Merge tag 'cleanup2' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[deliverable/linux.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 #include <linux/delay.h>
32 #include <linux/ratelimit.h>
33
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/block.h>
36
37 #include "blk.h"
38 #include "blk-cgroup.h"
39
40 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
43
44 DEFINE_IDA(blk_queue_ida);
45
46 /*
47 * For the allocated request tables
48 */
49 static struct kmem_cache *request_cachep;
50
51 /*
52 * For queue allocation
53 */
54 struct kmem_cache *blk_requestq_cachep;
55
56 /*
57 * Controlling structure to kblockd
58 */
59 static struct workqueue_struct *kblockd_workqueue;
60
61 static void drive_stat_acct(struct request *rq, int new_io)
62 {
63 struct hd_struct *part;
64 int rw = rq_data_dir(rq);
65 int cpu;
66
67 if (!blk_do_io_stat(rq))
68 return;
69
70 cpu = part_stat_lock();
71
72 if (!new_io) {
73 part = rq->part;
74 part_stat_inc(cpu, part, merges[rw]);
75 } else {
76 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
77 if (!hd_struct_try_get(part)) {
78 /*
79 * The partition is already being removed,
80 * the request will be accounted on the disk only
81 *
82 * We take a reference on disk->part0 although that
83 * partition will never be deleted, so we can treat
84 * it as any other partition.
85 */
86 part = &rq->rq_disk->part0;
87 hd_struct_get(part);
88 }
89 part_round_stats(cpu, part);
90 part_inc_in_flight(part, rw);
91 rq->part = part;
92 }
93
94 part_stat_unlock();
95 }
96
97 void blk_queue_congestion_threshold(struct request_queue *q)
98 {
99 int nr;
100
101 nr = q->nr_requests - (q->nr_requests / 8) + 1;
102 if (nr > q->nr_requests)
103 nr = q->nr_requests;
104 q->nr_congestion_on = nr;
105
106 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
107 if (nr < 1)
108 nr = 1;
109 q->nr_congestion_off = nr;
110 }
111
112 /**
113 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
114 * @bdev: device
115 *
116 * Locates the passed device's request queue and returns the address of its
117 * backing_dev_info
118 *
119 * Will return NULL if the request queue cannot be located.
120 */
121 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
122 {
123 struct backing_dev_info *ret = NULL;
124 struct request_queue *q = bdev_get_queue(bdev);
125
126 if (q)
127 ret = &q->backing_dev_info;
128 return ret;
129 }
130 EXPORT_SYMBOL(blk_get_backing_dev_info);
131
132 void blk_rq_init(struct request_queue *q, struct request *rq)
133 {
134 memset(rq, 0, sizeof(*rq));
135
136 INIT_LIST_HEAD(&rq->queuelist);
137 INIT_LIST_HEAD(&rq->timeout_list);
138 rq->cpu = -1;
139 rq->q = q;
140 rq->__sector = (sector_t) -1;
141 INIT_HLIST_NODE(&rq->hash);
142 RB_CLEAR_NODE(&rq->rb_node);
143 rq->cmd = rq->__cmd;
144 rq->cmd_len = BLK_MAX_CDB;
145 rq->tag = -1;
146 rq->ref_count = 1;
147 rq->start_time = jiffies;
148 set_start_time_ns(rq);
149 rq->part = NULL;
150 }
151 EXPORT_SYMBOL(blk_rq_init);
152
153 static void req_bio_endio(struct request *rq, struct bio *bio,
154 unsigned int nbytes, int error)
155 {
156 if (error)
157 clear_bit(BIO_UPTODATE, &bio->bi_flags);
158 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
159 error = -EIO;
160
161 if (unlikely(nbytes > bio->bi_size)) {
162 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
163 __func__, nbytes, bio->bi_size);
164 nbytes = bio->bi_size;
165 }
166
167 if (unlikely(rq->cmd_flags & REQ_QUIET))
168 set_bit(BIO_QUIET, &bio->bi_flags);
169
170 bio->bi_size -= nbytes;
171 bio->bi_sector += (nbytes >> 9);
172
173 if (bio_integrity(bio))
174 bio_integrity_advance(bio, nbytes);
175
176 /* don't actually finish bio if it's part of flush sequence */
177 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
178 bio_endio(bio, error);
179 }
180
181 void blk_dump_rq_flags(struct request *rq, char *msg)
182 {
183 int bit;
184
185 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
186 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
187 rq->cmd_flags);
188
189 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
190 (unsigned long long)blk_rq_pos(rq),
191 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
192 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
193 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
194
195 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
196 printk(KERN_INFO " cdb: ");
197 for (bit = 0; bit < BLK_MAX_CDB; bit++)
198 printk("%02x ", rq->cmd[bit]);
199 printk("\n");
200 }
201 }
202 EXPORT_SYMBOL(blk_dump_rq_flags);
203
204 static void blk_delay_work(struct work_struct *work)
205 {
206 struct request_queue *q;
207
208 q = container_of(work, struct request_queue, delay_work.work);
209 spin_lock_irq(q->queue_lock);
210 __blk_run_queue(q);
211 spin_unlock_irq(q->queue_lock);
212 }
213
214 /**
215 * blk_delay_queue - restart queueing after defined interval
216 * @q: The &struct request_queue in question
217 * @msecs: Delay in msecs
218 *
219 * Description:
220 * Sometimes queueing needs to be postponed for a little while, to allow
221 * resources to come back. This function will make sure that queueing is
222 * restarted around the specified time.
223 */
224 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
225 {
226 queue_delayed_work(kblockd_workqueue, &q->delay_work,
227 msecs_to_jiffies(msecs));
228 }
229 EXPORT_SYMBOL(blk_delay_queue);
230
231 /**
232 * blk_start_queue - restart a previously stopped queue
233 * @q: The &struct request_queue in question
234 *
235 * Description:
236 * blk_start_queue() will clear the stop flag on the queue, and call
237 * the request_fn for the queue if it was in a stopped state when
238 * entered. Also see blk_stop_queue(). Queue lock must be held.
239 **/
240 void blk_start_queue(struct request_queue *q)
241 {
242 WARN_ON(!irqs_disabled());
243
244 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
245 __blk_run_queue(q);
246 }
247 EXPORT_SYMBOL(blk_start_queue);
248
249 /**
250 * blk_stop_queue - stop a queue
251 * @q: The &struct request_queue in question
252 *
253 * Description:
254 * The Linux block layer assumes that a block driver will consume all
255 * entries on the request queue when the request_fn strategy is called.
256 * Often this will not happen, because of hardware limitations (queue
257 * depth settings). If a device driver gets a 'queue full' response,
258 * or if it simply chooses not to queue more I/O at one point, it can
259 * call this function to prevent the request_fn from being called until
260 * the driver has signalled it's ready to go again. This happens by calling
261 * blk_start_queue() to restart queue operations. Queue lock must be held.
262 **/
263 void blk_stop_queue(struct request_queue *q)
264 {
265 __cancel_delayed_work(&q->delay_work);
266 queue_flag_set(QUEUE_FLAG_STOPPED, q);
267 }
268 EXPORT_SYMBOL(blk_stop_queue);
269
270 /**
271 * blk_sync_queue - cancel any pending callbacks on a queue
272 * @q: the queue
273 *
274 * Description:
275 * The block layer may perform asynchronous callback activity
276 * on a queue, such as calling the unplug function after a timeout.
277 * A block device may call blk_sync_queue to ensure that any
278 * such activity is cancelled, thus allowing it to release resources
279 * that the callbacks might use. The caller must already have made sure
280 * that its ->make_request_fn will not re-add plugging prior to calling
281 * this function.
282 *
283 * This function does not cancel any asynchronous activity arising
284 * out of elevator or throttling code. That would require elevaotor_exit()
285 * and blkcg_exit_queue() to be called with queue lock initialized.
286 *
287 */
288 void blk_sync_queue(struct request_queue *q)
289 {
290 del_timer_sync(&q->timeout);
291 cancel_delayed_work_sync(&q->delay_work);
292 }
293 EXPORT_SYMBOL(blk_sync_queue);
294
295 /**
296 * __blk_run_queue - run a single device queue
297 * @q: The queue to run
298 *
299 * Description:
300 * See @blk_run_queue. This variant must be called with the queue lock
301 * held and interrupts disabled.
302 */
303 void __blk_run_queue(struct request_queue *q)
304 {
305 if (unlikely(blk_queue_stopped(q)))
306 return;
307
308 q->request_fn(q);
309 }
310 EXPORT_SYMBOL(__blk_run_queue);
311
312 /**
313 * blk_run_queue_async - run a single device queue in workqueue context
314 * @q: The queue to run
315 *
316 * Description:
317 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
318 * of us.
319 */
320 void blk_run_queue_async(struct request_queue *q)
321 {
322 if (likely(!blk_queue_stopped(q))) {
323 __cancel_delayed_work(&q->delay_work);
324 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
325 }
326 }
327 EXPORT_SYMBOL(blk_run_queue_async);
328
329 /**
330 * blk_run_queue - run a single device queue
331 * @q: The queue to run
332 *
333 * Description:
334 * Invoke request handling on this queue, if it has pending work to do.
335 * May be used to restart queueing when a request has completed.
336 */
337 void blk_run_queue(struct request_queue *q)
338 {
339 unsigned long flags;
340
341 spin_lock_irqsave(q->queue_lock, flags);
342 __blk_run_queue(q);
343 spin_unlock_irqrestore(q->queue_lock, flags);
344 }
345 EXPORT_SYMBOL(blk_run_queue);
346
347 void blk_put_queue(struct request_queue *q)
348 {
349 kobject_put(&q->kobj);
350 }
351 EXPORT_SYMBOL(blk_put_queue);
352
353 /**
354 * blk_drain_queue - drain requests from request_queue
355 * @q: queue to drain
356 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
357 *
358 * Drain requests from @q. If @drain_all is set, all requests are drained.
359 * If not, only ELVPRIV requests are drained. The caller is responsible
360 * for ensuring that no new requests which need to be drained are queued.
361 */
362 void blk_drain_queue(struct request_queue *q, bool drain_all)
363 {
364 int i;
365
366 while (true) {
367 bool drain = false;
368
369 spin_lock_irq(q->queue_lock);
370
371 /*
372 * The caller might be trying to drain @q before its
373 * elevator is initialized.
374 */
375 if (q->elevator)
376 elv_drain_elevator(q);
377
378 blkcg_drain_queue(q);
379
380 /*
381 * This function might be called on a queue which failed
382 * driver init after queue creation or is not yet fully
383 * active yet. Some drivers (e.g. fd and loop) get unhappy
384 * in such cases. Kick queue iff dispatch queue has
385 * something on it and @q has request_fn set.
386 */
387 if (!list_empty(&q->queue_head) && q->request_fn)
388 __blk_run_queue(q);
389
390 drain |= q->nr_rqs_elvpriv;
391
392 /*
393 * Unfortunately, requests are queued at and tracked from
394 * multiple places and there's no single counter which can
395 * be drained. Check all the queues and counters.
396 */
397 if (drain_all) {
398 drain |= !list_empty(&q->queue_head);
399 for (i = 0; i < 2; i++) {
400 drain |= q->nr_rqs[i];
401 drain |= q->in_flight[i];
402 drain |= !list_empty(&q->flush_queue[i]);
403 }
404 }
405
406 spin_unlock_irq(q->queue_lock);
407
408 if (!drain)
409 break;
410 msleep(10);
411 }
412
413 /*
414 * With queue marked dead, any woken up waiter will fail the
415 * allocation path, so the wakeup chaining is lost and we're
416 * left with hung waiters. We need to wake up those waiters.
