blk-mq: add helper to insert requests from irq context
[deliverable/linux.git] / block / blk-mq.c
1 #include <linux/kernel.h>
2 #include <linux/module.h>
3 #include <linux/backing-dev.h>
4 #include <linux/bio.h>
5 #include <linux/blkdev.h>
6 #include <linux/mm.h>
7 #include <linux/init.h>
8 #include <linux/slab.h>
9 #include <linux/workqueue.h>
10 #include <linux/smp.h>
11 #include <linux/llist.h>
12 #include <linux/list_sort.h>
13 #include <linux/cpu.h>
14 #include <linux/cache.h>
15 #include <linux/sched/sysctl.h>
16 #include <linux/delay.h>
17
18 #include <trace/events/block.h>
19
20 #include <linux/blk-mq.h>
21 #include "blk.h"
22 #include "blk-mq.h"
23 #include "blk-mq-tag.h"
24
25 static DEFINE_MUTEX(all_q_mutex);
26 static LIST_HEAD(all_q_list);
27
28 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
29
30 static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
31 unsigned int cpu)
32 {
33 return per_cpu_ptr(q->queue_ctx, cpu);
34 }
35
36 /*
37 * This assumes per-cpu software queueing queues. They could be per-node
38 * as well, for instance. For now this is hardcoded as-is. Note that we don't
39 * care about preemption, since we know the ctx's are persistent. This does
40 * mean that we can't rely on ctx always matching the currently running CPU.
41 */
42 static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
43 {
44 return __blk_mq_get_ctx(q, get_cpu());
45 }
46
47 static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
48 {
49 put_cpu();
50 }
51
52 /*
53 * Check if any of the ctx's have pending work in this hardware queue
54 */
55 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
56 {
57 unsigned int i;
58
59 for (i = 0; i < hctx->ctx_map.map_size; i++)
60 if (hctx->ctx_map.map[i].word)
61 return true;
62
63 return false;
64 }
65
66 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
67 struct blk_mq_ctx *ctx)
68 {
69 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
70 }
71
72 #define CTX_TO_BIT(hctx, ctx) \
73 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
74
75 /*
76 * Mark this ctx as having pending work in this hardware queue
77 */
78 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
79 struct blk_mq_ctx *ctx)
80 {
81 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
82
83 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
84 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
85 }
86
87 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
88 struct blk_mq_ctx *ctx)
89 {
90 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
91
92 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
93 }
94
95 static struct request *__blk_mq_alloc_request(struct blk_mq_hw_ctx *hctx,
96 struct blk_mq_ctx *ctx,
97 gfp_t gfp, bool reserved)
98 {
99 struct request *rq;
100 unsigned int tag;
101
102 tag = blk_mq_get_tag(hctx, &ctx->last_tag, gfp, reserved);
103 if (tag != BLK_MQ_TAG_FAIL) {
104 rq = hctx->tags->rqs[tag];
105
106 rq->cmd_flags = 0;
107 if (blk_mq_tag_busy(hctx)) {
108 rq->cmd_flags = REQ_MQ_INFLIGHT;
109 atomic_inc(&hctx->nr_active);
110 }
111
112 rq->tag = tag;
113 return rq;
114 }
115
116 return NULL;
117 }
118
119 static int blk_mq_queue_enter(struct request_queue *q)
120 {
121 int ret;
122
123 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
124 smp_wmb();
125 /* we have problems to freeze the queue if it's initializing */
126 if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
127 return 0;
128
129 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
130
131 spin_lock_irq(q->queue_lock);
132 ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
133 !blk_queue_bypass(q) || blk_queue_dying(q),
134 *q->queue_lock);
135 /* inc usage with lock hold to avoid freeze_queue runs here */
136 if (!ret && !blk_queue_dying(q))
137 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
138 else if (blk_queue_dying(q))
139 ret = -ENODEV;
140 spin_unlock_irq(q->queue_lock);
141
142 return ret;
143 }
144
145 static void blk_mq_queue_exit(struct request_queue *q)
146 {
147 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
148 }
149
150 static void __blk_mq_drain_queue(struct request_queue *q)
151 {
152 while (true) {
153 s64 count;
154
155 spin_lock_irq(q->queue_lock);
156 count = percpu_counter_sum(&q->mq_usage_counter);
157 spin_unlock_irq(q->queue_lock);
158
159 if (count == 0)
160 break;
161 blk_mq_run_queues(q, false);
162 msleep(10);
163 }
164 }
165
166 /*
167 * Guarantee no request is in use, so we can change any data structure of
168 * the queue afterward.
169 */
170 static void blk_mq_freeze_queue(struct request_queue *q)
171 {
172 bool drain;
173
174 spin_lock_irq(q->queue_lock);
175 drain = !q->bypass_depth++;
176 queue_flag_set(QUEUE_FLAG_BYPASS, q);
177 spin_unlock_irq(q->queue_lock);
178
179 if (drain)
180 __blk_mq_drain_queue(q);
181 }
182
183 void blk_mq_drain_queue(struct request_queue *q)
184 {
185 __blk_mq_drain_queue(q);
186 }
187
188 static void blk_mq_unfreeze_queue(struct request_queue *q)
189 {
190 bool wake = false;
191
192 spin_lock_irq(q->queue_lock);
193 if (!--q->bypass_depth) {
194 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
195 wake = true;
196 }
197 WARN_ON_ONCE(q->bypass_depth < 0);
198 spin_unlock_irq(q->queue_lock);
199 if (wake)
200 wake_up_all(&q->mq_freeze_wq);
201 }
202
203 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
204 {
205 return blk_mq_has_free_tags(hctx->tags);
206 }
207 EXPORT_SYMBOL(blk_mq_can_queue);
208
209 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
210 struct request *rq, unsigned int rw_flags)
211 {
212 if (blk_queue_io_stat(q))
213 rw_flags |= REQ_IO_STAT;
214
215 INIT_LIST_HEAD(&rq->queuelist);
216 /* csd/requeue_work/fifo_time is initialized before use */
217 rq->q = q;
218 rq->mq_ctx = ctx;
219 rq->cmd_flags |= rw_flags;
220 rq->cmd_type = 0;
221 /* do not touch atomic flags, it needs atomic ops against the timer */
222 rq->cpu = -1;
223 rq->__data_len = 0;
224 rq->__sector = (sector_t) -1;
225 rq->bio = NULL;
226 rq->biotail = NULL;
227 INIT_HLIST_NODE(&rq->hash);
228 RB_CLEAR_NODE(&rq->rb_node);
229 memset(&rq->flush, 0, max(sizeof(rq->flush), sizeof(rq->elv)));
230 rq->rq_disk = NULL;
231 rq->part = NULL;
232 rq->start_time = jiffies;
233 #ifdef CONFIG_BLK_CGROUP
234 rq->rl = NULL;
235 set_start_time_ns(rq);
236 rq->io_start_time_ns = 0;
237 #endif
238 rq->nr_phys_segments = 0;
239 #if defined(CONFIG_BLK_DEV_INTEGRITY)
240 rq->nr_integrity_segments = 0;
241 #endif
242 rq->ioprio = 0;
243 rq->special = NULL;
244 /* tag was already set */
245 rq->errors = 0;
246 memset(rq->__cmd, 0, sizeof(rq->__cmd));
247 rq->cmd = rq->__cmd;
248 rq->cmd_len = BLK_MAX_CDB;
249
250 rq->extra_len = 0;
251 rq->sense_len = 0;
