[PATCH] cfq-iosched: kill the empty_list
[deliverable/linux.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@suse.de>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/hash.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15
16 /*
17 * tunables
18 */
19 static const int cfq_quantum = 4; /* max queue in one round of service */
20 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
21 static const int cfq_back_max = 16 * 1024; /* maximum backwards seek, in KiB */
22 static const int cfq_back_penalty = 2; /* penalty of a backwards seek */
23
24 static const int cfq_slice_sync = HZ / 10;
25 static int cfq_slice_async = HZ / 25;
26 static const int cfq_slice_async_rq = 2;
27 static int cfq_slice_idle = HZ / 125;
28
29 #define CFQ_IDLE_GRACE (HZ / 10)
30 #define CFQ_SLICE_SCALE (5)
31
32 #define CFQ_KEY_ASYNC (0)
33
34 /*
35 * for the hash of cfqq inside the cfqd
36 */
37 #define CFQ_QHASH_SHIFT 6
38 #define CFQ_QHASH_ENTRIES (1 << CFQ_QHASH_SHIFT)
39 #define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash)
40
41 #define list_entry_cfqq(ptr) list_entry((ptr), struct cfq_queue, cfq_list)
42
43 #define RQ_CIC(rq) ((struct cfq_io_context*)(rq)->elevator_private)
44 #define RQ_CFQQ(rq) ((rq)->elevator_private2)
45
46 static kmem_cache_t *cfq_pool;
47 static kmem_cache_t *cfq_ioc_pool;
48
49 static DEFINE_PER_CPU(unsigned long, ioc_count);
50 static struct completion *ioc_gone;
51
52 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
53 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
54 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
55
56 #define ASYNC (0)
57 #define SYNC (1)
58
59 #define cfq_cfqq_dispatched(cfqq) \
60 ((cfqq)->on_dispatch[ASYNC] + (cfqq)->on_dispatch[SYNC])
61
62 #define cfq_cfqq_class_sync(cfqq) ((cfqq)->key != CFQ_KEY_ASYNC)
63
64 #define cfq_cfqq_sync(cfqq) \
65 (cfq_cfqq_class_sync(cfqq) || (cfqq)->on_dispatch[SYNC])
66
67 #define sample_valid(samples) ((samples) > 80)
68
69 /*
70 * Per block device queue structure
71 */
72 struct cfq_data {
73 request_queue_t *queue;
74
75 /*
76 * rr list of queues with requests and the count of them
77 */
78 struct list_head rr_list[CFQ_PRIO_LISTS];
79 struct list_head busy_rr;
80 struct list_head cur_rr;
81 struct list_head idle_rr;
82 unsigned int busy_queues;
83
84 /*
85 * cfqq lookup hash
86 */
87 struct hlist_head *cfq_hash;
88
89 int rq_in_driver;
90 int hw_tag;
91
92 /*
93 * idle window management
94 */
95 struct timer_list idle_slice_timer;
96 struct work_struct unplug_work;
97
98 struct cfq_queue *active_queue;
99 struct cfq_io_context *active_cic;
100 int cur_prio, cur_end_prio;
101 unsigned int dispatch_slice;
102
103 struct timer_list idle_class_timer;
104
105 sector_t last_sector;
106 unsigned long last_end_request;
107
108 /*
109 * tunables, see top of file
110 */
111 unsigned int cfq_quantum;
112 unsigned int cfq_fifo_expire[2];
113 unsigned int cfq_back_penalty;
114 unsigned int cfq_back_max;
115 unsigned int cfq_slice[2];
116 unsigned int cfq_slice_async_rq;
117 unsigned int cfq_slice_idle;
118
119 struct list_head cic_list;
120 };
121
122 /*
123 * Per process-grouping structure
124 */
125 struct cfq_queue {
126 /* reference count */
127 atomic_t ref;
128 /* parent cfq_data */
129 struct cfq_data *cfqd;
130 /* cfqq lookup hash */
131 struct hlist_node cfq_hash;
132 /* hash key */
133 unsigned int key;
134 /* member of the rr/busy/cur/idle cfqd list */
135 struct list_head cfq_list;
136 /* sorted list of pending requests */
137 struct rb_root sort_list;
138 /* if fifo isn't expired, next request to serve */
139 struct request *next_rq;
140 /* requests queued in sort_list */
141 int queued[2];
142 /* currently allocated requests */
143 int allocated[2];
144 /* fifo list of requests in sort_list */
145 struct list_head fifo;
146
147 unsigned long slice_start;
148 unsigned long slice_end;
149 unsigned long slice_left;
150
151 /* number of requests that are on the dispatch list */
152 int on_dispatch[2];
153
154 /* io prio of this group */
155 unsigned short ioprio, org_ioprio;
156 unsigned short ioprio_class, org_ioprio_class;
157
158 /* various state flags, see below */
159 unsigned int flags;
160 };
161
162 enum cfqq_state_flags {
163 CFQ_CFQQ_FLAG_on_rr = 0,
164 CFQ_CFQQ_FLAG_wait_request,
165 CFQ_CFQQ_FLAG_must_alloc,
166 CFQ_CFQQ_FLAG_must_alloc_slice,
167 CFQ_CFQQ_FLAG_must_dispatch,
168 CFQ_CFQQ_FLAG_fifo_expire,
169 CFQ_CFQQ_FLAG_idle_window,
170 CFQ_CFQQ_FLAG_prio_changed,
171 CFQ_CFQQ_FLAG_queue_new,
172 };
173
174 #define CFQ_CFQQ_FNS(name) \
175 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
176 { \
177 cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
178 } \
179 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
180 { \
181 cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
182 } \
183 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
184 { \
185 return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
186 }
187
188 CFQ_CFQQ_FNS(on_rr);
189 CFQ_CFQQ_FNS(wait_request);
190 CFQ_CFQQ_FNS(must_alloc);
191 CFQ_CFQQ_FNS(must_alloc_slice);
192 CFQ_CFQQ_FNS(must_dispatch);
193 CFQ_CFQQ_FNS(fifo_expire);
194 CFQ_CFQQ_FNS(idle_window);
195 CFQ_CFQQ_FNS(prio_changed);
196 CFQ_CFQQ_FNS(queue_new);
197 #undef CFQ_CFQQ_FNS
198
199 static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
200 static void cfq_dispatch_insert(request_queue_t *, struct request *);
201 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk, gfp_t gfp_mask);
202
203 /*
204 * scheduler run of queue, if there are requests pending and no one in the
205 * driver that will restart queueing
206 */
207 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
208 {
209 if (cfqd->busy_queues)
210 kblockd_schedule_work(&cfqd->unplug_work);
211 }
212
213 static int cfq_queue_empty(request_queue_t *q)
214 {
215 struct cfq_data *cfqd = q->elevator->elevator_data;
216
217 return !cfqd->busy_queues;
218 }
219
220 static inline pid_t cfq_queue_pid(struct task_struct *task, int rw)
221 {
222 if (rw == READ || rw == WRITE_SYNC)
223 return task->pid;
224
225 return CFQ_KEY_ASYNC;
226 }
227
228 /*
229 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
230 * We choose the request that is closest to the head right now. Distance
231 * behind the head is penalized and only allowed to a certain extent.
232 */
233 static struct request *
234 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
235 {
236 sector_t last, s1, s2, d1 = 0, d2 = 0;
237 unsigned long back_max;
238 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
239 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
240 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
241
242 if (rq1 == NULL || rq1 == rq2)
243 return rq2;
244 if (rq2 == NULL)
245 return rq1;
246
247 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
248 return rq1;
249 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
250 return rq2;
251
252 s1 = rq1->sector;
253 s2 = rq2->sector;
254
255 last = cfqd->last_sector;
256
257 /*
258 * by definition, 1KiB is 2 sectors
259 */
260 back_max = cfqd->cfq_back_max * 2;
261
262 /*
263 * Strict one way elevator _except_ in the case where we allow
264 * short backward seeks which are biased as twice the cost of a
265 * similar forward seek.
