a4700af43d103237628ea07b55be7c6120555b74
[deliverable/linux.git] / drivers / ata / libata-sff.c
1 /*
2 * libata-sff.c - helper library for PCI IDE BMDMA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2006 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/pci.h>
38 #include <linux/libata.h>
39 #include <linux/highmem.h>
40
41 #include "libata.h"
42
43 const struct ata_port_operations ata_sff_port_ops = {
44 .inherits = &ata_base_port_ops,
45
46 .qc_prep = ata_sff_qc_prep,
47 .qc_issue = ata_sff_qc_issue,
48 .qc_fill_rtf = ata_sff_qc_fill_rtf,
49
50 .freeze = ata_sff_freeze,
51 .thaw = ata_sff_thaw,
52 .prereset = ata_sff_prereset,
53 .softreset = ata_sff_softreset,
54 .hardreset = sata_sff_hardreset,
55 .postreset = ata_sff_postreset,
56 .drain_fifo = ata_sff_drain_fifo,
57 .error_handler = ata_sff_error_handler,
58 .post_internal_cmd = ata_sff_post_internal_cmd,
59
60 .sff_dev_select = ata_sff_dev_select,
61 .sff_check_status = ata_sff_check_status,
62 .sff_tf_load = ata_sff_tf_load,
63 .sff_tf_read = ata_sff_tf_read,
64 .sff_exec_command = ata_sff_exec_command,
65 .sff_data_xfer = ata_sff_data_xfer,
66 .sff_irq_clear = ata_sff_irq_clear,
67
68 .lost_interrupt = ata_sff_lost_interrupt,
69
70 .port_start = ata_sff_port_start,
71 };
72 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
73
74 const struct ata_port_operations ata_bmdma_port_ops = {
75 .inherits = &ata_sff_port_ops,
76
77 .mode_filter = ata_bmdma_mode_filter,
78
79 .bmdma_setup = ata_bmdma_setup,
80 .bmdma_start = ata_bmdma_start,
81 .bmdma_stop = ata_bmdma_stop,
82 .bmdma_status = ata_bmdma_status,
83 };
84 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
85
86 const struct ata_port_operations ata_bmdma32_port_ops = {
87 .inherits = &ata_bmdma_port_ops,
88
89 .sff_data_xfer = ata_sff_data_xfer32,
90 .port_start = ata_sff_port_start32,
91 };
92 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
93
94 /**
95 * ata_fill_sg - Fill PCI IDE PRD table
96 * @qc: Metadata associated with taskfile to be transferred
97 *
98 * Fill PCI IDE PRD (scatter-gather) table with segments
99 * associated with the current disk command.
100 *
101 * LOCKING:
102 * spin_lock_irqsave(host lock)
103 *
104 */
105 static void ata_fill_sg(struct ata_queued_cmd *qc)
106 {
107 struct ata_port *ap = qc->ap;
108 struct scatterlist *sg;
109 unsigned int si, pi;
110
111 pi = 0;
112 for_each_sg(qc->sg, sg, qc->n_elem, si) {
113 u32 addr, offset;
114 u32 sg_len, len;
115
116 /* determine if physical DMA addr spans 64K boundary.
117 * Note h/w doesn't support 64-bit, so we unconditionally
118 * truncate dma_addr_t to u32.
119 */
120 addr = (u32) sg_dma_address(sg);
121 sg_len = sg_dma_len(sg);
122
123 while (sg_len) {
124 offset = addr & 0xffff;
125 len = sg_len;
126 if ((offset + sg_len) > 0x10000)
127 len = 0x10000 - offset;
128
129 ap->prd[pi].addr = cpu_to_le32(addr);
130 ap->prd[pi].flags_len = cpu_to_le32(len & 0xffff);
131 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
132
133 pi++;
134 sg_len -= len;
135 addr += len;
136 }
137 }
138
139 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
140 }
141
142 /**
143 * ata_fill_sg_dumb - Fill PCI IDE PRD table
144 * @qc: Metadata associated with taskfile to be transferred
145 *
146 * Fill PCI IDE PRD (scatter-gather) table with segments
147 * associated with the current disk command. Perform the fill
148 * so that we avoid writing any length 64K records for
149 * controllers that don't follow the spec.
150 *
151 * LOCKING:
152 * spin_lock_irqsave(host lock)
153 *
154 */
155 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
156 {
157 struct ata_port *ap = qc->ap;
158 struct scatterlist *sg;
159 unsigned int si, pi;
160
161 pi = 0;
162 for_each_sg(qc->sg, sg, qc->n_elem, si) {
163 u32 addr, offset;
164 u32 sg_len, len, blen;
165
166 /* determine if physical DMA addr spans 64K boundary.
167 * Note h/w doesn't support 64-bit, so we unconditionally
168 * truncate dma_addr_t to u32.
169 */
170 addr = (u32) sg_dma_address(sg);
171 sg_len = sg_dma_len(sg);
172
173 while (sg_len) {
174 offset = addr & 0xffff;
175 len = sg_len;
176 if ((offset + sg_len) > 0x10000)
177 len = 0x10000 - offset;
178
179 blen = len & 0xffff;
180 ap->prd[pi].addr = cpu_to_le32(addr);
181 if (blen == 0) {
182 /* Some PATA chipsets like the CS5530 can't
183 cope with 0x0000 meaning 64K as the spec
184 says */
185 ap->prd[pi].flags_len = cpu_to_le32(0x8000);
186 blen = 0x8000;
187 ap->prd[++pi].addr = cpu_to_le32(addr + 0x8000);
188 }
189 ap->prd[pi].flags_len = cpu_to_le32(blen);
190 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
191
192 pi++;
193 sg_len -= len;
194 addr += len;
195 }
196 }
197
198 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
199 }
200
201 /**
202 * ata_sff_qc_prep - Prepare taskfile for submission
203 * @qc: Metadata associated with taskfile to be prepared
204 *
205 * Prepare ATA taskfile for submission.
206 *
207 * LOCKING:
208 * spin_lock_irqsave(host lock)
209 */
210 void ata_sff_qc_prep(struct ata_queued_cmd *qc)
211 {
212 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
213 return;
214
215 ata_fill_sg(qc);
216 }
217 EXPORT_SYMBOL_GPL(ata_sff_qc_prep);
218
219 /**
220 * ata_sff_dumb_qc_prep - Prepare taskfile for submission
221 * @qc: Metadata associated with taskfile to be prepared
222 *
223 * Prepare ATA taskfile for submission.
224 *
225 * LOCKING:
226 * spin_lock_irqsave(host lock)
227 */
228 void ata_sff_dumb_qc_prep(struct ata_queued_cmd *qc)
229 {
230 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
231 return;
232
233 ata_fill_sg_dumb(qc);
234 }
235 EXPORT_SYMBOL_GPL(ata_sff_dumb_qc_prep);
236
237 /**
238 * ata_sff_check_status - Read device status reg & clear interrupt
239 * @ap: port where the device is
240 *
241 * Reads ATA taskfile status register for currently-selected device
242 * and return its value. This also clears pending interrupts
243 * from this device
244 *
245 * LOCKING:
246 * Inherited from caller.
247 */
248 u8 ata_sff_check_status(struct ata_port *ap)
249 {
250 return ioread8(ap->ioaddr.status_addr);
251 }
252 EXPORT_SYMBOL_GPL(ata_sff_check_status);
253
254 /**
255 * ata_sff_altstatus - Read device alternate status reg
256 * @ap: port where the device is
257 *
258 * Reads ATA taskfile alternate status register for
259 * currently-selected device and return its value.
260 *
261 * Note: may NOT be used as the check_altstatus() entry in
262 * ata_port_operations.
263 *
264 * LOCKING:
265 * Inherited from caller.
266 */
267 static u8 ata_sff_altstatus(struct ata_port *ap)
268 {
269 if (ap->ops->sff_check_altstatus)
270 return ap->ops->sff_check_altstatus(ap);
271
272 return ioread8(ap->ioaddr.altstatus_addr);
273 }
274
275 /**
276 * ata_sff_irq_status - Check if the device is busy
277 * @ap: port where the device is
278 *
279 * Determine if the port is currently busy. Uses altstatus
280 * if available in order to avoid clearing shared IRQ status
281 * when finding an IRQ source. Non ctl capable devices don't
282 * share interrupt lines fortunately for us.
283 *
284 * LOCKING:
285 * Inherited from caller.
286 */
287 static u8 ata_sff_irq_status(struct ata_port *ap)
288 {
289 u8 status;
290
291 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
292 status = ata_sff_altstatus(ap);
293 /* Not us: We are busy */
294 if (status & ATA_BUSY)
295 return status;
296 }
297 /* Clear INTRQ latch */
298 status = ap->ops->sff_check_status(ap);
299 return status;
300 }
301
302 /**
303 * ata_sff_sync - Flush writes
304 * @ap: Port to wait for.
305 *
306 * CAUTION:
307 * If we have an mmio device with no ctl and no altstatus
308 * method this will fail. No such devices are known to exist.
309 *
310 * LOCKING:
311 * Inherited from caller.
312 */
313
314 static void ata_sff_sync(struct ata_port *ap)
315 {
316 if (ap->ops->sff_check_altstatus)
317 ap->ops->sff_check_altstatus(ap);
318 else if (ap->ioaddr.altstatus_addr)
319 ioread8(ap->ioaddr.altstatus_addr);
320 }
321
322 /**
323 * ata_sff_pause - Flush writes and wait 400nS
324 * @ap: Port to pause for.
325 *
326 * CAUTION:
327 * If we have an mmio device with no ctl and no altstatus
328 * method this will fail. No such devices are known to exist.
329 *
330 * LOCKING:
331 * Inherited from caller.
332 */
333
334 void ata_sff_pause(struct ata_port *ap)
335 {
336 ata_sff_sync(ap);
337 ndelay(400);
338 }
339 EXPORT_SYMBOL_GPL(ata_sff_pause);
340
341 /**
342 * ata_sff_dma_pause - Pause before commencing DMA
343 * @ap: Port to pause for.
344 *
345 * Perform I/O fencing and ensure sufficient cycle delays occur
346 * for the HDMA1:0 transition
347 */
348
349 void ata_sff_dma_pause(struct ata_port *ap)
350 {
351 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
352 /* An altstatus read will cause the needed delay without
353 messing up the IRQ status */
354 ata_sff_altstatus(ap);
355 return;
356 }
357 /* There are no DMA controllers without ctl. BUG here to ensure
358 we never violate the HDMA1:0 transition timing and risk
359 corruption. */
360 BUG();
361 }
362 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
363
364 /**
365 * ata_sff_busy_sleep - sleep until BSY clears, or timeout
366 * @ap: port containing status register to be polled
367 * @tmout_pat: impatience timeout in msecs
368 * @tmout: overall timeout in msecs
369 *
370 * Sleep until ATA Status register bit BSY clears,
371 * or a timeout occurs.
372 *
373 * LOCKING:
374 * Kernel thread context (may sleep).
375 *
376 * RETURNS:
377 * 0 on success, -errno otherwise.
378 */
379 int ata_sff_busy_sleep(struct ata_port *ap,
380 unsigned long tmout_pat, unsigned long tmout)
381 {
382 unsigned long timer_start, timeout;
383 u8 status;
384
385 status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
386 timer_start = jiffies;
387 timeout = ata_deadline(timer_start, tmout_pat);
388 while (status != 0xff && (status & ATA_BUSY) &&
389 time_before(jiffies, timeout)) {
390 msleep(50);
391 status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
392 }
393
394 if (status != 0xff && (status & ATA_BUSY))
395 ata_port_printk(ap, KERN_WARNING,
396 "port is slow to respond, please be patient "
397 "(Status 0x%x)\n", status);
398
399 timeout = ata_deadline(timer_start, tmout);
400 while (status != 0xff && (status & ATA_BUSY) &&
401 time_before(jiffies, timeout)) {
402 msleep(50);
403 status = ap->ops->sff_check_status(ap);
404 }
405
406 if (status == 0xff)
407 return -ENODEV;
408
409 if (status & ATA_BUSY) {
410 ata_port_printk(ap, KERN_ERR, "port failed to respond "
411 "(%lu secs, Status 0x%x)\n",
412 DIV_ROUND_UP(tmout, 1000), status);
413 return -EBUSY;
414 }
415
416 return 0;
417 }
418 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
419
420 static int ata_sff_check_ready(struct ata_link *link)
421 {
422 u8 status = link->ap->ops->sff_check_status(link->ap);
423
424 return ata_check_ready(status);
425 }
426
427 /**
428 * ata_sff_wait_ready - sleep until BSY clears, or timeout
429 * @link: SFF link to wait ready status for
430 * @deadline: deadline jiffies for the operation
431 *
432 * Sleep until ATA Status register bit BSY clears, or timeout
433 * occurs.