252 rq->resid_len = 0;
253 rq->sense = NULL;
254
255 rq->deadline = 0;
256 INIT_LIST_HEAD(&rq->timeout_list);
257 rq->timeout = 0;
258 rq->retries = 0;
259 rq->end_io = NULL;
260 rq->end_io_data = NULL;
261 rq->next_rq = NULL;
262
263 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
264 }
265
266 static struct request *blk_mq_alloc_request_pinned(struct request_queue *q,
267 int rw, gfp_t gfp,
268 bool reserved)
269 {
270 struct request *rq;
271
272 do {
273 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
274 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu);
275
276 rq = __blk_mq_alloc_request(hctx, ctx, gfp & ~__GFP_WAIT,
277 reserved);
278 if (rq) {
279 blk_mq_rq_ctx_init(q, ctx, rq, rw);
280 break;
281 }
282
283 if (gfp & __GFP_WAIT) {
284 __blk_mq_run_hw_queue(hctx);
285 blk_mq_put_ctx(ctx);
286 } else {
287 blk_mq_put_ctx(ctx);
288 break;
289 }
290
291 blk_mq_wait_for_tags(hctx, reserved);
292 } while (1);
293
294 return rq;
295 }
296
297 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp)
298 {
299 struct request *rq;
300
301 if (blk_mq_queue_enter(q))
302 return NULL;
303
304 rq = blk_mq_alloc_request_pinned(q, rw, gfp, false);
305 if (rq)
306 blk_mq_put_ctx(rq->mq_ctx);
307 return rq;
308 }
309 EXPORT_SYMBOL(blk_mq_alloc_request);
310
311 struct request *blk_mq_alloc_reserved_request(struct request_queue *q, int rw,
312 gfp_t gfp)
313 {
314 struct request *rq;
315
316 if (blk_mq_queue_enter(q))
317 return NULL;
318
319 rq = blk_mq_alloc_request_pinned(q, rw, gfp, true);
320 if (rq)
321 blk_mq_put_ctx(rq->mq_ctx);
322 return rq;
323 }
324 EXPORT_SYMBOL(blk_mq_alloc_reserved_request);
325
326 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
327 struct blk_mq_ctx *ctx, struct request *rq)
328 {
329 const int tag = rq->tag;
330 struct request_queue *q = rq->q;
331
332 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
333 atomic_dec(&hctx->nr_active);
334
335 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
336 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
337 blk_mq_queue_exit(q);
338 }
339
340 void blk_mq_free_request(struct request *rq)
341 {
342 struct blk_mq_ctx *ctx = rq->mq_ctx;
343 struct blk_mq_hw_ctx *hctx;
344 struct request_queue *q = rq->q;
345
346 ctx->rq_completed[rq_is_sync(rq)]++;
347
348 hctx = q->mq_ops->map_queue(q, ctx->cpu);
349 __blk_mq_free_request(hctx, ctx, rq);
350 }
351
352 /*
353 * Clone all relevant state from a request that has been put on hold in
354 * the flush state machine into the preallocated flush request that hangs
355 * off the request queue.
356 *
357 * For a driver the flush request should be invisible, that's why we are
358 * impersonating the original request here.
359 */
360 void blk_mq_clone_flush_request(struct request *flush_rq,
361 struct request *orig_rq)
362 {
363 struct blk_mq_hw_ctx *hctx =
364 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);
365
366 flush_rq->mq_ctx = orig_rq->mq_ctx;
367 flush_rq->tag = orig_rq->tag;
368 memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
369 hctx->cmd_size);
370 }
371
372 inline void __blk_mq_end_io(struct request *rq, int error)
373 {
374 blk_account_io_done(rq);
375
376 if (rq->end_io) {
377 rq->end_io(rq, error);
378 } else {
379 if (unlikely(blk_bidi_rq(rq)))
380 blk_mq_free_request(rq->next_rq);
381 blk_mq_free_request(rq);
382 }
383 }
384 EXPORT_SYMBOL(__blk_mq_end_io);
385
386 void blk_mq_end_io(struct request *rq, int error)
387 {
388 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
389 BUG();
390 __blk_mq_end_io(rq, error);
391 }
392 EXPORT_SYMBOL(blk_mq_end_io);
393
394 static void __blk_mq_complete_request_remote(void *data)
395 {
396 struct request *rq = data;
397
398 rq->q->softirq_done_fn(rq);
399 }
400
401 void __blk_mq_complete_request(struct request *rq)
402 {
403 struct blk_mq_ctx *ctx = rq->mq_ctx;
404 bool shared = false;
405 int cpu;
406
407 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
408 rq->q->softirq_done_fn(rq);
409 return;
410 }
411
412 cpu = get_cpu();
413 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
414 shared = cpus_share_cache(cpu, ctx->cpu);
415
416 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
417 rq->csd.func = __blk_mq_complete_request_remote;
418 rq->csd.info = rq;
419 rq->csd.flags = 0;
420 smp_call_function_single_async(ctx->cpu, &rq->csd);
421 } else {
422 rq->q->softirq_done_fn(rq);
423 }
424 put_cpu();
425 }
426
427 /**
428 * blk_mq_complete_request - end I/O on a request
429 * @rq: the request being processed
430 *
431 * Description:
432 * Ends all I/O on a request. It does not handle partial completions.
433 * The actual completion happens out-of-order, through a IPI handler.
434 **/
435 void blk_mq_complete_request(struct request *rq)
436 {
437 struct request_queue *q = rq->q;
438
439 if (unlikely(blk_should_fake_timeout(q)))
440 return;
441 if (!blk_mark_rq_complete(rq)) {
442 if (q->softirq_done_fn)
443 __blk_mq_complete_request(rq);
444 else
445 blk_mq_end_io(rq, rq->errors);
446 }
447 }
448 EXPORT_SYMBOL(blk_mq_complete_request);
449
450 static void blk_mq_start_request(struct request *rq, bool last)
451 {
452 struct request_queue *q = rq->q;
453
454 trace_block_rq_issue(q, rq);
455
456 rq->resid_len = blk_rq_bytes(rq);
457 if (unlikely(blk_bidi_rq(rq)))
458 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
459
460 /*
461 * Just mark start time and set the started bit. Due to memory
462 * ordering, we know we'll see the correct deadline as long as
463 * REQ_ATOMIC_STARTED is seen. Use the default queue timeout,
464 * unless one has been set in the request.
465 */
466 if (!rq->timeout)
467 rq->deadline = jiffies + q->rq_timeout;
468 else
469 rq->deadline = jiffies + rq->timeout;
470
471 /*
472 * Mark us as started and clear complete. Complete might have been
473 * set if requeue raced with timeout, which then marked it as
474 * complete. So be sure to clear complete again when we start
475 * the request, otherwise we'll ignore the completion event.
476 */
477 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
478 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
479
480 if (q->dma_drain_size && blk_rq_bytes(rq)) {
481 /*
482 * Make sure space for the drain appears. We know we can do
483 * this because max_hw_segments has been adjusted to be one
484 * fewer than the device can handle.
485 */
486 rq->nr_phys_segments++;
487 }
488
489 /*
490 * Flag the last request in the series so that drivers know when IO
491 * should be kicked off, if they don't do it on a per-request basis.
492 *
493 * Note: the flag isn't the only condition drivers should do kick off.
494 * If drive is busy, the last request might not have the bit set.
