Merge commit 'v2.6.28-rc2' into x86/pci-ioapic-boot-irq-quirks
[deliverable/linux.git] / drivers / acpi / toshiba_acpi.c
1 /*
2 * toshiba_acpi.c - Toshiba Laptop ACPI Extras
3 *
4 *
5 * Copyright (C) 2002-2004 John Belmonte
6 * Copyright (C) 2008 Philip Langdale
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 *
23 * The devolpment page for this driver is located at
24 * http://memebeam.org/toys/ToshibaAcpiDriver.
25 *
26 * Credits:
27 * Jonathan A. Buzzard - Toshiba HCI info, and critical tips on reverse
28 * engineering the Windows drivers
29 * Yasushi Nagato - changes for linux kernel 2.4 -> 2.5
30 * Rob Miller - TV out and hotkeys help
31 *
32 *
33 * TODO
34 *
35 */
36
37 #define TOSHIBA_ACPI_VERSION "0.19"
38 #define PROC_INTERFACE_VERSION 1
39
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/init.h>
43 #include <linux/types.h>
44 #include <linux/proc_fs.h>
45 #include <linux/backlight.h>
46 #include <linux/platform_device.h>
47 #include <linux/rfkill.h>
48 #include <linux/input-polldev.h>
49
50 #include <asm/uaccess.h>
51
52 #include <acpi/acpi_drivers.h>
53
54 MODULE_AUTHOR("John Belmonte");
55 MODULE_DESCRIPTION("Toshiba Laptop ACPI Extras Driver");
56 MODULE_LICENSE("GPL");
57
58 #define MY_LOGPREFIX "toshiba_acpi: "
59 #define MY_ERR KERN_ERR MY_LOGPREFIX
60 #define MY_NOTICE KERN_NOTICE MY_LOGPREFIX
61 #define MY_INFO KERN_INFO MY_LOGPREFIX
62
63 /* Toshiba ACPI method paths */
64 #define METHOD_LCD_BRIGHTNESS "\\_SB_.PCI0.VGA_.LCD_._BCM"
65 #define METHOD_HCI_1 "\\_SB_.VALD.GHCI"
66 #define METHOD_HCI_2 "\\_SB_.VALZ.GHCI"
67 #define METHOD_VIDEO_OUT "\\_SB_.VALX.DSSX"
68
69 /* Toshiba HCI interface definitions
70 *
71 * HCI is Toshiba's "Hardware Control Interface" which is supposed to
72 * be uniform across all their models. Ideally we would just call
73 * dedicated ACPI methods instead of using this primitive interface.
74 * However the ACPI methods seem to be incomplete in some areas (for
75 * example they allow setting, but not reading, the LCD brightness value),
76 * so this is still useful.
77 */
78
79 #define HCI_WORDS 6
80
81 /* operations */
82 #define HCI_SET 0xff00
83 #define HCI_GET 0xfe00
84
85 /* return codes */
86 #define HCI_SUCCESS 0x0000
87 #define HCI_FAILURE 0x1000
88 #define HCI_NOT_SUPPORTED 0x8000
89 #define HCI_EMPTY 0x8c00
90
91 /* registers */
92 #define HCI_FAN 0x0004
93 #define HCI_SYSTEM_EVENT 0x0016
94 #define HCI_VIDEO_OUT 0x001c
95 #define HCI_HOTKEY_EVENT 0x001e
96 #define HCI_LCD_BRIGHTNESS 0x002a
97 #define HCI_WIRELESS 0x0056
98
99 /* field definitions */
100 #define HCI_LCD_BRIGHTNESS_BITS 3
101 #define HCI_LCD_BRIGHTNESS_SHIFT (16-HCI_LCD_BRIGHTNESS_BITS)
102 #define HCI_LCD_BRIGHTNESS_LEVELS (1 << HCI_LCD_BRIGHTNESS_BITS)
103 #define HCI_VIDEO_OUT_LCD 0x1
104 #define HCI_VIDEO_OUT_CRT 0x2
105 #define HCI_VIDEO_OUT_TV 0x4
