libata-sff: separate out BMDMA irq handler
[deliverable/linux.git] / drivers / ata / libata-sff.c
1 /*
2 * libata-sff.c - helper library for PCI IDE BMDMA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2006 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/pci.h>
38 #include <linux/libata.h>
39 #include <linux/highmem.h>
40
41 #include "libata.h"
42
43 static struct workqueue_struct *ata_sff_wq;
44
45 const struct ata_port_operations ata_sff_port_ops = {
46 .inherits = &ata_base_port_ops,
47
48 .qc_prep = ata_noop_qc_prep,
49 .qc_issue = ata_sff_qc_issue,
50 .qc_fill_rtf = ata_sff_qc_fill_rtf,
51
52 .freeze = ata_sff_freeze,
53 .thaw = ata_sff_thaw,
54 .prereset = ata_sff_prereset,
55 .softreset = ata_sff_softreset,
56 .hardreset = sata_sff_hardreset,
57 .postreset = ata_sff_postreset,
58 .error_handler = ata_sff_error_handler,
59
60 .sff_dev_select = ata_sff_dev_select,
61 .sff_check_status = ata_sff_check_status,
62 .sff_tf_load = ata_sff_tf_load,
63 .sff_tf_read = ata_sff_tf_read,
64 .sff_exec_command = ata_sff_exec_command,
65 .sff_data_xfer = ata_sff_data_xfer,
66 .sff_drain_fifo = ata_sff_drain_fifo,
67
68 .lost_interrupt = ata_sff_lost_interrupt,
69 };
70 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
71
72 /**
73 * ata_sff_check_status - Read device status reg & clear interrupt
74 * @ap: port where the device is
75 *
76 * Reads ATA taskfile status register for currently-selected device
77 * and return its value. This also clears pending interrupts
78 * from this device
79 *
80 * LOCKING:
81 * Inherited from caller.
82 */
83 u8 ata_sff_check_status(struct ata_port *ap)
84 {
85 return ioread8(ap->ioaddr.status_addr);
86 }
87 EXPORT_SYMBOL_GPL(ata_sff_check_status);
88
89 /**
90 * ata_sff_altstatus - Read device alternate status reg
91 * @ap: port where the device is
92 *
93 * Reads ATA taskfile alternate status register for
94 * currently-selected device and return its value.
95 *
96 * Note: may NOT be used as the check_altstatus() entry in
97 * ata_port_operations.
98 *
99 * LOCKING:
100 * Inherited from caller.
101 */
102 static u8 ata_sff_altstatus(struct ata_port *ap)
103 {
104 if (ap->ops->sff_check_altstatus)
105 return ap->ops->sff_check_altstatus(ap);
106
107 return ioread8(ap->ioaddr.altstatus_addr);
108 }
109
110 /**
111 * ata_sff_irq_status - Check if the device is busy
112 * @ap: port where the device is
113 *
114 * Determine if the port is currently busy. Uses altstatus
115 * if available in order to avoid clearing shared IRQ status
116 * when finding an IRQ source. Non ctl capable devices don't
117 * share interrupt lines fortunately for us.
118 *
119 * LOCKING:
120 * Inherited from caller.
121 */
122 static u8 ata_sff_irq_status(struct ata_port *ap)
123 {
124 u8 status;
125
126 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
127 status = ata_sff_altstatus(ap);
128 /* Not us: We are busy */
129 if (status & ATA_BUSY)
130 return status;
131 }
132 /* Clear INTRQ latch */
133 status = ap->ops->sff_check_status(ap);
134 return status;
135 }
136
137 /**
138 * ata_sff_sync - Flush writes
139 * @ap: Port to wait for.
140 *
141 * CAUTION:
142 * If we have an mmio device with no ctl and no altstatus
143 * method this will fail. No such devices are known to exist.
144 *
145 * LOCKING:
146 * Inherited from caller.
147 */
148
149 static void ata_sff_sync(struct ata_port *ap)
150 {
151 if (ap->ops->sff_check_altstatus)
152 ap->ops->sff_check_altstatus(ap);
153 else if (ap->ioaddr.altstatus_addr)
154 ioread8(ap->ioaddr.altstatus_addr);
155 }
156
157 /**
158 * ata_sff_pause - Flush writes and wait 400nS
159 * @ap: Port to pause for.
160 *
161 * CAUTION:
162 * If we have an mmio device with no ctl and no altstatus
163 * method this will fail. No such devices are known to exist.
164 *
165 * LOCKING:
166 * Inherited from caller.
167 */
168
169 void ata_sff_pause(struct ata_port *ap)
170 {
171 ata_sff_sync(ap);
172 ndelay(400);
173 }
174 EXPORT_SYMBOL_GPL(ata_sff_pause);
175
176 /**
177 * ata_sff_dma_pause - Pause before commencing DMA
178 * @ap: Port to pause for.
179 *
180 * Perform I/O fencing and ensure sufficient cycle delays occur
181 * for the HDMA1:0 transition
182 */
183
184 void ata_sff_dma_pause(struct ata_port *ap)
185 {
186 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
187 /* An altstatus read will cause the needed delay without
188 messing up the IRQ status */
189 ata_sff_altstatus(ap);
190 return;
191 }
192 /* There are no DMA controllers without ctl. BUG here to ensure
193 we never violate the HDMA1:0 transition timing and risk
194 corruption. */
195 BUG();
196 }
197 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
198
199 /**
200 * ata_sff_busy_sleep - sleep until BSY clears, or timeout
201 * @ap: port containing status register to be polled
202 * @tmout_pat: impatience timeout in msecs
203 * @tmout: overall timeout in msecs
204 *
205 * Sleep until ATA Status register bit BSY clears,
206 * or a timeout occurs.
207 *
208 * LOCKING:
209 * Kernel thread context (may sleep).
210 *
211 * RETURNS:
212 * 0 on success, -errno otherwise.
213 */
214 int ata_sff_busy_sleep(struct ata_port *ap,
215 unsigned long tmout_pat, unsigned long tmout)
216 {
217 unsigned long timer_start, timeout;
218 u8 status;
219
220 status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
221 timer_start = jiffies;
222 timeout = ata_deadline(timer_start, tmout_pat);
223 while (status != 0xff && (status & ATA_BUSY) &&
224 time_before(jiffies, timeout)) {
225 msleep(50);
226 status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
227 }
228
229 if (status != 0xff && (status & ATA_BUSY))
230 ata_port_printk(ap, KERN_WARNING,
231 "port is slow to respond, please be patient "
232 "(Status 0x%x)\n", status);
233
234 timeout = ata_deadline(timer_start, tmout);
235 while (status != 0xff && (status & ATA_BUSY) &&
236 time_before(jiffies, timeout)) {
237 msleep(50);
238 status = ap->ops->sff_check_status(ap);
239 }
240
241 if (status == 0xff)
242 return -ENODEV;
243
244 if (status & ATA_BUSY) {
245 ata_port_printk(ap, KERN_ERR, "port failed to respond "
246 "(%lu secs, Status 0x%x)\n",
247 DIV_ROUND_UP(tmout, 1000), status);
248 return -EBUSY;
249 }
250
251 return 0;
252 }
253 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
254
255 static int ata_sff_check_ready(struct ata_link *link)
256 {
257 u8 status = link->ap->ops->sff_check_status(link->ap);
258
259 return ata_check_ready(status);
260 }
261
262 /**
263 * ata_sff_wait_ready - sleep until BSY clears, or timeout
264 * @link: SFF link to wait ready status for
265 * @deadline: deadline jiffies for the operation
266 *
267 * Sleep until ATA Status register bit BSY clears, or timeout
268 * occurs.
269 *
270 * LOCKING:
271 * Kernel thread context (may sleep).