495 */
496 if (last)
497 rq->cmd_flags |= REQ_END;
498 }
499
500 static void __blk_mq_requeue_request(struct request *rq)
501 {
502 struct request_queue *q = rq->q;
503
504 trace_block_rq_requeue(q, rq);
505 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
506
507 rq->cmd_flags &= ~REQ_END;
508
509 if (q->dma_drain_size && blk_rq_bytes(rq))
510 rq->nr_phys_segments--;
511 }
512
513 void blk_mq_requeue_request(struct request *rq)
514 {
515 __blk_mq_requeue_request(rq);
516 blk_clear_rq_complete(rq);
517
518 BUG_ON(blk_queued_rq(rq));
519 blk_mq_add_to_requeue_list(rq, true);
520 }
521 EXPORT_SYMBOL(blk_mq_requeue_request);
522
523 static void blk_mq_requeue_work(struct work_struct *work)
524 {
525 struct request_queue *q =
526 container_of(work, struct request_queue, requeue_work);
527 LIST_HEAD(rq_list);
528 struct request *rq, *next;
529 unsigned long flags;
530
531 spin_lock_irqsave(&q->requeue_lock, flags);
532 list_splice_init(&q->requeue_list, &rq_list);
533 spin_unlock_irqrestore(&q->requeue_lock, flags);
534
535 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
536 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
537 continue;
538
539 rq->cmd_flags &= ~REQ_SOFTBARRIER;
540 list_del_init(&rq->queuelist);
541 blk_mq_insert_request(rq, true, false, false);
542 }
543
544 while (!list_empty(&rq_list)) {
545 rq = list_entry(rq_list.next, struct request, queuelist);
546 list_del_init(&rq->queuelist);
547 blk_mq_insert_request(rq, false, false, false);
548 }
549
550 blk_mq_run_queues(q, false);
551 }
552
553 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
554 {
555 struct request_queue *q = rq->q;
556 unsigned long flags;
557
558 /*
559 * We abuse this flag that is otherwise used by the I/O scheduler to
560 * request head insertation from the workqueue.
561 */
562 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
563
564 spin_lock_irqsave(&q->requeue_lock, flags);
565 if (at_head) {
566 rq->cmd_flags |= REQ_SOFTBARRIER;
567 list_add(&rq->queuelist, &q->requeue_list);
568 } else {
569 list_add_tail(&rq->queuelist, &q->requeue_list);
570 }
571 spin_unlock_irqrestore(&q->requeue_lock, flags);
572 }
573 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
574
575 void blk_mq_kick_requeue_list(struct request_queue *q)
576 {
577 kblockd_schedule_work(&q->requeue_work);
578 }
579 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
580
581 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
582 {
583 return tags->rqs[tag];
584 }
585 EXPORT_SYMBOL(blk_mq_tag_to_rq);
586
587 struct blk_mq_timeout_data {
588 struct blk_mq_hw_ctx *hctx;
589 unsigned long *next;
590 unsigned int *next_set;
591 };
592
593 static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
594 {
595 struct blk_mq_timeout_data *data = __data;
596 struct blk_mq_hw_ctx *hctx = data->hctx;
597 unsigned int tag;
598
599 /* It may not be in flight yet (this is where
600 * the REQ_ATOMIC_STARTED flag comes in). The requests are
601 * statically allocated, so we know it's always safe to access the
602 * memory associated with a bit offset into ->rqs[].
603 */
604 tag = 0;
605 do {
606 struct request *rq;
607
608 tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
609 if (tag >= hctx->tags->nr_tags)
610 break;
611
612 rq = blk_mq_tag_to_rq(hctx->tags, tag++);
613 if (rq->q != hctx->queue)
614 continue;
615 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
616 continue;
617
618 blk_rq_check_expired(rq, data->next, data->next_set);
619 } while (1);
620 }
621
622 static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
623 unsigned long *next,
624 unsigned int *next_set)
625 {
626 struct blk_mq_timeout_data data = {
627 .hctx = hctx,
628 .next = next,
629 .next_set = next_set,
630 };
631
632 /*
633 * Ask the tagging code to iterate busy requests, so we can
634 * check them for timeout.
635 */
636 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
637 }
638
639 static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
640 {
641 struct request_queue *q = rq->q;
642
643 /*
644 * We know that complete is set at this point. If STARTED isn't set
645 * anymore, then the request isn't active and the "timeout" should
646 * just be ignored. This can happen due to the bitflag ordering.
647 * Timeout first checks if STARTED is set, and if it is, assumes
648 * the request is active. But if we race with completion, then
649 * we both flags will get cleared. So check here again, and ignore
650 * a timeout event with a request that isn't active.
651 */
652 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
653 return BLK_EH_NOT_HANDLED;
654
655 if (!q->mq_ops->timeout)
656 return BLK_EH_RESET_TIMER;
657
658 return q->mq_ops->timeout(rq);
659 }
660
661 static void blk_mq_rq_timer(unsigned long data)
662 {
663 struct request_queue *q = (struct request_queue *) data;
664 struct blk_mq_hw_ctx *hctx;
665 unsigned long next = 0;
666 int i, next_set = 0;
667
668 queue_for_each_hw_ctx(q, hctx, i) {
669 /*
670 * If not software queues are currently mapped to this
671 * hardware queue, there's nothing to check
672 */
673 if (!hctx->nr_ctx || !hctx->tags)
674 continue;
675
676 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
677 }
678
679 if (next_set) {
680 next = blk_rq_timeout(round_jiffies_up(next));
681 mod_timer(&q->timeout, next);
682 } else {
683 queue_for_each_hw_ctx(q, hctx, i)
684 blk_mq_tag_idle(hctx);
685 }
686 }
687
688 /*
689 * Reverse check our software queue for entries that we could potentially
690 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
691 * too much time checking for merges.
692 */
693 static bool blk_mq_attempt_merge(struct request_queue *q,
694 struct blk_mq_ctx *ctx, struct bio *bio)
695 {
696 struct request *rq;
697 int checked = 8;
698
699 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
700 int el_ret;
701
702 if (!checked--)
703 break;
704
705 if (!blk_rq_merge_ok(rq, bio))
706 continue;
707
708 el_ret = blk_try_merge(rq, bio);
709 if (el_ret == ELEVATOR_BACK_MERGE) {
710 if (bio_attempt_back_merge(q, rq, bio)) {
711 ctx->rq_merged++;
712 return true;
713 }
714 break;
715 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
716 if (bio_attempt_front_merge(q, rq, bio)) {
717 ctx->rq_merged++;
718 return true;
719 }
720 break;
721 }
722 }
723
724 return false;
725 }
726
727 /*
728 * Process software queues that have been marked busy, splicing them
729 * to the for-dispatch
730 */
731 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
732 {
733 struct blk_mq_ctx *ctx;
734 int i;
735
736 for (i = 0; i < hctx->ctx_map.map_size; i++) {
737 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
738 unsigned int off, bit;
739
740 if (!bm->word)
741 continue;
742
743 bit = 0;
744 off = i * hctx->ctx_map.bits_per_word;
745 do {
746 bit = find_next_bit(&bm->word, bm->depth, bit);
747 if (bit >= bm->depth)
748 break;
749
750 ctx = hctx->ctxs[bit + off];
751 clear_bit(bit, &bm->word);
752 spin_lock(&ctx->lock);
753 list_splice_tail_init(&ctx->rq_list, list);
754 spin_unlock(&ctx->lock);
755
756 bit++;
757 } while (1);
758 }
759 }
760
761 /*
762 * Run this hardware queue, pulling any software queues mapped to it in.
763 * Note that this function currently has various problems around ordering
764 * of IO. In particular, we'd like FIFO behaviour on handling existing
765 * items on the hctx->dispatch list. Ignore that for now.
766 */
767 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
768 {
769 struct request_queue *q = hctx->queue;
770 struct request *rq;
771 LIST_HEAD(rq_list);
772 int queued;
773
774 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
775
776 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
777 return;
778
779 hctx->run++;
780
781 /*
782 * Touch any software queue that has pending entries.
783 */
784 flush_busy_ctxs(hctx, &rq_list);
785
786 /*
787 * If we have previous entries on our dispatch list, grab them
788 * and stuff them at the front for more fair dispatch.
789 */
790 if (!list_empty_careful(&hctx->dispatch)) {
791 spin_lock(&hctx->lock);
792 if (!list_empty(&hctx->dispatch))
793 list_splice_init(&hctx->dispatch, &rq_list);
794 spin_unlock(&hctx->lock);
795 }
796
797 /*
798 * Now process all the entries, sending them to the driver.
