blkcg: don't use blkg->plid in stat related functions
[deliverable/linux.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 #include <linux/delay.h>
32
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/block.h>
35
36 #include "blk.h"
37 #include "blk-cgroup.h"
38
39 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
42
43 DEFINE_IDA(blk_queue_ida);
44
45 /*
46 * For the allocated request tables
47 */
48 static struct kmem_cache *request_cachep;
49
50 /*
51 * For queue allocation
52 */
53 struct kmem_cache *blk_requestq_cachep;
54
55 /*
56 * Controlling structure to kblockd
57 */
58 static struct workqueue_struct *kblockd_workqueue;
59
60 static void drive_stat_acct(struct request *rq, int new_io)
61 {
62 struct hd_struct *part;
63 int rw = rq_data_dir(rq);
64 int cpu;
65
66 if (!blk_do_io_stat(rq))
67 return;
68
69 cpu = part_stat_lock();
70
71 if (!new_io) {
72 part = rq->part;
73 part_stat_inc(cpu, part, merges[rw]);
74 } else {
75 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
76 if (!hd_struct_try_get(part)) {
77 /*
78 * The partition is already being removed,
79 * the request will be accounted on the disk only
80 *
81 * We take a reference on disk->part0 although that
82 * partition will never be deleted, so we can treat
83 * it as any other partition.
84 */
85 part = &rq->rq_disk->part0;
86 hd_struct_get(part);
87 }
88 part_round_stats(cpu, part);
89 part_inc_in_flight(part, rw);
90 rq->part = part;
91 }
92
93 part_stat_unlock();
94 }
95
96 void blk_queue_congestion_threshold(struct request_queue *q)
97 {
98 int nr;
99
100 nr = q->nr_requests - (q->nr_requests / 8) + 1;
101 if (nr > q->nr_requests)
102 nr = q->nr_requests;
103 q->nr_congestion_on = nr;
104
105 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
106 if (nr < 1)
107 nr = 1;
108 q->nr_congestion_off = nr;
109 }
110
111 /**
112 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
113 * @bdev: device
114 *
115 * Locates the passed device's request queue and returns the address of its
116 * backing_dev_info
117 *
118 * Will return NULL if the request queue cannot be located.
119 */
120 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
121 {
122 struct backing_dev_info *ret = NULL;
123 struct request_queue *q = bdev_get_queue(bdev);
124
125 if (q)
126 ret = &q->backing_dev_info;
127 return ret;
128 }
129 EXPORT_SYMBOL(blk_get_backing_dev_info);
130
131 void blk_rq_init(struct request_queue *q, struct request *rq)
132 {
133 memset(rq, 0, sizeof(*rq));
134
135 INIT_LIST_HEAD(&rq->queuelist);
136 INIT_LIST_HEAD(&rq->timeout_list);
137 rq->cpu = -1;
138 rq->q = q;
139 rq->__sector = (sector_t) -1;
140 INIT_HLIST_NODE(&rq->hash);
141 RB_CLEAR_NODE(&rq->rb_node);
142 rq->cmd = rq->__cmd;
143 rq->cmd_len = BLK_MAX_CDB;
144 rq->tag = -1;
145 rq->ref_count = 1;
146 rq->start_time = jiffies;
147 set_start_time_ns(rq);
148 rq->part = NULL;
149 }
150 EXPORT_SYMBOL(blk_rq_init);
151
152 static void req_bio_endio(struct request *rq, struct bio *bio,
153 unsigned int nbytes, int error)
154 {
155 if (error)
156 clear_bit(BIO_UPTODATE, &bio->bi_flags);
157 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
158 error = -EIO;
159
160 if (unlikely(nbytes > bio->bi_size)) {
161 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
162 __func__, nbytes, bio->bi_size);
163 nbytes = bio->bi_size;
164 }
165
166 if (unlikely(rq->cmd_flags & REQ_QUIET))
167 set_bit(BIO_QUIET, &bio->bi_flags);
168
169 bio->bi_size -= nbytes;
170 bio->bi_sector += (nbytes >> 9);
171
172 if (bio_integrity(bio))
173 bio_integrity_advance(bio, nbytes);
174
175 /* don't actually finish bio if it's part of flush sequence */
176 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
177 bio_endio(bio, error);
178 }
179
180 void blk_dump_rq_flags(struct request *rq, char *msg)
181 {
182 int bit;
183
184 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
185 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
186 rq->cmd_flags);
187
188 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
189 (unsigned long long)blk_rq_pos(rq),
190 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
191 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
192 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
193
194 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
195 printk(KERN_INFO " cdb: ");
196 for (bit = 0; bit < BLK_MAX_CDB; bit++)
197 printk("%02x ", rq->cmd[bit]);
198 printk("\n");
199 }
200 }
201 EXPORT_SYMBOL(blk_dump_rq_flags);
202
203 static void blk_delay_work(struct work_struct *work)
204 {
205 struct request_queue *q;
206
207 q = container_of(work, struct request_queue, delay_work.work);
208 spin_lock_irq(q->queue_lock);
209 __blk_run_queue(q);
210 spin_unlock_irq(q->queue_lock);
211 }
212
213 /**
214 * blk_delay_queue - restart queueing after defined interval
215 * @q: The &struct request_queue in question
216 * @msecs: Delay in msecs
217 *
218 * Description:
219 * Sometimes queueing needs to be postponed for a little while, to allow
220 * resources to come back. This function will make sure that queueing is
221 * restarted around the specified time.
222 */
223 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
224 {
225 queue_delayed_work(kblockd_workqueue, &q->delay_work,
226 msecs_to_jiffies(msecs));
227 }
228 EXPORT_SYMBOL(blk_delay_queue);
229
230 /**
231 * blk_start_queue - restart a previously stopped queue
232 * @q: The &struct request_queue in question
233 *
234 * Description:
235 * blk_start_queue() will clear the stop flag on the queue, and call
236 * the request_fn for the queue if it was in a stopped state when
237 * entered. Also see blk_stop_queue(). Queue lock must be held.
238 **/
239 void blk_start_queue(struct request_queue *q)
240 {
241 WARN_ON(!irqs_disabled());
242
243 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
244 __blk_run_queue(q);
245 }
246 EXPORT_SYMBOL(blk_start_queue);
247
248 /**
249 * blk_stop_queue - stop a queue
250 * @q: The &struct request_queue in question
251 *
252 * Description:
253 * The Linux block layer assumes that a block driver will consume all
254 * entries on the request queue when the request_fn strategy is called.
255 * Often this will not happen, because of hardware limitations (queue
256 * depth settings). If a device driver gets a 'queue full' response,
257 * or if it simply chooses not to queue more I/O at one point, it can
258 * call this function to prevent the request_fn from being called until
259 * the driver has signalled it's ready to go again. This happens by calling
260 * blk_start_queue() to restart queue operations. Queue lock must be held.
261 **/
262 void blk_stop_queue(struct request_queue *q)
263 {
264 __cancel_delayed_work(&q->delay_work);
265 queue_flag_set(QUEUE_FLAG_STOPPED, q);
266 }
267 EXPORT_SYMBOL(blk_stop_queue);
268
269 /**
270 * blk_sync_queue - cancel any pending callbacks on a queue
271 * @q: the queue
272 *
273 * Description:
274 * The block layer may perform asynchronous callback activity
275 * on a queue, such as calling the unplug function after a timeout.
276 * A block device may call blk_sync_queue to ensure that any
277 * such activity is cancelled, thus allowing it to release resources
278 * that the callbacks might use. The caller must already have made sure
279 * that its ->make_request_fn will not re-add plugging prior to calling
280 * this function.
281 *
282 * This function does not cancel any asynchronous activity arising
283 * out of elevator or throttling code. That would require elevaotor_exit()
284 * and blkcg_exit_queue() to be called with queue lock initialized.
285 *
286 */
287 void blk_sync_queue(struct request_queue *q)
288 {
289 del_timer_sync(&q->timeout);
290 cancel_delayed_work_sync(&q->delay_work);
291 }
292 EXPORT_SYMBOL(blk_sync_queue);
293
294 /**
295 * __blk_run_queue - run a single device queue
296 * @q: The queue to run
297 *
298 * Description:
299 * See @blk_run_queue. This variant must be called with the queue lock
300 * held and interrupts disabled.
301 */
302 void __blk_run_queue(struct request_queue *q)
303 {
304 if (unlikely(blk_queue_stopped(q)))
305 return;
306
307 q->request_fn(q);
308 }
309 EXPORT_SYMBOL(__blk_run_queue);
310
311 /**
312 * blk_run_queue_async - run a single device queue in workqueue context
313 * @q: The queue to run
314 *
315 * Description:
316 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
317 * of us.
318 */
319 void blk_run_queue_async(struct request_queue *q)
320 {
321 if (likely(!blk_queue_stopped(q))) {
322 __cancel_delayed_work(&q->delay_work);
323 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
324 }
325 }
326 EXPORT_SYMBOL(blk_run_queue_async);
327
328 /**
329 * blk_run_queue - run a single device queue
330 * @q: The queue to run
331 *
332 * Description:
333 * Invoke request handling on this queue, if it has pending work to do.
334 * May be used to restart queueing when a request has completed.
335 */
336 void blk_run_queue(struct request_queue *q)
337 {
338 unsigned long flags;
339
340 spin_lock_irqsave(q->queue_lock, flags);
341 __blk_run_queue(q);
342 spin_unlock_irqrestore(q->queue_lock, flags);
343 }
344 EXPORT_SYMBOL(blk_run_queue);
345
346 void blk_put_queue(struct request_queue *q)
347 {
348 kobject_put(&q->kobj);
349 }
350 EXPORT_SYMBOL(blk_put_queue);
351
352 /**
353 * blk_drain_queue - drain requests from request_queue
354 * @q: queue to drain
355 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
356 *
357 * Drain requests from @q. If @drain_all is set, all requests are drained.
358 * If not, only ELVPRIV requests are drained. The caller is responsible
359 * for ensuring that no new requests which need to be drained are queued.
360 */
361 void blk_drain_queue(struct request_queue *q, bool drain_all)
362 {
363 while (true) {
364 bool drain = false;
365 int i;
366
367 spin_lock_irq(q->queue_lock);
368
369 /*
370 * The caller might be trying to drain @q before its
371 * elevator is initialized.
372 */
373 if (q->elevator)
374 elv_drain_elevator(q);
375
376 blkcg_drain_queue(q);
377
378 /*
379 * This function might be called on a queue which failed
380 * driver init after queue creation or is not yet fully
381 * active yet. Some drivers (e.g. fd and loop) get unhappy
382 * in such cases. Kick queue iff dispatch queue has
383 * something on it and @q has request_fn set.
384 */
385 if (!list_empty(&q->queue_head) && q->request_fn)
386 __blk_run_queue(q);
387
388 drain |= q->rq.elvpriv;
389
390 /*
391 * Unfortunately, requests are queued at and tracked from
392 * multiple places and there's no single counter which can
393 * be drained. Check all the queues and counters.
