blkcg: update blkg get functions take blkio_cgroup as parameter
[deliverable/linux.git] / block / blk-throttle.c
1 /*
2 * Interface for controlling IO bandwidth on a request queue
3 *
4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5 */
6
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/bio.h>
11 #include <linux/blktrace_api.h>
12 #include "blk-cgroup.h"
13 #include "blk.h"
14
15 /* Max dispatch from a group in 1 round */
16 static int throtl_grp_quantum = 8;
17
18 /* Total max dispatch from all groups in one round */
19 static int throtl_quantum = 32;
20
21 /* Throttling is performed over 100ms slice and after that slice is renewed */
22 static unsigned long throtl_slice = HZ/10; /* 100 ms */
23
24 /* A workqueue to queue throttle related work */
25 static struct workqueue_struct *kthrotld_workqueue;
26 static void throtl_schedule_delayed_work(struct throtl_data *td,
27 unsigned long delay);
28
29 struct throtl_rb_root {
30 struct rb_root rb;
31 struct rb_node *left;
32 unsigned int count;
33 unsigned long min_disptime;
34 };
35
36 #define THROTL_RB_ROOT (struct throtl_rb_root) { .rb = RB_ROOT, .left = NULL, \
37 .count = 0, .min_disptime = 0}
38
39 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
40
41 struct throtl_grp {
42 /* List of throtl groups on the request queue*/
43 struct hlist_node tg_node;
44
45 /* active throtl group service_tree member */
46 struct rb_node rb_node;
47
48 /*
49 * Dispatch time in jiffies. This is the estimated time when group
50 * will unthrottle and is ready to dispatch more bio. It is used as
51 * key to sort active groups in service tree.
52 */
53 unsigned long disptime;
54
55 struct blkio_group blkg;
56 atomic_t ref;
57 unsigned int flags;
58
59 /* Two lists for READ and WRITE */
60 struct bio_list bio_lists[2];
61
62 /* Number of queued bios on READ and WRITE lists */
63 unsigned int nr_queued[2];
64
65 /* bytes per second rate limits */
66 uint64_t bps[2];
67
68 /* IOPS limits */
69 unsigned int iops[2];
70
71 /* Number of bytes disptached in current slice */
72 uint64_t bytes_disp[2];
73 /* Number of bio's dispatched in current slice */
74 unsigned int io_disp[2];
75
76 /* When did we start a new slice */
77 unsigned long slice_start[2];
78 unsigned long slice_end[2];
79
80 /* Some throttle limits got updated for the group */
81 int limits_changed;
82
83 struct rcu_head rcu_head;
84 };
85
86 struct throtl_data
87 {
88 /* List of throtl groups */
89 struct hlist_head tg_list;
90
91 /* service tree for active throtl groups */
92 struct throtl_rb_root tg_service_tree;
93
94 struct throtl_grp *root_tg;
95 struct request_queue *queue;
96
97 /* Total Number of queued bios on READ and WRITE lists */
98 unsigned int nr_queued[2];
99
100 /*
101 * number of total undestroyed groups
102 */
103 unsigned int nr_undestroyed_grps;
104
105 /* Work for dispatching throttled bios */
106 struct delayed_work throtl_work;
107
108 int limits_changed;
109 };
110
111 enum tg_state_flags {
112 THROTL_TG_FLAG_on_rr = 0, /* on round-robin busy list */
113 };
114
115 #define THROTL_TG_FNS(name) \
116 static inline void throtl_mark_tg_##name(struct throtl_grp *tg) \
117 { \
118 (tg)->flags |= (1 << THROTL_TG_FLAG_##name); \
119 } \
120 static inline void throtl_clear_tg_##name(struct throtl_grp *tg) \
121 { \
122 (tg)->flags &= ~(1 << THROTL_TG_FLAG_##name); \
123 } \
124 static inline int throtl_tg_##name(const struct throtl_grp *tg) \
125 { \
126 return ((tg)->flags & (1 << THROTL_TG_FLAG_##name)) != 0; \
127 }
128
129 THROTL_TG_FNS(on_rr);
130
131 #define throtl_log_tg(td, tg, fmt, args...) \
132 blk_add_trace_msg((td)->queue, "throtl %s " fmt, \
133 blkg_path(&(tg)->blkg), ##args); \
134
135 #define throtl_log(td, fmt, args...) \
136 blk_add_trace_msg((td)->queue, "throtl " fmt, ##args)
137
138 static inline struct throtl_grp *tg_of_blkg(struct blkio_group *blkg)
139 {
140 if (blkg)
141 return container_of(blkg, struct throtl_grp, blkg);
142
143 return NULL;
144 }
145
146 static inline unsigned int total_nr_queued(struct throtl_data *td)
147 {
148 return td->nr_queued[0] + td->nr_queued[1];
149 }
150
151 static inline struct throtl_grp *throtl_ref_get_tg(struct throtl_grp *tg)
152 {
153 atomic_inc(&tg->ref);
154 return tg;
155 }
156
157 static void throtl_free_tg(struct rcu_head *head)
158 {
159 struct throtl_grp *tg;
160
161 tg = container_of(head, struct throtl_grp, rcu_head);
162 free_percpu(tg->blkg.stats_cpu);
163 kfree(tg);
164 }
165
166 static void throtl_put_tg(struct throtl_grp *tg)
167 {
168 BUG_ON(atomic_read(&tg->ref) <= 0);
169 if (!atomic_dec_and_test(&tg->ref))
170 return;
171
172 /*
173 * A group is freed in rcu manner. But having an rcu lock does not
174 * mean that one can access all the fields of blkg and assume these
175 * are valid. For example, don't try to follow throtl_data and
176 * request queue links.
