Merge remote-tracking branch 'spi/topic/build' into spi-next
[deliverable/linux.git] / drivers / acpi / processor_idle.c
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
11 *
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27 *
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29 */
30
31 #include <linux/module.h>
32 #include <linux/acpi.h>
33 #include <linux/dmi.h>
34 #include <linux/sched.h> /* need_resched() */
35 #include <linux/clockchips.h>
36 #include <linux/cpuidle.h>
37 #include <linux/syscore_ops.h>
38
39 /*
40 * Include the apic definitions for x86 to have the APIC timer related defines
41 * available also for UP (on SMP it gets magically included via linux/smp.h).
42 * asm/acpi.h is not an option, as it would require more include magic. Also
43 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
44 */
45 #ifdef CONFIG_X86
46 #include <asm/apic.h>
47 #endif
48
49 #include <acpi/acpi_bus.h>
50 #include <acpi/processor.h>
51
52 #define PREFIX "ACPI: "
53
54 #define ACPI_PROCESSOR_CLASS "processor"
55 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
56 ACPI_MODULE_NAME("processor_idle");
57
58 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
59 module_param(max_cstate, uint, 0000);
60 static unsigned int nocst __read_mostly;
61 module_param(nocst, uint, 0000);
62 static int bm_check_disable __read_mostly;
63 module_param(bm_check_disable, uint, 0000);
64
65 static unsigned int latency_factor __read_mostly = 2;
66 module_param(latency_factor, uint, 0644);
67
68 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
69
70 static DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX],
71 acpi_cstate);
72
73 static int disabled_by_idle_boot_param(void)
74 {
75 return boot_option_idle_override == IDLE_POLL ||
76 boot_option_idle_override == IDLE_HALT;
77 }
78
79 /*
80 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
81 * For now disable this. Probably a bug somewhere else.
82 *
83 * To skip this limit, boot/load with a large max_cstate limit.
84 */
85 static int set_max_cstate(const struct dmi_system_id *id)
86 {
87 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
88 return 0;
89
90 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
91 " Override with \"processor.max_cstate=%d\"\n", id->ident,
92 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
93
94 max_cstate = (long)id->driver_data;
95
96 return 0;
97 }
98
99 static struct dmi_system_id processor_power_dmi_table[] = {
100 { set_max_cstate, "Clevo 5600D", {
101 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
102 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
103 (void *)2},
104 { set_max_cstate, "Pavilion zv5000", {
105 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
106 DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
107 (void *)1},
108 { set_max_cstate, "Asus L8400B", {
109 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
110 DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
111 (void *)1},
112 {},
113 };
114
115
116 /*
117 * Callers should disable interrupts before the call and enable
118 * interrupts after return.
119 */
120 static void acpi_safe_halt(void)
121 {
122 current_thread_info()->status &= ~TS_POLLING;
123 /*
124 * TS_POLLING-cleared state must be visible before we
125 * test NEED_RESCHED:
126 */
127 smp_mb();
128 if (!need_resched()) {
129 safe_halt();
130 local_irq_disable();
131 }
132 current_thread_info()->status |= TS_POLLING;
133 }
134
135 #ifdef ARCH_APICTIMER_STOPS_ON_C3
136
137 /*
138 * Some BIOS implementations switch to C3 in the published C2 state.
139 * This seems to be a common problem on AMD boxen, but other vendors
140 * are affected too. We pick the most conservative approach: we assume
141 * that the local APIC stops in both C2 and C3.
142 */
143 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
144 struct acpi_processor_cx *cx)
145 {
146 struct acpi_processor_power *pwr = &pr->power;
147 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
148
149 if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
150 return;
151
152 if (amd_e400_c1e_detected)
153 type = ACPI_STATE_C1;
154
155 /*
156 * Check, if one of the previous states already marked the lapic
157 * unstable
158 */
159 if (pwr->timer_broadcast_on_state < state)
160 return;
161
162 if (cx->type >= type)
163 pr->power.timer_broadcast_on_state = state;
164 }
165
166 static void __lapic_timer_propagate_broadcast(void *arg)
167 {
168 struct acpi_processor *pr = (struct acpi_processor *) arg;
169 unsigned long reason;
170
171 reason = pr->power.timer_broadcast_on_state < INT_MAX ?