394 */
395 if (drain_all) {
396 drain |= !list_empty(&q->queue_head);
397 for (i = 0; i < 2; i++) {
398 drain |= q->rq.count[i];
399 drain |= q->in_flight[i];
400 drain |= !list_empty(&q->flush_queue[i]);
401 }
402 }
403
404 spin_unlock_irq(q->queue_lock);
405
406 if (!drain)
407 break;
408 msleep(10);
409 }
410 }
411
412 /**
413 * blk_queue_bypass_start - enter queue bypass mode
414 * @q: queue of interest
415 *
416 * In bypass mode, only the dispatch FIFO queue of @q is used. This
417 * function makes @q enter bypass mode and drains all requests which were
418 * throttled or issued before. On return, it's guaranteed that no request
419 * is being throttled or has ELVPRIV set.
420 */
421 void blk_queue_bypass_start(struct request_queue *q)
422 {
423 spin_lock_irq(q->queue_lock);
424 q->bypass_depth++;
425 queue_flag_set(QUEUE_FLAG_BYPASS, q);
426 spin_unlock_irq(q->queue_lock);
427
428 blk_drain_queue(q, false);
429 }
430 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
431
432 /**
433 * blk_queue_bypass_end - leave queue bypass mode
434 * @q: queue of interest
435 *
436 * Leave bypass mode and restore the normal queueing behavior.
437 */
438 void blk_queue_bypass_end(struct request_queue *q)
439 {
440 spin_lock_irq(q->queue_lock);
441 if (!--q->bypass_depth)
442 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
443 WARN_ON_ONCE(q->bypass_depth < 0);
444 spin_unlock_irq(q->queue_lock);
445 }
446 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
447
448 /**
449 * blk_cleanup_queue - shutdown a request queue
450 * @q: request queue to shutdown
451 *
452 * Mark @q DEAD, drain all pending requests, destroy and put it. All
453 * future requests will be failed immediately with -ENODEV.
454 */
455 void blk_cleanup_queue(struct request_queue *q)
456 {
457 spinlock_t *lock = q->queue_lock;
458
459 /* mark @q DEAD, no new request or merges will be allowed afterwards */
460 mutex_lock(&q->sysfs_lock);
461 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
462
463 spin_lock_irq(lock);
464
465 /* dead queue is permanently in bypass mode till released */
466 q->bypass_depth++;
467 queue_flag_set(QUEUE_FLAG_BYPASS, q);
468
469 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
470 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
471 queue_flag_set(QUEUE_FLAG_DEAD, q);
472
473 if (q->queue_lock != &q->__queue_lock)
474 q->queue_lock = &q->__queue_lock;
475
476 spin_unlock_irq(lock);
477 mutex_unlock(&q->sysfs_lock);
478
479 /* drain all requests queued before DEAD marking */
480 blk_drain_queue(q, true);
481
482 /* @q won't process any more request, flush async actions */
483 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
484 blk_sync_queue(q);
485
486 /* @q is and will stay empty, shutdown and put */
487 blk_put_queue(q);
488 }
489 EXPORT_SYMBOL(blk_cleanup_queue);
490
491 static int blk_init_free_list(struct request_queue *q)
492 {
493 struct request_list *rl = &q->rq;
494
495 if (unlikely(rl->rq_pool))
496 return 0;
497
498 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
499 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
500 rl->elvpriv = 0;
501 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
502 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
503
504 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
505 mempool_free_slab, request_cachep, q->node);
506
507 if (!rl->rq_pool)
508 return -ENOMEM;
509
510 return 0;
511 }
512
513 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
514 {
515 return blk_alloc_queue_node(gfp_mask, -1);
516 }
517 EXPORT_SYMBOL(blk_alloc_queue);
518
519 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
520 {
521 struct request_queue *q;
522 int err;
523
524 q = kmem_cache_alloc_node(blk_requestq_cachep,
525 gfp_mask | __GFP_ZERO, node_id);
526 if (!q)
527 return NULL;
528
529 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
530 if (q->id < 0)
531 goto fail_q;
532
533 q->backing_dev_info.ra_pages =
534 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
535 q->backing_dev_info.state = 0;
536 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
537 q->backing_dev_info.name = "block";
538 q->node = node_id;
539
540 err = bdi_init(&q->backing_dev_info);
541 if (err)
542 goto fail_id;
543
544 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
545 laptop_mode_timer_fn, (unsigned long) q);
546 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
547 INIT_LIST_HEAD(&q->queue_head);
548 INIT_LIST_HEAD(&q->timeout_list);
549 INIT_LIST_HEAD(&q->icq_list);
550 INIT_LIST_HEAD(&q->flush_queue[0]);
551 INIT_LIST_HEAD(&q->flush_queue[1]);
552 INIT_LIST_HEAD(&q->flush_data_in_flight);
553 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
554
555 kobject_init(&q->kobj, &blk_queue_ktype);
556
557 mutex_init(&q->sysfs_lock);
558 spin_lock_init(&q->__queue_lock);
559
560 /*
561 * By default initialize queue_lock to internal lock and driver can
562 * override it later if need be.
563 */
564 q->queue_lock = &q->__queue_lock;
565
566 if (blkcg_init_queue(q))
567 goto fail_id;
568
569 return q;
570
571 fail_id:
572 ida_simple_remove(&blk_queue_ida, q->id);
573 fail_q:
574 kmem_cache_free(blk_requestq_cachep, q);
575 return NULL;
576 }
577 EXPORT_SYMBOL(blk_alloc_queue_node);
578
579 /**
580 * blk_init_queue - prepare a request queue for use with a block device
581 * @rfn: The function to be called to process requests that have been
582 * placed on the queue.
583 * @lock: Request queue spin lock
584 *
585 * Description:
586 * If a block device wishes to use the standard request handling procedures,
587 * which sorts requests and coalesces adjacent requests, then it must
588 * call blk_init_queue(). The function @rfn will be called when there
589 * are requests on the queue that need to be processed. If the device
590 * supports plugging, then @rfn may not be called immediately when requests
591 * are available on the queue, but may be called at some time later instead.
592 * Plugged queues are generally unplugged when a buffer belonging to one
593 * of the requests on the queue is needed, or due to memory pressure.
594 *
595 * @rfn is not required, or even expected, to remove all requests off the
596 * queue, but only as many as it can handle at a time. If it does leave
597 * requests on the queue, it is responsible for arranging that the requests
598 * get dealt with eventually.
599 *
600 * The queue spin lock must be held while manipulating the requests on the
601 * request queue; this lock will be taken also from interrupt context, so irq
602 * disabling is needed for it.
603 *
604 * Function returns a pointer to the initialized request queue, or %NULL if
605 * it didn't succeed.
606 *
607 * Note:
608 * blk_init_queue() must be paired with a blk_cleanup_queue() call
609 * when the block device is deactivated (such as at module unload).
610 **/
611
612 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
613 {
614 return blk_init_queue_node(rfn, lock, -1);
615 }
616 EXPORT_SYMBOL(blk_init_queue);
617
618 struct request_queue *
619 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
620 {
621 struct request_queue *uninit_q, *q;
622
623 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
624 if (!uninit_q)
625 return NULL;
626
627 q = blk_init_allocated_queue(uninit_q, rfn, lock);
628 if (!q)
629 blk_cleanup_queue(uninit_q);
630
631 return q;
632 }
633 EXPORT_SYMBOL(blk_init_queue_node);
634
635 struct request_queue *
636 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
637 spinlock_t *lock)
638 {
639 if (!q)
640 return NULL;
641
642 if (blk_init_free_list(q))
643 return NULL;
644
645 q->request_fn = rfn;
646 q->prep_rq_fn = NULL;
647 q->unprep_rq_fn = NULL;
648 q->queue_flags = QUEUE_FLAG_DEFAULT;
649
650 /* Override internal queue lock with supplied lock pointer */
651 if (lock)
652 q->queue_lock = lock;
653
654 /*
655 * This also sets hw/phys segments, boundary and size
656 */
657 blk_queue_make_request(q, blk_queue_bio);
658
659 q->sg_reserved_size = INT_MAX;
660
661 /*
662 * all done
663 */
664 if (!elevator_init(q, NULL)) {
665 blk_queue_congestion_threshold(q);
666 return q;
667 }
668
669 return NULL;
670 }
671 EXPORT_SYMBOL(blk_init_allocated_queue);
672
673 bool blk_get_queue(struct request_queue *q)
674 {
675 if (likely(!blk_queue_dead(q))) {
676 __blk_get_queue(q);
677 return true;
678 }
679
680 return false;
681 }
682 EXPORT_SYMBOL(blk_get_queue);
683
684 static inline void blk_free_request(struct request_queue *q, struct request *rq)
685 {
686 if (rq->cmd_flags & REQ_ELVPRIV) {
687 elv_put_request(q, rq);
688 if (rq->elv.icq)
689 put_io_context(rq->elv.icq->ioc);
690 }
691
692 mempool_free(rq, q->rq.rq_pool);
693 }
694
695 static struct request *
696 blk_alloc_request(struct request_queue *q, struct io_cq *icq,
697 unsigned int flags, gfp_t gfp_mask)
698 {
699 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
700
701 if (!rq)
702 return NULL;
703
704 blk_rq_init(q, rq);
705
706 rq->cmd_flags = flags | REQ_ALLOCED;
707
708 if (flags & REQ_ELVPRIV) {
709 rq->elv.icq = icq;
710 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
711 mempool_free(rq, q->rq.rq_pool);
712 return NULL;
713 }
714 /* @rq->elv.icq holds on to io_context until @rq is freed */
715 if (icq)
716 get_io_context(icq->ioc);
717 }
718
719 return rq;
720 }
721
722 /*
723 * ioc_batching returns true if the ioc is a valid batching request and
724 * should be given priority access to a request.
725 */
726 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
727 {
728 if (!ioc)
729 return 0;
730
731 /*
732 * Make sure the process is able to allocate at least 1 request
733 * even if the batch times out, otherwise we could theoretically
734 * lose wakeups.
735 */
736 return ioc->nr_batch_requests == q->nr_batching ||
737 (ioc->nr_batch_requests > 0
738 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
739 }
740
741 /*
742 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
743 * will cause the process to be a "batcher" on all queues in the system. This
744 * is the behaviour we want though - once it gets a wakeup it should be given
745 * a nice run.
746 */
747 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
748 {
749 if (!ioc || ioc_batching(q, ioc))
750 return;
751
752 ioc->nr_batch_requests = q->nr_batching;
753 ioc->last_waited = jiffies;
754 }
755
756 static void __freed_request(struct request_queue *q, int sync)
757 {
758 struct request_list *rl = &q->rq;
759
760 if (rl->count[sync] < queue_congestion_off_threshold(q))
761 blk_clear_queue_congested(q, sync);
762
763 if (rl->count[sync] + 1 <= q->nr_requests) {
764 if (waitqueue_active(&rl->wait[sync]))
765 wake_up(&rl->wait[sync]);
766
767 blk_clear_queue_full(q, sync);
768 }
769 }
770
771 /*
772 * A request has just been released. Account for it, update the full and
773 * congestion status, wake up any waiters. Called under q->queue_lock.
