Merge branch 'x86-efi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / acpi / power.c
1 /*
2 * acpi_power.c - ACPI Bus Power Management ($Revision: 39 $)
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 *
7 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or (at
12 * your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write to the Free Software Foundation, Inc.,
21 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
22 *
23 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
24 */
25
26 /*
27 * ACPI power-managed devices may be controlled in two ways:
28 * 1. via "Device Specific (D-State) Control"
29 * 2. via "Power Resource Control".
30 * This module is used to manage devices relying on Power Resource Control.
31 *
32 * An ACPI "power resource object" describes a software controllable power
33 * plane, clock plane, or other resource used by a power managed device.
34 * A device may rely on multiple power resources, and a power resource
35 * may be shared by multiple devices.
36 */
37
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/init.h>
41 #include <linux/types.h>
42 #include <linux/slab.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/sysfs.h>
45 #include <linux/acpi.h>
46 #include "sleep.h"
47 #include "internal.h"
48
49 #define _COMPONENT ACPI_POWER_COMPONENT
50 ACPI_MODULE_NAME("power");
51 #define ACPI_POWER_CLASS "power_resource"
52 #define ACPI_POWER_DEVICE_NAME "Power Resource"
53 #define ACPI_POWER_FILE_INFO "info"
54 #define ACPI_POWER_FILE_STATUS "state"
55 #define ACPI_POWER_RESOURCE_STATE_OFF 0x00
56 #define ACPI_POWER_RESOURCE_STATE_ON 0x01
57 #define ACPI_POWER_RESOURCE_STATE_UNKNOWN 0xFF
58
59 struct acpi_power_resource {
60 struct acpi_device device;
61 struct list_head list_node;
62 char *name;
63 u32 system_level;
64 u32 order;
65 unsigned int ref_count;
66 bool wakeup_enabled;
67 struct mutex resource_lock;
68 };
69
70 struct acpi_power_resource_entry {
71 struct list_head node;
72 struct acpi_power_resource *resource;
73 };
74
75 static LIST_HEAD(acpi_power_resource_list);
76 static DEFINE_MUTEX(power_resource_list_lock);
77
78 /* --------------------------------------------------------------------------
79 Power Resource Management
80 -------------------------------------------------------------------------- */
81
82 static inline
83 struct acpi_power_resource *to_power_resource(struct acpi_device *device)
84 {
85 return container_of(device, struct acpi_power_resource, device);
86 }
87
88 static struct acpi_power_resource *acpi_power_get_context(acpi_handle handle)
89 {
90 struct acpi_device *device;
91
92 if (acpi_bus_get_device(handle, &device))
93 return NULL;
94
95 return to_power_resource(device);
96 }
97
98 static int acpi_power_resources_list_add(acpi_handle handle,
99 struct list_head *list)
100 {
101 struct acpi_power_resource *resource = acpi_power_get_context(handle);
102 struct acpi_power_resource_entry *entry;
103
104 if (!resource || !list)
105 return -EINVAL;
106
107 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
108 if (!entry)
109 return -ENOMEM;
110
111 entry->resource = resource;
112 if (!list_empty(list)) {
113 struct acpi_power_resource_entry *e;
114
115 list_for_each_entry(e, list, node)
116 if (e->resource->order > resource->order) {
117 list_add_tail(&entry->node, &e->node);
118 return 0;
119 }
120 }
121 list_add_tail(&entry->node, list);
122 return 0;
123 }
124
125 void acpi_power_resources_list_free(struct list_head *list)
126 {
127 struct acpi_power_resource_entry *entry, *e;
128
129 list_for_each_entry_safe(entry, e, list, node) {
130 list_del(&entry->node);
131 kfree(entry);
132 }
133 }
134
135 int acpi_extract_power_resources(union acpi_object *package, unsigned int start,
136 struct list_head *list)
137 {
138 unsigned int i;
139 int err = 0;
140
141 for (i = start; i < package->package.count; i++) {
142 union acpi_object *element = &package->package.elements[i];
143 acpi_handle rhandle;
144
145 if (element->type != ACPI_TYPE_LOCAL_REFERENCE) {
146 err = -ENODATA;
147 break;
148 }
149 rhandle = element->reference.handle;
150 if (!rhandle) {
151 err = -ENODEV;
152 break;
153 }
154 err = acpi_add_power_resource(rhandle);
155 if (err)
156 break;
157
158 err = acpi_power_resources_list_add(rhandle, list);
