Merge commit 'v2.6.28-rc7'; branch 'x86/dumpstack' into tracing/ftrace
[deliverable/linux.git] / block / elevator.c
1 /*
2 * Block device elevator/IO-scheduler.
3 *
4 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 *
6 * 30042000 Jens Axboe <axboe@kernel.dk> :
7 *
8 * Split the elevator a bit so that it is possible to choose a different
9 * one or even write a new "plug in". There are three pieces:
10 * - elevator_fn, inserts a new request in the queue list
11 * - elevator_merge_fn, decides whether a new buffer can be merged with
12 * an existing request
13 * - elevator_dequeue_fn, called when a request is taken off the active list
14 *
15 * 20082000 Dave Jones <davej@suse.de> :
16 * Removed tests for max-bomb-segments, which was breaking elvtune
17 * when run without -bN
18 *
19 * Jens:
20 * - Rework again to work with bio instead of buffer_heads
21 * - loose bi_dev comparisons, partition handling is right now
22 * - completely modularize elevator setup and teardown
23 *
24 */
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/compiler.h>
34 #include <linux/delay.h>
35 #include <linux/blktrace_api.h>
36 #include <trace/block.h>
37 #include <linux/hash.h>
38 #include <linux/uaccess.h>
39
40 #include "blk.h"
41
42 static DEFINE_SPINLOCK(elv_list_lock);
43 static LIST_HEAD(elv_list);
44
45 DEFINE_TRACE(block_rq_abort);
46
47 /*
48 * Merge hash stuff.
49 */
50 static const int elv_hash_shift = 6;
51 #define ELV_HASH_BLOCK(sec) ((sec) >> 3)
52 #define ELV_HASH_FN(sec) \
53 (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
54 #define ELV_HASH_ENTRIES (1 << elv_hash_shift)
55 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
56 #define ELV_ON_HASH(rq) (!hlist_unhashed(&(rq)->hash))
57
58 DEFINE_TRACE(block_rq_insert);
59 DEFINE_TRACE(block_rq_issue);
60
61 /*
62 * Query io scheduler to see if the current process issuing bio may be
63 * merged with rq.
64 */
65 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
66 {
67 struct request_queue *q = rq->q;
68 elevator_t *e = q->elevator;
69
70 if (e->ops->elevator_allow_merge_fn)
71 return e->ops->elevator_allow_merge_fn(q, rq, bio);
72
73 return 1;
74 }
75
76 /*
77 * can we safely merge with this request?
78 */
79 int elv_rq_merge_ok(struct request *rq, struct bio *bio)
80 {
81 if (!rq_mergeable(rq))
82 return 0;
83
84 /*
85 * Don't merge file system requests and discard requests
86 */
87 if (bio_discard(bio) != bio_discard(rq->bio))
88 return 0;
89
90 /*
91 * different data direction or already started, don't merge
92 */
93 if (bio_data_dir(bio) != rq_data_dir(rq))
94 return 0;
95
96 /*
97 * must be same device and not a special request
98 */
99 if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special)
100 return 0;
101
102 /*
103 * only merge integrity protected bio into ditto rq
104 */
105 if (bio_integrity(bio) != blk_integrity_rq(rq))
106 return 0;
107
108 if (!elv_iosched_allow_merge(rq, bio))
109 return 0;
110
111 return 1;
112 }
113 EXPORT_SYMBOL(elv_rq_merge_ok);
114
115 static inline int elv_try_merge(struct request *__rq, struct bio *bio)
116 {
117 int ret = ELEVATOR_NO_MERGE;
118
119 /*
120 * we can merge and sequence is ok, check if it's possible
121 */
122 if (elv_rq_merge_ok(__rq, bio)) {
123 if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
124 ret = ELEVATOR_BACK_MERGE;
125 else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
126 ret = ELEVATOR_FRONT_MERGE;
127 }
128
129 return ret;
130 }
131
132 static struct elevator_type *elevator_find(const char *name)
133 {
134 struct elevator_type *e;
135
136 list_for_each_entry(e, &elv_list, list) {
137 if (!strcmp(e->elevator_name, name))
138 return e;
139 }
140
141 return NULL;
142 }
143
144 static void elevator_put(struct elevator_type *e)
145 {
146 module_put(e->elevator_owner);
147 }
148
149 static struct elevator_type *elevator_get(const char *name)
150 {
151 struct elevator_type *e;
152
153 spin_lock(&elv_list_lock);
154
155 e = elevator_find(name);
156 if (!e) {
157 char elv[ELV_NAME_MAX + strlen("-iosched")];
158
159 spin_unlock(&elv_list_lock);
160
161 if (!strcmp(name, "anticipatory"))
162 sprintf(elv, "as-iosched");
163 else
164 sprintf(elv, "%s-iosched", name);
165
166 request_module("%s", elv);
167 spin_lock(&elv_list_lock);
168 e = elevator_find(name);
169 }
170
171 if (e && !try_module_get(e->elevator_owner))
172 e = NULL;
173
174 spin_unlock(&elv_list_lock);
175
176 return e;
177 }
178
179 static void *elevator_init_queue(struct request_queue *q,
180 struct elevator_queue *eq)
181 {
182 return eq->ops->elevator_init_fn(q);
183 }
184
185 static void elevator_attach(struct request_queue *q, struct elevator_queue *eq,
186 void *data)
187 {
188 q->elevator = eq;
189 eq->elevator_data = data;
190 }
191
192 static char chosen_elevator[16];
193
194 static int __init elevator_setup(char *str)
195 {
196 /*
197 * Be backwards-compatible with previous kernels, so users
198 * won't get the wrong elevator.