417 */
418 if (q->request_fn) {
419 struct request_list *rl;
420
421 spin_lock_irq(q->queue_lock);
422
423 blk_queue_for_each_rl(rl, q)
424 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
425 wake_up_all(&rl->wait[i]);
426
427 spin_unlock_irq(q->queue_lock);
428 }
429 }
430
431 /**
432 * blk_queue_bypass_start - enter queue bypass mode
433 * @q: queue of interest
434 *
435 * In bypass mode, only the dispatch FIFO queue of @q is used. This
436 * function makes @q enter bypass mode and drains all requests which were
437 * throttled or issued before. On return, it's guaranteed that no request
438 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
439 * inside queue or RCU read lock.
440 */
441 void blk_queue_bypass_start(struct request_queue *q)
442 {
443 bool drain;
444
445 spin_lock_irq(q->queue_lock);
446 drain = !q->bypass_depth++;
447 queue_flag_set(QUEUE_FLAG_BYPASS, q);
448 spin_unlock_irq(q->queue_lock);
449
450 if (drain) {
451 blk_drain_queue(q, false);
452 /* ensure blk_queue_bypass() is %true inside RCU read lock */
453 synchronize_rcu();
454 }
455 }
456 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
457
458 /**
459 * blk_queue_bypass_end - leave queue bypass mode
460 * @q: queue of interest
461 *
462 * Leave bypass mode and restore the normal queueing behavior.
463 */
464 void blk_queue_bypass_end(struct request_queue *q)
465 {
466 spin_lock_irq(q->queue_lock);
467 if (!--q->bypass_depth)
468 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
469 WARN_ON_ONCE(q->bypass_depth < 0);
470 spin_unlock_irq(q->queue_lock);
471 }
472 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
473
474 /**
475 * blk_cleanup_queue - shutdown a request queue
476 * @q: request queue to shutdown
477 *
478 * Mark @q DEAD, drain all pending requests, destroy and put it. All
479 * future requests will be failed immediately with -ENODEV.
480 */
481 void blk_cleanup_queue(struct request_queue *q)
482 {
483 spinlock_t *lock = q->queue_lock;
484
485 /* mark @q DEAD, no new request or merges will be allowed afterwards */
486 mutex_lock(&q->sysfs_lock);
487 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
488 spin_lock_irq(lock);
489
490 /*
491 * Dead queue is permanently in bypass mode till released. Note
492 * that, unlike blk_queue_bypass_start(), we aren't performing
493 * synchronize_rcu() after entering bypass mode to avoid the delay
494 * as some drivers create and destroy a lot of queues while
495 * probing. This is still safe because blk_release_queue() will be
496 * called only after the queue refcnt drops to zero and nothing,
497 * RCU or not, would be traversing the queue by then.
498 */
499 q->bypass_depth++;
500 queue_flag_set(QUEUE_FLAG_BYPASS, q);
501
502 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
503 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
504 queue_flag_set(QUEUE_FLAG_DEAD, q);
505 spin_unlock_irq(lock);
506 mutex_unlock(&q->sysfs_lock);
507
508 /* drain all requests queued before DEAD marking */
509 blk_drain_queue(q, true);
510
511 /* @q won't process any more request, flush async actions */
512 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
513 blk_sync_queue(q);
514
515 spin_lock_irq(lock);
516 if (q->queue_lock != &q->__queue_lock)
517 q->queue_lock = &q->__queue_lock;
518 spin_unlock_irq(lock);
519
520 /* @q is and will stay empty, shutdown and put */
521 blk_put_queue(q);
522 }
523 EXPORT_SYMBOL(blk_cleanup_queue);
524
525 int blk_init_rl(struct request_list *rl, struct request_queue *q,
526 gfp_t gfp_mask)
527 {
528 if (unlikely(rl->rq_pool))
529 return 0;
530
531 rl->q = q;
532 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
533 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
534 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
535 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
536
537 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
538 mempool_free_slab, request_cachep,
539 gfp_mask, q->node);
540 if (!rl->rq_pool)
541 return -ENOMEM;
542
543 return 0;
544 }
545
546 void blk_exit_rl(struct request_list *rl)
547 {
548 if (rl->rq_pool)
549 mempool_destroy(rl->rq_pool);
550 }
551
552 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
553 {
554 return blk_alloc_queue_node(gfp_mask, -1);
555 }
556 EXPORT_SYMBOL(blk_alloc_queue);
557
558 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
559 {
560 struct request_queue *q;
561 int err;
562
563 q = kmem_cache_alloc_node(blk_requestq_cachep,
564 gfp_mask | __GFP_ZERO, node_id);
565 if (!q)
566 return NULL;
567
568 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
569 if (q->id < 0)
570 goto fail_q;
571
572 q->backing_dev_info.ra_pages =
573 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
574 q->backing_dev_info.state = 0;
575 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
576 q->backing_dev_info.name = "block";
577 q->node = node_id;
578
579 err = bdi_init(&q->backing_dev_info);
580 if (err)
581 goto fail_id;
582
583 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
584 laptop_mode_timer_fn, (unsigned long) q);
585 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
586 INIT_LIST_HEAD(&q->queue_head);
587 INIT_LIST_HEAD(&q->timeout_list);
588 INIT_LIST_HEAD(&q->icq_list);
589 #ifdef CONFIG_BLK_CGROUP
590 INIT_LIST_HEAD(&q->blkg_list);
591 #endif
592 INIT_LIST_HEAD(&q->flush_queue[0]);
593 INIT_LIST_HEAD(&q->flush_queue[1]);
594 INIT_LIST_HEAD(&q->flush_data_in_flight);
595 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
596
597 kobject_init(&q->kobj, &blk_queue_ktype);
598
599 mutex_init(&q->sysfs_lock);
600 spin_lock_init(&q->__queue_lock);
601
602 /*
603 * By default initialize queue_lock to internal lock and driver can
604 * override it later if need be.
605 */
606 q->queue_lock = &q->__queue_lock;
607
608 /*
609 * A queue starts its life with bypass turned on to avoid
610 * unnecessary bypass on/off overhead and nasty surprises during
611 * init. The initial bypass will be finished at the end of
612 * blk_init_allocated_queue().
613 */
614 q->bypass_depth = 1;
615 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
616
617 if (blkcg_init_queue(q))
618 goto fail_id;
619
620 return q;
621
622 fail_id:
623 ida_simple_remove(&blk_queue_ida, q->id);
624 fail_q:
625 kmem_cache_free(blk_requestq_cachep, q);
626 return NULL;
627 }
628 EXPORT_SYMBOL(blk_alloc_queue_node);
629
630 /**
631 * blk_init_queue - prepare a request queue for use with a block device
632 * @rfn: The function to be called to process requests that have been
633 * placed on the queue.
634 * @lock: Request queue spin lock
635 *
636 * Description:
637 * If a block device wishes to use the standard request handling procedures,
638 * which sorts requests and coalesces adjacent requests, then it must
639 * call blk_init_queue(). The function @rfn will be called when there
640 * are requests on the queue that need to be processed. If the device
641 * supports plugging, then @rfn may not be called immediately when requests
642 * are available on the queue, but may be called at some time later instead.
643 * Plugged queues are generally unplugged when a buffer belonging to one
644 * of the requests on the queue is needed, or due to memory pressure.
645 *
646 * @rfn is not required, or even expected, to remove all requests off the
647 * queue, but only as many as it can handle at a time. If it does leave
648 * requests on the queue, it is responsible for arranging that the requests
649 * get dealt with eventually.
650 *
651 * The queue spin lock must be held while manipulating the requests on the
652 * request queue; this lock will be taken also from interrupt context, so irq
653 * disabling is needed for it.
654 *
655 * Function returns a pointer to the initialized request queue, or %NULL if
656 * it didn't succeed.
657 *
658 * Note:
659 * blk_init_queue() must be paired with a blk_cleanup_queue() call
660 * when the block device is deactivated (such as at module unload).
661 **/
662
663 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
664 {
665 return blk_init_queue_node(rfn, lock, -1);
666 }
667 EXPORT_SYMBOL(blk_init_queue);
668
669 struct request_queue *
670 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
671 {
672 struct request_queue *uninit_q, *q;
673
674 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
675 if (!uninit_q)
676 return NULL;
677
678 q = blk_init_allocated_queue(uninit_q, rfn, lock);
679 if (!q)
680 blk_cleanup_queue(uninit_q);
681
682 return q;
683 }
684 EXPORT_SYMBOL(blk_init_queue_node);
685
686 struct request_queue *
687 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
688 spinlock_t *lock)
689 {
690 if (!q)
691 return NULL;
692
693 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
694 return NULL;
695
696 q->request_fn = rfn;
697 q->prep_rq_fn = NULL;
698 q->unprep_rq_fn = NULL;
699 q->queue_flags = QUEUE_FLAG_DEFAULT;
700
701 /* Override internal queue lock with supplied lock pointer */
702 if (lock)
703 q->queue_lock = lock;
704
705 /*
706 * This also sets hw/phys segments, boundary and size
707 */
708 blk_queue_make_request(q, blk_queue_bio);
709
710 q->sg_reserved_size = INT_MAX;
711
712 /* init elevator */
713 if (elevator_init(q, NULL))
714 return NULL;
715
716 blk_queue_congestion_threshold(q);
717
718 /* all done, end the initial bypass */
719 blk_queue_bypass_end(q);
720 return q;
721 }
722 EXPORT_SYMBOL(blk_init_allocated_queue);
723
724 bool blk_get_queue(struct request_queue *q)
725 {
726 if (likely(!blk_queue_dead(q))) {
727 __blk_get_queue(q);
728 return true;
729 }
730
731 return false;
732 }
733 EXPORT_SYMBOL(blk_get_queue);
734
735 static inline void blk_free_request(struct request_list *rl, struct request *rq)
736 {
737 if (rq->cmd_flags & REQ_ELVPRIV) {
738 elv_put_request(rl->q, rq);
739 if (rq->elv.icq)
740 put_io_context(rq->elv.icq->ioc);
741 }
742
743 mempool_free(rq, rl->rq_pool);
744 }
745
746 /*
747 * ioc_batching returns true if the ioc is a valid batching request and
748 * should be given priority access to a request.
749 */
750 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
751 {
752 if (!ioc)
753 return 0;
754
755 /*
756 * Make sure the process is able to allocate at least 1 request
757 * even if the batch times out, otherwise we could theoretically
758 * lose wakeups.
759 */
760 return ioc->nr_batch_requests == q->nr_batching ||
761 (ioc->nr_batch_requests > 0
762 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
763 }
764
765 /*
766 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
767 * will cause the process to be a "batcher" on all queues in the system. This
768 * is the behaviour we want though - once it gets a wakeup it should be given
769 * a nice run.
770 */
771 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
772 {
773 if (!ioc || ioc_batching(q, ioc))
774 return;
775
776 ioc->nr_batch_requests = q->nr_batching;
777 ioc->last_waited = jiffies;
778 }
779
780 static void __freed_request(struct request_list *rl, int sync)
781 {
782 struct request_queue *q = rl->q;
783
784 /*
785 * bdi isn't aware of blkcg yet. As all async IOs end up root
786 * blkcg anyway, just use root blkcg state.
787 */
788 if (rl == &q->root_rl &&
789 rl->count[sync] < queue_congestion_off_threshold(q))
790 blk_clear_queue_congested(q, sync);
791
792 if (rl->count[sync] + 1 <= q->nr_requests) {
793 if (waitqueue_active(&rl->wait[sync]))
794 wake_up(&rl->wait[sync]);
795
796 blk_clear_rl_full(rl, sync);
797 }
798 }
799
800 /*
801 * A request has just been released. Account for it, update the full and
802 * congestion status, wake up any waiters. Called under q->queue_lock.
