libata: separate out ata_wait_ready() and implement ata_wait_after_reset()
[deliverable/linux.git] / drivers / ata / libata-sff.c
1 /*
2 * libata-sff.c - helper library for PCI IDE BMDMA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2006 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/pci.h>
37 #include <linux/libata.h>
38 #include <linux/highmem.h>
39
40 #include "libata.h"
41
42 const struct ata_port_operations ata_sff_port_ops = {
43 .inherits = &ata_base_port_ops,
44
45 .qc_prep = ata_sff_qc_prep,
46 .qc_issue = ata_sff_qc_issue,
47
48 .freeze = ata_sff_freeze,
49 .thaw = ata_sff_thaw,
50 .prereset = ata_sff_prereset,
51 .softreset = ata_sff_softreset,
52 .postreset = ata_sff_postreset,
53 .error_handler = ata_sff_error_handler,
54 .post_internal_cmd = ata_sff_post_internal_cmd,
55
56 .sff_dev_select = ata_sff_dev_select,
57 .sff_check_status = ata_sff_check_status,
58 .sff_tf_load = ata_sff_tf_load,
59 .sff_tf_read = ata_sff_tf_read,
60 .sff_exec_command = ata_sff_exec_command,
61 .sff_data_xfer = ata_sff_data_xfer,
62 .sff_irq_on = ata_sff_irq_on,
63 .sff_irq_clear = ata_sff_irq_clear,
64
65 .port_start = ata_sff_port_start,
66 };
67
68 const struct ata_port_operations ata_bmdma_port_ops = {
69 .inherits = &ata_sff_port_ops,
70
71 .mode_filter = ata_bmdma_mode_filter,
72
73 .bmdma_setup = ata_bmdma_setup,
74 .bmdma_start = ata_bmdma_start,
75 .bmdma_stop = ata_bmdma_stop,
76 .bmdma_status = ata_bmdma_status,
77 };
78
79 /**
80 * ata_fill_sg - Fill PCI IDE PRD table
81 * @qc: Metadata associated with taskfile to be transferred
82 *
83 * Fill PCI IDE PRD (scatter-gather) table with segments
84 * associated with the current disk command.
85 *
86 * LOCKING:
87 * spin_lock_irqsave(host lock)
88 *
89 */
90 static void ata_fill_sg(struct ata_queued_cmd *qc)
91 {
92 struct ata_port *ap = qc->ap;
93 struct scatterlist *sg;
94 unsigned int si, pi;
95
96 pi = 0;
97 for_each_sg(qc->sg, sg, qc->n_elem, si) {
98 u32 addr, offset;
99 u32 sg_len, len;
100
101 /* determine if physical DMA addr spans 64K boundary.
102 * Note h/w doesn't support 64-bit, so we unconditionally
103 * truncate dma_addr_t to u32.
104 */
105 addr = (u32) sg_dma_address(sg);
106 sg_len = sg_dma_len(sg);
107
108 while (sg_len) {
109 offset = addr & 0xffff;
110 len = sg_len;
111 if ((offset + sg_len) > 0x10000)
112 len = 0x10000 - offset;
113
114 ap->prd[pi].addr = cpu_to_le32(addr);
115 ap->prd[pi].flags_len = cpu_to_le32(len & 0xffff);
116 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
117
118 pi++;
119 sg_len -= len;
120 addr += len;
121 }
122 }
123
124 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
125 }
126
127 /**
128 * ata_fill_sg_dumb - Fill PCI IDE PRD table
129 * @qc: Metadata associated with taskfile to be transferred
130 *
131 * Fill PCI IDE PRD (scatter-gather) table with segments
132 * associated with the current disk command. Perform the fill
133 * so that we avoid writing any length 64K records for
134 * controllers that don't follow the spec.
135 *
136 * LOCKING:
137 * spin_lock_irqsave(host lock)
138 *
139 */
140 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
141 {
142 struct ata_port *ap = qc->ap;
143 struct scatterlist *sg;
144 unsigned int si, pi;
145
146 pi = 0;
147 for_each_sg(qc->sg, sg, qc->n_elem, si) {
148 u32 addr, offset;
149 u32 sg_len, len, blen;
150
151 /* determine if physical DMA addr spans 64K boundary.
152 * Note h/w doesn't support 64-bit, so we unconditionally
153 * truncate dma_addr_t to u32.
154 */
155 addr = (u32) sg_dma_address(sg);
156 sg_len = sg_dma_len(sg);
157
158 while (sg_len) {
159 offset = addr & 0xffff;
160 len = sg_len;
161 if ((offset + sg_len) > 0x10000)
162 len = 0x10000 - offset;
163
164 blen = len & 0xffff;
165 ap->prd[pi].addr = cpu_to_le32(addr);
166 if (blen == 0) {
167 /* Some PATA chipsets like the CS5530 can't
168 cope with 0x0000 meaning 64K as the spec says */
169 ap->prd[pi].flags_len = cpu_to_le32(0x8000);
170 blen = 0x8000;
171 ap->prd[++pi].addr = cpu_to_le32(addr + 0x8000);
172 }
173 ap->prd[pi].flags_len = cpu_to_le32(blen);
174 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
175
176 pi++;
177 sg_len -= len;
178 addr += len;
179 }
180 }
181
182 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
183 }
184
185 /**
186 * ata_sff_qc_prep - Prepare taskfile for submission
187 * @qc: Metadata associated with taskfile to be prepared
188 *
189 * Prepare ATA taskfile for submission.
190 *
191 * LOCKING:
192 * spin_lock_irqsave(host lock)
193 */
194 void ata_sff_qc_prep(struct ata_queued_cmd *qc)
195 {
196 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
197 return;
198
199 ata_fill_sg(qc);
200 }
201
202 /**
203 * ata_sff_dumb_qc_prep - Prepare taskfile for submission
204 * @qc: Metadata associated with taskfile to be prepared
205 *
206 * Prepare ATA taskfile for submission.
207 *
208 * LOCKING:
209 * spin_lock_irqsave(host lock)
210 */
211 void ata_sff_dumb_qc_prep(struct ata_queued_cmd *qc)
212 {
213 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
214 return;
215
216 ata_fill_sg_dumb(qc);
217 }
218
219 /**
220 * ata_sff_check_status - Read device status reg & clear interrupt
221 * @ap: port where the device is
222 *
223 * Reads ATA taskfile status register for currently-selected device
224 * and return its value. This also clears pending interrupts
225 * from this device
226 *
227 * LOCKING:
228 * Inherited from caller.
229 */
230 u8 ata_sff_check_status(struct ata_port *ap)
231 {
232 return ioread8(ap->ioaddr.status_addr);
233 }
234
235 /**
236 * ata_sff_altstatus - Read device alternate status reg
237 * @ap: port where the device is
238 *
239 * Reads ATA taskfile alternate status register for
240 * currently-selected device and return its value.
241 *
242 * Note: may NOT be used as the check_altstatus() entry in
243 * ata_port_operations.
244 *
245 * LOCKING:
246 * Inherited from caller.
247 */
248 u8 ata_sff_altstatus(struct ata_port *ap)
249 {
250 if (ap->ops->sff_check_altstatus)
251 return ap->ops->sff_check_altstatus(ap);
252
253 return ioread8(ap->ioaddr.altstatus_addr);
254 }
255
256 /**
257 * ata_sff_busy_sleep - sleep until BSY clears, or timeout
258 * @ap: port containing status register to be polled
259 * @tmout_pat: impatience timeout
260 * @tmout: overall timeout
261 *
262 * Sleep until ATA Status register bit BSY clears,
263 * or a timeout occurs.
264 *
265 * LOCKING:
266 * Kernel thread context (may sleep).
267 *
268 * RETURNS:
269 * 0 on success, -errno otherwise.
270 */
271 int ata_sff_busy_sleep(struct ata_port *ap,
272 unsigned long tmout_pat, unsigned long tmout)
273 {
274 unsigned long timer_start, timeout;
275 u8 status;
276
277 status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
278 timer_start = jiffies;
279 timeout = timer_start + tmout_pat;
280 while (status != 0xff && (status & ATA_BUSY) &&
281 time_before(jiffies, timeout)) {
282 msleep(50);
283 status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
284 }
285
286 if (status != 0xff && (status & ATA_BUSY))
287 ata_port_printk(ap, KERN_WARNING,
288 "port is slow to respond, please be patient "
289 "(Status 0x%x)\n", status);
290
291 timeout = timer_start + tmout;
292 while (status != 0xff && (status & ATA_BUSY) &&
293 time_before(jiffies, timeout)) {
294 msleep(50);
295 status = ap->ops->sff_check_status(ap);
296 }
297
298 if (status == 0xff)
299 return -ENODEV;
300
301 if (status & ATA_BUSY) {
302 ata_port_printk(ap, KERN_ERR, "port failed to respond "
303 "(%lu secs, Status 0x%x)\n",
304 tmout / HZ, status);
305 return -EBUSY;
306 }
307
308 return 0;
309 }
310
311 static int ata_sff_check_ready(struct ata_link *link)
312 {
313 u8 status = link->ap->ops->sff_check_status(link->ap);
314
315 if (!(status & ATA_BUSY))
316 return 1;
317 if (status == 0xff)
318 return -ENODEV;
319 return 0;
320 }
321
322 /**
323 * ata_sff_wait_ready - sleep until BSY clears, or timeout
324 * @link: SFF link to wait ready status for
325 * @deadline: deadline jiffies for the operation
326 *
327 * Sleep until ATA Status register bit BSY clears, or timeout
328 * occurs.
329 *
330 * LOCKING:
331 * Kernel thread context (may sleep).
332 *
333 * RETURNS:
334 * 0 on success, -errno otherwise.
335 */
336 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
337 {
338 return ata_wait_ready(link, deadline, ata_sff_check_ready);
339 }
340
341 /**
342 * ata_sff_dev_select - Select device 0/1 on ATA bus
343 * @ap: ATA channel to manipulate
344 * @device: ATA device (numbered from zero) to select
345 *
346 * Use the method defined in the ATA specification to
347 * make either device 0, or device 1, active on the
348 * ATA channel. Works with both PIO and MMIO.
349 *
350 * May be used as the dev_select() entry in ata_port_operations.
351 *
352 * LOCKING:
353 * caller.
354 */
355 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
356 {
357 u8 tmp;
358
359 if (device == 0)
360 tmp = ATA_DEVICE_OBS;
361 else
362 tmp = ATA_DEVICE_OBS | ATA_DEV1;
363
364 iowrite8(tmp, ap->ioaddr.device_addr);
365 ata_sff_pause(ap); /* needed; also flushes, for mmio */
366 }
367
368 /**
369 * ata_dev_select - Select device 0/1 on ATA bus
370 * @ap: ATA channel to manipulate
371 * @device: ATA device (numbered from zero) to select
372 * @wait: non-zero to wait for Status register BSY bit to clear
373 * @can_sleep: non-zero if context allows sleeping
374 *
375 * Use the method defined in the ATA specification to
376 * make either device 0, or device 1, active on the
377 * ATA channel.