177 *
178 * Having a reference to blkg under an rcu allows acess to only
179 * values local to groups like group stats and group rate limits
180 */
181 call_rcu(&tg->rcu_head, throtl_free_tg);
182 }
183
184 static void throtl_init_group(struct throtl_grp *tg)
185 {
186 INIT_HLIST_NODE(&tg->tg_node);
187 RB_CLEAR_NODE(&tg->rb_node);
188 bio_list_init(&tg->bio_lists[0]);
189 bio_list_init(&tg->bio_lists[1]);
190 tg->limits_changed = false;
191
192 /* Practically unlimited BW */
193 tg->bps[0] = tg->bps[1] = -1;
194 tg->iops[0] = tg->iops[1] = -1;
195
196 /*
197 * Take the initial reference that will be released on destroy
198 * This can be thought of a joint reference by cgroup and
199 * request queue which will be dropped by either request queue
200 * exit or cgroup deletion path depending on who is exiting first.
201 */
202 atomic_set(&tg->ref, 1);
203 }
204
205 /* Should be called with rcu read lock held (needed for blkcg) */
206 static void
207 throtl_add_group_to_td_list(struct throtl_data *td, struct throtl_grp *tg)
208 {
209 hlist_add_head(&tg->tg_node, &td->tg_list);
210 td->nr_undestroyed_grps++;
211 }
212
213 static void
214 __throtl_tg_fill_dev_details(struct throtl_data *td, struct throtl_grp *tg)
215 {
216 struct backing_dev_info *bdi = &td->queue->backing_dev_info;
217 unsigned int major, minor;
218
219 if (!tg || tg->blkg.dev)
220 return;
221
222 /*
223 * Fill in device details for a group which might not have been
224 * filled at group creation time as queue was being instantiated
225 * and driver had not attached a device yet
226 */
227 if (bdi->dev && dev_name(bdi->dev)) {
228 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
229 tg->blkg.dev = MKDEV(major, minor);
230 }
231 }
232
233 /*
234 * Should be called with without queue lock held. Here queue lock will be
235 * taken rarely. It will be taken only once during life time of a group
236 * if need be
237 */
238 static void
239 throtl_tg_fill_dev_details(struct throtl_data *td, struct throtl_grp *tg)
240 {
241 if (!tg || tg->blkg.dev)
242 return;
243
244 spin_lock_irq(td->queue->queue_lock);
245 __throtl_tg_fill_dev_details(td, tg);
246 spin_unlock_irq(td->queue->queue_lock);
247 }
248
249 static void throtl_init_add_tg_lists(struct throtl_data *td,
250 struct throtl_grp *tg, struct blkio_cgroup *blkcg)
251 {
252 __throtl_tg_fill_dev_details(td, tg);
253
254 /* Add group onto cgroup list */
255 blkiocg_add_blkio_group(blkcg, &tg->blkg, (void *)td,
256 tg->blkg.dev, BLKIO_POLICY_THROTL);
257
258 tg->bps[READ] = blkcg_get_read_bps(blkcg, tg->blkg.dev);
259 tg->bps[WRITE] = blkcg_get_write_bps(blkcg, tg->blkg.dev);
260 tg->iops[READ] = blkcg_get_read_iops(blkcg, tg->blkg.dev);
261 tg->iops[WRITE] = blkcg_get_write_iops(blkcg, tg->blkg.dev);
262
263 throtl_add_group_to_td_list(td, tg);
264 }
265
266 /* Should be called without queue lock and outside of rcu period */
267 static struct throtl_grp *throtl_alloc_tg(struct throtl_data *td)
268 {
269 struct throtl_grp *tg = NULL;
270 int ret;
271
272 tg = kzalloc_node(sizeof(*tg), GFP_ATOMIC, td->queue->node);
273 if (!tg)
274 return NULL;
275
276 ret = blkio_alloc_blkg_stats(&tg->blkg);
277
278 if (ret) {
279 kfree(tg);
280 return NULL;
281 }
282
283 throtl_init_group(tg);
284 return tg;
285 }
286
287 static struct
288 throtl_grp *throtl_find_tg(struct throtl_data *td, struct blkio_cgroup *blkcg)
289 {
290 struct throtl_grp *tg = NULL;
291 void *key = td;
292
293 /*
294 * This is the common case when there are no blkio cgroups.
295 * Avoid lookup in this case
296 */
297 if (blkcg == &blkio_root_cgroup)
298 tg = td->root_tg;
299 else
300 tg = tg_of_blkg(blkiocg_lookup_group(blkcg, key));
301
302 __throtl_tg_fill_dev_details(td, tg);
303 return tg;
304 }
305
306 static struct throtl_grp *throtl_get_tg(struct throtl_data *td,
307 struct blkio_cgroup *blkcg)
308 {
309 struct throtl_grp *tg = NULL, *__tg = NULL;
310 struct request_queue *q = td->queue;
311
312 /* no throttling for dead queue */
313 if (unlikely(blk_queue_bypass(q)))
314 return NULL;
315
316 tg = throtl_find_tg(td, blkcg);
317 if (tg)
318 return tg;
319
320 if (!css_tryget(&blkcg->css))
321 return NULL;
322
323 /*
324 * Need to allocate a group. Allocation of group also needs allocation
325 * of per cpu stats which in-turn takes a mutex() and can block. Hence
326 * we need to drop rcu lock and queue_lock before we call alloc.