272 *
273 * RETURNS:
274 * 0 on success, -errno otherwise.
275 */
276 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
277 {
278 return ata_wait_ready(link, deadline, ata_sff_check_ready);
279 }
280 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
281
282 /**
283 * ata_sff_set_devctl - Write device control reg
284 * @ap: port where the device is
285 * @ctl: value to write
286 *
287 * Writes ATA taskfile device control register.
288 *
289 * Note: may NOT be used as the sff_set_devctl() entry in
290 * ata_port_operations.
291 *
292 * LOCKING:
293 * Inherited from caller.
294 */
295 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
296 {
297 if (ap->ops->sff_set_devctl)
298 ap->ops->sff_set_devctl(ap, ctl);
299 else
300 iowrite8(ctl, ap->ioaddr.ctl_addr);
301 }
302
303 /**
304 * ata_sff_dev_select - Select device 0/1 on ATA bus
305 * @ap: ATA channel to manipulate
306 * @device: ATA device (numbered from zero) to select
307 *
308 * Use the method defined in the ATA specification to
309 * make either device 0, or device 1, active on the
310 * ATA channel. Works with both PIO and MMIO.
311 *
312 * May be used as the dev_select() entry in ata_port_operations.
313 *
314 * LOCKING:
315 * caller.
316 */
317 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
318 {
319 u8 tmp;
320
321 if (device == 0)
322 tmp = ATA_DEVICE_OBS;
323 else
324 tmp = ATA_DEVICE_OBS | ATA_DEV1;
325
326 iowrite8(tmp, ap->ioaddr.device_addr);
327 ata_sff_pause(ap); /* needed; also flushes, for mmio */
328 }
329 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
330
331 /**
332 * ata_dev_select - Select device 0/1 on ATA bus
333 * @ap: ATA channel to manipulate
334 * @device: ATA device (numbered from zero) to select
335 * @wait: non-zero to wait for Status register BSY bit to clear
336 * @can_sleep: non-zero if context allows sleeping
337 *
338 * Use the method defined in the ATA specification to
339 * make either device 0, or device 1, active on the
340 * ATA channel.
341 *
342 * This is a high-level version of ata_sff_dev_select(), which
343 * additionally provides the services of inserting the proper
344 * pauses and status polling, where needed.
345 *
346 * LOCKING:
347 * caller.
348 */
349 static void ata_dev_select(struct ata_port *ap, unsigned int device,
350 unsigned int wait, unsigned int can_sleep)
351 {
352 if (ata_msg_probe(ap))
353 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
354 "device %u, wait %u\n", device, wait);
355
356 if (wait)
357 ata_wait_idle(ap);
358
359 ap->ops->sff_dev_select(ap, device);
360
361 if (wait) {
362 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
363 msleep(150);
364 ata_wait_idle(ap);
365 }
366 }
367
368 /**
369 * ata_sff_irq_on - Enable interrupts on a port.
370 * @ap: Port on which interrupts are enabled.
371 *
372 * Enable interrupts on a legacy IDE device using MMIO or PIO,
373 * wait for idle, clear any pending interrupts.
374 *
375 * Note: may NOT be used as the sff_irq_on() entry in
376 * ata_port_operations.
377 *
378 * LOCKING:
379 * Inherited from caller.
380 */
381 void ata_sff_irq_on(struct ata_port *ap)
382 {
383 struct ata_ioports *ioaddr = &ap->ioaddr;
384
385 if (ap->ops->sff_irq_on) {
386 ap->ops->sff_irq_on(ap);
387 return;
388 }
389
390 ap->ctl &= ~ATA_NIEN;
391 ap->last_ctl = ap->ctl;
392
393 if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
394 ata_sff_set_devctl(ap, ap->ctl);
395 ata_wait_idle(ap);
396
397 if (ap->ops->sff_irq_clear)
398 ap->ops->sff_irq_clear(ap);
399 }
400 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
401
402 /**
403 * ata_sff_tf_load - send taskfile registers to host controller
404 * @ap: Port to which output is sent
405 * @tf: ATA taskfile register set
406 *
407 * Outputs ATA taskfile to standard ATA host controller.
408 *
409 * LOCKING:
410 * Inherited from caller.
411 */
412 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
413 {
414 struct ata_ioports *ioaddr = &ap->ioaddr;
415 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
416
417 if (tf->ctl != ap->last_ctl) {
418 if (ioaddr->ctl_addr)
419 iowrite8(tf->ctl, ioaddr->ctl_addr);
420 ap->last_ctl = tf->ctl;
421 }
422
423 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
424 WARN_ON_ONCE(!ioaddr->ctl_addr);
425 iowrite8(tf->hob_feature, ioaddr->feature_addr);
426 iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
427 iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
428 iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
429 iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
430 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
431 tf->hob_feature,
432 tf->hob_nsect,
433 tf->hob_lbal,
434 tf->hob_lbam,
435 tf->hob_lbah);
436 }
437
438 if (is_addr) {
439 iowrite8(tf->feature, ioaddr->feature_addr);
440 iowrite8(tf->nsect, ioaddr->nsect_addr);
441 iowrite8(tf->lbal, ioaddr->lbal_addr);
442 iowrite8(tf->lbam, ioaddr->lbam_addr);
443 iowrite8(tf->lbah, ioaddr->lbah_addr);
444 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
445 tf->feature,
446 tf->nsect,
447 tf->lbal,
448 tf->lbam,
449 tf->lbah);
450 }
451
452 if (tf->flags & ATA_TFLAG_DEVICE) {
453 iowrite8(tf->device, ioaddr->device_addr);
454 VPRINTK("device 0x%X\n", tf->device);
455 }
456 }
457 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
458
459 /**
460 * ata_sff_tf_read - input device's ATA taskfile shadow registers
461 * @ap: Port from which input is read
462 * @tf: ATA taskfile register set for storing input
463 *
464 * Reads ATA taskfile registers for currently-selected device
465 * into @tf. Assumes the device has a fully SFF compliant task file
466 * layout and behaviour. If you device does not (eg has a different
467 * status method) then you will need to provide a replacement tf_read
468 *
469 * LOCKING:
470 * Inherited from caller.
471 */
472 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
473 {
474 struct ata_ioports *ioaddr = &ap->ioaddr;
475
476 tf->command = ata_sff_check_status(ap);
477 tf->feature = ioread8(ioaddr->error_addr);
478 tf->nsect = ioread8(ioaddr->nsect_addr);
479 tf->lbal = ioread8(ioaddr->lbal_addr);
480 tf->lbam = ioread8(ioaddr->lbam_addr);
481 tf->lbah = ioread8(ioaddr->lbah_addr);
482 tf->device = ioread8(ioaddr->device_addr);
483
484 if (tf->flags & ATA_TFLAG_LBA48) {
485 if (likely(ioaddr->ctl_addr)) {
486 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
487 tf->hob_feature = ioread8(ioaddr->error_addr);
488 tf->hob_nsect = ioread8(ioaddr->nsect_addr);
489 tf->hob_lbal = ioread8(ioaddr->lbal_addr);
490 tf->hob_lbam = ioread8(ioaddr->lbam_addr);
491 tf->hob_lbah = ioread8(ioaddr->lbah_addr);
492 iowrite8(tf->ctl, ioaddr->ctl_addr);
493 ap->last_ctl = tf->ctl;
494 } else
495 WARN_ON_ONCE(1);
496 }
497 }
498 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
499
500 /**
501 * ata_sff_exec_command - issue ATA command to host controller
502 * @ap: port to which command is being issued
503 * @tf: ATA taskfile register set
504 *
505 * Issues ATA command, with proper synchronization with interrupt
506 * handler / other threads.