199 */
200 if (!strcmp(str, "as"))
201 strcpy(chosen_elevator, "anticipatory");
202 else
203 strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
204 return 1;
205 }
206
207 __setup("elevator=", elevator_setup);
208
209 static struct kobj_type elv_ktype;
210
211 static elevator_t *elevator_alloc(struct request_queue *q,
212 struct elevator_type *e)
213 {
214 elevator_t *eq;
215 int i;
216
217 eq = kmalloc_node(sizeof(elevator_t), GFP_KERNEL | __GFP_ZERO, q->node);
218 if (unlikely(!eq))
219 goto err;
220
221 eq->ops = &e->ops;
222 eq->elevator_type = e;
223 kobject_init(&eq->kobj, &elv_ktype);
224 mutex_init(&eq->sysfs_lock);
225
226 eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
227 GFP_KERNEL, q->node);
228 if (!eq->hash)
229 goto err;
230
231 for (i = 0; i < ELV_HASH_ENTRIES; i++)
232 INIT_HLIST_HEAD(&eq->hash[i]);
233
234 return eq;
235 err:
236 kfree(eq);
237 elevator_put(e);
238 return NULL;
239 }
240
241 static void elevator_release(struct kobject *kobj)
242 {
243 elevator_t *e = container_of(kobj, elevator_t, kobj);
244
245 elevator_put(e->elevator_type);
246 kfree(e->hash);
247 kfree(e);
248 }
249
250 int elevator_init(struct request_queue *q, char *name)
251 {
252 struct elevator_type *e = NULL;
253 struct elevator_queue *eq;
254 int ret = 0;
255 void *data;
256
257 INIT_LIST_HEAD(&q->queue_head);
258 q->last_merge = NULL;
259 q->end_sector = 0;
260 q->boundary_rq = NULL;
261
262 if (name) {
263 e = elevator_get(name);
264 if (!e)
265 return -EINVAL;
266 }
267
268 if (!e && *chosen_elevator) {
269 e = elevator_get(chosen_elevator);
270 if (!e)
271 printk(KERN_ERR "I/O scheduler %s not found\n",
272 chosen_elevator);
273 }
274
275 if (!e) {
276 e = elevator_get(CONFIG_DEFAULT_IOSCHED);
277 if (!e) {
278 printk(KERN_ERR
279 "Default I/O scheduler not found. " \
280 "Using noop.\n");
281 e = elevator_get("noop");
282 }
283 }
284
285 eq = elevator_alloc(q, e);
286 if (!eq)
287 return -ENOMEM;
288
289 data = elevator_init_queue(q, eq);
290 if (!data) {
291 kobject_put(&eq->kobj);
292 return -ENOMEM;
293 }
294
295 elevator_attach(q, eq, data);
296 return ret;
297 }
298 EXPORT_SYMBOL(elevator_init);
299
300 void elevator_exit(elevator_t *e)
301 {
302 mutex_lock(&e->sysfs_lock);
303 if (e->ops->elevator_exit_fn)
304 e->ops->elevator_exit_fn(e);
305 e->ops = NULL;
306 mutex_unlock(&e->sysfs_lock);
307
308 kobject_put(&e->kobj);
309 }
310 EXPORT_SYMBOL(elevator_exit);
311
312 static void elv_activate_rq(struct request_queue *q, struct request *rq)
313 {
314 elevator_t *e = q->elevator;
315
316 if (e->ops->elevator_activate_req_fn)
317 e->ops->elevator_activate_req_fn(q, rq);
318 }
319
320 static void elv_deactivate_rq(struct request_queue *q, struct request *rq)
321 {
322 elevator_t *e = q->elevator;
323
324 if (e->ops->elevator_deactivate_req_fn)
325 e->ops->elevator_deactivate_req_fn(q, rq);
326 }
327
328 static inline void __elv_rqhash_del(struct request *rq)
329 {
330 hlist_del_init(&rq->hash);
331 }
332
333 static void elv_rqhash_del(struct request_queue *q, struct request *rq)
334 {
335 if (ELV_ON_HASH(rq))
336 __elv_rqhash_del(rq);
337 }
338
339 static void elv_rqhash_add(struct request_queue *q, struct request *rq)
340 {
341 elevator_t *e = q->elevator;
342
343 BUG_ON(ELV_ON_HASH(rq));