106 #define HCI_WIRELESS_KILL_SWITCH 0x01
107 #define HCI_WIRELESS_BT_PRESENT 0x0f
108 #define HCI_WIRELESS_BT_ATTACH 0x40
109 #define HCI_WIRELESS_BT_POWER 0x80
110
111 static const struct acpi_device_id toshiba_device_ids[] = {
112 {"TOS6200", 0},
113 {"TOS6208", 0},
114 {"TOS1900", 0},
115 {"", 0},
116 };
117 MODULE_DEVICE_TABLE(acpi, toshiba_device_ids);
118
119 /* utility
120 */
121
122 static __inline__ void _set_bit(u32 * word, u32 mask, int value)
123 {
124 *word = (*word & ~mask) | (mask * value);
125 }
126
127 /* acpi interface wrappers
128 */
129
130 static int is_valid_acpi_path(const char *methodName)
131 {
132 acpi_handle handle;
133 acpi_status status;
134
135 status = acpi_get_handle(NULL, (char *)methodName, &handle);
136 return !ACPI_FAILURE(status);
137 }
138
139 static int write_acpi_int(const char *methodName, int val)
140 {
141 struct acpi_object_list params;
142 union acpi_object in_objs[1];
143 acpi_status status;
144
145 params.count = ARRAY_SIZE(in_objs);
146 params.pointer = in_objs;
147 in_objs[0].type = ACPI_TYPE_INTEGER;
148 in_objs[0].integer.value = val;
149
150 status = acpi_evaluate_object(NULL, (char *)methodName, &params, NULL);
151 return (status == AE_OK);
152 }
153
154 #if 0
155 static int read_acpi_int(const char *methodName, int *pVal)
156 {
157 struct acpi_buffer results;
158 union acpi_object out_objs[1];
159 acpi_status status;
160
161 results.length = sizeof(out_objs);
162 results.pointer = out_objs;
163
164 status = acpi_evaluate_object(0, (char *)methodName, 0, &results);
165 *pVal = out_objs[0].integer.value;
166
167 return (status == AE_OK) && (out_objs[0].type == ACPI_TYPE_INTEGER);
168 }
169 #endif
170
171 static const char *method_hci /*= 0*/ ;
172
173 /* Perform a raw HCI call. Here we don't care about input or output buffer
174 * format.
175 */
176 static acpi_status hci_raw(const u32 in[HCI_WORDS], u32 out[HCI_WORDS])
177 {
178 struct acpi_object_list params;
179 union acpi_object in_objs[HCI_WORDS];
180 struct acpi_buffer results;
181 union acpi_object out_objs[HCI_WORDS + 1];
182 acpi_status status;
183 int i;
184
185 params.count = HCI_WORDS;
186 params.pointer = in_objs;
187 for (i = 0; i < HCI_WORDS; ++i) {
188 in_objs[i].type = ACPI_TYPE_INTEGER;
189 in_objs[i].integer.value = in[i];
190 }
191
192 results.length = sizeof(out_objs);
193 results.pointer = out_objs;
194
195 status = acpi_evaluate_object(NULL, (char *)method_hci, &params,
196 &results);
197 if ((status == AE_OK) && (out_objs->package.count <= HCI_WORDS)) {
198 for (i = 0; i < out_objs->package.count; ++i) {
199 out[i] = out_objs->package.elements[i].integer.value;
200 }
201 }
202
203 return status;
204 }
205
206 /* common hci tasks (get or set one or two value)
207 *
208 * In addition to the ACPI status, the HCI system returns a result which
209 * may be useful (such as "not supported").