507 *
508 * LOCKING:
509 * spin_lock_irqsave(host lock)
510 */
511 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
512 {
513 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
514
515 iowrite8(tf->command, ap->ioaddr.command_addr);
516 ata_sff_pause(ap);
517 }
518 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
519
520 /**
521 * ata_tf_to_host - issue ATA taskfile to host controller
522 * @ap: port to which command is being issued
523 * @tf: ATA taskfile register set
524 *
525 * Issues ATA taskfile register set to ATA host controller,
526 * with proper synchronization with interrupt handler and
527 * other threads.
528 *
529 * LOCKING:
530 * spin_lock_irqsave(host lock)
531 */
532 static inline void ata_tf_to_host(struct ata_port *ap,
533 const struct ata_taskfile *tf)
534 {
535 ap->ops->sff_tf_load(ap, tf);
536 ap->ops->sff_exec_command(ap, tf);
537 }
538
539 /**
540 * ata_sff_data_xfer - Transfer data by PIO
541 * @dev: device to target
542 * @buf: data buffer
543 * @buflen: buffer length
544 * @rw: read/write
545 *
546 * Transfer data from/to the device data register by PIO.
547 *
548 * LOCKING:
549 * Inherited from caller.
550 *
551 * RETURNS:
552 * Bytes consumed.
553 */
554 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
555 unsigned int buflen, int rw)
556 {
557 struct ata_port *ap = dev->link->ap;
558 void __iomem *data_addr = ap->ioaddr.data_addr;
559 unsigned int words = buflen >> 1;
560
561 /* Transfer multiple of 2 bytes */
562 if (rw == READ)
563 ioread16_rep(data_addr, buf, words);
564 else
565 iowrite16_rep(data_addr, buf, words);
566
567 /* Transfer trailing byte, if any. */
568 if (unlikely(buflen & 0x01)) {
569 unsigned char pad[2];
570
571 /* Point buf to the tail of buffer */
572 buf += buflen - 1;
573
574 /*
575 * Use io*16_rep() accessors here as well to avoid pointlessly
576 * swapping bytes to and from on the big endian machines...
577 */
578 if (rw == READ) {
579 ioread16_rep(data_addr, pad, 1);
580 *buf = pad[0];
581 } else {
582 pad[0] = *buf;
583 iowrite16_rep(data_addr, pad, 1);
584 }
585 words++;
586 }
587
588 return words << 1;
589 }
590 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
591
592 /**
593 * ata_sff_data_xfer32 - Transfer data by PIO
594 * @dev: device to target
595 * @buf: data buffer
596 * @buflen: buffer length
597 * @rw: read/write
598 *
599 * Transfer data from/to the device data register by PIO using 32bit
600 * I/O operations.
601 *
602 * LOCKING:
603 * Inherited from caller.
604 *
605 * RETURNS:
606 * Bytes consumed.
607 */
608
609 unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf,
610 unsigned int buflen, int rw)
611 {
612 struct ata_port *ap = dev->link->ap;
613 void __iomem *data_addr = ap->ioaddr.data_addr;
614 unsigned int words = buflen >> 2;
615 int slop = buflen & 3;
616
617 if (!(ap->pflags & ATA_PFLAG_PIO32))
618 return ata_sff_data_xfer(dev, buf, buflen, rw);
619
620 /* Transfer multiple of 4 bytes */
621 if (rw == READ)
622 ioread32_rep(data_addr, buf, words);
623 else
624 iowrite32_rep(data_addr, buf, words);
625
626 /* Transfer trailing bytes, if any */
627 if (unlikely(slop)) {
628 unsigned char pad[4];
629
630 /* Point buf to the tail of buffer */
631 buf += buflen - slop;
632
633 /*
634 * Use io*_rep() accessors here as well to avoid pointlessly
635 * swapping bytes to and from on the big endian machines...
636 */
637 if (rw == READ) {
638 if (slop < 3)
639 ioread16_rep(data_addr, pad, 1);
640 else
641 ioread32_rep(data_addr, pad, 1);
642 memcpy(buf, pad, slop);
643 } else {
644 memcpy(pad, buf, slop);
645 if (slop < 3)
646 iowrite16_rep(data_addr, pad, 1);
647 else
648 iowrite32_rep(data_addr, pad, 1);
649 }
650 }
651 return (buflen + 1) & ~1;
652 }
653 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
654
655 /**
656 * ata_sff_data_xfer_noirq - Transfer data by PIO
657 * @dev: device to target
658 * @buf: data buffer
659 * @buflen: buffer length
660 * @rw: read/write
661 *
662 * Transfer data from/to the device data register by PIO. Do the
663 * transfer with interrupts disabled.
664 *
665 * LOCKING:
666 * Inherited from caller.
667 *
668 * RETURNS:
669 * Bytes consumed.
670 */
671 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
672 unsigned int buflen, int rw)
673 {
674 unsigned long flags;
675 unsigned int consumed;
676
677 local_irq_save(flags);
678 consumed = ata_sff_data_xfer(dev, buf, buflen, rw);
679 local_irq_restore(flags);
680
681 return consumed;
682 }
683 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
684
685 /**
686 * ata_pio_sector - Transfer a sector of data.
687 * @qc: Command on going
688 *
689 * Transfer qc->sect_size bytes of data from/to the ATA device.
690 *
691 * LOCKING:
692 * Inherited from caller.
693 */
694 static void ata_pio_sector(struct ata_queued_cmd *qc)
695 {
696 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
697 struct ata_port *ap = qc->ap;
698 struct page *page;
699 unsigned int offset;
700 unsigned char *buf;
701
702 if (qc->curbytes == qc->nbytes - qc->sect_size)
703 ap->hsm_task_state = HSM_ST_LAST;
704
705 page = sg_page(qc->cursg);
706 offset = qc->cursg->offset + qc->cursg_ofs;
707
708 /* get the current page and offset */
709 page = nth_page(page, (offset >> PAGE_SHIFT));
710 offset %= PAGE_SIZE;
711
712 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
713
714 if (PageHighMem(page)) {
715 unsigned long flags;
716
717 /* FIXME: use a bounce buffer */
718 local_irq_save(flags);
719 buf = kmap_atomic(page, KM_IRQ0);
720
721 /* do the actual data transfer */
722 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
723 do_write);
724
725 kunmap_atomic(buf, KM_IRQ0);
726 local_irq_restore(flags);
727 } else {
728 buf = page_address(page);
729 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
730 do_write);
731 }
732
733 if (!do_write && !PageSlab(page))
734 flush_dcache_page(page);
735
736 qc->curbytes += qc->sect_size;
737 qc->cursg_ofs += qc->sect_size;
738
739 if (qc->cursg_ofs == qc->cursg->length) {
740 qc->cursg = sg_next(qc->cursg);
741 qc->cursg_ofs = 0;
742 }
743 }
744
745 /**
746 * ata_pio_sectors - Transfer one or many sectors.
747 * @qc: Command on going
748 *
749 * Transfer one or many sectors of data from/to the
750 * ATA device for the DRQ request.
751 *
752 * LOCKING:
753 * Inherited from caller.
754 */
755 static void ata_pio_sectors(struct ata_queued_cmd *qc)
756 {
757 if (is_multi_taskfile(&qc->tf)) {
758 /* READ/WRITE MULTIPLE */
759 unsigned int nsect;
760
761 WARN_ON_ONCE(qc->dev->multi_count == 0);
762
763 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
764 qc->dev->multi_count);
765 while (nsect--)
766 ata_pio_sector(qc);
767 } else
768 ata_pio_sector(qc);
769
770 ata_sff_sync(qc->ap); /* flush */
771 }
772
773 /**
774 * atapi_send_cdb - Write CDB bytes to hardware
775 * @ap: Port to which ATAPI device is attached.