378 *
379 * This is a high-level version of ata_sff_dev_select(), which
380 * additionally provides the services of inserting the proper
381 * pauses and status polling, where needed.
382 *
383 * LOCKING:
384 * caller.
385 */
386 void ata_dev_select(struct ata_port *ap, unsigned int device,
387 unsigned int wait, unsigned int can_sleep)
388 {
389 if (ata_msg_probe(ap))
390 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
391 "device %u, wait %u\n", device, wait);
392
393 if (wait)
394 ata_wait_idle(ap);
395
396 ap->ops->sff_dev_select(ap, device);
397
398 if (wait) {
399 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
400 msleep(150);
401 ata_wait_idle(ap);
402 }
403 }
404
405 /**
406 * ata_sff_irq_on - Enable interrupts on a port.
407 * @ap: Port on which interrupts are enabled.
408 *
409 * Enable interrupts on a legacy IDE device using MMIO or PIO,
410 * wait for idle, clear any pending interrupts.
411 *
412 * LOCKING:
413 * Inherited from caller.
414 */
415 u8 ata_sff_irq_on(struct ata_port *ap)
416 {
417 struct ata_ioports *ioaddr = &ap->ioaddr;
418 u8 tmp;
419
420 ap->ctl &= ~ATA_NIEN;
421 ap->last_ctl = ap->ctl;
422
423 if (ioaddr->ctl_addr)
424 iowrite8(ap->ctl, ioaddr->ctl_addr);
425 tmp = ata_wait_idle(ap);
426
427 ap->ops->sff_irq_clear(ap);
428
429 return tmp;
430 }
431
432 /**
433 * ata_sff_irq_clear - Clear PCI IDE BMDMA interrupt.
434 * @ap: Port associated with this ATA transaction.
435 *
436 * Clear interrupt and error flags in DMA status register.
437 *
438 * May be used as the irq_clear() entry in ata_port_operations.
439 *
440 * LOCKING:
441 * spin_lock_irqsave(host lock)
442 */
443 void ata_sff_irq_clear(struct ata_port *ap)
444 {
445 void __iomem *mmio = ap->ioaddr.bmdma_addr;
446
447 if (!mmio)
448 return;
449
450 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
451 }
452
453 /**
454 * ata_sff_tf_load - send taskfile registers to host controller
455 * @ap: Port to which output is sent
456 * @tf: ATA taskfile register set
457 *
458 * Outputs ATA taskfile to standard ATA host controller.
459 *
460 * LOCKING:
461 * Inherited from caller.
462 */
463 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
464 {
465 struct ata_ioports *ioaddr = &ap->ioaddr;
466 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
467
468 if (tf->ctl != ap->last_ctl) {
469 if (ioaddr->ctl_addr)
470 iowrite8(tf->ctl, ioaddr->ctl_addr);
471 ap->last_ctl = tf->ctl;
472 ata_wait_idle(ap);
473 }
474
475 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
476 WARN_ON(!ioaddr->ctl_addr);
477 iowrite8(tf->hob_feature, ioaddr->feature_addr);
478 iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
479 iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
480 iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
481 iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
482 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
483 tf->hob_feature,
484 tf->hob_nsect,
485 tf->hob_lbal,
486 tf->hob_lbam,
487 tf->hob_lbah);
488 }
489
490 if (is_addr) {
491 iowrite8(tf->feature, ioaddr->feature_addr);
492 iowrite8(tf->nsect, ioaddr->nsect_addr);
493 iowrite8(tf->lbal, ioaddr->lbal_addr);
494 iowrite8(tf->lbam, ioaddr->lbam_addr);
495 iowrite8(tf->lbah, ioaddr->lbah_addr);
496 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
497 tf->feature,
498 tf->nsect,
499 tf->lbal,
500 tf->lbam,
501 tf->lbah);
502 }
503
504 if (tf->flags & ATA_TFLAG_DEVICE) {
505 iowrite8(tf->device, ioaddr->device_addr);
506 VPRINTK("device 0x%X\n", tf->device);
507 }
508
509 ata_wait_idle(ap);
510 }
511
512 /**
513 * ata_sff_tf_read - input device's ATA taskfile shadow registers
514 * @ap: Port from which input is read
515 * @tf: ATA taskfile register set for storing input
516 *
517 * Reads ATA taskfile registers for currently-selected device
518 * into @tf. Assumes the device has a fully SFF compliant task file
519 * layout and behaviour. If you device does not (eg has a different
520 * status method) then you will need to provide a replacement tf_read
521 *
522 * LOCKING:
523 * Inherited from caller.
524 */
525 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
526 {
527 struct ata_ioports *ioaddr = &ap->ioaddr;
528
529 tf->command = ata_sff_check_status(ap);
530 tf->feature = ioread8(ioaddr->error_addr);
531 tf->nsect = ioread8(ioaddr->nsect_addr);
532 tf->lbal = ioread8(ioaddr->lbal_addr);
533 tf->lbam = ioread8(ioaddr->lbam_addr);
534 tf->lbah = ioread8(ioaddr->lbah_addr);
535 tf->device = ioread8(ioaddr->device_addr);
536
537 if (tf->flags & ATA_TFLAG_LBA48) {
538 if (likely(ioaddr->ctl_addr)) {
539 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
540 tf->hob_feature = ioread8(ioaddr->error_addr);
541 tf->hob_nsect = ioread8(ioaddr->nsect_addr);
542 tf->hob_lbal = ioread8(ioaddr->lbal_addr);
543 tf->hob_lbam = ioread8(ioaddr->lbam_addr);
544 tf->hob_lbah = ioread8(ioaddr->lbah_addr);
545 iowrite8(tf->ctl, ioaddr->ctl_addr);
546 ap->last_ctl = tf->ctl;
547 } else
548 WARN_ON(1);
549 }
550 }
551
552 /**
553 * ata_sff_exec_command - issue ATA command to host controller
554 * @ap: port to which command is being issued
555 * @tf: ATA taskfile register set
556 *
557 * Issues ATA command, with proper synchronization with interrupt
558 * handler / other threads.
559 *
560 * LOCKING:
561 * spin_lock_irqsave(host lock)
562 */
563 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
564 {
565 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
566
567 iowrite8(tf->command, ap->ioaddr.command_addr);
568 ata_sff_pause(ap);
569 }
570
571 /**
572 * ata_tf_to_host - issue ATA taskfile to host controller
573 * @ap: port to which command is being issued
574 * @tf: ATA taskfile register set
575 *
576 * Issues ATA taskfile register set to ATA host controller,
577 * with proper synchronization with interrupt handler and
578 * other threads.
579 *
580 * LOCKING:
581 * spin_lock_irqsave(host lock)
582 */
583 static inline void ata_tf_to_host(struct ata_port *ap,
584 const struct ata_taskfile *tf)
585 {
586 ap->ops->sff_tf_load(ap, tf);
587 ap->ops->sff_exec_command(ap, tf);
588 }
589
590 /**
591 * ata_sff_data_xfer - Transfer data by PIO
592 * @dev: device to target
593 * @buf: data buffer
594 * @buflen: buffer length
595 * @rw: read/write
596 *
597 * Transfer data from/to the device data register by PIO.
598 *
599 * LOCKING:
600 * Inherited from caller.
601 *
602 * RETURNS:
603 * Bytes consumed.
604 */
605 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
606 unsigned int buflen, int rw)
607 {
608 struct ata_port *ap = dev->link->ap;
609 void __iomem *data_addr = ap->ioaddr.data_addr;
610 unsigned int words = buflen >> 1;
611
612 /* Transfer multiple of 2 bytes */
613 if (rw == READ)
614 ioread16_rep(data_addr, buf, words);
615 else
616 iowrite16_rep(data_addr, buf, words);
617
618 /* Transfer trailing 1 byte, if any. */
619 if (unlikely(buflen & 0x01)) {
620 __le16 align_buf[1] = { 0 };
621 unsigned char *trailing_buf = buf + buflen - 1;
622
623 if (rw == READ) {
624 align_buf[0] = cpu_to_le16(ioread16(data_addr));
625 memcpy(trailing_buf, align_buf, 1);
626 } else {
627 memcpy(align_buf, trailing_buf, 1);
628 iowrite16(le16_to_cpu(align_buf[0]), data_addr);
629 }
630 words++;
631 }
632
633 return words << 1;
634 }
635
636 /**
637 * ata_sff_data_xfer_noirq - Transfer data by PIO
638 * @dev: device to target
639 * @buf: data buffer
640 * @buflen: buffer length
641 * @rw: read/write
642 *
643 * Transfer data from/to the device data register by PIO. Do the
644 * transfer with interrupts disabled.
645 *
646 * LOCKING:
647 * Inherited from caller.
648 *
649 * RETURNS:
650 * Bytes consumed.
651 */
652 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
653 unsigned int buflen, int rw)
654 {
655 unsigned long flags;
656 unsigned int consumed;
657
658 local_irq_save(flags);
659 consumed = ata_sff_data_xfer(dev, buf, buflen, rw);
660 local_irq_restore(flags);
661
662 return consumed;
663 }
664
665 /**
666 * ata_pio_sector - Transfer a sector of data.
667 * @qc: Command on going
668 *
669 * Transfer qc->sect_size bytes of data from/to the ATA device.
670 *
671 * LOCKING:
672 * Inherited from caller.
673 */
674 static void ata_pio_sector(struct ata_queued_cmd *qc)
675 {
676 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
677 struct ata_port *ap = qc->ap;
678 struct page *page;
679 unsigned int offset;
680 unsigned char *buf;
681
682 if (qc->curbytes == qc->nbytes - qc->sect_size)
683 ap->hsm_task_state = HSM_ST_LAST;
684
685 page = sg_page(qc->cursg);
686 offset = qc->cursg->offset + qc->cursg_ofs;
687
688 /* get the current page and offset */
689 page = nth_page(page, (offset >> PAGE_SHIFT));
690 offset %= PAGE_SIZE;
691
692 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
693
694 if (PageHighMem(page)) {
695 unsigned long flags;
696
697 /* FIXME: use a bounce buffer */
698 local_irq_save(flags);
699 buf = kmap_atomic(page, KM_IRQ0);
700
701 /* do the actual data transfer */
702 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
703 do_write);
704
705 kunmap_atomic(buf, KM_IRQ0);
706 local_irq_restore(flags);
707 } else {
708 buf = page_address(page);
709 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
710 do_write);
711 }
712
713 qc->curbytes += qc->sect_size;
714 qc->cursg_ofs += qc->sect_size;
715
716 if (qc->cursg_ofs == qc->cursg->length) {
717 qc->cursg = sg_next(qc->cursg);
718 qc->cursg_ofs = 0;
719 }
720 }
721
722 /**
723 * ata_pio_sectors - Transfer one or many sectors.
724 * @qc: Command on going
725 *
726 * Transfer one or many sectors of data from/to the
727 * ATA device for the DRQ request.
728 *
729 * LOCKING:
730 * Inherited from caller.