266 */
267 if (s1 >= last)
268 d1 = s1 - last;
269 else if (s1 + back_max >= last)
270 d1 = (last - s1) * cfqd->cfq_back_penalty;
271 else
272 wrap |= CFQ_RQ1_WRAP;
273
274 if (s2 >= last)
275 d2 = s2 - last;
276 else if (s2 + back_max >= last)
277 d2 = (last - s2) * cfqd->cfq_back_penalty;
278 else
279 wrap |= CFQ_RQ2_WRAP;
280
281 /* Found required data */
282
283 /*
284 * By doing switch() on the bit mask "wrap" we avoid having to
285 * check two variables for all permutations: --> faster!
286 */
287 switch (wrap) {
288 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
289 if (d1 < d2)
290 return rq1;
291 else if (d2 < d1)
292 return rq2;
293 else {
294 if (s1 >= s2)
295 return rq1;
296 else
297 return rq2;
298 }
299
300 case CFQ_RQ2_WRAP:
301 return rq1;
302 case CFQ_RQ1_WRAP:
303 return rq2;
304 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
305 default:
306 /*
307 * Since both rqs are wrapped,
308 * start with the one that's further behind head
309 * (--> only *one* back seek required),
310 * since back seek takes more time than forward.
311 */
312 if (s1 <= s2)
313 return rq1;
314 else
315 return rq2;
316 }
317 }
318
319 /*
320 * would be nice to take fifo expire time into account as well
321 */
322 static struct request *
323 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
324 struct request *last)
325 {
326 struct rb_node *rbnext = rb_next(&last->rb_node);
327 struct rb_node *rbprev = rb_prev(&last->rb_node);
328 struct request *next = NULL, *prev = NULL;
329
330 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
331
332 if (rbprev)
333 prev = rb_entry_rq(rbprev);
334
335 if (rbnext)
336 next = rb_entry_rq(rbnext);
337 else {
338 rbnext = rb_first(&cfqq->sort_list);
339 if (rbnext && rbnext != &last->rb_node)
340 next = rb_entry_rq(rbnext);
341 }
342
343 return cfq_choose_req(cfqd, next, prev);
344 }
345
346 static void cfq_resort_rr_list(struct cfq_queue *cfqq, int preempted)
347 {
348 struct cfq_data *cfqd = cfqq->cfqd;
349 struct list_head *list;
350
351 BUG_ON(!cfq_cfqq_on_rr(cfqq));
352
353 list_del(&cfqq->cfq_list);
354
355 if (cfq_class_rt(cfqq))
356 list = &cfqd->cur_rr;
357 else if (cfq_class_idle(cfqq))
358 list = &cfqd->idle_rr;
359 else {
360 /*
361 * if cfqq has requests in flight, don't allow it to be
362 * found in cfq_set_active_queue before it has finished them.
363 * this is done to increase fairness between a process that
364 * has lots of io pending vs one that only generates one
365 * sporadically or synchronously
366 */
367 if (cfq_cfqq_dispatched(cfqq))
368 list = &cfqd->busy_rr;
369 else
370 list = &cfqd->rr_list[cfqq->ioprio];
371 }
372
373 /*
374 * If this queue was preempted or is new (never been serviced), let
375 * it be added first for fairness but beind other new queues.
376 * Otherwise, just add to the back of the list.
377 */
378 if (preempted || cfq_cfqq_queue_new(cfqq)) {
379 struct list_head *n = list;
380 struct cfq_queue *__cfqq;
381
382 while (n->next != list) {
383 __cfqq = list_entry_cfqq(n->next);
384 if (!cfq_cfqq_queue_new(__cfqq))
385 break;
386
387 n = n->next;
388 }
389
390 list = n;
391 }
392
393 list_add_tail(&cfqq->cfq_list, list);
394 }
395
396 /*
397 * add to busy list of queues for service, trying to be fair in ordering
398 * the pending list according to last request service
399 */
400 static inline void
401 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
402 {
403 BUG_ON(cfq_cfqq_on_rr(cfqq));
404 cfq_mark_cfqq_on_rr(cfqq);
405 cfqd->busy_queues++;
406
407 cfq_resort_rr_list(cfqq, 0);
408 }
409
410 static inline void
411 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
412 {
413 BUG_ON(!cfq_cfqq_on_rr(cfqq));
414 cfq_clear_cfqq_on_rr(cfqq);
415 list_del_init(&cfqq->cfq_list);
416
417 BUG_ON(!cfqd->busy_queues);
418 cfqd->busy_queues--;
419 }
420
421 /*
422 * rb tree support functions
423 */
424 static inline void cfq_del_rq_rb(struct request *rq)
425 {
426 struct cfq_queue *cfqq = RQ_CFQQ(rq);
427 struct cfq_data *cfqd = cfqq->cfqd;
428 const int sync = rq_is_sync(rq);
429
430 BUG_ON(!cfqq->queued[sync]);
431 cfqq->queued[sync]--;
432
433 elv_rb_del(&cfqq->sort_list, rq);
434
435 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
436 cfq_del_cfqq_rr(cfqd, cfqq);
437 }
438
439 static void cfq_add_rq_rb(struct request *rq)
440 {
441 struct cfq_queue *cfqq = RQ_CFQQ(rq);
442 struct cfq_data *cfqd = cfqq->cfqd;
443 struct request *__alias;
444
445 cfqq->queued[rq_is_sync(rq)]++;
446
447 /*
448 * looks a little odd, but the first insert might return an alias.
449 * if that happens, put the alias on the dispatch list
450 */
451 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
452 cfq_dispatch_insert(cfqd->queue, __alias);
453 }
454
455 static inline void
456 cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
457 {
458 elv_rb_del(&cfqq->sort_list, rq);
459 cfqq->queued[rq_is_sync(rq)]--;
460 cfq_add_rq_rb(rq);
461 }
462
463 static struct request *
464 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
465 {
466 struct task_struct *tsk = current;
467 pid_t key = cfq_queue_pid(tsk, bio_data_dir(bio));
468 struct cfq_queue *cfqq;
469
470 cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
471 if (cfqq) {
472 sector_t sector = bio->bi_sector + bio_sectors(bio);
473
474 return elv_rb_find(&cfqq->sort_list, sector);
475 }
476
477 return NULL;
478 }
479
480 static void cfq_activate_request(request_queue_t *q, struct request *rq)
481 {
482 struct cfq_data *cfqd = q->elevator->elevator_data;
483
484 cfqd->rq_in_driver++;
485
486 /*
487 * If the depth is larger 1, it really could be queueing. But lets
488 * make the mark a little higher - idling could still be good for
489 * low queueing, and a low queueing number could also just indicate
490 * a SCSI mid layer like behaviour where limit+1 is often seen.