776 * @qc: Taskfile currently active
777 *
778 * When device has indicated its readiness to accept
779 * a CDB, this function is called. Send the CDB.
780 *
781 * LOCKING:
782 * caller.
783 */
784 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
785 {
786 /* send SCSI cdb */
787 DPRINTK("send cdb\n");
788 WARN_ON_ONCE(qc->dev->cdb_len < 12);
789
790 ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
791 ata_sff_sync(ap);
792 /* FIXME: If the CDB is for DMA do we need to do the transition delay
793 or is bmdma_start guaranteed to do it ? */
794 switch (qc->tf.protocol) {
795 case ATAPI_PROT_PIO:
796 ap->hsm_task_state = HSM_ST;
797 break;
798 case ATAPI_PROT_NODATA:
799 ap->hsm_task_state = HSM_ST_LAST;
800 break;
801 case ATAPI_PROT_DMA:
802 ap->hsm_task_state = HSM_ST_LAST;
803 /* initiate bmdma */
804 ap->ops->bmdma_start(qc);
805 break;
806 }
807 }
808
809 /**
810 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
811 * @qc: Command on going
812 * @bytes: number of bytes
813 *
814 * Transfer Transfer data from/to the ATAPI device.
815 *
816 * LOCKING:
817 * Inherited from caller.
818 *
819 */
820 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
821 {
822 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
823 struct ata_port *ap = qc->ap;
824 struct ata_device *dev = qc->dev;
825 struct ata_eh_info *ehi = &dev->link->eh_info;
826 struct scatterlist *sg;
827 struct page *page;
828 unsigned char *buf;
829 unsigned int offset, count, consumed;
830
831 next_sg:
832 sg = qc->cursg;
833 if (unlikely(!sg)) {
834 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
835 "buf=%u cur=%u bytes=%u",
836 qc->nbytes, qc->curbytes, bytes);
837 return -1;
838 }
839
840 page = sg_page(sg);
841 offset = sg->offset + qc->cursg_ofs;
842
843 /* get the current page and offset */
844 page = nth_page(page, (offset >> PAGE_SHIFT));
845 offset %= PAGE_SIZE;
846
847 /* don't overrun current sg */
848 count = min(sg->length - qc->cursg_ofs, bytes);
849
850 /* don't cross page boundaries */
851 count = min(count, (unsigned int)PAGE_SIZE - offset);
852
853 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
854
855 if (PageHighMem(page)) {
856 unsigned long flags;
857
858 /* FIXME: use bounce buffer */
859 local_irq_save(flags);
860 buf = kmap_atomic(page, KM_IRQ0);
861
862 /* do the actual data transfer */
863 consumed = ap->ops->sff_data_xfer(dev, buf + offset,
864 count, rw);
865
866 kunmap_atomic(buf, KM_IRQ0);
867 local_irq_restore(flags);
868 } else {
869 buf = page_address(page);
870 consumed = ap->ops->sff_data_xfer(dev, buf + offset,
871 count, rw);
872 }
873
874 bytes -= min(bytes, consumed);
875 qc->curbytes += count;
876 qc->cursg_ofs += count;
877
878 if (qc->cursg_ofs == sg->length) {
879 qc->cursg = sg_next(qc->cursg);
880 qc->cursg_ofs = 0;
881 }
882
883 /*
884 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
885 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
886 * check correctly as it doesn't know if it is the last request being
887 * made. Somebody should implement a proper sanity check.
888 */
889 if (bytes)
890 goto next_sg;
891 return 0;
892 }
893
894 /**
895 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
896 * @qc: Command on going
897 *
898 * Transfer Transfer data from/to the ATAPI device.
899 *
900 * LOCKING:
901 * Inherited from caller.
902 */
903 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
904 {
905 struct ata_port *ap = qc->ap;
906 struct ata_device *dev = qc->dev;
907 struct ata_eh_info *ehi = &dev->link->eh_info;
908 unsigned int ireason, bc_lo, bc_hi, bytes;
909 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
910
911 /* Abuse qc->result_tf for temp storage of intermediate TF
912 * here to save some kernel stack usage.
913 * For normal completion, qc->result_tf is not relevant. For
914 * error, qc->result_tf is later overwritten by ata_qc_complete().
915 * So, the correctness of qc->result_tf is not affected.
916 */
917 ap->ops->sff_tf_read(ap, &qc->result_tf);
918 ireason = qc->result_tf.nsect;
919 bc_lo = qc->result_tf.lbam;
920 bc_hi = qc->result_tf.lbah;
921 bytes = (bc_hi << 8) | bc_lo;
922
923 /* shall be cleared to zero, indicating xfer of data */
924 if (unlikely(ireason & (1 << 0)))
925 goto atapi_check;
926
927 /* make sure transfer direction matches expected */
928 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
929 if (unlikely(do_write != i_write))
930 goto atapi_check;
931
932 if (unlikely(!bytes))
933 goto atapi_check;
934
935 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
936
937 if (unlikely(__atapi_pio_bytes(qc, bytes)))
938 goto err_out;
939 ata_sff_sync(ap); /* flush */
940
941 return;
942
943 atapi_check:
944 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
945 ireason, bytes);
946 err_out:
947 qc->err_mask |= AC_ERR_HSM;
948 ap->hsm_task_state = HSM_ST_ERR;
949 }
950
951 /**
952 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
953 * @ap: the target ata_port
954 * @qc: qc on going
955 *
956 * RETURNS:
957 * 1 if ok in workqueue, 0 otherwise.
958 */
959 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
960 struct ata_queued_cmd *qc)
961 {
962 if (qc->tf.flags & ATA_TFLAG_POLLING)
963 return 1;
964
965 if (ap->hsm_task_state == HSM_ST_FIRST) {
966 if (qc->tf.protocol == ATA_PROT_PIO &&
967 (qc->tf.flags & ATA_TFLAG_WRITE))
968 return 1;
969
970 if (ata_is_atapi(qc->tf.protocol) &&
971 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
972 return 1;
973 }
974
975 return 0;
976 }
977
978 /**
979 * ata_hsm_qc_complete - finish a qc running on standard HSM
980 * @qc: Command to complete
981 * @in_wq: 1 if called from workqueue, 0 otherwise
982 *
983 * Finish @qc which is running on standard HSM.
984 *
985 * LOCKING:
986 * If @in_wq is zero, spin_lock_irqsave(host lock).
987 * Otherwise, none on entry and grabs host lock.
988 */
989 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
990 {
991 struct ata_port *ap = qc->ap;
992 unsigned long flags;
993
994 if (ap->ops->error_handler) {
995 if (in_wq) {
996 spin_lock_irqsave(ap->lock, flags);
997
998 /* EH might have kicked in while host lock is
999 * released.
1000 */
1001 qc = ata_qc_from_tag(ap, qc->tag);
1002 if (qc) {
1003 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
1004 ata_sff_irq_on(ap);
1005 ata_qc_complete(qc);
1006 } else
1007 ata_port_freeze(ap);
1008 }
1009
1010 spin_unlock_irqrestore(ap->lock, flags);
1011 } else {
1012 if (likely(!(qc->err_mask & AC_ERR_HSM)))
1013 ata_qc_complete(qc);
1014 else
1015 ata_port_freeze(ap);
1016 }
1017 } else {
1018 if (in_wq) {
1019 spin_lock_irqsave(ap->lock, flags);
1020 ata_sff_irq_on(ap);
1021 ata_qc_complete(qc);
1022 spin_unlock_irqrestore(ap->lock, flags);
1023 } else
1024 ata_qc_complete(qc);
1025 }
1026 }
1027
1028 /**
1029 * ata_sff_hsm_move - move the HSM to the next state.