731 */
732 static void ata_pio_sectors(struct ata_queued_cmd *qc)
733 {
734 if (is_multi_taskfile(&qc->tf)) {
735 /* READ/WRITE MULTIPLE */
736 unsigned int nsect;
737
738 WARN_ON(qc->dev->multi_count == 0);
739
740 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
741 qc->dev->multi_count);
742 while (nsect--)
743 ata_pio_sector(qc);
744 } else
745 ata_pio_sector(qc);
746
747 ata_sff_altstatus(qc->ap); /* flush */
748 }
749
750 /**
751 * atapi_send_cdb - Write CDB bytes to hardware
752 * @ap: Port to which ATAPI device is attached.
753 * @qc: Taskfile currently active
754 *
755 * When device has indicated its readiness to accept
756 * a CDB, this function is called. Send the CDB.
757 *
758 * LOCKING:
759 * caller.
760 */
761 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
762 {
763 /* send SCSI cdb */
764 DPRINTK("send cdb\n");
765 WARN_ON(qc->dev->cdb_len < 12);
766
767 ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
768 ata_sff_altstatus(ap); /* flush */
769
770 switch (qc->tf.protocol) {
771 case ATAPI_PROT_PIO:
772 ap->hsm_task_state = HSM_ST;
773 break;
774 case ATAPI_PROT_NODATA:
775 ap->hsm_task_state = HSM_ST_LAST;
776 break;
777 case ATAPI_PROT_DMA:
778 ap->hsm_task_state = HSM_ST_LAST;
779 /* initiate bmdma */
780 ap->ops->bmdma_start(qc);
781 break;
782 }
783 }
784
785 /**
786 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
787 * @qc: Command on going
788 * @bytes: number of bytes
789 *
790 * Transfer Transfer data from/to the ATAPI device.
791 *
792 * LOCKING:
793 * Inherited from caller.
794 *
795 */
796 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
797 {
798 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
799 struct ata_port *ap = qc->ap;
800 struct ata_device *dev = qc->dev;
801 struct ata_eh_info *ehi = &dev->link->eh_info;
802 struct scatterlist *sg;
803 struct page *page;
804 unsigned char *buf;
805 unsigned int offset, count, consumed;
806
807 next_sg:
808 sg = qc->cursg;
809 if (unlikely(!sg)) {
810 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
811 "buf=%u cur=%u bytes=%u",
812 qc->nbytes, qc->curbytes, bytes);
813 return -1;
814 }
815
816 page = sg_page(sg);
817 offset = sg->offset + qc->cursg_ofs;
818
819 /* get the current page and offset */
820 page = nth_page(page, (offset >> PAGE_SHIFT));
821 offset %= PAGE_SIZE;
822
823 /* don't overrun current sg */
824 count = min(sg->length - qc->cursg_ofs, bytes);
825
826 /* don't cross page boundaries */
827 count = min(count, (unsigned int)PAGE_SIZE - offset);
828
829 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
830
831 if (PageHighMem(page)) {
832 unsigned long flags;
833
834 /* FIXME: use bounce buffer */
835 local_irq_save(flags);
836 buf = kmap_atomic(page, KM_IRQ0);
837
838 /* do the actual data transfer */
839 consumed = ap->ops->sff_data_xfer(dev, buf + offset, count, rw);
840
841 kunmap_atomic(buf, KM_IRQ0);
842 local_irq_restore(flags);
843 } else {
844 buf = page_address(page);
845 consumed = ap->ops->sff_data_xfer(dev, buf + offset, count, rw);
846 }
847
848 bytes -= min(bytes, consumed);
849 qc->curbytes += count;
850 qc->cursg_ofs += count;
851
852 if (qc->cursg_ofs == sg->length) {
853 qc->cursg = sg_next(qc->cursg);
854 qc->cursg_ofs = 0;
855 }
856
857 /* consumed can be larger than count only for the last transfer */
858 WARN_ON(qc->cursg && count != consumed);
859
860 if (bytes)
861 goto next_sg;
862 return 0;
863 }
864
865 /**
866 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
867 * @qc: Command on going
868 *
869 * Transfer Transfer data from/to the ATAPI device.
870 *
871 * LOCKING:
872 * Inherited from caller.
873 */
874 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
875 {
876 struct ata_port *ap = qc->ap;
877 struct ata_device *dev = qc->dev;
878 struct ata_eh_info *ehi = &dev->link->eh_info;
879 unsigned int ireason, bc_lo, bc_hi, bytes;
880 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
881
882 /* Abuse qc->result_tf for temp storage of intermediate TF
883 * here to save some kernel stack usage.
884 * For normal completion, qc->result_tf is not relevant. For
885 * error, qc->result_tf is later overwritten by ata_qc_complete().
886 * So, the correctness of qc->result_tf is not affected.
887 */
888 ap->ops->sff_tf_read(ap, &qc->result_tf);
889 ireason = qc->result_tf.nsect;
890 bc_lo = qc->result_tf.lbam;
891 bc_hi = qc->result_tf.lbah;
892 bytes = (bc_hi << 8) | bc_lo;
893
894 /* shall be cleared to zero, indicating xfer of data */
895 if (unlikely(ireason & (1 << 0)))
896 goto atapi_check;
897
898 /* make sure transfer direction matches expected */
899 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
900 if (unlikely(do_write != i_write))
901 goto atapi_check;
902
903 if (unlikely(!bytes))
904 goto atapi_check;
905
906 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
907
908 if (unlikely(__atapi_pio_bytes(qc, bytes)))
909 goto err_out;
910 ata_sff_altstatus(ap); /* flush */
911
912 return;
913
914 atapi_check:
915 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
916 ireason, bytes);
917 err_out:
918 qc->err_mask |= AC_ERR_HSM;
919 ap->hsm_task_state = HSM_ST_ERR;
920 }
921
922 /**
923 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
924 * @ap: the target ata_port
925 * @qc: qc on going
926 *
927 * RETURNS:
928 * 1 if ok in workqueue, 0 otherwise.
929 */
930 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
931 {
932 if (qc->tf.flags & ATA_TFLAG_POLLING)
933 return 1;
934
935 if (ap->hsm_task_state == HSM_ST_FIRST) {
936 if (qc->tf.protocol == ATA_PROT_PIO &&
937 (qc->tf.flags & ATA_TFLAG_WRITE))
938 return 1;
939
940 if (ata_is_atapi(qc->tf.protocol) &&
941 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
942 return 1;
943 }
944
945 return 0;
946 }
947
948 /**
949 * ata_hsm_qc_complete - finish a qc running on standard HSM
950 * @qc: Command to complete
951 * @in_wq: 1 if called from workqueue, 0 otherwise
952 *
953 * Finish @qc which is running on standard HSM.
954 *
955 * LOCKING:
956 * If @in_wq is zero, spin_lock_irqsave(host lock).
957 * Otherwise, none on entry and grabs host lock.
958 */
959 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
960 {
961 struct ata_port *ap = qc->ap;
962 unsigned long flags;
963
964 if (ap->ops->error_handler) {
965 if (in_wq) {
966 spin_lock_irqsave(ap->lock, flags);
967
968 /* EH might have kicked in while host lock is
969 * released.
970 */
971 qc = ata_qc_from_tag(ap, qc->tag);
972 if (qc) {
973 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
974 ap->ops->sff_irq_on(ap);
975 ata_qc_complete(qc);
976 } else
977 ata_port_freeze(ap);
978 }
979
980 spin_unlock_irqrestore(ap->lock, flags);
981 } else {
982 if (likely(!(qc->err_mask & AC_ERR_HSM)))
983 ata_qc_complete(qc);
984 else
985 ata_port_freeze(ap);
986 }
987 } else {
988 if (in_wq) {
989 spin_lock_irqsave(ap->lock, flags);
990 ap->ops->sff_irq_on(ap);
991 ata_qc_complete(qc);
992 spin_unlock_irqrestore(ap->lock, flags);
993 } else
994 ata_qc_complete(qc);
995 }
996 }
997
998 /**
999 * ata_sff_hsm_move - move the HSM to the next state.
1000 * @ap: the target ata_port
1001 * @qc: qc on going
1002 * @status: current device status
1003 * @in_wq: 1 if called from workqueue, 0 otherwise
1004 *
1005 * RETURNS:
1006 * 1 when poll next status needed, 0 otherwise.
1007 */
1008 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1009 u8 status, int in_wq)
1010 {
1011 unsigned long flags = 0;
1012 int poll_next;
1013
1014 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1015
1016 /* Make sure ata_sff_qc_issue() does not throw things
1017 * like DMA polling into the workqueue. Notice that
1018 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1019 */
1020 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
1021
1022 fsm_start:
1023 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1024 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1025
1026 switch (ap->hsm_task_state) {
1027 case HSM_ST_FIRST:
1028 /* Send first data block or PACKET CDB */
1029
1030 /* If polling, we will stay in the work queue after
1031 * sending the data. Otherwise, interrupt handler
1032 * takes over after sending the data.
1033 */
1034 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1035
1036 /* check device status */
1037 if (unlikely((status & ATA_DRQ) == 0)) {
1038 /* handle BSY=0, DRQ=0 as error */
1039 if (likely(status & (ATA_ERR | ATA_DF)))
1040 /* device stops HSM for abort/error */
1041 qc->err_mask |= AC_ERR_DEV;
1042 else
1043 /* HSM violation. Let EH handle this */
1044 qc->err_mask |= AC_ERR_HSM;
1045
1046 ap->hsm_task_state = HSM_ST_ERR;
1047 goto fsm_start;
1048 }
1049
1050 /* Device should not ask for data transfer (DRQ=1)
1051 * when it finds something wrong.
1052 * We ignore DRQ here and stop the HSM by
1053 * changing hsm_task_state to HSM_ST_ERR and
1054 * let the EH abort the command or reset the device.
1055 */
1056 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1057 /* Some ATAPI tape drives forget to clear the ERR bit
1058 * when doing the next command (mostly request sense).
1059 * We ignore ERR here to workaround and proceed sending
1060 * the CDB.
1061 */
1062 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1063 ata_port_printk(ap, KERN_WARNING,
1064 "DRQ=1 with device error, "
1065 "dev_stat 0x%X\n", status);
1066 qc->err_mask |= AC_ERR_HSM;
1067 ap->hsm_task_state = HSM_ST_ERR;
1068 goto fsm_start;
1069 }
1070 }
1071
1072 /* Send the CDB (atapi) or the first data block (ata pio out).
1073 * During the state transition, interrupt handler shouldn't
1074 * be invoked before the data transfer is complete and
1075 * hsm_task_state is changed. Hence, the following locking.
1076 */
1077 if (in_wq)
1078 spin_lock_irqsave(ap->lock, flags);
1079
1080 if (qc->tf.protocol == ATA_PROT_PIO) {
1081 /* PIO data out protocol.
1082 * send first data block.
1083 */
1084
1085 /* ata_pio_sectors() might change the state
1086 * to HSM_ST_LAST. so, the state is changed here
1087 * before ata_pio_sectors().
1088 */
1089 ap->hsm_task_state = HSM_ST;
1090 ata_pio_sectors(qc);
1091 } else
1092 /* send CDB */
1093 atapi_send_cdb(ap, qc);
1094
1095 if (in_wq)
1096 spin_unlock_irqrestore(ap->lock, flags);
1097
1098 /* if polling, ata_pio_task() handles the rest.
