Merge branch 'staging/for_v3.7' into v4l_for_linus
[deliverable/linux.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <linux/slab.h>
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_host.h>
65 #include <linux/libata.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
68 #include <linux/ratelimit.h>
69 #include <linux/pm_runtime.h>
70
71 #include "libata.h"
72 #include "libata-transport.h"
73
74 /* debounce timing parameters in msecs { interval, duration, timeout } */
75 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
76 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
77 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
78
79 const struct ata_port_operations ata_base_port_ops = {
80 .prereset = ata_std_prereset,
81 .postreset = ata_std_postreset,
82 .error_handler = ata_std_error_handler,
83 .sched_eh = ata_std_sched_eh,
84 .end_eh = ata_std_end_eh,
85 };
86
87 const struct ata_port_operations sata_port_ops = {
88 .inherits = &ata_base_port_ops,
89
90 .qc_defer = ata_std_qc_defer,
91 .hardreset = sata_std_hardreset,
92 };
93
94 static unsigned int ata_dev_init_params(struct ata_device *dev,
95 u16 heads, u16 sectors);
96 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
97 static void ata_dev_xfermask(struct ata_device *dev);
98 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
99
100 atomic_t ata_print_id = ATOMIC_INIT(0);
101
102 struct ata_force_param {
103 const char *name;
104 unsigned int cbl;
105 int spd_limit;
106 unsigned long xfer_mask;
107 unsigned int horkage_on;
108 unsigned int horkage_off;
109 unsigned int lflags;
110 };
111
112 struct ata_force_ent {
113 int port;
114 int device;
115 struct ata_force_param param;
116 };
117
118 static struct ata_force_ent *ata_force_tbl;
119 static int ata_force_tbl_size;
120
121 static char ata_force_param_buf[PAGE_SIZE] __initdata;
122 /* param_buf is thrown away after initialization, disallow read */
123 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
124 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
125
126 static int atapi_enabled = 1;
127 module_param(atapi_enabled, int, 0444);
128 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
129
130 static int atapi_dmadir = 0;
131 module_param(atapi_dmadir, int, 0444);
132 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
133
134 int atapi_passthru16 = 1;
135 module_param(atapi_passthru16, int, 0444);
136 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
137
138 int libata_fua = 0;
139 module_param_named(fua, libata_fua, int, 0444);
140 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
141
142 static int ata_ignore_hpa;
143 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
144 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
145
146 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
147 module_param_named(dma, libata_dma_mask, int, 0444);
148 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
149
150 static int ata_probe_timeout;
151 module_param(ata_probe_timeout, int, 0444);
152 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
153
154 int libata_noacpi = 0;
155 module_param_named(noacpi, libata_noacpi, int, 0444);
156 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
157
158 int libata_allow_tpm = 0;
159 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
160 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
161
162 static int atapi_an;
163 module_param(atapi_an, int, 0444);
164 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
165
166 MODULE_AUTHOR("Jeff Garzik");
167 MODULE_DESCRIPTION("Library module for ATA devices");
168 MODULE_LICENSE("GPL");
169 MODULE_VERSION(DRV_VERSION);
170
171
172 static bool ata_sstatus_online(u32 sstatus)
173 {
174 return (sstatus & 0xf) == 0x3;
175 }
176
177 /**
178 * ata_link_next - link iteration helper
179 * @link: the previous link, NULL to start
180 * @ap: ATA port containing links to iterate
181 * @mode: iteration mode, one of ATA_LITER_*
182 *
183 * LOCKING:
184 * Host lock or EH context.
185 *
186 * RETURNS:
187 * Pointer to the next link.
188 */
189 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
190 enum ata_link_iter_mode mode)
191 {
192 BUG_ON(mode != ATA_LITER_EDGE &&
193 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
194
195 /* NULL link indicates start of iteration */
196 if (!link)
197 switch (mode) {
198 case ATA_LITER_EDGE:
199 case ATA_LITER_PMP_FIRST:
200 if (sata_pmp_attached(ap))
201 return ap->pmp_link;
202 /* fall through */
203 case ATA_LITER_HOST_FIRST:
204 return &ap->link;
205 }
206
207 /* we just iterated over the host link, what's next? */
208 if (link == &ap->link)
209 switch (mode) {
210 case ATA_LITER_HOST_FIRST:
211 if (sata_pmp_attached(ap))
212 return ap->pmp_link;
213 /* fall through */
214 case ATA_LITER_PMP_FIRST:
215 if (unlikely(ap->slave_link))
216 return ap->slave_link;
217 /* fall through */
218 case ATA_LITER_EDGE:
219 return NULL;
220 }
221
222 /* slave_link excludes PMP */
223 if (unlikely(link == ap->slave_link))
224 return NULL;
225
226 /* we were over a PMP link */
227 if (++link < ap->pmp_link + ap->nr_pmp_links)
228 return link;
229
230 if (mode == ATA_LITER_PMP_FIRST)
231 return &ap->link;
232
233 return NULL;
234 }
235
236 /**
237 * ata_dev_next - device iteration helper
238 * @dev: the previous device, NULL to start
239 * @link: ATA link containing devices to iterate
240 * @mode: iteration mode, one of ATA_DITER_*
241 *
242 * LOCKING:
243 * Host lock or EH context.
244 *
245 * RETURNS:
246 * Pointer to the next device.
247 */
248 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
249 enum ata_dev_iter_mode mode)
250 {
251 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
252 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
253
254 /* NULL dev indicates start of iteration */
255 if (!dev)
256 switch (mode) {
257 case ATA_DITER_ENABLED:
258 case ATA_DITER_ALL:
259 dev = link->device;
260 goto check;
261 case ATA_DITER_ENABLED_REVERSE:
262 case ATA_DITER_ALL_REVERSE:
263 dev = link->device + ata_link_max_devices(link) - 1;
264 goto check;
265 }
266
267 next:
268 /* move to the next one */
269 switch (mode) {
270 case ATA_DITER_ENABLED:
271 case ATA_DITER_ALL:
272 if (++dev < link->device + ata_link_max_devices(link))
273 goto check;
274 return NULL;
275 case ATA_DITER_ENABLED_REVERSE:
276 case ATA_DITER_ALL_REVERSE:
277 if (--dev >= link->device)
278 goto check;
279 return NULL;
280 }
281
282 check:
283 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
284 !ata_dev_enabled(dev))
285 goto next;
286 return dev;
287 }
288
289 /**
290 * ata_dev_phys_link - find physical link for a device
291 * @dev: ATA device to look up physical link for
292 *
293 * Look up physical link which @dev is attached to. Note that
294 * this is different from @dev->link only when @dev is on slave
295 * link. For all other cases, it's the same as @dev->link.
296 *
297 * LOCKING:
298 * Don't care.
299 *
300 * RETURNS:
301 * Pointer to the found physical link.
302 */
303 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
304 {
305 struct ata_port *ap = dev->link->ap;
306
307 if (!ap->slave_link)
308 return dev->link;
309 if (!dev->devno)
310 return &ap->link;
311 return ap->slave_link;
312 }
313
314 /**
315 * ata_force_cbl - force cable type according to libata.force
316 * @ap: ATA port of interest
317 *
318 * Force cable type according to libata.force and whine about it.
319 * The last entry which has matching port number is used, so it
320 * can be specified as part of device force parameters. For
321 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
322 * same effect.
323 *
324 * LOCKING:
325 * EH context.
326 */
327 void ata_force_cbl(struct ata_port *ap)
328 {
329 int i;
330
331 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
332 const struct ata_force_ent *fe = &ata_force_tbl[i];
333
334 if (fe->port != -1 && fe->port != ap->print_id)
335 continue;
336
337 if (fe->param.cbl == ATA_CBL_NONE)
338 continue;
339
340 ap->cbl = fe->param.cbl;
341 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
342 return;
343 }
344 }
345
346 /**
347 * ata_force_link_limits - force link limits according to libata.force
348 * @link: ATA link of interest
349 *
350 * Force link flags and SATA spd limit according to libata.force
351 * and whine about it. When only the port part is specified
352 * (e.g. 1:), the limit applies to all links connected to both
353 * the host link and all fan-out ports connected via PMP. If the
354 * device part is specified as 0 (e.g. 1.00:), it specifies the
355 * first fan-out link not the host link. Device number 15 always
356 * points to the host link whether PMP is attached or not. If the
357 * controller has slave link, device number 16 points to it.
358 *
359 * LOCKING:
360 * EH context.
361 */
362 static void ata_force_link_limits(struct ata_link *link)
363 {
364 bool did_spd = false;
365 int linkno = link->pmp;
366 int i;
367
368 if (ata_is_host_link(link))
369 linkno += 15;
370
371 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
372 const struct ata_force_ent *fe = &ata_force_tbl[i];
373
374 if (fe->port != -1 && fe->port != link->ap->print_id)
375 continue;
376
377 if (fe->device != -1 && fe->device != linkno)
378 continue;
379
380 /* only honor the first spd limit */
381 if (!did_spd && fe->param.spd_limit) {
382 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
383 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
384 fe->param.name);
385 did_spd = true;
386 }
387
388 /* let lflags stack */
389 if (fe->param.lflags) {
390 link->flags |= fe->param.lflags;
391 ata_link_notice(link,
392 "FORCE: link flag 0x%x forced -> 0x%x\n",
393 fe->param.lflags, link->flags);
394 }
395 }
396 }
397
398 /**
399 * ata_force_xfermask - force xfermask according to libata.force
400 * @dev: ATA device of interest
401 *
402 * Force xfer_mask according to libata.force and whine about it.
403 * For consistency with link selection, device number 15 selects
404 * the first device connected to the host link.
405 *
406 * LOCKING:
407 * EH context.
408 */
409 static void ata_force_xfermask(struct ata_device *dev)
410 {
411 int devno = dev->link->pmp + dev->devno;
412 int alt_devno = devno;
413 int i;
414
415 /* allow n.15/16 for devices attached to host port */
416 if (ata_is_host_link(dev->link))
417 alt_devno += 15;
418
419 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
420 const struct ata_force_ent *fe = &ata_force_tbl[i];
421 unsigned long pio_mask, mwdma_mask, udma_mask;
422
423 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
424 continue;
425
426 if (fe->device != -1 && fe->device != devno &&
427 fe->device != alt_devno)
428 continue;
429
430 if (!fe->param.xfer_mask)
431 continue;
432
433 ata_unpack_xfermask(fe->param.xfer_mask,
434 &pio_mask, &mwdma_mask, &udma_mask);
435 if (udma_mask)
436 dev->udma_mask = udma_mask;
437 else if (mwdma_mask) {
438 dev->udma_mask = 0;
439 dev->mwdma_mask = mwdma_mask;
440 } else {
441 dev->udma_mask = 0;
442 dev->mwdma_mask = 0;
443 dev->pio_mask = pio_mask;
444 }
445
446 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
447 fe->param.name);
448 return;
449 }
450 }
451
452 /**
453 * ata_force_horkage - force horkage according to libata.force
454 * @dev: ATA device of interest
455 *
456 * Force horkage according to libata.force and whine about it.
457 * For consistency with link selection, device number 15 selects
458 * the first device connected to the host link.
459 *
460 * LOCKING:
461 * EH context.
462 */
463 static void ata_force_horkage(struct ata_device *dev)
464 {
465 int devno = dev->link->pmp + dev->devno;
466 int alt_devno = devno;
467 int i;
468
469 /* allow n.15/16 for devices attached to host port */
470 if (ata_is_host_link(dev->link))
471 alt_devno += 15;
472
473 for (i = 0; i < ata_force_tbl_size; i++) {
474 const struct ata_force_ent *fe = &ata_force_tbl[i];
475
476 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
477 continue;
478
479 if (fe->device != -1 && fe->device != devno &&
480 fe->device != alt_devno)
481 continue;
482
483 if (!(~dev->horkage & fe->param.horkage_on) &&
484 !(dev->horkage & fe->param.horkage_off))
485 continue;
486
487 dev->horkage |= fe->param.horkage_on;
488 dev->horkage &= ~fe->param.horkage_off;
489
490 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
491 fe->param.name);
492 }
493 }
494
495 /**
496 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
497 * @opcode: SCSI opcode
498 *
499 * Determine ATAPI command type from @opcode.
500 *
501 * LOCKING:
502 * None.
503 *
504 * RETURNS:
505 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
506 */
507 int atapi_cmd_type(u8 opcode)
508 {
509 switch (opcode) {
510 case GPCMD_READ_10:
511 case GPCMD_READ_12:
512 return ATAPI_READ;
513
514 case GPCMD_WRITE_10:
515 case GPCMD_WRITE_12:
516 case GPCMD_WRITE_AND_VERIFY_10:
517 return ATAPI_WRITE;
518
519 case GPCMD_READ_CD:
520 case GPCMD_READ_CD_MSF:
521 return ATAPI_READ_CD;
522
523 case ATA_16:
524 case ATA_12:
525 if (atapi_passthru16)
526 return ATAPI_PASS_THRU;
527 /* fall thru */
528 default:
529 return ATAPI_MISC;
530 }
531 }
532
533 /**
534 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
535 * @tf: Taskfile to convert
536 * @pmp: Port multiplier port
537 * @is_cmd: This FIS is for command
538 * @fis: Buffer into which data will output
539 *
540 * Converts a standard ATA taskfile to a Serial ATA
541 * FIS structure (Register - Host to Device).
542 *
543 * LOCKING:
544 * Inherited from caller.
545 */
546 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
547 {
548 fis[0] = 0x27; /* Register - Host to Device FIS */
549 fis[1] = pmp & 0xf; /* Port multiplier number*/
550 if (is_cmd)
551 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
552
553 fis[2] = tf->command;
554 fis[3] = tf->feature;
555
556 fis[4] = tf->lbal;
557 fis[5] = tf->lbam;
558 fis[6] = tf->lbah;
559 fis[7] = tf->device;
560
561 fis[8] = tf->hob_lbal;
562 fis[9] = tf->hob_lbam;
563 fis[10] = tf->hob_lbah;
564 fis[11] = tf->hob_feature;
565
566 fis[12] = tf->nsect;
567 fis[13] = tf->hob_nsect;
568 fis[14] = 0;
569 fis[15] = tf->ctl;
570
571 fis[16] = 0;
572 fis[17] = 0;
573 fis[18] = 0;
574 fis[19] = 0;
575 }
576
577 /**
578 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
579 * @fis: Buffer from which data will be input
580 * @tf: Taskfile to output
581 *
582 * Converts a serial ATA FIS structure to a standard ATA taskfile.
583 *
584 * LOCKING:
585 * Inherited from caller.
586 */
587
588 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
589 {
590 tf->command = fis[2]; /* status */
591 tf->feature = fis[3]; /* error */
592
593 tf->lbal = fis[4];
594 tf->lbam = fis[5];
595 tf->lbah = fis[6];
596 tf->device = fis[7];
597
598 tf->hob_lbal = fis[8];
599 tf->hob_lbam = fis[9];
600 tf->hob_lbah = fis[10];
601
602 tf->nsect = fis[12];
603 tf->hob_nsect = fis[13];
604 }
605
606 static const u8 ata_rw_cmds[] = {
607 /* pio multi */
608 ATA_CMD_READ_MULTI,
609 ATA_CMD_WRITE_MULTI,
610 ATA_CMD_READ_MULTI_EXT,
611 ATA_CMD_WRITE_MULTI_EXT,
612 0,
613 0,
614 0,
615 ATA_CMD_WRITE_MULTI_FUA_EXT,
616 /* pio */
617 ATA_CMD_PIO_READ,
618 ATA_CMD_PIO_WRITE,
619 ATA_CMD_PIO_READ_EXT,
620 ATA_CMD_PIO_WRITE_EXT,
621 0,
622 0,
623 0,
624 0,
625 /* dma */
626 ATA_CMD_READ,
627 ATA_CMD_WRITE,
628 ATA_CMD_READ_EXT,
629 ATA_CMD_WRITE_EXT,
630 0,
631 0,
632 0,
633 ATA_CMD_WRITE_FUA_EXT
634 };
635
636 /**
637 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
638 * @tf: command to examine and configure
639 * @dev: device tf belongs to
640 *
641 * Examine the device configuration and tf->flags to calculate
642 * the proper read/write commands and protocol to use.
643 *
644 * LOCKING:
645 * caller.
646 */
647 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
648 {
649 u8 cmd;
650
651 int index, fua, lba48, write;
652
653 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
654 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
655 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
656
657 if (dev->flags & ATA_DFLAG_PIO) {
658 tf->protocol = ATA_PROT_PIO;
659 index = dev->multi_count ? 0 : 8;
660 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
661 /* Unable to use DMA due to host limitation */
662 tf->protocol = ATA_PROT_PIO;
663 index = dev->multi_count ? 0 : 8;
664 } else {
665 tf->protocol = ATA_PROT_DMA;
666 index = 16;
667 }
668
669 cmd = ata_rw_cmds[index + fua + lba48 + write];
670 if (cmd) {
671 tf->command = cmd;
672 return 0;
673 }
674 return -1;
675 }
676
677 /**
678 * ata_tf_read_block - Read block address from ATA taskfile
679 * @tf: ATA taskfile of interest
680 * @dev: ATA device @tf belongs to
681 *
682 * LOCKING:
683 * None.
684 *
685 * Read block address from @tf. This function can handle all
686 * three address formats - LBA, LBA48 and CHS. tf->protocol and
687 * flags select the address format to use.
688 *
689 * RETURNS:
690 * Block address read from @tf.
691 */
692 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
693 {
694 u64 block = 0;
695
696 if (tf->flags & ATA_TFLAG_LBA) {
697 if (tf->flags & ATA_TFLAG_LBA48) {
698 block |= (u64)tf->hob_lbah << 40;
699 block |= (u64)tf->hob_lbam << 32;
700 block |= (u64)tf->hob_lbal << 24;
701 } else
702 block |= (tf->device & 0xf) << 24;
703
704 block |= tf->lbah << 16;
705 block |= tf->lbam << 8;
706 block |= tf->lbal;
707 } else {
708 u32 cyl, head, sect;
709
710 cyl = tf->lbam | (tf->lbah << 8);
711 head = tf->device & 0xf;
712 sect = tf->lbal;
713
714 if (!sect) {
715 ata_dev_warn(dev,
716 "device reported invalid CHS sector 0\n");
717 sect = 1; /* oh well */
718 }
719
720 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
721 }
722
723 return block;
724 }
725
726 /**
727 * ata_build_rw_tf - Build ATA taskfile for given read/write request
728 * @tf: Target ATA taskfile
729 * @dev: ATA device @tf belongs to
730 * @block: Block address
731 * @n_block: Number of blocks
732 * @tf_flags: RW/FUA etc...
733 * @tag: tag
734 *
735 * LOCKING:
736 * None.
737 *
738 * Build ATA taskfile @tf for read/write request described by
739 * @block, @n_block, @tf_flags and @tag on @dev.
740 *
741 * RETURNS:
742 *
743 * 0 on success, -ERANGE if the request is too large for @dev,
744 * -EINVAL if the request is invalid.
745 */
746 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
747 u64 block, u32 n_block, unsigned int tf_flags,
748 unsigned int tag)
749 {
750 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
751 tf->flags |= tf_flags;
752
753 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
754 /* yay, NCQ */
755 if (!lba_48_ok(block, n_block))
756 return -ERANGE;
757
758 tf->protocol = ATA_PROT_NCQ;
759 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
760
761 if (tf->flags & ATA_TFLAG_WRITE)
762 tf->command = ATA_CMD_FPDMA_WRITE;
763 else
764 tf->command = ATA_CMD_FPDMA_READ;
765
766 tf->nsect = tag << 3;
767 tf->hob_feature = (n_block >> 8) & 0xff;
768 tf->feature = n_block & 0xff;
769
770 tf->hob_lbah = (block >> 40) & 0xff;
771 tf->hob_lbam = (block >> 32) & 0xff;
772 tf->hob_lbal = (block >> 24) & 0xff;
773 tf->lbah = (block >> 16) & 0xff;
774 tf->lbam = (block >> 8) & 0xff;
775 tf->lbal = block & 0xff;
776
777 tf->device = 1 << 6;
778 if (tf->flags & ATA_TFLAG_FUA)
779 tf->device |= 1 << 7;
780 } else if (dev->flags & ATA_DFLAG_LBA) {
781 tf->flags |= ATA_TFLAG_LBA;
782
783 if (lba_28_ok(block, n_block)) {
784 /* use LBA28 */
785 tf->device |= (block >> 24) & 0xf;
786 } else if (lba_48_ok(block, n_block)) {
787 if (!(dev->flags & ATA_DFLAG_LBA48))
788 return -ERANGE;
789
790 /* use LBA48 */
791 tf->flags |= ATA_TFLAG_LBA48;
792
793 tf->hob_nsect = (n_block >> 8) & 0xff;
794
795 tf->hob_lbah = (block >> 40) & 0xff;
796 tf->hob_lbam = (block >> 32) & 0xff;
797 tf->hob_lbal = (block >> 24) & 0xff;
798 } else
799 /* request too large even for LBA48 */
800 return -ERANGE;
801
802 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
803 return -EINVAL;
804
805 tf->nsect = n_block & 0xff;
806
807 tf->lbah = (block >> 16) & 0xff;
808 tf->lbam = (block >> 8) & 0xff;
809 tf->lbal = block & 0xff;
810
811 tf->device |= ATA_LBA;
812 } else {
813 /* CHS */
814 u32 sect, head, cyl, track;
815
816 /* The request -may- be too large for CHS addressing. */
817 if (!lba_28_ok(block, n_block))
818 return -ERANGE;
819
820 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
821 return -EINVAL;
822
823 /* Convert LBA to CHS */
824 track = (u32)block / dev->sectors;
825 cyl = track / dev->heads;
826 head = track % dev->heads;
827 sect = (u32)block % dev->sectors + 1;
828
829 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
830 (u32)block, track, cyl, head, sect);
831
832 /* Check whether the converted CHS can fit.
833 Cylinder: 0-65535
834 Head: 0-15
835 Sector: 1-255*/
836 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
837 return -ERANGE;
838
839 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
840 tf->lbal = sect;
841 tf->lbam = cyl;
842 tf->lbah = cyl >> 8;
843 tf->device |= head;
844 }
845
846 return 0;
847 }
848
849 /**
850 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
851 * @pio_mask: pio_mask
852 * @mwdma_mask: mwdma_mask
853 * @udma_mask: udma_mask
854 *
855 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
856 * unsigned int xfer_mask.
857 *
858 * LOCKING:
859 * None.
860 *
861 * RETURNS:
862 * Packed xfer_mask.
863 */
864 unsigned long ata_pack_xfermask(unsigned long pio_mask,
865 unsigned long mwdma_mask,
866 unsigned long udma_mask)
867 {
868 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
869 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
870 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
871 }
872
873 /**
874 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
875 * @xfer_mask: xfer_mask to unpack
876 * @pio_mask: resulting pio_mask
877 * @mwdma_mask: resulting mwdma_mask
878 * @udma_mask: resulting udma_mask
879 *
880 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
881 * Any NULL distination masks will be ignored.
882 */
883 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
884 unsigned long *mwdma_mask, unsigned long *udma_mask)
885 {
886 if (pio_mask)
887 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
888 if (mwdma_mask)
889 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
890 if (udma_mask)
891 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
892 }
893
894 static const struct ata_xfer_ent {
895 int shift, bits;
896 u8 base;
897 } ata_xfer_tbl[] = {
898 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
899 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
900 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
901 { -1, },
902 };
903
904 /**
905 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
906 * @xfer_mask: xfer_mask of interest
907 *
908 * Return matching XFER_* value for @xfer_mask. Only the highest
909 * bit of @xfer_mask is considered.
910 *
911 * LOCKING:
912 * None.
913 *
914 * RETURNS:
915 * Matching XFER_* value, 0xff if no match found.
916 */
917 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
918 {
919 int highbit = fls(xfer_mask) - 1;
920 const struct ata_xfer_ent *ent;
921
922 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
923 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
924 return ent->base + highbit - ent->shift;
925 return 0xff;
926 }
927
928 /**
929 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
930 * @xfer_mode: XFER_* of interest
931 *
932 * Return matching xfer_mask for @xfer_mode.
933 *
934 * LOCKING:
935 * None.
936 *
937 * RETURNS:
938 * Matching xfer_mask, 0 if no match found.
939 */
940 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
941 {
942 const struct ata_xfer_ent *ent;
943
944 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
945 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
946 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
947 & ~((1 << ent->shift) - 1);
948 return 0;
949 }
950
951 /**
952 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
953 * @xfer_mode: XFER_* of interest
954 *
955 * Return matching xfer_shift for @xfer_mode.
956 *
957 * LOCKING:
958 * None.
959 *
960 * RETURNS:
961 * Matching xfer_shift, -1 if no match found.
