cfq-iosched: get rid of must_alloc flag
[deliverable/linux.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
15
16 /*
17 * tunables
18 */
19 /* max queue in one round of service */
20 static const int cfq_quantum = 4;
21 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max = 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty = 2;
26 static const int cfq_slice_sync = HZ / 10;
27 static int cfq_slice_async = HZ / 25;
28 static const int cfq_slice_async_rq = 2;
29 static int cfq_slice_idle = HZ / 125;
30
31 /*
32 * offset from end of service tree
33 */
34 #define CFQ_IDLE_DELAY (HZ / 5)
35
36 /*
37 * below this threshold, we consider thinktime immediate
38 */
39 #define CFQ_MIN_TT (2)
40
41 #define CFQ_SLICE_SCALE (5)
42 #define CFQ_HW_QUEUE_MIN (5)
43
44 #define RQ_CIC(rq) \
45 ((struct cfq_io_context *) (rq)->elevator_private)
46 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
47
48 static struct kmem_cache *cfq_pool;
49 static struct kmem_cache *cfq_ioc_pool;
50
51 static DEFINE_PER_CPU(unsigned long, ioc_count);
52 static struct completion *ioc_gone;
53 static DEFINE_SPINLOCK(ioc_gone_lock);
54
55 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
56 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
57 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
58
59 #define sample_valid(samples) ((samples) > 80)
60
61 /*
62 * Most of our rbtree usage is for sorting with min extraction, so
63 * if we cache the leftmost node we don't have to walk down the tree
64 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
65 * move this into the elevator for the rq sorting as well.
66 */
67 struct cfq_rb_root {
68 struct rb_root rb;
69 struct rb_node *left;
70 };
71 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
72
73 /*
74 * Per process-grouping structure
75 */
76 struct cfq_queue {
77 /* reference count */
78 atomic_t ref;
79 /* various state flags, see below */
80 unsigned int flags;
81 /* parent cfq_data */
82 struct cfq_data *cfqd;
83 /* service_tree member */
84 struct rb_node rb_node;
85 /* service_tree key */
86 unsigned long rb_key;
87 /* prio tree member */
88 struct rb_node p_node;
89 /* prio tree root we belong to, if any */
90 struct rb_root *p_root;
91 /* sorted list of pending requests */
92 struct rb_root sort_list;
93 /* if fifo isn't expired, next request to serve */
94 struct request *next_rq;
95 /* requests queued in sort_list */
96 int queued[2];
97 /* currently allocated requests */
98 int allocated[2];
99 /* fifo list of requests in sort_list */
100 struct list_head fifo;
101
102 unsigned long slice_end;
103 long slice_resid;
104 unsigned int slice_dispatch;
105
106 /* pending metadata requests */
107 int meta_pending;
108 /* number of requests that are on the dispatch list or inside driver */
109 int dispatched;
110
111 /* io prio of this group */
112 unsigned short ioprio, org_ioprio;
113 unsigned short ioprio_class, org_ioprio_class;
114
115 pid_t pid;
116 };
117
118 /*
119 * Per block device queue structure
120 */
121 struct cfq_data {
122 struct request_queue *queue;
123
124 /*
125 * rr list of queues with requests and the count of them
126 */
127 struct cfq_rb_root service_tree;
128
129 /*
130 * Each priority tree is sorted by next_request position. These
131 * trees are used when determining if two or more queues are
132 * interleaving requests (see cfq_close_cooperator).
133 */
134 struct rb_root prio_trees[CFQ_PRIO_LISTS];
135
136 unsigned int busy_queues;
137
138 int rq_in_driver[2];
139 int sync_flight;
140
141 /*
142 * queue-depth detection
143 */
144 int rq_queued;
145 int hw_tag;
146 int hw_tag_samples;
147 int rq_in_driver_peak;
148
149 /*
150 * idle window management
151 */
152 struct timer_list idle_slice_timer;
153 struct work_struct unplug_work;
154
155 struct cfq_queue *active_queue;
156 struct cfq_io_context *active_cic;
157
158 /*
159 * async queue for each priority case
160 */
161 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
162 struct cfq_queue *async_idle_cfqq;
163
164 sector_t last_position;
165
166 /*
167 * tunables, see top of file
168 */
169 unsigned int cfq_quantum;
170 unsigned int cfq_fifo_expire[2];
171 unsigned int cfq_back_penalty;
172 unsigned int cfq_back_max;
173 unsigned int cfq_slice[2];
174 unsigned int cfq_slice_async_rq;
175 unsigned int cfq_slice_idle;
176
177 struct list_head cic_list;
178
179 /*
180 * Fallback dummy cfqq for extreme OOM conditions
181 */
182 struct cfq_queue oom_cfqq;
183 };
184
185 enum cfqq_state_flags {
186 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
187 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
188 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
189 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
190 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
191 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
192 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
193 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
194 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
195 CFQ_CFQQ_FLAG_coop, /* has done a coop jump of the queue */
196 };
197
198 #define CFQ_CFQQ_FNS(name) \
199 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
200 { \
201 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
202 } \
203 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
204 { \
205 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
206 } \
207 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
208 { \
209 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
210 }
211
212 CFQ_CFQQ_FNS(on_rr);
213 CFQ_CFQQ_FNS(wait_request);
214 CFQ_CFQQ_FNS(must_dispatch);
215 CFQ_CFQQ_FNS(must_alloc_slice);
216 CFQ_CFQQ_FNS(fifo_expire);
217 CFQ_CFQQ_FNS(idle_window);
218 CFQ_CFQQ_FNS(prio_changed);
219 CFQ_CFQQ_FNS(slice_new);
220 CFQ_CFQQ_FNS(sync);
221 CFQ_CFQQ_FNS(coop);
222 #undef CFQ_CFQQ_FNS
223
224 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
225 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
226 #define cfq_log(cfqd, fmt, args...) \
227 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
228
229 static void cfq_dispatch_insert(struct request_queue *, struct request *);
230 static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
231 struct io_context *, gfp_t);
232 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
233 struct io_context *);
234
235 static inline int rq_in_driver(struct cfq_data *cfqd)
236 {
237 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
238 }
239
240 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
241 int is_sync)
242 {
243 return cic->cfqq[!!is_sync];
244 }
245
246 static inline void cic_set_cfqq(struct cfq_io_context *cic,
247 struct cfq_queue *cfqq, int is_sync)
248 {
249 cic->cfqq[!!is_sync] = cfqq;
250 }
251
252 /*
253 * We regard a request as SYNC, if it's either a read or has the SYNC bit
254 * set (in which case it could also be direct WRITE).
255 */
256 static inline int cfq_bio_sync(struct bio *bio)
257 {
258 if (bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO))
259 return 1;
260
261 return 0;
262 }
263
264 /*
265 * scheduler run of queue, if there are requests pending and no one in the
266 * driver that will restart queueing
267 */
268 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
269 {
270 if (cfqd->busy_queues) {
271 cfq_log(cfqd, "schedule dispatch");
272 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
273 }
274 }
275
276 static int cfq_queue_empty(struct request_queue *q)
277 {
278 struct cfq_data *cfqd = q->elevator->elevator_data;
279
280 return !cfqd->busy_queues;
281 }
282
283 /*
284 * Scale schedule slice based on io priority. Use the sync time slice only
285 * if a queue is marked sync and has sync io queued. A sync queue with async
286 * io only, should not get full sync slice length.
287 */
288 static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
289 unsigned short prio)
290 {
291 const int base_slice = cfqd->cfq_slice[sync];
292
293 WARN_ON(prio >= IOPRIO_BE_NR);
294
295 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
296 }
297
298 static inline int
299 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
300 {
301 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
302 }
303
304 static inline void
305 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
306 {
307 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
308 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
309 }
310
311 /*
312 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
313 * isn't valid until the first request from the dispatch is activated
314 * and the slice time set.
315 */
316 static inline int cfq_slice_used(struct cfq_queue *cfqq)
317 {
318 if (cfq_cfqq_slice_new(cfqq))
319 return 0;
320 if (time_before(jiffies, cfqq->slice_end))
321 return 0;
322
323 return 1;
324 }
325
326 /*
327 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
328 * We choose the request that is closest to the head right now. Distance
329 * behind the head is penalized and only allowed to a certain extent.
330 */
331 static struct request *
332 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
333 {
334 sector_t last, s1, s2, d1 = 0, d2 = 0;
335 unsigned long back_max;
336 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
337 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
338 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
339
340 if (rq1 == NULL || rq1 == rq2)
341 return rq2;
342 if (rq2 == NULL)
343 return rq1;
344
345 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
346 return rq1;
347 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
348 return rq2;
349 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
350 return rq1;
351 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
352 return rq2;
353
354 s1 = blk_rq_pos(rq1);
355 s2 = blk_rq_pos(rq2);
356
357 last = cfqd->last_position;
358
359 /*
360 * by definition, 1KiB is 2 sectors
361 */
362 back_max = cfqd->cfq_back_max * 2;
363
364 /*
365 * Strict one way elevator _except_ in the case where we allow
366 * short backward seeks which are biased as twice the cost of a
367 * similar forward seek.
368 */
369 if (s1 >= last)
370 d1 = s1 - last;
371 else if (s1 + back_max >= last)
372 d1 = (last - s1) * cfqd->cfq_back_penalty;
373 else
374 wrap |= CFQ_RQ1_WRAP;
375
376 if (s2 >= last)
377 d2 = s2 - last;
378 else if (s2 + back_max >= last)
379 d2 = (last - s2) * cfqd->cfq_back_penalty;
380 else
381 wrap |= CFQ_RQ2_WRAP;
382
383 /* Found required data */
384
385 /*
386 * By doing switch() on the bit mask "wrap" we avoid having to
387 * check two variables for all permutations: --> faster!
