Merge branch 'acpica-fixes'
[deliverable/linux.git] / crypto / drbg.c
1 /*
2 * DRBG: Deterministic Random Bits Generator
3 * Based on NIST Recommended DRBG from NIST SP800-90A with the following
4 * properties:
5 * * CTR DRBG with DF with AES-128, AES-192, AES-256 cores
6 * * Hash DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
7 * * HMAC DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
8 * * with and without prediction resistance
9 *
10 * Copyright Stephan Mueller <smueller@chronox.de>, 2014
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, and the entire permission notice in its entirety,
17 * including the disclaimer of warranties.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. The name of the author may not be used to endorse or promote
22 * products derived from this software without specific prior
23 * written permission.
24 *
25 * ALTERNATIVELY, this product may be distributed under the terms of
26 * the GNU General Public License, in which case the provisions of the GPL are
27 * required INSTEAD OF the above restrictions. (This clause is
28 * necessary due to a potential bad interaction between the GPL and
29 * the restrictions contained in a BSD-style copyright.)
30 *
31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42 * DAMAGE.
43 *
44 * DRBG Usage
45 * ==========
46 * The SP 800-90A DRBG allows the user to specify a personalization string
47 * for initialization as well as an additional information string for each
48 * random number request. The following code fragments show how a caller
49 * uses the kernel crypto API to use the full functionality of the DRBG.
50 *
51 * Usage without any additional data
52 * ---------------------------------
53 * struct crypto_rng *drng;
54 * int err;
55 * char data[DATALEN];
56 *
57 * drng = crypto_alloc_rng(drng_name, 0, 0);
58 * err = crypto_rng_get_bytes(drng, &data, DATALEN);
59 * crypto_free_rng(drng);
60 *
61 *
62 * Usage with personalization string during initialization
63 * -------------------------------------------------------
64 * struct crypto_rng *drng;
65 * int err;
66 * char data[DATALEN];
67 * struct drbg_string pers;
68 * char personalization[11] = "some-string";
69 *
70 * drbg_string_fill(&pers, personalization, strlen(personalization));
71 * drng = crypto_alloc_rng(drng_name, 0, 0);
72 * // The reset completely re-initializes the DRBG with the provided
73 * // personalization string
74 * err = crypto_rng_reset(drng, &personalization, strlen(personalization));
75 * err = crypto_rng_get_bytes(drng, &data, DATALEN);
76 * crypto_free_rng(drng);
77 *
78 *
79 * Usage with additional information string during random number request
80 * ---------------------------------------------------------------------
81 * struct crypto_rng *drng;
82 * int err;
83 * char data[DATALEN];
84 * char addtl_string[11] = "some-string";
85 * string drbg_string addtl;
86 *
87 * drbg_string_fill(&addtl, addtl_string, strlen(addtl_string));
88 * drng = crypto_alloc_rng(drng_name, 0, 0);
89 * // The following call is a wrapper to crypto_rng_get_bytes() and returns
90 * // the same error codes.
91 * err = crypto_drbg_get_bytes_addtl(drng, &data, DATALEN, &addtl);
92 * crypto_free_rng(drng);
93 *
94 *
95 * Usage with personalization and additional information strings
96 * -------------------------------------------------------------
97 * Just mix both scenarios above.
98 */
99
100 #include <crypto/drbg.h>
101 #include <linux/kernel.h>
102
103 /***************************************************************
104 * Backend cipher definitions available to DRBG
105 ***************************************************************/
106
107 /*
108 * The order of the DRBG definitions here matter: every DRBG is registered
109 * as stdrng. Each DRBG receives an increasing cra_priority values the later
110 * they are defined in this array (see drbg_fill_array).
111 *
112 * HMAC DRBGs are favored over Hash DRBGs over CTR DRBGs, and
113 * the SHA256 / AES 256 over other ciphers. Thus, the favored
114 * DRBGs are the latest entries in this array.
115 */
116 static const struct drbg_core drbg_cores[] = {
117 #ifdef CONFIG_CRYPTO_DRBG_CTR
118 {
119 .flags = DRBG_CTR | DRBG_STRENGTH128,
120 .statelen = 32, /* 256 bits as defined in 10.2.1 */
121 .blocklen_bytes = 16,
122 .cra_name = "ctr_aes128",
123 .backend_cra_name = "aes",
124 }, {
125 .flags = DRBG_CTR | DRBG_STRENGTH192,
126 .statelen = 40, /* 320 bits as defined in 10.2.1 */
127 .blocklen_bytes = 16,
128 .cra_name = "ctr_aes192",
129 .backend_cra_name = "aes",
130 }, {
131 .flags = DRBG_CTR | DRBG_STRENGTH256,
132 .statelen = 48, /* 384 bits as defined in 10.2.1 */
133 .blocklen_bytes = 16,
134 .cra_name = "ctr_aes256",
135 .backend_cra_name = "aes",
136 },
137 #endif /* CONFIG_CRYPTO_DRBG_CTR */
138 #ifdef CONFIG_CRYPTO_DRBG_HASH
139 {
140 .flags = DRBG_HASH | DRBG_STRENGTH128,
141 .statelen = 55, /* 440 bits */
142 .blocklen_bytes = 20,
143 .cra_name = "sha1",
144 .backend_cra_name = "sha1",
145 }, {
146 .flags = DRBG_HASH | DRBG_STRENGTH256,
147 .statelen = 111, /* 888 bits */
148 .blocklen_bytes = 48,
149 .cra_name = "sha384",
150 .backend_cra_name = "sha384",
151 }, {
152 .flags = DRBG_HASH | DRBG_STRENGTH256,
153 .statelen = 111, /* 888 bits */
154 .blocklen_bytes = 64,
155 .cra_name = "sha512",
156 .backend_cra_name = "sha512",
157 }, {
158 .flags = DRBG_HASH | DRBG_STRENGTH256,
159 .statelen = 55, /* 440 bits */
160 .blocklen_bytes = 32,
161 .cra_name = "sha256",
162 .backend_cra_name = "sha256",
163 },
164 #endif /* CONFIG_CRYPTO_DRBG_HASH */
165 #ifdef CONFIG_CRYPTO_DRBG_HMAC
166 {
167 .flags = DRBG_HMAC | DRBG_STRENGTH128,
168 .statelen = 20, /* block length of cipher */
169 .blocklen_bytes = 20,
170 .cra_name = "hmac_sha1",
171 .backend_cra_name = "hmac(sha1)",
172 }, {
173 .flags = DRBG_HMAC | DRBG_STRENGTH256,
174 .statelen = 48, /* block length of cipher */
175 .blocklen_bytes = 48,
176 .cra_name = "hmac_sha384",
177 .backend_cra_name = "hmac(sha384)",
178 }, {
179 .flags = DRBG_HMAC | DRBG_STRENGTH256,
180 .statelen = 64, /* block length of cipher */
181 .blocklen_bytes = 64,
182 .cra_name = "hmac_sha512",
183 .backend_cra_name = "hmac(sha512)",
184 }, {
185 .flags = DRBG_HMAC | DRBG_STRENGTH256,
186 .statelen = 32, /* block length of cipher */
187 .blocklen_bytes = 32,
188 .cra_name = "hmac_sha256",
189 .backend_cra_name = "hmac(sha256)",
190 },
191 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
192 };
193
194 static int drbg_uninstantiate(struct drbg_state *drbg);
195
196 /******************************************************************
197 * Generic helper functions
198 ******************************************************************/
199
200 /*
201 * Return strength of DRBG according to SP800-90A section 8.4
202 *
203 * @flags DRBG flags reference
204 *
205 * Return: normalized strength in *bytes* value or 32 as default
206 * to counter programming errors
207 */
208 static inline unsigned short drbg_sec_strength(drbg_flag_t flags)
209 {
210 switch (flags & DRBG_STRENGTH_MASK) {
211 case DRBG_STRENGTH128:
212 return 16;
213 case DRBG_STRENGTH192:
214 return 24;
215 case DRBG_STRENGTH256:
216 return 32;
217 default:
218 return 32;
219 }
220 }
221
222 /*
223 * Convert an integer into a byte representation of this integer.
