Pull new-efi-memmap into release branch
[deliverable/linux.git] / drivers / acpi / osl.c
1 /*
2 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3 *
4 * Copyright (C) 2000 Andrew Henroid
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 *
8 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 *
24 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25 *
26 */
27
28 #include <linux/config.h>
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/mm.h>
33 #include <linux/pci.h>
34 #include <linux/smp_lock.h>
35 #include <linux/interrupt.h>
36 #include <linux/kmod.h>
37 #include <linux/delay.h>
38 #include <linux/workqueue.h>
39 #include <linux/nmi.h>
40 #include <acpi/acpi.h>
41 #include <asm/io.h>
42 #include <acpi/acpi_bus.h>
43 #include <acpi/processor.h>
44 #include <asm/uaccess.h>
45
46 #include <linux/efi.h>
47
48 #define _COMPONENT ACPI_OS_SERVICES
49 ACPI_MODULE_NAME("osl")
50 #define PREFIX "ACPI: "
51 struct acpi_os_dpc {
52 acpi_osd_exec_callback function;
53 void *context;
54 };
55
56 #ifdef CONFIG_ACPI_CUSTOM_DSDT
57 #include CONFIG_ACPI_CUSTOM_DSDT_FILE
58 #endif
59
60 #ifdef ENABLE_DEBUGGER
61 #include <linux/kdb.h>
62
63 /* stuff for debugger support */
64 int acpi_in_debugger;
65 EXPORT_SYMBOL(acpi_in_debugger);
66
67 extern char line_buf[80];
68 #endif /*ENABLE_DEBUGGER */
69
70 int acpi_specific_hotkey_enabled = TRUE;
71 EXPORT_SYMBOL(acpi_specific_hotkey_enabled);
72
73 static unsigned int acpi_irq_irq;
74 static acpi_osd_handler acpi_irq_handler;
75 static void *acpi_irq_context;
76 static struct workqueue_struct *kacpid_wq;
77
78 acpi_status acpi_os_initialize(void)
79 {
80 return AE_OK;
81 }
82
83 acpi_status acpi_os_initialize1(void)
84 {
85 /*
86 * Initialize PCI configuration space access, as we'll need to access
87 * it while walking the namespace (bus 0 and root bridges w/ _BBNs).
88 */
89 if (!raw_pci_ops) {
90 printk(KERN_ERR PREFIX
91 "Access to PCI configuration space unavailable\n");
92 return AE_NULL_ENTRY;
93 }
94 kacpid_wq = create_singlethread_workqueue("kacpid");
95 BUG_ON(!kacpid_wq);
96
97 return AE_OK;
98 }
99
100 acpi_status acpi_os_terminate(void)
101 {
102 if (acpi_irq_handler) {
103 acpi_os_remove_interrupt_handler(acpi_irq_irq,
104 acpi_irq_handler);
105 }
106
107 destroy_workqueue(kacpid_wq);
108
109 return AE_OK;
110 }
111
112 void acpi_os_printf(const char *fmt, ...)