803 */
804 static void freed_request(struct request_list *rl, unsigned int flags)
805 {
806 struct request_queue *q = rl->q;
807 int sync = rw_is_sync(flags);
808
809 q->nr_rqs[sync]--;
810 rl->count[sync]--;
811 if (flags & REQ_ELVPRIV)
812 q->nr_rqs_elvpriv--;
813
814 __freed_request(rl, sync);
815
816 if (unlikely(rl->starved[sync ^ 1]))
817 __freed_request(rl, sync ^ 1);
818 }
819
820 /*
821 * Determine if elevator data should be initialized when allocating the
822 * request associated with @bio.
823 */
824 static bool blk_rq_should_init_elevator(struct bio *bio)
825 {
826 if (!bio)
827 return true;
828
829 /*
830 * Flush requests do not use the elevator so skip initialization.
831 * This allows a request to share the flush and elevator data.
832 */
833 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
834 return false;
835
836 return true;
837 }
838
839 /**
840 * rq_ioc - determine io_context for request allocation
841 * @bio: request being allocated is for this bio (can be %NULL)
842 *
843 * Determine io_context to use for request allocation for @bio. May return
844 * %NULL if %current->io_context doesn't exist.
845 */
846 static struct io_context *rq_ioc(struct bio *bio)
847 {
848 #ifdef CONFIG_BLK_CGROUP
849 if (bio && bio->bi_ioc)
850 return bio->bi_ioc;
851 #endif
852 return current->io_context;
853 }
854
855 /**
856 * __get_request - get a free request
857 * @rl: request list to allocate from
858 * @rw_flags: RW and SYNC flags
859 * @bio: bio to allocate request for (can be %NULL)
860 * @gfp_mask: allocation mask
861 *
862 * Get a free request from @q. This function may fail under memory
863 * pressure or if @q is dead.
864 *
865 * Must be callled with @q->queue_lock held and,
866 * Returns %NULL on failure, with @q->queue_lock held.
867 * Returns !%NULL on success, with @q->queue_lock *not held*.
868 */
869 static struct request *__get_request(struct request_list *rl, int rw_flags,
870 struct bio *bio, gfp_t gfp_mask)
871 {
872 struct request_queue *q = rl->q;
873 struct request *rq;
874 struct elevator_type *et = q->elevator->type;
875 struct io_context *ioc = rq_ioc(bio);
876 struct io_cq *icq = NULL;
877 const bool is_sync = rw_is_sync(rw_flags) != 0;
878 int may_queue;
879
880 if (unlikely(blk_queue_dead(q)))
881 return NULL;
882
883 may_queue = elv_may_queue(q, rw_flags);
884 if (may_queue == ELV_MQUEUE_NO)
885 goto rq_starved;
886
887 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
888 if (rl->count[is_sync]+1 >= q->nr_requests) {
889 /*
890 * The queue will fill after this allocation, so set
891 * it as full, and mark this process as "batching".
892 * This process will be allowed to complete a batch of
893 * requests, others will be blocked.
894 */
895 if (!blk_rl_full(rl, is_sync)) {
896 ioc_set_batching(q, ioc);
897 blk_set_rl_full(rl, is_sync);
898 } else {
899 if (may_queue != ELV_MQUEUE_MUST
900 && !ioc_batching(q, ioc)) {
901 /*
902 * The queue is full and the allocating
903 * process is not a "batcher", and not
904 * exempted by the IO scheduler
905 */
906 return NULL;
907 }
908 }
909 }
910 /*
911 * bdi isn't aware of blkcg yet. As all async IOs end up
912 * root blkcg anyway, just use root blkcg state.
913 */
914 if (rl == &q->root_rl)
915 blk_set_queue_congested(q, is_sync);
916 }
917
918 /*
919 * Only allow batching queuers to allocate up to 50% over the defined
920 * limit of requests, otherwise we could have thousands of requests
921 * allocated with any setting of ->nr_requests
922 */
923 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
924 return NULL;
925
926 q->nr_rqs[is_sync]++;
927 rl->count[is_sync]++;
928 rl->starved[is_sync] = 0;
929
930 /*
931 * Decide whether the new request will be managed by elevator. If
932 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
933 * prevent the current elevator from being destroyed until the new
934 * request is freed. This guarantees icq's won't be destroyed and
935 * makes creating new ones safe.
936 *
937 * Also, lookup icq while holding queue_lock. If it doesn't exist,
938 * it will be created after releasing queue_lock.
939 */
940 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
941 rw_flags |= REQ_ELVPRIV;
942 q->nr_rqs_elvpriv++;
943 if (et->icq_cache && ioc)
944 icq = ioc_lookup_icq(ioc, q);
945 }
946
947 if (blk_queue_io_stat(q))
948 rw_flags |= REQ_IO_STAT;
949 spin_unlock_irq(q->queue_lock);
950
951 /* allocate and init request */
952 rq = mempool_alloc(rl->rq_pool, gfp_mask);
953 if (!rq)
954 goto fail_alloc;
955
956 blk_rq_init(q, rq);
957 blk_rq_set_rl(rq, rl);
958 rq->cmd_flags = rw_flags | REQ_ALLOCED;
959
960 /* init elvpriv */
961 if (rw_flags & REQ_ELVPRIV) {
962 if (unlikely(et->icq_cache && !icq)) {
963 if (ioc)
964 icq = ioc_create_icq(ioc, q, gfp_mask);
965 if (!icq)
966 goto fail_elvpriv;
967 }
968
969 rq->elv.icq = icq;
970 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
971 goto fail_elvpriv;
972
973 /* @rq->elv.icq holds io_context until @rq is freed */
974 if (icq)
975 get_io_context(icq->ioc);
976 }
977 out:
978 /*
979 * ioc may be NULL here, and ioc_batching will be false. That's
980 * OK, if the queue is under the request limit then requests need
981 * not count toward the nr_batch_requests limit. There will always
982 * be some limit enforced by BLK_BATCH_TIME.
983 */
984 if (ioc_batching(q, ioc))
985 ioc->nr_batch_requests--;
986
987 trace_block_getrq(q, bio, rw_flags & 1);
988 return rq;
989
990 fail_elvpriv:
991 /*
992 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
993 * and may fail indefinitely under memory pressure and thus
994 * shouldn't stall IO. Treat this request as !elvpriv. This will
995 * disturb iosched and blkcg but weird is bettern than dead.
996 */
997 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
998 dev_name(q->backing_dev_info.dev));
999
1000 rq->cmd_flags &= ~REQ_ELVPRIV;
1001 rq->elv.icq = NULL;
1002
1003 spin_lock_irq(q->queue_lock);
1004 q->nr_rqs_elvpriv--;
1005 spin_unlock_irq(q->queue_lock);
1006 goto out;
1007
1008 fail_alloc:
1009 /*
1010 * Allocation failed presumably due to memory. Undo anything we
1011 * might have messed up.
1012 *
1013 * Allocating task should really be put onto the front of the wait
1014 * queue, but this is pretty rare.
1015 */
1016 spin_lock_irq(q->queue_lock);
1017 freed_request(rl, rw_flags);
1018
1019 /*
1020 * in the very unlikely event that allocation failed and no
1021 * requests for this direction was pending, mark us starved so that
1022 * freeing of a request in the other direction will notice
1023 * us. another possible fix would be to split the rq mempool into
1024 * READ and WRITE
1025 */
1026 rq_starved:
1027 if (unlikely(rl->count[is_sync] == 0))
1028 rl->starved[is_sync] = 1;
1029 return NULL;
1030 }
1031
1032 /**
1033 * get_request - get a free request
1034 * @q: request_queue to allocate request from
1035 * @rw_flags: RW and SYNC flags
1036 * @bio: bio to allocate request for (can be %NULL)
1037 * @gfp_mask: allocation mask
1038 *
1039 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1040 * function keeps retrying under memory pressure and fails iff @q is dead.
1041 *
1042 * Must be callled with @q->queue_lock held and,
1043 * Returns %NULL on failure, with @q->queue_lock held.
1044 * Returns !%NULL on success, with @q->queue_lock *not held*.
1045 */
1046 static struct request *get_request(struct request_queue *q, int rw_flags,
1047 struct bio *bio, gfp_t gfp_mask)
1048 {
1049 const bool is_sync = rw_is_sync(rw_flags) != 0;
1050 DEFINE_WAIT(wait);
1051 struct request_list *rl;
1052 struct request *rq;
1053
1054 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1055 retry:
1056 rq = __get_request(rl, rw_flags, bio, gfp_mask);
1057 if (rq)
1058 return rq;
1059
1060 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dead(q))) {
1061 blk_put_rl(rl);
1062 return NULL;
1063 }
1064
1065 /* wait on @rl and retry */
1066 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1067 TASK_UNINTERRUPTIBLE);
1068
1069 trace_block_sleeprq(q, bio, rw_flags & 1);
1070
1071 spin_unlock_irq(q->queue_lock);
1072 io_schedule();
1073
1074 /*
1075 * After sleeping, we become a "batching" process and will be able
1076 * to allocate at least one request, and up to a big batch of them
1077 * for a small period time. See ioc_batching, ioc_set_batching
1078 */
1079 ioc_set_batching(q, current->io_context);
1080
1081 spin_lock_irq(q->queue_lock);
1082 finish_wait(&rl->wait[is_sync], &wait);
1083
1084 goto retry;
1085 }
1086
1087 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1088 {
1089 struct request *rq;
1090
1091 BUG_ON(rw != READ && rw != WRITE);
1092
1093 /* create ioc upfront */
1094 create_io_context(gfp_mask, q->node);
1095
1096 spin_lock_irq(q->queue_lock);
1097 rq = get_request(q, rw, NULL, gfp_mask);
1098 if (!rq)
1099 spin_unlock_irq(q->queue_lock);
1100 /* q->queue_lock is unlocked at this point */
1101
1102 return rq;
1103 }
1104 EXPORT_SYMBOL(blk_get_request);
1105
1106 /**
1107 * blk_make_request - given a bio, allocate a corresponding struct request.
1108 * @q: target request queue
1109 * @bio: The bio describing the memory mappings that will be submitted for IO.
1110 * It may be a chained-bio properly constructed by block/bio layer.
1111 * @gfp_mask: gfp flags to be used for memory allocation
1112 *
1113 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1114 * type commands. Where the struct request needs to be farther initialized by
1115 * the caller. It is passed a &struct bio, which describes the memory info of
1116 * the I/O transfer.
1117 *
1118 * The caller of blk_make_request must make sure that bi_io_vec
1119 * are set to describe the memory buffers. That bio_data_dir() will return
1120 * the needed direction of the request. (And all bio's in the passed bio-chain
1121 * are properly set accordingly)
1122 *
1123 * If called under none-sleepable conditions, mapped bio buffers must not
1124 * need bouncing, by calling the appropriate masked or flagged allocator,
1125 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1126 * BUG.
1127 *
1128 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1129 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1130 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1131 * completion of a bio that hasn't been submitted yet, thus resulting in a
1132 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1133 * of bio_alloc(), as that avoids the mempool deadlock.
1134 * If possible a big IO should be split into smaller parts when allocation
1135 * fails. Partial allocation should not be an error, or you risk a live-lock.