344 hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
345 }
346
347 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
348 {
349 __elv_rqhash_del(rq);
350 elv_rqhash_add(q, rq);
351 }
352
353 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
354 {
355 elevator_t *e = q->elevator;
356 struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
357 struct hlist_node *entry, *next;
358 struct request *rq;
359
360 hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
361 BUG_ON(!ELV_ON_HASH(rq));
362
363 if (unlikely(!rq_mergeable(rq))) {
364 __elv_rqhash_del(rq);
365 continue;
366 }
367
368 if (rq_hash_key(rq) == offset)
369 return rq;
370 }
371
372 return NULL;
373 }
374
375 /*
376 * RB-tree support functions for inserting/lookup/removal of requests
377 * in a sorted RB tree.
378 */
379 struct request *elv_rb_add(struct rb_root *root, struct request *rq)
380 {
381 struct rb_node **p = &root->rb_node;
382 struct rb_node *parent = NULL;
383 struct request *__rq;
384
385 while (*p) {
386 parent = *p;
387 __rq = rb_entry(parent, struct request, rb_node);
388
389 if (rq->sector < __rq->sector)
390 p = &(*p)->rb_left;
391 else if (rq->sector > __rq->sector)
392 p = &(*p)->rb_right;
393 else
394 return __rq;
395 }
396
397 rb_link_node(&rq->rb_node, parent, p);
398 rb_insert_color(&rq->rb_node, root);
399 return NULL;
400 }
401 EXPORT_SYMBOL(elv_rb_add);
402
403 void elv_rb_del(struct rb_root *root, struct request *rq)
404 {
405 BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
406 rb_erase(&rq->rb_node, root);
407 RB_CLEAR_NODE(&rq->rb_node);
408 }
409 EXPORT_SYMBOL(elv_rb_del);
410
411 struct request *elv_rb_find(struct rb_root *root, sector_t sector)
412 {
413 struct rb_node *n = root->rb_node;
414 struct request *rq;
415
416 while (n) {
417 rq = rb_entry(n, struct request, rb_node);
418
419 if (sector < rq->sector)
420 n = n->rb_left;
421 else if (sector > rq->sector)
422 n = n->rb_right;
423 else
424 return rq;
425 }
426
427 return NULL;
428 }
429 EXPORT_SYMBOL(elv_rb_find);
430
431 /*
432 * Insert rq into dispatch queue of q. Queue lock must be held on
433 * entry. rq is sort instead into the dispatch queue. To be used by
434 * specific elevators.
435 */
436 void elv_dispatch_sort(struct request_queue *q, struct request *rq)
437 {
438 sector_t boundary;
439 struct list_head *entry;
440 int stop_flags;
441
442 if (q->last_merge == rq)
443 q->last_merge = NULL;
444
445 elv_rqhash_del(q, rq);
446
447 q->nr_sorted--;
448
449 boundary = q->end_sector;
450 stop_flags = REQ_SOFTBARRIER | REQ_HARDBARRIER | REQ_STARTED;
451 list_for_each_prev(entry, &q->queue_head) {
452 struct request *pos = list_entry_rq(entry);
453
454 if (blk_discard_rq(rq) != blk_discard_rq(pos))
455 break;
456 if (rq_data_dir(rq) != rq_data_dir(pos))
457 break;
458 if (pos->cmd_flags & stop_flags)
459 break;
460 if (rq->sector >= boundary) {
461 if (pos->sector < boundary)
462 continue;
463 } else {
464 if (pos->sector >= boundary)
465 break;
466 }
467 if (rq->sector >= pos->sector)
468 break;
469 }
470
471 list_add(&rq->queuelist, entry);
472 }
473 EXPORT_SYMBOL(elv_dispatch_sort);
474
475 /*
476 * Insert rq into dispatch queue of q. Queue lock must be held on
477 * entry. rq is added to the back of the dispatch queue. To be used by
478 * specific elevators.