799 */
800 queued = 0;
801 while (!list_empty(&rq_list)) {
802 int ret;
803
804 rq = list_first_entry(&rq_list, struct request, queuelist);
805 list_del_init(&rq->queuelist);
806
807 blk_mq_start_request(rq, list_empty(&rq_list));
808
809 ret = q->mq_ops->queue_rq(hctx, rq);
810 switch (ret) {
811 case BLK_MQ_RQ_QUEUE_OK:
812 queued++;
813 continue;
814 case BLK_MQ_RQ_QUEUE_BUSY:
815 list_add(&rq->queuelist, &rq_list);
816 __blk_mq_requeue_request(rq);
817 break;
818 default:
819 pr_err("blk-mq: bad return on queue: %d\n", ret);
820 case BLK_MQ_RQ_QUEUE_ERROR:
821 rq->errors = -EIO;
822 blk_mq_end_io(rq, rq->errors);
823 break;
824 }
825
826 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
827 break;
828 }
829
830 if (!queued)
831 hctx->dispatched[0]++;
832 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
833 hctx->dispatched[ilog2(queued) + 1]++;
834
835 /*
836 * Any items that need requeuing? Stuff them into hctx->dispatch,
837 * that is where we will continue on next queue run.
838 */
839 if (!list_empty(&rq_list)) {
840 spin_lock(&hctx->lock);
841 list_splice(&rq_list, &hctx->dispatch);
842 spin_unlock(&hctx->lock);
843 }
844 }
845
846 /*
847 * It'd be great if the workqueue API had a way to pass
848 * in a mask and had some smarts for more clever placement.
849 * For now we just round-robin here, switching for every
850 * BLK_MQ_CPU_WORK_BATCH queued items.
851 */
852 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
853 {
854 int cpu = hctx->next_cpu;
855
856 if (--hctx->next_cpu_batch <= 0) {
857 int next_cpu;
858
859 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
860 if (next_cpu >= nr_cpu_ids)
861 next_cpu = cpumask_first(hctx->cpumask);
862
863 hctx->next_cpu = next_cpu;
864 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
865 }
866
867 return cpu;
868 }
869
870 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
871 {
872 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
873 return;
874
875 if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
876 __blk_mq_run_hw_queue(hctx);
877 else if (hctx->queue->nr_hw_queues == 1)
878 kblockd_schedule_delayed_work(&hctx->run_work, 0);
879 else {
880 unsigned int cpu;
881
882 cpu = blk_mq_hctx_next_cpu(hctx);
883 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
884 }
885 }
886
887 void blk_mq_run_queues(struct request_queue *q, bool async)
888 {
889 struct blk_mq_hw_ctx *hctx;
890 int i;
891
892 queue_for_each_hw_ctx(q, hctx, i) {
893 if ((!blk_mq_hctx_has_pending(hctx) &&
894 list_empty_careful(&hctx->dispatch)) ||
895 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
896 continue;
897
898 preempt_disable();
899 blk_mq_run_hw_queue(hctx, async);
900 preempt_enable();
901 }
902 }
903 EXPORT_SYMBOL(blk_mq_run_queues);
904
905 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
906 {
907 cancel_delayed_work(&hctx->run_work);
908 cancel_delayed_work(&hctx->delay_work);
909 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
910 }
911 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
912
913 void blk_mq_stop_hw_queues(struct request_queue *q)
914 {
915 struct blk_mq_hw_ctx *hctx;
916 int i;
917
918 queue_for_each_hw_ctx(q, hctx, i)
919 blk_mq_stop_hw_queue(hctx);
920 }
921 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
922
923 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
924 {
925 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
926
927 preempt_disable();
928 __blk_mq_run_hw_queue(hctx);
929 preempt_enable();
930 }
931 EXPORT_SYMBOL(blk_mq_start_hw_queue);
932
933 void blk_mq_start_hw_queues(struct request_queue *q)
934 {
935 struct blk_mq_hw_ctx *hctx;
936 int i;
937
938 queue_for_each_hw_ctx(q, hctx, i)
939 blk_mq_start_hw_queue(hctx);
940 }
941 EXPORT_SYMBOL(blk_mq_start_hw_queues);
942
943
944 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
945 {
946 struct blk_mq_hw_ctx *hctx;
947 int i;
948
949 queue_for_each_hw_ctx(q, hctx, i) {
950 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
951 continue;
952
953 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
954 preempt_disable();
955 blk_mq_run_hw_queue(hctx, async);
956 preempt_enable();
957 }
958 }
959 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
960
961 static void blk_mq_run_work_fn(struct work_struct *work)
962 {
963 struct blk_mq_hw_ctx *hctx;
964
965 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
966
967 __blk_mq_run_hw_queue(hctx);
968 }
969
970 static void blk_mq_delay_work_fn(struct work_struct *work)
971 {
972 struct blk_mq_hw_ctx *hctx;
973
974 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
975
976 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
977 __blk_mq_run_hw_queue(hctx);
978 }
979
980 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
981 {
982 unsigned long tmo = msecs_to_jiffies(msecs);
983
984 if (hctx->queue->nr_hw_queues == 1)
985 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
986 else {
987 unsigned int cpu;
988
989 cpu = blk_mq_hctx_next_cpu(hctx);
990 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
991 }
992 }
993 EXPORT_SYMBOL(blk_mq_delay_queue);
994
995 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
996 struct request *rq, bool at_head)
997 {
998 struct blk_mq_ctx *ctx = rq->mq_ctx;
999
1000 trace_block_rq_insert(hctx->queue, rq);
1001
1002 if (at_head)
1003 list_add(&rq->queuelist, &ctx->rq_list);
1004 else
1005 list_add_tail(&rq->queuelist, &ctx->rq_list);
1006
1007 blk_mq_hctx_mark_pending(hctx, ctx);
1008
1009 /*
1010 * We do this early, to ensure we are on the right CPU.
1011 */
1012 blk_add_timer(rq);
1013 }
1014
1015 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1016 bool async)
1017 {
1018 struct request_queue *q = rq->q;
1019 struct blk_mq_hw_ctx *hctx;
1020 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1021
1022 current_ctx = blk_mq_get_ctx(q);
1023 if (!cpu_online(ctx->cpu))
1024 rq->mq_ctx = ctx = current_ctx;
1025
1026 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1027
1028 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
1029 !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
1030 blk_insert_flush(rq);
1031 } else {
1032 spin_lock(&ctx->lock);
1033 __blk_mq_insert_request(hctx, rq, at_head);
1034 spin_unlock(&ctx->lock);
1035 }
1036
1037 if (run_queue)
1038 blk_mq_run_hw_queue(hctx, async);
1039
1040 blk_mq_put_ctx(current_ctx);
1041 }
1042
1043 static void blk_mq_insert_requests(struct request_queue *q,
1044 struct blk_mq_ctx *ctx,
1045 struct list_head *list,
1046 int depth,
1047 bool from_schedule)
1048
1049 {
1050 struct blk_mq_hw_ctx *hctx;
1051 struct blk_mq_ctx *current_ctx;
1052
1053 trace_block_unplug(q, depth, !from_schedule);
1054
1055 current_ctx = blk_mq_get_ctx(q);
1056
1057 if (!cpu_online(ctx->cpu))
1058 ctx = current_ctx;
1059 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1060
1061 /*
1062 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1063 * offline now
1064 */
1065 spin_lock(&ctx->lock);
1066 while (!list_empty(list)) {
1067 struct request *rq;
1068
1069 rq = list_first_entry(list, struct request, queuelist);
1070 list_del_init(&rq->queuelist);
1071 rq->mq_ctx = ctx;
1072 __blk_mq_insert_request(hctx, rq, false);
1073 }
1074 spin_unlock(&ctx->lock);
1075
1076 blk_mq_run_hw_queue(hctx, from_schedule);
1077 blk_mq_put_ctx(current_ctx);
1078 }
1079
1080 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1081 {
1082 struct request *rqa = container_of(a, struct request, queuelist);
1083 struct request *rqb = container_of(b, struct request, queuelist);
1084
1085 return !(rqa->mq_ctx < rqb->mq_ctx ||
1086 (rqa->mq_ctx == rqb->mq_ctx &&
1087 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1088 }
1089
1090 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1091 {
1092 struct blk_mq_ctx *this_ctx;
1093 struct request_queue *this_q;
1094 struct request *rq;
1095 LIST_HEAD(list);
1096 LIST_HEAD(ctx_list);
1097 unsigned int depth;
1098
1099 list_splice_init(&plug->mq_list, &list);
1100
1101 list_sort(NULL, &list, plug_ctx_cmp);
1102
1103 this_q = NULL;
1104 this_ctx = NULL;
1105 depth = 0;
1106
1107 while (!list_empty(&list)) {
1108 rq = list_entry_rq(list.next);
1109 list_del_init(&rq->queuelist);
1110 BUG_ON(!rq->q);
1111 if (rq->mq_ctx != this_ctx) {
1112 if (this_ctx) {
1113 blk_mq_insert_requests(this_q, this_ctx,
1114 &ctx_list, depth,
1115 from_schedule);
1116 }
1117
1118 this_ctx = rq->mq_ctx;
1119 this_q = rq->q;
1120 depth = 0;
1121 }
1122
1123 depth++;
1124 list_add_tail(&rq->queuelist, &ctx_list);
1125 }
1126
1127 /*
1128 * If 'this_ctx' is set, we know we have entries to complete
1129 * on 'ctx_list'. Do those.