224 * The byte representation is big-endian
225 *
226 * @val value to be converted
227 * @buf buffer holding the converted integer -- caller must ensure that
228 * buffer size is at least 32 bit
229 */
230 #if (defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR))
231 static inline void drbg_cpu_to_be32(__u32 val, unsigned char *buf)
232 {
233 struct s {
234 __be32 conv;
235 };
236 struct s *conversion = (struct s *) buf;
237
238 conversion->conv = cpu_to_be32(val);
239 }
240 #endif /* defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR) */
241
242 /******************************************************************
243 * CTR DRBG callback functions
244 ******************************************************************/
245
246 #ifdef CONFIG_CRYPTO_DRBG_CTR
247 #define CRYPTO_DRBG_CTR_STRING "CTR "
248 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes256");
249 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes256");
250 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes192");
251 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes192");
252 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes128");
253 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes128");
254
255 static int drbg_kcapi_sym(struct drbg_state *drbg, const unsigned char *key,
256 unsigned char *outval, const struct drbg_string *in);
257 static int drbg_init_sym_kernel(struct drbg_state *drbg);
258 static int drbg_fini_sym_kernel(struct drbg_state *drbg);
259
260 /* BCC function for CTR DRBG as defined in 10.4.3 */
261 static int drbg_ctr_bcc(struct drbg_state *drbg,
262 unsigned char *out, const unsigned char *key,
263 struct list_head *in)
264 {
265 int ret = 0;
266 struct drbg_string *curr = NULL;
267 struct drbg_string data;
268 short cnt = 0;
269
270 drbg_string_fill(&data, out, drbg_blocklen(drbg));
271
272 /* 10.4.3 step 2 / 4 */
273 list_for_each_entry(curr, in, list) {
274 const unsigned char *pos = curr->buf;
275 size_t len = curr->len;
276 /* 10.4.3 step 4.1 */
277 while (len) {
278 /* 10.4.3 step 4.2 */
279 if (drbg_blocklen(drbg) == cnt) {
280 cnt = 0;
281 ret = drbg_kcapi_sym(drbg, key, out, &data);
282 if (ret)
283 return ret;
284 }
285 out[cnt] ^= *pos;
286 pos++;
287 cnt++;
288 len--;
289 }
290 }
291 /* 10.4.3 step 4.2 for last block */
292 if (cnt)
293 ret = drbg_kcapi_sym(drbg, key, out, &data);
294
295 return ret;
296 }
297
298 /*
299 * scratchpad usage: drbg_ctr_update is interlinked with drbg_ctr_df
300 * (and drbg_ctr_bcc, but this function does not need any temporary buffers),
301 * the scratchpad is used as follows:
302 * drbg_ctr_update:
303 * temp
304 * start: drbg->scratchpad
305 * length: drbg_statelen(drbg) + drbg_blocklen(drbg)
306 * note: the cipher writing into this variable works
307 * blocklen-wise. Now, when the statelen is not a multiple
308 * of blocklen, the generateion loop below "spills over"
309 * by at most blocklen. Thus, we need to give sufficient
310 * memory.
311 * df_data
312 * start: drbg->scratchpad +
313 * drbg_statelen(drbg) + drbg_blocklen(drbg)
314 * length: drbg_statelen(drbg)
315 *
316 * drbg_ctr_df:
317 * pad
318 * start: df_data + drbg_statelen(drbg)
319 * length: drbg_blocklen(drbg)
320 * iv
321 * start: pad + drbg_blocklen(drbg)
322 * length: drbg_blocklen(drbg)
323 * temp
324 * start: iv + drbg_blocklen(drbg)
325 * length: drbg_satelen(drbg) + drbg_blocklen(drbg)
326 * note: temp is the buffer that the BCC function operates
327 * on. BCC operates blockwise. drbg_statelen(drbg)
328 * is sufficient when the DRBG state length is a multiple
329 * of the block size. For AES192 (and maybe other ciphers)
330 * this is not correct and the length for temp is
331 * insufficient (yes, that also means for such ciphers,
332 * the final output of all BCC rounds are truncated).
333 * Therefore, add drbg_blocklen(drbg) to cover all
334 * possibilities.
335 */
336
337 /* Derivation Function for CTR DRBG as defined in 10.4.2 */
338 static int drbg_ctr_df(struct drbg_state *drbg,
339 unsigned char *df_data, size_t bytes_to_return,
340 struct list_head *seedlist)
341 {
342 int ret = -EFAULT;
343 unsigned char L_N[8];
344 /* S3 is input */
345 struct drbg_string S1, S2, S4, cipherin;
346 LIST_HEAD(bcc_list);
347 unsigned char *pad = df_data + drbg_statelen(drbg);
348 unsigned char *iv = pad + drbg_blocklen(drbg);
349 unsigned char *temp = iv + drbg_blocklen(drbg);
350 size_t padlen = 0;
351 unsigned int templen = 0;
352 /* 10.4.2 step 7 */
353 unsigned int i = 0;
354 /* 10.4.2 step 8 */
355 const unsigned char *K = (unsigned char *)
356 "\x00\x01\x02\x03\x04\x05\x06\x07"
357 "\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
358 "\x10\x11\x12\x13\x14\x15\x16\x17"
359 "\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f";
360 unsigned char *X;
361 size_t generated_len = 0;
362 size_t inputlen = 0;
363 struct drbg_string *seed = NULL;
364
365 memset(pad, 0, drbg_blocklen(drbg));
366 memset(iv, 0, drbg_blocklen(drbg));
367
368 /* 10.4.2 step 1 is implicit as we work byte-wise */
369
370 /* 10.4.2 step 2 */
371 if ((512/8) < bytes_to_return)
372 return -EINVAL;
373
374 /* 10.4.2 step 2 -- calculate the entire length of all input data */
375 list_for_each_entry(seed, seedlist, list)
376 inputlen += seed->len;
377 drbg_cpu_to_be32(inputlen, &L_N[0]);
378
379 /* 10.4.2 step 3 */
380 drbg_cpu_to_be32(bytes_to_return, &L_N[4]);
381
382 /* 10.4.2 step 5: length is L_N, input_string, one byte, padding */
383 padlen = (inputlen + sizeof(L_N) + 1) % (drbg_blocklen(drbg));
384 /* wrap the padlen appropriately */
385 if (padlen)
386 padlen = drbg_blocklen(drbg) - padlen;
387 /*
388 * pad / padlen contains the 0x80 byte and the following zero bytes.
389 * As the calculated padlen value only covers the number of zero
390 * bytes, this value has to be incremented by one for the 0x80 byte.
391 */
392 padlen++;
393 pad[0] = 0x80;
394
395 /* 10.4.2 step 4 -- first fill the linked list and then order it */
396 drbg_string_fill(&S1, iv, drbg_blocklen(drbg));
397 list_add_tail(&S1.list, &bcc_list);
398 drbg_string_fill(&S2, L_N, sizeof(L_N));
399 list_add_tail(&S2.list, &bcc_list);
400 list_splice_tail(seedlist, &bcc_list);
401 drbg_string_fill(&S4, pad, padlen);
402 list_add_tail(&S4.list, &bcc_list);
403
404 /* 10.4.2 step 9 */
405 while (templen < (drbg_keylen(drbg) + (drbg_blocklen(drbg)))) {
406 /*
407 * 10.4.2 step 9.1 - the padding is implicit as the buffer
408 * holds zeros after allocation -- even the increment of i
409 * is irrelevant as the increment remains within length of i
410 */
411 drbg_cpu_to_be32(i, iv);
412 /* 10.4.2 step 9.2 -- BCC and concatenation with temp */
413 ret = drbg_ctr_bcc(drbg, temp + templen, K, &bcc_list);
414 if (ret)
415 goto out;
416 /* 10.4.2 step 9.3 */
417 i++;
418 templen += drbg_blocklen(drbg);
419 }
420
421 /* 10.4.2 step 11 */
422 X = temp + (drbg_keylen(drbg));
423 drbg_string_fill(&cipherin, X, drbg_blocklen(drbg));
424
425 /* 10.4.2 step 12: overwriting of outval is implemented in next step */
426
427 /* 10.4.2 step 13 */
428 while (generated_len < bytes_to_return) {
429 short blocklen = 0;
430 /*
431 * 10.4.2 step 13.1: the truncation of the key length is
432 * implicit as the key is only drbg_blocklen in size based on
433 * the implementation of the cipher function callback
434 */
435 ret = drbg_kcapi_sym(drbg, temp, X, &cipherin);
436 if (ret)
437 goto out;
438 blocklen = (drbg_blocklen(drbg) <
439 (bytes_to_return - generated_len)) ?
440 drbg_blocklen(drbg) :
441 (bytes_to_return - generated_len);
442 /* 10.4.2 step 13.2 and 14 */
443 memcpy(df_data + generated_len, X, blocklen);
444 generated_len += blocklen;
445 }
446
447 ret = 0;
448
449 out:
450 memset(iv, 0, drbg_blocklen(drbg));
451 memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
452 memset(pad, 0, drbg_blocklen(drbg));
453 return ret;
454 }
455
456 /*
457 * update function of CTR DRBG as defined in 10.2.1.2
458 *
459 * The reseed variable has an enhanced meaning compared to the update
460 * functions of the other DRBGs as follows:
461 * 0 => initial seed from initialization
462 * 1 => reseed via drbg_seed
463 * 2 => first invocation from drbg_ctr_update when addtl is present. In
464 * this case, the df_data scratchpad is not deleted so that it is
465 * available for another calls to prevent calling the DF function
466 * again.
467 * 3 => second invocation from drbg_ctr_update. When the update function
468 * was called with addtl, the df_data memory already contains the
469 * DFed addtl information and we do not need to call DF again.