159 if (err)
160 break;
161 }
162 if (err)
163 acpi_power_resources_list_free(list);
164
165 return err;
166 }
167
168 static int acpi_power_get_state(acpi_handle handle, int *state)
169 {
170 acpi_status status = AE_OK;
171 unsigned long long sta = 0;
172 char node_name[5];
173 struct acpi_buffer buffer = { sizeof(node_name), node_name };
174
175
176 if (!handle || !state)
177 return -EINVAL;
178
179 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
180 if (ACPI_FAILURE(status))
181 return -ENODEV;
182
183 *state = (sta & 0x01)?ACPI_POWER_RESOURCE_STATE_ON:
184 ACPI_POWER_RESOURCE_STATE_OFF;
185
186 acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer);
187
188 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource [%s] is %s\n",
189 node_name,
190 *state ? "on" : "off"));
191
192 return 0;
193 }
194
195 static int acpi_power_get_list_state(struct list_head *list, int *state)
196 {
197 struct acpi_power_resource_entry *entry;
198 int cur_state;
199
200 if (!list || !state)
201 return -EINVAL;
202
203 /* The state of the list is 'on' IFF all resources are 'on'. */
204 list_for_each_entry(entry, list, node) {
205 struct acpi_power_resource *resource = entry->resource;
206 acpi_handle handle = resource->device.handle;
207 int result;
208
209 mutex_lock(&resource->resource_lock);
210 result = acpi_power_get_state(handle, &cur_state);
211 mutex_unlock(&resource->resource_lock);
212 if (result)
213 return result;
214
215 if (cur_state != ACPI_POWER_RESOURCE_STATE_ON)
216 break;
217 }
218
219 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource list is %s\n",
220 cur_state ? "on" : "off"));
221
222 *state = cur_state;
223 return 0;
224 }
225
226 static int __acpi_power_on(struct acpi_power_resource *resource)
227 {
228 acpi_status status = AE_OK;
229
230 status = acpi_evaluate_object(resource->device.handle, "_ON", NULL, NULL);
231 if (ACPI_FAILURE(status))
232 return -ENODEV;
233
234 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned on\n",
235 resource->name));
236
237 return 0;
238 }
239
240 static int acpi_power_on_unlocked(struct acpi_power_resource *resource)
241 {
242 int result = 0;
243
244 if (resource->ref_count++) {
245 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
246 "Power resource [%s] already on\n",
247 resource->name));
248 } else {
249 result = __acpi_power_on(resource);
250 if (result)
251 resource->ref_count--;
252 }
253 return result;
254 }
255
256 static int acpi_power_on(struct acpi_power_resource *resource)
257 {
258 int result;
259
260 mutex_lock(&resource->resource_lock);
261 result = acpi_power_on_unlocked(resource);
262 mutex_unlock(&resource->resource_lock);
263 return result;
264 }
265
266 static int __acpi_power_off(struct acpi_power_resource *resource)
267 {
268 acpi_status status;
269
270 status = acpi_evaluate_object(resource->device.handle, "_OFF",
271 NULL, NULL);
272 if (ACPI_FAILURE(status))
273 return -ENODEV;
274
275 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned off\n",
276 resource->name));
277 return 0;
278 }
279
280 static int acpi_power_off_unlocked(struct acpi_power_resource *resource)
281 {
282 int result = 0;
283
284 if (!resource->ref_count) {
285 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
286 "Power resource [%s] already off\n",
287 resource->name));
288 return 0;
289 }
290
291 if (--resource->ref_count) {
292 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
293 "Power resource [%s] still in use\n",
294 resource->name));
295 } else {
296 result = __acpi_power_off(resource);
297 if (result)
298 resource->ref_count++;
299 }
300 return result;
301 }
302
303 static int acpi_power_off(struct acpi_power_resource *resource)
304 {
305 int result;
306
307 mutex_lock(&resource->resource_lock);
308 result = acpi_power_off_unlocked(resource);
309 mutex_unlock(&resource->resource_lock);
310 return result;
311 }
312
313 static int acpi_power_off_list(struct list_head *list)
314 {
315 struct acpi_power_resource_entry *entry;
316 int result = 0;
317
318 list_for_each_entry_reverse(entry, list, node) {
319 result = acpi_power_off(entry->resource);
320 if (result)
321 goto err;
322 }
323 return 0;
324
325 err:
326 list_for_each_entry_continue(entry, list, node)
