block: convert is_sync helpers to use REQ_OPs.
[deliverable/linux.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include <linux/blk-cgroup.h>
18 #include "blk.h"
19
20 /*
21 * tunables
22 */
23 /* max queue in one round of service */
24 static const int cfq_quantum = 8;
25 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
26 /* maximum backwards seek, in KiB */
27 static const int cfq_back_max = 16 * 1024;
28 /* penalty of a backwards seek */
29 static const int cfq_back_penalty = 2;
30 static const int cfq_slice_sync = HZ / 10;
31 static int cfq_slice_async = HZ / 25;
32 static const int cfq_slice_async_rq = 2;
33 static int cfq_slice_idle = HZ / 125;
34 static int cfq_group_idle = HZ / 125;
35 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36 static const int cfq_hist_divisor = 4;
37
38 /*
39 * offset from end of service tree
40 */
41 #define CFQ_IDLE_DELAY (HZ / 5)
42
43 /*
44 * below this threshold, we consider thinktime immediate
45 */
46 #define CFQ_MIN_TT (2)
47
48 #define CFQ_SLICE_SCALE (5)
49 #define CFQ_HW_QUEUE_MIN (5)
50 #define CFQ_SERVICE_SHIFT 12
51
52 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
53 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
54 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
55 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
56
57 #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
60
61 static struct kmem_cache *cfq_pool;
62
63 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
64 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66
67 #define sample_valid(samples) ((samples) > 80)
68 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
69
70 /* blkio-related constants */
71 #define CFQ_WEIGHT_LEGACY_MIN 10
72 #define CFQ_WEIGHT_LEGACY_DFL 500
73 #define CFQ_WEIGHT_LEGACY_MAX 1000
74
75 struct cfq_ttime {
76 unsigned long last_end_request;
77
78 unsigned long ttime_total;
79 unsigned long ttime_samples;
80 unsigned long ttime_mean;
81 };
82
83 /*
84 * Most of our rbtree usage is for sorting with min extraction, so
85 * if we cache the leftmost node we don't have to walk down the tree
86 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
87 * move this into the elevator for the rq sorting as well.
88 */
89 struct cfq_rb_root {
90 struct rb_root rb;
91 struct rb_node *left;
92 unsigned count;
93 u64 min_vdisktime;
94 struct cfq_ttime ttime;
95 };
96 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
97 .ttime = {.last_end_request = jiffies,},}
98
99 /*
100 * Per process-grouping structure
101 */
102 struct cfq_queue {
103 /* reference count */
104 int ref;
105 /* various state flags, see below */
106 unsigned int flags;
107 /* parent cfq_data */
108 struct cfq_data *cfqd;
109 /* service_tree member */
110 struct rb_node rb_node;
111 /* service_tree key */
112 unsigned long rb_key;
113 /* prio tree member */
114 struct rb_node p_node;
115 /* prio tree root we belong to, if any */
116 struct rb_root *p_root;
117 /* sorted list of pending requests */
118 struct rb_root sort_list;
119 /* if fifo isn't expired, next request to serve */
120 struct request *next_rq;
121 /* requests queued in sort_list */
122 int queued[2];
123 /* currently allocated requests */
124 int allocated[2];
125 /* fifo list of requests in sort_list */
126 struct list_head fifo;
127
128 /* time when queue got scheduled in to dispatch first request. */
129 unsigned long dispatch_start;
130 unsigned int allocated_slice;
131 unsigned int slice_dispatch;
132 /* time when first request from queue completed and slice started. */
133 unsigned long slice_start;
134 unsigned long slice_end;
135 long slice_resid;
136
137 /* pending priority requests */
138 int prio_pending;
139 /* number of requests that are on the dispatch list or inside driver */
140 int dispatched;
141
142 /* io prio of this group */
143 unsigned short ioprio, org_ioprio;
144 unsigned short ioprio_class;
145
146 pid_t pid;
147
148 u32 seek_history;
149 sector_t last_request_pos;
150
151 struct cfq_rb_root *service_tree;
152 struct cfq_queue *new_cfqq;
153 struct cfq_group *cfqg;
154 /* Number of sectors dispatched from queue in single dispatch round */
155 unsigned long nr_sectors;
156 };
157
158 /*
159 * First index in the service_trees.
160 * IDLE is handled separately, so it has negative index
161 */
162 enum wl_class_t {
163 BE_WORKLOAD = 0,
164 RT_WORKLOAD = 1,
165 IDLE_WORKLOAD = 2,
166 CFQ_PRIO_NR,
167 };
168
169 /*
170 * Second index in the service_trees.
171 */
172 enum wl_type_t {
173 ASYNC_WORKLOAD = 0,
174 SYNC_NOIDLE_WORKLOAD = 1,
175 SYNC_WORKLOAD = 2
176 };
177
178 struct cfqg_stats {
179 #ifdef CONFIG_CFQ_GROUP_IOSCHED
180 /* number of ios merged */
181 struct blkg_rwstat merged;
182 /* total time spent on device in ns, may not be accurate w/ queueing */
183 struct blkg_rwstat service_time;
184 /* total time spent waiting in scheduler queue in ns */
185 struct blkg_rwstat wait_time;
186 /* number of IOs queued up */
187 struct blkg_rwstat queued;
188 /* total disk time and nr sectors dispatched by this group */
189 struct blkg_stat time;
190 #ifdef CONFIG_DEBUG_BLK_CGROUP
191 /* time not charged to this cgroup */
192 struct blkg_stat unaccounted_time;
193 /* sum of number of ios queued across all samples */
194 struct blkg_stat avg_queue_size_sum;
195 /* count of samples taken for average */
196 struct blkg_stat avg_queue_size_samples;
197 /* how many times this group has been removed from service tree */
198 struct blkg_stat dequeue;
199 /* total time spent waiting for it to be assigned a timeslice. */
200 struct blkg_stat group_wait_time;
201 /* time spent idling for this blkcg_gq */
202 struct blkg_stat idle_time;
203 /* total time with empty current active q with other requests queued */
204 struct blkg_stat empty_time;
205 /* fields after this shouldn't be cleared on stat reset */
206 uint64_t start_group_wait_time;
207 uint64_t start_idle_time;
208 uint64_t start_empty_time;
209 uint16_t flags;
210 #endif /* CONFIG_DEBUG_BLK_CGROUP */
211 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
212 };
213
214 /* Per-cgroup data */
215 struct cfq_group_data {
216 /* must be the first member */
217 struct blkcg_policy_data cpd;
218
219 unsigned int weight;
220 unsigned int leaf_weight;
221 };
222
223 /* This is per cgroup per device grouping structure */
224 struct cfq_group {
225 /* must be the first member */
226 struct blkg_policy_data pd;
227
228 /* group service_tree member */
229 struct rb_node rb_node;
230
231 /* group service_tree key */
232 u64 vdisktime;
233
234 /*
235 * The number of active cfqgs and sum of their weights under this
236 * cfqg. This covers this cfqg's leaf_weight and all children's
237 * weights, but does not cover weights of further descendants.
238 *
239 * If a cfqg is on the service tree, it's active. An active cfqg
240 * also activates its parent and contributes to the children_weight
241 * of the parent.
242 */
243 int nr_active;
244 unsigned int children_weight;
245
246 /*
247 * vfraction is the fraction of vdisktime that the tasks in this
248 * cfqg are entitled to. This is determined by compounding the
249 * ratios walking up from this cfqg to the root.
250 *
251 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
252 * vfractions on a service tree is approximately 1. The sum may
253 * deviate a bit due to rounding errors and fluctuations caused by
254 * cfqgs entering and leaving the service tree.
255 */
256 unsigned int vfraction;
257
258 /*
259 * There are two weights - (internal) weight is the weight of this
260 * cfqg against the sibling cfqgs. leaf_weight is the wight of
261 * this cfqg against the child cfqgs. For the root cfqg, both
262 * weights are kept in sync for backward compatibility.
263 */
264 unsigned int weight;
265 unsigned int new_weight;
266 unsigned int dev_weight;
267
268 unsigned int leaf_weight;
269 unsigned int new_leaf_weight;
270 unsigned int dev_leaf_weight;
271
272 /* number of cfqq currently on this group */
273 int nr_cfqq;
274
275 /*
276 * Per group busy queues average. Useful for workload slice calc. We
277 * create the array for each prio class but at run time it is used
278 * only for RT and BE class and slot for IDLE class remains unused.
279 * This is primarily done to avoid confusion and a gcc warning.
280 */
281 unsigned int busy_queues_avg[CFQ_PRIO_NR];
282 /*
283 * rr lists of queues with requests. We maintain service trees for
284 * RT and BE classes. These trees are subdivided in subclasses
285 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
286 * class there is no subclassification and all the cfq queues go on
287 * a single tree service_tree_idle.
288 * Counts are embedded in the cfq_rb_root
289 */
290 struct cfq_rb_root service_trees[2][3];
291 struct cfq_rb_root service_tree_idle;
292
293 unsigned long saved_wl_slice;
294 enum wl_type_t saved_wl_type;
295 enum wl_class_t saved_wl_class;
296
297 /* number of requests that are on the dispatch list or inside driver */
298 int dispatched;
299 struct cfq_ttime ttime;
300 struct cfqg_stats stats; /* stats for this cfqg */
301
302 /* async queue for each priority case */
303 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
304 struct cfq_queue *async_idle_cfqq;
305
306 };
307
308 struct cfq_io_cq {
309 struct io_cq icq; /* must be the first member */
310 struct cfq_queue *cfqq[2];
311 struct cfq_ttime ttime;
312 int ioprio; /* the current ioprio */
313 #ifdef CONFIG_CFQ_GROUP_IOSCHED
314 uint64_t blkcg_serial_nr; /* the current blkcg serial */
315 #endif
316 };
317
318 /*
319 * Per block device queue structure
320 */
321 struct cfq_data {
322 struct request_queue *queue;
323 /* Root service tree for cfq_groups */
324 struct cfq_rb_root grp_service_tree;
325 struct cfq_group *root_group;
326
327 /*
328 * The priority currently being served
329 */
330 enum wl_class_t serving_wl_class;
331 enum wl_type_t serving_wl_type;
332 unsigned long workload_expires;
333 struct cfq_group *serving_group;
334
335 /*
336 * Each priority tree is sorted by next_request position. These
337 * trees are used when determining if two or more queues are
338 * interleaving requests (see cfq_close_cooperator).
339 */
340 struct rb_root prio_trees[CFQ_PRIO_LISTS];
341
342 unsigned int busy_queues;
343 unsigned int busy_sync_queues;
344
345 int rq_in_driver;
346 int rq_in_flight[2];
347
348 /*
349 * queue-depth detection
350 */
351 int rq_queued;
352 int hw_tag;
353 /*
354 * hw_tag can be
355 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
356 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
357 * 0 => no NCQ
358 */
359 int hw_tag_est_depth;
360 unsigned int hw_tag_samples;
361
362 /*
363 * idle window management
364 */
365 struct timer_list idle_slice_timer;
366 struct work_struct unplug_work;
367
368 struct cfq_queue *active_queue;
369 struct cfq_io_cq *active_cic;
370
371 sector_t last_position;
372
373 /*
374 * tunables, see top of file
375 */
376 unsigned int cfq_quantum;
377 unsigned int cfq_fifo_expire[2];
378 unsigned int cfq_back_penalty;
379 unsigned int cfq_back_max;
380 unsigned int cfq_slice[2];
381 unsigned int cfq_slice_async_rq;
382 unsigned int cfq_slice_idle;
383 unsigned int cfq_group_idle;
384 unsigned int cfq_latency;
385 unsigned int cfq_target_latency;
386
387 /*
388 * Fallback dummy cfqq for extreme OOM conditions
389 */
390 struct cfq_queue oom_cfqq;
391
392 unsigned long last_delayed_sync;
393 };
394
395 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
396 static void cfq_put_queue(struct cfq_queue *cfqq);
397
398 static struct cfq_rb_root *st_for(struct cfq_group *cfqg,
399 enum wl_class_t class,
400 enum wl_type_t type)
401 {
402 if (!cfqg)
403 return NULL;
404
405 if (class == IDLE_WORKLOAD)
406 return &cfqg->service_tree_idle;
407
408 return &cfqg->service_trees[class][type];
409 }
410
411 enum cfqq_state_flags {
412 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
413 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
414 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
415 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
416 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
417 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
418 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
419 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
420 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
421 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
422 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
423 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
424 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
425 };
426
427 #define CFQ_CFQQ_FNS(name) \
428 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
429 { \
430 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
431 } \
432 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
433 { \
434 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
435 } \
436 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
437 { \
438 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
439 }
440
441 CFQ_CFQQ_FNS(on_rr);
442 CFQ_CFQQ_FNS(wait_request);
443 CFQ_CFQQ_FNS(must_dispatch);
444 CFQ_CFQQ_FNS(must_alloc_slice);
445 CFQ_CFQQ_FNS(fifo_expire);
446 CFQ_CFQQ_FNS(idle_window);
447 CFQ_CFQQ_FNS(prio_changed);
448 CFQ_CFQQ_FNS(slice_new);
449 CFQ_CFQQ_FNS(sync);
450 CFQ_CFQQ_FNS(coop);
451 CFQ_CFQQ_FNS(split_coop);
452 CFQ_CFQQ_FNS(deep);
453 CFQ_CFQQ_FNS(wait_busy);
454 #undef CFQ_CFQQ_FNS
455
456 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
457
458 /* cfqg stats flags */
459 enum cfqg_stats_flags {
460 CFQG_stats_waiting = 0,
461 CFQG_stats_idling,
462 CFQG_stats_empty,
463 };
464
465 #define CFQG_FLAG_FNS(name) \
466 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
467 { \
468 stats->flags |= (1 << CFQG_stats_##name); \
469 } \
470 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
471 { \
472 stats->flags &= ~(1 << CFQG_stats_##name); \
473 } \
474 static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
475 { \
476 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
477 } \
478
479 CFQG_FLAG_FNS(waiting)
480 CFQG_FLAG_FNS(idling)
481 CFQG_FLAG_FNS(empty)
482 #undef CFQG_FLAG_FNS
483
484 /* This should be called with the queue_lock held. */
485 static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
486 {
487 unsigned long long now;
488
489 if (!cfqg_stats_waiting(stats))
490 return;
491
492 now = sched_clock();
493 if (time_after64(now, stats->start_group_wait_time))
494 blkg_stat_add(&stats->group_wait_time,
495 now - stats->start_group_wait_time);
496 cfqg_stats_clear_waiting(stats);
497 }
498
499 /* This should be called with the queue_lock held. */
500 static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
501 struct cfq_group *curr_cfqg)
502 {
503 struct cfqg_stats *stats = &cfqg->stats;
504
505 if (cfqg_stats_waiting(stats))
506 return;
507 if (cfqg == curr_cfqg)
508 return;
509 stats->start_group_wait_time = sched_clock();
510 cfqg_stats_mark_waiting(stats);
511 }
512
513 /* This should be called with the queue_lock held. */
514 static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
515 {
516 unsigned long long now;
517
518 if (!cfqg_stats_empty(stats))
519 return;
520
521 now = sched_clock();
522 if (time_after64(now, stats->start_empty_time))
523 blkg_stat_add(&stats->empty_time,
524 now - stats->start_empty_time);
525 cfqg_stats_clear_empty(stats);
526 }
527
528 static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
529 {
530 blkg_stat_add(&cfqg->stats.dequeue, 1);
531 }
532
533 static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
534 {
535 struct cfqg_stats *stats = &cfqg->stats;
536
537 if (blkg_rwstat_total(&stats->queued))
538 return;
539
540 /*
541 * group is already marked empty. This can happen if cfqq got new
542 * request in parent group and moved to this group while being added
543 * to service tree. Just ignore the event and move on.
