[PATCH] cfq-iosched: rq update fixes
[deliverable/linux.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@suse.de>
8 */
9 #include <linux/config.h>
10 #include <linux/module.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/hash.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16
17 /*
18 * tunables
19 */
20 static const int cfq_quantum = 4; /* max queue in one round of service */
21 static const int cfq_queued = 8; /* minimum rq allocate limit per-queue*/
22 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
23 static const int cfq_back_max = 16 * 1024; /* maximum backwards seek, in KiB */
24 static const int cfq_back_penalty = 2; /* penalty of a backwards seek */
25
26 static const int cfq_slice_sync = HZ / 10;
27 static int cfq_slice_async = HZ / 25;
28 static const int cfq_slice_async_rq = 2;
29 static int cfq_slice_idle = HZ / 125;
30
31 #define CFQ_IDLE_GRACE (HZ / 10)
32 #define CFQ_SLICE_SCALE (5)
33
34 #define CFQ_KEY_ASYNC (0)
35
36 static DEFINE_SPINLOCK(cfq_exit_lock);
37
38 /*
39 * for the hash of cfqq inside the cfqd
40 */
41 #define CFQ_QHASH_SHIFT 6
42 #define CFQ_QHASH_ENTRIES (1 << CFQ_QHASH_SHIFT)
43 #define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash)
44
45 /*
46 * for the hash of crq inside the cfqq
47 */
48 #define CFQ_MHASH_SHIFT 6
49 #define CFQ_MHASH_BLOCK(sec) ((sec) >> 3)
50 #define CFQ_MHASH_ENTRIES (1 << CFQ_MHASH_SHIFT)
51 #define CFQ_MHASH_FN(sec) hash_long(CFQ_MHASH_BLOCK(sec), CFQ_MHASH_SHIFT)
52 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
53 #define list_entry_hash(ptr) hlist_entry((ptr), struct cfq_rq, hash)
54
55 #define list_entry_cfqq(ptr) list_entry((ptr), struct cfq_queue, cfq_list)
56 #define list_entry_fifo(ptr) list_entry((ptr), struct request, queuelist)
57
58 #define RQ_DATA(rq) (rq)->elevator_private
59
60 /*
61 * rb-tree defines
62 */
63 #define RB_EMPTY(node) ((node)->rb_node == NULL)
64 #define RB_CLEAR(node) do { \
65 memset(node, 0, sizeof(*node)); \
66 } while (0)
67 #define RB_CLEAR_ROOT(root) ((root)->rb_node = NULL)
68 #define rb_entry_crq(node) rb_entry((node), struct cfq_rq, rb_node)
69 #define rq_rb_key(rq) (rq)->sector
70
71 static kmem_cache_t *crq_pool;
72 static kmem_cache_t *cfq_pool;
73 static kmem_cache_t *cfq_ioc_pool;
74
75 static atomic_t ioc_count = ATOMIC_INIT(0);
76 static struct completion *ioc_gone;
77
78 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
79 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
80 #define cfq_class_be(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_BE)
81 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
82
83 #define ASYNC (0)
84 #define SYNC (1)
85
86 #define cfq_cfqq_dispatched(cfqq) \
87 ((cfqq)->on_dispatch[ASYNC] + (cfqq)->on_dispatch[SYNC])
88
89 #define cfq_cfqq_class_sync(cfqq) ((cfqq)->key != CFQ_KEY_ASYNC)
90
91 #define cfq_cfqq_sync(cfqq) \
92 (cfq_cfqq_class_sync(cfqq) || (cfqq)->on_dispatch[SYNC])
93
94 #define sample_valid(samples) ((samples) > 80)
95
96 /*
97 * Per block device queue structure
98 */
99 struct cfq_data {
100 request_queue_t *queue;
101
102 /*
103 * rr list of queues with requests and the count of them
104 */
105 struct list_head rr_list[CFQ_PRIO_LISTS];
106 struct list_head busy_rr;
107 struct list_head cur_rr;
108 struct list_head idle_rr;
109 unsigned int busy_queues;
110
111 /*
112 * non-ordered list of empty cfqq's
113 */
114 struct list_head empty_list;
115
116 /*
117 * cfqq lookup hash
118 */
119 struct hlist_head *cfq_hash;
120
121 /*
122 * global crq hash for all queues
123 */
124 struct hlist_head *crq_hash;
125
126 mempool_t *crq_pool;
127
128 int rq_in_driver;
129 int hw_tag;
130
131 /*
132 * schedule slice state info
133 */
134 /*
135 * idle window management
136 */
137 struct timer_list idle_slice_timer;
138 struct work_struct unplug_work;
139
140 struct cfq_queue *active_queue;
141 struct cfq_io_context *active_cic;
142 int cur_prio, cur_end_prio;
143 unsigned int dispatch_slice;
144
145 struct timer_list idle_class_timer;
146
147 sector_t last_sector;
148 unsigned long last_end_request;
149
150 unsigned int rq_starved;
151
152 /*
153 * tunables, see top of file
154 */
155 unsigned int cfq_quantum;
156 unsigned int cfq_queued;
157 unsigned int cfq_fifo_expire[2];
158 unsigned int cfq_back_penalty;
159 unsigned int cfq_back_max;
160 unsigned int cfq_slice[2];
161 unsigned int cfq_slice_async_rq;
162 unsigned int cfq_slice_idle;
163
164 struct list_head cic_list;
165 };
166
167 /*
168 * Per process-grouping structure
169 */
170 struct cfq_queue {
171 /* reference count */
172 atomic_t ref;
173 /* parent cfq_data */
174 struct cfq_data *cfqd;
175 /* cfqq lookup hash */
176 struct hlist_node cfq_hash;
177 /* hash key */
178 unsigned int key;
179 /* on either rr or empty list of cfqd */
180 struct list_head cfq_list;
181 /* sorted list of pending requests */
182 struct rb_root sort_list;
183 /* if fifo isn't expired, next request to serve */
184 struct cfq_rq *next_crq;
185 /* requests queued in sort_list */
186 int queued[2];
187 /* currently allocated requests */
188 int allocated[2];
189 /* fifo list of requests in sort_list */
190 struct list_head fifo;
191
192 unsigned long slice_start;
193 unsigned long slice_end;
194 unsigned long slice_left;
195 unsigned long service_last;
196
197 /* number of requests that are on the dispatch list */
198 int on_dispatch[2];
199
200 /* io prio of this group */
201 unsigned short ioprio, org_ioprio;
202 unsigned short ioprio_class, org_ioprio_class;
203
204 /* various state flags, see below */
205 unsigned int flags;
206 };
207
208 struct cfq_rq {
209 struct rb_node rb_node;
210 sector_t rb_key;
211 struct request *request;
212 struct hlist_node hash;
213
214 struct cfq_queue *cfq_queue;
215 struct cfq_io_context *io_context;
216
217 unsigned int crq_flags;
218 };
219
220 enum cfqq_state_flags {
221 CFQ_CFQQ_FLAG_on_rr = 0,
222 CFQ_CFQQ_FLAG_wait_request,
223 CFQ_CFQQ_FLAG_must_alloc,
224 CFQ_CFQQ_FLAG_must_alloc_slice,
225 CFQ_CFQQ_FLAG_must_dispatch,
226 CFQ_CFQQ_FLAG_fifo_expire,
227 CFQ_CFQQ_FLAG_idle_window,
228 CFQ_CFQQ_FLAG_prio_changed,
229 };
230
231 #define CFQ_CFQQ_FNS(name) \
232 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
233 { \
234 cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
235 } \
236 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
237 { \
238 cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
239 } \
240 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
241 { \
242 return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
243 }
244
245 CFQ_CFQQ_FNS(on_rr);
246 CFQ_CFQQ_FNS(wait_request);
247 CFQ_CFQQ_FNS(must_alloc);
248 CFQ_CFQQ_FNS(must_alloc_slice);
249 CFQ_CFQQ_FNS(must_dispatch);
250 CFQ_CFQQ_FNS(fifo_expire);
251 CFQ_CFQQ_FNS(idle_window);
252 CFQ_CFQQ_FNS(prio_changed);
253 #undef CFQ_CFQQ_FNS
254
255 enum cfq_rq_state_flags {
256 CFQ_CRQ_FLAG_is_sync = 0,
257 };
258
259 #define CFQ_CRQ_FNS(name) \
260 static inline void cfq_mark_crq_##name(struct cfq_rq *crq) \
261 { \
262 crq->crq_flags |= (1 << CFQ_CRQ_FLAG_##name); \
263 } \
264 static inline void cfq_clear_crq_##name(struct cfq_rq *crq) \
265 { \
266 crq->crq_flags &= ~(1 << CFQ_CRQ_FLAG_##name); \
267 } \
268 static inline int cfq_crq_##name(const struct cfq_rq *crq) \
269 { \
270 return (crq->crq_flags & (1 << CFQ_CRQ_FLAG_##name)) != 0; \
271 }
272
273 CFQ_CRQ_FNS(is_sync);
274 #undef CFQ_CRQ_FNS
275
276 static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
277 static void cfq_dispatch_insert(request_queue_t *, struct cfq_rq *);
278 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk, gfp_t gfp_mask);
279
280 /*
281 * lots of deadline iosched dupes, can be abstracted later...