434 *
435 * LOCKING:
436 * Kernel thread context (may sleep).
437 *
438 * RETURNS:
439 * 0 on success, -errno otherwise.
440 */
441 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
442 {
443 return ata_wait_ready(link, deadline, ata_sff_check_ready);
444 }
445 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
446
447 /**
448 * ata_sff_set_devctl - Write device control reg
449 * @ap: port where the device is
450 * @ctl: value to write
451 *
452 * Writes ATA taskfile device control register.
453 *
454 * Note: may NOT be used as the sff_set_devctl() entry in
455 * ata_port_operations.
456 *
457 * LOCKING:
458 * Inherited from caller.
459 */
460 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
461 {
462 if (ap->ops->sff_set_devctl)
463 ap->ops->sff_set_devctl(ap, ctl);
464 else
465 iowrite8(ctl, ap->ioaddr.ctl_addr);
466 }
467
468 /**
469 * ata_sff_dev_select - Select device 0/1 on ATA bus
470 * @ap: ATA channel to manipulate
471 * @device: ATA device (numbered from zero) to select
472 *
473 * Use the method defined in the ATA specification to
474 * make either device 0, or device 1, active on the
475 * ATA channel. Works with both PIO and MMIO.
476 *
477 * May be used as the dev_select() entry in ata_port_operations.
478 *
479 * LOCKING:
480 * caller.
481 */
482 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
483 {
484 u8 tmp;
485
486 if (device == 0)
487 tmp = ATA_DEVICE_OBS;
488 else
489 tmp = ATA_DEVICE_OBS | ATA_DEV1;
490
491 iowrite8(tmp, ap->ioaddr.device_addr);
492 ata_sff_pause(ap); /* needed; also flushes, for mmio */
493 }
494 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
495
496 /**
497 * ata_dev_select - Select device 0/1 on ATA bus
498 * @ap: ATA channel to manipulate
499 * @device: ATA device (numbered from zero) to select
500 * @wait: non-zero to wait for Status register BSY bit to clear
501 * @can_sleep: non-zero if context allows sleeping
502 *
503 * Use the method defined in the ATA specification to
504 * make either device 0, or device 1, active on the
505 * ATA channel.
506 *
507 * This is a high-level version of ata_sff_dev_select(), which
508 * additionally provides the services of inserting the proper
509 * pauses and status polling, where needed.
510 *
511 * LOCKING:
512 * caller.
513 */
514 void ata_dev_select(struct ata_port *ap, unsigned int device,
515 unsigned int wait, unsigned int can_sleep)
516 {
517 if (ata_msg_probe(ap))
518 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
519 "device %u, wait %u\n", device, wait);
520
521 if (wait)
522 ata_wait_idle(ap);
523
524 ap->ops->sff_dev_select(ap, device);
525
526 if (wait) {
527 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
528 msleep(150);
529 ata_wait_idle(ap);
530 }
531 }
532
533 /**
534 * ata_sff_irq_on - Enable interrupts on a port.
535 * @ap: Port on which interrupts are enabled.
536 *
537 * Enable interrupts on a legacy IDE device using MMIO or PIO,
538 * wait for idle, clear any pending interrupts.
539 *
540 * Note: may NOT be used as the sff_irq_on() entry in
541 * ata_port_operations.
542 *
543 * LOCKING:
544 * Inherited from caller.
545 */
546 void ata_sff_irq_on(struct ata_port *ap)
547 {
548 struct ata_ioports *ioaddr = &ap->ioaddr;
549
550 if (ap->ops->sff_irq_on) {
551 ap->ops->sff_irq_on(ap);
552 return;
553 }
554
555 ap->ctl &= ~ATA_NIEN;
556 ap->last_ctl = ap->ctl;
557
558 if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
559 ata_sff_set_devctl(ap, ap->ctl);
560 ata_wait_idle(ap);
561
562 ap->ops->sff_irq_clear(ap);
563 }
564 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
565
566 /**
567 * ata_sff_irq_clear - Clear PCI IDE BMDMA interrupt.
568 * @ap: Port associated with this ATA transaction.
569 *
570 * Clear interrupt and error flags in DMA status register.
571 *
572 * May be used as the irq_clear() entry in ata_port_operations.
573 *
574 * LOCKING:
575 * spin_lock_irqsave(host lock)
576 */
577 void ata_sff_irq_clear(struct ata_port *ap)
578 {
579 void __iomem *mmio = ap->ioaddr.bmdma_addr;
580
581 if (!mmio)
582 return;
583
584 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
585 }
586 EXPORT_SYMBOL_GPL(ata_sff_irq_clear);
587
588 /**
589 * ata_sff_tf_load - send taskfile registers to host controller
590 * @ap: Port to which output is sent
591 * @tf: ATA taskfile register set
592 *
593 * Outputs ATA taskfile to standard ATA host controller.
594 *
595 * LOCKING:
596 * Inherited from caller.
597 */
598 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
599 {
600 struct ata_ioports *ioaddr = &ap->ioaddr;
601 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
602
603 if (tf->ctl != ap->last_ctl) {
604 if (ioaddr->ctl_addr)
605 iowrite8(tf->ctl, ioaddr->ctl_addr);
606 ap->last_ctl = tf->ctl;
607 }
608
609 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
610 WARN_ON_ONCE(!ioaddr->ctl_addr);
611 iowrite8(tf->hob_feature, ioaddr->feature_addr);
612 iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
613 iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
614 iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
615 iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
616 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
617 tf->hob_feature,
618 tf->hob_nsect,
619 tf->hob_lbal,
620 tf->hob_lbam,
621 tf->hob_lbah);
622 }
623
624 if (is_addr) {
625 iowrite8(tf->feature, ioaddr->feature_addr);
626 iowrite8(tf->nsect, ioaddr->nsect_addr);
627 iowrite8(tf->lbal, ioaddr->lbal_addr);
628 iowrite8(tf->lbam, ioaddr->lbam_addr);
629 iowrite8(tf->lbah, ioaddr->lbah_addr);
630 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
631 tf->feature,
632 tf->nsect,
633 tf->lbal,
634 tf->lbam,
635 tf->lbah);
636 }
637
638 if (tf->flags & ATA_TFLAG_DEVICE) {
639 iowrite8(tf->device, ioaddr->device_addr);
640 VPRINTK("device 0x%X\n", tf->device);
641 }
642 }
643 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
644
645 /**
646 * ata_sff_tf_read - input device's ATA taskfile shadow registers
647 * @ap: Port from which input is read
648 * @tf: ATA taskfile register set for storing input
649 *
650 * Reads ATA taskfile registers for currently-selected device
651 * into @tf. Assumes the device has a fully SFF compliant task file
652 * layout and behaviour. If you device does not (eg has a different
653 * status method) then you will need to provide a replacement tf_read
654 *
655 * LOCKING:
656 * Inherited from caller.
657 */
658 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
659 {
660 struct ata_ioports *ioaddr = &ap->ioaddr;
661
662 tf->command = ata_sff_check_status(ap);
663 tf->feature = ioread8(ioaddr->error_addr);
664 tf->nsect = ioread8(ioaddr->nsect_addr);
665 tf->lbal = ioread8(ioaddr->lbal_addr);
666 tf->lbam = ioread8(ioaddr->lbam_addr);
667 tf->lbah = ioread8(ioaddr->lbah_addr);
668 tf->device = ioread8(ioaddr->device_addr);
669
670 if (tf->flags & ATA_TFLAG_LBA48) {
671 if (likely(ioaddr->ctl_addr)) {
672 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
673 tf->hob_feature = ioread8(ioaddr->error_addr);
674 tf->hob_nsect = ioread8(ioaddr->nsect_addr);
675 tf->hob_lbal = ioread8(ioaddr->lbal_addr);
676 tf->hob_lbam = ioread8(ioaddr->lbam_addr);
677 tf->hob_lbah = ioread8(ioaddr->lbah_addr);
678 iowrite8(tf->ctl, ioaddr->ctl_addr);
679 ap->last_ctl = tf->ctl;
680 } else
681 WARN_ON_ONCE(1);
682 }
683 }
684 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
685
686 /**
687 * ata_sff_exec_command - issue ATA command to host controller
688 * @ap: port to which command is being issued
689 * @tf: ATA taskfile register set
690 *
691 * Issues ATA command, with proper synchronization with interrupt
692 * handler / other threads.
693 *
694 * LOCKING:
695 * spin_lock_irqsave(host lock)
696 */
697 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
698 {
699 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
700
701 iowrite8(tf->command, ap->ioaddr.command_addr);
702 ata_sff_pause(ap);
703 }
704 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
705
706 /**
707 * ata_tf_to_host - issue ATA taskfile to host controller
708 * @ap: port to which command is being issued
709 * @tf: ATA taskfile register set
710 *
711 * Issues ATA taskfile register set to ATA host controller,
712 * with proper synchronization with interrupt handler and
713 * other threads.
714 *
715 * LOCKING:
716 * spin_lock_irqsave(host lock)
717 */
718 static inline void ata_tf_to_host(struct ata_port *ap,
719 const struct ata_taskfile *tf)
720 {
721 ap->ops->sff_tf_load(ap, tf);
722 ap->ops->sff_exec_command(ap, tf);
723 }
724
725 /**
726 * ata_sff_data_xfer - Transfer data by PIO
727 * @dev: device to target
728 * @buf: data buffer
729 * @buflen: buffer length
730 * @rw: read/write
731 *
732 * Transfer data from/to the device data register by PIO.
733 *
734 * LOCKING:
735 * Inherited from caller.
736 *
737 * RETURNS:
738 * Bytes consumed.
739 */
740 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
741 unsigned int buflen, int rw)
742 {
743 struct ata_port *ap = dev->link->ap;
744 void __iomem *data_addr = ap->ioaddr.data_addr;
745 unsigned int words = buflen >> 1;
746
747 /* Transfer multiple of 2 bytes */
748 if (rw == READ)
749 ioread16_rep(data_addr, buf, words);
750 else
751 iowrite16_rep(data_addr, buf, words);
752
753 /* Transfer trailing byte, if any. */
754 if (unlikely(buflen & 0x01)) {
755 unsigned char pad[2];
756
757 /* Point buf to the tail of buffer */
758 buf += buflen - 1;
759
760 /*
761 * Use io*16_rep() accessors here as well to avoid pointlessly
762 * swapping bytes to and from on the big endian machines...
763 */
764 if (rw == READ) {
765 ioread16_rep(data_addr, pad, 1);
766 *buf = pad[0];
767 } else {
768 pad[0] = *buf;
769 iowrite16_rep(data_addr, pad, 1);
770 }
771 words++;
772 }
773
774 return words << 1;
775 }
776 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
777
778 /**
779 * ata_sff_data_xfer32 - Transfer data by PIO
780 * @dev: device to target
781 * @buf: data buffer
782 * @buflen: buffer length
783 * @rw: read/write
784 *
785 * Transfer data from/to the device data register by PIO using 32bit
786 * I/O operations.
787 *
788 * LOCKING:
789 * Inherited from caller.
790 *
791 * RETURNS:
792 * Bytes consumed.