544 */
545 if (cfqg_stats_empty(stats))
546 return;
547
548 stats->start_empty_time = sched_clock();
549 cfqg_stats_mark_empty(stats);
550 }
551
552 static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
553 {
554 struct cfqg_stats *stats = &cfqg->stats;
555
556 if (cfqg_stats_idling(stats)) {
557 unsigned long long now = sched_clock();
558
559 if (time_after64(now, stats->start_idle_time))
560 blkg_stat_add(&stats->idle_time,
561 now - stats->start_idle_time);
562 cfqg_stats_clear_idling(stats);
563 }
564 }
565
566 static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
567 {
568 struct cfqg_stats *stats = &cfqg->stats;
569
570 BUG_ON(cfqg_stats_idling(stats));
571
572 stats->start_idle_time = sched_clock();
573 cfqg_stats_mark_idling(stats);
574 }
575
576 static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
577 {
578 struct cfqg_stats *stats = &cfqg->stats;
579
580 blkg_stat_add(&stats->avg_queue_size_sum,
581 blkg_rwstat_total(&stats->queued));
582 blkg_stat_add(&stats->avg_queue_size_samples, 1);
583 cfqg_stats_update_group_wait_time(stats);
584 }
585
586 #else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
587
588 static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
589 static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
590 static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
591 static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
592 static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
593 static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
594 static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
595
596 #endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
597
598 #ifdef CONFIG_CFQ_GROUP_IOSCHED
599
600 static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
601 {
602 return pd ? container_of(pd, struct cfq_group, pd) : NULL;
603 }
604
605 static struct cfq_group_data
606 *cpd_to_cfqgd(struct blkcg_policy_data *cpd)
607 {
608 return cpd ? container_of(cpd, struct cfq_group_data, cpd) : NULL;
609 }
610
611 static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
612 {
613 return pd_to_blkg(&cfqg->pd);
614 }
615
616 static struct blkcg_policy blkcg_policy_cfq;
617
618 static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
619 {
620 return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
621 }
622
623 static struct cfq_group_data *blkcg_to_cfqgd(struct blkcg *blkcg)
624 {
625 return cpd_to_cfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_cfq));
626 }
627
628 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg)
629 {
630 struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent;
631
632 return pblkg ? blkg_to_cfqg(pblkg) : NULL;
633 }
634
635 static inline bool cfqg_is_descendant(struct cfq_group *cfqg,
636 struct cfq_group *ancestor)
637 {
638 return cgroup_is_descendant(cfqg_to_blkg(cfqg)->blkcg->css.cgroup,
639 cfqg_to_blkg(ancestor)->blkcg->css.cgroup);
640 }
641
642 static inline void cfqg_get(struct cfq_group *cfqg)
643 {
644 return blkg_get(cfqg_to_blkg(cfqg));
645 }
646
647 static inline void cfqg_put(struct cfq_group *cfqg)
648 {
649 return blkg_put(cfqg_to_blkg(cfqg));
650 }
651
652 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \
653 char __pbuf[128]; \
654 \
655 blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf)); \
656 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \
657 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
658 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
659 __pbuf, ##args); \
660 } while (0)
661
662 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \
663 char __pbuf[128]; \
664 \
665 blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf)); \
666 blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args); \
667 } while (0)
668
669 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
670 struct cfq_group *curr_cfqg, int op,
671 int op_flags)
672 {
673 blkg_rwstat_add(&cfqg->stats.queued, op, op_flags, 1);
674 cfqg_stats_end_empty_time(&cfqg->stats);
675 cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
676 }
677
678 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
679 unsigned long time, unsigned long unaccounted_time)
680 {
681 blkg_stat_add(&cfqg->stats.time, time);
682 #ifdef CONFIG_DEBUG_BLK_CGROUP
683 blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
684 #endif
685 }
686
687 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int op,
688 int op_flags)
689 {
690 blkg_rwstat_add(&cfqg->stats.queued, op, op_flags, -1);
691 }
692
693 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int op,
694 int op_flags)
695 {
696 blkg_rwstat_add(&cfqg->stats.merged, op, op_flags, 1);
697 }
698
699 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
700 uint64_t start_time, uint64_t io_start_time, int op,
701 int op_flags)
702 {
703 struct cfqg_stats *stats = &cfqg->stats;
704 unsigned long long now = sched_clock();
705
706 if (time_after64(now, io_start_time))
707 blkg_rwstat_add(&stats->service_time, op, op_flags,
708 now - io_start_time);
709 if (time_after64(io_start_time, start_time))
710 blkg_rwstat_add(&stats->wait_time, op, op_flags,
711 io_start_time - start_time);
712 }
713
714 /* @stats = 0 */
715 static void cfqg_stats_reset(struct cfqg_stats *stats)
716 {
717 /* queued stats shouldn't be cleared */
718 blkg_rwstat_reset(&stats->merged);
719 blkg_rwstat_reset(&stats->service_time);
720 blkg_rwstat_reset(&stats->wait_time);
721 blkg_stat_reset(&stats->time);
722 #ifdef CONFIG_DEBUG_BLK_CGROUP
723 blkg_stat_reset(&stats->unaccounted_time);
724 blkg_stat_reset(&stats->avg_queue_size_sum);
725 blkg_stat_reset(&stats->avg_queue_size_samples);
726 blkg_stat_reset(&stats->dequeue);
727 blkg_stat_reset(&stats->group_wait_time);
728 blkg_stat_reset(&stats->idle_time);
729 blkg_stat_reset(&stats->empty_time);
730 #endif
731 }
732
733 /* @to += @from */
734 static void cfqg_stats_add_aux(struct cfqg_stats *to, struct cfqg_stats *from)
735 {
736 /* queued stats shouldn't be cleared */
737 blkg_rwstat_add_aux(&to->merged, &from->merged);
738 blkg_rwstat_add_aux(&to->service_time, &from->service_time);
739 blkg_rwstat_add_aux(&to->wait_time, &from->wait_time);
740 blkg_stat_add_aux(&from->time, &from->time);
741 #ifdef CONFIG_DEBUG_BLK_CGROUP
742 blkg_stat_add_aux(&to->unaccounted_time, &from->unaccounted_time);
743 blkg_stat_add_aux(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
744 blkg_stat_add_aux(&to->avg_queue_size_samples, &from->avg_queue_size_samples);
745 blkg_stat_add_aux(&to->dequeue, &from->dequeue);
746 blkg_stat_add_aux(&to->group_wait_time, &from->group_wait_time);
747 blkg_stat_add_aux(&to->idle_time, &from->idle_time);
748 blkg_stat_add_aux(&to->empty_time, &from->empty_time);
749 #endif
750 }
751
752 /*
753 * Transfer @cfqg's stats to its parent's aux counts so that the ancestors'
754 * recursive stats can still account for the amount used by this cfqg after
755 * it's gone.
756 */
757 static void cfqg_stats_xfer_dead(struct cfq_group *cfqg)
758 {
759 struct cfq_group *parent = cfqg_parent(cfqg);
760
761 lockdep_assert_held(cfqg_to_blkg(cfqg)->q->queue_lock);
762
763 if (unlikely(!parent))
764 return;
765
766 cfqg_stats_add_aux(&parent->stats, &cfqg->stats);
767 cfqg_stats_reset(&cfqg->stats);
768 }
769
770 #else /* CONFIG_CFQ_GROUP_IOSCHED */
771
772 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; }
773 static inline bool cfqg_is_descendant(struct cfq_group *cfqg,
774 struct cfq_group *ancestor)
775 {
776 return true;
777 }
778 static inline void cfqg_get(struct cfq_group *cfqg) { }
779 static inline void cfqg_put(struct cfq_group *cfqg) { }
780
781 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
782 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \
783 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
784 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
785 ##args)
786 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
787
788 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
789 struct cfq_group *curr_cfqg, int op, int op_flags) { }
790 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
791 unsigned long time, unsigned long unaccounted_time) { }
792 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int op,
793 int op_flags) { }
794 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int op,
795 int op_flags) { }
796 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
797 uint64_t start_time, uint64_t io_start_time, int op,
798 int op_flags) { }
799
800 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
801
802 #define cfq_log(cfqd, fmt, args...) \
803 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
804
805 /* Traverses through cfq group service trees */
806 #define for_each_cfqg_st(cfqg, i, j, st) \
807 for (i = 0; i <= IDLE_WORKLOAD; i++) \
808 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
809 : &cfqg->service_tree_idle; \
810 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
811 (i == IDLE_WORKLOAD && j == 0); \
812 j++, st = i < IDLE_WORKLOAD ? \
813 &cfqg->service_trees[i][j]: NULL) \
814
815 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
816 struct cfq_ttime *ttime, bool group_idle)
817 {
818 unsigned long slice;
819 if (!sample_valid(ttime->ttime_samples))
820 return false;
821 if (group_idle)
822 slice = cfqd->cfq_group_idle;
823 else
824 slice = cfqd->cfq_slice_idle;
825 return ttime->ttime_mean > slice;
826 }
827
828 static inline bool iops_mode(struct cfq_data *cfqd)
829 {
830 /*
831 * If we are not idling on queues and it is a NCQ drive, parallel
832 * execution of requests is on and measuring time is not possible
833 * in most of the cases until and unless we drive shallower queue
834 * depths and that becomes a performance bottleneck. In such cases
835 * switch to start providing fairness in terms of number of IOs.
836 */
837 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
838 return true;
839 else
840 return false;
841 }
842
843 static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq)
844 {
845 if (cfq_class_idle(cfqq))
846 return IDLE_WORKLOAD;
847 if (cfq_class_rt(cfqq))
848 return RT_WORKLOAD;
849 return BE_WORKLOAD;
850 }
851
852
853 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
854 {
855 if (!cfq_cfqq_sync(cfqq))
856 return ASYNC_WORKLOAD;
857 if (!cfq_cfqq_idle_window(cfqq))
858 return SYNC_NOIDLE_WORKLOAD;
859 return SYNC_WORKLOAD;
860 }
861
862 static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class,
863 struct cfq_data *cfqd,
864 struct cfq_group *cfqg)
865 {
866 if (wl_class == IDLE_WORKLOAD)
867 return cfqg->service_tree_idle.count;
868
869 return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count +
870 cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count +
871 cfqg->service_trees[wl_class][SYNC_WORKLOAD].count;
872 }
873
874 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
875 struct cfq_group *cfqg)
876 {
877 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count +
878 cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
879 }
880
881 static void cfq_dispatch_insert(struct request_queue *, struct request *);
882 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
883 struct cfq_io_cq *cic, struct bio *bio);
884
885 static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
886 {
887 /* cic->icq is the first member, %NULL will convert to %NULL */
888 return container_of(icq, struct cfq_io_cq, icq);
889 }
890
891 static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
892 struct io_context *ioc)
893 {
894 if (ioc)
895 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
896 return NULL;
897 }
898
899 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
900 {
901 return cic->cfqq[is_sync];
902 }
903
904 static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
905 bool is_sync)
906 {
907 cic->cfqq[is_sync] = cfqq;
908 }
909
910 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
911 {
912 return cic->icq.q->elevator->elevator_data;
913 }
914
915 /*
916 * We regard a request as SYNC, if it's either a read or has the SYNC bit
917 * set (in which case it could also be direct WRITE).
918 */
919 static inline bool cfq_bio_sync(struct bio *bio)
920 {
921 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
922 }
923
924 /*
925 * scheduler run of queue, if there are requests pending and no one in the
926 * driver that will restart queueing
927 */
928 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
929 {
930 if (cfqd->busy_queues) {
931 cfq_log(cfqd, "schedule dispatch");
932 kblockd_schedule_work(&cfqd->unplug_work);
933 }
934 }
935
936 /*
937 * Scale schedule slice based on io priority. Use the sync time slice only
938 * if a queue is marked sync and has sync io queued. A sync queue with async
939 * io only, should not get full sync slice length.
940 */
941 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
942 unsigned short prio)
943 {
944 const int base_slice = cfqd->cfq_slice[sync];
945
946 WARN_ON(prio >= IOPRIO_BE_NR);
947
948 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
949 }
950
951 static inline int
952 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
953 {
954 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
955 }
956
957 /**
958 * cfqg_scale_charge - scale disk time charge according to cfqg weight
959 * @charge: disk time being charged
960 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
961 *
962 * Scale @charge according to @vfraction, which is in range (0, 1]. The
963 * scaling is inversely proportional.
964 *
965 * scaled = charge / vfraction
966 *
967 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
968 */
969 static inline u64 cfqg_scale_charge(unsigned long charge,
970 unsigned int vfraction)
971 {
972 u64 c = charge << CFQ_SERVICE_SHIFT; /* make it fixed point */
973
974 /* charge / vfraction */
975 c <<= CFQ_SERVICE_SHIFT;
976 do_div(c, vfraction);
977 return c;
978 }
979
980 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
981 {
982 s64 delta = (s64)(vdisktime - min_vdisktime);
983 if (delta > 0)
984 min_vdisktime = vdisktime;
985
986 return min_vdisktime;
987 }
988
989 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
990 {
991 s64 delta = (s64)(vdisktime - min_vdisktime);
992 if (delta < 0)
993 min_vdisktime = vdisktime;
994
995 return min_vdisktime;
996 }
997
998 static void update_min_vdisktime(struct cfq_rb_root *st)
999 {
1000 struct cfq_group *cfqg;
1001
1002 if (st->left) {
1003 cfqg = rb_entry_cfqg(st->left);
1004 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
1005 cfqg->vdisktime);
1006 }
1007 }
1008
1009 /*
1010 * get averaged number of queues of RT/BE priority.
1011 * average is updated, with a formula that gives more weight to higher numbers,
1012 * to quickly follows sudden increases and decrease slowly
1013 */
1014
1015 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
1016 struct cfq_group *cfqg, bool rt)
1017 {
1018 unsigned min_q, max_q;
1019 unsigned mult = cfq_hist_divisor - 1;
1020 unsigned round = cfq_hist_divisor / 2;
1021 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
1022
1023 min_q = min(cfqg->busy_queues_avg[rt], busy);
1024 max_q = max(cfqg->busy_queues_avg[rt], busy);
1025 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
1026 cfq_hist_divisor;
1027 return cfqg->busy_queues_avg[rt];
1028 }
1029
1030 static inline unsigned
1031 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
1032 {
1033 return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT;
1034 }
1035
1036 static inline unsigned
1037 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1038 {
1039 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
1040 if (cfqd->cfq_latency) {
1041 /*
1042 * interested queues (we consider only the ones with the same
1043 * priority class in the cfq group)
1044 */
1045 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
1046 cfq_class_rt(cfqq));
1047 unsigned sync_slice = cfqd->cfq_slice[1];
1048 unsigned expect_latency = sync_slice * iq;
1049 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
1050
1051 if (expect_latency > group_slice) {
1052 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
1053 /* scale low_slice according to IO priority
1054 * and sync vs async */
1055 unsigned low_slice =
1056 min(slice, base_low_slice * slice / sync_slice);
1057 /* the adapted slice value is scaled to fit all iqs
1058 * into the target latency */
1059 slice = max(slice * group_slice / expect_latency,
1060 low_slice);
1061 }
1062 }
1063 return slice;
1064 }
1065
1066 static inline void
1067 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1068 {
1069 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
1070
1071 cfqq->slice_start = jiffies;
1072 cfqq->slice_end = jiffies + slice;
1073 cfqq->allocated_slice = slice;
1074 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
1075 }
1076
1077 /*
1078 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1079 * isn't valid until the first request from the dispatch is activated
1080 * and the slice time set.
1081 */
1082 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
1083 {
1084 if (cfq_cfqq_slice_new(cfqq))
1085 return false;
1086 if (time_before(jiffies, cfqq->slice_end))
1087 return false;
1088
1089 return true;
1090 }
1091
1092 /*
1093 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1094 * We choose the request that is closest to the head right now. Distance
1095 * behind the head is penalized and only allowed to a certain extent.
1096 */
1097 static struct request *
1098 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1099 {
1100 sector_t s1, s2, d1 = 0, d2 = 0;
1101 unsigned long back_max;
1102 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
1103 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
1104 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1105
1106 if (rq1 == NULL || rq1 == rq2)
1107 return rq2;
1108 if (rq2 == NULL)
1109 return rq1;
1110
1111 if (rq_is_sync(rq1) != rq_is_sync(rq2))
1112 return rq_is_sync(rq1) ? rq1 : rq2;
1113
1114 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
1115 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
1116
1117 s1 = blk_rq_pos(rq1);
1118 s2 = blk_rq_pos(rq2);
1119
1120 /*
1121 * by definition, 1KiB is 2 sectors
1122 */
1123 back_max = cfqd->cfq_back_max * 2;
1124
1125 /*
1126 * Strict one way elevator _except_ in the case where we allow
1127 * short backward seeks which are biased as twice the cost of a
1128 * similar forward seek.
1129 */
1130 if (s1 >= last)
1131 d1 = s1 - last;
1132 else if (s1 + back_max >= last)
1133 d1 = (last - s1) * cfqd->cfq_back_penalty;
1134 else
1135 wrap |= CFQ_RQ1_WRAP;
1136
1137 if (s2 >= last)
1138 d2 = s2 - last;
1139 else if (s2 + back_max >= last)
1140 d2 = (last - s2) * cfqd->cfq_back_penalty;
1141 else
1142 wrap |= CFQ_RQ2_WRAP;
1143
1144 /* Found required data */
1145
1146 /*
1147 * By doing switch() on the bit mask "wrap" we avoid having to
1148 * check two variables for all permutations: --> faster!
1149 */
1150 switch (wrap) {
1151 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1152 if (d1 < d2)
1153 return rq1;
1154 else if (d2 < d1)
1155 return rq2;
1156 else {
1157 if (s1 >= s2)
1158 return rq1;
1159 else
1160 return rq2;
1161 }
1162
1163 case CFQ_RQ2_WRAP:
1164 return rq1;
1165 case CFQ_RQ1_WRAP:
1166 return rq2;
1167 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1168 default:
1169 /*
1170 * Since both rqs are wrapped,
1171 * start with the one that's further behind head
1172 * (--> only *one* back seek required),
1173 * since back seek takes more time than forward.
1174 */
1175 if (s1 <= s2)
1176 return rq1;
1177 else
1178 return rq2;
1179 }
1180 }
1181
1182 /*
1183 * The below is leftmost cache rbtree addon
1184 */
1185 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1186 {
1187 /* Service tree is empty */
1188 if (!root->count)
1189 return NULL;
1190
1191 if (!root->left)
1192 root->left = rb_first(&root->rb);
1193
1194 if (root->left)
1195 return rb_entry(root->left, struct cfq_queue, rb_node);
1196
1197 return NULL;
1198 }
1199
1200 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1201 {
1202 if (!root->left)
1203 root->left = rb_first(&root->rb);
1204
1205 if (root->left)
1206 return rb_entry_cfqg(root->left);
1207
1208 return NULL;
1209 }
1210
1211 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
1212 {
1213 rb_erase(n, root);
1214 RB_CLEAR_NODE(n);
1215 }
1216
1217 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1218 {
1219 if (root->left == n)
1220 root->left = NULL;
1221 rb_erase_init(n, &root->rb);
1222 --root->count;
1223 }
1224
1225 /*
1226 * would be nice to take fifo expire time into account as well
1227 */
1228 static struct request *
1229 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1230 struct request *last)
1231 {
1232 struct rb_node *rbnext = rb_next(&last->rb_node);
1233 struct rb_node *rbprev = rb_prev(&last->rb_node);
1234 struct request *next = NULL, *prev = NULL;
1235
1236 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1237
1238 if (rbprev)
1239 prev = rb_entry_rq(rbprev);
1240
1241 if (rbnext)
1242 next = rb_entry_rq(rbnext);
1243 else {
1244 rbnext = rb_first(&cfqq->sort_list);
1245 if (rbnext && rbnext != &last->rb_node)
1246 next = rb_entry_rq(rbnext);
1247 }
1248
1249 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1250 }
1251
1252 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
1253 struct cfq_queue *cfqq)
1254 {
1255 /*
1256 * just an approximation, should be ok.
1257 */
1258 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1259 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1260 }
1261
1262 static inline s64
1263 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1264 {
1265 return cfqg->vdisktime - st->min_vdisktime;
1266 }
1267
1268 static void
1269 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1270 {
1271 struct rb_node **node = &st->rb.rb_node;
1272 struct rb_node *parent = NULL;
1273 struct cfq_group *__cfqg;
1274 s64 key = cfqg_key(st, cfqg);
1275 int left = 1;
1276
1277 while (*node != NULL) {
1278 parent = *node;
1279 __cfqg = rb_entry_cfqg(parent);
1280
1281 if (key < cfqg_key(st, __cfqg))
1282 node = &parent->rb_left;
1283 else {
1284 node = &parent->rb_right;
1285 left = 0;
1286 }
1287 }
1288
1289 if (left)
1290 st->left = &cfqg->rb_node;
1291
1292 rb_link_node(&cfqg->rb_node, parent, node);
1293 rb_insert_color(&cfqg->rb_node, &st->rb);
1294 }
1295
1296 /*
1297 * This has to be called only on activation of cfqg
1298 */
1299 static void
1300 cfq_update_group_weight(struct cfq_group *cfqg)
1301 {
1302 if (cfqg->new_weight) {
1303 cfqg->weight = cfqg->new_weight;
1304 cfqg->new_weight = 0;
1305 }
1306 }
1307
1308 static void
1309 cfq_update_group_leaf_weight(struct cfq_group *cfqg)
1310 {
1311 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1312
1313 if (cfqg->new_leaf_weight) {
1314 cfqg->leaf_weight = cfqg->new_leaf_weight;
1315 cfqg->new_leaf_weight = 0;
1316 }
1317 }
1318
1319 static void
1320 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1321 {
1322 unsigned int vfr = 1 << CFQ_SERVICE_SHIFT; /* start with 1 */
1323 struct cfq_group *pos = cfqg;
1324 struct cfq_group *parent;
1325 bool propagate;
1326
1327 /* add to the service tree */
1328 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1329
1330 /*
1331 * Update leaf_weight. We cannot update weight at this point
1332 * because cfqg might already have been activated and is
1333 * contributing its current weight to the parent's child_weight.