327 */
328 spin_unlock_irq(q->queue_lock);
329 rcu_read_unlock();
330
331 tg = throtl_alloc_tg(td);
332
333 /* Group allocated and queue is still alive. take the lock */
334 rcu_read_lock();
335 spin_lock_irq(q->queue_lock);
336 css_put(&blkcg->css);
337
338 /* Make sure @q is still alive */
339 if (unlikely(blk_queue_bypass(q))) {
340 kfree(tg);
341 return NULL;
342 }
343
344 /*
345 * If some other thread already allocated the group while we were
346 * not holding queue lock, free up the group
347 */
348 __tg = throtl_find_tg(td, blkcg);
349
350 if (__tg) {
351 kfree(tg);
352 return __tg;
353 }
354
355 /* Group allocation failed. Account the IO to root group */
356 if (!tg) {
357 tg = td->root_tg;
358 return tg;
359 }
360
361 throtl_init_add_tg_lists(td, tg, blkcg);
362 return tg;
363 }
364
365 static struct throtl_grp *throtl_rb_first(struct throtl_rb_root *root)
366 {
367 /* Service tree is empty */
368 if (!root->count)
369 return NULL;
370
371 if (!root->left)
372 root->left = rb_first(&root->rb);
373
374 if (root->left)
375 return rb_entry_tg(root->left);
376
377 return NULL;
378 }
379
380 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
381 {
382 rb_erase(n, root);
383 RB_CLEAR_NODE(n);
384 }
385
386 static void throtl_rb_erase(struct rb_node *n, struct throtl_rb_root *root)
387 {
388 if (root->left == n)
389 root->left = NULL;
390 rb_erase_init(n, &root->rb);
391 --root->count;
392 }
393
394 static void update_min_dispatch_time(struct throtl_rb_root *st)
395 {
396 struct throtl_grp *tg;
397
398 tg = throtl_rb_first(st);
399 if (!tg)
400 return;
401
402 st->min_disptime = tg->disptime;
403 }
404
405 static void
406 tg_service_tree_add(struct throtl_rb_root *st, struct throtl_grp *tg)
407 {
408 struct rb_node **node = &st->rb.rb_node;
409 struct rb_node *parent = NULL;
410 struct throtl_grp *__tg;
411 unsigned long key = tg->disptime;
412 int left = 1;
413
414 while (*node != NULL) {
415 parent = *node;
416 __tg = rb_entry_tg(parent);
417
418 if (time_before(key, __tg->disptime))
419 node = &parent->rb_left;
420 else {
421 node = &parent->rb_right;
422 left = 0;
423 }
424 }
425
426 if (left)
427 st->left = &tg->rb_node;
428
429 rb_link_node(&tg->rb_node, parent, node);
430 rb_insert_color(&tg->rb_node, &st->rb);
431 }
432
433 static void __throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
434 {
435 struct throtl_rb_root *st = &td->tg_service_tree;
436
437 tg_service_tree_add(st, tg);
438 throtl_mark_tg_on_rr(tg);
439 st->count++;
440 }
441
442 static void throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
443 {
444 if (!throtl_tg_on_rr(tg))
445 __throtl_enqueue_tg(td, tg);
446 }
447
448 static void __throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
449 {
450 throtl_rb_erase(&tg->rb_node, &td->tg_service_tree);
451 throtl_clear_tg_on_rr(tg);
452 }
453
454 static void throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
455 {
456 if (throtl_tg_on_rr(tg))
457 __throtl_dequeue_tg(td, tg);
458 }
459
460 static void throtl_schedule_next_dispatch(struct throtl_data *td)
461 {
462 struct throtl_rb_root *st = &td->tg_service_tree;
463
464 /*
465 * If there are more bios pending, schedule more work.
466 */
467 if (!total_nr_queued(td))
468 return;
469
470 BUG_ON(!st->count);
471
472 update_min_dispatch_time(st);
473
474 if (time_before_eq(st->min_disptime, jiffies))
475 throtl_schedule_delayed_work(td, 0);
476 else
477 throtl_schedule_delayed_work(td, (st->min_disptime - jiffies));
478 }
479
480 static inline void
481 throtl_start_new_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
482 {
483 tg->bytes_disp[rw] = 0;
484 tg->io_disp[rw] = 0;
485 tg->slice_start[rw] = jiffies;
486 tg->slice_end[rw] = jiffies + throtl_slice;
487 throtl_log_tg(td, tg, "[%c] new slice start=%lu end=%lu jiffies=%lu",
488 rw == READ ? 'R' : 'W', tg->slice_start[rw],
489 tg->slice_end[rw], jiffies);
490 }
491
492 static inline void throtl_set_slice_end(struct throtl_data *td,
493 struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
494 {
495 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
496 }
497
498 static inline void throtl_extend_slice(struct throtl_data *td,
499 struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
500 {
501 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
502 throtl_log_tg(td, tg, "[%c] extend slice start=%lu end=%lu jiffies=%lu",
503 rw == READ ? 'R' : 'W', tg->slice_start[rw],
504 tg->slice_end[rw], jiffies);
505 }
506
507 /* Determine if previously allocated or extended slice is complete or not */
508 static bool
509 throtl_slice_used(struct throtl_data *td, struct throtl_grp *tg, bool rw)
510 {
511 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
512 return 0;
513
514 return 1;
515 }
516
517 /* Trim the used slices and adjust slice start accordingly */
518 static inline void
519 throtl_trim_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
520 {
521 unsigned long nr_slices, time_elapsed, io_trim;
522 u64 bytes_trim, tmp;
523
524 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
525
526 /*
527 * If bps are unlimited (-1), then time slice don't get
528 * renewed. Don't try to trim the slice if slice is used. A new
529 * slice will start when appropriate.
