ath9k: Fix PLL powersave for AR9485
[deliverable/linux.git] / crypto / drbg.c
1 /*
2 * DRBG: Deterministic Random Bits Generator
3 * Based on NIST Recommended DRBG from NIST SP800-90A with the following
4 * properties:
5 * * CTR DRBG with DF with AES-128, AES-192, AES-256 cores
6 * * Hash DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
7 * * HMAC DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
8 * * with and without prediction resistance
9 *
10 * Copyright Stephan Mueller <smueller@chronox.de>, 2014
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, and the entire permission notice in its entirety,
17 * including the disclaimer of warranties.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. The name of the author may not be used to endorse or promote
22 * products derived from this software without specific prior
23 * written permission.
24 *
25 * ALTERNATIVELY, this product may be distributed under the terms of
26 * the GNU General Public License, in which case the provisions of the GPL are
27 * required INSTEAD OF the above restrictions. (This clause is
28 * necessary due to a potential bad interaction between the GPL and
29 * the restrictions contained in a BSD-style copyright.)
30 *
31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42 * DAMAGE.
43 *
44 * DRBG Usage
45 * ==========
46 * The SP 800-90A DRBG allows the user to specify a personalization string
47 * for initialization as well as an additional information string for each
48 * random number request. The following code fragments show how a caller
49 * uses the kernel crypto API to use the full functionality of the DRBG.
50 *
51 * Usage without any additional data
52 * ---------------------------------
53 * struct crypto_rng *drng;
54 * int err;
55 * char data[DATALEN];
56 *
57 * drng = crypto_alloc_rng(drng_name, 0, 0);
58 * err = crypto_rng_get_bytes(drng, &data, DATALEN);
59 * crypto_free_rng(drng);
60 *
61 *
62 * Usage with personalization string during initialization
63 * -------------------------------------------------------
64 * struct crypto_rng *drng;
65 * int err;
66 * char data[DATALEN];
67 * struct drbg_string pers;
68 * char personalization[11] = "some-string";
69 *
70 * drbg_string_fill(&pers, personalization, strlen(personalization));
71 * drng = crypto_alloc_rng(drng_name, 0, 0);
72 * // The reset completely re-initializes the DRBG with the provided
73 * // personalization string
74 * err = crypto_rng_reset(drng, &personalization, strlen(personalization));
75 * err = crypto_rng_get_bytes(drng, &data, DATALEN);
76 * crypto_free_rng(drng);
77 *
78 *
79 * Usage with additional information string during random number request
80 * ---------------------------------------------------------------------
81 * struct crypto_rng *drng;
82 * int err;
83 * char data[DATALEN];
84 * char addtl_string[11] = "some-string";
85 * string drbg_string addtl;
86 *
87 * drbg_string_fill(&addtl, addtl_string, strlen(addtl_string));
88 * drng = crypto_alloc_rng(drng_name, 0, 0);
89 * // The following call is a wrapper to crypto_rng_get_bytes() and returns
90 * // the same error codes.
91 * err = crypto_drbg_get_bytes_addtl(drng, &data, DATALEN, &addtl);
92 * crypto_free_rng(drng);
93 *
94 *
95 * Usage with personalization and additional information strings
96 * -------------------------------------------------------------
97 * Just mix both scenarios above.
98 */
99
100 #include <crypto/drbg.h>
101
102 /***************************************************************
103 * Backend cipher definitions available to DRBG
104 ***************************************************************/
105
106 /*
107 * The order of the DRBG definitions here matter: every DRBG is registered
108 * as stdrng. Each DRBG receives an increasing cra_priority values the later
109 * they are defined in this array (see drbg_fill_array).
110 *
111 * HMAC DRBGs are favored over Hash DRBGs over CTR DRBGs, and
112 * the SHA256 / AES 256 over other ciphers. Thus, the favored
113 * DRBGs are the latest entries in this array.
114 */
115 static const struct drbg_core drbg_cores[] = {
116 #ifdef CONFIG_CRYPTO_DRBG_CTR
117 {
118 .flags = DRBG_CTR | DRBG_STRENGTH128,
119 .statelen = 32, /* 256 bits as defined in 10.2.1 */
120 .blocklen_bytes = 16,
121 .cra_name = "ctr_aes128",
122 .backend_cra_name = "ecb(aes)",
123 }, {
124 .flags = DRBG_CTR | DRBG_STRENGTH192,
125 .statelen = 40, /* 320 bits as defined in 10.2.1 */
126 .blocklen_bytes = 16,
127 .cra_name = "ctr_aes192",
128 .backend_cra_name = "ecb(aes)",
129 }, {
130 .flags = DRBG_CTR | DRBG_STRENGTH256,
131 .statelen = 48, /* 384 bits as defined in 10.2.1 */
132 .blocklen_bytes = 16,
133 .cra_name = "ctr_aes256",
134 .backend_cra_name = "ecb(aes)",
135 },
136 #endif /* CONFIG_CRYPTO_DRBG_CTR */
137 #ifdef CONFIG_CRYPTO_DRBG_HASH
138 {
139 .flags = DRBG_HASH | DRBG_STRENGTH128,
140 .statelen = 55, /* 440 bits */
141 .blocklen_bytes = 20,
142 .cra_name = "sha1",
143 .backend_cra_name = "sha1",
144 }, {
145 .flags = DRBG_HASH | DRBG_STRENGTH256,
146 .statelen = 111, /* 888 bits */
147 .blocklen_bytes = 48,
148 .cra_name = "sha384",
149 .backend_cra_name = "sha384",
150 }, {
151 .flags = DRBG_HASH | DRBG_STRENGTH256,
152 .statelen = 111, /* 888 bits */
153 .blocklen_bytes = 64,
154 .cra_name = "sha512",
155 .backend_cra_name = "sha512",
156 }, {
157 .flags = DRBG_HASH | DRBG_STRENGTH256,
158 .statelen = 55, /* 440 bits */
159 .blocklen_bytes = 32,
160 .cra_name = "sha256",
161 .backend_cra_name = "sha256",
162 },
163 #endif /* CONFIG_CRYPTO_DRBG_HASH */
164 #ifdef CONFIG_CRYPTO_DRBG_HMAC
165 {
166 .flags = DRBG_HMAC | DRBG_STRENGTH128,
167 .statelen = 20, /* block length of cipher */
168 .blocklen_bytes = 20,
169 .cra_name = "hmac_sha1",
170 .backend_cra_name = "hmac(sha1)",
171 }, {
172 .flags = DRBG_HMAC | DRBG_STRENGTH256,
173 .statelen = 48, /* block length of cipher */
174 .blocklen_bytes = 48,
175 .cra_name = "hmac_sha384",
176 .backend_cra_name = "hmac(sha384)",
177 }, {
178 .flags = DRBG_HMAC | DRBG_STRENGTH256,
179 .statelen = 64, /* block length of cipher */
180 .blocklen_bytes = 64,
181 .cra_name = "hmac_sha512",
182 .backend_cra_name = "hmac(sha512)",
183 }, {
184 .flags = DRBG_HMAC | DRBG_STRENGTH256,
185 .statelen = 32, /* block length of cipher */
186 .blocklen_bytes = 32,
187 .cra_name = "hmac_sha256",
188 .backend_cra_name = "hmac(sha256)",
189 },
190 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
191 };
192
193 /******************************************************************
194 * Generic helper functions
195 ******************************************************************/
196
197 /*
198 * Return strength of DRBG according to SP800-90A section 8.4
199 *
200 * @flags DRBG flags reference
201 *
202 * Return: normalized strength in *bytes* value or 32 as default
203 * to counter programming errors
204 */
205 static inline unsigned short drbg_sec_strength(drbg_flag_t flags)
206 {
207 switch (flags & DRBG_STRENGTH_MASK) {
208 case DRBG_STRENGTH128:
209 return 16;
210 case DRBG_STRENGTH192:
211 return 24;
212 case DRBG_STRENGTH256:
213 return 32;
214 default:
215 return 32;
216 }
217 }
218
219 /*
220 * FIPS 140-2 continuous self test
221 * The test is performed on the result of one round of the output
222 * function. Thus, the function implicitly knows the size of the
223 * buffer.
224 *
225 * @drbg DRBG handle
226 * @buf output buffer of random data to be checked
227 *
228 * return:
229 * true on success
230 * false on error
231 */
232 static bool drbg_fips_continuous_test(struct drbg_state *drbg,
233 const unsigned char *buf)
234 {
235 #ifdef CONFIG_CRYPTO_FIPS
236 int ret = 0;
237 /* skip test if we test the overall system */
238 if (drbg->test_data)
239 return true;
240 /* only perform test in FIPS mode */
241 if (0 == fips_enabled)
242 return true;
243 if (!drbg->fips_primed) {
244 /* Priming of FIPS test */
245 memcpy(drbg->prev, buf, drbg_blocklen(drbg));
246 drbg->fips_primed = true;
247 /* return false due to priming, i.e. another round is needed */
248 return false;
249 }
250 ret = memcmp(drbg->prev, buf, drbg_blocklen(drbg));
251 if (!ret)
252 panic("DRBG continuous self test failed\n");
253 memcpy(drbg->prev, buf, drbg_blocklen(drbg));
254 /* the test shall pass when the two compared values are not equal */
255 return ret != 0;
256 #else
257 return true;
258 #endif /* CONFIG_CRYPTO_FIPS */
259 }
260
261 /*
262 * Convert an integer into a byte representation of this integer.