774 */
775 static void freed_request(struct request_queue *q, unsigned int flags)
776 {
777 struct request_list *rl = &q->rq;
778 int sync = rw_is_sync(flags);
779
780 rl->count[sync]--;
781 if (flags & REQ_ELVPRIV)
782 rl->elvpriv--;
783
784 __freed_request(q, sync);
785
786 if (unlikely(rl->starved[sync ^ 1]))
787 __freed_request(q, sync ^ 1);
788 }
789
790 /*
791 * Determine if elevator data should be initialized when allocating the
792 * request associated with @bio.
793 */
794 static bool blk_rq_should_init_elevator(struct bio *bio)
795 {
796 if (!bio)
797 return true;
798
799 /*
800 * Flush requests do not use the elevator so skip initialization.
801 * This allows a request to share the flush and elevator data.
802 */
803 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
804 return false;
805
806 return true;
807 }
808
809 /**
810 * get_request - get a free request
811 * @q: request_queue to allocate request from
812 * @rw_flags: RW and SYNC flags
813 * @bio: bio to allocate request for (can be %NULL)
814 * @gfp_mask: allocation mask
815 *
816 * Get a free request from @q. This function may fail under memory
817 * pressure or if @q is dead.
818 *
819 * Must be callled with @q->queue_lock held and,
820 * Returns %NULL on failure, with @q->queue_lock held.
821 * Returns !%NULL on success, with @q->queue_lock *not held*.
822 */
823 static struct request *get_request(struct request_queue *q, int rw_flags,
824 struct bio *bio, gfp_t gfp_mask)
825 {
826 struct request *rq = NULL;
827 struct request_list *rl = &q->rq;
828 struct elevator_type *et;
829 struct io_context *ioc;
830 struct io_cq *icq = NULL;
831 const bool is_sync = rw_is_sync(rw_flags) != 0;
832 bool retried = false;
833 int may_queue;
834 retry:
835 et = q->elevator->type;
836 ioc = current->io_context;
837
838 if (unlikely(blk_queue_dead(q)))
839 return NULL;
840
841 may_queue = elv_may_queue(q, rw_flags);
842 if (may_queue == ELV_MQUEUE_NO)
843 goto rq_starved;
844
845 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
846 if (rl->count[is_sync]+1 >= q->nr_requests) {
847 /*
848 * We want ioc to record batching state. If it's
849 * not already there, creating a new one requires
850 * dropping queue_lock, which in turn requires
851 * retesting conditions to avoid queue hang.
852 */
853 if (!ioc && !retried) {
854 spin_unlock_irq(q->queue_lock);
855 create_io_context(current, gfp_mask, q->node);
856 spin_lock_irq(q->queue_lock);
857 retried = true;
858 goto retry;
859 }
860
861 /*
862 * The queue will fill after this allocation, so set
863 * it as full, and mark this process as "batching".
864 * This process will be allowed to complete a batch of
865 * requests, others will be blocked.
866 */
867 if (!blk_queue_full(q, is_sync)) {
868 ioc_set_batching(q, ioc);
869 blk_set_queue_full(q, is_sync);
870 } else {
871 if (may_queue != ELV_MQUEUE_MUST
872 && !ioc_batching(q, ioc)) {
873 /*
874 * The queue is full and the allocating
875 * process is not a "batcher", and not
876 * exempted by the IO scheduler
877 */
878 goto out;
879 }
880 }
881 }
882 blk_set_queue_congested(q, is_sync);
883 }
884
885 /*
886 * Only allow batching queuers to allocate up to 50% over the defined
887 * limit of requests, otherwise we could have thousands of requests
888 * allocated with any setting of ->nr_requests
889 */
890 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
891 goto out;
892
893 rl->count[is_sync]++;
894 rl->starved[is_sync] = 0;
895
896 /*
897 * Decide whether the new request will be managed by elevator. If
898 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
899 * prevent the current elevator from being destroyed until the new
900 * request is freed. This guarantees icq's won't be destroyed and
901 * makes creating new ones safe.
902 *
903 * Also, lookup icq while holding queue_lock. If it doesn't exist,
904 * it will be created after releasing queue_lock.
905 */
906 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
907 rw_flags |= REQ_ELVPRIV;
908 rl->elvpriv++;
909 if (et->icq_cache && ioc)
910 icq = ioc_lookup_icq(ioc, q);
911 }
912
913 if (blk_queue_io_stat(q))
914 rw_flags |= REQ_IO_STAT;
915 spin_unlock_irq(q->queue_lock);
916
917 /* create icq if missing */
918 if ((rw_flags & REQ_ELVPRIV) && unlikely(et->icq_cache && !icq)) {
919 icq = ioc_create_icq(q, gfp_mask);
920 if (!icq)
921 goto fail_icq;
922 }
923
924 rq = blk_alloc_request(q, icq, rw_flags, gfp_mask);
925
926 fail_icq:
927 if (unlikely(!rq)) {
928 /*
929 * Allocation failed presumably due to memory. Undo anything
930 * we might have messed up.
931 *
932 * Allocating task should really be put onto the front of the
933 * wait queue, but this is pretty rare.
934 */
935 spin_lock_irq(q->queue_lock);
936 freed_request(q, rw_flags);
937
938 /*
939 * in the very unlikely event that allocation failed and no
940 * requests for this direction was pending, mark us starved
941 * so that freeing of a request in the other direction will
942 * notice us. another possible fix would be to split the
943 * rq mempool into READ and WRITE
944 */
945 rq_starved:
946 if (unlikely(rl->count[is_sync] == 0))
947 rl->starved[is_sync] = 1;
948
949 goto out;
950 }
951
952 /*
953 * ioc may be NULL here, and ioc_batching will be false. That's
954 * OK, if the queue is under the request limit then requests need
955 * not count toward the nr_batch_requests limit. There will always
956 * be some limit enforced by BLK_BATCH_TIME.
957 */
958 if (ioc_batching(q, ioc))
959 ioc->nr_batch_requests--;
960
961 trace_block_getrq(q, bio, rw_flags & 1);
962 out:
963 return rq;
964 }
965
966 /**
967 * get_request_wait - get a free request with retry
968 * @q: request_queue to allocate request from
969 * @rw_flags: RW and SYNC flags
970 * @bio: bio to allocate request for (can be %NULL)
971 *
972 * Get a free request from @q. This function keeps retrying under memory
973 * pressure and fails iff @q is dead.
974 *
975 * Must be callled with @q->queue_lock held and,
976 * Returns %NULL on failure, with @q->queue_lock held.
977 * Returns !%NULL on success, with @q->queue_lock *not held*.
978 */
979 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
980 struct bio *bio)
981 {
982 const bool is_sync = rw_is_sync(rw_flags) != 0;
983 struct request *rq;
984
985 rq = get_request(q, rw_flags, bio, GFP_NOIO);
986 while (!rq) {
987 DEFINE_WAIT(wait);
988 struct request_list *rl = &q->rq;
989
990 if (unlikely(blk_queue_dead(q)))
991 return NULL;
992
993 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
994 TASK_UNINTERRUPTIBLE);
995
996 trace_block_sleeprq(q, bio, rw_flags & 1);
997
998 spin_unlock_irq(q->queue_lock);
999 io_schedule();
1000
1001 /*
1002 * After sleeping, we become a "batching" process and
1003 * will be able to allocate at least one request, and
1004 * up to a big batch of them for a small period time.
1005 * See ioc_batching, ioc_set_batching
1006 */
1007 create_io_context(current, GFP_NOIO, q->node);
1008 ioc_set_batching(q, current->io_context);
1009
1010 spin_lock_irq(q->queue_lock);
1011 finish_wait(&rl->wait[is_sync], &wait);
1012
1013 rq = get_request(q, rw_flags, bio, GFP_NOIO);
1014 };
1015
1016 return rq;
1017 }
1018
1019 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1020 {
1021 struct request *rq;
1022
1023 BUG_ON(rw != READ && rw != WRITE);
1024
1025 spin_lock_irq(q->queue_lock);
1026 if (gfp_mask & __GFP_WAIT)
1027 rq = get_request_wait(q, rw, NULL);
1028 else
1029 rq = get_request(q, rw, NULL, gfp_mask);
1030 if (!rq)
1031 spin_unlock_irq(q->queue_lock);
1032 /* q->queue_lock is unlocked at this point */
1033
1034 return rq;
1035 }
1036 EXPORT_SYMBOL(blk_get_request);
1037
1038 /**
1039 * blk_make_request - given a bio, allocate a corresponding struct request.
1040 * @q: target request queue
1041 * @bio: The bio describing the memory mappings that will be submitted for IO.
1042 * It may be a chained-bio properly constructed by block/bio layer.
1043 * @gfp_mask: gfp flags to be used for memory allocation
1044 *
1045 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1046 * type commands. Where the struct request needs to be farther initialized by
1047 * the caller. It is passed a &struct bio, which describes the memory info of
1048 * the I/O transfer.
1049 *
1050 * The caller of blk_make_request must make sure that bi_io_vec
1051 * are set to describe the memory buffers. That bio_data_dir() will return
1052 * the needed direction of the request. (And all bio's in the passed bio-chain
1053 * are properly set accordingly)
1054 *
1055 * If called under none-sleepable conditions, mapped bio buffers must not
1056 * need bouncing, by calling the appropriate masked or flagged allocator,
1057 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1058 * BUG.
1059 *
1060 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1061 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1062 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1063 * completion of a bio that hasn't been submitted yet, thus resulting in a
1064 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1065 * of bio_alloc(), as that avoids the mempool deadlock.
1066 * If possible a big IO should be split into smaller parts when allocation
1067 * fails. Partial allocation should not be an error, or you risk a live-lock.
1068 */
1069 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1070 gfp_t gfp_mask)
1071 {
1072 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1073
1074 if (unlikely(!rq))
1075 return ERR_PTR(-ENOMEM);
1076
1077 for_each_bio(bio) {
1078 struct bio *bounce_bio = bio;
1079 int ret;
1080
1081 blk_queue_bounce(q, &bounce_bio);
1082 ret = blk_rq_append_bio(q, rq, bounce_bio);
1083 if (unlikely(ret)) {
1084 blk_put_request(rq);
1085 return ERR_PTR(ret);
1086 }
1087 }
1088
1089 return rq;
1090 }
1091 EXPORT_SYMBOL(blk_make_request);
1092
1093 /**
1094 * blk_requeue_request - put a request back on queue
1095 * @q: request queue where request should be inserted
1096 * @rq: request to be inserted
1097 *
1098 * Description:
1099 * Drivers often keep queueing requests until the hardware cannot accept
1100 * more, when that condition happens we need to put the request back
1101 * on the queue. Must be called with queue lock held.
1102 */
1103 void blk_requeue_request(struct request_queue *q, struct request *rq)
1104 {
1105 blk_delete_timer(rq);
1106 blk_clear_rq_complete(rq);
1107 trace_block_rq_requeue(q, rq);
1108
1109 if (blk_rq_tagged(rq))
1110 blk_queue_end_tag(q, rq);
1111
1112 BUG_ON(blk_queued_rq(rq));
1113
1114 elv_requeue_request(q, rq);
1115 }
1116 EXPORT_SYMBOL(blk_requeue_request);
1117
1118 static void add_acct_request(struct request_queue *q, struct request *rq,
1119 int where)
1120 {
1121 drive_stat_acct(rq, 1);
1122 __elv_add_request(q, rq, where);
1123 }
1124
1125 static void part_round_stats_single(int cpu, struct hd_struct *part,
1126 unsigned long now)
1127 {
1128 if (now == part->stamp)
1129 return;
1130
1131 if (part_in_flight(part)) {
1132 __part_stat_add(cpu, part, time_in_queue,
1133 part_in_flight(part) * (now - part->stamp));
1134 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1135 }
1136 part->stamp = now;
1137 }
1138
1139 /**
1140 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1141 * @cpu: cpu number for stats access
1142 * @part: target partition
1143 *
1144 * The average IO queue length and utilisation statistics are maintained
1145 * by observing the current state of the queue length and the amount of
1146 * time it has been in this state for.