1334 */
1335 cfq_update_group_leaf_weight(cfqg);
1336 __cfq_group_service_tree_add(st, cfqg);
1337
1338 /*
1339 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1340 * entitled to. vfraction is calculated by walking the tree
1341 * towards the root calculating the fraction it has at each level.
1342 * The compounded ratio is how much vfraction @cfqg owns.
1343 *
1344 * Start with the proportion tasks in this cfqg has against active
1345 * children cfqgs - its leaf_weight against children_weight.
1346 */
1347 propagate = !pos->nr_active++;
1348 pos->children_weight += pos->leaf_weight;
1349 vfr = vfr * pos->leaf_weight / pos->children_weight;
1350
1351 /*
1352 * Compound ->weight walking up the tree. Both activation and
1353 * vfraction calculation are done in the same loop. Propagation
1354 * stops once an already activated node is met. vfraction
1355 * calculation should always continue to the root.
1356 */
1357 while ((parent = cfqg_parent(pos))) {
1358 if (propagate) {
1359 cfq_update_group_weight(pos);
1360 propagate = !parent->nr_active++;
1361 parent->children_weight += pos->weight;
1362 }
1363 vfr = vfr * pos->weight / parent->children_weight;
1364 pos = parent;
1365 }
1366
1367 cfqg->vfraction = max_t(unsigned, vfr, 1);
1368 }
1369
1370 static void
1371 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1372 {
1373 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1374 struct cfq_group *__cfqg;
1375 struct rb_node *n;
1376
1377 cfqg->nr_cfqq++;
1378 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1379 return;
1380
1381 /*
1382 * Currently put the group at the end. Later implement something
1383 * so that groups get lesser vtime based on their weights, so that
1384 * if group does not loose all if it was not continuously backlogged.
1385 */
1386 n = rb_last(&st->rb);
1387 if (n) {
1388 __cfqg = rb_entry_cfqg(n);
1389 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
1390 } else
1391 cfqg->vdisktime = st->min_vdisktime;
1392 cfq_group_service_tree_add(st, cfqg);
1393 }
1394
1395 static void
1396 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1397 {
1398 struct cfq_group *pos = cfqg;
1399 bool propagate;
1400
1401 /*
1402 * Undo activation from cfq_group_service_tree_add(). Deactivate
1403 * @cfqg and propagate deactivation upwards.
1404 */
1405 propagate = !--pos->nr_active;
1406 pos->children_weight -= pos->leaf_weight;
1407
1408 while (propagate) {
1409 struct cfq_group *parent = cfqg_parent(pos);
1410
1411 /* @pos has 0 nr_active at this point */
1412 WARN_ON_ONCE(pos->children_weight);
1413 pos->vfraction = 0;
1414
1415 if (!parent)
1416 break;
1417
1418 propagate = !--parent->nr_active;
1419 parent->children_weight -= pos->weight;
1420 pos = parent;
1421 }
1422
1423 /* remove from the service tree */
1424 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1425 cfq_rb_erase(&cfqg->rb_node, st);
1426 }
1427
1428 static void
1429 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1430 {
1431 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1432
1433 BUG_ON(cfqg->nr_cfqq < 1);
1434 cfqg->nr_cfqq--;
1435
1436 /* If there are other cfq queues under this group, don't delete it */
1437 if (cfqg->nr_cfqq)
1438 return;
1439
1440 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1441 cfq_group_service_tree_del(st, cfqg);
1442 cfqg->saved_wl_slice = 0;
1443 cfqg_stats_update_dequeue(cfqg);
1444 }
1445
1446 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1447 unsigned int *unaccounted_time)
1448 {
1449 unsigned int slice_used;
1450
1451 /*
1452 * Queue got expired before even a single request completed or
1453 * got expired immediately after first request completion.
1454 */
1455 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
1456 /*
1457 * Also charge the seek time incurred to the group, otherwise
1458 * if there are mutiple queues in the group, each can dispatch
1459 * a single request on seeky media and cause lots of seek time
1460 * and group will never know it.
1461 */
1462 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
1463 1);
1464 } else {
1465 slice_used = jiffies - cfqq->slice_start;
1466 if (slice_used > cfqq->allocated_slice) {
1467 *unaccounted_time = slice_used - cfqq->allocated_slice;
1468 slice_used = cfqq->allocated_slice;
1469 }
1470 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
1471 *unaccounted_time += cfqq->slice_start -
1472 cfqq->dispatch_start;
1473 }
1474
1475 return slice_used;
1476 }
1477
1478 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1479 struct cfq_queue *cfqq)
1480 {
1481 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1482 unsigned int used_sl, charge, unaccounted_sl = 0;
1483 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1484 - cfqg->service_tree_idle.count;
1485 unsigned int vfr;
1486
1487 BUG_ON(nr_sync < 0);
1488 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1489
1490 if (iops_mode(cfqd))
1491 charge = cfqq->slice_dispatch;
1492 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1493 charge = cfqq->allocated_slice;
1494
1495 /*
1496 * Can't update vdisktime while on service tree and cfqg->vfraction
1497 * is valid only while on it. Cache vfr, leave the service tree,
1498 * update vdisktime and go back on. The re-addition to the tree
1499 * will also update the weights as necessary.
1500 */
1501 vfr = cfqg->vfraction;
1502 cfq_group_service_tree_del(st, cfqg);
1503 cfqg->vdisktime += cfqg_scale_charge(charge, vfr);
1504 cfq_group_service_tree_add(st, cfqg);
1505
1506 /* This group is being expired. Save the context */
1507 if (time_after(cfqd->workload_expires, jiffies)) {
1508 cfqg->saved_wl_slice = cfqd->workload_expires
1509 - jiffies;
1510 cfqg->saved_wl_type = cfqd->serving_wl_type;
1511 cfqg->saved_wl_class = cfqd->serving_wl_class;
1512 } else
1513 cfqg->saved_wl_slice = 0;
1514
1515 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1516 st->min_vdisktime);
1517 cfq_log_cfqq(cfqq->cfqd, cfqq,
1518 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1519 used_sl, cfqq->slice_dispatch, charge,
1520 iops_mode(cfqd), cfqq->nr_sectors);
1521 cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1522 cfqg_stats_set_start_empty_time(cfqg);
1523 }
1524
1525 /**
1526 * cfq_init_cfqg_base - initialize base part of a cfq_group
1527 * @cfqg: cfq_group to initialize
1528 *
1529 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1530 * is enabled or not.
1531 */
1532 static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1533 {
1534 struct cfq_rb_root *st;
1535 int i, j;
1536
1537 for_each_cfqg_st(cfqg, i, j, st)
1538 *st = CFQ_RB_ROOT;
1539 RB_CLEAR_NODE(&cfqg->rb_node);
1540
1541 cfqg->ttime.last_end_request = jiffies;
1542 }
1543
1544 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1545 static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val,
1546 bool on_dfl, bool reset_dev, bool is_leaf_weight);
1547
1548 static void cfqg_stats_exit(struct cfqg_stats *stats)
1549 {
1550 blkg_rwstat_exit(&stats->merged);
1551 blkg_rwstat_exit(&stats->service_time);
1552 blkg_rwstat_exit(&stats->wait_time);
1553 blkg_rwstat_exit(&stats->queued);
1554 blkg_stat_exit(&stats->time);
1555 #ifdef CONFIG_DEBUG_BLK_CGROUP
1556 blkg_stat_exit(&stats->unaccounted_time);
1557 blkg_stat_exit(&stats->avg_queue_size_sum);
1558 blkg_stat_exit(&stats->avg_queue_size_samples);
1559 blkg_stat_exit(&stats->dequeue);
1560 blkg_stat_exit(&stats->group_wait_time);
1561 blkg_stat_exit(&stats->idle_time);
1562 blkg_stat_exit(&stats->empty_time);
1563 #endif
1564 }
1565
1566 static int cfqg_stats_init(struct cfqg_stats *stats, gfp_t gfp)
1567 {
1568 if (blkg_rwstat_init(&stats->merged, gfp) ||
1569 blkg_rwstat_init(&stats->service_time, gfp) ||
1570 blkg_rwstat_init(&stats->wait_time, gfp) ||
1571 blkg_rwstat_init(&stats->queued, gfp) ||
1572 blkg_stat_init(&stats->time, gfp))
1573 goto err;
1574
1575 #ifdef CONFIG_DEBUG_BLK_CGROUP
1576 if (blkg_stat_init(&stats->unaccounted_time, gfp) ||
1577 blkg_stat_init(&stats->avg_queue_size_sum, gfp) ||
1578 blkg_stat_init(&stats->avg_queue_size_samples, gfp) ||
1579 blkg_stat_init(&stats->dequeue, gfp) ||
1580 blkg_stat_init(&stats->group_wait_time, gfp) ||
1581 blkg_stat_init(&stats->idle_time, gfp) ||
1582 blkg_stat_init(&stats->empty_time, gfp))
1583 goto err;
1584 #endif
1585 return 0;
1586 err:
1587 cfqg_stats_exit(stats);
1588 return -ENOMEM;
1589 }
1590
1591 static struct blkcg_policy_data *cfq_cpd_alloc(gfp_t gfp)
1592 {
1593 struct cfq_group_data *cgd;
1594
1595 cgd = kzalloc(sizeof(*cgd), GFP_KERNEL);
1596 if (!cgd)
1597 return NULL;
1598 return &cgd->cpd;
1599 }
1600
1601 static void cfq_cpd_init(struct blkcg_policy_data *cpd)
1602 {
1603 struct cfq_group_data *cgd = cpd_to_cfqgd(cpd);
1604 unsigned int weight = cgroup_subsys_on_dfl(io_cgrp_subsys) ?
1605 CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL;
1606
1607 if (cpd_to_blkcg(cpd) == &blkcg_root)
1608 weight *= 2;
1609
1610 cgd->weight = weight;
1611 cgd->leaf_weight = weight;
1612 }
1613
1614 static void cfq_cpd_free(struct blkcg_policy_data *cpd)
1615 {
1616 kfree(cpd_to_cfqgd(cpd));
1617 }
1618
1619 static void cfq_cpd_bind(struct blkcg_policy_data *cpd)
1620 {
1621 struct blkcg *blkcg = cpd_to_blkcg(cpd);
1622 bool on_dfl = cgroup_subsys_on_dfl(io_cgrp_subsys);
1623 unsigned int weight = on_dfl ? CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL;
1624
1625 if (blkcg == &blkcg_root)
1626 weight *= 2;
1627
1628 WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, false));
1629 WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, true));
1630 }
1631
1632 static struct blkg_policy_data *cfq_pd_alloc(gfp_t gfp, int node)
1633 {
1634 struct cfq_group *cfqg;
1635
1636 cfqg = kzalloc_node(sizeof(*cfqg), gfp, node);
1637 if (!cfqg)
1638 return NULL;
1639
1640 cfq_init_cfqg_base(cfqg);
1641 if (cfqg_stats_init(&cfqg->stats, gfp)) {
1642 kfree(cfqg);
1643 return NULL;
1644 }
1645
1646 return &cfqg->pd;
1647 }
1648
1649 static void cfq_pd_init(struct blkg_policy_data *pd)
1650 {
1651 struct cfq_group *cfqg = pd_to_cfqg(pd);
1652 struct cfq_group_data *cgd = blkcg_to_cfqgd(pd->blkg->blkcg);
1653
1654 cfqg->weight = cgd->weight;
1655 cfqg->leaf_weight = cgd->leaf_weight;
1656 }
1657
1658 static void cfq_pd_offline(struct blkg_policy_data *pd)
1659 {
1660 struct cfq_group *cfqg = pd_to_cfqg(pd);
1661 int i;
1662
1663 for (i = 0; i < IOPRIO_BE_NR; i++) {
1664 if (cfqg->async_cfqq[0][i])
1665 cfq_put_queue(cfqg->async_cfqq[0][i]);
1666 if (cfqg->async_cfqq[1][i])
1667 cfq_put_queue(cfqg->async_cfqq[1][i]);
1668 }
1669
1670 if (cfqg->async_idle_cfqq)
1671 cfq_put_queue(cfqg->async_idle_cfqq);
1672
1673 /*
1674 * @blkg is going offline and will be ignored by
1675 * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
1676 * that they don't get lost. If IOs complete after this point, the
1677 * stats for them will be lost. Oh well...