962 */
963 int ata_xfer_mode2shift(unsigned long xfer_mode)
964 {
965 const struct ata_xfer_ent *ent;
966
967 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
968 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
969 return ent->shift;
970 return -1;
971 }
972
973 /**
974 * ata_mode_string - convert xfer_mask to string
975 * @xfer_mask: mask of bits supported; only highest bit counts.
976 *
977 * Determine string which represents the highest speed
978 * (highest bit in @modemask).
979 *
980 * LOCKING:
981 * None.
982 *
983 * RETURNS:
984 * Constant C string representing highest speed listed in
985 * @mode_mask, or the constant C string "<n/a>".
986 */
987 const char *ata_mode_string(unsigned long xfer_mask)
988 {
989 static const char * const xfer_mode_str[] = {
990 "PIO0",
991 "PIO1",
992 "PIO2",
993 "PIO3",
994 "PIO4",
995 "PIO5",
996 "PIO6",
997 "MWDMA0",
998 "MWDMA1",
999 "MWDMA2",
1000 "MWDMA3",
1001 "MWDMA4",
1002 "UDMA/16",
1003 "UDMA/25",
1004 "UDMA/33",
1005 "UDMA/44",
1006 "UDMA/66",
1007 "UDMA/100",
1008 "UDMA/133",
1009 "UDMA7",
1010 };
1011 int highbit;
1012
1013 highbit = fls(xfer_mask) - 1;
1014 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1015 return xfer_mode_str[highbit];
1016 return "<n/a>";
1017 }
1018
1019 const char *sata_spd_string(unsigned int spd)
1020 {
1021 static const char * const spd_str[] = {
1022 "1.5 Gbps",
1023 "3.0 Gbps",
1024 "6.0 Gbps",
1025 };
1026
1027 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1028 return "<unknown>";
1029 return spd_str[spd - 1];
1030 }
1031
1032 /**
1033 * ata_dev_classify - determine device type based on ATA-spec signature
1034 * @tf: ATA taskfile register set for device to be identified
1035 *
1036 * Determine from taskfile register contents whether a device is
1037 * ATA or ATAPI, as per "Signature and persistence" section
1038 * of ATA/PI spec (volume 1, sect 5.14).
1039 *
1040 * LOCKING:
1041 * None.
1042 *
1043 * RETURNS:
1044 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1045 * %ATA_DEV_UNKNOWN the event of failure.
1046 */
1047 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1048 {
1049 /* Apple's open source Darwin code hints that some devices only
1050 * put a proper signature into the LBA mid/high registers,
1051 * So, we only check those. It's sufficient for uniqueness.
1052 *
1053 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1054 * signatures for ATA and ATAPI devices attached on SerialATA,
1055 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1056 * spec has never mentioned about using different signatures
1057 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1058 * Multiplier specification began to use 0x69/0x96 to identify
1059 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1060 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1061 * 0x69/0x96 shortly and described them as reserved for
1062 * SerialATA.
1063 *
1064 * We follow the current spec and consider that 0x69/0x96
1065 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1066 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1067 * SEMB signature. This is worked around in
1068 * ata_dev_read_id().
1069 */
1070 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1071 DPRINTK("found ATA device by sig\n");
1072 return ATA_DEV_ATA;
1073 }
1074
1075 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1076 DPRINTK("found ATAPI device by sig\n");
1077 return ATA_DEV_ATAPI;
1078 }
1079
1080 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1081 DPRINTK("found PMP device by sig\n");
1082 return ATA_DEV_PMP;
1083 }
1084
1085 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1086 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1087 return ATA_DEV_SEMB;
1088 }
1089
1090 DPRINTK("unknown device\n");
1091 return ATA_DEV_UNKNOWN;
1092 }
1093
1094 /**
1095 * ata_id_string - Convert IDENTIFY DEVICE page into string
1096 * @id: IDENTIFY DEVICE results we will examine
1097 * @s: string into which data is output
1098 * @ofs: offset into identify device page
1099 * @len: length of string to return. must be an even number.
1100 *
1101 * The strings in the IDENTIFY DEVICE page are broken up into
1102 * 16-bit chunks. Run through the string, and output each
1103 * 8-bit chunk linearly, regardless of platform.
1104 *
1105 * LOCKING:
1106 * caller.
1107 */
1108
1109 void ata_id_string(const u16 *id, unsigned char *s,
1110 unsigned int ofs, unsigned int len)
1111 {
1112 unsigned int c;
1113
1114 BUG_ON(len & 1);
1115
1116 while (len > 0) {
1117 c = id[ofs] >> 8;
1118 *s = c;
1119 s++;
1120
1121 c = id[ofs] & 0xff;
1122 *s = c;
1123 s++;
1124
1125 ofs++;
1126 len -= 2;
1127 }
1128 }
1129
1130 /**
1131 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1132 * @id: IDENTIFY DEVICE results we will examine
1133 * @s: string into which data is output
1134 * @ofs: offset into identify device page
1135 * @len: length of string to return. must be an odd number.
1136 *
1137 * This function is identical to ata_id_string except that it
1138 * trims trailing spaces and terminates the resulting string with
1139 * null. @len must be actual maximum length (even number) + 1.
1140 *
1141 * LOCKING:
1142 * caller.
1143 */
1144 void ata_id_c_string(const u16 *id, unsigned char *s,
1145 unsigned int ofs, unsigned int len)
1146 {
1147 unsigned char *p;
1148
1149 ata_id_string(id, s, ofs, len - 1);
1150
1151 p = s + strnlen(s, len - 1);
1152 while (p > s && p[-1] == ' ')
1153 p--;
1154 *p = '\0';
1155 }
1156
1157 static u64 ata_id_n_sectors(const u16 *id)
1158 {
1159 if (ata_id_has_lba(id)) {
1160 if (ata_id_has_lba48(id))
1161 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1162 else
1163 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1164 } else {
1165 if (ata_id_current_chs_valid(id))
1166 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1167 id[ATA_ID_CUR_SECTORS];
1168 else
1169 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1170 id[ATA_ID_SECTORS];
1171 }
1172 }
1173
1174 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1175 {
1176 u64 sectors = 0;
1177
1178 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1179 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1180 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1181 sectors |= (tf->lbah & 0xff) << 16;
1182 sectors |= (tf->lbam & 0xff) << 8;
1183 sectors |= (tf->lbal & 0xff);
1184
1185 return sectors;
1186 }
1187
1188 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1189 {
1190 u64 sectors = 0;
1191
1192 sectors |= (tf->device & 0x0f) << 24;
1193 sectors |= (tf->lbah & 0xff) << 16;
1194 sectors |= (tf->lbam & 0xff) << 8;
1195 sectors |= (tf->lbal & 0xff);
1196
1197 return sectors;
1198 }
1199
1200 /**
1201 * ata_read_native_max_address - Read native max address
1202 * @dev: target device
1203 * @max_sectors: out parameter for the result native max address
1204 *
1205 * Perform an LBA48 or LBA28 native size query upon the device in
1206 * question.
1207 *
1208 * RETURNS:
1209 * 0 on success, -EACCES if command is aborted by the drive.
1210 * -EIO on other errors.
1211 */
1212 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1213 {
1214 unsigned int err_mask;
1215 struct ata_taskfile tf;
1216 int lba48 = ata_id_has_lba48(dev->id);
1217
1218 ata_tf_init(dev, &tf);
1219
1220 /* always clear all address registers */
1221 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1222
1223 if (lba48) {
1224 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1225 tf.flags |= ATA_TFLAG_LBA48;
1226 } else
1227 tf.command = ATA_CMD_READ_NATIVE_MAX;
1228
1229 tf.protocol |= ATA_PROT_NODATA;
1230 tf.device |= ATA_LBA;
1231
1232 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1233 if (err_mask) {
1234 ata_dev_warn(dev,
1235 "failed to read native max address (err_mask=0x%x)\n",
1236 err_mask);
1237 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1238 return -EACCES;
1239 return -EIO;
1240 }
1241
1242 if (lba48)
1243 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1244 else
1245 *max_sectors = ata_tf_to_lba(&tf) + 1;
1246 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1247 (*max_sectors)--;
1248 return 0;
1249 }
1250
1251 /**
1252 * ata_set_max_sectors - Set max sectors
1253 * @dev: target device
1254 * @new_sectors: new max sectors value to set for the device
1255 *
1256 * Set max sectors of @dev to @new_sectors.
1257 *
1258 * RETURNS:
1259 * 0 on success, -EACCES if command is aborted or denied (due to
1260 * previous non-volatile SET_MAX) by the drive. -EIO on other
1261 * errors.
1262 */
1263 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1264 {
1265 unsigned int err_mask;
1266 struct ata_taskfile tf;
1267 int lba48 = ata_id_has_lba48(dev->id);
1268
1269 new_sectors--;
1270
1271 ata_tf_init(dev, &tf);
1272
1273 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1274
1275 if (lba48) {
1276 tf.command = ATA_CMD_SET_MAX_EXT;
1277 tf.flags |= ATA_TFLAG_LBA48;
1278
1279 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1280 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1281 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1282 } else {
1283 tf.command = ATA_CMD_SET_MAX;
1284
1285 tf.device |= (new_sectors >> 24) & 0xf;
1286 }
1287
1288 tf.protocol |= ATA_PROT_NODATA;
1289 tf.device |= ATA_LBA;
1290
1291 tf.lbal = (new_sectors >> 0) & 0xff;
1292 tf.lbam = (new_sectors >> 8) & 0xff;
1293 tf.lbah = (new_sectors >> 16) & 0xff;
1294
1295 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1296 if (err_mask) {
1297 ata_dev_warn(dev,
1298 "failed to set max address (err_mask=0x%x)\n",
1299 err_mask);
1300 if (err_mask == AC_ERR_DEV &&
1301 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1302 return -EACCES;
1303 return -EIO;
1304 }
1305
1306 return 0;
1307 }
1308
1309 /**
1310 * ata_hpa_resize - Resize a device with an HPA set
1311 * @dev: Device to resize
1312 *
1313 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1314 * it if required to the full size of the media. The caller must check
1315 * the drive has the HPA feature set enabled.
1316 *
1317 * RETURNS:
1318 * 0 on success, -errno on failure.
1319 */
1320 static int ata_hpa_resize(struct ata_device *dev)
1321 {
1322 struct ata_eh_context *ehc = &dev->link->eh_context;
1323 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1324 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1325 u64 sectors = ata_id_n_sectors(dev->id);
1326 u64 native_sectors;
1327 int rc;
1328
1329 /* do we need to do it? */
1330 if (dev->class != ATA_DEV_ATA ||
1331 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1332 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1333 return 0;
1334
1335 /* read native max address */
1336 rc = ata_read_native_max_address(dev, &native_sectors);
1337 if (rc) {
1338 /* If device aborted the command or HPA isn't going to
1339 * be unlocked, skip HPA resizing.
1340 */
1341 if (rc == -EACCES || !unlock_hpa) {
1342 ata_dev_warn(dev,
1343 "HPA support seems broken, skipping HPA handling\n");
1344 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1345
1346 /* we can continue if device aborted the command */
1347 if (rc == -EACCES)
1348 rc = 0;
1349 }
1350
1351 return rc;
1352 }
1353 dev->n_native_sectors = native_sectors;
1354
1355 /* nothing to do? */
1356 if (native_sectors <= sectors || !unlock_hpa) {
1357 if (!print_info || native_sectors == sectors)
1358 return 0;
1359
1360 if (native_sectors > sectors)
1361 ata_dev_info(dev,
1362 "HPA detected: current %llu, native %llu\n",
1363 (unsigned long long)sectors,
1364 (unsigned long long)native_sectors);
1365 else if (native_sectors < sectors)
1366 ata_dev_warn(dev,
1367 "native sectors (%llu) is smaller than sectors (%llu)\n",
1368 (unsigned long long)native_sectors,
1369 (unsigned long long)sectors);
1370 return 0;
1371 }
1372
1373 /* let's unlock HPA */
1374 rc = ata_set_max_sectors(dev, native_sectors);
1375 if (rc == -EACCES) {
1376 /* if device aborted the command, skip HPA resizing */
1377 ata_dev_warn(dev,
1378 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1379 (unsigned long long)sectors,
1380 (unsigned long long)native_sectors);
1381 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1382 return 0;
1383 } else if (rc)
1384 return rc;
1385
1386 /* re-read IDENTIFY data */
1387 rc = ata_dev_reread_id(dev, 0);
1388 if (rc) {
1389 ata_dev_err(dev,
1390 "failed to re-read IDENTIFY data after HPA resizing\n");
1391 return rc;
1392 }
1393
1394 if (print_info) {
1395 u64 new_sectors = ata_id_n_sectors(dev->id);
1396 ata_dev_info(dev,
1397 "HPA unlocked: %llu -> %llu, native %llu\n",
1398 (unsigned long long)sectors,
1399 (unsigned long long)new_sectors,
1400 (unsigned long long)native_sectors);
1401 }
1402
1403 return 0;
1404 }
1405
1406 /**
1407 * ata_dump_id - IDENTIFY DEVICE info debugging output
1408 * @id: IDENTIFY DEVICE page to dump
1409 *
1410 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1411 * page.
1412 *
1413 * LOCKING:
1414 * caller.
1415 */
1416
1417 static inline void ata_dump_id(const u16 *id)
1418 {
1419 DPRINTK("49==0x%04x "
1420 "53==0x%04x "
1421 "63==0x%04x "
1422 "64==0x%04x "
1423 "75==0x%04x \n",
1424 id[49],
1425 id[53],
1426 id[63],
1427 id[64],
1428 id[75]);
1429 DPRINTK("80==0x%04x "
1430 "81==0x%04x "
1431 "82==0x%04x "
1432 "83==0x%04x "
1433 "84==0x%04x \n",
1434 id[80],
1435 id[81],
1436 id[82],
1437 id[83],
1438 id[84]);
1439 DPRINTK("88==0x%04x "
1440 "93==0x%04x\n",
1441 id[88],
1442 id[93]);
1443 }
1444
1445 /**
1446 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1447 * @id: IDENTIFY data to compute xfer mask from
1448 *
1449 * Compute the xfermask for this device. This is not as trivial
1450 * as it seems if we must consider early devices correctly.
1451 *
1452 * FIXME: pre IDE drive timing (do we care ?).
1453 *
1454 * LOCKING:
1455 * None.
1456 *
1457 * RETURNS:
1458 * Computed xfermask
1459 */
1460 unsigned long ata_id_xfermask(const u16 *id)
1461 {
1462 unsigned long pio_mask, mwdma_mask, udma_mask;
1463
1464 /* Usual case. Word 53 indicates word 64 is valid */
1465 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1466 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1467 pio_mask <<= 3;
1468 pio_mask |= 0x7;
1469 } else {
1470 /* If word 64 isn't valid then Word 51 high byte holds
1471 * the PIO timing number for the maximum. Turn it into
1472 * a mask.
1473 */
1474 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1475 if (mode < 5) /* Valid PIO range */
1476 pio_mask = (2 << mode) - 1;
1477 else
1478 pio_mask = 1;
1479
1480 /* But wait.. there's more. Design your standards by
1481 * committee and you too can get a free iordy field to
1482 * process. However its the speeds not the modes that
1483 * are supported... Note drivers using the timing API
1484 * will get this right anyway
1485 */
1486 }
1487
1488 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1489
1490 if (ata_id_is_cfa(id)) {
1491 /*
1492 * Process compact flash extended modes
1493 */
1494 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1495 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1496
1497 if (pio)
1498 pio_mask |= (1 << 5);
1499 if (pio > 1)
1500 pio_mask |= (1 << 6);
1501 if (dma)
1502 mwdma_mask |= (1 << 3);
1503 if (dma > 1)
1504 mwdma_mask |= (1 << 4);
1505 }
1506
1507 udma_mask = 0;
1508 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1509 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1510
1511 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1512 }
1513
1514 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1515 {
1516 struct completion *waiting = qc->private_data;
1517
1518 complete(waiting);
1519 }
1520
1521 /**
1522 * ata_exec_internal_sg - execute libata internal command
1523 * @dev: Device to which the command is sent
1524 * @tf: Taskfile registers for the command and the result
1525 * @cdb: CDB for packet command
1526 * @dma_dir: Data tranfer direction of the command
1527 * @sgl: sg list for the data buffer of the command
1528 * @n_elem: Number of sg entries
1529 * @timeout: Timeout in msecs (0 for default)
1530 *
1531 * Executes libata internal command with timeout. @tf contains
1532 * command on entry and result on return. Timeout and error
1533 * conditions are reported via return value. No recovery action
1534 * is taken after a command times out. It's caller's duty to
1535 * clean up after timeout.
1536 *
1537 * LOCKING:
1538 * None. Should be called with kernel context, might sleep.
1539 *
1540 * RETURNS:
1541 * Zero on success, AC_ERR_* mask on failure
1542 */
1543 unsigned ata_exec_internal_sg(struct ata_device *dev,
1544 struct ata_taskfile *tf, const u8 *cdb,
1545 int dma_dir, struct scatterlist *sgl,
1546 unsigned int n_elem, unsigned long timeout)
1547 {
1548 struct ata_link *link = dev->link;
1549 struct ata_port *ap = link->ap;
1550 u8 command = tf->command;
1551 int auto_timeout = 0;
1552 struct ata_queued_cmd *qc;
1553 unsigned int tag, preempted_tag;
1554 u32 preempted_sactive, preempted_qc_active;
1555 int preempted_nr_active_links;
1556 DECLARE_COMPLETION_ONSTACK(wait);
1557 unsigned long flags;
1558 unsigned int err_mask;
1559 int rc;
1560
1561 spin_lock_irqsave(ap->lock, flags);
1562
1563 /* no internal command while frozen */
1564 if (ap->pflags & ATA_PFLAG_FROZEN) {
1565 spin_unlock_irqrestore(ap->lock, flags);
1566 return AC_ERR_SYSTEM;
1567 }
1568
1569 /* initialize internal qc */
1570
1571 /* XXX: Tag 0 is used for drivers with legacy EH as some
1572 * drivers choke if any other tag is given. This breaks
1573 * ata_tag_internal() test for those drivers. Don't use new
1574 * EH stuff without converting to it.
1575 */
1576 if (ap->ops->error_handler)
1577 tag = ATA_TAG_INTERNAL;
1578 else
1579 tag = 0;
1580
1581 if (test_and_set_bit(tag, &ap->qc_allocated))
1582 BUG();
1583 qc = __ata_qc_from_tag(ap, tag);
1584
1585 qc->tag = tag;
1586 qc->scsicmd = NULL;
1587 qc->ap = ap;
1588 qc->dev = dev;
1589 ata_qc_reinit(qc);
1590
1591 preempted_tag = link->active_tag;
1592 preempted_sactive = link->sactive;
1593 preempted_qc_active = ap->qc_active;
1594 preempted_nr_active_links = ap->nr_active_links;
1595 link->active_tag = ATA_TAG_POISON;
1596 link->sactive = 0;
1597 ap->qc_active = 0;
1598 ap->nr_active_links = 0;
1599
1600 /* prepare & issue qc */
1601 qc->tf = *tf;
1602 if (cdb)
1603 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1604 qc->flags |= ATA_QCFLAG_RESULT_TF;
1605 qc->dma_dir = dma_dir;
1606 if (dma_dir != DMA_NONE) {
1607 unsigned int i, buflen = 0;
1608 struct scatterlist *sg;
1609
1610 for_each_sg(sgl, sg, n_elem, i)
1611 buflen += sg->length;
1612
1613 ata_sg_init(qc, sgl, n_elem);
1614 qc->nbytes = buflen;
1615 }
1616
1617 qc->private_data = &wait;
1618 qc->complete_fn = ata_qc_complete_internal;
1619
1620 ata_qc_issue(qc);
1621
1622 spin_unlock_irqrestore(ap->lock, flags);
1623
1624 if (!timeout) {
1625 if (ata_probe_timeout)
1626 timeout = ata_probe_timeout * 1000;
1627 else {
1628 timeout = ata_internal_cmd_timeout(dev, command);
1629 auto_timeout = 1;
1630 }
1631 }
1632
1633 if (ap->ops->error_handler)
1634 ata_eh_release(ap);
1635
1636 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1637
1638 if (ap->ops->error_handler)
1639 ata_eh_acquire(ap);
1640
1641 ata_sff_flush_pio_task(ap);
1642
1643 if (!rc) {
1644 spin_lock_irqsave(ap->lock, flags);
1645
1646 /* We're racing with irq here. If we lose, the
1647 * following test prevents us from completing the qc
1648 * twice. If we win, the port is frozen and will be
1649 * cleaned up by ->post_internal_cmd().
1650 */
1651 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1652 qc->err_mask |= AC_ERR_TIMEOUT;
1653
1654 if (ap->ops->error_handler)
1655 ata_port_freeze(ap);
1656 else
1657 ata_qc_complete(qc);
1658
1659 if (ata_msg_warn(ap))
1660 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1661 command);
1662 }
1663
1664 spin_unlock_irqrestore(ap->lock, flags);
1665 }
1666
1667 /* do post_internal_cmd */
1668 if (ap->ops->post_internal_cmd)
1669 ap->ops->post_internal_cmd(qc);
1670
1671 /* perform minimal error analysis */
1672 if (qc->flags & ATA_QCFLAG_FAILED) {
1673 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1674 qc->err_mask |= AC_ERR_DEV;
1675
1676 if (!qc->err_mask)
1677 qc->err_mask |= AC_ERR_OTHER;
1678
1679 if (qc->err_mask & ~AC_ERR_OTHER)
1680 qc->err_mask &= ~AC_ERR_OTHER;
1681 }
1682
1683 /* finish up */
1684 spin_lock_irqsave(ap->lock, flags);
1685
1686 *tf = qc->result_tf;
1687 err_mask = qc->err_mask;
1688
1689 ata_qc_free(qc);
1690 link->active_tag = preempted_tag;
1691 link->sactive = preempted_sactive;
1692 ap->qc_active = preempted_qc_active;
1693 ap->nr_active_links = preempted_nr_active_links;
1694
1695 spin_unlock_irqrestore(ap->lock, flags);
1696
1697 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1698 ata_internal_cmd_timed_out(dev, command);
1699
1700 return err_mask;
1701 }
1702
1703 /**
1704 * ata_exec_internal - execute libata internal command
1705 * @dev: Device to which the command is sent
1706 * @tf: Taskfile registers for the command and the result
1707 * @cdb: CDB for packet command
1708 * @dma_dir: Data tranfer direction of the command
1709 * @buf: Data buffer of the command
1710 * @buflen: Length of data buffer
1711 * @timeout: Timeout in msecs (0 for default)
1712 *
1713 * Wrapper around ata_exec_internal_sg() which takes simple
1714 * buffer instead of sg list.
1715 *
1716 * LOCKING:
1717 * None. Should be called with kernel context, might sleep.
1718 *
1719 * RETURNS:
1720 * Zero on success, AC_ERR_* mask on failure
1721 */
1722 unsigned ata_exec_internal(struct ata_device *dev,
1723 struct ata_taskfile *tf, const u8 *cdb,
1724 int dma_dir, void *buf, unsigned int buflen,
1725 unsigned long timeout)
1726 {
1727 struct scatterlist *psg = NULL, sg;
1728 unsigned int n_elem = 0;
1729
1730 if (dma_dir != DMA_NONE) {
1731 WARN_ON(!buf);
1732 sg_init_one(&sg, buf, buflen);
1733 psg = &sg;
1734 n_elem++;
1735 }
1736
1737 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1738 timeout);
1739 }
1740
1741 /**
1742 * ata_do_simple_cmd - execute simple internal command
1743 * @dev: Device to which the command is sent
1744 * @cmd: Opcode to execute
1745 *
1746 * Execute a 'simple' command, that only consists of the opcode
1747 * 'cmd' itself, without filling any other registers
1748 *
1749 * LOCKING:
1750 * Kernel thread context (may sleep).
1751 *
1752 * RETURNS:
1753 * Zero on success, AC_ERR_* mask on failure
1754 */
1755 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1756 {
1757 struct ata_taskfile tf;
1758
1759 ata_tf_init(dev, &tf);
1760
1761 tf.command = cmd;
1762 tf.flags |= ATA_TFLAG_DEVICE;
1763 tf.protocol = ATA_PROT_NODATA;
1764
1765 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1766 }
1767
1768 /**
1769 * ata_pio_need_iordy - check if iordy needed
1770 * @adev: ATA device
1771 *
1772 * Check if the current speed of the device requires IORDY. Used
1773 * by various controllers for chip configuration.
1774 */
1775 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1776 {
1777 /* Don't set IORDY if we're preparing for reset. IORDY may
1778 * lead to controller lock up on certain controllers if the
1779 * port is not occupied. See bko#11703 for details.
1780 */
1781 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1782 return 0;
1783 /* Controller doesn't support IORDY. Probably a pointless
1784 * check as the caller should know this.
