd_struct *part;
1651 int cpu;
1652
1653 cpu = part_stat_lock();
1654 part = disk_map_sector_rcu(req->rq_disk, req->sector);
1655 part_stat_add(cpu, part, sectors[rw], nr_bytes >> 9);
1656 part_stat_unlock();
1657 }
1658
1659 total_bytes = bio_nbytes = 0;
1660 while ((bio = req->bio) != NULL) {
1661 int nbytes;
1662
1663 /*
1664 * For an empty barrier request, the low level driver must
1665 * store a potential error location in ->sector. We pass
1666 * that back up in ->bi_sector.
1667 */
1668 if (blk_empty_barrier(req))
1669 bio->bi_sector = req->sector;
1670
1671 if (nr_bytes >= bio->bi_size) {
1672 req->bio = bio->bi_next;
1673 nbytes = bio->bi_size;
1674 req_bio_endio(req, bio, nbytes, error);
1675 next_idx = 0;
1676 bio_nbytes = 0;
1677 } else {
1678 int idx = bio->bi_idx + next_idx;
1679
1680 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1681 blk_dump_rq_flags(req, "__end_that");
1682 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
1683 __func__, bio->bi_idx, bio->bi_vcnt);
1684 break;
1685 }
1686
1687 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1688 BIO_BUG_ON(nbytes > bio->bi_size);
1689
1690 /*
1691 * not a complete bvec done
1692 */
1693 if (unlikely(nbytes > nr_bytes)) {
1694 bio_nbytes += nr_bytes;
1695 total_bytes += nr_bytes;
1696 break;
1697 }
1698
1699 /*
1700 * advance to the next vector
1701 */
1702 next_idx++;
1703 bio_nbytes += nbytes;
1704 }
1705
1706 total_bytes += nbytes;
1707 nr_bytes -= nbytes;
1708
1709 bio = req->bio;
1710 if (bio) {
1711 /*
1712 * end more in this run, or just return 'not-done'
1713 */
1714 if (unlikely(nr_bytes <= 0))
1715 break;
1716 }
1717 }
1718
1719 /*
1720 * completely done
1721 */
1722 if (!req->bio)
1723 return 0;
1724
1725 /*
1726 * if the request wasn't completed, update state
1727 */
1728 if (bio_nbytes) {
1729 req_bio_endio(req, bio, bio_nbytes, error);
1730 bio->bi_idx += next_idx;
1731 bio_iovec(bio)->bv_offset += nr_bytes;
1732 bio_iovec(bio)->bv_len -= nr_bytes;
1733 }
1734
1735 blk_recalc_rq_sectors(req, total_bytes >> 9);
1736 blk_recalc_rq_segments(req);
1737 return 1;
1738 }
1739
1740 /*
1741 * queue lock must be held
1742 */
1743 static void end_that_request_last(struct request *req, int error)
1744 {
1745 struct gendisk *disk = req->rq_disk;
1746
1747 blk_delete_timer(req);
1748
1749 if (blk_rq_tagged(req))
1750 blk_queue_end_tag(req->q, req);
1751
1752 if (blk_queued_rq(req))
1753 blkdev_dequeue_request(req);
1754
1755 if (unlikely(laptop_mode) && blk_fs_request(req))
1756 laptop_io_completion();
1757
1758 /*
1759 * Account IO completion. bar_rq isn't accounted as a normal
1760 * IO on queueing nor completion. Accounting the containing
1761 * request is enough.