1678 */
1679 cfqg_stats_xfer_dead(cfqg);
1680 }
1681
1682 static void cfq_pd_free(struct blkg_policy_data *pd)
1683 {
1684 struct cfq_group *cfqg = pd_to_cfqg(pd);
1685
1686 cfqg_stats_exit(&cfqg->stats);
1687 return kfree(cfqg);
1688 }
1689
1690 static void cfq_pd_reset_stats(struct blkg_policy_data *pd)
1691 {
1692 struct cfq_group *cfqg = pd_to_cfqg(pd);
1693
1694 cfqg_stats_reset(&cfqg->stats);
1695 }
1696
1697 static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd,
1698 struct blkcg *blkcg)
1699 {
1700 struct blkcg_gq *blkg;
1701
1702 blkg = blkg_lookup(blkcg, cfqd->queue);
1703 if (likely(blkg))
1704 return blkg_to_cfqg(blkg);
1705 return NULL;
1706 }
1707
1708 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1709 {
1710 cfqq->cfqg = cfqg;
1711 /* cfqq reference on cfqg */
1712 cfqg_get(cfqg);
1713 }
1714
1715 static u64 cfqg_prfill_weight_device(struct seq_file *sf,
1716 struct blkg_policy_data *pd, int off)
1717 {
1718 struct cfq_group *cfqg = pd_to_cfqg(pd);
1719
1720 if (!cfqg->dev_weight)
1721 return 0;
1722 return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
1723 }
1724
1725 static int cfqg_print_weight_device(struct seq_file *sf, void *v)
1726 {
1727 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1728 cfqg_prfill_weight_device, &blkcg_policy_cfq,
1729 0, false);
1730 return 0;
1731 }
1732
1733 static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf,
1734 struct blkg_policy_data *pd, int off)
1735 {
1736 struct cfq_group *cfqg = pd_to_cfqg(pd);
1737
1738 if (!cfqg->dev_leaf_weight)
1739 return 0;
1740 return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight);
1741 }
1742
1743 static int cfqg_print_leaf_weight_device(struct seq_file *sf, void *v)
1744 {
1745 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1746 cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq,
1747 0, false);
1748 return 0;
1749 }
1750
1751 static int cfq_print_weight(struct seq_file *sf, void *v)
1752 {
1753 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1754 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1755 unsigned int val = 0;
1756
1757 if (cgd)
1758 val = cgd->weight;
1759
1760 seq_printf(sf, "%u\n", val);
1761 return 0;
1762 }
1763
1764 static int cfq_print_leaf_weight(struct seq_file *sf, void *v)
1765 {
1766 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1767 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1768 unsigned int val = 0;
1769
1770 if (cgd)
1771 val = cgd->leaf_weight;
1772
1773 seq_printf(sf, "%u\n", val);
1774 return 0;
1775 }
1776
1777 static ssize_t __cfqg_set_weight_device(struct kernfs_open_file *of,
1778 char *buf, size_t nbytes, loff_t off,
1779 bool on_dfl, bool is_leaf_weight)
1780 {
1781 unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN;
1782 unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX;
1783 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1784 struct blkg_conf_ctx ctx;
1785 struct cfq_group *cfqg;
1786 struct cfq_group_data *cfqgd;
1787 int ret;
1788 u64 v;
1789
1790 ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
1791 if (ret)
1792 return ret;
1793
1794 if (sscanf(ctx.body, "%llu", &v) == 1) {
1795 /* require "default" on dfl */
1796 ret = -ERANGE;
1797 if (!v && on_dfl)
1798 goto out_finish;
1799 } else if (!strcmp(strim(ctx.body), "default")) {
1800 v = 0;
1801 } else {
1802 ret = -EINVAL;
1803 goto out_finish;
1804 }
1805
1806 cfqg = blkg_to_cfqg(ctx.blkg);
1807 cfqgd = blkcg_to_cfqgd(blkcg);
1808
1809 ret = -ERANGE;
1810 if (!v || (v >= min && v <= max)) {
1811 if (!is_leaf_weight) {
1812 cfqg->dev_weight = v;
1813 cfqg->new_weight = v ?: cfqgd->weight;
1814 } else {
1815 cfqg->dev_leaf_weight = v;
1816 cfqg->new_leaf_weight = v ?: cfqgd->leaf_weight;
1817 }
1818 ret = 0;
1819 }
1820 out_finish:
1821 blkg_conf_finish(&ctx);
1822 return ret ?: nbytes;
1823 }
1824
1825 static ssize_t cfqg_set_weight_device(struct kernfs_open_file *of,
1826 char *buf, size_t nbytes, loff_t off)
1827 {
1828 return __cfqg_set_weight_device(of, buf, nbytes, off, false, false);
1829 }
1830
1831 static ssize_t cfqg_set_leaf_weight_device(struct kernfs_open_file *of,
1832 char *buf, size_t nbytes, loff_t off)
1833 {
1834 return __cfqg_set_weight_device(of, buf, nbytes, off, false, true);
1835 }
1836
1837 static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val,
1838 bool on_dfl, bool reset_dev, bool is_leaf_weight)
1839 {
1840 unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN;
1841 unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX;
1842 struct blkcg *blkcg = css_to_blkcg(css);
1843 struct blkcg_gq *blkg;
1844 struct cfq_group_data *cfqgd;
1845 int ret = 0;
1846
1847 if (val < min || val > max)
1848 return -ERANGE;
1849
1850 spin_lock_irq(&blkcg->lock);
1851 cfqgd = blkcg_to_cfqgd(blkcg);
1852 if (!cfqgd) {
1853 ret = -EINVAL;
1854 goto out;
1855 }
1856
1857 if (!is_leaf_weight)
1858 cfqgd->weight = val;
1859 else
1860 cfqgd->leaf_weight = val;
1861
1862 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
1863 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1864
1865 if (!cfqg)
1866 continue;
1867
1868 if (!is_leaf_weight) {
1869 if (reset_dev)
1870 cfqg->dev_weight = 0;
1871 if (!cfqg->dev_weight)
1872 cfqg->new_weight = cfqgd->weight;
1873 } else {
1874 if (reset_dev)
1875 cfqg->dev_leaf_weight = 0;
1876 if (!cfqg->dev_leaf_weight)
1877 cfqg->new_leaf_weight = cfqgd->leaf_weight;
1878 }
1879 }
1880
1881 out:
1882 spin_unlock_irq(&blkcg->lock);
1883 return ret;
1884 }
1885
1886 static int cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1887 u64 val)
1888 {
1889 return __cfq_set_weight(css, val, false, false, false);
1890 }
1891
1892 static int cfq_set_leaf_weight(struct cgroup_subsys_state *css,
1893 struct cftype *cft, u64 val)
1894 {
1895 return __cfq_set_weight(css, val, false, false, true);
1896 }
1897
1898 static int cfqg_print_stat(struct seq_file *sf, void *v)
1899 {
1900 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat,
1901 &blkcg_policy_cfq, seq_cft(sf)->private, false);
1902 return 0;
1903 }
1904
1905 static int cfqg_print_rwstat(struct seq_file *sf, void *v)
1906 {
1907 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat,
1908 &blkcg_policy_cfq, seq_cft(sf)->private, true);
1909 return 0;
1910 }
1911
1912 static u64 cfqg_prfill_stat_recursive(struct seq_file *sf,
1913 struct blkg_policy_data *pd, int off)
1914 {
1915 u64 sum = blkg_stat_recursive_sum(pd_to_blkg(pd),
1916 &blkcg_policy_cfq, off);
1917 return __blkg_prfill_u64(sf, pd, sum);
1918 }
1919
1920 static u64 cfqg_prfill_rwstat_recursive(struct seq_file *sf,
1921 struct blkg_policy_data *pd, int off)
1922 {
1923 struct blkg_rwstat sum = blkg_rwstat_recursive_sum(pd_to_blkg(pd),
1924 &blkcg_policy_cfq, off);
1925 return __blkg_prfill_rwstat(sf, pd, &sum);
1926 }
1927
1928 static int cfqg_print_stat_recursive(struct seq_file *sf, void *v)
1929 {
1930 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1931 cfqg_prfill_stat_recursive, &blkcg_policy_cfq,
1932 seq_cft(sf)->private, false);
1933 return 0;
1934 }
1935
1936 static int cfqg_print_rwstat_recursive(struct seq_file *sf, void *v)
1937 {
1938 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1939 cfqg_prfill_rwstat_recursive, &blkcg_policy_cfq,
1940 seq_cft(sf)->private, true);
1941 return 0;
1942 }
1943
1944 static u64 cfqg_prfill_sectors(struct seq_file *sf, struct blkg_policy_data *pd,
1945 int off)
1946 {
1947 u64 sum = blkg_rwstat_total(&pd->blkg->stat_bytes);
1948
1949 return __blkg_prfill_u64(sf, pd, sum >> 9);
1950 }
1951
1952 static int cfqg_print_stat_sectors(struct seq_file *sf, void *v)
1953 {
1954 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1955 cfqg_prfill_sectors, &blkcg_policy_cfq, 0, false);
1956 return 0;
1957 }
1958
1959 static u64 cfqg_prfill_sectors_recursive(struct seq_file *sf,
1960 struct blkg_policy_data *pd, int off)
1961 {
1962 struct blkg_rwstat tmp = blkg_rwstat_recursive_sum(pd->blkg, NULL,
1963 offsetof(struct blkcg_gq, stat_bytes));
1964 u64 sum = atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_READ]) +
1965 atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_WRITE]);
1966
1967 return __blkg_prfill_u64(sf, pd, sum >> 9);
1968 }
1969
1970 static int cfqg_print_stat_sectors_recursive(struct seq_file *sf, void *v)
1971 {
1972 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1973 cfqg_prfill_sectors_recursive, &blkcg_policy_cfq, 0,
1974 false);
1975 return 0;
1976 }
1977
1978 #ifdef CONFIG_DEBUG_BLK_CGROUP
1979 static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
1980 struct blkg_policy_data *pd, int off)
1981 {
1982 struct cfq_group *cfqg = pd_to_cfqg(pd);
1983 u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1984 u64 v = 0;
1985
1986 if (samples) {
1987 v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1988 v = div64_u64(v, samples);
1989 }
1990 __blkg_prfill_u64(sf, pd, v);
1991 return 0;
1992 }
1993
1994 /* print avg_queue_size */
1995 static int cfqg_print_avg_queue_size(struct seq_file *sf, void *v)
1996 {
1997 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1998 cfqg_prfill_avg_queue_size, &blkcg_policy_cfq,
1999 0, false);
2000 return 0;
2001 }
2002 #endif /* CONFIG_DEBUG_BLK_CGROUP */
2003
2004 static struct cftype cfq_blkcg_legacy_files[] = {
2005 /* on root, weight is mapped to leaf_weight */
2006 {
2007 .name = "weight_device",
2008 .flags = CFTYPE_ONLY_ON_ROOT,
2009 .seq_show = cfqg_print_leaf_weight_device,
2010 .write = cfqg_set_leaf_weight_device,
2011 },
2012 {
2013 .name = "weight",
2014 .flags = CFTYPE_ONLY_ON_ROOT,
2015 .seq_show = cfq_print_leaf_weight,
2016 .write_u64 = cfq_set_leaf_weight,
2017 },
2018
2019 /* no such mapping necessary for !roots */
2020 {
2021 .name = "weight_device",
2022 .flags = CFTYPE_NOT_ON_ROOT,
2023 .seq_show = cfqg_print_weight_device,
2024 .write = cfqg_set_weight_device,
2025 },
2026 {
2027 .name = "weight",
2028 .flags = CFTYPE_NOT_ON_ROOT,
2029 .seq_show = cfq_print_weight,
2030 .write_u64 = cfq_set_weight,
2031 },
2032
2033 {
2034 .name = "leaf_weight_device",
2035 .seq_show = cfqg_print_leaf_weight_device,
2036 .write = cfqg_set_leaf_weight_device,
2037 },
2038 {
2039 .name = "leaf_weight",
2040 .seq_show = cfq_print_leaf_weight,
2041 .write_u64 = cfq_set_leaf_weight,
2042 },
2043
2044 /* statistics, covers only the tasks in the cfqg */
2045 {
2046 .name = "time",
2047 .private = offsetof(struct cfq_group, stats.time),
2048 .seq_show = cfqg_print_stat,
2049 },
2050 {
2051 .name = "sectors",
2052 .seq_show = cfqg_print_stat_sectors,
2053 },
2054 {
2055 .name = "io_service_bytes",
2056 .private = (unsigned long)&blkcg_policy_cfq,
2057 .seq_show = blkg_print_stat_bytes,
2058 },
2059 {
2060 .name = "io_serviced",
2061 .private = (unsigned long)&blkcg_policy_cfq,
2062 .seq_show = blkg_print_stat_ios,
2063 },
2064 {
2065 .name = "io_service_time",
2066 .private = offsetof(struct cfq_group, stats.service_time),
2067 .seq_show = cfqg_print_rwstat,
2068 },
2069 {
2070 .name = "io_wait_time",
2071 .private = offsetof(struct cfq_group, stats.wait_time),
2072 .seq_show = cfqg_print_rwstat,
2073 },
2074 {
2075 .name = "io_merged",
2076 .private = offsetof(struct cfq_group, stats.merged),
2077 .seq_show = cfqg_print_rwstat,
2078 },
2079 {
2080 .name = "io_queued",
2081 .private = offsetof(struct cfq_group, stats.queued),
2082 .seq_show = cfqg_print_rwstat,
2083 },
2084
2085 /* the same statictics which cover the cfqg and its descendants */
2086 {
2087 .name = "time_recursive",
2088 .private = offsetof(struct cfq_group, stats.time),
2089 .seq_show = cfqg_print_stat_recursive,
2090 },
2091 {
2092 .name = "sectors_recursive",
2093 .seq_show = cfqg_print_stat_sectors_recursive,
2094 },
2095 {
2096 .name = "io_service_bytes_recursive",
2097 .private = (unsigned long)&blkcg_policy_cfq,
2098 .seq_show = blkg_print_stat_bytes_recursive,
2099 },
2100 {
2101 .name = "io_serviced_recursive",
2102 .private = (unsigned long)&blkcg_policy_cfq,
2103 .seq_show = blkg_print_stat_ios_recursive,
2104 },
2105 {
2106 .name = "io_service_time_recursive",
2107 .private = offsetof(struct cfq_group, stats.service_time),
2108 .seq_show = cfqg_print_rwstat_recursive,
2109 },
2110 {
2111 .name = "io_wait_time_recursive",
2112 .private = offsetof(struct cfq_group, stats.wait_time),
2113 .seq_show = cfqg_print_rwstat_recursive,
2114 },
2115 {
2116 .name = "io_merged_recursive",
2117 .private = offsetof(struct cfq_group, stats.merged),
2118 .seq_show = cfqg_print_rwstat_recursive,
2119 },
2120 {
2121 .name = "io_queued_recursive",
2122 .private = offsetof(struct cfq_group, stats.queued),
2123 .seq_show = cfqg_print_rwstat_recursive,
2124 },
2125 #ifdef CONFIG_DEBUG_BLK_CGROUP
2126 {
2127 .name = "avg_queue_size",
2128 .seq_show = cfqg_print_avg_queue_size,
2129 },
2130 {
2131 .name = "group_wait_time",
2132 .private = offsetof(struct cfq_group, stats.group_wait_time),
2133 .seq_show = cfqg_print_stat,
2134 },
2135 {
2136 .name = "idle_time",
2137 .private = offsetof(struct cfq_group, stats.idle_time),
2138 .seq_show = cfqg_print_stat,
2139 },
2140 {
2141 .name = "empty_time",
2142 .private = offsetof(struct cfq_group, stats.empty_time),
2143 .seq_show = cfqg_print_stat,
2144 },
2145 {
2146 .name = "dequeue",
2147 .private = offsetof(struct cfq_group, stats.dequeue),
2148 .seq_show = cfqg_print_stat,
2149 },
2150 {
2151 .name = "unaccounted_time",
2152 .private = offsetof(struct cfq_group, stats.unaccounted_time),
2153 .seq_show = cfqg_print_stat,
2154 },
2155 #endif /* CONFIG_DEBUG_BLK_CGROUP */
2156 { } /* terminate */
2157 };
2158
2159 static int cfq_print_weight_on_dfl(struct seq_file *sf, void *v)
2160 {
2161 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2162 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
2163
2164 seq_printf(sf, "default %u\n", cgd->weight);
2165 blkcg_print_blkgs(sf, blkcg, cfqg_prfill_weight_device,
2166 &blkcg_policy_cfq, 0, false);
2167 return 0;
2168 }
2169
2170 static ssize_t cfq_set_weight_on_dfl(struct kernfs_open_file *of,
2171 char *buf, size_t nbytes, loff_t off)
2172 {
2173 char *endp;
2174 int ret;
2175 u64 v;
2176
2177 buf = strim(buf);
2178
2179 /* "WEIGHT" or "default WEIGHT" sets the default weight */
2180 v = simple_strtoull(buf, &endp, 0);
2181 if (*endp == '\0' || sscanf(buf, "default %llu", &v) == 1) {
2182 ret = __cfq_set_weight(of_css(of), v, true, false, false);
2183 return ret ?: nbytes;
2184 }
2185
2186 /* "MAJ:MIN WEIGHT" */
2187 return __cfqg_set_weight_device(of, buf, nbytes, off, true, false);
2188 }
2189
2190 static struct cftype cfq_blkcg_files[] = {
2191 {
2192 .name = "weight",
2193 .flags = CFTYPE_NOT_ON_ROOT,
2194 .seq_show = cfq_print_weight_on_dfl,
2195 .write = cfq_set_weight_on_dfl,
2196 },
2197 { } /* terminate */
2198 };
2199
2200 #else /* GROUP_IOSCHED */
2201 static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd,
2202 struct blkcg *blkcg)
2203 {
2204 return cfqd->root_group;
2205 }
2206
2207 static inline void
2208 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
2209 cfqq->cfqg = cfqg;
2210 }
2211
2212 #endif /* GROUP_IOSCHED */
2213
2214 /*
2215 * The cfqd->service_trees holds all pending cfq_queue's that have
2216 * requests waiting to be processed. It is sorted in the order that
2217 * we will service the queues.
2218 */
2219 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2220 bool add_front)
2221 {
2222 struct rb_node **p, *parent;
2223 struct cfq_queue *__cfqq;
2224 unsigned long rb_key;
2225 struct cfq_rb_root *st;
2226 int left;
2227 int new_cfqq = 1;
2228
2229 st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq));
2230 if (cfq_class_idle(cfqq)) {
2231 rb_key = CFQ_IDLE_DELAY;
2232 parent = rb_last(&st->rb);
2233 if (parent && parent != &cfqq->rb_node) {
2234 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2235 rb_key += __cfqq->rb_key;
2236 } else
2237 rb_key += jiffies;
2238 } else if (!add_front) {
2239 /*
2240 * Get our rb key offset. Subtract any residual slice
2241 * value carried from last service. A negative resid
2242 * count indicates slice overrun, and this should position
2243 * the next service time further away in the tree.
2244 */
2245 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
2246 rb_key -= cfqq->slice_resid;
2247 cfqq->slice_resid = 0;
2248 } else {
2249 rb_key = -HZ;
2250 __cfqq = cfq_rb_first(st);
2251 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
2252 }
2253
2254 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2255 new_cfqq = 0;
2256 /*
2257 * same position, nothing more to do
2258 */
2259 if (rb_key == cfqq->rb_key && cfqq->service_tree == st)
2260 return;
2261
2262 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2263 cfqq->service_tree = NULL;
2264 }
2265
2266 left = 1;
2267 parent = NULL;
2268 cfqq->service_tree = st;
2269 p = &st->rb.rb_node;
2270 while (*p) {
2271 parent = *p;
2272 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2273
2274 /*
2275 * sort by key, that represents service time.
2276 */
2277 if (time_before(rb_key, __cfqq->rb_key))
2278 p = &parent->rb_left;
2279 else {
2280 p = &parent->rb_right;
2281 left = 0;
2282 }
2283 }
2284
2285 if (left)
2286 st->left = &cfqq->rb_node;
2287
2288 cfqq->rb_key = rb_key;
2289 rb_link_node(&cfqq->rb_node, parent, p);
2290 rb_insert_color(&cfqq->rb_node, &st->rb);
2291 st->count++;
2292 if (add_front || !new_cfqq)
2293 return;
2294 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
2295 }
2296
2297 static struct cfq_queue *
2298 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
2299 sector_t sector, struct rb_node **ret_parent,
2300 struct rb_node ***rb_link)
2301 {
2302 struct rb_node **p, *parent;
2303 struct cfq_queue *cfqq = NULL;
2304
2305 parent = NULL;
2306 p = &root->rb_node;
2307 while (*p) {
2308 struct rb_node **n;
2309
2310 parent = *p;
2311 cfqq = rb_entry(parent, struct cfq_queue, p_node);
2312
2313 /*
2314 * Sort strictly based on sector. Smallest to the left,
2315 * largest to the right.
2316 */
2317 if (sector > blk_rq_pos(cfqq->next_rq))
2318 n = &(*p)->rb_right;
2319 else if (sector < blk_rq_pos(cfqq->next_rq))
2320 n = &(*p)->rb_left;
2321 else
2322 break;
2323 p = n;
2324 cfqq = NULL;
2325 }
2326
2327 *ret_parent = parent;
2328 if (rb_link)
2329 *rb_link = p;
2330 return cfqq;
2331 }
2332
2333 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2334 {
2335 struct rb_node **p, *parent;
2336 struct cfq_queue *__cfqq;
2337
2338 if (cfqq->p_root) {
2339 rb_erase(&cfqq->p_node, cfqq->p_root);
2340 cfqq->p_root = NULL;
2341 }
2342
2343 if (cfq_class_idle(cfqq))
2344 return;
2345 if (!cfqq->next_rq)
2346 return;
2347
2348 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2349 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
2350 blk_rq_pos(cfqq->next_rq), &parent, &p);
2351 if (!__cfqq) {
2352 rb_link_node(&cfqq->p_node, parent, p);
2353 rb_insert_color(&cfqq->p_node, cfqq->p_root);
2354 } else
2355 cfqq->p_root = NULL;
2356 }
2357
2358 /*
2359 * Update cfqq's position in the service tree.
2360 */
2361 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2362 {
2363 /*
2364 * Resorting requires the cfqq to be on the RR list already.
2365 */
2366 if (cfq_cfqq_on_rr(cfqq)) {
2367 cfq_service_tree_add(cfqd, cfqq, 0);
2368 cfq_prio_tree_add(cfqd, cfqq);
2369 }
2370 }
2371
2372 /*
2373 * add to busy list of queues for service, trying to be fair in ordering
2374 * the pending list according to last request service
2375 */
2376 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2377 {
2378 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
2379 BUG_ON(cfq_cfqq_on_rr(cfqq));
2380 cfq_mark_cfqq_on_rr(cfqq);
2381 cfqd->busy_queues++;
2382 if (cfq_cfqq_sync(cfqq))
2383 cfqd->busy_sync_queues++;
2384
2385 cfq_resort_rr_list(cfqd, cfqq);
2386 }
2387
2388 /*
2389 * Called when the cfqq no longer has requests pending, remove it from
2390 * the service tree.
2391 */
2392 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2393 {
2394 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
2395 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2396 cfq_clear_cfqq_on_rr(cfqq);
2397
2398 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2399 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2400 cfqq->service_tree = NULL;
2401 }
2402 if (cfqq->p_root) {
2403 rb_erase(&cfqq->p_node, cfqq->p_root);
2404 cfqq->p_root = NULL;
2405 }
2406
2407 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
2408 BUG_ON(!cfqd->busy_queues);
2409 cfqd->busy_queues--;
2410 if (cfq_cfqq_sync(cfqq))
2411 cfqd->busy_sync_queues--;
2412 }
2413
2414 /*
2415 * rb tree support functions
2416 */
2417 static void cfq_del_rq_rb(struct request *rq)
2418 {
2419 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2420 const int sync = rq_is_sync(rq);
2421
2422 BUG_ON(!cfqq->queued[sync]);
2423 cfqq->queued[sync]--;
2424
2425 elv_rb_del(&cfqq->sort_list, rq);
2426
2427 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
2428 /*
2429 * Queue will be deleted from service tree when we actually
2430 * expire it later. Right now just remove it from prio tree
2431 * as it is empty.