263 * The byte representation is big-endian
264 *
265 * @val value to be converted
266 * @buf buffer holding the converted integer -- caller must ensure that
267 * buffer size is at least 32 bit
268 */
269 #if (defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR))
270 static inline void drbg_cpu_to_be32(__u32 val, unsigned char *buf)
271 {
272 struct s {
273 __be32 conv;
274 };
275 struct s *conversion = (struct s *) buf;
276
277 conversion->conv = cpu_to_be32(val);
278 }
279 #endif /* defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR) */
280
281 /******************************************************************
282 * CTR DRBG callback functions
283 ******************************************************************/
284
285 #ifdef CONFIG_CRYPTO_DRBG_CTR
286 #define CRYPTO_DRBG_CTR_STRING "CTR "
287 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes256");
288 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes256");
289 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes192");
290 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes192");
291 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes128");
292 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes128");
293
294 static int drbg_kcapi_sym(struct drbg_state *drbg, const unsigned char *key,
295 unsigned char *outval, const struct drbg_string *in);
296 static int drbg_init_sym_kernel(struct drbg_state *drbg);
297 static int drbg_fini_sym_kernel(struct drbg_state *drbg);
298
299 /* BCC function for CTR DRBG as defined in 10.4.3 */
300 static int drbg_ctr_bcc(struct drbg_state *drbg,
301 unsigned char *out, const unsigned char *key,
302 struct list_head *in)
303 {
304 int ret = 0;
305 struct drbg_string *curr = NULL;
306 struct drbg_string data;
307 short cnt = 0;
308
309 drbg_string_fill(&data, out, drbg_blocklen(drbg));
310
311 /* 10.4.3 step 1 */
312 memset(out, 0, drbg_blocklen(drbg));
313
314 /* 10.4.3 step 2 / 4 */
315 list_for_each_entry(curr, in, list) {
316 const unsigned char *pos = curr->buf;
317 size_t len = curr->len;
318 /* 10.4.3 step 4.1 */
319 while (len) {
320 /* 10.4.3 step 4.2 */
321 if (drbg_blocklen(drbg) == cnt) {
322 cnt = 0;
323 ret = drbg_kcapi_sym(drbg, key, out, &data);
324 if (ret)
325 return ret;
326 }
327 out[cnt] ^= *pos;
328 pos++;
329 cnt++;
330 len--;
331 }
332 }
333 /* 10.4.3 step 4.2 for last block */
334 if (cnt)
335 ret = drbg_kcapi_sym(drbg, key, out, &data);
336
337 return ret;
338 }
339
340 /*
341 * scratchpad usage: drbg_ctr_update is interlinked with drbg_ctr_df
342 * (and drbg_ctr_bcc, but this function does not need any temporary buffers),
343 * the scratchpad is used as follows:
344 * drbg_ctr_update:
345 * temp
346 * start: drbg->scratchpad
347 * length: drbg_statelen(drbg) + drbg_blocklen(drbg)
348 * note: the cipher writing into this variable works
349 * blocklen-wise. Now, when the statelen is not a multiple
350 * of blocklen, the generateion loop below "spills over"
351 * by at most blocklen. Thus, we need to give sufficient
352 * memory.
353 * df_data
354 * start: drbg->scratchpad +
355 * drbg_statelen(drbg) + drbg_blocklen(drbg)
356 * length: drbg_statelen(drbg)
357 *
358 * drbg_ctr_df:
359 * pad
360 * start: df_data + drbg_statelen(drbg)
361 * length: drbg_blocklen(drbg)
362 * iv
363 * start: pad + drbg_blocklen(drbg)
364 * length: drbg_blocklen(drbg)
365 * temp
366 * start: iv + drbg_blocklen(drbg)
367 * length: drbg_satelen(drbg) + drbg_blocklen(drbg)
368 * note: temp is the buffer that the BCC function operates
369 * on. BCC operates blockwise. drbg_statelen(drbg)
370 * is sufficient when the DRBG state length is a multiple
371 * of the block size. For AES192 (and maybe other ciphers)
372 * this is not correct and the length for temp is
373 * insufficient (yes, that also means for such ciphers,
374 * the final output of all BCC rounds are truncated).
375 * Therefore, add drbg_blocklen(drbg) to cover all
376 * possibilities.
377 */
378
379 /* Derivation Function for CTR DRBG as defined in 10.4.2 */
380 static int drbg_ctr_df(struct drbg_state *drbg,
381 unsigned char *df_data, size_t bytes_to_return,
382 struct list_head *seedlist)
383 {
384 int ret = -EFAULT;
385 unsigned char L_N[8];
386 /* S3 is input */
387 struct drbg_string S1, S2, S4, cipherin;
388 LIST_HEAD(bcc_list);
389 unsigned char *pad = df_data + drbg_statelen(drbg);
390 unsigned char *iv = pad + drbg_blocklen(drbg);
391 unsigned char *temp = iv + drbg_blocklen(drbg);
392 size_t padlen = 0;
393 unsigned int templen = 0;
394 /* 10.4.2 step 7 */
395 unsigned int i = 0;
396 /* 10.4.2 step 8 */
397 const unsigned char *K = (unsigned char *)
398 "\x00\x01\x02\x03\x04\x05\x06\x07"
399 "\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
400 "\x10\x11\x12\x13\x14\x15\x16\x17"
401 "\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f";
402 unsigned char *X;
403 size_t generated_len = 0;
404 size_t inputlen = 0;
405 struct drbg_string *seed = NULL;
406
407 memset(pad, 0, drbg_blocklen(drbg));
408 memset(iv, 0, drbg_blocklen(drbg));
409 memset(temp, 0, drbg_statelen(drbg));
410
411 /* 10.4.2 step 1 is implicit as we work byte-wise */
412
413 /* 10.4.2 step 2 */
414 if ((512/8) < bytes_to_return)
415 return -EINVAL;
416
417 /* 10.4.2 step 2 -- calculate the entire length of all input data */
418 list_for_each_entry(seed, seedlist, list)
419 inputlen += seed->len;
420 drbg_cpu_to_be32(inputlen, &L_N[0]);
421
422 /* 10.4.2 step 3 */
423 drbg_cpu_to_be32(bytes_to_return, &L_N[4]);
424
425 /* 10.4.2 step 5: length is L_N, input_string, one byte, padding */
426 padlen = (inputlen + sizeof(L_N) + 1) % (drbg_blocklen(drbg));
427 /* wrap the padlen appropriately */
428 if (padlen)
429 padlen = drbg_blocklen(drbg) - padlen;
430 /*
431 * pad / padlen contains the 0x80 byte and the following zero bytes.
432 * As the calculated padlen value only covers the number of zero
433 * bytes, this value has to be incremented by one for the 0x80 byte.
434 */
435 padlen++;
436 pad[0] = 0x80;
437
438 /* 10.4.2 step 4 -- first fill the linked list and then order it */
439 drbg_string_fill(&S1, iv, drbg_blocklen(drbg));
440 list_add_tail(&S1.list, &bcc_list);
441 drbg_string_fill(&S2, L_N, sizeof(L_N));
442 list_add_tail(&S2.list, &bcc_list);
443 list_splice_tail(seedlist, &bcc_list);
444 drbg_string_fill(&S4, pad, padlen);
445 list_add_tail(&S4.list, &bcc_list);
446
447 /* 10.4.2 step 9 */
448 while (templen < (drbg_keylen(drbg) + (drbg_blocklen(drbg)))) {
449 /*
450 * 10.4.2 step 9.1 - the padding is implicit as the buffer
451 * holds zeros after allocation -- even the increment of i
452 * is irrelevant as the increment remains within length of i
453 */
454 drbg_cpu_to_be32(i, iv);
455 /* 10.4.2 step 9.2 -- BCC and concatenation with temp */
456 ret = drbg_ctr_bcc(drbg, temp + templen, K, &bcc_list);
457 if (ret)
458 goto out;
459 /* 10.4.2 step 9.3 */
460 i++;
461 templen += drbg_blocklen(drbg);
462 }
463
464 /* 10.4.2 step 11 */
465 X = temp + (drbg_keylen(drbg));
466 drbg_string_fill(&cipherin, X, drbg_blocklen(drbg));
467
468 /* 10.4.2 step 12: overwriting of outval is implemented in next step */
469
470 /* 10.4.2 step 13 */
471 while (generated_len < bytes_to_return) {
472 short blocklen = 0;
473 /*
474 * 10.4.2 step 13.1: the truncation of the key length is
475 * implicit as the key is only drbg_blocklen in size based on
476 * the implementation of the cipher function callback
477 */
478 ret = drbg_kcapi_sym(drbg, temp, X, &cipherin);
479 if (ret)
480 goto out;
481 blocklen = (drbg_blocklen(drbg) <
482 (bytes_to_return - generated_len)) ?
483 drbg_blocklen(drbg) :
484 (bytes_to_return - generated_len);
485 /* 10.4.2 step 13.2 and 14 */
486 memcpy(df_data + generated_len, X, blocklen);
487 generated_len += blocklen;
488 }
489
490 ret = 0;
491
492 out:
493 memset(iv, 0, drbg_blocklen(drbg));
494 memset(temp, 0, drbg_statelen(drbg));
495 memset(pad, 0, drbg_blocklen(drbg));
496 return ret;
497 }
498
499 /*
500 * update function of CTR DRBG as defined in 10.2.1.2
501 *
502 * The reseed variable has an enhanced meaning compared to the update
503 * functions of the other DRBGs as follows:
504 * 0 => initial seed from initialization
505 * 1 => reseed via drbg_seed
506 * 2 => first invocation from drbg_ctr_update when addtl is present. In
507 * this case, the df_data scratchpad is not deleted so that it is
508 * available for another calls to prevent calling the DF function
509 * again.
510 * 3 => second invocation from drbg_ctr_update. When the update function
511 * was called with addtl, the df_data memory already contains the
512 * DFed addtl information and we do not need to call DF again.