327 acpi_power_on(entry->resource);
328
329 return result;
330 }
331
332 static int acpi_power_on_list(struct list_head *list)
333 {
334 struct acpi_power_resource_entry *entry;
335 int result = 0;
336
337 list_for_each_entry(entry, list, node) {
338 result = acpi_power_on(entry->resource);
339 if (result)
340 goto err;
341 }
342 return 0;
343
344 err:
345 list_for_each_entry_continue_reverse(entry, list, node)
346 acpi_power_off(entry->resource);
347
348 return result;
349 }
350
351 static struct attribute *attrs[] = {
352 NULL,
353 };
354
355 static struct attribute_group attr_groups[] = {
356 [ACPI_STATE_D0] = {
357 .name = "power_resources_D0",
358 .attrs = attrs,
359 },
360 [ACPI_STATE_D1] = {
361 .name = "power_resources_D1",
362 .attrs = attrs,
363 },
364 [ACPI_STATE_D2] = {
365 .name = "power_resources_D2",
366 .attrs = attrs,
367 },
368 [ACPI_STATE_D3_HOT] = {
369 .name = "power_resources_D3hot",
370 .attrs = attrs,
371 },
372 };
373
374 static struct attribute_group wakeup_attr_group = {
375 .name = "power_resources_wakeup",
376 .attrs = attrs,
377 };
378
379 static void acpi_power_hide_list(struct acpi_device *adev,
380 struct list_head *resources,
381 struct attribute_group *attr_group)
382 {
383 struct acpi_power_resource_entry *entry;
384
385 if (list_empty(resources))
386 return;
387
388 list_for_each_entry_reverse(entry, resources, node) {
389 struct acpi_device *res_dev = &entry->resource->device;
390
391 sysfs_remove_link_from_group(&adev->dev.kobj,
392 attr_group->name,
393 dev_name(&res_dev->dev));
394 }
395 sysfs_remove_group(&adev->dev.kobj, attr_group);
396 }
397
398 static void acpi_power_expose_list(struct acpi_device *adev,
399 struct list_head *resources,
400 struct attribute_group *attr_group)
401 {
402 struct acpi_power_resource_entry *entry;
403 int ret;
404
405 if (list_empty(resources))
406 return;
407
408 ret = sysfs_create_group(&adev->dev.kobj, attr_group);
409 if (ret)
410 return;
411
412 list_for_each_entry(entry, resources, node) {
413 struct acpi_device *res_dev = &entry->resource->device;
414
415 ret = sysfs_add_link_to_group(&adev->dev.kobj,
416 attr_group->name,
417 &res_dev->dev.kobj,
418 dev_name(&res_dev->dev));
419 if (ret) {
420 acpi_power_hide_list(adev, resources, attr_group);
421 break;
422 }
423 }
424 }
425
426 static void acpi_power_expose_hide(struct acpi_device *adev,
427 struct list_head *resources,
428 struct attribute_group *attr_group,
429 bool expose)
430 {
431 if (expose)
432 acpi_power_expose_list(adev, resources, attr_group);
433 else
434 acpi_power_hide_list(adev, resources, attr_group);
435 }
436
437 void acpi_power_add_remove_device(struct acpi_device *adev, bool add)
438 {
439 int state;
440
441 if (adev->wakeup.flags.valid)
442 acpi_power_expose_hide(adev, &adev->wakeup.resources,
443 &wakeup_attr_group, add);
444
445 if (!adev->power.flags.power_resources)
446 return;
447
448 for (state = ACPI_STATE_D0; state <= ACPI_STATE_D3_HOT; state++)
449 acpi_power_expose_hide(adev,
450 &adev->power.states[state].resources,
451 &attr_groups[state], add);
452 }
453
454 int acpi_power_wakeup_list_init(struct list_head *list, int *system_level_p)
455 {
456 struct acpi_power_resource_entry *entry;
457 int system_level = 5;
458
459 list_for_each_entry(entry, list, node) {
460 struct acpi_power_resource *resource = entry->resource;
461 acpi_handle handle = resource->device.handle;
462 int result;
463 int state;
464
465 mutex_lock(&resource->resource_lock);
466
467 result = acpi_power_get_state(handle, &state);
468 if (result) {
469 mutex_unlock(&resource->resource_lock);
470 return result;
471 }
472 if (state == ACPI_POWER_RESOURCE_STATE_ON) {
473 resource->ref_count++;
474 resource->wakeup_enabled = true;
475 }
476 if (system_level > resource->system_level)
477 system_level = resource->system_level;
478
479 mutex_unlock(&resource->resource_lock);
480 }
481 *system_level_p = system_level;
482 return 0;
483 }
484
485 /* --------------------------------------------------------------------------
486 Device Power Management
487 -------------------------------------------------------------------------- */
488
489 /**
490 * acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in
491 * ACPI 3.0) _PSW (Power State Wake)
492 * @dev: Device to handle.