1136 */
1137 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1138 gfp_t gfp_mask)
1139 {
1140 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1141
1142 if (unlikely(!rq))
1143 return ERR_PTR(-ENOMEM);
1144
1145 for_each_bio(bio) {
1146 struct bio *bounce_bio = bio;
1147 int ret;
1148
1149 blk_queue_bounce(q, &bounce_bio);
1150 ret = blk_rq_append_bio(q, rq, bounce_bio);
1151 if (unlikely(ret)) {
1152 blk_put_request(rq);
1153 return ERR_PTR(ret);
1154 }
1155 }
1156
1157 return rq;
1158 }
1159 EXPORT_SYMBOL(blk_make_request);
1160
1161 /**
1162 * blk_requeue_request - put a request back on queue
1163 * @q: request queue where request should be inserted
1164 * @rq: request to be inserted
1165 *
1166 * Description:
1167 * Drivers often keep queueing requests until the hardware cannot accept
1168 * more, when that condition happens we need to put the request back
1169 * on the queue. Must be called with queue lock held.
1170 */
1171 void blk_requeue_request(struct request_queue *q, struct request *rq)
1172 {
1173 blk_delete_timer(rq);
1174 blk_clear_rq_complete(rq);
1175 trace_block_rq_requeue(q, rq);
1176
1177 if (blk_rq_tagged(rq))
1178 blk_queue_end_tag(q, rq);
1179
1180 BUG_ON(blk_queued_rq(rq));
1181
1182 elv_requeue_request(q, rq);
1183 }
1184 EXPORT_SYMBOL(blk_requeue_request);
1185
1186 static void add_acct_request(struct request_queue *q, struct request *rq,
1187 int where)
1188 {
1189 drive_stat_acct(rq, 1);
1190 __elv_add_request(q, rq, where);
1191 }
1192
1193 static void part_round_stats_single(int cpu, struct hd_struct *part,
1194 unsigned long now)
1195 {
1196 if (now == part->stamp)
1197 return;
1198
1199 if (part_in_flight(part)) {
1200 __part_stat_add(cpu, part, time_in_queue,
1201 part_in_flight(part) * (now - part->stamp));
1202 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1203 }
1204 part->stamp = now;
1205 }
1206
1207 /**
1208 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1209 * @cpu: cpu number for stats access
1210 * @part: target partition
1211 *
1212 * The average IO queue length and utilisation statistics are maintained
1213 * by observing the current state of the queue length and the amount of
1214 * time it has been in this state for.
1215 *
1216 * Normally, that accounting is done on IO completion, but that can result
1217 * in more than a second's worth of IO being accounted for within any one
1218 * second, leading to >100% utilisation. To deal with that, we call this
1219 * function to do a round-off before returning the results when reading
1220 * /proc/diskstats. This accounts immediately for all queue usage up to
1221 * the current jiffies and restarts the counters again.
1222 */
1223 void part_round_stats(int cpu, struct hd_struct *part)
1224 {
1225 unsigned long now = jiffies;
1226
1227 if (part->partno)
1228 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1229 part_round_stats_single(cpu, part, now);
1230 }
1231 EXPORT_SYMBOL_GPL(part_round_stats);
1232
1233 /*
1234 * queue lock must be held
1235 */
1236 void __blk_put_request(struct request_queue *q, struct request *req)
1237 {
1238 if (unlikely(!q))
1239 return;
1240 if (unlikely(--req->ref_count))
1241 return;
1242
1243 elv_completed_request(q, req);
1244
1245 /* this is a bio leak */
1246 WARN_ON(req->bio != NULL);
1247
1248 /*
1249 * Request may not have originated from ll_rw_blk. if not,
1250 * it didn't come out of our reserved rq pools
1251 */
1252 if (req->cmd_flags & REQ_ALLOCED) {
1253 unsigned int flags = req->cmd_flags;
1254 struct request_list *rl = blk_rq_rl(req);
1255
1256 BUG_ON(!list_empty(&req->queuelist));
1257 BUG_ON(!hlist_unhashed(&req->hash));
1258
1259 blk_free_request(rl, req);
1260 freed_request(rl, flags);
1261 blk_put_rl(rl);
1262 }
1263 }
1264 EXPORT_SYMBOL_GPL(__blk_put_request);
1265
1266 void blk_put_request(struct request *req)
1267 {
1268 unsigned long flags;
1269 struct request_queue *q = req->q;
1270
1271 spin_lock_irqsave(q->queue_lock, flags);
1272 __blk_put_request(q, req);
1273 spin_unlock_irqrestore(q->queue_lock, flags);
1274 }
1275 EXPORT_SYMBOL(blk_put_request);
1276
1277 /**
1278 * blk_add_request_payload - add a payload to a request
1279 * @rq: request to update
1280 * @page: page backing the payload
1281 * @len: length of the payload.
1282 *
1283 * This allows to later add a payload to an already submitted request by
1284 * a block driver. The driver needs to take care of freeing the payload
1285 * itself.
1286 *
1287 * Note that this is a quite horrible hack and nothing but handling of
1288 * discard requests should ever use it.
1289 */
1290 void blk_add_request_payload(struct request *rq, struct page *page,
1291 unsigned int len)
1292 {
1293 struct bio *bio = rq->bio;
1294
1295 bio->bi_io_vec->bv_page = page;
1296 bio->bi_io_vec->bv_offset = 0;
1297 bio->bi_io_vec->bv_len = len;
1298
1299 bio->bi_size = len;
1300 bio->bi_vcnt = 1;
1301 bio->bi_phys_segments = 1;
1302
1303 rq->__data_len = rq->resid_len = len;
1304 rq->nr_phys_segments = 1;
1305 rq->buffer = bio_data(bio);
1306 }
1307 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1308
1309 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1310 struct bio *bio)
1311 {
1312 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1313
1314 if (!ll_back_merge_fn(q, req, bio))
1315 return false;
1316
1317 trace_block_bio_backmerge(q, bio);
1318
1319 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1320 blk_rq_set_mixed_merge(req);
1321
1322 req->biotail->bi_next = bio;
1323 req->biotail = bio;
1324 req->__data_len += bio->bi_size;
1325 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1326
1327 drive_stat_acct(req, 0);
1328 return true;
1329 }
1330
1331 static bool bio_attempt_front_merge(struct request_queue *q,
1332 struct request *req, struct bio *bio)
1333 {
1334 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1335
1336 if (!ll_front_merge_fn(q, req, bio))
1337 return false;
1338
1339 trace_block_bio_frontmerge(q, bio);
1340
1341 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1342 blk_rq_set_mixed_merge(req);
1343
1344 bio->bi_next = req->bio;
1345 req->bio = bio;
1346
1347 /*
1348 * may not be valid. if the low level driver said
1349 * it didn't need a bounce buffer then it better
1350 * not touch req->buffer either...
1351 */
1352 req->buffer = bio_data(bio);
1353 req->__sector = bio->bi_sector;
1354 req->__data_len += bio->bi_size;
1355 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1356
1357 drive_stat_acct(req, 0);
1358 return true;
1359 }
1360
1361 /**
1362 * attempt_plug_merge - try to merge with %current's plugged list
1363 * @q: request_queue new bio is being queued at
1364 * @bio: new bio being queued
1365 * @request_count: out parameter for number of traversed plugged requests
1366 *
1367 * Determine whether @bio being queued on @q can be merged with a request
1368 * on %current's plugged list. Returns %true if merge was successful,
1369 * otherwise %false.
1370 *
1371 * Plugging coalesces IOs from the same issuer for the same purpose without
1372 * going through @q->queue_lock. As such it's more of an issuing mechanism
1373 * than scheduling, and the request, while may have elvpriv data, is not
1374 * added on the elevator at this point. In addition, we don't have
1375 * reliable access to the elevator outside queue lock. Only check basic
1376 * merging parameters without querying the elevator.
1377 */
1378 static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1379 unsigned int *request_count)
1380 {
1381 struct blk_plug *plug;
1382 struct request *rq;
1383 bool ret = false;
1384
1385 plug = current->plug;
1386 if (!plug)
1387 goto out;
1388 *request_count = 0;
1389
1390 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1391 int el_ret;
1392
1393 if (rq->q == q)
1394 (*request_count)++;
1395
1396 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1397 continue;
1398
1399 el_ret = blk_try_merge(rq, bio);
1400 if (el_ret == ELEVATOR_BACK_MERGE) {
1401 ret = bio_attempt_back_merge(q, rq, bio);
1402 if (ret)
1403 break;
1404 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1405 ret = bio_attempt_front_merge(q, rq, bio);
1406 if (ret)
1407 break;
1408 }
1409 }
1410 out:
1411 return ret;
1412 }
1413
1414 void init_request_from_bio(struct request *req, struct bio *bio)
1415 {
1416 req->cmd_type = REQ_TYPE_FS;
1417
1418 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1419 if (bio->bi_rw & REQ_RAHEAD)
1420 req->cmd_flags |= REQ_FAILFAST_MASK;
1421
1422 req->errors = 0;
1423 req->__sector = bio->bi_sector;
1424 req->ioprio = bio_prio(bio);
1425 blk_rq_bio_prep(req->q, req, bio);
1426 }
1427
1428 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1429 {
1430 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1431 struct blk_plug *plug;
1432 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1433 struct request *req;
1434 unsigned int request_count = 0;
1435
1436 /*
1437 * low level driver can indicate that it wants pages above a
1438 * certain limit bounced to low memory (ie for highmem, or even
1439 * ISA dma in theory)
1440 */
1441 blk_queue_bounce(q, &bio);
1442
1443 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1444 spin_lock_irq(q->queue_lock);
1445 where = ELEVATOR_INSERT_FLUSH;
1446 goto get_rq;
1447 }
1448
1449 /*
1450 * Check if we can merge with the plugged list before grabbing
1451 * any locks.
1452 */
1453 if (attempt_plug_merge(q, bio, &request_count))
1454 return;
1455
1456 spin_lock_irq(q->queue_lock);
1457
1458 el_ret = elv_merge(q, &req, bio);
1459 if (el_ret == ELEVATOR_BACK_MERGE) {
1460 if (bio_attempt_back_merge(q, req, bio)) {
1461 elv_bio_merged(q, req, bio);
1462 if (!attempt_back_merge(q, req))
1463 elv_merged_request(q, req, el_ret);
1464 goto out_unlock;
1465 }
1466 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1467 if (bio_attempt_front_merge(q, req, bio)) {
1468 elv_bio_merged(q, req, bio);
1469 if (!attempt_front_merge(q, req))
1470 elv_merged_request(q, req, el_ret);
1471 goto out_unlock;
1472 }
1473 }
1474
1475 get_rq:
1476 /*
1477 * This sync check and mask will be re-done in init_request_from_bio(),
1478 * but we need to set it earlier to expose the sync flag to the
1479 * rq allocator and io schedulers.
1480 */
1481 rw_flags = bio_data_dir(bio);
1482 if (sync)
1483 rw_flags |= REQ_SYNC;
1484
1485 /*
1486 * Grab a free request. This is might sleep but can not fail.
1487 * Returns with the queue unlocked.
1488 */
1489 req = get_request(q, rw_flags, bio, GFP_NOIO);
1490 if (unlikely(!req)) {
1491 bio_endio(bio, -ENODEV); /* @q is dead */
1492 goto out_unlock;
1493 }
1494
1495 /*
1496 * After dropping the lock and possibly sleeping here, our request
1497 * may now be mergeable after it had proven unmergeable (above).
1498 * We don't worry about that case for efficiency. It won't happen
1499 * often, and the elevators are able to handle it.
1500 */
1501 init_request_from_bio(req, bio);
1502
1503 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1504 req->cpu = raw_smp_processor_id();
1505
1506 plug = current->plug;
1507 if (plug) {
1508 /*
1509 * If this is the first request added after a plug, fire
1510 * of a plug trace. If others have been added before, check
1511 * if we have multiple devices in this plug. If so, make a
1512 * note to sort the list before dispatch.