172 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
173
174 clockevents_notify(reason, &pr->id);
175 }
176
177 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
178 {
179 smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
180 (void *)pr, 1);
181 }
182
183 /* Power(C) State timer broadcast control */
184 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
185 struct acpi_processor_cx *cx,
186 int broadcast)
187 {
188 int state = cx - pr->power.states;
189
190 if (state >= pr->power.timer_broadcast_on_state) {
191 unsigned long reason;
192
193 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
194 CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
195 clockevents_notify(reason, &pr->id);
196 }
197 }
198
199 #else
200
201 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
202 struct acpi_processor_cx *cstate) { }
203 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
204 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
205 struct acpi_processor_cx *cx,
206 int broadcast)
207 {
208 }
209
210 #endif
211
212 #ifdef CONFIG_PM_SLEEP
213 static u32 saved_bm_rld;
214
215 static int acpi_processor_suspend(void)
216 {
217 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
218 return 0;
219 }
220
221 static void acpi_processor_resume(void)
222 {
223 u32 resumed_bm_rld;
224
225 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
226 if (resumed_bm_rld == saved_bm_rld)
227 return;
228
229 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
230 }
231
232 static struct syscore_ops acpi_processor_syscore_ops = {
233 .suspend = acpi_processor_suspend,
234 .resume = acpi_processor_resume,
235 };
236
237 void acpi_processor_syscore_init(void)
238 {
239 register_syscore_ops(&acpi_processor_syscore_ops);
240 }
241
242 void acpi_processor_syscore_exit(void)
243 {
244 unregister_syscore_ops(&acpi_processor_syscore_ops);
245 }
246 #endif /* CONFIG_PM_SLEEP */
247
248 #if defined(CONFIG_X86)
249 static void tsc_check_state(int state)
250 {
251 switch (boot_cpu_data.x86_vendor) {
252 case X86_VENDOR_AMD:
253 case X86_VENDOR_INTEL:
254 /*
255 * AMD Fam10h TSC will tick in all
256 * C/P/S0/S1 states when this bit is set.
257 */
258 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
259 return;
260
261 /*FALL THROUGH*/
262 default:
263 /* TSC could halt in idle, so notify users */
264 if (state > ACPI_STATE_C1)
265 mark_tsc_unstable("TSC halts in idle");
266 }
267 }
268 #else
269 static void tsc_check_state(int state) { return; }
270 #endif
271
272 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
273 {
274
275 if (!pr)
276 return -EINVAL;
277
278 if (!pr->pblk)
279 return -ENODEV;
280
281 /* if info is obtained from pblk/fadt, type equals state */
282 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
283 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
284
285 #ifndef CONFIG_HOTPLUG_CPU
286 /*
287 * Check for P_LVL2_UP flag before entering C2 and above on
288 * an SMP system.
289 */
290 if ((num_online_cpus() > 1) &&
291 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
292 return -ENODEV;
293 #endif
294
295 /* determine C2 and C3 address from pblk */
296 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
297 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
298
299 /* determine latencies from FADT */
300 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
301 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
302
303 /*
304 * FADT specified C2 latency must be less than or equal to
305 * 100 microseconds.
306 */
307 if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
308 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
309 "C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
310 /* invalidate C2 */
311 pr->power.states[ACPI_STATE_C2].address = 0;
312 }
313
314 /*
315 * FADT supplied C3 latency must be less than or equal to
316 * 1000 microseconds.
