[ACPI] Lindent all ACPI files
[deliverable/linux.git] / drivers / acpi / osl.c
1 /*
2 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3 *
4 * Copyright (C) 2000 Andrew Henroid
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 *
8 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 *
24 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25 *
26 */
27
28 #include <linux/config.h>
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/mm.h>
33 #include <linux/pci.h>
34 #include <linux/smp_lock.h>
35 #include <linux/interrupt.h>
36 #include <linux/kmod.h>
37 #include <linux/delay.h>
38 #include <linux/workqueue.h>
39 #include <linux/nmi.h>
40 #include <acpi/acpi.h>
41 #include <asm/io.h>
42 #include <acpi/acpi_bus.h>
43 #include <acpi/processor.h>
44 #include <asm/uaccess.h>
45
46 #include <linux/efi.h>
47
48 #define _COMPONENT ACPI_OS_SERVICES
49 ACPI_MODULE_NAME("osl")
50 #define PREFIX "ACPI: "
51 struct acpi_os_dpc {
52 acpi_osd_exec_callback function;
53 void *context;
54 };
55
56 #ifdef CONFIG_ACPI_CUSTOM_DSDT
57 #include CONFIG_ACPI_CUSTOM_DSDT_FILE
58 #endif
59
60 #ifdef ENABLE_DEBUGGER
61 #include <linux/kdb.h>
62
63 /* stuff for debugger support */
64 int acpi_in_debugger;
65 EXPORT_SYMBOL(acpi_in_debugger);
66
67 extern char line_buf[80];
68 #endif /*ENABLE_DEBUGGER */
69
70 int acpi_specific_hotkey_enabled;
71 EXPORT_SYMBOL(acpi_specific_hotkey_enabled);
72
73 static unsigned int acpi_irq_irq;
74 static acpi_osd_handler acpi_irq_handler;
75 static void *acpi_irq_context;
76 static struct workqueue_struct *kacpid_wq;
77
78 acpi_status acpi_os_initialize(void)
79 {
80 return AE_OK;
81 }
82
83 acpi_status acpi_os_initialize1(void)
84 {
85 /*
86 * Initialize PCI configuration space access, as we'll need to access
87 * it while walking the namespace (bus 0 and root bridges w/ _BBNs).
88 */
89 #ifdef CONFIG_ACPI_PCI
90 if (!raw_pci_ops) {
91 printk(KERN_ERR PREFIX
92 "Access to PCI configuration space unavailable\n");
93 return AE_NULL_ENTRY;
94 }
95 #endif
96 kacpid_wq = create_singlethread_workqueue("kacpid");
97 BUG_ON(!kacpid_wq);
98
99 return AE_OK;
100 }
101
102 acpi_status acpi_os_terminate(void)
103 {
104 if (acpi_irq_handler) {
105 acpi_os_remove_interrupt_handler(acpi_irq_irq,
106 acpi_irq_handler);
107 }
108
109 destroy_workqueue(kacpid_wq);
110
111 return AE_OK;
112 }
113
114 void acpi_os_printf(const char *fmt, ...)