113 {
114 va_list args;
115 va_start(args, fmt);
116 acpi_os_vprintf(fmt, args);
117 va_end(args);
118 }
119
120 EXPORT_SYMBOL(acpi_os_printf);
121
122 void acpi_os_vprintf(const char *fmt, va_list args)
123 {
124 static char buffer[512];
125
126 vsprintf(buffer, fmt, args);
127
128 #ifdef ENABLE_DEBUGGER
129 if (acpi_in_debugger) {
130 kdb_printf("%s", buffer);
131 } else {
132 printk("%s", buffer);
133 }
134 #else
135 printk("%s", buffer);
136 #endif
137 }
138
139 extern int acpi_in_resume;
140 void *acpi_os_allocate(acpi_size size)
141 {
142 if (acpi_in_resume)
143 return kmalloc(size, GFP_ATOMIC);
144 else
145 return kmalloc(size, GFP_KERNEL);
146 }
147
148 void acpi_os_free(void *ptr)
149 {
150 kfree(ptr);
151 }
152
153 EXPORT_SYMBOL(acpi_os_free);
154
155 acpi_status acpi_os_get_root_pointer(u32 flags, struct acpi_pointer *addr)
156 {
157 if (efi_enabled) {
158 addr->pointer_type = ACPI_PHYSICAL_POINTER;
159 if (efi.acpi20)
160 addr->pointer.physical =
161 (acpi_physical_address) virt_to_phys(efi.acpi20);
162 else if (efi.acpi)
163 addr->pointer.physical =
164 (acpi_physical_address) virt_to_phys(efi.acpi);
165 else {
166 printk(KERN_ERR PREFIX
167 "System description tables not found\n");
168 return AE_NOT_FOUND;
169 }
170 } else {
171 if (ACPI_FAILURE(acpi_find_root_pointer(flags, addr))) {
172 printk(KERN_ERR PREFIX
173 "System description tables not found\n");
174 return AE_NOT_FOUND;
175 }
176 }
177
178 return AE_OK;
179 }
180
181 acpi_status
182 acpi_os_map_memory(acpi_physical_address phys, acpi_size size,
183 void __iomem ** virt)
184 {
185 if (efi_enabled) {
186 if (EFI_MEMORY_WB & efi_mem_attributes(phys)) {
187 *virt = (void __iomem *)phys_to_virt(phys);
188 } else {
189 *virt = ioremap(phys, size);
190 }
191 } else {
192 if (phys > ULONG_MAX) {
193 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
194 return AE_BAD_PARAMETER;
195 }
196 /*
197 * ioremap checks to ensure this is in reserved space
198 */
199 *virt = ioremap((unsigned long)phys, size);
200 }
201
202 if (!*virt)
203 return AE_NO_MEMORY;
204
205 return AE_OK;
206 }
207
208 void acpi_os_unmap_memory(void __iomem * virt, acpi_size size)
209 {
210 iounmap(virt);
211 }
212
213 #ifdef ACPI_FUTURE_USAGE
214 acpi_status
215 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
216 {
217 if (!phys || !virt)
218 return AE_BAD_PARAMETER;
219
220 *phys = virt_to_phys(virt);
221
222 return AE_OK;
223 }
224 #endif
225
226 #define ACPI_MAX_OVERRIDE_LEN 100
227
228 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
229
230 acpi_status
231 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
232 acpi_string * new_val)
233 {
234 if (!init_val || !new_val)
235 return AE_BAD_PARAMETER;
236
237 *new_val = NULL;
238 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
239 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
240 acpi_os_name);
241 *new_val = acpi_os_name;
242 }
243
244 return AE_OK;
245 }
246
247 acpi_status
248 acpi_os_table_override(struct acpi_table_header * existing_table,
249 struct acpi_table_header ** new_table)
250 {
251 if (!existing_table || !new_table)
252 return AE_BAD_PARAMETER;
253
254 #ifdef CONFIG_ACPI_CUSTOM_DSDT
255 if (strncmp(existing_table->signature, "DSDT", 4) == 0)
256 *new_table = (struct acpi_table_header *)AmlCode;
257 else
258 *new_table = NULL;
259 #else
260 *new_table = NULL;
261 #endif
262 return AE_OK;
263 }
264
265 static irqreturn_t acpi_irq(int irq, void *dev_id, struct pt_regs *regs)
266 {
267 return (*acpi_irq_handler) (acpi_irq_context) ? IRQ_HANDLED : IRQ_NONE;
268 }
269
270 acpi_status
271 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
272 void *context)
273 {
274 unsigned int irq;
275
276 /*
277 * Ignore the GSI from the core, and use the value in our copy of the
278 * FADT. It may not be the same if an interrupt source override exists
279 * for the SCI.