282 */
283 static inline void cfq_del_crq_hash(struct cfq_rq *crq)
284 {
285 hlist_del_init(&crq->hash);
286 }
287
288 static inline void cfq_add_crq_hash(struct cfq_data *cfqd, struct cfq_rq *crq)
289 {
290 const int hash_idx = CFQ_MHASH_FN(rq_hash_key(crq->request));
291
292 hlist_add_head(&crq->hash, &cfqd->crq_hash[hash_idx]);
293 }
294
295 static struct request *cfq_find_rq_hash(struct cfq_data *cfqd, sector_t offset)
296 {
297 struct hlist_head *hash_list = &cfqd->crq_hash[CFQ_MHASH_FN(offset)];
298 struct hlist_node *entry, *next;
299
300 hlist_for_each_safe(entry, next, hash_list) {
301 struct cfq_rq *crq = list_entry_hash(entry);
302 struct request *__rq = crq->request;
303
304 if (!rq_mergeable(__rq)) {
305 cfq_del_crq_hash(crq);
306 continue;
307 }
308
309 if (rq_hash_key(__rq) == offset)
310 return __rq;
311 }
312
313 return NULL;
314 }
315
316 /*
317 * scheduler run of queue, if there are requests pending and no one in the
318 * driver that will restart queueing
319 */
320 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
321 {
322 if (cfqd->busy_queues)
323 kblockd_schedule_work(&cfqd->unplug_work);
324 }
325
326 static int cfq_queue_empty(request_queue_t *q)
327 {
328 struct cfq_data *cfqd = q->elevator->elevator_data;
329
330 return !cfqd->busy_queues;
331 }
332
333 static inline pid_t cfq_queue_pid(struct task_struct *task, int rw)
334 {
335 if (rw == READ || rw == WRITE_SYNC)
336 return task->pid;
337
338 return CFQ_KEY_ASYNC;
339 }
340
341 /*
342 * Lifted from AS - choose which of crq1 and crq2 that is best served now.
343 * We choose the request that is closest to the head right now. Distance
344 * behind the head is penalized and only allowed to a certain extent.
345 */
346 static struct cfq_rq *
347 cfq_choose_req(struct cfq_data *cfqd, struct cfq_rq *crq1, struct cfq_rq *crq2)
348 {
349 sector_t last, s1, s2, d1 = 0, d2 = 0;
350 unsigned long back_max;
351 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
352 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
353 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
354
355 if (crq1 == NULL || crq1 == crq2)
356 return crq2;
357 if (crq2 == NULL)
358 return crq1;
359
360 if (cfq_crq_is_sync(crq1) && !cfq_crq_is_sync(crq2))
361 return crq1;
362 else if (cfq_crq_is_sync(crq2) && !cfq_crq_is_sync(crq1))
363 return crq2;
364
365 s1 = crq1->request->sector;
366 s2 = crq2->request->sector;
367
368 last = cfqd->last_sector;
369
370 /*
371 * by definition, 1KiB is 2 sectors
372 */
373 back_max = cfqd->cfq_back_max * 2;
374
375 /*
376 * Strict one way elevator _except_ in the case where we allow
377 * short backward seeks which are biased as twice the cost of a
378 * similar forward seek.
379 */
380 if (s1 >= last)
381 d1 = s1 - last;
382 else if (s1 + back_max >= last)
383 d1 = (last - s1) * cfqd->cfq_back_penalty;
384 else
385 wrap |= CFQ_RQ1_WRAP;
386
387 if (s2 >= last)
388 d2 = s2 - last;
389 else if (s2 + back_max >= last)
390 d2 = (last - s2) * cfqd->cfq_back_penalty;
391 else
392 wrap |= CFQ_RQ2_WRAP;
393
394 /* Found required data */
395
396 /*
397 * By doing switch() on the bit mask "wrap" we avoid having to
398 * check two variables for all permutations: --> faster!
399 */
400 switch (wrap) {
401 case 0: /* common case for CFQ: crq1 and crq2 not wrapped */
402 if (d1 < d2)
403 return crq1;
404 else if (d2 < d1)
405 return crq2;
406 else {
407 if (s1 >= s2)
408 return crq1;
409 else
410 return crq2;
411 }
412
413 case CFQ_RQ2_WRAP:
414 return crq1;
415 case CFQ_RQ1_WRAP:
416 return crq2;
417 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both crqs wrapped */
418 default:
419 /*
420 * Since both rqs are wrapped,
421 * start with the one that's further behind head
422 * (--> only *one* back seek required),
423 * since back seek takes more time than forward.
424 */
425 if (s1 <= s2)
426 return crq1;
427 else
428 return crq2;
429 }
430 }
431
432 /*
433 * would be nice to take fifo expire time into account as well
434 */
435 static struct cfq_rq *
436 cfq_find_next_crq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
437 struct cfq_rq *last)
438 {
439 struct cfq_rq *crq_next = NULL, *crq_prev = NULL;
440 struct rb_node *rbnext, *rbprev;
441
442 if (!(rbnext = rb_next(&last->rb_node))) {
443 rbnext = rb_first(&cfqq->sort_list);
444 if (rbnext == &last->rb_node)
445 rbnext = NULL;
446 }
447
448 rbprev = rb_prev(&last->rb_node);
449
450 if (rbprev)
451 crq_prev = rb_entry_crq(rbprev);
452 if (rbnext)
453 crq_next = rb_entry_crq(rbnext);
454
455 return cfq_choose_req(cfqd, crq_next, crq_prev);
456 }
457
458 static void cfq_update_next_crq(struct cfq_rq *crq)
459 {
460 struct cfq_queue *cfqq = crq->cfq_queue;
461
462 if (cfqq->next_crq == crq)
463 cfqq->next_crq = cfq_find_next_crq(cfqq->cfqd, cfqq, crq);
464 }
465
466 static void cfq_resort_rr_list(struct cfq_queue *cfqq, int preempted)
467 {
468 struct cfq_data *cfqd = cfqq->cfqd;
469 struct list_head *list, *entry;
470
471 BUG_ON(!cfq_cfqq_on_rr(cfqq));
472
473 list_del(&cfqq->cfq_list);
474
475 if (cfq_class_rt(cfqq))
476 list = &cfqd->cur_rr;
477 else if (cfq_class_idle(cfqq))
478 list = &cfqd->idle_rr;
479 else {
480 /*
481 * if cfqq has requests in flight, don't allow it to be
482 * found in cfq_set_active_queue before it has finished them.
483 * this is done to increase fairness between a process that
484 * has lots of io pending vs one that only generates one
485 * sporadically or synchronously
486 */
487 if (cfq_cfqq_dispatched(cfqq))
488 list = &cfqd->busy_rr;
489 else
490 list = &cfqd->rr_list[cfqq->ioprio];
491 }
492
493 /*
494 * if queue was preempted, just add to front to be fair. busy_rr
495 * isn't sorted, but insert at the back for fairness.
496 */
497 if (preempted || list == &cfqd->busy_rr) {
498 if (preempted)
499 list = list->prev;
500
501 list_add_tail(&cfqq->cfq_list, list);
502 return;
503 }
504
505 /*
506 * sort by when queue was last serviced
507 */
508 entry = list;
509 while ((entry = entry->prev) != list) {
510 struct cfq_queue *__cfqq = list_entry_cfqq(entry);
511
512 if (!__cfqq->service_last)
513 break;
514 if (time_before(__cfqq->service_last, cfqq->service_last))
515 break;
516 }
517
518 list_add(&cfqq->cfq_list, entry);
519 }
520
521 /*
522 * add to busy list of queues for service, trying to be fair in ordering
523 * the pending list according to last request service
524 */
525 static inline void
526 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
527 {
528 BUG_ON(cfq_cfqq_on_rr(cfqq));
529 cfq_mark_cfqq_on_rr(cfqq);
530 cfqd->busy_queues++;
531
532 cfq_resort_rr_list(cfqq, 0);
533 }
534
535 static inline void
536 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
537 {
538 BUG_ON(!cfq_cfqq_on_rr(cfqq));
539 cfq_clear_cfqq_on_rr(cfqq);
540 list_move(&cfqq->cfq_list, &cfqd->empty_list);
541
542 BUG_ON(!cfqd->busy_queues);
543 cfqd->busy_queues--;
544 }
545
546 /*
547 * rb tree support functions
548 */
549 static inline void cfq_del_crq_rb(struct cfq_rq *crq)
550 {
551 struct cfq_queue *cfqq = crq->cfq_queue;
552 struct cfq_data *cfqd = cfqq->cfqd;
553 const int sync = cfq_crq_is_sync(crq);
554
555 BUG_ON(!cfqq->queued[sync]);
556 cfqq->queued[sync]--;
557
558 cfq_update_next_crq(crq);
559
560 rb_erase(&crq->rb_node, &cfqq->sort_list);
561
562 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY(&cfqq->sort_list))
563 cfq_del_cfqq_rr(cfqd, cfqq);
564 }
565
566 static struct cfq_rq *
567 __cfq_add_crq_rb(struct cfq_rq *crq)
568 {
569 struct rb_node **p = &crq->cfq_queue->sort_list.rb_node;
570 struct rb_node *parent = NULL;
571 struct cfq_rq *__crq;
572
573 while (*p) {
574 parent = *p;
575 __crq = rb_entry_crq(parent);
576
577 if (crq->rb_key < __crq->rb_key)
578 p = &(*p)->rb_left;
579 else if (crq->rb_key > __crq->rb_key)
580 p = &(*p)->rb_right;
581 else
582 return __crq;
583 }
584
585 rb_link_node(&crq->rb_node, parent, p);
586 return NULL;
587 }
588
589 static void cfq_add_crq_rb(struct cfq_rq *crq)
590 {
591 struct cfq_queue *cfqq = crq->cfq_queue;
592 struct cfq_data *cfqd = cfqq->cfqd;
593 struct request *rq = crq->request;
594 struct cfq_rq *__alias;
595
596 crq->rb_key = rq_rb_key(rq);
597 cfqq->queued[cfq_crq_is_sync(crq)]++;
598
599 /*
600 * looks a little odd, but the first insert might return an alias.