1513 */
1514 if (list_empty(&plug->list))
1515 trace_block_plug(q);
1516 else {
1517 if (!plug->should_sort) {
1518 struct request *__rq;
1519
1520 __rq = list_entry_rq(plug->list.prev);
1521 if (__rq->q != q)
1522 plug->should_sort = 1;
1523 }
1524 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1525 blk_flush_plug_list(plug, false);
1526 trace_block_plug(q);
1527 }
1528 }
1529 list_add_tail(&req->queuelist, &plug->list);
1530 drive_stat_acct(req, 1);
1531 } else {
1532 spin_lock_irq(q->queue_lock);
1533 add_acct_request(q, req, where);
1534 __blk_run_queue(q);
1535 out_unlock:
1536 spin_unlock_irq(q->queue_lock);
1537 }
1538 }
1539 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1540
1541 /*
1542 * If bio->bi_dev is a partition, remap the location
1543 */
1544 static inline void blk_partition_remap(struct bio *bio)
1545 {
1546 struct block_device *bdev = bio->bi_bdev;
1547
1548 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1549 struct hd_struct *p = bdev->bd_part;
1550
1551 bio->bi_sector += p->start_sect;
1552 bio->bi_bdev = bdev->bd_contains;
1553
1554 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1555 bdev->bd_dev,
1556 bio->bi_sector - p->start_sect);
1557 }
1558 }
1559
1560 static void handle_bad_sector(struct bio *bio)
1561 {
1562 char b[BDEVNAME_SIZE];
1563
1564 printk(KERN_INFO "attempt to access beyond end of device\n");
1565 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1566 bdevname(bio->bi_bdev, b),
1567 bio->bi_rw,
1568 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1569 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1570
1571 set_bit(BIO_EOF, &bio->bi_flags);
1572 }
1573
1574 #ifdef CONFIG_FAIL_MAKE_REQUEST
1575
1576 static DECLARE_FAULT_ATTR(fail_make_request);
1577
1578 static int __init setup_fail_make_request(char *str)
1579 {
1580 return setup_fault_attr(&fail_make_request, str);
1581 }
1582 __setup("fail_make_request=", setup_fail_make_request);
1583
1584 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1585 {
1586 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1587 }
1588
1589 static int __init fail_make_request_debugfs(void)
1590 {
1591 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1592 NULL, &fail_make_request);
1593
1594 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1595 }
1596
1597 late_initcall(fail_make_request_debugfs);
1598
1599 #else /* CONFIG_FAIL_MAKE_REQUEST */
1600
1601 static inline bool should_fail_request(struct hd_struct *part,
1602 unsigned int bytes)
1603 {
1604 return false;
1605 }
1606
1607 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1608
1609 /*
1610 * Check whether this bio extends beyond the end of the device.
1611 */
1612 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1613 {
1614 sector_t maxsector;
1615
1616 if (!nr_sectors)
1617 return 0;
1618
1619 /* Test device or partition size, when known. */
1620 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1621 if (maxsector) {
1622 sector_t sector = bio->bi_sector;
1623
1624 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1625 /*
1626 * This may well happen - the kernel calls bread()
1627 * without checking the size of the device, e.g., when
1628 * mounting a device.
1629 */
1630 handle_bad_sector(bio);
1631 return 1;
1632 }
1633 }
1634
1635 return 0;
1636 }
1637
1638 static noinline_for_stack bool
1639 generic_make_request_checks(struct bio *bio)
1640 {
1641 struct request_queue *q;
1642 int nr_sectors = bio_sectors(bio);
1643 int err = -EIO;
1644 char b[BDEVNAME_SIZE];
1645 struct hd_struct *part;
1646
1647 might_sleep();
1648
1649 if (bio_check_eod(bio, nr_sectors))
1650 goto end_io;
1651
1652 q = bdev_get_queue(bio->bi_bdev);
1653 if (unlikely(!q)) {
1654 printk(KERN_ERR
1655 "generic_make_request: Trying to access "
1656 "nonexistent block-device %s (%Lu)\n",
1657 bdevname(bio->bi_bdev, b),
1658 (long long) bio->bi_sector);
1659 goto end_io;
1660 }
1661
1662 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1663 nr_sectors > queue_max_hw_sectors(q))) {
1664 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1665 bdevname(bio->bi_bdev, b),
1666 bio_sectors(bio),
1667 queue_max_hw_sectors(q));
1668 goto end_io;
1669 }
1670
1671 part = bio->bi_bdev->bd_part;
1672 if (should_fail_request(part, bio->bi_size) ||
1673 should_fail_request(&part_to_disk(part)->part0,
1674 bio->bi_size))
1675 goto end_io;
1676
1677 /*
1678 * If this device has partitions, remap block n
1679 * of partition p to block n+start(p) of the disk.
1680 */
1681 blk_partition_remap(bio);
1682
1683 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1684 goto end_io;
1685
1686 if (bio_check_eod(bio, nr_sectors))
1687 goto end_io;
1688
1689 /*
1690 * Filter flush bio's early so that make_request based
1691 * drivers without flush support don't have to worry
1692 * about them.
1693 */
1694 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1695 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1696 if (!nr_sectors) {
1697 err = 0;
1698 goto end_io;
1699 }
1700 }
1701
1702 if ((bio->bi_rw & REQ_DISCARD) &&
1703 (!blk_queue_discard(q) ||
1704 ((bio->bi_rw & REQ_SECURE) &&
1705 !blk_queue_secdiscard(q)))) {
1706 err = -EOPNOTSUPP;
1707 goto end_io;
1708 }
1709
1710 /*
1711 * Various block parts want %current->io_context and lazy ioc
1712 * allocation ends up trading a lot of pain for a small amount of
1713 * memory. Just allocate it upfront. This may fail and block
1714 * layer knows how to live with it.
1715 */
1716 create_io_context(GFP_ATOMIC, q->node);
1717
1718 if (blk_throtl_bio(q, bio))
1719 return false; /* throttled, will be resubmitted later */
1720
1721 trace_block_bio_queue(q, bio);
1722 return true;
1723
1724 end_io:
1725 bio_endio(bio, err);
1726 return false;
1727 }
1728
1729 /**
1730 * generic_make_request - hand a buffer to its device driver for I/O
1731 * @bio: The bio describing the location in memory and on the device.
1732 *
1733 * generic_make_request() is used to make I/O requests of block
1734 * devices. It is passed a &struct bio, which describes the I/O that needs
1735 * to be done.
1736 *
1737 * generic_make_request() does not return any status. The
1738 * success/failure status of the request, along with notification of
1739 * completion, is delivered asynchronously through the bio->bi_end_io
1740 * function described (one day) else where.
1741 *
1742 * The caller of generic_make_request must make sure that bi_io_vec
1743 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1744 * set to describe the device address, and the
1745 * bi_end_io and optionally bi_private are set to describe how
1746 * completion notification should be signaled.
1747 *
1748 * generic_make_request and the drivers it calls may use bi_next if this
1749 * bio happens to be merged with someone else, and may resubmit the bio to
1750 * a lower device by calling into generic_make_request recursively, which
1751 * means the bio should NOT be touched after the call to ->make_request_fn.
1752 */
1753 void generic_make_request(struct bio *bio)
1754 {
1755 struct bio_list bio_list_on_stack;
1756
1757 if (!generic_make_request_checks(bio))
1758 return;
1759
1760 /*
1761 * We only want one ->make_request_fn to be active at a time, else
1762 * stack usage with stacked devices could be a problem. So use
1763 * current->bio_list to keep a list of requests submited by a
1764 * make_request_fn function. current->bio_list is also used as a
1765 * flag to say if generic_make_request is currently active in this
1766 * task or not. If it is NULL, then no make_request is active. If
1767 * it is non-NULL, then a make_request is active, and new requests
1768 * should be added at the tail
1769 */
1770 if (current->bio_list) {
1771 bio_list_add(current->bio_list, bio);
1772 return;
1773 }
1774
1775 /* following loop may be a bit non-obvious, and so deserves some
1776 * explanation.
1777 * Before entering the loop, bio->bi_next is NULL (as all callers
1778 * ensure that) so we have a list with a single bio.
1779 * We pretend that we have just taken it off a longer list, so
1780 * we assign bio_list to a pointer to the bio_list_on_stack,
1781 * thus initialising the bio_list of new bios to be
1782 * added. ->make_request() may indeed add some more bios
1783 * through a recursive call to generic_make_request. If it
1784 * did, we find a non-NULL value in bio_list and re-enter the loop
1785 * from the top. In this case we really did just take the bio
1786 * of the top of the list (no pretending) and so remove it from
1787 * bio_list, and call into ->make_request() again.
1788 */
1789 BUG_ON(bio->bi_next);
1790 bio_list_init(&bio_list_on_stack);
1791 current->bio_list = &bio_list_on_stack;
1792 do {
1793 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1794
1795 q->make_request_fn(q, bio);
1796
1797 bio = bio_list_pop(current->bio_list);
1798 } while (bio);
1799 current->bio_list = NULL; /* deactivate */
1800 }
1801 EXPORT_SYMBOL(generic_make_request);
1802
1803 /**
1804 * submit_bio - submit a bio to the block device layer for I/O
1805 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1806 * @bio: The &struct bio which describes the I/O
1807 *
1808 * submit_bio() is very similar in purpose to generic_make_request(), and
1809 * uses that function to do most of the work. Both are fairly rough
1810 * interfaces; @bio must be presetup and ready for I/O.
1811 *
1812 */
1813 void submit_bio(int rw, struct bio *bio)
1814 {
1815 int count = bio_sectors(bio);
1816
1817 bio->bi_rw |= rw;
1818
1819 /*
1820 * If it's a regular read/write or a barrier with data attached,
1821 * go through the normal accounting stuff before submission.
1822 */
1823 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1824 if (rw & WRITE) {
1825 count_vm_events(PGPGOUT, count);
1826 } else {
1827 task_io_account_read(bio->bi_size);
1828 count_vm_events(PGPGIN, count);
1829 }
1830
1831 if (unlikely(block_dump)) {
1832 char b[BDEVNAME_SIZE];
1833 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1834 current->comm, task_pid_nr(current),
1835 (rw & WRITE) ? "WRITE" : "READ",
1836 (unsigned long long)bio->bi_sector,
1837 bdevname(bio->bi_bdev, b),
1838 count);
1839 }
1840 }
1841
1842 generic_make_request(bio);
1843 }
1844 EXPORT_SYMBOL(submit_bio);
1845
1846 /**
1847 * blk_rq_check_limits - Helper function to check a request for the queue limit
1848 * @q: the queue
1849 * @rq: the request being checked
1850 *
1851 * Description:
1852 * @rq may have been made based on weaker limitations of upper-level queues
1853 * in request stacking drivers, and it may violate the limitation of @q.
1854 * Since the block layer and the underlying device driver trust @rq
1855 * after it is inserted to @q, it should be checked against @q before
1856 * the insertion using this generic function.
1857 *
1858 * This function should also be useful for request stacking drivers
1859 * in some cases below, so export this function.
1860 * Request stacking drivers like request-based dm may change the queue
1861 * limits while requests are in the queue (e.g. dm's table swapping).
1862 * Such request stacking drivers should check those requests agaist
1863 * the new queue limits again when they dispatch those requests,
1864 * although such checkings are also done against the old queue limits
1865 * when submitting requests.
1866 */
1867 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1868 {
1869 if (rq->cmd_flags & REQ_DISCARD)
1870 return 0;
1871
1872 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1873 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1874 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1875 return -EIO;
1876 }
1877
1878 /*
1879 * queue's settings related to segment counting like q->bounce_pfn
1880 * may differ from that of other stacking queues.
1881 * Recalculate it to check the request correctly on this queue's
1882 * limitation.