317 */
318 if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
319 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
320 "C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
321 /* invalidate C3 */
322 pr->power.states[ACPI_STATE_C3].address = 0;
323 }
324
325 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
326 "lvl2[0x%08x] lvl3[0x%08x]\n",
327 pr->power.states[ACPI_STATE_C2].address,
328 pr->power.states[ACPI_STATE_C3].address));
329
330 return 0;
331 }
332
333 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
334 {
335 if (!pr->power.states[ACPI_STATE_C1].valid) {
336 /* set the first C-State to C1 */
337 /* all processors need to support C1 */
338 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
339 pr->power.states[ACPI_STATE_C1].valid = 1;
340 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
341 }
342 /* the C0 state only exists as a filler in our array */
343 pr->power.states[ACPI_STATE_C0].valid = 1;
344 return 0;
345 }
346
347 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
348 {
349 acpi_status status = 0;
350 u64 count;
351 int current_count;
352 int i;
353 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
354 union acpi_object *cst;
355
356
357 if (nocst)
358 return -ENODEV;
359
360 current_count = 0;
361
362 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
363 if (ACPI_FAILURE(status)) {
364 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
365 return -ENODEV;
366 }
367
368 cst = buffer.pointer;
369
370 /* There must be at least 2 elements */
371 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
372 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
373 status = -EFAULT;
374 goto end;
375 }
376
377 count = cst->package.elements[0].integer.value;
378
379 /* Validate number of power states. */
380 if (count < 1 || count != cst->package.count - 1) {
381 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
382 status = -EFAULT;
383 goto end;
384 }
385
386 /* Tell driver that at least _CST is supported. */
387 pr->flags.has_cst = 1;
388
389 for (i = 1; i <= count; i++) {
390 union acpi_object *element;
391 union acpi_object *obj;
392 struct acpi_power_register *reg;
393 struct acpi_processor_cx cx;
394
395 memset(&cx, 0, sizeof(cx));
396
397 element = &(cst->package.elements[i]);
398 if (element->type != ACPI_TYPE_PACKAGE)
399 continue;
400
401 if (element->package.count != 4)
402 continue;
403
404 obj = &(element->package.elements[0]);
405
406 if (obj->type != ACPI_TYPE_BUFFER)
407 continue;
408
409 reg = (struct acpi_power_register *)obj->buffer.pointer;
410
411 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
412 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
413 continue;
414
415 /* There should be an easy way to extract an integer... */
416 obj = &(element->package.elements[1]);
417 if (obj->type != ACPI_TYPE_INTEGER)
418 continue;
419
420 cx.type = obj->integer.value;
421 /*
422 * Some buggy BIOSes won't list C1 in _CST -
423 * Let acpi_processor_get_power_info_default() handle them later
424 */
425 if (i == 1 && cx.type != ACPI_STATE_C1)
426 current_count++;
427
428 cx.address = reg->address;
429 cx.index = current_count + 1;
430
431 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
432 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
433 if (acpi_processor_ffh_cstate_probe
434 (pr->id, &cx, reg) == 0) {
435 cx.entry_method = ACPI_CSTATE_FFH;
436 } else if (cx.type == ACPI_STATE_C1) {
437 /*
438 * C1 is a special case where FIXED_HARDWARE
439 * can be handled in non-MWAIT way as well.
440 * In that case, save this _CST entry info.
441 * Otherwise, ignore this info and continue.
442 */
443 cx.entry_method = ACPI_CSTATE_HALT;
444 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
445 } else {
446 continue;
447 }
448 if (cx.type == ACPI_STATE_C1 &&
449 (boot_option_idle_override == IDLE_NOMWAIT)) {
450 /*
451 * In most cases the C1 space_id obtained from
452 * _CST object is FIXED_HARDWARE access mode.
453 * But when the option of idle=halt is added,
454 * the entry_method type should be changed from
455 * CSTATE_FFH to CSTATE_HALT.
456 * When the option of idle=nomwait is added,
457 * the C1 entry_method type should be
458 * CSTATE_HALT.
459 */
460 cx.entry_method = ACPI_CSTATE_HALT;
461 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
462 }
463 } else {
464 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
465 cx.address);
466 }
467
468 if (cx.type == ACPI_STATE_C1) {
469 cx.valid = 1;
470 }
471
472 obj = &(element->package.elements[2]);
473 if (obj->type != ACPI_TYPE_INTEGER)
474 continue;
475
476 cx.latency = obj->integer.value;
477
478 obj = &(element->package.elements[3]);
479 if (obj->type != ACPI_TYPE_INTEGER)
480 continue;
481
482 current_count++;
483 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
484
485 /*
486 * We support total ACPI_PROCESSOR_MAX_POWER - 1
487 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
488 */
489 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
490 printk(KERN_WARNING
491 "Limiting number of power states to max (%d)\n",
492 ACPI_PROCESSOR_MAX_POWER);
493 printk(KERN_WARNING
494 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
495 break;
496 }
497 }
498
499 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
500 current_count));
501
502 /* Validate number of power states discovered */
503 if (current_count < 2)
504 status = -EFAULT;
505
506 end:
507 kfree(buffer.pointer);
508
509 return status;
510 }
511
512 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
513 struct acpi_processor_cx *cx)
514 {
515 static int bm_check_flag = -1;
516 static int bm_control_flag = -1;
517
518
519 if (!cx->address)
520 return;
521
522 /*
523 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
524 * DMA transfers are used by any ISA device to avoid livelock.
