2 * Functions related to setting various queue properties from drivers
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
13 unsigned long blk_max_low_pfn
;
14 EXPORT_SYMBOL(blk_max_low_pfn
);
16 unsigned long blk_max_pfn
;
19 * blk_queue_prep_rq - set a prepare_request function for queue
21 * @pfn: prepare_request function
23 * It's possible for a queue to register a prepare_request callback which
24 * is invoked before the request is handed to the request_fn. The goal of
25 * the function is to prepare a request for I/O, it can be used to build a
26 * cdb from the request data for instance.
29 void blk_queue_prep_rq(struct request_queue
*q
, prep_rq_fn
*pfn
)
33 EXPORT_SYMBOL(blk_queue_prep_rq
);
36 * blk_queue_set_discard - set a discard_sectors function for queue
38 * @dfn: prepare_discard function
40 * It's possible for a queue to register a discard callback which is used
41 * to transform a discard request into the appropriate type for the
42 * hardware. If none is registered, then discard requests are failed
46 void blk_queue_set_discard(struct request_queue
*q
, prepare_discard_fn
*dfn
)
48 q
->prepare_discard_fn
= dfn
;
50 EXPORT_SYMBOL(blk_queue_set_discard
);
53 * blk_queue_merge_bvec - set a merge_bvec function for queue
55 * @mbfn: merge_bvec_fn
57 * Usually queues have static limitations on the max sectors or segments that
58 * we can put in a request. Stacking drivers may have some settings that
59 * are dynamic, and thus we have to query the queue whether it is ok to
60 * add a new bio_vec to a bio at a given offset or not. If the block device
61 * has such limitations, it needs to register a merge_bvec_fn to control
62 * the size of bio's sent to it. Note that a block device *must* allow a
63 * single page to be added to an empty bio. The block device driver may want
64 * to use the bio_split() function to deal with these bio's. By default
65 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
68 void blk_queue_merge_bvec(struct request_queue
*q
, merge_bvec_fn
*mbfn
)
70 q
->merge_bvec_fn
= mbfn
;
72 EXPORT_SYMBOL(blk_queue_merge_bvec
);
74 void blk_queue_softirq_done(struct request_queue
*q
, softirq_done_fn
*fn
)
76 q
->softirq_done_fn
= fn
;
78 EXPORT_SYMBOL(blk_queue_softirq_done
);
81 * blk_queue_make_request - define an alternate make_request function for a device
82 * @q: the request queue for the device to be affected
83 * @mfn: the alternate make_request function
86 * The normal way for &struct bios to be passed to a device
87 * driver is for them to be collected into requests on a request
88 * queue, and then to allow the device driver to select requests
89 * off that queue when it is ready. This works well for many block
90 * devices. However some block devices (typically virtual devices
91 * such as md or lvm) do not benefit from the processing on the
92 * request queue, and are served best by having the requests passed
93 * directly to them. This can be achieved by providing a function
94 * to blk_queue_make_request().
97 * The driver that does this *must* be able to deal appropriately
98 * with buffers in "highmemory". This can be accomplished by either calling
99 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
100 * blk_queue_bounce() to create a buffer in normal memory.
102 void blk_queue_make_request(struct request_queue
*q
, make_request_fn
*mfn
)
107 q
->nr_requests
= BLKDEV_MAX_RQ
;
108 blk_queue_max_phys_segments(q
, MAX_PHYS_SEGMENTS
);
109 blk_queue_max_hw_segments(q
, MAX_HW_SEGMENTS
);
110 q
->make_request_fn
= mfn
;
111 q
->backing_dev_info
.ra_pages
=
112 (VM_MAX_READAHEAD
* 1024) / PAGE_CACHE_SIZE
;
113 q
->backing_dev_info
.state
= 0;
114 q
->backing_dev_info
.capabilities
= BDI_CAP_MAP_COPY
;
115 blk_queue_max_sectors(q
, SAFE_MAX_SECTORS
);
116 blk_queue_hardsect_size(q
, 512);
117 blk_queue_dma_alignment(q
, 511);
118 blk_queue_congestion_threshold(q
);
119 q
->nr_batching
= BLK_BATCH_REQ
;
121 q
->unplug_thresh
= 4; /* hmm */
122 q
->unplug_delay
= (3 * HZ
) / 1000; /* 3 milliseconds */
123 if (q
->unplug_delay
== 0)
126 INIT_WORK(&q
->unplug_work
, blk_unplug_work
);
128 q
->unplug_timer
.function
= blk_unplug_timeout
;
129 q
->unplug_timer
.data
= (unsigned long)q
;
132 * by default assume old behaviour and bounce for any highmem page
134 blk_queue_bounce_limit(q
, BLK_BOUNCE_HIGH
);
136 EXPORT_SYMBOL(blk_queue_make_request
);
139 * blk_queue_bounce_limit - set bounce buffer limit for queue
140 * @q: the request queue for the device
141 * @dma_addr: bus address limit
144 * Different hardware can have different requirements as to what pages
145 * it can do I/O directly to. A low level driver can call
146 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
147 * buffers for doing I/O to pages residing above @page.