2432 */
2433 if (cfqq->p_root) {
2434 rb_erase(&cfqq->p_node, cfqq->p_root);
2435 cfqq->p_root = NULL;
2436 }
2437 }
2438 }
2439
2440 static void cfq_add_rq_rb(struct request *rq)
2441 {
2442 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2443 struct cfq_data *cfqd = cfqq->cfqd;
2444 struct request *prev;
2445
2446 cfqq->queued[rq_is_sync(rq)]++;
2447
2448 elv_rb_add(&cfqq->sort_list, rq);
2449
2450 if (!cfq_cfqq_on_rr(cfqq))
2451 cfq_add_cfqq_rr(cfqd, cfqq);
2452
2453 /*
2454 * check if this request is a better next-serve candidate
2455 */
2456 prev = cfqq->next_rq;
2457 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
2458
2459 /*
2460 * adjust priority tree position, if ->next_rq changes
2461 */
2462 if (prev != cfqq->next_rq)
2463 cfq_prio_tree_add(cfqd, cfqq);
2464
2465 BUG_ON(!cfqq->next_rq);
2466 }
2467
2468 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
2469 {
2470 elv_rb_del(&cfqq->sort_list, rq);
2471 cfqq->queued[rq_is_sync(rq)]--;
2472 cfqg_stats_update_io_remove(RQ_CFQG(rq), req_op(rq), rq->cmd_flags);
2473 cfq_add_rq_rb(rq);
2474 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
2475 req_op(rq), rq->cmd_flags);
2476 }
2477
2478 static struct request *
2479 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
2480 {
2481 struct task_struct *tsk = current;
2482 struct cfq_io_cq *cic;
2483 struct cfq_queue *cfqq;
2484
2485 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2486 if (!cic)
2487 return NULL;
2488
2489 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2490 if (cfqq)
2491 return elv_rb_find(&cfqq->sort_list, bio_end_sector(bio));
2492
2493 return NULL;
2494 }
2495
2496 static void cfq_activate_request(struct request_queue *q, struct request *rq)
2497 {
2498 struct cfq_data *cfqd = q->elevator->elevator_data;
2499
2500 cfqd->rq_in_driver++;
2501 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
2502 cfqd->rq_in_driver);
2503
2504 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2505 }
2506
2507 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
2508 {
2509 struct cfq_data *cfqd = q->elevator->elevator_data;
2510
2511 WARN_ON(!cfqd->rq_in_driver);
2512 cfqd->rq_in_driver--;
2513 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
2514 cfqd->rq_in_driver);
2515 }
2516
2517 static void cfq_remove_request(struct request *rq)
2518 {
2519 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2520
2521 if (cfqq->next_rq == rq)
2522 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
2523
2524 list_del_init(&rq->queuelist);
2525 cfq_del_rq_rb(rq);
2526
2527 cfqq->cfqd->rq_queued--;
2528 cfqg_stats_update_io_remove(RQ_CFQG(rq), req_op(rq), rq->cmd_flags);
2529 if (rq->cmd_flags & REQ_PRIO) {
2530 WARN_ON(!cfqq->prio_pending);
2531 cfqq->prio_pending--;
2532 }
2533 }
2534
2535 static int cfq_merge(struct request_queue *q, struct request **req,
2536 struct bio *bio)
2537 {
2538 struct cfq_data *cfqd = q->elevator->elevator_data;
2539 struct request *__rq;
2540
2541 __rq = cfq_find_rq_fmerge(cfqd, bio);
2542 if (__rq && elv_rq_merge_ok(__rq, bio)) {
2543 *req = __rq;
2544 return ELEVATOR_FRONT_MERGE;
2545 }
2546
2547 return ELEVATOR_NO_MERGE;
2548 }
2549
2550 static void cfq_merged_request(struct request_queue *q, struct request *req,
2551 int type)
2552 {
2553 if (type == ELEVATOR_FRONT_MERGE) {
2554 struct cfq_queue *cfqq = RQ_CFQQ(req);
2555
2556 cfq_reposition_rq_rb(cfqq, req);
2557 }
2558 }
2559
2560 static void cfq_bio_merged(struct request_queue *q, struct request *req,
2561 struct bio *bio)
2562 {
2563 cfqg_stats_update_io_merged(RQ_CFQG(req), bio_op(bio), bio->bi_rw);
2564 }
2565
2566 static void
2567 cfq_merged_requests(struct request_queue *q, struct request *rq,
2568 struct request *next)
2569 {
2570 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2571 struct cfq_data *cfqd = q->elevator->elevator_data;
2572
2573 /*
2574 * reposition in fifo if next is older than rq
2575 */
2576 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2577 time_before(next->fifo_time, rq->fifo_time) &&
2578 cfqq == RQ_CFQQ(next)) {
2579 list_move(&rq->queuelist, &next->queuelist);
2580 rq->fifo_time = next->fifo_time;
2581 }
2582
2583 if (cfqq->next_rq == next)
2584 cfqq->next_rq = rq;
2585 cfq_remove_request(next);
2586 cfqg_stats_update_io_merged(RQ_CFQG(rq), req_op(next), next->cmd_flags);
2587
2588 cfqq = RQ_CFQQ(next);
2589 /*
2590 * all requests of this queue are merged to other queues, delete it
2591 * from the service tree. If it's the active_queue,
2592 * cfq_dispatch_requests() will choose to expire it or do idle
2593 */
2594 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
2595 cfqq != cfqd->active_queue)
2596 cfq_del_cfqq_rr(cfqd, cfqq);
2597 }
2598
2599 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
2600 struct bio *bio)
2601 {
2602 struct cfq_data *cfqd = q->elevator->elevator_data;
2603 struct cfq_io_cq *cic;
2604 struct cfq_queue *cfqq;
2605
2606 /*
2607 * Disallow merge of a sync bio into an async request.
2608 */
2609 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
2610 return false;
2611
2612 /*
2613 * Lookup the cfqq that this bio will be queued with and allow
2614 * merge only if rq is queued there.
2615 */
2616 cic = cfq_cic_lookup(cfqd, current->io_context);
2617 if (!cic)
2618 return false;
2619
2620 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2621 return cfqq == RQ_CFQQ(rq);
2622 }
2623
2624 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2625 {
2626 del_timer(&cfqd->idle_slice_timer);
2627 cfqg_stats_update_idle_time(cfqq->cfqg);
2628 }
2629
2630 static void __cfq_set_active_queue(struct cfq_data *cfqd,
2631 struct cfq_queue *cfqq)
2632 {
2633 if (cfqq) {
2634 cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d",
2635 cfqd->serving_wl_class, cfqd->serving_wl_type);
2636 cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2637 cfqq->slice_start = 0;
2638 cfqq->dispatch_start = jiffies;
2639 cfqq->allocated_slice = 0;
2640 cfqq->slice_end = 0;
2641 cfqq->slice_dispatch = 0;
2642 cfqq->nr_sectors = 0;
2643
2644 cfq_clear_cfqq_wait_request(cfqq);
2645 cfq_clear_cfqq_must_dispatch(cfqq);
2646 cfq_clear_cfqq_must_alloc_slice(cfqq);
2647 cfq_clear_cfqq_fifo_expire(cfqq);
2648 cfq_mark_cfqq_slice_new(cfqq);
2649
2650 cfq_del_timer(cfqd, cfqq);
2651 }
2652
2653 cfqd->active_queue = cfqq;
2654 }
2655
2656 /*
2657 * current cfqq expired its slice (or was too idle), select new one
2658 */
2659 static void
2660 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2661 bool timed_out)
2662 {
2663 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2664
2665 if (cfq_cfqq_wait_request(cfqq))
2666 cfq_del_timer(cfqd, cfqq);
2667
2668 cfq_clear_cfqq_wait_request(cfqq);
2669 cfq_clear_cfqq_wait_busy(cfqq);
2670
2671 /*
2672 * If this cfqq is shared between multiple processes, check to
2673 * make sure that those processes are still issuing I/Os within
2674 * the mean seek distance. If not, it may be time to break the
2675 * queues apart again.
2676 */
2677 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2678 cfq_mark_cfqq_split_coop(cfqq);
2679
2680 /*
2681 * store what was left of this slice, if the queue idled/timed out
2682 */
2683 if (timed_out) {
2684 if (cfq_cfqq_slice_new(cfqq))
2685 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2686 else
2687 cfqq->slice_resid = cfqq->slice_end - jiffies;
2688 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
2689 }
2690
2691 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2692
2693 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2694 cfq_del_cfqq_rr(cfqd, cfqq);
2695
2696 cfq_resort_rr_list(cfqd, cfqq);
2697
2698 if (cfqq == cfqd->active_queue)
2699 cfqd->active_queue = NULL;
2700
2701 if (cfqd->active_cic) {
2702 put_io_context(cfqd->active_cic->icq.ioc);
2703 cfqd->active_cic = NULL;
2704 }
2705 }
2706
2707 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2708 {
2709 struct cfq_queue *cfqq = cfqd->active_queue;
2710
2711 if (cfqq)
2712 __cfq_slice_expired(cfqd, cfqq, timed_out);
2713 }
2714
2715 /*
2716 * Get next queue for service. Unless we have a queue preemption,
2717 * we'll simply select the first cfqq in the service tree.
2718 */
2719 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2720 {
2721 struct cfq_rb_root *st = st_for(cfqd->serving_group,
2722 cfqd->serving_wl_class, cfqd->serving_wl_type);
2723
2724 if (!cfqd->rq_queued)
2725 return NULL;
2726
2727 /* There is nothing to dispatch */
2728 if (!st)
2729 return NULL;
2730 if (RB_EMPTY_ROOT(&st->rb))
2731 return NULL;
2732 return cfq_rb_first(st);
2733 }
2734
2735 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2736 {
2737 struct cfq_group *cfqg;
2738 struct cfq_queue *cfqq;
2739 int i, j;
2740 struct cfq_rb_root *st;
2741
2742 if (!cfqd->rq_queued)
2743 return NULL;
2744
2745 cfqg = cfq_get_next_cfqg(cfqd);
2746 if (!cfqg)
2747 return NULL;
2748
2749 for_each_cfqg_st(cfqg, i, j, st)
2750 if ((cfqq = cfq_rb_first(st)) != NULL)
2751 return cfqq;
2752 return NULL;
2753 }
2754
2755 /*
2756 * Get and set a new active queue for service.
2757 */
2758 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2759 struct cfq_queue *cfqq)
2760 {
2761 if (!cfqq)
2762 cfqq = cfq_get_next_queue(cfqd);
2763
2764 __cfq_set_active_queue(cfqd, cfqq);
2765 return cfqq;
2766 }
2767
2768 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2769 struct request *rq)
2770 {
2771 if (blk_rq_pos(rq) >= cfqd->last_position)
2772 return blk_rq_pos(rq) - cfqd->last_position;
2773 else
2774 return cfqd->last_position - blk_rq_pos(rq);
2775 }
2776
2777 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2778 struct request *rq)
2779 {
2780 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2781 }
2782
2783 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2784 struct cfq_queue *cur_cfqq)
2785 {
2786 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2787 struct rb_node *parent, *node;
2788 struct cfq_queue *__cfqq;
2789 sector_t sector = cfqd->last_position;
2790
2791 if (RB_EMPTY_ROOT(root))
2792 return NULL;
2793
2794 /*
2795 * First, if we find a request starting at the end of the last
2796 * request, choose it.
2797 */
2798 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2799 if (__cfqq)
2800 return __cfqq;
2801
2802 /*
2803 * If the exact sector wasn't found, the parent of the NULL leaf
2804 * will contain the closest sector.
2805 */
2806 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
2807 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2808 return __cfqq;
2809
2810 if (blk_rq_pos(__cfqq->next_rq) < sector)
2811 node = rb_next(&__cfqq->p_node);
2812 else
2813 node = rb_prev(&__cfqq->p_node);
2814 if (!node)
2815 return NULL;
2816
2817 __cfqq = rb_entry(node, struct cfq_queue, p_node);
2818 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2819 return __cfqq;
2820
2821 return NULL;
2822 }
2823
2824 /*
2825 * cfqd - obvious
2826 * cur_cfqq - passed in so that we don't decide that the current queue is
2827 * closely cooperating with itself.
2828 *
2829 * So, basically we're assuming that that cur_cfqq has dispatched at least
2830 * one request, and that cfqd->last_position reflects a position on the disk
2831 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2832 * assumption.
2833 */
2834 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2835 struct cfq_queue *cur_cfqq)
2836 {
2837 struct cfq_queue *cfqq;
2838
2839 if (cfq_class_idle(cur_cfqq))
2840 return NULL;
2841 if (!cfq_cfqq_sync(cur_cfqq))
2842 return NULL;
2843 if (CFQQ_SEEKY(cur_cfqq))
2844 return NULL;
2845
2846 /*
2847 * Don't search priority tree if it's the only queue in the group.
2848 */
2849 if (cur_cfqq->cfqg->nr_cfqq == 1)
2850 return NULL;
2851
2852 /*
2853 * We should notice if some of the queues are cooperating, eg
2854 * working closely on the same area of the disk. In that case,
2855 * we can group them together and don't waste time idling.
2856 */
2857 cfqq = cfqq_close(cfqd, cur_cfqq);
2858 if (!cfqq)
2859 return NULL;
2860
2861 /* If new queue belongs to different cfq_group, don't choose it */
2862 if (cur_cfqq->cfqg != cfqq->cfqg)
2863 return NULL;
2864
2865 /*
2866 * It only makes sense to merge sync queues.
2867 */
2868 if (!cfq_cfqq_sync(cfqq))
2869 return NULL;
2870 if (CFQQ_SEEKY(cfqq))
2871 return NULL;
2872
2873 /*
2874 * Do not merge queues of different priority classes
2875 */
2876 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2877 return NULL;
2878
2879 return cfqq;
2880 }
2881
2882 /*
2883 * Determine whether we should enforce idle window for this queue.
2884 */
2885
2886 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2887 {
2888 enum wl_class_t wl_class = cfqq_class(cfqq);
2889 struct cfq_rb_root *st = cfqq->service_tree;
2890
2891 BUG_ON(!st);
2892 BUG_ON(!st->count);
2893
2894 if (!cfqd->cfq_slice_idle)
2895 return false;
2896
2897 /* We never do for idle class queues. */
2898 if (wl_class == IDLE_WORKLOAD)
2899 return false;
2900
2901 /* We do for queues that were marked with idle window flag. */
2902 if (cfq_cfqq_idle_window(cfqq) &&
2903 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2904 return true;
2905
2906 /*
2907 * Otherwise, we do only if they are the last ones
2908 * in their service tree.
2909 */
2910 if (st->count == 1 && cfq_cfqq_sync(cfqq) &&
2911 !cfq_io_thinktime_big(cfqd, &st->ttime, false))
2912 return true;
2913 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count);
2914 return false;
2915 }
2916
2917 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2918 {
2919 struct cfq_queue *cfqq = cfqd->active_queue;
2920 struct cfq_rb_root *st = cfqq->service_tree;
2921 struct cfq_io_cq *cic;
2922 unsigned long sl, group_idle = 0;
2923
2924 /*
2925 * SSD device without seek penalty, disable idling. But only do so
2926 * for devices that support queuing, otherwise we still have a problem
2927 * with sync vs async workloads.
2928 */
2929 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2930 return;
2931
2932 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2933 WARN_ON(cfq_cfqq_slice_new(cfqq));
2934
2935 /*
2936 * idle is disabled, either manually or by past process history
2937 */
2938 if (!cfq_should_idle(cfqd, cfqq)) {
2939 /* no queue idling. Check for group idling */
2940 if (cfqd->cfq_group_idle)
2941 group_idle = cfqd->cfq_group_idle;
2942 else
2943 return;
2944 }
2945
2946 /*
2947 * still active requests from this queue, don't idle
2948 */
2949 if (cfqq->dispatched)
2950 return;
2951
2952 /*
2953 * task has exited, don't wait
2954 */
2955 cic = cfqd->active_cic;
2956 if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2957 return;
2958
2959 /*
2960 * If our average think time is larger than the remaining time
2961 * slice, then don't idle. This avoids overrunning the allotted
2962 * time slice.
2963 */
2964 if (sample_valid(cic->ttime.ttime_samples) &&
2965 (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2966 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2967 cic->ttime.ttime_mean);
2968 return;
2969 }
2970
2971 /*
2972 * There are other queues in the group or this is the only group and
2973 * it has too big thinktime, don't do group idle.
2974 */
2975 if (group_idle &&
2976 (cfqq->cfqg->nr_cfqq > 1 ||
2977 cfq_io_thinktime_big(cfqd, &st->ttime, true)))
2978 return;
2979
2980 cfq_mark_cfqq_wait_request(cfqq);
2981
2982 if (group_idle)
2983 sl = cfqd->cfq_group_idle;
2984 else
2985 sl = cfqd->cfq_slice_idle;
2986
2987 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2988 cfqg_stats_set_start_idle_time(cfqq->cfqg);
2989 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2990 group_idle ? 1 : 0);
2991 }
2992
2993 /*
2994 * Move request from internal lists to the request queue dispatch list.
2995 */
2996 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2997 {
2998 struct cfq_data *cfqd = q->elevator->elevator_data;
2999 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3000
3001 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
3002
3003 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
3004 cfq_remove_request(rq);
3005 cfqq->dispatched++;
3006 (RQ_CFQG(rq))->dispatched++;
3007 elv_dispatch_sort(q, rq);
3008
3009 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
3010 cfqq->nr_sectors += blk_rq_sectors(rq);
3011 }
3012
3013 /*
3014 * return expired entry, or NULL to just start from scratch in rbtree
3015 */
3016 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
3017 {
3018 struct request *rq = NULL;
3019
3020 if (cfq_cfqq_fifo_expire(cfqq))
3021 return NULL;
3022
3023 cfq_mark_cfqq_fifo_expire(cfqq);
3024
3025 if (list_empty(&cfqq->fifo))
3026 return NULL;
3027
3028 rq = rq_entry_fifo(cfqq->fifo.next);
3029 if (time_before(jiffies, rq->fifo_time))
3030 rq = NULL;
3031
3032 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
3033 return rq;
3034 }
3035
3036 static inline int
3037 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3038 {
3039 const int base_rq = cfqd->cfq_slice_async_rq;
3040
3041 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
3042
3043 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
3044 }
3045
3046 /*
3047 * Must be called with the queue_lock held.