1030 * @ap: the target ata_port
1031 * @qc: qc on going
1032 * @status: current device status
1033 * @in_wq: 1 if called from workqueue, 0 otherwise
1034 *
1035 * RETURNS:
1036 * 1 when poll next status needed, 0 otherwise.
1037 */
1038 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1039 u8 status, int in_wq)
1040 {
1041 struct ata_eh_info *ehi = &ap->link.eh_info;
1042 unsigned long flags = 0;
1043 int poll_next;
1044
1045 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1046
1047 /* Make sure ata_sff_qc_issue() does not throw things
1048 * like DMA polling into the workqueue. Notice that
1049 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1050 */
1051 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
1052
1053 fsm_start:
1054 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1055 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1056
1057 switch (ap->hsm_task_state) {
1058 case HSM_ST_FIRST:
1059 /* Send first data block or PACKET CDB */
1060
1061 /* If polling, we will stay in the work queue after
1062 * sending the data. Otherwise, interrupt handler
1063 * takes over after sending the data.
1064 */
1065 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1066
1067 /* check device status */
1068 if (unlikely((status & ATA_DRQ) == 0)) {
1069 /* handle BSY=0, DRQ=0 as error */
1070 if (likely(status & (ATA_ERR | ATA_DF)))
1071 /* device stops HSM for abort/error */
1072 qc->err_mask |= AC_ERR_DEV;
1073 else {
1074 /* HSM violation. Let EH handle this */
1075 ata_ehi_push_desc(ehi,
1076 "ST_FIRST: !(DRQ|ERR|DF)");
1077 qc->err_mask |= AC_ERR_HSM;
1078 }
1079
1080 ap->hsm_task_state = HSM_ST_ERR;
1081 goto fsm_start;
1082 }
1083
1084 /* Device should not ask for data transfer (DRQ=1)
1085 * when it finds something wrong.
1086 * We ignore DRQ here and stop the HSM by
1087 * changing hsm_task_state to HSM_ST_ERR and
1088 * let the EH abort the command or reset the device.
1089 */
1090 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1091 /* Some ATAPI tape drives forget to clear the ERR bit
1092 * when doing the next command (mostly request sense).
1093 * We ignore ERR here to workaround and proceed sending
1094 * the CDB.
1095 */
1096 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1097 ata_ehi_push_desc(ehi, "ST_FIRST: "
1098 "DRQ=1 with device error, "
1099 "dev_stat 0x%X", status);
1100 qc->err_mask |= AC_ERR_HSM;
1101 ap->hsm_task_state = HSM_ST_ERR;
1102 goto fsm_start;
1103 }
1104 }
1105
1106 /* Send the CDB (atapi) or the first data block (ata pio out).
1107 * During the state transition, interrupt handler shouldn't
1108 * be invoked before the data transfer is complete and
1109 * hsm_task_state is changed. Hence, the following locking.
1110 */
1111 if (in_wq)
1112 spin_lock_irqsave(ap->lock, flags);
1113
1114 if (qc->tf.protocol == ATA_PROT_PIO) {
1115 /* PIO data out protocol.
1116 * send first data block.
1117 */
1118
1119 /* ata_pio_sectors() might change the state
1120 * to HSM_ST_LAST. so, the state is changed here
1121 * before ata_pio_sectors().
1122 */
1123 ap->hsm_task_state = HSM_ST;
1124 ata_pio_sectors(qc);
1125 } else
1126 /* send CDB */
1127 atapi_send_cdb(ap, qc);
1128
1129 if (in_wq)
1130 spin_unlock_irqrestore(ap->lock, flags);
1131
1132 /* if polling, ata_sff_pio_task() handles the rest.
1133 * otherwise, interrupt handler takes over from here.
1134 */
1135 break;
1136
1137 case HSM_ST:
1138 /* complete command or read/write the data register */
1139 if (qc->tf.protocol == ATAPI_PROT_PIO) {
1140 /* ATAPI PIO protocol */
1141 if ((status & ATA_DRQ) == 0) {
1142 /* No more data to transfer or device error.
1143 * Device error will be tagged in HSM_ST_LAST.
1144 */
1145 ap->hsm_task_state = HSM_ST_LAST;
1146 goto fsm_start;
1147 }
1148
1149 /* Device should not ask for data transfer (DRQ=1)
1150 * when it finds something wrong.
1151 * We ignore DRQ here and stop the HSM by
1152 * changing hsm_task_state to HSM_ST_ERR and
1153 * let the EH abort the command or reset the device.
1154 */
1155 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1156 ata_ehi_push_desc(ehi, "ST-ATAPI: "
1157 "DRQ=1 with device error, "
1158 "dev_stat 0x%X", status);
1159 qc->err_mask |= AC_ERR_HSM;
1160 ap->hsm_task_state = HSM_ST_ERR;
1161 goto fsm_start;
1162 }
1163
1164 atapi_pio_bytes(qc);
1165
1166 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1167 /* bad ireason reported by device */
1168 goto fsm_start;
1169
1170 } else {
1171 /* ATA PIO protocol */
1172 if (unlikely((status & ATA_DRQ) == 0)) {
1173 /* handle BSY=0, DRQ=0 as error */
1174 if (likely(status & (ATA_ERR | ATA_DF))) {
1175 /* device stops HSM for abort/error */
1176 qc->err_mask |= AC_ERR_DEV;
1177
1178 /* If diagnostic failed and this is
1179 * IDENTIFY, it's likely a phantom
1180 * device. Mark hint.
1181 */
1182 if (qc->dev->horkage &
1183 ATA_HORKAGE_DIAGNOSTIC)
1184 qc->err_mask |=
1185 AC_ERR_NODEV_HINT;
1186 } else {
1187 /* HSM violation. Let EH handle this.
1188 * Phantom devices also trigger this
1189 * condition. Mark hint.
1190 */
1191 ata_ehi_push_desc(ehi, "ST-ATA: "
1192 "DRQ=0 without device error, "
1193 "dev_stat 0x%X", status);
1194 qc->err_mask |= AC_ERR_HSM |
1195 AC_ERR_NODEV_HINT;
1196 }
1197
1198 ap->hsm_task_state = HSM_ST_ERR;
1199 goto fsm_start;
1200 }
1201
1202 /* For PIO reads, some devices may ask for
1203 * data transfer (DRQ=1) alone with ERR=1.
1204 * We respect DRQ here and transfer one
1205 * block of junk data before changing the
1206 * hsm_task_state to HSM_ST_ERR.
1207 *
1208 * For PIO writes, ERR=1 DRQ=1 doesn't make
1209 * sense since the data block has been
1210 * transferred to the device.
1211 */
1212 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1213 /* data might be corrputed */
1214 qc->err_mask |= AC_ERR_DEV;
1215
1216 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1217 ata_pio_sectors(qc);
1218 status = ata_wait_idle(ap);
1219 }
1220
1221 if (status & (ATA_BUSY | ATA_DRQ)) {
1222 ata_ehi_push_desc(ehi, "ST-ATA: "
1223 "BUSY|DRQ persists on ERR|DF, "
1224 "dev_stat 0x%X", status);
1225 qc->err_mask |= AC_ERR_HSM;
1226 }
1227
1228 /* There are oddball controllers with
1229 * status register stuck at 0x7f and
1230 * lbal/m/h at zero which makes it
1231 * pass all other presence detection
1232 * mechanisms we have. Set NODEV_HINT
1233 * for it. Kernel bz#7241.
1234 */
1235 if (status == 0x7f)
1236 qc->err_mask |= AC_ERR_NODEV_HINT;
1237
1238 /* ata_pio_sectors() might change the
1239 * state to HSM_ST_LAST. so, the state
1240 * is changed after ata_pio_sectors().