115 {
116 va_list args;
117 va_start(args, fmt);
118 acpi_os_vprintf(fmt, args);
119 va_end(args);
120 }
121
122 EXPORT_SYMBOL(acpi_os_printf);
123
124 void acpi_os_vprintf(const char *fmt, va_list args)
125 {
126 static char buffer[512];
127
128 vsprintf(buffer, fmt, args);
129
130 #ifdef ENABLE_DEBUGGER
131 if (acpi_in_debugger) {
132 kdb_printf("%s", buffer);
133 } else {
134 printk("%s", buffer);
135 }
136 #else
137 printk("%s", buffer);
138 #endif
139 }
140
141 extern int acpi_in_resume;
142 void *acpi_os_allocate(acpi_size size)
143 {
144 if (acpi_in_resume)
145 return kmalloc(size, GFP_ATOMIC);
146 else
147 return kmalloc(size, GFP_KERNEL);
148 }
149
150 void acpi_os_free(void *ptr)
151 {
152 kfree(ptr);
153 }
154
155 EXPORT_SYMBOL(acpi_os_free);
156
157 acpi_status acpi_os_get_root_pointer(u32 flags, struct acpi_pointer *addr)
158 {
159 if (efi_enabled) {
160 addr->pointer_type = ACPI_PHYSICAL_POINTER;
161 if (efi.acpi20)
162 addr->pointer.physical =
163 (acpi_physical_address) virt_to_phys(efi.acpi20);
164 else if (efi.acpi)
165 addr->pointer.physical =
166 (acpi_physical_address) virt_to_phys(efi.acpi);
167 else {
168 printk(KERN_ERR PREFIX
169 "System description tables not found\n");
170 return AE_NOT_FOUND;
171 }
172 } else {
173 if (ACPI_FAILURE(acpi_find_root_pointer(flags, addr))) {
174 printk(KERN_ERR PREFIX
175 "System description tables not found\n");
176 return AE_NOT_FOUND;
177 }
178 }
179
180 return AE_OK;
181 }
182
183 acpi_status
184 acpi_os_map_memory(acpi_physical_address phys, acpi_size size,
185 void __iomem ** virt)
186 {
187 if (efi_enabled) {
188 if (EFI_MEMORY_WB & efi_mem_attributes(phys)) {
189 *virt = (void __iomem *)phys_to_virt(phys);
190 } else {
191 *virt = ioremap(phys, size);
192 }
193 } else {
194 if (phys > ULONG_MAX) {
195 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
196 return AE_BAD_PARAMETER;
197 }
198 /*
199 * ioremap checks to ensure this is in reserved space
200 */
201 *virt = ioremap((unsigned long)phys, size);
202 }
203
204 if (!*virt)
205 return AE_NO_MEMORY;
206
207 return AE_OK;
208 }
209
210 void acpi_os_unmap_memory(void __iomem * virt, acpi_size size)
211 {
212 iounmap(virt);
213 }
214
215 #ifdef ACPI_FUTURE_USAGE
216 acpi_status
217 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
218 {
219 if (!phys || !virt)
220 return AE_BAD_PARAMETER;
221
222 *phys = virt_to_phys(virt);
223
224 return AE_OK;
225 }
226 #endif
227
228 #define ACPI_MAX_OVERRIDE_LEN 100
229
230 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
231
232 acpi_status
233 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
234 acpi_string * new_val)
235 {
236 if (!init_val || !new_val)
237 return AE_BAD_PARAMETER;
238
239 *new_val = NULL;
240 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
241 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
242 acpi_os_name);
243 *new_val = acpi_os_name;
244 }
245
246 return AE_OK;
247 }
248
249 acpi_status
250 acpi_os_table_override(struct acpi_table_header * existing_table,
251 struct acpi_table_header ** new_table)
252 {
253 if (!existing_table || !new_table)
254 return AE_BAD_PARAMETER;
255
256 #ifdef CONFIG_ACPI_CUSTOM_DSDT
257 if (strncmp(existing_table->signature, "DSDT", 4) == 0)
258 *new_table = (struct acpi_table_header *)AmlCode;
259 else
260 *new_table = NULL;
261 #else
262 *new_table = NULL;
263 #endif
264 return AE_OK;
265 }
266
267 static irqreturn_t acpi_irq(int irq, void *dev_id, struct pt_regs *regs)
268 {
269 return (*acpi_irq_handler) (acpi_irq_context) ? IRQ_HANDLED : IRQ_NONE;
270 }
271
272 acpi_status
273 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
274 void *context)
275 {
276 unsigned int irq;
277
278 /*
279 * Ignore the GSI from the core, and use the value in our copy of the
280 * FADT. It may not be the same if an interrupt source override exists
281 * for the SCI.