1883 */
1884 blk_recalc_rq_segments(rq);
1885 if (rq->nr_phys_segments > queue_max_segments(q)) {
1886 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1887 return -EIO;
1888 }
1889
1890 return 0;
1891 }
1892 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1893
1894 /**
1895 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1896 * @q: the queue to submit the request
1897 * @rq: the request being queued
1898 */
1899 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1900 {
1901 unsigned long flags;
1902 int where = ELEVATOR_INSERT_BACK;
1903
1904 if (blk_rq_check_limits(q, rq))
1905 return -EIO;
1906
1907 if (rq->rq_disk &&
1908 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1909 return -EIO;
1910
1911 spin_lock_irqsave(q->queue_lock, flags);
1912 if (unlikely(blk_queue_dead(q))) {
1913 spin_unlock_irqrestore(q->queue_lock, flags);
1914 return -ENODEV;
1915 }
1916
1917 /*
1918 * Submitting request must be dequeued before calling this function
1919 * because it will be linked to another request_queue
1920 */
1921 BUG_ON(blk_queued_rq(rq));
1922
1923 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1924 where = ELEVATOR_INSERT_FLUSH;
1925
1926 add_acct_request(q, rq, where);
1927 if (where == ELEVATOR_INSERT_FLUSH)
1928 __blk_run_queue(q);
1929 spin_unlock_irqrestore(q->queue_lock, flags);
1930
1931 return 0;
1932 }
1933 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1934
1935 /**
1936 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1937 * @rq: request to examine
1938 *
1939 * Description:
1940 * A request could be merge of IOs which require different failure
1941 * handling. This function determines the number of bytes which
1942 * can be failed from the beginning of the request without
1943 * crossing into area which need to be retried further.
1944 *
1945 * Return:
1946 * The number of bytes to fail.
1947 *
1948 * Context:
1949 * queue_lock must be held.
1950 */
1951 unsigned int blk_rq_err_bytes(const struct request *rq)
1952 {
1953 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1954 unsigned int bytes = 0;
1955 struct bio *bio;
1956
1957 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1958 return blk_rq_bytes(rq);
1959
1960 /*
1961 * Currently the only 'mixing' which can happen is between
1962 * different fastfail types. We can safely fail portions
1963 * which have all the failfast bits that the first one has -
1964 * the ones which are at least as eager to fail as the first
1965 * one.
1966 */
1967 for (bio = rq->bio; bio; bio = bio->bi_next) {
1968 if ((bio->bi_rw & ff) != ff)
1969 break;
1970 bytes += bio->bi_size;
1971 }
1972
1973 /* this could lead to infinite loop */
1974 BUG_ON(blk_rq_bytes(rq) && !bytes);
1975 return bytes;
1976 }
1977 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1978
1979 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1980 {
1981 if (blk_do_io_stat(req)) {
1982 const int rw = rq_data_dir(req);
1983 struct hd_struct *part;
1984 int cpu;
1985
1986 cpu = part_stat_lock();
1987 part = req->part;
1988 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1989 part_stat_unlock();
1990 }
1991 }
1992
1993 static void blk_account_io_done(struct request *req)
1994 {
1995 /*
1996 * Account IO completion. flush_rq isn't accounted as a
1997 * normal IO on queueing nor completion. Accounting the
1998 * containing request is enough.
1999 */
2000 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2001 unsigned long duration = jiffies - req->start_time;
2002 const int rw = rq_data_dir(req);
2003 struct hd_struct *part;
2004 int cpu;
2005
2006 cpu = part_stat_lock();
2007 part = req->part;
2008
2009 part_stat_inc(cpu, part, ios[rw]);
2010 part_stat_add(cpu, part, ticks[rw], duration);
2011 part_round_stats(cpu, part);
2012 part_dec_in_flight(part, rw);
2013
2014 hd_struct_put(part);
2015 part_stat_unlock();
2016 }
2017 }
2018
2019 /**
2020 * blk_peek_request - peek at the top of a request queue
2021 * @q: request queue to peek at
2022 *
2023 * Description:
2024 * Return the request at the top of @q. The returned request
2025 * should be started using blk_start_request() before LLD starts
2026 * processing it.
2027 *
2028 * Return:
2029 * Pointer to the request at the top of @q if available. Null
2030 * otherwise.
2031 *
2032 * Context:
2033 * queue_lock must be held.
2034 */
2035 struct request *blk_peek_request(struct request_queue *q)
2036 {
2037 struct request *rq;
2038 int ret;
2039
2040 while ((rq = __elv_next_request(q)) != NULL) {
2041 if (!(rq->cmd_flags & REQ_STARTED)) {
2042 /*
2043 * This is the first time the device driver
2044 * sees this request (possibly after
2045 * requeueing). Notify IO scheduler.
2046 */
2047 if (rq->cmd_flags & REQ_SORTED)
2048 elv_activate_rq(q, rq);
2049
2050 /*
2051 * just mark as started even if we don't start
2052 * it, a request that has been delayed should
2053 * not be passed by new incoming requests
2054 */
2055 rq->cmd_flags |= REQ_STARTED;
2056 trace_block_rq_issue(q, rq);
2057 }
2058
2059 if (!q->boundary_rq || q->boundary_rq == rq) {
2060 q->end_sector = rq_end_sector(rq);
2061 q->boundary_rq = NULL;
2062 }
2063
2064 if (rq->cmd_flags & REQ_DONTPREP)
2065 break;
2066
2067 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2068 /*
2069 * make sure space for the drain appears we
2070 * know we can do this because max_hw_segments
2071 * has been adjusted to be one fewer than the
2072 * device can handle
2073 */
2074 rq->nr_phys_segments++;
2075 }
2076
2077 if (!q->prep_rq_fn)
2078 break;
2079
2080 ret = q->prep_rq_fn(q, rq);
2081 if (ret == BLKPREP_OK) {
2082 break;
2083 } else if (ret == BLKPREP_DEFER) {
2084 /*
2085 * the request may have been (partially) prepped.
2086 * we need to keep this request in the front to
2087 * avoid resource deadlock. REQ_STARTED will
2088 * prevent other fs requests from passing this one.
2089 */
2090 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2091 !(rq->cmd_flags & REQ_DONTPREP)) {
2092 /*
2093 * remove the space for the drain we added
2094 * so that we don't add it again
2095 */
2096 --rq->nr_phys_segments;
2097 }
2098
2099 rq = NULL;
2100 break;
2101 } else if (ret == BLKPREP_KILL) {
2102 rq->cmd_flags |= REQ_QUIET;
2103 /*
2104 * Mark this request as started so we don't trigger
2105 * any debug logic in the end I/O path.
2106 */
2107 blk_start_request(rq);
2108 __blk_end_request_all(rq, -EIO);
2109 } else {
2110 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2111 break;
2112 }
2113 }
2114
2115 return rq;
2116 }
2117 EXPORT_SYMBOL(blk_peek_request);
2118
2119 void blk_dequeue_request(struct request *rq)
2120 {
2121 struct request_queue *q = rq->q;
2122
2123 BUG_ON(list_empty(&rq->queuelist));
2124 BUG_ON(ELV_ON_HASH(rq));
2125
2126 list_del_init(&rq->queuelist);
2127
2128 /*
2129 * the time frame between a request being removed from the lists
2130 * and to it is freed is accounted as io that is in progress at
2131 * the driver side.
2132 */
2133 if (blk_account_rq(rq)) {
2134 q->in_flight[rq_is_sync(rq)]++;
2135 set_io_start_time_ns(rq);
2136 }
2137 }
2138
2139 /**
2140 * blk_start_request - start request processing on the driver
2141 * @req: request to dequeue
2142 *
2143 * Description:
2144 * Dequeue @req and start timeout timer on it. This hands off the
2145 * request to the driver.
2146 *
2147 * Block internal functions which don't want to start timer should
2148 * call blk_dequeue_request().
2149 *
2150 * Context:
2151 * queue_lock must be held.
2152 */
2153 void blk_start_request(struct request *req)
2154 {
2155 blk_dequeue_request(req);
2156
2157 /*
2158 * We are now handing the request to the hardware, initialize
2159 * resid_len to full count and add the timeout handler.
2160 */
2161 req->resid_len = blk_rq_bytes(req);
2162 if (unlikely(blk_bidi_rq(req)))
2163 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2164
2165 blk_add_timer(req);
2166 }
2167 EXPORT_SYMBOL(blk_start_request);
2168
2169 /**
2170 * blk_fetch_request - fetch a request from a request queue
2171 * @q: request queue to fetch a request from
2172 *
2173 * Description:
2174 * Return the request at the top of @q. The request is started on
2175 * return and LLD can start processing it immediately.
2176 *
2177 * Return:
2178 * Pointer to the request at the top of @q if available. Null
2179 * otherwise.
2180 *
2181 * Context:
2182 * queue_lock must be held.
2183 */
2184 struct request *blk_fetch_request(struct request_queue *q)
2185 {
2186 struct request *rq;
2187
2188 rq = blk_peek_request(q);
2189 if (rq)
2190 blk_start_request(rq);
2191 return rq;
2192 }
2193 EXPORT_SYMBOL(blk_fetch_request);
2194
2195 /**
2196 * blk_update_request - Special helper function for request stacking drivers
2197 * @req: the request being processed
2198 * @error: %0 for success, < %0 for error
2199 * @nr_bytes: number of bytes to complete @req
2200 *
2201 * Description:
2202 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2203 * the request structure even if @req doesn't have leftover.
2204 * If @req has leftover, sets it up for the next range of segments.
2205 *
2206 * This special helper function is only for request stacking drivers
2207 * (e.g. request-based dm) so that they can handle partial completion.
2208 * Actual device drivers should use blk_end_request instead.
2209 *
2210 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2211 * %false return from this function.
2212 *
2213 * Return:
2214 * %false - this request doesn't have any more data
2215 * %true - this request has more data
2216 **/
2217 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2218 {
2219 int total_bytes, bio_nbytes, next_idx = 0;
2220 struct bio *bio;
2221
2222 if (!req->bio)
2223 return false;
2224
2225 trace_block_rq_complete(req->q, req);
2226
2227 /*
2228 * For fs requests, rq is just carrier of independent bio's
2229 * and each partial completion should be handled separately.
2230 * Reset per-request error on each partial completion.
2231 *
2232 * TODO: tj: This is too subtle. It would be better to let
2233 * low level drivers do what they see fit.
2234 */
2235 if (req->cmd_type == REQ_TYPE_FS)
2236 req->errors = 0;
2237
2238 if (error && req->cmd_type == REQ_TYPE_FS &&
2239 !(req->cmd_flags & REQ_QUIET)) {
2240 char *error_type;
2241
2242 switch (error) {
2243 case -ENOLINK:
2244 error_type = "recoverable transport";
2245 break;
2246 case -EREMOTEIO:
2247 error_type = "critical target";
2248 break;
2249 case -EBADE:
2250 error_type = "critical nexus";
2251 break;
2252 case -EIO:
2253 default:
2254 error_type = "I/O";
2255 break;
2256 }
2257 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2258 error_type, req->rq_disk ?