210 */
211
212 static acpi_status hci_write1(u32 reg, u32 in1, u32 * result)
213 {
214 u32 in[HCI_WORDS] = { HCI_SET, reg, in1, 0, 0, 0 };
215 u32 out[HCI_WORDS];
216 acpi_status status = hci_raw(in, out);
217 *result = (status == AE_OK) ? out[0] : HCI_FAILURE;
218 return status;
219 }
220
221 static acpi_status hci_read1(u32 reg, u32 * out1, u32 * result)
222 {
223 u32 in[HCI_WORDS] = { HCI_GET, reg, 0, 0, 0, 0 };
224 u32 out[HCI_WORDS];
225 acpi_status status = hci_raw(in, out);
226 *out1 = out[2];
227 *result = (status == AE_OK) ? out[0] : HCI_FAILURE;
228 return status;
229 }
230
231 static acpi_status hci_write2(u32 reg, u32 in1, u32 in2, u32 *result)
232 {
233 u32 in[HCI_WORDS] = { HCI_SET, reg, in1, in2, 0, 0 };
234 u32 out[HCI_WORDS];
235 acpi_status status = hci_raw(in, out);
236 *result = (status == AE_OK) ? out[0] : HCI_FAILURE;
237 return status;
238 }
239
240 static acpi_status hci_read2(u32 reg, u32 *out1, u32 *out2, u32 *result)
241 {
242 u32 in[HCI_WORDS] = { HCI_GET, reg, *out1, *out2, 0, 0 };
243 u32 out[HCI_WORDS];
244 acpi_status status = hci_raw(in, out);
245 *out1 = out[2];
246 *out2 = out[3];
247 *result = (status == AE_OK) ? out[0] : HCI_FAILURE;
248 return status;
249 }
250
251 struct toshiba_acpi_dev {
252 struct platform_device *p_dev;
253 struct rfkill *rfk_dev;
254 struct input_polled_dev *poll_dev;
255
256 const char *bt_name;
257 const char *rfk_name;
258
259 bool last_rfk_state;
260
261 struct mutex mutex;
262 };
263
264 static struct toshiba_acpi_dev toshiba_acpi = {
265 .bt_name = "Toshiba Bluetooth",
266 .rfk_name = "Toshiba RFKill Switch",
267 .last_rfk_state = false,
268 };
269
270 /* Bluetooth rfkill handlers */
271
272 static u32 hci_get_bt_present(bool *present)
273 {
274 u32 hci_result;
275 u32 value, value2;
276
277 value = 0;
278 value2 = 0;
279 hci_read2(HCI_WIRELESS, &value, &value2, &hci_result);
280 if (hci_result == HCI_SUCCESS)
281 *present = (value & HCI_WIRELESS_BT_PRESENT) ? true : false;
282
283 return hci_result;
284 }
285
286 static u32 hci_get_bt_on(bool *on)
287 {
288 u32 hci_result;
289 u32 value, value2;
290
291 value = 0;
292 value2 = 0x0001;
293 hci_read2(HCI_WIRELESS, &value, &value2, &hci_result);
294 if (hci_result == HCI_SUCCESS)
295 *on = (value & HCI_WIRELESS_BT_POWER) &&
296 (value & HCI_WIRELESS_BT_ATTACH);
297
298 return hci_result;
299 }
300
301 static u32 hci_get_radio_state(bool *radio_state)
302 {
303 u32 hci_result;
304 u32 value, value2;
305
306 value = 0;
307 value2 = 0x0001;
308 hci_read2(HCI_WIRELESS, &value, &value2, &hci_result);
309
310 *radio_state = value & HCI_WIRELESS_KILL_SWITCH;
311 return hci_result;
312 }
313
314 static int bt_rfkill_toggle_radio(void *data, enum rfkill_state state)
315 {
316 u32 result1, result2;
317 u32 value;
318 bool radio_state;
319 struct toshiba_acpi_dev *dev = data;
320
321 value = (state == RFKILL_STATE_UNBLOCKED);
322
323 if (hci_get_radio_state(&radio_state) != HCI_SUCCESS)
324 return -EFAULT;
325
326 switch (state) {
327 case RFKILL_STATE_UNBLOCKED:
328 if (!radio_state)
329 return -EPERM;
330 break;
331 case RFKILL_STATE_SOFT_BLOCKED:
332 break;
333 default:
334 return -EINVAL;
335 }
336
337 mutex_lock(&dev->mutex);
338 hci_write2(HCI_WIRELESS, value, HCI_WIRELESS_BT_POWER, &result1);
339 hci_write2(HCI_WIRELESS, value, HCI_WIRELESS_BT_ATTACH, &result2);
340 mutex_unlock(&dev->mutex);
341
342 if (result1 != HCI_SUCCESS || result2 != HCI_SUCCESS)
343 return -EFAULT;
344
345 return 0;
346 }
347
348 static void bt_poll_rfkill(struct input_polled_dev *poll_dev)
349 {
350 bool state_changed;
351 bool new_rfk_state;
352 bool value;
353 u32 hci_result;
354 struct toshiba_acpi_dev *dev = poll_dev->private;
355
356 hci_result = hci_get_radio_state(&value);
357 if (hci_result != HCI_SUCCESS)
358 return; /* Can't do anything useful */
359
360 new_rfk_state = value;
361
362 mutex_lock(&dev->mutex);
363 state_changed = new_rfk_state != dev->last_rfk_state;
364 dev->last_rfk_state = new_rfk_state;
365 mutex_unlock(&dev->mutex);
366
367 if (unlikely(state_changed)) {
368 rfkill_force_state(dev->rfk_dev,
369 new_rfk_state ?