530 */
531 if (throtl_slice_used(td, tg, rw))
532 return;
533
534 /*
535 * A bio has been dispatched. Also adjust slice_end. It might happen
536 * that initially cgroup limit was very low resulting in high
537 * slice_end, but later limit was bumped up and bio was dispached
538 * sooner, then we need to reduce slice_end. A high bogus slice_end
539 * is bad because it does not allow new slice to start.
540 */
541
542 throtl_set_slice_end(td, tg, rw, jiffies + throtl_slice);
543
544 time_elapsed = jiffies - tg->slice_start[rw];
545
546 nr_slices = time_elapsed / throtl_slice;
547
548 if (!nr_slices)
549 return;
550 tmp = tg->bps[rw] * throtl_slice * nr_slices;
551 do_div(tmp, HZ);
552 bytes_trim = tmp;
553
554 io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
555
556 if (!bytes_trim && !io_trim)
557 return;
558
559 if (tg->bytes_disp[rw] >= bytes_trim)
560 tg->bytes_disp[rw] -= bytes_trim;
561 else
562 tg->bytes_disp[rw] = 0;
563
564 if (tg->io_disp[rw] >= io_trim)
565 tg->io_disp[rw] -= io_trim;
566 else
567 tg->io_disp[rw] = 0;
568
569 tg->slice_start[rw] += nr_slices * throtl_slice;
570
571 throtl_log_tg(td, tg, "[%c] trim slice nr=%lu bytes=%llu io=%lu"
572 " start=%lu end=%lu jiffies=%lu",
573 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
574 tg->slice_start[rw], tg->slice_end[rw], jiffies);
575 }
576
577 static bool tg_with_in_iops_limit(struct throtl_data *td, struct throtl_grp *tg,
578 struct bio *bio, unsigned long *wait)
579 {
580 bool rw = bio_data_dir(bio);
581 unsigned int io_allowed;
582 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
583 u64 tmp;
584
585 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
586
587 /* Slice has just started. Consider one slice interval */
588 if (!jiffy_elapsed)
589 jiffy_elapsed_rnd = throtl_slice;
590
591 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
592
593 /*
594 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
595 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
596 * will allow dispatch after 1 second and after that slice should
597 * have been trimmed.
598 */
599
600 tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
601 do_div(tmp, HZ);
602
603 if (tmp > UINT_MAX)
604 io_allowed = UINT_MAX;
605 else
606 io_allowed = tmp;
607
608 if (tg->io_disp[rw] + 1 <= io_allowed) {
609 if (wait)
610 *wait = 0;
611 return 1;
612 }
613
614 /* Calc approx time to dispatch */
615 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
616
617 if (jiffy_wait > jiffy_elapsed)
618 jiffy_wait = jiffy_wait - jiffy_elapsed;
619 else
620 jiffy_wait = 1;
621
622 if (wait)
623 *wait = jiffy_wait;
624 return 0;
625 }
626
627 static bool tg_with_in_bps_limit(struct throtl_data *td, struct throtl_grp *tg,
628 struct bio *bio, unsigned long *wait)
629 {
630 bool rw = bio_data_dir(bio);
631 u64 bytes_allowed, extra_bytes, tmp;
632 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
633
634 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
635
636 /* Slice has just started. Consider one slice interval */
637 if (!jiffy_elapsed)
638 jiffy_elapsed_rnd = throtl_slice;
639
640 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
641
642 tmp = tg->bps[rw] * jiffy_elapsed_rnd;
643 do_div(tmp, HZ);
644 bytes_allowed = tmp;
645
646 if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) {
647 if (wait)
648 *wait = 0;
649 return 1;
650 }
651
652 /* Calc approx time to dispatch */
653 extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed;
654 jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
655
656 if (!jiffy_wait)
657 jiffy_wait = 1;
658
659 /*
660 * This wait time is without taking into consideration the rounding
661 * up we did. Add that time also.
662 */
663 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
664 if (wait)
665 *wait = jiffy_wait;
666 return 0;
667 }
668
669 static bool tg_no_rule_group(struct throtl_grp *tg, bool rw) {
670 if (tg->bps[rw] == -1 && tg->iops[rw] == -1)
671 return 1;
672 return 0;
673 }
674
675 /*
676 * Returns whether one can dispatch a bio or not. Also returns approx number
677 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
678 */
679 static bool tg_may_dispatch(struct throtl_data *td, struct throtl_grp *tg,
680 struct bio *bio, unsigned long *wait)
681 {
682 bool rw = bio_data_dir(bio);
683 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
684
685 /*
686 * Currently whole state machine of group depends on first bio
687 * queued in the group bio list. So one should not be calling
688 * this function with a different bio if there are other bios
689 * queued.
690 */
691 BUG_ON(tg->nr_queued[rw] && bio != bio_list_peek(&tg->bio_lists[rw]));
692
693 /* If tg->bps = -1, then BW is unlimited */
694 if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
695 if (wait)
696 *wait = 0;
697 return 1;
698 }
699
700 /*
701 * If previous slice expired, start a new one otherwise renew/extend
702 * existing slice to make sure it is at least throtl_slice interval
703 * long since now.