491 */
492 if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
493 cfqd->hw_tag = 1;
494 }
495
496 static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
497 {
498 struct cfq_data *cfqd = q->elevator->elevator_data;
499
500 WARN_ON(!cfqd->rq_in_driver);
501 cfqd->rq_in_driver--;
502 }
503
504 static void cfq_remove_request(struct request *rq)
505 {
506 struct cfq_queue *cfqq = RQ_CFQQ(rq);
507
508 if (cfqq->next_rq == rq)
509 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
510
511 list_del_init(&rq->queuelist);
512 cfq_del_rq_rb(rq);
513 }
514
515 static int
516 cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
517 {
518 struct cfq_data *cfqd = q->elevator->elevator_data;
519 struct request *__rq;
520
521 __rq = cfq_find_rq_fmerge(cfqd, bio);
522 if (__rq && elv_rq_merge_ok(__rq, bio)) {
523 *req = __rq;
524 return ELEVATOR_FRONT_MERGE;
525 }
526
527 return ELEVATOR_NO_MERGE;
528 }
529
530 static void cfq_merged_request(request_queue_t *q, struct request *req,
531 int type)
532 {
533 if (type == ELEVATOR_FRONT_MERGE) {
534 struct cfq_queue *cfqq = RQ_CFQQ(req);
535
536 cfq_reposition_rq_rb(cfqq, req);
537 }
538 }
539
540 static void
541 cfq_merged_requests(request_queue_t *q, struct request *rq,
542 struct request *next)
543 {
544 /*
545 * reposition in fifo if next is older than rq
546 */
547 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
548 time_before(next->start_time, rq->start_time))
549 list_move(&rq->queuelist, &next->queuelist);
550
551 cfq_remove_request(next);
552 }
553
554 static inline void
555 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
556 {
557 if (cfqq) {
558 /*
559 * stop potential idle class queues waiting service
560 */
561 del_timer(&cfqd->idle_class_timer);
562
563 cfqq->slice_start = jiffies;
564 cfqq->slice_end = 0;
565 cfqq->slice_left = 0;
566 cfq_clear_cfqq_must_alloc_slice(cfqq);
567 cfq_clear_cfqq_fifo_expire(cfqq);
568 }
569
570 cfqd->active_queue = cfqq;
571 }
572
573 /*
574 * current cfqq expired its slice (or was too idle), select new one
575 */
576 static void
577 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
578 int preempted)
579 {
580 unsigned long now = jiffies;
581
582 if (cfq_cfqq_wait_request(cfqq))
583 del_timer(&cfqd->idle_slice_timer);
584
585 if (!preempted && !cfq_cfqq_dispatched(cfqq))
586 cfq_schedule_dispatch(cfqd);
587
588 cfq_clear_cfqq_must_dispatch(cfqq);
589 cfq_clear_cfqq_wait_request(cfqq);
590 cfq_clear_cfqq_queue_new(cfqq);
591
592 /*
593 * store what was left of this slice, if the queue idled out
594 * or was preempted
595 */
596 if (time_after(cfqq->slice_end, now))
597 cfqq->slice_left = cfqq->slice_end - now;
598 else
599 cfqq->slice_left = 0;
600
601 if (cfq_cfqq_on_rr(cfqq))
602 cfq_resort_rr_list(cfqq, preempted);
603
604 if (cfqq == cfqd->active_queue)
605 cfqd->active_queue = NULL;
606
607 if (cfqd->active_cic) {
608 put_io_context(cfqd->active_cic->ioc);
609 cfqd->active_cic = NULL;
610 }
611
612 cfqd->dispatch_slice = 0;
613 }
614
615 static inline void cfq_slice_expired(struct cfq_data *cfqd, int preempted)
616 {
617 struct cfq_queue *cfqq = cfqd->active_queue;
618
619 if (cfqq)
620 __cfq_slice_expired(cfqd, cfqq, preempted);
621 }
622
623 /*
624 * 0
625 * 0,1
626 * 0,1,2
627 * 0,1,2,3
628 * 0,1,2,3,4
629 * 0,1,2,3,4,5
630 * 0,1,2,3,4,5,6
631 * 0,1,2,3,4,5,6,7
632 */
633 static int cfq_get_next_prio_level(struct cfq_data *cfqd)
634 {
635 int prio, wrap;
636
637 prio = -1;
638 wrap = 0;
639 do {
640 int p;
641
642 for (p = cfqd->cur_prio; p <= cfqd->cur_end_prio; p++) {
643 if (!list_empty(&cfqd->rr_list[p])) {
644 prio = p;
645 break;
646 }
647 }
648
649 if (prio != -1)
650 break;
651 cfqd->cur_prio = 0;
652 if (++cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
653 cfqd->cur_end_prio = 0;
654 if (wrap)
655 break;
656 wrap = 1;
657 }
658 } while (1);
659
660 if (unlikely(prio == -1))
661 return -1;
662
663 BUG_ON(prio >= CFQ_PRIO_LISTS);
664
665 list_splice_init(&cfqd->rr_list[prio], &cfqd->cur_rr);
666
667 cfqd->cur_prio = prio + 1;
668 if (cfqd->cur_prio > cfqd->cur_end_prio) {
669 cfqd->cur_end_prio = cfqd->cur_prio;
670 cfqd->cur_prio = 0;
671 }
672 if (cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
673 cfqd->cur_prio = 0;
674 cfqd->cur_end_prio = 0;
675 }
676
677 return prio;
678 }
679
680 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
681 {
682 struct cfq_queue *cfqq = NULL;
683
684 if (!list_empty(&cfqd->cur_rr) || cfq_get_next_prio_level(cfqd) != -1) {
685 /*
686 * if current list is non-empty, grab first entry. if it is
687 * empty, get next prio level and grab first entry then if any
688 * are spliced
689 */
690 cfqq = list_entry_cfqq(cfqd->cur_rr.next);
691 } else if (!list_empty(&cfqd->busy_rr)) {
692 /*
693 * If no new queues are available, check if the busy list has
694 * some before falling back to idle io.
695 */
696 cfqq = list_entry_cfqq(cfqd->busy_rr.next);
697 } else if (!list_empty(&cfqd->idle_rr)) {
698 /*
699 * if we have idle queues and no rt or be queues had pending
700 * requests, either allow immediate service if the grace period
701 * has passed or arm the idle grace timer
702 */
703 unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE;
704
705 if (time_after_eq(jiffies, end))
706 cfqq = list_entry_cfqq(cfqd->idle_rr.next);
707 else
708 mod_timer(&cfqd->idle_class_timer, end);
709 }
710
711 __cfq_set_active_queue(cfqd, cfqq);
712 return cfqq;
713 }
714
715 #define CIC_SEEKY(cic) ((cic)->seek_mean > (128 * 1024))
716
717 static int cfq_arm_slice_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
718
719 {
720 struct cfq_io_context *cic;
721 unsigned long sl;
722
723 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
724 WARN_ON(cfqq != cfqd->active_queue);
725
726 /*
727 * idle is disabled, either manually or by past process history
728 */
729 if (!cfqd->cfq_slice_idle)
730 return 0;
731 if (!cfq_cfqq_idle_window(cfqq))
732 return 0;
733 /*
734 * task has exited, don't wait
735 */
736 cic = cfqd->active_cic;
737 if (!cic || !cic->ioc->task)
738 return 0;
739
740 cfq_mark_cfqq_must_dispatch(cfqq);
741 cfq_mark_cfqq_wait_request(cfqq);
742
743 sl = min(cfqq->slice_end - 1, (unsigned long) cfqd->cfq_slice_idle);
744
745 /*
746 * we don't want to idle for seeks, but we do want to allow
747 * fair distribution of slice time for a process doing back-to-back
748 * seeks. so allow a little bit of time for him to submit a new rq
749 */
750 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
751 sl = min(sl, msecs_to_jiffies(2));
752
753 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
754 return 1;
755 }
756
757 static void cfq_dispatch_insert(request_queue_t *q, struct request *rq)
758 {
759 struct cfq_data *cfqd = q->elevator->elevator_data;
760 struct cfq_queue *cfqq = RQ_CFQQ(rq);
761
762 cfq_remove_request(rq);
763 cfqq->on_dispatch[rq_is_sync(rq)]++;
764 elv_dispatch_sort(q, rq);
765
766 rq = list_entry(q->queue_head.prev, struct request, queuelist);
767 cfqd->last_sector = rq->sector + rq->nr_sectors;
768 }
769
770 /*
771 * return expired entry, or NULL to just start from scratch in rbtree
772 */
773 static inline struct request *cfq_check_fifo(struct cfq_queue *cfqq)
774 {
775 struct cfq_data *cfqd = cfqq->cfqd;
776 struct request *rq;
777 int fifo;
778
779 if (cfq_cfqq_fifo_expire(cfqq))
780 return NULL;
781 if (list_empty(&cfqq->fifo))
782 return NULL;
783
784 fifo = cfq_cfqq_class_sync(cfqq);
785 rq = rq_entry_fifo(cfqq->fifo.next);
786
787 if (time_after(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo])) {
788 cfq_mark_cfqq_fifo_expire(cfqq);
789 return rq;
790 }
791
792 return NULL;
793 }
794
795 /*
796 * Scale schedule slice based on io priority. Use the sync time slice only
797 * if a queue is marked sync and has sync io queued. A sync queue with async
798 * io only, should not get full sync slice length.