370 RFKILL_STATE_SOFT_BLOCKED :
371 RFKILL_STATE_HARD_BLOCKED);
372 input_report_switch(poll_dev->input, SW_RFKILL_ALL,
373 new_rfk_state);
374 }
375 }
376
377 static struct proc_dir_entry *toshiba_proc_dir /*= 0*/ ;
378 static struct backlight_device *toshiba_backlight_device;
379 static int force_fan;
380 static int last_key_event;
381 static int key_event_valid;
382
383 typedef struct _ProcItem {
384 const char *name;
385 char *(*read_func) (char *);
386 unsigned long (*write_func) (const char *, unsigned long);
387 } ProcItem;
388
389 /* proc file handlers
390 */
391
392 static int
393 dispatch_read(char *page, char **start, off_t off, int count, int *eof,
394 ProcItem * item)
395 {
396 char *p = page;
397 int len;
398
399 if (off == 0)
400 p = item->read_func(p);
401
402 /* ISSUE: I don't understand this code */
403 len = (p - page);
404 if (len <= off + count)
405 *eof = 1;
406 *start = page + off;
407 len -= off;
408 if (len > count)
409 len = count;
410 if (len < 0)
411 len = 0;
412 return len;
413 }
414
415 static int
416 dispatch_write(struct file *file, const char __user * buffer,
417 unsigned long count, ProcItem * item)
418 {
419 int result;
420 char *tmp_buffer;
421
422 /* Arg buffer points to userspace memory, which can't be accessed
423 * directly. Since we're making a copy, zero-terminate the
424 * destination so that sscanf can be used on it safely.
425 */
426 tmp_buffer = kmalloc(count + 1, GFP_KERNEL);
427 if (!tmp_buffer)
428 return -ENOMEM;
429
430 if (copy_from_user(tmp_buffer, buffer, count)) {
431 result = -EFAULT;
432 } else {
433 tmp_buffer[count] = 0;
434 result = item->write_func(tmp_buffer, count);
435 }
436 kfree(tmp_buffer);
437 return result;
438 }
439
440 static int get_lcd(struct backlight_device *bd)
441 {
442 u32 hci_result;
443 u32 value;
444
445 hci_read1(HCI_LCD_BRIGHTNESS, &value, &hci_result);
446 if (hci_result == HCI_SUCCESS) {
447 return (value >> HCI_LCD_BRIGHTNESS_SHIFT);
448 } else
449 return -EFAULT;
450 }
451
452 static char *read_lcd(char *p)
453 {
454 int value = get_lcd(NULL);
455
456 if (value >= 0) {
457 p += sprintf(p, "brightness: %d\n", value);
458 p += sprintf(p, "brightness_levels: %d\n",
459 HCI_LCD_BRIGHTNESS_LEVELS);
460 } else {
461 printk(MY_ERR "Error reading LCD brightness\n");
462 }
463
464 return p;
465 }
466
467 static int set_lcd(int value)
468 {
469 u32 hci_result;
470
471 value = value << HCI_LCD_BRIGHTNESS_SHIFT;
472 hci_write1(HCI_LCD_BRIGHTNESS, value, &hci_result);
473 if (hci_result != HCI_SUCCESS)
474 return -EFAULT;
475
476 return 0;
477 }
478
479 static int set_lcd_status(struct backlight_device *bd)
480 {
481 return set_lcd(bd->props.brightness);
482 }
483
484 static unsigned long write_lcd(const char *buffer, unsigned long count)
485 {
486 int value;
487 int ret;
488
489 if (sscanf(buffer, " brightness : %i", &value) == 1 &&
490 value >= 0 && value < HCI_LCD_BRIGHTNESS_LEVELS) {
491 ret = set_lcd(value);
492 if (ret == 0)
493 ret = count;
494 } else {
495 ret = -EINVAL;
496 }
497 return ret;
498 }
499
500 static char *read_video(char *p)
501 {
502 u32 hci_result;
503 u32 value;
504
505 hci_read1(HCI_VIDEO_OUT, &value, &hci_result);
506 if (hci_result == HCI_SUCCESS) {
507 int is_lcd = (value & HCI_VIDEO_OUT_LCD) ? 1 : 0;