1130 */
1131 if (this_ctx) {
1132 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1133 from_schedule);
1134 }
1135 }
1136
1137 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1138 {
1139 init_request_from_bio(rq, bio);
1140 blk_account_io_start(rq, 1);
1141 }
1142
1143 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1144 struct blk_mq_ctx *ctx,
1145 struct request *rq, struct bio *bio)
1146 {
1147 struct request_queue *q = hctx->queue;
1148
1149 if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE)) {
1150 blk_mq_bio_to_request(rq, bio);
1151 spin_lock(&ctx->lock);
1152 insert_rq:
1153 __blk_mq_insert_request(hctx, rq, false);
1154 spin_unlock(&ctx->lock);
1155 return false;
1156 } else {
1157 spin_lock(&ctx->lock);
1158 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1159 blk_mq_bio_to_request(rq, bio);
1160 goto insert_rq;
1161 }
1162
1163 spin_unlock(&ctx->lock);
1164 __blk_mq_free_request(hctx, ctx, rq);
1165 return true;
1166 }
1167 }
1168
1169 struct blk_map_ctx {
1170 struct blk_mq_hw_ctx *hctx;
1171 struct blk_mq_ctx *ctx;
1172 };
1173
1174 static struct request *blk_mq_map_request(struct request_queue *q,
1175 struct bio *bio,
1176 struct blk_map_ctx *data)
1177 {
1178 struct blk_mq_hw_ctx *hctx;
1179 struct blk_mq_ctx *ctx;
1180 struct request *rq;
1181 int rw = bio_data_dir(bio);
1182
1183 if (unlikely(blk_mq_queue_enter(q))) {
1184 bio_endio(bio, -EIO);
1185 return NULL;
1186 }
1187
1188 ctx = blk_mq_get_ctx(q);
1189 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1190
1191 if (rw_is_sync(bio->bi_rw))
1192 rw |= REQ_SYNC;
1193
1194 trace_block_getrq(q, bio, rw);
1195 rq = __blk_mq_alloc_request(hctx, ctx, GFP_ATOMIC, false);
1196 if (likely(rq))
1197 blk_mq_rq_ctx_init(q, ctx, rq, rw);
1198 else {
1199 blk_mq_put_ctx(ctx);
1200 trace_block_sleeprq(q, bio, rw);
1201 rq = blk_mq_alloc_request_pinned(q, rw, __GFP_WAIT|GFP_ATOMIC,
1202 false);
1203 ctx = rq->mq_ctx;
1204 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1205 }
1206
1207 hctx->queued++;
1208 data->hctx = hctx;
1209 data->ctx = ctx;
1210 return rq;
1211 }
1212
1213 /*
1214 * Multiple hardware queue variant. This will not use per-process plugs,
1215 * but will attempt to bypass the hctx queueing if we can go straight to
1216 * hardware for SYNC IO.
1217 */
1218 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1219 {
1220 const int is_sync = rw_is_sync(bio->bi_rw);
1221 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1222 struct blk_map_ctx data;
1223 struct request *rq;
1224
1225 blk_queue_bounce(q, &bio);
1226
1227 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1228 bio_endio(bio, -EIO);
1229 return;
1230 }
1231
1232 rq = blk_mq_map_request(q, bio, &data);
1233 if (unlikely(!rq))
1234 return;
1235
1236 if (unlikely(is_flush_fua)) {
1237 blk_mq_bio_to_request(rq, bio);
1238 blk_insert_flush(rq);
1239 goto run_queue;
1240 }
1241
1242 if (is_sync) {
1243 int ret;
1244
1245 blk_mq_bio_to_request(rq, bio);
1246 blk_mq_start_request(rq, true);
1247
1248 /*
1249 * For OK queue, we are done. For error, kill it. Any other
1250 * error (busy), just add it to our list as we previously
1251 * would have done
1252 */
1253 ret = q->mq_ops->queue_rq(data.hctx, rq);
1254 if (ret == BLK_MQ_RQ_QUEUE_OK)
1255 goto done;
1256 else {
1257 __blk_mq_requeue_request(rq);
1258
1259 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1260 rq->errors = -EIO;
1261 blk_mq_end_io(rq, rq->errors);
1262 goto done;
1263 }
1264 }
1265 }
1266
1267 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1268 /*
1269 * For a SYNC request, send it to the hardware immediately. For
1270 * an ASYNC request, just ensure that we run it later on. The
1271 * latter allows for merging opportunities and more efficient
1272 * dispatching.
1273 */
1274 run_queue:
1275 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1276 }
1277 done:
1278 blk_mq_put_ctx(data.ctx);
1279 }
1280
1281 /*
1282 * Single hardware queue variant. This will attempt to use any per-process
1283 * plug for merging and IO deferral.
1284 */
1285 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1286 {
1287 const int is_sync = rw_is_sync(bio->bi_rw);
1288 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1289 unsigned int use_plug, request_count = 0;
1290 struct blk_map_ctx data;
1291 struct request *rq;
1292
1293 /*
1294 * If we have multiple hardware queues, just go directly to
1295 * one of those for sync IO.
1296 */
1297 use_plug = !is_flush_fua && !is_sync;
1298
1299 blk_queue_bounce(q, &bio);
1300
1301 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1302 bio_endio(bio, -EIO);
1303 return;
1304 }
1305
1306 if (use_plug && !blk_queue_nomerges(q) &&
1307 blk_attempt_plug_merge(q, bio, &request_count))
1308 return;
1309
1310 rq = blk_mq_map_request(q, bio, &data);
1311
1312 if (unlikely(is_flush_fua)) {
1313 blk_mq_bio_to_request(rq, bio);
1314 blk_insert_flush(rq);
1315 goto run_queue;
1316 }
1317
1318 /*
1319 * A task plug currently exists. Since this is completely lockless,
1320 * utilize that to temporarily store requests until the task is
1321 * either done or scheduled away.