493 * @enable: 0 - disable, 1 - enable the wake capabilities of the device.
494 * @sleep_state: Target sleep state of the system.
495 * @dev_state: Target power state of the device.
496 *
497 * Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
498 * State Wake) for the device, if present. On failure reset the device's
499 * wakeup.flags.valid flag.
500 *
501 * RETURN VALUE:
502 * 0 if either _DSW or _PSW has been successfully executed
503 * 0 if neither _DSW nor _PSW has been found
504 * -ENODEV if the execution of either _DSW or _PSW has failed
505 */
506 int acpi_device_sleep_wake(struct acpi_device *dev,
507 int enable, int sleep_state, int dev_state)
508 {
509 union acpi_object in_arg[3];
510 struct acpi_object_list arg_list = { 3, in_arg };
511 acpi_status status = AE_OK;
512
513 /*
514 * Try to execute _DSW first.
515 *
516 * Three agruments are needed for the _DSW object:
517 * Argument 0: enable/disable the wake capabilities
518 * Argument 1: target system state
519 * Argument 2: target device state
520 * When _DSW object is called to disable the wake capabilities, maybe
521 * the first argument is filled. The values of the other two agruments
522 * are meaningless.
523 */
524 in_arg[0].type = ACPI_TYPE_INTEGER;
525 in_arg[0].integer.value = enable;
526 in_arg[1].type = ACPI_TYPE_INTEGER;
527 in_arg[1].integer.value = sleep_state;
528 in_arg[2].type = ACPI_TYPE_INTEGER;
529 in_arg[2].integer.value = dev_state;
530 status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL);
531 if (ACPI_SUCCESS(status)) {
532 return 0;
533 } else if (status != AE_NOT_FOUND) {
534 printk(KERN_ERR PREFIX "_DSW execution failed\n");
535 dev->wakeup.flags.valid = 0;
536 return -ENODEV;
537 }
538
539 /* Execute _PSW */
540 status = acpi_execute_simple_method(dev->handle, "_PSW", enable);
541 if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) {
542 printk(KERN_ERR PREFIX "_PSW execution failed\n");
543 dev->wakeup.flags.valid = 0;
544 return -ENODEV;
545 }
546
547 return 0;
548 }
549
550 /*
551 * Prepare a wakeup device, two steps (Ref ACPI 2.0:P229):
552 * 1. Power on the power resources required for the wakeup device
553 * 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
554 * State Wake) for the device, if present
555 */
556 int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state)
557 {
558 struct acpi_power_resource_entry *entry;
559 int err = 0;
560
561 if (!dev || !dev->wakeup.flags.valid)
562 return -EINVAL;
563
564 mutex_lock(&acpi_device_lock);
565
566 if (dev->wakeup.prepare_count++)
567 goto out;
568
569 list_for_each_entry(entry, &dev->wakeup.resources, node) {
570 struct acpi_power_resource *resource = entry->resource;
571
572 mutex_lock(&resource->resource_lock);
573
574 if (!resource->wakeup_enabled) {
575 err = acpi_power_on_unlocked(resource);
576 if (!err)
577 resource->wakeup_enabled = true;
578 }
579
580 mutex_unlock(&resource->resource_lock);
581
582 if (err) {
583 dev_err(&dev->dev,
584 "Cannot turn wakeup power resources on\n");
585 dev->wakeup.flags.valid = 0;
586 goto out;
587 }
588 }
589 /*
590 * Passing 3 as the third argument below means the device may be
591 * put into arbitrary power state afterward.