508 int is_crt = (value & HCI_VIDEO_OUT_CRT) ? 1 : 0;
509 int is_tv = (value & HCI_VIDEO_OUT_TV) ? 1 : 0;
510 p += sprintf(p, "lcd_out: %d\n", is_lcd);
511 p += sprintf(p, "crt_out: %d\n", is_crt);
512 p += sprintf(p, "tv_out: %d\n", is_tv);
513 } else {
514 printk(MY_ERR "Error reading video out status\n");
515 }
516
517 return p;
518 }
519
520 static unsigned long write_video(const char *buffer, unsigned long count)
521 {
522 int value;
523 int remain = count;
524 int lcd_out = -1;
525 int crt_out = -1;
526 int tv_out = -1;
527 u32 hci_result;
528 u32 video_out;
529
530 /* scan expression. Multiple expressions may be delimited with ;
531 *
532 * NOTE: to keep scanning simple, invalid fields are ignored
533 */
534 while (remain) {
535 if (sscanf(buffer, " lcd_out : %i", &value) == 1)
536 lcd_out = value & 1;
537 else if (sscanf(buffer, " crt_out : %i", &value) == 1)
538 crt_out = value & 1;
539 else if (sscanf(buffer, " tv_out : %i", &value) == 1)
540 tv_out = value & 1;
541 /* advance to one character past the next ; */
542 do {
543 ++buffer;
544 --remain;
545 }
546 while (remain && *(buffer - 1) != ';');
547 }
548
549 hci_read1(HCI_VIDEO_OUT, &video_out, &hci_result);
550 if (hci_result == HCI_SUCCESS) {
551 unsigned int new_video_out = video_out;
552 if (lcd_out != -1)
553 _set_bit(&new_video_out, HCI_VIDEO_OUT_LCD, lcd_out);
554 if (crt_out != -1)
555 _set_bit(&new_video_out, HCI_VIDEO_OUT_CRT, crt_out);
556 if (tv_out != -1)
557 _set_bit(&new_video_out, HCI_VIDEO_OUT_TV, tv_out);
558 /* To avoid unnecessary video disruption, only write the new
559 * video setting if something changed. */
560 if (new_video_out != video_out)
561 write_acpi_int(METHOD_VIDEO_OUT, new_video_out);
562 } else {
563 return -EFAULT;
564 }
565
566 return count;
567 }
568
569 static char *read_fan(char *p)
570 {
571 u32 hci_result;
572 u32 value;
573
574 hci_read1(HCI_FAN, &value, &hci_result);
575 if (hci_result == HCI_SUCCESS) {
576 p += sprintf(p, "running: %d\n", (value > 0));
577 p += sprintf(p, "force_on: %d\n", force_fan);
578 } else {
579 printk(MY_ERR "Error reading fan status\n");
580 }
581
582 return p;
583 }
584
585 static unsigned long write_fan(const char *buffer, unsigned long count)
586 {
587 int value;
588 u32 hci_result;
589
590 if (sscanf(buffer, " force_on : %i", &value) == 1 &&
591 value >= 0 && value <= 1) {
592 hci_write1(HCI_FAN, value, &hci_result);
593 if (hci_result != HCI_SUCCESS)
594 return -EFAULT;
595 else
596 force_fan = value;
597 } else {
598 return -EINVAL;
599 }
600
601 return count;
602 }
603
604 static char *read_keys(char *p)
605 {
606 u32 hci_result;
607 u32 value;
608
609 if (!key_event_valid) {
610 hci_read1(HCI_SYSTEM_EVENT, &value, &hci_result);
611 if (hci_result == HCI_SUCCESS) {
612 key_event_valid = 1;
613 last_key_event = value;
614 } else if (hci_result == HCI_EMPTY) {
615 /* better luck next time */
616 } else if (hci_result == HCI_NOT_SUPPORTED) {
617 /* This is a workaround for an unresolved issue on
618 * some machines where system events sporadically
619 * become disabled. */
620 hci_write1(HCI_SYSTEM_EVENT, 1, &hci_result);
621 printk(MY_NOTICE "Re-enabled hotkeys\n");
622 } else {
623 printk(MY_ERR "Error reading hotkey status\n");
624 goto end;
625 }
626 }
627