799 */
800 static inline int
801 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
802 {
803 const int base_slice = cfqd->cfq_slice[cfq_cfqq_sync(cfqq)];
804
805 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
806
807 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - cfqq->ioprio));
808 }
809
810 static inline void
811 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
812 {
813 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
814 }
815
816 static inline int
817 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
818 {
819 const int base_rq = cfqd->cfq_slice_async_rq;
820
821 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
822
823 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
824 }
825
826 /*
827 * get next queue for service
828 */
829 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
830 {
831 unsigned long now = jiffies;
832 struct cfq_queue *cfqq;
833
834 cfqq = cfqd->active_queue;
835 if (!cfqq)
836 goto new_queue;
837
838 /*
839 * slice has expired
840 */
841 if (!cfq_cfqq_must_dispatch(cfqq) && time_after(now, cfqq->slice_end))
842 goto expire;
843
844 /*
845 * if queue has requests, dispatch one. if not, check if
846 * enough slice is left to wait for one
847 */
848 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
849 goto keep_queue;
850 else if (cfq_cfqq_dispatched(cfqq)) {
851 cfqq = NULL;
852 goto keep_queue;
853 } else if (cfq_cfqq_class_sync(cfqq)) {
854 if (cfq_arm_slice_timer(cfqd, cfqq))
855 return NULL;
856 }
857
858 expire:
859 cfq_slice_expired(cfqd, 0);
860 new_queue:
861 cfqq = cfq_set_active_queue(cfqd);
862 keep_queue:
863 return cfqq;
864 }
865
866 static int
867 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
868 int max_dispatch)
869 {
870 int dispatched = 0;
871
872 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
873
874 do {
875 struct request *rq;
876
877 /*
878 * follow expired path, else get first next available
879 */
880 if ((rq = cfq_check_fifo(cfqq)) == NULL)
881 rq = cfqq->next_rq;
882
883 /*
884 * finally, insert request into driver dispatch list
885 */
886 cfq_dispatch_insert(cfqd->queue, rq);
887
888 cfqd->dispatch_slice++;
889 dispatched++;
890
891 if (!cfqd->active_cic) {
892 atomic_inc(&RQ_CIC(rq)->ioc->refcount);
893 cfqd->active_cic = RQ_CIC(rq);
894 }
895
896 if (RB_EMPTY_ROOT(&cfqq->sort_list))
897 break;
898
899 } while (dispatched < max_dispatch);
900
901 /*
902 * if slice end isn't set yet, set it.
903 */
904 if (!cfqq->slice_end)
905 cfq_set_prio_slice(cfqd, cfqq);
906
907 /*
908 * expire an async queue immediately if it has used up its slice. idle
909 * queue always expire after 1 dispatch round.
910 */
911 if ((!cfq_cfqq_sync(cfqq) &&
912 cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
913 cfq_class_idle(cfqq) ||
914 !cfq_cfqq_idle_window(cfqq))
915 cfq_slice_expired(cfqd, 0);
916
917 return dispatched;
918 }
919
920 static int
921 cfq_forced_dispatch_cfqqs(struct list_head *list)
922 {
923 struct cfq_queue *cfqq, *next;
924 int dispatched;
925
926 dispatched = 0;
927 list_for_each_entry_safe(cfqq, next, list, cfq_list) {
928 while (cfqq->next_rq) {
929 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
930 dispatched++;
931 }
932 BUG_ON(!list_empty(&cfqq->fifo));
933 }
934
935 return dispatched;
936 }
937
938 static int
939 cfq_forced_dispatch(struct cfq_data *cfqd)
940 {
941 int i, dispatched = 0;
942
943 for (i = 0; i < CFQ_PRIO_LISTS; i++)
944 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->rr_list[i]);
945
946 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->busy_rr);
947 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->cur_rr);
948 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->idle_rr);
949
950 cfq_slice_expired(cfqd, 0);
951
952 BUG_ON(cfqd->busy_queues);
953
954 return dispatched;
955 }
956
957 static int
958 cfq_dispatch_requests(request_queue_t *q, int force)
959 {
960 struct cfq_data *cfqd = q->elevator->elevator_data;
961 struct cfq_queue *cfqq, *prev_cfqq;
962 int dispatched;
963
964 if (!cfqd->busy_queues)
965 return 0;
966
967 if (unlikely(force))
968 return cfq_forced_dispatch(cfqd);
969
970 dispatched = 0;
971 prev_cfqq = NULL;
972 while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
973 int max_dispatch;
974
975 /*
976 * Don't repeat dispatch from the previous queue.
977 */
978 if (prev_cfqq == cfqq)
979 break;
980
981 cfq_clear_cfqq_must_dispatch(cfqq);
982 cfq_clear_cfqq_wait_request(cfqq);
983 del_timer(&cfqd->idle_slice_timer);
984
985 max_dispatch = cfqd->cfq_quantum;
986 if (cfq_class_idle(cfqq))
987 max_dispatch = 1;
988
989 dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
990
991 /*
992 * If the dispatch cfqq has idling enabled and is still
993 * the active queue, break out.
994 */
995 if (cfq_cfqq_idle_window(cfqq) && cfqd->active_queue)
996 break;
997
998 prev_cfqq = cfqq;
999 }
1000
1001 return dispatched;
1002 }
1003
1004 /*
1005 * task holds one reference to the queue, dropped when task exits. each rq
1006 * in-flight on this queue also holds a reference, dropped when rq is freed.
1007 *
1008 * queue lock must be held here.
1009 */
1010 static void cfq_put_queue(struct cfq_queue *cfqq)
1011 {
1012 struct cfq_data *cfqd = cfqq->cfqd;
1013
1014 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1015
1016 if (!atomic_dec_and_test(&cfqq->ref))
1017 return;
1018
1019 BUG_ON(rb_first(&cfqq->sort_list));
1020 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1021 BUG_ON(cfq_cfqq_on_rr(cfqq));
1022
1023 if (unlikely(cfqd->active_queue == cfqq))
1024 __cfq_slice_expired(cfqd, cfqq, 0);
1025
1026 /*
1027 * it's on the empty list and still hashed
1028 */
1029 list_del(&cfqq->cfq_list);
1030 hlist_del(&cfqq->cfq_hash);
1031 kmem_cache_free(cfq_pool, cfqq);
1032 }
1033
1034 static struct cfq_queue *
1035 __cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1036 const int hashval)
1037 {
1038 struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1039 struct hlist_node *entry;
1040 struct cfq_queue *__cfqq;
1041
1042 hlist_for_each_entry(__cfqq, entry, hash_list, cfq_hash) {
1043 const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->org_ioprio_class, __cfqq->org_ioprio);
1044
1045 if (__cfqq->key == key && (__p == prio || !prio))
1046 return __cfqq;
1047 }
1048
1049 return NULL;
1050 }
1051
1052 static struct cfq_queue *
1053 cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1054 {
1055 return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1056 }
1057
1058 static void cfq_free_io_context(struct io_context *ioc)
1059 {
1060 struct cfq_io_context *__cic;
1061 struct rb_node *n;
1062 int freed = 0;
1063
1064 while ((n = rb_first(&ioc->cic_root)) != NULL) {
1065 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1066 rb_erase(&__cic->rb_node, &ioc->cic_root);
1067 kmem_cache_free(cfq_ioc_pool, __cic);
1068 freed++;
1069 }
1070
1071 elv_ioc_count_mod(ioc_count, -freed);
1072
1073 if (ioc_gone && !elv_ioc_count_read(ioc_count))
1074 complete(ioc_gone);
1075 }
1076
1077 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1078 {
1079 if (unlikely(cfqq == cfqd->active_queue))
1080 __cfq_slice_expired(cfqd, cfqq, 0);
1081
1082 cfq_put_queue(cfqq);
1083 }
1084
1085 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1086 struct cfq_io_context *cic)
1087 {
1088 list_del_init(&cic->queue_list);
1089 smp_wmb();
1090 cic->key = NULL;
1091
1092 if (cic->cfqq[ASYNC]) {
1093 cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1094 cic->cfqq[ASYNC] = NULL;
1095 }
1096
1097 if (cic->cfqq[SYNC]) {
1098 cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1099 cic->cfqq[SYNC] = NULL;