525 * Note that we could disable Type-F DMA (as recommended by
526 * the erratum), but this is known to disrupt certain ISA
527 * devices thus we take the conservative approach.
528 */
529 else if (errata.piix4.fdma) {
530 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
531 "C3 not supported on PIIX4 with Type-F DMA\n"));
532 return;
533 }
534
535 /* All the logic here assumes flags.bm_check is same across all CPUs */
536 if (bm_check_flag == -1) {
537 /* Determine whether bm_check is needed based on CPU */
538 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
539 bm_check_flag = pr->flags.bm_check;
540 bm_control_flag = pr->flags.bm_control;
541 } else {
542 pr->flags.bm_check = bm_check_flag;
543 pr->flags.bm_control = bm_control_flag;
544 }
545
546 if (pr->flags.bm_check) {
547 if (!pr->flags.bm_control) {
548 if (pr->flags.has_cst != 1) {
549 /* bus mastering control is necessary */
550 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
551 "C3 support requires BM control\n"));
552 return;
553 } else {
554 /* Here we enter C3 without bus mastering */
555 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
556 "C3 support without BM control\n"));
557 }
558 }
559 } else {
560 /*
561 * WBINVD should be set in fadt, for C3 state to be
562 * supported on when bm_check is not required.
563 */
564 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
565 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
566 "Cache invalidation should work properly"
567 " for C3 to be enabled on SMP systems\n"));
568 return;
569 }
570 }
571
572 /*
573 * Otherwise we've met all of our C3 requirements.
574 * Normalize the C3 latency to expidite policy. Enable
575 * checking of bus mastering status (bm_check) so we can
576 * use this in our C3 policy
577 */
578 cx->valid = 1;
579
580 /*
581 * On older chipsets, BM_RLD needs to be set
582 * in order for Bus Master activity to wake the
583 * system from C3. Newer chipsets handle DMA
584 * during C3 automatically and BM_RLD is a NOP.
585 * In either case, the proper way to
586 * handle BM_RLD is to set it and leave it set.
587 */
588 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
589
590 return;
591 }
592
593 static int acpi_processor_power_verify(struct acpi_processor *pr)
594 {
595 unsigned int i;
596 unsigned int working = 0;
597
598 pr->power.timer_broadcast_on_state = INT_MAX;
599
600 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
601 struct acpi_processor_cx *cx = &pr->power.states[i];
602
603 switch (cx->type) {
604 case ACPI_STATE_C1:
605 cx->valid = 1;
606 break;
607
608 case ACPI_STATE_C2:
609 if (!cx->address)
610 break;
611 cx->valid = 1;
612 break;
613
614 case ACPI_STATE_C3:
615 acpi_processor_power_verify_c3(pr, cx);
616 break;
617 }
618 if (!cx->valid)
619 continue;
620
621 lapic_timer_check_state(i, pr, cx);
622 tsc_check_state(cx->type);
623 working++;
624 }
625
626 lapic_timer_propagate_broadcast(pr);
627
628 return (working);
629 }
630
631 static int acpi_processor_get_power_info(struct acpi_processor *pr)
632 {
633 unsigned int i;
634 int result;
635
636
637 /* NOTE: the idle thread may not be running while calling
638 * this function */
639
640 /* Zero initialize all the C-states info. */
641 memset(pr->power.states, 0, sizeof(pr->power.states));
642
643 result = acpi_processor_get_power_info_cst(pr);
644 if (result == -ENODEV)
645 result = acpi_processor_get_power_info_fadt(pr);
646
647 if (result)
648 return result;
649
650 acpi_processor_get_power_info_default(pr);
651
652 pr->power.count = acpi_processor_power_verify(pr);
653
654 /*
655 * if one state of type C2 or C3 is available, mark this
656 * CPU as being "idle manageable"
657 */
658 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
659 if (pr->power.states[i].valid) {
660 pr->power.count = i;
661 if (pr->power.states[i].type >= ACPI_STATE_C2)
662 pr->flags.power = 1;
663 }
664 }
665
666 return 0;
667 }
668
669 /**
670 * acpi_idle_bm_check - checks if bus master activity was detected
671 */
672 static int acpi_idle_bm_check(void)
673 {
674 u32 bm_status = 0;
675
676 if (bm_check_disable)
677 return 0;
678
679 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
680 if (bm_status)
681 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
682 /*
683 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
684 * the true state of bus mastering activity; forcing us to
685 * manually check the BMIDEA bit of each IDE channel.