3048 */
3049 static int cfqq_process_refs(struct cfq_queue *cfqq)
3050 {
3051 int process_refs, io_refs;
3052
3053 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
3054 process_refs = cfqq->ref - io_refs;
3055 BUG_ON(process_refs < 0);
3056 return process_refs;
3057 }
3058
3059 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
3060 {
3061 int process_refs, new_process_refs;
3062 struct cfq_queue *__cfqq;
3063
3064 /*
3065 * If there are no process references on the new_cfqq, then it is
3066 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
3067 * chain may have dropped their last reference (not just their
3068 * last process reference).
3069 */
3070 if (!cfqq_process_refs(new_cfqq))
3071 return;
3072
3073 /* Avoid a circular list and skip interim queue merges */
3074 while ((__cfqq = new_cfqq->new_cfqq)) {
3075 if (__cfqq == cfqq)
3076 return;
3077 new_cfqq = __cfqq;
3078 }
3079
3080 process_refs = cfqq_process_refs(cfqq);
3081 new_process_refs = cfqq_process_refs(new_cfqq);
3082 /*
3083 * If the process for the cfqq has gone away, there is no
3084 * sense in merging the queues.
3085 */
3086 if (process_refs == 0 || new_process_refs == 0)
3087 return;
3088
3089 /*
3090 * Merge in the direction of the lesser amount of work.
3091 */
3092 if (new_process_refs >= process_refs) {
3093 cfqq->new_cfqq = new_cfqq;
3094 new_cfqq->ref += process_refs;
3095 } else {
3096 new_cfqq->new_cfqq = cfqq;
3097 cfqq->ref += new_process_refs;
3098 }
3099 }
3100
3101 static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd,
3102 struct cfq_group *cfqg, enum wl_class_t wl_class)
3103 {
3104 struct cfq_queue *queue;
3105 int i;
3106 bool key_valid = false;
3107 unsigned long lowest_key = 0;
3108 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
3109
3110 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
3111 /* select the one with lowest rb_key */
3112 queue = cfq_rb_first(st_for(cfqg, wl_class, i));
3113 if (queue &&
3114 (!key_valid || time_before(queue->rb_key, lowest_key))) {
3115 lowest_key = queue->rb_key;
3116 cur_best = i;
3117 key_valid = true;
3118 }
3119 }
3120
3121 return cur_best;
3122 }
3123
3124 static void
3125 choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg)
3126 {
3127 unsigned slice;
3128 unsigned count;
3129 struct cfq_rb_root *st;
3130 unsigned group_slice;
3131 enum wl_class_t original_class = cfqd->serving_wl_class;
3132
3133 /* Choose next priority. RT > BE > IDLE */
3134 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
3135 cfqd->serving_wl_class = RT_WORKLOAD;
3136 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
3137 cfqd->serving_wl_class = BE_WORKLOAD;
3138 else {
3139 cfqd->serving_wl_class = IDLE_WORKLOAD;
3140 cfqd->workload_expires = jiffies + 1;
3141 return;
3142 }
3143
3144 if (original_class != cfqd->serving_wl_class)
3145 goto new_workload;
3146
3147 /*
3148 * For RT and BE, we have to choose also the type
3149 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
3150 * expiration time
3151 */
3152 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3153 count = st->count;
3154
3155 /*
3156 * check workload expiration, and that we still have other queues ready
3157 */
3158 if (count && !time_after(jiffies, cfqd->workload_expires))
3159 return;
3160
3161 new_workload:
3162 /* otherwise select new workload type */
3163 cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg,
3164 cfqd->serving_wl_class);
3165 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3166 count = st->count;
3167
3168 /*
3169 * the workload slice is computed as a fraction of target latency
3170 * proportional to the number of queues in that workload, over
3171 * all the queues in the same priority class
3172 */
3173 group_slice = cfq_group_slice(cfqd, cfqg);
3174
3175 slice = group_slice * count /
3176 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class],
3177 cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd,
3178 cfqg));
3179
3180 if (cfqd->serving_wl_type == ASYNC_WORKLOAD) {
3181 unsigned int tmp;
3182
3183 /*
3184 * Async queues are currently system wide. Just taking
3185 * proportion of queues with-in same group will lead to higher
3186 * async ratio system wide as generally root group is going
3187 * to have higher weight. A more accurate thing would be to
3188 * calculate system wide asnc/sync ratio.
3189 */
3190 tmp = cfqd->cfq_target_latency *
3191 cfqg_busy_async_queues(cfqd, cfqg);
3192 tmp = tmp/cfqd->busy_queues;
3193 slice = min_t(unsigned, slice, tmp);
3194
3195 /* async workload slice is scaled down according to
3196 * the sync/async slice ratio. */
3197 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
3198 } else
3199 /* sync workload slice is at least 2 * cfq_slice_idle */
3200 slice = max(slice, 2 * cfqd->cfq_slice_idle);
3201
3202 slice = max_t(unsigned, slice, CFQ_MIN_TT);
3203 cfq_log(cfqd, "workload slice:%d", slice);
3204 cfqd->workload_expires = jiffies + slice;
3205 }
3206
3207 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
3208 {
3209 struct cfq_rb_root *st = &cfqd->grp_service_tree;
3210 struct cfq_group *cfqg;
3211
3212 if (RB_EMPTY_ROOT(&st->rb))
3213 return NULL;
3214 cfqg = cfq_rb_first_group(st);
3215 update_min_vdisktime(st);
3216 return cfqg;
3217 }
3218
3219 static void cfq_choose_cfqg(struct cfq_data *cfqd)
3220 {
3221 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
3222
3223 cfqd->serving_group = cfqg;
3224
3225 /* Restore the workload type data */
3226 if (cfqg->saved_wl_slice) {
3227 cfqd->workload_expires = jiffies + cfqg->saved_wl_slice;
3228 cfqd->serving_wl_type = cfqg->saved_wl_type;
3229 cfqd->serving_wl_class = cfqg->saved_wl_class;
3230 } else
3231 cfqd->workload_expires = jiffies - 1;
3232
3233 choose_wl_class_and_type(cfqd, cfqg);
3234 }
3235
3236 /*
3237 * Select a queue for service. If we have a current active queue,
3238 * check whether to continue servicing it, or retrieve and set a new one.
3239 */
3240 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
3241 {
3242 struct cfq_queue *cfqq, *new_cfqq = NULL;
3243
3244 cfqq = cfqd->active_queue;
3245 if (!cfqq)
3246 goto new_queue;
3247
3248 if (!cfqd->rq_queued)
3249 return NULL;
3250
3251 /*
3252 * We were waiting for group to get backlogged. Expire the queue
3253 */
3254 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
3255 goto expire;
3256
3257 /*
3258 * The active queue has run out of time, expire it and select new.
3259 */
3260 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
3261 /*
3262 * If slice had not expired at the completion of last request
3263 * we might not have turned on wait_busy flag. Don't expire
3264 * the queue yet. Allow the group to get backlogged.
3265 *
3266 * The very fact that we have used the slice, that means we
3267 * have been idling all along on this queue and it should be
3268 * ok to wait for this request to complete.
3269 */
3270 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
3271 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3272 cfqq = NULL;
3273 goto keep_queue;
3274 } else
3275 goto check_group_idle;
3276 }
3277
3278 /*
3279 * The active queue has requests and isn't expired, allow it to
3280 * dispatch.
3281 */
3282 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3283 goto keep_queue;
3284
3285 /*
3286 * If another queue has a request waiting within our mean seek
3287 * distance, let it run. The expire code will check for close
3288 * cooperators and put the close queue at the front of the service
3289 * tree. If possible, merge the expiring queue with the new cfqq.
3290 */
3291 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
3292 if (new_cfqq) {
3293 if (!cfqq->new_cfqq)
3294 cfq_setup_merge(cfqq, new_cfqq);
3295 goto expire;
3296 }
3297
3298 /*
3299 * No requests pending. If the active queue still has requests in
3300 * flight or is idling for a new request, allow either of these
3301 * conditions to happen (or time out) before selecting a new queue.
3302 */
3303 if (timer_pending(&cfqd->idle_slice_timer)) {
3304 cfqq = NULL;
3305 goto keep_queue;
3306 }
3307
3308 /*
3309 * This is a deep seek queue, but the device is much faster than
3310 * the queue can deliver, don't idle
3311 **/
3312 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
3313 (cfq_cfqq_slice_new(cfqq) ||
3314 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
3315 cfq_clear_cfqq_deep(cfqq);
3316 cfq_clear_cfqq_idle_window(cfqq);
3317 }
3318
3319 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3320 cfqq = NULL;
3321 goto keep_queue;
3322 }
3323
3324 /*
3325 * If group idle is enabled and there are requests dispatched from
3326 * this group, wait for requests to complete.
3327 */
3328 check_group_idle:
3329 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
3330 cfqq->cfqg->dispatched &&
3331 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
3332 cfqq = NULL;
3333 goto keep_queue;
3334 }
3335
3336 expire:
3337 cfq_slice_expired(cfqd, 0);
3338 new_queue:
3339 /*
3340 * Current queue expired. Check if we have to switch to a new
3341 * service tree
3342 */
3343 if (!new_cfqq)
3344 cfq_choose_cfqg(cfqd);
3345
3346 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
3347 keep_queue:
3348 return cfqq;
3349 }
3350
3351 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
3352 {
3353 int dispatched = 0;
3354
3355 while (cfqq->next_rq) {
3356 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
3357 dispatched++;
3358 }
3359
3360 BUG_ON(!list_empty(&cfqq->fifo));
3361
3362 /* By default cfqq is not expired if it is empty. Do it explicitly */
3363 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
3364 return dispatched;
3365 }
3366
3367 /*
3368 * Drain our current requests. Used for barriers and when switching
3369 * io schedulers on-the-fly.
3370 */
3371 static int cfq_forced_dispatch(struct cfq_data *cfqd)
3372 {
3373 struct cfq_queue *cfqq;
3374 int dispatched = 0;
3375
3376 /* Expire the timeslice of the current active queue first */
3377 cfq_slice_expired(cfqd, 0);
3378 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
3379 __cfq_set_active_queue(cfqd, cfqq);
3380 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3381 }
3382
3383 BUG_ON(cfqd->busy_queues);
3384
3385 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
3386 return dispatched;
3387 }
3388
3389 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
3390 struct cfq_queue *cfqq)
3391 {
3392 /* the queue hasn't finished any request, can't estimate */
3393 if (cfq_cfqq_slice_new(cfqq))
3394 return true;
3395 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
3396 cfqq->slice_end))
3397 return true;
3398
3399 return false;
3400 }
3401
3402 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3403 {
3404 unsigned int max_dispatch;
3405
3406 /*
3407 * Drain async requests before we start sync IO
3408 */
3409 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
3410 return false;
3411
3412 /*
3413 * If this is an async queue and we have sync IO in flight, let it wait
3414 */
3415 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
3416 return false;
3417
3418 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
3419 if (cfq_class_idle(cfqq))
3420 max_dispatch = 1;
3421
3422 /*
3423 * Does this cfqq already have too much IO in flight?
3424 */
3425 if (cfqq->dispatched >= max_dispatch) {
3426 bool promote_sync = false;
3427 /*
3428 * idle queue must always only have a single IO in flight
3429 */
3430 if (cfq_class_idle(cfqq))
3431 return false;
3432
3433 /*
3434 * If there is only one sync queue
3435 * we can ignore async queue here and give the sync
3436 * queue no dispatch limit. The reason is a sync queue can
3437 * preempt async queue, limiting the sync queue doesn't make
3438 * sense. This is useful for aiostress test.
3439 */
3440 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
3441 promote_sync = true;
3442
3443 /*
3444 * We have other queues, don't allow more IO from this one
3445 */
3446 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
3447 !promote_sync)
3448 return false;
3449
3450 /*
3451 * Sole queue user, no limit
3452 */
3453 if (cfqd->busy_queues == 1 || promote_sync)
3454 max_dispatch = -1;
3455 else
3456 /*
3457 * Normally we start throttling cfqq when cfq_quantum/2
3458 * requests have been dispatched. But we can drive
3459 * deeper queue depths at the beginning of slice
3460 * subjected to upper limit of cfq_quantum.
3461 * */
3462 max_dispatch = cfqd->cfq_quantum;
3463 }
3464
3465 /*
3466 * Async queues must wait a bit before being allowed dispatch.
3467 * We also ramp up the dispatch depth gradually for async IO,
3468 * based on the last sync IO we serviced
3469 */
3470 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
3471 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
3472 unsigned int depth;
3473
3474 depth = last_sync / cfqd->cfq_slice[1];
3475 if (!depth && !cfqq->dispatched)
3476 depth = 1;
3477 if (depth < max_dispatch)
3478 max_dispatch = depth;
3479 }
3480
3481 /*
3482 * If we're below the current max, allow a dispatch
3483 */
3484 return cfqq->dispatched < max_dispatch;
3485 }
3486
3487 /*
3488 * Dispatch a request from cfqq, moving them to the request queue
3489 * dispatch list.
3490 */
3491 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3492 {
3493 struct request *rq;
3494
3495 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
3496
3497 if (!cfq_may_dispatch(cfqd, cfqq))
3498 return false;
3499
3500 /*
3501 * follow expired path, else get first next available
3502 */
3503 rq = cfq_check_fifo(cfqq);
3504 if (!rq)
3505 rq = cfqq->next_rq;
3506
3507 /*
3508 * insert request into driver dispatch list
3509 */
3510 cfq_dispatch_insert(cfqd->queue, rq);
3511
3512 if (!cfqd->active_cic) {
3513 struct cfq_io_cq *cic = RQ_CIC(rq);
3514
3515 atomic_long_inc(&cic->icq.ioc->refcount);
3516 cfqd->active_cic = cic;
3517 }
3518
3519 return true;
3520 }
3521
3522 /*
3523 * Find the cfqq that we need to service and move a request from that to the
3524 * dispatch list
3525 */
3526 static int cfq_dispatch_requests(struct request_queue *q, int force)
3527 {
3528 struct cfq_data *cfqd = q->elevator->elevator_data;
3529 struct cfq_queue *cfqq;
3530
3531 if (!cfqd->busy_queues)
3532 return 0;
3533
3534 if (unlikely(force))
3535 return cfq_forced_dispatch(cfqd);
3536
3537 cfqq = cfq_select_queue(cfqd);
3538 if (!cfqq)
3539 return 0;
3540
3541 /*
3542 * Dispatch a request from this cfqq, if it is allowed
3543 */
3544 if (!cfq_dispatch_request(cfqd, cfqq))
3545 return 0;
3546
3547 cfqq->slice_dispatch++;
3548 cfq_clear_cfqq_must_dispatch(cfqq);
3549
3550 /*
3551 * expire an async queue immediately if it has used up its slice. idle
3552 * queue always expire after 1 dispatch round.
3553 */
3554 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
3555 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
3556 cfq_class_idle(cfqq))) {
3557 cfqq->slice_end = jiffies + 1;
3558 cfq_slice_expired(cfqd, 0);
3559 }
3560
3561 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
3562 return 1;
3563 }
3564
3565 /*
3566 * task holds one reference to the queue, dropped when task exits. each rq
3567 * in-flight on this queue also holds a reference, dropped when rq is freed.
3568 *
3569 * Each cfq queue took a reference on the parent group. Drop it now.
3570 * queue lock must be held here.
3571 */
3572 static void cfq_put_queue(struct cfq_queue *cfqq)
3573 {
3574 struct cfq_data *cfqd = cfqq->cfqd;
3575 struct cfq_group *cfqg;
3576
3577 BUG_ON(cfqq->ref <= 0);
3578
3579 cfqq->ref--;
3580 if (cfqq->ref)
3581 return;
3582
3583 cfq_log_cfqq(cfqd, cfqq, "put_queue");
3584 BUG_ON(rb_first(&cfqq->sort_list));
3585 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3586 cfqg = cfqq->cfqg;
3587
3588 if (unlikely(cfqd->active_queue == cfqq)) {
3589 __cfq_slice_expired(cfqd, cfqq, 0);
3590 cfq_schedule_dispatch(cfqd);
3591 }
3592
3593 BUG_ON(cfq_cfqq_on_rr(cfqq));
3594 kmem_cache_free(cfq_pool, cfqq);
3595 cfqg_put(cfqg);
3596 }
3597
3598 static void cfq_put_cooperator(struct cfq_queue *cfqq)
3599 {
3600 struct cfq_queue *__cfqq, *next;
3601
3602 /*
3603 * If this queue was scheduled to merge with another queue, be
3604 * sure to drop the reference taken on that queue (and others in
3605 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
3606 */
3607 __cfqq = cfqq->new_cfqq;
3608 while (__cfqq) {
3609 if (__cfqq == cfqq) {
3610 WARN(1, "cfqq->new_cfqq loop detected\n");
3611 break;
3612 }
3613 next = __cfqq->new_cfqq;
3614 cfq_put_queue(__cfqq);
3615 __cfqq = next;
3616 }
3617 }
3618
3619 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3620 {
3621 if (unlikely(cfqq == cfqd->active_queue)) {
3622 __cfq_slice_expired(cfqd, cfqq, 0);
3623 cfq_schedule_dispatch(cfqd);
3624 }
3625
3626 cfq_put_cooperator(cfqq);
3627
3628 cfq_put_queue(cfqq);
3629 }
3630
3631 static void cfq_init_icq(struct io_cq *icq)
3632 {
3633 struct cfq_io_cq *cic = icq_to_cic(icq);
3634
3635 cic->ttime.last_end_request = jiffies;
3636 }
3637
3638 static void cfq_exit_icq(struct io_cq *icq)
3639 {
3640 struct cfq_io_cq *cic = icq_to_cic(icq);
3641 struct cfq_data *cfqd = cic_to_cfqd(cic);
3642
3643 if (cic_to_cfqq(cic, false)) {
3644 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, false));
3645 cic_set_cfqq(cic, NULL, false);
3646 }
3647
3648 if (cic_to_cfqq(cic, true)) {
3649 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, true));
3650 cic_set_cfqq(cic, NULL, true);
3651 }
3652 }
3653
3654 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3655 {
3656 struct task_struct *tsk = current;
3657 int ioprio_class;
3658
3659 if (!cfq_cfqq_prio_changed(cfqq))
3660 return;
3661
3662 ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3663 switch (ioprio_class) {
3664 default:
3665 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3666 case IOPRIO_CLASS_NONE:
3667 /*
3668 * no prio set, inherit CPU scheduling settings
3669 */
3670 cfqq->ioprio = task_nice_ioprio(tsk);
3671 cfqq->ioprio_class = task_nice_ioclass(tsk);
3672 break;
3673 case IOPRIO_CLASS_RT:
3674 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3675 cfqq->ioprio_class = IOPRIO_CLASS_RT;
3676 break;
3677 case IOPRIO_CLASS_BE:
3678 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3679 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3680 break;
3681 case IOPRIO_CLASS_IDLE:
3682 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3683 cfqq->ioprio = 7;
3684 cfq_clear_cfqq_idle_window(cfqq);
3685 break;
3686 }
3687
3688 /*
3689 * keep track of original prio settings in case we have to temporarily
3690 * elevate the priority of this queue
3691 */
3692 cfqq->org_ioprio = cfqq->ioprio;
3693 cfq_clear_cfqq_prio_changed(cfqq);
3694 }
3695
3696 static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3697 {
3698 int ioprio = cic->icq.ioc->ioprio;
3699 struct cfq_data *cfqd = cic_to_cfqd(cic);
3700 struct cfq_queue *cfqq;
3701
3702 /*
3703 * Check whether ioprio has changed. The condition may trigger
3704 * spuriously on a newly created cic but there's no harm.