1100 }
1101 }
1102
1103
1104 /*
1105 * Called with interrupts disabled
1106 */
1107 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1108 {
1109 struct cfq_data *cfqd = cic->key;
1110
1111 if (cfqd) {
1112 request_queue_t *q = cfqd->queue;
1113
1114 spin_lock_irq(q->queue_lock);
1115 __cfq_exit_single_io_context(cfqd, cic);
1116 spin_unlock_irq(q->queue_lock);
1117 }
1118 }
1119
1120 static void cfq_exit_io_context(struct io_context *ioc)
1121 {
1122 struct cfq_io_context *__cic;
1123 struct rb_node *n;
1124
1125 /*
1126 * put the reference this task is holding to the various queues
1127 */
1128
1129 n = rb_first(&ioc->cic_root);
1130 while (n != NULL) {
1131 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1132
1133 cfq_exit_single_io_context(__cic);
1134 n = rb_next(n);
1135 }
1136 }
1137
1138 static struct cfq_io_context *
1139 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1140 {
1141 struct cfq_io_context *cic;
1142
1143 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask, cfqd->queue->node);
1144 if (cic) {
1145 memset(cic, 0, sizeof(*cic));
1146 cic->last_end_request = jiffies;
1147 INIT_LIST_HEAD(&cic->queue_list);
1148 cic->dtor = cfq_free_io_context;
1149 cic->exit = cfq_exit_io_context;
1150 elv_ioc_count_inc(ioc_count);
1151 }
1152
1153 return cic;
1154 }
1155
1156 static void cfq_init_prio_data(struct cfq_queue *cfqq)
1157 {
1158 struct task_struct *tsk = current;
1159 int ioprio_class;
1160
1161 if (!cfq_cfqq_prio_changed(cfqq))
1162 return;
1163
1164 ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1165 switch (ioprio_class) {
1166 default:
1167 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1168 case IOPRIO_CLASS_NONE:
1169 /*
1170 * no prio set, place us in the middle of the BE classes
1171 */
1172 cfqq->ioprio = task_nice_ioprio(tsk);
1173 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1174 break;
1175 case IOPRIO_CLASS_RT:
1176 cfqq->ioprio = task_ioprio(tsk);
1177 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1178 break;
1179 case IOPRIO_CLASS_BE:
1180 cfqq->ioprio = task_ioprio(tsk);
1181 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1182 break;
1183 case IOPRIO_CLASS_IDLE:
1184 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1185 cfqq->ioprio = 7;
1186 cfq_clear_cfqq_idle_window(cfqq);
1187 break;
1188 }
1189
1190 /*
1191 * keep track of original prio settings in case we have to temporarily
1192 * elevate the priority of this queue
1193 */
1194 cfqq->org_ioprio = cfqq->ioprio;
1195 cfqq->org_ioprio_class = cfqq->ioprio_class;
1196
1197 if (cfq_cfqq_on_rr(cfqq))
1198 cfq_resort_rr_list(cfqq, 0);
1199
1200 cfq_clear_cfqq_prio_changed(cfqq);
1201 }
1202
1203 static inline void changed_ioprio(struct cfq_io_context *cic)
1204 {
1205 struct cfq_data *cfqd = cic->key;
1206 struct cfq_queue *cfqq;
1207
1208 if (unlikely(!cfqd))
1209 return;
1210
1211 spin_lock(cfqd->queue->queue_lock);
1212
1213 cfqq = cic->cfqq[ASYNC];
1214 if (cfqq) {
1215 struct cfq_queue *new_cfqq;
1216 new_cfqq = cfq_get_queue(cfqd, CFQ_KEY_ASYNC, cic->ioc->task,
1217 GFP_ATOMIC);
1218 if (new_cfqq) {
1219 cic->cfqq[ASYNC] = new_cfqq;
1220 cfq_put_queue(cfqq);
1221 }
1222 }
1223
1224 cfqq = cic->cfqq[SYNC];
1225 if (cfqq)
1226 cfq_mark_cfqq_prio_changed(cfqq);
1227
1228 spin_unlock(cfqd->queue->queue_lock);
1229 }
1230
1231 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1232 {
1233 struct cfq_io_context *cic;
1234 struct rb_node *n;
1235
1236 ioc->ioprio_changed = 0;
1237
1238 n = rb_first(&ioc->cic_root);
1239 while (n != NULL) {
1240 cic = rb_entry(n, struct cfq_io_context, rb_node);
1241
1242 changed_ioprio(cic);
1243 n = rb_next(n);
1244 }
1245 }
1246
1247 static struct cfq_queue *
1248 cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk,
1249 gfp_t gfp_mask)
1250 {
1251 const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1252 struct cfq_queue *cfqq, *new_cfqq = NULL;
1253 unsigned short ioprio;
1254
1255 retry:
1256 ioprio = tsk->ioprio;
1257 cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1258
1259 if (!cfqq) {
1260 if (new_cfqq) {
1261 cfqq = new_cfqq;
1262 new_cfqq = NULL;
1263 } else if (gfp_mask & __GFP_WAIT) {
1264 /*
1265 * Inform the allocator of the fact that we will
1266 * just repeat this allocation if it fails, to allow
1267 * the allocator to do whatever it needs to attempt to
1268 * free memory.
1269 */
1270 spin_unlock_irq(cfqd->queue->queue_lock);
1271 new_cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask|__GFP_NOFAIL, cfqd->queue->node);
1272 spin_lock_irq(cfqd->queue->queue_lock);
1273 goto retry;
1274 } else {
1275 cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask, cfqd->queue->node);
1276 if (!cfqq)
1277 goto out;
1278 }
1279
1280 memset(cfqq, 0, sizeof(*cfqq));
1281
1282 INIT_HLIST_NODE(&cfqq->cfq_hash);
1283 INIT_LIST_HEAD(&cfqq->cfq_list);
1284 INIT_LIST_HEAD(&cfqq->fifo);
1285
1286 cfqq->key = key;
1287 hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1288 atomic_set(&cfqq->ref, 0);
1289 cfqq->cfqd = cfqd;
1290 /*
1291 * set ->slice_left to allow preemption for a new process
1292 */
1293 cfqq->slice_left = 2 * cfqd->cfq_slice_idle;
1294 cfq_mark_cfqq_idle_window(cfqq);
1295 cfq_mark_cfqq_prio_changed(cfqq);
1296 cfq_mark_cfqq_queue_new(cfqq);
1297 cfq_init_prio_data(cfqq);
1298 }
1299
1300 if (new_cfqq)
1301 kmem_cache_free(cfq_pool, new_cfqq);
1302
1303 atomic_inc(&cfqq->ref);
1304 out:
1305 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1306 return cfqq;
1307 }
1308
1309 static void
1310 cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1311 {
1312 WARN_ON(!list_empty(&cic->queue_list));
1313 rb_erase(&cic->rb_node, &ioc->cic_root);
1314 kmem_cache_free(cfq_ioc_pool, cic);
1315 elv_ioc_count_dec(ioc_count);
1316 }
1317
1318 static struct cfq_io_context *
1319 cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1320 {
1321 struct rb_node *n;
1322 struct cfq_io_context *cic;
1323 void *k, *key = cfqd;
1324
1325 restart:
1326 n = ioc->cic_root.rb_node;
1327 while (n) {
1328 cic = rb_entry(n, struct cfq_io_context, rb_node);
1329 /* ->key must be copied to avoid race with cfq_exit_queue() */
1330 k = cic->key;
1331 if (unlikely(!k)) {
1332 cfq_drop_dead_cic(ioc, cic);
1333 goto restart;
1334 }
1335
1336 if (key < k)
1337 n = n->rb_left;
1338 else if (key > k)
1339 n = n->rb_right;
1340 else
1341 return cic;
1342 }
1343
1344 return NULL;
1345 }
1346
1347 static inline void
1348 cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1349 struct cfq_io_context *cic)
1350 {
1351 struct rb_node **p;
1352 struct rb_node *parent;
1353 struct cfq_io_context *__cic;
1354 void *k;
1355
1356 cic->ioc = ioc;
1357 cic->key = cfqd;
1358
1359 restart:
1360 parent = NULL;
1361 p = &ioc->cic_root.rb_node;
1362 while (*p) {
1363 parent = *p;
1364 __cic = rb_entry(parent, struct cfq_io_context, rb_node);
1365 /* ->key must be copied to avoid race with cfq_exit_queue() */
1366 k = __cic->key;
1367 if (unlikely(!k)) {
1368 cfq_drop_dead_cic(ioc, __cic);
1369 goto restart;
1370 }
1371
1372 if (cic->key < k)
1373 p = &(*p)->rb_left;
1374 else if (cic->key > k)
1375 p = &(*p)->rb_right;
1376 else
1377 BUG();
1378 }
1379
1380 rb_link_node(&cic->rb_node, parent, p);
1381 rb_insert_color(&cic->rb_node, &ioc->cic_root);
1382
1383 spin_lock_irq(cfqd->queue->queue_lock);
1384 list_add(&cic->queue_list, &cfqd->cic_list);
1385 spin_unlock_irq(cfqd->queue->queue_lock);
1386 }
1387
1388 /*
1389 * Setup general io context and cfq io context. There can be several cfq
1390 * io contexts per general io context, if this process is doing io to more
1391 * than one device managed by cfq.