686 */
687 else if (errata.piix4.bmisx) {
688 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
689 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
690 bm_status = 1;
691 }
692 return bm_status;
693 }
694
695 /**
696 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
697 * @cx: cstate data
698 *
699 * Caller disables interrupt before call and enables interrupt after return.
700 */
701 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
702 {
703 /* Don't trace irqs off for idle */
704 stop_critical_timings();
705 if (cx->entry_method == ACPI_CSTATE_FFH) {
706 /* Call into architectural FFH based C-state */
707 acpi_processor_ffh_cstate_enter(cx);
708 } else if (cx->entry_method == ACPI_CSTATE_HALT) {
709 acpi_safe_halt();
710 } else {
711 /* IO port based C-state */
712 inb(cx->address);
713 /* Dummy wait op - must do something useless after P_LVL2 read
714 because chipsets cannot guarantee that STPCLK# signal
715 gets asserted in time to freeze execution properly. */
716 inl(acpi_gbl_FADT.xpm_timer_block.address);
717 }
718 start_critical_timings();
719 }
720
721 /**
722 * acpi_idle_enter_c1 - enters an ACPI C1 state-type
723 * @dev: the target CPU
724 * @drv: cpuidle driver containing cpuidle state info
725 * @index: index of target state
726 *
727 * This is equivalent to the HALT instruction.
728 */
729 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
730 struct cpuidle_driver *drv, int index)
731 {
732 struct acpi_processor *pr;
733 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
734
735 pr = __this_cpu_read(processors);
736
737 if (unlikely(!pr))
738 return -EINVAL;
739
740 lapic_timer_state_broadcast(pr, cx, 1);
741 acpi_idle_do_entry(cx);
742
743 lapic_timer_state_broadcast(pr, cx, 0);
744
745 return index;
746 }
747
748
749 /**
750 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
751 * @dev: the target CPU
752 * @index: the index of suggested state
753 */
754 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
755 {
756 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
757
758 ACPI_FLUSH_CPU_CACHE();
759
760 while (1) {
761
762 if (cx->entry_method == ACPI_CSTATE_HALT)
763 safe_halt();
764 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
765 inb(cx->address);
766 /* See comment in acpi_idle_do_entry() */
767 inl(acpi_gbl_FADT.xpm_timer_block.address);
768 } else
769 return -ENODEV;
770 }
771
772 /* Never reached */
773 return 0;
774 }
775
776 /**
777 * acpi_idle_enter_simple - enters an ACPI state without BM handling
778 * @dev: the target CPU
779 * @drv: cpuidle driver with cpuidle state information
780 * @index: the index of suggested state
781 */
782 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
783 struct cpuidle_driver *drv, int index)
784 {
785 struct acpi_processor *pr;
786 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
787
788 pr = __this_cpu_read(processors);
789
790 if (unlikely(!pr))
791 return -EINVAL;
792
793 if (cx->entry_method != ACPI_CSTATE_FFH) {
794 current_thread_info()->status &= ~TS_POLLING;
795 /*
796 * TS_POLLING-cleared state must be visible before we test
797 * NEED_RESCHED:
798 */
799 smp_mb();
800
801 if (unlikely(need_resched())) {
802 current_thread_info()->status |= TS_POLLING;
803 return -EINVAL;
804 }
805 }
806
807 /*
808 * Must be done before busmaster disable as we might need to
809 * access HPET !
810 */
811 lapic_timer_state_broadcast(pr, cx, 1);
812
813 if (cx->type == ACPI_STATE_C3)
814 ACPI_FLUSH_CPU_CACHE();
815
816 /* Tell the scheduler that we are going deep-idle: */
817 sched_clock_idle_sleep_event();
818 acpi_idle_do_entry(cx);
819
820 sched_clock_idle_wakeup_event(0);
821
822 if (cx->entry_method != ACPI_CSTATE_FFH)
823 current_thread_info()->status |= TS_POLLING;
824
825 lapic_timer_state_broadcast(pr, cx, 0);
826 return index;
827 }
828
829 static int c3_cpu_count;
830 static DEFINE_RAW_SPINLOCK(c3_lock);
831
832 /**
833 * acpi_idle_enter_bm - enters C3 with proper BM handling
834 * @dev: the target CPU
835 * @drv: cpuidle driver containing state data
836 * @index: the index of suggested state
837 *
838 * If BM is detected, the deepest non-C3 idle state is entered instead.