704 */
705 if (throtl_slice_used(td, tg, rw))
706 throtl_start_new_slice(td, tg, rw);
707 else {
708 if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
709 throtl_extend_slice(td, tg, rw, jiffies + throtl_slice);
710 }
711
712 if (tg_with_in_bps_limit(td, tg, bio, &bps_wait)
713 && tg_with_in_iops_limit(td, tg, bio, &iops_wait)) {
714 if (wait)
715 *wait = 0;
716 return 1;
717 }
718
719 max_wait = max(bps_wait, iops_wait);
720
721 if (wait)
722 *wait = max_wait;
723
724 if (time_before(tg->slice_end[rw], jiffies + max_wait))
725 throtl_extend_slice(td, tg, rw, jiffies + max_wait);
726
727 return 0;
728 }
729
730 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
731 {
732 bool rw = bio_data_dir(bio);
733 bool sync = rw_is_sync(bio->bi_rw);
734
735 /* Charge the bio to the group */
736 tg->bytes_disp[rw] += bio->bi_size;
737 tg->io_disp[rw]++;
738
739 blkiocg_update_dispatch_stats(&tg->blkg, bio->bi_size, rw, sync);
740 }
741
742 static void throtl_add_bio_tg(struct throtl_data *td, struct throtl_grp *tg,
743 struct bio *bio)
744 {
745 bool rw = bio_data_dir(bio);
746
747 bio_list_add(&tg->bio_lists[rw], bio);
748 /* Take a bio reference on tg */
749 throtl_ref_get_tg(tg);
750 tg->nr_queued[rw]++;
751 td->nr_queued[rw]++;
752 throtl_enqueue_tg(td, tg);
753 }
754
755 static void tg_update_disptime(struct throtl_data *td, struct throtl_grp *tg)
756 {
757 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
758 struct bio *bio;
759
760 if ((bio = bio_list_peek(&tg->bio_lists[READ])))
761 tg_may_dispatch(td, tg, bio, &read_wait);
762
763 if ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
764 tg_may_dispatch(td, tg, bio, &write_wait);
765
766 min_wait = min(read_wait, write_wait);
767 disptime = jiffies + min_wait;
768
769 /* Update dispatch time */
770 throtl_dequeue_tg(td, tg);
771 tg->disptime = disptime;
772 throtl_enqueue_tg(td, tg);
773 }
774
775 static void tg_dispatch_one_bio(struct throtl_data *td, struct throtl_grp *tg,
776 bool rw, struct bio_list *bl)
777 {
778 struct bio *bio;
779
780 bio = bio_list_pop(&tg->bio_lists[rw]);
781 tg->nr_queued[rw]--;
782 /* Drop bio reference on tg */
783 throtl_put_tg(tg);
784
785 BUG_ON(td->nr_queued[rw] <= 0);
786 td->nr_queued[rw]--;
787
788 throtl_charge_bio(tg, bio);
789 bio_list_add(bl, bio);
790 bio->bi_rw |= REQ_THROTTLED;
791
792 throtl_trim_slice(td, tg, rw);
793 }
794
795 static int throtl_dispatch_tg(struct throtl_data *td, struct throtl_grp *tg,
796 struct bio_list *bl)
797 {
798 unsigned int nr_reads = 0, nr_writes = 0;
799 unsigned int max_nr_reads = throtl_grp_quantum*3/4;
800 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
801 struct bio *bio;
802
803 /* Try to dispatch 75% READS and 25% WRITES */
804
805 while ((bio = bio_list_peek(&tg->bio_lists[READ]))
806 && tg_may_dispatch(td, tg, bio, NULL)) {
807
808 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
809 nr_reads++;
810
811 if (nr_reads >= max_nr_reads)
812 break;
813 }
814
815 while ((bio = bio_list_peek(&tg->bio_lists[WRITE]))
816 && tg_may_dispatch(td, tg, bio, NULL)) {
817
818 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
819 nr_writes++;
820
821 if (nr_writes >= max_nr_writes)
822 break;
823 }
824
825 return nr_reads + nr_writes;
826 }
827
828 static int throtl_select_dispatch(struct throtl_data *td, struct bio_list *bl)
829 {
830 unsigned int nr_disp = 0;
831 struct throtl_grp *tg;
832 struct throtl_rb_root *st = &td->tg_service_tree;
833
834 while (1) {
835 tg = throtl_rb_first(st);
836
837 if (!tg)
838 break;
839
840 if (time_before(jiffies, tg->disptime))
841 break;
842
843 throtl_dequeue_tg(td, tg);
844
845 nr_disp += throtl_dispatch_tg(td, tg, bl);
846
847 if (tg->nr_queued[0] || tg->nr_queued[1]) {
848 tg_update_disptime(td, tg);
849 throtl_enqueue_tg(td, tg);
850 }
851
852 if (nr_disp >= throtl_quantum)
853 break;
854 }
855
856 return nr_disp;
857 }
858
859 static void throtl_process_limit_change(struct throtl_data *td)
860 {
861 struct throtl_grp *tg;
862 struct hlist_node *pos, *n;
863
864 if (!td->limits_changed)
865 return;
866
867 xchg(&td->limits_changed, false);
868
869 throtl_log(td, "limits changed");
870
871 hlist_for_each_entry_safe(tg, pos, n, &td->tg_list, tg_node) {
872 if (!tg->limits_changed)
873 continue;
874
875 if (!xchg(&tg->limits_changed, false))
876 continue;
877
878 throtl_log_tg(td, tg, "limit change rbps=%llu wbps=%llu"
879 " riops=%u wiops=%u", tg->bps[READ], tg->bps[WRITE],
880 tg->iops[READ], tg->iops[WRITE]);
881
882 /*
883 * Restart the slices for both READ and WRITES. It
884 * might happen that a group's limit are dropped
885 * suddenly and we don't want to account recently