1785 */
1786 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1787 return 0;
1788 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1789 if (ata_id_is_cfa(adev->id)
1790 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1791 return 0;
1792 /* PIO3 and higher it is mandatory */
1793 if (adev->pio_mode > XFER_PIO_2)
1794 return 1;
1795 /* We turn it on when possible */
1796 if (ata_id_has_iordy(adev->id))
1797 return 1;
1798 return 0;
1799 }
1800
1801 /**
1802 * ata_pio_mask_no_iordy - Return the non IORDY mask
1803 * @adev: ATA device
1804 *
1805 * Compute the highest mode possible if we are not using iordy. Return
1806 * -1 if no iordy mode is available.
1807 */
1808 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1809 {
1810 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1811 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1812 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1813 /* Is the speed faster than the drive allows non IORDY ? */
1814 if (pio) {
1815 /* This is cycle times not frequency - watch the logic! */
1816 if (pio > 240) /* PIO2 is 240nS per cycle */
1817 return 3 << ATA_SHIFT_PIO;
1818 return 7 << ATA_SHIFT_PIO;
1819 }
1820 }
1821 return 3 << ATA_SHIFT_PIO;
1822 }
1823
1824 /**
1825 * ata_do_dev_read_id - default ID read method
1826 * @dev: device
1827 * @tf: proposed taskfile
1828 * @id: data buffer
1829 *
1830 * Issue the identify taskfile and hand back the buffer containing
1831 * identify data. For some RAID controllers and for pre ATA devices
1832 * this function is wrapped or replaced by the driver
1833 */
1834 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1835 struct ata_taskfile *tf, u16 *id)
1836 {
1837 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1838 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1839 }
1840
1841 /**
1842 * ata_dev_read_id - Read ID data from the specified device
1843 * @dev: target device
1844 * @p_class: pointer to class of the target device (may be changed)
1845 * @flags: ATA_READID_* flags
1846 * @id: buffer to read IDENTIFY data into
1847 *
1848 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1849 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1850 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1851 * for pre-ATA4 drives.
1852 *
1853 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1854 * now we abort if we hit that case.
1855 *
1856 * LOCKING:
1857 * Kernel thread context (may sleep)
1858 *
1859 * RETURNS:
1860 * 0 on success, -errno otherwise.
1861 */
1862 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1863 unsigned int flags, u16 *id)
1864 {
1865 struct ata_port *ap = dev->link->ap;
1866 unsigned int class = *p_class;
1867 struct ata_taskfile tf;
1868 unsigned int err_mask = 0;
1869 const char *reason;
1870 bool is_semb = class == ATA_DEV_SEMB;
1871 int may_fallback = 1, tried_spinup = 0;
1872 int rc;
1873
1874 if (ata_msg_ctl(ap))
1875 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1876
1877 retry:
1878 ata_tf_init(dev, &tf);
1879
1880 switch (class) {
1881 case ATA_DEV_SEMB:
1882 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1883 case ATA_DEV_ATA:
1884 tf.command = ATA_CMD_ID_ATA;
1885 break;
1886 case ATA_DEV_ATAPI:
1887 tf.command = ATA_CMD_ID_ATAPI;
1888 break;
1889 default:
1890 rc = -ENODEV;
1891 reason = "unsupported class";
1892 goto err_out;
1893 }
1894
1895 tf.protocol = ATA_PROT_PIO;
1896
1897 /* Some devices choke if TF registers contain garbage. Make
1898 * sure those are properly initialized.
1899 */
1900 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1901
1902 /* Device presence detection is unreliable on some
1903 * controllers. Always poll IDENTIFY if available.
1904 */
1905 tf.flags |= ATA_TFLAG_POLLING;
1906
1907 if (ap->ops->read_id)
1908 err_mask = ap->ops->read_id(dev, &tf, id);
1909 else
1910 err_mask = ata_do_dev_read_id(dev, &tf, id);
1911
1912 if (err_mask) {
1913 if (err_mask & AC_ERR_NODEV_HINT) {
1914 ata_dev_dbg(dev, "NODEV after polling detection\n");
1915 return -ENOENT;
1916 }
1917
1918 if (is_semb) {
1919 ata_dev_info(dev,
1920 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1921 /* SEMB is not supported yet */
1922 *p_class = ATA_DEV_SEMB_UNSUP;
1923 return 0;
1924 }
1925
1926 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1927 /* Device or controller might have reported
1928 * the wrong device class. Give a shot at the
1929 * other IDENTIFY if the current one is
1930 * aborted by the device.
1931 */
1932 if (may_fallback) {
1933 may_fallback = 0;
1934
1935 if (class == ATA_DEV_ATA)
1936 class = ATA_DEV_ATAPI;
1937 else
1938 class = ATA_DEV_ATA;
1939 goto retry;
1940 }
1941
1942 /* Control reaches here iff the device aborted
1943 * both flavors of IDENTIFYs which happens
1944 * sometimes with phantom devices.
1945 */
1946 ata_dev_dbg(dev,
1947 "both IDENTIFYs aborted, assuming NODEV\n");
1948 return -ENOENT;
1949 }
1950
1951 rc = -EIO;
1952 reason = "I/O error";
1953 goto err_out;
1954 }
1955
1956 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1957 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1958 "class=%d may_fallback=%d tried_spinup=%d\n",
1959 class, may_fallback, tried_spinup);
1960 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1961 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1962 }
1963
1964 /* Falling back doesn't make sense if ID data was read
1965 * successfully at least once.
1966 */
1967 may_fallback = 0;
1968
1969 swap_buf_le16(id, ATA_ID_WORDS);
1970
1971 /* sanity check */
1972 rc = -EINVAL;
1973 reason = "device reports invalid type";
1974
1975 if (class == ATA_DEV_ATA) {
1976 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1977 goto err_out;
1978 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1979 ata_id_is_ata(id)) {
1980 ata_dev_dbg(dev,
1981 "host indicates ignore ATA devices, ignored\n");
1982 return -ENOENT;
1983 }
1984 } else {
1985 if (ata_id_is_ata(id))
1986 goto err_out;
1987 }
1988
1989 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1990 tried_spinup = 1;
1991 /*
1992 * Drive powered-up in standby mode, and requires a specific
1993 * SET_FEATURES spin-up subcommand before it will accept
1994 * anything other than the original IDENTIFY command.
1995 */
1996 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1997 if (err_mask && id[2] != 0x738c) {
1998 rc = -EIO;
1999 reason = "SPINUP failed";
2000 goto err_out;
2001 }
2002 /*
2003 * If the drive initially returned incomplete IDENTIFY info,
2004 * we now must reissue the IDENTIFY command.
2005 */
2006 if (id[2] == 0x37c8)
2007 goto retry;
2008 }
2009
2010 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2011 /*
2012 * The exact sequence expected by certain pre-ATA4 drives is:
2013 * SRST RESET
2014 * IDENTIFY (optional in early ATA)
2015 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2016 * anything else..
2017 * Some drives were very specific about that exact sequence.
2018 *
2019 * Note that ATA4 says lba is mandatory so the second check
2020 * should never trigger.
2021 */
2022 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2023 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2024 if (err_mask) {
2025 rc = -EIO;
2026 reason = "INIT_DEV_PARAMS failed";
2027 goto err_out;
2028 }
2029
2030 /* current CHS translation info (id[53-58]) might be
2031 * changed. reread the identify device info.
2032 */
2033 flags &= ~ATA_READID_POSTRESET;
2034 goto retry;
2035 }
2036 }
2037
2038 *p_class = class;
2039
2040 return 0;
2041
2042 err_out:
2043 if (ata_msg_warn(ap))
2044 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2045 reason, err_mask);
2046 return rc;
2047 }
2048
2049 static int ata_do_link_spd_horkage(struct ata_device *dev)
2050 {
2051 struct ata_link *plink = ata_dev_phys_link(dev);
2052 u32 target, target_limit;
2053
2054 if (!sata_scr_valid(plink))
2055 return 0;
2056
2057 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2058 target = 1;
2059 else
2060 return 0;
2061
2062 target_limit = (1 << target) - 1;
2063
2064 /* if already on stricter limit, no need to push further */
2065 if (plink->sata_spd_limit <= target_limit)
2066 return 0;
2067
2068 plink->sata_spd_limit = target_limit;
2069
2070 /* Request another EH round by returning -EAGAIN if link is
2071 * going faster than the target speed. Forward progress is
2072 * guaranteed by setting sata_spd_limit to target_limit above.
2073 */
2074 if (plink->sata_spd > target) {
2075 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2076 sata_spd_string(target));
2077 return -EAGAIN;
2078 }
2079 return 0;
2080 }
2081
2082 static inline u8 ata_dev_knobble(struct ata_device *dev)
2083 {
2084 struct ata_port *ap = dev->link->ap;
2085
2086 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2087 return 0;
2088
2089 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2090 }
2091
2092 static int ata_dev_config_ncq(struct ata_device *dev,
2093 char *desc, size_t desc_sz)
2094 {
2095 struct ata_port *ap = dev->link->ap;
2096 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2097 unsigned int err_mask;
2098 char *aa_desc = "";
2099
2100 if (!ata_id_has_ncq(dev->id)) {
2101 desc[0] = '\0';
2102 return 0;
2103 }
2104 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2105 snprintf(desc, desc_sz, "NCQ (not used)");
2106 return 0;
2107 }
2108 if (ap->flags & ATA_FLAG_NCQ) {
2109 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2110 dev->flags |= ATA_DFLAG_NCQ;
2111 }
2112
2113 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2114 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2115 ata_id_has_fpdma_aa(dev->id)) {
2116 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2117 SATA_FPDMA_AA);
2118 if (err_mask) {
2119 ata_dev_err(dev,
2120 "failed to enable AA (error_mask=0x%x)\n",
2121 err_mask);
2122 if (err_mask != AC_ERR_DEV) {
2123 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2124 return -EIO;
2125 }
2126 } else
2127 aa_desc = ", AA";
2128 }
2129
2130 if (hdepth >= ddepth)
2131 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2132 else
2133 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2134 ddepth, aa_desc);
2135 return 0;
2136 }
2137
2138 /**
2139 * ata_dev_configure - Configure the specified ATA/ATAPI device
2140 * @dev: Target device to configure
2141 *
2142 * Configure @dev according to @dev->id. Generic and low-level
2143 * driver specific fixups are also applied.
2144 *
2145 * LOCKING:
2146 * Kernel thread context (may sleep)
2147 *
2148 * RETURNS:
2149 * 0 on success, -errno otherwise
2150 */
2151 int ata_dev_configure(struct ata_device *dev)
2152 {
2153 struct ata_port *ap = dev->link->ap;
2154 struct ata_eh_context *ehc = &dev->link->eh_context;
2155 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2156 const u16 *id = dev->id;
2157 unsigned long xfer_mask;
2158 char revbuf[7]; /* XYZ-99\0 */
2159 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2160 char modelbuf[ATA_ID_PROD_LEN+1];
2161 int rc;
2162
2163 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2164 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2165 return 0;
2166 }
2167
2168 if (ata_msg_probe(ap))
2169 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2170
2171 /* set horkage */
2172 dev->horkage |= ata_dev_blacklisted(dev);
2173 ata_force_horkage(dev);
2174
2175 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2176 ata_dev_info(dev, "unsupported device, disabling\n");
2177 ata_dev_disable(dev);
2178 return 0;
2179 }
2180
2181 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2182 dev->class == ATA_DEV_ATAPI) {
2183 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2184 atapi_enabled ? "not supported with this driver"
2185 : "disabled");
2186 ata_dev_disable(dev);
2187 return 0;
2188 }
2189
2190 rc = ata_do_link_spd_horkage(dev);
2191 if (rc)
2192 return rc;
2193
2194 /* let ACPI work its magic */
2195 rc = ata_acpi_on_devcfg(dev);
2196 if (rc)
2197 return rc;
2198
2199 /* massage HPA, do it early as it might change IDENTIFY data */
2200 rc = ata_hpa_resize(dev);
2201 if (rc)
2202 return rc;
2203
2204 /* print device capabilities */
2205 if (ata_msg_probe(ap))
2206 ata_dev_dbg(dev,
2207 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2208 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2209 __func__,
2210 id[49], id[82], id[83], id[84],
2211 id[85], id[86], id[87], id[88]);
2212
2213 /* initialize to-be-configured parameters */
2214 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2215 dev->max_sectors = 0;
2216 dev->cdb_len = 0;
2217 dev->n_sectors = 0;
2218 dev->cylinders = 0;
2219 dev->heads = 0;
2220 dev->sectors = 0;
2221 dev->multi_count = 0;
2222
2223 /*
2224 * common ATA, ATAPI feature tests
2225 */
2226
2227 /* find max transfer mode; for printk only */
2228 xfer_mask = ata_id_xfermask(id);
2229
2230 if (ata_msg_probe(ap))
2231 ata_dump_id(id);
2232
2233 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2234 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2235 sizeof(fwrevbuf));
2236
2237 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2238 sizeof(modelbuf));
2239
2240 /* ATA-specific feature tests */
2241 if (dev->class == ATA_DEV_ATA) {
2242 if (ata_id_is_cfa(id)) {
2243 /* CPRM may make this media unusable */
2244 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2245 ata_dev_warn(dev,
2246 "supports DRM functions and may not be fully accessible\n");
2247 snprintf(revbuf, 7, "CFA");
2248 } else {
2249 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2250 /* Warn the user if the device has TPM extensions */
2251 if (ata_id_has_tpm(id))
2252 ata_dev_warn(dev,
2253 "supports DRM functions and may not be fully accessible\n");
2254 }
2255
2256 dev->n_sectors = ata_id_n_sectors(id);
2257
2258 /* get current R/W Multiple count setting */
2259 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2260 unsigned int max = dev->id[47] & 0xff;
2261 unsigned int cnt = dev->id[59] & 0xff;
2262 /* only recognize/allow powers of two here */
2263 if (is_power_of_2(max) && is_power_of_2(cnt))
2264 if (cnt <= max)
2265 dev->multi_count = cnt;
2266 }
2267
2268 if (ata_id_has_lba(id)) {
2269 const char *lba_desc;
2270 char ncq_desc[24];
2271
2272 lba_desc = "LBA";
2273 dev->flags |= ATA_DFLAG_LBA;
2274 if (ata_id_has_lba48(id)) {
2275 dev->flags |= ATA_DFLAG_LBA48;
2276 lba_desc = "LBA48";
2277
2278 if (dev->n_sectors >= (1UL << 28) &&
2279 ata_id_has_flush_ext(id))
2280 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2281 }
2282
2283 /* config NCQ */
2284 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2285 if (rc)
2286 return rc;
2287
2288 /* print device info to dmesg */
2289 if (ata_msg_drv(ap) && print_info) {
2290 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2291 revbuf, modelbuf, fwrevbuf,
2292 ata_mode_string(xfer_mask));
2293 ata_dev_info(dev,
2294 "%llu sectors, multi %u: %s %s\n",
2295 (unsigned long long)dev->n_sectors,
2296 dev->multi_count, lba_desc, ncq_desc);
2297 }
2298 } else {
2299 /* CHS */
2300
2301 /* Default translation */
2302 dev->cylinders = id[1];
2303 dev->heads = id[3];
2304 dev->sectors = id[6];
2305
2306 if (ata_id_current_chs_valid(id)) {
2307 /* Current CHS translation is valid. */
2308 dev->cylinders = id[54];
2309 dev->heads = id[55];
2310 dev->sectors = id[56];
2311 }
2312
2313 /* print device info to dmesg */
2314 if (ata_msg_drv(ap) && print_info) {
2315 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2316 revbuf, modelbuf, fwrevbuf,
2317 ata_mode_string(xfer_mask));
2318 ata_dev_info(dev,
2319 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2320 (unsigned long long)dev->n_sectors,
2321 dev->multi_count, dev->cylinders,
2322 dev->heads, dev->sectors);
2323 }
2324 }
2325
2326 dev->cdb_len = 16;
2327 }
2328
2329 /* ATAPI-specific feature tests */
2330 else if (dev->class == ATA_DEV_ATAPI) {
2331 const char *cdb_intr_string = "";
2332 const char *atapi_an_string = "";
2333 const char *dma_dir_string = "";
2334 u32 sntf;
2335
2336 rc = atapi_cdb_len(id);
2337 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2338 if (ata_msg_warn(ap))
2339 ata_dev_warn(dev, "unsupported CDB len\n");
2340 rc = -EINVAL;
2341 goto err_out_nosup;
2342 }
2343 dev->cdb_len = (unsigned int) rc;
2344
2345 /* Enable ATAPI AN if both the host and device have
2346 * the support. If PMP is attached, SNTF is required
2347 * to enable ATAPI AN to discern between PHY status
2348 * changed notifications and ATAPI ANs.
2349 */
2350 if (atapi_an &&
2351 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2352 (!sata_pmp_attached(ap) ||
2353 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2354 unsigned int err_mask;
2355
2356 /* issue SET feature command to turn this on */
2357 err_mask = ata_dev_set_feature(dev,
2358 SETFEATURES_SATA_ENABLE, SATA_AN);
2359 if (err_mask)
2360 ata_dev_err(dev,
2361 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2362 err_mask);
2363 else {
2364 dev->flags |= ATA_DFLAG_AN;
2365 atapi_an_string = ", ATAPI AN";
2366 }
2367 }
2368
2369 if (ata_id_cdb_intr(dev->id)) {
2370 dev->flags |= ATA_DFLAG_CDB_INTR;
2371 cdb_intr_string = ", CDB intr";
2372 }
2373
2374 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2375 dev->flags |= ATA_DFLAG_DMADIR;
2376 dma_dir_string = ", DMADIR";
2377 }
2378
2379 if (ata_id_has_da(dev->id))
2380 dev->flags |= ATA_DFLAG_DA;
2381
2382 /* print device info to dmesg */
2383 if (ata_msg_drv(ap) && print_info)
2384 ata_dev_info(dev,
2385 "ATAPI: %s, %s, max %s%s%s%s\n",
2386 modelbuf, fwrevbuf,
2387 ata_mode_string(xfer_mask),
2388 cdb_intr_string, atapi_an_string,
2389 dma_dir_string);
2390 }
2391
2392 /* determine max_sectors */
2393 dev->max_sectors = ATA_MAX_SECTORS;
2394 if (dev->flags & ATA_DFLAG_LBA48)
2395 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2396
2397 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2398 200 sectors */
2399 if (ata_dev_knobble(dev)) {
2400 if (ata_msg_drv(ap) && print_info)
2401 ata_dev_info(dev, "applying bridge limits\n");
2402 dev->udma_mask &= ATA_UDMA5;
2403 dev->max_sectors = ATA_MAX_SECTORS;
2404 }
2405
2406 if ((dev->class == ATA_DEV_ATAPI) &&
2407 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2408 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2409 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2410 }
2411
2412 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2413 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2414 dev->max_sectors);
2415
2416 if (ap->ops->dev_config)
2417 ap->ops->dev_config(dev);
2418
2419 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2420 /* Let the user know. We don't want to disallow opens for
2421 rescue purposes, or in case the vendor is just a blithering
2422 idiot. Do this after the dev_config call as some controllers
2423 with buggy firmware may want to avoid reporting false device
2424 bugs */
2425
2426 if (print_info) {
2427 ata_dev_warn(dev,
2428 "Drive reports diagnostics failure. This may indicate a drive\n");
2429 ata_dev_warn(dev,
2430 "fault or invalid emulation. Contact drive vendor for information.\n");
2431 }
2432 }
2433
2434 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2435 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2436 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2437 }
2438
2439 return 0;
2440
2441 err_out_nosup:
2442 if (ata_msg_probe(ap))
2443 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2444 return rc;
2445 }
2446
2447 /**
2448 * ata_cable_40wire - return 40 wire cable type
2449 * @ap: port
2450 *
2451 * Helper method for drivers which want to hardwire 40 wire cable
2452 * detection.
2453 */
2454
2455 int ata_cable_40wire(struct ata_port *ap)
2456 {
2457 return ATA_CBL_PATA40;
2458 }
2459
2460 /**
2461 * ata_cable_80wire - return 80 wire cable type
2462 * @ap: port
2463 *
2464 * Helper method for drivers which want to hardwire 80 wire cable
2465 * detection.
2466 */
2467
2468 int ata_cable_80wire(struct ata_port *ap)
2469 {
2470 return ATA_CBL_PATA80;
2471 }
2472
2473 /**
2474 * ata_cable_unknown - return unknown PATA cable.
2475 * @ap: port
2476 *
2477 * Helper method for drivers which have no PATA cable detection.
2478 */
2479
2480 int ata_cable_unknown(struct ata_port *ap)
2481 {
2482 return ATA_CBL_PATA_UNK;
2483 }
2484
2485 /**
2486 * ata_cable_ignore - return ignored PATA cable.
2487 * @ap: port
2488 *
2489 * Helper method for drivers which don't use cable type to limit
2490 * transfer mode.
2491 */
2492 int ata_cable_ignore(struct ata_port *ap)
2493 {
2494 return ATA_CBL_PATA_IGN;
2495 }
2496
2497 /**
2498 * ata_cable_sata - return SATA cable type
2499 * @ap: port
2500 *
2501 * Helper method for drivers which have SATA cables
2502 */
2503
2504 int ata_cable_sata(struct ata_port *ap)
2505 {
2506 return ATA_CBL_SATA;
2507 }
2508
2509 /**
2510 * ata_bus_probe - Reset and probe ATA bus
2511 * @ap: Bus to probe
2512 *
2513 * Master ATA bus probing function. Initiates a hardware-dependent
2514 * bus reset, then attempts to identify any devices found on
2515 * the bus.
2516 *
2517 * LOCKING:
2518 * PCI/etc. bus probe sem.
2519 *
2520 * RETURNS:
2521 * Zero on success, negative errno otherwise.
2522 */
2523
2524 int ata_bus_probe(struct ata_port *ap)
2525 {
2526 unsigned int classes[ATA_MAX_DEVICES];
2527 int tries[ATA_MAX_DEVICES];
2528 int rc;
2529 struct ata_device *dev;
2530
2531 ata_for_each_dev(dev, &ap->link, ALL)
2532 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2533
2534 retry:
2535 ata_for_each_dev(dev, &ap->link, ALL) {
2536 /* If we issue an SRST then an ATA drive (not ATAPI)
2537 * may change configuration and be in PIO0 timing. If
2538 * we do a hard reset (or are coming from power on)
2539 * this is true for ATA or ATAPI. Until we've set a
2540 * suitable controller mode we should not touch the
2541 * bus as we may be talking too fast.
2542 */
2543 dev->pio_mode = XFER_PIO_0;
2544
2545 /* If the controller has a pio mode setup function
2546 * then use it to set the chipset to rights. Don't
2547 * touch the DMA setup as that will be dealt with when
2548 * configuring devices.
2549 */
2550 if (ap->ops->set_piomode)
2551 ap->ops->set_piomode(ap, dev);
2552 }
2553
2554 /* reset and determine device classes */
2555 ap->ops->phy_reset(ap);
2556
2557 ata_for_each_dev(dev, &ap->link, ALL) {
2558 if (dev->class != ATA_DEV_UNKNOWN)
2559 classes[dev->devno] = dev->class;
2560 else
2561 classes[dev->devno] = ATA_DEV_NONE;
2562
2563 dev->class = ATA_DEV_UNKNOWN;
2564 }
2565
2566 /* read IDENTIFY page and configure devices. We have to do the identify
2567 specific sequence bass-ackwards so that PDIAG- is released by
2568 the slave device */
2569
2570 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2571 if (tries[dev->devno])
2572 dev->class = classes[dev->devno];
2573
2574 if (!ata_dev_enabled(dev))
2575 continue;
2576
2577 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2578 dev->id);
2579 if (rc)
2580 goto fail;
2581 }
2582
2583 /* Now ask for the cable type as PDIAG- should have been released */
2584 if (ap->ops->cable_detect)
2585 ap->cbl = ap->ops->cable_detect(ap);
2586
2587 /* We may have SATA bridge glue hiding here irrespective of
2588 * the reported cable types and sensed types. When SATA
2589 * drives indicate we have a bridge, we don't know which end
2590 * of the link the bridge is which is a problem.
2591 */
2592 ata_for_each_dev(dev, &ap->link, ENABLED)
2593 if (ata_id_is_sata(dev->id))
2594 ap->cbl = ATA_CBL_SATA;
2595
2596 /* After the identify sequence we can now set up the devices. We do
2597 this in the normal order so that the user doesn't get confused */
2598
2599 ata_for_each_dev(dev, &ap->link, ENABLED) {
2600 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2601 rc = ata_dev_configure(dev);
2602 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2603 if (rc)
2604 goto fail;
2605 }
2606
2607 /* configure transfer mode */
2608 rc = ata_set_mode(&ap->link, &dev);
2609 if (rc)
2610 goto fail;
2611
2612 ata_for_each_dev(dev, &ap->link, ENABLED)
2613 return 0;
2614
2615 return -ENODEV;
2616
2617 fail:
2618 tries[dev->devno]--;
2619
2620 switch (rc) {
2621 case -EINVAL:
2622 /* eeek, something went very wrong, give up */
2623 tries[dev->devno] = 0;
2624 break;
2625
2626 case -ENODEV:
2627 /* give it just one more chance */
2628 tries[dev->devno] = min(tries[dev->devno], 1);
2629 case -EIO:
2630 if (tries[dev->devno] == 1) {
2631 /* This is the last chance, better to slow
2632 * down than lose it.