839 */
840 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
841 struct cpuidle_driver *drv, int index)
842 {
843 struct acpi_processor *pr;
844 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
845
846 pr = __this_cpu_read(processors);
847
848 if (unlikely(!pr))
849 return -EINVAL;
850
851 if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
852 if (drv->safe_state_index >= 0) {
853 return drv->states[drv->safe_state_index].enter(dev,
854 drv, drv->safe_state_index);
855 } else {
856 acpi_safe_halt();
857 return -EBUSY;
858 }
859 }
860
861 if (cx->entry_method != ACPI_CSTATE_FFH) {
862 current_thread_info()->status &= ~TS_POLLING;
863 /*
864 * TS_POLLING-cleared state must be visible before we test
865 * NEED_RESCHED:
866 */
867 smp_mb();
868
869 if (unlikely(need_resched())) {
870 current_thread_info()->status |= TS_POLLING;
871 return -EINVAL;
872 }
873 }
874
875 acpi_unlazy_tlb(smp_processor_id());
876
877 /* Tell the scheduler that we are going deep-idle: */
878 sched_clock_idle_sleep_event();
879 /*
880 * Must be done before busmaster disable as we might need to
881 * access HPET !
882 */
883 lapic_timer_state_broadcast(pr, cx, 1);
884
885 /*
886 * disable bus master
887 * bm_check implies we need ARB_DIS
888 * !bm_check implies we need cache flush
889 * bm_control implies whether we can do ARB_DIS
890 *
891 * That leaves a case where bm_check is set and bm_control is
892 * not set. In that case we cannot do much, we enter C3
893 * without doing anything.
894 */
895 if (pr->flags.bm_check && pr->flags.bm_control) {
896 raw_spin_lock(&c3_lock);
897 c3_cpu_count++;
898 /* Disable bus master arbitration when all CPUs are in C3 */
899 if (c3_cpu_count == num_online_cpus())
900 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
901 raw_spin_unlock(&c3_lock);
902 } else if (!pr->flags.bm_check) {
903 ACPI_FLUSH_CPU_CACHE();
904 }
905
906 acpi_idle_do_entry(cx);
907
908 /* Re-enable bus master arbitration */
909 if (pr->flags.bm_check && pr->flags.bm_control) {
910 raw_spin_lock(&c3_lock);
911 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
912 c3_cpu_count--;
913 raw_spin_unlock(&c3_lock);
914 }
915
916 sched_clock_idle_wakeup_event(0);
917
918 if (cx->entry_method != ACPI_CSTATE_FFH)
919 current_thread_info()->status |= TS_POLLING;
920
921 lapic_timer_state_broadcast(pr, cx, 0);
922 return index;
923 }
924
925 struct cpuidle_driver acpi_idle_driver = {
926 .name = "acpi_idle",
927 .owner = THIS_MODULE,
928 };
929
930 /**
931 * acpi_processor_setup_cpuidle_cx - prepares and configures CPUIDLE
932 * device i.e. per-cpu data
933 *
934 * @pr: the ACPI processor
935 * @dev : the cpuidle device
936 */
937 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
938 struct cpuidle_device *dev)
939 {
940 int i, count = CPUIDLE_DRIVER_STATE_START;
941 struct acpi_processor_cx *cx;
942
943 if (!pr->flags.power_setup_done)
944 return -EINVAL;
945
946 if (pr->flags.power == 0) {
947 return -EINVAL;
948 }
949
950 if (!dev)
951 return -EINVAL;
952
953 dev->cpu = pr->id;
954
955 if (max_cstate == 0)
956 max_cstate = 1;
957
958 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
959 cx = &pr->power.states[i];
960
961 if (!cx->valid)
962 continue;
963
964 #ifdef CONFIG_HOTPLUG_CPU
965 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
966 !pr->flags.has_cst &&
967 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
968 continue;
969 #endif
970 per_cpu(acpi_cstate[count], dev->cpu) = cx;
971
972 count++;
973 if (count == CPUIDLE_STATE_MAX)
974 break;
975 }
976
977 dev->state_count = count;
978