282 */
283 gsi = acpi_fadt.sci_int;
284 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
285 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
286 gsi);
287 return AE_OK;
288 }
289
290 acpi_irq_handler = handler;
291 acpi_irq_context = context;
292 if (request_irq(irq, acpi_irq, SA_SHIRQ, "acpi", acpi_irq)) {
293 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
294 return AE_NOT_ACQUIRED;
295 }
296 acpi_irq_irq = irq;
297
298 return AE_OK;
299 }
300
301 acpi_status acpi_os_remove_interrupt_handler(u32 irq, acpi_osd_handler handler)
302 {
303 if (irq) {
304 free_irq(irq, acpi_irq);
305 acpi_irq_handler = NULL;
306 acpi_irq_irq = 0;
307 }
308
309 return AE_OK;
310 }
311
312 /*
313 * Running in interpreter thread context, safe to sleep
314 */
315
316 void acpi_os_sleep(acpi_integer ms)
317 {
318 current->state = TASK_INTERRUPTIBLE;
319 schedule_timeout(((signed long)ms * HZ) / 1000);
320 }
321
322 EXPORT_SYMBOL(acpi_os_sleep);
323
324 void acpi_os_stall(u32 us)
325 {
326 while (us) {
327 u32 delay = 1000;
328
329 if (delay > us)
330 delay = us;
331 udelay(delay);
332 touch_nmi_watchdog();
333 us -= delay;
334 }
335 }
336
337 EXPORT_SYMBOL(acpi_os_stall);
338
339 /*
340 * Support ACPI 3.0 AML Timer operand
341 * Returns 64-bit free-running, monotonically increasing timer
342 * with 100ns granularity
343 */
344 u64 acpi_os_get_timer(void)
345 {
346 static u64 t;
347
348 #ifdef CONFIG_HPET
349 /* TBD: use HPET if available */
350 #endif
351
352 #ifdef CONFIG_X86_PM_TIMER
353 /* TBD: default to PM timer if HPET was not available */
354 #endif
355 if (!t)
356 printk(KERN_ERR PREFIX "acpi_os_get_timer() TBD\n");
357
358 return ++t;
359 }
360
361 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
362 {
363 u32 dummy;
364
365 if (!value)
366 value = &dummy;
367
368 switch (width) {
369 case 8:
370 *(u8 *) value = inb(port);
371 break;
372 case 16:
373 *(u16 *) value = inw(port);
374 break;
375 case 32:
376 *(u32 *) value = inl(port);
377 break;
378 default:
379 BUG();
380 }
381
382 return AE_OK;
383 }
384
385 EXPORT_SYMBOL(acpi_os_read_port);
386
387 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
388 {
389 switch (width) {
390 case 8:
391 outb(value, port);
392 break;
393 case 16:
394 outw(value, port);
395 break;
396 case 32:
397 outl(value, port);
398 break;
399 default:
400 BUG();
401 }
402
403 return AE_OK;
404 }
405
406 EXPORT_SYMBOL(acpi_os_write_port);
407
408 acpi_status
409 acpi_os_read_memory(acpi_physical_address phys_addr, u32 * value, u32 width)
410 {
411 u32 dummy;
412 void __iomem *virt_addr;
413 int iomem = 0;
414
415 if (efi_enabled) {
416 if (EFI_MEMORY_WB & efi_mem_attributes(phys_addr)) {
417 /* HACK ALERT! We can use readb/w/l on real memory too.. */
418 virt_addr = (void __iomem *)phys_to_virt(phys_addr);
419 } else {
420 iomem = 1;
421 virt_addr = ioremap(phys_addr, width);
422 }
423 } else
424 virt_addr = (void __iomem *)phys_to_virt(phys_addr);
425 if (!value)
426 value = &dummy;
427
428 switch (width) {
429 case 8:
430 *(u8 *) value = readb(virt_addr);
431 break;
432 case 16:
433 *(u16 *) value = readw(virt_addr);
434 break;
435 case 32:
436 *(u32 *) value = readl(virt_addr);
437 break;
438 default:
439 BUG();
440 }
441
442 if (efi_enabled) {
443 if (iomem)
444 iounmap(virt_addr);
445 }
446
447 return AE_OK;
448 }
449
450 acpi_status
451 acpi_os_write_memory(acpi_physical_address phys_addr, u32 value, u32 width)
452 {
453 void __iomem *virt_addr;
454 int iomem = 0;
455
456 if (efi_enabled) {
457 if (EFI_MEMORY_WB & efi_mem_attributes(phys_addr)) {
458 /* HACK ALERT! We can use writeb/w/l on real memory too */
459 virt_addr = (void __iomem *)phys_to_virt(phys_addr);
460 } else {
461 iomem = 1;
462 virt_addr = ioremap(phys_addr, width);
463 }
464 } else
465 virt_addr = (void __iomem *)phys_to_virt(phys_addr);
466
467 switch (width) {