793 */
794
795 unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf,
796 unsigned int buflen, int rw)
797 {
798 struct ata_port *ap = dev->link->ap;
799 void __iomem *data_addr = ap->ioaddr.data_addr;
800 unsigned int words = buflen >> 2;
801 int slop = buflen & 3;
802
803 if (!(ap->pflags & ATA_PFLAG_PIO32))
804 return ata_sff_data_xfer(dev, buf, buflen, rw);
805
806 /* Transfer multiple of 4 bytes */
807 if (rw == READ)
808 ioread32_rep(data_addr, buf, words);
809 else
810 iowrite32_rep(data_addr, buf, words);
811
812 /* Transfer trailing bytes, if any */
813 if (unlikely(slop)) {
814 unsigned char pad[4];
815
816 /* Point buf to the tail of buffer */
817 buf += buflen - slop;
818
819 /*
820 * Use io*_rep() accessors here as well to avoid pointlessly
821 * swapping bytes to and from on the big endian machines...
822 */
823 if (rw == READ) {
824 if (slop < 3)
825 ioread16_rep(data_addr, pad, 1);
826 else
827 ioread32_rep(data_addr, pad, 1);
828 memcpy(buf, pad, slop);
829 } else {
830 memcpy(pad, buf, slop);
831 if (slop < 3)
832 iowrite16_rep(data_addr, pad, 1);
833 else
834 iowrite32_rep(data_addr, pad, 1);
835 }
836 }
837 return (buflen + 1) & ~1;
838 }
839 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
840
841 /**
842 * ata_sff_data_xfer_noirq - Transfer data by PIO
843 * @dev: device to target
844 * @buf: data buffer
845 * @buflen: buffer length
846 * @rw: read/write
847 *
848 * Transfer data from/to the device data register by PIO. Do the
849 * transfer with interrupts disabled.
850 *
851 * LOCKING:
852 * Inherited from caller.
853 *
854 * RETURNS:
855 * Bytes consumed.
856 */
857 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
858 unsigned int buflen, int rw)
859 {
860 unsigned long flags;
861 unsigned int consumed;
862
863 local_irq_save(flags);
864 consumed = ata_sff_data_xfer(dev, buf, buflen, rw);
865 local_irq_restore(flags);
866
867 return consumed;
868 }
869 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
870
871 /**
872 * ata_pio_sector - Transfer a sector of data.
873 * @qc: Command on going
874 *
875 * Transfer qc->sect_size bytes of data from/to the ATA device.
876 *
877 * LOCKING:
878 * Inherited from caller.
879 */
880 static void ata_pio_sector(struct ata_queued_cmd *qc)
881 {
882 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
883 struct ata_port *ap = qc->ap;
884 struct page *page;
885 unsigned int offset;
886 unsigned char *buf;
887
888 if (qc->curbytes == qc->nbytes - qc->sect_size)
889 ap->hsm_task_state = HSM_ST_LAST;
890
891 page = sg_page(qc->cursg);
892 offset = qc->cursg->offset + qc->cursg_ofs;
893
894 /* get the current page and offset */
895 page = nth_page(page, (offset >> PAGE_SHIFT));
896 offset %= PAGE_SIZE;
897
898 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
899
900 if (PageHighMem(page)) {
901 unsigned long flags;
902
903 /* FIXME: use a bounce buffer */
904 local_irq_save(flags);
905 buf = kmap_atomic(page, KM_IRQ0);
906
907 /* do the actual data transfer */
908 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
909 do_write);
910
911 kunmap_atomic(buf, KM_IRQ0);
912 local_irq_restore(flags);
913 } else {
914 buf = page_address(page);
915 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
916 do_write);
917 }
918
919 if (!do_write && !PageSlab(page))
920 flush_dcache_page(page);
921
922 qc->curbytes += qc->sect_size;
923 qc->cursg_ofs += qc->sect_size;
924
925 if (qc->cursg_ofs == qc->cursg->length) {
926 qc->cursg = sg_next(qc->cursg);
927 qc->cursg_ofs = 0;
928 }
929 }
930
931 /**
932 * ata_pio_sectors - Transfer one or many sectors.
933 * @qc: Command on going
934 *
935 * Transfer one or many sectors of data from/to the
936 * ATA device for the DRQ request.
937 *
938 * LOCKING:
939 * Inherited from caller.
940 */
941 static void ata_pio_sectors(struct ata_queued_cmd *qc)
942 {
943 if (is_multi_taskfile(&qc->tf)) {
944 /* READ/WRITE MULTIPLE */
945 unsigned int nsect;
946
947 WARN_ON_ONCE(qc->dev->multi_count == 0);
948
949 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
950 qc->dev->multi_count);
951 while (nsect--)
952 ata_pio_sector(qc);
953 } else
954 ata_pio_sector(qc);
955
956 ata_sff_sync(qc->ap); /* flush */
957 }
958
959 /**
960 * atapi_send_cdb - Write CDB bytes to hardware
961 * @ap: Port to which ATAPI device is attached.
962 * @qc: Taskfile currently active
963 *
964 * When device has indicated its readiness to accept
965 * a CDB, this function is called. Send the CDB.
966 *
967 * LOCKING:
968 * caller.
969 */
970 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
971 {
972 /* send SCSI cdb */
973 DPRINTK("send cdb\n");
974 WARN_ON_ONCE(qc->dev->cdb_len < 12);
975
976 ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
977 ata_sff_sync(ap);
978 /* FIXME: If the CDB is for DMA do we need to do the transition delay
979 or is bmdma_start guaranteed to do it ? */
980 switch (qc->tf.protocol) {
981 case ATAPI_PROT_PIO:
982 ap->hsm_task_state = HSM_ST;
983 break;
984 case ATAPI_PROT_NODATA:
985 ap->hsm_task_state = HSM_ST_LAST;
986 break;
987 case ATAPI_PROT_DMA:
988 ap->hsm_task_state = HSM_ST_LAST;
989 /* initiate bmdma */
990 ap->ops->bmdma_start(qc);
991 break;
992 }
993 }
994
995 /**
996 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
997 * @qc: Command on going
998 * @bytes: number of bytes
999 *
1000 * Transfer Transfer data from/to the ATAPI device.
1001 *
1002 * LOCKING:
1003 * Inherited from caller.
1004 *
1005 */
1006 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
1007 {
1008 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
1009 struct ata_port *ap = qc->ap;
1010 struct ata_device *dev = qc->dev;
1011 struct ata_eh_info *ehi = &dev->link->eh_info;
1012 struct scatterlist *sg;
1013 struct page *page;
1014 unsigned char *buf;
1015 unsigned int offset, count, consumed;
1016
1017 next_sg:
1018 sg = qc->cursg;
1019 if (unlikely(!sg)) {
1020 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
1021 "buf=%u cur=%u bytes=%u",
1022 qc->nbytes, qc->curbytes, bytes);
1023 return -1;
1024 }
1025
1026 page = sg_page(sg);
1027 offset = sg->offset + qc->cursg_ofs;
1028
1029 /* get the current page and offset */
1030 page = nth_page(page, (offset >> PAGE_SHIFT));
1031 offset %= PAGE_SIZE;
1032
1033 /* don't overrun current sg */
1034 count = min(sg->length - qc->cursg_ofs, bytes);
1035
1036 /* don't cross page boundaries */
1037 count = min(count, (unsigned int)PAGE_SIZE - offset);
1038
1039 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
1040
1041 if (PageHighMem(page)) {
1042 unsigned long flags;
1043
1044 /* FIXME: use bounce buffer */
1045 local_irq_save(flags);
1046 buf = kmap_atomic(page, KM_IRQ0);
1047
1048 /* do the actual data transfer */
1049 consumed = ap->ops->sff_data_xfer(dev, buf + offset,
1050 count, rw);
1051
1052 kunmap_atomic(buf, KM_IRQ0);
1053 local_irq_restore(flags);
1054 } else {
1055 buf = page_address(page);
1056 consumed = ap->ops->sff_data_xfer(dev, buf + offset,
1057 count, rw);
1058 }
1059
1060 bytes -= min(bytes, consumed);
1061 qc->curbytes += count;
1062 qc->cursg_ofs += count;
1063
1064 if (qc->cursg_ofs == sg->length) {
1065 qc->cursg = sg_next(qc->cursg);
1066 qc->cursg_ofs = 0;
1067 }
1068
1069 /*
1070 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
1071 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
1072 * check correctly as it doesn't know if it is the last request being
1073 * made. Somebody should implement a proper sanity check.
1074 */
1075 if (bytes)
1076 goto next_sg;
1077 return 0;
1078 }
1079
1080 /**
1081 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
1082 * @qc: Command on going
1083 *
1084 * Transfer Transfer data from/to the ATAPI device.
1085 *
1086 * LOCKING:
1087 * Inherited from caller.
1088 */
1089 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
1090 {
1091 struct ata_port *ap = qc->ap;
1092 struct ata_device *dev = qc->dev;
1093 struct ata_eh_info *ehi = &dev->link->eh_info;
1094 unsigned int ireason, bc_lo, bc_hi, bytes;
1095 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
1096
1097 /* Abuse qc->result_tf for temp storage of intermediate TF
1098 * here to save some kernel stack usage.
1099 * For normal completion, qc->result_tf is not relevant. For
1100 * error, qc->result_tf is later overwritten by ata_qc_complete().
1101 * So, the correctness of qc->result_tf is not affected.
1102 */
1103 ap->ops->sff_tf_read(ap, &qc->result_tf);
1104 ireason = qc->result_tf.nsect;
1105 bc_lo = qc->result_tf.lbam;
1106 bc_hi = qc->result_tf.lbah;
1107 bytes = (bc_hi << 8) | bc_lo;
1108
1109 /* shall be cleared to zero, indicating xfer of data */
1110 if (unlikely(ireason & (1 << 0)))
1111 goto atapi_check;
1112
1113 /* make sure transfer direction matches expected */
1114 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
1115 if (unlikely(do_write != i_write))
1116 goto atapi_check;
1117
1118 if (unlikely(!bytes))
1119 goto atapi_check;
1120
1121 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
1122
1123 if (unlikely(__atapi_pio_bytes(qc, bytes)))
1124 goto err_out;
1125 ata_sff_sync(ap); /* flush */
1126
1127 return;
1128
1129 atapi_check:
1130 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
1131 ireason, bytes);
1132 err_out:
1133 qc->err_mask |= AC_ERR_HSM;
1134 ap->hsm_task_state = HSM_ST_ERR;
1135 }
1136
1137 /**
1138 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
1139 * @ap: the target ata_port
1140 * @qc: qc on going
1141 *
1142 * RETURNS:
1143 * 1 if ok in workqueue, 0 otherwise.
1144 */
1145 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
1146 struct ata_queued_cmd *qc)
1147 {
1148 if (qc->tf.flags & ATA_TFLAG_POLLING)
1149 return 1;
1150
1151 if (ap->hsm_task_state == HSM_ST_FIRST) {
1152 if (qc->tf.protocol == ATA_PROT_PIO &&
1153 (qc->tf.flags & ATA_TFLAG_WRITE))
1154 return 1;
1155
1156 if (ata_is_atapi(qc->tf.protocol) &&
1157 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1158 return 1;
1159 }
1160
1161 return 0;
1162 }
1163
1164 /**
1165 * ata_hsm_qc_complete - finish a qc running on standard HSM
1166 * @qc: Command to complete
1167 * @in_wq: 1 if called from workqueue, 0 otherwise
1168 *
1169 * Finish @qc which is running on standard HSM.
1170 *
1171 * LOCKING:
1172 * If @in_wq is zero, spin_lock_irqsave(host lock).
1173 * Otherwise, none on entry and grabs host lock.
1174 */
1175 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
1176 {
1177 struct ata_port *ap = qc->ap;
1178 unsigned long flags;
1179
1180 if (ap->ops->error_handler) {
1181 if (in_wq) {
1182 spin_lock_irqsave(ap->lock, flags);
1183
1184 /* EH might have kicked in while host lock is
1185 * released.
1186 */
1187 qc = ata_qc_from_tag(ap, qc->tag);
1188 if (qc) {
1189 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
1190 ata_sff_irq_on(ap);
1191 ata_qc_complete(qc);
1192 } else
1193 ata_port_freeze(ap);
1194 }
1195
1196 spin_unlock_irqrestore(ap->lock, flags);
1197 } else {
1198 if (likely(!(qc->err_mask & AC_ERR_HSM)))
1199 ata_qc_complete(qc);
1200 else
1201 ata_port_freeze(ap);
1202 }
1203 } else {
1204 if (in_wq) {
1205 spin_lock_irqsave(ap->lock, flags);
1206 ata_sff_irq_on(ap);
1207 ata_qc_complete(qc);
1208 spin_unlock_irqrestore(ap->lock, flags);
1209 } else
1210 ata_qc_complete(qc);
1211 }
1212 }
1213
1214 /**
1215 * ata_sff_hsm_move - move the HSM to the next state.