470 */
471 static int drbg_ctr_update(struct drbg_state *drbg, struct list_head *seed,
472 int reseed)
473 {
474 int ret = -EFAULT;
475 /* 10.2.1.2 step 1 */
476 unsigned char *temp = drbg->scratchpad;
477 unsigned char *df_data = drbg->scratchpad + drbg_statelen(drbg) +
478 drbg_blocklen(drbg);
479 unsigned char *temp_p, *df_data_p; /* pointer to iterate over buffers */
480 unsigned int len = 0;
481 struct drbg_string cipherin;
482
483 if (3 > reseed)
484 memset(df_data, 0, drbg_statelen(drbg));
485
486 /* 10.2.1.3.2 step 2 and 10.2.1.4.2 step 2 */
487 if (seed) {
488 ret = drbg_ctr_df(drbg, df_data, drbg_statelen(drbg), seed);
489 if (ret)
490 goto out;
491 }
492
493 drbg_string_fill(&cipherin, drbg->V, drbg_blocklen(drbg));
494 /*
495 * 10.2.1.3.2 steps 2 and 3 are already covered as the allocation
496 * zeroizes all memory during initialization
497 */
498 while (len < (drbg_statelen(drbg))) {
499 /* 10.2.1.2 step 2.1 */
500 crypto_inc(drbg->V, drbg_blocklen(drbg));
501 /*
502 * 10.2.1.2 step 2.2 */
503 ret = drbg_kcapi_sym(drbg, drbg->C, temp + len, &cipherin);
504 if (ret)
505 goto out;
506 /* 10.2.1.2 step 2.3 and 3 */
507 len += drbg_blocklen(drbg);
508 }
509
510 /* 10.2.1.2 step 4 */
511 temp_p = temp;
512 df_data_p = df_data;
513 for (len = 0; len < drbg_statelen(drbg); len++) {
514 *temp_p ^= *df_data_p;
515 df_data_p++; temp_p++;
516 }
517
518 /* 10.2.1.2 step 5 */
519 memcpy(drbg->C, temp, drbg_keylen(drbg));
520 /* 10.2.1.2 step 6 */
521 memcpy(drbg->V, temp + drbg_keylen(drbg), drbg_blocklen(drbg));
522 ret = 0;
523
524 out:
525 memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
526 if (2 != reseed)
527 memset(df_data, 0, drbg_statelen(drbg));
528 return ret;
529 }
530
531 /*
532 * scratchpad use: drbg_ctr_update is called independently from
533 * drbg_ctr_extract_bytes. Therefore, the scratchpad is reused
534 */
535 /* Generate function of CTR DRBG as defined in 10.2.1.5.2 */
536 static int drbg_ctr_generate(struct drbg_state *drbg,
537 unsigned char *buf, unsigned int buflen,
538 struct list_head *addtl)
539 {
540 int len = 0;
541 int ret = 0;
542 struct drbg_string data;
543
544 /* 10.2.1.5.2 step 2 */
545 if (addtl && !list_empty(addtl)) {
546 ret = drbg_ctr_update(drbg, addtl, 2);
547 if (ret)
548 return 0;
549 }
550
551 /* 10.2.1.5.2 step 4.1 */
552 crypto_inc(drbg->V, drbg_blocklen(drbg));
553 drbg_string_fill(&data, drbg->V, drbg_blocklen(drbg));
554 while (len < buflen) {
555 int outlen = 0;
556 /* 10.2.1.5.2 step 4.2 */
557 ret = drbg_kcapi_sym(drbg, drbg->C, drbg->scratchpad, &data);
558 if (ret) {
559 len = ret;
560 goto out;
561 }
562 outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
563 drbg_blocklen(drbg) : (buflen - len);
564 /* 10.2.1.5.2 step 4.3 */
565 memcpy(buf + len, drbg->scratchpad, outlen);
566 len += outlen;
567 /* 10.2.1.5.2 step 6 */
568 if (len < buflen)
569 crypto_inc(drbg->V, drbg_blocklen(drbg));
570 }
571
572 /* 10.2.1.5.2 step 6 */
573 ret = drbg_ctr_update(drbg, NULL, 3);
574 if (ret)
575 len = ret;
576
577 out:
578 memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
579 return len;
580 }
581
582 static const struct drbg_state_ops drbg_ctr_ops = {
583 .update = drbg_ctr_update,
584 .generate = drbg_ctr_generate,
585 .crypto_init = drbg_init_sym_kernel,
586 .crypto_fini = drbg_fini_sym_kernel,
587 };
588 #endif /* CONFIG_CRYPTO_DRBG_CTR */
589
590 /******************************************************************
591 * HMAC DRBG callback functions
592 ******************************************************************/
593
594 #if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
595 static int drbg_kcapi_hash(struct drbg_state *drbg, unsigned char *outval,
596 const struct list_head *in);
597 static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg,
598 const unsigned char *key);
599 static int drbg_init_hash_kernel(struct drbg_state *drbg);
600 static int drbg_fini_hash_kernel(struct drbg_state *drbg);
601 #endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
602
603 #ifdef CONFIG_CRYPTO_DRBG_HMAC
604 #define CRYPTO_DRBG_HMAC_STRING "HMAC "
605 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha512");
606 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha512");
607 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha384");
608 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha384");
609 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha256");
610 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha256");
611 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha1");
612 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha1");
613
614 /* update function of HMAC DRBG as defined in 10.1.2.2 */
615 static int drbg_hmac_update(struct drbg_state *drbg, struct list_head *seed,
616 int reseed)
617 {
618 int ret = -EFAULT;
619 int i = 0;
620 struct drbg_string seed1, seed2, vdata;
621 LIST_HEAD(seedlist);
622 LIST_HEAD(vdatalist);
623
624 if (!reseed) {
625 /* 10.1.2.3 step 2 -- memset(0) of C is implicit with kzalloc */
626 memset(drbg->V, 1, drbg_statelen(drbg));
627 drbg_kcapi_hmacsetkey(drbg, drbg->C);
628 }
629
630 drbg_string_fill(&seed1, drbg->V, drbg_statelen(drbg));
631 list_add_tail(&seed1.list, &seedlist);
632 /* buffer of seed2 will be filled in for loop below with one byte */
633 drbg_string_fill(&seed2, NULL, 1);
634 list_add_tail(&seed2.list, &seedlist);
635 /* input data of seed is allowed to be NULL at this point */
636 if (seed)
637 list_splice_tail(seed, &seedlist);
638
639 drbg_string_fill(&vdata, drbg->V, drbg_statelen(drbg));
640 list_add_tail(&vdata.list, &vdatalist);
641 for (i = 2; 0 < i; i--) {
642 /* first round uses 0x0, second 0x1 */
643 unsigned char prefix = DRBG_PREFIX0;
644 if (1 == i)
645 prefix = DRBG_PREFIX1;
646 /* 10.1.2.2 step 1 and 4 -- concatenation and HMAC for key */
647 seed2.buf = &prefix;
648 ret = drbg_kcapi_hash(drbg, drbg->C, &seedlist);
649 if (ret)
650 return ret;
651 drbg_kcapi_hmacsetkey(drbg, drbg->C);
652
653 /* 10.1.2.2 step 2 and 5 -- HMAC for V */
654 ret = drbg_kcapi_hash(drbg, drbg->V, &vdatalist);
655 if (ret)
656 return ret;
657
658 /* 10.1.2.2 step 3 */
659 if (!seed)
660 return ret;
661 }
662
663 return 0;
664 }
665
666 /* generate function of HMAC DRBG as defined in 10.1.2.5 */
667 static int drbg_hmac_generate(struct drbg_state *drbg,
668 unsigned char *buf,
669 unsigned int buflen,
670 struct list_head *addtl)
671 {
672 int len = 0;
673 int ret = 0;
674 struct drbg_string data;
675 LIST_HEAD(datalist);
676
677 /* 10.1.2.5 step 2 */
678 if (addtl && !list_empty(addtl)) {
679 ret = drbg_hmac_update(drbg, addtl, 1);
680 if (ret)
681 return ret;
682 }
683
684 drbg_string_fill(&data, drbg->V, drbg_statelen(drbg));
685 list_add_tail(&data.list, &datalist);
686 while (len < buflen) {
687 unsigned int outlen = 0;
688 /* 10.1.2.5 step 4.1 */
689 ret = drbg_kcapi_hash(drbg, drbg->V, &datalist);
690 if (ret)
691 return ret;
692 outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
693 drbg_blocklen(drbg) : (buflen - len);
694
695 /* 10.1.2.5 step 4.2 */
696 memcpy(buf + len, drbg->V, outlen);
697 len += outlen;
698 }
699
700 /* 10.1.2.5 step 6 */
701 if (addtl && !list_empty(addtl))
702 ret = drbg_hmac_update(drbg, addtl, 1);
703 else
704 ret = drbg_hmac_update(drbg, NULL, 1);
705 if (ret)
706 return ret;
707
708 return len;
709 }
710
711 static const struct drbg_state_ops drbg_hmac_ops = {
712 .update = drbg_hmac_update,
713 .generate = drbg_hmac_generate,
714 .crypto_init = drbg_init_hash_kernel,
715 .crypto_fini = drbg_fini_hash_kernel,
716 };
717 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
718
719 /******************************************************************
720 * Hash DRBG callback functions
721 ******************************************************************/
722
723 #ifdef CONFIG_CRYPTO_DRBG_HASH
724 #define CRYPTO_DRBG_HASH_STRING "HASH "
725 MODULE_ALIAS_CRYPTO("drbg_pr_sha512");
726 MODULE_ALIAS_CRYPTO("drbg_nopr_sha512");
727 MODULE_ALIAS_CRYPTO("drbg_pr_sha384");
728 MODULE_ALIAS_CRYPTO("drbg_nopr_sha384");
729 MODULE_ALIAS_CRYPTO("drbg_pr_sha256");
730 MODULE_ALIAS_CRYPTO("drbg_nopr_sha256");
731 MODULE_ALIAS_CRYPTO("drbg_pr_sha1");
732 MODULE_ALIAS_CRYPTO("drbg_nopr_sha1");
733
734 /*
735 * Increment buffer
736 *
737 * @dst buffer to increment
738 * @add value to add
739 */
740 static inline void drbg_add_buf(unsigned char *dst, size_t dstlen,
741 const unsigned char *add, size_t addlen)
742 {
743 /* implied: dstlen > addlen */
744 unsigned char *dstptr;
745 const unsigned char *addptr;
746 unsigned int remainder = 0;
747 size_t len = addlen;
748
749 dstptr = dst + (dstlen-1);
750 addptr = add + (addlen-1);
751 while (len) {
752 remainder += *dstptr + *addptr;
753 *dstptr = remainder & 0xff;
754 remainder >>= 8;
755 len--; dstptr--; addptr--;
756 }
757 len = dstlen - addlen;
758 while (len && remainder > 0) {
759 remainder = *dstptr + 1;
760 *dstptr = remainder & 0xff;
761 remainder >>= 8;
762 len--; dstptr--;
763 }
764 }
765
766 /*
767 * scratchpad usage: as drbg_hash_update and drbg_hash_df are used
768 * interlinked, the scratchpad is used as follows:
769 * drbg_hash_update
770 * start: drbg->scratchpad
771 * length: drbg_statelen(drbg)
772 * drbg_hash_df:
773 * start: drbg->scratchpad + drbg_statelen(drbg)
774 * length: drbg_blocklen(drbg)
775 *
776 * drbg_hash_process_addtl uses the scratchpad, but fully completes
777 * before either of the functions mentioned before are invoked. Therefore,
778 * drbg_hash_process_addtl does not need to be specifically considered.