280 */
281 gsi = acpi_fadt.sci_int;
282 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
283 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
284 gsi);
285 return AE_OK;
286 }
287
288 acpi_irq_handler = handler;
289 acpi_irq_context = context;
290 if (request_irq(irq, acpi_irq, SA_SHIRQ, "acpi", acpi_irq)) {
291 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
292 return AE_NOT_ACQUIRED;
293 }
294 acpi_irq_irq = irq;
295
296 return AE_OK;
297 }
298
299 acpi_status acpi_os_remove_interrupt_handler(u32 irq, acpi_osd_handler handler)
300 {
301 if (irq) {
302 free_irq(irq, acpi_irq);
303 acpi_irq_handler = NULL;
304 acpi_irq_irq = 0;
305 }
306
307 return AE_OK;
308 }
309
310 /*
311 * Running in interpreter thread context, safe to sleep
312 */
313
314 void acpi_os_sleep(acpi_integer ms)
315 {
316 current->state = TASK_INTERRUPTIBLE;
317 schedule_timeout(((signed long)ms * HZ) / 1000);
318 }
319
320 EXPORT_SYMBOL(acpi_os_sleep);
321
322 void acpi_os_stall(u32 us)
323 {
324 while (us) {
325 u32 delay = 1000;
326
327 if (delay > us)
328 delay = us;
329 udelay(delay);
330 touch_nmi_watchdog();
331 us -= delay;
332 }
333 }
334
335 EXPORT_SYMBOL(acpi_os_stall);
336
337 /*
338 * Support ACPI 3.0 AML Timer operand
339 * Returns 64-bit free-running, monotonically increasing timer
340 * with 100ns granularity
341 */
342 u64 acpi_os_get_timer(void)
343 {
344 static u64 t;
345
346 #ifdef CONFIG_HPET
347 /* TBD: use HPET if available */
348 #endif
349
350 #ifdef CONFIG_X86_PM_TIMER
351 /* TBD: default to PM timer if HPET was not available */
352 #endif
353 if (!t)
354 printk(KERN_ERR PREFIX "acpi_os_get_timer() TBD\n");
355
356 return ++t;
357 }
358
359 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
360 {
361 u32 dummy;
362
363 if (!value)
364 value = &dummy;
365
366 switch (width) {
367 case 8:
368 *(u8 *) value = inb(port);
369 break;
370 case 16:
371 *(u16 *) value = inw(port);
372 break;
373 case 32:
374 *(u32 *) value = inl(port);
375 break;
376 default:
377 BUG();
378 }
379
380 return AE_OK;
381 }
382
383 EXPORT_SYMBOL(acpi_os_read_port);
384
385 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
386 {
387 switch (width) {
388 case 8:
389 outb(value, port);
390 break;
391 case 16:
392 outw(value, port);
393 break;
394 case 32:
395 outl(value, port);
396 break;
397 default:
398 BUG();
399 }
400
401 return AE_OK;
402 }
403
404 EXPORT_SYMBOL(acpi_os_write_port);
405
406 acpi_status
407 acpi_os_read_memory(acpi_physical_address phys_addr, u32 * value, u32 width)
408 {
409 u32 dummy;
410 void __iomem *virt_addr;
411 int iomem = 0;
412
413 if (efi_enabled) {
414 if (EFI_MEMORY_WB & efi_mem_attributes(phys_addr)) {
415 /* HACK ALERT! We can use readb/w/l on real memory too.. */
416 virt_addr = (void __iomem *)phys_to_virt(phys_addr);
417 } else {
418 iomem = 1;
419 virt_addr = ioremap(phys_addr, width);
420 }
421 } else
422 virt_addr = (void __iomem *)phys_to_virt(phys_addr);
423 if (!value)
424 value = &dummy;
425
426 switch (width) {
427 case 8:
428 *(u8 *) value = readb(virt_addr);
429 break;
430 case 16:
431 *(u16 *) value = readw(virt_addr);
432 break;
433 case 32:
434 *(u32 *) value = readl(virt_addr);
435 break;
436 default:
437 BUG();
438 }
439
440 if (efi_enabled) {
441 if (iomem)
442 iounmap(virt_addr);
443 }
444
445 return AE_OK;
446 }
447
448 acpi_status
449 acpi_os_write_memory(acpi_physical_address phys_addr, u32 value, u32 width)
450 {
451 void __iomem *virt_addr;
452 int iomem = 0;
453
454 if (efi_enabled) {
455 if (EFI_MEMORY_WB & efi_mem_attributes(phys_addr)) {
456 /* HACK ALERT! We can use writeb/w/l on real memory too */