468 case 8:
469 writeb(value, virt_addr);
470 break;
471 case 16:
472 writew(value, virt_addr);
473 break;
474 case 32:
475 writel(value, virt_addr);
476 break;
477 default:
478 BUG();
479 }
480
481 if (iomem)
482 iounmap(virt_addr);
483
484 return AE_OK;
485 }
486
487 #ifdef CONFIG_ACPI_PCI
488
489 acpi_status
490 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
491 void *value, u32 width)
492 {
493 int result, size;
494
495 if (!value)
496 return AE_BAD_PARAMETER;
497
498 switch (width) {
499 case 8:
500 size = 1;
501 break;
502 case 16:
503 size = 2;
504 break;
505 case 32:
506 size = 4;
507 break;
508 default:
509 return AE_ERROR;
510 }
511
512 BUG_ON(!raw_pci_ops);
513
514 result = raw_pci_ops->read(pci_id->segment, pci_id->bus,
515 PCI_DEVFN(pci_id->device, pci_id->function),
516 reg, size, value);
517
518 return (result ? AE_ERROR : AE_OK);
519 }
520
521 EXPORT_SYMBOL(acpi_os_read_pci_configuration);
522
523 acpi_status
524 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
525 acpi_integer value, u32 width)
526 {
527 int result, size;
528
529 switch (width) {
530 case 8:
531 size = 1;
532 break;
533 case 16:
534 size = 2;
535 break;
536 case 32:
537 size = 4;
538 break;
539 default:
540 return AE_ERROR;
541 }
542
543 BUG_ON(!raw_pci_ops);
544
545 result = raw_pci_ops->write(pci_id->segment, pci_id->bus,
546 PCI_DEVFN(pci_id->device, pci_id->function),
547 reg, size, value);
548
549 return (result ? AE_ERROR : AE_OK);
550 }
551
552 /* TODO: Change code to take advantage of driver model more */
553 static void acpi_os_derive_pci_id_2(acpi_handle rhandle, /* upper bound */
554 acpi_handle chandle, /* current node */
555 struct acpi_pci_id **id,
556 int *is_bridge, u8 * bus_number)
557 {
558 acpi_handle handle;
559 struct acpi_pci_id *pci_id = *id;
560 acpi_status status;
561 unsigned long temp;
562 acpi_object_type type;
563 u8 tu8;
564
565 acpi_get_parent(chandle, &handle);
566 if (handle != rhandle) {
567 acpi_os_derive_pci_id_2(rhandle, handle, &pci_id, is_bridge,
568 bus_number);
569
570 status = acpi_get_type(handle, &type);
571 if ((ACPI_FAILURE(status)) || (type != ACPI_TYPE_DEVICE))
572 return;
573
574 status =
575 acpi_evaluate_integer(handle, METHOD_NAME__ADR, NULL,
576 &temp);
577 if (ACPI_SUCCESS(status)) {
578 pci_id->device = ACPI_HIWORD(ACPI_LODWORD(temp));
579 pci_id->function = ACPI_LOWORD(ACPI_LODWORD(temp));
580
581 if (*is_bridge)
582 pci_id->bus = *bus_number;
583
584 /* any nicer way to get bus number of bridge ? */
585 status =
586 acpi_os_read_pci_configuration(pci_id, 0x0e, &tu8,
587 8);
588 if (ACPI_SUCCESS(status)
589 && ((tu8 & 0x7f) == 1 || (tu8 & 0x7f) == 2)) {
590 status =
591 acpi_os_read_pci_configuration(pci_id, 0x18,
592 &tu8, 8);
593 if (!ACPI_SUCCESS(status)) {
594 /* Certainly broken... FIX ME */
595 return;
596 }
597 *is_bridge = 1;
598 pci_id->bus = tu8;
599 status =
600 acpi_os_read_pci_configuration(pci_id, 0x19,
601 &tu8, 8);
602 if (ACPI_SUCCESS(status)) {
603 *bus_number = tu8;
604 }
605 } else
606 *is_bridge = 0;
607 }
608 }
609 }
610
611 void acpi_os_derive_pci_id(acpi_handle rhandle, /* upper bound */
612 acpi_handle chandle, /* current node */
613 struct acpi_pci_id **id)
614 {
615 int is_bridge = 1;
616 u8 bus_number = (*id)->bus;
617
618 acpi_os_derive_pci_id_2(rhandle, chandle, id, &is_bridge, &bus_number);
619 }
620
621 #else /*!CONFIG_ACPI_PCI */
622
623 acpi_status
624 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id,
625 u32 reg, acpi_integer value, u32 width)
626 {
627 return AE_SUPPORT;
628 }
629
630 acpi_status
631 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id,
632 u32 reg, void *value, u32 width)
633 {
634 return AE_SUPPORT;
635 }
636
637 void acpi_os_derive_pci_id(acpi_handle rhandle, /* upper bound */
638 acpi_handle chandle, /* current node */
639 struct acpi_pci_id **id)