779 */
780
781 /* Derivation Function for Hash DRBG as defined in 10.4.1 */
782 static int drbg_hash_df(struct drbg_state *drbg,
783 unsigned char *outval, size_t outlen,
784 struct list_head *entropylist)
785 {
786 int ret = 0;
787 size_t len = 0;
788 unsigned char input[5];
789 unsigned char *tmp = drbg->scratchpad + drbg_statelen(drbg);
790 struct drbg_string data;
791
792 /* 10.4.1 step 3 */
793 input[0] = 1;
794 drbg_cpu_to_be32((outlen * 8), &input[1]);
795
796 /* 10.4.1 step 4.1 -- concatenation of data for input into hash */
797 drbg_string_fill(&data, input, 5);
798 list_add(&data.list, entropylist);
799
800 /* 10.4.1 step 4 */
801 while (len < outlen) {
802 short blocklen = 0;
803 /* 10.4.1 step 4.1 */
804 ret = drbg_kcapi_hash(drbg, tmp, entropylist);
805 if (ret)
806 goto out;
807 /* 10.4.1 step 4.2 */
808 input[0]++;
809 blocklen = (drbg_blocklen(drbg) < (outlen - len)) ?
810 drbg_blocklen(drbg) : (outlen - len);
811 memcpy(outval + len, tmp, blocklen);
812 len += blocklen;
813 }
814
815 out:
816 memset(tmp, 0, drbg_blocklen(drbg));
817 return ret;
818 }
819
820 /* update function for Hash DRBG as defined in 10.1.1.2 / 10.1.1.3 */
821 static int drbg_hash_update(struct drbg_state *drbg, struct list_head *seed,
822 int reseed)
823 {
824 int ret = 0;
825 struct drbg_string data1, data2;
826 LIST_HEAD(datalist);
827 LIST_HEAD(datalist2);
828 unsigned char *V = drbg->scratchpad;
829 unsigned char prefix = DRBG_PREFIX1;
830
831 if (!seed)
832 return -EINVAL;
833
834 if (reseed) {
835 /* 10.1.1.3 step 1 */
836 memcpy(V, drbg->V, drbg_statelen(drbg));
837 drbg_string_fill(&data1, &prefix, 1);
838 list_add_tail(&data1.list, &datalist);
839 drbg_string_fill(&data2, V, drbg_statelen(drbg));
840 list_add_tail(&data2.list, &datalist);
841 }
842 list_splice_tail(seed, &datalist);
843
844 /* 10.1.1.2 / 10.1.1.3 step 2 and 3 */
845 ret = drbg_hash_df(drbg, drbg->V, drbg_statelen(drbg), &datalist);
846 if (ret)
847 goto out;
848
849 /* 10.1.1.2 / 10.1.1.3 step 4 */
850 prefix = DRBG_PREFIX0;
851 drbg_string_fill(&data1, &prefix, 1);
852 list_add_tail(&data1.list, &datalist2);
853 drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
854 list_add_tail(&data2.list, &datalist2);
855 /* 10.1.1.2 / 10.1.1.3 step 4 */
856 ret = drbg_hash_df(drbg, drbg->C, drbg_statelen(drbg), &datalist2);
857
858 out:
859 memset(drbg->scratchpad, 0, drbg_statelen(drbg));
860 return ret;
861 }
862
863 /* processing of additional information string for Hash DRBG */
864 static int drbg_hash_process_addtl(struct drbg_state *drbg,
865 struct list_head *addtl)
866 {
867 int ret = 0;
868 struct drbg_string data1, data2;
869 LIST_HEAD(datalist);
870 unsigned char prefix = DRBG_PREFIX2;
871
872 /* 10.1.1.4 step 2 */
873 if (!addtl || list_empty(addtl))
874 return 0;
875
876 /* 10.1.1.4 step 2a */
877 drbg_string_fill(&data1, &prefix, 1);
878 drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
879 list_add_tail(&data1.list, &datalist);
880 list_add_tail(&data2.list, &datalist);
881 list_splice_tail(addtl, &datalist);
882 ret = drbg_kcapi_hash(drbg, drbg->scratchpad, &datalist);
883 if (ret)
884 goto out;
885
886 /* 10.1.1.4 step 2b */
887 drbg_add_buf(drbg->V, drbg_statelen(drbg),
888 drbg->scratchpad, drbg_blocklen(drbg));
889
890 out:
891 memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
892 return ret;
893 }
894
895 /* Hashgen defined in 10.1.1.4 */
896 static int drbg_hash_hashgen(struct drbg_state *drbg,
897 unsigned char *buf,
898 unsigned int buflen)
899 {
900 int len = 0;
901 int ret = 0;
902 unsigned char *src = drbg->scratchpad;
903 unsigned char *dst = drbg->scratchpad + drbg_statelen(drbg);
904 struct drbg_string data;
905 LIST_HEAD(datalist);
906
907 /* 10.1.1.4 step hashgen 2 */
908 memcpy(src, drbg->V, drbg_statelen(drbg));
909
910 drbg_string_fill(&data, src, drbg_statelen(drbg));
911 list_add_tail(&data.list, &datalist);
912 while (len < buflen) {
913 unsigned int outlen = 0;
914 /* 10.1.1.4 step hashgen 4.1 */
915 ret = drbg_kcapi_hash(drbg, dst, &datalist);
916 if (ret) {
917 len = ret;
918 goto out;
919 }
920 outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
921 drbg_blocklen(drbg) : (buflen - len);
922 /* 10.1.1.4 step hashgen 4.2 */
923 memcpy(buf + len, dst, outlen);
924 len += outlen;
925 /* 10.1.1.4 hashgen step 4.3 */
926 if (len < buflen)
927 crypto_inc(src, drbg_statelen(drbg));
928 }
929
930 out:
931 memset(drbg->scratchpad, 0,
932 (drbg_statelen(drbg) + drbg_blocklen(drbg)));
933 return len;
934 }
935
936 /* generate function for Hash DRBG as defined in 10.1.1.4 */
937 static int drbg_hash_generate(struct drbg_state *drbg,
938 unsigned char *buf, unsigned int buflen,
939 struct list_head *addtl)
940 {
941 int len = 0;
942 int ret = 0;
943 union {
944 unsigned char req[8];
945 __be64 req_int;
946 } u;
947 unsigned char prefix = DRBG_PREFIX3;
948 struct drbg_string data1, data2;
949 LIST_HEAD(datalist);
950
951 /* 10.1.1.4 step 2 */
952 ret = drbg_hash_process_addtl(drbg, addtl);
953 if (ret)
954 return ret;
955 /* 10.1.1.4 step 3 */
956 len = drbg_hash_hashgen(drbg, buf, buflen);
957
958 /* this is the value H as documented in 10.1.1.4 */
959 /* 10.1.1.4 step 4 */
960 drbg_string_fill(&data1, &prefix, 1);
961 list_add_tail(&data1.list, &datalist);
962 drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
963 list_add_tail(&data2.list, &datalist);
964 ret = drbg_kcapi_hash(drbg, drbg->scratchpad, &datalist);
965 if (ret) {
966 len = ret;
967 goto out;
968 }
969
970 /* 10.1.1.4 step 5 */
971 drbg_add_buf(drbg->V, drbg_statelen(drbg),
972 drbg->scratchpad, drbg_blocklen(drbg));
973 drbg_add_buf(drbg->V, drbg_statelen(drbg),
974 drbg->C, drbg_statelen(drbg));
975 u.req_int = cpu_to_be64(drbg->reseed_ctr);
976 drbg_add_buf(drbg->V, drbg_statelen(drbg), u.req, 8);
977
978 out:
979 memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
980 return len;
981 }
982
983 /*
984 * scratchpad usage: as update and generate are used isolated, both
985 * can use the scratchpad
986 */
987 static const struct drbg_state_ops drbg_hash_ops = {
988 .update = drbg_hash_update,
989 .generate = drbg_hash_generate,
990 .crypto_init = drbg_init_hash_kernel,
991 .crypto_fini = drbg_fini_hash_kernel,
992 };
993 #endif /* CONFIG_CRYPTO_DRBG_HASH */
994
995 /******************************************************************
996 * Functions common for DRBG implementations
997 ******************************************************************/
998
999 static inline int __drbg_seed(struct drbg_state *drbg, struct list_head *seed,
1000 int reseed)
1001 {
1002 int ret = drbg->d_ops->update(drbg, seed, reseed);
1003
1004 if (ret)
1005 return ret;
1006
1007 drbg->seeded = true;
1008 /* 10.1.1.2 / 10.1.1.3 step 5 */
1009 drbg->reseed_ctr = 1;
1010
1011 return ret;
1012 }
1013
1014 static void drbg_async_seed(struct work_struct *work)
1015 {
1016 struct drbg_string data;
1017 LIST_HEAD(seedlist);
1018 struct drbg_state *drbg = container_of(work, struct drbg_state,
1019 seed_work);
1020 unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
1021 unsigned char entropy[32];
1022
1023 BUG_ON(!entropylen);
1024 BUG_ON(entropylen > sizeof(entropy));
1025 get_random_bytes(entropy, entropylen);
1026
1027 drbg_string_fill(&data, entropy, entropylen);
1028 list_add_tail(&data.list, &seedlist);
1029
1030 mutex_lock(&drbg->drbg_mutex);
1031
1032 /* If nonblocking pool is initialized, deactivate Jitter RNG */
1033 crypto_free_rng(drbg->jent);
1034 drbg->jent = NULL;
1035
1036 /* Set seeded to false so that if __drbg_seed fails the
1037 * next generate call will trigger a reseed.