513 */
514 static int drbg_ctr_update(struct drbg_state *drbg, struct list_head *seed,
515 int reseed)
516 {
517 int ret = -EFAULT;
518 /* 10.2.1.2 step 1 */
519 unsigned char *temp = drbg->scratchpad;
520 unsigned char *df_data = drbg->scratchpad + drbg_statelen(drbg) +
521 drbg_blocklen(drbg);
522 unsigned char *temp_p, *df_data_p; /* pointer to iterate over buffers */
523 unsigned int len = 0;
524 struct drbg_string cipherin;
525
526 memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
527 if (3 > reseed)
528 memset(df_data, 0, drbg_statelen(drbg));
529
530 /* 10.2.1.3.2 step 2 and 10.2.1.4.2 step 2 */
531 if (seed) {
532 ret = drbg_ctr_df(drbg, df_data, drbg_statelen(drbg), seed);
533 if (ret)
534 goto out;
535 }
536
537 drbg_string_fill(&cipherin, drbg->V, drbg_blocklen(drbg));
538 /*
539 * 10.2.1.3.2 steps 2 and 3 are already covered as the allocation
540 * zeroizes all memory during initialization
541 */
542 while (len < (drbg_statelen(drbg))) {
543 /* 10.2.1.2 step 2.1 */
544 crypto_inc(drbg->V, drbg_blocklen(drbg));
545 /*
546 * 10.2.1.2 step 2.2 */
547 ret = drbg_kcapi_sym(drbg, drbg->C, temp + len, &cipherin);
548 if (ret)
549 goto out;
550 /* 10.2.1.2 step 2.3 and 3 */
551 len += drbg_blocklen(drbg);
552 }
553
554 /* 10.2.1.2 step 4 */
555 temp_p = temp;
556 df_data_p = df_data;
557 for (len = 0; len < drbg_statelen(drbg); len++) {
558 *temp_p ^= *df_data_p;
559 df_data_p++; temp_p++;
560 }
561
562 /* 10.2.1.2 step 5 */
563 memcpy(drbg->C, temp, drbg_keylen(drbg));
564 /* 10.2.1.2 step 6 */
565 memcpy(drbg->V, temp + drbg_keylen(drbg), drbg_blocklen(drbg));
566 ret = 0;
567
568 out:
569 memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
570 if (2 != reseed)
571 memset(df_data, 0, drbg_statelen(drbg));
572 return ret;
573 }
574
575 /*
576 * scratchpad use: drbg_ctr_update is called independently from
577 * drbg_ctr_extract_bytes. Therefore, the scratchpad is reused
578 */
579 /* Generate function of CTR DRBG as defined in 10.2.1.5.2 */
580 static int drbg_ctr_generate(struct drbg_state *drbg,
581 unsigned char *buf, unsigned int buflen,
582 struct list_head *addtl)
583 {
584 int len = 0;
585 int ret = 0;
586 struct drbg_string data;
587
588 memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
589
590 /* 10.2.1.5.2 step 2 */
591 if (addtl && !list_empty(addtl)) {
592 ret = drbg_ctr_update(drbg, addtl, 2);
593 if (ret)
594 return 0;
595 }
596
597 /* 10.2.1.5.2 step 4.1 */
598 crypto_inc(drbg->V, drbg_blocklen(drbg));
599 drbg_string_fill(&data, drbg->V, drbg_blocklen(drbg));
600 while (len < buflen) {
601 int outlen = 0;
602 /* 10.2.1.5.2 step 4.2 */
603 ret = drbg_kcapi_sym(drbg, drbg->C, drbg->scratchpad, &data);
604 if (ret) {
605 len = ret;
606 goto out;
607 }
608 outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
609 drbg_blocklen(drbg) : (buflen - len);
610 if (!drbg_fips_continuous_test(drbg, drbg->scratchpad)) {
611 /* 10.2.1.5.2 step 6 */
612 crypto_inc(drbg->V, drbg_blocklen(drbg));
613 continue;
614 }
615 /* 10.2.1.5.2 step 4.3 */
616 memcpy(buf + len, drbg->scratchpad, outlen);
617 len += outlen;
618 /* 10.2.1.5.2 step 6 */
619 if (len < buflen)
620 crypto_inc(drbg->V, drbg_blocklen(drbg));
621 }
622
623 /* 10.2.1.5.2 step 6 */
624 ret = drbg_ctr_update(drbg, NULL, 3);
625 if (ret)
626 len = ret;
627
628 out:
629 memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
630 return len;
631 }
632
633 static struct drbg_state_ops drbg_ctr_ops = {
634 .update = drbg_ctr_update,
635 .generate = drbg_ctr_generate,
636 .crypto_init = drbg_init_sym_kernel,
637 .crypto_fini = drbg_fini_sym_kernel,
638 };
639 #endif /* CONFIG_CRYPTO_DRBG_CTR */
640
641 /******************************************************************
642 * HMAC DRBG callback functions
643 ******************************************************************/
644
645 #if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
646 static int drbg_kcapi_hash(struct drbg_state *drbg, const unsigned char *key,
647 unsigned char *outval, const struct list_head *in);
648 static int drbg_init_hash_kernel(struct drbg_state *drbg);
649 static int drbg_fini_hash_kernel(struct drbg_state *drbg);
650 #endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
651
652 #ifdef CONFIG_CRYPTO_DRBG_HMAC
653 #define CRYPTO_DRBG_HMAC_STRING "HMAC "
654 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha512");
655 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha512");
656 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha384");
657 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha384");
658 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha256");
659 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha256");
660 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha1");
661 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha1");
662
663 /* update function of HMAC DRBG as defined in 10.1.2.2 */
664 static int drbg_hmac_update(struct drbg_state *drbg, struct list_head *seed,
665 int reseed)
666 {
667 int ret = -EFAULT;
668 int i = 0;
669 struct drbg_string seed1, seed2, vdata;
670 LIST_HEAD(seedlist);
671 LIST_HEAD(vdatalist);
672
673 if (!reseed)
674 /* 10.1.2.3 step 2 -- memset(0) of C is implicit with kzalloc */
675 memset(drbg->V, 1, drbg_statelen(drbg));
676
677 drbg_string_fill(&seed1, drbg->V, drbg_statelen(drbg));
678 list_add_tail(&seed1.list, &seedlist);
679 /* buffer of seed2 will be filled in for loop below with one byte */
680 drbg_string_fill(&seed2, NULL, 1);
681 list_add_tail(&seed2.list, &seedlist);
682 /* input data of seed is allowed to be NULL at this point */
683 if (seed)
684 list_splice_tail(seed, &seedlist);
685
686 drbg_string_fill(&vdata, drbg->V, drbg_statelen(drbg));
687 list_add_tail(&vdata.list, &vdatalist);
688 for (i = 2; 0 < i; i--) {
689 /* first round uses 0x0, second 0x1 */
690 unsigned char prefix = DRBG_PREFIX0;
691 if (1 == i)
692 prefix = DRBG_PREFIX1;
693 /* 10.1.2.2 step 1 and 4 -- concatenation and HMAC for key */
694 seed2.buf = &prefix;
695 ret = drbg_kcapi_hash(drbg, drbg->C, drbg->C, &seedlist);
696 if (ret)
697 return ret;
698
699 /* 10.1.2.2 step 2 and 5 -- HMAC for V */
700 ret = drbg_kcapi_hash(drbg, drbg->C, drbg->V, &vdatalist);
701 if (ret)
702 return ret;
703
704 /* 10.1.2.2 step 3 */
705 if (!seed)
706 return ret;
707 }
708
709 return 0;
710 }
711
712 /* generate function of HMAC DRBG as defined in 10.1.2.5 */
713 static int drbg_hmac_generate(struct drbg_state *drbg,
714 unsigned char *buf,
715 unsigned int buflen,
716 struct list_head *addtl)
717 {
718 int len = 0;
719 int ret = 0;
720 struct drbg_string data;
721 LIST_HEAD(datalist);
722
723 /* 10.1.2.5 step 2 */
724 if (addtl && !list_empty(addtl)) {
725 ret = drbg_hmac_update(drbg, addtl, 1);
726 if (ret)
727 return ret;
728 }
729
730 drbg_string_fill(&data, drbg->V, drbg_statelen(drbg));
731 list_add_tail(&data.list, &datalist);
732 while (len < buflen) {
733 unsigned int outlen = 0;
734 /* 10.1.2.5 step 4.1 */
735 ret = drbg_kcapi_hash(drbg, drbg->C, drbg->V, &datalist);
736 if (ret)
737 return ret;
738 outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
739 drbg_blocklen(drbg) : (buflen - len);
740 if (!drbg_fips_continuous_test(drbg, drbg->V))
741 continue;
742
743 /* 10.1.2.5 step 4.2 */
744 memcpy(buf + len, drbg->V, outlen);
745 len += outlen;
746 }
747
748 /* 10.1.2.5 step 6 */
749 if (addtl && !list_empty(addtl))
750 ret = drbg_hmac_update(drbg, addtl, 1);
751 else
752 ret = drbg_hmac_update(drbg, NULL, 1);
753 if (ret)
754 return ret;
755
756 return len;
757 }
758
759 static struct drbg_state_ops drbg_hmac_ops = {
760 .update = drbg_hmac_update,
761 .generate = drbg_hmac_generate,
762 .crypto_init = drbg_init_hash_kernel,
763 .crypto_fini = drbg_fini_hash_kernel,
764
765 };
766 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
767
768 /******************************************************************
769 * Hash DRBG callback functions
770 ******************************************************************/
771
772 #ifdef CONFIG_CRYPTO_DRBG_HASH
773 #define CRYPTO_DRBG_HASH_STRING "HASH "
774 MODULE_ALIAS_CRYPTO("drbg_pr_sha512");
775 MODULE_ALIAS_CRYPTO("drbg_nopr_sha512");
776 MODULE_ALIAS_CRYPTO("drbg_pr_sha384");
777 MODULE_ALIAS_CRYPTO("drbg_nopr_sha384");
778 MODULE_ALIAS_CRYPTO("drbg_pr_sha256");
779 MODULE_ALIAS_CRYPTO("drbg_nopr_sha256");
780 MODULE_ALIAS_CRYPTO("drbg_pr_sha1");
781 MODULE_ALIAS_CRYPTO("drbg_nopr_sha1");
782
783 /*
784 * Increment buffer
785 *
786 * @dst buffer to increment
787 * @add value to add
788 */
789 static inline void drbg_add_buf(unsigned char *dst, size_t dstlen,
790 const unsigned char *add, size_t addlen)
791 {
792 /* implied: dstlen > addlen */
793 unsigned char *dstptr;
794 const unsigned char *addptr;
795 unsigned int remainder = 0;
796 size_t len = addlen;
797
798 dstptr = dst + (dstlen-1);
799 addptr = add + (addlen-1);
800 while (len) {
801 remainder += *dstptr + *addptr;
802 *dstptr = remainder & 0xff;
803 remainder >>= 8;
804 len--; dstptr--; addptr--;
805 }
806 len = dstlen - addlen;
807 while (len && remainder > 0) {
808 remainder = *dstptr + 1;
809 *dstptr = remainder & 0xff;
810 remainder >>= 8;
811 len--; dstptr--;
812 }
813 }
814
815 /*
816 * scratchpad usage: as drbg_hash_update and drbg_hash_df are used
817 * interlinked, the scratchpad is used as follows:
818 * drbg_hash_update
819 * start: drbg->scratchpad
820 * length: drbg_statelen(drbg)
821 * drbg_hash_df:
822 * start: drbg->scratchpad + drbg_statelen(drbg)
823 * length: drbg_blocklen(drbg)
824 *
825 * drbg_hash_process_addtl uses the scratchpad, but fully completes
826 * before either of the functions mentioned before are invoked. Therefore,
827 * drbg_hash_process_addtl does not need to be specifically considered.