149 void blk_queue_bounce_limit(struct request_queue
*q
, u64 dma_addr
)
151 unsigned long b_pfn
= dma_addr
>> PAGE_SHIFT
;
154 q
->bounce_gfp
= GFP_NOIO
;
155 #if BITS_PER_LONG == 64
156 /* Assume anything <= 4GB can be handled by IOMMU.
157 Actually some IOMMUs can handle everything, but I don't
158 know of a way to test this here. */
159 if (b_pfn
< (min_t(u64
, 0x100000000UL
, BLK_BOUNCE_HIGH
) >> PAGE_SHIFT
))
161 q
->bounce_pfn
= max_low_pfn
;
163 if (b_pfn
< blk_max_low_pfn
)
165 q
->bounce_pfn
= b_pfn
;
168 init_emergency_isa_pool();
169 q
->bounce_gfp
= GFP_NOIO
| GFP_DMA
;
170 q
->bounce_pfn
= b_pfn
;
173 EXPORT_SYMBOL(blk_queue_bounce_limit
);
176 * blk_queue_max_sectors - set max sectors for a request for this queue
177 * @q: the request queue for the device
178 * @max_sectors: max sectors in the usual 512b unit
181 * Enables a low level driver to set an upper limit on the size of
184 void blk_queue_max_sectors(struct request_queue
*q
, unsigned int max_sectors
)
186 if ((max_sectors
<< 9) < PAGE_CACHE_SIZE
) {
187 max_sectors
= 1 << (PAGE_CACHE_SHIFT
- 9);
188 printk(KERN_INFO
"%s: set to minimum %d\n",
189 __func__
, max_sectors
);
192 if (BLK_DEF_MAX_SECTORS
> max_sectors
)
193 q
->max_hw_sectors
= q
->max_sectors
= max_sectors
;
195 q
->max_sectors
= BLK_DEF_MAX_SECTORS
;
196 q
->max_hw_sectors
= max_sectors
;
199 EXPORT_SYMBOL(blk_queue_max_sectors
);
202 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
203 * @q: the request queue for the device
204 * @max_segments: max number of segments
207 * Enables a low level driver to set an upper limit on the number of
208 * physical data segments in a request. This would be the largest sized
209 * scatter list the driver could handle.
211 void blk_queue_max_phys_segments(struct request_queue
*q
,
212 unsigned short max_segments
)
216 printk(KERN_INFO
"%s: set to minimum %d\n",
217 __func__
, max_segments
);
220 q
->max_phys_segments
= max_segments
;
222 EXPORT_SYMBOL(blk_queue_max_phys_segments
);
225 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
226 * @q: the request queue for the device
227 * @max_segments: max number of segments
230 * Enables a low level driver to set an upper limit on the number of
231 * hw data segments in a request. This would be the largest number of
232 * address/length pairs the host adapter can actually give as once
235 void blk_queue_max_hw_segments(struct request_queue
*q
,
236 unsigned short max_segments
)
240 printk(KERN_INFO
"%s: set to minimum %d\n",
241 __func__
, max_segments
);
244 q
->max_hw_segments
= max_segments
;
246 EXPORT_SYMBOL(blk_queue_max_hw_segments
);
249 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
250 * @q: the request queue for the device
251 * @max_size: max size of segment in bytes
254 * Enables a low level driver to set an upper limit on the size of a
257 void blk_queue_max_segment_size(struct request_queue
*q
, unsigned int max_size
)
259 if (max_size
< PAGE_CACHE_SIZE
) {
260 max_size
= PAGE_CACHE_SIZE
;
261 printk(KERN_INFO
"%s: set to minimum %d\n",
265 q
->max_segment_size
= max_size
;
267 EXPORT_SYMBOL(blk_queue_max_segment_size
);
270 * blk_queue_hardsect_size - set hardware sector size for the queue
271 * @q: the request queue for the device
272 * @size: the hardware sector size, in bytes
275 * This should typically be set to the lowest possible sector size
276 * that the hardware can operate on (possible without reverting to
277 * even internal read-modify-write operations). Usually the default
278 * of 512 covers most hardware.
280 void blk_queue_hardsect_size(struct request_queue
*q
, unsigned short size
)
282 q
->hardsect_size
= size
;
284 EXPORT_SYMBOL(blk_queue_hardsect_size
);
287 * Returns the minimum that is _not_ zero, unless both are zero.