388 */
389 switch (wrap) {
390 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
391 if (d1 < d2)
392 return rq1;
393 else if (d2 < d1)
394 return rq2;
395 else {
396 if (s1 >= s2)
397 return rq1;
398 else
399 return rq2;
400 }
401
402 case CFQ_RQ2_WRAP:
403 return rq1;
404 case CFQ_RQ1_WRAP:
405 return rq2;
406 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
407 default:
408 /*
409 * Since both rqs are wrapped,
410 * start with the one that's further behind head
411 * (--> only *one* back seek required),
412 * since back seek takes more time than forward.
413 */
414 if (s1 <= s2)
415 return rq1;
416 else
417 return rq2;
418 }
419 }
420
421 /*
422 * The below is leftmost cache rbtree addon
423 */
424 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
425 {
426 if (!root->left)
427 root->left = rb_first(&root->rb);
428
429 if (root->left)
430 return rb_entry(root->left, struct cfq_queue, rb_node);
431
432 return NULL;
433 }
434
435 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
436 {
437 rb_erase(n, root);
438 RB_CLEAR_NODE(n);
439 }
440
441 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
442 {
443 if (root->left == n)
444 root->left = NULL;
445 rb_erase_init(n, &root->rb);
446 }
447
448 /*
449 * would be nice to take fifo expire time into account as well
450 */
451 static struct request *
452 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
453 struct request *last)
454 {
455 struct rb_node *rbnext = rb_next(&last->rb_node);
456 struct rb_node *rbprev = rb_prev(&last->rb_node);
457 struct request *next = NULL, *prev = NULL;
458
459 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
460
461 if (rbprev)
462 prev = rb_entry_rq(rbprev);
463
464 if (rbnext)
465 next = rb_entry_rq(rbnext);
466 else {
467 rbnext = rb_first(&cfqq->sort_list);
468 if (rbnext && rbnext != &last->rb_node)
469 next = rb_entry_rq(rbnext);
470 }
471
472 return cfq_choose_req(cfqd, next, prev);
473 }
474
475 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
476 struct cfq_queue *cfqq)
477 {
478 /*
479 * just an approximation, should be ok.
480 */
481 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
482 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
483 }
484
485 /*
486 * The cfqd->service_tree holds all pending cfq_queue's that have
487 * requests waiting to be processed. It is sorted in the order that
488 * we will service the queues.
489 */
490 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
491 int add_front)
492 {
493 struct rb_node **p, *parent;
494 struct cfq_queue *__cfqq;
495 unsigned long rb_key;
496 int left;
497
498 if (cfq_class_idle(cfqq)) {
499 rb_key = CFQ_IDLE_DELAY;
500 parent = rb_last(&cfqd->service_tree.rb);
501 if (parent && parent != &cfqq->rb_node) {
502 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
503 rb_key += __cfqq->rb_key;
504 } else
505 rb_key += jiffies;
506 } else if (!add_front) {
507 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
508 rb_key += cfqq->slice_resid;
509 cfqq->slice_resid = 0;
510 } else
511 rb_key = 0;
512
513 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
514 /*
515 * same position, nothing more to do
516 */
517 if (rb_key == cfqq->rb_key)
518 return;
519
520 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
521 }
522
523 left = 1;
524 parent = NULL;
525 p = &cfqd->service_tree.rb.rb_node;
526 while (*p) {
527 struct rb_node **n;
528
529 parent = *p;
530 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
531
532 /*
533 * sort RT queues first, we always want to give
534 * preference to them. IDLE queues goes to the back.
535 * after that, sort on the next service time.
536 */
537 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
538 n = &(*p)->rb_left;
539 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
540 n = &(*p)->rb_right;
541 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
542 n = &(*p)->rb_left;
543 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
544 n = &(*p)->rb_right;
545 else if (rb_key < __cfqq->rb_key)
546 n = &(*p)->rb_left;
547 else
548 n = &(*p)->rb_right;
549
550 if (n == &(*p)->rb_right)
551 left = 0;
552
553 p = n;
554 }
555
556 if (left)
557 cfqd->service_tree.left = &cfqq->rb_node;
558
559 cfqq->rb_key = rb_key;
560 rb_link_node(&cfqq->rb_node, parent, p);
561 rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
562 }
563
564 static struct cfq_queue *
565 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
566 sector_t sector, struct rb_node **ret_parent,
567 struct rb_node ***rb_link)
568 {
569 struct rb_node **p, *parent;
570 struct cfq_queue *cfqq = NULL;
571
572 parent = NULL;
573 p = &root->rb_node;
574 while (*p) {
575 struct rb_node **n;
576
577 parent = *p;
578 cfqq = rb_entry(parent, struct cfq_queue, p_node);
579
580 /*
581 * Sort strictly based on sector. Smallest to the left,
582 * largest to the right.
583 */
584 if (sector > blk_rq_pos(cfqq->next_rq))
585 n = &(*p)->rb_right;
586 else if (sector < blk_rq_pos(cfqq->next_rq))
587 n = &(*p)->rb_left;
588 else
589 break;
590 p = n;
591 cfqq = NULL;
592 }
593
594 *ret_parent = parent;
595 if (rb_link)
596 *rb_link = p;
597 return cfqq;
598 }
599
600 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
601 {
602 struct rb_node **p, *parent;
603 struct cfq_queue *__cfqq;
604
605 if (cfqq->p_root) {
606 rb_erase(&cfqq->p_node, cfqq->p_root);
607 cfqq->p_root = NULL;
608 }
609
610 if (cfq_class_idle(cfqq))
611 return;
612 if (!cfqq->next_rq)
613 return;
614
615 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
616 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
617 blk_rq_pos(cfqq->next_rq), &parent, &p);
618 if (!__cfqq) {
619 rb_link_node(&cfqq->p_node, parent, p);
620 rb_insert_color(&cfqq->p_node, cfqq->p_root);
621 } else
622 cfqq->p_root = NULL;
623 }
624
625 /*
626 * Update cfqq's position in the service tree.
627 */
628 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
629 {
630 /*
631 * Resorting requires the cfqq to be on the RR list already.
632 */
633 if (cfq_cfqq_on_rr(cfqq)) {
634 cfq_service_tree_add(cfqd, cfqq, 0);
635 cfq_prio_tree_add(cfqd, cfqq);
636 }
637 }
638
639 /*
640 * add to busy list of queues for service, trying to be fair in ordering
641 * the pending list according to last request service
642 */
643 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
644 {
645 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
646 BUG_ON(cfq_cfqq_on_rr(cfqq));
647 cfq_mark_cfqq_on_rr(cfqq);
648 cfqd->busy_queues++;
649
650 cfq_resort_rr_list(cfqd, cfqq);
651 }
652
653 /*
654 * Called when the cfqq no longer has requests pending, remove it from
655 * the service tree.
656 */
657 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
658 {
659 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
660 BUG_ON(!cfq_cfqq_on_rr(cfqq));
661 cfq_clear_cfqq_on_rr(cfqq);
662
663 if (!RB_EMPTY_NODE(&cfqq->rb_node))
664 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
665 if (cfqq->p_root) {
666 rb_erase(&cfqq->p_node, cfqq->p_root);
667 cfqq->p_root = NULL;
668 }
669
670 BUG_ON(!cfqd->busy_queues);
671 cfqd->busy_queues--;
672 }
673
674 /*
675 * rb tree support functions
676 */
677 static void cfq_del_rq_rb(struct request *rq)
678 {
679 struct cfq_queue *cfqq = RQ_CFQQ(rq);
680 struct cfq_data *cfqd = cfqq->cfqd;
681 const int sync = rq_is_sync(rq);
682
683 BUG_ON(!cfqq->queued[sync]);
684 cfqq->queued[sync]--;
685
686 elv_rb_del(&cfqq->sort_list, rq);
687
688 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
689 cfq_del_cfqq_rr(cfqd, cfqq);
690 }
691
692 static void cfq_add_rq_rb(struct request *rq)
693 {
694 struct cfq_queue *cfqq = RQ_CFQQ(rq);
695 struct cfq_data *cfqd = cfqq->cfqd;
696 struct request *__alias, *prev;
697
698 cfqq->queued[rq_is_sync(rq)]++;
699
700 /*
701 * looks a little odd, but the first insert might return an alias.