1762 */
1763 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1764 unsigned long duration = jiffies - req->start_time;
1765 const int rw = rq_data_dir(req);
1766 struct hd_struct *part;
1767 int cpu;
1768
1769 cpu = part_stat_lock();
1770 part = disk_map_sector_rcu(disk, req->sector);
1771
1772 part_stat_inc(cpu, part, ios[rw]);
1773 part_stat_add(cpu, part, ticks[rw], duration);
1774 part_round_stats(cpu, part);
1775 part_dec_in_flight(part);
1776
1777 part_stat_unlock();
1778 }
1779
1780 if (req->end_io)
1781 req->end_io(req, error);
1782 else {
1783 if (blk_bidi_rq(req))
1784 __blk_put_request(req->next_rq->q, req->next_rq);
1785
1786 __blk_put_request(req->q, req);
1787 }
1788 }
1789
1790 static inline void __end_request(struct request *rq, int uptodate,
1791 unsigned int nr_bytes)
1792 {
1793 int error = 0;
1794
1795 if (uptodate <= 0)
1796 error = uptodate ? uptodate : -EIO;
1797
1798 __blk_end_request(rq, error, nr_bytes);
1799 }
1800
1801 /**
1802 * blk_rq_bytes - Returns bytes left to complete in the entire request
1803 * @rq: the request being processed
1804 **/
1805 unsigned int blk_rq_bytes(struct request *rq)
1806 {
1807 if (blk_fs_request(rq))
1808 return rq->hard_nr_sectors << 9;
1809
1810 return rq->data_len;
1811 }
1812 EXPORT_SYMBOL_GPL(blk_rq_bytes);
1813
1814 /**
1815 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
1816 * @rq: the request being processed
1817 **/
1818 unsigned int blk_rq_cur_bytes(struct request *rq)
1819 {
1820 if (blk_fs_request(rq))
1821 return rq->current_nr_sectors << 9;
1822
1823 if (rq->bio)
1824 return rq->bio->bi_size;
1825
1826 return rq->data_len;
1827 }
1828 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
1829
1830 /**
1831 * end_queued_request - end all I/O on a queued request
1832 * @rq: the request being processed
1833 * @uptodate: error value or %0/%1 uptodate flag
1834 *
1835 * Description:
1836 * Ends all I/O on a request, and removes it from the block layer queues.
1837 * Not suitable for normal I/O completion, unless the driver still has
1838 * the request attached to the block layer.
1839 *
1840 **/
1841 void end_queued_request(struct request *rq, int uptodate)
1842 {
1843 __end_request(rq, uptodate, blk_rq_bytes(rq));
1844 }
1845 EXPORT_SYMBOL(end_queued_request);
1846
1847 /**
1848 * end_dequeued_request - end all I/O on a dequeued request
1849 * @rq: the request being processed
1850 * @uptodate: error value or %0/%1 uptodate flag
1851 *
1852 * Description:
1853 * Ends all I/O on a request. The request must already have been
1854 * dequeued using blkdev_dequeue_request(), as is normally the case
1855 * for most drivers.
1856 *
1857 **/
1858 void end_dequeued_request(struct request *rq, int uptodate)
1859 {
1860 __end_request(rq, uptodate, blk_rq_bytes(rq));
1861 }
1862 EXPORT_SYMBOL(end_dequeued_request);
1863
1864
1865 /**
1866 * end_request - end I/O on the current segment of the request
1867 * @req: the request being processed
1868 * @uptodate: error value or %0/%1 uptodate flag
1869 *
1870 * Description:
1871 * Ends I/O on the current segment of a request. If that is the only
1872 * remaining segment, the request is also completed and freed.
1873 *
1874 * This is a remnant of how older block drivers handled I/O completions.
1875 * Modern drivers typically end I/O on the full request in one go, unless
1876 * they have a residual value to account for. For that case this function
1877 * isn't really useful, unless the residual just happens to be the
1878 * full current segment. In other words, don't use this function in new
1879 * code. Use blk_end_request() or __blk_end_request() to end partial parts
1880 * of a request, or end_dequeued_request() and end_queued_request() to
1881 * completely end IO on a dequeued/queued request.
1882 *
1883 **/
1884 void end_request(struct request *req, int uptodate)
1885 {
1886 __end_request(req, uptodate, req->hard_cur_sectors << 9);
1887 }
1888 EXPORT_SYMBOL(end_request);
1889
1890 static int end_that_request_data(struct request *rq, int error,
1891 unsigned int nr_bytes, unsigned int bidi_bytes)
1892 {
1893 if (rq->bio) {
1894 if (__end_that_request_first(rq, error, nr_bytes))
1895 return 1;
1896
1897 /* Bidi request must be completed as a whole */
1898 if (blk_bidi_rq(rq) &&
1899 __end_that_request_first(rq->next_rq, error, bidi_bytes))
1900 return 1;
1901 }
1902
1903 return 0;
1904 }
1905
1906 /**
1907 * blk_end_io - Generic end_io function to complete a request.