479 */
480 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
481 {
482 if (q->last_merge == rq)
483 q->last_merge = NULL;
484
485 elv_rqhash_del(q, rq);
486
487 q->nr_sorted--;
488
489 q->end_sector = rq_end_sector(rq);
490 q->boundary_rq = rq;
491 list_add_tail(&rq->queuelist, &q->queue_head);
492 }
493 EXPORT_SYMBOL(elv_dispatch_add_tail);
494
495 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
496 {
497 elevator_t *e = q->elevator;
498 struct request *__rq;
499 int ret;
500
501 /*
502 * First try one-hit cache.
503 */
504 if (q->last_merge) {
505 ret = elv_try_merge(q->last_merge, bio);
506 if (ret != ELEVATOR_NO_MERGE) {
507 *req = q->last_merge;
508 return ret;
509 }
510 }
511
512 if (blk_queue_nomerges(q))
513 return ELEVATOR_NO_MERGE;
514
515 /*
516 * See if our hash lookup can find a potential backmerge.
517 */
518 __rq = elv_rqhash_find(q, bio->bi_sector);
519 if (__rq && elv_rq_merge_ok(__rq, bio)) {
520 *req = __rq;
521 return ELEVATOR_BACK_MERGE;
522 }
523
524 if (e->ops->elevator_merge_fn)
525 return e->ops->elevator_merge_fn(q, req, bio);
526
527 return ELEVATOR_NO_MERGE;
528 }
529
530 void elv_merged_request(struct request_queue *q, struct request *rq, int type)
531 {
532 elevator_t *e = q->elevator;
533
534 if (e->ops->elevator_merged_fn)
535 e->ops->elevator_merged_fn(q, rq, type);
536
537 if (type == ELEVATOR_BACK_MERGE)
538 elv_rqhash_reposition(q, rq);
539
540 q->last_merge = rq;
541 }
542
543 void elv_merge_requests(struct request_queue *q, struct request *rq,
544 struct request *next)
545 {
546 elevator_t *e = q->elevator;
547
548 if (e->ops->elevator_merge_req_fn)
549 e->ops->elevator_merge_req_fn(q, rq, next);
550
551 elv_rqhash_reposition(q, rq);
552 elv_rqhash_del(q, next);
553
554 q->nr_sorted--;
555 q->last_merge = rq;
556 }
557
558 void elv_requeue_request(struct request_queue *q, struct request *rq)
559 {
560 /*
561 * it already went through dequeue, we need to decrement the
562 * in_flight count again
563 */
564 if (blk_account_rq(rq)) {
565 q->in_flight--;
566 if (blk_sorted_rq(rq))
567 elv_deactivate_rq(q, rq);
568 }
569
570 rq->cmd_flags &= ~REQ_STARTED;
571
572 elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
573 }
574
575 static void elv_drain_elevator(struct request_queue *q)
576 {
577 static int printed;
578 while (q->elevator->ops->elevator_dispatch_fn(q, 1))
579 ;
580 if (q->nr_sorted == 0)
581 return;
582 if (printed++ < 10) {
583 printk(KERN_ERR "%s: forced dispatching is broken "
584 "(nr_sorted=%u), please report this\n",
585 q->elevator->elevator_type->elevator_name, q->nr_sorted);
586 }
587 }
588
589 void elv_insert(struct request_queue *q, struct request *rq, int where)
590 {
591 struct list_head *pos;
592 unsigned ordseq;
593 int unplug_it = 1;
594
595 trace_block_rq_insert(q, rq);
596
597 rq->q = q;
598
599 switch (where) {
600 case ELEVATOR_INSERT_FRONT:
601 rq->cmd_flags |= REQ_SOFTBARRIER;
602
603 list_add(&rq->queuelist, &q->queue_head);
604 break;
605
606 case ELEVATOR_INSERT_BACK:
607 rq->cmd_flags |= REQ_SOFTBARRIER;
608 elv_drain_elevator(q);
609 list_add_tail(&rq->queuelist, &q->queue_head);
610 /*
611 * We kick the queue here for the following reasons.
612 * - The elevator might have returned NULL previously
613 * to delay requests and returned them now. As the
614 * queue wasn't empty before this request, ll_rw_blk
615 * won't run the queue on return, resulting in hang.
616 * - Usually, back inserted requests won't be merged
617 * with anything. There's no point in delaying queue
618 * processing.
619 */
620 blk_remove_plug(q);
621 blk_start_queueing(q);
622 break;
623
624 case ELEVATOR_INSERT_SORT:
625 BUG_ON(!blk_fs_request(rq) && !blk_discard_rq(rq));
626 rq->cmd_flags |= REQ_SORTED;
627 q->nr_sorted++;
628 if (rq_mergeable(rq)) {
629 elv_rqhash_add(q, rq);
630 if (!q->last_merge)
631 q->last_merge = rq;
632 }
633
634 /*
635 * Some ioscheds (cfq) run q->request_fn directly, so
636 * rq cannot be accessed after calling
637 * elevator_add_req_fn.