457 virt_addr = (void __iomem *)phys_to_virt(phys_addr);
458 } else {
459 iomem = 1;
460 virt_addr = ioremap(phys_addr, width);
461 }
462 } else
463 virt_addr = (void __iomem *)phys_to_virt(phys_addr);
464
465 switch (width) {
466 case 8:
467 writeb(value, virt_addr);
468 break;
469 case 16:
470 writew(value, virt_addr);
471 break;
472 case 32:
473 writel(value, virt_addr);
474 break;
475 default:
476 BUG();
477 }
478
479 if (iomem)
480 iounmap(virt_addr);
481
482 return AE_OK;
483 }
484
485 acpi_status
486 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
487 void *value, u32 width)
488 {
489 int result, size;
490
491 if (!value)
492 return AE_BAD_PARAMETER;
493
494 switch (width) {
495 case 8:
496 size = 1;
497 break;
498 case 16:
499 size = 2;
500 break;
501 case 32:
502 size = 4;
503 break;
504 default:
505 return AE_ERROR;
506 }
507
508 BUG_ON(!raw_pci_ops);
509
510 result = raw_pci_ops->read(pci_id->segment, pci_id->bus,
511 PCI_DEVFN(pci_id->device, pci_id->function),
512 reg, size, value);
513
514 return (result ? AE_ERROR : AE_OK);
515 }
516
517 EXPORT_SYMBOL(acpi_os_read_pci_configuration);
518
519 acpi_status
520 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
521 acpi_integer value, u32 width)
522 {
523 int result, size;
524
525 switch (width) {
526 case 8:
527 size = 1;
528 break;
529 case 16:
530 size = 2;
531 break;
532 case 32:
533 size = 4;
534 break;
535 default:
536 return AE_ERROR;
537 }
538
539 BUG_ON(!raw_pci_ops);
540
541 result = raw_pci_ops->write(pci_id->segment, pci_id->bus,
542 PCI_DEVFN(pci_id->device, pci_id->function),
543 reg, size, value);
544
545 return (result ? AE_ERROR : AE_OK);
546 }
547
548 /* TODO: Change code to take advantage of driver model more */
549 static void acpi_os_derive_pci_id_2(acpi_handle rhandle, /* upper bound */
550 acpi_handle chandle, /* current node */
551 struct acpi_pci_id **id,
552 int *is_bridge, u8 * bus_number)
553 {
554 acpi_handle handle;
555 struct acpi_pci_id *pci_id = *id;
556 acpi_status status;
557 unsigned long temp;
558 acpi_object_type type;
559 u8 tu8;
560
561 acpi_get_parent(chandle, &handle);
562 if (handle != rhandle) {
563 acpi_os_derive_pci_id_2(rhandle, handle, &pci_id, is_bridge,
564 bus_number);
565
566 status = acpi_get_type(handle, &type);
567 if ((ACPI_FAILURE(status)) || (type != ACPI_TYPE_DEVICE))
568 return;
569
570 status =
571 acpi_evaluate_integer(handle, METHOD_NAME__ADR, NULL,
572 &temp);
573 if (ACPI_SUCCESS(status)) {
574 pci_id->device = ACPI_HIWORD(ACPI_LODWORD(temp));
575 pci_id->function = ACPI_LOWORD(ACPI_LODWORD(temp));
576
577 if (*is_bridge)
578 pci_id->bus = *bus_number;
579
580 /* any nicer way to get bus number of bridge ? */
581 status =
582 acpi_os_read_pci_configuration(pci_id, 0x0e, &tu8,
583 8);
584 if (ACPI_SUCCESS(status)
585 && ((tu8 & 0x7f) == 1 || (tu8 & 0x7f) == 2)) {
586 status =
587 acpi_os_read_pci_configuration(pci_id, 0x18,
588 &tu8, 8);
589 if (!ACPI_SUCCESS(status)) {
590 /* Certainly broken... FIX ME */
591 return;
592 }
593 *is_bridge = 1;
594 pci_id->bus = tu8;
595 status =
596 acpi_os_read_pci_configuration(pci_id, 0x19,
597 &tu8, 8);
598 if (ACPI_SUCCESS(status)) {
599 *bus_number = tu8;
600 }
601 } else
602 *is_bridge = 0;
603 }
604 }
605 }
606
607 void acpi_os_derive_pci_id(acpi_handle rhandle, /* upper bound */
608 acpi_handle chandle, /* current node */
609 struct acpi_pci_id **id)
610 {
611 int is_bridge = 1;
612 u8 bus_number = (*id)->bus;
613
614 acpi_os_derive_pci_id_2(rhandle, chandle, id, &is_bridge, &bus_number);
615 }
616
617 static void acpi_os_execute_deferred(void *context)
618 {
619 struct acpi_os_dpc *dpc = NULL;
620
621 ACPI_FUNCTION_TRACE("os_execute_deferred");