886 * dispatched IO with new low rate
887 */
888 throtl_start_new_slice(td, tg, 0);
889 throtl_start_new_slice(td, tg, 1);
890
891 if (throtl_tg_on_rr(tg))
892 tg_update_disptime(td, tg);
893 }
894 }
895
896 /* Dispatch throttled bios. Should be called without queue lock held. */
897 static int throtl_dispatch(struct request_queue *q)
898 {
899 struct throtl_data *td = q->td;
900 unsigned int nr_disp = 0;
901 struct bio_list bio_list_on_stack;
902 struct bio *bio;
903 struct blk_plug plug;
904
905 spin_lock_irq(q->queue_lock);
906
907 throtl_process_limit_change(td);
908
909 if (!total_nr_queued(td))
910 goto out;
911
912 bio_list_init(&bio_list_on_stack);
913
914 throtl_log(td, "dispatch nr_queued=%u read=%u write=%u",
915 total_nr_queued(td), td->nr_queued[READ],
916 td->nr_queued[WRITE]);
917
918 nr_disp = throtl_select_dispatch(td, &bio_list_on_stack);
919
920 if (nr_disp)
921 throtl_log(td, "bios disp=%u", nr_disp);
922
923 throtl_schedule_next_dispatch(td);
924 out:
925 spin_unlock_irq(q->queue_lock);
926
927 /*
928 * If we dispatched some requests, unplug the queue to make sure
929 * immediate dispatch
930 */
931 if (nr_disp) {
932 blk_start_plug(&plug);
933 while((bio = bio_list_pop(&bio_list_on_stack)))
934 generic_make_request(bio);
935 blk_finish_plug(&plug);
936 }
937 return nr_disp;
938 }
939
940 void blk_throtl_work(struct work_struct *work)
941 {
942 struct throtl_data *td = container_of(work, struct throtl_data,
943 throtl_work.work);
944 struct request_queue *q = td->queue;
945
946 throtl_dispatch(q);
947 }
948
949 /* Call with queue lock held */
950 static void
951 throtl_schedule_delayed_work(struct throtl_data *td, unsigned long delay)
952 {
953
954 struct delayed_work *dwork = &td->throtl_work;
955
956 /* schedule work if limits changed even if no bio is queued */
957 if (total_nr_queued(td) || td->limits_changed) {
958 /*
959 * We might have a work scheduled to be executed in future.
960 * Cancel that and schedule a new one.
961 */
962 __cancel_delayed_work(dwork);
963 queue_delayed_work(kthrotld_workqueue, dwork, delay);
964 throtl_log(td, "schedule work. delay=%lu jiffies=%lu",
965 delay, jiffies);
966 }
967 }
968
969 static void
970 throtl_destroy_tg(struct throtl_data *td, struct throtl_grp *tg)
971 {
972 /* Something wrong if we are trying to remove same group twice */
973 BUG_ON(hlist_unhashed(&tg->tg_node));
974
975 hlist_del_init(&tg->tg_node);
976
977 /*
978 * Put the reference taken at the time of creation so that when all
979 * queues are gone, group can be destroyed.
980 */
981 throtl_put_tg(tg);
982 td->nr_undestroyed_grps--;
983 }
984
985 static bool throtl_release_tgs(struct throtl_data *td, bool release_root)
986 {
987 struct hlist_node *pos, *n;
988 struct throtl_grp *tg;
989 bool empty = true;
990
991 hlist_for_each_entry_safe(tg, pos, n, &td->tg_list, tg_node) {
992 /* skip root? */
993 if (!release_root && tg == td->root_tg)
994 continue;
995
996 /*
997 * If cgroup removal path got to blk_group first and removed
998 * it from cgroup list, then it will take care of destroying
999 * cfqg also.
1000 */
1001 if (!blkiocg_del_blkio_group(&tg->blkg))
1002 throtl_destroy_tg(td, tg);
1003 else
1004 empty = false;
1005 }
1006 return empty;
1007 }
1008
1009 /*
1010 * Blk cgroup controller notification saying that blkio_group object is being
1011 * delinked as associated cgroup object is going away. That also means that
1012 * no new IO will come in this group. So get rid of this group as soon as
1013 * any pending IO in the group is finished.
1014 *
1015 * This function is called under rcu_read_lock(). key is the rcu protected
1016 * pointer. That means "key" is a valid throtl_data pointer as long as we are
1017 * rcu read lock.
1018 *
1019 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1020 * it should not be NULL as even if queue was going away, cgroup deltion
1021 * path got to it first.
1022 */
1023 void throtl_unlink_blkio_group(void *key, struct blkio_group *blkg)
1024 {
1025 unsigned long flags;
1026 struct throtl_data *td = key;
1027
1028 spin_lock_irqsave(td->queue->queue_lock, flags);
1029 throtl_destroy_tg(td, tg_of_blkg(blkg));
1030 spin_unlock_irqrestore(td->queue->queue_lock, flags);
1031 }
1032
1033 static bool throtl_clear_queue(struct request_queue *q)
1034 {
1035 lockdep_assert_held(q->queue_lock);
1036
1037 /*
1038 * Clear tgs but leave the root one alone. This is necessary
1039 * because root_tg is expected to be persistent and safe because
1040 * blk-throtl can never be disabled while @q is alive. This is a
1041 * kludge to prepare for unified blkg. This whole function will be
1042 * removed soon.