640 {
641 }
642
643 #endif /*CONFIG_ACPI_PCI */
644
645 static void acpi_os_execute_deferred(void *context)
646 {
647 struct acpi_os_dpc *dpc = NULL;
648
649 ACPI_FUNCTION_TRACE("os_execute_deferred");
650
651 dpc = (struct acpi_os_dpc *)context;
652 if (!dpc) {
653 ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid (NULL) context.\n"));
654 return_VOID;
655 }
656
657 dpc->function(dpc->context);
658
659 kfree(dpc);
660
661 return_VOID;
662 }
663
664 acpi_status
665 acpi_os_queue_for_execution(u32 priority,
666 acpi_osd_exec_callback function, void *context)
667 {
668 acpi_status status = AE_OK;
669 struct acpi_os_dpc *dpc;
670 struct work_struct *task;
671
672 ACPI_FUNCTION_TRACE("os_queue_for_execution");
673
674 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
675 "Scheduling function [%p(%p)] for deferred execution.\n",
676 function, context));
677
678 if (!function)
679 return_ACPI_STATUS(AE_BAD_PARAMETER);
680
681 /*
682 * Allocate/initialize DPC structure. Note that this memory will be
683 * freed by the callee. The kernel handles the tq_struct list in a
684 * way that allows us to also free its memory inside the callee.
685 * Because we may want to schedule several tasks with different
686 * parameters we can't use the approach some kernel code uses of
687 * having a static tq_struct.
688 * We can save time and code by allocating the DPC and tq_structs
689 * from the same memory.
690 */
691
692 dpc =
693 kmalloc(sizeof(struct acpi_os_dpc) + sizeof(struct work_struct),
694 GFP_ATOMIC);
695 if (!dpc)
696 return_ACPI_STATUS(AE_NO_MEMORY);
697
698 dpc->function = function;
699 dpc->context = context;
700
701 task = (void *)(dpc + 1);
702 INIT_WORK(task, acpi_os_execute_deferred, (void *)dpc);
703
704 if (!queue_work(kacpid_wq, task)) {
705 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
706 "Call to queue_work() failed.\n"));
707 kfree(dpc);
708 status = AE_ERROR;
709 }
710
711 return_ACPI_STATUS(status);
712 }
713
714 EXPORT_SYMBOL(acpi_os_queue_for_execution);
715
716 void acpi_os_wait_events_complete(void *context)
717 {
718 flush_workqueue(kacpid_wq);
719 }
720
721 EXPORT_SYMBOL(acpi_os_wait_events_complete);
722
723 /*
724 * Allocate the memory for a spinlock and initialize it.
725 */
726 acpi_status acpi_os_create_lock(acpi_handle * out_handle)
727 {
728 spinlock_t *lock_ptr;
729
730 ACPI_FUNCTION_TRACE("os_create_lock");
731
732 lock_ptr = acpi_os_allocate(sizeof(spinlock_t));
733
734 spin_lock_init(lock_ptr);
735
736 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating spinlock[%p].\n", lock_ptr));
737
738 *out_handle = lock_ptr;
739
740 return_ACPI_STATUS(AE_OK);
741 }
742
743 /*
744 * Deallocate the memory for a spinlock.
745 */
746 void acpi_os_delete_lock(acpi_handle handle)
747 {
748 ACPI_FUNCTION_TRACE("os_create_lock");
749
750 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting spinlock[%p].\n", handle));
751
752 acpi_os_free(handle);
753
754 return_VOID;
755 }
756
757 acpi_status
758 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
759 {
760 struct semaphore *sem = NULL;
761
762 ACPI_FUNCTION_TRACE("os_create_semaphore");
763
764 sem = acpi_os_allocate(sizeof(struct semaphore));
765 if (!sem)
766 return_ACPI_STATUS(AE_NO_MEMORY);
767 memset(sem, 0, sizeof(struct semaphore));
768
769 sema_init(sem, initial_units);
770
771 *handle = (acpi_handle *) sem;
772
773 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
774 *handle, initial_units));
775
776 return_ACPI_STATUS(AE_OK);
777 }
778
779 EXPORT_SYMBOL(acpi_os_create_semaphore);
780
781 /*
782 * TODO: A better way to delete semaphores? Linux doesn't have a
783 * 'delete_semaphore()' function -- may result in an invalid
784 * pointer dereference for non-synchronized consumers. Should
785 * we at least check for blocked threads and signal/cancel them?