1241 */
1242 ap->hsm_task_state = HSM_ST_ERR;
1243 goto fsm_start;
1244 }
1245
1246 ata_pio_sectors(qc);
1247
1248 if (ap->hsm_task_state == HSM_ST_LAST &&
1249 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1250 /* all data read */
1251 status = ata_wait_idle(ap);
1252 goto fsm_start;
1253 }
1254 }
1255
1256 poll_next = 1;
1257 break;
1258
1259 case HSM_ST_LAST:
1260 if (unlikely(!ata_ok(status))) {
1261 qc->err_mask |= __ac_err_mask(status);
1262 ap->hsm_task_state = HSM_ST_ERR;
1263 goto fsm_start;
1264 }
1265
1266 /* no more data to transfer */
1267 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1268 ap->print_id, qc->dev->devno, status);
1269
1270 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1271
1272 ap->hsm_task_state = HSM_ST_IDLE;
1273
1274 /* complete taskfile transaction */
1275 ata_hsm_qc_complete(qc, in_wq);
1276
1277 poll_next = 0;
1278 break;
1279
1280 case HSM_ST_ERR:
1281 ap->hsm_task_state = HSM_ST_IDLE;
1282
1283 /* complete taskfile transaction */
1284 ata_hsm_qc_complete(qc, in_wq);
1285
1286 poll_next = 0;
1287 break;
1288 default:
1289 poll_next = 0;
1290 BUG();
1291 }
1292
1293 return poll_next;
1294 }
1295 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1296
1297 void ata_sff_queue_pio_task(struct ata_port *ap, unsigned long delay)
1298 {
1299 /* may fail if ata_sff_flush_pio_task() in progress */
1300 queue_delayed_work(ata_sff_wq, &ap->sff_pio_task,
1301 msecs_to_jiffies(delay));
1302 }
1303 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1304
1305 void ata_sff_flush_pio_task(struct ata_port *ap)
1306 {
1307 DPRINTK("ENTER\n");
1308
1309 cancel_rearming_delayed_work(&ap->sff_pio_task);
1310 ap->hsm_task_state = HSM_ST_IDLE;
1311
1312 if (ata_msg_ctl(ap))
1313 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1314 }
1315
1316 static void ata_sff_pio_task(struct work_struct *work)
1317 {
1318 struct ata_port *ap =
1319 container_of(work, struct ata_port, sff_pio_task.work);
1320 struct ata_queued_cmd *qc;
1321 u8 status;
1322 int poll_next;
1323
1324 /* qc can be NULL if timeout occurred */
1325 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1326 if (!qc)
1327 return;
1328
1329 fsm_start:
1330 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1331
1332 /*
1333 * This is purely heuristic. This is a fast path.
1334 * Sometimes when we enter, BSY will be cleared in
1335 * a chk-status or two. If not, the drive is probably seeking
1336 * or something. Snooze for a couple msecs, then
1337 * chk-status again. If still busy, queue delayed work.
1338 */
1339 status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1340 if (status & ATA_BUSY) {
1341 msleep(2);
1342 status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1343 if (status & ATA_BUSY) {
1344 ata_sff_queue_pio_task(ap, ATA_SHORT_PAUSE);
1345 return;
1346 }
1347 }
1348
1349 /* move the HSM */
1350 poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1351
1352 /* another command or interrupt handler
1353 * may be running at this point.
1354 */
1355 if (poll_next)
1356 goto fsm_start;
1357 }
1358
1359 /**
1360 * ata_sff_qc_issue - issue taskfile to a SFF controller
1361 * @qc: command to issue to device
1362 *
1363 * This function issues a PIO or NODATA command to a SFF
1364 * controller.
1365 *
1366 * LOCKING:
1367 * spin_lock_irqsave(host lock)
1368 *
1369 * RETURNS:
1370 * Zero on success, AC_ERR_* mask on failure
1371 */
1372 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1373 {
1374 struct ata_port *ap = qc->ap;
1375
1376 /* Use polling pio if the LLD doesn't handle
1377 * interrupt driven pio and atapi CDB interrupt.
1378 */
1379 if (ap->flags & ATA_FLAG_PIO_POLLING)
1380 qc->tf.flags |= ATA_TFLAG_POLLING;
1381
1382 /* select the device */
1383 ata_dev_select(ap, qc->dev->devno, 1, 0);
1384
1385 /* start the command */
1386 switch (qc->tf.protocol) {
1387 case ATA_PROT_NODATA:
1388 if (qc->tf.flags & ATA_TFLAG_POLLING)
1389 ata_qc_set_polling(qc);
1390
1391 ata_tf_to_host(ap, &qc->tf);
1392 ap->hsm_task_state = HSM_ST_LAST;
1393
1394 if (qc->tf.flags & ATA_TFLAG_POLLING)
1395 ata_sff_queue_pio_task(ap, 0);
1396
1397 break;
1398
1399 case ATA_PROT_PIO:
1400 if (qc->tf.flags & ATA_TFLAG_POLLING)
1401 ata_qc_set_polling(qc);
1402
1403 ata_tf_to_host(ap, &qc->tf);
1404
1405 if (qc->tf.flags & ATA_TFLAG_WRITE) {
1406 /* PIO data out protocol */
1407 ap->hsm_task_state = HSM_ST_FIRST;
1408 ata_sff_queue_pio_task(ap, 0);
1409
1410 /* always send first data block using the
1411 * ata_sff_pio_task() codepath.
1412 */
1413 } else {
1414 /* PIO data in protocol */
1415 ap->hsm_task_state = HSM_ST;
1416
1417 if (qc->tf.flags & ATA_TFLAG_POLLING)
1418 ata_sff_queue_pio_task(ap, 0);
1419
1420 /* if polling, ata_sff_pio_task() handles the
1421 * rest. otherwise, interrupt handler takes
1422 * over from here.
1423 */
1424 }
1425
1426 break;
1427
1428 case ATAPI_PROT_PIO:
1429 case ATAPI_PROT_NODATA:
1430 if (qc->tf.flags & ATA_TFLAG_POLLING)
1431 ata_qc_set_polling(qc);
1432
1433 ata_tf_to_host(ap, &qc->tf);
1434
1435 ap->hsm_task_state = HSM_ST_FIRST;
1436
1437 /* send cdb by polling if no cdb interrupt */
1438 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1439 (qc->tf.flags & ATA_TFLAG_POLLING))
1440 ata_sff_queue_pio_task(ap, 0);
1441 break;
1442
1443 default:
1444 WARN_ON_ONCE(1);
1445 return AC_ERR_SYSTEM;
1446 }
1447
1448 return 0;
1449 }
1450 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1451
1452 /**
1453 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1454 * @qc: qc to fill result TF for
1455 *
1456 * @qc is finished and result TF needs to be filled. Fill it
1457 * using ->sff_tf_read.
1458 *
1459 * LOCKING:
1460 * spin_lock_irqsave(host lock)
1461 *
1462 * RETURNS:
1463 * true indicating that result TF is successfully filled.
1464 */
1465 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1466 {
1467 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1468 return true;
1469 }
1470 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1471
1472 static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1473 {
1474 ap->stats.idle_irq++;
1475
1476 #ifdef ATA_IRQ_TRAP
1477 if ((ap->stats.idle_irq % 1000) == 0) {
1478 ap->ops->sff_check_status(ap);
1479 if (ap->ops->sff_irq_clear)
1480 ap->ops->sff_irq_clear(ap);
1481 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
1482 return 1;
1483 }
1484 #endif
1485 return 0; /* irq not handled */
1486 }
1487
1488 static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1489 struct ata_queued_cmd *qc,
1490 bool hsmv_on_idle)
1491 {
1492 u8 status;
1493
1494 VPRINTK("ata%u: protocol %d task_state %d\n",
1495 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1496
1497 /* Check whether we are expecting interrupt in this state */
1498 switch (ap->hsm_task_state) {
1499 case HSM_ST_FIRST:
1500 /* Some pre-ATAPI-4 devices assert INTRQ
1501 * at this state when ready to receive CDB.