1043 */
1044 return throtl_release_tgs(q->td, false);
1045 }
1046
1047 static void throtl_update_blkio_group_common(struct throtl_data *td,
1048 struct throtl_grp *tg)
1049 {
1050 xchg(&tg->limits_changed, true);
1051 xchg(&td->limits_changed, true);
1052 /* Schedule a work now to process the limit change */
1053 throtl_schedule_delayed_work(td, 0);
1054 }
1055
1056 /*
1057 * For all update functions, key should be a valid pointer because these
1058 * update functions are called under blkcg_lock, that means, blkg is
1059 * valid and in turn key is valid. queue exit path can not race because
1060 * of blkcg_lock
1061 *
1062 * Can not take queue lock in update functions as queue lock under blkcg_lock
1063 * is not allowed. Under other paths we take blkcg_lock under queue_lock.
1064 */
1065 static void throtl_update_blkio_group_read_bps(void *key,
1066 struct blkio_group *blkg, u64 read_bps)
1067 {
1068 struct throtl_data *td = key;
1069 struct throtl_grp *tg = tg_of_blkg(blkg);
1070
1071 tg->bps[READ] = read_bps;
1072 throtl_update_blkio_group_common(td, tg);
1073 }
1074
1075 static void throtl_update_blkio_group_write_bps(void *key,
1076 struct blkio_group *blkg, u64 write_bps)
1077 {
1078 struct throtl_data *td = key;
1079 struct throtl_grp *tg = tg_of_blkg(blkg);
1080
1081 tg->bps[WRITE] = write_bps;
1082 throtl_update_blkio_group_common(td, tg);
1083 }
1084
1085 static void throtl_update_blkio_group_read_iops(void *key,
1086 struct blkio_group *blkg, unsigned int read_iops)
1087 {
1088 struct throtl_data *td = key;
1089 struct throtl_grp *tg = tg_of_blkg(blkg);
1090
1091 tg->iops[READ] = read_iops;
1092 throtl_update_blkio_group_common(td, tg);
1093 }
1094
1095 static void throtl_update_blkio_group_write_iops(void *key,
1096 struct blkio_group *blkg, unsigned int write_iops)
1097 {
1098 struct throtl_data *td = key;
1099 struct throtl_grp *tg = tg_of_blkg(blkg);
1100
1101 tg->iops[WRITE] = write_iops;
1102 throtl_update_blkio_group_common(td, tg);
1103 }
1104
1105 static void throtl_shutdown_wq(struct request_queue *q)
1106 {
1107 struct throtl_data *td = q->td;
1108
1109 cancel_delayed_work_sync(&td->throtl_work);
1110 }
1111
1112 static struct blkio_policy_type blkio_policy_throtl = {
1113 .ops = {
1114 .blkio_unlink_group_fn = throtl_unlink_blkio_group,
1115 .blkio_clear_queue_fn = throtl_clear_queue,
1116 .blkio_update_group_read_bps_fn =
1117 throtl_update_blkio_group_read_bps,
1118 .blkio_update_group_write_bps_fn =
1119 throtl_update_blkio_group_write_bps,
1120 .blkio_update_group_read_iops_fn =
1121 throtl_update_blkio_group_read_iops,
1122 .blkio_update_group_write_iops_fn =
1123 throtl_update_blkio_group_write_iops,
1124 },
1125 .plid = BLKIO_POLICY_THROTL,
1126 };
1127
1128 bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
1129 {
1130 struct throtl_data *td = q->td;
1131 struct throtl_grp *tg;
1132 bool rw = bio_data_dir(bio), update_disptime = true;
1133 struct blkio_cgroup *blkcg;
1134 bool throttled = false;
1135
1136 if (bio->bi_rw & REQ_THROTTLED) {
1137 bio->bi_rw &= ~REQ_THROTTLED;
1138 goto out;
1139 }
1140
1141 /*
1142 * A throtl_grp pointer retrieved under rcu can be used to access
1143 * basic fields like stats and io rates. If a group has no rules,
1144 * just update the dispatch stats in lockless manner and return.
1145 */
1146 rcu_read_lock();
1147 blkcg = task_blkio_cgroup(current);
1148 tg = throtl_find_tg(td, blkcg);
1149 if (tg) {
1150 throtl_tg_fill_dev_details(td, tg);
1151
1152 if (tg_no_rule_group(tg, rw)) {
1153 blkiocg_update_dispatch_stats(&tg->blkg, bio->bi_size,
1154 rw, rw_is_sync(bio->bi_rw));
1155 goto out_unlock_rcu;
1156 }
1157 }
1158
1159 /*
1160 * Either group has not been allocated yet or it is not an unlimited
1161 * IO group
1162 */
1163 spin_lock_irq(q->queue_lock);
1164 tg = throtl_get_tg(td, blkcg);
1165 if (unlikely(!tg))
1166 goto out_unlock;
1167
1168 if (tg->nr_queued[rw]) {
1169 /*
1170 * There is already another bio queued in same dir. No
1171 * need to update dispatch time.
1172 */
1173 update_disptime = false;
1174 goto queue_bio;
1175
1176 }
1177
1178 /* Bio is with-in rate limit of group */
1179 if (tg_may_dispatch(td, tg, bio, NULL)) {
1180 throtl_charge_bio(tg, bio);
1181
1182 /*
1183 * We need to trim slice even when bios are not being queued
1184 * otherwise it might happen that a bio is not queued for
1185 * a long time and slice keeps on extending and trim is not
1186 * called for a long time. Now if limits are reduced suddenly
1187 * we take into account all the IO dispatched so far at new
1188 * low rate and * newly queued IO gets a really long dispatch
1189 * time.