2259 req->rq_disk->disk_name : "?",
2260 (unsigned long long)blk_rq_pos(req));
2261
2262 }
2263
2264 blk_account_io_completion(req, nr_bytes);
2265
2266 total_bytes = bio_nbytes = 0;
2267 while ((bio = req->bio) != NULL) {
2268 int nbytes;
2269
2270 if (nr_bytes >= bio->bi_size) {
2271 req->bio = bio->bi_next;
2272 nbytes = bio->bi_size;
2273 req_bio_endio(req, bio, nbytes, error);
2274 next_idx = 0;
2275 bio_nbytes = 0;
2276 } else {
2277 int idx = bio->bi_idx + next_idx;
2278
2279 if (unlikely(idx >= bio->bi_vcnt)) {
2280 blk_dump_rq_flags(req, "__end_that");
2281 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2282 __func__, idx, bio->bi_vcnt);
2283 break;
2284 }
2285
2286 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2287 BIO_BUG_ON(nbytes > bio->bi_size);
2288
2289 /*
2290 * not a complete bvec done
2291 */
2292 if (unlikely(nbytes > nr_bytes)) {
2293 bio_nbytes += nr_bytes;
2294 total_bytes += nr_bytes;
2295 break;
2296 }
2297
2298 /*
2299 * advance to the next vector
2300 */
2301 next_idx++;
2302 bio_nbytes += nbytes;
2303 }
2304
2305 total_bytes += nbytes;
2306 nr_bytes -= nbytes;
2307
2308 bio = req->bio;
2309 if (bio) {
2310 /*
2311 * end more in this run, or just return 'not-done'
2312 */
2313 if (unlikely(nr_bytes <= 0))
2314 break;
2315 }
2316 }
2317
2318 /*
2319 * completely done
2320 */
2321 if (!req->bio) {
2322 /*
2323 * Reset counters so that the request stacking driver
2324 * can find how many bytes remain in the request
2325 * later.
2326 */
2327 req->__data_len = 0;
2328 return false;
2329 }
2330
2331 /*
2332 * if the request wasn't completed, update state
2333 */
2334 if (bio_nbytes) {
2335 req_bio_endio(req, bio, bio_nbytes, error);
2336 bio->bi_idx += next_idx;
2337 bio_iovec(bio)->bv_offset += nr_bytes;
2338 bio_iovec(bio)->bv_len -= nr_bytes;
2339 }
2340
2341 req->__data_len -= total_bytes;
2342 req->buffer = bio_data(req->bio);
2343
2344 /* update sector only for requests with clear definition of sector */
2345 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2346 req->__sector += total_bytes >> 9;
2347
2348 /* mixed attributes always follow the first bio */
2349 if (req->cmd_flags & REQ_MIXED_MERGE) {
2350 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2351 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2352 }
2353
2354 /*
2355 * If total number of sectors is less than the first segment
2356 * size, something has gone terribly wrong.
2357 */
2358 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2359 blk_dump_rq_flags(req, "request botched");
2360 req->__data_len = blk_rq_cur_bytes(req);
2361 }
2362
2363 /* recalculate the number of segments */
2364 blk_recalc_rq_segments(req);
2365
2366 return true;
2367 }
2368 EXPORT_SYMBOL_GPL(blk_update_request);
2369
2370 static bool blk_update_bidi_request(struct request *rq, int error,
2371 unsigned int nr_bytes,
2372 unsigned int bidi_bytes)
2373 {
2374 if (blk_update_request(rq, error, nr_bytes))
2375 return true;
2376
2377 /* Bidi request must be completed as a whole */
2378 if (unlikely(blk_bidi_rq(rq)) &&
2379 blk_update_request(rq->next_rq, error, bidi_bytes))
2380 return true;
2381
2382 if (blk_queue_add_random(rq->q))
2383 add_disk_randomness(rq->rq_disk);
2384
2385 return false;
2386 }
2387
2388 /**
2389 * blk_unprep_request - unprepare a request
2390 * @req: the request
2391 *
2392 * This function makes a request ready for complete resubmission (or
2393 * completion). It happens only after all error handling is complete,
2394 * so represents the appropriate moment to deallocate any resources
2395 * that were allocated to the request in the prep_rq_fn. The queue
2396 * lock is held when calling this.
2397 */
2398 void blk_unprep_request(struct request *req)
2399 {
2400 struct request_queue *q = req->q;
2401
2402 req->cmd_flags &= ~REQ_DONTPREP;
2403 if (q->unprep_rq_fn)
2404 q->unprep_rq_fn(q, req);
2405 }
2406 EXPORT_SYMBOL_GPL(blk_unprep_request);
2407
2408 /*
2409 * queue lock must be held
2410 */
2411 static void blk_finish_request(struct request *req, int error)
2412 {
2413 if (blk_rq_tagged(req))
2414 blk_queue_end_tag(req->q, req);
2415
2416 BUG_ON(blk_queued_rq(req));
2417
2418 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2419 laptop_io_completion(&req->q->backing_dev_info);
2420
2421 blk_delete_timer(req);
2422
2423 if (req->cmd_flags & REQ_DONTPREP)
2424 blk_unprep_request(req);
2425
2426
2427 blk_account_io_done(req);
2428
2429 if (req->end_io)
2430 req->end_io(req, error);
2431 else {
2432 if (blk_bidi_rq(req))
2433 __blk_put_request(req->next_rq->q, req->next_rq);
2434
2435 __blk_put_request(req->q, req);
2436 }
2437 }
2438
2439 /**
2440 * blk_end_bidi_request - Complete a bidi request
2441 * @rq: the request to complete
2442 * @error: %0 for success, < %0 for error
2443 * @nr_bytes: number of bytes to complete @rq
2444 * @bidi_bytes: number of bytes to complete @rq->next_rq
2445 *
2446 * Description:
2447 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2448 * Drivers that supports bidi can safely call this member for any
2449 * type of request, bidi or uni. In the later case @bidi_bytes is
2450 * just ignored.
2451 *
2452 * Return:
2453 * %false - we are done with this request
2454 * %true - still buffers pending for this request
2455 **/
2456 static bool blk_end_bidi_request(struct request *rq, int error,
2457 unsigned int nr_bytes, unsigned int bidi_bytes)
2458 {
2459 struct request_queue *q = rq->q;
2460 unsigned long flags;
2461
2462 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2463 return true;
2464
2465 spin_lock_irqsave(q->queue_lock, flags);
2466 blk_finish_request(rq, error);
2467 spin_unlock_irqrestore(q->queue_lock, flags);
2468
2469 return false;
2470 }
2471
2472 /**
2473 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2474 * @rq: the request to complete
2475 * @error: %0 for success, < %0 for error
2476 * @nr_bytes: number of bytes to complete @rq
2477 * @bidi_bytes: number of bytes to complete @rq->next_rq
2478 *
2479 * Description:
2480 * Identical to blk_end_bidi_request() except that queue lock is
2481 * assumed to be locked on entry and remains so on return.
2482 *
2483 * Return:
2484 * %false - we are done with this request
2485 * %true - still buffers pending for this request
2486 **/
2487 bool __blk_end_bidi_request(struct request *rq, int error,
2488 unsigned int nr_bytes, unsigned int bidi_bytes)
2489 {
2490 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2491 return true;
2492
2493 blk_finish_request(rq, error);
2494
2495 return false;
2496 }
2497
2498 /**
2499 * blk_end_request - Helper function for drivers to complete the request.
2500 * @rq: the request being processed
2501 * @error: %0 for success, < %0 for error
2502 * @nr_bytes: number of bytes to complete
2503 *
2504 * Description:
2505 * Ends I/O on a number of bytes attached to @rq.
2506 * If @rq has leftover, sets it up for the next range of segments.
2507 *
2508 * Return:
2509 * %false - we are done with this request
2510 * %true - still buffers pending for this request
2511 **/
2512 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2513 {
2514 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2515 }
2516 EXPORT_SYMBOL(blk_end_request);
2517
2518 /**
2519 * blk_end_request_all - Helper function for drives to finish the request.
2520 * @rq: the request to finish
2521 * @error: %0 for success, < %0 for error
2522 *
2523 * Description:
2524 * Completely finish @rq.
2525 */
2526 void blk_end_request_all(struct request *rq, int error)
2527 {
2528 bool pending;
2529 unsigned int bidi_bytes = 0;
2530
2531 if (unlikely(blk_bidi_rq(rq)))
2532 bidi_bytes = blk_rq_bytes(rq->next_rq);
2533
2534 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2535 BUG_ON(pending);
2536 }
2537 EXPORT_SYMBOL(blk_end_request_all);
2538
2539 /**
2540 * blk_end_request_cur - Helper function to finish the current request chunk.
2541 * @rq: the request to finish the current chunk for
2542 * @error: %0 for success, < %0 for error
2543 *
2544 * Description:
2545 * Complete the current consecutively mapped chunk from @rq.
2546 *
2547 * Return:
2548 * %false - we are done with this request
2549 * %true - still buffers pending for this request
2550 */
2551 bool blk_end_request_cur(struct request *rq, int error)
2552 {
2553 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2554 }
2555 EXPORT_SYMBOL(blk_end_request_cur);
2556
2557 /**
2558 * blk_end_request_err - Finish a request till the next failure boundary.
2559 * @rq: the request to finish till the next failure boundary for
2560 * @error: must be negative errno
2561 *
2562 * Description:
2563 * Complete @rq till the next failure boundary.
2564 *
2565 * Return:
2566 * %false - we are done with this request
2567 * %true - still buffers pending for this request
2568 */
2569 bool blk_end_request_err(struct request *rq, int error)
2570 {
2571 WARN_ON(error >= 0);
2572 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2573 }
2574 EXPORT_SYMBOL_GPL(blk_end_request_err);
2575
2576 /**
2577 * __blk_end_request - Helper function for drivers to complete the request.
2578 * @rq: the request being processed
2579 * @error: %0 for success, < %0 for error
2580 * @nr_bytes: number of bytes to complete
2581 *
2582 * Description:
2583 * Must be called with queue lock held unlike blk_end_request().
2584 *
2585 * Return:
2586 * %false - we are done with this request
2587 * %true - still buffers pending for this request
2588 **/
2589 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2590 {
2591 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2592 }
2593 EXPORT_SYMBOL(__blk_end_request);
2594
2595 /**
2596 * __blk_end_request_all - Helper function for drives to finish the request.
2597 * @rq: the request to finish
2598 * @error: %0 for success, < %0 for error
2599 *
2600 * Description:
2601 * Completely finish @rq. Must be called with queue lock held.
2602 */
2603 void __blk_end_request_all(struct request *rq, int error)
2604 {
2605 bool pending;
2606 unsigned int bidi_bytes = 0;
2607
2608 if (unlikely(blk_bidi_rq(rq)))
2609 bidi_bytes = blk_rq_bytes(rq->next_rq);
2610
2611 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2612 BUG_ON(pending);
2613 }
2614 EXPORT_SYMBOL(__blk_end_request_all);
2615
2616 /**
2617 * __blk_end_request_cur - Helper function to finish the current request chunk.
2618 * @rq: the request to finish the current chunk for
2619 * @error: %0 for success, < %0 for error
2620 *
2621 * Description:
2622 * Complete the current consecutively mapped chunk from @rq. Must
2623 * be called with queue lock held.
2624 *
2625 * Return:
2626 * %false - we are done with this request
2627 * %true - still buffers pending for this request
2628 */
2629 bool __blk_end_request_cur(struct request *rq, int error)
2630 {
2631 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2632 }
2633 EXPORT_SYMBOL(__blk_end_request_cur);
2634
2635 /**
2636 * __blk_end_request_err - Finish a request till the next failure boundary.
2637 * @rq: the request to finish till the next failure boundary for
2638 * @error: must be negative errno
2639 *
2640 * Description:
2641 * Complete @rq till the next failure boundary. Must be called
2642 * with queue lock held.
2643 *
2644 * Return:
2645 * %false - we are done with this request
2646 * %true - still buffers pending for this request
2647 */
2648 bool __blk_end_request_err(struct request *rq, int error)
2649 {
2650 WARN_ON(error >= 0);
2651 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2652 }
2653 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2654
2655 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2656 struct bio *bio)
2657 {
2658 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2659 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2660
2661 if (bio_has_data(bio)) {
2662 rq->nr_phys_segments = bio_phys_segments(q, bio);
2663 rq->buffer = bio_data(bio);
2664 }
2665 rq->__data_len = bio->bi_size;
2666 rq->bio = rq->biotail = bio;
2667
2668 if (bio->bi_bdev)
2669 rq->rq_disk = bio->bi_bdev->bd_disk;
2670 }
2671
2672 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2673 /**
2674 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2675 * @rq: the request to be flushed
2676 *
2677 * Description:
2678 * Flush all pages in @rq.