2633 */
2634 sata_down_spd_limit(&ap->link, 0);
2635 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2636 }
2637 }
2638
2639 if (!tries[dev->devno])
2640 ata_dev_disable(dev);
2641
2642 goto retry;
2643 }
2644
2645 /**
2646 * sata_print_link_status - Print SATA link status
2647 * @link: SATA link to printk link status about
2648 *
2649 * This function prints link speed and status of a SATA link.
2650 *
2651 * LOCKING:
2652 * None.
2653 */
2654 static void sata_print_link_status(struct ata_link *link)
2655 {
2656 u32 sstatus, scontrol, tmp;
2657
2658 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2659 return;
2660 sata_scr_read(link, SCR_CONTROL, &scontrol);
2661
2662 if (ata_phys_link_online(link)) {
2663 tmp = (sstatus >> 4) & 0xf;
2664 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2665 sata_spd_string(tmp), sstatus, scontrol);
2666 } else {
2667 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2668 sstatus, scontrol);
2669 }
2670 }
2671
2672 /**
2673 * ata_dev_pair - return other device on cable
2674 * @adev: device
2675 *
2676 * Obtain the other device on the same cable, or if none is
2677 * present NULL is returned
2678 */
2679
2680 struct ata_device *ata_dev_pair(struct ata_device *adev)
2681 {
2682 struct ata_link *link = adev->link;
2683 struct ata_device *pair = &link->device[1 - adev->devno];
2684 if (!ata_dev_enabled(pair))
2685 return NULL;
2686 return pair;
2687 }
2688
2689 /**
2690 * sata_down_spd_limit - adjust SATA spd limit downward
2691 * @link: Link to adjust SATA spd limit for
2692 * @spd_limit: Additional limit
2693 *
2694 * Adjust SATA spd limit of @link downward. Note that this
2695 * function only adjusts the limit. The change must be applied
2696 * using sata_set_spd().
2697 *
2698 * If @spd_limit is non-zero, the speed is limited to equal to or
2699 * lower than @spd_limit if such speed is supported. If
2700 * @spd_limit is slower than any supported speed, only the lowest
2701 * supported speed is allowed.
2702 *
2703 * LOCKING:
2704 * Inherited from caller.
2705 *
2706 * RETURNS:
2707 * 0 on success, negative errno on failure
2708 */
2709 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2710 {
2711 u32 sstatus, spd, mask;
2712 int rc, bit;
2713
2714 if (!sata_scr_valid(link))
2715 return -EOPNOTSUPP;
2716
2717 /* If SCR can be read, use it to determine the current SPD.
2718 * If not, use cached value in link->sata_spd.
2719 */
2720 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2721 if (rc == 0 && ata_sstatus_online(sstatus))
2722 spd = (sstatus >> 4) & 0xf;
2723 else
2724 spd = link->sata_spd;
2725
2726 mask = link->sata_spd_limit;
2727 if (mask <= 1)
2728 return -EINVAL;
2729
2730 /* unconditionally mask off the highest bit */
2731 bit = fls(mask) - 1;
2732 mask &= ~(1 << bit);
2733
2734 /* Mask off all speeds higher than or equal to the current
2735 * one. Force 1.5Gbps if current SPD is not available.
2736 */
2737 if (spd > 1)
2738 mask &= (1 << (spd - 1)) - 1;
2739 else
2740 mask &= 1;
2741
2742 /* were we already at the bottom? */
2743 if (!mask)
2744 return -EINVAL;
2745
2746 if (spd_limit) {
2747 if (mask & ((1 << spd_limit) - 1))
2748 mask &= (1 << spd_limit) - 1;
2749 else {
2750 bit = ffs(mask) - 1;
2751 mask = 1 << bit;
2752 }
2753 }
2754
2755 link->sata_spd_limit = mask;
2756
2757 ata_link_warn(link, "limiting SATA link speed to %s\n",
2758 sata_spd_string(fls(mask)));
2759
2760 return 0;
2761 }
2762
2763 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2764 {
2765 struct ata_link *host_link = &link->ap->link;
2766 u32 limit, target, spd;
2767
2768 limit = link->sata_spd_limit;
2769
2770 /* Don't configure downstream link faster than upstream link.
2771 * It doesn't speed up anything and some PMPs choke on such
2772 * configuration.
2773 */
2774 if (!ata_is_host_link(link) && host_link->sata_spd)
2775 limit &= (1 << host_link->sata_spd) - 1;
2776
2777 if (limit == UINT_MAX)
2778 target = 0;
2779 else
2780 target = fls(limit);
2781
2782 spd = (*scontrol >> 4) & 0xf;
2783 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2784
2785 return spd != target;
2786 }
2787
2788 /**
2789 * sata_set_spd_needed - is SATA spd configuration needed
2790 * @link: Link in question
2791 *
2792 * Test whether the spd limit in SControl matches
2793 * @link->sata_spd_limit. This function is used to determine
2794 * whether hardreset is necessary to apply SATA spd
2795 * configuration.
2796 *
2797 * LOCKING:
2798 * Inherited from caller.
2799 *
2800 * RETURNS:
2801 * 1 if SATA spd configuration is needed, 0 otherwise.
2802 */
2803 static int sata_set_spd_needed(struct ata_link *link)
2804 {
2805 u32 scontrol;
2806
2807 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2808 return 1;
2809
2810 return __sata_set_spd_needed(link, &scontrol);
2811 }
2812
2813 /**
2814 * sata_set_spd - set SATA spd according to spd limit
2815 * @link: Link to set SATA spd for
2816 *
2817 * Set SATA spd of @link according to sata_spd_limit.
2818 *
2819 * LOCKING:
2820 * Inherited from caller.
2821 *
2822 * RETURNS:
2823 * 0 if spd doesn't need to be changed, 1 if spd has been
2824 * changed. Negative errno if SCR registers are inaccessible.
2825 */
2826 int sata_set_spd(struct ata_link *link)
2827 {
2828 u32 scontrol;
2829 int rc;
2830
2831 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2832 return rc;
2833
2834 if (!__sata_set_spd_needed(link, &scontrol))
2835 return 0;
2836
2837 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2838 return rc;
2839
2840 return 1;
2841 }
2842
2843 /*
2844 * This mode timing computation functionality is ported over from
2845 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2846 */
2847 /*
2848 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2849 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2850 * for UDMA6, which is currently supported only by Maxtor drives.
2851 *
2852 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2853 */
2854
2855 static const struct ata_timing ata_timing[] = {
2856 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
2857 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
2858 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
2859 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
2860 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
2861 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
2862 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
2863 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
2864
2865 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
2866 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
2867 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
2868
2869 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
2870 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
2871 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
2872 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
2873 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
2874
2875 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2876 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
2877 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
2878 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
2879 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
2880 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
2881 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
2882 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
2883
2884 { 0xFF }
2885 };
2886
2887 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2888 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2889
2890 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2891 {
2892 q->setup = EZ(t->setup * 1000, T);
2893 q->act8b = EZ(t->act8b * 1000, T);
2894 q->rec8b = EZ(t->rec8b * 1000, T);
2895 q->cyc8b = EZ(t->cyc8b * 1000, T);
2896 q->active = EZ(t->active * 1000, T);
2897 q->recover = EZ(t->recover * 1000, T);
2898 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
2899 q->cycle = EZ(t->cycle * 1000, T);
2900 q->udma = EZ(t->udma * 1000, UT);
2901 }
2902
2903 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2904 struct ata_timing *m, unsigned int what)
2905 {
2906 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2907 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2908 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2909 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2910 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2911 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2912 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2913 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2914 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2915 }
2916
2917 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2918 {
2919 const struct ata_timing *t = ata_timing;
2920
2921 while (xfer_mode > t->mode)
2922 t++;
2923
2924 if (xfer_mode == t->mode)
2925 return t;
2926 return NULL;
2927 }
2928
2929 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2930 struct ata_timing *t, int T, int UT)
2931 {
2932 const u16 *id = adev->id;
2933 const struct ata_timing *s;
2934 struct ata_timing p;
2935
2936 /*
2937 * Find the mode.
2938 */
2939
2940 if (!(s = ata_timing_find_mode(speed)))
2941 return -EINVAL;
2942
2943 memcpy(t, s, sizeof(*s));
2944
2945 /*
2946 * If the drive is an EIDE drive, it can tell us it needs extended
2947 * PIO/MW_DMA cycle timing.
2948 */
2949
2950 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2951 memset(&p, 0, sizeof(p));
2952
2953 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
2954 if (speed <= XFER_PIO_2)
2955 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
2956 else if ((speed <= XFER_PIO_4) ||
2957 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
2958 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
2959 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
2960 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
2961
2962 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2963 }
2964
2965 /*
2966 * Convert the timing to bus clock counts.
2967 */
2968
2969 ata_timing_quantize(t, t, T, UT);
2970
2971 /*
2972 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2973 * S.M.A.R.T * and some other commands. We have to ensure that the
2974 * DMA cycle timing is slower/equal than the fastest PIO timing.
2975 */
2976
2977 if (speed > XFER_PIO_6) {
2978 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2979 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2980 }
2981
2982 /*
2983 * Lengthen active & recovery time so that cycle time is correct.
2984 */
2985
2986 if (t->act8b + t->rec8b < t->cyc8b) {
2987 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2988 t->rec8b = t->cyc8b - t->act8b;
2989 }
2990
2991 if (t->active + t->recover < t->cycle) {
2992 t->active += (t->cycle - (t->active + t->recover)) / 2;
2993 t->recover = t->cycle - t->active;
2994 }
2995
2996 /* In a few cases quantisation may produce enough errors to
2997 leave t->cycle too low for the sum of active and recovery
2998 if so we must correct this */
2999 if (t->active + t->recover > t->cycle)
3000 t->cycle = t->active + t->recover;
3001
3002 return 0;
3003 }
3004
3005 /**
3006 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3007 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3008 * @cycle: cycle duration in ns
3009 *
3010 * Return matching xfer mode for @cycle. The returned mode is of
3011 * the transfer type specified by @xfer_shift. If @cycle is too
3012 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3013 * than the fastest known mode, the fasted mode is returned.
3014 *
3015 * LOCKING:
3016 * None.
3017 *
3018 * RETURNS:
3019 * Matching xfer_mode, 0xff if no match found.
3020 */
3021 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3022 {
3023 u8 base_mode = 0xff, last_mode = 0xff;
3024 const struct ata_xfer_ent *ent;
3025 const struct ata_timing *t;
3026
3027 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3028 if (ent->shift == xfer_shift)
3029 base_mode = ent->base;
3030
3031 for (t = ata_timing_find_mode(base_mode);
3032 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3033 unsigned short this_cycle;
3034
3035 switch (xfer_shift) {
3036 case ATA_SHIFT_PIO:
3037 case ATA_SHIFT_MWDMA:
3038 this_cycle = t->cycle;
3039 break;
3040 case ATA_SHIFT_UDMA:
3041 this_cycle = t->udma;
3042 break;
3043 default:
3044 return 0xff;
3045 }
3046
3047 if (cycle > this_cycle)
3048 break;
3049
3050 last_mode = t->mode;
3051 }
3052
3053 return last_mode;
3054 }
3055
3056 /**
3057 * ata_down_xfermask_limit - adjust dev xfer masks downward
3058 * @dev: Device to adjust xfer masks
3059 * @sel: ATA_DNXFER_* selector
3060 *
3061 * Adjust xfer masks of @dev downward. Note that this function
3062 * does not apply the change. Invoking ata_set_mode() afterwards
3063 * will apply the limit.
3064 *
3065 * LOCKING:
3066 * Inherited from caller.
3067 *
3068 * RETURNS:
3069 * 0 on success, negative errno on failure
3070 */
3071 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3072 {
3073 char buf[32];
3074 unsigned long orig_mask, xfer_mask;
3075 unsigned long pio_mask, mwdma_mask, udma_mask;
3076 int quiet, highbit;
3077
3078 quiet = !!(sel & ATA_DNXFER_QUIET);
3079 sel &= ~ATA_DNXFER_QUIET;
3080
3081 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3082 dev->mwdma_mask,
3083 dev->udma_mask);
3084 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3085
3086 switch (sel) {
3087 case ATA_DNXFER_PIO:
3088 highbit = fls(pio_mask) - 1;
3089 pio_mask &= ~(1 << highbit);
3090 break;
3091
3092 case ATA_DNXFER_DMA:
3093 if (udma_mask) {
3094 highbit = fls(udma_mask) - 1;
3095 udma_mask &= ~(1 << highbit);
3096 if (!udma_mask)
3097 return -ENOENT;
3098 } else if (mwdma_mask) {
3099 highbit = fls(mwdma_mask) - 1;
3100 mwdma_mask &= ~(1 << highbit);
3101 if (!mwdma_mask)
3102 return -ENOENT;
3103 }
3104 break;
3105
3106 case ATA_DNXFER_40C:
3107 udma_mask &= ATA_UDMA_MASK_40C;
3108 break;
3109
3110 case ATA_DNXFER_FORCE_PIO0:
3111 pio_mask &= 1;
3112 case ATA_DNXFER_FORCE_PIO:
3113 mwdma_mask = 0;
3114 udma_mask = 0;
3115 break;
3116
3117 default:
3118 BUG();
3119 }
3120
3121 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3122
3123 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3124 return -ENOENT;
3125
3126 if (!quiet) {
3127 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3128 snprintf(buf, sizeof(buf), "%s:%s",
3129 ata_mode_string(xfer_mask),
3130 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3131 else
3132 snprintf(buf, sizeof(buf), "%s",
3133 ata_mode_string(xfer_mask));
3134
3135 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3136 }
3137
3138 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3139 &dev->udma_mask);
3140
3141 return 0;
3142 }
3143
3144 static int ata_dev_set_mode(struct ata_device *dev)
3145 {
3146 struct ata_port *ap = dev->link->ap;
3147 struct ata_eh_context *ehc = &dev->link->eh_context;
3148 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3149 const char *dev_err_whine = "";
3150 int ign_dev_err = 0;
3151 unsigned int err_mask = 0;
3152 int rc;
3153
3154 dev->flags &= ~ATA_DFLAG_PIO;
3155 if (dev->xfer_shift == ATA_SHIFT_PIO)
3156 dev->flags |= ATA_DFLAG_PIO;
3157
3158 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3159 dev_err_whine = " (SET_XFERMODE skipped)";
3160 else {
3161 if (nosetxfer)
3162 ata_dev_warn(dev,
3163 "NOSETXFER but PATA detected - can't "
3164 "skip SETXFER, might malfunction\n");
3165 err_mask = ata_dev_set_xfermode(dev);
3166 }
3167
3168 if (err_mask & ~AC_ERR_DEV)
3169 goto fail;
3170
3171 /* revalidate */
3172 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3173 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3174 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3175 if (rc)
3176 return rc;
3177
3178 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3179 /* Old CFA may refuse this command, which is just fine */
3180 if (ata_id_is_cfa(dev->id))
3181 ign_dev_err = 1;
3182 /* Catch several broken garbage emulations plus some pre
3183 ATA devices */
3184 if (ata_id_major_version(dev->id) == 0 &&
3185 dev->pio_mode <= XFER_PIO_2)
3186 ign_dev_err = 1;
3187 /* Some very old devices and some bad newer ones fail
3188 any kind of SET_XFERMODE request but support PIO0-2
3189 timings and no IORDY */
3190 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3191 ign_dev_err = 1;
3192 }
3193 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3194 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3195 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3196 dev->dma_mode == XFER_MW_DMA_0 &&
3197 (dev->id[63] >> 8) & 1)
3198 ign_dev_err = 1;
3199
3200 /* if the device is actually configured correctly, ignore dev err */
3201 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3202 ign_dev_err = 1;
3203
3204 if (err_mask & AC_ERR_DEV) {
3205 if (!ign_dev_err)
3206 goto fail;
3207 else
3208 dev_err_whine = " (device error ignored)";
3209 }
3210
3211 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3212 dev->xfer_shift, (int)dev->xfer_mode);
3213
3214 ata_dev_info(dev, "configured for %s%s\n",
3215 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3216 dev_err_whine);
3217
3218 return 0;
3219
3220 fail:
3221 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3222 return -EIO;
3223 }
3224
3225 /**
3226 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3227 * @link: link on which timings will be programmed
3228 * @r_failed_dev: out parameter for failed device
3229 *
3230 * Standard implementation of the function used to tune and set
3231 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3232 * ata_dev_set_mode() fails, pointer to the failing device is
3233 * returned in @r_failed_dev.
3234 *
3235 * LOCKING:
3236 * PCI/etc. bus probe sem.
3237 *
3238 * RETURNS:
3239 * 0 on success, negative errno otherwise
3240 */
3241
3242 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3243 {
3244 struct ata_port *ap = link->ap;
3245 struct ata_device *dev;
3246 int rc = 0, used_dma = 0, found = 0;
3247
3248 /* step 1: calculate xfer_mask */
3249 ata_for_each_dev(dev, link, ENABLED) {
3250 unsigned long pio_mask, dma_mask;
3251 unsigned int mode_mask;
3252
3253 mode_mask = ATA_DMA_MASK_ATA;
3254 if (dev->class == ATA_DEV_ATAPI)
3255 mode_mask = ATA_DMA_MASK_ATAPI;
3256 else if (ata_id_is_cfa(dev->id))
3257 mode_mask = ATA_DMA_MASK_CFA;
3258
3259 ata_dev_xfermask(dev);
3260 ata_force_xfermask(dev);
3261
3262 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3263
3264 if (libata_dma_mask & mode_mask)
3265 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3266 dev->udma_mask);
3267 else
3268 dma_mask = 0;
3269
3270 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3271 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3272
3273 found = 1;
3274 if (ata_dma_enabled(dev))
3275 used_dma = 1;
3276 }
3277 if (!found)
3278 goto out;
3279
3280 /* step 2: always set host PIO timings */
3281 ata_for_each_dev(dev, link, ENABLED) {
3282 if (dev->pio_mode == 0xff) {
3283 ata_dev_warn(dev, "no PIO support\n");
3284 rc = -EINVAL;
3285 goto out;
3286 }
3287
3288 dev->xfer_mode = dev->pio_mode;
3289 dev->xfer_shift = ATA_SHIFT_PIO;
3290 if (ap->ops->set_piomode)
3291 ap->ops->set_piomode(ap, dev);
3292 }
3293
3294 /* step 3: set host DMA timings */
3295 ata_for_each_dev(dev, link, ENABLED) {
3296 if (!ata_dma_enabled(dev))
3297 continue;
3298
3299 dev->xfer_mode = dev->dma_mode;
3300 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3301 if (ap->ops->set_dmamode)
3302 ap->ops->set_dmamode(ap, dev);
3303 }
3304
3305 /* step 4: update devices' xfer mode */
3306 ata_for_each_dev(dev, link, ENABLED) {
3307 rc = ata_dev_set_mode(dev);
3308 if (rc)
3309 goto out;
3310 }
3311
3312 /* Record simplex status. If we selected DMA then the other
3313 * host channels are not permitted to do so.
3314 */
3315 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3316 ap->host->simplex_claimed = ap;
3317
3318 out:
3319 if (rc)
3320 *r_failed_dev = dev;
3321 return rc;
3322 }
3323
3324 /**
3325 * ata_wait_ready - wait for link to become ready
3326 * @link: link to be waited on
3327 * @deadline: deadline jiffies for the operation
3328 * @check_ready: callback to check link readiness
3329 *
3330 * Wait for @link to become ready. @check_ready should return
3331 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3332 * link doesn't seem to be occupied, other errno for other error
3333 * conditions.
3334 *
3335 * Transient -ENODEV conditions are allowed for
3336 * ATA_TMOUT_FF_WAIT.
3337 *
3338 * LOCKING:
3339 * EH context.
3340 *
3341 * RETURNS:
3342 * 0 if @linke is ready before @deadline; otherwise, -errno.
3343 */
3344 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3345 int (*check_ready)(struct ata_link *link))
3346 {
3347 unsigned long start = jiffies;
3348 unsigned long nodev_deadline;
3349 int warned = 0;
3350
3351 /* choose which 0xff timeout to use, read comment in libata.h */
3352 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3353 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3354 else
3355 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3356
3357 /* Slave readiness can't be tested separately from master. On
3358 * M/S emulation configuration, this function should be called
3359 * only on the master and it will handle both master and slave.
3360 */
3361 WARN_ON(link == link->ap->slave_link);
3362
3363 if (time_after(nodev_deadline, deadline))
3364 nodev_deadline = deadline;
3365
3366 while (1) {
3367 unsigned long now = jiffies;
3368 int ready, tmp;
3369
3370 ready = tmp = check_ready(link);
3371 if (ready > 0)
3372 return 0;
3373
3374 /*
3375 * -ENODEV could be transient. Ignore -ENODEV if link
3376 * is online. Also, some SATA devices take a long
3377 * time to clear 0xff after reset. Wait for
3378 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3379 * offline.
3380 *
3381 * Note that some PATA controllers (pata_ali) explode
3382 * if status register is read more than once when
3383 * there's no device attached.
3384 */
3385 if (ready == -ENODEV) {
3386 if (ata_link_online(link))
3387 ready = 0;
3388 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3389 !ata_link_offline(link) &&
3390 time_before(now, nodev_deadline))
3391 ready = 0;
3392 }
3393
3394 if (ready)
3395 return ready;
3396 if (time_after(now, deadline))
3397 return -EBUSY;
3398
3399 if (!warned && time_after(now, start + 5 * HZ) &&
3400 (deadline - now > 3 * HZ)) {
3401 ata_link_warn(link,
3402 "link is slow to respond, please be patient "
3403 "(ready=%d)\n", tmp);
3404 warned = 1;
3405 }
3406
3407 ata_msleep(link->ap, 50);
3408 }
3409 }
3410
3411 /**
3412 * ata_wait_after_reset - wait for link to become ready after reset
3413 * @link: link to be waited on
3414 * @deadline: deadline jiffies for the operation
3415 * @check_ready: callback to check link readiness
3416 *
3417 * Wait for @link to become ready after reset.
3418 *
3419 * LOCKING:
3420 * EH context.
3421 *
3422 * RETURNS:
3423 * 0 if @linke is ready before @deadline; otherwise, -errno.
3424 */
3425 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3426 int (*check_ready)(struct ata_link *link))
3427 {
3428 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3429
3430 return ata_wait_ready(link, deadline, check_ready);
3431 }
3432
3433 /**
3434 * sata_link_debounce - debounce SATA phy status
3435 * @link: ATA link to debounce SATA phy status for
3436 * @params: timing parameters { interval, duratinon, timeout } in msec
3437 * @deadline: deadline jiffies for the operation
3438 *
3439 * Make sure SStatus of @link reaches stable state, determined by
3440 * holding the same value where DET is not 1 for @duration polled
3441 * every @interval, before @timeout. Timeout constraints the
3442 * beginning of the stable state. Because DET gets stuck at 1 on
3443 * some controllers after hot unplugging, this functions waits
3444 * until timeout then returns 0 if DET is stable at 1.
3445 *
3446 * @timeout is further limited by @deadline. The sooner of the
3447 * two is used.
3448 *
3449 * LOCKING:
3450 * Kernel thread context (may sleep)
3451 *
3452 * RETURNS:
3453 * 0 on success, -errno on failure.
3454 */
3455 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3456 unsigned long deadline)
3457 {
3458 unsigned long interval = params[0];
3459 unsigned long duration = params[1];
3460 unsigned long last_jiffies, t;
3461 u32 last, cur;
3462 int rc;
3463
3464 t = ata_deadline(jiffies, params[2]);
3465 if (time_before(t, deadline))
3466 deadline = t;
3467
3468 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3469 return rc;
3470 cur &= 0xf;
3471
3472 last = cur;
3473 last_jiffies = jiffies;
3474
3475 while (1) {
3476 ata_msleep(link->ap, interval);
3477 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3478 return rc;
3479 cur &= 0xf;
3480
3481 /* DET stable? */
3482 if (cur == last) {
3483 if (cur == 1 && time_before(jiffies, deadline))
3484 continue;
3485 if (time_after(jiffies,
3486 ata_deadline(last_jiffies, duration)))
3487 return 0;
3488 continue;
3489 }
3490
3491 /* unstable, start over */
3492 last = cur;
3493 last_jiffies = jiffies;
3494
3495 /* Check deadline. If debouncing failed, return
3496 * -EPIPE to tell upper layer to lower link speed.