601 * if that happens, put the alias on the dispatch list
602 */
603 while ((__alias = __cfq_add_crq_rb(crq)) != NULL)
604 cfq_dispatch_insert(cfqd->queue, __alias);
605
606 rb_insert_color(&crq->rb_node, &cfqq->sort_list);
607
608 if (!cfq_cfqq_on_rr(cfqq))
609 cfq_add_cfqq_rr(cfqd, cfqq);
610
611 /*
612 * check if this request is a better next-serve candidate
613 */
614 cfqq->next_crq = cfq_choose_req(cfqd, cfqq->next_crq, crq);
615 }
616
617 static inline void
618 cfq_reposition_crq_rb(struct cfq_queue *cfqq, struct cfq_rq *crq)
619 {
620 rb_erase(&crq->rb_node, &cfqq->sort_list);
621 cfqq->queued[cfq_crq_is_sync(crq)]--;
622
623 cfq_add_crq_rb(crq);
624 }
625
626 static struct request *
627 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
628 {
629 struct task_struct *tsk = current;
630 pid_t key = cfq_queue_pid(tsk, bio_data_dir(bio));
631 struct cfq_queue *cfqq;
632 struct rb_node *n;
633 sector_t sector;
634
635 cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
636 if (!cfqq)
637 goto out;
638
639 sector = bio->bi_sector + bio_sectors(bio);
640 n = cfqq->sort_list.rb_node;
641 while (n) {
642 struct cfq_rq *crq = rb_entry_crq(n);
643
644 if (sector < crq->rb_key)
645 n = n->rb_left;
646 else if (sector > crq->rb_key)
647 n = n->rb_right;
648 else
649 return crq->request;
650 }
651
652 out:
653 return NULL;
654 }
655
656 static void cfq_activate_request(request_queue_t *q, struct request *rq)
657 {
658 struct cfq_data *cfqd = q->elevator->elevator_data;
659
660 cfqd->rq_in_driver++;
661
662 /*
663 * If the depth is larger 1, it really could be queueing. But lets
664 * make the mark a little higher - idling could still be good for
665 * low queueing, and a low queueing number could also just indicate
666 * a SCSI mid layer like behaviour where limit+1 is often seen.
667 */
668 if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
669 cfqd->hw_tag = 1;
670 }
671
672 static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
673 {
674 struct cfq_data *cfqd = q->elevator->elevator_data;
675
676 WARN_ON(!cfqd->rq_in_driver);
677 cfqd->rq_in_driver--;
678 }
679
680 static void cfq_remove_request(struct request *rq)
681 {
682 struct cfq_rq *crq = RQ_DATA(rq);
683
684 list_del_init(&rq->queuelist);
685 cfq_del_crq_rb(crq);
686 cfq_del_crq_hash(crq);
687 }
688
689 static int
690 cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
691 {
692 struct cfq_data *cfqd = q->elevator->elevator_data;
693 struct request *__rq;
694 int ret;
695
696 __rq = cfq_find_rq_hash(cfqd, bio->bi_sector);
697 if (__rq && elv_rq_merge_ok(__rq, bio)) {
698 ret = ELEVATOR_BACK_MERGE;
699 goto out;
700 }
701
702 __rq = cfq_find_rq_fmerge(cfqd, bio);
703 if (__rq && elv_rq_merge_ok(__rq, bio)) {
704 ret = ELEVATOR_FRONT_MERGE;
705 goto out;
706 }
707
708 return ELEVATOR_NO_MERGE;
709 out:
710 *req = __rq;
711 return ret;
712 }
713
714 static void cfq_merged_request(request_queue_t *q, struct request *req)
715 {
716 struct cfq_data *cfqd = q->elevator->elevator_data;
717 struct cfq_rq *crq = RQ_DATA(req);
718
719 cfq_del_crq_hash(crq);
720 cfq_add_crq_hash(cfqd, crq);
721
722 if (rq_rb_key(req) != crq->rb_key) {
723 struct cfq_queue *cfqq = crq->cfq_queue;
724
725 cfq_update_next_crq(crq);
726 cfq_reposition_crq_rb(cfqq, crq);
727 }
728 }
729
730 static void
731 cfq_merged_requests(request_queue_t *q, struct request *rq,
732 struct request *next)
733 {
734 cfq_merged_request(q, rq);
735
736 /*
737 * reposition in fifo if next is older than rq
738 */
739 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
740 time_before(next->start_time, rq->start_time))
741 list_move(&rq->queuelist, &next->queuelist);
742
743 cfq_remove_request(next);
744 }
745
746 static inline void
747 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
748 {
749 if (cfqq) {
750 /*
751 * stop potential idle class queues waiting service
752 */
753 del_timer(&cfqd->idle_class_timer);
754
755 cfqq->slice_start = jiffies;
756 cfqq->slice_end = 0;
757 cfqq->slice_left = 0;
758 cfq_clear_cfqq_must_alloc_slice(cfqq);
759 cfq_clear_cfqq_fifo_expire(cfqq);
760 }
761
762 cfqd->active_queue = cfqq;
763 }
764
765 /*
766 * current cfqq expired its slice (or was too idle), select new one
767 */
768 static void
769 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
770 int preempted)
771 {
772 unsigned long now = jiffies;
773
774 if (cfq_cfqq_wait_request(cfqq))
775 del_timer(&cfqd->idle_slice_timer);
776
777 if (!preempted && !cfq_cfqq_dispatched(cfqq)) {
778 cfqq->service_last = now;
779 cfq_schedule_dispatch(cfqd);
780 }
781
782 cfq_clear_cfqq_must_dispatch(cfqq);
783 cfq_clear_cfqq_wait_request(cfqq);
784
785 /*
786 * store what was left of this slice, if the queue idled out
787 * or was preempted
788 */
789 if (time_after(cfqq->slice_end, now))
790 cfqq->slice_left = cfqq->slice_end - now;
791 else
792 cfqq->slice_left = 0;
793
794 if (cfq_cfqq_on_rr(cfqq))
795 cfq_resort_rr_list(cfqq, preempted);
796
797 if (cfqq == cfqd->active_queue)
798 cfqd->active_queue = NULL;
799
800 if (cfqd->active_cic) {
801 put_io_context(cfqd->active_cic->ioc);
802 cfqd->active_cic = NULL;
803 }
804
805 cfqd->dispatch_slice = 0;
806 }
807
808 static inline void cfq_slice_expired(struct cfq_data *cfqd, int preempted)
809 {
810 struct cfq_queue *cfqq = cfqd->active_queue;
811
812 if (cfqq)
813 __cfq_slice_expired(cfqd, cfqq, preempted);
814 }
815
816 /*
817 * 0
818 * 0,1
819 * 0,1,2
820 * 0,1,2,3
821 * 0,1,2,3,4
822 * 0,1,2,3,4,5
823 * 0,1,2,3,4,5,6
824 * 0,1,2,3,4,5,6,7
825 */
826 static int cfq_get_next_prio_level(struct cfq_data *cfqd)
827 {
828 int prio, wrap;
829
830 prio = -1;
831 wrap = 0;
832 do {
833 int p;
834
835 for (p = cfqd->cur_prio; p <= cfqd->cur_end_prio; p++) {
836 if (!list_empty(&cfqd->rr_list[p])) {
837 prio = p;
838 break;
839 }
840 }
841
842 if (prio != -1)
843 break;
844 cfqd->cur_prio = 0;
845 if (++cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
846 cfqd->cur_end_prio = 0;
847 if (wrap)
848 break;
849 wrap = 1;
850 }
851 } while (1);
852
853 if (unlikely(prio == -1))
854 return -1;
855
856 BUG_ON(prio >= CFQ_PRIO_LISTS);
857
858 list_splice_init(&cfqd->rr_list[prio], &cfqd->cur_rr);
859
860 cfqd->cur_prio = prio + 1;
861 if (cfqd->cur_prio > cfqd->cur_end_prio) {
862 cfqd->cur_end_prio = cfqd->cur_prio;
863 cfqd->cur_prio = 0;
864 }
865 if (cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
866 cfqd->cur_prio = 0;
867 cfqd->cur_end_prio = 0;
868 }
869
870 return prio;
871 }
872
873 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
874 {
875 struct cfq_queue *cfqq = NULL;
876
877 /*
878 * if current list is non-empty, grab first entry. if it is empty,
879 * get next prio level and grab first entry then if any are spliced
880 */
881 if (!list_empty(&cfqd->cur_rr) || cfq_get_next_prio_level(cfqd) != -1)
882 cfqq = list_entry_cfqq(cfqd->cur_rr.next);
883
884 /*
885 * If no new queues are available, check if the busy list has some
886 * before falling back to idle io.
887 */
888 if (!cfqq && !list_empty(&cfqd->busy_rr))
889 cfqq = list_entry_cfqq(cfqd->busy_rr.next);
890
891 /*
892 * if we have idle queues and no rt or be queues had pending
893 * requests, either allow immediate service if the grace period
894 * has passed or arm the idle grace timer
895 */
896 if (!cfqq && !list_empty(&cfqd->idle_rr)) {
897 unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE;
898
899 if (time_after_eq(jiffies, end))
900 cfqq = list_entry_cfqq(cfqd->idle_rr.next);
901 else
902 mod_timer(&cfqd->idle_class_timer, end);
903 }
904
905 __cfq_set_active_queue(cfqd, cfqq);
906 return cfqq;
907 }
908
909 #define CIC_SEEKY(cic) ((cic)->seek_mean > (128 * 1024))
910
911 static int cfq_arm_slice_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
912
913 {
914 struct cfq_io_context *cic;
915 unsigned long sl;
916
917 WARN_ON(!RB_EMPTY(&cfqq->sort_list));
918 WARN_ON(cfqq != cfqd->active_queue);
919
920 /*
921 * idle is disabled, either manually or by past process history
922 */
923 if (!cfqd->cfq_slice_idle)
924 return 0;
925 if (!cfq_cfqq_idle_window(cfqq))
926 return 0;
927 /*
928 * task has exited, don't wait
929 */
930 cic = cfqd->active_cic;
931 if (!cic || !cic->ioc->task)
932 return 0;
933
934 cfq_mark_cfqq_must_dispatch(cfqq);
935 cfq_mark_cfqq_wait_request(cfqq);
936
937 sl = min(cfqq->slice_end - 1, (unsigned long) cfqd->cfq_slice_idle);
938
939 /*
940 * we don't want to idle for seeks, but we do want to allow
941 * fair distribution of slice time for a process doing back-to-back
942 * seeks. so allow a little bit of time for him to submit a new rq
943 */
944 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
945 sl = 2;
946
947 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
948 return 1;
949 }
950
951 static void cfq_dispatch_insert(request_queue_t *q, struct cfq_rq *crq)
952 {
953 struct cfq_data *cfqd = q->elevator->elevator_data;
954 struct cfq_queue *cfqq = crq->cfq_queue;
955 struct request *rq;
956
957 cfqq->next_crq = cfq_find_next_crq(cfqd, cfqq, crq);
958 cfq_remove_request(crq->request);
959 cfqq->on_dispatch[cfq_crq_is_sync(crq)]++;
960 elv_dispatch_sort(q, crq->request);
961
962 rq = list_entry(q->queue_head.prev, struct request, queuelist);
963 cfqd->last_sector = rq->sector + rq->nr_sectors;
964 }
965
966 /*
967 * return expired entry, or NULL to just start from scratch in rbtree
968 */
969 static inline struct cfq_rq *cfq_check_fifo(struct cfq_queue *cfqq)
970 {
971 struct cfq_data *cfqd = cfqq->cfqd;
972 struct request *rq;
973 struct cfq_rq *crq;
974
975 if (cfq_cfqq_fifo_expire(cfqq))
976 return NULL;
977
978 if (!list_empty(&cfqq->fifo)) {
979 int fifo = cfq_cfqq_class_sync(cfqq);
980
981 crq = RQ_DATA(list_entry_fifo(cfqq->fifo.next));
982 rq = crq->request;
983 if (time_after(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo])) {
984 cfq_mark_cfqq_fifo_expire(cfqq);
985 return crq;
986 }
987 }
988
989 return NULL;
990 }
991
992 /*
993 * Scale schedule slice based on io priority. Use the sync time slice only
994 * if a queue is marked sync and has sync io queued. A sync queue with async
995 * io only, should not get full sync slice length.