628 p += sprintf(p, "hotkey_ready: %d\n", key_event_valid);
629 p += sprintf(p, "hotkey: 0x%04x\n", last_key_event);
630
631 end:
632 return p;
633 }
634
635 static unsigned long write_keys(const char *buffer, unsigned long count)
636 {
637 int value;
638
639 if (sscanf(buffer, " hotkey_ready : %i", &value) == 1 && value == 0) {
640 key_event_valid = 0;
641 } else {
642 return -EINVAL;
643 }
644
645 return count;
646 }
647
648 static char *read_version(char *p)
649 {
650 p += sprintf(p, "driver: %s\n", TOSHIBA_ACPI_VERSION);
651 p += sprintf(p, "proc_interface: %d\n",
652 PROC_INTERFACE_VERSION);
653 return p;
654 }
655
656 /* proc and module init
657 */
658
659 #define PROC_TOSHIBA "toshiba"
660
661 static ProcItem proc_items[] = {
662 {"lcd", read_lcd, write_lcd},
663 {"video", read_video, write_video},
664 {"fan", read_fan, write_fan},
665 {"keys", read_keys, write_keys},
666 {"version", read_version, NULL},
667 {NULL}
668 };
669
670 static acpi_status __init add_device(void)
671 {
672 struct proc_dir_entry *proc;
673 ProcItem *item;
674
675 for (item = proc_items; item->name; ++item) {
676 proc = create_proc_read_entry(item->name,
677 S_IFREG | S_IRUGO | S_IWUSR,
678 toshiba_proc_dir,
679 (read_proc_t *) dispatch_read,
680 item);
681 if (proc)
682 proc->owner = THIS_MODULE;
683 if (proc && item->write_func)
684 proc->write_proc = (write_proc_t *) dispatch_write;
685 }
686
687 return AE_OK;
688 }
689
690 static acpi_status remove_device(void)
691 {
692 ProcItem *item;
693
694 for (item = proc_items; item->name; ++item)
695 remove_proc_entry(item->name, toshiba_proc_dir);
696 return AE_OK;
697 }
698
699 static struct backlight_ops toshiba_backlight_data = {
700 .get_brightness = get_lcd,
701 .update_status = set_lcd_status,
702 };
703
704 static void toshiba_acpi_exit(void)
705 {
706 if (toshiba_acpi.poll_dev) {
707 input_unregister_polled_device(toshiba_acpi.poll_dev);
708 input_free_polled_device(toshiba_acpi.poll_dev);
709 }
710
711 if (toshiba_acpi.rfk_dev)
712 rfkill_unregister(toshiba_acpi.rfk_dev);
713
714 if (toshiba_backlight_device)
715 backlight_device_unregister(toshiba_backlight_device);
716
717 remove_device();
718
719 if (toshiba_proc_dir)
720 remove_proc_entry(PROC_TOSHIBA, acpi_root_dir);
721
722 platform_device_unregister(toshiba_acpi.p_dev);
723
724 return;
725 }
726
727 static int __init toshiba_acpi_init(void)
728 {
729 acpi_status status = AE_OK;
730 u32 hci_result;
731 bool bt_present;
732 bool bt_on;
733 bool radio_on;
734 int ret = 0;
735
736 if (acpi_disabled)
737 return -ENODEV;
738
739 /* simple device detection: look for HCI method */
740 if (is_valid_acpi_path(METHOD_HCI_1))
741 method_hci = METHOD_HCI_1;
742 else if (is_valid_acpi_path(METHOD_HCI_2))
743 method_hci = METHOD_HCI_2;
744 else
745 return -ENODEV;
746
747 printk(MY_INFO "Toshiba Laptop ACPI Extras version %s\n",
748 TOSHIBA_ACPI_VERSION);
749 printk(MY_INFO " HCI method: %s\n", method_hci);
750
751 mutex_init(&toshiba_acpi.mutex);
752
753 toshiba_acpi.p_dev = platform_device_register_simple("toshiba_acpi",
754 -1, NULL, 0);
755 if (IS_ERR(toshiba_acpi.p_dev)) {
756 ret = PTR_ERR(toshiba_acpi.p_dev);
757 printk(MY_ERR "unable to register platform device\n");
758 toshiba_acpi.p_dev = NULL;
759 toshiba_acpi_exit();
760 return ret;
761 }
762