3705 */
3706 if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3707 return;
3708
3709 cfqq = cic_to_cfqq(cic, false);
3710 if (cfqq) {
3711 cfq_put_queue(cfqq);
3712 cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio);
3713 cic_set_cfqq(cic, cfqq, false);
3714 }
3715
3716 cfqq = cic_to_cfqq(cic, true);
3717 if (cfqq)
3718 cfq_mark_cfqq_prio_changed(cfqq);
3719
3720 cic->ioprio = ioprio;
3721 }
3722
3723 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3724 pid_t pid, bool is_sync)
3725 {
3726 RB_CLEAR_NODE(&cfqq->rb_node);
3727 RB_CLEAR_NODE(&cfqq->p_node);
3728 INIT_LIST_HEAD(&cfqq->fifo);
3729
3730 cfqq->ref = 0;
3731 cfqq->cfqd = cfqd;
3732
3733 cfq_mark_cfqq_prio_changed(cfqq);
3734
3735 if (is_sync) {
3736 if (!cfq_class_idle(cfqq))
3737 cfq_mark_cfqq_idle_window(cfqq);
3738 cfq_mark_cfqq_sync(cfqq);
3739 }
3740 cfqq->pid = pid;
3741 }
3742
3743 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3744 static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3745 {
3746 struct cfq_data *cfqd = cic_to_cfqd(cic);
3747 struct cfq_queue *cfqq;
3748 uint64_t serial_nr;
3749
3750 rcu_read_lock();
3751 serial_nr = bio_blkcg(bio)->css.serial_nr;
3752 rcu_read_unlock();
3753
3754 /*
3755 * Check whether blkcg has changed. The condition may trigger
3756 * spuriously on a newly created cic but there's no harm.
3757 */
3758 if (unlikely(!cfqd) || likely(cic->blkcg_serial_nr == serial_nr))
3759 return;
3760
3761 /*
3762 * Drop reference to queues. New queues will be assigned in new
3763 * group upon arrival of fresh requests.
3764 */
3765 cfqq = cic_to_cfqq(cic, false);
3766 if (cfqq) {
3767 cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3768 cic_set_cfqq(cic, NULL, false);
3769 cfq_put_queue(cfqq);
3770 }
3771
3772 cfqq = cic_to_cfqq(cic, true);
3773 if (cfqq) {
3774 cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3775 cic_set_cfqq(cic, NULL, true);
3776 cfq_put_queue(cfqq);
3777 }
3778
3779 cic->blkcg_serial_nr = serial_nr;
3780 }
3781 #else
3782 static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
3783 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
3784
3785 static struct cfq_queue **
3786 cfq_async_queue_prio(struct cfq_group *cfqg, int ioprio_class, int ioprio)
3787 {
3788 switch (ioprio_class) {
3789 case IOPRIO_CLASS_RT:
3790 return &cfqg->async_cfqq[0][ioprio];
3791 case IOPRIO_CLASS_NONE:
3792 ioprio = IOPRIO_NORM;
3793 /* fall through */
3794 case IOPRIO_CLASS_BE:
3795 return &cfqg->async_cfqq[1][ioprio];
3796 case IOPRIO_CLASS_IDLE:
3797 return &cfqg->async_idle_cfqq;
3798 default:
3799 BUG();
3800 }
3801 }
3802
3803 static struct cfq_queue *
3804 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3805 struct bio *bio)
3806 {
3807 int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3808 int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3809 struct cfq_queue **async_cfqq = NULL;
3810 struct cfq_queue *cfqq;
3811 struct cfq_group *cfqg;
3812
3813 rcu_read_lock();
3814 cfqg = cfq_lookup_cfqg(cfqd, bio_blkcg(bio));
3815 if (!cfqg) {
3816 cfqq = &cfqd->oom_cfqq;
3817 goto out;
3818 }
3819
3820 if (!is_sync) {
3821 if (!ioprio_valid(cic->ioprio)) {
3822 struct task_struct *tsk = current;
3823 ioprio = task_nice_ioprio(tsk);
3824 ioprio_class = task_nice_ioclass(tsk);
3825 }
3826 async_cfqq = cfq_async_queue_prio(cfqg, ioprio_class, ioprio);
3827 cfqq = *async_cfqq;
3828 if (cfqq)
3829 goto out;
3830 }
3831
3832 cfqq = kmem_cache_alloc_node(cfq_pool, GFP_NOWAIT | __GFP_ZERO,
3833 cfqd->queue->node);
3834 if (!cfqq) {
3835 cfqq = &cfqd->oom_cfqq;
3836 goto out;
3837 }
3838
3839 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3840 cfq_init_prio_data(cfqq, cic);
3841 cfq_link_cfqq_cfqg(cfqq, cfqg);
3842 cfq_log_cfqq(cfqd, cfqq, "alloced");
3843
3844 if (async_cfqq) {
3845 /* a new async queue is created, pin and remember */
3846 cfqq->ref++;
3847 *async_cfqq = cfqq;
3848 }
3849 out:
3850 cfqq->ref++;
3851 rcu_read_unlock();
3852 return cfqq;
3853 }
3854
3855 static void
3856 __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3857 {
3858 unsigned long elapsed = jiffies - ttime->last_end_request;
3859 elapsed = min(elapsed, 2UL * slice_idle);
3860
3861 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3862 ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3863 ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3864 }
3865
3866 static void
3867 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3868 struct cfq_io_cq *cic)
3869 {
3870 if (cfq_cfqq_sync(cfqq)) {
3871 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3872 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3873 cfqd->cfq_slice_idle);
3874 }
3875 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3876 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3877 #endif
3878 }
3879
3880 static void
3881 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3882 struct request *rq)
3883 {
3884 sector_t sdist = 0;
3885 sector_t n_sec = blk_rq_sectors(rq);
3886 if (cfqq->last_request_pos) {
3887 if (cfqq->last_request_pos < blk_rq_pos(rq))
3888 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3889 else
3890 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3891 }
3892
3893 cfqq->seek_history <<= 1;
3894 if (blk_queue_nonrot(cfqd->queue))
3895 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3896 else
3897 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3898 }
3899
3900 /*
3901 * Disable idle window if the process thinks too long or seeks so much that
3902 * it doesn't matter
3903 */
3904 static void
3905 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3906 struct cfq_io_cq *cic)
3907 {
3908 int old_idle, enable_idle;
3909
3910 /*
3911 * Don't idle for async or idle io prio class
3912 */
3913 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3914 return;
3915
3916 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3917
3918 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3919 cfq_mark_cfqq_deep(cfqq);
3920
3921 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3922 enable_idle = 0;
3923 else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3924 !cfqd->cfq_slice_idle ||
3925 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3926 enable_idle = 0;
3927 else if (sample_valid(cic->ttime.ttime_samples)) {
3928 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3929 enable_idle = 0;
3930 else
3931 enable_idle = 1;
3932 }
3933
3934 if (old_idle != enable_idle) {
3935 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3936 if (enable_idle)
3937 cfq_mark_cfqq_idle_window(cfqq);
3938 else
3939 cfq_clear_cfqq_idle_window(cfqq);
3940 }
3941 }
3942
3943 /*
3944 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3945 * no or if we aren't sure, a 1 will cause a preempt.
3946 */
3947 static bool
3948 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3949 struct request *rq)
3950 {
3951 struct cfq_queue *cfqq;
3952
3953 cfqq = cfqd->active_queue;
3954 if (!cfqq)
3955 return false;
3956
3957 if (cfq_class_idle(new_cfqq))
3958 return false;
3959
3960 if (cfq_class_idle(cfqq))
3961 return true;
3962
3963 /*
3964 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3965 */
3966 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3967 return false;
3968
3969 /*
3970 * if the new request is sync, but the currently running queue is
3971 * not, let the sync request have priority.
3972 */
3973 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3974 return true;
3975
3976 /*
3977 * Treat ancestors of current cgroup the same way as current cgroup.
3978 * For anybody else we disallow preemption to guarantee service
3979 * fairness among cgroups.
3980 */
3981 if (!cfqg_is_descendant(cfqq->cfqg, new_cfqq->cfqg))
3982 return false;
3983
3984 if (cfq_slice_used(cfqq))
3985 return true;
3986
3987 /*
3988 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3989 */
3990 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3991 return true;
3992
3993 WARN_ON_ONCE(cfqq->ioprio_class != new_cfqq->ioprio_class);
3994 /* Allow preemption only if we are idling on sync-noidle tree */
3995 if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD &&
3996 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3997 RB_EMPTY_ROOT(&cfqq->sort_list))
3998 return true;
3999
4000 /*
4001 * So both queues are sync. Let the new request get disk time if
4002 * it's a metadata request and the current queue is doing regular IO.
4003 */
4004 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
4005 return true;
4006
4007 /* An idle queue should not be idle now for some reason */
4008 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
4009 return true;
4010
4011 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
4012 return false;
4013
4014 /*
4015 * if this request is as-good as one we would expect from the
4016 * current cfqq, let it preempt
4017 */
4018 if (cfq_rq_close(cfqd, cfqq, rq))
4019 return true;
4020
4021 return false;
4022 }
4023
4024 /*
4025 * cfqq preempts the active queue. if we allowed preempt with no slice left,
4026 * let it have half of its nominal slice.
4027 */
4028 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
4029 {
4030 enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
4031
4032 cfq_log_cfqq(cfqd, cfqq, "preempt");
4033 cfq_slice_expired(cfqd, 1);
4034
4035 /*
4036 * workload type is changed, don't save slice, otherwise preempt
4037 * doesn't happen
4038 */
4039 if (old_type != cfqq_type(cfqq))
4040 cfqq->cfqg->saved_wl_slice = 0;
4041
4042 /*
4043 * Put the new queue at the front of the of the current list,
4044 * so we know that it will be selected next.
4045 */
4046 BUG_ON(!cfq_cfqq_on_rr(cfqq));
4047
4048 cfq_service_tree_add(cfqd, cfqq, 1);
4049
4050 cfqq->slice_end = 0;
4051 cfq_mark_cfqq_slice_new(cfqq);
4052 }
4053
4054 /*
4055 * Called when a new fs request (rq) is added (to cfqq). Check if there's
4056 * something we should do about it
4057 */
4058 static void
4059 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
4060 struct request *rq)
4061 {
4062 struct cfq_io_cq *cic = RQ_CIC(rq);
4063
4064 cfqd->rq_queued++;
4065 if (rq->cmd_flags & REQ_PRIO)
4066 cfqq->prio_pending++;
4067
4068 cfq_update_io_thinktime(cfqd, cfqq, cic);
4069 cfq_update_io_seektime(cfqd, cfqq, rq);
4070 cfq_update_idle_window(cfqd, cfqq, cic);
4071
4072 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4073
4074 if (cfqq == cfqd->active_queue) {
4075 /*
4076 * Remember that we saw a request from this process, but
4077 * don't start queuing just yet. Otherwise we risk seeing lots
4078 * of tiny requests, because we disrupt the normal plugging
4079 * and merging. If the request is already larger than a single
4080 * page, let it rip immediately. For that case we assume that
4081 * merging is already done. Ditto for a busy system that
4082 * has other work pending, don't risk delaying until the
4083 * idle timer unplug to continue working.
4084 */
4085 if (cfq_cfqq_wait_request(cfqq)) {
4086 if (blk_rq_bytes(rq) > PAGE_SIZE ||
4087 cfqd->busy_queues > 1) {
4088 cfq_del_timer(cfqd, cfqq);
4089 cfq_clear_cfqq_wait_request(cfqq);
4090 __blk_run_queue(cfqd->queue);
4091 } else {
4092 cfqg_stats_update_idle_time(cfqq->cfqg);
4093 cfq_mark_cfqq_must_dispatch(cfqq);
4094 }
4095 }
4096 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
4097 /*
4098 * not the active queue - expire current slice if it is
4099 * idle and has expired it's mean thinktime or this new queue
4100 * has some old slice time left and is of higher priority or
4101 * this new queue is RT and the current one is BE
4102 */
4103 cfq_preempt_queue(cfqd, cfqq);
4104 __blk_run_queue(cfqd->queue);
4105 }
4106 }
4107
4108 static void cfq_insert_request(struct request_queue *q, struct request *rq)
4109 {
4110 struct cfq_data *cfqd = q->elevator->elevator_data;
4111 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4112
4113 cfq_log_cfqq(cfqd, cfqq, "insert_request");
4114 cfq_init_prio_data(cfqq, RQ_CIC(rq));
4115
4116 rq->fifo_time = jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)];
4117 list_add_tail(&rq->queuelist, &cfqq->fifo);
4118 cfq_add_rq_rb(rq);
4119 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group, req_op(rq),
4120 rq->cmd_flags);
4121 cfq_rq_enqueued(cfqd, cfqq, rq);
4122 }
4123
4124 /*
4125 * Update hw_tag based on peak queue depth over 50 samples under
4126 * sufficient load.
4127 */
4128 static void cfq_update_hw_tag(struct cfq_data *cfqd)
4129 {
4130 struct cfq_queue *cfqq = cfqd->active_queue;
4131
4132 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
4133 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
4134
4135 if (cfqd->hw_tag == 1)
4136 return;
4137
4138 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
4139 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
4140 return;
4141
4142 /*
4143 * If active queue hasn't enough requests and can idle, cfq might not
4144 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
4145 * case
4146 */
4147 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
4148 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
4149 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
4150 return;
4151
4152 if (cfqd->hw_tag_samples++ < 50)
4153 return;
4154
4155 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
4156 cfqd->hw_tag = 1;
4157 else
4158 cfqd->hw_tag = 0;
4159 }
4160
4161 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
4162 {
4163 struct cfq_io_cq *cic = cfqd->active_cic;
4164
4165 /* If the queue already has requests, don't wait */
4166 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4167 return false;
4168
4169 /* If there are other queues in the group, don't wait */
4170 if (cfqq->cfqg->nr_cfqq > 1)
4171 return false;
4172
4173 /* the only queue in the group, but think time is big */
4174 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
4175 return false;
4176
4177 if (cfq_slice_used(cfqq))
4178 return true;
4179
4180 /* if slice left is less than think time, wait busy */
4181 if (cic && sample_valid(cic->ttime.ttime_samples)
4182 && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
4183 return true;
4184
4185 /*
4186 * If think times is less than a jiffy than ttime_mean=0 and above
4187 * will not be true. It might happen that slice has not expired yet
4188 * but will expire soon (4-5 ns) during select_queue(). To cover the
4189 * case where think time is less than a jiffy, mark the queue wait
4190 * busy if only 1 jiffy is left in the slice.
4191 */
4192 if (cfqq->slice_end - jiffies == 1)
4193 return true;
4194
4195 return false;
4196 }
4197
4198 static void cfq_completed_request(struct request_queue *q, struct request *rq)
4199 {
4200 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4201 struct cfq_data *cfqd = cfqq->cfqd;
4202 const int sync = rq_is_sync(rq);
4203 unsigned long now;
4204
4205 now = jiffies;
4206 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
4207 !!(rq->cmd_flags & REQ_NOIDLE));
4208
4209 cfq_update_hw_tag(cfqd);
4210
4211 WARN_ON(!cfqd->rq_in_driver);
4212 WARN_ON(!cfqq->dispatched);
4213 cfqd->rq_in_driver--;
4214 cfqq->dispatched--;
4215 (RQ_CFQG(rq))->dispatched--;
4216 cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
4217 rq_io_start_time_ns(rq), req_op(rq),
4218 rq->cmd_flags);
4219
4220 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
4221
4222 if (sync) {
4223 struct cfq_rb_root *st;
4224
4225 RQ_CIC(rq)->ttime.last_end_request = now;
4226
4227 if (cfq_cfqq_on_rr(cfqq))
4228 st = cfqq->service_tree;
4229 else
4230 st = st_for(cfqq->cfqg, cfqq_class(cfqq),
4231 cfqq_type(cfqq));
4232
4233 st->ttime.last_end_request = now;
4234 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
4235 cfqd->last_delayed_sync = now;
4236 }
4237
4238 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4239 cfqq->cfqg->ttime.last_end_request = now;
4240 #endif
4241
4242 /*
4243 * If this is the active queue, check if it needs to be expired,
4244 * or if we want to idle in case it has no pending requests.
4245 */
4246 if (cfqd->active_queue == cfqq) {
4247 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
4248
4249 if (cfq_cfqq_slice_new(cfqq)) {
4250 cfq_set_prio_slice(cfqd, cfqq);
4251 cfq_clear_cfqq_slice_new(cfqq);
4252 }
4253
4254 /*
4255 * Should we wait for next request to come in before we expire
4256 * the queue.