996 */
997 static inline int
998 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
999 {
1000 const int base_slice = cfqd->cfq_slice[cfq_cfqq_sync(cfqq)];
1001
1002 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1003
1004 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - cfqq->ioprio));
1005 }
1006
1007 static inline void
1008 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1009 {
1010 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
1011 }
1012
1013 static inline int
1014 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1015 {
1016 const int base_rq = cfqd->cfq_slice_async_rq;
1017
1018 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1019
1020 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1021 }
1022
1023 /*
1024 * get next queue for service
1025 */
1026 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1027 {
1028 unsigned long now = jiffies;
1029 struct cfq_queue *cfqq;
1030
1031 cfqq = cfqd->active_queue;
1032 if (!cfqq)
1033 goto new_queue;
1034
1035 /*
1036 * slice has expired
1037 */
1038 if (!cfq_cfqq_must_dispatch(cfqq) && time_after(now, cfqq->slice_end))
1039 goto expire;
1040
1041 /*
1042 * if queue has requests, dispatch one. if not, check if
1043 * enough slice is left to wait for one
1044 */
1045 if (!RB_EMPTY(&cfqq->sort_list))
1046 goto keep_queue;
1047 else if (cfq_cfqq_dispatched(cfqq)) {
1048 cfqq = NULL;
1049 goto keep_queue;
1050 } else if (cfq_cfqq_class_sync(cfqq)) {
1051 if (cfq_arm_slice_timer(cfqd, cfqq))
1052 return NULL;
1053 }
1054
1055 expire:
1056 cfq_slice_expired(cfqd, 0);
1057 new_queue:
1058 cfqq = cfq_set_active_queue(cfqd);
1059 keep_queue:
1060 return cfqq;
1061 }
1062
1063 static int
1064 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1065 int max_dispatch)
1066 {
1067 int dispatched = 0;
1068
1069 BUG_ON(RB_EMPTY(&cfqq->sort_list));
1070
1071 do {
1072 struct cfq_rq *crq;
1073
1074 /*
1075 * follow expired path, else get first next available
1076 */
1077 if ((crq = cfq_check_fifo(cfqq)) == NULL)
1078 crq = cfqq->next_crq;
1079
1080 /*
1081 * finally, insert request into driver dispatch list
1082 */
1083 cfq_dispatch_insert(cfqd->queue, crq);
1084
1085 cfqd->dispatch_slice++;
1086 dispatched++;
1087
1088 if (!cfqd->active_cic) {
1089 atomic_inc(&crq->io_context->ioc->refcount);
1090 cfqd->active_cic = crq->io_context;
1091 }
1092
1093 if (RB_EMPTY(&cfqq->sort_list))
1094 break;
1095
1096 } while (dispatched < max_dispatch);
1097
1098 /*
1099 * if slice end isn't set yet, set it.
1100 */
1101 if (!cfqq->slice_end)
1102 cfq_set_prio_slice(cfqd, cfqq);
1103
1104 /*
1105 * expire an async queue immediately if it has used up its slice. idle
1106 * queue always expire after 1 dispatch round.
1107 */
1108 if ((!cfq_cfqq_sync(cfqq) &&
1109 cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1110 cfq_class_idle(cfqq) ||
1111 !cfq_cfqq_idle_window(cfqq))
1112 cfq_slice_expired(cfqd, 0);
1113
1114 return dispatched;
1115 }
1116
1117 static int
1118 cfq_forced_dispatch_cfqqs(struct list_head *list)
1119 {
1120 struct cfq_queue *cfqq, *next;
1121 struct cfq_rq *crq;
1122 int dispatched;
1123
1124 dispatched = 0;
1125 list_for_each_entry_safe(cfqq, next, list, cfq_list) {
1126 while ((crq = cfqq->next_crq)) {
1127 cfq_dispatch_insert(cfqq->cfqd->queue, crq);
1128 dispatched++;
1129 }
1130 BUG_ON(!list_empty(&cfqq->fifo));
1131 }
1132
1133 return dispatched;
1134 }
1135
1136 static int
1137 cfq_forced_dispatch(struct cfq_data *cfqd)
1138 {
1139 int i, dispatched = 0;
1140
1141 for (i = 0; i < CFQ_PRIO_LISTS; i++)
1142 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->rr_list[i]);
1143
1144 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->busy_rr);
1145 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->cur_rr);
1146 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->idle_rr);
1147
1148 cfq_slice_expired(cfqd, 0);
1149
1150 BUG_ON(cfqd->busy_queues);
1151
1152 return dispatched;
1153 }
1154
1155 static int
1156 cfq_dispatch_requests(request_queue_t *q, int force)
1157 {
1158 struct cfq_data *cfqd = q->elevator->elevator_data;
1159 struct cfq_queue *cfqq, *prev_cfqq;
1160 int dispatched;
1161
1162 if (!cfqd->busy_queues)
1163 return 0;
1164
1165 if (unlikely(force))
1166 return cfq_forced_dispatch(cfqd);
1167
1168 dispatched = 0;
1169 prev_cfqq = NULL;
1170 while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
1171 int max_dispatch;
1172
1173 /*
1174 * Don't repeat dispatch from the previous queue.
1175 */
1176 if (prev_cfqq == cfqq)
1177 break;
1178
1179 cfq_clear_cfqq_must_dispatch(cfqq);
1180 cfq_clear_cfqq_wait_request(cfqq);
1181 del_timer(&cfqd->idle_slice_timer);
1182
1183 max_dispatch = cfqd->cfq_quantum;
1184 if (cfq_class_idle(cfqq))
1185 max_dispatch = 1;
1186
1187 dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1188
1189 /*
1190 * If the dispatch cfqq has idling enabled and is still
1191 * the active queue, break out.
1192 */
1193 if (cfq_cfqq_idle_window(cfqq) && cfqd->active_queue)
1194 break;
1195
1196 prev_cfqq = cfqq;
1197 }
1198
1199 return dispatched;
1200 }
1201
1202 /*
1203 * task holds one reference to the queue, dropped when task exits. each crq
1204 * in-flight on this queue also holds a reference, dropped when crq is freed.
1205 *
1206 * queue lock must be held here.