1147 *
1148 * Normally, that accounting is done on IO completion, but that can result
1149 * in more than a second's worth of IO being accounted for within any one
1150 * second, leading to >100% utilisation. To deal with that, we call this
1151 * function to do a round-off before returning the results when reading
1152 * /proc/diskstats. This accounts immediately for all queue usage up to
1153 * the current jiffies and restarts the counters again.
1154 */
1155 void part_round_stats(int cpu, struct hd_struct *part)
1156 {
1157 unsigned long now = jiffies;
1158
1159 if (part->partno)
1160 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1161 part_round_stats_single(cpu, part, now);
1162 }
1163 EXPORT_SYMBOL_GPL(part_round_stats);
1164
1165 /*
1166 * queue lock must be held
1167 */
1168 void __blk_put_request(struct request_queue *q, struct request *req)
1169 {
1170 if (unlikely(!q))
1171 return;
1172 if (unlikely(--req->ref_count))
1173 return;
1174
1175 elv_completed_request(q, req);
1176
1177 /* this is a bio leak */
1178 WARN_ON(req->bio != NULL);
1179
1180 /*
1181 * Request may not have originated from ll_rw_blk. if not,
1182 * it didn't come out of our reserved rq pools
1183 */
1184 if (req->cmd_flags & REQ_ALLOCED) {
1185 unsigned int flags = req->cmd_flags;
1186
1187 BUG_ON(!list_empty(&req->queuelist));
1188 BUG_ON(!hlist_unhashed(&req->hash));
1189
1190 blk_free_request(q, req);
1191 freed_request(q, flags);
1192 }
1193 }
1194 EXPORT_SYMBOL_GPL(__blk_put_request);
1195
1196 void blk_put_request(struct request *req)
1197 {
1198 unsigned long flags;
1199 struct request_queue *q = req->q;
1200
1201 spin_lock_irqsave(q->queue_lock, flags);
1202 __blk_put_request(q, req);
1203 spin_unlock_irqrestore(q->queue_lock, flags);
1204 }
1205 EXPORT_SYMBOL(blk_put_request);
1206
1207 /**
1208 * blk_add_request_payload - add a payload to a request
1209 * @rq: request to update
1210 * @page: page backing the payload
1211 * @len: length of the payload.
1212 *
1213 * This allows to later add a payload to an already submitted request by
1214 * a block driver. The driver needs to take care of freeing the payload
1215 * itself.
1216 *
1217 * Note that this is a quite horrible hack and nothing but handling of
1218 * discard requests should ever use it.
1219 */
1220 void blk_add_request_payload(struct request *rq, struct page *page,
1221 unsigned int len)
1222 {
1223 struct bio *bio = rq->bio;
1224
1225 bio->bi_io_vec->bv_page = page;
1226 bio->bi_io_vec->bv_offset = 0;
1227 bio->bi_io_vec->bv_len = len;
1228
1229 bio->bi_size = len;
1230 bio->bi_vcnt = 1;
1231 bio->bi_phys_segments = 1;
1232
1233 rq->__data_len = rq->resid_len = len;
1234 rq->nr_phys_segments = 1;
1235 rq->buffer = bio_data(bio);
1236 }
1237 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1238
1239 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1240 struct bio *bio)
1241 {
1242 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1243
1244 if (!ll_back_merge_fn(q, req, bio))
1245 return false;
1246
1247 trace_block_bio_backmerge(q, bio);
1248
1249 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1250 blk_rq_set_mixed_merge(req);
1251
1252 req->biotail->bi_next = bio;
1253 req->biotail = bio;
1254 req->__data_len += bio->bi_size;
1255 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1256
1257 drive_stat_acct(req, 0);
1258 return true;
1259 }
1260
1261 static bool bio_attempt_front_merge(struct request_queue *q,
1262 struct request *req, struct bio *bio)
1263 {
1264 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1265
1266 if (!ll_front_merge_fn(q, req, bio))
1267 return false;
1268
1269 trace_block_bio_frontmerge(q, bio);
1270
1271 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1272 blk_rq_set_mixed_merge(req);
1273
1274 bio->bi_next = req->bio;
1275 req->bio = bio;
1276
1277 /*
1278 * may not be valid. if the low level driver said
1279 * it didn't need a bounce buffer then it better
1280 * not touch req->buffer either...
1281 */
1282 req->buffer = bio_data(bio);
1283 req->__sector = bio->bi_sector;
1284 req->__data_len += bio->bi_size;
1285 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1286
1287 drive_stat_acct(req, 0);
1288 return true;
1289 }
1290
1291 /**
1292 * attempt_plug_merge - try to merge with %current's plugged list
1293 * @q: request_queue new bio is being queued at
1294 * @bio: new bio being queued
1295 * @request_count: out parameter for number of traversed plugged requests
1296 *
1297 * Determine whether @bio being queued on @q can be merged with a request
1298 * on %current's plugged list. Returns %true if merge was successful,
1299 * otherwise %false.
1300 *
1301 * Plugging coalesces IOs from the same issuer for the same purpose without
1302 * going through @q->queue_lock. As such it's more of an issuing mechanism
1303 * than scheduling, and the request, while may have elvpriv data, is not
1304 * added on the elevator at this point. In addition, we don't have
1305 * reliable access to the elevator outside queue lock. Only check basic
1306 * merging parameters without querying the elevator.
1307 */
1308 static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1309 unsigned int *request_count)
1310 {
1311 struct blk_plug *plug;
1312 struct request *rq;
1313 bool ret = false;
1314
1315 plug = current->plug;
1316 if (!plug)
1317 goto out;
1318 *request_count = 0;
1319
1320 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1321 int el_ret;
1322
1323 (*request_count)++;
1324
1325 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1326 continue;
1327
1328 el_ret = blk_try_merge(rq, bio);
1329 if (el_ret == ELEVATOR_BACK_MERGE) {
1330 ret = bio_attempt_back_merge(q, rq, bio);
1331 if (ret)
1332 break;
1333 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1334 ret = bio_attempt_front_merge(q, rq, bio);
1335 if (ret)
1336 break;
1337 }
1338 }
1339 out:
1340 return ret;
1341 }
1342
1343 void init_request_from_bio(struct request *req, struct bio *bio)
1344 {
1345 req->cmd_type = REQ_TYPE_FS;
1346
1347 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1348 if (bio->bi_rw & REQ_RAHEAD)
1349 req->cmd_flags |= REQ_FAILFAST_MASK;
1350
1351 req->errors = 0;
1352 req->__sector = bio->bi_sector;
1353 req->ioprio = bio_prio(bio);
1354 blk_rq_bio_prep(req->q, req, bio);
1355 }
1356
1357 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1358 {
1359 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1360 struct blk_plug *plug;
1361 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1362 struct request *req;
1363 unsigned int request_count = 0;
1364
1365 /*
1366 * low level driver can indicate that it wants pages above a
1367 * certain limit bounced to low memory (ie for highmem, or even
1368 * ISA dma in theory)
1369 */
1370 blk_queue_bounce(q, &bio);
1371
1372 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1373 spin_lock_irq(q->queue_lock);
1374 where = ELEVATOR_INSERT_FLUSH;
1375 goto get_rq;
1376 }
1377
1378 /*
1379 * Check if we can merge with the plugged list before grabbing
1380 * any locks.
1381 */
1382 if (attempt_plug_merge(q, bio, &request_count))
1383 return;
1384
1385 spin_lock_irq(q->queue_lock);
1386
1387 el_ret = elv_merge(q, &req, bio);
1388 if (el_ret == ELEVATOR_BACK_MERGE) {
1389 if (bio_attempt_back_merge(q, req, bio)) {
1390 elv_bio_merged(q, req, bio);
1391 if (!attempt_back_merge(q, req))
1392 elv_merged_request(q, req, el_ret);
1393 goto out_unlock;
1394 }
1395 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1396 if (bio_attempt_front_merge(q, req, bio)) {
1397 elv_bio_merged(q, req, bio);
1398 if (!attempt_front_merge(q, req))
1399 elv_merged_request(q, req, el_ret);
1400 goto out_unlock;
1401 }
1402 }
1403
1404 get_rq:
1405 /*
1406 * This sync check and mask will be re-done in init_request_from_bio(),
1407 * but we need to set it earlier to expose the sync flag to the
1408 * rq allocator and io schedulers.
1409 */
1410 rw_flags = bio_data_dir(bio);
1411 if (sync)
1412 rw_flags |= REQ_SYNC;
1413
1414 /*
1415 * Grab a free request. This is might sleep but can not fail.
1416 * Returns with the queue unlocked.
1417 */
1418 req = get_request_wait(q, rw_flags, bio);
1419 if (unlikely(!req)) {
1420 bio_endio(bio, -ENODEV); /* @q is dead */
1421 goto out_unlock;
1422 }
1423
1424 /*
1425 * After dropping the lock and possibly sleeping here, our request
1426 * may now be mergeable after it had proven unmergeable (above).
1427 * We don't worry about that case for efficiency. It won't happen
1428 * often, and the elevators are able to handle it.
1429 */
1430 init_request_from_bio(req, bio);
1431
1432 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1433 req->cpu = raw_smp_processor_id();
1434
1435 plug = current->plug;
1436 if (plug) {
1437 /*
1438 * If this is the first request added after a plug, fire
1439 * of a plug trace. If others have been added before, check
1440 * if we have multiple devices in this plug. If so, make a
1441 * note to sort the list before dispatch.