979 if (!count)
980 return -EINVAL;
981
982 return 0;
983 }
984
985 /**
986 * acpi_processor_setup_cpuidle states- prepares and configures cpuidle
987 * global state data i.e. idle routines
988 *
989 * @pr: the ACPI processor
990 */
991 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
992 {
993 int i, count = CPUIDLE_DRIVER_STATE_START;
994 struct acpi_processor_cx *cx;
995 struct cpuidle_state *state;
996 struct cpuidle_driver *drv = &acpi_idle_driver;
997
998 if (!pr->flags.power_setup_done)
999 return -EINVAL;
1000
1001 if (pr->flags.power == 0)
1002 return -EINVAL;
1003
1004 drv->safe_state_index = -1;
1005 for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
1006 drv->states[i].name[0] = '\0';
1007 drv->states[i].desc[0] = '\0';
1008 }
1009
1010 if (max_cstate == 0)
1011 max_cstate = 1;
1012
1013 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1014 cx = &pr->power.states[i];
1015
1016 if (!cx->valid)
1017 continue;
1018
1019 #ifdef CONFIG_HOTPLUG_CPU
1020 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1021 !pr->flags.has_cst &&
1022 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1023 continue;
1024 #endif
1025
1026 state = &drv->states[count];
1027 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1028 strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1029 state->exit_latency = cx->latency;
1030 state->target_residency = cx->latency * latency_factor;
1031
1032 state->flags = 0;
1033 switch (cx->type) {
1034 case ACPI_STATE_C1:
1035 if (cx->entry_method == ACPI_CSTATE_FFH)
1036 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1037
1038 state->enter = acpi_idle_enter_c1;
1039 state->enter_dead = acpi_idle_play_dead;
1040 drv->safe_state_index = count;
1041 break;
1042
1043 case ACPI_STATE_C2:
1044 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1045 state->enter = acpi_idle_enter_simple;
1046 state->enter_dead = acpi_idle_play_dead;
1047 drv->safe_state_index = count;
1048 break;
1049
1050 case ACPI_STATE_C3:
1051 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1052 state->enter = pr->flags.bm_check ?
1053 acpi_idle_enter_bm :
1054 acpi_idle_enter_simple;
1055 break;
1056 }
1057
1058 count++;
1059 if (count == CPUIDLE_STATE_MAX)
1060 break;
1061 }
1062
1063 drv->state_count = count;
1064
1065 if (!count)
1066 return -EINVAL;
1067
1068 return 0;
1069 }
1070
1071 int acpi_processor_hotplug(struct acpi_processor *pr)
1072 {
1073 int ret = 0;
1074 struct cpuidle_device *dev;
1075
1076 if (disabled_by_idle_boot_param())
1077 return 0;
1078
1079 if (!pr)
1080 return -EINVAL;
1081
1082 if (nocst) {
1083 return -ENODEV;
1084 }
1085
1086 if (!pr->flags.power_setup_done)
1087 return -ENODEV;
1088
1089 dev = per_cpu(acpi_cpuidle_device, pr->id);
1090 cpuidle_pause_and_lock();
1091 cpuidle_disable_device(dev);
1092 acpi_processor_get_power_info(pr);
1093 if (pr->flags.power) {
1094 acpi_processor_setup_cpuidle_cx(pr, dev);
1095 ret = cpuidle_enable_device(dev);
1096 }
1097 cpuidle_resume_and_unlock();
1098
1099 return ret;
1100 }
1101
1102 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1103 {
1104 int cpu;
1105 struct acpi_processor *_pr;
1106 struct cpuidle_device *dev;
1107
1108 if (disabled_by_idle_boot_param())
1109 return 0;
1110
1111 if (!pr)
1112 return -EINVAL;
1113
1114 if (nocst)
1115 return -ENODEV;
1116
1117 if (!pr->flags.power_setup_done)
1118 return -ENODEV;
1119
1120 /*
1121 * FIXME: Design the ACPI notification to make it once per
1122 * system instead of once per-cpu. This condition is a hack
1123 * to make the code that updates C-States be called once.