1216 * @ap: the target ata_port
1217 * @qc: qc on going
1218 * @status: current device status
1219 * @in_wq: 1 if called from workqueue, 0 otherwise
1220 *
1221 * RETURNS:
1222 * 1 when poll next status needed, 0 otherwise.
1223 */
1224 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1225 u8 status, int in_wq)
1226 {
1227 struct ata_eh_info *ehi = &ap->link.eh_info;
1228 unsigned long flags = 0;
1229 int poll_next;
1230
1231 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1232
1233 /* Make sure ata_sff_qc_issue() does not throw things
1234 * like DMA polling into the workqueue. Notice that
1235 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1236 */
1237 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
1238
1239 fsm_start:
1240 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1241 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1242
1243 switch (ap->hsm_task_state) {
1244 case HSM_ST_FIRST:
1245 /* Send first data block or PACKET CDB */
1246
1247 /* If polling, we will stay in the work queue after
1248 * sending the data. Otherwise, interrupt handler
1249 * takes over after sending the data.
1250 */
1251 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1252
1253 /* check device status */
1254 if (unlikely((status & ATA_DRQ) == 0)) {
1255 /* handle BSY=0, DRQ=0 as error */
1256 if (likely(status & (ATA_ERR | ATA_DF)))
1257 /* device stops HSM for abort/error */
1258 qc->err_mask |= AC_ERR_DEV;
1259 else {
1260 /* HSM violation. Let EH handle this */
1261 ata_ehi_push_desc(ehi,
1262 "ST_FIRST: !(DRQ|ERR|DF)");
1263 qc->err_mask |= AC_ERR_HSM;
1264 }
1265
1266 ap->hsm_task_state = HSM_ST_ERR;
1267 goto fsm_start;
1268 }
1269
1270 /* Device should not ask for data transfer (DRQ=1)
1271 * when it finds something wrong.
1272 * We ignore DRQ here and stop the HSM by
1273 * changing hsm_task_state to HSM_ST_ERR and
1274 * let the EH abort the command or reset the device.
1275 */
1276 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1277 /* Some ATAPI tape drives forget to clear the ERR bit
1278 * when doing the next command (mostly request sense).
1279 * We ignore ERR here to workaround and proceed sending
1280 * the CDB.
1281 */
1282 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1283 ata_ehi_push_desc(ehi, "ST_FIRST: "
1284 "DRQ=1 with device error, "
1285 "dev_stat 0x%X", status);
1286 qc->err_mask |= AC_ERR_HSM;
1287 ap->hsm_task_state = HSM_ST_ERR;
1288 goto fsm_start;
1289 }
1290 }
1291
1292 /* Send the CDB (atapi) or the first data block (ata pio out).
1293 * During the state transition, interrupt handler shouldn't
1294 * be invoked before the data transfer is complete and
1295 * hsm_task_state is changed. Hence, the following locking.
1296 */
1297 if (in_wq)
1298 spin_lock_irqsave(ap->lock, flags);
1299
1300 if (qc->tf.protocol == ATA_PROT_PIO) {
1301 /* PIO data out protocol.
1302 * send first data block.
1303 */
1304
1305 /* ata_pio_sectors() might change the state
1306 * to HSM_ST_LAST. so, the state is changed here
1307 * before ata_pio_sectors().
1308 */
1309 ap->hsm_task_state = HSM_ST;
1310 ata_pio_sectors(qc);
1311 } else
1312 /* send CDB */
1313 atapi_send_cdb(ap, qc);
1314
1315 if (in_wq)
1316 spin_unlock_irqrestore(ap->lock, flags);
1317
1318 /* if polling, ata_pio_task() handles the rest.
1319 * otherwise, interrupt handler takes over from here.
1320 */
1321 break;
1322
1323 case HSM_ST:
1324 /* complete command or read/write the data register */
1325 if (qc->tf.protocol == ATAPI_PROT_PIO) {
1326 /* ATAPI PIO protocol */
1327 if ((status & ATA_DRQ) == 0) {
1328 /* No more data to transfer or device error.
1329 * Device error will be tagged in HSM_ST_LAST.
1330 */
1331 ap->hsm_task_state = HSM_ST_LAST;
1332 goto fsm_start;
1333 }
1334
1335 /* Device should not ask for data transfer (DRQ=1)
1336 * when it finds something wrong.
1337 * We ignore DRQ here and stop the HSM by
1338 * changing hsm_task_state to HSM_ST_ERR and
1339 * let the EH abort the command or reset the device.
1340 */
1341 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1342 ata_ehi_push_desc(ehi, "ST-ATAPI: "
1343 "DRQ=1 with device error, "
1344 "dev_stat 0x%X", status);
1345 qc->err_mask |= AC_ERR_HSM;
1346 ap->hsm_task_state = HSM_ST_ERR;
1347 goto fsm_start;
1348 }
1349
1350 atapi_pio_bytes(qc);
1351
1352 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1353 /* bad ireason reported by device */
1354 goto fsm_start;
1355
1356 } else {
1357 /* ATA PIO protocol */
1358 if (unlikely((status & ATA_DRQ) == 0)) {
1359 /* handle BSY=0, DRQ=0 as error */
1360 if (likely(status & (ATA_ERR | ATA_DF))) {
1361 /* device stops HSM for abort/error */
1362 qc->err_mask |= AC_ERR_DEV;
1363
1364 /* If diagnostic failed and this is
1365 * IDENTIFY, it's likely a phantom
1366 * device. Mark hint.
1367 */
1368 if (qc->dev->horkage &
1369 ATA_HORKAGE_DIAGNOSTIC)
1370 qc->err_mask |=
1371 AC_ERR_NODEV_HINT;
1372 } else {
1373 /* HSM violation. Let EH handle this.
1374 * Phantom devices also trigger this
1375 * condition. Mark hint.
1376 */
1377 ata_ehi_push_desc(ehi, "ST-ATA: "
1378 "DRQ=0 without device error, "
1379 "dev_stat 0x%X", status);
1380 qc->err_mask |= AC_ERR_HSM |
1381 AC_ERR_NODEV_HINT;
1382 }
1383
1384 ap->hsm_task_state = HSM_ST_ERR;
1385 goto fsm_start;
1386 }
1387
1388 /* For PIO reads, some devices may ask for
1389 * data transfer (DRQ=1) alone with ERR=1.
1390 * We respect DRQ here and transfer one
1391 * block of junk data before changing the
1392 * hsm_task_state to HSM_ST_ERR.
1393 *
1394 * For PIO writes, ERR=1 DRQ=1 doesn't make
1395 * sense since the data block has been
1396 * transferred to the device.
1397 */
1398 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1399 /* data might be corrputed */
1400 qc->err_mask |= AC_ERR_DEV;
1401
1402 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1403 ata_pio_sectors(qc);
1404 status = ata_wait_idle(ap);
1405 }
1406
1407 if (status & (ATA_BUSY | ATA_DRQ)) {
1408 ata_ehi_push_desc(ehi, "ST-ATA: "
1409 "BUSY|DRQ persists on ERR|DF, "
1410 "dev_stat 0x%X", status);
1411 qc->err_mask |= AC_ERR_HSM;
1412 }
1413
1414 /* There are oddball controllers with
1415 * status register stuck at 0x7f and
1416 * lbal/m/h at zero which makes it
1417 * pass all other presence detection
1418 * mechanisms we have. Set NODEV_HINT
1419 * for it. Kernel bz#7241.
1420 */
1421 if (status == 0x7f)
1422 qc->err_mask |= AC_ERR_NODEV_HINT;
1423
1424 /* ata_pio_sectors() might change the
1425 * state to HSM_ST_LAST. so, the state
1426 * is changed after ata_pio_sectors().
1427 */
1428 ap->hsm_task_state = HSM_ST_ERR;
1429 goto fsm_start;
1430 }
1431
1432 ata_pio_sectors(qc);
1433
1434 if (ap->hsm_task_state == HSM_ST_LAST &&
1435 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1436 /* all data read */
1437 status = ata_wait_idle(ap);
1438 goto fsm_start;
1439 }
1440 }
1441
1442 poll_next = 1;
1443 break;
1444
1445 case HSM_ST_LAST:
1446 if (unlikely(!ata_ok(status))) {
1447 qc->err_mask |= __ac_err_mask(status);
1448 ap->hsm_task_state = HSM_ST_ERR;
1449 goto fsm_start;
1450 }
1451
1452 /* no more data to transfer */
1453 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1454 ap->print_id, qc->dev->devno, status);
1455
1456 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1457
1458 ap->hsm_task_state = HSM_ST_IDLE;
1459
1460 /* complete taskfile transaction */
1461 ata_hsm_qc_complete(qc, in_wq);
1462
1463 poll_next = 0;
1464 break;
1465
1466 case HSM_ST_ERR:
1467 ap->hsm_task_state = HSM_ST_IDLE;
1468
1469 /* complete taskfile transaction */
1470 ata_hsm_qc_complete(qc, in_wq);
1471
1472 poll_next = 0;
1473 break;
1474 default:
1475 poll_next = 0;
1476 BUG();
1477 }
1478
1479 return poll_next;
1480 }
1481 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1482
1483 void ata_pio_task(struct work_struct *work)
1484 {
1485 struct ata_port *ap =
1486 container_of(work, struct ata_port, port_task.work);
1487 struct ata_queued_cmd *qc = ap->port_task_data;
1488 u8 status;
1489 int poll_next;
1490
1491 fsm_start:
1492 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1493
1494 /*
1495 * This is purely heuristic. This is a fast path.
1496 * Sometimes when we enter, BSY will be cleared in
1497 * a chk-status or two. If not, the drive is probably seeking
1498 * or something. Snooze for a couple msecs, then
1499 * chk-status again. If still busy, queue delayed work.
1500 */
1501 status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1502 if (status & ATA_BUSY) {
1503 msleep(2);
1504 status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1505 if (status & ATA_BUSY) {
1506 ata_pio_queue_task(ap, qc, ATA_SHORT_PAUSE);
1507 return;
1508 }
1509 }
1510
1511 /* move the HSM */
1512 poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1513
1514 /* another command or interrupt handler
1515 * may be running at this point.
1516 */
1517 if (poll_next)
1518 goto fsm_start;
1519 }
1520
1521 /**
1522 * ata_sff_qc_issue - issue taskfile to device in proto-dependent manner
1523 * @qc: command to issue to device
1524 *
1525 * Using various libata functions and hooks, this function
1526 * starts an ATA command. ATA commands are grouped into
1527 * classes called "protocols", and issuing each type of protocol
1528 * is slightly different.
1529 *
1530 * May be used as the qc_issue() entry in ata_port_operations.
1531 *
1532 * LOCKING:
1533 * spin_lock_irqsave(host lock)
1534 *
1535 * RETURNS:
1536 * Zero on success, AC_ERR_* mask on failure
1537 */
1538 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1539 {
1540 struct ata_port *ap = qc->ap;
1541
1542 /* Use polling pio if the LLD doesn't handle
1543 * interrupt driven pio and atapi CDB interrupt.