1099 * otherwise, interrupt handler takes over from here.
1100 */
1101 break;
1102
1103 case HSM_ST:
1104 /* complete command or read/write the data register */
1105 if (qc->tf.protocol == ATAPI_PROT_PIO) {
1106 /* ATAPI PIO protocol */
1107 if ((status & ATA_DRQ) == 0) {
1108 /* No more data to transfer or device error.
1109 * Device error will be tagged in HSM_ST_LAST.
1110 */
1111 ap->hsm_task_state = HSM_ST_LAST;
1112 goto fsm_start;
1113 }
1114
1115 /* Device should not ask for data transfer (DRQ=1)
1116 * when it finds something wrong.
1117 * We ignore DRQ here and stop the HSM by
1118 * changing hsm_task_state to HSM_ST_ERR and
1119 * let the EH abort the command or reset the device.
1120 */
1121 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1122 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
1123 "device error, dev_stat 0x%X\n",
1124 status);
1125 qc->err_mask |= AC_ERR_HSM;
1126 ap->hsm_task_state = HSM_ST_ERR;
1127 goto fsm_start;
1128 }
1129
1130 atapi_pio_bytes(qc);
1131
1132 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1133 /* bad ireason reported by device */
1134 goto fsm_start;
1135
1136 } else {
1137 /* ATA PIO protocol */
1138 if (unlikely((status & ATA_DRQ) == 0)) {
1139 /* handle BSY=0, DRQ=0 as error */
1140 if (likely(status & (ATA_ERR | ATA_DF)))
1141 /* device stops HSM for abort/error */
1142 qc->err_mask |= AC_ERR_DEV;
1143 else
1144 /* HSM violation. Let EH handle this.
1145 * Phantom devices also trigger this
1146 * condition. Mark hint.
1147 */
1148 qc->err_mask |= AC_ERR_HSM |
1149 AC_ERR_NODEV_HINT;
1150
1151 ap->hsm_task_state = HSM_ST_ERR;
1152 goto fsm_start;
1153 }
1154
1155 /* For PIO reads, some devices may ask for
1156 * data transfer (DRQ=1) alone with ERR=1.
1157 * We respect DRQ here and transfer one
1158 * block of junk data before changing the
1159 * hsm_task_state to HSM_ST_ERR.
1160 *
1161 * For PIO writes, ERR=1 DRQ=1 doesn't make
1162 * sense since the data block has been
1163 * transferred to the device.
1164 */
1165 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1166 /* data might be corrputed */
1167 qc->err_mask |= AC_ERR_DEV;
1168
1169 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1170 ata_pio_sectors(qc);
1171 status = ata_wait_idle(ap);
1172 }
1173
1174 if (status & (ATA_BUSY | ATA_DRQ))
1175 qc->err_mask |= AC_ERR_HSM;
1176
1177 /* ata_pio_sectors() might change the
1178 * state to HSM_ST_LAST. so, the state
1179 * is changed after ata_pio_sectors().
1180 */
1181 ap->hsm_task_state = HSM_ST_ERR;
1182 goto fsm_start;
1183 }
1184
1185 ata_pio_sectors(qc);
1186
1187 if (ap->hsm_task_state == HSM_ST_LAST &&
1188 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1189 /* all data read */
1190 status = ata_wait_idle(ap);
1191 goto fsm_start;
1192 }
1193 }
1194
1195 poll_next = 1;
1196 break;
1197
1198 case HSM_ST_LAST:
1199 if (unlikely(!ata_ok(status))) {
1200 qc->err_mask |= __ac_err_mask(status);
1201 ap->hsm_task_state = HSM_ST_ERR;
1202 goto fsm_start;
1203 }
1204
1205 /* no more data to transfer */
1206 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1207 ap->print_id, qc->dev->devno, status);
1208
1209 WARN_ON(qc->err_mask);
1210
1211 ap->hsm_task_state = HSM_ST_IDLE;
1212
1213 /* complete taskfile transaction */
1214 ata_hsm_qc_complete(qc, in_wq);
1215
1216 poll_next = 0;
1217 break;
1218
1219 case HSM_ST_ERR:
1220 /* make sure qc->err_mask is available to
1221 * know what's wrong and recover
1222 */
1223 WARN_ON(qc->err_mask == 0);
1224
1225 ap->hsm_task_state = HSM_ST_IDLE;
1226
1227 /* complete taskfile transaction */
1228 ata_hsm_qc_complete(qc, in_wq);
1229
1230 poll_next = 0;
1231 break;
1232 default:
1233 poll_next = 0;
1234 BUG();
1235 }
1236
1237 return poll_next;
1238 }
1239
1240 void ata_pio_task(struct work_struct *work)
1241 {
1242 struct ata_port *ap =
1243 container_of(work, struct ata_port, port_task.work);
1244 struct ata_queued_cmd *qc = ap->port_task_data;
1245 u8 status;
1246 int poll_next;
1247
1248 fsm_start:
1249 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
1250
1251 /*
1252 * This is purely heuristic. This is a fast path.
1253 * Sometimes when we enter, BSY will be cleared in
1254 * a chk-status or two. If not, the drive is probably seeking
1255 * or something. Snooze for a couple msecs, then
1256 * chk-status again. If still busy, queue delayed work.
1257 */
1258 status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1259 if (status & ATA_BUSY) {
1260 msleep(2);
1261 status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1262 if (status & ATA_BUSY) {
1263 ata_pio_queue_task(ap, qc, ATA_SHORT_PAUSE);
1264 return;
1265 }
1266 }
1267
1268 /* move the HSM */
1269 poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1270
1271 /* another command or interrupt handler
1272 * may be running at this point.
1273 */
1274 if (poll_next)
1275 goto fsm_start;
1276 }
1277
1278 /**
1279 * ata_sff_qc_issue - issue taskfile to device in proto-dependent manner
1280 * @qc: command to issue to device
1281 *
1282 * Using various libata functions and hooks, this function
1283 * starts an ATA command. ATA commands are grouped into
1284 * classes called "protocols", and issuing each type of protocol
1285 * is slightly different.
1286 *
1287 * May be used as the qc_issue() entry in ata_port_operations.
1288 *
1289 * LOCKING:
1290 * spin_lock_irqsave(host lock)
1291 *
1292 * RETURNS:
1293 * Zero on success, AC_ERR_* mask on failure
1294 */
1295 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1296 {
1297 struct ata_port *ap = qc->ap;
1298
1299 /* Use polling pio if the LLD doesn't handle
1300 * interrupt driven pio and atapi CDB interrupt.
1301 */
1302 if (ap->flags & ATA_FLAG_PIO_POLLING) {
1303 switch (qc->tf.protocol) {
1304 case ATA_PROT_PIO:
1305 case ATA_PROT_NODATA:
1306 case ATAPI_PROT_PIO:
1307 case ATAPI_PROT_NODATA:
1308 qc->tf.flags |= ATA_TFLAG_POLLING;
1309 break;
1310 case ATAPI_PROT_DMA:
1311 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
1312 /* see ata_dma_blacklisted() */
1313 BUG();
1314 break;
1315 default:
1316 break;
1317 }
1318 }
1319
1320 /* select the device */
1321 ata_dev_select(ap, qc->dev->devno, 1, 0);
1322
1323 /* start the command */
1324 switch (qc->tf.protocol) {
1325 case ATA_PROT_NODATA:
1326 if (qc->tf.flags & ATA_TFLAG_POLLING)
1327 ata_qc_set_polling(qc);
1328
1329 ata_tf_to_host(ap, &qc->tf);
1330 ap->hsm_task_state = HSM_ST_LAST;
1331
1332 if (qc->tf.flags & ATA_TFLAG_POLLING)
1333 ata_pio_queue_task(ap, qc, 0);
1334
1335 break;
1336
1337 case ATA_PROT_DMA:
1338 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
1339
1340 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
1341 ap->ops->bmdma_setup(qc); /* set up bmdma */
1342 ap->ops->bmdma_start(qc); /* initiate bmdma */
1343 ap->hsm_task_state = HSM_ST_LAST;
1344 break;
1345
1346 case ATA_PROT_PIO:
1347 if (qc->tf.flags & ATA_TFLAG_POLLING)
1348 ata_qc_set_polling(qc);
1349
1350 ata_tf_to_host(ap, &qc->tf);
1351
1352 if (qc->tf.flags & ATA_TFLAG_WRITE) {
1353 /* PIO data out protocol */
1354 ap->hsm_task_state = HSM_ST_FIRST;
1355 ata_pio_queue_task(ap, qc, 0);
1356
1357 /* always send first data block using
1358 * the ata_pio_task() codepath.
1359 */
1360 } else {
1361 /* PIO data in protocol */
1362 ap->hsm_task_state = HSM_ST;
1363
1364 if (qc->tf.flags & ATA_TFLAG_POLLING)
1365 ata_pio_queue_task(ap, qc, 0);
1366
1367 /* if polling, ata_pio_task() handles the rest.
1368 * otherwise, interrupt handler takes over from here.
1369 */
1370 }
1371
1372 break;
1373
1374 case ATAPI_PROT_PIO:
1375 case ATAPI_PROT_NODATA:
1376 if (qc->tf.flags & ATA_TFLAG_POLLING)
1377 ata_qc_set_polling(qc);
1378
1379 ata_tf_to_host(ap, &qc->tf);
1380
1381 ap->hsm_task_state = HSM_ST_FIRST;
1382
1383 /* send cdb by polling if no cdb interrupt */
1384 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1385 (qc->tf.flags & ATA_TFLAG_POLLING))
1386 ata_pio_queue_task(ap, qc, 0);
1387 break;
1388
1389 case ATAPI_PROT_DMA:
1390 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
1391
1392 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
1393 ap->ops->bmdma_setup(qc); /* set up bmdma */
1394 ap->hsm_task_state = HSM_ST_FIRST;
1395
1396 /* send cdb by polling if no cdb interrupt */
1397 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1398 ata_pio_queue_task(ap, qc, 0);
1399 break;
1400
1401 default:
1402 WARN_ON(1);
1403 return AC_ERR_SYSTEM;
1404 }
1405
1406 return 0;
1407 }
1408
1409 /**
1410 * ata_sff_host_intr - Handle host interrupt for given (port, task)
1411 * @ap: Port on which interrupt arrived (possibly...)
1412 * @qc: Taskfile currently active in engine
1413 *
1414 * Handle host interrupt for given queued command. Currently,
1415 * only DMA interrupts are handled. All other commands are
1416 * handled via polling with interrupts disabled (nIEN bit).
1417 *
1418 * LOCKING:
1419 * spin_lock_irqsave(host lock)
1420 *
1421 * RETURNS:
1422 * One if interrupt was handled, zero if not (shared irq).