622
623 dpc = (struct acpi_os_dpc *)context;
624 if (!dpc) {
625 ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid (NULL) context.\n"));
626 return_VOID;
627 }
628
629 dpc->function(dpc->context);
630
631 kfree(dpc);
632
633 return_VOID;
634 }
635
636 acpi_status
637 acpi_os_queue_for_execution(u32 priority,
638 acpi_osd_exec_callback function, void *context)
639 {
640 acpi_status status = AE_OK;
641 struct acpi_os_dpc *dpc;
642 struct work_struct *task;
643
644 ACPI_FUNCTION_TRACE("os_queue_for_execution");
645
646 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
647 "Scheduling function [%p(%p)] for deferred execution.\n",
648 function, context));
649
650 if (!function)
651 return_ACPI_STATUS(AE_BAD_PARAMETER);
652
653 /*
654 * Allocate/initialize DPC structure. Note that this memory will be
655 * freed by the callee. The kernel handles the tq_struct list in a
656 * way that allows us to also free its memory inside the callee.
657 * Because we may want to schedule several tasks with different
658 * parameters we can't use the approach some kernel code uses of
659 * having a static tq_struct.
660 * We can save time and code by allocating the DPC and tq_structs
661 * from the same memory.
662 */
663
664 dpc =
665 kmalloc(sizeof(struct acpi_os_dpc) + sizeof(struct work_struct),
666 GFP_ATOMIC);
667 if (!dpc)
668 return_ACPI_STATUS(AE_NO_MEMORY);
669
670 dpc->function = function;
671 dpc->context = context;
672
673 task = (void *)(dpc + 1);
674 INIT_WORK(task, acpi_os_execute_deferred, (void *)dpc);
675
676 if (!queue_work(kacpid_wq, task)) {
677 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
678 "Call to queue_work() failed.\n"));
679 kfree(dpc);
680 status = AE_ERROR;
681 }
682
683 return_ACPI_STATUS(status);
684 }
685
686 EXPORT_SYMBOL(acpi_os_queue_for_execution);
687
688 void acpi_os_wait_events_complete(void *context)
689 {
690 flush_workqueue(kacpid_wq);
691 }
692
693 EXPORT_SYMBOL(acpi_os_wait_events_complete);
694
695 /*
696 * Allocate the memory for a spinlock and initialize it.
697 */
698 acpi_status acpi_os_create_lock(acpi_handle * out_handle)
699 {
700 spinlock_t *lock_ptr;
701
702 ACPI_FUNCTION_TRACE("os_create_lock");
703
704 lock_ptr = acpi_os_allocate(sizeof(spinlock_t));
705
706 spin_lock_init(lock_ptr);
707
708 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating spinlock[%p].\n", lock_ptr));
709
710 *out_handle = lock_ptr;
711
712 return_ACPI_STATUS(AE_OK);
713 }
714
715 /*
716 * Deallocate the memory for a spinlock.
717 */
718 void acpi_os_delete_lock(acpi_handle handle)
719 {
720 ACPI_FUNCTION_TRACE("os_create_lock");
721
722 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting spinlock[%p].\n", handle));
723
724 acpi_os_free(handle);
725
726 return_VOID;
727 }
728
729 acpi_status
730 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
731 {
732 struct semaphore *sem = NULL;
733
734 ACPI_FUNCTION_TRACE("os_create_semaphore");
735
736 sem = acpi_os_allocate(sizeof(struct semaphore));
737 if (!sem)
738 return_ACPI_STATUS(AE_NO_MEMORY);
739 memset(sem, 0, sizeof(struct semaphore));
740
741 sema_init(sem, initial_units);
742
743 *handle = (acpi_handle *) sem;
744
745 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
746 *handle, initial_units));
747
748 return_ACPI_STATUS(AE_OK);
749 }
750
751 EXPORT_SYMBOL(acpi_os_create_semaphore);
752
753 /*
754 * TODO: A better way to delete semaphores? Linux doesn't have a
755 * 'delete_semaphore()' function -- may result in an invalid
756 * pointer dereference for non-synchronized consumers. Should
757 * we at least check for blocked threads and signal/cancel them?