592 */
593 err = acpi_device_sleep_wake(dev, 1, sleep_state, 3);
594 if (err)
595 dev->wakeup.prepare_count = 0;
596
597 out:
598 mutex_unlock(&acpi_device_lock);
599 return err;
600 }
601
602 /*
603 * Shutdown a wakeup device, counterpart of above method
604 * 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
605 * State Wake) for the device, if present
606 * 2. Shutdown down the power resources
607 */
608 int acpi_disable_wakeup_device_power(struct acpi_device *dev)
609 {
610 struct acpi_power_resource_entry *entry;
611 int err = 0;
612
613 if (!dev || !dev->wakeup.flags.valid)
614 return -EINVAL;
615
616 mutex_lock(&acpi_device_lock);
617
618 if (--dev->wakeup.prepare_count > 0)
619 goto out;
620
621 /*
622 * Executing the code below even if prepare_count is already zero when
623 * the function is called may be useful, for example for initialisation.
624 */
625 if (dev->wakeup.prepare_count < 0)
626 dev->wakeup.prepare_count = 0;
627
628 err = acpi_device_sleep_wake(dev, 0, 0, 0);
629 if (err)
630 goto out;
631
632 list_for_each_entry(entry, &dev->wakeup.resources, node) {
633 struct acpi_power_resource *resource = entry->resource;
634
635 mutex_lock(&resource->resource_lock);
636
637 if (resource->wakeup_enabled) {
638 err = acpi_power_off_unlocked(resource);
639 if (!err)
640 resource->wakeup_enabled = false;
641 }
642
643 mutex_unlock(&resource->resource_lock);
644
645 if (err) {
646 dev_err(&dev->dev,
647 "Cannot turn wakeup power resources off\n");
648 dev->wakeup.flags.valid = 0;
649 break;
650 }
651 }
652
653 out:
654 mutex_unlock(&acpi_device_lock);
655 return err;
656 }
657
658 int acpi_power_get_inferred_state(struct acpi_device *device, int *state)
659 {
660 int result = 0;
661 int list_state = 0;
662 int i = 0;
663
664 if (!device || !state)
665 return -EINVAL;
666
667 /*
668 * We know a device's inferred power state when all the resources
669 * required for a given D-state are 'on'.
670 */
671 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
672 struct list_head *list = &device->power.states[i].resources;
673
674 if (list_empty(list))
675 continue;
676
677 result = acpi_power_get_list_state(list, &list_state);
678 if (result)
679 return result;
680
681 if (list_state == ACPI_POWER_RESOURCE_STATE_ON) {
682 *state = i;
683 return 0;
684 }
685 }
686
687 *state = ACPI_STATE_D3_COLD;
688 return 0;
689 }
690
691 int acpi_power_on_resources(struct acpi_device *device, int state)
692 {
693 if (!device || state < ACPI_STATE_D0 || state > ACPI_STATE_D3_HOT)
694 return -EINVAL;
695
696 return acpi_power_on_list(&device->power.states[state].resources);
697 }
698
699 int acpi_power_transition(struct acpi_device *device, int state)
700 {
701 int result = 0;
702
703 if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
704 return -EINVAL;
705
706 if (device->power.state == state || !device->flags.power_manageable)
707 return 0;
708
709 if ((device->power.state < ACPI_STATE_D0)
710 || (device->power.state > ACPI_STATE_D3_COLD))
711 return -ENODEV;
712
713 /* TBD: Resources must be ordered. */
714
715 /*
716 * First we reference all power resources required in the target list
717 * (e.g. so the device doesn't lose power while transitioning). Then,
718 * we dereference all power resources used in the current list.