1322 */
1323 if (use_plug) {
1324 struct blk_plug *plug = current->plug;
1325
1326 if (plug) {
1327 blk_mq_bio_to_request(rq, bio);
1328 if (list_empty(&plug->mq_list))
1329 trace_block_plug(q);
1330 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1331 blk_flush_plug_list(plug, false);
1332 trace_block_plug(q);
1333 }
1334 list_add_tail(&rq->queuelist, &plug->mq_list);
1335 blk_mq_put_ctx(data.ctx);
1336 return;
1337 }
1338 }
1339
1340 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1341 /*
1342 * For a SYNC request, send it to the hardware immediately. For
1343 * an ASYNC request, just ensure that we run it later on. The
1344 * latter allows for merging opportunities and more efficient
1345 * dispatching.
1346 */
1347 run_queue:
1348 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1349 }
1350
1351 blk_mq_put_ctx(data.ctx);
1352 }
1353
1354 /*
1355 * Default mapping to a software queue, since we use one per CPU.
1356 */
1357 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1358 {
1359 return q->queue_hw_ctx[q->mq_map[cpu]];
1360 }
1361 EXPORT_SYMBOL(blk_mq_map_queue);
1362
1363 struct blk_mq_hw_ctx *blk_mq_alloc_single_hw_queue(struct blk_mq_tag_set *set,
1364 unsigned int hctx_index,
1365 int node)
1366 {
1367 return kzalloc_node(sizeof(struct blk_mq_hw_ctx), GFP_KERNEL, node);
1368 }
1369 EXPORT_SYMBOL(blk_mq_alloc_single_hw_queue);
1370
1371 void blk_mq_free_single_hw_queue(struct blk_mq_hw_ctx *hctx,
1372 unsigned int hctx_index)
1373 {
1374 kfree(hctx);
1375 }
1376 EXPORT_SYMBOL(blk_mq_free_single_hw_queue);
1377
1378 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1379 struct blk_mq_tags *tags, unsigned int hctx_idx)
1380 {
1381 struct page *page;
1382
1383 if (tags->rqs && set->ops->exit_request) {
1384 int i;
1385
1386 for (i = 0; i < tags->nr_tags; i++) {
1387 if (!tags->rqs[i])
1388 continue;
1389 set->ops->exit_request(set->driver_data, tags->rqs[i],
1390 hctx_idx, i);
1391 }
1392 }
1393
1394 while (!list_empty(&tags->page_list)) {
1395 page = list_first_entry(&tags->page_list, struct page, lru);
1396 list_del_init(&page->lru);
1397 __free_pages(page, page->private);
1398 }
1399
1400 kfree(tags->rqs);
1401
1402 blk_mq_free_tags(tags);
1403 }
1404
1405 static size_t order_to_size(unsigned int order)
1406 {
1407 return (size_t)PAGE_SIZE << order;
1408 }
1409
1410 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1411 unsigned int hctx_idx)
1412 {
1413 struct blk_mq_tags *tags;
1414 unsigned int i, j, entries_per_page, max_order = 4;
1415 size_t rq_size, left;
1416
1417 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1418 set->numa_node);
1419 if (!tags)
1420 return NULL;
1421
1422 INIT_LIST_HEAD(&tags->page_list);
1423
1424 tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *),
1425 GFP_KERNEL, set->numa_node);
1426 if (!tags->rqs) {
1427 blk_mq_free_tags(tags);
1428 return NULL;
1429 }
1430
1431 /*
1432 * rq_size is the size of the request plus driver payload, rounded
1433 * to the cacheline size
1434 */
1435 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1436 cache_line_size());
1437 left = rq_size * set->queue_depth;
1438
1439 for (i = 0; i < set->queue_depth; ) {
1440 int this_order = max_order;
1441 struct page *page;
1442 int to_do;
1443 void *p;
1444
1445 while (left < order_to_size(this_order - 1) && this_order)
1446 this_order--;
1447
1448 do {
1449 page = alloc_pages_node(set->numa_node, GFP_KERNEL,
1450 this_order);
1451 if (page)
1452 break;
1453 if (!this_order--)
1454 break;
1455 if (order_to_size(this_order) < rq_size)
1456 break;
1457 } while (1);
1458
1459 if (!page)
1460 goto fail;
1461
1462 page->private = this_order;
1463 list_add_tail(&page->lru, &tags->page_list);
1464
1465 p = page_address(page);
1466 entries_per_page = order_to_size(this_order) / rq_size;
1467 to_do = min(entries_per_page, set->queue_depth - i);
1468 left -= to_do * rq_size;
1469 for (j = 0; j < to_do; j++) {
1470 tags->rqs[i] = p;
1471 if (set->ops->init_request) {
1472 if (set->ops->init_request(set->driver_data,
1473 tags->rqs[i], hctx_idx, i,
1474 set->numa_node))
1475 goto fail;
1476 }
1477
1478 p += rq_size;
1479 i++;
1480 }
1481 }
1482
1483 return tags;
1484
1485 fail:
1486 pr_warn("%s: failed to allocate requests\n", __func__);
1487 blk_mq_free_rq_map(set, tags, hctx_idx);
1488 return NULL;
1489 }
1490
1491 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1492 {
1493 kfree(bitmap->map);
1494 }
1495
1496 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1497 {
1498 unsigned int bpw = 8, total, num_maps, i;
1499
1500 bitmap->bits_per_word = bpw;
1501
1502 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1503 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1504 GFP_KERNEL, node);
1505 if (!bitmap->map)
1506 return -ENOMEM;
1507
1508 bitmap->map_size = num_maps;
1509
1510 total = nr_cpu_ids;
1511 for (i = 0; i < num_maps; i++) {
1512 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1513 total -= bitmap->map[i].depth;
1514 }
1515
1516 return 0;
1517 }
1518
1519 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1520 {
1521 struct request_queue *q = hctx->queue;
1522 struct blk_mq_ctx *ctx;
1523 LIST_HEAD(tmp);
1524
1525 /*
1526 * Move ctx entries to new CPU, if this one is going away.