702 * if that happens, put the alias on the dispatch list
703 */
704 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
705 cfq_dispatch_insert(cfqd->queue, __alias);
706
707 if (!cfq_cfqq_on_rr(cfqq))
708 cfq_add_cfqq_rr(cfqd, cfqq);
709
710 /*
711 * check if this request is a better next-serve candidate
712 */
713 prev = cfqq->next_rq;
714 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
715
716 /*
717 * adjust priority tree position, if ->next_rq changes
718 */
719 if (prev != cfqq->next_rq)
720 cfq_prio_tree_add(cfqd, cfqq);
721
722 BUG_ON(!cfqq->next_rq);
723 }
724
725 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
726 {
727 elv_rb_del(&cfqq->sort_list, rq);
728 cfqq->queued[rq_is_sync(rq)]--;
729 cfq_add_rq_rb(rq);
730 }
731
732 static struct request *
733 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
734 {
735 struct task_struct *tsk = current;
736 struct cfq_io_context *cic;
737 struct cfq_queue *cfqq;
738
739 cic = cfq_cic_lookup(cfqd, tsk->io_context);
740 if (!cic)
741 return NULL;
742
743 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
744 if (cfqq) {
745 sector_t sector = bio->bi_sector + bio_sectors(bio);
746
747 return elv_rb_find(&cfqq->sort_list, sector);
748 }
749
750 return NULL;
751 }
752
753 static void cfq_activate_request(struct request_queue *q, struct request *rq)
754 {
755 struct cfq_data *cfqd = q->elevator->elevator_data;
756
757 cfqd->rq_in_driver[rq_is_sync(rq)]++;
758 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
759 rq_in_driver(cfqd));
760
761 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
762 }
763
764 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
765 {
766 struct cfq_data *cfqd = q->elevator->elevator_data;
767 const int sync = rq_is_sync(rq);
768
769 WARN_ON(!cfqd->rq_in_driver[sync]);
770 cfqd->rq_in_driver[sync]--;
771 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
772 rq_in_driver(cfqd));
773 }
774
775 static void cfq_remove_request(struct request *rq)
776 {
777 struct cfq_queue *cfqq = RQ_CFQQ(rq);
778
779 if (cfqq->next_rq == rq)
780 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
781
782 list_del_init(&rq->queuelist);
783 cfq_del_rq_rb(rq);
784
785 cfqq->cfqd->rq_queued--;
786 if (rq_is_meta(rq)) {
787 WARN_ON(!cfqq->meta_pending);
788 cfqq->meta_pending--;
789 }
790 }
791
792 static int cfq_merge(struct request_queue *q, struct request **req,
793 struct bio *bio)
794 {
795 struct cfq_data *cfqd = q->elevator->elevator_data;
796 struct request *__rq;
797
798 __rq = cfq_find_rq_fmerge(cfqd, bio);
799 if (__rq && elv_rq_merge_ok(__rq, bio)) {
800 *req = __rq;
801 return ELEVATOR_FRONT_MERGE;
802 }
803
804 return ELEVATOR_NO_MERGE;
805 }
806
807 static void cfq_merged_request(struct request_queue *q, struct request *req,
808 int type)
809 {
810 if (type == ELEVATOR_FRONT_MERGE) {
811 struct cfq_queue *cfqq = RQ_CFQQ(req);
812
813 cfq_reposition_rq_rb(cfqq, req);
814 }
815 }
816
817 static void
818 cfq_merged_requests(struct request_queue *q, struct request *rq,
819 struct request *next)
820 {
821 /*
822 * reposition in fifo if next is older than rq
823 */
824 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
825 time_before(next->start_time, rq->start_time))
826 list_move(&rq->queuelist, &next->queuelist);
827
828 cfq_remove_request(next);
829 }
830
831 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
832 struct bio *bio)
833 {
834 struct cfq_data *cfqd = q->elevator->elevator_data;
835 struct cfq_io_context *cic;
836 struct cfq_queue *cfqq;
837
838 /*
839 * Disallow merge of a sync bio into an async request.
840 */
841 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
842 return 0;
843
844 /*
845 * Lookup the cfqq that this bio will be queued with. Allow
846 * merge only if rq is queued there.
847 */
848 cic = cfq_cic_lookup(cfqd, current->io_context);
849 if (!cic)
850 return 0;
851
852 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
853 if (cfqq == RQ_CFQQ(rq))
854 return 1;
855
856 return 0;
857 }
858
859 static void __cfq_set_active_queue(struct cfq_data *cfqd,
860 struct cfq_queue *cfqq)
861 {
862 if (cfqq) {
863 cfq_log_cfqq(cfqd, cfqq, "set_active");
864 cfqq->slice_end = 0;
865 cfqq->slice_dispatch = 0;
866
867 cfq_clear_cfqq_wait_request(cfqq);
868 cfq_clear_cfqq_must_dispatch(cfqq);
869 cfq_clear_cfqq_must_alloc_slice(cfqq);
870 cfq_clear_cfqq_fifo_expire(cfqq);
871 cfq_mark_cfqq_slice_new(cfqq);
872
873 del_timer(&cfqd->idle_slice_timer);
874 }
875
876 cfqd->active_queue = cfqq;
877 }
878
879 /*
880 * current cfqq expired its slice (or was too idle), select new one
881 */
882 static void
883 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
884 int timed_out)
885 {
886 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
887
888 if (cfq_cfqq_wait_request(cfqq))
889 del_timer(&cfqd->idle_slice_timer);
890
891 cfq_clear_cfqq_wait_request(cfqq);
892
893 /*
894 * store what was left of this slice, if the queue idled/timed out
895 */
896 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
897 cfqq->slice_resid = cfqq->slice_end - jiffies;
898 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
899 }
900
901 cfq_resort_rr_list(cfqd, cfqq);
902
903 if (cfqq == cfqd->active_queue)
904 cfqd->active_queue = NULL;
905
906 if (cfqd->active_cic) {
907 put_io_context(cfqd->active_cic->ioc);
908 cfqd->active_cic = NULL;
909 }
910 }
911
912 static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
913 {
914 struct cfq_queue *cfqq = cfqd->active_queue;
915
916 if (cfqq)
917 __cfq_slice_expired(cfqd, cfqq, timed_out);
918 }
919
920 /*
921 * Get next queue for service. Unless we have a queue preemption,
922 * we'll simply select the first cfqq in the service tree.
923 */
924 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
925 {
926 if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
927 return NULL;
928
929 return cfq_rb_first(&cfqd->service_tree);
930 }
931
932 /*
933 * Get and set a new active queue for service.
934 */
935 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
936 struct cfq_queue *cfqq)
937 {
938 if (!cfqq) {
939 cfqq = cfq_get_next_queue(cfqd);
940 if (cfqq)
941 cfq_clear_cfqq_coop(cfqq);
942 }
943
944 __cfq_set_active_queue(cfqd, cfqq);
945 return cfqq;
946 }
947
948 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
949 struct request *rq)
950 {
951 if (blk_rq_pos(rq) >= cfqd->last_position)
952 return blk_rq_pos(rq) - cfqd->last_position;
953 else
954 return cfqd->last_position - blk_rq_pos(rq);
955 }
956
957 #define CIC_SEEK_THR 8 * 1024
958 #define CIC_SEEKY(cic) ((cic)->seek_mean > CIC_SEEK_THR)
959
960 static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
961 {
962 struct cfq_io_context *cic = cfqd->active_cic;
963 sector_t sdist = cic->seek_mean;
964
965 if (!sample_valid(cic->seek_samples))
966 sdist = CIC_SEEK_THR;
967
968 return cfq_dist_from_last(cfqd, rq) <= sdist;
969 }
970
971 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
972 struct cfq_queue *cur_cfqq)
973 {
974 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
975 struct rb_node *parent, *node;
976 struct cfq_queue *__cfqq;
977 sector_t sector = cfqd->last_position;
978
979 if (RB_EMPTY_ROOT(root))
980 return NULL;
981
982 /*
983 * First, if we find a request starting at the end of the last
984 * request, choose it.
985 */
986 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
987 if (__cfqq)
988 return __cfqq;
989
990 /*
991 * If the exact sector wasn't found, the parent of the NULL leaf
992 * will contain the closest sector.
993 */
994 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
995 if (cfq_rq_close(cfqd, __cfqq->next_rq))
996 return __cfqq;
997
998 if (blk_rq_pos(__cfqq->next_rq) < sector)
999 node = rb_next(&__cfqq->p_node);
1000 else
1001 node = rb_prev(&__cfqq->p_node);
1002 if (!node)
1003 return NULL;
1004
1005 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1006 if (cfq_rq_close(cfqd, __cfqq->next_rq))
1007 return __cfqq;
1008
1009 return NULL;
1010 }
1011
1012 /*
1013 * cfqd - obvious
1014 * cur_cfqq - passed in so that we don't decide that the current queue is
1015 * closely cooperating with itself.
1016 *
1017 * So, basically we're assuming that that cur_cfqq has dispatched at least
1018 * one request, and that cfqd->last_position reflects a position on the disk
1019 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1020 * assumption.
1021 */
1022 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1023 struct cfq_queue *cur_cfqq,
1024 int probe)
1025 {
1026 struct cfq_queue *cfqq;
1027
1028 /*
1029 * A valid cfq_io_context is necessary to compare requests against
1030 * the seek_mean of the current cfqq.
1031 */
1032 if (!cfqd->active_cic)
1033 return NULL;
1034
1035 /*
1036 * We should notice if some of the queues are cooperating, eg
1037 * working closely on the same area of the disk. In that case,
1038 * we can group them together and don't waste time idling.
1039 */
1040 cfqq = cfqq_close(cfqd, cur_cfqq);
1041 if (!cfqq)
1042 return NULL;
1043
1044 if (cfq_cfqq_coop(cfqq))
1045 return NULL;
1046
1047 if (!probe)
1048 cfq_mark_cfqq_coop(cfqq);
1049 return cfqq;
1050 }
1051
1052 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1053 {
1054 struct cfq_queue *cfqq = cfqd->active_queue;
1055 struct cfq_io_context *cic;
1056 unsigned long sl;
1057
1058 /*
1059 * SSD device without seek penalty, disable idling. But only do so
1060 * for devices that support queuing, otherwise we still have a problem
1061 * with sync vs async workloads.