786 */
787
788 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
789 {
790 struct semaphore *sem = (struct semaphore *)handle;
791
792 ACPI_FUNCTION_TRACE("os_delete_semaphore");
793
794 if (!sem)
795 return_ACPI_STATUS(AE_BAD_PARAMETER);
796
797 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
798
799 acpi_os_free(sem);
800 sem = NULL;
801
802 return_ACPI_STATUS(AE_OK);
803 }
804
805 EXPORT_SYMBOL(acpi_os_delete_semaphore);
806
807 /*
808 * TODO: The kernel doesn't have a 'down_timeout' function -- had to
809 * improvise. The process is to sleep for one scheduler quantum
810 * until the semaphore becomes available. Downside is that this
811 * may result in starvation for timeout-based waits when there's
812 * lots of semaphore activity.
813 *
814 * TODO: Support for units > 1?
815 */
816 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
817 {
818 acpi_status status = AE_OK;
819 struct semaphore *sem = (struct semaphore *)handle;
820 int ret = 0;
821
822 ACPI_FUNCTION_TRACE("os_wait_semaphore");
823
824 if (!sem || (units < 1))
825 return_ACPI_STATUS(AE_BAD_PARAMETER);
826
827 if (units > 1)
828 return_ACPI_STATUS(AE_SUPPORT);
829
830 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
831 handle, units, timeout));
832
833 if (in_atomic())
834 timeout = 0;
835
836 switch (timeout) {
837 /*
838 * No Wait:
839 * --------
840 * A zero timeout value indicates that we shouldn't wait - just
841 * acquire the semaphore if available otherwise return AE_TIME
842 * (a.k.a. 'would block').
843 */
844 case 0:
845 if (down_trylock(sem))
846 status = AE_TIME;
847 break;
848
849 /*
850 * Wait Indefinitely:
851 * ------------------
852 */
853 case ACPI_WAIT_FOREVER:
854 down(sem);
855 break;
856
857 /*
858 * Wait w/ Timeout:
859 * ----------------
860 */
861 default:
862 // TODO: A better timeout algorithm?
863 {
864 int i = 0;
865 static const int quantum_ms = 1000 / HZ;
866
867 ret = down_trylock(sem);
868 for (i = timeout; (i > 0 && ret < 0); i -= quantum_ms) {
869 current->state = TASK_INTERRUPTIBLE;
870 schedule_timeout(1);
871 ret = down_trylock(sem);
872 }
873
874 if (ret != 0)
875 status = AE_TIME;
876 }
877 break;
878 }
879
880 if (ACPI_FAILURE(status)) {
881 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
882 "Failed to acquire semaphore[%p|%d|%d], %s\n",
883 handle, units, timeout,
884 acpi_format_exception(status)));
885 } else {
886 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
887 "Acquired semaphore[%p|%d|%d]\n", handle,
888 units, timeout));
889 }
890
891 return_ACPI_STATUS(status);
892 }
893
894 EXPORT_SYMBOL(acpi_os_wait_semaphore);
895
896 /*
897 * TODO: Support for units > 1?
898 */
899 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
900 {
901 struct semaphore *sem = (struct semaphore *)handle;
902
903 ACPI_FUNCTION_TRACE("os_signal_semaphore");
904
905 if (!sem || (units < 1))
906 return_ACPI_STATUS(AE_BAD_PARAMETER);
907
908 if (units > 1)
909 return_ACPI_STATUS(AE_SUPPORT);
910
911 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
912 units));
913
914 up(sem);
915
916 return_ACPI_STATUS(AE_OK);
917 }
918
919 EXPORT_SYMBOL(acpi_os_signal_semaphore);
920
921 #ifdef ACPI_FUTURE_USAGE
922 u32 acpi_os_get_line(char *buffer)
923 {
924
925 #ifdef ENABLE_DEBUGGER
926 if (acpi_in_debugger) {
927 u32 chars;
928
929 kdb_read(buffer, sizeof(line_buf));
930
931 /* remove the CR kdb includes */
932 chars = strlen(buffer) - 1;
933 buffer[chars] = '\0';
934 }
935 #endif
936
937 return 0;
938 }
939 #endif /* ACPI_FUTURE_USAGE */
940
941 /* Assumes no unreadable holes inbetween */
942 u8 acpi_os_readable(void *ptr, acpi_size len)
943 {
944 #if defined(__i386__) || defined(__x86_64__)
945 char tmp;
946 return !__get_user(tmp, (char __user *)ptr)
947 && !__get_user(tmp, (char __user *)ptr + len - 1);
948 #endif
949 return 1;
950 }
951
952 #ifdef ACPI_FUTURE_USAGE
953 u8 acpi_os_writable(void *ptr, acpi_size len)
954 {
955 /* could do dummy write (racy) or a kernel page table lookup.