763 force_fan = 0;
764 key_event_valid = 0;
765
766 /* enable event fifo */
767 hci_write1(HCI_SYSTEM_EVENT, 1, &hci_result);
768
769 toshiba_proc_dir = proc_mkdir(PROC_TOSHIBA, acpi_root_dir);
770 if (!toshiba_proc_dir) {
771 toshiba_acpi_exit();
772 return -ENODEV;
773 } else {
774 toshiba_proc_dir->owner = THIS_MODULE;
775 status = add_device();
776 if (ACPI_FAILURE(status)) {
777 toshiba_acpi_exit();
778 return -ENODEV;
779 }
780 }
781
782 toshiba_backlight_device = backlight_device_register("toshiba",
783 &toshiba_acpi.p_dev->dev,
784 NULL,
785 &toshiba_backlight_data);
786 if (IS_ERR(toshiba_backlight_device)) {
787 ret = PTR_ERR(toshiba_backlight_device);
788
789 printk(KERN_ERR "Could not register toshiba backlight device\n");
790 toshiba_backlight_device = NULL;
791 toshiba_acpi_exit();
792 return ret;
793 }
794 toshiba_backlight_device->props.max_brightness = HCI_LCD_BRIGHTNESS_LEVELS - 1;
795
796 /* Register rfkill switch for Bluetooth */
797 if (hci_get_bt_present(&bt_present) == HCI_SUCCESS && bt_present) {
798 toshiba_acpi.rfk_dev = rfkill_allocate(&toshiba_acpi.p_dev->dev,
799 RFKILL_TYPE_BLUETOOTH);
800 if (!toshiba_acpi.rfk_dev) {
801 printk(MY_ERR "unable to allocate rfkill device\n");
802 toshiba_acpi_exit();
803 return -ENOMEM;
804 }
805
806 toshiba_acpi.rfk_dev->name = toshiba_acpi.bt_name;
807 toshiba_acpi.rfk_dev->toggle_radio = bt_rfkill_toggle_radio;
808 toshiba_acpi.rfk_dev->user_claim_unsupported = 1;
809 toshiba_acpi.rfk_dev->data = &toshiba_acpi;
810
811 if (hci_get_bt_on(&bt_on) == HCI_SUCCESS && bt_on) {
812 toshiba_acpi.rfk_dev->state = RFKILL_STATE_UNBLOCKED;
813 } else if (hci_get_radio_state(&radio_on) == HCI_SUCCESS &&
814 radio_on) {
815 toshiba_acpi.rfk_dev->state = RFKILL_STATE_SOFT_BLOCKED;
816 } else {
817 toshiba_acpi.rfk_dev->state = RFKILL_STATE_HARD_BLOCKED;
818 }
819
820 ret = rfkill_register(toshiba_acpi.rfk_dev);
821 if (ret) {
822 printk(MY_ERR "unable to register rfkill device\n");
823 toshiba_acpi_exit();
824 return -ENOMEM;
825 }
826 }
827
828 /* Register input device for kill switch */
829 toshiba_acpi.poll_dev = input_allocate_polled_device();
830 if (!toshiba_acpi.poll_dev) {
831 printk(MY_ERR "unable to allocate kill-switch input device\n");
832 toshiba_acpi_exit();
833 return -ENOMEM;
834 }
835 toshiba_acpi.poll_dev->private = &toshiba_acpi;
836 toshiba_acpi.poll_dev->poll = bt_poll_rfkill;
837 toshiba_acpi.poll_dev->poll_interval = 1000; /* msecs */
838
839 toshiba_acpi.poll_dev->input->name = toshiba_acpi.rfk_name;
840 toshiba_acpi.poll_dev->input->id.bustype = BUS_HOST;
841 toshiba_acpi.poll_dev->input->id.vendor = 0x0930; /* Toshiba USB ID */
842 set_bit(EV_SW, toshiba_acpi.poll_dev->input->evbit);
843 set_bit(SW_RFKILL_ALL, toshiba_acpi.poll_dev->input->swbit);
844 input_report_switch(toshiba_acpi.poll_dev->input, SW_RFKILL_ALL, TRUE);
845
846 ret = input_register_polled_device(toshiba_acpi.poll_dev);
847 if (ret) {
848 printk(MY_ERR "unable to register kill-switch input device\n");
849 rfkill_free(toshiba_acpi.rfk_dev);
850 toshiba_acpi.rfk_dev = NULL;
851 toshiba_acpi_exit();
852 return ret;
853 }
854
855 return 0;
856 }
857
858 module_init(toshiba_acpi_init);
859 module_exit(toshiba_acpi_exit);
This page took 0.092803 seconds and 5 git commands to generate.