4257 */
4258 if (cfq_should_wait_busy(cfqd, cfqq)) {
4259 unsigned long extend_sl = cfqd->cfq_slice_idle;
4260 if (!cfqd->cfq_slice_idle)
4261 extend_sl = cfqd->cfq_group_idle;
4262 cfqq->slice_end = jiffies + extend_sl;
4263 cfq_mark_cfqq_wait_busy(cfqq);
4264 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
4265 }
4266
4267 /*
4268 * Idling is not enabled on:
4269 * - expired queues
4270 * - idle-priority queues
4271 * - async queues
4272 * - queues with still some requests queued
4273 * - when there is a close cooperator
4274 */
4275 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
4276 cfq_slice_expired(cfqd, 1);
4277 else if (sync && cfqq_empty &&
4278 !cfq_close_cooperator(cfqd, cfqq)) {
4279 cfq_arm_slice_timer(cfqd);
4280 }
4281 }
4282
4283 if (!cfqd->rq_in_driver)
4284 cfq_schedule_dispatch(cfqd);
4285 }
4286
4287 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
4288 {
4289 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
4290 cfq_mark_cfqq_must_alloc_slice(cfqq);
4291 return ELV_MQUEUE_MUST;
4292 }
4293
4294 return ELV_MQUEUE_MAY;
4295 }
4296
4297 static int cfq_may_queue(struct request_queue *q, int op, int op_flags)
4298 {
4299 struct cfq_data *cfqd = q->elevator->elevator_data;
4300 struct task_struct *tsk = current;
4301 struct cfq_io_cq *cic;
4302 struct cfq_queue *cfqq;
4303
4304 /*
4305 * don't force setup of a queue from here, as a call to may_queue
4306 * does not necessarily imply that a request actually will be queued.
4307 * so just lookup a possibly existing queue, or return 'may queue'
4308 * if that fails
4309 */
4310 cic = cfq_cic_lookup(cfqd, tsk->io_context);
4311 if (!cic)
4312 return ELV_MQUEUE_MAY;
4313
4314 cfqq = cic_to_cfqq(cic, rw_is_sync(op, op_flags));
4315 if (cfqq) {
4316 cfq_init_prio_data(cfqq, cic);
4317
4318 return __cfq_may_queue(cfqq);
4319 }
4320
4321 return ELV_MQUEUE_MAY;
4322 }
4323
4324 /*
4325 * queue lock held here
4326 */
4327 static void cfq_put_request(struct request *rq)
4328 {
4329 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4330
4331 if (cfqq) {
4332 const int rw = rq_data_dir(rq);
4333
4334 BUG_ON(!cfqq->allocated[rw]);
4335 cfqq->allocated[rw]--;
4336
4337 /* Put down rq reference on cfqg */
4338 cfqg_put(RQ_CFQG(rq));
4339 rq->elv.priv[0] = NULL;
4340 rq->elv.priv[1] = NULL;
4341
4342 cfq_put_queue(cfqq);
4343 }
4344 }
4345
4346 static struct cfq_queue *
4347 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
4348 struct cfq_queue *cfqq)
4349 {
4350 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
4351 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
4352 cfq_mark_cfqq_coop(cfqq->new_cfqq);
4353 cfq_put_queue(cfqq);
4354 return cic_to_cfqq(cic, 1);
4355 }
4356
4357 /*
4358 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4359 * was the last process referring to said cfqq.
4360 */
4361 static struct cfq_queue *
4362 split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
4363 {
4364 if (cfqq_process_refs(cfqq) == 1) {
4365 cfqq->pid = current->pid;
4366 cfq_clear_cfqq_coop(cfqq);
4367 cfq_clear_cfqq_split_coop(cfqq);
4368 return cfqq;
4369 }
4370
4371 cic_set_cfqq(cic, NULL, 1);
4372
4373 cfq_put_cooperator(cfqq);
4374
4375 cfq_put_queue(cfqq);
4376 return NULL;
4377 }
4378 /*
4379 * Allocate cfq data structures associated with this request.
4380 */
4381 static int
4382 cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
4383 gfp_t gfp_mask)
4384 {
4385 struct cfq_data *cfqd = q->elevator->elevator_data;
4386 struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
4387 const int rw = rq_data_dir(rq);
4388 const bool is_sync = rq_is_sync(rq);
4389 struct cfq_queue *cfqq;
4390
4391 spin_lock_irq(q->queue_lock);
4392
4393 check_ioprio_changed(cic, bio);
4394 check_blkcg_changed(cic, bio);
4395 new_queue:
4396 cfqq = cic_to_cfqq(cic, is_sync);
4397 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
4398 if (cfqq)
4399 cfq_put_queue(cfqq);
4400 cfqq = cfq_get_queue(cfqd, is_sync, cic, bio);
4401 cic_set_cfqq(cic, cfqq, is_sync);
4402 } else {
4403 /*
4404 * If the queue was seeky for too long, break it apart.
4405 */
4406 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
4407 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
4408 cfqq = split_cfqq(cic, cfqq);
4409 if (!cfqq)
4410 goto new_queue;
4411 }
4412
4413 /*
4414 * Check to see if this queue is scheduled to merge with
4415 * another, closely cooperating queue. The merging of
4416 * queues happens here as it must be done in process context.
4417 * The reference on new_cfqq was taken in merge_cfqqs.
4418 */
4419 if (cfqq->new_cfqq)
4420 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
4421 }
4422
4423 cfqq->allocated[rw]++;
4424
4425 cfqq->ref++;
4426 cfqg_get(cfqq->cfqg);
4427 rq->elv.priv[0] = cfqq;
4428 rq->elv.priv[1] = cfqq->cfqg;
4429 spin_unlock_irq(q->queue_lock);
4430 return 0;
4431 }
4432
4433 static void cfq_kick_queue(struct work_struct *work)
4434 {
4435 struct cfq_data *cfqd =
4436 container_of(work, struct cfq_data, unplug_work);
4437 struct request_queue *q = cfqd->queue;
4438
4439 spin_lock_irq(q->queue_lock);
4440 __blk_run_queue(cfqd->queue);
4441 spin_unlock_irq(q->queue_lock);
4442 }
4443
4444 /*
4445 * Timer running if the active_queue is currently idling inside its time slice
4446 */
4447 static void cfq_idle_slice_timer(unsigned long data)
4448 {
4449 struct cfq_data *cfqd = (struct cfq_data *) data;
4450 struct cfq_queue *cfqq;
4451 unsigned long flags;
4452 int timed_out = 1;
4453
4454 cfq_log(cfqd, "idle timer fired");
4455
4456 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
4457
4458 cfqq = cfqd->active_queue;
4459 if (cfqq) {
4460 timed_out = 0;
4461
4462 /*
4463 * We saw a request before the queue expired, let it through
4464 */
4465 if (cfq_cfqq_must_dispatch(cfqq))
4466 goto out_kick;
4467
4468 /*
4469 * expired
4470 */
4471 if (cfq_slice_used(cfqq))
4472 goto expire;
4473
4474 /*
4475 * only expire and reinvoke request handler, if there are
4476 * other queues with pending requests
4477 */
4478 if (!cfqd->busy_queues)
4479 goto out_cont;
4480
4481 /*
4482 * not expired and it has a request pending, let it dispatch
4483 */
4484 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4485 goto out_kick;
4486
4487 /*
4488 * Queue depth flag is reset only when the idle didn't succeed
4489 */
4490 cfq_clear_cfqq_deep(cfqq);
4491 }
4492 expire:
4493 cfq_slice_expired(cfqd, timed_out);
4494 out_kick:
4495 cfq_schedule_dispatch(cfqd);
4496 out_cont:
4497 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
4498 }
4499
4500 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
4501 {
4502 del_timer_sync(&cfqd->idle_slice_timer);
4503 cancel_work_sync(&cfqd->unplug_work);
4504 }
4505
4506 static void cfq_exit_queue(struct elevator_queue *e)
4507 {
4508 struct cfq_data *cfqd = e->elevator_data;
4509 struct request_queue *q = cfqd->queue;
4510
4511 cfq_shutdown_timer_wq(cfqd);
4512
4513 spin_lock_irq(q->queue_lock);
4514
4515 if (cfqd->active_queue)
4516 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
4517
4518 spin_unlock_irq(q->queue_lock);
4519
4520 cfq_shutdown_timer_wq(cfqd);
4521
4522 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4523 blkcg_deactivate_policy(q, &blkcg_policy_cfq);
4524 #else
4525 kfree(cfqd->root_group);
4526 #endif
4527 kfree(cfqd);
4528 }
4529
4530 static int cfq_init_queue(struct request_queue *q, struct elevator_type *e)
4531 {
4532 struct cfq_data *cfqd;
4533 struct blkcg_gq *blkg __maybe_unused;
4534 int i, ret;
4535 struct elevator_queue *eq;
4536
4537 eq = elevator_alloc(q, e);
4538 if (!eq)
4539 return -ENOMEM;
4540
4541 cfqd = kzalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
4542 if (!cfqd) {
4543 kobject_put(&eq->kobj);
4544 return -ENOMEM;
4545 }
4546 eq->elevator_data = cfqd;
4547
4548 cfqd->queue = q;
4549 spin_lock_irq(q->queue_lock);
4550 q->elevator = eq;
4551 spin_unlock_irq(q->queue_lock);
4552
4553 /* Init root service tree */
4554 cfqd->grp_service_tree = CFQ_RB_ROOT;
4555
4556 /* Init root group and prefer root group over other groups by default */
4557 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4558 ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
4559 if (ret)
4560 goto out_free;
4561
4562 cfqd->root_group = blkg_to_cfqg(q->root_blkg);
4563 #else
4564 ret = -ENOMEM;
4565 cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
4566 GFP_KERNEL, cfqd->queue->node);
4567 if (!cfqd->root_group)
4568 goto out_free;
4569
4570 cfq_init_cfqg_base(cfqd->root_group);
4571 cfqd->root_group->weight = 2 * CFQ_WEIGHT_LEGACY_DFL;
4572 cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_LEGACY_DFL;
4573 #endif
4574
4575 /*
4576 * Not strictly needed (since RB_ROOT just clears the node and we
4577 * zeroed cfqd on alloc), but better be safe in case someone decides
4578 * to add magic to the rb code
4579 */
4580 for (i = 0; i < CFQ_PRIO_LISTS; i++)
4581 cfqd->prio_trees[i] = RB_ROOT;
4582
4583 /*
4584 * Our fallback cfqq if cfq_get_queue() runs into OOM issues.
4585 * Grab a permanent reference to it, so that the normal code flow
4586 * will not attempt to free it. oom_cfqq is linked to root_group
4587 * but shouldn't hold a reference as it'll never be unlinked. Lose
4588 * the reference from linking right away.
4589 */
4590 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4591 cfqd->oom_cfqq.ref++;
4592
4593 spin_lock_irq(q->queue_lock);
4594 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4595 cfqg_put(cfqd->root_group);
4596 spin_unlock_irq(q->queue_lock);
4597
4598 init_timer(&cfqd->idle_slice_timer);
4599 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4600 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4601
4602 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4603
4604 cfqd->cfq_quantum = cfq_quantum;
4605 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4606 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4607 cfqd->cfq_back_max = cfq_back_max;
4608 cfqd->cfq_back_penalty = cfq_back_penalty;
4609 cfqd->cfq_slice[0] = cfq_slice_async;
4610 cfqd->cfq_slice[1] = cfq_slice_sync;
4611 cfqd->cfq_target_latency = cfq_target_latency;
4612 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4613 cfqd->cfq_slice_idle = cfq_slice_idle;
4614 cfqd->cfq_group_idle = cfq_group_idle;
4615 cfqd->cfq_latency = 1;
4616 cfqd->hw_tag = -1;
4617 /*
4618 * we optimistically start assuming sync ops weren't delayed in last
4619 * second, in order to have larger depth for async operations.
4620 */
4621 cfqd->last_delayed_sync = jiffies - HZ;
4622 return 0;
4623
4624 out_free:
4625 kfree(cfqd);
4626 kobject_put(&eq->kobj);
4627 return ret;
4628 }
4629
4630 static void cfq_registered_queue(struct request_queue *q)
4631 {
4632 struct elevator_queue *e = q->elevator;
4633 struct cfq_data *cfqd = e->elevator_data;
4634
4635 /*
4636 * Default to IOPS mode with no idling for SSDs
4637 */
4638 if (blk_queue_nonrot(q))
4639 cfqd->cfq_slice_idle = 0;
4640 }
4641
4642 /*
4643 * sysfs parts below -->
4644 */
4645 static ssize_t
4646 cfq_var_show(unsigned int var, char *page)
4647 {
4648 return sprintf(page, "%u\n", var);
4649 }
4650
4651 static ssize_t
4652 cfq_var_store(unsigned int *var, const char *page, size_t count)
4653 {
4654 char *p = (char *) page;
4655
4656 *var = simple_strtoul(p, &p, 10);
4657 return count;
4658 }
4659
4660 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4661 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4662 { \
4663 struct cfq_data *cfqd = e->elevator_data; \
4664 unsigned int __data = __VAR; \
4665 if (__CONV) \
4666 __data = jiffies_to_msecs(__data); \
4667 return cfq_var_show(__data, (page)); \
4668 }
4669 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4670 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4671 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4672 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4673 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4674 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4675 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4676 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4677 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4678 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4679 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4680 SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
4681 #undef SHOW_FUNCTION
4682
4683 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4684 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4685 { \
4686 struct cfq_data *cfqd = e->elevator_data; \
4687 unsigned int __data; \
4688 int ret = cfq_var_store(&__data, (page), count); \
4689 if (__data < (MIN)) \
4690 __data = (MIN); \
4691 else if (__data > (MAX)) \
4692 __data = (MAX); \
4693 if (__CONV) \
4694 *(__PTR) = msecs_to_jiffies(__data); \
4695 else \
4696 *(__PTR) = __data; \
4697 return ret; \
4698 }
4699 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4700 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4701 UINT_MAX, 1);
4702 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4703 UINT_MAX, 1);
4704 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4705 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4706 UINT_MAX, 0);
4707 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4708 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4709 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4710 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4711 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4712 UINT_MAX, 0);
4713 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4714 STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
4715 #undef STORE_FUNCTION
4716
4717 #define CFQ_ATTR(name) \
4718 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4719
4720 static struct elv_fs_entry cfq_attrs[] = {
4721 CFQ_ATTR(quantum),
4722 CFQ_ATTR(fifo_expire_sync),
4723 CFQ_ATTR(fifo_expire_async),
4724 CFQ_ATTR(back_seek_max),
4725 CFQ_ATTR(back_seek_penalty),
4726 CFQ_ATTR(slice_sync),
4727 CFQ_ATTR(slice_async),
4728 CFQ_ATTR(slice_async_rq),
4729 CFQ_ATTR(slice_idle),
4730 CFQ_ATTR(group_idle),
4731 CFQ_ATTR(low_latency),
4732 CFQ_ATTR(target_latency),
4733 __ATTR_NULL
4734 };
4735
4736 static struct elevator_type iosched_cfq = {
4737 .ops = {
4738 .elevator_merge_fn = cfq_merge,
4739 .elevator_merged_fn = cfq_merged_request,
4740 .elevator_merge_req_fn = cfq_merged_requests,
4741 .elevator_allow_merge_fn = cfq_allow_merge,
4742 .elevator_bio_merged_fn = cfq_bio_merged,
4743 .elevator_dispatch_fn = cfq_dispatch_requests,
4744 .elevator_add_req_fn = cfq_insert_request,
4745 .elevator_activate_req_fn = cfq_activate_request,
4746 .elevator_deactivate_req_fn = cfq_deactivate_request,
4747 .elevator_completed_req_fn = cfq_completed_request,
4748 .elevator_former_req_fn = elv_rb_former_request,
4749 .elevator_latter_req_fn = elv_rb_latter_request,
4750 .elevator_init_icq_fn = cfq_init_icq,
4751 .elevator_exit_icq_fn = cfq_exit_icq,
4752 .elevator_set_req_fn = cfq_set_request,
4753 .elevator_put_req_fn = cfq_put_request,
4754 .elevator_may_queue_fn = cfq_may_queue,
4755 .elevator_init_fn = cfq_init_queue,
4756 .elevator_exit_fn = cfq_exit_queue,
4757 .elevator_registered_fn = cfq_registered_queue,
4758 },
4759 .icq_size = sizeof(struct cfq_io_cq),
4760 .icq_align = __alignof__(struct cfq_io_cq),
4761 .elevator_attrs = cfq_attrs,
4762 .elevator_name = "cfq",
4763 .elevator_owner = THIS_MODULE,
4764 };
4765
4766 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4767 static struct blkcg_policy blkcg_policy_cfq = {
4768 .dfl_cftypes = cfq_blkcg_files,
4769 .legacy_cftypes = cfq_blkcg_legacy_files,
4770
4771 .cpd_alloc_fn = cfq_cpd_alloc,
4772 .cpd_init_fn = cfq_cpd_init,
4773 .cpd_free_fn = cfq_cpd_free,
4774 .cpd_bind_fn = cfq_cpd_bind,
4775
4776 .pd_alloc_fn = cfq_pd_alloc,
4777 .pd_init_fn = cfq_pd_init,
4778 .pd_offline_fn = cfq_pd_offline,
4779 .pd_free_fn = cfq_pd_free,
4780 .pd_reset_stats_fn = cfq_pd_reset_stats,
4781 };
4782 #endif
4783
4784 static int __init cfq_init(void)
4785 {
4786 int ret;
4787
4788 /*
4789 * could be 0 on HZ < 1000 setups
4790 */
4791 if (!cfq_slice_async)
4792 cfq_slice_async = 1;
4793 if (!cfq_slice_idle)
4794 cfq_slice_idle = 1;
4795
4796 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4797 if (!cfq_group_idle)
4798 cfq_group_idle = 1;
4799
4800 ret = blkcg_policy_register(&blkcg_policy_cfq);
4801 if (ret)
4802 return ret;
4803 #else
4804 cfq_group_idle = 0;
4805 #endif
4806
4807 ret = -ENOMEM;
4808 cfq_pool = KMEM_CACHE(cfq_queue, 0);
4809 if (!cfq_pool)
4810 goto err_pol_unreg;
4811
4812 ret = elv_register(&iosched_cfq);
4813 if (ret)
4814 goto err_free_pool;
4815
4816 return 0;
4817
4818 err_free_pool:
4819 kmem_cache_destroy(cfq_pool);
4820 err_pol_unreg:
4821 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4822 blkcg_policy_unregister(&blkcg_policy_cfq);
4823 #endif
4824 return ret;
4825 }
4826
4827 static void __exit cfq_exit(void)
4828 {
4829 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4830 blkcg_policy_unregister(&blkcg_policy_cfq);
4831 #endif
4832 elv_unregister(&iosched_cfq);
4833 kmem_cache_destroy(cfq_pool);
4834 }
4835
4836 module_init(cfq_init);
4837 module_exit(cfq_exit);
4838
4839 MODULE_AUTHOR("Jens Axboe");
4840 MODULE_LICENSE("GPL");
4841 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
This page took 0.130999 seconds and 5 git commands to generate.