1392 */
1393 static struct cfq_io_context *
1394 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1395 {
1396 struct io_context *ioc = NULL;
1397 struct cfq_io_context *cic;
1398
1399 might_sleep_if(gfp_mask & __GFP_WAIT);
1400
1401 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1402 if (!ioc)
1403 return NULL;
1404
1405 cic = cfq_cic_rb_lookup(cfqd, ioc);
1406 if (cic)
1407 goto out;
1408
1409 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1410 if (cic == NULL)
1411 goto err;
1412
1413 cfq_cic_link(cfqd, ioc, cic);
1414 out:
1415 smp_read_barrier_depends();
1416 if (unlikely(ioc->ioprio_changed))
1417 cfq_ioc_set_ioprio(ioc);
1418
1419 return cic;
1420 err:
1421 put_io_context(ioc);
1422 return NULL;
1423 }
1424
1425 static void
1426 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1427 {
1428 unsigned long elapsed, ttime;
1429
1430 /*
1431 * if this context already has stuff queued, thinktime is from
1432 * last queue not last end
1433 */
1434 #if 0
1435 if (time_after(cic->last_end_request, cic->last_queue))
1436 elapsed = jiffies - cic->last_end_request;
1437 else
1438 elapsed = jiffies - cic->last_queue;
1439 #else
1440 elapsed = jiffies - cic->last_end_request;
1441 #endif
1442
1443 ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1444
1445 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1446 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1447 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1448 }
1449
1450 static void
1451 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1452 struct request *rq)
1453 {
1454 sector_t sdist;
1455 u64 total;
1456
1457 if (cic->last_request_pos < rq->sector)
1458 sdist = rq->sector - cic->last_request_pos;
1459 else
1460 sdist = cic->last_request_pos - rq->sector;
1461
1462 /*
1463 * Don't allow the seek distance to get too large from the
1464 * odd fragment, pagein, etc
1465 */
1466 if (cic->seek_samples <= 60) /* second&third seek */
1467 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1468 else
1469 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1470
1471 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1472 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1473 total = cic->seek_total + (cic->seek_samples/2);
1474 do_div(total, cic->seek_samples);
1475 cic->seek_mean = (sector_t)total;
1476 }
1477
1478 /*
1479 * Disable idle window if the process thinks too long or seeks so much that
1480 * it doesn't matter
1481 */
1482 static void
1483 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1484 struct cfq_io_context *cic)
1485 {
1486 int enable_idle = cfq_cfqq_idle_window(cfqq);
1487
1488 if (!cic->ioc->task || !cfqd->cfq_slice_idle ||
1489 (cfqd->hw_tag && CIC_SEEKY(cic)))
1490 enable_idle = 0;
1491 else if (sample_valid(cic->ttime_samples)) {
1492 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1493 enable_idle = 0;
1494 else
1495 enable_idle = 1;
1496 }
1497
1498 if (enable_idle)
1499 cfq_mark_cfqq_idle_window(cfqq);
1500 else
1501 cfq_clear_cfqq_idle_window(cfqq);
1502 }
1503
1504
1505 /*
1506 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1507 * no or if we aren't sure, a 1 will cause a preempt.
1508 */
1509 static int
1510 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1511 struct request *rq)
1512 {
1513 struct cfq_queue *cfqq = cfqd->active_queue;
1514
1515 if (cfq_class_idle(new_cfqq))
1516 return 0;
1517
1518 if (!cfqq)
1519 return 0;
1520
1521 if (cfq_class_idle(cfqq))
1522 return 1;
1523 if (!cfq_cfqq_wait_request(new_cfqq))
1524 return 0;
1525 /*
1526 * if it doesn't have slice left, forget it
1527 */
1528 if (new_cfqq->slice_left < cfqd->cfq_slice_idle)
1529 return 0;
1530 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1531 return 1;
1532
1533 return 0;
1534 }
1535
1536 /*
1537 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1538 * let it have half of its nominal slice.
1539 */
1540 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1541 {
1542 struct cfq_queue *__cfqq, *next;
1543
1544 list_for_each_entry_safe(__cfqq, next, &cfqd->cur_rr, cfq_list)
1545 cfq_resort_rr_list(__cfqq, 1);
1546
1547 if (!cfqq->slice_left)
1548 cfqq->slice_left = cfq_prio_to_slice(cfqd, cfqq) / 2;
1549
1550 cfqq->slice_end = cfqq->slice_left + jiffies;
1551 cfq_slice_expired(cfqd, 1);
1552 __cfq_set_active_queue(cfqd, cfqq);
1553 }
1554
1555 /*
1556 * should really be a ll_rw_blk.c helper
1557 */
1558 static void cfq_start_queueing(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1559 {
1560 request_queue_t *q = cfqd->queue;
1561
1562 if (!blk_queue_plugged(q))
1563 q->request_fn(q);
1564 else
1565 __generic_unplug_device(q);
1566 }
1567
1568 /*
1569 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1570 * something we should do about it
1571 */
1572 static void
1573 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1574 struct request *rq)
1575 {
1576 struct cfq_io_context *cic = RQ_CIC(rq);
1577
1578 /*
1579 * check if this request is a better next-serve candidate)) {
1580 */
1581 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
1582 BUG_ON(!cfqq->next_rq);
1583
1584 /*
1585 * we never wait for an async request and we don't allow preemption
1586 * of an async request. so just return early
1587 */
1588 if (!rq_is_sync(rq)) {
1589 /*
1590 * sync process issued an async request, if it's waiting
1591 * then expire it and kick rq handling.
1592 */
1593 if (cic == cfqd->active_cic &&
1594 del_timer(&cfqd->idle_slice_timer)) {
1595 cfq_slice_expired(cfqd, 0);
1596 cfq_start_queueing(cfqd, cfqq);
1597 }
1598 return;
1599 }
1600
1601 cfq_update_io_thinktime(cfqd, cic);
1602 cfq_update_io_seektime(cfqd, cic, rq);
1603 cfq_update_idle_window(cfqd, cfqq, cic);
1604
1605 cic->last_queue = jiffies;
1606 cic->last_request_pos = rq->sector + rq->nr_sectors;
1607
1608 if (cfqq == cfqd->active_queue) {
1609 /*
1610 * if we are waiting for a request for this queue, let it rip
1611 * immediately and flag that we must not expire this queue
1612 * just now
1613 */
1614 if (cfq_cfqq_wait_request(cfqq)) {
1615 cfq_mark_cfqq_must_dispatch(cfqq);
1616 del_timer(&cfqd->idle_slice_timer);
1617 cfq_start_queueing(cfqd, cfqq);
1618 }
1619 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1620 /*
1621 * not the active queue - expire current slice if it is
1622 * idle and has expired it's mean thinktime or this new queue
1623 * has some old slice time left and is of higher priority
1624 */
1625 cfq_preempt_queue(cfqd, cfqq);
1626 cfq_mark_cfqq_must_dispatch(cfqq);
1627 cfq_start_queueing(cfqd, cfqq);
1628 }
1629 }
1630
1631 static void cfq_insert_request(request_queue_t *q, struct request *rq)
1632 {
1633 struct cfq_data *cfqd = q->elevator->elevator_data;
1634 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1635
1636 cfq_init_prio_data(cfqq);
1637
1638 cfq_add_rq_rb(rq);
1639
1640 if (!cfq_cfqq_on_rr(cfqq))
1641 cfq_add_cfqq_rr(cfqd, cfqq);
1642
1643 list_add_tail(&rq->queuelist, &cfqq->fifo);
1644
1645 cfq_rq_enqueued(cfqd, cfqq, rq);
1646 }
1647
1648 static void cfq_completed_request(request_queue_t *q, struct request *rq)
1649 {
1650 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1651 struct cfq_data *cfqd = cfqq->cfqd;
1652 const int sync = rq_is_sync(rq);
1653 unsigned long now;
1654
1655 now = jiffies;
1656
1657 WARN_ON(!cfqd->rq_in_driver);
1658 WARN_ON(!cfqq->on_dispatch[sync]);
1659 cfqd->rq_in_driver--;
1660 cfqq->on_dispatch[sync]--;
1661
1662 if (!cfq_class_idle(cfqq))
1663 cfqd->last_end_request = now;
1664
1665 if (!cfq_cfqq_dispatched(cfqq) && cfq_cfqq_on_rr(cfqq))
1666 cfq_resort_rr_list(cfqq, 0);
1667
1668 if (sync)
1669 RQ_CIC(rq)->last_end_request = now;
1670
1671 /*
1672 * If this is the active queue, check if it needs to be expired,
1673 * or if we want to idle in case it has no pending requests.