1908 * @rq: the request being processed
1909 * @error: %0 for success, < %0 for error
1910 * @nr_bytes: number of bytes to complete @rq
1911 * @bidi_bytes: number of bytes to complete @rq->next_rq
1912 * @drv_callback: function called between completion of bios in the request
1913 * and completion of the request.
1914 * If the callback returns non %0, this helper returns without
1915 * completion of the request.
1916 *
1917 * Description:
1918 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1919 * If @rq has leftover, sets it up for the next range of segments.
1920 *
1921 * Return:
1922 * %0 - we are done with this request
1923 * %1 - this request is not freed yet, it still has pending buffers.
1924 **/
1925 static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes,
1926 unsigned int bidi_bytes,
1927 int (drv_callback)(struct request *))
1928 {
1929 struct request_queue *q = rq->q;
1930 unsigned long flags = 0UL;
1931
1932 if (end_that_request_data(rq, error, nr_bytes, bidi_bytes))
1933 return 1;
1934
1935 /* Special feature for tricky drivers */
1936 if (drv_callback && drv_callback(rq))
1937 return 1;
1938
1939 add_disk_randomness(rq->rq_disk);
1940
1941 spin_lock_irqsave(q->queue_lock, flags);
1942 end_that_request_last(rq, error);
1943 spin_unlock_irqrestore(q->queue_lock, flags);
1944
1945 return 0;
1946 }
1947
1948 /**
1949 * blk_end_request - Helper function for drivers to complete the request.
1950 * @rq: the request being processed
1951 * @error: %0 for success, < %0 for error
1952 * @nr_bytes: number of bytes to complete
1953 *
1954 * Description:
1955 * Ends I/O on a number of bytes attached to @rq.
1956 * If @rq has leftover, sets it up for the next range of segments.
1957 *
1958 * Return:
1959 * %0 - we are done with this request
1960 * %1 - still buffers pending for this request
1961 **/
1962 int blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1963 {
1964 return blk_end_io(rq, error, nr_bytes, 0, NULL);
1965 }
1966 EXPORT_SYMBOL_GPL(blk_end_request);
1967
1968 /**
1969 * __blk_end_request - Helper function for drivers to complete the request.
1970 * @rq: the request being processed
1971 * @error: %0 for success, < %0 for error
1972 * @nr_bytes: number of bytes to complete
1973 *
1974 * Description:
1975 * Must be called with queue lock held unlike blk_end_request().
1976 *
1977 * Return:
1978 * %0 - we are done with this request
1979 * %1 - still buffers pending for this request
1980 **/
1981 int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1982 {
1983 if (rq->bio && __end_that_request_first(rq, error, nr_bytes))
1984 return 1;
1985
1986 add_disk_randomness(rq->rq_disk);
1987
1988 end_that_request_last(rq, error);
1989
1990 return 0;
1991 }
1992 EXPORT_SYMBOL_GPL(__blk_end_request);
1993
1994 /**
1995 * blk_end_bidi_request - Helper function for drivers to complete bidi request.
1996 * @rq: the bidi request being processed
1997 * @error: %0 for success, < %0 for error
1998 * @nr_bytes: number of bytes to complete @rq
1999 * @bidi_bytes: number of bytes to complete @rq->next_rq
2000 *
2001 * Description:
2002 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2003 *
2004 * Return:
2005 * %0 - we are done with this request
2006 * %1 - still buffers pending for this request
2007 **/
2008 int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes,
2009 unsigned int bidi_bytes)
2010 {
2011 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
2012 }
2013 EXPORT_SYMBOL_GPL(blk_end_bidi_request);
2014
2015 /**
2016 * blk_update_request - Special helper function for request stacking drivers
2017 * @rq: the request being processed
2018 * @error: %0 for success, < %0 for error
2019 * @nr_bytes: number of bytes to complete @rq
2020 *
2021 * Description:
2022 * Ends I/O on a number of bytes attached to @rq, but doesn't complete
2023 * the request structure even if @rq doesn't have leftover.