1062 */
1063 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1064 return;
1065
1066 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1067 WARN_ON(cfq_cfqq_slice_new(cfqq));
1068
1069 /*
1070 * idle is disabled, either manually or by past process history
1071 */
1072 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
1073 return;
1074
1075 /*
1076 * still requests with the driver, don't idle
1077 */
1078 if (rq_in_driver(cfqd))
1079 return;
1080
1081 /*
1082 * task has exited, don't wait
1083 */
1084 cic = cfqd->active_cic;
1085 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1086 return;
1087
1088 cfq_mark_cfqq_wait_request(cfqq);
1089
1090 /*
1091 * we don't want to idle for seeks, but we do want to allow
1092 * fair distribution of slice time for a process doing back-to-back
1093 * seeks. so allow a little bit of time for him to submit a new rq
1094 */
1095 sl = cfqd->cfq_slice_idle;
1096 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
1097 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
1098
1099 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1100 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1101 }
1102
1103 /*
1104 * Move request from internal lists to the request queue dispatch list.
1105 */
1106 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1107 {
1108 struct cfq_data *cfqd = q->elevator->elevator_data;
1109 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1110
1111 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1112
1113 cfq_remove_request(rq);
1114 cfqq->dispatched++;
1115 elv_dispatch_sort(q, rq);
1116
1117 if (cfq_cfqq_sync(cfqq))
1118 cfqd->sync_flight++;
1119 }
1120
1121 /*
1122 * return expired entry, or NULL to just start from scratch in rbtree
1123 */
1124 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1125 {
1126 struct cfq_data *cfqd = cfqq->cfqd;
1127 struct request *rq;
1128 int fifo;
1129
1130 if (cfq_cfqq_fifo_expire(cfqq))
1131 return NULL;
1132
1133 cfq_mark_cfqq_fifo_expire(cfqq);
1134
1135 if (list_empty(&cfqq->fifo))
1136 return NULL;
1137
1138 fifo = cfq_cfqq_sync(cfqq);
1139 rq = rq_entry_fifo(cfqq->fifo.next);
1140
1141 if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
1142 rq = NULL;
1143
1144 cfq_log_cfqq(cfqd, cfqq, "fifo=%p", rq);
1145 return rq;
1146 }
1147
1148 static inline int
1149 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1150 {
1151 const int base_rq = cfqd->cfq_slice_async_rq;
1152
1153 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1154
1155 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1156 }
1157
1158 /*
1159 * Select a queue for service. If we have a current active queue,
1160 * check whether to continue servicing it, or retrieve and set a new one.
1161 */
1162 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1163 {
1164 struct cfq_queue *cfqq, *new_cfqq = NULL;
1165
1166 cfqq = cfqd->active_queue;
1167 if (!cfqq)
1168 goto new_queue;
1169
1170 /*
1171 * The active queue has run out of time, expire it and select new.
1172 */
1173 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
1174 goto expire;
1175
1176 /*
1177 * The active queue has requests and isn't expired, allow it to
1178 * dispatch.
1179 */
1180 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1181 goto keep_queue;
1182
1183 /*
1184 * If another queue has a request waiting within our mean seek
1185 * distance, let it run. The expire code will check for close
1186 * cooperators and put the close queue at the front of the service
1187 * tree.
1188 */
1189 new_cfqq = cfq_close_cooperator(cfqd, cfqq, 0);
1190 if (new_cfqq)
1191 goto expire;
1192
1193 /*
1194 * No requests pending. If the active queue still has requests in
1195 * flight or is idling for a new request, allow either of these
1196 * conditions to happen (or time out) before selecting a new queue.
1197 */
1198 if (timer_pending(&cfqd->idle_slice_timer) ||
1199 (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
1200 cfqq = NULL;
1201 goto keep_queue;
1202 }
1203
1204 expire:
1205 cfq_slice_expired(cfqd, 0);
1206 new_queue:
1207 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1208 keep_queue:
1209 return cfqq;
1210 }
1211
1212 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1213 {
1214 int dispatched = 0;
1215
1216 while (cfqq->next_rq) {
1217 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1218 dispatched++;
1219 }
1220
1221 BUG_ON(!list_empty(&cfqq->fifo));
1222 return dispatched;
1223 }
1224
1225 /*
1226 * Drain our current requests. Used for barriers and when switching
1227 * io schedulers on-the-fly.
1228 */
1229 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1230 {
1231 struct cfq_queue *cfqq;
1232 int dispatched = 0;
1233
1234 while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
1235 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1236
1237 cfq_slice_expired(cfqd, 0);
1238
1239 BUG_ON(cfqd->busy_queues);
1240
1241 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1242 return dispatched;
1243 }
1244
1245 /*
1246 * Dispatch a request from cfqq, moving them to the request queue
1247 * dispatch list.
1248 */
1249 static void cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1250 {
1251 struct request *rq;
1252
1253 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1254
1255 /*
1256 * follow expired path, else get first next available
1257 */
1258 rq = cfq_check_fifo(cfqq);
1259 if (!rq)
1260 rq = cfqq->next_rq;
1261
1262 /*
1263 * insert request into driver dispatch list
1264 */
1265 cfq_dispatch_insert(cfqd->queue, rq);
1266
1267 if (!cfqd->active_cic) {
1268 struct cfq_io_context *cic = RQ_CIC(rq);
1269
1270 atomic_long_inc(&cic->ioc->refcount);
1271 cfqd->active_cic = cic;
1272 }
1273 }
1274
1275 /*
1276 * Find the cfqq that we need to service and move a request from that to the
1277 * dispatch list
1278 */
1279 static int cfq_dispatch_requests(struct request_queue *q, int force)
1280 {
1281 struct cfq_data *cfqd = q->elevator->elevator_data;
1282 struct cfq_queue *cfqq;
1283 unsigned int max_dispatch;
1284
1285 if (!cfqd->busy_queues)
1286 return 0;
1287
1288 if (unlikely(force))
1289 return cfq_forced_dispatch(cfqd);
1290
1291 cfqq = cfq_select_queue(cfqd);
1292 if (!cfqq)
1293 return 0;
1294
1295 /*
1296 * Drain async requests before we start sync IO
1297 */
1298 if (cfq_cfqq_idle_window(cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1299 return 0;
1300
1301 /*
1302 * If this is an async queue and we have sync IO in flight, let it wait
1303 */
1304 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1305 return 0;
1306
1307 max_dispatch = cfqd->cfq_quantum;
1308 if (cfq_class_idle(cfqq))
1309 max_dispatch = 1;
1310
1311 /*
1312 * Does this cfqq already have too much IO in flight?
1313 */
1314 if (cfqq->dispatched >= max_dispatch) {
1315 /*
1316 * idle queue must always only have a single IO in flight
1317 */
1318 if (cfq_class_idle(cfqq))
1319 return 0;
1320
1321 /*
1322 * We have other queues, don't allow more IO from this one
1323 */
1324 if (cfqd->busy_queues > 1)
1325 return 0;
1326
1327 /*
1328 * we are the only queue, allow up to 4 times of 'quantum'
1329 */
1330 if (cfqq->dispatched >= 4 * max_dispatch)
1331 return 0;
1332 }
1333
1334 /*
1335 * Dispatch a request from this cfqq
1336 */
1337 cfq_dispatch_request(cfqd, cfqq);
1338 cfqq->slice_dispatch++;
1339 cfq_clear_cfqq_must_dispatch(cfqq);
1340
1341 /*
1342 * expire an async queue immediately if it has used up its slice. idle
1343 * queue always expire after 1 dispatch round.
1344 */
1345 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1346 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1347 cfq_class_idle(cfqq))) {
1348 cfqq->slice_end = jiffies + 1;
1349 cfq_slice_expired(cfqd, 0);
1350 }
1351
1352 cfq_log(cfqd, "dispatched a request");
1353 return 1;
1354 }
1355
1356 /*
1357 * task holds one reference to the queue, dropped when task exits. each rq
1358 * in-flight on this queue also holds a reference, dropped when rq is freed.
1359 *
1360 * queue lock must be held here.
1361 */
1362 static void cfq_put_queue(struct cfq_queue *cfqq)
1363 {
1364 struct cfq_data *cfqd = cfqq->cfqd;
1365
1366 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1367
1368 if (!atomic_dec_and_test(&cfqq->ref))
1369 return;
1370
1371 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1372 BUG_ON(rb_first(&cfqq->sort_list));
1373 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1374 BUG_ON(cfq_cfqq_on_rr(cfqq));
1375
1376 if (unlikely(cfqd->active_queue == cfqq)) {
1377 __cfq_slice_expired(cfqd, cfqq, 0);
1378 cfq_schedule_dispatch(cfqd);
1379 }
1380
1381 kmem_cache_free(cfq_pool, cfqq);
1382 }
1383
1384 /*
1385 * Must always be called with the rcu_read_lock() held
1386 */
1387 static void
1388 __call_for_each_cic(struct io_context *ioc,
1389 void (*func)(struct io_context *, struct cfq_io_context *))
1390 {
1391 struct cfq_io_context *cic;
1392 struct hlist_node *n;
1393
1394 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1395 func(ioc, cic);
1396 }
1397
1398 /*
1399 * Call func for each cic attached to this ioc.