828 */
829
830 /* Derivation Function for Hash DRBG as defined in 10.4.1 */
831 static int drbg_hash_df(struct drbg_state *drbg,
832 unsigned char *outval, size_t outlen,
833 struct list_head *entropylist)
834 {
835 int ret = 0;
836 size_t len = 0;
837 unsigned char input[5];
838 unsigned char *tmp = drbg->scratchpad + drbg_statelen(drbg);
839 struct drbg_string data;
840
841 memset(tmp, 0, drbg_blocklen(drbg));
842
843 /* 10.4.1 step 3 */
844 input[0] = 1;
845 drbg_cpu_to_be32((outlen * 8), &input[1]);
846
847 /* 10.4.1 step 4.1 -- concatenation of data for input into hash */
848 drbg_string_fill(&data, input, 5);
849 list_add(&data.list, entropylist);
850
851 /* 10.4.1 step 4 */
852 while (len < outlen) {
853 short blocklen = 0;
854 /* 10.4.1 step 4.1 */
855 ret = drbg_kcapi_hash(drbg, NULL, tmp, entropylist);
856 if (ret)
857 goto out;
858 /* 10.4.1 step 4.2 */
859 input[0]++;
860 blocklen = (drbg_blocklen(drbg) < (outlen - len)) ?
861 drbg_blocklen(drbg) : (outlen - len);
862 memcpy(outval + len, tmp, blocklen);
863 len += blocklen;
864 }
865
866 out:
867 memset(tmp, 0, drbg_blocklen(drbg));
868 return ret;
869 }
870
871 /* update function for Hash DRBG as defined in 10.1.1.2 / 10.1.1.3 */
872 static int drbg_hash_update(struct drbg_state *drbg, struct list_head *seed,
873 int reseed)
874 {
875 int ret = 0;
876 struct drbg_string data1, data2;
877 LIST_HEAD(datalist);
878 LIST_HEAD(datalist2);
879 unsigned char *V = drbg->scratchpad;
880 unsigned char prefix = DRBG_PREFIX1;
881
882 memset(drbg->scratchpad, 0, drbg_statelen(drbg));
883 if (!seed)
884 return -EINVAL;
885
886 if (reseed) {
887 /* 10.1.1.3 step 1 */
888 memcpy(V, drbg->V, drbg_statelen(drbg));
889 drbg_string_fill(&data1, &prefix, 1);
890 list_add_tail(&data1.list, &datalist);
891 drbg_string_fill(&data2, V, drbg_statelen(drbg));
892 list_add_tail(&data2.list, &datalist);
893 }
894 list_splice_tail(seed, &datalist);
895
896 /* 10.1.1.2 / 10.1.1.3 step 2 and 3 */
897 ret = drbg_hash_df(drbg, drbg->V, drbg_statelen(drbg), &datalist);
898 if (ret)
899 goto out;
900
901 /* 10.1.1.2 / 10.1.1.3 step 4 */
902 prefix = DRBG_PREFIX0;
903 drbg_string_fill(&data1, &prefix, 1);
904 list_add_tail(&data1.list, &datalist2);
905 drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
906 list_add_tail(&data2.list, &datalist2);
907 /* 10.1.1.2 / 10.1.1.3 step 4 */
908 ret = drbg_hash_df(drbg, drbg->C, drbg_statelen(drbg), &datalist2);
909
910 out:
911 memset(drbg->scratchpad, 0, drbg_statelen(drbg));
912 return ret;
913 }
914
915 /* processing of additional information string for Hash DRBG */
916 static int drbg_hash_process_addtl(struct drbg_state *drbg,
917 struct list_head *addtl)
918 {
919 int ret = 0;
920 struct drbg_string data1, data2;
921 LIST_HEAD(datalist);
922 unsigned char prefix = DRBG_PREFIX2;
923
924 /* this is value w as per documentation */
925 memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
926
927 /* 10.1.1.4 step 2 */
928 if (!addtl || list_empty(addtl))
929 return 0;
930
931 /* 10.1.1.4 step 2a */
932 drbg_string_fill(&data1, &prefix, 1);
933 drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
934 list_add_tail(&data1.list, &datalist);
935 list_add_tail(&data2.list, &datalist);
936 list_splice_tail(addtl, &datalist);
937 ret = drbg_kcapi_hash(drbg, NULL, drbg->scratchpad, &datalist);
938 if (ret)
939 goto out;
940
941 /* 10.1.1.4 step 2b */
942 drbg_add_buf(drbg->V, drbg_statelen(drbg),
943 drbg->scratchpad, drbg_blocklen(drbg));
944
945 out:
946 memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
947 return ret;
948 }
949
950 /* Hashgen defined in 10.1.1.4 */
951 static int drbg_hash_hashgen(struct drbg_state *drbg,
952 unsigned char *buf,
953 unsigned int buflen)
954 {
955 int len = 0;
956 int ret = 0;
957 unsigned char *src = drbg->scratchpad;
958 unsigned char *dst = drbg->scratchpad + drbg_statelen(drbg);
959 struct drbg_string data;
960 LIST_HEAD(datalist);
961
962 memset(src, 0, drbg_statelen(drbg));
963 memset(dst, 0, drbg_blocklen(drbg));
964
965 /* 10.1.1.4 step hashgen 2 */
966 memcpy(src, drbg->V, drbg_statelen(drbg));
967
968 drbg_string_fill(&data, src, drbg_statelen(drbg));
969 list_add_tail(&data.list, &datalist);
970 while (len < buflen) {
971 unsigned int outlen = 0;
972 /* 10.1.1.4 step hashgen 4.1 */
973 ret = drbg_kcapi_hash(drbg, NULL, dst, &datalist);
974 if (ret) {
975 len = ret;
976 goto out;
977 }
978 outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
979 drbg_blocklen(drbg) : (buflen - len);
980 if (!drbg_fips_continuous_test(drbg, dst)) {
981 crypto_inc(src, drbg_statelen(drbg));
982 continue;
983 }
984 /* 10.1.1.4 step hashgen 4.2 */
985 memcpy(buf + len, dst, outlen);
986 len += outlen;
987 /* 10.1.1.4 hashgen step 4.3 */
988 if (len < buflen)
989 crypto_inc(src, drbg_statelen(drbg));
990 }
991
992 out:
993 memset(drbg->scratchpad, 0,
994 (drbg_statelen(drbg) + drbg_blocklen(drbg)));
995 return len;
996 }
997
998 /* generate function for Hash DRBG as defined in 10.1.1.4 */
999 static int drbg_hash_generate(struct drbg_state *drbg,
1000 unsigned char *buf, unsigned int buflen,
1001 struct list_head *addtl)
1002 {
1003 int len = 0;
1004 int ret = 0;
1005 union {
1006 unsigned char req[8];
1007 __be64 req_int;
1008 } u;
1009 unsigned char prefix = DRBG_PREFIX3;
1010 struct drbg_string data1, data2;
1011 LIST_HEAD(datalist);
1012
1013 /* 10.1.1.4 step 2 */
1014 ret = drbg_hash_process_addtl(drbg, addtl);
1015 if (ret)
1016 return ret;
1017 /* 10.1.1.4 step 3 */
1018 len = drbg_hash_hashgen(drbg, buf, buflen);
1019
1020 /* this is the value H as documented in 10.1.1.4 */
1021 memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
1022 /* 10.1.1.4 step 4 */
1023 drbg_string_fill(&data1, &prefix, 1);
1024 list_add_tail(&data1.list, &datalist);
1025 drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
1026 list_add_tail(&data2.list, &datalist);
1027 ret = drbg_kcapi_hash(drbg, NULL, drbg->scratchpad, &datalist);
1028 if (ret) {
1029 len = ret;
1030 goto out;
1031 }
1032
1033 /* 10.1.1.4 step 5 */
1034 drbg_add_buf(drbg->V, drbg_statelen(drbg),
1035 drbg->scratchpad, drbg_blocklen(drbg));
1036 drbg_add_buf(drbg->V, drbg_statelen(drbg),
1037 drbg->C, drbg_statelen(drbg));
1038 u.req_int = cpu_to_be64(drbg->reseed_ctr);
1039 drbg_add_buf(drbg->V, drbg_statelen(drbg), u.req, 8);
1040
1041 out:
1042 memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
1043 return len;
1044 }
1045
1046 /*
1047 * scratchpad usage: as update and generate are used isolated, both
1048 * can use the scratchpad
1049 */
1050 static struct drbg_state_ops drbg_hash_ops = {
1051 .update = drbg_hash_update,
1052 .generate = drbg_hash_generate,
1053 .crypto_init = drbg_init_hash_kernel,
1054 .crypto_fini = drbg_fini_hash_kernel,
1055 };
1056 #endif /* CONFIG_CRYPTO_DRBG_HASH */
1057
1058 /******************************************************************
1059 * Functions common for DRBG implementations
1060 ******************************************************************/
1061
1062 /*
1063 * Seeding or reseeding of the DRBG
1064 *
1065 * @drbg: DRBG state struct
1066 * @pers: personalization / additional information buffer
1067 * @reseed: 0 for initial seed process, 1 for reseeding
1068 *
1069 * return:
1070 * 0 on success
1071 * error value otherwise
1072 */
1073 static int drbg_seed(struct drbg_state *drbg, struct drbg_string *pers,
1074 bool reseed)
1075 {
1076 int ret = 0;
1077 unsigned char *entropy = NULL;
1078 size_t entropylen = 0;
1079 struct drbg_string data1;
1080 LIST_HEAD(seedlist);
1081
1082 /* 9.1 / 9.2 / 9.3.1 step 3 */
1083 if (pers && pers->len > (drbg_max_addtl(drbg))) {
1084 pr_devel("DRBG: personalization string too long %zu\n",
1085 pers->len);
1086 return -EINVAL;
1087 }
1088
1089 if (drbg->test_data && drbg->test_data->testentropy) {
1090 drbg_string_fill(&data1, drbg->test_data->testentropy->buf,
1091 drbg->test_data->testentropy->len);
1092 pr_devel("DRBG: using test entropy\n");
1093 } else {
1094 /*
1095 * Gather entropy equal to the security strength of the DRBG.