758 */
759
760 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
761 {
762 struct semaphore *sem = (struct semaphore *)handle;
763
764 ACPI_FUNCTION_TRACE("os_delete_semaphore");
765
766 if (!sem)
767 return_ACPI_STATUS(AE_BAD_PARAMETER);
768
769 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
770
771 acpi_os_free(sem);
772 sem = NULL;
773
774 return_ACPI_STATUS(AE_OK);
775 }
776
777 EXPORT_SYMBOL(acpi_os_delete_semaphore);
778
779 /*
780 * TODO: The kernel doesn't have a 'down_timeout' function -- had to
781 * improvise. The process is to sleep for one scheduler quantum
782 * until the semaphore becomes available. Downside is that this
783 * may result in starvation for timeout-based waits when there's
784 * lots of semaphore activity.
785 *
786 * TODO: Support for units > 1?
787 */
788 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
789 {
790 acpi_status status = AE_OK;
791 struct semaphore *sem = (struct semaphore *)handle;
792 int ret = 0;
793
794 ACPI_FUNCTION_TRACE("os_wait_semaphore");
795
796 if (!sem || (units < 1))
797 return_ACPI_STATUS(AE_BAD_PARAMETER);
798
799 if (units > 1)
800 return_ACPI_STATUS(AE_SUPPORT);
801
802 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
803 handle, units, timeout));
804
805 if (in_atomic())
806 timeout = 0;
807
808 switch (timeout) {
809 /*
810 * No Wait:
811 * --------
812 * A zero timeout value indicates that we shouldn't wait - just
813 * acquire the semaphore if available otherwise return AE_TIME
814 * (a.k.a. 'would block').
815 */
816 case 0:
817 if (down_trylock(sem))
818 status = AE_TIME;
819 break;
820
821 /*
822 * Wait Indefinitely:
823 * ------------------
824 */
825 case ACPI_WAIT_FOREVER:
826 down(sem);
827 break;
828
829 /*
830 * Wait w/ Timeout:
831 * ----------------
832 */
833 default:
834 // TODO: A better timeout algorithm?
835 {
836 int i = 0;
837 static const int quantum_ms = 1000 / HZ;
838
839 ret = down_trylock(sem);
840 for (i = timeout; (i > 0 && ret < 0); i -= quantum_ms) {
841 current->state = TASK_INTERRUPTIBLE;
842 schedule_timeout(1);
843 ret = down_trylock(sem);
844 }
845
846 if (ret != 0)
847 status = AE_TIME;
848 }
849 break;
850 }
851
852 if (ACPI_FAILURE(status)) {
853 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
854 "Failed to acquire semaphore[%p|%d|%d], %s\n",
855 handle, units, timeout,
856 acpi_format_exception(status)));
857 } else {
858 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
859 "Acquired semaphore[%p|%d|%d]\n", handle,
860 units, timeout));
861 }
862
863 return_ACPI_STATUS(status);
864 }
865
866 EXPORT_SYMBOL(acpi_os_wait_semaphore);
867
868 /*
869 * TODO: Support for units > 1?
870 */
871 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
872 {
873 struct semaphore *sem = (struct semaphore *)handle;
874
875 ACPI_FUNCTION_TRACE("os_signal_semaphore");
876
877 if (!sem || (units < 1))
878 return_ACPI_STATUS(AE_BAD_PARAMETER);
879
880 if (units > 1)
881 return_ACPI_STATUS(AE_SUPPORT);
882
883 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
884 units));
885
886 up(sem);
887
888 return_ACPI_STATUS(AE_OK);
889 }
890
891 EXPORT_SYMBOL(acpi_os_signal_semaphore);
892
893 #ifdef ACPI_FUTURE_USAGE
894 u32 acpi_os_get_line(char *buffer)
895 {
896
897 #ifdef ENABLE_DEBUGGER
898 if (acpi_in_debugger) {
899 u32 chars;
900
901 kdb_read(buffer, sizeof(line_buf));
902
903 /* remove the CR kdb includes */
904 chars = strlen(buffer) - 1;
905 buffer[chars] = '\0';
906 }
907 #endif
908
909 return 0;
910 }
911 #endif /* ACPI_FUTURE_USAGE */
912
913 /* Assumes no unreadable holes inbetween */
914 u8 acpi_os_readable(void *ptr, acpi_size len)
915 {
916 #if defined(__i386__) || defined(__x86_64__)
917 char tmp;
918 return !__get_user(tmp, (char __user *)ptr)
919 && !__get_user(tmp, (char __user *)ptr + len - 1);
920 #endif
921 return 1;
922 }
923
924 #ifdef ACPI_FUTURE_USAGE
925 u8 acpi_os_writable(void *ptr, acpi_size len)
926 {
927 /* could do dummy write (racy) or a kernel page table lookup.