1400 */
1401 static void
1402 call_for_each_cic(struct io_context *ioc,
1403 void (*func)(struct io_context *, struct cfq_io_context *))
1404 {
1405 rcu_read_lock();
1406 __call_for_each_cic(ioc, func);
1407 rcu_read_unlock();
1408 }
1409
1410 static void cfq_cic_free_rcu(struct rcu_head *head)
1411 {
1412 struct cfq_io_context *cic;
1413
1414 cic = container_of(head, struct cfq_io_context, rcu_head);
1415
1416 kmem_cache_free(cfq_ioc_pool, cic);
1417 elv_ioc_count_dec(ioc_count);
1418
1419 if (ioc_gone) {
1420 /*
1421 * CFQ scheduler is exiting, grab exit lock and check
1422 * the pending io context count. If it hits zero,
1423 * complete ioc_gone and set it back to NULL
1424 */
1425 spin_lock(&ioc_gone_lock);
1426 if (ioc_gone && !elv_ioc_count_read(ioc_count)) {
1427 complete(ioc_gone);
1428 ioc_gone = NULL;
1429 }
1430 spin_unlock(&ioc_gone_lock);
1431 }
1432 }
1433
1434 static void cfq_cic_free(struct cfq_io_context *cic)
1435 {
1436 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1437 }
1438
1439 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1440 {
1441 unsigned long flags;
1442
1443 BUG_ON(!cic->dead_key);
1444
1445 spin_lock_irqsave(&ioc->lock, flags);
1446 radix_tree_delete(&ioc->radix_root, cic->dead_key);
1447 hlist_del_rcu(&cic->cic_list);
1448 spin_unlock_irqrestore(&ioc->lock, flags);
1449
1450 cfq_cic_free(cic);
1451 }
1452
1453 /*
1454 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1455 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1456 * and ->trim() which is called with the task lock held
1457 */
1458 static void cfq_free_io_context(struct io_context *ioc)
1459 {
1460 /*
1461 * ioc->refcount is zero here, or we are called from elv_unregister(),
1462 * so no more cic's are allowed to be linked into this ioc. So it
1463 * should be ok to iterate over the known list, we will see all cic's
1464 * since no new ones are added.
1465 */
1466 __call_for_each_cic(ioc, cic_free_func);
1467 }
1468
1469 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1470 {
1471 if (unlikely(cfqq == cfqd->active_queue)) {
1472 __cfq_slice_expired(cfqd, cfqq, 0);
1473 cfq_schedule_dispatch(cfqd);
1474 }
1475
1476 cfq_put_queue(cfqq);
1477 }
1478
1479 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1480 struct cfq_io_context *cic)
1481 {
1482 struct io_context *ioc = cic->ioc;
1483
1484 list_del_init(&cic->queue_list);
1485
1486 /*
1487 * Make sure key == NULL is seen for dead queues
1488 */
1489 smp_wmb();
1490 cic->dead_key = (unsigned long) cic->key;
1491 cic->key = NULL;
1492
1493 if (ioc->ioc_data == cic)
1494 rcu_assign_pointer(ioc->ioc_data, NULL);
1495
1496 if (cic->cfqq[BLK_RW_ASYNC]) {
1497 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1498 cic->cfqq[BLK_RW_ASYNC] = NULL;
1499 }
1500
1501 if (cic->cfqq[BLK_RW_SYNC]) {
1502 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1503 cic->cfqq[BLK_RW_SYNC] = NULL;
1504 }
1505 }
1506
1507 static void cfq_exit_single_io_context(struct io_context *ioc,
1508 struct cfq_io_context *cic)
1509 {
1510 struct cfq_data *cfqd = cic->key;
1511
1512 if (cfqd) {
1513 struct request_queue *q = cfqd->queue;
1514 unsigned long flags;
1515
1516 spin_lock_irqsave(q->queue_lock, flags);
1517
1518 /*
1519 * Ensure we get a fresh copy of the ->key to prevent
1520 * race between exiting task and queue
1521 */
1522 smp_read_barrier_depends();
1523 if (cic->key)
1524 __cfq_exit_single_io_context(cfqd, cic);
1525
1526 spin_unlock_irqrestore(q->queue_lock, flags);
1527 }
1528 }
1529
1530 /*
1531 * The process that ioc belongs to has exited, we need to clean up
1532 * and put the internal structures we have that belongs to that process.
1533 */
1534 static void cfq_exit_io_context(struct io_context *ioc)
1535 {
1536 call_for_each_cic(ioc, cfq_exit_single_io_context);
1537 }
1538
1539 static struct cfq_io_context *
1540 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1541 {
1542 struct cfq_io_context *cic;
1543
1544 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1545 cfqd->queue->node);
1546 if (cic) {
1547 cic->last_end_request = jiffies;
1548 INIT_LIST_HEAD(&cic->queue_list);
1549 INIT_HLIST_NODE(&cic->cic_list);
1550 cic->dtor = cfq_free_io_context;
1551 cic->exit = cfq_exit_io_context;
1552 elv_ioc_count_inc(ioc_count);
1553 }
1554
1555 return cic;
1556 }
1557
1558 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1559 {
1560 struct task_struct *tsk = current;
1561 int ioprio_class;
1562
1563 if (!cfq_cfqq_prio_changed(cfqq))
1564 return;
1565
1566 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1567 switch (ioprio_class) {
1568 default:
1569 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1570 case IOPRIO_CLASS_NONE:
1571 /*
1572 * no prio set, inherit CPU scheduling settings
1573 */
1574 cfqq->ioprio = task_nice_ioprio(tsk);
1575 cfqq->ioprio_class = task_nice_ioclass(tsk);
1576 break;
1577 case IOPRIO_CLASS_RT:
1578 cfqq->ioprio = task_ioprio(ioc);
1579 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1580 break;
1581 case IOPRIO_CLASS_BE:
1582 cfqq->ioprio = task_ioprio(ioc);
1583 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1584 break;
1585 case IOPRIO_CLASS_IDLE:
1586 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1587 cfqq->ioprio = 7;
1588 cfq_clear_cfqq_idle_window(cfqq);
1589 break;
1590 }
1591
1592 /*
1593 * keep track of original prio settings in case we have to temporarily
1594 * elevate the priority of this queue
1595 */
1596 cfqq->org_ioprio = cfqq->ioprio;
1597 cfqq->org_ioprio_class = cfqq->ioprio_class;
1598 cfq_clear_cfqq_prio_changed(cfqq);
1599 }
1600
1601 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1602 {
1603 struct cfq_data *cfqd = cic->key;
1604 struct cfq_queue *cfqq;
1605 unsigned long flags;
1606
1607 if (unlikely(!cfqd))
1608 return;
1609
1610 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1611
1612 cfqq = cic->cfqq[BLK_RW_ASYNC];
1613 if (cfqq) {
1614 struct cfq_queue *new_cfqq;
1615 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
1616 GFP_ATOMIC);
1617 if (new_cfqq) {
1618 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
1619 cfq_put_queue(cfqq);
1620 }
1621 }
1622
1623 cfqq = cic->cfqq[BLK_RW_SYNC];
1624 if (cfqq)
1625 cfq_mark_cfqq_prio_changed(cfqq);
1626
1627 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1628 }
1629
1630 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1631 {
1632 call_for_each_cic(ioc, changed_ioprio);
1633 ioc->ioprio_changed = 0;
1634 }
1635
1636 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1637 pid_t pid, int is_sync)
1638 {
1639 RB_CLEAR_NODE(&cfqq->rb_node);
1640 RB_CLEAR_NODE(&cfqq->p_node);
1641 INIT_LIST_HEAD(&cfqq->fifo);
1642
1643 atomic_set(&cfqq->ref, 0);
1644 cfqq->cfqd = cfqd;
1645
1646 cfq_mark_cfqq_prio_changed(cfqq);
1647
1648 if (is_sync) {
1649 if (!cfq_class_idle(cfqq))
1650 cfq_mark_cfqq_idle_window(cfqq);
1651 cfq_mark_cfqq_sync(cfqq);
1652 }
1653 cfqq->pid = pid;
1654 }
1655
1656 static struct cfq_queue *
1657 cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
1658 struct io_context *ioc, gfp_t gfp_mask)
1659 {
1660 struct cfq_queue *cfqq, *new_cfqq = NULL;
1661 struct cfq_io_context *cic;
1662
1663 retry:
1664 cic = cfq_cic_lookup(cfqd, ioc);
1665 /* cic always exists here */
1666 cfqq = cic_to_cfqq(cic, is_sync);
1667
1668 /*
1669 * Always try a new alloc if we fell back to the OOM cfqq
1670 * originally, since it should just be a temporary situation.
1671 */
1672 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
1673 cfqq = NULL;
1674 if (new_cfqq) {
1675 cfqq = new_cfqq;
1676 new_cfqq = NULL;
1677 } else if (gfp_mask & __GFP_WAIT) {
1678 spin_unlock_irq(cfqd->queue->queue_lock);
1679 new_cfqq = kmem_cache_alloc_node(cfq_pool,
1680 gfp_mask | __GFP_ZERO,
1681 cfqd->queue->node);
1682 spin_lock_irq(cfqd->queue->queue_lock);
1683 if (new_cfqq)
1684 goto retry;
1685 } else {
1686 cfqq = kmem_cache_alloc_node(cfq_pool,
1687 gfp_mask | __GFP_ZERO,
1688 cfqd->queue->node);
1689 }
1690
1691 if (cfqq) {
1692 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
1693 cfq_init_prio_data(cfqq, ioc);
1694 cfq_log_cfqq(cfqd, cfqq, "alloced");
1695 } else
1696 cfqq = &cfqd->oom_cfqq;
1697 }
1698
1699 if (new_cfqq)
1700 kmem_cache_free(cfq_pool, new_cfqq);
1701
1702 return cfqq;
1703 }
1704
1705 static struct cfq_queue **
1706 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1707 {
1708 switch (ioprio_class) {
1709 case IOPRIO_CLASS_RT:
1710 return &cfqd->async_cfqq[0][ioprio];
1711 case IOPRIO_CLASS_BE:
1712 return &cfqd->async_cfqq[1][ioprio];
1713 case IOPRIO_CLASS_IDLE:
1714 return &cfqd->async_idle_cfqq;
1715 default:
1716 BUG();
1717 }
1718 }
1719
1720 static struct cfq_queue *
1721 cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
1722 gfp_t gfp_mask)
1723 {
1724 const int ioprio = task_ioprio(ioc);
1725 const int ioprio_class = task_ioprio_class(ioc);
1726 struct cfq_queue **async_cfqq = NULL;
1727 struct cfq_queue *cfqq = NULL;
1728
1729 if (!is_sync) {
1730 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1731 cfqq = *async_cfqq;
1732 }
1733
1734 if (!cfqq)
1735 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1736
1737 /*
1738 * pin the queue now that it's allocated, scheduler exit will prune it
1739 */
1740 if (!is_sync && !(*async_cfqq)) {
1741 atomic_inc(&cfqq->ref);
1742 *async_cfqq = cfqq;
1743 }
1744
1745 atomic_inc(&cfqq->ref);
1746 return cfqq;
1747 }
1748
1749 /*
1750 * We drop cfq io contexts lazily, so we may find a dead one.