3497 */
3498 if (time_after(jiffies, deadline))
3499 return -EPIPE;
3500 }
3501 }
3502
3503 /**
3504 * sata_link_resume - resume SATA link
3505 * @link: ATA link to resume SATA
3506 * @params: timing parameters { interval, duratinon, timeout } in msec
3507 * @deadline: deadline jiffies for the operation
3508 *
3509 * Resume SATA phy @link and debounce it.
3510 *
3511 * LOCKING:
3512 * Kernel thread context (may sleep)
3513 *
3514 * RETURNS:
3515 * 0 on success, -errno on failure.
3516 */
3517 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3518 unsigned long deadline)
3519 {
3520 int tries = ATA_LINK_RESUME_TRIES;
3521 u32 scontrol, serror;
3522 int rc;
3523
3524 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3525 return rc;
3526
3527 /*
3528 * Writes to SControl sometimes get ignored under certain
3529 * controllers (ata_piix SIDPR). Make sure DET actually is
3530 * cleared.
3531 */
3532 do {
3533 scontrol = (scontrol & 0x0f0) | 0x300;
3534 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3535 return rc;
3536 /*
3537 * Some PHYs react badly if SStatus is pounded
3538 * immediately after resuming. Delay 200ms before
3539 * debouncing.
3540 */
3541 ata_msleep(link->ap, 200);
3542
3543 /* is SControl restored correctly? */
3544 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3545 return rc;
3546 } while ((scontrol & 0xf0f) != 0x300 && --tries);
3547
3548 if ((scontrol & 0xf0f) != 0x300) {
3549 ata_link_warn(link, "failed to resume link (SControl %X)\n",
3550 scontrol);
3551 return 0;
3552 }
3553
3554 if (tries < ATA_LINK_RESUME_TRIES)
3555 ata_link_warn(link, "link resume succeeded after %d retries\n",
3556 ATA_LINK_RESUME_TRIES - tries);
3557
3558 if ((rc = sata_link_debounce(link, params, deadline)))
3559 return rc;
3560
3561 /* clear SError, some PHYs require this even for SRST to work */
3562 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3563 rc = sata_scr_write(link, SCR_ERROR, serror);
3564
3565 return rc != -EINVAL ? rc : 0;
3566 }
3567
3568 /**
3569 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3570 * @link: ATA link to manipulate SControl for
3571 * @policy: LPM policy to configure
3572 * @spm_wakeup: initiate LPM transition to active state
3573 *
3574 * Manipulate the IPM field of the SControl register of @link
3575 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3576 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3577 * the link. This function also clears PHYRDY_CHG before
3578 * returning.
3579 *
3580 * LOCKING:
3581 * EH context.
3582 *
3583 * RETURNS:
3584 * 0 on succes, -errno otherwise.
3585 */
3586 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3587 bool spm_wakeup)
3588 {
3589 struct ata_eh_context *ehc = &link->eh_context;
3590 bool woken_up = false;
3591 u32 scontrol;
3592 int rc;
3593
3594 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3595 if (rc)
3596 return rc;
3597
3598 switch (policy) {
3599 case ATA_LPM_MAX_POWER:
3600 /* disable all LPM transitions */
3601 scontrol |= (0x3 << 8);
3602 /* initiate transition to active state */
3603 if (spm_wakeup) {
3604 scontrol |= (0x4 << 12);
3605 woken_up = true;
3606 }
3607 break;
3608 case ATA_LPM_MED_POWER:
3609 /* allow LPM to PARTIAL */
3610 scontrol &= ~(0x1 << 8);
3611 scontrol |= (0x2 << 8);
3612 break;
3613 case ATA_LPM_MIN_POWER:
3614 if (ata_link_nr_enabled(link) > 0)
3615 /* no restrictions on LPM transitions */
3616 scontrol &= ~(0x3 << 8);
3617 else {
3618 /* empty port, power off */
3619 scontrol &= ~0xf;
3620 scontrol |= (0x1 << 2);
3621 }
3622 break;
3623 default:
3624 WARN_ON(1);
3625 }
3626
3627 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3628 if (rc)
3629 return rc;
3630
3631 /* give the link time to transit out of LPM state */
3632 if (woken_up)
3633 msleep(10);
3634
3635 /* clear PHYRDY_CHG from SError */
3636 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3637 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3638 }
3639
3640 /**
3641 * ata_std_prereset - prepare for reset
3642 * @link: ATA link to be reset
3643 * @deadline: deadline jiffies for the operation
3644 *
3645 * @link is about to be reset. Initialize it. Failure from
3646 * prereset makes libata abort whole reset sequence and give up
3647 * that port, so prereset should be best-effort. It does its
3648 * best to prepare for reset sequence but if things go wrong, it
3649 * should just whine, not fail.
3650 *
3651 * LOCKING:
3652 * Kernel thread context (may sleep)
3653 *
3654 * RETURNS:
3655 * 0 on success, -errno otherwise.
3656 */
3657 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3658 {
3659 struct ata_port *ap = link->ap;
3660 struct ata_eh_context *ehc = &link->eh_context;
3661 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3662 int rc;
3663
3664 /* if we're about to do hardreset, nothing more to do */
3665 if (ehc->i.action & ATA_EH_HARDRESET)
3666 return 0;
3667
3668 /* if SATA, resume link */
3669 if (ap->flags & ATA_FLAG_SATA) {
3670 rc = sata_link_resume(link, timing, deadline);
3671 /* whine about phy resume failure but proceed */
3672 if (rc && rc != -EOPNOTSUPP)
3673 ata_link_warn(link,
3674 "failed to resume link for reset (errno=%d)\n",
3675 rc);
3676 }
3677
3678 /* no point in trying softreset on offline link */
3679 if (ata_phys_link_offline(link))
3680 ehc->i.action &= ~ATA_EH_SOFTRESET;
3681
3682 return 0;
3683 }
3684
3685 /**
3686 * sata_link_hardreset - reset link via SATA phy reset
3687 * @link: link to reset
3688 * @timing: timing parameters { interval, duratinon, timeout } in msec
3689 * @deadline: deadline jiffies for the operation
3690 * @online: optional out parameter indicating link onlineness
3691 * @check_ready: optional callback to check link readiness
3692 *
3693 * SATA phy-reset @link using DET bits of SControl register.
3694 * After hardreset, link readiness is waited upon using
3695 * ata_wait_ready() if @check_ready is specified. LLDs are
3696 * allowed to not specify @check_ready and wait itself after this
3697 * function returns. Device classification is LLD's
3698 * responsibility.
3699 *
3700 * *@online is set to one iff reset succeeded and @link is online
3701 * after reset.
3702 *
3703 * LOCKING:
3704 * Kernel thread context (may sleep)
3705 *
3706 * RETURNS:
3707 * 0 on success, -errno otherwise.
3708 */
3709 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3710 unsigned long deadline,
3711 bool *online, int (*check_ready)(struct ata_link *))
3712 {
3713 u32 scontrol;
3714 int rc;
3715
3716 DPRINTK("ENTER\n");
3717
3718 if (online)
3719 *online = false;
3720
3721 if (sata_set_spd_needed(link)) {
3722 /* SATA spec says nothing about how to reconfigure
3723 * spd. To be on the safe side, turn off phy during
3724 * reconfiguration. This works for at least ICH7 AHCI
3725 * and Sil3124.
3726 */
3727 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3728 goto out;
3729
3730 scontrol = (scontrol & 0x0f0) | 0x304;
3731
3732 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3733 goto out;
3734
3735 sata_set_spd(link);
3736 }
3737
3738 /* issue phy wake/reset */
3739 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3740 goto out;
3741
3742 scontrol = (scontrol & 0x0f0) | 0x301;
3743
3744 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3745 goto out;
3746
3747 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3748 * 10.4.2 says at least 1 ms.
3749 */
3750 ata_msleep(link->ap, 1);
3751
3752 /* bring link back */
3753 rc = sata_link_resume(link, timing, deadline);
3754 if (rc)
3755 goto out;
3756 /* if link is offline nothing more to do */
3757 if (ata_phys_link_offline(link))
3758 goto out;
3759
3760 /* Link is online. From this point, -ENODEV too is an error. */
3761 if (online)
3762 *online = true;
3763
3764 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3765 /* If PMP is supported, we have to do follow-up SRST.
3766 * Some PMPs don't send D2H Reg FIS after hardreset if
3767 * the first port is empty. Wait only for
3768 * ATA_TMOUT_PMP_SRST_WAIT.
3769 */
3770 if (check_ready) {
3771 unsigned long pmp_deadline;
3772
3773 pmp_deadline = ata_deadline(jiffies,
3774 ATA_TMOUT_PMP_SRST_WAIT);
3775 if (time_after(pmp_deadline, deadline))
3776 pmp_deadline = deadline;
3777 ata_wait_ready(link, pmp_deadline, check_ready);
3778 }
3779 rc = -EAGAIN;
3780 goto out;
3781 }
3782
3783 rc = 0;
3784 if (check_ready)
3785 rc = ata_wait_ready(link, deadline, check_ready);
3786 out:
3787 if (rc && rc != -EAGAIN) {
3788 /* online is set iff link is online && reset succeeded */
3789 if (online)
3790 *online = false;
3791 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3792 }
3793 DPRINTK("EXIT, rc=%d\n", rc);
3794 return rc;
3795 }
3796
3797 /**
3798 * sata_std_hardreset - COMRESET w/o waiting or classification
3799 * @link: link to reset
3800 * @class: resulting class of attached device
3801 * @deadline: deadline jiffies for the operation
3802 *
3803 * Standard SATA COMRESET w/o waiting or classification.
3804 *
3805 * LOCKING:
3806 * Kernel thread context (may sleep)
3807 *
3808 * RETURNS:
3809 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3810 */
3811 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3812 unsigned long deadline)
3813 {
3814 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3815 bool online;
3816 int rc;
3817
3818 /* do hardreset */
3819 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3820 return online ? -EAGAIN : rc;
3821 }
3822
3823 /**
3824 * ata_std_postreset - standard postreset callback
3825 * @link: the target ata_link
3826 * @classes: classes of attached devices
3827 *
3828 * This function is invoked after a successful reset. Note that
3829 * the device might have been reset more than once using
3830 * different reset methods before postreset is invoked.
3831 *
3832 * LOCKING:
3833 * Kernel thread context (may sleep)
3834 */
3835 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3836 {
3837 u32 serror;
3838
3839 DPRINTK("ENTER\n");
3840
3841 /* reset complete, clear SError */
3842 if (!sata_scr_read(link, SCR_ERROR, &serror))
3843 sata_scr_write(link, SCR_ERROR, serror);
3844
3845 /* print link status */
3846 sata_print_link_status(link);
3847
3848 DPRINTK("EXIT\n");
3849 }
3850
3851 /**
3852 * ata_dev_same_device - Determine whether new ID matches configured device
3853 * @dev: device to compare against
3854 * @new_class: class of the new device
3855 * @new_id: IDENTIFY page of the new device
3856 *
3857 * Compare @new_class and @new_id against @dev and determine
3858 * whether @dev is the device indicated by @new_class and
3859 * @new_id.
3860 *
3861 * LOCKING:
3862 * None.
3863 *
3864 * RETURNS:
3865 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3866 */
3867 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3868 const u16 *new_id)
3869 {
3870 const u16 *old_id = dev->id;
3871 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3872 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3873
3874 if (dev->class != new_class) {
3875 ata_dev_info(dev, "class mismatch %d != %d\n",
3876 dev->class, new_class);
3877 return 0;
3878 }
3879
3880 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3881 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3882 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3883 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3884
3885 if (strcmp(model[0], model[1])) {
3886 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3887 model[0], model[1]);
3888 return 0;
3889 }
3890
3891 if (strcmp(serial[0], serial[1])) {
3892 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3893 serial[0], serial[1]);
3894 return 0;
3895 }
3896
3897 return 1;
3898 }
3899
3900 /**
3901 * ata_dev_reread_id - Re-read IDENTIFY data
3902 * @dev: target ATA device
3903 * @readid_flags: read ID flags
3904 *
3905 * Re-read IDENTIFY page and make sure @dev is still attached to
3906 * the port.
3907 *
3908 * LOCKING:
3909 * Kernel thread context (may sleep)
3910 *
3911 * RETURNS:
3912 * 0 on success, negative errno otherwise
3913 */
3914 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3915 {
3916 unsigned int class = dev->class;
3917 u16 *id = (void *)dev->link->ap->sector_buf;
3918 int rc;
3919
3920 /* read ID data */
3921 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3922 if (rc)
3923 return rc;
3924
3925 /* is the device still there? */
3926 if (!ata_dev_same_device(dev, class, id))
3927 return -ENODEV;
3928
3929 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3930 return 0;
3931 }
3932
3933 /**
3934 * ata_dev_revalidate - Revalidate ATA device
3935 * @dev: device to revalidate
3936 * @new_class: new class code
3937 * @readid_flags: read ID flags
3938 *
3939 * Re-read IDENTIFY page, make sure @dev is still attached to the
3940 * port and reconfigure it according to the new IDENTIFY page.
3941 *
3942 * LOCKING:
3943 * Kernel thread context (may sleep)
3944 *
3945 * RETURNS:
3946 * 0 on success, negative errno otherwise
3947 */
3948 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3949 unsigned int readid_flags)
3950 {
3951 u64 n_sectors = dev->n_sectors;
3952 u64 n_native_sectors = dev->n_native_sectors;
3953 int rc;
3954
3955 if (!ata_dev_enabled(dev))
3956 return -ENODEV;
3957
3958 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3959 if (ata_class_enabled(new_class) &&
3960 new_class != ATA_DEV_ATA &&
3961 new_class != ATA_DEV_ATAPI &&
3962 new_class != ATA_DEV_SEMB) {
3963 ata_dev_info(dev, "class mismatch %u != %u\n",
3964 dev->class, new_class);
3965 rc = -ENODEV;
3966 goto fail;
3967 }
3968
3969 /* re-read ID */
3970 rc = ata_dev_reread_id(dev, readid_flags);
3971 if (rc)
3972 goto fail;
3973
3974 /* configure device according to the new ID */
3975 rc = ata_dev_configure(dev);
3976 if (rc)
3977 goto fail;
3978
3979 /* verify n_sectors hasn't changed */
3980 if (dev->class != ATA_DEV_ATA || !n_sectors ||
3981 dev->n_sectors == n_sectors)
3982 return 0;
3983
3984 /* n_sectors has changed */
3985 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3986 (unsigned long long)n_sectors,
3987 (unsigned long long)dev->n_sectors);
3988
3989 /*
3990 * Something could have caused HPA to be unlocked
3991 * involuntarily. If n_native_sectors hasn't changed and the
3992 * new size matches it, keep the device.
3993 */
3994 if (dev->n_native_sectors == n_native_sectors &&
3995 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3996 ata_dev_warn(dev,
3997 "new n_sectors matches native, probably "
3998 "late HPA unlock, n_sectors updated\n");
3999 /* use the larger n_sectors */
4000 return 0;
4001 }
4002
4003 /*
4004 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4005 * unlocking HPA in those cases.
4006 *
4007 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4008 */
4009 if (dev->n_native_sectors == n_native_sectors &&
4010 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4011 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4012 ata_dev_warn(dev,
4013 "old n_sectors matches native, probably "
4014 "late HPA lock, will try to unlock HPA\n");
4015 /* try unlocking HPA */
4016 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4017 rc = -EIO;
4018 } else
4019 rc = -ENODEV;
4020
4021 /* restore original n_[native_]sectors and fail */
4022 dev->n_native_sectors = n_native_sectors;
4023 dev->n_sectors = n_sectors;
4024 fail:
4025 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4026 return rc;
4027 }
4028
4029 struct ata_blacklist_entry {
4030 const char *model_num;
4031 const char *model_rev;
4032 unsigned long horkage;
4033 };
4034
4035 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4036 /* Devices with DMA related problems under Linux */
4037 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4038 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4039 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4040 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4041 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4042 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4043 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4044 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4045 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4046 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
4047 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4048 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4049 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4050 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4051 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4052 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
4053 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4054 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4055 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4056 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4057 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4058 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4059 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4060 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4061 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4062 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4063 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4064 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4065 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
4066 /* Odd clown on sil3726/4726 PMPs */
4067 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4068
4069 /* Weird ATAPI devices */
4070 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4071 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4072
4073 /* Devices we expect to fail diagnostics */
4074
4075 /* Devices where NCQ should be avoided */
4076 /* NCQ is slow */
4077 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4078 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4079 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4080 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4081 /* NCQ is broken */
4082 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4083 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4084 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4085 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4086 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4087
4088 /* Seagate NCQ + FLUSH CACHE firmware bug */
4089 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4090 ATA_HORKAGE_FIRMWARE_WARN },
4091
4092 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4093 ATA_HORKAGE_FIRMWARE_WARN },
4094
4095 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4096 ATA_HORKAGE_FIRMWARE_WARN },
4097
4098 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4099 ATA_HORKAGE_FIRMWARE_WARN },
4100
4101 /* Blacklist entries taken from Silicon Image 3124/3132
4102 Windows driver .inf file - also several Linux problem reports */
4103 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4104 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4105 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4106
4107 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4108 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4109
4110 /* devices which puke on READ_NATIVE_MAX */
4111 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4112 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4113 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4114 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4115
4116 /* this one allows HPA unlocking but fails IOs on the area */
4117 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4118
4119 /* Devices which report 1 sector over size HPA */
4120 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4121 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4122 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4123
4124 /* Devices which get the IVB wrong */
4125 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4126 /* Maybe we should just blacklist TSSTcorp... */
4127 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
4128
4129 /* Devices that do not need bridging limits applied */
4130 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4131 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
4132
4133 /* Devices which aren't very happy with higher link speeds */
4134 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4135 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
4136
4137 /*
4138 * Devices which choke on SETXFER. Applies only if both the
4139 * device and controller are SATA.
4140 */
4141 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
4142 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4143 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
4144 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4145 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
4146
4147 /* End Marker */
4148 { }
4149 };
4150
4151 /**
4152 * glob_match - match a text string against a glob-style pattern
4153 * @text: the string to be examined
4154 * @pattern: the glob-style pattern to be matched against
4155 *
4156 * Either/both of text and pattern can be empty strings.
4157 *
4158 * Match text against a glob-style pattern, with wildcards and simple sets:
4159 *
4160 * ? matches any single character.
4161 * * matches any run of characters.
4162 * [xyz] matches a single character from the set: x, y, or z.
4163 * [a-d] matches a single character from the range: a, b, c, or d.
4164 * [a-d0-9] matches a single character from either range.
4165 *
4166 * The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4167 * Behaviour with malformed patterns is undefined, though generally reasonable.
4168 *
4169 * Sample patterns: "SD1?", "SD1[0-5]", "*R0", "SD*1?[012]*xx"
4170 *
4171 * This function uses one level of recursion per '*' in pattern.
4172 * Since it calls _nothing_ else, and has _no_ explicit local variables,
4173 * this will not cause stack problems for any reasonable use here.
4174 *
4175 * RETURNS:
4176 * 0 on match, 1 otherwise.
4177 */
4178 static int glob_match (const char *text, const char *pattern)
4179 {
4180 do {
4181 /* Match single character or a '?' wildcard */
4182 if (*text == *pattern || *pattern == '?') {
4183 if (!*pattern++)
4184 return 0; /* End of both strings: match */
4185 } else {
4186 /* Match single char against a '[' bracketed ']' pattern set */
4187 if (!*text || *pattern != '[')
4188 break; /* Not a pattern set */
4189 while (*++pattern && *pattern != ']' && *text != *pattern) {
4190 if (*pattern == '-' && *(pattern - 1) != '[')
4191 if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
4192 ++pattern;
4193 break;
4194 }
4195 }
4196 if (!*pattern || *pattern == ']')
4197 return 1; /* No match */
4198 while (*pattern && *pattern++ != ']');
4199 }
4200 } while (*++text && *pattern);
4201
4202 /* Match any run of chars against a '*' wildcard */
4203 if (*pattern == '*') {
4204 if (!*++pattern)
4205 return 0; /* Match: avoid recursion at end of pattern */
4206 /* Loop to handle additional pattern chars after the wildcard */
4207 while (*text) {
4208 if (glob_match(text, pattern) == 0)
4209 return 0; /* Remainder matched */
4210 ++text; /* Absorb (match) this char and try again */
4211 }
4212 }
4213 if (!*text && !*pattern)
4214 return 0; /* End of both strings: match */
4215 return 1; /* No match */
4216 }
4217
4218 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4219 {
4220 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4221 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4222 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4223
4224 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4225 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4226
4227 while (ad->model_num) {
4228 if (!glob_match(model_num, ad->model_num)) {
4229 if (ad->model_rev == NULL)
4230 return ad->horkage;
4231 if (!glob_match(model_rev, ad->model_rev))
4232 return ad->horkage;
4233 }
4234 ad++;
4235 }
4236 return 0;
4237 }
4238
4239 static int ata_dma_blacklisted(const struct ata_device *dev)
4240 {
4241 /* We don't support polling DMA.
4242 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4243 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4244 */
4245 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4246 (dev->flags & ATA_DFLAG_CDB_INTR))
4247 return 1;
4248 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4249 }
4250
4251 /**
4252 * ata_is_40wire - check drive side detection
4253 * @dev: device
4254 *
4255 * Perform drive side detection decoding, allowing for device vendors
4256 * who can't follow the documentation.
4257 */
4258
4259 static int ata_is_40wire(struct ata_device *dev)
4260 {
4261 if (dev->horkage & ATA_HORKAGE_IVB)
4262 return ata_drive_40wire_relaxed(dev->id);
4263 return ata_drive_40wire(dev->id);
4264 }
4265
4266 /**
4267 * cable_is_40wire - 40/80/SATA decider
4268 * @ap: port to consider
4269 *
4270 * This function encapsulates the policy for speed management
4271 * in one place. At the moment we don't cache the result but
4272 * there is a good case for setting ap->cbl to the result when
4273 * we are called with unknown cables (and figuring out if it
4274 * impacts hotplug at all).
4275 *
4276 * Return 1 if the cable appears to be 40 wire.
4277 */
4278
4279 static int cable_is_40wire(struct ata_port *ap)
4280 {
4281 struct ata_link *link;
4282 struct ata_device *dev;
4283
4284 /* If the controller thinks we are 40 wire, we are. */
4285 if (ap->cbl == ATA_CBL_PATA40)
4286 return 1;
4287
4288 /* If the controller thinks we are 80 wire, we are. */
4289 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4290 return 0;
4291
4292 /* If the system is known to be 40 wire short cable (eg
4293 * laptop), then we allow 80 wire modes even if the drive
4294 * isn't sure.
4295 */
4296 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4297 return 0;
4298
4299 /* If the controller doesn't know, we scan.
4300 *
4301 * Note: We look for all 40 wire detects at this point. Any
4302 * 80 wire detect is taken to be 80 wire cable because
4303 * - in many setups only the one drive (slave if present) will
4304 * give a valid detect
4305 * - if you have a non detect capable drive you don't want it
4306 * to colour the choice
4307 */
4308 ata_for_each_link(link, ap, EDGE) {
4309 ata_for_each_dev(dev, link, ENABLED) {
4310 if (!ata_is_40wire(dev))
4311 return 0;
4312 }
4313 }
4314 return 1;
4315 }
4316
4317 /**
4318 * ata_dev_xfermask - Compute supported xfermask of the given device
4319 * @dev: Device to compute xfermask for
4320 *
4321 * Compute supported xfermask of @dev and store it in
4322 * dev->*_mask. This function is responsible for applying all
4323 * known limits including host controller limits, device
4324 * blacklist, etc...
4325 *
4326 * LOCKING:
4327 * None.
4328 */
4329 static void ata_dev_xfermask(struct ata_device *dev)
4330 {
4331 struct ata_link *link = dev->link;
4332 struct ata_port *ap = link->ap;
4333 struct ata_host *host = ap->host;
4334 unsigned long xfer_mask;
4335
4336 /* controller modes available */
4337 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4338 ap->mwdma_mask, ap->udma_mask);
4339
4340 /* drive modes available */
4341 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4342 dev->mwdma_mask, dev->udma_mask);
4343 xfer_mask &= ata_id_xfermask(dev->id);
4344
4345 /*
4346 * CFA Advanced TrueIDE timings are not allowed on a shared
4347 * cable
4348 */
4349 if (ata_dev_pair(dev)) {
4350 /* No PIO5 or PIO6 */
4351 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4352 /* No MWDMA3 or MWDMA 4 */
4353 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4354 }
4355
4356 if (ata_dma_blacklisted(dev)) {
4357 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4358 ata_dev_warn(dev,
4359 "device is on DMA blacklist, disabling DMA\n");
4360 }
4361
4362 if ((host->flags & ATA_HOST_SIMPLEX) &&
4363 host->simplex_claimed && host->simplex_claimed != ap) {
4364 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4365 ata_dev_warn(dev,
4366 "simplex DMA is claimed by other device, disabling DMA\n");
4367 }
4368
4369 if (ap->flags & ATA_FLAG_NO_IORDY)
4370 xfer_mask &= ata_pio_mask_no_iordy(dev);
4371
4372 if (ap->ops->mode_filter)
4373 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4374
4375 /* Apply cable rule here. Don't apply it early because when
4376 * we handle hot plug the cable type can itself change.