1207 */
1208 static void cfq_put_queue(struct cfq_queue *cfqq)
1209 {
1210 struct cfq_data *cfqd = cfqq->cfqd;
1211
1212 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1213
1214 if (!atomic_dec_and_test(&cfqq->ref))
1215 return;
1216
1217 BUG_ON(rb_first(&cfqq->sort_list));
1218 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1219 BUG_ON(cfq_cfqq_on_rr(cfqq));
1220
1221 if (unlikely(cfqd->active_queue == cfqq))
1222 __cfq_slice_expired(cfqd, cfqq, 0);
1223
1224 /*
1225 * it's on the empty list and still hashed
1226 */
1227 list_del(&cfqq->cfq_list);
1228 hlist_del(&cfqq->cfq_hash);
1229 kmem_cache_free(cfq_pool, cfqq);
1230 }
1231
1232 static inline struct cfq_queue *
1233 __cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1234 const int hashval)
1235 {
1236 struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1237 struct hlist_node *entry;
1238 struct cfq_queue *__cfqq;
1239
1240 hlist_for_each_entry(__cfqq, entry, hash_list, cfq_hash) {
1241 const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->org_ioprio_class, __cfqq->org_ioprio);
1242
1243 if (__cfqq->key == key && (__p == prio || !prio))
1244 return __cfqq;
1245 }
1246
1247 return NULL;
1248 }
1249
1250 static struct cfq_queue *
1251 cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1252 {
1253 return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1254 }
1255
1256 static void cfq_free_io_context(struct io_context *ioc)
1257 {
1258 struct cfq_io_context *__cic;
1259 struct rb_node *n;
1260 int freed = 0;
1261
1262 while ((n = rb_first(&ioc->cic_root)) != NULL) {
1263 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1264 rb_erase(&__cic->rb_node, &ioc->cic_root);
1265 kmem_cache_free(cfq_ioc_pool, __cic);
1266 freed++;
1267 }
1268
1269 if (atomic_sub_and_test(freed, &ioc_count) && ioc_gone)
1270 complete(ioc_gone);
1271 }
1272
1273 static void cfq_trim(struct io_context *ioc)
1274 {
1275 ioc->set_ioprio = NULL;
1276 cfq_free_io_context(ioc);
1277 }
1278
1279 /*
1280 * Called with interrupts disabled
1281 */
1282 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1283 {
1284 struct cfq_data *cfqd = cic->key;
1285 request_queue_t *q;
1286
1287 if (!cfqd)
1288 return;
1289
1290 q = cfqd->queue;
1291
1292 WARN_ON(!irqs_disabled());
1293
1294 spin_lock(q->queue_lock);
1295
1296 if (cic->cfqq[ASYNC]) {
1297 if (unlikely(cic->cfqq[ASYNC] == cfqd->active_queue))
1298 __cfq_slice_expired(cfqd, cic->cfqq[ASYNC], 0);
1299 cfq_put_queue(cic->cfqq[ASYNC]);
1300 cic->cfqq[ASYNC] = NULL;
1301 }
1302
1303 if (cic->cfqq[SYNC]) {
1304 if (unlikely(cic->cfqq[SYNC] == cfqd->active_queue))
1305 __cfq_slice_expired(cfqd, cic->cfqq[SYNC], 0);
1306 cfq_put_queue(cic->cfqq[SYNC]);
1307 cic->cfqq[SYNC] = NULL;
1308 }
1309
1310 cic->key = NULL;
1311 list_del_init(&cic->queue_list);
1312 spin_unlock(q->queue_lock);
1313 }
1314
1315 static void cfq_exit_io_context(struct io_context *ioc)
1316 {
1317 struct cfq_io_context *__cic;
1318 unsigned long flags;
1319 struct rb_node *n;
1320
1321 /*
1322 * put the reference this task is holding to the various queues
1323 */
1324 spin_lock_irqsave(&cfq_exit_lock, flags);
1325
1326 n = rb_first(&ioc->cic_root);
1327 while (n != NULL) {
1328 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1329
1330 cfq_exit_single_io_context(__cic);
1331 n = rb_next(n);
1332 }
1333
1334 spin_unlock_irqrestore(&cfq_exit_lock, flags);
1335 }
1336
1337 static struct cfq_io_context *
1338 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1339 {
1340 struct cfq_io_context *cic = kmem_cache_alloc(cfq_ioc_pool, gfp_mask);
1341
1342 if (cic) {
1343 memset(cic, 0, sizeof(*cic));
1344 cic->last_end_request = jiffies;
1345 INIT_LIST_HEAD(&cic->queue_list);
1346 cic->dtor = cfq_free_io_context;
1347 cic->exit = cfq_exit_io_context;
1348 atomic_inc(&ioc_count);
1349 }
1350
1351 return cic;
1352 }
1353
1354 static void cfq_init_prio_data(struct cfq_queue *cfqq)
1355 {
1356 struct task_struct *tsk = current;
1357 int ioprio_class;
1358
1359 if (!cfq_cfqq_prio_changed(cfqq))
1360 return;
1361
1362 ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1363 switch (ioprio_class) {
1364 default:
1365 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1366 case IOPRIO_CLASS_NONE:
1367 /*
1368 * no prio set, place us in the middle of the BE classes
1369 */
1370 cfqq->ioprio = task_nice_ioprio(tsk);
1371 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1372 break;
1373 case IOPRIO_CLASS_RT:
1374 cfqq->ioprio = task_ioprio(tsk);
1375 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1376 break;
1377 case IOPRIO_CLASS_BE:
1378 cfqq->ioprio = task_ioprio(tsk);
1379 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1380 break;
1381 case IOPRIO_CLASS_IDLE:
1382 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1383 cfqq->ioprio = 7;
1384 cfq_clear_cfqq_idle_window(cfqq);
1385 break;
1386 }
1387
1388 /*
1389 * keep track of original prio settings in case we have to temporarily
1390 * elevate the priority of this queue
1391 */
1392 cfqq->org_ioprio = cfqq->ioprio;
1393 cfqq->org_ioprio_class = cfqq->ioprio_class;
1394
1395 if (cfq_cfqq_on_rr(cfqq))
1396 cfq_resort_rr_list(cfqq, 0);
1397
1398 cfq_clear_cfqq_prio_changed(cfqq);
1399 }
1400
1401 static inline void changed_ioprio(struct cfq_io_context *cic)
1402 {
1403 struct cfq_data *cfqd = cic->key;
1404 struct cfq_queue *cfqq;
1405
1406 if (unlikely(!cfqd))
1407 return;
1408
1409 spin_lock(cfqd->queue->queue_lock);
1410
1411 cfqq = cic->cfqq[ASYNC];
1412 if (cfqq) {
1413 struct cfq_queue *new_cfqq;
1414 new_cfqq = cfq_get_queue(cfqd, CFQ_KEY_ASYNC, cic->ioc->task,
1415 GFP_ATOMIC);
1416 if (new_cfqq) {
1417 cic->cfqq[ASYNC] = new_cfqq;
1418 cfq_put_queue(cfqq);
1419 }
1420 }
1421
1422 cfqq = cic->cfqq[SYNC];
1423 if (cfqq)
1424 cfq_mark_cfqq_prio_changed(cfqq);
1425
1426 spin_unlock(cfqd->queue->queue_lock);
1427 }
1428
1429 /*
1430 * callback from sys_ioprio_set, irqs are disabled
1431 */
1432 static int cfq_ioc_set_ioprio(struct io_context *ioc, unsigned int ioprio)
1433 {
1434 struct cfq_io_context *cic;
1435 struct rb_node *n;
1436
1437 spin_lock(&cfq_exit_lock);
1438
1439 n = rb_first(&ioc->cic_root);
1440 while (n != NULL) {
1441 cic = rb_entry(n, struct cfq_io_context, rb_node);
1442
1443 changed_ioprio(cic);
1444 n = rb_next(n);
1445 }
1446
1447 spin_unlock(&cfq_exit_lock);
1448
1449 return 0;
1450 }
1451
1452 static struct cfq_queue *
1453 cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk,
1454 gfp_t gfp_mask)
1455 {
1456 const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1457 struct cfq_queue *cfqq, *new_cfqq = NULL;
1458 unsigned short ioprio;
1459
1460 retry:
1461 ioprio = tsk->ioprio;
1462 cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1463
1464 if (!cfqq) {
1465 if (new_cfqq) {
1466 cfqq = new_cfqq;
1467 new_cfqq = NULL;
1468 } else if (gfp_mask & __GFP_WAIT) {
1469 spin_unlock_irq(cfqd->queue->queue_lock);
1470 new_cfqq = kmem_cache_alloc(cfq_pool, gfp_mask);
1471 spin_lock_irq(cfqd->queue->queue_lock);
1472 goto retry;
1473 } else {
1474 cfqq = kmem_cache_alloc(cfq_pool, gfp_mask);
1475 if (!cfqq)
1476 goto out;
1477 }
1478
1479 memset(cfqq, 0, sizeof(*cfqq));
1480
1481 INIT_HLIST_NODE(&cfqq->cfq_hash);
1482 INIT_LIST_HEAD(&cfqq->cfq_list);
1483 RB_CLEAR_ROOT(&cfqq->sort_list);
1484 INIT_LIST_HEAD(&cfqq->fifo);
1485
1486 cfqq->key = key;
1487 hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1488 atomic_set(&cfqq->ref, 0);
1489 cfqq->cfqd = cfqd;
1490 cfqq->service_last = 0;
1491 /*
1492 * set ->slice_left to allow preemption for a new process
1493 */
1494 cfqq->slice_left = 2 * cfqd->cfq_slice_idle;
1495 cfq_mark_cfqq_idle_window(cfqq);
1496 cfq_mark_cfqq_prio_changed(cfqq);
1497 cfq_init_prio_data(cfqq);
1498 }
1499
1500 if (new_cfqq)
1501 kmem_cache_free(cfq_pool, new_cfqq);
1502
1503 atomic_inc(&cfqq->ref);
1504 out:
1505 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1506 return cfqq;
1507 }
1508
1509 static void
1510 cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1511 {
1512 spin_lock(&cfq_exit_lock);
1513 rb_erase(&cic->rb_node, &ioc->cic_root);
1514 list_del_init(&cic->queue_list);
1515 spin_unlock(&cfq_exit_lock);
1516 kmem_cache_free(cfq_ioc_pool, cic);
1517 atomic_dec(&ioc_count);
1518 }
1519
1520 static struct cfq_io_context *
1521 cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1522 {
1523 struct rb_node *n;
1524 struct cfq_io_context *cic;
1525 void *k, *key = cfqd;
1526
1527 restart:
1528 n = ioc->cic_root.rb_node;
1529 while (n) {
1530 cic = rb_entry(n, struct cfq_io_context, rb_node);
1531 /* ->key must be copied to avoid race with cfq_exit_queue() */
1532 k = cic->key;
1533 if (unlikely(!k)) {
1534 cfq_drop_dead_cic(ioc, cic);
1535 goto restart;
1536 }
1537
1538 if (key < k)
1539 n = n->rb_left;
1540 else if (key > k)
1541 n = n->rb_right;
1542 else
1543 return cic;
1544 }
1545
1546 return NULL;
1547 }
1548
1549 static inline void
1550 cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1551 struct cfq_io_context *cic)
1552 {
1553 struct rb_node **p;
1554 struct rb_node *parent;
1555 struct cfq_io_context *__cic;
1556 void *k;
1557
1558 cic->ioc = ioc;
1559 cic->key = cfqd;
1560
1561 ioc->set_ioprio = cfq_ioc_set_ioprio;
1562 restart:
1563 parent = NULL;
1564 p = &ioc->cic_root.rb_node;
1565 while (*p) {
1566 parent = *p;
1567 __cic = rb_entry(parent, struct cfq_io_context, rb_node);
1568 /* ->key must be copied to avoid race with cfq_exit_queue() */
1569 k = __cic->key;
1570 if (unlikely(!k)) {
1571 cfq_drop_dead_cic(ioc, cic);
1572 goto restart;
1573 }
1574
1575 if (cic->key < k)
1576 p = &(*p)->rb_left;
1577 else if (cic->key > k)
1578 p = &(*p)->rb_right;
1579 else
1580 BUG();
1581 }
1582
1583 spin_lock(&cfq_exit_lock);
1584 rb_link_node(&cic->rb_node, parent, p);
1585 rb_insert_color(&cic->rb_node, &ioc->cic_root);
1586 list_add(&cic->queue_list, &cfqd->cic_list);
1587 spin_unlock(&cfq_exit_lock);
1588 }
1589
1590 /*
1591 * Setup general io context and cfq io context. There can be several cfq
1592 * io contexts per general io context, if this process is doing io to more
1593 * than one device managed by cfq.