1423 */
1424 inline unsigned int ata_sff_host_intr(struct ata_port *ap,
1425 struct ata_queued_cmd *qc)
1426 {
1427 struct ata_eh_info *ehi = &ap->link.eh_info;
1428 u8 status, host_stat = 0;
1429
1430 VPRINTK("ata%u: protocol %d task_state %d\n",
1431 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1432
1433 /* Check whether we are expecting interrupt in this state */
1434 switch (ap->hsm_task_state) {
1435 case HSM_ST_FIRST:
1436 /* Some pre-ATAPI-4 devices assert INTRQ
1437 * at this state when ready to receive CDB.
1438 */
1439
1440 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1441 * The flag was turned on only for atapi devices. No
1442 * need to check ata_is_atapi(qc->tf.protocol) again.
1443 */
1444 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1445 goto idle_irq;
1446 break;
1447 case HSM_ST_LAST:
1448 if (qc->tf.protocol == ATA_PROT_DMA ||
1449 qc->tf.protocol == ATAPI_PROT_DMA) {
1450 /* check status of DMA engine */
1451 host_stat = ap->ops->bmdma_status(ap);
1452 VPRINTK("ata%u: host_stat 0x%X\n",
1453 ap->print_id, host_stat);
1454
1455 /* if it's not our irq... */
1456 if (!(host_stat & ATA_DMA_INTR))
1457 goto idle_irq;
1458
1459 /* before we do anything else, clear DMA-Start bit */
1460 ap->ops->bmdma_stop(qc);
1461
1462 if (unlikely(host_stat & ATA_DMA_ERR)) {
1463 /* error when transfering data to/from memory */
1464 qc->err_mask |= AC_ERR_HOST_BUS;
1465 ap->hsm_task_state = HSM_ST_ERR;
1466 }
1467 }
1468 break;
1469 case HSM_ST:
1470 break;
1471 default:
1472 goto idle_irq;
1473 }
1474
1475 /* check altstatus */
1476 status = ata_sff_altstatus(ap);
1477 if (status & ATA_BUSY)
1478 goto idle_irq;
1479
1480 /* check main status, clearing INTRQ */
1481 status = ap->ops->sff_check_status(ap);
1482 if (unlikely(status & ATA_BUSY))
1483 goto idle_irq;
1484
1485 /* ack bmdma irq events */
1486 ap->ops->sff_irq_clear(ap);
1487
1488 ata_sff_hsm_move(ap, qc, status, 0);
1489
1490 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
1491 qc->tf.protocol == ATAPI_PROT_DMA))
1492 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
1493
1494 return 1; /* irq handled */
1495
1496 idle_irq:
1497 ap->stats.idle_irq++;
1498
1499 #ifdef ATA_IRQ_TRAP
1500 if ((ap->stats.idle_irq % 1000) == 0) {
1501 ap->ops->sff_check_status(ap);
1502 ap->ops->sff_irq_clear(ap);
1503 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
1504 return 1;
1505 }
1506 #endif
1507 return 0; /* irq not handled */
1508 }
1509
1510 /**
1511 * ata_sff_interrupt - Default ATA host interrupt handler
1512 * @irq: irq line (unused)
1513 * @dev_instance: pointer to our ata_host information structure
1514 *
1515 * Default interrupt handler for PCI IDE devices. Calls
1516 * ata_sff_host_intr() for each port that is not disabled.
1517 *
1518 * LOCKING:
1519 * Obtains host lock during operation.
1520 *
1521 * RETURNS:
1522 * IRQ_NONE or IRQ_HANDLED.
1523 */
1524 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1525 {
1526 struct ata_host *host = dev_instance;
1527 unsigned int i;
1528 unsigned int handled = 0;
1529 unsigned long flags;
1530
1531 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1532 spin_lock_irqsave(&host->lock, flags);
1533
1534 for (i = 0; i < host->n_ports; i++) {
1535 struct ata_port *ap;
1536
1537 ap = host->ports[i];
1538 if (ap &&
1539 !(ap->flags & ATA_FLAG_DISABLED)) {
1540 struct ata_queued_cmd *qc;
1541
1542 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1543 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
1544 (qc->flags & ATA_QCFLAG_ACTIVE))
1545 handled |= ata_sff_host_intr(ap, qc);
1546 }
1547 }
1548
1549 spin_unlock_irqrestore(&host->lock, flags);
1550
1551 return IRQ_RETVAL(handled);
1552 }
1553
1554 /**
1555 * ata_sff_freeze - Freeze SFF controller port
1556 * @ap: port to freeze
1557 *
1558 * Freeze BMDMA controller port.
1559 *
1560 * LOCKING:
1561 * Inherited from caller.
1562 */
1563 void ata_sff_freeze(struct ata_port *ap)
1564 {
1565 struct ata_ioports *ioaddr = &ap->ioaddr;
1566
1567 ap->ctl |= ATA_NIEN;
1568 ap->last_ctl = ap->ctl;
1569
1570 if (ioaddr->ctl_addr)
1571 iowrite8(ap->ctl, ioaddr->ctl_addr);
1572
1573 /* Under certain circumstances, some controllers raise IRQ on
1574 * ATA_NIEN manipulation. Also, many controllers fail to mask
1575 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1576 */
1577 ap->ops->sff_check_status(ap);
1578
1579 ap->ops->sff_irq_clear(ap);
1580 }
1581
1582 /**
1583 * ata_sff_thaw - Thaw SFF controller port
1584 * @ap: port to thaw
1585 *
1586 * Thaw SFF controller port.
1587 *
1588 * LOCKING:
1589 * Inherited from caller.
1590 */
1591 void ata_sff_thaw(struct ata_port *ap)
1592 {
1593 /* clear & re-enable interrupts */
1594 ap->ops->sff_check_status(ap);
1595 ap->ops->sff_irq_clear(ap);
1596 ap->ops->sff_irq_on(ap);
1597 }
1598
1599 /**
1600 * ata_sff_prereset - prepare SFF link for reset
1601 * @link: SFF link to be reset
1602 * @deadline: deadline jiffies for the operation
1603 *
1604 * SFF link @link is about to be reset. Initialize it. It first
1605 * calls ata_std_prereset() and wait for !BSY if the port is
1606 * being softreset.
1607 *
1608 * LOCKING:
1609 * Kernel thread context (may sleep)
1610 *
1611 * RETURNS:
1612 * 0 on success, -errno otherwise.
1613 */
1614 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1615 {
1616 struct ata_eh_context *ehc = &link->eh_context;
1617 int rc;
1618
1619 rc = ata_std_prereset(link, deadline);
1620 if (rc)
1621 return rc;
1622
1623 /* if we're about to do hardreset, nothing more to do */
1624 if (ehc->i.action & ATA_EH_HARDRESET)
1625 return 0;
1626
1627 /* wait for !BSY if we don't know that no device is attached */
1628 if (!ata_link_offline(link)) {
1629 rc = ata_sff_wait_ready(link, deadline);
1630 if (rc && rc != -ENODEV) {
1631 ata_link_printk(link, KERN_WARNING, "device not ready "
1632 "(errno=%d), forcing hardreset\n", rc);
1633 ehc->i.action |= ATA_EH_HARDRESET;
1634 }
1635 }
1636
1637 return 0;
1638 }
1639
1640 /**
1641 * ata_devchk - PATA device presence detection
1642 * @ap: ATA channel to examine
1643 * @device: Device to examine (starting at zero)
1644 *
1645 * This technique was originally described in
1646 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1647 * later found its way into the ATA/ATAPI spec.
1648 *
1649 * Write a pattern to the ATA shadow registers,
1650 * and if a device is present, it will respond by
1651 * correctly storing and echoing back the
1652 * ATA shadow register contents.
1653 *
1654 * LOCKING:
1655 * caller.
1656 */
1657 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1658 {
1659 struct ata_ioports *ioaddr = &ap->ioaddr;
1660 u8 nsect, lbal;
1661
1662 ap->ops->sff_dev_select(ap, device);
1663
1664 iowrite8(0x55, ioaddr->nsect_addr);
1665 iowrite8(0xaa, ioaddr->lbal_addr);
1666
1667 iowrite8(0xaa, ioaddr->nsect_addr);
1668 iowrite8(0x55, ioaddr->lbal_addr);
1669
1670 iowrite8(0x55, ioaddr->nsect_addr);
1671 iowrite8(0xaa, ioaddr->lbal_addr);
1672
1673 nsect = ioread8(ioaddr->nsect_addr);
1674 lbal = ioread8(ioaddr->lbal_addr);
1675
1676 if ((nsect == 0x55) && (lbal == 0xaa))
1677 return 1; /* we found a device */
1678
1679 return 0; /* nothing found */
1680 }
1681
1682 /**
1683 * ata_sff_dev_classify - Parse returned ATA device signature
1684 * @dev: ATA device to classify (starting at zero)
1685 * @present: device seems present
1686 * @r_err: Value of error register on completion
1687 *
1688 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1689 * an ATA/ATAPI-defined set of values is placed in the ATA
1690 * shadow registers, indicating the results of device detection
1691 * and diagnostics.
1692 *
1693 * Select the ATA device, and read the values from the ATA shadow
1694 * registers. Then parse according to the Error register value,
1695 * and the spec-defined values examined by ata_dev_classify().
1696 *
1697 * LOCKING:
1698 * caller.
1699 *
1700 * RETURNS:
1701 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1702 */
1703 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1704 u8 *r_err)
1705 {
1706 struct ata_port *ap = dev->link->ap;
1707 struct ata_taskfile tf;
1708 unsigned int class;
1709 u8 err;
1710
1711 ap->ops->sff_dev_select(ap, dev->devno);
1712
1713 memset(&tf, 0, sizeof(tf));
1714
1715 ap->ops->sff_tf_read(ap, &tf);
1716 err = tf.feature;
1717 if (r_err)
1718 *r_err = err;
1719
1720 /* see if device passed diags: continue and warn later */
1721 if (err == 0)
1722 /* diagnostic fail : do nothing _YET_ */
1723 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1724 else if (err == 1)
1725 /* do nothing */ ;
1726 else if ((dev->devno == 0) && (err == 0x81))
1727 /* do nothing */ ;
1728 else
1729 return ATA_DEV_NONE;
1730
1731 /* determine if device is ATA or ATAPI */
1732 class = ata_dev_classify(&tf);
1733
1734 if (class == ATA_DEV_UNKNOWN) {
1735 /* If the device failed diagnostic, it's likely to
1736 * have reported incorrect device signature too.
1737 * Assume ATA device if the device seems present but
1738 * device signature is invalid with diagnostic
1739 * failure.
1740 */
1741 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1742 class = ATA_DEV_ATA;
1743 else
1744 class = ATA_DEV_NONE;
1745 } else if ((class == ATA_DEV_ATA) &&
1746 (ap->ops->sff_check_status(ap) == 0))
1747 class = ATA_DEV_NONE;
1748
1749 return class;
1750 }
1751
1752 /**
1753 * ata_sff_wait_after_reset - wait for devices to become ready after reset
1754 * @link: SFF link which is just reset
1755 * @devmask: mask of present devices
1756 * @deadline: deadline jiffies for the operation
1757 *
1758 * Wait devices attached to SFF @link to become ready after
1759 * reset. It contains preceding 150ms wait to avoid accessing TF
1760 * status register too early.
1761 *
1762 * LOCKING:
1763 * Kernel thread context (may sleep).