1502 */
1503
1504 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1505 * The flag was turned on only for atapi devices. No
1506 * need to check ata_is_atapi(qc->tf.protocol) again.
1507 */
1508 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1509 return ata_sff_idle_irq(ap);
1510 break;
1511 case HSM_ST:
1512 case HSM_ST_LAST:
1513 break;
1514 default:
1515 return ata_sff_idle_irq(ap);
1516 }
1517
1518 /* check main status, clearing INTRQ if needed */
1519 status = ata_sff_irq_status(ap);
1520 if (status & ATA_BUSY) {
1521 if (hsmv_on_idle) {
1522 /* BMDMA engine is already stopped, we're screwed */
1523 qc->err_mask |= AC_ERR_HSM;
1524 ap->hsm_task_state = HSM_ST_ERR;
1525 } else
1526 return ata_sff_idle_irq(ap);
1527 }
1528
1529 /* clear irq events */
1530 if (ap->ops->sff_irq_clear)
1531 ap->ops->sff_irq_clear(ap);
1532
1533 ata_sff_hsm_move(ap, qc, status, 0);
1534
1535 return 1; /* irq handled */
1536 }
1537
1538 /**
1539 * ata_sff_port_intr - Handle SFF port interrupt
1540 * @ap: Port on which interrupt arrived (possibly...)
1541 * @qc: Taskfile currently active in engine
1542 *
1543 * Handle port interrupt for given queued command.
1544 *
1545 * LOCKING:
1546 * spin_lock_irqsave(host lock)
1547 *
1548 * RETURNS:
1549 * One if interrupt was handled, zero if not (shared irq).
1550 */
1551 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1552 {
1553 return __ata_sff_port_intr(ap, qc, false);
1554 }
1555 EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1556
1557 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1558 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1559 {
1560 struct ata_host *host = dev_instance;
1561 bool retried = false;
1562 unsigned int i;
1563 unsigned int handled, idle, polling;
1564 unsigned long flags;
1565
1566 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1567 spin_lock_irqsave(&host->lock, flags);
1568
1569 retry:
1570 handled = idle = polling = 0;
1571 for (i = 0; i < host->n_ports; i++) {
1572 struct ata_port *ap = host->ports[i];
1573 struct ata_queued_cmd *qc;
1574
1575 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1576 if (qc) {
1577 if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1578 handled |= port_intr(ap, qc);
1579 else
1580 polling |= 1 << i;
1581 } else
1582 idle |= 1 << i;
1583 }
1584
1585 /*
1586 * If no port was expecting IRQ but the controller is actually
1587 * asserting IRQ line, nobody cared will ensue. Check IRQ
1588 * pending status if available and clear spurious IRQ.
1589 */
1590 if (!handled && !retried) {
1591 bool retry = false;
1592
1593 for (i = 0; i < host->n_ports; i++) {
1594 struct ata_port *ap = host->ports[i];
1595
1596 if (polling & (1 << i))
1597 continue;
1598
1599 if (!ap->ops->sff_irq_check ||
1600 !ap->ops->sff_irq_check(ap))
1601 continue;
1602
1603 if (idle & (1 << i)) {
1604 ap->ops->sff_check_status(ap);
1605 if (ap->ops->sff_irq_clear)
1606 ap->ops->sff_irq_clear(ap);
1607 } else {
1608 /* clear INTRQ and check if BUSY cleared */
1609 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1610 retry |= true;
1611 /*
1612 * With command in flight, we can't do
1613 * sff_irq_clear() w/o racing with completion.
1614 */
1615 }
1616 }
1617
1618 if (retry) {
1619 retried = true;
1620 goto retry;
1621 }
1622 }
1623
1624 spin_unlock_irqrestore(&host->lock, flags);
1625
1626 return IRQ_RETVAL(handled);
1627 }
1628
1629 /**
1630 * ata_sff_interrupt - Default SFF ATA host interrupt handler
1631 * @irq: irq line (unused)
1632 * @dev_instance: pointer to our ata_host information structure
1633 *
1634 * Default interrupt handler for PCI IDE devices. Calls
1635 * ata_sff_port_intr() for each port that is not disabled.
1636 *
1637 * LOCKING:
1638 * Obtains host lock during operation.
1639 *
1640 * RETURNS:
1641 * IRQ_NONE or IRQ_HANDLED.
1642 */
1643 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1644 {
1645 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1646 }
1647 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1648
1649 /**
1650 * ata_sff_lost_interrupt - Check for an apparent lost interrupt
1651 * @ap: port that appears to have timed out
1652 *
1653 * Called from the libata error handlers when the core code suspects
1654 * an interrupt has been lost. If it has complete anything we can and
1655 * then return. Interface must support altstatus for this faster
1656 * recovery to occur.
1657 *
1658 * Locking:
1659 * Caller holds host lock
1660 */
1661
1662 void ata_sff_lost_interrupt(struct ata_port *ap)
1663 {
1664 u8 status;
1665 struct ata_queued_cmd *qc;
1666
1667 /* Only one outstanding command per SFF channel */
1668 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1669 /* We cannot lose an interrupt on a non-existent or polled command */
1670 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1671 return;
1672 /* See if the controller thinks it is still busy - if so the command
1673 isn't a lost IRQ but is still in progress */
1674 status = ata_sff_altstatus(ap);
1675 if (status & ATA_BUSY)
1676 return;
1677
1678 /* There was a command running, we are no longer busy and we have
1679 no interrupt. */
1680 ata_port_printk(ap, KERN_WARNING, "lost interrupt (Status 0x%x)\n",
1681 status);
1682 /* Run the host interrupt logic as if the interrupt had not been
1683 lost */
1684 ata_sff_port_intr(ap, qc);
1685 }
1686 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1687
1688 /**
1689 * ata_sff_freeze - Freeze SFF controller port
1690 * @ap: port to freeze
1691 *
1692 * Freeze SFF controller port.
1693 *
1694 * LOCKING:
1695 * Inherited from caller.
1696 */
1697 void ata_sff_freeze(struct ata_port *ap)
1698 {
1699 ap->ctl |= ATA_NIEN;
1700 ap->last_ctl = ap->ctl;
1701
1702 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1703 ata_sff_set_devctl(ap, ap->ctl);
1704
1705 /* Under certain circumstances, some controllers raise IRQ on
1706 * ATA_NIEN manipulation. Also, many controllers fail to mask
1707 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1708 */
1709 ap->ops->sff_check_status(ap);
1710
1711 if (ap->ops->sff_irq_clear)
1712 ap->ops->sff_irq_clear(ap);
1713 }
1714 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1715
1716 /**
1717 * ata_sff_thaw - Thaw SFF controller port
1718 * @ap: port to thaw
1719 *
1720 * Thaw SFF controller port.
1721 *
1722 * LOCKING:
1723 * Inherited from caller.
1724 */
1725 void ata_sff_thaw(struct ata_port *ap)
1726 {
1727 /* clear & re-enable interrupts */
1728 ap->ops->sff_check_status(ap);
1729 if (ap->ops->sff_irq_clear)
1730 ap->ops->sff_irq_clear(ap);
1731 ata_sff_irq_on(ap);
1732 }
1733 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1734
1735 /**
1736 * ata_sff_prereset - prepare SFF link for reset
1737 * @link: SFF link to be reset
1738 * @deadline: deadline jiffies for the operation
1739 *
1740 * SFF link @link is about to be reset. Initialize it. It first
1741 * calls ata_std_prereset() and wait for !BSY if the port is
1742 * being softreset.