1594 */
1595 static struct cfq_io_context *
1596 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1597 {
1598 struct io_context *ioc = NULL;
1599 struct cfq_io_context *cic;
1600
1601 might_sleep_if(gfp_mask & __GFP_WAIT);
1602
1603 ioc = get_io_context(gfp_mask);
1604 if (!ioc)
1605 return NULL;
1606
1607 cic = cfq_cic_rb_lookup(cfqd, ioc);
1608 if (cic)
1609 goto out;
1610
1611 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1612 if (cic == NULL)
1613 goto err;
1614
1615 cfq_cic_link(cfqd, ioc, cic);
1616 out:
1617 return cic;
1618 err:
1619 put_io_context(ioc);
1620 return NULL;
1621 }
1622
1623 static void
1624 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1625 {
1626 unsigned long elapsed, ttime;
1627
1628 /*
1629 * if this context already has stuff queued, thinktime is from
1630 * last queue not last end
1631 */
1632 #if 0
1633 if (time_after(cic->last_end_request, cic->last_queue))
1634 elapsed = jiffies - cic->last_end_request;
1635 else
1636 elapsed = jiffies - cic->last_queue;
1637 #else
1638 elapsed = jiffies - cic->last_end_request;
1639 #endif
1640
1641 ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1642
1643 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1644 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1645 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1646 }
1647
1648 static void
1649 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1650 struct cfq_rq *crq)
1651 {
1652 sector_t sdist;
1653 u64 total;
1654
1655 if (cic->last_request_pos < crq->request->sector)
1656 sdist = crq->request->sector - cic->last_request_pos;
1657 else
1658 sdist = cic->last_request_pos - crq->request->sector;
1659
1660 /*
1661 * Don't allow the seek distance to get too large from the
1662 * odd fragment, pagein, etc
1663 */
1664 if (cic->seek_samples <= 60) /* second&third seek */
1665 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1666 else
1667 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1668
1669 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1670 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1671 total = cic->seek_total + (cic->seek_samples/2);
1672 do_div(total, cic->seek_samples);
1673 cic->seek_mean = (sector_t)total;
1674 }
1675
1676 /*
1677 * Disable idle window if the process thinks too long or seeks so much that
1678 * it doesn't matter
1679 */
1680 static void
1681 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1682 struct cfq_io_context *cic)
1683 {
1684 int enable_idle = cfq_cfqq_idle_window(cfqq);
1685
1686 if (!cic->ioc->task || !cfqd->cfq_slice_idle ||
1687 (cfqd->hw_tag && CIC_SEEKY(cic)))
1688 enable_idle = 0;
1689 else if (sample_valid(cic->ttime_samples)) {
1690 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1691 enable_idle = 0;
1692 else
1693 enable_idle = 1;
1694 }
1695
1696 if (enable_idle)
1697 cfq_mark_cfqq_idle_window(cfqq);
1698 else
1699 cfq_clear_cfqq_idle_window(cfqq);
1700 }
1701
1702
1703 /*
1704 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1705 * no or if we aren't sure, a 1 will cause a preempt.
1706 */
1707 static int
1708 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1709 struct cfq_rq *crq)
1710 {
1711 struct cfq_queue *cfqq = cfqd->active_queue;
1712
1713 if (cfq_class_idle(new_cfqq))
1714 return 0;
1715
1716 if (!cfqq)
1717 return 0;
1718
1719 if (cfq_class_idle(cfqq))
1720 return 1;
1721 if (!cfq_cfqq_wait_request(new_cfqq))
1722 return 0;
1723 /*
1724 * if it doesn't have slice left, forget it
1725 */
1726 if (new_cfqq->slice_left < cfqd->cfq_slice_idle)
1727 return 0;
1728 if (cfq_crq_is_sync(crq) && !cfq_cfqq_sync(cfqq))
1729 return 1;
1730
1731 return 0;
1732 }
1733
1734 /*
1735 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1736 * let it have half of its nominal slice.
1737 */
1738 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1739 {
1740 struct cfq_queue *__cfqq, *next;
1741
1742 list_for_each_entry_safe(__cfqq, next, &cfqd->cur_rr, cfq_list)
1743 cfq_resort_rr_list(__cfqq, 1);
1744
1745 if (!cfqq->slice_left)
1746 cfqq->slice_left = cfq_prio_to_slice(cfqd, cfqq) / 2;
1747
1748 cfqq->slice_end = cfqq->slice_left + jiffies;
1749 cfq_slice_expired(cfqd, 1);
1750 __cfq_set_active_queue(cfqd, cfqq);
1751 }
1752
1753 /*
1754 * should really be a ll_rw_blk.c helper
1755 */
1756 static void cfq_start_queueing(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1757 {
1758 request_queue_t *q = cfqd->queue;
1759
1760 if (!blk_queue_plugged(q))
1761 q->request_fn(q);
1762 else
1763 __generic_unplug_device(q);
1764 }
1765
1766 /*
1767 * Called when a new fs request (crq) is added (to cfqq). Check if there's
1768 * something we should do about it
1769 */
1770 static void
1771 cfq_crq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1772 struct cfq_rq *crq)
1773 {
1774 struct cfq_io_context *cic = crq->io_context;
1775
1776 /*
1777 * we never wait for an async request and we don't allow preemption
1778 * of an async request. so just return early
1779 */
1780 if (!cfq_crq_is_sync(crq)) {
1781 /*
1782 * sync process issued an async request, if it's waiting
1783 * then expire it and kick rq handling.
1784 */
1785 if (cic == cfqd->active_cic &&
1786 del_timer(&cfqd->idle_slice_timer)) {
1787 cfq_slice_expired(cfqd, 0);
1788 cfq_start_queueing(cfqd, cfqq);
1789 }
1790 return;
1791 }
1792
1793 cfq_update_io_thinktime(cfqd, cic);
1794 cfq_update_io_seektime(cfqd, cic, crq);
1795 cfq_update_idle_window(cfqd, cfqq, cic);
1796
1797 cic->last_queue = jiffies;
1798 cic->last_request_pos = crq->request->sector + crq->request->nr_sectors;
1799
1800 if (cfqq == cfqd->active_queue) {
1801 /*
1802 * if we are waiting for a request for this queue, let it rip
1803 * immediately and flag that we must not expire this queue
1804 * just now
1805 */
1806 if (cfq_cfqq_wait_request(cfqq)) {
1807 cfq_mark_cfqq_must_dispatch(cfqq);
1808 del_timer(&cfqd->idle_slice_timer);
1809 cfq_start_queueing(cfqd, cfqq);
1810 }
1811 } else if (cfq_should_preempt(cfqd, cfqq, crq)) {
1812 /*
1813 * not the active queue - expire current slice if it is
1814 * idle and has expired it's mean thinktime or this new queue
1815 * has some old slice time left and is of higher priority
1816 */
1817 cfq_preempt_queue(cfqd, cfqq);
1818 cfq_mark_cfqq_must_dispatch(cfqq);
1819 cfq_start_queueing(cfqd, cfqq);
1820 }
1821 }
1822
1823 static void cfq_insert_request(request_queue_t *q, struct request *rq)
1824 {
1825 struct cfq_data *cfqd = q->elevator->elevator_data;
1826 struct cfq_rq *crq = RQ_DATA(rq);
1827 struct cfq_queue *cfqq = crq->cfq_queue;
1828
1829 cfq_init_prio_data(cfqq);
1830
1831 cfq_add_crq_rb(crq);
1832
1833 list_add_tail(&rq->queuelist, &cfqq->fifo);
1834
1835 if (rq_mergeable(rq))
1836 cfq_add_crq_hash(cfqd, crq);
1837
1838 cfq_crq_enqueued(cfqd, cfqq, crq);
1839 }
1840
1841 static void cfq_completed_request(request_queue_t *q, struct request *rq)
1842 {
1843 struct cfq_rq *crq = RQ_DATA(rq);
1844 struct cfq_queue *cfqq = crq->cfq_queue;
1845 struct cfq_data *cfqd = cfqq->cfqd;
1846 const int sync = cfq_crq_is_sync(crq);
1847 unsigned long now;
1848
1849 now = jiffies;
1850
1851 WARN_ON(!cfqd->rq_in_driver);
1852 WARN_ON(!cfqq->on_dispatch[sync]);
1853 cfqd->rq_in_driver--;
1854 cfqq->on_dispatch[sync]--;
1855
1856 if (!cfq_class_idle(cfqq))
1857 cfqd->last_end_request = now;
1858
1859 if (!cfq_cfqq_dispatched(cfqq)) {
1860 if (cfq_cfqq_on_rr(cfqq)) {
1861 cfqq->service_last = now;
1862 cfq_resort_rr_list(cfqq, 0);
1863 }
1864 }
1865
1866 if (sync)
1867 crq->io_context->last_end_request = now;
1868
1869 /*
1870 * If this is the active queue, check if it needs to be expired,
1871 * or if we want to idle in case it has no pending requests.