4377 * Check this last so that we know if the transfer rate was
4378 * solely limited by the cable.
4379 * Unknown or 80 wire cables reported host side are checked
4380 * drive side as well. Cases where we know a 40wire cable
4381 * is used safely for 80 are not checked here.
4382 */
4383 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4384 /* UDMA/44 or higher would be available */
4385 if (cable_is_40wire(ap)) {
4386 ata_dev_warn(dev,
4387 "limited to UDMA/33 due to 40-wire cable\n");
4388 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4389 }
4390
4391 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4392 &dev->mwdma_mask, &dev->udma_mask);
4393 }
4394
4395 /**
4396 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4397 * @dev: Device to which command will be sent
4398 *
4399 * Issue SET FEATURES - XFER MODE command to device @dev
4400 * on port @ap.
4401 *
4402 * LOCKING:
4403 * PCI/etc. bus probe sem.
4404 *
4405 * RETURNS:
4406 * 0 on success, AC_ERR_* mask otherwise.
4407 */
4408
4409 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4410 {
4411 struct ata_taskfile tf;
4412 unsigned int err_mask;
4413
4414 /* set up set-features taskfile */
4415 DPRINTK("set features - xfer mode\n");
4416
4417 /* Some controllers and ATAPI devices show flaky interrupt
4418 * behavior after setting xfer mode. Use polling instead.
4419 */
4420 ata_tf_init(dev, &tf);
4421 tf.command = ATA_CMD_SET_FEATURES;
4422 tf.feature = SETFEATURES_XFER;
4423 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4424 tf.protocol = ATA_PROT_NODATA;
4425 /* If we are using IORDY we must send the mode setting command */
4426 if (ata_pio_need_iordy(dev))
4427 tf.nsect = dev->xfer_mode;
4428 /* If the device has IORDY and the controller does not - turn it off */
4429 else if (ata_id_has_iordy(dev->id))
4430 tf.nsect = 0x01;
4431 else /* In the ancient relic department - skip all of this */
4432 return 0;
4433
4434 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4435
4436 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4437 return err_mask;
4438 }
4439
4440 /**
4441 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4442 * @dev: Device to which command will be sent
4443 * @enable: Whether to enable or disable the feature
4444 * @feature: The sector count represents the feature to set
4445 *
4446 * Issue SET FEATURES - SATA FEATURES command to device @dev
4447 * on port @ap with sector count
4448 *
4449 * LOCKING:
4450 * PCI/etc. bus probe sem.
4451 *
4452 * RETURNS:
4453 * 0 on success, AC_ERR_* mask otherwise.
4454 */
4455 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4456 {
4457 struct ata_taskfile tf;
4458 unsigned int err_mask;
4459
4460 /* set up set-features taskfile */
4461 DPRINTK("set features - SATA features\n");
4462
4463 ata_tf_init(dev, &tf);
4464 tf.command = ATA_CMD_SET_FEATURES;
4465 tf.feature = enable;
4466 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4467 tf.protocol = ATA_PROT_NODATA;
4468 tf.nsect = feature;
4469
4470 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4471
4472 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4473 return err_mask;
4474 }
4475
4476 /**
4477 * ata_dev_init_params - Issue INIT DEV PARAMS command
4478 * @dev: Device to which command will be sent
4479 * @heads: Number of heads (taskfile parameter)
4480 * @sectors: Number of sectors (taskfile parameter)
4481 *
4482 * LOCKING:
4483 * Kernel thread context (may sleep)
4484 *
4485 * RETURNS:
4486 * 0 on success, AC_ERR_* mask otherwise.
4487 */
4488 static unsigned int ata_dev_init_params(struct ata_device *dev,
4489 u16 heads, u16 sectors)
4490 {
4491 struct ata_taskfile tf;
4492 unsigned int err_mask;
4493
4494 /* Number of sectors per track 1-255. Number of heads 1-16 */
4495 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4496 return AC_ERR_INVALID;
4497
4498 /* set up init dev params taskfile */
4499 DPRINTK("init dev params \n");
4500
4501 ata_tf_init(dev, &tf);
4502 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4503 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4504 tf.protocol = ATA_PROT_NODATA;
4505 tf.nsect = sectors;
4506 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4507
4508 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4509 /* A clean abort indicates an original or just out of spec drive
4510 and we should continue as we issue the setup based on the
4511 drive reported working geometry */
4512 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4513 err_mask = 0;
4514
4515 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4516 return err_mask;
4517 }
4518
4519 /**
4520 * ata_sg_clean - Unmap DMA memory associated with command
4521 * @qc: Command containing DMA memory to be released
4522 *
4523 * Unmap all mapped DMA memory associated with this command.
4524 *
4525 * LOCKING:
4526 * spin_lock_irqsave(host lock)
4527 */
4528 void ata_sg_clean(struct ata_queued_cmd *qc)
4529 {
4530 struct ata_port *ap = qc->ap;
4531 struct scatterlist *sg = qc->sg;
4532 int dir = qc->dma_dir;
4533
4534 WARN_ON_ONCE(sg == NULL);
4535
4536 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4537
4538 if (qc->n_elem)
4539 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4540
4541 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4542 qc->sg = NULL;
4543 }
4544
4545 /**
4546 * atapi_check_dma - Check whether ATAPI DMA can be supported
4547 * @qc: Metadata associated with taskfile to check
4548 *
4549 * Allow low-level driver to filter ATA PACKET commands, returning
4550 * a status indicating whether or not it is OK to use DMA for the
4551 * supplied PACKET command.
4552 *
4553 * LOCKING:
4554 * spin_lock_irqsave(host lock)
4555 *
4556 * RETURNS: 0 when ATAPI DMA can be used
4557 * nonzero otherwise
4558 */
4559 int atapi_check_dma(struct ata_queued_cmd *qc)
4560 {
4561 struct ata_port *ap = qc->ap;
4562
4563 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4564 * few ATAPI devices choke on such DMA requests.
4565 */
4566 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4567 unlikely(qc->nbytes & 15))
4568 return 1;
4569
4570 if (ap->ops->check_atapi_dma)
4571 return ap->ops->check_atapi_dma(qc);
4572
4573 return 0;
4574 }
4575
4576 /**
4577 * ata_std_qc_defer - Check whether a qc needs to be deferred
4578 * @qc: ATA command in question
4579 *
4580 * Non-NCQ commands cannot run with any other command, NCQ or
4581 * not. As upper layer only knows the queue depth, we are
4582 * responsible for maintaining exclusion. This function checks
4583 * whether a new command @qc can be issued.
4584 *
4585 * LOCKING:
4586 * spin_lock_irqsave(host lock)
4587 *
4588 * RETURNS:
4589 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4590 */
4591 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4592 {
4593 struct ata_link *link = qc->dev->link;
4594
4595 if (qc->tf.protocol == ATA_PROT_NCQ) {
4596 if (!ata_tag_valid(link->active_tag))
4597 return 0;
4598 } else {
4599 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4600 return 0;
4601 }
4602
4603 return ATA_DEFER_LINK;
4604 }
4605
4606 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4607
4608 /**
4609 * ata_sg_init - Associate command with scatter-gather table.
4610 * @qc: Command to be associated
4611 * @sg: Scatter-gather table.
4612 * @n_elem: Number of elements in s/g table.
4613 *
4614 * Initialize the data-related elements of queued_cmd @qc
4615 * to point to a scatter-gather table @sg, containing @n_elem
4616 * elements.
4617 *
4618 * LOCKING:
4619 * spin_lock_irqsave(host lock)
4620 */
4621 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4622 unsigned int n_elem)
4623 {
4624 qc->sg = sg;
4625 qc->n_elem = n_elem;
4626 qc->cursg = qc->sg;
4627 }
4628
4629 /**
4630 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4631 * @qc: Command with scatter-gather table to be mapped.
4632 *
4633 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4634 *
4635 * LOCKING:
4636 * spin_lock_irqsave(host lock)
4637 *
4638 * RETURNS:
4639 * Zero on success, negative on error.
4640 *
4641 */
4642 static int ata_sg_setup(struct ata_queued_cmd *qc)
4643 {
4644 struct ata_port *ap = qc->ap;
4645 unsigned int n_elem;
4646
4647 VPRINTK("ENTER, ata%u\n", ap->print_id);
4648
4649 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4650 if (n_elem < 1)
4651 return -1;
4652
4653 DPRINTK("%d sg elements mapped\n", n_elem);
4654 qc->orig_n_elem = qc->n_elem;
4655 qc->n_elem = n_elem;
4656 qc->flags |= ATA_QCFLAG_DMAMAP;
4657
4658 return 0;
4659 }
4660
4661 /**
4662 * swap_buf_le16 - swap halves of 16-bit words in place
4663 * @buf: Buffer to swap
4664 * @buf_words: Number of 16-bit words in buffer.
4665 *
4666 * Swap halves of 16-bit words if needed to convert from
4667 * little-endian byte order to native cpu byte order, or
4668 * vice-versa.
4669 *
4670 * LOCKING:
4671 * Inherited from caller.
4672 */
4673 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4674 {
4675 #ifdef __BIG_ENDIAN
4676 unsigned int i;
4677
4678 for (i = 0; i < buf_words; i++)
4679 buf[i] = le16_to_cpu(buf[i]);
4680 #endif /* __BIG_ENDIAN */
4681 }
4682
4683 /**
4684 * ata_qc_new - Request an available ATA command, for queueing
4685 * @ap: target port
4686 *
4687 * LOCKING:
4688 * None.
4689 */
4690
4691 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4692 {
4693 struct ata_queued_cmd *qc = NULL;
4694 unsigned int i;
4695
4696 /* no command while frozen */
4697 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4698 return NULL;
4699
4700 /* the last tag is reserved for internal command. */
4701 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4702 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4703 qc = __ata_qc_from_tag(ap, i);
4704 break;
4705 }
4706
4707 if (qc)
4708 qc->tag = i;
4709
4710 return qc;
4711 }
4712
4713 /**
4714 * ata_qc_new_init - Request an available ATA command, and initialize it
4715 * @dev: Device from whom we request an available command structure
4716 *
4717 * LOCKING:
4718 * None.
4719 */
4720
4721 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4722 {
4723 struct ata_port *ap = dev->link->ap;
4724 struct ata_queued_cmd *qc;
4725
4726 qc = ata_qc_new(ap);
4727 if (qc) {
4728 qc->scsicmd = NULL;
4729 qc->ap = ap;
4730 qc->dev = dev;
4731
4732 ata_qc_reinit(qc);
4733 }
4734
4735 return qc;
4736 }
4737
4738 /**
4739 * ata_qc_free - free unused ata_queued_cmd
4740 * @qc: Command to complete
4741 *
4742 * Designed to free unused ata_queued_cmd object
4743 * in case something prevents using it.
4744 *
4745 * LOCKING:
4746 * spin_lock_irqsave(host lock)
4747 */
4748 void ata_qc_free(struct ata_queued_cmd *qc)
4749 {
4750 struct ata_port *ap;
4751 unsigned int tag;
4752
4753 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4754 ap = qc->ap;
4755
4756 qc->flags = 0;
4757 tag = qc->tag;
4758 if (likely(ata_tag_valid(tag))) {
4759 qc->tag = ATA_TAG_POISON;
4760 clear_bit(tag, &ap->qc_allocated);
4761 }
4762 }
4763
4764 void __ata_qc_complete(struct ata_queued_cmd *qc)
4765 {
4766 struct ata_port *ap;
4767 struct ata_link *link;
4768
4769 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4770 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4771 ap = qc->ap;
4772 link = qc->dev->link;
4773
4774 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4775 ata_sg_clean(qc);
4776
4777 /* command should be marked inactive atomically with qc completion */
4778 if (qc->tf.protocol == ATA_PROT_NCQ) {
4779 link->sactive &= ~(1 << qc->tag);
4780 if (!link->sactive)
4781 ap->nr_active_links--;
4782 } else {
4783 link->active_tag = ATA_TAG_POISON;
4784 ap->nr_active_links--;
4785 }
4786
4787 /* clear exclusive status */
4788 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4789 ap->excl_link == link))
4790 ap->excl_link = NULL;
4791
4792 /* atapi: mark qc as inactive to prevent the interrupt handler
4793 * from completing the command twice later, before the error handler
4794 * is called. (when rc != 0 and atapi request sense is needed)
4795 */
4796 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4797 ap->qc_active &= ~(1 << qc->tag);
4798
4799 /* call completion callback */
4800 qc->complete_fn(qc);
4801 }
4802
4803 static void fill_result_tf(struct ata_queued_cmd *qc)
4804 {
4805 struct ata_port *ap = qc->ap;
4806
4807 qc->result_tf.flags = qc->tf.flags;
4808 ap->ops->qc_fill_rtf(qc);
4809 }
4810
4811 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4812 {
4813 struct ata_device *dev = qc->dev;
4814
4815 if (ata_is_nodata(qc->tf.protocol))
4816 return;
4817
4818 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4819 return;
4820
4821 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4822 }
4823
4824 /**
4825 * ata_qc_complete - Complete an active ATA command
4826 * @qc: Command to complete
4827 *
4828 * Indicate to the mid and upper layers that an ATA command has
4829 * completed, with either an ok or not-ok status.
4830 *
4831 * Refrain from calling this function multiple times when
4832 * successfully completing multiple NCQ commands.
4833 * ata_qc_complete_multiple() should be used instead, which will
4834 * properly update IRQ expect state.
4835 *
4836 * LOCKING:
4837 * spin_lock_irqsave(host lock)
4838 */
4839 void ata_qc_complete(struct ata_queued_cmd *qc)
4840 {
4841 struct ata_port *ap = qc->ap;
4842
4843 /* XXX: New EH and old EH use different mechanisms to
4844 * synchronize EH with regular execution path.
4845 *
4846 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4847 * Normal execution path is responsible for not accessing a
4848 * failed qc. libata core enforces the rule by returning NULL
4849 * from ata_qc_from_tag() for failed qcs.
4850 *
4851 * Old EH depends on ata_qc_complete() nullifying completion
4852 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4853 * not synchronize with interrupt handler. Only PIO task is
4854 * taken care of.
4855 */
4856 if (ap->ops->error_handler) {
4857 struct ata_device *dev = qc->dev;
4858 struct ata_eh_info *ehi = &dev->link->eh_info;
4859
4860 if (unlikely(qc->err_mask))
4861 qc->flags |= ATA_QCFLAG_FAILED;
4862
4863 /*
4864 * Finish internal commands without any further processing
4865 * and always with the result TF filled.
4866 */
4867 if (unlikely(ata_tag_internal(qc->tag))) {
4868 fill_result_tf(qc);
4869 __ata_qc_complete(qc);
4870 return;
4871 }
4872
4873 /*
4874 * Non-internal qc has failed. Fill the result TF and
4875 * summon EH.
4876 */
4877 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4878 fill_result_tf(qc);
4879 ata_qc_schedule_eh(qc);
4880 return;
4881 }
4882
4883 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4884
4885 /* read result TF if requested */
4886 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4887 fill_result_tf(qc);
4888
4889 /* Some commands need post-processing after successful
4890 * completion.
4891 */
4892 switch (qc->tf.command) {
4893 case ATA_CMD_SET_FEATURES:
4894 if (qc->tf.feature != SETFEATURES_WC_ON &&
4895 qc->tf.feature != SETFEATURES_WC_OFF)
4896 break;
4897 /* fall through */
4898 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4899 case ATA_CMD_SET_MULTI: /* multi_count changed */
4900 /* revalidate device */
4901 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4902 ata_port_schedule_eh(ap);
4903 break;
4904
4905 case ATA_CMD_SLEEP:
4906 dev->flags |= ATA_DFLAG_SLEEPING;
4907 break;
4908 }
4909
4910 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4911 ata_verify_xfer(qc);
4912
4913 __ata_qc_complete(qc);
4914 } else {
4915 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4916 return;
4917
4918 /* read result TF if failed or requested */
4919 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4920 fill_result_tf(qc);
4921
4922 __ata_qc_complete(qc);
4923 }
4924 }
4925
4926 /**
4927 * ata_qc_complete_multiple - Complete multiple qcs successfully
4928 * @ap: port in question
4929 * @qc_active: new qc_active mask
4930 *
4931 * Complete in-flight commands. This functions is meant to be
4932 * called from low-level driver's interrupt routine to complete
4933 * requests normally. ap->qc_active and @qc_active is compared
4934 * and commands are completed accordingly.
4935 *
4936 * Always use this function when completing multiple NCQ commands
4937 * from IRQ handlers instead of calling ata_qc_complete()
4938 * multiple times to keep IRQ expect status properly in sync.
4939 *
4940 * LOCKING:
4941 * spin_lock_irqsave(host lock)
4942 *
4943 * RETURNS:
4944 * Number of completed commands on success, -errno otherwise.
4945 */
4946 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4947 {
4948 int nr_done = 0;
4949 u32 done_mask;
4950
4951 done_mask = ap->qc_active ^ qc_active;
4952
4953 if (unlikely(done_mask & qc_active)) {
4954 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
4955 ap->qc_active, qc_active);
4956 return -EINVAL;
4957 }
4958
4959 while (done_mask) {
4960 struct ata_queued_cmd *qc;
4961 unsigned int tag = __ffs(done_mask);
4962
4963 qc = ata_qc_from_tag(ap, tag);
4964 if (qc) {
4965 ata_qc_complete(qc);
4966 nr_done++;
4967 }
4968 done_mask &= ~(1 << tag);
4969 }
4970
4971 return nr_done;
4972 }
4973
4974 /**
4975 * ata_qc_issue - issue taskfile to device
4976 * @qc: command to issue to device
4977 *
4978 * Prepare an ATA command to submission to device.
4979 * This includes mapping the data into a DMA-able
4980 * area, filling in the S/G table, and finally
4981 * writing the taskfile to hardware, starting the command.
4982 *
4983 * LOCKING:
4984 * spin_lock_irqsave(host lock)
4985 */
4986 void ata_qc_issue(struct ata_queued_cmd *qc)
4987 {
4988 struct ata_port *ap = qc->ap;
4989 struct ata_link *link = qc->dev->link;
4990 u8 prot = qc->tf.protocol;
4991
4992 /* Make sure only one non-NCQ command is outstanding. The
4993 * check is skipped for old EH because it reuses active qc to
4994 * request ATAPI sense.
4995 */
4996 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4997
4998 if (ata_is_ncq(prot)) {
4999 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5000
5001 if (!link->sactive)
5002 ap->nr_active_links++;
5003 link->sactive |= 1 << qc->tag;
5004 } else {
5005 WARN_ON_ONCE(link->sactive);
5006
5007 ap->nr_active_links++;
5008 link->active_tag = qc->tag;
5009 }
5010
5011 qc->flags |= ATA_QCFLAG_ACTIVE;
5012 ap->qc_active |= 1 << qc->tag;
5013
5014 /*
5015 * We guarantee to LLDs that they will have at least one
5016 * non-zero sg if the command is a data command.
5017 */
5018 if (WARN_ON_ONCE(ata_is_data(prot) &&
5019 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5020 goto sys_err;
5021
5022 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5023 (ap->flags & ATA_FLAG_PIO_DMA)))
5024 if (ata_sg_setup(qc))
5025 goto sys_err;
5026
5027 /* if device is sleeping, schedule reset and abort the link */
5028 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5029 link->eh_info.action |= ATA_EH_RESET;
5030 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5031 ata_link_abort(link);
5032 return;
5033 }
5034
5035 ap->ops->qc_prep(qc);
5036
5037 qc->err_mask |= ap->ops->qc_issue(qc);
5038 if (unlikely(qc->err_mask))
5039 goto err;
5040 return;
5041
5042 sys_err:
5043 qc->err_mask |= AC_ERR_SYSTEM;
5044 err:
5045 ata_qc_complete(qc);
5046 }
5047
5048 /**
5049 * sata_scr_valid - test whether SCRs are accessible
5050 * @link: ATA link to test SCR accessibility for
5051 *
5052 * Test whether SCRs are accessible for @link.
5053 *
5054 * LOCKING:
5055 * None.
5056 *
5057 * RETURNS:
5058 * 1 if SCRs are accessible, 0 otherwise.
5059 */
5060 int sata_scr_valid(struct ata_link *link)
5061 {
5062 struct ata_port *ap = link->ap;
5063
5064 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5065 }
5066
5067 /**
5068 * sata_scr_read - read SCR register of the specified port
5069 * @link: ATA link to read SCR for
5070 * @reg: SCR to read
5071 * @val: Place to store read value
5072 *
5073 * Read SCR register @reg of @link into *@val. This function is
5074 * guaranteed to succeed if @link is ap->link, the cable type of
5075 * the port is SATA and the port implements ->scr_read.
5076 *
5077 * LOCKING:
5078 * None if @link is ap->link. Kernel thread context otherwise.
5079 *
5080 * RETURNS:
5081 * 0 on success, negative errno on failure.
5082 */
5083 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5084 {
5085 if (ata_is_host_link(link)) {
5086 if (sata_scr_valid(link))
5087 return link->ap->ops->scr_read(link, reg, val);
5088 return -EOPNOTSUPP;
5089 }
5090
5091 return sata_pmp_scr_read(link, reg, val);
5092 }
5093
5094 /**
5095 * sata_scr_write - write SCR register of the specified port
5096 * @link: ATA link to write SCR for
5097 * @reg: SCR to write
5098 * @val: value to write
5099 *
5100 * Write @val to SCR register @reg of @link. This function is
5101 * guaranteed to succeed if @link is ap->link, the cable type of
5102 * the port is SATA and the port implements ->scr_read.
5103 *
5104 * LOCKING:
5105 * None if @link is ap->link. Kernel thread context otherwise.
5106 *
5107 * RETURNS:
5108 * 0 on success, negative errno on failure.
5109 */
5110 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5111 {
5112 if (ata_is_host_link(link)) {
5113 if (sata_scr_valid(link))
5114 return link->ap->ops->scr_write(link, reg, val);
5115 return -EOPNOTSUPP;
5116 }
5117
5118 return sata_pmp_scr_write(link, reg, val);
5119 }
5120
5121 /**
5122 * sata_scr_write_flush - write SCR register of the specified port and flush
5123 * @link: ATA link to write SCR for
5124 * @reg: SCR to write
5125 * @val: value to write
5126 *
5127 * This function is identical to sata_scr_write() except that this
5128 * function performs flush after writing to the register.
5129 *
5130 * LOCKING:
5131 * None if @link is ap->link. Kernel thread context otherwise.
5132 *
5133 * RETURNS:
5134 * 0 on success, negative errno on failure.
5135 */
5136 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5137 {
5138 if (ata_is_host_link(link)) {
5139 int rc;
5140
5141 if (sata_scr_valid(link)) {
5142 rc = link->ap->ops->scr_write(link, reg, val);
5143 if (rc == 0)
5144 rc = link->ap->ops->scr_read(link, reg, &val);
5145 return rc;
5146 }
5147 return -EOPNOTSUPP;
5148 }
5149
5150 return sata_pmp_scr_write(link, reg, val);
5151 }
5152
5153 /**
5154 * ata_phys_link_online - test whether the given link is online
5155 * @link: ATA link to test
5156 *
5157 * Test whether @link is online. Note that this function returns
5158 * 0 if online status of @link cannot be obtained, so
5159 * ata_link_online(link) != !ata_link_offline(link).
5160 *
5161 * LOCKING:
5162 * None.
5163 *
5164 * RETURNS:
5165 * True if the port online status is available and online.
5166 */
5167 bool ata_phys_link_online(struct ata_link *link)
5168 {
5169 u32 sstatus;
5170
5171 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5172 ata_sstatus_online(sstatus))
5173 return true;
5174 return false;
5175 }
5176
5177 /**
5178 * ata_phys_link_offline - test whether the given link is offline
5179 * @link: ATA link to test
5180 *
5181 * Test whether @link is offline. Note that this function
5182 * returns 0 if offline status of @link cannot be obtained, so
5183 * ata_link_online(link) != !ata_link_offline(link).
5184 *
5185 * LOCKING:
5186 * None.
5187 *
5188 * RETURNS:
5189 * True if the port offline status is available and offline.