1764 *
1765 * RETURNS:
1766 * 0 on success, -ENODEV if some or all of devices in @devmask
1767 * don't seem to exist. -errno on other errors.
1768 */
1769 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1770 unsigned long deadline)
1771 {
1772 struct ata_port *ap = link->ap;
1773 struct ata_ioports *ioaddr = &ap->ioaddr;
1774 unsigned int dev0 = devmask & (1 << 0);
1775 unsigned int dev1 = devmask & (1 << 1);
1776 int rc, ret = 0;
1777
1778 msleep(ATA_WAIT_AFTER_RESET_MSECS);
1779
1780 /* always check readiness of the master device */
1781 rc = ata_sff_wait_ready(link, deadline);
1782 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1783 * and TF status is 0xff, bail out on it too.
1784 */
1785 if (rc)
1786 return rc;
1787
1788 /* if device 1 was found in ata_devchk, wait for register
1789 * access briefly, then wait for BSY to clear.
1790 */
1791 if (dev1) {
1792 int i;
1793
1794 ap->ops->sff_dev_select(ap, 1);
1795
1796 /* Wait for register access. Some ATAPI devices fail
1797 * to set nsect/lbal after reset, so don't waste too
1798 * much time on it. We're gonna wait for !BSY anyway.
1799 */
1800 for (i = 0; i < 2; i++) {
1801 u8 nsect, lbal;
1802
1803 nsect = ioread8(ioaddr->nsect_addr);
1804 lbal = ioread8(ioaddr->lbal_addr);
1805 if ((nsect == 1) && (lbal == 1))
1806 break;
1807 msleep(50); /* give drive a breather */
1808 }
1809
1810 rc = ata_sff_wait_ready(link, deadline);
1811 if (rc) {
1812 if (rc != -ENODEV)
1813 return rc;
1814 ret = rc;
1815 }
1816 }
1817
1818 /* is all this really necessary? */
1819 ap->ops->sff_dev_select(ap, 0);
1820 if (dev1)
1821 ap->ops->sff_dev_select(ap, 1);
1822 if (dev0)
1823 ap->ops->sff_dev_select(ap, 0);
1824
1825 return ret;
1826 }
1827
1828 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1829 unsigned long deadline)
1830 {
1831 struct ata_ioports *ioaddr = &ap->ioaddr;
1832
1833 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1834
1835 /* software reset. causes dev0 to be selected */
1836 iowrite8(ap->ctl, ioaddr->ctl_addr);
1837 udelay(20); /* FIXME: flush */
1838 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1839 udelay(20); /* FIXME: flush */
1840 iowrite8(ap->ctl, ioaddr->ctl_addr);
1841
1842 /* wait the port to become ready */
1843 return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
1844 }
1845
1846 /**
1847 * ata_sff_softreset - reset host port via ATA SRST
1848 * @link: ATA link to reset
1849 * @classes: resulting classes of attached devices
1850 * @deadline: deadline jiffies for the operation
1851 *
1852 * Reset host port using ATA SRST.
1853 *
1854 * LOCKING:
1855 * Kernel thread context (may sleep)
1856 *
1857 * RETURNS:
1858 * 0 on success, -errno otherwise.
1859 */
1860 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
1861 unsigned long deadline)
1862 {
1863 struct ata_port *ap = link->ap;
1864 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1865 unsigned int devmask = 0;
1866 int rc;
1867 u8 err;
1868
1869 DPRINTK("ENTER\n");
1870
1871 if (ata_link_offline(link)) {
1872 classes[0] = ATA_DEV_NONE;
1873 goto out;
1874 }
1875
1876 /* determine if device 0/1 are present */
1877 if (ata_devchk(ap, 0))
1878 devmask |= (1 << 0);
1879 if (slave_possible && ata_devchk(ap, 1))
1880 devmask |= (1 << 1);
1881
1882 /* select device 0 again */
1883 ap->ops->sff_dev_select(ap, 0);
1884
1885 /* issue bus reset */
1886 DPRINTK("about to softreset, devmask=%x\n", devmask);
1887 rc = ata_bus_softreset(ap, devmask, deadline);
1888 /* if link is occupied, -ENODEV too is an error */
1889 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
1890 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
1891 return rc;
1892 }
1893
1894 /* determine by signature whether we have ATA or ATAPI devices */
1895 classes[0] = ata_sff_dev_classify(&link->device[0],
1896 devmask & (1 << 0), &err);
1897 if (slave_possible && err != 0x81)
1898 classes[1] = ata_sff_dev_classify(&link->device[1],
1899 devmask & (1 << 1), &err);
1900
1901 out:
1902 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
1903 return 0;
1904 }
1905
1906 /**
1907 * sata_sff_hardreset - reset host port via SATA phy reset
1908 * @link: link to reset
1909 * @class: resulting class of attached device
1910 * @deadline: deadline jiffies for the operation
1911 *
1912 * SATA phy-reset host port using DET bits of SControl register,
1913 * wait for !BSY and classify the attached device.
1914 *
1915 * LOCKING:
1916 * Kernel thread context (may sleep)
1917 *
1918 * RETURNS:
1919 * 0 on success, -errno otherwise.
1920 */
1921 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
1922 unsigned long deadline)
1923 {
1924 struct ata_port *ap = link->ap;
1925 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
1926 int rc;
1927
1928 DPRINTK("ENTER\n");
1929
1930 /* do hardreset */
1931 rc = sata_link_hardreset(link, timing, deadline);
1932 if (rc) {
1933 ata_link_printk(link, KERN_ERR,
1934 "COMRESET failed (errno=%d)\n", rc);
1935 return rc;
1936 }
1937
1938 /* TODO: phy layer with polling, timeouts, etc. */
1939 if (ata_link_offline(link)) {
1940 *class = ATA_DEV_NONE;
1941 DPRINTK("EXIT, link offline\n");
1942 return 0;
1943 }
1944
1945 /* If PMP is supported, we have to do follow-up SRST. Note
1946 * that some PMPs don't send D2H Reg FIS after hardreset at
1947 * all if the first port is empty. Wait for it just for a
1948 * second and request follow-up SRST.
1949 */
1950 if (ap->flags & ATA_FLAG_PMP) {
1951 ata_sff_wait_after_reset(link, 1, jiffies + HZ);
1952 return -EAGAIN;
1953 }
1954
1955 /* wait for the link to become online */
1956 rc = ata_sff_wait_after_reset(link, 1, deadline);
1957 /* link occupied, -ENODEV too is an error */
1958 if (rc) {
1959 ata_link_printk(link, KERN_ERR,
1960 "COMRESET failed (errno=%d)\n", rc);
1961 return rc;
1962 }
1963
1964 *class = ata_sff_dev_classify(link->device, 1, NULL);
1965
1966 DPRINTK("EXIT, class=%u\n", *class);
1967 return 0;
1968 }
1969
1970 /**
1971 * ata_sff_postreset - SFF postreset callback
1972 * @link: the target SFF ata_link
1973 * @classes: classes of attached devices
1974 *
1975 * This function is invoked after a successful reset. It first
1976 * calls ata_std_postreset() and performs SFF specific postreset
1977 * processing.
1978 *
1979 * LOCKING:
1980 * Kernel thread context (may sleep)
1981 */
1982 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
1983 {
1984 struct ata_port *ap = link->ap;
1985
1986 ata_std_postreset(link, classes);
1987
1988 /* is double-select really necessary? */
1989 if (classes[0] != ATA_DEV_NONE)
1990 ap->ops->sff_dev_select(ap, 1);
1991 if (classes[1] != ATA_DEV_NONE)
1992 ap->ops->sff_dev_select(ap, 0);
1993
1994 /* bail out if no device is present */
1995 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
1996 DPRINTK("EXIT, no device\n");
1997 return;
1998 }
1999
2000 /* set up device control */
2001 if (ap->ioaddr.ctl_addr)
2002 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
2003 }
2004
2005 /**
2006 * ata_sff_error_handler - Stock error handler for BMDMA controller
2007 * @ap: port to handle error for
2008 *
2009 * Stock error handler for SFF controller. It can handle both
2010 * PATA and SATA controllers. Many controllers should be able to
2011 * use this EH as-is or with some added handling before and
2012 * after.
2013 *
2014 * LOCKING:
2015 * Kernel thread context (may sleep)
2016 */
2017 void ata_sff_error_handler(struct ata_port *ap)
2018 {
2019 ata_reset_fn_t softreset = ap->ops->softreset;
2020 ata_reset_fn_t hardreset = ap->ops->hardreset;
2021 struct ata_queued_cmd *qc;
2022 unsigned long flags;
2023 int thaw = 0;
2024
2025 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2026 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2027 qc = NULL;
2028
2029 /* reset PIO HSM and stop DMA engine */
2030 spin_lock_irqsave(ap->lock, flags);
2031
2032 ap->hsm_task_state = HSM_ST_IDLE;
2033
2034 if (ap->ioaddr.bmdma_addr &&
2035 qc && (qc->tf.protocol == ATA_PROT_DMA ||
2036 qc->tf.protocol == ATAPI_PROT_DMA)) {
2037 u8 host_stat;
2038
2039 host_stat = ap->ops->bmdma_status(ap);
2040
2041 /* BMDMA controllers indicate host bus error by
2042 * setting DMA_ERR bit and timing out. As it wasn't
2043 * really a timeout event, adjust error mask and
2044 * cancel frozen state.
2045 */
2046 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2047 qc->err_mask = AC_ERR_HOST_BUS;
2048 thaw = 1;
2049 }
2050
2051 ap->ops->bmdma_stop(qc);
2052 }
2053
2054 ata_sff_altstatus(ap);
2055 ap->ops->sff_check_status(ap);
2056 ap->ops->sff_irq_clear(ap);
2057
2058 spin_unlock_irqrestore(ap->lock, flags);
2059
2060 if (thaw)
2061 ata_eh_thaw_port(ap);
2062
2063 /* PIO and DMA engines have been stopped, perform recovery */
2064
2065 /* ata_sff_softreset and sata_sff_hardreset are inherited to
2066 * all SFF drivers from ata_sff_port_ops. Ignore softreset if
2067 * ctl isn't accessible. Ignore hardreset if SCR access isn't
2068 * available.
2069 */
2070 if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr)
2071 softreset = NULL;
2072 if (hardreset == sata_sff_hardreset && !sata_scr_valid(&ap->link))
2073 hardreset = NULL;
2074
2075 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2076 ap->ops->postreset);
2077 }
2078
2079 /**
2080 * ata_sff_post_internal_cmd - Stock post_internal_cmd for SFF controller
2081 * @qc: internal command to clean up
2082 *
2083 * LOCKING:
2084 * Kernel thread context (may sleep)
2085 */
2086 void ata_sff_post_internal_cmd(struct ata_queued_cmd *qc)
2087 {
2088 if (qc->ap->ioaddr.bmdma_addr)
2089 ata_bmdma_stop(qc);
2090 }
2091
2092 /**
2093 * ata_sff_port_start - Set port up for dma.
2094 * @ap: Port to initialize
2095 *
2096 * Called just after data structures for each port are
2097 * initialized. Allocates space for PRD table if the device
2098 * is DMA capable SFF.