1096 * With a derivation function, a nonce is required in addition
1097 * to the entropy. A nonce must be at least 1/2 of the security
1098 * strength of the DRBG in size. Thus, entropy * nonce is 3/2
1099 * of the strength. The consideration of a nonce is only
1100 * applicable during initial seeding.
1101 */
1102 entropylen = drbg_sec_strength(drbg->core->flags);
1103 if (!entropylen)
1104 return -EFAULT;
1105 if (!reseed)
1106 entropylen = ((entropylen + 1) / 2) * 3;
1107 pr_devel("DRBG: (re)seeding with %zu bytes of entropy\n",
1108 entropylen);
1109 entropy = kzalloc(entropylen, GFP_KERNEL);
1110 if (!entropy)
1111 return -ENOMEM;
1112 get_random_bytes(entropy, entropylen);
1113 drbg_string_fill(&data1, entropy, entropylen);
1114 }
1115 list_add_tail(&data1.list, &seedlist);
1116
1117 /*
1118 * concatenation of entropy with personalization str / addtl input)
1119 * the variable pers is directly handed in by the caller, so check its
1120 * contents whether it is appropriate
1121 */
1122 if (pers && pers->buf && 0 < pers->len) {
1123 list_add_tail(&pers->list, &seedlist);
1124 pr_devel("DRBG: using personalization string\n");
1125 }
1126
1127 if (!reseed) {
1128 memset(drbg->V, 0, drbg_statelen(drbg));
1129 memset(drbg->C, 0, drbg_statelen(drbg));
1130 }
1131
1132 ret = drbg->d_ops->update(drbg, &seedlist, reseed);
1133 if (ret)
1134 goto out;
1135
1136 drbg->seeded = true;
1137 /* 10.1.1.2 / 10.1.1.3 step 5 */
1138 drbg->reseed_ctr = 1;
1139
1140 out:
1141 kzfree(entropy);
1142 return ret;
1143 }
1144
1145 /* Free all substructures in a DRBG state without the DRBG state structure */
1146 static inline void drbg_dealloc_state(struct drbg_state *drbg)
1147 {
1148 if (!drbg)
1149 return;
1150 kzfree(drbg->V);
1151 drbg->V = NULL;
1152 kzfree(drbg->C);
1153 drbg->C = NULL;
1154 kzfree(drbg->scratchpad);
1155 drbg->scratchpad = NULL;
1156 drbg->reseed_ctr = 0;
1157 #ifdef CONFIG_CRYPTO_FIPS
1158 kzfree(drbg->prev);
1159 drbg->prev = NULL;
1160 drbg->fips_primed = false;
1161 #endif
1162 }
1163
1164 /*
1165 * Allocate all sub-structures for a DRBG state.
1166 * The DRBG state structure must already be allocated.
1167 */
1168 static inline int drbg_alloc_state(struct drbg_state *drbg)
1169 {
1170 int ret = -ENOMEM;
1171 unsigned int sb_size = 0;
1172
1173 drbg->V = kmalloc(drbg_statelen(drbg), GFP_KERNEL);
1174 if (!drbg->V)
1175 goto err;
1176 drbg->C = kmalloc(drbg_statelen(drbg), GFP_KERNEL);
1177 if (!drbg->C)
1178 goto err;
1179 #ifdef CONFIG_CRYPTO_FIPS
1180 drbg->prev = kmalloc(drbg_blocklen(drbg), GFP_KERNEL);
1181 if (!drbg->prev)
1182 goto err;
1183 drbg->fips_primed = false;
1184 #endif
1185 /* scratchpad is only generated for CTR and Hash */
1186 if (drbg->core->flags & DRBG_HMAC)
1187 sb_size = 0;
1188 else if (drbg->core->flags & DRBG_CTR)
1189 sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg) + /* temp */
1190 drbg_statelen(drbg) + /* df_data */
1191 drbg_blocklen(drbg) + /* pad */
1192 drbg_blocklen(drbg) + /* iv */
1193 drbg_statelen(drbg) + drbg_blocklen(drbg); /* temp */
1194 else
1195 sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg);
1196
1197 if (0 < sb_size) {
1198 drbg->scratchpad = kzalloc(sb_size, GFP_KERNEL);
1199 if (!drbg->scratchpad)
1200 goto err;
1201 }
1202 spin_lock_init(&drbg->drbg_lock);
1203 return 0;
1204
1205 err:
1206 drbg_dealloc_state(drbg);
1207 return ret;
1208 }
1209
1210 /*
1211 * Strategy to avoid holding long term locks: generate a shadow copy of DRBG
1212 * and perform all operations on this shadow copy. After finishing, restore
1213 * the updated state of the shadow copy into original drbg state. This way,
1214 * only the read and write operations of the original drbg state must be
1215 * locked
1216 */
1217 static inline void drbg_copy_drbg(struct drbg_state *src,
1218 struct drbg_state *dst)
1219 {
1220 if (!src || !dst)
1221 return;
1222 memcpy(dst->V, src->V, drbg_statelen(src));
1223 memcpy(dst->C, src->C, drbg_statelen(src));
1224 dst->reseed_ctr = src->reseed_ctr;
1225 dst->seeded = src->seeded;
1226 dst->pr = src->pr;
1227 #ifdef CONFIG_CRYPTO_FIPS
1228 dst->fips_primed = src->fips_primed;
1229 memcpy(dst->prev, src->prev, drbg_blocklen(src));
1230 #endif
1231 /*
1232 * Not copied:
1233 * scratchpad is initialized drbg_alloc_state;
1234 * priv_data is initialized with call to crypto_init;
1235 * d_ops and core are set outside, as these parameters are const;
1236 * test_data is set outside to prevent it being copied back.
1237 */
1238 }
1239
1240 static int drbg_make_shadow(struct drbg_state *drbg, struct drbg_state **shadow)
1241 {
1242 int ret = -ENOMEM;
1243 struct drbg_state *tmp = NULL;
1244
1245 tmp = kzalloc(sizeof(struct drbg_state), GFP_KERNEL);
1246 if (!tmp)
1247 return -ENOMEM;
1248
1249 /* read-only data as they are defined as const, no lock needed */
1250 tmp->core = drbg->core;
1251 tmp->d_ops = drbg->d_ops;
1252
1253 ret = drbg_alloc_state(tmp);
1254 if (ret)
1255 goto err;
1256
1257 spin_lock_bh(&drbg->drbg_lock);
1258 drbg_copy_drbg(drbg, tmp);
1259 /* only make a link to the test buffer, as we only read that data */
1260 tmp->test_data = drbg->test_data;
1261 spin_unlock_bh(&drbg->drbg_lock);
1262 *shadow = tmp;
1263 return 0;
1264
1265 err:
1266 kzfree(tmp);
1267 return ret;
1268 }
1269
1270 static void drbg_restore_shadow(struct drbg_state *drbg,
1271 struct drbg_state **shadow)
1272 {
1273 struct drbg_state *tmp = *shadow;
1274
1275 spin_lock_bh(&drbg->drbg_lock);
1276 drbg_copy_drbg(tmp, drbg);
1277 spin_unlock_bh(&drbg->drbg_lock);
1278 drbg_dealloc_state(tmp);
1279 kzfree(tmp);
1280 *shadow = NULL;
1281 }
1282
1283 /*************************************************************************
1284 * DRBG interface functions
1285 *************************************************************************/
1286
1287 /*
1288 * DRBG generate function as required by SP800-90A - this function
1289 * generates random numbers
1290 *
1291 * @drbg DRBG state handle
1292 * @buf Buffer where to store the random numbers -- the buffer must already
1293 * be pre-allocated by caller
1294 * @buflen Length of output buffer - this value defines the number of random
1295 * bytes pulled from DRBG
1296 * @addtl Additional input that is mixed into state, may be NULL -- note
1297 * the entropy is pulled by the DRBG internally unconditionally
1298 * as defined in SP800-90A. The additional input is mixed into
1299 * the state in addition to the pulled entropy.