1544 */
1545 if (ap->flags & ATA_FLAG_PIO_POLLING) {
1546 switch (qc->tf.protocol) {
1547 case ATA_PROT_PIO:
1548 case ATA_PROT_NODATA:
1549 case ATAPI_PROT_PIO:
1550 case ATAPI_PROT_NODATA:
1551 qc->tf.flags |= ATA_TFLAG_POLLING;
1552 break;
1553 case ATAPI_PROT_DMA:
1554 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
1555 /* see ata_dma_blacklisted() */
1556 BUG();
1557 break;
1558 default:
1559 break;
1560 }
1561 }
1562
1563 /* select the device */
1564 ata_dev_select(ap, qc->dev->devno, 1, 0);
1565
1566 /* start the command */
1567 switch (qc->tf.protocol) {
1568 case ATA_PROT_NODATA:
1569 if (qc->tf.flags & ATA_TFLAG_POLLING)
1570 ata_qc_set_polling(qc);
1571
1572 ata_tf_to_host(ap, &qc->tf);
1573 ap->hsm_task_state = HSM_ST_LAST;
1574
1575 if (qc->tf.flags & ATA_TFLAG_POLLING)
1576 ata_pio_queue_task(ap, qc, 0);
1577
1578 break;
1579
1580 case ATA_PROT_DMA:
1581 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
1582
1583 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
1584 ap->ops->bmdma_setup(qc); /* set up bmdma */
1585 ap->ops->bmdma_start(qc); /* initiate bmdma */
1586 ap->hsm_task_state = HSM_ST_LAST;
1587 break;
1588
1589 case ATA_PROT_PIO:
1590 if (qc->tf.flags & ATA_TFLAG_POLLING)
1591 ata_qc_set_polling(qc);
1592
1593 ata_tf_to_host(ap, &qc->tf);
1594
1595 if (qc->tf.flags & ATA_TFLAG_WRITE) {
1596 /* PIO data out protocol */
1597 ap->hsm_task_state = HSM_ST_FIRST;
1598 ata_pio_queue_task(ap, qc, 0);
1599
1600 /* always send first data block using
1601 * the ata_pio_task() codepath.
1602 */
1603 } else {
1604 /* PIO data in protocol */
1605 ap->hsm_task_state = HSM_ST;
1606
1607 if (qc->tf.flags & ATA_TFLAG_POLLING)
1608 ata_pio_queue_task(ap, qc, 0);
1609
1610 /* if polling, ata_pio_task() handles the rest.
1611 * otherwise, interrupt handler takes over from here.
1612 */
1613 }
1614
1615 break;
1616
1617 case ATAPI_PROT_PIO:
1618 case ATAPI_PROT_NODATA:
1619 if (qc->tf.flags & ATA_TFLAG_POLLING)
1620 ata_qc_set_polling(qc);
1621
1622 ata_tf_to_host(ap, &qc->tf);
1623
1624 ap->hsm_task_state = HSM_ST_FIRST;
1625
1626 /* send cdb by polling if no cdb interrupt */
1627 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1628 (qc->tf.flags & ATA_TFLAG_POLLING))
1629 ata_pio_queue_task(ap, qc, 0);
1630 break;
1631
1632 case ATAPI_PROT_DMA:
1633 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
1634
1635 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
1636 ap->ops->bmdma_setup(qc); /* set up bmdma */
1637 ap->hsm_task_state = HSM_ST_FIRST;
1638
1639 /* send cdb by polling if no cdb interrupt */
1640 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1641 ata_pio_queue_task(ap, qc, 0);
1642 break;
1643
1644 default:
1645 WARN_ON_ONCE(1);
1646 return AC_ERR_SYSTEM;
1647 }
1648
1649 return 0;
1650 }
1651 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1652
1653 /**
1654 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1655 * @qc: qc to fill result TF for
1656 *
1657 * @qc is finished and result TF needs to be filled. Fill it
1658 * using ->sff_tf_read.
1659 *
1660 * LOCKING:
1661 * spin_lock_irqsave(host lock)
1662 *
1663 * RETURNS:
1664 * true indicating that result TF is successfully filled.
1665 */
1666 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1667 {
1668 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1669 return true;
1670 }
1671 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1672
1673 /**
1674 * ata_sff_host_intr - Handle host interrupt for given (port, task)
1675 * @ap: Port on which interrupt arrived (possibly...)
1676 * @qc: Taskfile currently active in engine
1677 *
1678 * Handle host interrupt for given queued command. Currently,
1679 * only DMA interrupts are handled. All other commands are
1680 * handled via polling with interrupts disabled (nIEN bit).
1681 *
1682 * LOCKING:
1683 * spin_lock_irqsave(host lock)
1684 *
1685 * RETURNS:
1686 * One if interrupt was handled, zero if not (shared irq).
1687 */
1688 unsigned int ata_sff_host_intr(struct ata_port *ap,
1689 struct ata_queued_cmd *qc)
1690 {
1691 struct ata_eh_info *ehi = &ap->link.eh_info;
1692 u8 status, host_stat = 0;
1693 bool bmdma_stopped = false;
1694
1695 VPRINTK("ata%u: protocol %d task_state %d\n",
1696 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1697
1698 /* Check whether we are expecting interrupt in this state */
1699 switch (ap->hsm_task_state) {
1700 case HSM_ST_FIRST:
1701 /* Some pre-ATAPI-4 devices assert INTRQ
1702 * at this state when ready to receive CDB.
1703 */
1704
1705 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1706 * The flag was turned on only for atapi devices. No
1707 * need to check ata_is_atapi(qc->tf.protocol) again.
1708 */
1709 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1710 goto idle_irq;
1711 break;
1712 case HSM_ST_LAST:
1713 if (qc->tf.protocol == ATA_PROT_DMA ||
1714 qc->tf.protocol == ATAPI_PROT_DMA) {
1715 /* check status of DMA engine */
1716 host_stat = ap->ops->bmdma_status(ap);
1717 VPRINTK("ata%u: host_stat 0x%X\n",
1718 ap->print_id, host_stat);
1719
1720 /* if it's not our irq... */
1721 if (!(host_stat & ATA_DMA_INTR))
1722 goto idle_irq;
1723
1724 /* before we do anything else, clear DMA-Start bit */
1725 ap->ops->bmdma_stop(qc);
1726 bmdma_stopped = true;
1727
1728 if (unlikely(host_stat & ATA_DMA_ERR)) {
1729 /* error when transfering data to/from memory */
1730 qc->err_mask |= AC_ERR_HOST_BUS;
1731 ap->hsm_task_state = HSM_ST_ERR;
1732 }
1733 }
1734 break;
1735 case HSM_ST:
1736 break;
1737 default:
1738 goto idle_irq;
1739 }
1740
1741
1742 /* check main status, clearing INTRQ if needed */
1743 status = ata_sff_irq_status(ap);
1744 if (status & ATA_BUSY) {
1745 if (bmdma_stopped) {
1746 /* BMDMA engine is already stopped, we're screwed */
1747 qc->err_mask |= AC_ERR_HSM;
1748 ap->hsm_task_state = HSM_ST_ERR;
1749 } else
1750 goto idle_irq;
1751 }
1752
1753 /* ack bmdma irq events */
1754 ap->ops->sff_irq_clear(ap);
1755
1756 ata_sff_hsm_move(ap, qc, status, 0);
1757
1758 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
1759 qc->tf.protocol == ATAPI_PROT_DMA))
1760 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
1761
1762 return 1; /* irq handled */
1763
1764 idle_irq:
1765 ap->stats.idle_irq++;
1766
1767 #ifdef ATA_IRQ_TRAP
1768 if ((ap->stats.idle_irq % 1000) == 0) {
1769 ap->ops->sff_check_status(ap);
1770 ap->ops->sff_irq_clear(ap);
1771 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
1772 return 1;
1773 }
1774 #endif
1775 return 0; /* irq not handled */
1776 }
1777 EXPORT_SYMBOL_GPL(ata_sff_host_intr);
1778
1779 /**
1780 * ata_sff_interrupt - Default ATA host interrupt handler
1781 * @irq: irq line (unused)
1782 * @dev_instance: pointer to our ata_host information structure
1783 *
1784 * Default interrupt handler for PCI IDE devices. Calls
1785 * ata_sff_host_intr() for each port that is not disabled.
1786 *
1787 * LOCKING:
1788 * Obtains host lock during operation.
1789 *
1790 * RETURNS:
1791 * IRQ_NONE or IRQ_HANDLED.
1792 */
1793 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1794 {
1795 struct ata_host *host = dev_instance;
1796 bool retried = false;
1797 unsigned int i;
1798 unsigned int handled, idle, polling;
1799 unsigned long flags;
1800
1801 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1802 spin_lock_irqsave(&host->lock, flags);
1803
1804 retry:
1805 handled = idle = polling = 0;
1806 for (i = 0; i < host->n_ports; i++) {
1807 struct ata_port *ap = host->ports[i];
1808 struct ata_queued_cmd *qc;
1809
1810 if (unlikely(ap->flags & ATA_FLAG_DISABLED))
1811 continue;
1812
1813 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1814 if (qc) {
1815 if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1816 handled |= ata_sff_host_intr(ap, qc);
1817 else
1818 polling |= 1 << i;
1819 } else
1820 idle |= 1 << i;
1821 }
1822
1823 /*
1824 * If no port was expecting IRQ but the controller is actually
1825 * asserting IRQ line, nobody cared will ensue. Check IRQ
1826 * pending status if available and clear spurious IRQ.
1827 */
1828 if (!handled && !retried) {
1829 bool retry = false;
1830
1831 for (i = 0; i < host->n_ports; i++) {
1832 struct ata_port *ap = host->ports[i];
1833
1834 if (polling & (1 << i))
1835 continue;
1836
1837 if (!ap->ops->sff_irq_check ||
1838 !ap->ops->sff_irq_check(ap))
1839 continue;
1840
1841 if (idle & (1 << i)) {
1842 ap->ops->sff_check_status(ap);
1843 ap->ops->sff_irq_clear(ap);
1844 } else {
1845 /* clear INTRQ and check if BUSY cleared */
1846 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1847 retry |= true;
1848 /*
1849 * With command in flight, we can't do
1850 * sff_irq_clear() w/o racing with completion.
1851 */
1852 }
1853 }
1854
1855 if (retry) {
1856 retried = true;
1857 goto retry;
1858 }
1859 }
1860
1861 spin_unlock_irqrestore(&host->lock, flags);
1862
1863 return IRQ_RETVAL(handled);
1864 }
1865 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1866
1867 /**
1868 * ata_sff_lost_interrupt - Check for an apparent lost interrupt
1869 * @ap: port that appears to have timed out
1870 *
1871 * Called from the libata error handlers when the core code suspects
1872 * an interrupt has been lost. If it has complete anything we can and
1873 * then return. Interface must support altstatus for this faster
1874 * recovery to occur.
1875 *
1876 * Locking:
1877 * Caller holds host lock
1878 */
1879
1880 void ata_sff_lost_interrupt(struct ata_port *ap)
1881 {
1882 u8 status;
1883 struct ata_queued_cmd *qc;
1884
1885 /* Only one outstanding command per SFF channel */
1886 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1887 /* Check we have a live one.. */
1888 if (qc == NULL || !(qc->flags & ATA_QCFLAG_ACTIVE))
1889 return;
1890 /* We cannot lose an interrupt on a polled command */
1891 if (qc->tf.flags & ATA_TFLAG_POLLING)
1892 return;
1893 /* See if the controller thinks it is still busy - if so the command
1894 isn't a lost IRQ but is still in progress */
1895 status = ata_sff_altstatus(ap);
1896 if (status & ATA_BUSY)
1897 return;
1898
1899 /* There was a command running, we are no longer busy and we have
1900 no interrupt. */
1901 ata_port_printk(ap, KERN_WARNING, "lost interrupt (Status 0x%x)\n",
1902 status);
1903 /* Run the host interrupt logic as if the interrupt had not been
1904 lost */
1905 ata_sff_host_intr(ap, qc);
1906 }
1907 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1908
1909 /**
1910 * ata_sff_freeze - Freeze SFF controller port
1911 * @ap: port to freeze
1912 *
1913 * Freeze BMDMA controller port.
1914 *
1915 * LOCKING:
1916 * Inherited from caller.
1917 */
1918 void ata_sff_freeze(struct ata_port *ap)
1919 {
1920 ap->ctl |= ATA_NIEN;
1921 ap->last_ctl = ap->ctl;
1922
1923 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1924 ata_sff_set_devctl(ap, ap->ctl);
1925
1926 /* Under certain circumstances, some controllers raise IRQ on
1927 * ATA_NIEN manipulation. Also, many controllers fail to mask
1928 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1929 */
1930 ap->ops->sff_check_status(ap);
1931
1932 ap->ops->sff_irq_clear(ap);
1933 }
1934 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1935
1936 /**
1937 * ata_sff_thaw - Thaw SFF controller port
1938 * @ap: port to thaw
1939 *
1940 * Thaw SFF controller port.