1442 */
1443 if (list_empty(&plug->list))
1444 trace_block_plug(q);
1445 else {
1446 if (!plug->should_sort) {
1447 struct request *__rq;
1448
1449 __rq = list_entry_rq(plug->list.prev);
1450 if (__rq->q != q)
1451 plug->should_sort = 1;
1452 }
1453 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1454 blk_flush_plug_list(plug, false);
1455 trace_block_plug(q);
1456 }
1457 }
1458 list_add_tail(&req->queuelist, &plug->list);
1459 drive_stat_acct(req, 1);
1460 } else {
1461 spin_lock_irq(q->queue_lock);
1462 add_acct_request(q, req, where);
1463 __blk_run_queue(q);
1464 out_unlock:
1465 spin_unlock_irq(q->queue_lock);
1466 }
1467 }
1468 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1469
1470 /*
1471 * If bio->bi_dev is a partition, remap the location
1472 */
1473 static inline void blk_partition_remap(struct bio *bio)
1474 {
1475 struct block_device *bdev = bio->bi_bdev;
1476
1477 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1478 struct hd_struct *p = bdev->bd_part;
1479
1480 bio->bi_sector += p->start_sect;
1481 bio->bi_bdev = bdev->bd_contains;
1482
1483 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1484 bdev->bd_dev,
1485 bio->bi_sector - p->start_sect);
1486 }
1487 }
1488
1489 static void handle_bad_sector(struct bio *bio)
1490 {
1491 char b[BDEVNAME_SIZE];
1492
1493 printk(KERN_INFO "attempt to access beyond end of device\n");
1494 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1495 bdevname(bio->bi_bdev, b),
1496 bio->bi_rw,
1497 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1498 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1499
1500 set_bit(BIO_EOF, &bio->bi_flags);
1501 }
1502
1503 #ifdef CONFIG_FAIL_MAKE_REQUEST
1504
1505 static DECLARE_FAULT_ATTR(fail_make_request);
1506
1507 static int __init setup_fail_make_request(char *str)
1508 {
1509 return setup_fault_attr(&fail_make_request, str);
1510 }
1511 __setup("fail_make_request=", setup_fail_make_request);
1512
1513 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1514 {
1515 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1516 }
1517
1518 static int __init fail_make_request_debugfs(void)
1519 {
1520 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1521 NULL, &fail_make_request);
1522
1523 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1524 }
1525
1526 late_initcall(fail_make_request_debugfs);
1527
1528 #else /* CONFIG_FAIL_MAKE_REQUEST */
1529
1530 static inline bool should_fail_request(struct hd_struct *part,
1531 unsigned int bytes)
1532 {
1533 return false;
1534 }
1535
1536 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1537
1538 /*
1539 * Check whether this bio extends beyond the end of the device.
1540 */
1541 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1542 {
1543 sector_t maxsector;
1544
1545 if (!nr_sectors)
1546 return 0;
1547
1548 /* Test device or partition size, when known. */
1549 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1550 if (maxsector) {
1551 sector_t sector = bio->bi_sector;
1552
1553 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1554 /*
1555 * This may well happen - the kernel calls bread()
1556 * without checking the size of the device, e.g., when
1557 * mounting a device.
1558 */
1559 handle_bad_sector(bio);
1560 return 1;
1561 }
1562 }
1563
1564 return 0;
1565 }
1566
1567 static noinline_for_stack bool
1568 generic_make_request_checks(struct bio *bio)
1569 {
1570 struct request_queue *q;
1571 int nr_sectors = bio_sectors(bio);
1572 int err = -EIO;
1573 char b[BDEVNAME_SIZE];
1574 struct hd_struct *part;
1575
1576 might_sleep();
1577
1578 if (bio_check_eod(bio, nr_sectors))
1579 goto end_io;
1580
1581 q = bdev_get_queue(bio->bi_bdev);
1582 if (unlikely(!q)) {
1583 printk(KERN_ERR
1584 "generic_make_request: Trying to access "
1585 "nonexistent block-device %s (%Lu)\n",
1586 bdevname(bio->bi_bdev, b),
1587 (long long) bio->bi_sector);
1588 goto end_io;
1589 }
1590
1591 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1592 nr_sectors > queue_max_hw_sectors(q))) {
1593 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1594 bdevname(bio->bi_bdev, b),
1595 bio_sectors(bio),
1596 queue_max_hw_sectors(q));
1597 goto end_io;
1598 }
1599
1600 part = bio->bi_bdev->bd_part;
1601 if (should_fail_request(part, bio->bi_size) ||
1602 should_fail_request(&part_to_disk(part)->part0,
1603 bio->bi_size))
1604 goto end_io;
1605
1606 /*
1607 * If this device has partitions, remap block n
1608 * of partition p to block n+start(p) of the disk.
1609 */
1610 blk_partition_remap(bio);
1611
1612 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1613 goto end_io;
1614
1615 if (bio_check_eod(bio, nr_sectors))
1616 goto end_io;
1617
1618 /*
1619 * Filter flush bio's early so that make_request based
1620 * drivers without flush support don't have to worry
1621 * about them.
1622 */
1623 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1624 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1625 if (!nr_sectors) {
1626 err = 0;
1627 goto end_io;
1628 }
1629 }
1630
1631 if ((bio->bi_rw & REQ_DISCARD) &&
1632 (!blk_queue_discard(q) ||
1633 ((bio->bi_rw & REQ_SECURE) &&
1634 !blk_queue_secdiscard(q)))) {
1635 err = -EOPNOTSUPP;
1636 goto end_io;
1637 }
1638
1639 if (blk_throtl_bio(q, bio))
1640 return false; /* throttled, will be resubmitted later */
1641
1642 trace_block_bio_queue(q, bio);
1643 return true;
1644
1645 end_io:
1646 bio_endio(bio, err);
1647 return false;
1648 }
1649
1650 /**
1651 * generic_make_request - hand a buffer to its device driver for I/O
1652 * @bio: The bio describing the location in memory and on the device.
1653 *
1654 * generic_make_request() is used to make I/O requests of block
1655 * devices. It is passed a &struct bio, which describes the I/O that needs
1656 * to be done.
1657 *
1658 * generic_make_request() does not return any status. The
1659 * success/failure status of the request, along with notification of
1660 * completion, is delivered asynchronously through the bio->bi_end_io
1661 * function described (one day) else where.
1662 *
1663 * The caller of generic_make_request must make sure that bi_io_vec
1664 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1665 * set to describe the device address, and the
1666 * bi_end_io and optionally bi_private are set to describe how
1667 * completion notification should be signaled.
1668 *
1669 * generic_make_request and the drivers it calls may use bi_next if this
1670 * bio happens to be merged with someone else, and may resubmit the bio to
1671 * a lower device by calling into generic_make_request recursively, which
1672 * means the bio should NOT be touched after the call to ->make_request_fn.
1673 */
1674 void generic_make_request(struct bio *bio)
1675 {
1676 struct bio_list bio_list_on_stack;
1677
1678 if (!generic_make_request_checks(bio))
1679 return;
1680
1681 /*
1682 * We only want one ->make_request_fn to be active at a time, else
1683 * stack usage with stacked devices could be a problem. So use
1684 * current->bio_list to keep a list of requests submited by a
1685 * make_request_fn function. current->bio_list is also used as a
1686 * flag to say if generic_make_request is currently active in this
1687 * task or not. If it is NULL, then no make_request is active. If
1688 * it is non-NULL, then a make_request is active, and new requests
1689 * should be added at the tail
1690 */
1691 if (current->bio_list) {
1692 bio_list_add(current->bio_list, bio);
1693 return;
1694 }
1695
1696 /* following loop may be a bit non-obvious, and so deserves some
1697 * explanation.
1698 * Before entering the loop, bio->bi_next is NULL (as all callers
1699 * ensure that) so we have a list with a single bio.
1700 * We pretend that we have just taken it off a longer list, so
1701 * we assign bio_list to a pointer to the bio_list_on_stack,
1702 * thus initialising the bio_list of new bios to be
1703 * added. ->make_request() may indeed add some more bios
1704 * through a recursive call to generic_make_request. If it
1705 * did, we find a non-NULL value in bio_list and re-enter the loop
1706 * from the top. In this case we really did just take the bio
1707 * of the top of the list (no pretending) and so remove it from
1708 * bio_list, and call into ->make_request() again.
1709 */
1710 BUG_ON(bio->bi_next);
1711 bio_list_init(&bio_list_on_stack);
1712 current->bio_list = &bio_list_on_stack;
1713 do {
1714 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1715
1716 q->make_request_fn(q, bio);
1717
1718 bio = bio_list_pop(current->bio_list);
1719 } while (bio);
1720 current->bio_list = NULL; /* deactivate */
1721 }
1722 EXPORT_SYMBOL(generic_make_request);
1723
1724 /**
1725 * submit_bio - submit a bio to the block device layer for I/O
1726 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1727 * @bio: The &struct bio which describes the I/O
1728 *
1729 * submit_bio() is very similar in purpose to generic_make_request(), and
1730 * uses that function to do most of the work. Both are fairly rough
1731 * interfaces; @bio must be presetup and ready for I/O.
1732 *
1733 */
1734 void submit_bio(int rw, struct bio *bio)
1735 {
1736 int count = bio_sectors(bio);
1737
1738 bio->bi_rw |= rw;
1739
1740 /*
1741 * If it's a regular read/write or a barrier with data attached,
1742 * go through the normal accounting stuff before submission.
1743 */
1744 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1745 if (rw & WRITE) {
1746 count_vm_events(PGPGOUT, count);
1747 } else {
1748 task_io_account_read(bio->bi_size);
1749 count_vm_events(PGPGIN, count);
1750 }
1751
1752 if (unlikely(block_dump)) {
1753 char b[BDEVNAME_SIZE];
1754 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1755 current->comm, task_pid_nr(current),
1756 (rw & WRITE) ? "WRITE" : "READ",
1757 (unsigned long long)bio->bi_sector,
1758 bdevname(bio->bi_bdev, b),
1759 count);
1760 }
1761 }
1762
1763 generic_make_request(bio);
1764 }
1765 EXPORT_SYMBOL(submit_bio);
1766
1767 /**
1768 * blk_rq_check_limits - Helper function to check a request for the queue limit
1769 * @q: the queue
1770 * @rq: the request being checked
1771 *
1772 * Description:
1773 * @rq may have been made based on weaker limitations of upper-level queues
1774 * in request stacking drivers, and it may violate the limitation of @q.
1775 * Since the block layer and the underlying device driver trust @rq
1776 * after it is inserted to @q, it should be checked against @q before
1777 * the insertion using this generic function.
1778 *
1779 * This function should also be useful for request stacking drivers
1780 * in some cases below, so export this function.
1781 * Request stacking drivers like request-based dm may change the queue
1782 * limits while requests are in the queue (e.g. dm's table swapping).
1783 * Such request stacking drivers should check those requests agaist
1784 * the new queue limits again when they dispatch those requests,
1785 * although such checkings are also done against the old queue limits
1786 * when submitting requests.
1787 */
1788 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1789 {
1790 if (rq->cmd_flags & REQ_DISCARD)
1791 return 0;
1792
1793 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1794 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1795 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1796 return -EIO;
1797 }
1798
1799 /*
1800 * queue's settings related to segment counting like q->bounce_pfn
1801 * may differ from that of other stacking queues.
1802 * Recalculate it to check the request correctly on this queue's
1803 * limitation.