1751 */
1752 static void
1753 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1754 struct cfq_io_context *cic)
1755 {
1756 unsigned long flags;
1757
1758 WARN_ON(!list_empty(&cic->queue_list));
1759
1760 spin_lock_irqsave(&ioc->lock, flags);
1761
1762 BUG_ON(ioc->ioc_data == cic);
1763
1764 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1765 hlist_del_rcu(&cic->cic_list);
1766 spin_unlock_irqrestore(&ioc->lock, flags);
1767
1768 cfq_cic_free(cic);
1769 }
1770
1771 static struct cfq_io_context *
1772 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1773 {
1774 struct cfq_io_context *cic;
1775 unsigned long flags;
1776 void *k;
1777
1778 if (unlikely(!ioc))
1779 return NULL;
1780
1781 rcu_read_lock();
1782
1783 /*
1784 * we maintain a last-hit cache, to avoid browsing over the tree
1785 */
1786 cic = rcu_dereference(ioc->ioc_data);
1787 if (cic && cic->key == cfqd) {
1788 rcu_read_unlock();
1789 return cic;
1790 }
1791
1792 do {
1793 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1794 rcu_read_unlock();
1795 if (!cic)
1796 break;
1797 /* ->key must be copied to avoid race with cfq_exit_queue() */
1798 k = cic->key;
1799 if (unlikely(!k)) {
1800 cfq_drop_dead_cic(cfqd, ioc, cic);
1801 rcu_read_lock();
1802 continue;
1803 }
1804
1805 spin_lock_irqsave(&ioc->lock, flags);
1806 rcu_assign_pointer(ioc->ioc_data, cic);
1807 spin_unlock_irqrestore(&ioc->lock, flags);
1808 break;
1809 } while (1);
1810
1811 return cic;
1812 }
1813
1814 /*
1815 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1816 * the process specific cfq io context when entered from the block layer.
1817 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1818 */
1819 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1820 struct cfq_io_context *cic, gfp_t gfp_mask)
1821 {
1822 unsigned long flags;
1823 int ret;
1824
1825 ret = radix_tree_preload(gfp_mask);
1826 if (!ret) {
1827 cic->ioc = ioc;
1828 cic->key = cfqd;
1829
1830 spin_lock_irqsave(&ioc->lock, flags);
1831 ret = radix_tree_insert(&ioc->radix_root,
1832 (unsigned long) cfqd, cic);
1833 if (!ret)
1834 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
1835 spin_unlock_irqrestore(&ioc->lock, flags);
1836
1837 radix_tree_preload_end();
1838
1839 if (!ret) {
1840 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1841 list_add(&cic->queue_list, &cfqd->cic_list);
1842 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1843 }
1844 }
1845
1846 if (ret)
1847 printk(KERN_ERR "cfq: cic link failed!\n");
1848
1849 return ret;
1850 }
1851
1852 /*
1853 * Setup general io context and cfq io context. There can be several cfq
1854 * io contexts per general io context, if this process is doing io to more
1855 * than one device managed by cfq.
1856 */
1857 static struct cfq_io_context *
1858 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1859 {
1860 struct io_context *ioc = NULL;
1861 struct cfq_io_context *cic;
1862
1863 might_sleep_if(gfp_mask & __GFP_WAIT);
1864
1865 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1866 if (!ioc)
1867 return NULL;
1868
1869 cic = cfq_cic_lookup(cfqd, ioc);
1870 if (cic)
1871 goto out;
1872
1873 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1874 if (cic == NULL)
1875 goto err;
1876
1877 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1878 goto err_free;
1879
1880 out:
1881 smp_read_barrier_depends();
1882 if (unlikely(ioc->ioprio_changed))
1883 cfq_ioc_set_ioprio(ioc);
1884
1885 return cic;
1886 err_free:
1887 cfq_cic_free(cic);
1888 err:
1889 put_io_context(ioc);
1890 return NULL;
1891 }
1892
1893 static void
1894 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1895 {
1896 unsigned long elapsed = jiffies - cic->last_end_request;
1897 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1898
1899 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1900 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1901 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1902 }
1903
1904 static void
1905 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1906 struct request *rq)
1907 {
1908 sector_t sdist;
1909 u64 total;
1910
1911 if (!cic->last_request_pos)
1912 sdist = 0;
1913 else if (cic->last_request_pos < blk_rq_pos(rq))
1914 sdist = blk_rq_pos(rq) - cic->last_request_pos;
1915 else
1916 sdist = cic->last_request_pos - blk_rq_pos(rq);
1917
1918 /*
1919 * Don't allow the seek distance to get too large from the
1920 * odd fragment, pagein, etc
1921 */
1922 if (cic->seek_samples <= 60) /* second&third seek */
1923 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1924 else
1925 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1926
1927 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1928 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1929 total = cic->seek_total + (cic->seek_samples/2);
1930 do_div(total, cic->seek_samples);
1931 cic->seek_mean = (sector_t)total;
1932 }
1933
1934 /*
1935 * Disable idle window if the process thinks too long or seeks so much that
1936 * it doesn't matter
1937 */
1938 static void
1939 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1940 struct cfq_io_context *cic)
1941 {
1942 int old_idle, enable_idle;
1943
1944 /*
1945 * Don't idle for async or idle io prio class
1946 */
1947 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1948 return;
1949
1950 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1951
1952 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
1953 (cfqd->hw_tag && CIC_SEEKY(cic)))
1954 enable_idle = 0;
1955 else if (sample_valid(cic->ttime_samples)) {
1956 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1957 enable_idle = 0;
1958 else
1959 enable_idle = 1;
1960 }
1961
1962 if (old_idle != enable_idle) {
1963 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
1964 if (enable_idle)
1965 cfq_mark_cfqq_idle_window(cfqq);
1966 else
1967 cfq_clear_cfqq_idle_window(cfqq);
1968 }
1969 }
1970
1971 /*
1972 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1973 * no or if we aren't sure, a 1 will cause a preempt.
1974 */
1975 static int
1976 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1977 struct request *rq)
1978 {
1979 struct cfq_queue *cfqq;
1980
1981 cfqq = cfqd->active_queue;
1982 if (!cfqq)
1983 return 0;
1984
1985 if (cfq_slice_used(cfqq))
1986 return 1;
1987
1988 if (cfq_class_idle(new_cfqq))
1989 return 0;
1990
1991 if (cfq_class_idle(cfqq))
1992 return 1;
1993
1994 /*
1995 * if the new request is sync, but the currently running queue is
1996 * not, let the sync request have priority.
1997 */
1998 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1999 return 1;
2000
2001 /*
2002 * So both queues are sync. Let the new request get disk time if
2003 * it's a metadata request and the current queue is doing regular IO.
2004 */
2005 if (rq_is_meta(rq) && !cfqq->meta_pending)
2006 return 1;
2007
2008 /*
2009 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2010 */
2011 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2012 return 1;
2013
2014 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2015 return 0;
2016
2017 /*
2018 * if this request is as-good as one we would expect from the
2019 * current cfqq, let it preempt
2020 */
2021 if (cfq_rq_close(cfqd, rq))
2022 return 1;
2023
2024 return 0;
2025 }
2026
2027 /*
2028 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2029 * let it have half of its nominal slice.
2030 */
2031 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2032 {
2033 cfq_log_cfqq(cfqd, cfqq, "preempt");
2034 cfq_slice_expired(cfqd, 1);
2035
2036 /*
2037 * Put the new queue at the front of the of the current list,
2038 * so we know that it will be selected next.
2039 */
2040 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2041
2042 cfq_service_tree_add(cfqd, cfqq, 1);
2043
2044 cfqq->slice_end = 0;
2045 cfq_mark_cfqq_slice_new(cfqq);
2046 }
2047
2048 /*
2049 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2050 * something we should do about it
2051 */
2052 static void
2053 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2054 struct request *rq)
2055 {
2056 struct cfq_io_context *cic = RQ_CIC(rq);
2057
2058 cfqd->rq_queued++;
2059 if (rq_is_meta(rq))
2060 cfqq->meta_pending++;
2061
2062 cfq_update_io_thinktime(cfqd, cic);
2063 cfq_update_io_seektime(cfqd, cic, rq);
2064 cfq_update_idle_window(cfqd, cfqq, cic);
2065
2066 cic->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2067
2068 if (cfqq == cfqd->active_queue) {
2069 /*
2070 * Remember that we saw a request from this process, but
2071 * don't start queuing just yet. Otherwise we risk seeing lots
2072 * of tiny requests, because we disrupt the normal plugging
2073 * and merging. If the request is already larger than a single
2074 * page, let it rip immediately. For that case we assume that
2075 * merging is already done. Ditto for a busy system that
2076 * has other work pending, don't risk delaying until the
2077 * idle timer unplug to continue working.