289 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
292 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
293 * @t: the stacking driver (top)
294 * @b: the underlying device (bottom)
296 void blk_queue_stack_limits(struct request_queue
*t
, struct request_queue
*b
)
298 /* zero is "infinity" */
299 t
->max_sectors
= min_not_zero(t
->max_sectors
, b
->max_sectors
);
300 t
->max_hw_sectors
= min_not_zero(t
->max_hw_sectors
, b
->max_hw_sectors
);
302 t
->max_phys_segments
= min(t
->max_phys_segments
, b
->max_phys_segments
);
303 t
->max_hw_segments
= min(t
->max_hw_segments
, b
->max_hw_segments
);
304 t
->max_segment_size
= min(t
->max_segment_size
, b
->max_segment_size
);
305 t
->hardsect_size
= max(t
->hardsect_size
, b
->hardsect_size
);
308 else if (!test_bit(QUEUE_FLAG_CLUSTER
, &b
->queue_flags
)) {
310 spin_lock_irqsave(t
->queue_lock
, flags
);
311 queue_flag_clear(QUEUE_FLAG_CLUSTER
, t
);
312 spin_unlock_irqrestore(t
->queue_lock
, flags
);
315 EXPORT_SYMBOL(blk_queue_stack_limits
);
318 * blk_queue_dma_pad - set pad mask
319 * @q: the request queue for the device
324 * Appending pad buffer to a request modifies the last entry of a
325 * scatter list such that it includes the pad buffer.
327 void blk_queue_dma_pad(struct request_queue
*q
, unsigned int mask
)
329 q
->dma_pad_mask
= mask
;
331 EXPORT_SYMBOL(blk_queue_dma_pad
);
334 * blk_queue_update_dma_pad - update pad mask
335 * @q: the request queue for the device
338 * Update dma pad mask.
340 * Appending pad buffer to a request modifies the last entry of a
341 * scatter list such that it includes the pad buffer.
343 void blk_queue_update_dma_pad(struct request_queue
*q
, unsigned int mask
)
345 if (mask
> q
->dma_pad_mask
)
346 q
->dma_pad_mask
= mask
;
348 EXPORT_SYMBOL(blk_queue_update_dma_pad
);
351 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
352 * @q: the request queue for the device
353 * @dma_drain_needed: fn which returns non-zero if drain is necessary
354 * @buf: physically contiguous buffer
355 * @size: size of the buffer in bytes
357 * Some devices have excess DMA problems and can't simply discard (or
358 * zero fill) the unwanted piece of the transfer. They have to have a
359 * real area of memory to transfer it into. The use case for this is
360 * ATAPI devices in DMA mode. If the packet command causes a transfer
361 * bigger than the transfer size some HBAs will lock up if there
362 * aren't DMA elements to contain the excess transfer. What this API
363 * does is adjust the queue so that the buf is always appended
364 * silently to the scatterlist.
366 * Note: This routine adjusts max_hw_segments to make room for
367 * appending the drain buffer. If you call
368 * blk_queue_max_hw_segments() or blk_queue_max_phys_segments() after
369 * calling this routine, you must set the limit to one fewer than your
370 * device can support otherwise there won't be room for the drain
373 int blk_queue_dma_drain(struct request_queue
*q
,
374 dma_drain_needed_fn
*dma_drain_needed
,
375 void *buf
, unsigned int size
)
377 if (q
->max_hw_segments
< 2 || q
->max_phys_segments
< 2)
379 /* make room for appending the drain */
380 --q
->max_hw_segments
;
381 --q
->max_phys_segments
;
382 q
->dma_drain_needed
= dma_drain_needed
;
383 q
->dma_drain_buffer
= buf
;
384 q
->dma_drain_size
= size
;
388 EXPORT_SYMBOL_GPL(blk_queue_dma_drain
);
391 * blk_queue_segment_boundary - set boundary rules for segment merging
392 * @q: the request queue for the device
393 * @mask: the memory boundary mask
395 void blk_queue_segment_boundary(struct request_queue
*q
, unsigned long mask
)
397 if (mask
< PAGE_CACHE_SIZE
- 1) {
398 mask
= PAGE_CACHE_SIZE
- 1;
399 printk(KERN_INFO
"%s: set to minimum %lx\n",
403 q
->seg_boundary_mask
= mask
;
405 EXPORT_SYMBOL(blk_queue_segment_boundary
);
408 * blk_queue_dma_alignment - set dma length and memory alignment
409 * @q: the request queue for the device
410 * @mask: alignment mask
413 * set required memory and length aligment for direct dma transactions.
414 * this is used when buiding direct io requests for the queue.
417 void blk_queue_dma_alignment(struct request_queue
*q
, int mask
)
419 q
->dma_alignment
= mask
;
421 EXPORT_SYMBOL(blk_queue_dma_alignment
);
424 * blk_queue_update_dma_alignment - update dma length and memory alignment
425 * @q: the request queue for the device
426 * @mask: alignment mask
429 * update required memory and length aligment for direct dma transactions.
430 * If the requested alignment is larger than the current alignment, then
431 * the current queue alignment is updated to the new value, otherwise it
432 * is left alone. The design of this is to allow multiple objects
433 * (driver, device, transport etc) to set their respective
434 * alignments without having them interfere.
437 void blk_queue_update_dma_alignment(struct request_queue
*q
, int mask
)
439 BUG_ON(mask
> PAGE_SIZE
);
441 if (mask
> q
->dma_alignment
)
442 q
->dma_alignment
= mask
;
444 EXPORT_SYMBOL(blk_queue_update_dma_alignment
);
446 static int __init
blk_settings_init(void)
448 blk_max_low_pfn
= max_low_pfn
- 1;
449 blk_max_pfn
= max_pfn
- 1;
452 subsys_initcall(blk_settings_init
);