1941 *
1942 * LOCKING:
1943 * Inherited from caller.
1944 */
1945 void ata_sff_thaw(struct ata_port *ap)
1946 {
1947 /* clear & re-enable interrupts */
1948 ap->ops->sff_check_status(ap);
1949 ap->ops->sff_irq_clear(ap);
1950 ata_sff_irq_on(ap);
1951 }
1952 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1953
1954 /**
1955 * ata_sff_prereset - prepare SFF link for reset
1956 * @link: SFF link to be reset
1957 * @deadline: deadline jiffies for the operation
1958 *
1959 * SFF link @link is about to be reset. Initialize it. It first
1960 * calls ata_std_prereset() and wait for !BSY if the port is
1961 * being softreset.
1962 *
1963 * LOCKING:
1964 * Kernel thread context (may sleep)
1965 *
1966 * RETURNS:
1967 * 0 on success, -errno otherwise.
1968 */
1969 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1970 {
1971 struct ata_eh_context *ehc = &link->eh_context;
1972 int rc;
1973
1974 rc = ata_std_prereset(link, deadline);
1975 if (rc)
1976 return rc;
1977
1978 /* if we're about to do hardreset, nothing more to do */
1979 if (ehc->i.action & ATA_EH_HARDRESET)
1980 return 0;
1981
1982 /* wait for !BSY if we don't know that no device is attached */
1983 if (!ata_link_offline(link)) {
1984 rc = ata_sff_wait_ready(link, deadline);
1985 if (rc && rc != -ENODEV) {
1986 ata_link_printk(link, KERN_WARNING, "device not ready "
1987 "(errno=%d), forcing hardreset\n", rc);
1988 ehc->i.action |= ATA_EH_HARDRESET;
1989 }
1990 }
1991
1992 return 0;
1993 }
1994 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1995
1996 /**
1997 * ata_devchk - PATA device presence detection
1998 * @ap: ATA channel to examine
1999 * @device: Device to examine (starting at zero)
2000 *
2001 * This technique was originally described in
2002 * Hale Landis's ATADRVR (www.ata-atapi.com), and
2003 * later found its way into the ATA/ATAPI spec.
2004 *
2005 * Write a pattern to the ATA shadow registers,
2006 * and if a device is present, it will respond by
2007 * correctly storing and echoing back the
2008 * ATA shadow register contents.
2009 *
2010 * LOCKING:
2011 * caller.
2012 */
2013 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
2014 {
2015 struct ata_ioports *ioaddr = &ap->ioaddr;
2016 u8 nsect, lbal;
2017
2018 ap->ops->sff_dev_select(ap, device);
2019
2020 iowrite8(0x55, ioaddr->nsect_addr);
2021 iowrite8(0xaa, ioaddr->lbal_addr);
2022
2023 iowrite8(0xaa, ioaddr->nsect_addr);
2024 iowrite8(0x55, ioaddr->lbal_addr);
2025
2026 iowrite8(0x55, ioaddr->nsect_addr);
2027 iowrite8(0xaa, ioaddr->lbal_addr);
2028
2029 nsect = ioread8(ioaddr->nsect_addr);
2030 lbal = ioread8(ioaddr->lbal_addr);
2031
2032 if ((nsect == 0x55) && (lbal == 0xaa))
2033 return 1; /* we found a device */
2034
2035 return 0; /* nothing found */
2036 }
2037
2038 /**
2039 * ata_sff_dev_classify - Parse returned ATA device signature
2040 * @dev: ATA device to classify (starting at zero)
2041 * @present: device seems present
2042 * @r_err: Value of error register on completion
2043 *
2044 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
2045 * an ATA/ATAPI-defined set of values is placed in the ATA
2046 * shadow registers, indicating the results of device detection
2047 * and diagnostics.
2048 *
2049 * Select the ATA device, and read the values from the ATA shadow
2050 * registers. Then parse according to the Error register value,
2051 * and the spec-defined values examined by ata_dev_classify().
2052 *
2053 * LOCKING:
2054 * caller.
2055 *
2056 * RETURNS:
2057 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
2058 */
2059 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
2060 u8 *r_err)
2061 {
2062 struct ata_port *ap = dev->link->ap;
2063 struct ata_taskfile tf;
2064 unsigned int class;
2065 u8 err;
2066
2067 ap->ops->sff_dev_select(ap, dev->devno);
2068
2069 memset(&tf, 0, sizeof(tf));
2070
2071 ap->ops->sff_tf_read(ap, &tf);
2072 err = tf.feature;
2073 if (r_err)
2074 *r_err = err;
2075
2076 /* see if device passed diags: continue and warn later */
2077 if (err == 0)
2078 /* diagnostic fail : do nothing _YET_ */
2079 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
2080 else if (err == 1)
2081 /* do nothing */ ;
2082 else if ((dev->devno == 0) && (err == 0x81))
2083 /* do nothing */ ;
2084 else
2085 return ATA_DEV_NONE;
2086
2087 /* determine if device is ATA or ATAPI */
2088 class = ata_dev_classify(&tf);
2089
2090 if (class == ATA_DEV_UNKNOWN) {
2091 /* If the device failed diagnostic, it's likely to
2092 * have reported incorrect device signature too.
2093 * Assume ATA device if the device seems present but
2094 * device signature is invalid with diagnostic
2095 * failure.
2096 */
2097 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
2098 class = ATA_DEV_ATA;
2099 else
2100 class = ATA_DEV_NONE;
2101 } else if ((class == ATA_DEV_ATA) &&
2102 (ap->ops->sff_check_status(ap) == 0))
2103 class = ATA_DEV_NONE;
2104
2105 return class;
2106 }
2107 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
2108
2109 /**
2110 * ata_sff_wait_after_reset - wait for devices to become ready after reset
2111 * @link: SFF link which is just reset
2112 * @devmask: mask of present devices
2113 * @deadline: deadline jiffies for the operation
2114 *
2115 * Wait devices attached to SFF @link to become ready after
2116 * reset. It contains preceding 150ms wait to avoid accessing TF
2117 * status register too early.
2118 *
2119 * LOCKING:
2120 * Kernel thread context (may sleep).
2121 *
2122 * RETURNS:
2123 * 0 on success, -ENODEV if some or all of devices in @devmask
2124 * don't seem to exist. -errno on other errors.
2125 */
2126 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
2127 unsigned long deadline)
2128 {
2129 struct ata_port *ap = link->ap;
2130 struct ata_ioports *ioaddr = &ap->ioaddr;
2131 unsigned int dev0 = devmask & (1 << 0);
2132 unsigned int dev1 = devmask & (1 << 1);
2133 int rc, ret = 0;
2134
2135 msleep(ATA_WAIT_AFTER_RESET);
2136
2137 /* always check readiness of the master device */
2138 rc = ata_sff_wait_ready(link, deadline);
2139 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
2140 * and TF status is 0xff, bail out on it too.
2141 */
2142 if (rc)
2143 return rc;
2144
2145 /* if device 1 was found in ata_devchk, wait for register
2146 * access briefly, then wait for BSY to clear.
2147 */
2148 if (dev1) {
2149 int i;
2150
2151 ap->ops->sff_dev_select(ap, 1);
2152
2153 /* Wait for register access. Some ATAPI devices fail
2154 * to set nsect/lbal after reset, so don't waste too
2155 * much time on it. We're gonna wait for !BSY anyway.
2156 */
2157 for (i = 0; i < 2; i++) {
2158 u8 nsect, lbal;
2159
2160 nsect = ioread8(ioaddr->nsect_addr);
2161 lbal = ioread8(ioaddr->lbal_addr);
2162 if ((nsect == 1) && (lbal == 1))
2163 break;
2164 msleep(50); /* give drive a breather */
2165 }
2166
2167 rc = ata_sff_wait_ready(link, deadline);
2168 if (rc) {
2169 if (rc != -ENODEV)
2170 return rc;
2171 ret = rc;
2172 }
2173 }
2174
2175 /* is all this really necessary? */
2176 ap->ops->sff_dev_select(ap, 0);
2177 if (dev1)
2178 ap->ops->sff_dev_select(ap, 1);
2179 if (dev0)
2180 ap->ops->sff_dev_select(ap, 0);
2181
2182 return ret;
2183 }
2184 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
2185
2186 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
2187 unsigned long deadline)
2188 {
2189 struct ata_ioports *ioaddr = &ap->ioaddr;
2190
2191 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2192
2193 /* software reset. causes dev0 to be selected */
2194 iowrite8(ap->ctl, ioaddr->ctl_addr);
2195 udelay(20); /* FIXME: flush */
2196 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2197 udelay(20); /* FIXME: flush */
2198 iowrite8(ap->ctl, ioaddr->ctl_addr);
2199 ap->last_ctl = ap->ctl;
2200
2201 /* wait the port to become ready */
2202 return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
2203 }
2204
2205 /**
2206 * ata_sff_softreset - reset host port via ATA SRST
2207 * @link: ATA link to reset
2208 * @classes: resulting classes of attached devices
2209 * @deadline: deadline jiffies for the operation
2210 *
2211 * Reset host port using ATA SRST.
2212 *
2213 * LOCKING:
2214 * Kernel thread context (may sleep)
2215 *
2216 * RETURNS:
2217 * 0 on success, -errno otherwise.
2218 */
2219 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
2220 unsigned long deadline)
2221 {
2222 struct ata_port *ap = link->ap;
2223 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2224 unsigned int devmask = 0;
2225 int rc;
2226 u8 err;
2227
2228 DPRINTK("ENTER\n");
2229
2230 /* determine if device 0/1 are present */
2231 if (ata_devchk(ap, 0))
2232 devmask |= (1 << 0);
2233 if (slave_possible && ata_devchk(ap, 1))
2234 devmask |= (1 << 1);
2235
2236 /* select device 0 again */
2237 ap->ops->sff_dev_select(ap, 0);
2238
2239 /* issue bus reset */
2240 DPRINTK("about to softreset, devmask=%x\n", devmask);
2241 rc = ata_bus_softreset(ap, devmask, deadline);
2242 /* if link is occupied, -ENODEV too is an error */
2243 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2244 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
2245 return rc;
2246 }
2247
2248 /* determine by signature whether we have ATA or ATAPI devices */
2249 classes[0] = ata_sff_dev_classify(&link->device[0],
2250 devmask & (1 << 0), &err);
2251 if (slave_possible && err != 0x81)
2252 classes[1] = ata_sff_dev_classify(&link->device[1],
2253 devmask & (1 << 1), &err);
2254
2255 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2256 return 0;
2257 }
2258 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2259
2260 /**
2261 * sata_sff_hardreset - reset host port via SATA phy reset
2262 * @link: link to reset
2263 * @class: resulting class of attached device
2264 * @deadline: deadline jiffies for the operation
2265 *
2266 * SATA phy-reset host port using DET bits of SControl register,
2267 * wait for !BSY and classify the attached device.
2268 *
2269 * LOCKING:
2270 * Kernel thread context (may sleep)
2271 *
2272 * RETURNS:
2273 * 0 on success, -errno otherwise.
2274 */
2275 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2276 unsigned long deadline)
2277 {
2278 struct ata_eh_context *ehc = &link->eh_context;
2279 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2280 bool online;
2281 int rc;
2282
2283 rc = sata_link_hardreset(link, timing, deadline, &online,
2284 ata_sff_check_ready);
2285 if (online)
2286 *class = ata_sff_dev_classify(link->device, 1, NULL);
2287
2288 DPRINTK("EXIT, class=%u\n", *class);
2289 return rc;
2290 }
2291 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2292
2293 /**
2294 * ata_sff_postreset - SFF postreset callback
2295 * @link: the target SFF ata_link
2296 * @classes: classes of attached devices
2297 *
2298 * This function is invoked after a successful reset. It first
2299 * calls ata_std_postreset() and performs SFF specific postreset
2300 * processing.