1674 */
1675 if (cfqd->active_queue == cfqq) {
1676 if (time_after(now, cfqq->slice_end))
1677 cfq_slice_expired(cfqd, 0);
1678 else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1679 if (!cfq_arm_slice_timer(cfqd, cfqq))
1680 cfq_schedule_dispatch(cfqd);
1681 }
1682 }
1683 }
1684
1685 /*
1686 * we temporarily boost lower priority queues if they are holding fs exclusive
1687 * resources. they are boosted to normal prio (CLASS_BE/4)
1688 */
1689 static void cfq_prio_boost(struct cfq_queue *cfqq)
1690 {
1691 const int ioprio_class = cfqq->ioprio_class;
1692 const int ioprio = cfqq->ioprio;
1693
1694 if (has_fs_excl()) {
1695 /*
1696 * boost idle prio on transactions that would lock out other
1697 * users of the filesystem
1698 */
1699 if (cfq_class_idle(cfqq))
1700 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1701 if (cfqq->ioprio > IOPRIO_NORM)
1702 cfqq->ioprio = IOPRIO_NORM;
1703 } else {
1704 /*
1705 * check if we need to unboost the queue
1706 */
1707 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1708 cfqq->ioprio_class = cfqq->org_ioprio_class;
1709 if (cfqq->ioprio != cfqq->org_ioprio)
1710 cfqq->ioprio = cfqq->org_ioprio;
1711 }
1712
1713 /*
1714 * refile between round-robin lists if we moved the priority class
1715 */
1716 if ((ioprio_class != cfqq->ioprio_class || ioprio != cfqq->ioprio) &&
1717 cfq_cfqq_on_rr(cfqq))
1718 cfq_resort_rr_list(cfqq, 0);
1719 }
1720
1721 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1722 {
1723 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1724 !cfq_cfqq_must_alloc_slice(cfqq)) {
1725 cfq_mark_cfqq_must_alloc_slice(cfqq);
1726 return ELV_MQUEUE_MUST;
1727 }
1728
1729 return ELV_MQUEUE_MAY;
1730 }
1731
1732 static int cfq_may_queue(request_queue_t *q, int rw)
1733 {
1734 struct cfq_data *cfqd = q->elevator->elevator_data;
1735 struct task_struct *tsk = current;
1736 struct cfq_queue *cfqq;
1737
1738 /*
1739 * don't force setup of a queue from here, as a call to may_queue
1740 * does not necessarily imply that a request actually will be queued.
1741 * so just lookup a possibly existing queue, or return 'may queue'
1742 * if that fails
1743 */
1744 cfqq = cfq_find_cfq_hash(cfqd, cfq_queue_pid(tsk, rw), tsk->ioprio);
1745 if (cfqq) {
1746 cfq_init_prio_data(cfqq);
1747 cfq_prio_boost(cfqq);
1748
1749 return __cfq_may_queue(cfqq);
1750 }
1751
1752 return ELV_MQUEUE_MAY;
1753 }
1754
1755 /*
1756 * queue lock held here
1757 */
1758 static void cfq_put_request(request_queue_t *q, struct request *rq)
1759 {
1760 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1761
1762 if (cfqq) {
1763 const int rw = rq_data_dir(rq);
1764
1765 BUG_ON(!cfqq->allocated[rw]);
1766 cfqq->allocated[rw]--;
1767
1768 put_io_context(RQ_CIC(rq)->ioc);
1769
1770 rq->elevator_private = NULL;
1771 rq->elevator_private2 = NULL;
1772
1773 cfq_put_queue(cfqq);
1774 }
1775 }
1776
1777 /*
1778 * Allocate cfq data structures associated with this request.
1779 */
1780 static int
1781 cfq_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask)
1782 {
1783 struct cfq_data *cfqd = q->elevator->elevator_data;
1784 struct task_struct *tsk = current;
1785 struct cfq_io_context *cic;
1786 const int rw = rq_data_dir(rq);
1787 pid_t key = cfq_queue_pid(tsk, rw);
1788 struct cfq_queue *cfqq;
1789 unsigned long flags;
1790 int is_sync = key != CFQ_KEY_ASYNC;
1791
1792 might_sleep_if(gfp_mask & __GFP_WAIT);
1793
1794 cic = cfq_get_io_context(cfqd, gfp_mask);
1795
1796 spin_lock_irqsave(q->queue_lock, flags);
1797
1798 if (!cic)
1799 goto queue_fail;
1800
1801 if (!cic->cfqq[is_sync]) {
1802 cfqq = cfq_get_queue(cfqd, key, tsk, gfp_mask);
1803 if (!cfqq)
1804 goto queue_fail;
1805
1806 cic->cfqq[is_sync] = cfqq;
1807 } else
1808 cfqq = cic->cfqq[is_sync];
1809
1810 cfqq->allocated[rw]++;
1811 cfq_clear_cfqq_must_alloc(cfqq);
1812 atomic_inc(&cfqq->ref);
1813
1814 spin_unlock_irqrestore(q->queue_lock, flags);
1815
1816 rq->elevator_private = cic;
1817 rq->elevator_private2 = cfqq;
1818 return 0;
1819
1820 queue_fail:
1821 if (cic)
1822 put_io_context(cic->ioc);
1823
1824 cfq_schedule_dispatch(cfqd);
1825 spin_unlock_irqrestore(q->queue_lock, flags);
1826 return 1;
1827 }
1828
1829 static void cfq_kick_queue(void *data)
1830 {
1831 request_queue_t *q = data;
1832 unsigned long flags;
1833
1834 spin_lock_irqsave(q->queue_lock, flags);
1835 blk_remove_plug(q);
1836 q->request_fn(q);
1837 spin_unlock_irqrestore(q->queue_lock, flags);
1838 }
1839
1840 /*
1841 * Timer running if the active_queue is currently idling inside its time slice
1842 */
1843 static void cfq_idle_slice_timer(unsigned long data)
1844 {
1845 struct cfq_data *cfqd = (struct cfq_data *) data;
1846 struct cfq_queue *cfqq;
1847 unsigned long flags;
1848
1849 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1850
1851 if ((cfqq = cfqd->active_queue) != NULL) {
1852 unsigned long now = jiffies;
1853
1854 /*
1855 * expired
1856 */
1857 if (time_after(now, cfqq->slice_end))
1858 goto expire;
1859
1860 /*
1861 * only expire and reinvoke request handler, if there are
1862 * other queues with pending requests
1863 */
1864 if (!cfqd->busy_queues)
1865 goto out_cont;
1866
1867 /*
1868 * not expired and it has a request pending, let it dispatch
1869 */
1870 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
1871 cfq_mark_cfqq_must_dispatch(cfqq);
1872 goto out_kick;
1873 }
1874 }
1875 expire:
1876 cfq_slice_expired(cfqd, 0);
1877 out_kick:
1878 cfq_schedule_dispatch(cfqd);
1879 out_cont:
1880 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1881 }
1882
1883 /*
1884 * Timer running if an idle class queue is waiting for service
1885 */
1886 static void cfq_idle_class_timer(unsigned long data)
1887 {
1888 struct cfq_data *cfqd = (struct cfq_data *) data;
1889 unsigned long flags, end;
1890
1891 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1892
1893 /*
1894 * race with a non-idle queue, reset timer
1895 */
1896 end = cfqd->last_end_request + CFQ_IDLE_GRACE;
1897 if (!time_after_eq(jiffies, end))
1898 mod_timer(&cfqd->idle_class_timer, end);
1899 else
1900 cfq_schedule_dispatch(cfqd);
1901
1902 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1903 }
1904
1905 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
1906 {
1907 del_timer_sync(&cfqd->idle_slice_timer);
1908 del_timer_sync(&cfqd->idle_class_timer);
1909 blk_sync_queue(cfqd->queue);
1910 }
1911
1912 static void cfq_exit_queue(elevator_t *e)
1913 {
1914 struct cfq_data *cfqd = e->elevator_data;
1915 request_queue_t *q = cfqd->queue;
1916
1917 cfq_shutdown_timer_wq(cfqd);
1918
1919 spin_lock_irq(q->queue_lock);
1920
1921 if (cfqd->active_queue)
1922 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
1923
1924 while (!list_empty(&cfqd->cic_list)) {
1925 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
1926 struct cfq_io_context,
1927 queue_list);
1928
1929 __cfq_exit_single_io_context(cfqd, cic);
1930 }
1931
1932 spin_unlock_irq(q->queue_lock);
1933
1934 cfq_shutdown_timer_wq(cfqd);
1935
1936 kfree(cfqd->cfq_hash);
1937 kfree(cfqd);
1938 }
1939