1300 *
1301 * return: generated number of bytes
1302 */
1303 static int drbg_generate(struct drbg_state *drbg,
1304 unsigned char *buf, unsigned int buflen,
1305 struct drbg_string *addtl)
1306 {
1307 int len = 0;
1308 struct drbg_state *shadow = NULL;
1309 LIST_HEAD(addtllist);
1310 struct drbg_string timestamp;
1311 union {
1312 cycles_t cycles;
1313 unsigned char char_cycles[sizeof(cycles_t)];
1314 } now;
1315
1316 if (0 == buflen || !buf) {
1317 pr_devel("DRBG: no output buffer provided\n");
1318 return -EINVAL;
1319 }
1320 if (addtl && NULL == addtl->buf && 0 < addtl->len) {
1321 pr_devel("DRBG: wrong format of additional information\n");
1322 return -EINVAL;
1323 }
1324
1325 len = drbg_make_shadow(drbg, &shadow);
1326 if (len) {
1327 pr_devel("DRBG: shadow copy cannot be generated\n");
1328 return len;
1329 }
1330
1331 /* 9.3.1 step 2 */
1332 len = -EINVAL;
1333 if (buflen > (drbg_max_request_bytes(shadow))) {
1334 pr_devel("DRBG: requested random numbers too large %u\n",
1335 buflen);
1336 goto err;
1337 }
1338
1339 /* 9.3.1 step 3 is implicit with the chosen DRBG */
1340
1341 /* 9.3.1 step 4 */
1342 if (addtl && addtl->len > (drbg_max_addtl(shadow))) {
1343 pr_devel("DRBG: additional information string too long %zu\n",
1344 addtl->len);
1345 goto err;
1346 }
1347 /* 9.3.1 step 5 is implicit with the chosen DRBG */
1348
1349 /*
1350 * 9.3.1 step 6 and 9 supplemented by 9.3.2 step c is implemented
1351 * here. The spec is a bit convoluted here, we make it simpler.
1352 */
1353 if ((drbg_max_requests(shadow)) < shadow->reseed_ctr)
1354 shadow->seeded = false;
1355
1356 /* allocate cipher handle */
1357 len = shadow->d_ops->crypto_init(shadow);
1358 if (len)
1359 goto err;
1360
1361 if (shadow->pr || !shadow->seeded) {
1362 pr_devel("DRBG: reseeding before generation (prediction "
1363 "resistance: %s, state %s)\n",
1364 drbg->pr ? "true" : "false",
1365 drbg->seeded ? "seeded" : "unseeded");
1366 /* 9.3.1 steps 7.1 through 7.3 */
1367 len = drbg_seed(shadow, addtl, true);
1368 if (len)
1369 goto err;
1370 /* 9.3.1 step 7.4 */
1371 addtl = NULL;
1372 }
1373
1374 /*
1375 * Mix the time stamp into the DRBG state if the DRBG is not in
1376 * test mode. If there are two callers invoking the DRBG at the same
1377 * time, i.e. before the first caller merges its shadow state back,
1378 * both callers would obtain the same random number stream without
1379 * changing the state here.
1380 */
1381 if (!drbg->test_data) {
1382 now.cycles = random_get_entropy();
1383 drbg_string_fill(&timestamp, now.char_cycles, sizeof(cycles_t));
1384 list_add_tail(&timestamp.list, &addtllist);
1385 }
1386 if (addtl && 0 < addtl->len)
1387 list_add_tail(&addtl->list, &addtllist);
1388 /* 9.3.1 step 8 and 10 */
1389 len = shadow->d_ops->generate(shadow, buf, buflen, &addtllist);
1390
1391 /* 10.1.1.4 step 6, 10.1.2.5 step 7, 10.2.1.5.2 step 7 */
1392 shadow->reseed_ctr++;
1393 if (0 >= len)
1394 goto err;
1395
1396 /*
1397 * Section 11.3.3 requires to re-perform self tests after some
1398 * generated random numbers. The chosen value after which self
1399 * test is performed is arbitrary, but it should be reasonable.
1400 * However, we do not perform the self tests because of the following
1401 * reasons: it is mathematically impossible that the initial self tests
1402 * were successfully and the following are not. If the initial would
1403 * pass and the following would not, the kernel integrity is violated.
1404 * In this case, the entire kernel operation is questionable and it
1405 * is unlikely that the integrity violation only affects the
1406 * correct operation of the DRBG.
1407 *
1408 * Albeit the following code is commented out, it is provided in
1409 * case somebody has a need to implement the test of 11.3.3.
1410 */
1411 #if 0
1412 if (shadow->reseed_ctr && !(shadow->reseed_ctr % 4096)) {
1413 int err = 0;
1414 pr_devel("DRBG: start to perform self test\n");
1415 if (drbg->core->flags & DRBG_HMAC)
1416 err = alg_test("drbg_pr_hmac_sha256",
1417 "drbg_pr_hmac_sha256", 0, 0);
1418 else if (drbg->core->flags & DRBG_CTR)
1419 err = alg_test("drbg_pr_ctr_aes128",
1420 "drbg_pr_ctr_aes128", 0, 0);
1421 else
1422 err = alg_test("drbg_pr_sha256",
1423 "drbg_pr_sha256", 0, 0);
1424 if (err) {
1425 pr_err("DRBG: periodical self test failed\n");
1426 /*
1427 * uninstantiate implies that from now on, only errors
1428 * are returned when reusing this DRBG cipher handle
1429 */
1430 drbg_uninstantiate(drbg);
1431 drbg_dealloc_state(shadow);
1432 kzfree(shadow);
1433 return 0;
1434 } else {
1435 pr_devel("DRBG: self test successful\n");
1436 }
1437 }
1438 #endif
1439
1440 err:
1441 shadow->d_ops->crypto_fini(shadow);
1442 drbg_restore_shadow(drbg, &shadow);
1443 return len;
1444 }
1445
1446 /*
1447 * Wrapper around drbg_generate which can pull arbitrary long strings
1448 * from the DRBG without hitting the maximum request limitation.
1449 *
1450 * Parameters: see drbg_generate
1451 * Return codes: see drbg_generate -- if one drbg_generate request fails,
1452 * the entire drbg_generate_long request fails
1453 */
1454 static int drbg_generate_long(struct drbg_state *drbg,
1455 unsigned char *buf, unsigned int buflen,
1456 struct drbg_string *addtl)
1457 {
1458 int len = 0;
1459 unsigned int slice = 0;
1460 do {
1461 int tmplen = 0;
1462 unsigned int chunk = 0;
1463 slice = ((buflen - len) / drbg_max_request_bytes(drbg));
1464 chunk = slice ? drbg_max_request_bytes(drbg) : (buflen - len);
1465 tmplen = drbg_generate(drbg, buf + len, chunk, addtl);
1466 if (0 >= tmplen)
1467 return tmplen;
1468 len += tmplen;
1469 } while (slice > 0 && (len < buflen));
1470 return len;
1471 }
1472
1473 /*
1474 * DRBG instantiation function as required by SP800-90A - this function
1475 * sets up the DRBG handle, performs the initial seeding and all sanity
1476 * checks required by SP800-90A
1477 *
1478 * @drbg memory of state -- if NULL, new memory is allocated
1479 * @pers Personalization string that is mixed into state, may be NULL -- note
1480 * the entropy is pulled by the DRBG internally unconditionally
1481 * as defined in SP800-90A. The additional input is mixed into
1482 * the state in addition to the pulled entropy.