928 The later may be difficult at early boot when kmap doesn't work yet. */
929 return 1;
930 }
931 #endif
932
933 u32 acpi_os_get_thread_id(void)
934 {
935 if (!in_atomic())
936 return current->pid;
937
938 return 0;
939 }
940
941 acpi_status acpi_os_signal(u32 function, void *info)
942 {
943 switch (function) {
944 case ACPI_SIGNAL_FATAL:
945 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
946 break;
947 case ACPI_SIGNAL_BREAKPOINT:
948 /*
949 * AML Breakpoint
950 * ACPI spec. says to treat it as a NOP unless
951 * you are debugging. So if/when we integrate
952 * AML debugger into the kernel debugger its
953 * hook will go here. But until then it is
954 * not useful to print anything on breakpoints.
955 */
956 break;
957 default:
958 break;
959 }
960
961 return AE_OK;
962 }
963
964 EXPORT_SYMBOL(acpi_os_signal);
965
966 static int __init acpi_os_name_setup(char *str)
967 {
968 char *p = acpi_os_name;
969 int count = ACPI_MAX_OVERRIDE_LEN - 1;
970
971 if (!str || !*str)
972 return 0;
973
974 for (; count-- && str && *str; str++) {
975 if (isalnum(*str) || *str == ' ' || *str == ':')
976 *p++ = *str;
977 else if (*str == '\'' || *str == '"')
978 continue;
979 else
980 break;
981 }
982 *p = 0;
983
984 return 1;
985
986 }
987
988 __setup("acpi_os_name=", acpi_os_name_setup);
989
990 /*
991 * _OSI control
992 * empty string disables _OSI
993 * TBD additional string adds to _OSI
994 */
995 static int __init acpi_osi_setup(char *str)
996 {
997 if (str == NULL || *str == '\0') {
998 printk(KERN_INFO PREFIX "_OSI method disabled\n");
999 acpi_gbl_create_osi_method = FALSE;
1000 } else {
1001 /* TBD */
1002 printk(KERN_ERR PREFIX "_OSI additional string ignored -- %s\n",
1003 str);
1004 }
1005
1006 return 1;
1007 }
1008
1009 __setup("acpi_osi=", acpi_osi_setup);
1010
1011 /* enable serialization to combat AE_ALREADY_EXISTS errors */
1012 static int __init acpi_serialize_setup(char *str)
1013 {
1014 printk(KERN_INFO PREFIX "serialize enabled\n");
1015
1016 acpi_gbl_all_methods_serialized = TRUE;
1017
1018 return 1;
1019 }
1020
1021 __setup("acpi_serialize", acpi_serialize_setup);
1022
1023 /*
1024 * Wake and Run-Time GPES are expected to be separate.
1025 * We disable wake-GPEs at run-time to prevent spurious
1026 * interrupts.
1027 *
1028 * However, if a system exists that shares Wake and
1029 * Run-time events on the same GPE this flag is available
1030 * to tell Linux to keep the wake-time GPEs enabled at run-time.
1031 */
1032 static int __init acpi_wake_gpes_always_on_setup(char *str)
1033 {
1034 printk(KERN_INFO PREFIX "wake GPEs not disabled\n");
1035
1036 acpi_gbl_leave_wake_gpes_disabled = FALSE;
1037
1038 return 1;
1039 }
1040
1041 __setup("acpi_wake_gpes_always_on", acpi_wake_gpes_always_on_setup);
1042
1043 static int __init acpi_hotkey_setup(char *str)
1044 {
1045 acpi_specific_hotkey_enabled = FALSE;
1046 return 1;
1047 }
1048
1049 __setup("acpi_generic_hotkey", acpi_hotkey_setup);
1050
1051 /*
1052 * max_cstate is defined in the base kernel so modules can
1053 * change it w/o depending on the state of the processor module.