2301 *
2302 * LOCKING:
2303 * Kernel thread context (may sleep)
2304 */
2305 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2306 {
2307 struct ata_port *ap = link->ap;
2308
2309 ata_std_postreset(link, classes);
2310
2311 /* is double-select really necessary? */
2312 if (classes[0] != ATA_DEV_NONE)
2313 ap->ops->sff_dev_select(ap, 1);
2314 if (classes[1] != ATA_DEV_NONE)
2315 ap->ops->sff_dev_select(ap, 0);
2316
2317 /* bail out if no device is present */
2318 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2319 DPRINTK("EXIT, no device\n");
2320 return;
2321 }
2322
2323 /* set up device control */
2324 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2325 ata_sff_set_devctl(ap, ap->ctl);
2326 ap->last_ctl = ap->ctl;
2327 }
2328 }
2329 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2330
2331 /**
2332 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2333 * @qc: command
2334 *
2335 * Drain the FIFO and device of any stuck data following a command
2336 * failing to complete. In some cases this is necessary before a
2337 * reset will recover the device.
2338 *
2339 */
2340
2341 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2342 {
2343 int count;
2344 struct ata_port *ap;
2345
2346 /* We only need to flush incoming data when a command was running */
2347 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2348 return;
2349
2350 ap = qc->ap;
2351 /* Drain up to 64K of data before we give up this recovery method */
2352 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2353 && count < 65536; count += 2)
2354 ioread16(ap->ioaddr.data_addr);
2355
2356 /* Can become DEBUG later */
2357 if (count)
2358 ata_port_printk(ap, KERN_DEBUG,
2359 "drained %d bytes to clear DRQ.\n", count);
2360
2361 }
2362 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2363
2364 /**
2365 * ata_sff_error_handler - Stock error handler for BMDMA controller
2366 * @ap: port to handle error for
2367 *
2368 * Stock error handler for SFF controller. It can handle both
2369 * PATA and SATA controllers. Many controllers should be able to
2370 * use this EH as-is or with some added handling before and
2371 * after.
2372 *
2373 * LOCKING:
2374 * Kernel thread context (may sleep)
2375 */
2376 void ata_sff_error_handler(struct ata_port *ap)
2377 {
2378 ata_reset_fn_t softreset = ap->ops->softreset;
2379 ata_reset_fn_t hardreset = ap->ops->hardreset;
2380 struct ata_queued_cmd *qc;
2381 unsigned long flags;
2382 bool thaw = false;
2383
2384 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2385 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2386 qc = NULL;
2387
2388 /* reset PIO HSM and stop DMA engine */
2389 spin_lock_irqsave(ap->lock, flags);
2390
2391 ap->hsm_task_state = HSM_ST_IDLE;
2392
2393 if (ap->ioaddr.bmdma_addr &&
2394 qc && (qc->tf.protocol == ATA_PROT_DMA ||
2395 qc->tf.protocol == ATAPI_PROT_DMA)) {
2396 u8 host_stat;
2397
2398 host_stat = ap->ops->bmdma_status(ap);
2399
2400 /* BMDMA controllers indicate host bus error by
2401 * setting DMA_ERR bit and timing out. As it wasn't
2402 * really a timeout event, adjust error mask and
2403 * cancel frozen state.
2404 */
2405 if (qc->err_mask == AC_ERR_TIMEOUT
2406 && (host_stat & ATA_DMA_ERR)) {
2407 qc->err_mask = AC_ERR_HOST_BUS;
2408 thaw = true;
2409 }
2410
2411 ap->ops->bmdma_stop(qc);
2412
2413 /* if we're gonna thaw, make sure IRQ is clear */
2414 if (thaw) {
2415 ap->ops->sff_check_status(ap);
2416 ap->ops->sff_irq_clear(ap);
2417
2418 spin_unlock_irqrestore(ap->lock, flags);
2419 ata_eh_thaw_port(ap);
2420 spin_lock_irqsave(ap->lock, flags);
2421 }
2422 }
2423
2424 /* We *MUST* do FIFO draining before we issue a reset as several
2425 * devices helpfully clear their internal state and will lock solid
2426 * if we touch the data port post reset. Pass qc in case anyone wants
2427 * to do different PIO/DMA recovery or has per command fixups
2428 */
2429 if (ap->ops->drain_fifo)
2430 ap->ops->drain_fifo(qc);
2431
2432 spin_unlock_irqrestore(ap->lock, flags);
2433
2434 /* PIO and DMA engines have been stopped, perform recovery */
2435
2436 /* Ignore ata_sff_softreset if ctl isn't accessible and
2437 * built-in hardresets if SCR access isn't available.
2438 */
2439 if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr)
2440 softreset = NULL;
2441 if (ata_is_builtin_hardreset(hardreset) && !sata_scr_valid(&ap->link))
2442 hardreset = NULL;
2443
2444 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2445 ap->ops->postreset);
2446 }
2447 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2448
2449 /**
2450 * ata_sff_post_internal_cmd - Stock post_internal_cmd for SFF controller
2451 * @qc: internal command to clean up
2452 *
2453 * LOCKING:
2454 * Kernel thread context (may sleep)
2455 */
2456 void ata_sff_post_internal_cmd(struct ata_queued_cmd *qc)
2457 {
2458 struct ata_port *ap = qc->ap;
2459 unsigned long flags;
2460
2461 spin_lock_irqsave(ap->lock, flags);
2462
2463 ap->hsm_task_state = HSM_ST_IDLE;
2464
2465 if (ap->ioaddr.bmdma_addr)
2466 ap->ops->bmdma_stop(qc);
2467
2468 spin_unlock_irqrestore(ap->lock, flags);
2469 }
2470 EXPORT_SYMBOL_GPL(ata_sff_post_internal_cmd);
2471
2472 /**
2473 * ata_sff_port_start - Set port up for dma.
2474 * @ap: Port to initialize
2475 *
2476 * Called just after data structures for each port are
2477 * initialized. Allocates space for PRD table if the device
2478 * is DMA capable SFF.
2479 *
2480 * May be used as the port_start() entry in ata_port_operations.
2481 *
2482 * LOCKING:
2483 * Inherited from caller.
2484 */
2485 int ata_sff_port_start(struct ata_port *ap)
2486 {
2487 if (ap->ioaddr.bmdma_addr)
2488 return ata_port_start(ap);
2489 return 0;
2490 }
2491 EXPORT_SYMBOL_GPL(ata_sff_port_start);
2492
2493 /**
2494 * ata_sff_port_start32 - Set port up for dma.
2495 * @ap: Port to initialize
2496 *
2497 * Called just after data structures for each port are
2498 * initialized. Allocates space for PRD table if the device
2499 * is DMA capable SFF.
2500 *
2501 * May be used as the port_start() entry in ata_port_operations for
2502 * devices that are capable of 32bit PIO.
2503 *
2504 * LOCKING:
2505 * Inherited from caller.
2506 */
2507 int ata_sff_port_start32(struct ata_port *ap)
2508 {
2509 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
2510 if (ap->ioaddr.bmdma_addr)
2511 return ata_port_start(ap);
2512 return 0;
2513 }
2514 EXPORT_SYMBOL_GPL(ata_sff_port_start32);
2515
2516 /**
2517 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
2518 * @ioaddr: IO address structure to be initialized
2519 *
2520 * Utility function which initializes data_addr, error_addr,
2521 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2522 * device_addr, status_addr, and command_addr to standard offsets
2523 * relative to cmd_addr.
2524 *
2525 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2526 */
2527 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2528 {
2529 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2530 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2531 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2532 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2533 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2534 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2535 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2536 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2537 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2538 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2539 }
2540 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2541
2542 unsigned long ata_bmdma_mode_filter(struct ata_device *adev,
2543 unsigned long xfer_mask)
2544 {
2545 /* Filter out DMA modes if the device has been configured by
2546 the BIOS as PIO only */
2547
2548 if (adev->link->ap->ioaddr.bmdma_addr == NULL)
2549 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2550 return xfer_mask;
2551 }
2552 EXPORT_SYMBOL_GPL(ata_bmdma_mode_filter);
2553
2554 /**
2555 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2556 * @qc: Info associated with this ATA transaction.
2557 *
2558 * LOCKING:
2559 * spin_lock_irqsave(host lock)
2560 */
2561 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2562 {
2563 struct ata_port *ap = qc->ap;
2564 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2565 u8 dmactl;
2566
2567 /* load PRD table addr. */
2568 mb(); /* make sure PRD table writes are visible to controller */
2569 iowrite32(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2570
2571 /* specify data direction, triple-check start bit is clear */
2572 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2573 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2574 if (!rw)
2575 dmactl |= ATA_DMA_WR;
2576 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2577
2578 /* issue r/w command */
2579 ap->ops->sff_exec_command(ap, &qc->tf);
2580 }
2581 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2582
2583 /**
2584 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
2585 * @qc: Info associated with this ATA transaction.
2586 *
2587 * LOCKING:
2588 * spin_lock_irqsave(host lock)
2589 */
2590 void ata_bmdma_start(struct ata_queued_cmd *qc)
2591 {
2592 struct ata_port *ap = qc->ap;
2593 u8 dmactl;
2594
2595 /* start host DMA transaction */
2596 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2597 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2598
2599 /* Strictly, one may wish to issue an ioread8() here, to
2600 * flush the mmio write. However, control also passes
2601 * to the hardware at this point, and it will interrupt
2602 * us when we are to resume control. So, in effect,
2603 * we don't care when the mmio write flushes.
2604 * Further, a read of the DMA status register _immediately_
2605 * following the write may not be what certain flaky hardware
2606 * is expected, so I think it is best to not add a readb()
2607 * without first all the MMIO ATA cards/mobos.
2608 * Or maybe I'm just being paranoid.
2609 *
2610 * FIXME: The posting of this write means I/O starts are
2611 * unneccessarily delayed for MMIO
2612 */
2613 }
2614 EXPORT_SYMBOL_GPL(ata_bmdma_start);
2615
2616 /**
2617 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
2618 * @qc: Command we are ending DMA for
2619 *
2620 * Clears the ATA_DMA_START flag in the dma control register
2621 *
2622 * May be used as the bmdma_stop() entry in ata_port_operations.
2623 *
2624 * LOCKING:
2625 * spin_lock_irqsave(host lock)
2626 */
2627 void ata_bmdma_stop(struct ata_queued_cmd *qc)
2628 {
2629 struct ata_port *ap = qc->ap;
2630 void __iomem *mmio = ap->ioaddr.bmdma_addr;
2631
2632 /* clear start/stop bit */
2633 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
2634 mmio + ATA_DMA_CMD);
2635
2636 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
2637 ata_sff_dma_pause(ap);
2638 }
2639 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
2640
2641 /**
2642 * ata_bmdma_status - Read PCI IDE BMDMA status
2643 * @ap: Port associated with this ATA transaction.
2644 *
2645 * Read and return BMDMA status register.
2646 *
2647 * May be used as the bmdma_status() entry in ata_port_operations.
2648 *
2649 * LOCKING:
2650 * spin_lock_irqsave(host lock)
2651 */
2652 u8 ata_bmdma_status(struct ata_port *ap)
2653 {
2654 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
2655 }
2656 EXPORT_SYMBOL_GPL(ata_bmdma_status);
2657
2658 #ifdef CONFIG_PCI
2659
2660 /**
2661 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
2662 * @pdev: PCI device
2663 *
2664 * Some PCI ATA devices report simplex mode but in fact can be told to
2665 * enter non simplex mode. This implements the necessary logic to
2666 * perform the task on such devices. Calling it on other devices will
2667 * have -undefined- behaviour.
2668 */
2669 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
2670 {
2671 unsigned long bmdma = pci_resource_start(pdev, 4);
2672 u8 simplex;
2673
2674 if (bmdma == 0)
2675 return -ENOENT;
2676
2677 simplex = inb(bmdma + 0x02);
2678 outb(simplex & 0x60, bmdma + 0x02);
2679 simplex = inb(bmdma + 0x02);
2680 if (simplex & 0x80)
2681 return -EOPNOTSUPP;
2682 return 0;
2683 }
2684 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
2685
2686 /**
2687 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
2688 * @host: target ATA host
2689 *
2690 * Acquire PCI BMDMA resources and initialize @host accordingly.
2691 *
2692 * LOCKING:
2693 * Inherited from calling layer (may sleep).
2694 *
2695 * RETURNS:
2696 * 0 on success, -errno otherwise.