1527 */
1528 ctx = __blk_mq_get_ctx(q, cpu);
1529
1530 spin_lock(&ctx->lock);
1531 if (!list_empty(&ctx->rq_list)) {
1532 list_splice_init(&ctx->rq_list, &tmp);
1533 blk_mq_hctx_clear_pending(hctx, ctx);
1534 }
1535 spin_unlock(&ctx->lock);
1536
1537 if (list_empty(&tmp))
1538 return NOTIFY_OK;
1539
1540 ctx = blk_mq_get_ctx(q);
1541 spin_lock(&ctx->lock);
1542
1543 while (!list_empty(&tmp)) {
1544 struct request *rq;
1545
1546 rq = list_first_entry(&tmp, struct request, queuelist);
1547 rq->mq_ctx = ctx;
1548 list_move_tail(&rq->queuelist, &ctx->rq_list);
1549 }
1550
1551 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1552 blk_mq_hctx_mark_pending(hctx, ctx);
1553
1554 spin_unlock(&ctx->lock);
1555
1556 blk_mq_run_hw_queue(hctx, true);
1557 blk_mq_put_ctx(ctx);
1558 return NOTIFY_OK;
1559 }
1560
1561 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1562 {
1563 struct request_queue *q = hctx->queue;
1564 struct blk_mq_tag_set *set = q->tag_set;
1565
1566 if (set->tags[hctx->queue_num])
1567 return NOTIFY_OK;
1568
1569 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1570 if (!set->tags[hctx->queue_num])
1571 return NOTIFY_STOP;
1572
1573 hctx->tags = set->tags[hctx->queue_num];
1574 return NOTIFY_OK;
1575 }
1576
1577 static int blk_mq_hctx_notify(void *data, unsigned long action,
1578 unsigned int cpu)
1579 {
1580 struct blk_mq_hw_ctx *hctx = data;
1581
1582 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1583 return blk_mq_hctx_cpu_offline(hctx, cpu);
1584 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1585 return blk_mq_hctx_cpu_online(hctx, cpu);
1586
1587 return NOTIFY_OK;
1588 }
1589
1590 static void blk_mq_exit_hw_queues(struct request_queue *q,
1591 struct blk_mq_tag_set *set, int nr_queue)
1592 {
1593 struct blk_mq_hw_ctx *hctx;
1594 unsigned int i;
1595
1596 queue_for_each_hw_ctx(q, hctx, i) {
1597 if (i == nr_queue)
1598 break;
1599
1600 if (set->ops->exit_hctx)
1601 set->ops->exit_hctx(hctx, i);
1602
1603 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1604 kfree(hctx->ctxs);
1605 blk_mq_free_bitmap(&hctx->ctx_map);
1606 }
1607
1608 }
1609
1610 static void blk_mq_free_hw_queues(struct request_queue *q,
1611 struct blk_mq_tag_set *set)
1612 {
1613 struct blk_mq_hw_ctx *hctx;
1614 unsigned int i;
1615
1616 queue_for_each_hw_ctx(q, hctx, i) {
1617 free_cpumask_var(hctx->cpumask);
1618 set->ops->free_hctx(hctx, i);
1619 }
1620 }
1621
1622 static int blk_mq_init_hw_queues(struct request_queue *q,
1623 struct blk_mq_tag_set *set)
1624 {
1625 struct blk_mq_hw_ctx *hctx;
1626 unsigned int i;
1627
1628 /*
1629 * Initialize hardware queues
1630 */
1631 queue_for_each_hw_ctx(q, hctx, i) {
1632 int node;
1633
1634 node = hctx->numa_node;
1635 if (node == NUMA_NO_NODE)
1636 node = hctx->numa_node = set->numa_node;
1637
1638 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1639 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1640 spin_lock_init(&hctx->lock);
1641 INIT_LIST_HEAD(&hctx->dispatch);
1642 hctx->queue = q;
1643 hctx->queue_num = i;
1644 hctx->flags = set->flags;
1645 hctx->cmd_size = set->cmd_size;
1646
1647 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1648 blk_mq_hctx_notify, hctx);
1649 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1650
1651 hctx->tags = set->tags[i];
1652
1653 /*
1654 * Allocate space for all possible cpus to avoid allocation in
1655 * runtime
1656 */
1657 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1658 GFP_KERNEL, node);
1659 if (!hctx->ctxs)
1660 break;
1661
1662 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1663 break;
1664
1665 hctx->nr_ctx = 0;
1666
1667 if (set->ops->init_hctx &&
1668 set->ops->init_hctx(hctx, set->driver_data, i))
1669 break;
1670 }
1671
1672 if (i == q->nr_hw_queues)
1673 return 0;
1674
1675 /*
1676 * Init failed
1677 */
1678 blk_mq_exit_hw_queues(q, set, i);
1679
1680 return 1;
1681 }
1682
1683 static void blk_mq_init_cpu_queues(struct request_queue *q,
1684 unsigned int nr_hw_queues)
1685 {
1686 unsigned int i;
1687
1688 for_each_possible_cpu(i) {
1689 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1690 struct blk_mq_hw_ctx *hctx;
1691
1692 memset(__ctx, 0, sizeof(*__ctx));
1693 __ctx->cpu = i;
1694 spin_lock_init(&__ctx->lock);
1695 INIT_LIST_HEAD(&__ctx->rq_list);
1696 __ctx->queue = q;
1697
1698 /* If the cpu isn't online, the cpu is mapped to first hctx */
1699 if (!cpu_online(i))
1700 continue;
1701
1702 hctx = q->mq_ops->map_queue(q, i);
1703 cpumask_set_cpu(i, hctx->cpumask);
1704 hctx->nr_ctx++;
1705
1706 /*
1707 * Set local node, IFF we have more than one hw queue. If
1708 * not, we remain on the home node of the device
1709 */
1710 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1711 hctx->numa_node = cpu_to_node(i);
1712 }
1713 }
1714
1715 static void blk_mq_map_swqueue(struct request_queue *q)
1716 {
1717 unsigned int i;
1718 struct blk_mq_hw_ctx *hctx;
1719 struct blk_mq_ctx *ctx;
1720
1721 queue_for_each_hw_ctx(q, hctx, i) {
1722 cpumask_clear(hctx->cpumask);
1723 hctx->nr_ctx = 0;
1724 }
1725
1726 /*
1727 * Map software to hardware queues
1728 */
1729 queue_for_each_ctx(q, ctx, i) {
1730 /* If the cpu isn't online, the cpu is mapped to first hctx */
1731 if (!cpu_online(i))
1732 continue;
1733
1734 hctx = q->mq_ops->map_queue(q, i);
1735 cpumask_set_cpu(i, hctx->cpumask);
1736 ctx->index_hw = hctx->nr_ctx;
1737 hctx->ctxs[hctx->nr_ctx++] = ctx;
1738 }
1739
1740 queue_for_each_hw_ctx(q, hctx, i) {
1741 /*
1742 * If not software queues are mapped to this hardware queue,
1743 * disable it and free the request entries
1744 */
1745 if (!hctx->nr_ctx) {
1746 struct blk_mq_tag_set *set = q->tag_set;
1747
1748 if (set->tags[i]) {
1749 blk_mq_free_rq_map(set, set->tags[i], i);
1750 set->tags[i] = NULL;
1751 hctx->tags = NULL;
1752 }
1753 continue;
1754 }
1755
1756 /*
1757 * Initialize batch roundrobin counts
1758 */
1759 hctx->next_cpu = cpumask_first(hctx->cpumask);
1760 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1761 }
1762 }
1763
1764 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1765 {
1766 struct blk_mq_hw_ctx *hctx;
1767 struct request_queue *q;
1768 bool shared;
1769 int i;
1770
1771 if (set->tag_list.next == set->tag_list.prev)
1772 shared = false;
1773 else
1774 shared = true;
1775
1776 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1777 blk_mq_freeze_queue(q);
1778
1779 queue_for_each_hw_ctx(q, hctx, i) {
1780 if (shared)
1781 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1782 else
1783 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1784 }
1785 blk_mq_unfreeze_queue(q);
1786 }
1787 }
1788
1789 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1790 {
1791 struct blk_mq_tag_set *set = q->tag_set;
1792
1793 blk_mq_freeze_queue(q);
1794
1795 mutex_lock(&set->tag_list_lock);
1796 list_del_init(&q->tag_set_list);
1797 blk_mq_update_tag_set_depth(set);
1798 mutex_unlock(&set->tag_list_lock);
1799
1800 blk_mq_unfreeze_queue(q);
1801 }
1802
1803 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1804 struct request_queue *q)
1805 {
1806 q->tag_set = set;
1807
1808 mutex_lock(&set->tag_list_lock);
1809 list_add_tail(&q->tag_set_list, &set->tag_list);
1810 blk_mq_update_tag_set_depth(set);
1811 mutex_unlock(&set->tag_list_lock);
1812 }
1813
1814 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1815 {
1816 struct blk_mq_hw_ctx **hctxs;
1817 struct blk_mq_ctx *ctx;
1818 struct request_queue *q;
1819 unsigned int *map;
1820 int i;
1821
1822 ctx = alloc_percpu(struct blk_mq_ctx);
1823 if (!ctx)
1824 return ERR_PTR(-ENOMEM);
1825
1826 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1827 set->numa_node);
1828
1829 if (!hctxs)
1830 goto err_percpu;
1831
1832 map = blk_mq_make_queue_map(set);
1833 if (!map)
1834 goto err_map;
1835
1836 for (i = 0; i < set->nr_hw_queues; i++) {
1837 int node = blk_mq_hw_queue_to_node(map, i);
1838
1839 hctxs[i] = set->ops->alloc_hctx(set, i, node);
1840 if (!hctxs[i])
1841 goto err_hctxs;
1842
1843 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1844 goto err_hctxs;
1845
1846 atomic_set(&hctxs[i]->nr_active, 0);
1847 hctxs[i]->numa_node = node;
1848 hctxs[i]->queue_num = i;
1849 }
1850
1851 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1852 if (!q)
1853 goto err_hctxs;
1854
1855 if (percpu_counter_init(&q->mq_usage_counter, 0))
1856 goto err_map;
1857
1858 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1859 blk_queue_rq_timeout(q, 30000);
1860
1861 q->nr_queues = nr_cpu_ids;
1862 q->nr_hw_queues = set->nr_hw_queues;
1863 q->mq_map = map;
1864
1865 q->queue_ctx = ctx;
1866 q->queue_hw_ctx = hctxs;
1867
1868 q->mq_ops = set->ops;
1869 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1870
1871 q->sg_reserved_size = INT_MAX;
1872
1873 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1874 INIT_LIST_HEAD(&q->requeue_list);
1875 spin_lock_init(&q->requeue_lock);
1876
1877 if (q->nr_hw_queues > 1)
1878 blk_queue_make_request(q, blk_mq_make_request);
1879 else
1880 blk_queue_make_request(q, blk_sq_make_request);
1881
1882 blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
1883 if (set->timeout)
1884 blk_queue_rq_timeout(q, set->timeout);
1885
1886 /*
1887 * Do this after blk_queue_make_request() overrides it...