956 The later may be difficult at early boot when kmap doesn't work yet. */
957 return 1;
958 }
959 #endif
960
961 u32 acpi_os_get_thread_id(void)
962 {
963 if (!in_atomic())
964 return current->pid;
965
966 return 0;
967 }
968
969 acpi_status acpi_os_signal(u32 function, void *info)
970 {
971 switch (function) {
972 case ACPI_SIGNAL_FATAL:
973 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
974 break;
975 case ACPI_SIGNAL_BREAKPOINT:
976 /*
977 * AML Breakpoint
978 * ACPI spec. says to treat it as a NOP unless
979 * you are debugging. So if/when we integrate
980 * AML debugger into the kernel debugger its
981 * hook will go here. But until then it is
982 * not useful to print anything on breakpoints.
983 */
984 break;
985 default:
986 break;
987 }
988
989 return AE_OK;
990 }
991
992 EXPORT_SYMBOL(acpi_os_signal);
993
994 static int __init acpi_os_name_setup(char *str)
995 {
996 char *p = acpi_os_name;
997 int count = ACPI_MAX_OVERRIDE_LEN - 1;
998
999 if (!str || !*str)
1000 return 0;
1001
1002 for (; count-- && str && *str; str++) {
1003 if (isalnum(*str) || *str == ' ' || *str == ':')
1004 *p++ = *str;
1005 else if (*str == '\'' || *str == '"')
1006 continue;
1007 else
1008 break;
1009 }
1010 *p = 0;
1011
1012 return 1;
1013
1014 }
1015
1016 __setup("acpi_os_name=", acpi_os_name_setup);
1017
1018 /*
1019 * _OSI control
1020 * empty string disables _OSI
1021 * TBD additional string adds to _OSI
1022 */
1023 static int __init acpi_osi_setup(char *str)
1024 {
1025 if (str == NULL || *str == '\0') {
1026 printk(KERN_INFO PREFIX "_OSI method disabled\n");
1027 acpi_gbl_create_osi_method = FALSE;
1028 } else {
1029 /* TBD */
1030 printk(KERN_ERR PREFIX "_OSI additional string ignored -- %s\n",
1031 str);
1032 }
1033
1034 return 1;
1035 }
1036
1037 __setup("acpi_osi=", acpi_osi_setup);
1038
1039 /* enable serialization to combat AE_ALREADY_EXISTS errors */
1040 static int __init acpi_serialize_setup(char *str)
1041 {
1042 printk(KERN_INFO PREFIX "serialize enabled\n");
1043
1044 acpi_gbl_all_methods_serialized = TRUE;
1045
1046 return 1;
1047 }
1048
1049 __setup("acpi_serialize", acpi_serialize_setup);
1050
1051 /*
1052 * Wake and Run-Time GPES are expected to be separate.
1053 * We disable wake-GPEs at run-time to prevent spurious
1054 * interrupts.
1055 *
1056 * However, if a system exists that shares Wake and
1057 * Run-time events on the same GPE this flag is available
1058 * to tell Linux to keep the wake-time GPEs enabled at run-time.