638 */
639 q->elevator->ops->elevator_add_req_fn(q, rq);
640 break;
641
642 case ELEVATOR_INSERT_REQUEUE:
643 /*
644 * If ordered flush isn't in progress, we do front
645 * insertion; otherwise, requests should be requeued
646 * in ordseq order.
647 */
648 rq->cmd_flags |= REQ_SOFTBARRIER;
649
650 /*
651 * Most requeues happen because of a busy condition,
652 * don't force unplug of the queue for that case.
653 */
654 unplug_it = 0;
655
656 if (q->ordseq == 0) {
657 list_add(&rq->queuelist, &q->queue_head);
658 break;
659 }
660
661 ordseq = blk_ordered_req_seq(rq);
662
663 list_for_each(pos, &q->queue_head) {
664 struct request *pos_rq = list_entry_rq(pos);
665 if (ordseq <= blk_ordered_req_seq(pos_rq))
666 break;
667 }
668
669 list_add_tail(&rq->queuelist, pos);
670 break;
671
672 default:
673 printk(KERN_ERR "%s: bad insertion point %d\n",
674 __func__, where);
675 BUG();
676 }
677
678 if (unplug_it && blk_queue_plugged(q)) {
679 int nrq = q->rq.count[READ] + q->rq.count[WRITE]
680 - q->in_flight;
681
682 if (nrq >= q->unplug_thresh)
683 __generic_unplug_device(q);
684 }
685 }
686
687 void __elv_add_request(struct request_queue *q, struct request *rq, int where,
688 int plug)
689 {
690 if (q->ordcolor)
691 rq->cmd_flags |= REQ_ORDERED_COLOR;
692
693 if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
694 /*
695 * toggle ordered color
696 */
697 if (blk_barrier_rq(rq))
698 q->ordcolor ^= 1;
699
700 /*
701 * barriers implicitly indicate back insertion
702 */
703 if (where == ELEVATOR_INSERT_SORT)
704 where = ELEVATOR_INSERT_BACK;
705
706 /*
707 * this request is scheduling boundary, update
708 * end_sector
709 */
710 if (blk_fs_request(rq) || blk_discard_rq(rq)) {
711 q->end_sector = rq_end_sector(rq);
712 q->boundary_rq = rq;
713 }
714 } else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
715 where == ELEVATOR_INSERT_SORT)
716 where = ELEVATOR_INSERT_BACK;
717
718 if (plug)
719 blk_plug_device(q);
720
721 elv_insert(q, rq, where);
722 }
723 EXPORT_SYMBOL(__elv_add_request);
724
725 void elv_add_request(struct request_queue *q, struct request *rq, int where,
726 int plug)
727 {
728 unsigned long flags;
729
730 spin_lock_irqsave(q->queue_lock, flags);
731 __elv_add_request(q, rq, where, plug);
732 spin_unlock_irqrestore(q->queue_lock, flags);
733 }
734 EXPORT_SYMBOL(elv_add_request);
735
736 static inline struct request *__elv_next_request(struct request_queue *q)
737 {
738 struct request *rq;
739
740 while (1) {
741 while (!list_empty(&q->queue_head)) {
742 rq = list_entry_rq(q->queue_head.next);
743 if (blk_do_ordered(q, &rq))
744 return rq;
745 }
746
747 if (!q->elevator->ops->elevator_dispatch_fn(q, 0))
748 return NULL;
749 }
750 }
751
752 struct request *elv_next_request(struct request_queue *q)
753 {
754 struct request *rq;
755 int ret;
756
757 while ((rq = __elv_next_request(q)) != NULL) {
758 /*
759 * Kill the empty barrier place holder, the driver must
760 * not ever see it.
761 */
762 if (blk_empty_barrier(rq)) {
763 __blk_end_request(rq, 0, blk_rq_bytes(rq));
764 continue;
765 }
766 if (!(rq->cmd_flags & REQ_STARTED)) {
767 /*
768 * This is the first time the device driver
769 * sees this request (possibly after
770 * requeueing). Notify IO scheduler.