1804 */
1805 blk_recalc_rq_segments(rq);
1806 if (rq->nr_phys_segments > queue_max_segments(q)) {
1807 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1808 return -EIO;
1809 }
1810
1811 return 0;
1812 }
1813 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1814
1815 /**
1816 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1817 * @q: the queue to submit the request
1818 * @rq: the request being queued
1819 */
1820 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1821 {
1822 unsigned long flags;
1823 int where = ELEVATOR_INSERT_BACK;
1824
1825 if (blk_rq_check_limits(q, rq))
1826 return -EIO;
1827
1828 if (rq->rq_disk &&
1829 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1830 return -EIO;
1831
1832 spin_lock_irqsave(q->queue_lock, flags);
1833 if (unlikely(blk_queue_dead(q))) {
1834 spin_unlock_irqrestore(q->queue_lock, flags);
1835 return -ENODEV;
1836 }
1837
1838 /*
1839 * Submitting request must be dequeued before calling this function
1840 * because it will be linked to another request_queue
1841 */
1842 BUG_ON(blk_queued_rq(rq));
1843
1844 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1845 where = ELEVATOR_INSERT_FLUSH;
1846
1847 add_acct_request(q, rq, where);
1848 if (where == ELEVATOR_INSERT_FLUSH)
1849 __blk_run_queue(q);
1850 spin_unlock_irqrestore(q->queue_lock, flags);
1851
1852 return 0;
1853 }
1854 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1855
1856 /**
1857 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1858 * @rq: request to examine
1859 *
1860 * Description:
1861 * A request could be merge of IOs which require different failure
1862 * handling. This function determines the number of bytes which
1863 * can be failed from the beginning of the request without
1864 * crossing into area which need to be retried further.
1865 *
1866 * Return:
1867 * The number of bytes to fail.
1868 *
1869 * Context:
1870 * queue_lock must be held.
1871 */
1872 unsigned int blk_rq_err_bytes(const struct request *rq)
1873 {
1874 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1875 unsigned int bytes = 0;
1876 struct bio *bio;
1877
1878 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1879 return blk_rq_bytes(rq);
1880
1881 /*
1882 * Currently the only 'mixing' which can happen is between
1883 * different fastfail types. We can safely fail portions
1884 * which have all the failfast bits that the first one has -
1885 * the ones which are at least as eager to fail as the first
1886 * one.
1887 */
1888 for (bio = rq->bio; bio; bio = bio->bi_next) {
1889 if ((bio->bi_rw & ff) != ff)
1890 break;
1891 bytes += bio->bi_size;
1892 }
1893
1894 /* this could lead to infinite loop */
1895 BUG_ON(blk_rq_bytes(rq) && !bytes);
1896 return bytes;
1897 }
1898 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1899
1900 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1901 {
1902 if (blk_do_io_stat(req)) {
1903 const int rw = rq_data_dir(req);
1904 struct hd_struct *part;
1905 int cpu;
1906
1907 cpu = part_stat_lock();
1908 part = req->part;
1909 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1910 part_stat_unlock();
1911 }
1912 }
1913
1914 static void blk_account_io_done(struct request *req)
1915 {
1916 /*
1917 * Account IO completion. flush_rq isn't accounted as a
1918 * normal IO on queueing nor completion. Accounting the
1919 * containing request is enough.
1920 */
1921 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
1922 unsigned long duration = jiffies - req->start_time;
1923 const int rw = rq_data_dir(req);
1924 struct hd_struct *part;
1925 int cpu;
1926
1927 cpu = part_stat_lock();
1928 part = req->part;
1929
1930 part_stat_inc(cpu, part, ios[rw]);
1931 part_stat_add(cpu, part, ticks[rw], duration);
1932 part_round_stats(cpu, part);
1933 part_dec_in_flight(part, rw);
1934
1935 hd_struct_put(part);
1936 part_stat_unlock();
1937 }
1938 }
1939
1940 /**
1941 * blk_peek_request - peek at the top of a request queue
1942 * @q: request queue to peek at
1943 *
1944 * Description:
1945 * Return the request at the top of @q. The returned request
1946 * should be started using blk_start_request() before LLD starts
1947 * processing it.
1948 *
1949 * Return:
1950 * Pointer to the request at the top of @q if available. Null
1951 * otherwise.
1952 *
1953 * Context:
1954 * queue_lock must be held.
1955 */
1956 struct request *blk_peek_request(struct request_queue *q)
1957 {
1958 struct request *rq;
1959 int ret;
1960
1961 while ((rq = __elv_next_request(q)) != NULL) {
1962 if (!(rq->cmd_flags & REQ_STARTED)) {
1963 /*
1964 * This is the first time the device driver
1965 * sees this request (possibly after
1966 * requeueing). Notify IO scheduler.
1967 */
1968 if (rq->cmd_flags & REQ_SORTED)
1969 elv_activate_rq(q, rq);
1970
1971 /*
1972 * just mark as started even if we don't start
1973 * it, a request that has been delayed should
1974 * not be passed by new incoming requests
1975 */
1976 rq->cmd_flags |= REQ_STARTED;
1977 trace_block_rq_issue(q, rq);
1978 }
1979
1980 if (!q->boundary_rq || q->boundary_rq == rq) {
1981 q->end_sector = rq_end_sector(rq);
1982 q->boundary_rq = NULL;
1983 }
1984
1985 if (rq->cmd_flags & REQ_DONTPREP)
1986 break;
1987
1988 if (q->dma_drain_size && blk_rq_bytes(rq)) {
1989 /*
1990 * make sure space for the drain appears we
1991 * know we can do this because max_hw_segments
1992 * has been adjusted to be one fewer than the
1993 * device can handle
1994 */
1995 rq->nr_phys_segments++;
1996 }
1997
1998 if (!q->prep_rq_fn)
1999 break;
2000
2001 ret = q->prep_rq_fn(q, rq);
2002 if (ret == BLKPREP_OK) {
2003 break;
2004 } else if (ret == BLKPREP_DEFER) {
2005 /*
2006 * the request may have been (partially) prepped.
2007 * we need to keep this request in the front to
2008 * avoid resource deadlock. REQ_STARTED will
2009 * prevent other fs requests from passing this one.
2010 */
2011 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2012 !(rq->cmd_flags & REQ_DONTPREP)) {
2013 /*
2014 * remove the space for the drain we added
2015 * so that we don't add it again
2016 */
2017 --rq->nr_phys_segments;
2018 }
2019
2020 rq = NULL;
2021 break;
2022 } else if (ret == BLKPREP_KILL) {
2023 rq->cmd_flags |= REQ_QUIET;
2024 /*
2025 * Mark this request as started so we don't trigger
2026 * any debug logic in the end I/O path.
2027 */
2028 blk_start_request(rq);
2029 __blk_end_request_all(rq, -EIO);
2030 } else {
2031 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2032 break;
2033 }
2034 }
2035
2036 return rq;
2037 }
2038 EXPORT_SYMBOL(blk_peek_request);
2039
2040 void blk_dequeue_request(struct request *rq)
2041 {
2042 struct request_queue *q = rq->q;
2043
2044 BUG_ON(list_empty(&rq->queuelist));
2045 BUG_ON(ELV_ON_HASH(rq));
2046
2047 list_del_init(&rq->queuelist);
2048
2049 /*
2050 * the time frame between a request being removed from the lists
2051 * and to it is freed is accounted as io that is in progress at
2052 * the driver side.
2053 */
2054 if (blk_account_rq(rq)) {
2055 q->in_flight[rq_is_sync(rq)]++;
2056 set_io_start_time_ns(rq);
2057 }
2058 }
2059
2060 /**
2061 * blk_start_request - start request processing on the driver
2062 * @req: request to dequeue
2063 *
2064 * Description:
2065 * Dequeue @req and start timeout timer on it. This hands off the
2066 * request to the driver.
2067 *
2068 * Block internal functions which don't want to start timer should
2069 * call blk_dequeue_request().
2070 *
2071 * Context:
2072 * queue_lock must be held.
2073 */
2074 void blk_start_request(struct request *req)
2075 {
2076 blk_dequeue_request(req);
2077
2078 /*
2079 * We are now handing the request to the hardware, initialize
2080 * resid_len to full count and add the timeout handler.
2081 */
2082 req->resid_len = blk_rq_bytes(req);
2083 if (unlikely(blk_bidi_rq(req)))
2084 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2085
2086 blk_add_timer(req);
2087 }
2088 EXPORT_SYMBOL(blk_start_request);
2089
2090 /**
2091 * blk_fetch_request - fetch a request from a request queue
2092 * @q: request queue to fetch a request from
2093 *
2094 * Description:
2095 * Return the request at the top of @q. The request is started on
2096 * return and LLD can start processing it immediately.
2097 *
2098 * Return:
2099 * Pointer to the request at the top of @q if available. Null
2100 * otherwise.
2101 *
2102 * Context:
2103 * queue_lock must be held.
2104 */
2105 struct request *blk_fetch_request(struct request_queue *q)
2106 {
2107 struct request *rq;
2108
2109 rq = blk_peek_request(q);
2110 if (rq)
2111 blk_start_request(rq);
2112 return rq;
2113 }
2114 EXPORT_SYMBOL(blk_fetch_request);
2115
2116 /**
2117 * blk_update_request - Special helper function for request stacking drivers
2118 * @req: the request being processed
2119 * @error: %0 for success, < %0 for error
2120 * @nr_bytes: number of bytes to complete @req
2121 *
2122 * Description:
2123 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2124 * the request structure even if @req doesn't have leftover.
2125 * If @req has leftover, sets it up for the next range of segments.
2126 *
2127 * This special helper function is only for request stacking drivers
2128 * (e.g. request-based dm) so that they can handle partial completion.
2129 * Actual device drivers should use blk_end_request instead.
2130 *
2131 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2132 * %false return from this function.
2133 *
2134 * Return:
2135 * %false - this request doesn't have any more data
2136 * %true - this request has more data
2137 **/
2138 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2139 {
2140 int total_bytes, bio_nbytes, next_idx = 0;
2141 struct bio *bio;
2142
2143 if (!req->bio)
2144 return false;
2145
2146 trace_block_rq_complete(req->q, req);
2147
2148 /*
2149 * For fs requests, rq is just carrier of independent bio's
2150 * and each partial completion should be handled separately.
2151 * Reset per-request error on each partial completion.
2152 *
2153 * TODO: tj: This is too subtle. It would be better to let
2154 * low level drivers do what they see fit.
2155 */
2156 if (req->cmd_type == REQ_TYPE_FS)
2157 req->errors = 0;
2158
2159 if (error && req->cmd_type == REQ_TYPE_FS &&
2160 !(req->cmd_flags & REQ_QUIET)) {
2161 char *error_type;
2162
2163 switch (error) {
2164 case -ENOLINK:
2165 error_type = "recoverable transport";
2166 break;
2167 case -EREMOTEIO:
2168 error_type = "critical target";
2169 break;
2170 case -EBADE:
2171 error_type = "critical nexus";
2172 break;
2173 case -EIO:
2174 default:
2175 error_type = "I/O";
2176 break;
2177 }
2178 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2179 error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2180 (unsigned long long)blk_rq_pos(req));
2181 }
2182
2183 blk_account_io_completion(req, nr_bytes);
2184
2185 total_bytes = bio_nbytes = 0;
2186 while ((bio = req->bio) != NULL) {
2187 int nbytes;
2188
2189 if (nr_bytes >= bio->bi_size) {
2190 req->bio = bio->bi_next;
2191 nbytes = bio->bi_size;
2192 req_bio_endio(req, bio, nbytes, error);
2193 next_idx = 0;
2194 bio_nbytes = 0;
2195 } else {
2196 int idx = bio->bi_idx + next_idx;
2197
2198 if (unlikely(idx >= bio->bi_vcnt)) {
2199 blk_dump_rq_flags(req, "__end_that");
2200 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2201 __func__, idx, bio->bi_vcnt);
2202 break;
2203 }
2204
2205 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2206 BIO_BUG_ON(nbytes > bio->bi_size);
2207
2208 /*
2209 * not a complete bvec done
2210 */
2211 if (unlikely(nbytes > nr_bytes)) {
2212 bio_nbytes += nr_bytes;
2213 total_bytes += nr_bytes;
2214 break;
2215 }
2216
2217 /*
2218 * advance to the next vector
2219 */
2220 next_idx++;
2221 bio_nbytes += nbytes;
2222 }
2223
2224 total_bytes += nbytes;
2225 nr_bytes -= nbytes;
2226
2227 bio = req->bio;
2228 if (bio) {
2229 /*
2230 * end more in this run, or just return 'not-done'
2231 */
2232 if (unlikely(nr_bytes <= 0))
2233 break;
2234 }
2235 }
2236
2237 /*
2238 * completely done
2239 */
2240 if (!req->bio) {
2241 /*
2242 * Reset counters so that the request stacking driver
2243 * can find how many bytes remain in the request
2244 * later.