1038 */
1039 drbg->seeded = false;
1040
1041 __drbg_seed(drbg, &seedlist, true);
1042
1043 if (drbg->seeded)
1044 drbg->reseed_threshold = drbg_max_requests(drbg);
1045
1046 mutex_unlock(&drbg->drbg_mutex);
1047
1048 memzero_explicit(entropy, entropylen);
1049 }
1050
1051 /*
1052 * Seeding or reseeding of the DRBG
1053 *
1054 * @drbg: DRBG state struct
1055 * @pers: personalization / additional information buffer
1056 * @reseed: 0 for initial seed process, 1 for reseeding
1057 *
1058 * return:
1059 * 0 on success
1060 * error value otherwise
1061 */
1062 static int drbg_seed(struct drbg_state *drbg, struct drbg_string *pers,
1063 bool reseed)
1064 {
1065 int ret;
1066 unsigned char entropy[((32 + 16) * 2)];
1067 unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
1068 struct drbg_string data1;
1069 LIST_HEAD(seedlist);
1070
1071 /* 9.1 / 9.2 / 9.3.1 step 3 */
1072 if (pers && pers->len > (drbg_max_addtl(drbg))) {
1073 pr_devel("DRBG: personalization string too long %zu\n",
1074 pers->len);
1075 return -EINVAL;
1076 }
1077
1078 if (list_empty(&drbg->test_data.list)) {
1079 drbg_string_fill(&data1, drbg->test_data.buf,
1080 drbg->test_data.len);
1081 pr_devel("DRBG: using test entropy\n");
1082 } else {
1083 /*
1084 * Gather entropy equal to the security strength of the DRBG.
1085 * With a derivation function, a nonce is required in addition
1086 * to the entropy. A nonce must be at least 1/2 of the security
1087 * strength of the DRBG in size. Thus, entropy + nonce is 3/2
1088 * of the strength. The consideration of a nonce is only
1089 * applicable during initial seeding.
1090 */
1091 BUG_ON(!entropylen);
1092 if (!reseed)
1093 entropylen = ((entropylen + 1) / 2) * 3;
1094 BUG_ON((entropylen * 2) > sizeof(entropy));
1095
1096 /* Get seed from in-kernel /dev/urandom */
1097 get_random_bytes(entropy, entropylen);
1098
1099 if (!drbg->jent) {
1100 drbg_string_fill(&data1, entropy, entropylen);
1101 pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
1102 entropylen);
1103 } else {
1104 /* Get seed from Jitter RNG */
1105 ret = crypto_rng_get_bytes(drbg->jent,
1106 entropy + entropylen,
1107 entropylen);
1108 if (ret) {
1109 pr_devel("DRBG: jent failed with %d\n", ret);
1110 return ret;
1111 }
1112
1113 drbg_string_fill(&data1, entropy, entropylen * 2);
1114 pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
1115 entropylen * 2);
1116 }
1117 }
1118 list_add_tail(&data1.list, &seedlist);
1119
1120 /*
1121 * concatenation of entropy with personalization str / addtl input)
1122 * the variable pers is directly handed in by the caller, so check its
1123 * contents whether it is appropriate
1124 */
1125 if (pers && pers->buf && 0 < pers->len) {
1126 list_add_tail(&pers->list, &seedlist);
1127 pr_devel("DRBG: using personalization string\n");
1128 }
1129
1130 if (!reseed) {
1131 memset(drbg->V, 0, drbg_statelen(drbg));
1132 memset(drbg->C, 0, drbg_statelen(drbg));
1133 }
1134
1135 ret = __drbg_seed(drbg, &seedlist, reseed);
1136
1137 memzero_explicit(entropy, entropylen * 2);
1138
1139 return ret;
1140 }
1141
1142 /* Free all substructures in a DRBG state without the DRBG state structure */
1143 static inline void drbg_dealloc_state(struct drbg_state *drbg)
1144 {
1145 if (!drbg)
1146 return;
1147 kzfree(drbg->V);
1148 drbg->V = NULL;
1149 kzfree(drbg->C);
1150 drbg->C = NULL;
1151 kzfree(drbg->scratchpad);
1152 drbg->scratchpad = NULL;
1153 drbg->reseed_ctr = 0;
1154 drbg->d_ops = NULL;
1155 drbg->core = NULL;
1156 }
1157
1158 /*
1159 * Allocate all sub-structures for a DRBG state.
1160 * The DRBG state structure must already be allocated.
1161 */
1162 static inline int drbg_alloc_state(struct drbg_state *drbg)
1163 {
1164 int ret = -ENOMEM;
1165 unsigned int sb_size = 0;
1166
1167 switch (drbg->core->flags & DRBG_TYPE_MASK) {
1168 #ifdef CONFIG_CRYPTO_DRBG_HMAC
1169 case DRBG_HMAC:
1170 drbg->d_ops = &drbg_hmac_ops;
1171 break;
1172 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
1173 #ifdef CONFIG_CRYPTO_DRBG_HASH
1174 case DRBG_HASH:
1175 drbg->d_ops = &drbg_hash_ops;
1176 break;
1177 #endif /* CONFIG_CRYPTO_DRBG_HASH */
1178 #ifdef CONFIG_CRYPTO_DRBG_CTR
1179 case DRBG_CTR:
1180 drbg->d_ops = &drbg_ctr_ops;
1181 break;
1182 #endif /* CONFIG_CRYPTO_DRBG_CTR */
1183 default:
1184 ret = -EOPNOTSUPP;
1185 goto err;
1186 }
1187
1188 drbg->V = kmalloc(drbg_statelen(drbg), GFP_KERNEL);
1189 if (!drbg->V)
1190 goto err;
1191 drbg->C = kmalloc(drbg_statelen(drbg), GFP_KERNEL);
1192 if (!drbg->C)
1193 goto err;
1194 /* scratchpad is only generated for CTR and Hash */
1195 if (drbg->core->flags & DRBG_HMAC)
1196 sb_size = 0;
1197 else if (drbg->core->flags & DRBG_CTR)
1198 sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg) + /* temp */
1199 drbg_statelen(drbg) + /* df_data */
1200 drbg_blocklen(drbg) + /* pad */
1201 drbg_blocklen(drbg) + /* iv */
1202 drbg_statelen(drbg) + drbg_blocklen(drbg); /* temp */
1203 else
1204 sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg);
1205
1206 if (0 < sb_size) {
1207 drbg->scratchpad = kzalloc(sb_size, GFP_KERNEL);
1208 if (!drbg->scratchpad)
1209 goto err;
1210 }
1211
1212 return 0;
1213
1214 err:
1215 drbg_dealloc_state(drbg);
1216 return ret;
1217 }
1218
1219 /*************************************************************************
1220 * DRBG interface functions
1221 *************************************************************************/
1222
1223 /*
1224 * DRBG generate function as required by SP800-90A - this function
1225 * generates random numbers
1226 *
1227 * @drbg DRBG state handle
1228 * @buf Buffer where to store the random numbers -- the buffer must already
1229 * be pre-allocated by caller
1230 * @buflen Length of output buffer - this value defines the number of random
1231 * bytes pulled from DRBG
1232 * @addtl Additional input that is mixed into state, may be NULL -- note
1233 * the entropy is pulled by the DRBG internally unconditionally
1234 * as defined in SP800-90A. The additional input is mixed into
1235 * the state in addition to the pulled entropy.