771 */
772 if (blk_sorted_rq(rq))
773 elv_activate_rq(q, rq);
774
775 /*
776 * just mark as started even if we don't start
777 * it, a request that has been delayed should
778 * not be passed by new incoming requests
779 */
780 rq->cmd_flags |= REQ_STARTED;
781 trace_block_rq_issue(q, rq);
782 }
783
784 if (!q->boundary_rq || q->boundary_rq == rq) {
785 q->end_sector = rq_end_sector(rq);
786 q->boundary_rq = NULL;
787 }
788
789 if (rq->cmd_flags & REQ_DONTPREP)
790 break;
791
792 if (q->dma_drain_size && rq->data_len) {
793 /*
794 * make sure space for the drain appears we
795 * know we can do this because max_hw_segments
796 * has been adjusted to be one fewer than the
797 * device can handle
798 */
799 rq->nr_phys_segments++;
800 }
801
802 if (!q->prep_rq_fn)
803 break;
804
805 ret = q->prep_rq_fn(q, rq);
806 if (ret == BLKPREP_OK) {
807 break;
808 } else if (ret == BLKPREP_DEFER) {
809 /*
810 * the request may have been (partially) prepped.
811 * we need to keep this request in the front to
812 * avoid resource deadlock. REQ_STARTED will
813 * prevent other fs requests from passing this one.
814 */
815 if (q->dma_drain_size && rq->data_len &&
816 !(rq->cmd_flags & REQ_DONTPREP)) {
817 /*
818 * remove the space for the drain we added
819 * so that we don't add it again
820 */
821 --rq->nr_phys_segments;
822 }
823
824 rq = NULL;
825 break;
826 } else if (ret == BLKPREP_KILL) {
827 rq->cmd_flags |= REQ_QUIET;
828 __blk_end_request(rq, -EIO, blk_rq_bytes(rq));
829 } else {
830 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
831 break;
832 }
833 }
834
835 return rq;
836 }
837 EXPORT_SYMBOL(elv_next_request);
838
839 void elv_dequeue_request(struct request_queue *q, struct request *rq)
840 {
841 BUG_ON(list_empty(&rq->queuelist));
842 BUG_ON(ELV_ON_HASH(rq));
843
844 list_del_init(&rq->queuelist);
845
846 /*
847 * the time frame between a request being removed from the lists
848 * and to it is freed is accounted as io that is in progress at
849 * the driver side.
850 */
851 if (blk_account_rq(rq))
852 q->in_flight++;
853
854 /*
855 * We are now handing the request to the hardware, add the
856 * timeout handler.
857 */
858 blk_add_timer(rq);
859 }
860 EXPORT_SYMBOL(elv_dequeue_request);
861
862 int elv_queue_empty(struct request_queue *q)
863 {
864 elevator_t *e = q->elevator;
865
866 if (!list_empty(&q->queue_head))
867 return 0;
868
869 if (e->ops->elevator_queue_empty_fn)
870 return e->ops->elevator_queue_empty_fn(q);
871
872 return 1;
873 }
874 EXPORT_SYMBOL(elv_queue_empty);
875
876 struct request *elv_latter_request(struct request_queue *q, struct request *rq)
877 {
878 elevator_t *e = q->elevator;
879
880 if (e->ops->elevator_latter_req_fn)
881 return e->ops->elevator_latter_req_fn(q, rq);
882 return NULL;
883 }
884
885 struct request *elv_former_request(struct request_queue *q, struct request *rq)
886 {
887 elevator_t *e = q->elevator;
888
889 if (e->ops->elevator_former_req_fn)
890 return e->ops->elevator_former_req_fn(q, rq);
891 return NULL;
892 }
893
894 int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
895 {
896 elevator_t *e = q->elevator;
897
898 if (e->ops->elevator_set_req_fn)
899 return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
900
901 rq->elevator_private = NULL;
902 return 0;
903 }
904
905 void elv_put_request(struct request_queue *q, struct request *rq)
906 {
907 elevator_t *e = q->elevator;
908
909 if (e->ops->elevator_put_req_fn)
910 e->ops->elevator_put_req_fn(rq);
911 }
912
913 int elv_may_queue(struct request_queue *q, int rw)
914 {
915 elevator_t *e = q->elevator;
916
917 if (e->ops->elevator_may_queue_fn)
918 return e->ops->elevator_may_queue_fn(q, rw);
919
920 return ELV_MQUEUE_MAY;
921 }
922
923 void elv_abort_queue(struct request_queue *q)
924 {
925 struct request *rq;
926
927 while (!list_empty(&q->queue_head)) {
928 rq = list_entry_rq(q->queue_head.next);
929 rq->cmd_flags |= REQ_QUIET;
930 trace_block_rq_abort(q, rq);
931 __blk_end_request(rq, -EIO, blk_rq_bytes(rq));
932 }
933 }
934 EXPORT_SYMBOL(elv_abort_queue);
935
936 void elv_completed_request(struct request_queue *q, struct request *rq)
937 {
938 elevator_t *e = q->elevator;
939
940 /*
941 * request is released from the driver, io must be done
942 */
943 if (blk_account_rq(rq)) {
944 q->in_flight--;
945 if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
946 e->ops->elevator_completed_req_fn(q, rq);
947 }
948
949 /*
950 * Check if the queue is waiting for fs requests to be
951 * drained for flush sequence.