2245 */
2246 req->__data_len = 0;
2247 return false;
2248 }
2249
2250 /*
2251 * if the request wasn't completed, update state
2252 */
2253 if (bio_nbytes) {
2254 req_bio_endio(req, bio, bio_nbytes, error);
2255 bio->bi_idx += next_idx;
2256 bio_iovec(bio)->bv_offset += nr_bytes;
2257 bio_iovec(bio)->bv_len -= nr_bytes;
2258 }
2259
2260 req->__data_len -= total_bytes;
2261 req->buffer = bio_data(req->bio);
2262
2263 /* update sector only for requests with clear definition of sector */
2264 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2265 req->__sector += total_bytes >> 9;
2266
2267 /* mixed attributes always follow the first bio */
2268 if (req->cmd_flags & REQ_MIXED_MERGE) {
2269 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2270 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2271 }
2272
2273 /*
2274 * If total number of sectors is less than the first segment
2275 * size, something has gone terribly wrong.
2276 */
2277 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2278 blk_dump_rq_flags(req, "request botched");
2279 req->__data_len = blk_rq_cur_bytes(req);
2280 }
2281
2282 /* recalculate the number of segments */
2283 blk_recalc_rq_segments(req);
2284
2285 return true;
2286 }
2287 EXPORT_SYMBOL_GPL(blk_update_request);
2288
2289 static bool blk_update_bidi_request(struct request *rq, int error,
2290 unsigned int nr_bytes,
2291 unsigned int bidi_bytes)
2292 {
2293 if (blk_update_request(rq, error, nr_bytes))
2294 return true;
2295
2296 /* Bidi request must be completed as a whole */
2297 if (unlikely(blk_bidi_rq(rq)) &&
2298 blk_update_request(rq->next_rq, error, bidi_bytes))
2299 return true;
2300
2301 if (blk_queue_add_random(rq->q))
2302 add_disk_randomness(rq->rq_disk);
2303
2304 return false;
2305 }
2306
2307 /**
2308 * blk_unprep_request - unprepare a request
2309 * @req: the request
2310 *
2311 * This function makes a request ready for complete resubmission (or
2312 * completion). It happens only after all error handling is complete,
2313 * so represents the appropriate moment to deallocate any resources
2314 * that were allocated to the request in the prep_rq_fn. The queue
2315 * lock is held when calling this.
2316 */
2317 void blk_unprep_request(struct request *req)
2318 {
2319 struct request_queue *q = req->q;
2320
2321 req->cmd_flags &= ~REQ_DONTPREP;
2322 if (q->unprep_rq_fn)
2323 q->unprep_rq_fn(q, req);
2324 }
2325 EXPORT_SYMBOL_GPL(blk_unprep_request);
2326
2327 /*
2328 * queue lock must be held
2329 */
2330 static void blk_finish_request(struct request *req, int error)
2331 {
2332 if (blk_rq_tagged(req))
2333 blk_queue_end_tag(req->q, req);
2334
2335 BUG_ON(blk_queued_rq(req));
2336
2337 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2338 laptop_io_completion(&req->q->backing_dev_info);
2339
2340 blk_delete_timer(req);
2341
2342 if (req->cmd_flags & REQ_DONTPREP)
2343 blk_unprep_request(req);
2344
2345
2346 blk_account_io_done(req);
2347
2348 if (req->end_io)
2349 req->end_io(req, error);
2350 else {
2351 if (blk_bidi_rq(req))
2352 __blk_put_request(req->next_rq->q, req->next_rq);
2353
2354 __blk_put_request(req->q, req);
2355 }
2356 }
2357
2358 /**
2359 * blk_end_bidi_request - Complete a bidi request
2360 * @rq: the request to complete
2361 * @error: %0 for success, < %0 for error
2362 * @nr_bytes: number of bytes to complete @rq
2363 * @bidi_bytes: number of bytes to complete @rq->next_rq
2364 *
2365 * Description:
2366 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2367 * Drivers that supports bidi can safely call this member for any
2368 * type of request, bidi or uni. In the later case @bidi_bytes is
2369 * just ignored.
2370 *
2371 * Return:
2372 * %false - we are done with this request
2373 * %true - still buffers pending for this request
2374 **/
2375 static bool blk_end_bidi_request(struct request *rq, int error,
2376 unsigned int nr_bytes, unsigned int bidi_bytes)
2377 {
2378 struct request_queue *q = rq->q;
2379 unsigned long flags;
2380
2381 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2382 return true;
2383
2384 spin_lock_irqsave(q->queue_lock, flags);
2385 blk_finish_request(rq, error);
2386 spin_unlock_irqrestore(q->queue_lock, flags);
2387
2388 return false;
2389 }
2390
2391 /**
2392 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2393 * @rq: the request to complete
2394 * @error: %0 for success, < %0 for error
2395 * @nr_bytes: number of bytes to complete @rq
2396 * @bidi_bytes: number of bytes to complete @rq->next_rq
2397 *
2398 * Description:
2399 * Identical to blk_end_bidi_request() except that queue lock is
2400 * assumed to be locked on entry and remains so on return.
2401 *
2402 * Return:
2403 * %false - we are done with this request
2404 * %true - still buffers pending for this request
2405 **/
2406 bool __blk_end_bidi_request(struct request *rq, int error,
2407 unsigned int nr_bytes, unsigned int bidi_bytes)
2408 {
2409 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2410 return true;
2411
2412 blk_finish_request(rq, error);
2413
2414 return false;
2415 }
2416
2417 /**
2418 * blk_end_request - Helper function for drivers to complete the request.
2419 * @rq: the request being processed
2420 * @error: %0 for success, < %0 for error
2421 * @nr_bytes: number of bytes to complete
2422 *
2423 * Description:
2424 * Ends I/O on a number of bytes attached to @rq.
2425 * If @rq has leftover, sets it up for the next range of segments.
2426 *
2427 * Return:
2428 * %false - we are done with this request
2429 * %true - still buffers pending for this request
2430 **/
2431 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2432 {
2433 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2434 }
2435 EXPORT_SYMBOL(blk_end_request);
2436
2437 /**
2438 * blk_end_request_all - Helper function for drives to finish the request.
2439 * @rq: the request to finish
2440 * @error: %0 for success, < %0 for error
2441 *
2442 * Description:
2443 * Completely finish @rq.
2444 */
2445 void blk_end_request_all(struct request *rq, int error)
2446 {
2447 bool pending;
2448 unsigned int bidi_bytes = 0;
2449
2450 if (unlikely(blk_bidi_rq(rq)))
2451 bidi_bytes = blk_rq_bytes(rq->next_rq);
2452
2453 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2454 BUG_ON(pending);
2455 }
2456 EXPORT_SYMBOL(blk_end_request_all);
2457
2458 /**
2459 * blk_end_request_cur - Helper function to finish the current request chunk.
2460 * @rq: the request to finish the current chunk for
2461 * @error: %0 for success, < %0 for error
2462 *
2463 * Description:
2464 * Complete the current consecutively mapped chunk from @rq.
2465 *
2466 * Return:
2467 * %false - we are done with this request
2468 * %true - still buffers pending for this request
2469 */
2470 bool blk_end_request_cur(struct request *rq, int error)
2471 {
2472 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2473 }
2474 EXPORT_SYMBOL(blk_end_request_cur);
2475
2476 /**
2477 * blk_end_request_err - Finish a request till the next failure boundary.
2478 * @rq: the request to finish till the next failure boundary for
2479 * @error: must be negative errno
2480 *
2481 * Description:
2482 * Complete @rq till the next failure boundary.
2483 *
2484 * Return:
2485 * %false - we are done with this request
2486 * %true - still buffers pending for this request
2487 */
2488 bool blk_end_request_err(struct request *rq, int error)
2489 {
2490 WARN_ON(error >= 0);
2491 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2492 }
2493 EXPORT_SYMBOL_GPL(blk_end_request_err);
2494
2495 /**
2496 * __blk_end_request - Helper function for drivers to complete the request.
2497 * @rq: the request being processed
2498 * @error: %0 for success, < %0 for error
2499 * @nr_bytes: number of bytes to complete
2500 *
2501 * Description:
2502 * Must be called with queue lock held unlike blk_end_request().
2503 *
2504 * Return:
2505 * %false - we are done with this request
2506 * %true - still buffers pending for this request
2507 **/
2508 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2509 {
2510 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2511 }
2512 EXPORT_SYMBOL(__blk_end_request);
2513
2514 /**
2515 * __blk_end_request_all - Helper function for drives to finish the request.
2516 * @rq: the request to finish
2517 * @error: %0 for success, < %0 for error
2518 *
2519 * Description:
2520 * Completely finish @rq. Must be called with queue lock held.
2521 */
2522 void __blk_end_request_all(struct request *rq, int error)
2523 {
2524 bool pending;
2525 unsigned int bidi_bytes = 0;
2526
2527 if (unlikely(blk_bidi_rq(rq)))
2528 bidi_bytes = blk_rq_bytes(rq->next_rq);
2529
2530 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2531 BUG_ON(pending);
2532 }
2533 EXPORT_SYMBOL(__blk_end_request_all);
2534
2535 /**
2536 * __blk_end_request_cur - Helper function to finish the current request chunk.
2537 * @rq: the request to finish the current chunk for
2538 * @error: %0 for success, < %0 for error
2539 *
2540 * Description:
2541 * Complete the current consecutively mapped chunk from @rq. Must
2542 * be called with queue lock held.
2543 *
2544 * Return:
2545 * %false - we are done with this request
2546 * %true - still buffers pending for this request
2547 */
2548 bool __blk_end_request_cur(struct request *rq, int error)
2549 {
2550 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2551 }
2552 EXPORT_SYMBOL(__blk_end_request_cur);
2553
2554 /**
2555 * __blk_end_request_err - Finish a request till the next failure boundary.
2556 * @rq: the request to finish till the next failure boundary for
2557 * @error: must be negative errno
2558 *
2559 * Description:
2560 * Complete @rq till the next failure boundary. Must be called
2561 * with queue lock held.