1940 static void *cfq_init_queue(request_queue_t *q, elevator_t *e)
1941 {
1942 struct cfq_data *cfqd;
1943 int i;
1944
1945 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
1946 if (!cfqd)
1947 return NULL;
1948
1949 memset(cfqd, 0, sizeof(*cfqd));
1950
1951 for (i = 0; i < CFQ_PRIO_LISTS; i++)
1952 INIT_LIST_HEAD(&cfqd->rr_list[i]);
1953
1954 INIT_LIST_HEAD(&cfqd->busy_rr);
1955 INIT_LIST_HEAD(&cfqd->cur_rr);
1956 INIT_LIST_HEAD(&cfqd->idle_rr);
1957 INIT_LIST_HEAD(&cfqd->cic_list);
1958
1959 cfqd->cfq_hash = kmalloc_node(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL, q->node);
1960 if (!cfqd->cfq_hash)
1961 goto out_free;
1962
1963 for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
1964 INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
1965
1966 cfqd->queue = q;
1967
1968 init_timer(&cfqd->idle_slice_timer);
1969 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
1970 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
1971
1972 init_timer(&cfqd->idle_class_timer);
1973 cfqd->idle_class_timer.function = cfq_idle_class_timer;
1974 cfqd->idle_class_timer.data = (unsigned long) cfqd;
1975
1976 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue, q);
1977
1978 cfqd->cfq_quantum = cfq_quantum;
1979 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
1980 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1981 cfqd->cfq_back_max = cfq_back_max;
1982 cfqd->cfq_back_penalty = cfq_back_penalty;
1983 cfqd->cfq_slice[0] = cfq_slice_async;
1984 cfqd->cfq_slice[1] = cfq_slice_sync;
1985 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
1986 cfqd->cfq_slice_idle = cfq_slice_idle;
1987
1988 return cfqd;
1989 out_free:
1990 kfree(cfqd);
1991 return NULL;
1992 }
1993
1994 static void cfq_slab_kill(void)
1995 {
1996 if (cfq_pool)
1997 kmem_cache_destroy(cfq_pool);
1998 if (cfq_ioc_pool)
1999 kmem_cache_destroy(cfq_ioc_pool);
2000 }
2001
2002 static int __init cfq_slab_setup(void)
2003 {
2004 cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2005 NULL, NULL);
2006 if (!cfq_pool)
2007 goto fail;
2008
2009 cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2010 sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2011 if (!cfq_ioc_pool)
2012 goto fail;
2013
2014 return 0;
2015 fail:
2016 cfq_slab_kill();
2017 return -ENOMEM;
2018 }
2019
2020 /*
2021 * sysfs parts below -->
2022 */
2023
2024 static ssize_t
2025 cfq_var_show(unsigned int var, char *page)
2026 {
2027 return sprintf(page, "%d\n", var);
2028 }
2029
2030 static ssize_t
2031 cfq_var_store(unsigned int *var, const char *page, size_t count)
2032 {
2033 char *p = (char *) page;
2034
2035 *var = simple_strtoul(p, &p, 10);
2036 return count;
2037 }
2038
2039 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2040 static ssize_t __FUNC(elevator_t *e, char *page) \
2041 { \
2042 struct cfq_data *cfqd = e->elevator_data; \
2043 unsigned int __data = __VAR; \
2044 if (__CONV) \
2045 __data = jiffies_to_msecs(__data); \
2046 return cfq_var_show(__data, (page)); \
2047 }
2048 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2049 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2050 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2051 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2052 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2053 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2054 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2055 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2056 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2057 #undef SHOW_FUNCTION
2058
2059 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2060 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
2061 { \
2062 struct cfq_data *cfqd = e->elevator_data; \
2063 unsigned int __data; \
2064 int ret = cfq_var_store(&__data, (page), count); \
2065 if (__data < (MIN)) \
2066 __data = (MIN); \
2067 else if (__data > (MAX)) \
2068 __data = (MAX); \
2069 if (__CONV) \
2070 *(__PTR) = msecs_to_jiffies(__data); \
2071 else \
2072 *(__PTR) = __data; \
2073 return ret; \
2074 }
2075 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2076 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2077 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2078 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2079 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2080 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2081 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2082 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2083 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2084 #undef STORE_FUNCTION
2085
2086 #define CFQ_ATTR(name) \
2087 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2088
2089 static struct elv_fs_entry cfq_attrs[] = {
2090 CFQ_ATTR(quantum),
2091 CFQ_ATTR(fifo_expire_sync),
2092 CFQ_ATTR(fifo_expire_async),
2093 CFQ_ATTR(back_seek_max),
2094 CFQ_ATTR(back_seek_penalty),
2095 CFQ_ATTR(slice_sync),
2096 CFQ_ATTR(slice_async),
2097 CFQ_ATTR(slice_async_rq),
2098 CFQ_ATTR(slice_idle),
2099 __ATTR_NULL
2100 };
2101
2102 static struct elevator_type iosched_cfq = {
2103 .ops = {
2104 .elevator_merge_fn = cfq_merge,
2105 .elevator_merged_fn = cfq_merged_request,
2106 .elevator_merge_req_fn = cfq_merged_requests,
2107 .elevator_dispatch_fn = cfq_dispatch_requests,
2108 .elevator_add_req_fn = cfq_insert_request,
2109 .elevator_activate_req_fn = cfq_activate_request,
2110 .elevator_deactivate_req_fn = cfq_deactivate_request,
2111 .elevator_queue_empty_fn = cfq_queue_empty,
2112 .elevator_completed_req_fn = cfq_completed_request,
2113 .elevator_former_req_fn = elv_rb_former_request,
2114 .elevator_latter_req_fn = elv_rb_latter_request,
2115 .elevator_set_req_fn = cfq_set_request,
2116 .elevator_put_req_fn = cfq_put_request,
2117 .elevator_may_queue_fn = cfq_may_queue,
2118 .elevator_init_fn = cfq_init_queue,
2119 .elevator_exit_fn = cfq_exit_queue,
2120 .trim = cfq_free_io_context,
2121 },
2122 .elevator_attrs = cfq_attrs,
2123 .elevator_name = "cfq",
2124 .elevator_owner = THIS_MODULE,
2125 };
2126
2127 static int __init cfq_init(void)
2128 {
2129 int ret;
2130
2131 /*
2132 * could be 0 on HZ < 1000 setups
2133 */
2134 if (!cfq_slice_async)
2135 cfq_slice_async = 1;
2136 if (!cfq_slice_idle)
2137 cfq_slice_idle = 1;
2138
2139 if (cfq_slab_setup())
2140 return -ENOMEM;
2141
2142 ret = elv_register(&iosched_cfq);
2143 if (ret)
2144 cfq_slab_kill();
2145
2146 return ret;
2147 }
2148
2149 static void __exit cfq_exit(void)
2150 {
2151 DECLARE_COMPLETION(all_gone);
2152 elv_unregister(&iosched_cfq);
2153 ioc_gone = &all_gone;
2154 /* ioc_gone's update must be visible before reading ioc_count */
2155 smp_wmb();
2156 if (elv_ioc_count_read(ioc_count))
2157 wait_for_completion(ioc_gone);
2158 synchronize_rcu();
2159 cfq_slab_kill();
2160 }
2161
2162 module_init(cfq_init);
2163 module_exit(cfq_exit);
2164
2165 MODULE_AUTHOR("Jens Axboe");
2166 MODULE_LICENSE("GPL");
2167 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
This page took 0.184173 seconds and 6 git commands to generate.