1124 */
1125
1126 if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1127
1128 cpuidle_pause_and_lock();
1129 /* Protect against cpu-hotplug */
1130 get_online_cpus();
1131
1132 /* Disable all cpuidle devices */
1133 for_each_online_cpu(cpu) {
1134 _pr = per_cpu(processors, cpu);
1135 if (!_pr || !_pr->flags.power_setup_done)
1136 continue;
1137 dev = per_cpu(acpi_cpuidle_device, cpu);
1138 cpuidle_disable_device(dev);
1139 }
1140
1141 /* Populate Updated C-state information */
1142 acpi_processor_get_power_info(pr);
1143 acpi_processor_setup_cpuidle_states(pr);
1144
1145 /* Enable all cpuidle devices */
1146 for_each_online_cpu(cpu) {
1147 _pr = per_cpu(processors, cpu);
1148 if (!_pr || !_pr->flags.power_setup_done)
1149 continue;
1150 acpi_processor_get_power_info(_pr);
1151 if (_pr->flags.power) {
1152 dev = per_cpu(acpi_cpuidle_device, cpu);
1153 acpi_processor_setup_cpuidle_cx(_pr, dev);
1154 cpuidle_enable_device(dev);
1155 }
1156 }
1157 put_online_cpus();
1158 cpuidle_resume_and_unlock();
1159 }
1160
1161 return 0;
1162 }
1163
1164 static int acpi_processor_registered;
1165
1166 int acpi_processor_power_init(struct acpi_processor *pr)
1167 {
1168 acpi_status status = 0;
1169 int retval;
1170 struct cpuidle_device *dev;
1171 static int first_run;
1172
1173 if (disabled_by_idle_boot_param())
1174 return 0;
1175
1176 if (!first_run) {
1177 dmi_check_system(processor_power_dmi_table);
1178 max_cstate = acpi_processor_cstate_check(max_cstate);
1179 if (max_cstate < ACPI_C_STATES_MAX)
1180 printk(KERN_NOTICE
1181 "ACPI: processor limited to max C-state %d\n",
1182 max_cstate);
1183 first_run++;
1184 }
1185
1186 if (!pr)
1187 return -EINVAL;
1188
1189 if (acpi_gbl_FADT.cst_control && !nocst) {
1190 status =
1191 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1192 if (ACPI_FAILURE(status)) {
1193 ACPI_EXCEPTION((AE_INFO, status,
1194 "Notifying BIOS of _CST ability failed"));
1195 }
1196 }
1197
1198 acpi_processor_get_power_info(pr);
1199 pr->flags.power_setup_done = 1;
1200
1201 /*
1202 * Install the idle handler if processor power management is supported.
1203 * Note that we use previously set idle handler will be used on
1204 * platforms that only support C1.
1205 */
1206 if (pr->flags.power) {
1207 /* Register acpi_idle_driver if not already registered */
1208 if (!acpi_processor_registered) {
1209 acpi_processor_setup_cpuidle_states(pr);
1210 retval = cpuidle_register_driver(&acpi_idle_driver);
1211 if (retval)
1212 return retval;
1213 printk(KERN_DEBUG "ACPI: %s registered with cpuidle\n",
1214 acpi_idle_driver.name);
1215 }
1216
1217 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1218 if (!dev)
1219 return -ENOMEM;
1220 per_cpu(acpi_cpuidle_device, pr->id) = dev;
1221
1222 acpi_processor_setup_cpuidle_cx(pr, dev);
1223
1224 /* Register per-cpu cpuidle_device. Cpuidle driver
1225 * must already be registered before registering device
1226 */
1227 retval = cpuidle_register_device(dev);
1228 if (retval) {
1229 if (acpi_processor_registered == 0)
1230 cpuidle_unregister_driver(&acpi_idle_driver);
1231 return retval;
1232 }
1233 acpi_processor_registered++;
1234 }
1235 return 0;
1236 }
1237
1238 int acpi_processor_power_exit(struct acpi_processor *pr)
1239 {
1240 struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1241
1242 if (disabled_by_idle_boot_param())
1243 return 0;
1244
1245 if (pr->flags.power) {
1246 cpuidle_unregister_device(dev);
1247 acpi_processor_registered--;
1248 if (acpi_processor_registered == 0)
1249 cpuidle_unregister_driver(&acpi_idle_driver);
1250 }
1251
1252 pr->flags.power_setup_done = 0;
1253 return 0;
1254 }
This page took 0.116555 seconds and 5 git commands to generate.