1872 */
1873 if (cfqd->active_queue == cfqq) {
1874 if (time_after(now, cfqq->slice_end))
1875 cfq_slice_expired(cfqd, 0);
1876 else if (sync && RB_EMPTY(&cfqq->sort_list)) {
1877 if (!cfq_arm_slice_timer(cfqd, cfqq))
1878 cfq_schedule_dispatch(cfqd);
1879 }
1880 }
1881 }
1882
1883 static struct request *
1884 cfq_former_request(request_queue_t *q, struct request *rq)
1885 {
1886 struct cfq_rq *crq = RQ_DATA(rq);
1887 struct rb_node *rbprev = rb_prev(&crq->rb_node);
1888
1889 if (rbprev)
1890 return rb_entry_crq(rbprev)->request;
1891
1892 return NULL;
1893 }
1894
1895 static struct request *
1896 cfq_latter_request(request_queue_t *q, struct request *rq)
1897 {
1898 struct cfq_rq *crq = RQ_DATA(rq);
1899 struct rb_node *rbnext = rb_next(&crq->rb_node);
1900
1901 if (rbnext)
1902 return rb_entry_crq(rbnext)->request;
1903
1904 return NULL;
1905 }
1906
1907 /*
1908 * we temporarily boost lower priority queues if they are holding fs exclusive
1909 * resources. they are boosted to normal prio (CLASS_BE/4)
1910 */
1911 static void cfq_prio_boost(struct cfq_queue *cfqq)
1912 {
1913 const int ioprio_class = cfqq->ioprio_class;
1914 const int ioprio = cfqq->ioprio;
1915
1916 if (has_fs_excl()) {
1917 /*
1918 * boost idle prio on transactions that would lock out other
1919 * users of the filesystem
1920 */
1921 if (cfq_class_idle(cfqq))
1922 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1923 if (cfqq->ioprio > IOPRIO_NORM)
1924 cfqq->ioprio = IOPRIO_NORM;
1925 } else {
1926 /*
1927 * check if we need to unboost the queue
1928 */
1929 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1930 cfqq->ioprio_class = cfqq->org_ioprio_class;
1931 if (cfqq->ioprio != cfqq->org_ioprio)
1932 cfqq->ioprio = cfqq->org_ioprio;
1933 }
1934
1935 /*
1936 * refile between round-robin lists if we moved the priority class
1937 */
1938 if ((ioprio_class != cfqq->ioprio_class || ioprio != cfqq->ioprio) &&
1939 cfq_cfqq_on_rr(cfqq))
1940 cfq_resort_rr_list(cfqq, 0);
1941 }
1942
1943 static inline int
1944 __cfq_may_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1945 struct task_struct *task, int rw)
1946 {
1947 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1948 !cfq_cfqq_must_alloc_slice(cfqq)) {
1949 cfq_mark_cfqq_must_alloc_slice(cfqq);
1950 return ELV_MQUEUE_MUST;
1951 }
1952
1953 return ELV_MQUEUE_MAY;
1954 }
1955
1956 static int cfq_may_queue(request_queue_t *q, int rw, struct bio *bio)
1957 {
1958 struct cfq_data *cfqd = q->elevator->elevator_data;
1959 struct task_struct *tsk = current;
1960 struct cfq_queue *cfqq;
1961
1962 /*
1963 * don't force setup of a queue from here, as a call to may_queue
1964 * does not necessarily imply that a request actually will be queued.
1965 * so just lookup a possibly existing queue, or return 'may queue'
1966 * if that fails
1967 */
1968 cfqq = cfq_find_cfq_hash(cfqd, cfq_queue_pid(tsk, rw), tsk->ioprio);
1969 if (cfqq) {
1970 cfq_init_prio_data(cfqq);
1971 cfq_prio_boost(cfqq);
1972
1973 return __cfq_may_queue(cfqd, cfqq, tsk, rw);
1974 }
1975
1976 return ELV_MQUEUE_MAY;
1977 }
1978
1979 static void cfq_check_waiters(request_queue_t *q, struct cfq_queue *cfqq)
1980 {
1981 struct cfq_data *cfqd = q->elevator->elevator_data;
1982
1983 if (unlikely(cfqd->rq_starved)) {
1984 struct request_list *rl = &q->rq;
1985
1986 smp_mb();
1987 if (waitqueue_active(&rl->wait[READ]))
1988 wake_up(&rl->wait[READ]);
1989 if (waitqueue_active(&rl->wait[WRITE]))
1990 wake_up(&rl->wait[WRITE]);
1991 }
1992 }
1993
1994 /*
1995 * queue lock held here
1996 */
1997 static void cfq_put_request(request_queue_t *q, struct request *rq)
1998 {
1999 struct cfq_data *cfqd = q->elevator->elevator_data;
2000 struct cfq_rq *crq = RQ_DATA(rq);
2001
2002 if (crq) {
2003 struct cfq_queue *cfqq = crq->cfq_queue;
2004 const int rw = rq_data_dir(rq);
2005
2006 BUG_ON(!cfqq->allocated[rw]);
2007 cfqq->allocated[rw]--;
2008
2009 put_io_context(crq->io_context->ioc);
2010
2011 mempool_free(crq, cfqd->crq_pool);
2012 rq->elevator_private = NULL;
2013
2014 cfq_check_waiters(q, cfqq);
2015 cfq_put_queue(cfqq);
2016 }
2017 }
2018
2019 /*
2020 * Allocate cfq data structures associated with this request.
2021 */
2022 static int
2023 cfq_set_request(request_queue_t *q, struct request *rq, struct bio *bio,
2024 gfp_t gfp_mask)
2025 {
2026 struct cfq_data *cfqd = q->elevator->elevator_data;
2027 struct task_struct *tsk = current;
2028 struct cfq_io_context *cic;
2029 const int rw = rq_data_dir(rq);
2030 pid_t key = cfq_queue_pid(tsk, rw);
2031 struct cfq_queue *cfqq;
2032 struct cfq_rq *crq;
2033 unsigned long flags;
2034 int is_sync = key != CFQ_KEY_ASYNC;
2035
2036 might_sleep_if(gfp_mask & __GFP_WAIT);
2037
2038 cic = cfq_get_io_context(cfqd, gfp_mask);
2039
2040 spin_lock_irqsave(q->queue_lock, flags);
2041
2042 if (!cic)
2043 goto queue_fail;
2044
2045 if (!cic->cfqq[is_sync]) {
2046 cfqq = cfq_get_queue(cfqd, key, tsk, gfp_mask);
2047 if (!cfqq)
2048 goto queue_fail;
2049
2050 cic->cfqq[is_sync] = cfqq;
2051 } else
2052 cfqq = cic->cfqq[is_sync];
2053
2054 cfqq->allocated[rw]++;
2055 cfq_clear_cfqq_must_alloc(cfqq);
2056 cfqd->rq_starved = 0;
2057 atomic_inc(&cfqq->ref);
2058 spin_unlock_irqrestore(q->queue_lock, flags);
2059
2060 crq = mempool_alloc(cfqd->crq_pool, gfp_mask);
2061 if (crq) {
2062 RB_CLEAR(&crq->rb_node);
2063 crq->rb_key = 0;
2064 crq->request = rq;
2065 INIT_HLIST_NODE(&crq->hash);
2066 crq->cfq_queue = cfqq;
2067 crq->io_context = cic;
2068
2069 if (is_sync)
2070 cfq_mark_crq_is_sync(crq);
2071 else
2072 cfq_clear_crq_is_sync(crq);
2073
2074 rq->elevator_private = crq;
2075 return 0;
2076 }
2077
2078 spin_lock_irqsave(q->queue_lock, flags);
2079 cfqq->allocated[rw]--;
2080 if (!(cfqq->allocated[0] + cfqq->allocated[1]))
2081 cfq_mark_cfqq_must_alloc(cfqq);
2082 cfq_put_queue(cfqq);
2083 queue_fail:
2084 if (cic)
2085 put_io_context(cic->ioc);
2086 /*
2087 * mark us rq allocation starved. we need to kickstart the process
2088 * ourselves if there are no pending requests that can do it for us.
2089 * that would be an extremely rare OOM situation
2090 */
2091 cfqd->rq_starved = 1;
2092 cfq_schedule_dispatch(cfqd);
2093 spin_unlock_irqrestore(q->queue_lock, flags);
2094 return 1;
2095 }
2096
2097 static void cfq_kick_queue(void *data)
2098 {
2099 request_queue_t *q = data;
2100 struct cfq_data *cfqd = q->elevator->elevator_data;
2101 unsigned long flags;
2102
2103 spin_lock_irqsave(q->queue_lock, flags);
2104
2105 if (cfqd->rq_starved) {
2106 struct request_list *rl = &q->rq;
2107
2108 /*
2109 * we aren't guaranteed to get a request after this, but we
2110 * have to be opportunistic
2111 */
2112 smp_mb();
2113 if (waitqueue_active(&rl->wait[READ]))
2114 wake_up(&rl->wait[READ]);
2115 if (waitqueue_active(&rl->wait[WRITE]))
2116 wake_up(&rl->wait[WRITE]);
2117 }
2118
2119 blk_remove_plug(q);
2120 q->request_fn(q);
2121 spin_unlock_irqrestore(q->queue_lock, flags);
2122 }
2123
2124 /*
2125 * Timer running if the active_queue is currently idling inside its time slice
2126 */
2127 static void cfq_idle_slice_timer(unsigned long data)
2128 {
2129 struct cfq_data *cfqd = (struct cfq_data *) data;
2130 struct cfq_queue *cfqq;
2131 unsigned long flags;
2132
2133 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2134
2135 if ((cfqq = cfqd->active_queue) != NULL) {
2136 unsigned long now = jiffies;
2137
2138 /*
2139 * expired
2140 */
2141 if (time_after(now, cfqq->slice_end))
2142 goto expire;
2143
2144 /*
2145 * only expire and reinvoke request handler, if there are
2146 * other queues with pending requests
2147 */
2148 if (!cfqd->busy_queues)
2149 goto out_cont;
2150
2151 /*
2152 * not expired and it has a request pending, let it dispatch
2153 */
2154 if (!RB_EMPTY(&cfqq->sort_list)) {
2155 cfq_mark_cfqq_must_dispatch(cfqq);
2156 goto out_kick;
2157 }
2158 }
2159 expire:
2160 cfq_slice_expired(cfqd, 0);
2161 out_kick:
2162 cfq_schedule_dispatch(cfqd);
2163 out_cont:
2164 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2165 }
2166
2167 /*
2168 * Timer running if an idle class queue is waiting for service
2169 */
2170 static void cfq_idle_class_timer(unsigned long data)
2171 {
2172 struct cfq_data *cfqd = (struct cfq_data *) data;
2173 unsigned long flags, end;
2174
2175 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2176
2177 /*
2178 * race with a non-idle queue, reset timer
2179 */
2180 end = cfqd->last_end_request + CFQ_IDLE_GRACE;
2181 if (!time_after_eq(jiffies, end))
2182 mod_timer(&cfqd->idle_class_timer, end);
2183 else
2184 cfq_schedule_dispatch(cfqd);
2185
2186 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2187 }
2188
2189 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2190 {
2191 del_timer_sync(&cfqd->idle_slice_timer);
2192 del_timer_sync(&cfqd->idle_class_timer);
2193 blk_sync_queue(cfqd->queue);
2194 }
2195
2196 static void cfq_exit_queue(elevator_t *e)