1483 * @coreref reference to core
1484 * @pr prediction resistance enabled
1485 *
1486 * return
1487 * 0 on success
1488 * error value otherwise
1489 */
1490 static int drbg_instantiate(struct drbg_state *drbg, struct drbg_string *pers,
1491 int coreref, bool pr)
1492 {
1493 int ret = -ENOMEM;
1494
1495 pr_devel("DRBG: Initializing DRBG core %d with prediction resistance "
1496 "%s\n", coreref, pr ? "enabled" : "disabled");
1497 drbg->core = &drbg_cores[coreref];
1498 drbg->pr = pr;
1499 drbg->seeded = false;
1500 switch (drbg->core->flags & DRBG_TYPE_MASK) {
1501 #ifdef CONFIG_CRYPTO_DRBG_HMAC
1502 case DRBG_HMAC:
1503 drbg->d_ops = &drbg_hmac_ops;
1504 break;
1505 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
1506 #ifdef CONFIG_CRYPTO_DRBG_HASH
1507 case DRBG_HASH:
1508 drbg->d_ops = &drbg_hash_ops;
1509 break;
1510 #endif /* CONFIG_CRYPTO_DRBG_HASH */
1511 #ifdef CONFIG_CRYPTO_DRBG_CTR
1512 case DRBG_CTR:
1513 drbg->d_ops = &drbg_ctr_ops;
1514 break;
1515 #endif /* CONFIG_CRYPTO_DRBG_CTR */
1516 default:
1517 return -EOPNOTSUPP;
1518 }
1519
1520 /* 9.1 step 1 is implicit with the selected DRBG type */
1521
1522 /*
1523 * 9.1 step 2 is implicit as caller can select prediction resistance
1524 * and the flag is copied into drbg->flags --
1525 * all DRBG types support prediction resistance
1526 */
1527
1528 /* 9.1 step 4 is implicit in drbg_sec_strength */
1529
1530 ret = drbg_alloc_state(drbg);
1531 if (ret)
1532 return ret;
1533
1534 ret = -EFAULT;
1535 if (drbg->d_ops->crypto_init(drbg))
1536 goto err;
1537 ret = drbg_seed(drbg, pers, false);
1538 drbg->d_ops->crypto_fini(drbg);
1539 if (ret)
1540 goto err;
1541
1542 return 0;
1543
1544 err:
1545 drbg_dealloc_state(drbg);
1546 return ret;
1547 }
1548
1549 /*
1550 * DRBG uninstantiate function as required by SP800-90A - this function
1551 * frees all buffers and the DRBG handle
1552 *
1553 * @drbg DRBG state handle
1554 *
1555 * return
1556 * 0 on success
1557 */
1558 static int drbg_uninstantiate(struct drbg_state *drbg)
1559 {
1560 spin_lock_bh(&drbg->drbg_lock);
1561 drbg_dealloc_state(drbg);
1562 /* no scrubbing of test_data -- this shall survive an uninstantiate */
1563 spin_unlock_bh(&drbg->drbg_lock);
1564 return 0;
1565 }
1566
1567 /*
1568 * Helper function for setting the test data in the DRBG
1569 *
1570 * @drbg DRBG state handle
1571 * @test_data test data to sets
1572 */
1573 static inline void drbg_set_testdata(struct drbg_state *drbg,
1574 struct drbg_test_data *test_data)
1575 {
1576 if (!test_data || !test_data->testentropy)
1577 return;
1578 spin_lock_bh(&drbg->drbg_lock);
1579 drbg->test_data = test_data;
1580 spin_unlock_bh(&drbg->drbg_lock);
1581 }
1582
1583 /***************************************************************
1584 * Kernel crypto API cipher invocations requested by DRBG
1585 ***************************************************************/
1586
1587 #if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
1588 struct sdesc {
1589 struct shash_desc shash;
1590 char ctx[];
1591 };
1592
1593 static int drbg_init_hash_kernel(struct drbg_state *drbg)
1594 {
1595 struct sdesc *sdesc;
1596 struct crypto_shash *tfm;
1597
1598 tfm = crypto_alloc_shash(drbg->core->backend_cra_name, 0, 0);
1599 if (IS_ERR(tfm)) {
1600 pr_info("DRBG: could not allocate digest TFM handle\n");
1601 return PTR_ERR(tfm);
1602 }
1603 BUG_ON(drbg_blocklen(drbg) != crypto_shash_digestsize(tfm));
1604 sdesc = kzalloc(sizeof(struct shash_desc) + crypto_shash_descsize(tfm),
1605 GFP_KERNEL);
1606 if (!sdesc) {
1607 crypto_free_shash(tfm);
1608 return -ENOMEM;
1609 }
1610
1611 sdesc->shash.tfm = tfm;
1612 sdesc->shash.flags = 0;
1613 drbg->priv_data = sdesc;
1614 return 0;
1615 }
1616
1617 static int drbg_fini_hash_kernel(struct drbg_state *drbg)
1618 {
1619 struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1620 if (sdesc) {
1621 crypto_free_shash(sdesc->shash.tfm);
1622 kzfree(sdesc);
1623 }
1624 drbg->priv_data = NULL;
1625 return 0;
1626 }
1627
1628 static int drbg_kcapi_hash(struct drbg_state *drbg, const unsigned char *key,
1629 unsigned char *outval, const struct list_head *in)
1630 {
1631 struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1632 struct drbg_string *input = NULL;
1633
1634 if (key)
1635 crypto_shash_setkey(sdesc->shash.tfm, key, drbg_statelen(drbg));
1636 crypto_shash_init(&sdesc->shash);
1637 list_for_each_entry(input, in, list)
1638 crypto_shash_update(&sdesc->shash, input->buf, input->len);
1639 return crypto_shash_final(&sdesc->shash, outval);
1640 }
1641 #endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
1642
1643 #ifdef CONFIG_CRYPTO_DRBG_CTR
1644 static int drbg_init_sym_kernel(struct drbg_state *drbg)
1645 {
1646 int ret = 0;
1647 struct crypto_blkcipher *tfm;
1648
1649 tfm = crypto_alloc_blkcipher(drbg->core->backend_cra_name, 0, 0);
1650 if (IS_ERR(tfm)) {
1651 pr_info("DRBG: could not allocate cipher TFM handle\n");
1652 return PTR_ERR(tfm);
1653 }
1654 BUG_ON(drbg_blocklen(drbg) != crypto_blkcipher_blocksize(tfm));
1655 drbg->priv_data = tfm;
1656 return ret;
1657 }
1658
1659 static int drbg_fini_sym_kernel(struct drbg_state *drbg)
1660 {
1661 struct crypto_blkcipher *tfm =
1662 (struct crypto_blkcipher *)drbg->priv_data;
1663 if (tfm)
1664 crypto_free_blkcipher(tfm);
1665 drbg->priv_data = NULL;
1666 return 0;
1667 }
1668
1669 static int drbg_kcapi_sym(struct drbg_state *drbg, const unsigned char *key,
1670 unsigned char *outval, const struct drbg_string *in)
1671 {
1672 int ret = 0;
1673 struct scatterlist sg_in, sg_out;
1674 struct blkcipher_desc desc;
1675 struct crypto_blkcipher *tfm =
1676 (struct crypto_blkcipher *)drbg->priv_data;
1677
1678 desc.tfm = tfm;
1679 desc.flags = 0;
1680 crypto_blkcipher_setkey(tfm, key, (drbg_keylen(drbg)));
1681 /* there is only component in *in */
1682 sg_init_one(&sg_in, in->buf, in->len);
1683 sg_init_one(&sg_out, outval, drbg_blocklen(drbg));
1684 ret = crypto_blkcipher_encrypt(&desc, &sg_out, &sg_in, in->len);
1685
1686 return ret;
1687 }
1688 #endif /* CONFIG_CRYPTO_DRBG_CTR */
1689
1690 /***************************************************************
1691 * Kernel crypto API interface to register DRBG
1692 ***************************************************************/
1693
1694 /*
1695 * Look up the DRBG flags by given kernel crypto API cra_name
1696 * The code uses the drbg_cores definition to do this
1697 *
1698 * @cra_name kernel crypto API cra_name
1699 * @coreref reference to integer which is filled with the pointer to
1700 * the applicable core
1701 * @pr reference for setting prediction resistance
1702 *
1703 * return: flags
1704 */
1705 static inline void drbg_convert_tfm_core(const char *cra_driver_name,
1706 int *coreref, bool *pr)
1707 {
1708 int i = 0;
1709 size_t start = 0;
1710 int len = 0;
1711
1712 *pr = true;
1713 /* disassemble the names */
1714 if (!memcmp(cra_driver_name, "drbg_nopr_", 10)) {
1715 start = 10;
1716 *pr = false;
1717 } else if (!memcmp(cra_driver_name, "drbg_pr_", 8)) {
1718 start = 8;
1719 } else {
1720 return;
1721 }
1722
1723 /* remove the first part */
1724 len = strlen(cra_driver_name) - start;
1725 for (i = 0; ARRAY_SIZE(drbg_cores) > i; i++) {
1726 if (!memcmp(cra_driver_name + start, drbg_cores[i].cra_name,
1727 len)) {
1728 *coreref = i;
1729 return;
1730 }
1731 }
1732 }
1733
1734 static int drbg_kcapi_init(struct crypto_tfm *tfm)
1735 {
1736 struct drbg_state *drbg = crypto_tfm_ctx(tfm);
1737 bool pr = false;
1738 int coreref = 0;
1739
1740 drbg_convert_tfm_core(crypto_tfm_alg_driver_name(tfm), &coreref, &pr);
1741 /*
1742 * when personalization string is needed, the caller must call reset
1743 * and provide the personalization string as seed information
1744 */
1745 return drbg_instantiate(drbg, NULL, coreref, pr);
1746 }
1747
1748 static void drbg_kcapi_cleanup(struct crypto_tfm *tfm)
1749 {
1750 drbg_uninstantiate(crypto_tfm_ctx(tfm));
1751 }
1752
1753 /*
1754 * Generate random numbers invoked by the kernel crypto API:
1755 * The API of the kernel crypto API is extended as follows:
1756 *
1757 * If dlen is larger than zero, rdata is interpreted as the output buffer
1758 * where random data is to be stored.
1759 *
1760 * If dlen is zero, rdata is interpreted as a pointer to a struct drbg_gen
1761 * which holds the additional information string that is used for the
1762 * DRBG generation process. The output buffer that is to be used to store
1763 * data is also pointed to by struct drbg_gen.