1059 */
1060 static int __init acpi_wake_gpes_always_on_setup(char *str)
1061 {
1062 printk(KERN_INFO PREFIX "wake GPEs not disabled\n");
1063
1064 acpi_gbl_leave_wake_gpes_disabled = FALSE;
1065
1066 return 1;
1067 }
1068
1069 __setup("acpi_wake_gpes_always_on", acpi_wake_gpes_always_on_setup);
1070
1071 int __init acpi_hotkey_setup(char *str)
1072 {
1073 acpi_specific_hotkey_enabled = TRUE;
1074 return 1;
1075 }
1076
1077 __setup("acpi_specific_hotkey", acpi_hotkey_setup);
1078
1079 /*
1080 * max_cstate is defined in the base kernel so modules can
1081 * change it w/o depending on the state of the processor module.
1082 */
1083 unsigned int max_cstate = ACPI_PROCESSOR_MAX_POWER;
1084
1085 EXPORT_SYMBOL(max_cstate);
1086
1087 /*
1088 * Acquire a spinlock.
1089 *
1090 * handle is a pointer to the spinlock_t.
1091 * flags is *not* the result of save_flags - it is an ACPI-specific flag variable
1092 * that indicates whether we are at interrupt level.
1093 */
1094
1095 unsigned long acpi_os_acquire_lock(acpi_handle handle)
1096 {
1097 unsigned long flags;
1098 spin_lock_irqsave((spinlock_t *) handle, flags);
1099 return flags;
1100 }
1101
1102 /*
1103 * Release a spinlock. See above.
1104 */
1105
1106 void acpi_os_release_lock(acpi_handle handle, unsigned long flags)
1107 {
1108 spin_unlock_irqrestore((spinlock_t *) handle, flags);
1109 }
1110
1111 #ifndef ACPI_USE_LOCAL_CACHE
1112
1113 /*******************************************************************************
1114 *
1115 * FUNCTION: acpi_os_create_cache
1116 *
1117 * PARAMETERS: CacheName - Ascii name for the cache
1118 * ObjectSize - Size of each cached object
1119 * MaxDepth - Maximum depth of the cache (in objects)
1120 * ReturnCache - Where the new cache object is returned
1121 *
1122 * RETURN: Status
1123 *
1124 * DESCRIPTION: Create a cache object
1125 *
1126 ******************************************************************************/
1127
1128 acpi_status
1129 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1130 {
1131 *cache = kmem_cache_create(name, size, 0, 0, NULL, NULL);
1132 return AE_OK;
1133 }
1134
1135 /*******************************************************************************
1136 *
1137 * FUNCTION: acpi_os_purge_cache
1138 *
1139 * PARAMETERS: Cache - Handle to cache object
1140 *
1141 * RETURN: Status
1142 *
1143 * DESCRIPTION: Free all objects within the requested cache.
1144 *
1145 ******************************************************************************/
1146
1147 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1148 {
1149 (void)kmem_cache_shrink(cache);
1150 return (AE_OK);
1151 }
1152
1153 /*******************************************************************************
1154 *
1155 * FUNCTION: acpi_os_delete_cache
1156 *
1157 * PARAMETERS: Cache - Handle to cache object
1158 *
1159 * RETURN: Status
1160 *
1161 * DESCRIPTION: Free all objects within the requested cache and delete the
1162 * cache object.
1163 *
1164 ******************************************************************************/
1165
1166 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1167 {
1168 (void)kmem_cache_destroy(cache);
1169 return (AE_OK);
1170 }
1171
1172 /*******************************************************************************
1173 *
1174 * FUNCTION: acpi_os_release_object
1175 *
1176 * PARAMETERS: Cache - Handle to cache object
1177 * Object - The object to be released
1178 *
1179 * RETURN: None
1180 *
1181 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1182 * the object is deleted.
1183 *
1184 ******************************************************************************/
1185
1186 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1187 {
1188 kmem_cache_free(cache, object);
1189 return (AE_OK);
1190 }
1191
1192 /*******************************************************************************
1193 *
1194 * FUNCTION: acpi_os_acquire_object
1195 *
1196 * PARAMETERS: Cache - Handle to cache object
1197 * ReturnObject - Where the object is returned
1198 *
1199 * RETURN: Status
1200 *
1201 * DESCRIPTION: Get an object from the specified cache. If cache is empty,
1202 * the object is allocated.
1203 *
1204 ******************************************************************************/
1205
1206 void *acpi_os_acquire_object(acpi_cache_t * cache)
1207 {
1208 void *object = kmem_cache_alloc(cache, GFP_KERNEL);
1209 WARN_ON(!object);
1210 return object;
1211 }
1212
1213 #endif
This page took 0.088834 seconds and 5 git commands to generate.