2099 *
2100 * May be used as the port_start() entry in ata_port_operations.
2101 *
2102 * LOCKING:
2103 * Inherited from caller.
2104 */
2105 int ata_sff_port_start(struct ata_port *ap)
2106 {
2107 if (ap->ioaddr.bmdma_addr)
2108 return ata_port_start(ap);
2109 return 0;
2110 }
2111
2112 /**
2113 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
2114 * @ioaddr: IO address structure to be initialized
2115 *
2116 * Utility function which initializes data_addr, error_addr,
2117 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2118 * device_addr, status_addr, and command_addr to standard offsets
2119 * relative to cmd_addr.
2120 *
2121 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2122 */
2123 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2124 {
2125 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2126 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2127 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2128 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2129 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2130 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2131 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2132 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2133 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2134 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2135 }
2136
2137 unsigned long ata_bmdma_mode_filter(struct ata_device *adev,
2138 unsigned long xfer_mask)
2139 {
2140 /* Filter out DMA modes if the device has been configured by
2141 the BIOS as PIO only */
2142
2143 if (adev->link->ap->ioaddr.bmdma_addr == NULL)
2144 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2145 return xfer_mask;
2146 }
2147
2148 /**
2149 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2150 * @qc: Info associated with this ATA transaction.
2151 *
2152 * LOCKING:
2153 * spin_lock_irqsave(host lock)
2154 */
2155 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2156 {
2157 struct ata_port *ap = qc->ap;
2158 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2159 u8 dmactl;
2160
2161 /* load PRD table addr. */
2162 mb(); /* make sure PRD table writes are visible to controller */
2163 iowrite32(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2164
2165 /* specify data direction, triple-check start bit is clear */
2166 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2167 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2168 if (!rw)
2169 dmactl |= ATA_DMA_WR;
2170 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2171
2172 /* issue r/w command */
2173 ap->ops->sff_exec_command(ap, &qc->tf);
2174 }
2175
2176 /**
2177 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
2178 * @qc: Info associated with this ATA transaction.
2179 *
2180 * LOCKING:
2181 * spin_lock_irqsave(host lock)
2182 */
2183 void ata_bmdma_start(struct ata_queued_cmd *qc)
2184 {
2185 struct ata_port *ap = qc->ap;
2186 u8 dmactl;
2187
2188 /* start host DMA transaction */
2189 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2190 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2191
2192 /* Strictly, one may wish to issue an ioread8() here, to
2193 * flush the mmio write. However, control also passes
2194 * to the hardware at this point, and it will interrupt
2195 * us when we are to resume control. So, in effect,
2196 * we don't care when the mmio write flushes.
2197 * Further, a read of the DMA status register _immediately_
2198 * following the write may not be what certain flaky hardware
2199 * is expected, so I think it is best to not add a readb()
2200 * without first all the MMIO ATA cards/mobos.
2201 * Or maybe I'm just being paranoid.
2202 *
2203 * FIXME: The posting of this write means I/O starts are
2204 * unneccessarily delayed for MMIO
2205 */
2206 }
2207
2208 /**
2209 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
2210 * @qc: Command we are ending DMA for
2211 *
2212 * Clears the ATA_DMA_START flag in the dma control register
2213 *
2214 * May be used as the bmdma_stop() entry in ata_port_operations.
2215 *
2216 * LOCKING:
2217 * spin_lock_irqsave(host lock)
2218 */
2219 void ata_bmdma_stop(struct ata_queued_cmd *qc)
2220 {
2221 struct ata_port *ap = qc->ap;
2222 void __iomem *mmio = ap->ioaddr.bmdma_addr;
2223
2224 /* clear start/stop bit */
2225 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
2226 mmio + ATA_DMA_CMD);
2227
2228 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
2229 ata_sff_altstatus(ap); /* dummy read */
2230 }
2231
2232 /**
2233 * ata_bmdma_status - Read PCI IDE BMDMA status
2234 * @ap: Port associated with this ATA transaction.
2235 *
2236 * Read and return BMDMA status register.
2237 *
2238 * May be used as the bmdma_status() entry in ata_port_operations.
2239 *
2240 * LOCKING:
2241 * spin_lock_irqsave(host lock)
2242 */
2243 u8 ata_bmdma_status(struct ata_port *ap)
2244 {
2245 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
2246 }
2247
2248 /**
2249 * ata_bus_reset - reset host port and associated ATA channel
2250 * @ap: port to reset
2251 *
2252 * This is typically the first time we actually start issuing
2253 * commands to the ATA channel. We wait for BSY to clear, then
2254 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2255 * result. Determine what devices, if any, are on the channel
2256 * by looking at the device 0/1 error register. Look at the signature
2257 * stored in each device's taskfile registers, to determine if
2258 * the device is ATA or ATAPI.
2259 *
2260 * LOCKING:
2261 * PCI/etc. bus probe sem.
2262 * Obtains host lock.
2263 *
2264 * SIDE EFFECTS:
2265 * Sets ATA_FLAG_DISABLED if bus reset fails.
2266 *
2267 * DEPRECATED:
2268 * This function is only for drivers which still use old EH and
2269 * will be removed soon.
2270 */
2271 void ata_bus_reset(struct ata_port *ap)
2272 {
2273 struct ata_device *device = ap->link.device;
2274 struct ata_ioports *ioaddr = &ap->ioaddr;
2275 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2276 u8 err;
2277 unsigned int dev0, dev1 = 0, devmask = 0;
2278 int rc;
2279
2280 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
2281
2282 /* determine if device 0/1 are present */
2283 if (ap->flags & ATA_FLAG_SATA_RESET)
2284 dev0 = 1;
2285 else {
2286 dev0 = ata_devchk(ap, 0);
2287 if (slave_possible)
2288 dev1 = ata_devchk(ap, 1);
2289 }
2290
2291 if (dev0)
2292 devmask |= (1 << 0);
2293 if (dev1)
2294 devmask |= (1 << 1);
2295
2296 /* select device 0 again */
2297 ap->ops->sff_dev_select(ap, 0);
2298
2299 /* issue bus reset */
2300 if (ap->flags & ATA_FLAG_SRST) {
2301 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
2302 if (rc && rc != -ENODEV)
2303 goto err_out;
2304 }
2305
2306 /*
2307 * determine by signature whether we have ATA or ATAPI devices
2308 */
2309 device[0].class = ata_sff_dev_classify(&device[0], dev0, &err);
2310 if ((slave_possible) && (err != 0x81))
2311 device[1].class = ata_sff_dev_classify(&device[1], dev1, &err);
2312
2313 /* is double-select really necessary? */
2314 if (device[1].class != ATA_DEV_NONE)
2315 ap->ops->sff_dev_select(ap, 1);
2316 if (device[0].class != ATA_DEV_NONE)
2317 ap->ops->sff_dev_select(ap, 0);
2318
2319 /* if no devices were detected, disable this port */
2320 if ((device[0].class == ATA_DEV_NONE) &&
2321 (device[1].class == ATA_DEV_NONE))
2322 goto err_out;
2323
2324 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2325 /* set up device control for ATA_FLAG_SATA_RESET */
2326 iowrite8(ap->ctl, ioaddr->ctl_addr);
2327 }
2328
2329 DPRINTK("EXIT\n");
2330 return;
2331
2332 err_out:
2333 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2334 ata_port_disable(ap);
2335
2336 DPRINTK("EXIT\n");
2337 }
2338
2339 #ifdef CONFIG_PCI
2340
2341 /**
2342 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
2343 * @pdev: PCI device
2344 *
2345 * Some PCI ATA devices report simplex mode but in fact can be told to
2346 * enter non simplex mode. This implements the necessary logic to
2347 * perform the task on such devices. Calling it on other devices will
2348 * have -undefined- behaviour.
2349 */
2350 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
2351 {
2352 unsigned long bmdma = pci_resource_start(pdev, 4);
2353 u8 simplex;
2354
2355 if (bmdma == 0)
2356 return -ENOENT;
2357
2358 simplex = inb(bmdma + 0x02);
2359 outb(simplex & 0x60, bmdma + 0x02);
2360 simplex = inb(bmdma + 0x02);
2361 if (simplex & 0x80)
2362 return -EOPNOTSUPP;
2363 return 0;
2364 }
2365
2366 /**
2367 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
2368 * @host: target ATA host
2369 *
2370 * Acquire PCI BMDMA resources and initialize @host accordingly.
2371 *
2372 * LOCKING:
2373 * Inherited from calling layer (may sleep).
2374 *
2375 * RETURNS:
2376 * 0 on success, -errno otherwise.
2377 */
2378 int ata_pci_bmdma_init(struct ata_host *host)
2379 {
2380 struct device *gdev = host->dev;
2381 struct pci_dev *pdev = to_pci_dev(gdev);
2382 int i, rc;
2383
2384 /* No BAR4 allocation: No DMA */
2385 if (pci_resource_start(pdev, 4) == 0)
2386 return 0;
2387
2388 /* TODO: If we get no DMA mask we should fall back to PIO */
2389 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
2390 if (rc)
2391 return rc;
2392 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
2393 if (rc)
2394 return rc;
2395
2396 /* request and iomap DMA region */
2397 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
2398 if (rc) {
2399 dev_printk(KERN_ERR, gdev, "failed to request/iomap BAR4\n");
2400 return -ENOMEM;
2401 }
2402 host->iomap = pcim_iomap_table(pdev);
2403
2404 for (i = 0; i < 2; i++) {
2405 struct ata_port *ap = host->ports[i];
2406 void __iomem *bmdma = host->iomap[4] + 8 * i;
2407
2408 if (ata_port_is_dummy(ap))
2409 continue;
2410
2411 ap->ioaddr.bmdma_addr = bmdma;
2412 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
2413 (ioread8(bmdma + 2) & 0x80))
2414 host->flags |= ATA_HOST_SIMPLEX;
2415
2416 ata_port_desc(ap, "bmdma 0x%llx",
2417 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
2418 }
2419
2420 return 0;
2421 }
2422
2423 static int ata_resources_present(struct pci_dev *pdev, int port)
2424 {
2425 int i;
2426
2427 /* Check the PCI resources for this channel are enabled */
2428 port = port * 2;
2429 for (i = 0; i < 2; i ++) {
2430 if (pci_resource_start(pdev, port + i) == 0 ||
2431 pci_resource_len(pdev, port + i) == 0)
2432 return 0;
2433 }
2434 return 1;
2435 }
2436
2437 /**
2438 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2439 * @host: target ATA host
2440 *
2441 * Acquire native PCI ATA resources for @host and initialize the
2442 * first two ports of @host accordingly. Ports marked dummy are
2443 * skipped and allocation failure makes the port dummy.
2444 *
2445 * Note that native PCI resources are valid even for legacy hosts
2446 * as we fix up pdev resources array early in boot, so this
2447 * function can be used for both native and legacy SFF hosts.
2448 *
2449 * LOCKING:
2450 * Inherited from calling layer (may sleep).
2451 *
2452 * RETURNS:
2453 * 0 if at least one port is initialized, -ENODEV if no port is
2454 * available.