1888 */
1889 q->nr_requests = set->queue_depth;
1890
1891 if (set->ops->complete)
1892 blk_queue_softirq_done(q, set->ops->complete);
1893
1894 blk_mq_init_flush(q);
1895 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1896
1897 q->flush_rq = kzalloc(round_up(sizeof(struct request) +
1898 set->cmd_size, cache_line_size()),
1899 GFP_KERNEL);
1900 if (!q->flush_rq)
1901 goto err_hw;
1902
1903 if (blk_mq_init_hw_queues(q, set))
1904 goto err_flush_rq;
1905
1906 mutex_lock(&all_q_mutex);
1907 list_add_tail(&q->all_q_node, &all_q_list);
1908 mutex_unlock(&all_q_mutex);
1909
1910 blk_mq_add_queue_tag_set(set, q);
1911
1912 blk_mq_map_swqueue(q);
1913
1914 return q;
1915
1916 err_flush_rq:
1917 kfree(q->flush_rq);
1918 err_hw:
1919 blk_cleanup_queue(q);
1920 err_hctxs:
1921 kfree(map);
1922 for (i = 0; i < set->nr_hw_queues; i++) {
1923 if (!hctxs[i])
1924 break;
1925 free_cpumask_var(hctxs[i]->cpumask);
1926 set->ops->free_hctx(hctxs[i], i);
1927 }
1928 err_map:
1929 kfree(hctxs);
1930 err_percpu:
1931 free_percpu(ctx);
1932 return ERR_PTR(-ENOMEM);
1933 }
1934 EXPORT_SYMBOL(blk_mq_init_queue);
1935
1936 void blk_mq_free_queue(struct request_queue *q)
1937 {
1938 struct blk_mq_tag_set *set = q->tag_set;
1939
1940 blk_mq_del_queue_tag_set(q);
1941
1942 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1943 blk_mq_free_hw_queues(q, set);
1944
1945 percpu_counter_destroy(&q->mq_usage_counter);
1946
1947 free_percpu(q->queue_ctx);
1948 kfree(q->queue_hw_ctx);
1949 kfree(q->mq_map);
1950
1951 q->queue_ctx = NULL;
1952 q->queue_hw_ctx = NULL;
1953 q->mq_map = NULL;
1954
1955 mutex_lock(&all_q_mutex);
1956 list_del_init(&q->all_q_node);
1957 mutex_unlock(&all_q_mutex);
1958 }
1959
1960 /* Basically redo blk_mq_init_queue with queue frozen */
1961 static void blk_mq_queue_reinit(struct request_queue *q)
1962 {
1963 blk_mq_freeze_queue(q);
1964
1965 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1966
1967 /*
1968 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1969 * we should change hctx numa_node according to new topology (this
1970 * involves free and re-allocate memory, worthy doing?)
1971 */
1972
1973 blk_mq_map_swqueue(q);
1974
1975 blk_mq_unfreeze_queue(q);
1976 }
1977
1978 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1979 unsigned long action, void *hcpu)
1980 {
1981 struct request_queue *q;
1982
1983 /*
1984 * Before new mappings are established, hotadded cpu might already
1985 * start handling requests. This doesn't break anything as we map
1986 * offline CPUs to first hardware queue. We will re-init the queue
1987 * below to get optimal settings.
1988 */
1989 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1990 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1991 return NOTIFY_OK;
1992
1993 mutex_lock(&all_q_mutex);
1994 list_for_each_entry(q, &all_q_list, all_q_node)
1995 blk_mq_queue_reinit(q);
1996 mutex_unlock(&all_q_mutex);
1997 return NOTIFY_OK;
1998 }
1999
2000 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2001 {
2002 int i;
2003
2004 if (!set->nr_hw_queues)
2005 return -EINVAL;
2006 if (!set->queue_depth || set->queue_depth > BLK_MQ_MAX_DEPTH)
2007 return -EINVAL;
2008 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2009 return -EINVAL;
2010
2011 if (!set->nr_hw_queues ||
2012 !set->ops->queue_rq || !set->ops->map_queue ||
2013 !set->ops->alloc_hctx || !set->ops->free_hctx)
2014 return -EINVAL;
2015
2016
2017 set->tags = kmalloc_node(set->nr_hw_queues *
2018 sizeof(struct blk_mq_tags *),
2019 GFP_KERNEL, set->numa_node);
2020 if (!set->tags)
2021 goto out;
2022
2023 for (i = 0; i < set->nr_hw_queues; i++) {
2024 set->tags[i] = blk_mq_init_rq_map(set, i);
2025 if (!set->tags[i])
2026 goto out_unwind;
2027 }
2028
2029 mutex_init(&set->tag_list_lock);
2030 INIT_LIST_HEAD(&set->tag_list);
2031
2032 return 0;
2033
2034 out_unwind:
2035 while (--i >= 0)
2036 blk_mq_free_rq_map(set, set->tags[i], i);
2037 out:
2038 return -ENOMEM;
2039 }
2040 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2041
2042 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2043 {
2044 int i;
2045
2046 for (i = 0; i < set->nr_hw_queues; i++) {
2047 if (set->tags[i])
2048 blk_mq_free_rq_map(set, set->tags[i], i);
2049 }
2050
2051 kfree(set->tags);
2052 }
2053 EXPORT_SYMBOL(blk_mq_free_tag_set);
2054
2055 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2056 {
2057 struct blk_mq_tag_set *set = q->tag_set;
2058 struct blk_mq_hw_ctx *hctx;
2059 int i, ret;
2060
2061 if (!set || nr > set->queue_depth)
2062 return -EINVAL;
2063
2064 ret = 0;
2065 queue_for_each_hw_ctx(q, hctx, i) {
2066 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2067 if (ret)
2068 break;
2069 }
2070
2071 if (!ret)
2072 q->nr_requests = nr;
2073
2074 return ret;
2075 }
2076
2077 void blk_mq_disable_hotplug(void)
2078 {
2079 mutex_lock(&all_q_mutex);
2080 }
2081
2082 void blk_mq_enable_hotplug(void)
2083 {
2084 mutex_unlock(&all_q_mutex);
2085 }
2086
2087 static int __init blk_mq_init(void)
2088 {
2089 blk_mq_cpu_init();
2090
2091 /* Must be called after percpu_counter_hotcpu_callback() */
2092 hotcpu_notifier(blk_mq_queue_reinit_notify, -10);
2093
2094 return 0;
2095 }
2096 subsys_initcall(blk_mq_init);
This page took 0.072855 seconds and 6 git commands to generate.