2078 */
2079 if (cfq_cfqq_wait_request(cfqq)) {
2080 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2081 cfqd->busy_queues > 1) {
2082 del_timer(&cfqd->idle_slice_timer);
2083 __blk_run_queue(cfqd->queue);
2084 }
2085 cfq_mark_cfqq_must_dispatch(cfqq);
2086 }
2087 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2088 /*
2089 * not the active queue - expire current slice if it is
2090 * idle and has expired it's mean thinktime or this new queue
2091 * has some old slice time left and is of higher priority or
2092 * this new queue is RT and the current one is BE
2093 */
2094 cfq_preempt_queue(cfqd, cfqq);
2095 __blk_run_queue(cfqd->queue);
2096 }
2097 }
2098
2099 static void cfq_insert_request(struct request_queue *q, struct request *rq)
2100 {
2101 struct cfq_data *cfqd = q->elevator->elevator_data;
2102 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2103
2104 cfq_log_cfqq(cfqd, cfqq, "insert_request");
2105 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
2106
2107 cfq_add_rq_rb(rq);
2108
2109 list_add_tail(&rq->queuelist, &cfqq->fifo);
2110
2111 cfq_rq_enqueued(cfqd, cfqq, rq);
2112 }
2113
2114 /*
2115 * Update hw_tag based on peak queue depth over 50 samples under
2116 * sufficient load.
2117 */
2118 static void cfq_update_hw_tag(struct cfq_data *cfqd)
2119 {
2120 if (rq_in_driver(cfqd) > cfqd->rq_in_driver_peak)
2121 cfqd->rq_in_driver_peak = rq_in_driver(cfqd);
2122
2123 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2124 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2125 return;
2126
2127 if (cfqd->hw_tag_samples++ < 50)
2128 return;
2129
2130 if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2131 cfqd->hw_tag = 1;
2132 else
2133 cfqd->hw_tag = 0;
2134
2135 cfqd->hw_tag_samples = 0;
2136 cfqd->rq_in_driver_peak = 0;
2137 }
2138
2139 static void cfq_completed_request(struct request_queue *q, struct request *rq)
2140 {
2141 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2142 struct cfq_data *cfqd = cfqq->cfqd;
2143 const int sync = rq_is_sync(rq);
2144 unsigned long now;
2145
2146 now = jiffies;
2147 cfq_log_cfqq(cfqd, cfqq, "complete");
2148
2149 cfq_update_hw_tag(cfqd);
2150
2151 WARN_ON(!cfqd->rq_in_driver[sync]);
2152 WARN_ON(!cfqq->dispatched);
2153 cfqd->rq_in_driver[sync]--;
2154 cfqq->dispatched--;
2155
2156 if (cfq_cfqq_sync(cfqq))
2157 cfqd->sync_flight--;
2158
2159 if (sync)
2160 RQ_CIC(rq)->last_end_request = now;
2161
2162 /*
2163 * If this is the active queue, check if it needs to be expired,
2164 * or if we want to idle in case it has no pending requests.
2165 */
2166 if (cfqd->active_queue == cfqq) {
2167 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2168
2169 if (cfq_cfqq_slice_new(cfqq)) {
2170 cfq_set_prio_slice(cfqd, cfqq);
2171 cfq_clear_cfqq_slice_new(cfqq);
2172 }
2173 /*
2174 * If there are no requests waiting in this queue, and
2175 * there are other queues ready to issue requests, AND
2176 * those other queues are issuing requests within our
2177 * mean seek distance, give them a chance to run instead
2178 * of idling.
2179 */
2180 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2181 cfq_slice_expired(cfqd, 1);
2182 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq, 1) &&
2183 sync && !rq_noidle(rq))
2184 cfq_arm_slice_timer(cfqd);
2185 }
2186
2187 if (!rq_in_driver(cfqd))
2188 cfq_schedule_dispatch(cfqd);
2189 }
2190
2191 /*
2192 * we temporarily boost lower priority queues if they are holding fs exclusive
2193 * resources. they are boosted to normal prio (CLASS_BE/4)
2194 */
2195 static void cfq_prio_boost(struct cfq_queue *cfqq)
2196 {
2197 if (has_fs_excl()) {
2198 /*
2199 * boost idle prio on transactions that would lock out other
2200 * users of the filesystem
2201 */
2202 if (cfq_class_idle(cfqq))
2203 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2204 if (cfqq->ioprio > IOPRIO_NORM)
2205 cfqq->ioprio = IOPRIO_NORM;
2206 } else {
2207 /*
2208 * check if we need to unboost the queue
2209 */
2210 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2211 cfqq->ioprio_class = cfqq->org_ioprio_class;
2212 if (cfqq->ioprio != cfqq->org_ioprio)
2213 cfqq->ioprio = cfqq->org_ioprio;
2214 }
2215 }
2216
2217 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2218 {
2219 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
2220 cfq_mark_cfqq_must_alloc_slice(cfqq);
2221 return ELV_MQUEUE_MUST;
2222 }
2223
2224 return ELV_MQUEUE_MAY;
2225 }
2226
2227 static int cfq_may_queue(struct request_queue *q, int rw)
2228 {
2229 struct cfq_data *cfqd = q->elevator->elevator_data;
2230 struct task_struct *tsk = current;
2231 struct cfq_io_context *cic;
2232 struct cfq_queue *cfqq;
2233
2234 /*
2235 * don't force setup of a queue from here, as a call to may_queue
2236 * does not necessarily imply that a request actually will be queued.
2237 * so just lookup a possibly existing queue, or return 'may queue'
2238 * if that fails
2239 */
2240 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2241 if (!cic)
2242 return ELV_MQUEUE_MAY;
2243
2244 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2245 if (cfqq) {
2246 cfq_init_prio_data(cfqq, cic->ioc);
2247 cfq_prio_boost(cfqq);
2248
2249 return __cfq_may_queue(cfqq);
2250 }
2251
2252 return ELV_MQUEUE_MAY;
2253 }
2254
2255 /*
2256 * queue lock held here
2257 */
2258 static void cfq_put_request(struct request *rq)
2259 {
2260 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2261
2262 if (cfqq) {
2263 const int rw = rq_data_dir(rq);
2264
2265 BUG_ON(!cfqq->allocated[rw]);
2266 cfqq->allocated[rw]--;
2267
2268 put_io_context(RQ_CIC(rq)->ioc);
2269
2270 rq->elevator_private = NULL;
2271 rq->elevator_private2 = NULL;
2272
2273 cfq_put_queue(cfqq);
2274 }
2275 }
2276
2277 /*
2278 * Allocate cfq data structures associated with this request.