2679 */
2680 void rq_flush_dcache_pages(struct request *rq)
2681 {
2682 struct req_iterator iter;
2683 struct bio_vec *bvec;
2684
2685 rq_for_each_segment(bvec, rq, iter)
2686 flush_dcache_page(bvec->bv_page);
2687 }
2688 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2689 #endif
2690
2691 /**
2692 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2693 * @q : the queue of the device being checked
2694 *
2695 * Description:
2696 * Check if underlying low-level drivers of a device are busy.
2697 * If the drivers want to export their busy state, they must set own
2698 * exporting function using blk_queue_lld_busy() first.
2699 *
2700 * Basically, this function is used only by request stacking drivers
2701 * to stop dispatching requests to underlying devices when underlying
2702 * devices are busy. This behavior helps more I/O merging on the queue
2703 * of the request stacking driver and prevents I/O throughput regression
2704 * on burst I/O load.
2705 *
2706 * Return:
2707 * 0 - Not busy (The request stacking driver should dispatch request)
2708 * 1 - Busy (The request stacking driver should stop dispatching request)
2709 */
2710 int blk_lld_busy(struct request_queue *q)
2711 {
2712 if (q->lld_busy_fn)
2713 return q->lld_busy_fn(q);
2714
2715 return 0;
2716 }
2717 EXPORT_SYMBOL_GPL(blk_lld_busy);
2718
2719 /**
2720 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2721 * @rq: the clone request to be cleaned up
2722 *
2723 * Description:
2724 * Free all bios in @rq for a cloned request.
2725 */
2726 void blk_rq_unprep_clone(struct request *rq)
2727 {
2728 struct bio *bio;
2729
2730 while ((bio = rq->bio) != NULL) {
2731 rq->bio = bio->bi_next;
2732
2733 bio_put(bio);
2734 }
2735 }
2736 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2737
2738 /*
2739 * Copy attributes of the original request to the clone request.
2740 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2741 */
2742 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2743 {
2744 dst->cpu = src->cpu;
2745 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2746 dst->cmd_type = src->cmd_type;
2747 dst->__sector = blk_rq_pos(src);
2748 dst->__data_len = blk_rq_bytes(src);
2749 dst->nr_phys_segments = src->nr_phys_segments;
2750 dst->ioprio = src->ioprio;
2751 dst->extra_len = src->extra_len;
2752 }
2753
2754 /**
2755 * blk_rq_prep_clone - Helper function to setup clone request
2756 * @rq: the request to be setup
2757 * @rq_src: original request to be cloned
2758 * @bs: bio_set that bios for clone are allocated from
2759 * @gfp_mask: memory allocation mask for bio
2760 * @bio_ctr: setup function to be called for each clone bio.
2761 * Returns %0 for success, non %0 for failure.
2762 * @data: private data to be passed to @bio_ctr
2763 *
2764 * Description:
2765 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2766 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2767 * are not copied, and copying such parts is the caller's responsibility.
2768 * Also, pages which the original bios are pointing to are not copied
2769 * and the cloned bios just point same pages.
2770 * So cloned bios must be completed before original bios, which means
2771 * the caller must complete @rq before @rq_src.
2772 */
2773 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2774 struct bio_set *bs, gfp_t gfp_mask,
2775 int (*bio_ctr)(struct bio *, struct bio *, void *),
2776 void *data)
2777 {
2778 struct bio *bio, *bio_src;
2779
2780 if (!bs)
2781 bs = fs_bio_set;
2782
2783 blk_rq_init(NULL, rq);
2784
2785 __rq_for_each_bio(bio_src, rq_src) {
2786 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2787 if (!bio)
2788 goto free_and_out;
2789
2790 __bio_clone(bio, bio_src);
2791
2792 if (bio_integrity(bio_src) &&
2793 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2794 goto free_and_out;
2795
2796 if (bio_ctr && bio_ctr(bio, bio_src, data))
2797 goto free_and_out;
2798
2799 if (rq->bio) {
2800 rq->biotail->bi_next = bio;
2801 rq->biotail = bio;
2802 } else
2803 rq->bio = rq->biotail = bio;
2804 }
2805
2806 __blk_rq_prep_clone(rq, rq_src);
2807
2808 return 0;
2809
2810 free_and_out:
2811 if (bio)
2812 bio_free(bio, bs);
2813 blk_rq_unprep_clone(rq);
2814
2815 return -ENOMEM;
2816 }
2817 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2818
2819 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2820 {
2821 return queue_work(kblockd_workqueue, work);
2822 }
2823 EXPORT_SYMBOL(kblockd_schedule_work);
2824
2825 int kblockd_schedule_delayed_work(struct request_queue *q,
2826 struct delayed_work *dwork, unsigned long delay)
2827 {
2828 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2829 }
2830 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2831
2832 #define PLUG_MAGIC 0x91827364
2833
2834 /**
2835 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2836 * @plug: The &struct blk_plug that needs to be initialized
2837 *
2838 * Description:
2839 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2840 * pending I/O should the task end up blocking between blk_start_plug() and
2841 * blk_finish_plug(). This is important from a performance perspective, but
2842 * also ensures that we don't deadlock. For instance, if the task is blocking
2843 * for a memory allocation, memory reclaim could end up wanting to free a
2844 * page belonging to that request that is currently residing in our private
2845 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2846 * this kind of deadlock.
2847 */
2848 void blk_start_plug(struct blk_plug *plug)
2849 {
2850 struct task_struct *tsk = current;
2851
2852 plug->magic = PLUG_MAGIC;
2853 INIT_LIST_HEAD(&plug->list);
2854 INIT_LIST_HEAD(&plug->cb_list);
2855 plug->should_sort = 0;
2856
2857 /*
2858 * If this is a nested plug, don't actually assign it. It will be
2859 * flushed on its own.
2860 */
2861 if (!tsk->plug) {
2862 /*
2863 * Store ordering should not be needed here, since a potential
2864 * preempt will imply a full memory barrier
2865 */
2866 tsk->plug = plug;
2867 }
2868 }
2869 EXPORT_SYMBOL(blk_start_plug);
2870
2871 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2872 {
2873 struct request *rqa = container_of(a, struct request, queuelist);
2874 struct request *rqb = container_of(b, struct request, queuelist);
2875
2876 return !(rqa->q <= rqb->q);
2877 }
2878
2879 /*
2880 * If 'from_schedule' is true, then postpone the dispatch of requests
2881 * until a safe kblockd context. We due this to avoid accidental big
2882 * additional stack usage in driver dispatch, in places where the originally
2883 * plugger did not intend it.
2884 */
2885 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2886 bool from_schedule)
2887 __releases(q->queue_lock)
2888 {
2889 trace_block_unplug(q, depth, !from_schedule);
2890
2891 /*
2892 * Don't mess with dead queue.
2893 */
2894 if (unlikely(blk_queue_dead(q))) {
2895 spin_unlock(q->queue_lock);
2896 return;
2897 }
2898
2899 /*
2900 * If we are punting this to kblockd, then we can safely drop
2901 * the queue_lock before waking kblockd (which needs to take
2902 * this lock).
2903 */
2904 if (from_schedule) {
2905 spin_unlock(q->queue_lock);
2906 blk_run_queue_async(q);
2907 } else {
2908 __blk_run_queue(q);
2909 spin_unlock(q->queue_lock);
2910 }
2911
2912 }
2913
2914 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
2915 {
2916 LIST_HEAD(callbacks);
2917
2918 while (!list_empty(&plug->cb_list)) {
2919 list_splice_init(&plug->cb_list, &callbacks);
2920
2921 while (!list_empty(&callbacks)) {
2922 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2923 struct blk_plug_cb,
2924 list);
2925 list_del(&cb->list);
2926 cb->callback(cb, from_schedule);
2927 }
2928 }
2929 }
2930
2931 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
2932 int size)
2933 {
2934 struct blk_plug *plug = current->plug;
2935 struct blk_plug_cb *cb;
2936
2937 if (!plug)
2938 return NULL;
2939
2940 list_for_each_entry(cb, &plug->cb_list, list)
2941 if (cb->callback == unplug && cb->data == data)
2942 return cb;
2943
2944 /* Not currently on the callback list */
2945 BUG_ON(size < sizeof(*cb));
2946 cb = kzalloc(size, GFP_ATOMIC);
2947 if (cb) {
2948 cb->data = data;
2949 cb->callback = unplug;
2950 list_add(&cb->list, &plug->cb_list);
2951 }
2952 return cb;
2953 }
2954 EXPORT_SYMBOL(blk_check_plugged);
2955
2956 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2957 {
2958 struct request_queue *q;
2959 unsigned long flags;
2960 struct request *rq;
2961 LIST_HEAD(list);
2962 unsigned int depth;
2963
2964 BUG_ON(plug->magic != PLUG_MAGIC);
2965
2966 flush_plug_callbacks(plug, from_schedule);
2967 if (list_empty(&plug->list))
2968 return;
2969
2970 list_splice_init(&plug->list, &list);
2971
2972 if (plug->should_sort) {
2973 list_sort(NULL, &list, plug_rq_cmp);
2974 plug->should_sort = 0;
2975 }
2976
2977 q = NULL;
2978 depth = 0;
2979
2980 /*
2981 * Save and disable interrupts here, to avoid doing it for every
2982 * queue lock we have to take.
2983 */
2984 local_irq_save(flags);
2985 while (!list_empty(&list)) {
2986 rq = list_entry_rq(list.next);
2987 list_del_init(&rq->queuelist);
2988 BUG_ON(!rq->q);
2989 if (rq->q != q) {
2990 /*
2991 * This drops the queue lock
2992 */
2993 if (q)
2994 queue_unplugged(q, depth, from_schedule);
2995 q = rq->q;
2996 depth = 0;
2997 spin_lock(q->queue_lock);
2998 }
2999
3000 /*
3001 * Short-circuit if @q is dead
3002 */
3003 if (unlikely(blk_queue_dead(q))) {
3004 __blk_end_request_all(rq, -ENODEV);
3005 continue;
3006 }
3007
3008 /*
3009 * rq is already accounted, so use raw insert
3010 */
3011 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3012 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3013 else
3014 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3015
3016 depth++;
3017 }
3018
3019 /*
3020 * This drops the queue lock
3021 */
3022 if (q)
3023 queue_unplugged(q, depth, from_schedule);
3024
3025 local_irq_restore(flags);
3026 }
3027
3028 void blk_finish_plug(struct blk_plug *plug)
3029 {
3030 blk_flush_plug_list(plug, false);
3031
3032 if (plug == current->plug)
3033 current->plug = NULL;
3034 }
3035 EXPORT_SYMBOL(blk_finish_plug);
3036
3037 int __init blk_dev_init(void)
3038 {
3039 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3040 sizeof(((struct request *)0)->cmd_flags));
3041
3042 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3043 kblockd_workqueue = alloc_workqueue("kblockd",
3044 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3045 if (!kblockd_workqueue)
3046 panic("Failed to create kblockd\n");
3047
3048 request_cachep = kmem_cache_create("blkdev_requests",
3049 sizeof(struct request), 0, SLAB_PANIC, NULL);
3050
3051 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3052 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3053
3054 return 0;
3055 }
This page took 0.148169 seconds and 6 git commands to generate.