2697 */
2698 int ata_pci_bmdma_init(struct ata_host *host)
2699 {
2700 struct device *gdev = host->dev;
2701 struct pci_dev *pdev = to_pci_dev(gdev);
2702 int i, rc;
2703
2704 /* No BAR4 allocation: No DMA */
2705 if (pci_resource_start(pdev, 4) == 0)
2706 return 0;
2707
2708 /* TODO: If we get no DMA mask we should fall back to PIO */
2709 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
2710 if (rc)
2711 return rc;
2712 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
2713 if (rc)
2714 return rc;
2715
2716 /* request and iomap DMA region */
2717 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
2718 if (rc) {
2719 dev_printk(KERN_ERR, gdev, "failed to request/iomap BAR4\n");
2720 return -ENOMEM;
2721 }
2722 host->iomap = pcim_iomap_table(pdev);
2723
2724 for (i = 0; i < 2; i++) {
2725 struct ata_port *ap = host->ports[i];
2726 void __iomem *bmdma = host->iomap[4] + 8 * i;
2727
2728 if (ata_port_is_dummy(ap))
2729 continue;
2730
2731 ap->ioaddr.bmdma_addr = bmdma;
2732 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
2733 (ioread8(bmdma + 2) & 0x80))
2734 host->flags |= ATA_HOST_SIMPLEX;
2735
2736 ata_port_desc(ap, "bmdma 0x%llx",
2737 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
2738 }
2739
2740 return 0;
2741 }
2742 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
2743
2744 static int ata_resources_present(struct pci_dev *pdev, int port)
2745 {
2746 int i;
2747
2748 /* Check the PCI resources for this channel are enabled */
2749 port = port * 2;
2750 for (i = 0; i < 2; i++) {
2751 if (pci_resource_start(pdev, port + i) == 0 ||
2752 pci_resource_len(pdev, port + i) == 0)
2753 return 0;
2754 }
2755 return 1;
2756 }
2757
2758 /**
2759 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2760 * @host: target ATA host
2761 *
2762 * Acquire native PCI ATA resources for @host and initialize the
2763 * first two ports of @host accordingly. Ports marked dummy are
2764 * skipped and allocation failure makes the port dummy.
2765 *
2766 * Note that native PCI resources are valid even for legacy hosts
2767 * as we fix up pdev resources array early in boot, so this
2768 * function can be used for both native and legacy SFF hosts.
2769 *
2770 * LOCKING:
2771 * Inherited from calling layer (may sleep).
2772 *
2773 * RETURNS:
2774 * 0 if at least one port is initialized, -ENODEV if no port is
2775 * available.
2776 */
2777 int ata_pci_sff_init_host(struct ata_host *host)
2778 {
2779 struct device *gdev = host->dev;
2780 struct pci_dev *pdev = to_pci_dev(gdev);
2781 unsigned int mask = 0;
2782 int i, rc;
2783
2784 /* request, iomap BARs and init port addresses accordingly */
2785 for (i = 0; i < 2; i++) {
2786 struct ata_port *ap = host->ports[i];
2787 int base = i * 2;
2788 void __iomem * const *iomap;
2789
2790 if (ata_port_is_dummy(ap))
2791 continue;
2792
2793 /* Discard disabled ports. Some controllers show
2794 * their unused channels this way. Disabled ports are
2795 * made dummy.
2796 */
2797 if (!ata_resources_present(pdev, i)) {
2798 ap->ops = &ata_dummy_port_ops;
2799 continue;
2800 }
2801
2802 rc = pcim_iomap_regions(pdev, 0x3 << base,
2803 dev_driver_string(gdev));
2804 if (rc) {
2805 dev_printk(KERN_WARNING, gdev,
2806 "failed to request/iomap BARs for port %d "
2807 "(errno=%d)\n", i, rc);
2808 if (rc == -EBUSY)
2809 pcim_pin_device(pdev);
2810 ap->ops = &ata_dummy_port_ops;
2811 continue;
2812 }
2813 host->iomap = iomap = pcim_iomap_table(pdev);
2814
2815 ap->ioaddr.cmd_addr = iomap[base];
2816 ap->ioaddr.altstatus_addr =
2817 ap->ioaddr.ctl_addr = (void __iomem *)
2818 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2819 ata_sff_std_ports(&ap->ioaddr);
2820
2821 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2822 (unsigned long long)pci_resource_start(pdev, base),
2823 (unsigned long long)pci_resource_start(pdev, base + 1));
2824
2825 mask |= 1 << i;
2826 }
2827
2828 if (!mask) {
2829 dev_printk(KERN_ERR, gdev, "no available native port\n");
2830 return -ENODEV;
2831 }
2832
2833 return 0;
2834 }
2835 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2836
2837 /**
2838 * ata_pci_sff_prepare_host - helper to prepare native PCI ATA host
2839 * @pdev: target PCI device
2840 * @ppi: array of port_info, must be enough for two ports
2841 * @r_host: out argument for the initialized ATA host
2842 *
2843 * Helper to allocate ATA host for @pdev, acquire all native PCI
2844 * resources and initialize it accordingly in one go.
2845 *
2846 * LOCKING:
2847 * Inherited from calling layer (may sleep).
2848 *
2849 * RETURNS:
2850 * 0 on success, -errno otherwise.
2851 */
2852 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2853 const struct ata_port_info * const *ppi,
2854 struct ata_host **r_host)
2855 {
2856 struct ata_host *host;
2857 int rc;
2858
2859 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2860 return -ENOMEM;
2861
2862 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2863 if (!host) {
2864 dev_printk(KERN_ERR, &pdev->dev,
2865 "failed to allocate ATA host\n");
2866 rc = -ENOMEM;
2867 goto err_out;
2868 }
2869
2870 rc = ata_pci_sff_init_host(host);
2871 if (rc)
2872 goto err_out;
2873
2874 /* init DMA related stuff */
2875 rc = ata_pci_bmdma_init(host);
2876 if (rc)
2877 goto err_bmdma;
2878
2879 devres_remove_group(&pdev->dev, NULL);
2880 *r_host = host;
2881 return 0;
2882
2883 err_bmdma:
2884 /* This is necessary because PCI and iomap resources are
2885 * merged and releasing the top group won't release the
2886 * acquired resources if some of those have been acquired
2887 * before entering this function.
2888 */
2889 pcim_iounmap_regions(pdev, 0xf);
2890 err_out:
2891 devres_release_group(&pdev->dev, NULL);
2892 return rc;
2893 }
2894 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2895
2896 /**
2897 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2898 * @host: target SFF ATA host
2899 * @irq_handler: irq_handler used when requesting IRQ(s)
2900 * @sht: scsi_host_template to use when registering the host
2901 *
2902 * This is the counterpart of ata_host_activate() for SFF ATA
2903 * hosts. This separate helper is necessary because SFF hosts
2904 * use two separate interrupts in legacy mode.
2905 *
2906 * LOCKING:
2907 * Inherited from calling layer (may sleep).
2908 *
2909 * RETURNS:
2910 * 0 on success, -errno otherwise.
2911 */
2912 int ata_pci_sff_activate_host(struct ata_host *host,
2913 irq_handler_t irq_handler,
2914 struct scsi_host_template *sht)
2915 {
2916 struct device *dev = host->dev;
2917 struct pci_dev *pdev = to_pci_dev(dev);
2918 const char *drv_name = dev_driver_string(host->dev);
2919 int legacy_mode = 0, rc;
2920
2921 rc = ata_host_start(host);
2922 if (rc)
2923 return rc;
2924
2925 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2926 u8 tmp8, mask;
2927
2928 /* TODO: What if one channel is in native mode ... */
2929 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2930 mask = (1 << 2) | (1 << 0);
2931 if ((tmp8 & mask) != mask)
2932 legacy_mode = 1;
2933 #if defined(CONFIG_NO_ATA_LEGACY)
2934 /* Some platforms with PCI limits cannot address compat
2935 port space. In that case we punt if their firmware has
2936 left a device in compatibility mode */
2937 if (legacy_mode) {
2938 printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n");
2939 return -EOPNOTSUPP;
2940 }
2941 #endif
2942 }
2943
2944 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2945 return -ENOMEM;
2946
2947 if (!legacy_mode && pdev->irq) {
2948 rc = devm_request_irq(dev, pdev->irq, irq_handler,
2949 IRQF_SHARED, drv_name, host);
2950 if (rc)
2951 goto out;
2952
2953 ata_port_desc(host->ports[0], "irq %d", pdev->irq);
2954 ata_port_desc(host->ports[1], "irq %d", pdev->irq);
2955 } else if (legacy_mode) {
2956 if (!ata_port_is_dummy(host->ports[0])) {
2957 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2958 irq_handler, IRQF_SHARED,
2959 drv_name, host);
2960 if (rc)
2961 goto out;
2962
2963 ata_port_desc(host->ports[0], "irq %d",
2964 ATA_PRIMARY_IRQ(pdev));
2965 }
2966
2967 if (!ata_port_is_dummy(host->ports[1])) {
2968 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2969 irq_handler, IRQF_SHARED,
2970 drv_name, host);
2971 if (rc)
2972 goto out;
2973
2974 ata_port_desc(host->ports[1], "irq %d",
2975 ATA_SECONDARY_IRQ(pdev));
2976 }
2977 }
2978
2979 rc = ata_host_register(host, sht);
2980 out:
2981 if (rc == 0)
2982 devres_remove_group(dev, NULL);
2983 else
2984 devres_release_group(dev, NULL);
2985
2986 return rc;
2987 }
2988 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2989
2990 /**
2991 * ata_pci_sff_init_one - Initialize/register PCI IDE host controller
2992 * @pdev: Controller to be initialized
2993 * @ppi: array of port_info, must be enough for two ports
2994 * @sht: scsi_host_template to use when registering the host
2995 * @host_priv: host private_data
2996 * @hflag: host flags
2997 *
2998 * This is a helper function which can be called from a driver's
2999 * xxx_init_one() probe function if the hardware uses traditional
3000 * IDE taskfile registers.
3001 *
3002 * This function calls pci_enable_device(), reserves its register
3003 * regions, sets the dma mask, enables bus master mode, and calls
3004 * ata_device_add()
3005 *
3006 * ASSUMPTION:
3007 * Nobody makes a single channel controller that appears solely as
3008 * the secondary legacy port on PCI.
3009 *
3010 * LOCKING:
3011 * Inherited from PCI layer (may sleep).
3012 *
3013 * RETURNS:
3014 * Zero on success, negative on errno-based value on error.
3015 */
3016 int ata_pci_sff_init_one(struct pci_dev *pdev,
3017 const struct ata_port_info * const *ppi,
3018 struct scsi_host_template *sht, void *host_priv, int hflag)
3019 {
3020 struct device *dev = &pdev->dev;
3021 const struct ata_port_info *pi = NULL;
3022 struct ata_host *host = NULL;
3023 int i, rc;
3024
3025 DPRINTK("ENTER\n");
3026
3027 /* look up the first valid port_info */
3028 for (i = 0; i < 2 && ppi[i]; i++) {
3029 if (ppi[i]->port_ops != &ata_dummy_port_ops) {
3030 pi = ppi[i];
3031 break;
3032 }
3033 }
3034
3035 if (!pi) {
3036 dev_printk(KERN_ERR, &pdev->dev,
3037 "no valid port_info specified\n");
3038 return -EINVAL;
3039 }
3040
3041 if (!devres_open_group(dev, NULL, GFP_KERNEL))
3042 return -ENOMEM;
3043
3044 rc = pcim_enable_device(pdev);
3045 if (rc)
3046 goto out;
3047
3048 /* prepare and activate SFF host */
3049 rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
3050 if (rc)
3051 goto out;
3052 host->private_data = host_priv;
3053 host->flags |= hflag;
3054
3055 pci_set_master(pdev);
3056 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
3057 out:
3058 if (rc == 0)
3059 devres_remove_group(&pdev->dev, NULL);
3060 else
3061 devres_release_group(&pdev->dev, NULL);
3062
3063 return rc;
3064 }
3065 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
3066
3067 #endif /* CONFIG_PCI */
This page took 0.088527 seconds and 4 git commands to generate.