5190 */
5191 bool ata_phys_link_offline(struct ata_link *link)
5192 {
5193 u32 sstatus;
5194
5195 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5196 !ata_sstatus_online(sstatus))
5197 return true;
5198 return false;
5199 }
5200
5201 /**
5202 * ata_link_online - test whether the given link is online
5203 * @link: ATA link to test
5204 *
5205 * Test whether @link is online. This is identical to
5206 * ata_phys_link_online() when there's no slave link. When
5207 * there's a slave link, this function should only be called on
5208 * the master link and will return true if any of M/S links is
5209 * online.
5210 *
5211 * LOCKING:
5212 * None.
5213 *
5214 * RETURNS:
5215 * True if the port online status is available and online.
5216 */
5217 bool ata_link_online(struct ata_link *link)
5218 {
5219 struct ata_link *slave = link->ap->slave_link;
5220
5221 WARN_ON(link == slave); /* shouldn't be called on slave link */
5222
5223 return ata_phys_link_online(link) ||
5224 (slave && ata_phys_link_online(slave));
5225 }
5226
5227 /**
5228 * ata_link_offline - test whether the given link is offline
5229 * @link: ATA link to test
5230 *
5231 * Test whether @link is offline. This is identical to
5232 * ata_phys_link_offline() when there's no slave link. When
5233 * there's a slave link, this function should only be called on
5234 * the master link and will return true if both M/S links are
5235 * offline.
5236 *
5237 * LOCKING:
5238 * None.
5239 *
5240 * RETURNS:
5241 * True if the port offline status is available and offline.
5242 */
5243 bool ata_link_offline(struct ata_link *link)
5244 {
5245 struct ata_link *slave = link->ap->slave_link;
5246
5247 WARN_ON(link == slave); /* shouldn't be called on slave link */
5248
5249 return ata_phys_link_offline(link) &&
5250 (!slave || ata_phys_link_offline(slave));
5251 }
5252
5253 #ifdef CONFIG_PM
5254 static int ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5255 unsigned int action, unsigned int ehi_flags,
5256 int wait)
5257 {
5258 struct ata_link *link;
5259 unsigned long flags;
5260 int rc;
5261
5262 /* Previous resume operation might still be in
5263 * progress. Wait for PM_PENDING to clear.
5264 */
5265 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5266 ata_port_wait_eh(ap);
5267 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5268 }
5269
5270 /* request PM ops to EH */
5271 spin_lock_irqsave(ap->lock, flags);
5272
5273 ap->pm_mesg = mesg;
5274 if (wait) {
5275 rc = 0;
5276 ap->pm_result = &rc;
5277 }
5278
5279 ap->pflags |= ATA_PFLAG_PM_PENDING;
5280 ata_for_each_link(link, ap, HOST_FIRST) {
5281 link->eh_info.action |= action;
5282 link->eh_info.flags |= ehi_flags;
5283 }
5284
5285 ata_port_schedule_eh(ap);
5286
5287 spin_unlock_irqrestore(ap->lock, flags);
5288
5289 /* wait and check result */
5290 if (wait) {
5291 ata_port_wait_eh(ap);
5292 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5293 }
5294
5295 return rc;
5296 }
5297
5298 static int ata_port_suspend_common(struct device *dev, pm_message_t mesg)
5299 {
5300 struct ata_port *ap = to_ata_port(dev);
5301 unsigned int ehi_flags = ATA_EHI_QUIET;
5302 int rc;
5303
5304 /*
5305 * On some hardware, device fails to respond after spun down
5306 * for suspend. As the device won't be used before being
5307 * resumed, we don't need to touch the device. Ask EH to skip
5308 * the usual stuff and proceed directly to suspend.
5309 *
5310 * http://thread.gmane.org/gmane.linux.ide/46764
5311 */
5312 if (mesg.event == PM_EVENT_SUSPEND)
5313 ehi_flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_NO_RECOVERY;
5314
5315 rc = ata_port_request_pm(ap, mesg, 0, ehi_flags, 1);
5316 return rc;
5317 }
5318
5319 static int ata_port_suspend(struct device *dev)
5320 {
5321 if (pm_runtime_suspended(dev))
5322 return 0;
5323
5324 return ata_port_suspend_common(dev, PMSG_SUSPEND);
5325 }
5326
5327 static int ata_port_do_freeze(struct device *dev)
5328 {
5329 if (pm_runtime_suspended(dev))
5330 pm_runtime_resume(dev);
5331
5332 return ata_port_suspend_common(dev, PMSG_FREEZE);
5333 }
5334
5335 static int ata_port_poweroff(struct device *dev)
5336 {
5337 if (pm_runtime_suspended(dev))
5338 return 0;
5339
5340 return ata_port_suspend_common(dev, PMSG_HIBERNATE);
5341 }
5342
5343 static int ata_port_resume_common(struct device *dev)
5344 {
5345 struct ata_port *ap = to_ata_port(dev);
5346 int rc;
5347
5348 rc = ata_port_request_pm(ap, PMSG_ON, ATA_EH_RESET,
5349 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 1);
5350 return rc;
5351 }
5352
5353 static int ata_port_resume(struct device *dev)
5354 {
5355 int rc;
5356
5357 rc = ata_port_resume_common(dev);
5358 if (!rc) {
5359 pm_runtime_disable(dev);
5360 pm_runtime_set_active(dev);
5361 pm_runtime_enable(dev);
5362 }
5363
5364 return rc;
5365 }
5366
5367 static int ata_port_runtime_idle(struct device *dev)
5368 {
5369 return pm_runtime_suspend(dev);
5370 }
5371
5372 static const struct dev_pm_ops ata_port_pm_ops = {
5373 .suspend = ata_port_suspend,
5374 .resume = ata_port_resume,
5375 .freeze = ata_port_do_freeze,
5376 .thaw = ata_port_resume,
5377 .poweroff = ata_port_poweroff,
5378 .restore = ata_port_resume,
5379
5380 .runtime_suspend = ata_port_suspend,
5381 .runtime_resume = ata_port_resume_common,
5382 .runtime_idle = ata_port_runtime_idle,
5383 };
5384
5385 /**
5386 * ata_host_suspend - suspend host
5387 * @host: host to suspend
5388 * @mesg: PM message
5389 *
5390 * Suspend @host. Actual operation is performed by port suspend.
5391 */
5392 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5393 {
5394 host->dev->power.power_state = mesg;
5395 return 0;
5396 }
5397
5398 /**
5399 * ata_host_resume - resume host
5400 * @host: host to resume
5401 *
5402 * Resume @host. Actual operation is performed by port resume.
5403 */
5404 void ata_host_resume(struct ata_host *host)
5405 {
5406 host->dev->power.power_state = PMSG_ON;
5407 }
5408 #endif
5409
5410 struct device_type ata_port_type = {
5411 .name = "ata_port",
5412 #ifdef CONFIG_PM
5413 .pm = &ata_port_pm_ops,
5414 #endif
5415 };
5416
5417 /**
5418 * ata_dev_init - Initialize an ata_device structure
5419 * @dev: Device structure to initialize
5420 *
5421 * Initialize @dev in preparation for probing.
5422 *
5423 * LOCKING:
5424 * Inherited from caller.
5425 */
5426 void ata_dev_init(struct ata_device *dev)
5427 {
5428 struct ata_link *link = ata_dev_phys_link(dev);
5429 struct ata_port *ap = link->ap;
5430 unsigned long flags;
5431
5432 /* SATA spd limit is bound to the attached device, reset together */
5433 link->sata_spd_limit = link->hw_sata_spd_limit;
5434 link->sata_spd = 0;
5435
5436 /* High bits of dev->flags are used to record warm plug
5437 * requests which occur asynchronously. Synchronize using
5438 * host lock.
5439 */
5440 spin_lock_irqsave(ap->lock, flags);
5441 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5442 dev->horkage = 0;
5443 spin_unlock_irqrestore(ap->lock, flags);
5444
5445 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5446 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5447 dev->pio_mask = UINT_MAX;
5448 dev->mwdma_mask = UINT_MAX;
5449 dev->udma_mask = UINT_MAX;
5450 }
5451
5452 /**
5453 * ata_link_init - Initialize an ata_link structure
5454 * @ap: ATA port link is attached to
5455 * @link: Link structure to initialize
5456 * @pmp: Port multiplier port number
5457 *
5458 * Initialize @link.
5459 *
5460 * LOCKING:
5461 * Kernel thread context (may sleep)
5462 */
5463 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5464 {
5465 int i;
5466
5467 /* clear everything except for devices */
5468 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5469 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5470
5471 link->ap = ap;
5472 link->pmp = pmp;
5473 link->active_tag = ATA_TAG_POISON;
5474 link->hw_sata_spd_limit = UINT_MAX;
5475
5476 /* can't use iterator, ap isn't initialized yet */
5477 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5478 struct ata_device *dev = &link->device[i];
5479
5480 dev->link = link;
5481 dev->devno = dev - link->device;
5482 #ifdef CONFIG_ATA_ACPI
5483 dev->gtf_filter = ata_acpi_gtf_filter;
5484 #endif
5485 ata_dev_init(dev);
5486 }
5487 }
5488
5489 /**
5490 * sata_link_init_spd - Initialize link->sata_spd_limit
5491 * @link: Link to configure sata_spd_limit for
5492 *
5493 * Initialize @link->[hw_]sata_spd_limit to the currently
5494 * configured value.
5495 *
5496 * LOCKING:
5497 * Kernel thread context (may sleep).
5498 *
5499 * RETURNS:
5500 * 0 on success, -errno on failure.
5501 */
5502 int sata_link_init_spd(struct ata_link *link)
5503 {
5504 u8 spd;
5505 int rc;
5506
5507 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5508 if (rc)
5509 return rc;
5510
5511 spd = (link->saved_scontrol >> 4) & 0xf;
5512 if (spd)
5513 link->hw_sata_spd_limit &= (1 << spd) - 1;
5514
5515 ata_force_link_limits(link);
5516
5517 link->sata_spd_limit = link->hw_sata_spd_limit;
5518
5519 return 0;
5520 }
5521
5522 /**
5523 * ata_port_alloc - allocate and initialize basic ATA port resources
5524 * @host: ATA host this allocated port belongs to
5525 *
5526 * Allocate and initialize basic ATA port resources.
5527 *
5528 * RETURNS:
5529 * Allocate ATA port on success, NULL on failure.
5530 *
5531 * LOCKING:
5532 * Inherited from calling layer (may sleep).
5533 */
5534 struct ata_port *ata_port_alloc(struct ata_host *host)
5535 {
5536 struct ata_port *ap;
5537
5538 DPRINTK("ENTER\n");
5539
5540 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5541 if (!ap)
5542 return NULL;
5543
5544 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5545 ap->lock = &host->lock;
5546 ap->print_id = -1;
5547 ap->host = host;
5548 ap->dev = host->dev;
5549
5550 #if defined(ATA_VERBOSE_DEBUG)
5551 /* turn on all debugging levels */
5552 ap->msg_enable = 0x00FF;
5553 #elif defined(ATA_DEBUG)
5554 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5555 #else
5556 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5557 #endif
5558
5559 mutex_init(&ap->scsi_scan_mutex);
5560 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5561 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5562 INIT_LIST_HEAD(&ap->eh_done_q);
5563 init_waitqueue_head(&ap->eh_wait_q);
5564 init_completion(&ap->park_req_pending);
5565 init_timer_deferrable(&ap->fastdrain_timer);
5566 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5567 ap->fastdrain_timer.data = (unsigned long)ap;
5568
5569 ap->cbl = ATA_CBL_NONE;
5570
5571 ata_link_init(ap, &ap->link, 0);
5572
5573 #ifdef ATA_IRQ_TRAP
5574 ap->stats.unhandled_irq = 1;
5575 ap->stats.idle_irq = 1;
5576 #endif
5577 ata_sff_port_init(ap);
5578
5579 return ap;
5580 }
5581
5582 static void ata_host_release(struct device *gendev, void *res)
5583 {
5584 struct ata_host *host = dev_get_drvdata(gendev);
5585 int i;
5586
5587 for (i = 0; i < host->n_ports; i++) {
5588 struct ata_port *ap = host->ports[i];
5589
5590 if (!ap)
5591 continue;
5592
5593 if (ap->scsi_host)
5594 scsi_host_put(ap->scsi_host);
5595
5596 kfree(ap->pmp_link);
5597 kfree(ap->slave_link);
5598 kfree(ap);
5599 host->ports[i] = NULL;
5600 }
5601
5602 dev_set_drvdata(gendev, NULL);
5603 }
5604
5605 /**
5606 * ata_host_alloc - allocate and init basic ATA host resources
5607 * @dev: generic device this host is associated with
5608 * @max_ports: maximum number of ATA ports associated with this host
5609 *
5610 * Allocate and initialize basic ATA host resources. LLD calls
5611 * this function to allocate a host, initializes it fully and
5612 * attaches it using ata_host_register().
5613 *
5614 * @max_ports ports are allocated and host->n_ports is
5615 * initialized to @max_ports. The caller is allowed to decrease
5616 * host->n_ports before calling ata_host_register(). The unused
5617 * ports will be automatically freed on registration.
5618 *
5619 * RETURNS:
5620 * Allocate ATA host on success, NULL on failure.
5621 *
5622 * LOCKING:
5623 * Inherited from calling layer (may sleep).
5624 */
5625 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5626 {
5627 struct ata_host *host;
5628 size_t sz;
5629 int i;
5630
5631 DPRINTK("ENTER\n");
5632
5633 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5634 return NULL;
5635
5636 /* alloc a container for our list of ATA ports (buses) */
5637 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5638 /* alloc a container for our list of ATA ports (buses) */
5639 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5640 if (!host)
5641 goto err_out;
5642
5643 devres_add(dev, host);
5644 dev_set_drvdata(dev, host);
5645
5646 spin_lock_init(&host->lock);
5647 mutex_init(&host->eh_mutex);
5648 host->dev = dev;
5649 host->n_ports = max_ports;
5650
5651 /* allocate ports bound to this host */
5652 for (i = 0; i < max_ports; i++) {
5653 struct ata_port *ap;
5654
5655 ap = ata_port_alloc(host);
5656 if (!ap)
5657 goto err_out;
5658
5659 ap->port_no = i;
5660 host->ports[i] = ap;
5661 }
5662
5663 devres_remove_group(dev, NULL);
5664 return host;
5665
5666 err_out:
5667 devres_release_group(dev, NULL);
5668 return NULL;
5669 }
5670
5671 /**
5672 * ata_host_alloc_pinfo - alloc host and init with port_info array
5673 * @dev: generic device this host is associated with
5674 * @ppi: array of ATA port_info to initialize host with
5675 * @n_ports: number of ATA ports attached to this host
5676 *
5677 * Allocate ATA host and initialize with info from @ppi. If NULL
5678 * terminated, @ppi may contain fewer entries than @n_ports. The
5679 * last entry will be used for the remaining ports.
5680 *
5681 * RETURNS:
5682 * Allocate ATA host on success, NULL on failure.
5683 *
5684 * LOCKING:
5685 * Inherited from calling layer (may sleep).
5686 */
5687 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5688 const struct ata_port_info * const * ppi,
5689 int n_ports)
5690 {
5691 const struct ata_port_info *pi;
5692 struct ata_host *host;
5693 int i, j;
5694
5695 host = ata_host_alloc(dev, n_ports);
5696 if (!host)
5697 return NULL;
5698
5699 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5700 struct ata_port *ap = host->ports[i];
5701
5702 if (ppi[j])
5703 pi = ppi[j++];
5704
5705 ap->pio_mask = pi->pio_mask;
5706 ap->mwdma_mask = pi->mwdma_mask;
5707 ap->udma_mask = pi->udma_mask;
5708 ap->flags |= pi->flags;
5709 ap->link.flags |= pi->link_flags;
5710 ap->ops = pi->port_ops;
5711
5712 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5713 host->ops = pi->port_ops;
5714 }
5715
5716 return host;
5717 }
5718
5719 /**
5720 * ata_slave_link_init - initialize slave link
5721 * @ap: port to initialize slave link for
5722 *
5723 * Create and initialize slave link for @ap. This enables slave
5724 * link handling on the port.
5725 *
5726 * In libata, a port contains links and a link contains devices.
5727 * There is single host link but if a PMP is attached to it,
5728 * there can be multiple fan-out links. On SATA, there's usually
5729 * a single device connected to a link but PATA and SATA
5730 * controllers emulating TF based interface can have two - master
5731 * and slave.
5732 *
5733 * However, there are a few controllers which don't fit into this
5734 * abstraction too well - SATA controllers which emulate TF
5735 * interface with both master and slave devices but also have
5736 * separate SCR register sets for each device. These controllers
5737 * need separate links for physical link handling
5738 * (e.g. onlineness, link speed) but should be treated like a
5739 * traditional M/S controller for everything else (e.g. command
5740 * issue, softreset).
5741 *
5742 * slave_link is libata's way of handling this class of
5743 * controllers without impacting core layer too much. For
5744 * anything other than physical link handling, the default host
5745 * link is used for both master and slave. For physical link
5746 * handling, separate @ap->slave_link is used. All dirty details
5747 * are implemented inside libata core layer. From LLD's POV, the
5748 * only difference is that prereset, hardreset and postreset are
5749 * called once more for the slave link, so the reset sequence
5750 * looks like the following.
5751 *
5752 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5753 * softreset(M) -> postreset(M) -> postreset(S)
5754 *
5755 * Note that softreset is called only for the master. Softreset
5756 * resets both M/S by definition, so SRST on master should handle
5757 * both (the standard method will work just fine).
5758 *
5759 * LOCKING:
5760 * Should be called before host is registered.
5761 *
5762 * RETURNS:
5763 * 0 on success, -errno on failure.
5764 */
5765 int ata_slave_link_init(struct ata_port *ap)
5766 {
5767 struct ata_link *link;
5768
5769 WARN_ON(ap->slave_link);
5770 WARN_ON(ap->flags & ATA_FLAG_PMP);
5771
5772 link = kzalloc(sizeof(*link), GFP_KERNEL);
5773 if (!link)
5774 return -ENOMEM;
5775
5776 ata_link_init(ap, link, 1);
5777 ap->slave_link = link;
5778 return 0;
5779 }
5780
5781 static void ata_host_stop(struct device *gendev, void *res)
5782 {
5783 struct ata_host *host = dev_get_drvdata(gendev);
5784 int i;
5785
5786 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5787
5788 for (i = 0; i < host->n_ports; i++) {
5789 struct ata_port *ap = host->ports[i];
5790
5791 if (ap->ops->port_stop)
5792 ap->ops->port_stop(ap);
5793 }
5794
5795 if (host->ops->host_stop)
5796 host->ops->host_stop(host);
5797 }
5798
5799 /**
5800 * ata_finalize_port_ops - finalize ata_port_operations
5801 * @ops: ata_port_operations to finalize
5802 *
5803 * An ata_port_operations can inherit from another ops and that
5804 * ops can again inherit from another. This can go on as many
5805 * times as necessary as long as there is no loop in the
5806 * inheritance chain.
5807 *
5808 * Ops tables are finalized when the host is started. NULL or
5809 * unspecified entries are inherited from the closet ancestor
5810 * which has the method and the entry is populated with it.
5811 * After finalization, the ops table directly points to all the
5812 * methods and ->inherits is no longer necessary and cleared.
5813 *
5814 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5815 *
5816 * LOCKING:
5817 * None.
5818 */
5819 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5820 {
5821 static DEFINE_SPINLOCK(lock);
5822 const struct ata_port_operations *cur;
5823 void **begin = (void **)ops;
5824 void **end = (void **)&ops->inherits;
5825 void **pp;
5826
5827 if (!ops || !ops->inherits)
5828 return;
5829
5830 spin_lock(&lock);
5831
5832 for (cur = ops->inherits; cur; cur = cur->inherits) {
5833 void **inherit = (void **)cur;
5834
5835 for (pp = begin; pp < end; pp++, inherit++)
5836 if (!*pp)
5837 *pp = *inherit;
5838 }
5839
5840 for (pp = begin; pp < end; pp++)
5841 if (IS_ERR(*pp))
5842 *pp = NULL;
5843
5844 ops->inherits = NULL;
5845
5846 spin_unlock(&lock);
5847 }
5848
5849 /**
5850 * ata_host_start - start and freeze ports of an ATA host
5851 * @host: ATA host to start ports for
5852 *
5853 * Start and then freeze ports of @host. Started status is
5854 * recorded in host->flags, so this function can be called
5855 * multiple times. Ports are guaranteed to get started only
5856 * once. If host->ops isn't initialized yet, its set to the
5857 * first non-dummy port ops.
5858 *
5859 * LOCKING:
5860 * Inherited from calling layer (may sleep).
5861 *
5862 * RETURNS:
5863 * 0 if all ports are started successfully, -errno otherwise.
5864 */
5865 int ata_host_start(struct ata_host *host)
5866 {
5867 int have_stop = 0;
5868 void *start_dr = NULL;
5869 int i, rc;
5870
5871 if (host->flags & ATA_HOST_STARTED)
5872 return 0;
5873
5874 ata_finalize_port_ops(host->ops);
5875
5876 for (i = 0; i < host->n_ports; i++) {
5877 struct ata_port *ap = host->ports[i];
5878
5879 ata_finalize_port_ops(ap->ops);
5880
5881 if (!host->ops && !ata_port_is_dummy(ap))
5882 host->ops = ap->ops;
5883
5884 if (ap->ops->port_stop)
5885 have_stop = 1;
5886 }
5887
5888 if (host->ops->host_stop)
5889 have_stop = 1;
5890
5891 if (have_stop) {
5892 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5893 if (!start_dr)
5894 return -ENOMEM;
5895 }
5896
5897 for (i = 0; i < host->n_ports; i++) {
5898 struct ata_port *ap = host->ports[i];
5899
5900 if (ap->ops->port_start) {
5901 rc = ap->ops->port_start(ap);
5902 if (rc) {
5903 if (rc != -ENODEV)
5904 dev_err(host->dev,
5905 "failed to start port %d (errno=%d)\n",
5906 i, rc);
5907 goto err_out;
5908 }
5909 }
5910 ata_eh_freeze_port(ap);
5911 }
5912
5913 if (start_dr)
5914 devres_add(host->dev, start_dr);
5915 host->flags |= ATA_HOST_STARTED;
5916 return 0;
5917
5918 err_out:
5919 while (--i >= 0) {
5920 struct ata_port *ap = host->ports[i];
5921
5922 if (ap->ops->port_stop)
5923 ap->ops->port_stop(ap);
5924 }
5925 devres_free(start_dr);
5926 return rc;
5927 }
5928
5929 /**
5930 * ata_sas_host_init - Initialize a host struct
5931 * @host: host to initialize
5932 * @dev: device host is attached to
5933 * @flags: host flags
5934 * @ops: port_ops
5935 *
5936 * LOCKING:
5937 * PCI/etc. bus probe sem.
5938 *
5939 */
5940 /* KILLME - the only user left is ipr */
5941 void ata_host_init(struct ata_host *host, struct device *dev,
5942 unsigned long flags, struct ata_port_operations *ops)
5943 {
5944 spin_lock_init(&host->lock);
5945 mutex_init(&host->eh_mutex);
5946 host->dev = dev;
5947 host->flags = flags;
5948 host->ops = ops;
5949 }
5950
5951 void __ata_port_probe(struct ata_port *ap)
5952 {
5953 struct ata_eh_info *ehi = &ap->link.eh_info;
5954 unsigned long flags;
5955
5956 /* kick EH for boot probing */
5957 spin_lock_irqsave(ap->lock, flags);
5958
5959 ehi->probe_mask |= ATA_ALL_DEVICES;
5960 ehi->action |= ATA_EH_RESET;
5961 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5962
5963 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5964 ap->pflags |= ATA_PFLAG_LOADING;
5965 ata_port_schedule_eh(ap);
5966
5967 spin_unlock_irqrestore(ap->lock, flags);
5968 }
5969
5970 int ata_port_probe(struct ata_port *ap)
5971 {
5972 int rc = 0;
5973
5974 if (ap->ops->error_handler) {
5975 __ata_port_probe(ap);
5976 ata_port_wait_eh(ap);
5977 } else {
5978 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5979 rc = ata_bus_probe(ap);
5980 DPRINTK("ata%u: bus probe end\n", ap->print_id);
5981 }
5982 return rc;
5983 }
5984
5985
5986 static void async_port_probe(void *data, async_cookie_t cookie)
5987 {
5988 struct ata_port *ap = data;
5989
5990 /*
5991 * If we're not allowed to scan this host in parallel,
5992 * we need to wait until all previous scans have completed
5993 * before going further.
5994 * Jeff Garzik says this is only within a controller, so we
5995 * don't need to wait for port 0, only for later ports.