2279 */
2280 static int
2281 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2282 {
2283 struct cfq_data *cfqd = q->elevator->elevator_data;
2284 struct cfq_io_context *cic;
2285 const int rw = rq_data_dir(rq);
2286 const int is_sync = rq_is_sync(rq);
2287 struct cfq_queue *cfqq;
2288 unsigned long flags;
2289
2290 might_sleep_if(gfp_mask & __GFP_WAIT);
2291
2292 cic = cfq_get_io_context(cfqd, gfp_mask);
2293
2294 spin_lock_irqsave(q->queue_lock, flags);
2295
2296 if (!cic)
2297 goto queue_fail;
2298
2299 cfqq = cic_to_cfqq(cic, is_sync);
2300 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2301 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2302 cic_set_cfqq(cic, cfqq, is_sync);
2303 }
2304
2305 cfqq->allocated[rw]++;
2306 atomic_inc(&cfqq->ref);
2307
2308 spin_unlock_irqrestore(q->queue_lock, flags);
2309
2310 rq->elevator_private = cic;
2311 rq->elevator_private2 = cfqq;
2312 return 0;
2313
2314 queue_fail:
2315 if (cic)
2316 put_io_context(cic->ioc);
2317
2318 cfq_schedule_dispatch(cfqd);
2319 spin_unlock_irqrestore(q->queue_lock, flags);
2320 cfq_log(cfqd, "set_request fail");
2321 return 1;
2322 }
2323
2324 static void cfq_kick_queue(struct work_struct *work)
2325 {
2326 struct cfq_data *cfqd =
2327 container_of(work, struct cfq_data, unplug_work);
2328 struct request_queue *q = cfqd->queue;
2329
2330 spin_lock_irq(q->queue_lock);
2331 __blk_run_queue(cfqd->queue);
2332 spin_unlock_irq(q->queue_lock);
2333 }
2334
2335 /*
2336 * Timer running if the active_queue is currently idling inside its time slice
2337 */
2338 static void cfq_idle_slice_timer(unsigned long data)
2339 {
2340 struct cfq_data *cfqd = (struct cfq_data *) data;
2341 struct cfq_queue *cfqq;
2342 unsigned long flags;
2343 int timed_out = 1;
2344
2345 cfq_log(cfqd, "idle timer fired");
2346
2347 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2348
2349 cfqq = cfqd->active_queue;
2350 if (cfqq) {
2351 timed_out = 0;
2352
2353 /*
2354 * We saw a request before the queue expired, let it through
2355 */
2356 if (cfq_cfqq_must_dispatch(cfqq))
2357 goto out_kick;
2358
2359 /*
2360 * expired
2361 */
2362 if (cfq_slice_used(cfqq))
2363 goto expire;
2364
2365 /*
2366 * only expire and reinvoke request handler, if there are
2367 * other queues with pending requests
2368 */
2369 if (!cfqd->busy_queues)
2370 goto out_cont;
2371
2372 /*
2373 * not expired and it has a request pending, let it dispatch
2374 */
2375 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2376 goto out_kick;
2377 }
2378 expire:
2379 cfq_slice_expired(cfqd, timed_out);
2380 out_kick:
2381 cfq_schedule_dispatch(cfqd);
2382 out_cont:
2383 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2384 }
2385
2386 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2387 {
2388 del_timer_sync(&cfqd->idle_slice_timer);
2389 cancel_work_sync(&cfqd->unplug_work);
2390 }
2391
2392 static void cfq_put_async_queues(struct cfq_data *cfqd)
2393 {
2394 int i;
2395
2396 for (i = 0; i < IOPRIO_BE_NR; i++) {
2397 if (cfqd->async_cfqq[0][i])
2398 cfq_put_queue(cfqd->async_cfqq[0][i]);
2399 if (cfqd->async_cfqq[1][i])
2400 cfq_put_queue(cfqd->async_cfqq[1][i]);
2401 }
2402
2403 if (cfqd->async_idle_cfqq)
2404 cfq_put_queue(cfqd->async_idle_cfqq);
2405 }
2406
2407 static void cfq_exit_queue(struct elevator_queue *e)
2408 {
2409 struct cfq_data *cfqd = e->elevator_data;
2410 struct request_queue *q = cfqd->queue;
2411
2412 cfq_shutdown_timer_wq(cfqd);
2413
2414 spin_lock_irq(q->queue_lock);
2415
2416 if (cfqd->active_queue)
2417 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2418
2419 while (!list_empty(&cfqd->cic_list)) {
2420 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2421 struct cfq_io_context,
2422 queue_list);
2423
2424 __cfq_exit_single_io_context(cfqd, cic);
2425 }
2426
2427 cfq_put_async_queues(cfqd);
2428
2429 spin_unlock_irq(q->queue_lock);
2430
2431 cfq_shutdown_timer_wq(cfqd);
2432
2433 kfree(cfqd);
2434 }
2435
2436 static void *cfq_init_queue(struct request_queue *q)
2437 {
2438 struct cfq_data *cfqd;
2439 int i;
2440
2441 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2442 if (!cfqd)
2443 return NULL;
2444
2445 cfqd->service_tree = CFQ_RB_ROOT;
2446
2447 /*
2448 * Not strictly needed (since RB_ROOT just clears the node and we
2449 * zeroed cfqd on alloc), but better be safe in case someone decides
2450 * to add magic to the rb code
2451 */
2452 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2453 cfqd->prio_trees[i] = RB_ROOT;
2454
2455 /*
2456 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2457 * Grab a permanent reference to it, so that the normal code flow
2458 * will not attempt to free it.
2459 */
2460 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
2461 atomic_inc(&cfqd->oom_cfqq.ref);
2462
2463 INIT_LIST_HEAD(&cfqd->cic_list);
2464
2465 cfqd->queue = q;
2466
2467 init_timer(&cfqd->idle_slice_timer);
2468 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2469 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2470
2471 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2472
2473 cfqd->cfq_quantum = cfq_quantum;
2474 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2475 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2476 cfqd->cfq_back_max = cfq_back_max;
2477 cfqd->cfq_back_penalty = cfq_back_penalty;
2478 cfqd->cfq_slice[0] = cfq_slice_async;
2479 cfqd->cfq_slice[1] = cfq_slice_sync;
2480 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2481 cfqd->cfq_slice_idle = cfq_slice_idle;
2482 cfqd->hw_tag = 1;
2483
2484 return cfqd;
2485 }
2486
2487 static void cfq_slab_kill(void)
2488 {
2489 /*
2490 * Caller already ensured that pending RCU callbacks are completed,
2491 * so we should have no busy allocations at this point.
2492 */
2493 if (cfq_pool)
2494 kmem_cache_destroy(cfq_pool);
2495 if (cfq_ioc_pool)
2496 kmem_cache_destroy(cfq_ioc_pool);
2497 }
2498
2499 static int __init cfq_slab_setup(void)
2500 {
2501 cfq_pool = KMEM_CACHE(cfq_queue, 0);
2502 if (!cfq_pool)
2503 goto fail;
2504
2505 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2506 if (!cfq_ioc_pool)
2507 goto fail;
2508
2509 return 0;
2510 fail:
2511 cfq_slab_kill();
2512 return -ENOMEM;
2513 }
2514
2515 /*
2516 * sysfs parts below -->
2517 */
2518 static ssize_t
2519 cfq_var_show(unsigned int var, char *page)
2520 {
2521 return sprintf(page, "%d\n", var);
2522 }
2523
2524 static ssize_t
2525 cfq_var_store(unsigned int *var, const char *page, size_t count)
2526 {
2527 char *p = (char *) page;
2528
2529 *var = simple_strtoul(p, &p, 10);
2530 return count;
2531 }
2532
2533 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2534 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
2535 { \
2536 struct cfq_data *cfqd = e->elevator_data; \
2537 unsigned int __data = __VAR; \
2538 if (__CONV) \
2539 __data = jiffies_to_msecs(__data); \
2540 return cfq_var_show(__data, (page)); \
2541 }
2542 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2543 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2544 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2545 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2546 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2547 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2548 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2549 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2550 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2551 #undef SHOW_FUNCTION
2552
2553 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2554 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
2555 { \
2556 struct cfq_data *cfqd = e->elevator_data; \
2557 unsigned int __data; \
2558 int ret = cfq_var_store(&__data, (page), count); \
2559 if (__data < (MIN)) \
2560 __data = (MIN); \
2561 else if (__data > (MAX)) \
2562 __data = (MAX); \
2563 if (__CONV) \
2564 *(__PTR) = msecs_to_jiffies(__data); \
2565 else \
2566 *(__PTR) = __data; \
2567 return ret; \
2568 }
2569 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2570 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2571 UINT_MAX, 1);
2572 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2573 UINT_MAX, 1);
2574 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2575 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2576 UINT_MAX, 0);
2577 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2578 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2579 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2580 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2581 UINT_MAX, 0);
2582 #undef STORE_FUNCTION
2583
2584 #define CFQ_ATTR(name) \
2585 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2586
2587 static struct elv_fs_entry cfq_attrs[] = {
2588 CFQ_ATTR(quantum),
2589 CFQ_ATTR(fifo_expire_sync),
2590 CFQ_ATTR(fifo_expire_async),
2591 CFQ_ATTR(back_seek_max),
2592 CFQ_ATTR(back_seek_penalty),
2593 CFQ_ATTR(slice_sync),
2594 CFQ_ATTR(slice_async),
2595 CFQ_ATTR(slice_async_rq),
2596 CFQ_ATTR(slice_idle),
2597 __ATTR_NULL
2598 };
2599
2600 static struct elevator_type iosched_cfq = {
2601 .ops = {
2602 .elevator_merge_fn = cfq_merge,
2603 .elevator_merged_fn = cfq_merged_request,
2604 .elevator_merge_req_fn = cfq_merged_requests,
2605 .elevator_allow_merge_fn = cfq_allow_merge,
2606 .elevator_dispatch_fn = cfq_dispatch_requests,
2607 .elevator_add_req_fn = cfq_insert_request,
2608 .elevator_activate_req_fn = cfq_activate_request,
2609 .elevator_deactivate_req_fn = cfq_deactivate_request,
2610 .elevator_queue_empty_fn = cfq_queue_empty,
2611 .elevator_completed_req_fn = cfq_completed_request,
2612 .elevator_former_req_fn = elv_rb_former_request,
2613 .elevator_latter_req_fn = elv_rb_latter_request,
2614 .elevator_set_req_fn = cfq_set_request,
2615 .elevator_put_req_fn = cfq_put_request,
2616 .elevator_may_queue_fn = cfq_may_queue,
2617 .elevator_init_fn = cfq_init_queue,
2618 .elevator_exit_fn = cfq_exit_queue,
2619 .trim = cfq_free_io_context,
2620 },
2621 .elevator_attrs = cfq_attrs,
2622 .elevator_name = "cfq",
2623 .elevator_owner = THIS_MODULE,
2624 };
2625
2626 static int __init cfq_init(void)
2627 {
2628 /*
2629 * could be 0 on HZ < 1000 setups
2630 */
2631 if (!cfq_slice_async)
2632 cfq_slice_async = 1;
2633 if (!cfq_slice_idle)
2634 cfq_slice_idle = 1;
2635
2636 if (cfq_slab_setup())
2637 return -ENOMEM;
2638
2639 elv_register(&iosched_cfq);
2640
2641 return 0;
2642 }
2643
2644 static void __exit cfq_exit(void)
2645 {
2646 DECLARE_COMPLETION_ONSTACK(all_gone);
2647 elv_unregister(&iosched_cfq);
2648 ioc_gone = &all_gone;
2649 /* ioc_gone's update must be visible before reading ioc_count */
2650 smp_wmb();
2651
2652 /*
2653 * this also protects us from entering cfq_slab_kill() with
2654 * pending RCU callbacks
2655 */
2656 if (elv_ioc_count_read(ioc_count))
2657 wait_for_completion(&all_gone);
2658 cfq_slab_kill();
2659 }
2660
2661 module_init(cfq_init);
2662 module_exit(cfq_exit);
2663
2664 MODULE_AUTHOR("Jens Axboe");
2665 MODULE_LICENSE("GPL");
2666 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
This page took 0.090316 seconds and 6 git commands to generate.