1764 */
1765 static int drbg_kcapi_random(struct crypto_rng *tfm, u8 *rdata,
1766 unsigned int dlen)
1767 {
1768 struct drbg_state *drbg = crypto_rng_ctx(tfm);
1769 if (0 < dlen) {
1770 return drbg_generate_long(drbg, rdata, dlen, NULL);
1771 } else {
1772 struct drbg_gen *data = (struct drbg_gen *)rdata;
1773 struct drbg_string addtl;
1774 /* catch NULL pointer */
1775 if (!data)
1776 return 0;
1777 drbg_set_testdata(drbg, data->test_data);
1778 /* linked list variable is now local to allow modification */
1779 drbg_string_fill(&addtl, data->addtl->buf, data->addtl->len);
1780 return drbg_generate_long(drbg, data->outbuf, data->outlen,
1781 &addtl);
1782 }
1783 }
1784
1785 /*
1786 * Reset the DRBG invoked by the kernel crypto API
1787 * The reset implies a full re-initialization of the DRBG. Similar to the
1788 * generate function of drbg_kcapi_random, this function extends the
1789 * kernel crypto API interface with struct drbg_gen
1790 */
1791 static int drbg_kcapi_reset(struct crypto_rng *tfm, u8 *seed, unsigned int slen)
1792 {
1793 struct drbg_state *drbg = crypto_rng_ctx(tfm);
1794 struct crypto_tfm *tfm_base = crypto_rng_tfm(tfm);
1795 bool pr = false;
1796 struct drbg_string seed_string;
1797 int coreref = 0;
1798
1799 drbg_uninstantiate(drbg);
1800 drbg_convert_tfm_core(crypto_tfm_alg_driver_name(tfm_base), &coreref,
1801 &pr);
1802 if (0 < slen) {
1803 drbg_string_fill(&seed_string, seed, slen);
1804 return drbg_instantiate(drbg, &seed_string, coreref, pr);
1805 } else {
1806 struct drbg_gen *data = (struct drbg_gen *)seed;
1807 /* allow invocation of API call with NULL, 0 */
1808 if (!data)
1809 return drbg_instantiate(drbg, NULL, coreref, pr);
1810 drbg_set_testdata(drbg, data->test_data);
1811 /* linked list variable is now local to allow modification */
1812 drbg_string_fill(&seed_string, data->addtl->buf,
1813 data->addtl->len);
1814 return drbg_instantiate(drbg, &seed_string, coreref, pr);
1815 }
1816 }
1817
1818 /***************************************************************
1819 * Kernel module: code to load the module
1820 ***************************************************************/
1821
1822 /*
1823 * Tests as defined in 11.3.2 in addition to the cipher tests: testing
1824 * of the error handling.
1825 *
1826 * Note: testing of failing seed source as defined in 11.3.2 is not applicable
1827 * as seed source of get_random_bytes does not fail.
1828 *
1829 * Note 2: There is no sensible way of testing the reseed counter
1830 * enforcement, so skip it.
1831 */
1832 static inline int __init drbg_healthcheck_sanity(void)
1833 {
1834 #ifdef CONFIG_CRYPTO_FIPS
1835 int len = 0;
1836 #define OUTBUFLEN 16
1837 unsigned char buf[OUTBUFLEN];
1838 struct drbg_state *drbg = NULL;
1839 int ret = -EFAULT;
1840 int rc = -EFAULT;
1841 bool pr = false;
1842 int coreref = 0;
1843 struct drbg_string addtl;
1844 size_t max_addtllen, max_request_bytes;
1845
1846 /* only perform test in FIPS mode */
1847 if (!fips_enabled)
1848 return 0;
1849
1850 #ifdef CONFIG_CRYPTO_DRBG_CTR
1851 drbg_convert_tfm_core("drbg_nopr_ctr_aes128", &coreref, &pr);
1852 #elif defined CONFIG_CRYPTO_DRBG_HASH
1853 drbg_convert_tfm_core("drbg_nopr_sha256", &coreref, &pr);
1854 #else
1855 drbg_convert_tfm_core("drbg_nopr_hmac_sha256", &coreref, &pr);
1856 #endif
1857
1858 drbg = kzalloc(sizeof(struct drbg_state), GFP_KERNEL);
1859 if (!drbg)
1860 return -ENOMEM;
1861
1862 /*
1863 * if the following tests fail, it is likely that there is a buffer
1864 * overflow as buf is much smaller than the requested or provided
1865 * string lengths -- in case the error handling does not succeed
1866 * we may get an OOPS. And we want to get an OOPS as this is a
1867 * grave bug.
1868 */
1869
1870 /* get a valid instance of DRBG for following tests */
1871 ret = drbg_instantiate(drbg, NULL, coreref, pr);
1872 if (ret) {
1873 rc = ret;
1874 goto outbuf;
1875 }
1876 max_addtllen = drbg_max_addtl(drbg);
1877 max_request_bytes = drbg_max_request_bytes(drbg);
1878 drbg_string_fill(&addtl, buf, max_addtllen + 1);
1879 /* overflow addtllen with additonal info string */
1880 len = drbg_generate(drbg, buf, OUTBUFLEN, &addtl);
1881 BUG_ON(0 < len);
1882 /* overflow max_bits */
1883 len = drbg_generate(drbg, buf, (max_request_bytes + 1), NULL);
1884 BUG_ON(0 < len);
1885 drbg_uninstantiate(drbg);
1886
1887 /* overflow max addtllen with personalization string */
1888 ret = drbg_instantiate(drbg, &addtl, coreref, pr);
1889 BUG_ON(0 == ret);
1890 /* all tests passed */
1891 rc = 0;
1892
1893 pr_devel("DRBG: Sanity tests for failure code paths successfully "
1894 "completed\n");
1895
1896 drbg_uninstantiate(drbg);
1897 outbuf:
1898 kzfree(drbg);
1899 return rc;
1900 #else /* CONFIG_CRYPTO_FIPS */
1901 return 0;
1902 #endif /* CONFIG_CRYPTO_FIPS */
1903 }
1904
1905 static struct crypto_alg drbg_algs[22];
1906
1907 /*
1908 * Fill the array drbg_algs used to register the different DRBGs
1909 * with the kernel crypto API. To fill the array, the information
1910 * from drbg_cores[] is used.
1911 */
1912 static inline void __init drbg_fill_array(struct crypto_alg *alg,
1913 const struct drbg_core *core, int pr)
1914 {
1915 int pos = 0;
1916 static int priority = 100;
1917
1918 memset(alg, 0, sizeof(struct crypto_alg));
1919 memcpy(alg->cra_name, "stdrng", 6);
1920 if (pr) {
1921 memcpy(alg->cra_driver_name, "drbg_pr_", 8);
1922 pos = 8;
1923 } else {
1924 memcpy(alg->cra_driver_name, "drbg_nopr_", 10);
1925 pos = 10;
1926 }
1927 memcpy(alg->cra_driver_name + pos, core->cra_name,
1928 strlen(core->cra_name));
1929
1930 alg->cra_priority = priority;
1931 priority++;
1932 /*
1933 * If FIPS mode enabled, the selected DRBG shall have the
1934 * highest cra_priority over other stdrng instances to ensure
1935 * it is selected.
1936 */
1937 if (fips_enabled)
1938 alg->cra_priority += 200;
1939
1940 alg->cra_flags = CRYPTO_ALG_TYPE_RNG;
1941 alg->cra_ctxsize = sizeof(struct drbg_state);
1942 alg->cra_type = &crypto_rng_type;
1943 alg->cra_module = THIS_MODULE;
1944 alg->cra_init = drbg_kcapi_init;
1945 alg->cra_exit = drbg_kcapi_cleanup;
1946 alg->cra_u.rng.rng_make_random = drbg_kcapi_random;
1947 alg->cra_u.rng.rng_reset = drbg_kcapi_reset;
1948 alg->cra_u.rng.seedsize = 0;
1949 }
1950
1951 static int __init drbg_init(void)
1952 {
1953 unsigned int i = 0; /* pointer to drbg_algs */
1954 unsigned int j = 0; /* pointer to drbg_cores */
1955 int ret = -EFAULT;
1956
1957 ret = drbg_healthcheck_sanity();
1958 if (ret)
1959 return ret;
1960
1961 if (ARRAY_SIZE(drbg_cores) * 2 > ARRAY_SIZE(drbg_algs)) {
1962 pr_info("DRBG: Cannot register all DRBG types"
1963 "(slots needed: %zu, slots available: %zu)\n",
1964 ARRAY_SIZE(drbg_cores) * 2, ARRAY_SIZE(drbg_algs));
1965 return ret;
1966 }
1967
1968 /*
1969 * each DRBG definition can be used with PR and without PR, thus
1970 * we instantiate each DRBG in drbg_cores[] twice.
1971 *
1972 * As the order of placing them into the drbg_algs array matters
1973 * (the later DRBGs receive a higher cra_priority) we register the
1974 * prediction resistance DRBGs first as the should not be too
1975 * interesting.
1976 */
1977 for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
1978 drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 1);
1979 for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
1980 drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 0);
1981 return crypto_register_algs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
1982 }
1983
1984 static void __exit drbg_exit(void)
1985 {
1986 crypto_unregister_algs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
1987 }
1988
1989 module_init(drbg_init);
1990 module_exit(drbg_exit);
1991 #ifndef CRYPTO_DRBG_HASH_STRING
1992 #define CRYPTO_DRBG_HASH_STRING ""
1993 #endif
1994 #ifndef CRYPTO_DRBG_HMAC_STRING
1995 #define CRYPTO_DRBG_HMAC_STRING ""
1996 #endif
1997 #ifndef CRYPTO_DRBG_CTR_STRING
1998 #define CRYPTO_DRBG_CTR_STRING ""
1999 #endif
2000 MODULE_LICENSE("GPL");
2001 MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
2002 MODULE_DESCRIPTION("NIST SP800-90A Deterministic Random Bit Generator (DRBG) "
2003 "using following cores: "
2004 CRYPTO_DRBG_HASH_STRING
2005 CRYPTO_DRBG_HMAC_STRING
2006 CRYPTO_DRBG_CTR_STRING);
This page took 0.075661 seconds and 5 git commands to generate.