2197 {
2198 struct cfq_data *cfqd = e->elevator_data;
2199 request_queue_t *q = cfqd->queue;
2200
2201 cfq_shutdown_timer_wq(cfqd);
2202
2203 spin_lock(&cfq_exit_lock);
2204 spin_lock_irq(q->queue_lock);
2205
2206 if (cfqd->active_queue)
2207 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2208
2209 while (!list_empty(&cfqd->cic_list)) {
2210 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2211 struct cfq_io_context,
2212 queue_list);
2213 if (cic->cfqq[ASYNC]) {
2214 cfq_put_queue(cic->cfqq[ASYNC]);
2215 cic->cfqq[ASYNC] = NULL;
2216 }
2217 if (cic->cfqq[SYNC]) {
2218 cfq_put_queue(cic->cfqq[SYNC]);
2219 cic->cfqq[SYNC] = NULL;
2220 }
2221 cic->key = NULL;
2222 list_del_init(&cic->queue_list);
2223 }
2224
2225 spin_unlock_irq(q->queue_lock);
2226 spin_unlock(&cfq_exit_lock);
2227
2228 cfq_shutdown_timer_wq(cfqd);
2229
2230 mempool_destroy(cfqd->crq_pool);
2231 kfree(cfqd->crq_hash);
2232 kfree(cfqd->cfq_hash);
2233 kfree(cfqd);
2234 }
2235
2236 static void *cfq_init_queue(request_queue_t *q, elevator_t *e)
2237 {
2238 struct cfq_data *cfqd;
2239 int i;
2240
2241 cfqd = kmalloc(sizeof(*cfqd), GFP_KERNEL);
2242 if (!cfqd)
2243 return NULL;
2244
2245 memset(cfqd, 0, sizeof(*cfqd));
2246
2247 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2248 INIT_LIST_HEAD(&cfqd->rr_list[i]);
2249
2250 INIT_LIST_HEAD(&cfqd->busy_rr);
2251 INIT_LIST_HEAD(&cfqd->cur_rr);
2252 INIT_LIST_HEAD(&cfqd->idle_rr);
2253 INIT_LIST_HEAD(&cfqd->empty_list);
2254 INIT_LIST_HEAD(&cfqd->cic_list);
2255
2256 cfqd->crq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_MHASH_ENTRIES, GFP_KERNEL);
2257 if (!cfqd->crq_hash)
2258 goto out_crqhash;
2259
2260 cfqd->cfq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL);
2261 if (!cfqd->cfq_hash)
2262 goto out_cfqhash;
2263
2264 cfqd->crq_pool = mempool_create_slab_pool(BLKDEV_MIN_RQ, crq_pool);
2265 if (!cfqd->crq_pool)
2266 goto out_crqpool;
2267
2268 for (i = 0; i < CFQ_MHASH_ENTRIES; i++)
2269 INIT_HLIST_HEAD(&cfqd->crq_hash[i]);
2270 for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
2271 INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
2272
2273 cfqd->queue = q;
2274
2275 init_timer(&cfqd->idle_slice_timer);
2276 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2277 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2278
2279 init_timer(&cfqd->idle_class_timer);
2280 cfqd->idle_class_timer.function = cfq_idle_class_timer;
2281 cfqd->idle_class_timer.data = (unsigned long) cfqd;
2282
2283 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue, q);
2284
2285 cfqd->cfq_queued = cfq_queued;
2286 cfqd->cfq_quantum = cfq_quantum;
2287 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2288 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2289 cfqd->cfq_back_max = cfq_back_max;
2290 cfqd->cfq_back_penalty = cfq_back_penalty;
2291 cfqd->cfq_slice[0] = cfq_slice_async;
2292 cfqd->cfq_slice[1] = cfq_slice_sync;
2293 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2294 cfqd->cfq_slice_idle = cfq_slice_idle;
2295
2296 return cfqd;
2297 out_crqpool:
2298 kfree(cfqd->cfq_hash);
2299 out_cfqhash:
2300 kfree(cfqd->crq_hash);
2301 out_crqhash:
2302 kfree(cfqd);
2303 return NULL;
2304 }
2305
2306 static void cfq_slab_kill(void)
2307 {
2308 if (crq_pool)
2309 kmem_cache_destroy(crq_pool);
2310 if (cfq_pool)
2311 kmem_cache_destroy(cfq_pool);
2312 if (cfq_ioc_pool)
2313 kmem_cache_destroy(cfq_ioc_pool);
2314 }
2315
2316 static int __init cfq_slab_setup(void)
2317 {
2318 crq_pool = kmem_cache_create("crq_pool", sizeof(struct cfq_rq), 0, 0,
2319 NULL, NULL);
2320 if (!crq_pool)
2321 goto fail;
2322
2323 cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2324 NULL, NULL);
2325 if (!cfq_pool)
2326 goto fail;
2327
2328 cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2329 sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2330 if (!cfq_ioc_pool)
2331 goto fail;
2332
2333 return 0;
2334 fail:
2335 cfq_slab_kill();
2336 return -ENOMEM;
2337 }
2338
2339 /*
2340 * sysfs parts below -->
2341 */
2342
2343 static ssize_t
2344 cfq_var_show(unsigned int var, char *page)
2345 {
2346 return sprintf(page, "%d\n", var);
2347 }
2348
2349 static ssize_t
2350 cfq_var_store(unsigned int *var, const char *page, size_t count)
2351 {
2352 char *p = (char *) page;
2353
2354 *var = simple_strtoul(p, &p, 10);
2355 return count;
2356 }
2357
2358 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2359 static ssize_t __FUNC(elevator_t *e, char *page) \
2360 { \
2361 struct cfq_data *cfqd = e->elevator_data; \
2362 unsigned int __data = __VAR; \
2363 if (__CONV) \
2364 __data = jiffies_to_msecs(__data); \
2365 return cfq_var_show(__data, (page)); \
2366 }
2367 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2368 SHOW_FUNCTION(cfq_queued_show, cfqd->cfq_queued, 0);
2369 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2370 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2371 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2372 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2373 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2374 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2375 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2376 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2377 #undef SHOW_FUNCTION
2378
2379 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2380 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
2381 { \
2382 struct cfq_data *cfqd = e->elevator_data; \
2383 unsigned int __data; \
2384 int ret = cfq_var_store(&__data, (page), count); \
2385 if (__data < (MIN)) \
2386 __data = (MIN); \
2387 else if (__data > (MAX)) \
2388 __data = (MAX); \
2389 if (__CONV) \
2390 *(__PTR) = msecs_to_jiffies(__data); \
2391 else \
2392 *(__PTR) = __data; \
2393 return ret; \
2394 }
2395 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2396 STORE_FUNCTION(cfq_queued_store, &cfqd->cfq_queued, 1, UINT_MAX, 0);
2397 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2398 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2399 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2400 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2401 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2402 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2403 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2404 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2405 #undef STORE_FUNCTION
2406
2407 #define CFQ_ATTR(name) \
2408 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2409
2410 static struct elv_fs_entry cfq_attrs[] = {
2411 CFQ_ATTR(quantum),
2412 CFQ_ATTR(queued),
2413 CFQ_ATTR(fifo_expire_sync),
2414 CFQ_ATTR(fifo_expire_async),
2415 CFQ_ATTR(back_seek_max),
2416 CFQ_ATTR(back_seek_penalty),
2417 CFQ_ATTR(slice_sync),
2418 CFQ_ATTR(slice_async),
2419 CFQ_ATTR(slice_async_rq),
2420 CFQ_ATTR(slice_idle),
2421 __ATTR_NULL
2422 };
2423
2424 static struct elevator_type iosched_cfq = {
2425 .ops = {
2426 .elevator_merge_fn = cfq_merge,
2427 .elevator_merged_fn = cfq_merged_request,
2428 .elevator_merge_req_fn = cfq_merged_requests,
2429 .elevator_dispatch_fn = cfq_dispatch_requests,
2430 .elevator_add_req_fn = cfq_insert_request,
2431 .elevator_activate_req_fn = cfq_activate_request,
2432 .elevator_deactivate_req_fn = cfq_deactivate_request,
2433 .elevator_queue_empty_fn = cfq_queue_empty,
2434 .elevator_completed_req_fn = cfq_completed_request,
2435 .elevator_former_req_fn = cfq_former_request,
2436 .elevator_latter_req_fn = cfq_latter_request,
2437 .elevator_set_req_fn = cfq_set_request,
2438 .elevator_put_req_fn = cfq_put_request,
2439 .elevator_may_queue_fn = cfq_may_queue,
2440 .elevator_init_fn = cfq_init_queue,
2441 .elevator_exit_fn = cfq_exit_queue,
2442 .trim = cfq_trim,
2443 },
2444 .elevator_attrs = cfq_attrs,
2445 .elevator_name = "cfq",
2446 .elevator_owner = THIS_MODULE,
2447 };
2448
2449 static int __init cfq_init(void)
2450 {
2451 int ret;
2452
2453 /*
2454 * could be 0 on HZ < 1000 setups
2455 */
2456 if (!cfq_slice_async)
2457 cfq_slice_async = 1;
2458 if (!cfq_slice_idle)
2459 cfq_slice_idle = 1;
2460
2461 if (cfq_slab_setup())
2462 return -ENOMEM;
2463
2464 ret = elv_register(&iosched_cfq);
2465 if (ret)
2466 cfq_slab_kill();
2467
2468 return ret;
2469 }
2470
2471 static void __exit cfq_exit(void)
2472 {
2473 DECLARE_COMPLETION(all_gone);
2474 elv_unregister(&iosched_cfq);
2475 ioc_gone = &all_gone;
2476 /* ioc_gone's update must be visible before reading ioc_count */
2477 smp_wmb();
2478 if (atomic_read(&ioc_count))
2479 wait_for_completion(ioc_gone);
2480 synchronize_rcu();
2481 cfq_slab_kill();
2482 }
2483
2484 module_init(cfq_init);
2485 module_exit(cfq_exit);
2486
2487 MODULE_AUTHOR("Jens Axboe");
2488 MODULE_LICENSE("GPL");
2489 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
This page took 0.136801 seconds and 6 git commands to generate.