1236 *
1237 * return: 0 when all bytes are generated; < 0 in case of an error
1238 */
1239 static int drbg_generate(struct drbg_state *drbg,
1240 unsigned char *buf, unsigned int buflen,
1241 struct drbg_string *addtl)
1242 {
1243 int len = 0;
1244 LIST_HEAD(addtllist);
1245
1246 if (!drbg->core) {
1247 pr_devel("DRBG: not yet seeded\n");
1248 return -EINVAL;
1249 }
1250 if (0 == buflen || !buf) {
1251 pr_devel("DRBG: no output buffer provided\n");
1252 return -EINVAL;
1253 }
1254 if (addtl && NULL == addtl->buf && 0 < addtl->len) {
1255 pr_devel("DRBG: wrong format of additional information\n");
1256 return -EINVAL;
1257 }
1258
1259 /* 9.3.1 step 2 */
1260 len = -EINVAL;
1261 if (buflen > (drbg_max_request_bytes(drbg))) {
1262 pr_devel("DRBG: requested random numbers too large %u\n",
1263 buflen);
1264 goto err;
1265 }
1266
1267 /* 9.3.1 step 3 is implicit with the chosen DRBG */
1268
1269 /* 9.3.1 step 4 */
1270 if (addtl && addtl->len > (drbg_max_addtl(drbg))) {
1271 pr_devel("DRBG: additional information string too long %zu\n",
1272 addtl->len);
1273 goto err;
1274 }
1275 /* 9.3.1 step 5 is implicit with the chosen DRBG */
1276
1277 /*
1278 * 9.3.1 step 6 and 9 supplemented by 9.3.2 step c is implemented
1279 * here. The spec is a bit convoluted here, we make it simpler.
1280 */
1281 if (drbg->reseed_threshold < drbg->reseed_ctr)
1282 drbg->seeded = false;
1283
1284 if (drbg->pr || !drbg->seeded) {
1285 pr_devel("DRBG: reseeding before generation (prediction "
1286 "resistance: %s, state %s)\n",
1287 drbg->pr ? "true" : "false",
1288 drbg->seeded ? "seeded" : "unseeded");
1289 /* 9.3.1 steps 7.1 through 7.3 */
1290 len = drbg_seed(drbg, addtl, true);
1291 if (len)
1292 goto err;
1293 /* 9.3.1 step 7.4 */
1294 addtl = NULL;
1295 }
1296
1297 if (addtl && 0 < addtl->len)
1298 list_add_tail(&addtl->list, &addtllist);
1299 /* 9.3.1 step 8 and 10 */
1300 len = drbg->d_ops->generate(drbg, buf, buflen, &addtllist);
1301
1302 /* 10.1.1.4 step 6, 10.1.2.5 step 7, 10.2.1.5.2 step 7 */
1303 drbg->reseed_ctr++;
1304 if (0 >= len)
1305 goto err;
1306
1307 /*
1308 * Section 11.3.3 requires to re-perform self tests after some
1309 * generated random numbers. The chosen value after which self
1310 * test is performed is arbitrary, but it should be reasonable.
1311 * However, we do not perform the self tests because of the following
1312 * reasons: it is mathematically impossible that the initial self tests
1313 * were successfully and the following are not. If the initial would
1314 * pass and the following would not, the kernel integrity is violated.
1315 * In this case, the entire kernel operation is questionable and it
1316 * is unlikely that the integrity violation only affects the
1317 * correct operation of the DRBG.
1318 *
1319 * Albeit the following code is commented out, it is provided in
1320 * case somebody has a need to implement the test of 11.3.3.
1321 */
1322 #if 0
1323 if (drbg->reseed_ctr && !(drbg->reseed_ctr % 4096)) {
1324 int err = 0;
1325 pr_devel("DRBG: start to perform self test\n");
1326 if (drbg->core->flags & DRBG_HMAC)
1327 err = alg_test("drbg_pr_hmac_sha256",
1328 "drbg_pr_hmac_sha256", 0, 0);
1329 else if (drbg->core->flags & DRBG_CTR)
1330 err = alg_test("drbg_pr_ctr_aes128",
1331 "drbg_pr_ctr_aes128", 0, 0);
1332 else
1333 err = alg_test("drbg_pr_sha256",
1334 "drbg_pr_sha256", 0, 0);
1335 if (err) {
1336 pr_err("DRBG: periodical self test failed\n");
1337 /*
1338 * uninstantiate implies that from now on, only errors
1339 * are returned when reusing this DRBG cipher handle
1340 */
1341 drbg_uninstantiate(drbg);
1342 return 0;
1343 } else {
1344 pr_devel("DRBG: self test successful\n");
1345 }
1346 }
1347 #endif
1348
1349 /*
1350 * All operations were successful, return 0 as mandated by
1351 * the kernel crypto API interface.
1352 */
1353 len = 0;
1354 err:
1355 return len;
1356 }
1357
1358 /*
1359 * Wrapper around drbg_generate which can pull arbitrary long strings
1360 * from the DRBG without hitting the maximum request limitation.
1361 *
1362 * Parameters: see drbg_generate
1363 * Return codes: see drbg_generate -- if one drbg_generate request fails,
1364 * the entire drbg_generate_long request fails
1365 */
1366 static int drbg_generate_long(struct drbg_state *drbg,
1367 unsigned char *buf, unsigned int buflen,
1368 struct drbg_string *addtl)
1369 {
1370 unsigned int len = 0;
1371 unsigned int slice = 0;
1372 do {
1373 int err = 0;
1374 unsigned int chunk = 0;
1375 slice = ((buflen - len) / drbg_max_request_bytes(drbg));
1376 chunk = slice ? drbg_max_request_bytes(drbg) : (buflen - len);
1377 mutex_lock(&drbg->drbg_mutex);
1378 err = drbg_generate(drbg, buf + len, chunk, addtl);
1379 mutex_unlock(&drbg->drbg_mutex);
1380 if (0 > err)
1381 return err;
1382 len += chunk;
1383 } while (slice > 0 && (len < buflen));
1384 return 0;
1385 }
1386
1387 static void drbg_schedule_async_seed(struct random_ready_callback *rdy)
1388 {
1389 struct drbg_state *drbg = container_of(rdy, struct drbg_state,
1390 random_ready);
1391
1392 schedule_work(&drbg->seed_work);
1393 }
1394
1395 static int drbg_prepare_hrng(struct drbg_state *drbg)
1396 {
1397 int err;
1398
1399 /* We do not need an HRNG in test mode. */
1400 if (list_empty(&drbg->test_data.list))
1401 return 0;
1402
1403 INIT_WORK(&drbg->seed_work, drbg_async_seed);
1404
1405 drbg->random_ready.owner = THIS_MODULE;
1406 drbg->random_ready.func = drbg_schedule_async_seed;
1407
1408 err = add_random_ready_callback(&drbg->random_ready);
1409
1410 switch (err) {
1411 case 0:
1412 break;
1413
1414 case -EALREADY:
1415 err = 0;
1416 /* fall through */
1417
1418 default:
1419 drbg->random_ready.func = NULL;
1420 return err;
1421 }
1422
1423 drbg->jent = crypto_alloc_rng("jitterentropy_rng", 0, 0);
1424
1425 /*
1426 * Require frequent reseeds until the seed source is fully
1427 * initialized.
1428 */
1429 drbg->reseed_threshold = 50;
1430
1431 return err;
1432 }
1433
1434 /*
1435 * DRBG instantiation function as required by SP800-90A - this function
1436 * sets up the DRBG handle, performs the initial seeding and all sanity
1437 * checks required by SP800-90A
1438 *
1439 * @drbg memory of state -- if NULL, new memory is allocated
1440 * @pers Personalization string that is mixed into state, may be NULL -- note
1441 * the entropy is pulled by the DRBG internally unconditionally
1442 * as defined in SP800-90A. The additional input is mixed into
1443 * the state in addition to the pulled entropy.