1190 *
1191 * So keep on trimming slice even if bio is not queued.
1192 */
1193 throtl_trim_slice(td, tg, rw);
1194 goto out_unlock;
1195 }
1196
1197 queue_bio:
1198 throtl_log_tg(td, tg, "[%c] bio. bdisp=%llu sz=%u bps=%llu"
1199 " iodisp=%u iops=%u queued=%d/%d",
1200 rw == READ ? 'R' : 'W',
1201 tg->bytes_disp[rw], bio->bi_size, tg->bps[rw],
1202 tg->io_disp[rw], tg->iops[rw],
1203 tg->nr_queued[READ], tg->nr_queued[WRITE]);
1204
1205 throtl_add_bio_tg(q->td, tg, bio);
1206 throttled = true;
1207
1208 if (update_disptime) {
1209 tg_update_disptime(td, tg);
1210 throtl_schedule_next_dispatch(td);
1211 }
1212
1213 out_unlock:
1214 spin_unlock_irq(q->queue_lock);
1215 out_unlock_rcu:
1216 rcu_read_unlock();
1217 out:
1218 return throttled;
1219 }
1220
1221 /**
1222 * blk_throtl_drain - drain throttled bios
1223 * @q: request_queue to drain throttled bios for
1224 *
1225 * Dispatch all currently throttled bios on @q through ->make_request_fn().
1226 */
1227 void blk_throtl_drain(struct request_queue *q)
1228 __releases(q->queue_lock) __acquires(q->queue_lock)
1229 {
1230 struct throtl_data *td = q->td;
1231 struct throtl_rb_root *st = &td->tg_service_tree;
1232 struct throtl_grp *tg;
1233 struct bio_list bl;
1234 struct bio *bio;
1235
1236 WARN_ON_ONCE(!queue_is_locked(q));
1237
1238 bio_list_init(&bl);
1239
1240 while ((tg = throtl_rb_first(st))) {
1241 throtl_dequeue_tg(td, tg);
1242
1243 while ((bio = bio_list_peek(&tg->bio_lists[READ])))
1244 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl);
1245 while ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
1246 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl);
1247 }
1248 spin_unlock_irq(q->queue_lock);
1249
1250 while ((bio = bio_list_pop(&bl)))
1251 generic_make_request(bio);
1252
1253 spin_lock_irq(q->queue_lock);
1254 }
1255
1256 int blk_throtl_init(struct request_queue *q)
1257 {
1258 struct throtl_data *td;
1259 struct throtl_grp *tg;
1260
1261 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1262 if (!td)
1263 return -ENOMEM;
1264
1265 INIT_HLIST_HEAD(&td->tg_list);
1266 td->tg_service_tree = THROTL_RB_ROOT;
1267 td->limits_changed = false;
1268 INIT_DELAYED_WORK(&td->throtl_work, blk_throtl_work);
1269
1270 /* alloc and Init root group. */
1271 td->queue = q;
1272 tg = throtl_alloc_tg(td);
1273
1274 if (!tg) {
1275 kfree(td);
1276 return -ENOMEM;
1277 }
1278
1279 td->root_tg = tg;
1280
1281 rcu_read_lock();
1282 throtl_init_add_tg_lists(td, tg, &blkio_root_cgroup);
1283 rcu_read_unlock();
1284
1285 /* Attach throtl data to request queue */
1286 q->td = td;
1287 return 0;
1288 }
1289
1290 void blk_throtl_exit(struct request_queue *q)
1291 {
1292 struct throtl_data *td = q->td;
1293 bool wait = false;
1294
1295 BUG_ON(!td);
1296
1297 throtl_shutdown_wq(q);
1298
1299 spin_lock_irq(q->queue_lock);
1300 throtl_release_tgs(td, true);
1301
1302 /* If there are other groups */
1303 if (td->nr_undestroyed_grps > 0)
1304 wait = true;
1305
1306 spin_unlock_irq(q->queue_lock);
1307
1308 /*
1309 * Wait for tg->blkg->key accessors to exit their grace periods.
1310 * Do this wait only if there are other undestroyed groups out
1311 * there (other than root group). This can happen if cgroup deletion
1312 * path claimed the responsibility of cleaning up a group before
1313 * queue cleanup code get to the group.
1314 *
1315 * Do not call synchronize_rcu() unconditionally as there are drivers
1316 * which create/delete request queue hundreds of times during scan/boot
1317 * and synchronize_rcu() can take significant time and slow down boot.
1318 */
1319 if (wait)
1320 synchronize_rcu();
1321
1322 /*
1323 * Just being safe to make sure after previous flush if some body did
1324 * update limits through cgroup and another work got queued, cancel
1325 * it.
1326 */
1327 throtl_shutdown_wq(q);
1328 }
1329
1330 void blk_throtl_release(struct request_queue *q)
1331 {
1332 kfree(q->td);
1333 }
1334
1335 static int __init throtl_init(void)
1336 {
1337 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1338 if (!kthrotld_workqueue)
1339 panic("Failed to create kthrotld\n");
1340
1341 blkio_policy_register(&blkio_policy_throtl);
1342 return 0;
1343 }
1344
1345 module_init(throtl_init);
This page took 0.076299 seconds and 6 git commands to generate.