5996 */
5997 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5998 async_synchronize_cookie(cookie);
5999
6000 (void)ata_port_probe(ap);
6001
6002 /* in order to keep device order, we need to synchronize at this point */
6003 async_synchronize_cookie(cookie);
6004
6005 ata_scsi_scan_host(ap, 1);
6006 }
6007
6008 /**
6009 * ata_host_register - register initialized ATA host
6010 * @host: ATA host to register
6011 * @sht: template for SCSI host
6012 *
6013 * Register initialized ATA host. @host is allocated using
6014 * ata_host_alloc() and fully initialized by LLD. This function
6015 * starts ports, registers @host with ATA and SCSI layers and
6016 * probe registered devices.
6017 *
6018 * LOCKING:
6019 * Inherited from calling layer (may sleep).
6020 *
6021 * RETURNS:
6022 * 0 on success, -errno otherwise.
6023 */
6024 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6025 {
6026 int i, rc;
6027
6028 /* host must have been started */
6029 if (!(host->flags & ATA_HOST_STARTED)) {
6030 dev_err(host->dev, "BUG: trying to register unstarted host\n");
6031 WARN_ON(1);
6032 return -EINVAL;
6033 }
6034
6035 /* Blow away unused ports. This happens when LLD can't
6036 * determine the exact number of ports to allocate at
6037 * allocation time.
6038 */
6039 for (i = host->n_ports; host->ports[i]; i++)
6040 kfree(host->ports[i]);
6041
6042 /* give ports names and add SCSI hosts */
6043 for (i = 0; i < host->n_ports; i++)
6044 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6045
6046
6047 /* Create associated sysfs transport objects */
6048 for (i = 0; i < host->n_ports; i++) {
6049 rc = ata_tport_add(host->dev,host->ports[i]);
6050 if (rc) {
6051 goto err_tadd;
6052 }
6053 }
6054
6055 rc = ata_scsi_add_hosts(host, sht);
6056 if (rc)
6057 goto err_tadd;
6058
6059 /* set cable, sata_spd_limit and report */
6060 for (i = 0; i < host->n_ports; i++) {
6061 struct ata_port *ap = host->ports[i];
6062 unsigned long xfer_mask;
6063
6064 /* set SATA cable type if still unset */
6065 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6066 ap->cbl = ATA_CBL_SATA;
6067
6068 /* init sata_spd_limit to the current value */
6069 sata_link_init_spd(&ap->link);
6070 if (ap->slave_link)
6071 sata_link_init_spd(ap->slave_link);
6072
6073 /* print per-port info to dmesg */
6074 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6075 ap->udma_mask);
6076
6077 if (!ata_port_is_dummy(ap)) {
6078 ata_port_info(ap, "%cATA max %s %s\n",
6079 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6080 ata_mode_string(xfer_mask),
6081 ap->link.eh_info.desc);
6082 ata_ehi_clear_desc(&ap->link.eh_info);
6083 } else
6084 ata_port_info(ap, "DUMMY\n");
6085 }
6086
6087 /* perform each probe asynchronously */
6088 for (i = 0; i < host->n_ports; i++) {
6089 struct ata_port *ap = host->ports[i];
6090 async_schedule(async_port_probe, ap);
6091 }
6092
6093 return 0;
6094
6095 err_tadd:
6096 while (--i >= 0) {
6097 ata_tport_delete(host->ports[i]);
6098 }
6099 return rc;
6100
6101 }
6102
6103 /**
6104 * ata_host_activate - start host, request IRQ and register it
6105 * @host: target ATA host
6106 * @irq: IRQ to request
6107 * @irq_handler: irq_handler used when requesting IRQ
6108 * @irq_flags: irq_flags used when requesting IRQ
6109 * @sht: scsi_host_template to use when registering the host
6110 *
6111 * After allocating an ATA host and initializing it, most libata
6112 * LLDs perform three steps to activate the host - start host,
6113 * request IRQ and register it. This helper takes necessasry
6114 * arguments and performs the three steps in one go.
6115 *
6116 * An invalid IRQ skips the IRQ registration and expects the host to
6117 * have set polling mode on the port. In this case, @irq_handler
6118 * should be NULL.
6119 *
6120 * LOCKING:
6121 * Inherited from calling layer (may sleep).
6122 *
6123 * RETURNS:
6124 * 0 on success, -errno otherwise.
6125 */
6126 int ata_host_activate(struct ata_host *host, int irq,
6127 irq_handler_t irq_handler, unsigned long irq_flags,
6128 struct scsi_host_template *sht)
6129 {
6130 int i, rc;
6131
6132 rc = ata_host_start(host);
6133 if (rc)
6134 return rc;
6135
6136 /* Special case for polling mode */
6137 if (!irq) {
6138 WARN_ON(irq_handler);
6139 return ata_host_register(host, sht);
6140 }
6141
6142 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6143 dev_driver_string(host->dev), host);
6144 if (rc)
6145 return rc;
6146
6147 for (i = 0; i < host->n_ports; i++)
6148 ata_port_desc(host->ports[i], "irq %d", irq);
6149
6150 rc = ata_host_register(host, sht);
6151 /* if failed, just free the IRQ and leave ports alone */
6152 if (rc)
6153 devm_free_irq(host->dev, irq, host);
6154
6155 return rc;
6156 }
6157
6158 /**
6159 * ata_port_detach - Detach ATA port in prepration of device removal
6160 * @ap: ATA port to be detached
6161 *
6162 * Detach all ATA devices and the associated SCSI devices of @ap;
6163 * then, remove the associated SCSI host. @ap is guaranteed to
6164 * be quiescent on return from this function.
6165 *
6166 * LOCKING:
6167 * Kernel thread context (may sleep).
6168 */
6169 static void ata_port_detach(struct ata_port *ap)
6170 {
6171 unsigned long flags;
6172
6173 if (!ap->ops->error_handler)
6174 goto skip_eh;
6175
6176 /* tell EH we're leaving & flush EH */
6177 spin_lock_irqsave(ap->lock, flags);
6178 ap->pflags |= ATA_PFLAG_UNLOADING;
6179 ata_port_schedule_eh(ap);
6180 spin_unlock_irqrestore(ap->lock, flags);
6181
6182 /* wait till EH commits suicide */
6183 ata_port_wait_eh(ap);
6184
6185 /* it better be dead now */
6186 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6187
6188 cancel_delayed_work_sync(&ap->hotplug_task);
6189
6190 skip_eh:
6191 if (ap->pmp_link) {
6192 int i;
6193 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6194 ata_tlink_delete(&ap->pmp_link[i]);
6195 }
6196 ata_tport_delete(ap);
6197
6198 /* remove the associated SCSI host */
6199 scsi_remove_host(ap->scsi_host);
6200 }
6201
6202 /**
6203 * ata_host_detach - Detach all ports of an ATA host
6204 * @host: Host to detach
6205 *
6206 * Detach all ports of @host.
6207 *
6208 * LOCKING:
6209 * Kernel thread context (may sleep).
6210 */
6211 void ata_host_detach(struct ata_host *host)
6212 {
6213 int i;
6214
6215 for (i = 0; i < host->n_ports; i++)
6216 ata_port_detach(host->ports[i]);
6217
6218 /* the host is dead now, dissociate ACPI */
6219 ata_acpi_dissociate(host);
6220 }
6221
6222 #ifdef CONFIG_PCI
6223
6224 /**
6225 * ata_pci_remove_one - PCI layer callback for device removal
6226 * @pdev: PCI device that was removed
6227 *
6228 * PCI layer indicates to libata via this hook that hot-unplug or
6229 * module unload event has occurred. Detach all ports. Resource
6230 * release is handled via devres.
6231 *
6232 * LOCKING:
6233 * Inherited from PCI layer (may sleep).
6234 */
6235 void ata_pci_remove_one(struct pci_dev *pdev)
6236 {
6237 struct device *dev = &pdev->dev;
6238 struct ata_host *host = dev_get_drvdata(dev);
6239
6240 ata_host_detach(host);
6241 }
6242
6243 /* move to PCI subsystem */
6244 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6245 {
6246 unsigned long tmp = 0;
6247
6248 switch (bits->width) {
6249 case 1: {
6250 u8 tmp8 = 0;
6251 pci_read_config_byte(pdev, bits->reg, &tmp8);
6252 tmp = tmp8;
6253 break;
6254 }
6255 case 2: {
6256 u16 tmp16 = 0;
6257 pci_read_config_word(pdev, bits->reg, &tmp16);
6258 tmp = tmp16;
6259 break;
6260 }
6261 case 4: {
6262 u32 tmp32 = 0;
6263 pci_read_config_dword(pdev, bits->reg, &tmp32);
6264 tmp = tmp32;
6265 break;
6266 }
6267
6268 default:
6269 return -EINVAL;
6270 }
6271
6272 tmp &= bits->mask;
6273
6274 return (tmp == bits->val) ? 1 : 0;
6275 }
6276
6277 #ifdef CONFIG_PM
6278 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6279 {
6280 pci_save_state(pdev);
6281 pci_disable_device(pdev);
6282
6283 if (mesg.event & PM_EVENT_SLEEP)
6284 pci_set_power_state(pdev, PCI_D3hot);
6285 }
6286
6287 int ata_pci_device_do_resume(struct pci_dev *pdev)
6288 {
6289 int rc;
6290
6291 pci_set_power_state(pdev, PCI_D0);
6292 pci_restore_state(pdev);
6293
6294 rc = pcim_enable_device(pdev);
6295 if (rc) {
6296 dev_err(&pdev->dev,
6297 "failed to enable device after resume (%d)\n", rc);
6298 return rc;
6299 }
6300
6301 pci_set_master(pdev);
6302 return 0;
6303 }
6304
6305 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6306 {
6307 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6308 int rc = 0;
6309
6310 rc = ata_host_suspend(host, mesg);
6311 if (rc)
6312 return rc;
6313
6314 ata_pci_device_do_suspend(pdev, mesg);
6315
6316 return 0;
6317 }
6318
6319 int ata_pci_device_resume(struct pci_dev *pdev)
6320 {
6321 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6322 int rc;
6323
6324 rc = ata_pci_device_do_resume(pdev);
6325 if (rc == 0)
6326 ata_host_resume(host);
6327 return rc;
6328 }
6329 #endif /* CONFIG_PM */
6330
6331 #endif /* CONFIG_PCI */
6332
6333 static int __init ata_parse_force_one(char **cur,
6334 struct ata_force_ent *force_ent,
6335 const char **reason)
6336 {
6337 /* FIXME: Currently, there's no way to tag init const data and
6338 * using __initdata causes build failure on some versions of
6339 * gcc. Once __initdataconst is implemented, add const to the
6340 * following structure.
6341 */
6342 static struct ata_force_param force_tbl[] __initdata = {
6343 { "40c", .cbl = ATA_CBL_PATA40 },
6344 { "80c", .cbl = ATA_CBL_PATA80 },
6345 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6346 { "unk", .cbl = ATA_CBL_PATA_UNK },
6347 { "ign", .cbl = ATA_CBL_PATA_IGN },
6348 { "sata", .cbl = ATA_CBL_SATA },
6349 { "1.5Gbps", .spd_limit = 1 },
6350 { "3.0Gbps", .spd_limit = 2 },
6351 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6352 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6353 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6354 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6355 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6356 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6357 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6358 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6359 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6360 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6361 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6362 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6363 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6364 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6365 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6366 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6367 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6368 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6369 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6370 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6371 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6372 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6373 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6374 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6375 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6376 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6377 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6378 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6379 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6380 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6381 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6382 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6383 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6384 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6385 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6386 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6387 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6388 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6389 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6390 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6391 };
6392 char *start = *cur, *p = *cur;
6393 char *id, *val, *endp;
6394 const struct ata_force_param *match_fp = NULL;
6395 int nr_matches = 0, i;
6396
6397 /* find where this param ends and update *cur */
6398 while (*p != '\0' && *p != ',')
6399 p++;
6400
6401 if (*p == '\0')
6402 *cur = p;
6403 else
6404 *cur = p + 1;
6405
6406 *p = '\0';
6407
6408 /* parse */
6409 p = strchr(start, ':');
6410 if (!p) {
6411 val = strstrip(start);
6412 goto parse_val;
6413 }
6414 *p = '\0';
6415
6416 id = strstrip(start);
6417 val = strstrip(p + 1);
6418
6419 /* parse id */
6420 p = strchr(id, '.');
6421 if (p) {
6422 *p++ = '\0';
6423 force_ent->device = simple_strtoul(p, &endp, 10);
6424 if (p == endp || *endp != '\0') {
6425 *reason = "invalid device";
6426 return -EINVAL;
6427 }
6428 }
6429
6430 force_ent->port = simple_strtoul(id, &endp, 10);
6431 if (p == endp || *endp != '\0') {
6432 *reason = "invalid port/link";
6433 return -EINVAL;
6434 }
6435
6436 parse_val:
6437 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6438 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6439 const struct ata_force_param *fp = &force_tbl[i];
6440
6441 if (strncasecmp(val, fp->name, strlen(val)))
6442 continue;
6443
6444 nr_matches++;
6445 match_fp = fp;
6446
6447 if (strcasecmp(val, fp->name) == 0) {
6448 nr_matches = 1;
6449 break;
6450 }
6451 }
6452
6453 if (!nr_matches) {
6454 *reason = "unknown value";
6455 return -EINVAL;
6456 }
6457 if (nr_matches > 1) {
6458 *reason = "ambigious value";
6459 return -EINVAL;
6460 }
6461
6462 force_ent->param = *match_fp;
6463
6464 return 0;
6465 }
6466
6467 static void __init ata_parse_force_param(void)
6468 {
6469 int idx = 0, size = 1;
6470 int last_port = -1, last_device = -1;
6471 char *p, *cur, *next;
6472
6473 /* calculate maximum number of params and allocate force_tbl */
6474 for (p = ata_force_param_buf; *p; p++)
6475 if (*p == ',')
6476 size++;
6477
6478 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6479 if (!ata_force_tbl) {
6480 printk(KERN_WARNING "ata: failed to extend force table, "
6481 "libata.force ignored\n");
6482 return;
6483 }
6484
6485 /* parse and populate the table */
6486 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6487 const char *reason = "";
6488 struct ata_force_ent te = { .port = -1, .device = -1 };
6489
6490 next = cur;
6491 if (ata_parse_force_one(&next, &te, &reason)) {
6492 printk(KERN_WARNING "ata: failed to parse force "
6493 "parameter \"%s\" (%s)\n",
6494 cur, reason);
6495 continue;
6496 }
6497
6498 if (te.port == -1) {
6499 te.port = last_port;
6500 te.device = last_device;
6501 }
6502
6503 ata_force_tbl[idx++] = te;
6504
6505 last_port = te.port;
6506 last_device = te.device;
6507 }
6508
6509 ata_force_tbl_size = idx;
6510 }
6511
6512 static int __init ata_init(void)
6513 {
6514 int rc;
6515
6516 ata_parse_force_param();
6517
6518 ata_acpi_register();
6519
6520 rc = ata_sff_init();
6521 if (rc) {
6522 kfree(ata_force_tbl);
6523 return rc;
6524 }
6525
6526 libata_transport_init();
6527 ata_scsi_transport_template = ata_attach_transport();
6528 if (!ata_scsi_transport_template) {
6529 ata_sff_exit();
6530 rc = -ENOMEM;
6531 goto err_out;
6532 }
6533
6534 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6535 return 0;
6536
6537 err_out:
6538 return rc;
6539 }
6540
6541 static void __exit ata_exit(void)
6542 {
6543 ata_release_transport(ata_scsi_transport_template);
6544 libata_transport_exit();
6545 ata_sff_exit();
6546 ata_acpi_unregister();
6547 kfree(ata_force_tbl);
6548 }
6549
6550 subsys_initcall(ata_init);
6551 module_exit(ata_exit);
6552
6553 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6554
6555 int ata_ratelimit(void)
6556 {
6557 return __ratelimit(&ratelimit);
6558 }
6559
6560 /**
6561 * ata_msleep - ATA EH owner aware msleep
6562 * @ap: ATA port to attribute the sleep to
6563 * @msecs: duration to sleep in milliseconds
6564 *
6565 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6566 * ownership is released before going to sleep and reacquired
6567 * after the sleep is complete. IOW, other ports sharing the
6568 * @ap->host will be allowed to own the EH while this task is
6569 * sleeping.
6570 *
6571 * LOCKING:
6572 * Might sleep.
6573 */
6574 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6575 {
6576 bool owns_eh = ap && ap->host->eh_owner == current;
6577
6578 if (owns_eh)
6579 ata_eh_release(ap);
6580
6581 msleep(msecs);
6582
6583 if (owns_eh)
6584 ata_eh_acquire(ap);
6585 }
6586
6587 /**
6588 * ata_wait_register - wait until register value changes
6589 * @ap: ATA port to wait register for, can be NULL
6590 * @reg: IO-mapped register
6591 * @mask: Mask to apply to read register value
6592 * @val: Wait condition
6593 * @interval: polling interval in milliseconds
6594 * @timeout: timeout in milliseconds
6595 *
6596 * Waiting for some bits of register to change is a common
6597 * operation for ATA controllers. This function reads 32bit LE
6598 * IO-mapped register @reg and tests for the following condition.
6599 *
6600 * (*@reg & mask) != val
6601 *
6602 * If the condition is met, it returns; otherwise, the process is
6603 * repeated after @interval_msec until timeout.
6604 *
6605 * LOCKING:
6606 * Kernel thread context (may sleep)
6607 *
6608 * RETURNS:
6609 * The final register value.
6610 */
6611 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6612 unsigned long interval, unsigned long timeout)
6613 {
6614 unsigned long deadline;
6615 u32 tmp;
6616
6617 tmp = ioread32(reg);
6618
6619 /* Calculate timeout _after_ the first read to make sure
6620 * preceding writes reach the controller before starting to
6621 * eat away the timeout.
6622 */
6623 deadline = ata_deadline(jiffies, timeout);
6624
6625 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6626 ata_msleep(ap, interval);
6627 tmp = ioread32(reg);
6628 }
6629
6630 return tmp;
6631 }
6632
6633 /*
6634 * Dummy port_ops
6635 */
6636 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6637 {
6638 return AC_ERR_SYSTEM;
6639 }
6640
6641 static void ata_dummy_error_handler(struct ata_port *ap)
6642 {
6643 /* truly dummy */
6644 }
6645
6646 struct ata_port_operations ata_dummy_port_ops = {
6647 .qc_prep = ata_noop_qc_prep,
6648 .qc_issue = ata_dummy_qc_issue,
6649 .error_handler = ata_dummy_error_handler,
6650 .sched_eh = ata_std_sched_eh,
6651 .end_eh = ata_std_end_eh,
6652 };
6653
6654 const struct ata_port_info ata_dummy_port_info = {
6655 .port_ops = &ata_dummy_port_ops,
6656 };
6657
6658 /*
6659 * Utility print functions
6660 */
6661 int ata_port_printk(const struct ata_port *ap, const char *level,
6662 const char *fmt, ...)
6663 {
6664 struct va_format vaf;
6665 va_list args;
6666 int r;
6667
6668 va_start(args, fmt);
6669
6670 vaf.fmt = fmt;
6671 vaf.va = &args;
6672
6673 r = printk("%sata%u: %pV", level, ap->print_id, &vaf);
6674
6675 va_end(args);
6676
6677 return r;
6678 }
6679 EXPORT_SYMBOL(ata_port_printk);
6680
6681 int ata_link_printk(const struct ata_link *link, const char *level,
6682 const char *fmt, ...)
6683 {
6684 struct va_format vaf;
6685 va_list args;
6686 int r;
6687
6688 va_start(args, fmt);
6689
6690 vaf.fmt = fmt;
6691 vaf.va = &args;
6692
6693 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6694 r = printk("%sata%u.%02u: %pV",
6695 level, link->ap->print_id, link->pmp, &vaf);
6696 else
6697 r = printk("%sata%u: %pV",
6698 level, link->ap->print_id, &vaf);
6699
6700 va_end(args);
6701
6702 return r;
6703 }
6704 EXPORT_SYMBOL(ata_link_printk);
6705
6706 int ata_dev_printk(const struct ata_device *dev, const char *level,
6707 const char *fmt, ...)
6708 {
6709 struct va_format vaf;
6710 va_list args;
6711 int r;
6712
6713 va_start(args, fmt);
6714
6715 vaf.fmt = fmt;
6716 vaf.va = &args;
6717
6718 r = printk("%sata%u.%02u: %pV",
6719 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6720 &vaf);
6721
6722 va_end(args);
6723
6724 return r;
6725 }
6726 EXPORT_SYMBOL(ata_dev_printk);
6727
6728 void ata_print_version(const struct device *dev, const char *version)
6729 {
6730 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6731 }
6732 EXPORT_SYMBOL(ata_print_version);
6733
6734 /*
6735 * libata is essentially a library of internal helper functions for
6736 * low-level ATA host controller drivers. As such, the API/ABI is
6737 * likely to change as new drivers are added and updated.
6738 * Do not depend on ABI/API stability.
6739 */
6740 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6741 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6742 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6743 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6744 EXPORT_SYMBOL_GPL(sata_port_ops);
6745 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6746 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6747 EXPORT_SYMBOL_GPL(ata_link_next);
6748 EXPORT_SYMBOL_GPL(ata_dev_next);
6749 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6750 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6751 EXPORT_SYMBOL_GPL(ata_host_init);
6752 EXPORT_SYMBOL_GPL(ata_host_alloc);
6753 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6754 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6755 EXPORT_SYMBOL_GPL(ata_host_start);
6756 EXPORT_SYMBOL_GPL(ata_host_register);
6757 EXPORT_SYMBOL_GPL(ata_host_activate);
6758 EXPORT_SYMBOL_GPL(ata_host_detach);
6759 EXPORT_SYMBOL_GPL(ata_sg_init);
6760 EXPORT_SYMBOL_GPL(ata_qc_complete);
6761 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6762 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6763 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6764 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6765 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6766 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6767 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6768 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6769 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6770 EXPORT_SYMBOL_GPL(ata_mode_string);
6771 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6772 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6773 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6774 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6775 EXPORT_SYMBOL_GPL(ata_dev_disable);
6776 EXPORT_SYMBOL_GPL(sata_set_spd);
6777 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6778 EXPORT_SYMBOL_GPL(sata_link_debounce);
6779 EXPORT_SYMBOL_GPL(sata_link_resume);
6780 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
6781 EXPORT_SYMBOL_GPL(ata_std_prereset);
6782 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6783 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6784 EXPORT_SYMBOL_GPL(ata_std_postreset);
6785 EXPORT_SYMBOL_GPL(ata_dev_classify);
6786 EXPORT_SYMBOL_GPL(ata_dev_pair);
6787 EXPORT_SYMBOL_GPL(ata_ratelimit);
6788 EXPORT_SYMBOL_GPL(ata_msleep);
6789 EXPORT_SYMBOL_GPL(ata_wait_register);
6790 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6791 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6792 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6793 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6794 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
6795 EXPORT_SYMBOL_GPL(sata_scr_valid);
6796 EXPORT_SYMBOL_GPL(sata_scr_read);
6797 EXPORT_SYMBOL_GPL(sata_scr_write);
6798 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6799 EXPORT_SYMBOL_GPL(ata_link_online);
6800 EXPORT_SYMBOL_GPL(ata_link_offline);
6801 #ifdef CONFIG_PM
6802 EXPORT_SYMBOL_GPL(ata_host_suspend);
6803 EXPORT_SYMBOL_GPL(ata_host_resume);
6804 #endif /* CONFIG_PM */
6805 EXPORT_SYMBOL_GPL(ata_id_string);
6806 EXPORT_SYMBOL_GPL(ata_id_c_string);
6807 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6808 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6809
6810 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6811 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6812 EXPORT_SYMBOL_GPL(ata_timing_compute);
6813 EXPORT_SYMBOL_GPL(ata_timing_merge);
6814 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6815
6816 #ifdef CONFIG_PCI
6817 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6818 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6819 #ifdef CONFIG_PM
6820 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6821 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6822 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6823 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6824 #endif /* CONFIG_PM */
6825 #endif /* CONFIG_PCI */
6826
6827 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6828 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6829 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6830 EXPORT_SYMBOL_GPL(ata_port_desc);
6831 #ifdef CONFIG_PCI
6832 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6833 #endif /* CONFIG_PCI */
6834 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6835 EXPORT_SYMBOL_GPL(ata_link_abort);
6836 EXPORT_SYMBOL_GPL(ata_port_abort);
6837 EXPORT_SYMBOL_GPL(ata_port_freeze);
6838 EXPORT_SYMBOL_GPL(sata_async_notification);
6839 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6840 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6841 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6842 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6843 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6844 EXPORT_SYMBOL_GPL(ata_do_eh);
6845 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6846
6847 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6848 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6849 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6850 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6851 EXPORT_SYMBOL_GPL(ata_cable_sata);
This page took 0.178019 seconds and 5 git commands to generate.