1444 * @coreref reference to core
1445 * @pr prediction resistance enabled
1446 *
1447 * return
1448 * 0 on success
1449 * error value otherwise
1450 */
1451 static int drbg_instantiate(struct drbg_state *drbg, struct drbg_string *pers,
1452 int coreref, bool pr)
1453 {
1454 int ret;
1455 bool reseed = true;
1456
1457 pr_devel("DRBG: Initializing DRBG core %d with prediction resistance "
1458 "%s\n", coreref, pr ? "enabled" : "disabled");
1459 mutex_lock(&drbg->drbg_mutex);
1460
1461 /* 9.1 step 1 is implicit with the selected DRBG type */
1462
1463 /*
1464 * 9.1 step 2 is implicit as caller can select prediction resistance
1465 * and the flag is copied into drbg->flags --
1466 * all DRBG types support prediction resistance
1467 */
1468
1469 /* 9.1 step 4 is implicit in drbg_sec_strength */
1470
1471 if (!drbg->core) {
1472 drbg->core = &drbg_cores[coreref];
1473 drbg->pr = pr;
1474 drbg->seeded = false;
1475 drbg->reseed_threshold = drbg_max_requests(drbg);
1476
1477 ret = drbg_alloc_state(drbg);
1478 if (ret)
1479 goto unlock;
1480
1481 ret = -EFAULT;
1482 if (drbg->d_ops->crypto_init(drbg))
1483 goto err;
1484
1485 ret = drbg_prepare_hrng(drbg);
1486 if (ret)
1487 goto free_everything;
1488
1489 if (IS_ERR(drbg->jent)) {
1490 ret = PTR_ERR(drbg->jent);
1491 drbg->jent = NULL;
1492 if (fips_enabled || ret != -ENOENT)
1493 goto free_everything;
1494 pr_info("DRBG: Continuing without Jitter RNG\n");
1495 }
1496
1497 reseed = false;
1498 }
1499
1500 ret = drbg_seed(drbg, pers, reseed);
1501
1502 if (ret && !reseed)
1503 goto free_everything;
1504
1505 mutex_unlock(&drbg->drbg_mutex);
1506 return ret;
1507
1508 err:
1509 drbg_dealloc_state(drbg);
1510 unlock:
1511 mutex_unlock(&drbg->drbg_mutex);
1512 return ret;
1513
1514 free_everything:
1515 mutex_unlock(&drbg->drbg_mutex);
1516 drbg_uninstantiate(drbg);
1517 return ret;
1518 }
1519
1520 /*
1521 * DRBG uninstantiate function as required by SP800-90A - this function
1522 * frees all buffers and the DRBG handle
1523 *
1524 * @drbg DRBG state handle
1525 *
1526 * return
1527 * 0 on success
1528 */
1529 static int drbg_uninstantiate(struct drbg_state *drbg)
1530 {
1531 if (drbg->random_ready.func) {
1532 del_random_ready_callback(&drbg->random_ready);
1533 cancel_work_sync(&drbg->seed_work);
1534 crypto_free_rng(drbg->jent);
1535 drbg->jent = NULL;
1536 }
1537
1538 if (drbg->d_ops)
1539 drbg->d_ops->crypto_fini(drbg);
1540 drbg_dealloc_state(drbg);
1541 /* no scrubbing of test_data -- this shall survive an uninstantiate */
1542 return 0;
1543 }
1544
1545 /*
1546 * Helper function for setting the test data in the DRBG
1547 *
1548 * @drbg DRBG state handle
1549 * @data test data
1550 * @len test data length
1551 */
1552 static void drbg_kcapi_set_entropy(struct crypto_rng *tfm,
1553 const u8 *data, unsigned int len)
1554 {
1555 struct drbg_state *drbg = crypto_rng_ctx(tfm);
1556
1557 mutex_lock(&drbg->drbg_mutex);
1558 drbg_string_fill(&drbg->test_data, data, len);
1559 mutex_unlock(&drbg->drbg_mutex);
1560 }
1561
1562 /***************************************************************
1563 * Kernel crypto API cipher invocations requested by DRBG
1564 ***************************************************************/
1565
1566 #if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
1567 struct sdesc {
1568 struct shash_desc shash;
1569 char ctx[];
1570 };
1571
1572 static int drbg_init_hash_kernel(struct drbg_state *drbg)
1573 {
1574 struct sdesc *sdesc;
1575 struct crypto_shash *tfm;
1576
1577 tfm = crypto_alloc_shash(drbg->core->backend_cra_name, 0, 0);
1578 if (IS_ERR(tfm)) {
1579 pr_info("DRBG: could not allocate digest TFM handle: %s\n",
1580 drbg->core->backend_cra_name);
1581 return PTR_ERR(tfm);
1582 }
1583 BUG_ON(drbg_blocklen(drbg) != crypto_shash_digestsize(tfm));
1584 sdesc = kzalloc(sizeof(struct shash_desc) + crypto_shash_descsize(tfm),
1585 GFP_KERNEL);
1586 if (!sdesc) {
1587 crypto_free_shash(tfm);
1588 return -ENOMEM;
1589 }
1590
1591 sdesc->shash.tfm = tfm;
1592 sdesc->shash.flags = 0;
1593 drbg->priv_data = sdesc;
1594 return 0;
1595 }
1596
1597 static int drbg_fini_hash_kernel(struct drbg_state *drbg)
1598 {
1599 struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1600 if (sdesc) {
1601 crypto_free_shash(sdesc->shash.tfm);
1602 kzfree(sdesc);
1603 }
1604 drbg->priv_data = NULL;
1605 return 0;
1606 }
1607
1608 static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg,
1609 const unsigned char *key)
1610 {
1611 struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1612
1613 crypto_shash_setkey(sdesc->shash.tfm, key, drbg_statelen(drbg));
1614 }
1615
1616 static int drbg_kcapi_hash(struct drbg_state *drbg, unsigned char *outval,
1617 const struct list_head *in)
1618 {
1619 struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1620 struct drbg_string *input = NULL;
1621
1622 crypto_shash_init(&sdesc->shash);
1623 list_for_each_entry(input, in, list)
1624 crypto_shash_update(&sdesc->shash, input->buf, input->len);
1625 return crypto_shash_final(&sdesc->shash, outval);
1626 }
1627 #endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
1628
1629 #ifdef CONFIG_CRYPTO_DRBG_CTR
1630 static int drbg_init_sym_kernel(struct drbg_state *drbg)
1631 {
1632 int ret = 0;
1633 struct crypto_cipher *tfm;
1634
1635 tfm = crypto_alloc_cipher(drbg->core->backend_cra_name, 0, 0);
1636 if (IS_ERR(tfm)) {
1637 pr_info("DRBG: could not allocate cipher TFM handle: %s\n",
1638 drbg->core->backend_cra_name);
1639 return PTR_ERR(tfm);
1640 }
1641 BUG_ON(drbg_blocklen(drbg) != crypto_cipher_blocksize(tfm));
1642 drbg->priv_data = tfm;
1643 return ret;
1644 }
1645
1646 static int drbg_fini_sym_kernel(struct drbg_state *drbg)
1647 {
1648 struct crypto_cipher *tfm =
1649 (struct crypto_cipher *)drbg->priv_data;
1650 if (tfm)
1651 crypto_free_cipher(tfm);
1652 drbg->priv_data = NULL;
1653 return 0;
1654 }
1655
1656 static int drbg_kcapi_sym(struct drbg_state *drbg, const unsigned char *key,
1657 unsigned char *outval, const struct drbg_string *in)
1658 {
1659 struct crypto_cipher *tfm =
1660 (struct crypto_cipher *)drbg->priv_data;
1661
1662 crypto_cipher_setkey(tfm, key, (drbg_keylen(drbg)));
1663 /* there is only component in *in */
1664 BUG_ON(in->len < drbg_blocklen(drbg));
1665 crypto_cipher_encrypt_one(tfm, outval, in->buf);
1666 return 0;
1667 }
1668 #endif /* CONFIG_CRYPTO_DRBG_CTR */
1669
1670 /***************************************************************
1671 * Kernel crypto API interface to register DRBG
1672 ***************************************************************/
1673
1674 /*
1675 * Look up the DRBG flags by given kernel crypto API cra_name
1676 * The code uses the drbg_cores definition to do this
1677 *
1678 * @cra_name kernel crypto API cra_name
1679 * @coreref reference to integer which is filled with the pointer to
1680 * the applicable core
1681 * @pr reference for setting prediction resistance
1682 *
1683 * return: flags
1684 */
1685 static inline void drbg_convert_tfm_core(const char *cra_driver_name,
1686 int *coreref, bool *pr)
1687 {
1688 int i = 0;
1689 size_t start = 0;
1690 int len = 0;
1691
1692 *pr = true;
1693 /* disassemble the names */
1694 if (!memcmp(cra_driver_name, "drbg_nopr_", 10)) {
1695 start = 10;
1696 *pr = false;
1697 } else if (!memcmp(cra_driver_name, "drbg_pr_", 8)) {
1698 start = 8;
1699 } else {
1700 return;
1701 }
1702
1703 /* remove the first part */
1704 len = strlen(cra_driver_name) - start;
1705 for (i = 0; ARRAY_SIZE(drbg_cores) > i; i++) {
1706 if (!memcmp(cra_driver_name + start, drbg_cores[i].cra_name,
1707 len)) {
1708 *coreref = i;
1709 return;
1710 }
1711 }
1712 }
1713
1714 static int drbg_kcapi_init(struct crypto_tfm *tfm)
1715 {
1716 struct drbg_state *drbg = crypto_tfm_ctx(tfm);
1717
1718 mutex_init(&drbg->drbg_mutex);
1719
1720 return 0;
1721 }
1722
1723 static void drbg_kcapi_cleanup(struct crypto_tfm *tfm)
1724 {
1725 drbg_uninstantiate(crypto_tfm_ctx(tfm));
1726 }
1727
1728 /*
1729 * Generate random numbers invoked by the kernel crypto API:
1730 * The API of the kernel crypto API is extended as follows:
1731 *
1732 * src is additional input supplied to the RNG.