952 */
953 if (unlikely(q->ordseq)) {
954 struct request *first_rq = list_entry_rq(q->queue_head.next);
955 if (q->in_flight == 0 &&
956 blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
957 blk_ordered_req_seq(first_rq) > QUEUE_ORDSEQ_DRAIN) {
958 blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
959 blk_start_queueing(q);
960 }
961 }
962 }
963
964 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
965
966 static ssize_t
967 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
968 {
969 elevator_t *e = container_of(kobj, elevator_t, kobj);
970 struct elv_fs_entry *entry = to_elv(attr);
971 ssize_t error;
972
973 if (!entry->show)
974 return -EIO;
975
976 mutex_lock(&e->sysfs_lock);
977 error = e->ops ? entry->show(e, page) : -ENOENT;
978 mutex_unlock(&e->sysfs_lock);
979 return error;
980 }
981
982 static ssize_t
983 elv_attr_store(struct kobject *kobj, struct attribute *attr,
984 const char *page, size_t length)
985 {
986 elevator_t *e = container_of(kobj, elevator_t, kobj);
987 struct elv_fs_entry *entry = to_elv(attr);
988 ssize_t error;
989
990 if (!entry->store)
991 return -EIO;
992
993 mutex_lock(&e->sysfs_lock);
994 error = e->ops ? entry->store(e, page, length) : -ENOENT;
995 mutex_unlock(&e->sysfs_lock);
996 return error;
997 }
998
999 static struct sysfs_ops elv_sysfs_ops = {
1000 .show = elv_attr_show,
1001 .store = elv_attr_store,
1002 };
1003
1004 static struct kobj_type elv_ktype = {
1005 .sysfs_ops = &elv_sysfs_ops,
1006 .release = elevator_release,
1007 };
1008
1009 int elv_register_queue(struct request_queue *q)
1010 {
1011 elevator_t *e = q->elevator;
1012 int error;
1013
1014 error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
1015 if (!error) {
1016 struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
1017 if (attr) {
1018 while (attr->attr.name) {
1019 if (sysfs_create_file(&e->kobj, &attr->attr))
1020 break;
1021 attr++;
1022 }
1023 }
1024 kobject_uevent(&e->kobj, KOBJ_ADD);
1025 }
1026 return error;
1027 }
1028
1029 static void __elv_unregister_queue(elevator_t *e)
1030 {
1031 kobject_uevent(&e->kobj, KOBJ_REMOVE);
1032 kobject_del(&e->kobj);
1033 }
1034
1035 void elv_unregister_queue(struct request_queue *q)
1036 {
1037 if (q)
1038 __elv_unregister_queue(q->elevator);
1039 }
1040
1041 void elv_register(struct elevator_type *e)
1042 {
1043 char *def = "";
1044
1045 spin_lock(&elv_list_lock);
1046 BUG_ON(elevator_find(e->elevator_name));
1047 list_add_tail(&e->list, &elv_list);
1048 spin_unlock(&elv_list_lock);
1049
1050 if (!strcmp(e->elevator_name, chosen_elevator) ||
1051 (!*chosen_elevator &&
1052 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
1053 def = " (default)";
1054
1055 printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
1056 def);
1057 }
1058 EXPORT_SYMBOL_GPL(elv_register);
1059
1060 void elv_unregister(struct elevator_type *e)
1061 {
1062 struct task_struct *g, *p;
1063
1064 /*
1065 * Iterate every thread in the process to remove the io contexts.
1066 */
1067 if (e->ops.trim) {
1068 read_lock(&tasklist_lock);
1069 do_each_thread(g, p) {
1070 task_lock(p);
1071 if (p->io_context)
1072 e->ops.trim(p->io_context);
1073 task_unlock(p);
1074 } while_each_thread(g, p);
1075 read_unlock(&tasklist_lock);
1076 }
1077
1078 spin_lock(&elv_list_lock);
1079 list_del_init(&e->list);
1080 spin_unlock(&elv_list_lock);
1081 }
1082 EXPORT_SYMBOL_GPL(elv_unregister);
1083
1084 /*
1085 * switch to new_e io scheduler. be careful not to introduce deadlocks -
1086 * we don't free the old io scheduler, before we have allocated what we
1087 * need for the new one. this way we have a chance of going back to the old
1088 * one, if the new one fails init for some reason.