2024 * If @rq has leftover, sets it up for the next range of segments.
2025 *
2026 * This special helper function is only for request stacking drivers
2027 * (e.g. request-based dm) so that they can handle partial completion.
2028 * Actual device drivers should use blk_end_request instead.
2029 */
2030 void blk_update_request(struct request *rq, int error, unsigned int nr_bytes)
2031 {
2032 if (!end_that_request_data(rq, error, nr_bytes, 0)) {
2033 /*
2034 * These members are not updated in end_that_request_data()
2035 * when all bios are completed.
2036 * Update them so that the request stacking driver can find
2037 * how many bytes remain in the request later.
2038 */
2039 rq->nr_sectors = rq->hard_nr_sectors = 0;
2040 rq->current_nr_sectors = rq->hard_cur_sectors = 0;
2041 }
2042 }
2043 EXPORT_SYMBOL_GPL(blk_update_request);
2044
2045 /**
2046 * blk_end_request_callback - Special helper function for tricky drivers
2047 * @rq: the request being processed
2048 * @error: %0 for success, < %0 for error
2049 * @nr_bytes: number of bytes to complete
2050 * @drv_callback: function called between completion of bios in the request
2051 * and completion of the request.
2052 * If the callback returns non %0, this helper returns without
2053 * completion of the request.
2054 *
2055 * Description:
2056 * Ends I/O on a number of bytes attached to @rq.
2057 * If @rq has leftover, sets it up for the next range of segments.
2058 *
2059 * This special helper function is used only for existing tricky drivers.
2060 * (e.g. cdrom_newpc_intr() of ide-cd)
2061 * This interface will be removed when such drivers are rewritten.
2062 * Don't use this interface in other places anymore.
2063 *
2064 * Return:
2065 * %0 - we are done with this request
2066 * %1 - this request is not freed yet.
2067 * this request still has pending buffers or
2068 * the driver doesn't want to finish this request yet.
2069 **/
2070 int blk_end_request_callback(struct request *rq, int error,
2071 unsigned int nr_bytes,
2072 int (drv_callback)(struct request *))
2073 {
2074 return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
2075 }
2076 EXPORT_SYMBOL_GPL(blk_end_request_callback);
2077
2078 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2079 struct bio *bio)
2080 {
2081 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and
2082 we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */
2083 rq->cmd_flags |= (bio->bi_rw & 3);
2084
2085 if (bio_has_data(bio)) {
2086 rq->nr_phys_segments = bio_phys_segments(q, bio);
2087 rq->buffer = bio_data(bio);
2088 }
2089 rq->current_nr_sectors = bio_cur_sectors(bio);
2090 rq->hard_cur_sectors = rq->current_nr_sectors;
2091 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
2092 rq->data_len = bio->bi_size;
2093
2094 rq->bio = rq->biotail = bio;
2095
2096 if (bio->bi_bdev)
2097 rq->rq_disk = bio->bi_bdev->bd_disk;
2098 }
2099
2100 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2101 {
2102 return queue_work(kblockd_workqueue, work);
2103 }
2104 EXPORT_SYMBOL(kblockd_schedule_work);
2105
2106 void kblockd_flush_work(struct work_struct *work)
2107 {
2108 cancel_work_sync(work);
2109 }
2110 EXPORT_SYMBOL(kblockd_flush_work);
2111
2112 int __init blk_dev_init(void)
2113 {
2114 kblockd_workqueue = create_workqueue("kblockd");
2115 if (!kblockd_workqueue)
2116 panic("Failed to create kblockd\n");
2117
2118 request_cachep = kmem_cache_create("blkdev_requests",
2119 sizeof(struct request), 0, SLAB_PANIC, NULL);
2120
2121 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2122 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2123
2124 return 0;
2125 }
2126
This page took 0.071484 seconds and 6 git commands to generate.