2455 */
2456 int ata_pci_sff_init_host(struct ata_host *host)
2457 {
2458 struct device *gdev = host->dev;
2459 struct pci_dev *pdev = to_pci_dev(gdev);
2460 unsigned int mask = 0;
2461 int i, rc;
2462
2463 /* request, iomap BARs and init port addresses accordingly */
2464 for (i = 0; i < 2; i++) {
2465 struct ata_port *ap = host->ports[i];
2466 int base = i * 2;
2467 void __iomem * const *iomap;
2468
2469 if (ata_port_is_dummy(ap))
2470 continue;
2471
2472 /* Discard disabled ports. Some controllers show
2473 * their unused channels this way. Disabled ports are
2474 * made dummy.
2475 */
2476 if (!ata_resources_present(pdev, i)) {
2477 ap->ops = &ata_dummy_port_ops;
2478 continue;
2479 }
2480
2481 rc = pcim_iomap_regions(pdev, 0x3 << base,
2482 dev_driver_string(gdev));
2483 if (rc) {
2484 dev_printk(KERN_WARNING, gdev,
2485 "failed to request/iomap BARs for port %d "
2486 "(errno=%d)\n", i, rc);
2487 if (rc == -EBUSY)
2488 pcim_pin_device(pdev);
2489 ap->ops = &ata_dummy_port_ops;
2490 continue;
2491 }
2492 host->iomap = iomap = pcim_iomap_table(pdev);
2493
2494 ap->ioaddr.cmd_addr = iomap[base];
2495 ap->ioaddr.altstatus_addr =
2496 ap->ioaddr.ctl_addr = (void __iomem *)
2497 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2498 ata_sff_std_ports(&ap->ioaddr);
2499
2500 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2501 (unsigned long long)pci_resource_start(pdev, base),
2502 (unsigned long long)pci_resource_start(pdev, base + 1));
2503
2504 mask |= 1 << i;
2505 }
2506
2507 if (!mask) {
2508 dev_printk(KERN_ERR, gdev, "no available native port\n");
2509 return -ENODEV;
2510 }
2511
2512 return 0;
2513 }
2514
2515 /**
2516 * ata_pci_sff_prepare_host - helper to prepare native PCI ATA host
2517 * @pdev: target PCI device
2518 * @ppi: array of port_info, must be enough for two ports
2519 * @r_host: out argument for the initialized ATA host
2520 *
2521 * Helper to allocate ATA host for @pdev, acquire all native PCI
2522 * resources and initialize it accordingly in one go.
2523 *
2524 * LOCKING:
2525 * Inherited from calling layer (may sleep).
2526 *
2527 * RETURNS:
2528 * 0 on success, -errno otherwise.
2529 */
2530 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2531 const struct ata_port_info * const * ppi,
2532 struct ata_host **r_host)
2533 {
2534 struct ata_host *host;
2535 int rc;
2536
2537 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2538 return -ENOMEM;
2539
2540 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2541 if (!host) {
2542 dev_printk(KERN_ERR, &pdev->dev,
2543 "failed to allocate ATA host\n");
2544 rc = -ENOMEM;
2545 goto err_out;
2546 }
2547
2548 rc = ata_pci_sff_init_host(host);
2549 if (rc)
2550 goto err_out;
2551
2552 /* init DMA related stuff */
2553 rc = ata_pci_bmdma_init(host);
2554 if (rc)
2555 goto err_bmdma;
2556
2557 devres_remove_group(&pdev->dev, NULL);
2558 *r_host = host;
2559 return 0;
2560
2561 err_bmdma:
2562 /* This is necessary because PCI and iomap resources are
2563 * merged and releasing the top group won't release the
2564 * acquired resources if some of those have been acquired
2565 * before entering this function.
2566 */
2567 pcim_iounmap_regions(pdev, 0xf);
2568 err_out:
2569 devres_release_group(&pdev->dev, NULL);
2570 return rc;
2571 }
2572
2573 /**
2574 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2575 * @host: target SFF ATA host
2576 * @irq_handler: irq_handler used when requesting IRQ(s)
2577 * @sht: scsi_host_template to use when registering the host
2578 *
2579 * This is the counterpart of ata_host_activate() for SFF ATA
2580 * hosts. This separate helper is necessary because SFF hosts
2581 * use two separate interrupts in legacy mode.
2582 *
2583 * LOCKING:
2584 * Inherited from calling layer (may sleep).
2585 *
2586 * RETURNS:
2587 * 0 on success, -errno otherwise.
2588 */
2589 int ata_pci_sff_activate_host(struct ata_host *host,
2590 irq_handler_t irq_handler,
2591 struct scsi_host_template *sht)
2592 {
2593 struct device *dev = host->dev;
2594 struct pci_dev *pdev = to_pci_dev(dev);
2595 const char *drv_name = dev_driver_string(host->dev);
2596 int legacy_mode = 0, rc;
2597
2598 rc = ata_host_start(host);
2599 if (rc)
2600 return rc;
2601
2602 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2603 u8 tmp8, mask;
2604
2605 /* TODO: What if one channel is in native mode ... */
2606 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2607 mask = (1 << 2) | (1 << 0);
2608 if ((tmp8 & mask) != mask)
2609 legacy_mode = 1;
2610 #if defined(CONFIG_NO_ATA_LEGACY)
2611 /* Some platforms with PCI limits cannot address compat
2612 port space. In that case we punt if their firmware has
2613 left a device in compatibility mode */
2614 if (legacy_mode) {
2615 printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n");
2616 return -EOPNOTSUPP;
2617 }
2618 #endif
2619 }
2620
2621 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2622 return -ENOMEM;
2623
2624 if (!legacy_mode && pdev->irq) {
2625 rc = devm_request_irq(dev, pdev->irq, irq_handler,
2626 IRQF_SHARED, drv_name, host);
2627 if (rc)
2628 goto out;
2629
2630 ata_port_desc(host->ports[0], "irq %d", pdev->irq);
2631 ata_port_desc(host->ports[1], "irq %d", pdev->irq);
2632 } else if (legacy_mode) {
2633 if (!ata_port_is_dummy(host->ports[0])) {
2634 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2635 irq_handler, IRQF_SHARED,
2636 drv_name, host);
2637 if (rc)
2638 goto out;
2639
2640 ata_port_desc(host->ports[0], "irq %d",
2641 ATA_PRIMARY_IRQ(pdev));
2642 }
2643
2644 if (!ata_port_is_dummy(host->ports[1])) {
2645 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2646 irq_handler, IRQF_SHARED,
2647 drv_name, host);
2648 if (rc)
2649 goto out;
2650
2651 ata_port_desc(host->ports[1], "irq %d",
2652 ATA_SECONDARY_IRQ(pdev));
2653 }
2654 }
2655
2656 rc = ata_host_register(host, sht);
2657 out:
2658 if (rc == 0)
2659 devres_remove_group(dev, NULL);
2660 else
2661 devres_release_group(dev, NULL);
2662
2663 return rc;
2664 }
2665
2666 /**
2667 * ata_pci_sff_init_one - Initialize/register PCI IDE host controller
2668 * @pdev: Controller to be initialized
2669 * @ppi: array of port_info, must be enough for two ports
2670 * @sht: scsi_host_template to use when registering the host
2671 * @host_priv: host private_data
2672 *
2673 * This is a helper function which can be called from a driver's
2674 * xxx_init_one() probe function if the hardware uses traditional
2675 * IDE taskfile registers.
2676 *
2677 * This function calls pci_enable_device(), reserves its register
2678 * regions, sets the dma mask, enables bus master mode, and calls
2679 * ata_device_add()
2680 *
2681 * ASSUMPTION:
2682 * Nobody makes a single channel controller that appears solely as
2683 * the secondary legacy port on PCI.
2684 *
2685 * LOCKING:
2686 * Inherited from PCI layer (may sleep).
2687 *
2688 * RETURNS:
2689 * Zero on success, negative on errno-based value on error.
2690 */
2691 int ata_pci_sff_init_one(struct pci_dev *pdev,
2692 const struct ata_port_info * const * ppi,
2693 struct scsi_host_template *sht, void *host_priv)
2694 {
2695 struct device *dev = &pdev->dev;
2696 const struct ata_port_info *pi = NULL;
2697 struct ata_host *host = NULL;
2698 int i, rc;
2699
2700 DPRINTK("ENTER\n");
2701
2702 /* look up the first valid port_info */
2703 for (i = 0; i < 2 && ppi[i]; i++) {
2704 if (ppi[i]->port_ops != &ata_dummy_port_ops) {
2705 pi = ppi[i];
2706 break;
2707 }
2708 }
2709
2710 if (!pi) {
2711 dev_printk(KERN_ERR, &pdev->dev,
2712 "no valid port_info specified\n");
2713 return -EINVAL;
2714 }
2715
2716 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2717 return -ENOMEM;
2718
2719 rc = pcim_enable_device(pdev);
2720 if (rc)
2721 goto out;
2722
2723 /* prepare and activate SFF host */
2724 rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2725 if (rc)
2726 goto out;
2727 host->private_data = host_priv;
2728
2729 pci_set_master(pdev);
2730 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2731 out:
2732 if (rc == 0)
2733 devres_remove_group(&pdev->dev, NULL);
2734 else
2735 devres_release_group(&pdev->dev, NULL);
2736
2737 return rc;
2738 }
2739
2740 #endif /* CONFIG_PCI */
2741
2742 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
2743 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2744 EXPORT_SYMBOL_GPL(ata_sff_qc_prep);
2745 EXPORT_SYMBOL_GPL(ata_sff_dumb_qc_prep);
2746 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
2747 EXPORT_SYMBOL_GPL(ata_sff_check_status);
2748 EXPORT_SYMBOL_GPL(ata_sff_altstatus);
2749 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
2750 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
2751 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
2752 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
2753 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
2754 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
2755 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
2756 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
2757 EXPORT_SYMBOL_GPL(ata_sff_irq_clear);
2758 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
2759 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
2760 EXPORT_SYMBOL_GPL(ata_sff_host_intr);
2761 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
2762 EXPORT_SYMBOL_GPL(ata_sff_freeze);
2763 EXPORT_SYMBOL_GPL(ata_sff_thaw);
2764 EXPORT_SYMBOL_GPL(ata_sff_prereset);
2765 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
2766 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
2767 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2768 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2769 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2770 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2771 EXPORT_SYMBOL_GPL(ata_sff_post_internal_cmd);
2772 EXPORT_SYMBOL_GPL(ata_sff_port_start);
2773 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2774 EXPORT_SYMBOL_GPL(ata_bmdma_mode_filter);
2775 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2776 EXPORT_SYMBOL_GPL(ata_bmdma_start);
2777 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
2778 EXPORT_SYMBOL_GPL(ata_bmdma_status);
2779 EXPORT_SYMBOL_GPL(ata_bus_reset);
2780 #ifdef CONFIG_PCI
2781 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
2782 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
2783 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2784 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2785 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2786 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2787 #endif /* CONFIG_PCI */
This page took 0.090321 seconds and 5 git commands to generate.