1089 */
1090 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
1091 {
1092 elevator_t *old_elevator, *e;
1093 void *data;
1094
1095 /*
1096 * Allocate new elevator
1097 */
1098 e = elevator_alloc(q, new_e);
1099 if (!e)
1100 return 0;
1101
1102 data = elevator_init_queue(q, e);
1103 if (!data) {
1104 kobject_put(&e->kobj);
1105 return 0;
1106 }
1107
1108 /*
1109 * Turn on BYPASS and drain all requests w/ elevator private data
1110 */
1111 spin_lock_irq(q->queue_lock);
1112
1113 queue_flag_set(QUEUE_FLAG_ELVSWITCH, q);
1114
1115 elv_drain_elevator(q);
1116
1117 while (q->rq.elvpriv) {
1118 blk_start_queueing(q);
1119 spin_unlock_irq(q->queue_lock);
1120 msleep(10);
1121 spin_lock_irq(q->queue_lock);
1122 elv_drain_elevator(q);
1123 }
1124
1125 /*
1126 * Remember old elevator.
1127 */
1128 old_elevator = q->elevator;
1129
1130 /*
1131 * attach and start new elevator
1132 */
1133 elevator_attach(q, e, data);
1134
1135 spin_unlock_irq(q->queue_lock);
1136
1137 __elv_unregister_queue(old_elevator);
1138
1139 if (elv_register_queue(q))
1140 goto fail_register;
1141
1142 /*
1143 * finally exit old elevator and turn off BYPASS.
1144 */
1145 elevator_exit(old_elevator);
1146 spin_lock_irq(q->queue_lock);
1147 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
1148 spin_unlock_irq(q->queue_lock);
1149
1150 blk_add_trace_msg(q, "elv switch: %s", e->elevator_type->elevator_name);
1151
1152 return 1;
1153
1154 fail_register:
1155 /*
1156 * switch failed, exit the new io scheduler and reattach the old
1157 * one again (along with re-adding the sysfs dir)
1158 */
1159 elevator_exit(e);
1160 q->elevator = old_elevator;
1161 elv_register_queue(q);
1162
1163 spin_lock_irq(q->queue_lock);
1164 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
1165 spin_unlock_irq(q->queue_lock);
1166
1167 return 0;
1168 }
1169
1170 ssize_t elv_iosched_store(struct request_queue *q, const char *name,
1171 size_t count)
1172 {
1173 char elevator_name[ELV_NAME_MAX];
1174 struct elevator_type *e;
1175
1176 strlcpy(elevator_name, name, sizeof(elevator_name));
1177 strstrip(elevator_name);
1178
1179 e = elevator_get(elevator_name);
1180 if (!e) {
1181 printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
1182 return -EINVAL;
1183 }
1184
1185 if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
1186 elevator_put(e);
1187 return count;
1188 }
1189
1190 if (!elevator_switch(q, e))
1191 printk(KERN_ERR "elevator: switch to %s failed\n",
1192 elevator_name);
1193 return count;
1194 }
1195
1196 ssize_t elv_iosched_show(struct request_queue *q, char *name)
1197 {
1198 elevator_t *e = q->elevator;
1199 struct elevator_type *elv = e->elevator_type;
1200 struct elevator_type *__e;
1201 int len = 0;
1202
1203 spin_lock(&elv_list_lock);
1204 list_for_each_entry(__e, &elv_list, list) {
1205 if (!strcmp(elv->elevator_name, __e->elevator_name))
1206 len += sprintf(name+len, "[%s] ", elv->elevator_name);
1207 else
1208 len += sprintf(name+len, "%s ", __e->elevator_name);
1209 }
1210 spin_unlock(&elv_list_lock);
1211
1212 len += sprintf(len+name, "\n");
1213 return len;
1214 }
1215
1216 struct request *elv_rb_former_request(struct request_queue *q,
1217 struct request *rq)
1218 {
1219 struct rb_node *rbprev = rb_prev(&rq->rb_node);
1220
1221 if (rbprev)
1222 return rb_entry_rq(rbprev);
1223
1224 return NULL;
1225 }
1226 EXPORT_SYMBOL(elv_rb_former_request);
1227
1228 struct request *elv_rb_latter_request(struct request_queue *q,
1229 struct request *rq)
1230 {
1231 struct rb_node *rbnext = rb_next(&rq->rb_node);
1232
1233 if (rbnext)
1234 return rb_entry_rq(rbnext);
1235
1236 return NULL;
1237 }
1238 EXPORT_SYMBOL(elv_rb_latter_request);
This page took 0.07635 seconds and 6 git commands to generate.