719 */
720 if (state < ACPI_STATE_D3_COLD)
721 result = acpi_power_on_list(
722 &device->power.states[state].resources);
723
724 if (!result && device->power.state < ACPI_STATE_D3_COLD)
725 acpi_power_off_list(
726 &device->power.states[device->power.state].resources);
727
728 /* We shouldn't change the state unless the above operations succeed. */
729 device->power.state = result ? ACPI_STATE_UNKNOWN : state;
730
731 return result;
732 }
733
734 static void acpi_release_power_resource(struct device *dev)
735 {
736 struct acpi_device *device = to_acpi_device(dev);
737 struct acpi_power_resource *resource;
738
739 resource = container_of(device, struct acpi_power_resource, device);
740
741 mutex_lock(&power_resource_list_lock);
742 list_del(&resource->list_node);
743 mutex_unlock(&power_resource_list_lock);
744
745 acpi_free_pnp_ids(&device->pnp);
746 kfree(resource);
747 }
748
749 static ssize_t acpi_power_in_use_show(struct device *dev,
750 struct device_attribute *attr,
751 char *buf) {
752 struct acpi_power_resource *resource;
753
754 resource = to_power_resource(to_acpi_device(dev));
755 return sprintf(buf, "%u\n", !!resource->ref_count);
756 }
757 static DEVICE_ATTR(resource_in_use, 0444, acpi_power_in_use_show, NULL);
758
759 static void acpi_power_sysfs_remove(struct acpi_device *device)
760 {
761 device_remove_file(&device->dev, &dev_attr_resource_in_use);
762 }
763
764 int acpi_add_power_resource(acpi_handle handle)
765 {
766 struct acpi_power_resource *resource;
767 struct acpi_device *device = NULL;
768 union acpi_object acpi_object;
769 struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object };
770 acpi_status status;
771 int state, result = -ENODEV;
772
773 acpi_bus_get_device(handle, &device);
774 if (device)
775 return 0;
776
777 resource = kzalloc(sizeof(*resource), GFP_KERNEL);
778 if (!resource)
779 return -ENOMEM;
780
781 device = &resource->device;
782 acpi_init_device_object(device, handle, ACPI_BUS_TYPE_POWER,
783 ACPI_STA_DEFAULT);
784 mutex_init(&resource->resource_lock);
785 INIT_LIST_HEAD(&resource->list_node);
786 resource->name = device->pnp.bus_id;
787 strcpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME);
788 strcpy(acpi_device_class(device), ACPI_POWER_CLASS);
789 device->power.state = ACPI_STATE_UNKNOWN;
790
791 /* Evalute the object to get the system level and resource order. */
792 status = acpi_evaluate_object(handle, NULL, NULL, &buffer);
793 if (ACPI_FAILURE(status))
794 goto err;
795
796 resource->system_level = acpi_object.power_resource.system_level;
797 resource->order = acpi_object.power_resource.resource_order;
798
799 result = acpi_power_get_state(handle, &state);
800 if (result)
801 goto err;
802
803 printk(KERN_INFO PREFIX "%s [%s] (%s)\n", acpi_device_name(device),
804 acpi_device_bid(device), state ? "on" : "off");
805
806 device->flags.match_driver = true;
807 result = acpi_device_add(device, acpi_release_power_resource);
808 if (result)
809 goto err;
810
811 if (!device_create_file(&device->dev, &dev_attr_resource_in_use))
812 device->remove = acpi_power_sysfs_remove;
813
814 mutex_lock(&power_resource_list_lock);
815 list_add(&resource->list_node, &acpi_power_resource_list);
816 mutex_unlock(&power_resource_list_lock);
817 acpi_device_add_finalize(device);
818 return 0;
819
820 err:
821 acpi_release_power_resource(&device->dev);
822 return result;
823 }
824
825 #ifdef CONFIG_ACPI_SLEEP
826 void acpi_resume_power_resources(void)
827 {
828 struct acpi_power_resource *resource;
829
830 mutex_lock(&power_resource_list_lock);
831
832 list_for_each_entry(resource, &acpi_power_resource_list, list_node) {
833 int result, state;
834
835 mutex_lock(&resource->resource_lock);
836
837 result = acpi_power_get_state(resource->device.handle, &state);
838 if (result) {
839 mutex_unlock(&resource->resource_lock);
840 continue;
841 }
842
843 if (state == ACPI_POWER_RESOURCE_STATE_OFF
844 && resource->ref_count) {
845 dev_info(&resource->device.dev, "Turning ON\n");
846 __acpi_power_on(resource);
847 } else if (state == ACPI_POWER_RESOURCE_STATE_ON
848 && !resource->ref_count) {
849 dev_info(&resource->device.dev, "Turning OFF\n");
850 __acpi_power_off(resource);
851 }
852
853 mutex_unlock(&resource->resource_lock);
854 }
855
856 mutex_unlock(&power_resource_list_lock);
857 }
858 #endif
This page took 0.048445 seconds and 5 git commands to generate.