1733 * slen is the length of src.
1734 * dst is the output buffer where random data is to be stored.
1735 * dlen is the length of dst.
1736 */
1737 static int drbg_kcapi_random(struct crypto_rng *tfm,
1738 const u8 *src, unsigned int slen,
1739 u8 *dst, unsigned int dlen)
1740 {
1741 struct drbg_state *drbg = crypto_rng_ctx(tfm);
1742 struct drbg_string *addtl = NULL;
1743 struct drbg_string string;
1744
1745 if (slen) {
1746 /* linked list variable is now local to allow modification */
1747 drbg_string_fill(&string, src, slen);
1748 addtl = &string;
1749 }
1750
1751 return drbg_generate_long(drbg, dst, dlen, addtl);
1752 }
1753
1754 /*
1755 * Seed the DRBG invoked by the kernel crypto API
1756 */
1757 static int drbg_kcapi_seed(struct crypto_rng *tfm,
1758 const u8 *seed, unsigned int slen)
1759 {
1760 struct drbg_state *drbg = crypto_rng_ctx(tfm);
1761 struct crypto_tfm *tfm_base = crypto_rng_tfm(tfm);
1762 bool pr = false;
1763 struct drbg_string string;
1764 struct drbg_string *seed_string = NULL;
1765 int coreref = 0;
1766
1767 drbg_convert_tfm_core(crypto_tfm_alg_driver_name(tfm_base), &coreref,
1768 &pr);
1769 if (0 < slen) {
1770 drbg_string_fill(&string, seed, slen);
1771 seed_string = &string;
1772 }
1773
1774 return drbg_instantiate(drbg, seed_string, coreref, pr);
1775 }
1776
1777 /***************************************************************
1778 * Kernel module: code to load the module
1779 ***************************************************************/
1780
1781 /*
1782 * Tests as defined in 11.3.2 in addition to the cipher tests: testing
1783 * of the error handling.
1784 *
1785 * Note: testing of failing seed source as defined in 11.3.2 is not applicable
1786 * as seed source of get_random_bytes does not fail.
1787 *
1788 * Note 2: There is no sensible way of testing the reseed counter
1789 * enforcement, so skip it.
1790 */
1791 static inline int __init drbg_healthcheck_sanity(void)
1792 {
1793 int len = 0;
1794 #define OUTBUFLEN 16
1795 unsigned char buf[OUTBUFLEN];
1796 struct drbg_state *drbg = NULL;
1797 int ret = -EFAULT;
1798 int rc = -EFAULT;
1799 bool pr = false;
1800 int coreref = 0;
1801 struct drbg_string addtl;
1802 size_t max_addtllen, max_request_bytes;
1803
1804 /* only perform test in FIPS mode */
1805 if (!fips_enabled)
1806 return 0;
1807
1808 #ifdef CONFIG_CRYPTO_DRBG_CTR
1809 drbg_convert_tfm_core("drbg_nopr_ctr_aes128", &coreref, &pr);
1810 #elif defined CONFIG_CRYPTO_DRBG_HASH
1811 drbg_convert_tfm_core("drbg_nopr_sha256", &coreref, &pr);
1812 #else
1813 drbg_convert_tfm_core("drbg_nopr_hmac_sha256", &coreref, &pr);
1814 #endif
1815
1816 drbg = kzalloc(sizeof(struct drbg_state), GFP_KERNEL);
1817 if (!drbg)
1818 return -ENOMEM;
1819
1820 mutex_init(&drbg->drbg_mutex);
1821
1822 /*
1823 * if the following tests fail, it is likely that there is a buffer
1824 * overflow as buf is much smaller than the requested or provided
1825 * string lengths -- in case the error handling does not succeed
1826 * we may get an OOPS. And we want to get an OOPS as this is a
1827 * grave bug.
1828 */
1829
1830 /* get a valid instance of DRBG for following tests */
1831 ret = drbg_instantiate(drbg, NULL, coreref, pr);
1832 if (ret) {
1833 rc = ret;
1834 goto outbuf;
1835 }
1836 max_addtllen = drbg_max_addtl(drbg);
1837 max_request_bytes = drbg_max_request_bytes(drbg);
1838 drbg_string_fill(&addtl, buf, max_addtllen + 1);
1839 /* overflow addtllen with additonal info string */
1840 len = drbg_generate(drbg, buf, OUTBUFLEN, &addtl);
1841 BUG_ON(0 < len);
1842 /* overflow max_bits */
1843 len = drbg_generate(drbg, buf, (max_request_bytes + 1), NULL);
1844 BUG_ON(0 < len);
1845 drbg_uninstantiate(drbg);
1846
1847 /* overflow max addtllen with personalization string */
1848 ret = drbg_instantiate(drbg, &addtl, coreref, pr);
1849 BUG_ON(0 == ret);
1850 /* all tests passed */
1851 rc = 0;
1852
1853 pr_devel("DRBG: Sanity tests for failure code paths successfully "
1854 "completed\n");
1855
1856 drbg_uninstantiate(drbg);
1857 outbuf:
1858 kzfree(drbg);
1859 return rc;
1860 }
1861
1862 static struct rng_alg drbg_algs[22];
1863
1864 /*
1865 * Fill the array drbg_algs used to register the different DRBGs
1866 * with the kernel crypto API. To fill the array, the information
1867 * from drbg_cores[] is used.
1868 */
1869 static inline void __init drbg_fill_array(struct rng_alg *alg,
1870 const struct drbg_core *core, int pr)
1871 {
1872 int pos = 0;
1873 static int priority = 200;
1874
1875 memcpy(alg->base.cra_name, "stdrng", 6);
1876 if (pr) {
1877 memcpy(alg->base.cra_driver_name, "drbg_pr_", 8);
1878 pos = 8;
1879 } else {
1880 memcpy(alg->base.cra_driver_name, "drbg_nopr_", 10);
1881 pos = 10;
1882 }
1883 memcpy(alg->base.cra_driver_name + pos, core->cra_name,
1884 strlen(core->cra_name));
1885
1886 alg->base.cra_priority = priority;
1887 priority++;
1888 /*
1889 * If FIPS mode enabled, the selected DRBG shall have the
1890 * highest cra_priority over other stdrng instances to ensure
1891 * it is selected.
1892 */
1893 if (fips_enabled)
1894 alg->base.cra_priority += 200;
1895
1896 alg->base.cra_ctxsize = sizeof(struct drbg_state);
1897 alg->base.cra_module = THIS_MODULE;
1898 alg->base.cra_init = drbg_kcapi_init;
1899 alg->base.cra_exit = drbg_kcapi_cleanup;
1900 alg->generate = drbg_kcapi_random;
1901 alg->seed = drbg_kcapi_seed;
1902 alg->set_ent = drbg_kcapi_set_entropy;
1903 alg->seedsize = 0;
1904 }
1905
1906 static int __init drbg_init(void)
1907 {
1908 unsigned int i = 0; /* pointer to drbg_algs */
1909 unsigned int j = 0; /* pointer to drbg_cores */
1910 int ret = -EFAULT;
1911
1912 ret = drbg_healthcheck_sanity();
1913 if (ret)
1914 return ret;
1915
1916 if (ARRAY_SIZE(drbg_cores) * 2 > ARRAY_SIZE(drbg_algs)) {
1917 pr_info("DRBG: Cannot register all DRBG types"
1918 "(slots needed: %zu, slots available: %zu)\n",
1919 ARRAY_SIZE(drbg_cores) * 2, ARRAY_SIZE(drbg_algs));
1920 return ret;
1921 }
1922
1923 /*
1924 * each DRBG definition can be used with PR and without PR, thus
1925 * we instantiate each DRBG in drbg_cores[] twice.
1926 *
1927 * As the order of placing them into the drbg_algs array matters
1928 * (the later DRBGs receive a higher cra_priority) we register the
1929 * prediction resistance DRBGs first as the should not be too
1930 * interesting.
1931 */
1932 for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
1933 drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 1);
1934 for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
1935 drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 0);
1936 return crypto_register_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
1937 }
1938
1939 static void __exit drbg_exit(void)
1940 {
1941 crypto_unregister_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
1942 }
1943
1944 module_init(drbg_init);
1945 module_exit(drbg_exit);
1946 #ifndef CRYPTO_DRBG_HASH_STRING
1947 #define CRYPTO_DRBG_HASH_STRING ""
1948 #endif
1949 #ifndef CRYPTO_DRBG_HMAC_STRING
1950 #define CRYPTO_DRBG_HMAC_STRING ""
1951 #endif
1952 #ifndef CRYPTO_DRBG_CTR_STRING
1953 #define CRYPTO_DRBG_CTR_STRING ""
1954 #endif
1955 MODULE_LICENSE("GPL");
1956 MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
1957 MODULE_DESCRIPTION("NIST SP800-90A Deterministic Random Bit Generator (DRBG) "
1958 "using following cores: "
1959 CRYPTO_DRBG_HASH_STRING
1960 CRYPTO_DRBG_HMAC_STRING
1961 CRYPTO_DRBG_CTR_STRING);
1962 MODULE_ALIAS_CRYPTO("stdrng");
This page took 0.074329 seconds and 6 git commands to generate.