2562 *
2563 * Return:
2564 * %false - we are done with this request
2565 * %true - still buffers pending for this request
2566 */
2567 bool __blk_end_request_err(struct request *rq, int error)
2568 {
2569 WARN_ON(error >= 0);
2570 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2571 }
2572 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2573
2574 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2575 struct bio *bio)
2576 {
2577 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2578 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2579
2580 if (bio_has_data(bio)) {
2581 rq->nr_phys_segments = bio_phys_segments(q, bio);
2582 rq->buffer = bio_data(bio);
2583 }
2584 rq->__data_len = bio->bi_size;
2585 rq->bio = rq->biotail = bio;
2586
2587 if (bio->bi_bdev)
2588 rq->rq_disk = bio->bi_bdev->bd_disk;
2589 }
2590
2591 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2592 /**
2593 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2594 * @rq: the request to be flushed
2595 *
2596 * Description:
2597 * Flush all pages in @rq.
2598 */
2599 void rq_flush_dcache_pages(struct request *rq)
2600 {
2601 struct req_iterator iter;
2602 struct bio_vec *bvec;
2603
2604 rq_for_each_segment(bvec, rq, iter)
2605 flush_dcache_page(bvec->bv_page);
2606 }
2607 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2608 #endif
2609
2610 /**
2611 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2612 * @q : the queue of the device being checked
2613 *
2614 * Description:
2615 * Check if underlying low-level drivers of a device are busy.
2616 * If the drivers want to export their busy state, they must set own
2617 * exporting function using blk_queue_lld_busy() first.
2618 *
2619 * Basically, this function is used only by request stacking drivers
2620 * to stop dispatching requests to underlying devices when underlying
2621 * devices are busy. This behavior helps more I/O merging on the queue
2622 * of the request stacking driver and prevents I/O throughput regression
2623 * on burst I/O load.
2624 *
2625 * Return:
2626 * 0 - Not busy (The request stacking driver should dispatch request)
2627 * 1 - Busy (The request stacking driver should stop dispatching request)
2628 */
2629 int blk_lld_busy(struct request_queue *q)
2630 {
2631 if (q->lld_busy_fn)
2632 return q->lld_busy_fn(q);
2633
2634 return 0;
2635 }
2636 EXPORT_SYMBOL_GPL(blk_lld_busy);
2637
2638 /**
2639 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2640 * @rq: the clone request to be cleaned up
2641 *
2642 * Description:
2643 * Free all bios in @rq for a cloned request.
2644 */
2645 void blk_rq_unprep_clone(struct request *rq)
2646 {
2647 struct bio *bio;
2648
2649 while ((bio = rq->bio) != NULL) {
2650 rq->bio = bio->bi_next;
2651
2652 bio_put(bio);
2653 }
2654 }
2655 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2656
2657 /*
2658 * Copy attributes of the original request to the clone request.
2659 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2660 */
2661 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2662 {
2663 dst->cpu = src->cpu;
2664 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2665 dst->cmd_type = src->cmd_type;
2666 dst->__sector = blk_rq_pos(src);
2667 dst->__data_len = blk_rq_bytes(src);
2668 dst->nr_phys_segments = src->nr_phys_segments;
2669 dst->ioprio = src->ioprio;
2670 dst->extra_len = src->extra_len;
2671 }
2672
2673 /**
2674 * blk_rq_prep_clone - Helper function to setup clone request
2675 * @rq: the request to be setup
2676 * @rq_src: original request to be cloned
2677 * @bs: bio_set that bios for clone are allocated from
2678 * @gfp_mask: memory allocation mask for bio
2679 * @bio_ctr: setup function to be called for each clone bio.
2680 * Returns %0 for success, non %0 for failure.
2681 * @data: private data to be passed to @bio_ctr
2682 *
2683 * Description:
2684 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2685 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2686 * are not copied, and copying such parts is the caller's responsibility.
2687 * Also, pages which the original bios are pointing to are not copied
2688 * and the cloned bios just point same pages.
2689 * So cloned bios must be completed before original bios, which means
2690 * the caller must complete @rq before @rq_src.
2691 */
2692 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2693 struct bio_set *bs, gfp_t gfp_mask,
2694 int (*bio_ctr)(struct bio *, struct bio *, void *),
2695 void *data)
2696 {
2697 struct bio *bio, *bio_src;
2698
2699 if (!bs)
2700 bs = fs_bio_set;
2701
2702 blk_rq_init(NULL, rq);
2703
2704 __rq_for_each_bio(bio_src, rq_src) {
2705 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2706 if (!bio)
2707 goto free_and_out;
2708
2709 __bio_clone(bio, bio_src);
2710
2711 if (bio_integrity(bio_src) &&
2712 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2713 goto free_and_out;
2714
2715 if (bio_ctr && bio_ctr(bio, bio_src, data))
2716 goto free_and_out;
2717
2718 if (rq->bio) {
2719 rq->biotail->bi_next = bio;
2720 rq->biotail = bio;
2721 } else
2722 rq->bio = rq->biotail = bio;
2723 }
2724
2725 __blk_rq_prep_clone(rq, rq_src);
2726
2727 return 0;
2728
2729 free_and_out:
2730 if (bio)
2731 bio_free(bio, bs);
2732 blk_rq_unprep_clone(rq);
2733
2734 return -ENOMEM;
2735 }
2736 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2737
2738 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2739 {
2740 return queue_work(kblockd_workqueue, work);
2741 }
2742 EXPORT_SYMBOL(kblockd_schedule_work);
2743
2744 int kblockd_schedule_delayed_work(struct request_queue *q,
2745 struct delayed_work *dwork, unsigned long delay)
2746 {
2747 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2748 }
2749 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2750
2751 #define PLUG_MAGIC 0x91827364
2752
2753 /**
2754 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2755 * @plug: The &struct blk_plug that needs to be initialized
2756 *
2757 * Description:
2758 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2759 * pending I/O should the task end up blocking between blk_start_plug() and
2760 * blk_finish_plug(). This is important from a performance perspective, but
2761 * also ensures that we don't deadlock. For instance, if the task is blocking
2762 * for a memory allocation, memory reclaim could end up wanting to free a
2763 * page belonging to that request that is currently residing in our private
2764 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2765 * this kind of deadlock.
2766 */
2767 void blk_start_plug(struct blk_plug *plug)
2768 {
2769 struct task_struct *tsk = current;
2770
2771 plug->magic = PLUG_MAGIC;
2772 INIT_LIST_HEAD(&plug->list);
2773 INIT_LIST_HEAD(&plug->cb_list);
2774 plug->should_sort = 0;
2775
2776 /*
2777 * If this is a nested plug, don't actually assign it. It will be
2778 * flushed on its own.
2779 */
2780 if (!tsk->plug) {
2781 /*
2782 * Store ordering should not be needed here, since a potential
2783 * preempt will imply a full memory barrier
2784 */
2785 tsk->plug = plug;
2786 }
2787 }
2788 EXPORT_SYMBOL(blk_start_plug);
2789
2790 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2791 {
2792 struct request *rqa = container_of(a, struct request, queuelist);
2793 struct request *rqb = container_of(b, struct request, queuelist);
2794
2795 return !(rqa->q <= rqb->q);
2796 }
2797
2798 /*
2799 * If 'from_schedule' is true, then postpone the dispatch of requests
2800 * until a safe kblockd context. We due this to avoid accidental big
2801 * additional stack usage in driver dispatch, in places where the originally
2802 * plugger did not intend it.
2803 */
2804 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2805 bool from_schedule)
2806 __releases(q->queue_lock)
2807 {
2808 trace_block_unplug(q, depth, !from_schedule);
2809
2810 /*
2811 * Don't mess with dead queue.
2812 */
2813 if (unlikely(blk_queue_dead(q))) {
2814 spin_unlock(q->queue_lock);
2815 return;
2816 }
2817
2818 /*
2819 * If we are punting this to kblockd, then we can safely drop
2820 * the queue_lock before waking kblockd (which needs to take
2821 * this lock).
2822 */
2823 if (from_schedule) {
2824 spin_unlock(q->queue_lock);
2825 blk_run_queue_async(q);
2826 } else {
2827 __blk_run_queue(q);
2828 spin_unlock(q->queue_lock);
2829 }
2830
2831 }
2832
2833 static void flush_plug_callbacks(struct blk_plug *plug)
2834 {
2835 LIST_HEAD(callbacks);
2836
2837 if (list_empty(&plug->cb_list))
2838 return;
2839
2840 list_splice_init(&plug->cb_list, &callbacks);
2841
2842 while (!list_empty(&callbacks)) {
2843 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2844 struct blk_plug_cb,
2845 list);
2846 list_del(&cb->list);
2847 cb->callback(cb);
2848 }
2849 }
2850
2851 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2852 {
2853 struct request_queue *q;
2854 unsigned long flags;
2855 struct request *rq;
2856 LIST_HEAD(list);
2857 unsigned int depth;
2858
2859 BUG_ON(plug->magic != PLUG_MAGIC);
2860
2861 flush_plug_callbacks(plug);
2862 if (list_empty(&plug->list))
2863 return;
2864
2865 list_splice_init(&plug->list, &list);
2866
2867 if (plug->should_sort) {
2868 list_sort(NULL, &list, plug_rq_cmp);
2869 plug->should_sort = 0;
2870 }
2871
2872 q = NULL;
2873 depth = 0;
2874
2875 /*
2876 * Save and disable interrupts here, to avoid doing it for every
2877 * queue lock we have to take.
2878 */
2879 local_irq_save(flags);
2880 while (!list_empty(&list)) {
2881 rq = list_entry_rq(list.next);
2882 list_del_init(&rq->queuelist);
2883 BUG_ON(!rq->q);
2884 if (rq->q != q) {
2885 /*
2886 * This drops the queue lock
2887 */
2888 if (q)
2889 queue_unplugged(q, depth, from_schedule);
2890 q = rq->q;
2891 depth = 0;
2892 spin_lock(q->queue_lock);
2893 }
2894
2895 /*
2896 * Short-circuit if @q is dead
2897 */
2898 if (unlikely(blk_queue_dead(q))) {
2899 __blk_end_request_all(rq, -ENODEV);
2900 continue;
2901 }
2902
2903 /*
2904 * rq is already accounted, so use raw insert
2905 */
2906 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2907 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2908 else
2909 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
2910
2911 depth++;
2912 }
2913
2914 /*
2915 * This drops the queue lock
2916 */
2917 if (q)
2918 queue_unplugged(q, depth, from_schedule);
2919
2920 local_irq_restore(flags);
2921 }
2922
2923 void blk_finish_plug(struct blk_plug *plug)
2924 {
2925 blk_flush_plug_list(plug, false);
2926
2927 if (plug == current->plug)
2928 current->plug = NULL;
2929 }
2930 EXPORT_SYMBOL(blk_finish_plug);
2931
2932 int __init blk_dev_init(void)
2933 {
2934 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2935 sizeof(((struct request *)0)->cmd_flags));
2936
2937 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2938 kblockd_workqueue = alloc_workqueue("kblockd",
2939 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2940 if (!kblockd_workqueue)
2941 panic("Failed to create kblockd\n");
2942
2943 request_cachep = kmem_cache_create("blkdev_requests",
2944 sizeof(struct request), 0, SLAB_PANIC, NULL);
2945
2946 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2947 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2948
2949 return 0;
2950 }
This page took 0.087214 seconds and 6 git commands to generate.