1054 */
1055 unsigned int max_cstate = ACPI_PROCESSOR_MAX_POWER;
1056
1057 EXPORT_SYMBOL(max_cstate);
1058
1059 /*
1060 * Acquire a spinlock.
1061 *
1062 * handle is a pointer to the spinlock_t.
1063 * flags is *not* the result of save_flags - it is an ACPI-specific flag variable
1064 * that indicates whether we are at interrupt level.
1065 */
1066
1067 unsigned long acpi_os_acquire_lock(acpi_handle handle)
1068 {
1069 unsigned long flags;
1070 spin_lock_irqsave((spinlock_t *) handle, flags);
1071 return flags;
1072 }
1073
1074 /*
1075 * Release a spinlock. See above.
1076 */
1077
1078 void acpi_os_release_lock(acpi_handle handle, unsigned long flags)
1079 {
1080 spin_unlock_irqrestore((spinlock_t *) handle, flags);
1081 }
1082
1083 #ifndef ACPI_USE_LOCAL_CACHE
1084
1085 /*******************************************************************************
1086 *
1087 * FUNCTION: acpi_os_create_cache
1088 *
1089 * PARAMETERS: CacheName - Ascii name for the cache
1090 * ObjectSize - Size of each cached object
1091 * MaxDepth - Maximum depth of the cache (in objects)
1092 * ReturnCache - Where the new cache object is returned
1093 *
1094 * RETURN: Status
1095 *
1096 * DESCRIPTION: Create a cache object
1097 *
1098 ******************************************************************************/
1099
1100 acpi_status
1101 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1102 {
1103 *cache = kmem_cache_create(name, size, 0, 0, NULL, NULL);
1104 return AE_OK;
1105 }
1106
1107 /*******************************************************************************
1108 *
1109 * FUNCTION: acpi_os_purge_cache
1110 *
1111 * PARAMETERS: Cache - Handle to cache object
1112 *
1113 * RETURN: Status
1114 *
1115 * DESCRIPTION: Free all objects within the requested cache.
1116 *
1117 ******************************************************************************/
1118
1119 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1120 {
1121 (void)kmem_cache_shrink(cache);
1122 return (AE_OK);
1123 }
1124
1125 /*******************************************************************************
1126 *
1127 * FUNCTION: acpi_os_delete_cache
1128 *
1129 * PARAMETERS: Cache - Handle to cache object
1130 *
1131 * RETURN: Status
1132 *
1133 * DESCRIPTION: Free all objects within the requested cache and delete the
1134 * cache object.
1135 *
1136 ******************************************************************************/
1137
1138 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1139 {
1140 (void)kmem_cache_destroy(cache);
1141 return (AE_OK);
1142 }
1143
1144 /*******************************************************************************
1145 *
1146 * FUNCTION: acpi_os_release_object
1147 *
1148 * PARAMETERS: Cache - Handle to cache object
1149 * Object - The object to be released
1150 *
1151 * RETURN: None
1152 *
1153 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1154 * the object is deleted.
1155 *
1156 ******************************************************************************/
1157
1158 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1159 {
1160 kmem_cache_free(cache, object);
1161 return (AE_OK);
1162 }
1163
1164 /*******************************************************************************
1165 *
1166 * FUNCTION: acpi_os_acquire_object
1167 *
1168 * PARAMETERS: Cache - Handle to cache object
1169 * ReturnObject - Where the object is returned
1170 *
1171 * RETURN: Status
1172 *
1173 * DESCRIPTION: Get an object from the specified cache. If cache is empty,
1174 * the object is allocated.
1175 *
1176 ******************************************************************************/
1177
1178 void *acpi_os_acquire_object(acpi_cache_t * cache)
1179 {
1180 void *object = kmem_cache_alloc(cache, GFP_KERNEL);
1181 WARN_ON(!object);
1182 return object;
1183 }
1184
1185 #endif
This page took 0.090357 seconds and 6 git commands to generate.