1743 *
1744 * LOCKING:
1745 * Kernel thread context (may sleep)
1746 *
1747 * RETURNS:
1748 * 0 on success, -errno otherwise.
1749 */
1750 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1751 {
1752 struct ata_eh_context *ehc = &link->eh_context;
1753 int rc;
1754
1755 rc = ata_std_prereset(link, deadline);
1756 if (rc)
1757 return rc;
1758
1759 /* if we're about to do hardreset, nothing more to do */
1760 if (ehc->i.action & ATA_EH_HARDRESET)
1761 return 0;
1762
1763 /* wait for !BSY if we don't know that no device is attached */
1764 if (!ata_link_offline(link)) {
1765 rc = ata_sff_wait_ready(link, deadline);
1766 if (rc && rc != -ENODEV) {
1767 ata_link_printk(link, KERN_WARNING, "device not ready "
1768 "(errno=%d), forcing hardreset\n", rc);
1769 ehc->i.action |= ATA_EH_HARDRESET;
1770 }
1771 }
1772
1773 return 0;
1774 }
1775 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1776
1777 /**
1778 * ata_devchk - PATA device presence detection
1779 * @ap: ATA channel to examine
1780 * @device: Device to examine (starting at zero)
1781 *
1782 * This technique was originally described in
1783 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1784 * later found its way into the ATA/ATAPI spec.
1785 *
1786 * Write a pattern to the ATA shadow registers,
1787 * and if a device is present, it will respond by
1788 * correctly storing and echoing back the
1789 * ATA shadow register contents.
1790 *
1791 * LOCKING:
1792 * caller.
1793 */
1794 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1795 {
1796 struct ata_ioports *ioaddr = &ap->ioaddr;
1797 u8 nsect, lbal;
1798
1799 ap->ops->sff_dev_select(ap, device);
1800
1801 iowrite8(0x55, ioaddr->nsect_addr);
1802 iowrite8(0xaa, ioaddr->lbal_addr);
1803
1804 iowrite8(0xaa, ioaddr->nsect_addr);
1805 iowrite8(0x55, ioaddr->lbal_addr);
1806
1807 iowrite8(0x55, ioaddr->nsect_addr);
1808 iowrite8(0xaa, ioaddr->lbal_addr);
1809
1810 nsect = ioread8(ioaddr->nsect_addr);
1811 lbal = ioread8(ioaddr->lbal_addr);
1812
1813 if ((nsect == 0x55) && (lbal == 0xaa))
1814 return 1; /* we found a device */
1815
1816 return 0; /* nothing found */
1817 }
1818
1819 /**
1820 * ata_sff_dev_classify - Parse returned ATA device signature
1821 * @dev: ATA device to classify (starting at zero)
1822 * @present: device seems present
1823 * @r_err: Value of error register on completion
1824 *
1825 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1826 * an ATA/ATAPI-defined set of values is placed in the ATA
1827 * shadow registers, indicating the results of device detection
1828 * and diagnostics.
1829 *
1830 * Select the ATA device, and read the values from the ATA shadow
1831 * registers. Then parse according to the Error register value,
1832 * and the spec-defined values examined by ata_dev_classify().
1833 *
1834 * LOCKING:
1835 * caller.
1836 *
1837 * RETURNS:
1838 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1839 */
1840 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1841 u8 *r_err)
1842 {
1843 struct ata_port *ap = dev->link->ap;
1844 struct ata_taskfile tf;
1845 unsigned int class;
1846 u8 err;
1847
1848 ap->ops->sff_dev_select(ap, dev->devno);
1849
1850 memset(&tf, 0, sizeof(tf));
1851
1852 ap->ops->sff_tf_read(ap, &tf);
1853 err = tf.feature;
1854 if (r_err)
1855 *r_err = err;
1856
1857 /* see if device passed diags: continue and warn later */
1858 if (err == 0)
1859 /* diagnostic fail : do nothing _YET_ */
1860 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1861 else if (err == 1)
1862 /* do nothing */ ;
1863 else if ((dev->devno == 0) && (err == 0x81))
1864 /* do nothing */ ;
1865 else
1866 return ATA_DEV_NONE;
1867
1868 /* determine if device is ATA or ATAPI */
1869 class = ata_dev_classify(&tf);
1870
1871 if (class == ATA_DEV_UNKNOWN) {
1872 /* If the device failed diagnostic, it's likely to
1873 * have reported incorrect device signature too.
1874 * Assume ATA device if the device seems present but
1875 * device signature is invalid with diagnostic
1876 * failure.
1877 */
1878 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1879 class = ATA_DEV_ATA;
1880 else
1881 class = ATA_DEV_NONE;
1882 } else if ((class == ATA_DEV_ATA) &&
1883 (ap->ops->sff_check_status(ap) == 0))
1884 class = ATA_DEV_NONE;
1885
1886 return class;
1887 }
1888 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1889
1890 /**
1891 * ata_sff_wait_after_reset - wait for devices to become ready after reset
1892 * @link: SFF link which is just reset
1893 * @devmask: mask of present devices
1894 * @deadline: deadline jiffies for the operation
1895 *
1896 * Wait devices attached to SFF @link to become ready after
1897 * reset. It contains preceding 150ms wait to avoid accessing TF
1898 * status register too early.
1899 *
1900 * LOCKING:
1901 * Kernel thread context (may sleep).
1902 *
1903 * RETURNS:
1904 * 0 on success, -ENODEV if some or all of devices in @devmask
1905 * don't seem to exist. -errno on other errors.
1906 */
1907 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1908 unsigned long deadline)
1909 {
1910 struct ata_port *ap = link->ap;
1911 struct ata_ioports *ioaddr = &ap->ioaddr;
1912 unsigned int dev0 = devmask & (1 << 0);
1913 unsigned int dev1 = devmask & (1 << 1);
1914 int rc, ret = 0;
1915
1916 msleep(ATA_WAIT_AFTER_RESET);
1917
1918 /* always check readiness of the master device */
1919 rc = ata_sff_wait_ready(link, deadline);
1920 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1921 * and TF status is 0xff, bail out on it too.
1922 */
1923 if (rc)
1924 return rc;
1925
1926 /* if device 1 was found in ata_devchk, wait for register
1927 * access briefly, then wait for BSY to clear.
1928 */
1929 if (dev1) {
1930 int i;
1931
1932 ap->ops->sff_dev_select(ap, 1);
1933
1934 /* Wait for register access. Some ATAPI devices fail
1935 * to set nsect/lbal after reset, so don't waste too
1936 * much time on it. We're gonna wait for !BSY anyway.
1937 */
1938 for (i = 0; i < 2; i++) {
1939 u8 nsect, lbal;
1940
1941 nsect = ioread8(ioaddr->nsect_addr);
1942 lbal = ioread8(ioaddr->lbal_addr);
1943 if ((nsect == 1) && (lbal == 1))
1944 break;
1945 msleep(50); /* give drive a breather */
1946 }
1947
1948 rc = ata_sff_wait_ready(link, deadline);
1949 if (rc) {
1950 if (rc != -ENODEV)
1951 return rc;
1952 ret = rc;
1953 }
1954 }
1955
1956 /* is all this really necessary? */
1957 ap->ops->sff_dev_select(ap, 0);
1958 if (dev1)
1959 ap->ops->sff_dev_select(ap, 1);
1960 if (dev0)
1961 ap->ops->sff_dev_select(ap, 0);
1962
1963 return ret;
1964 }
1965 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
1966
1967 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1968 unsigned long deadline)
1969 {
1970 struct ata_ioports *ioaddr = &ap->ioaddr;
1971
1972 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1973
1974 /* software reset. causes dev0 to be selected */
1975 iowrite8(ap->ctl, ioaddr->ctl_addr);
1976 udelay(20); /* FIXME: flush */
1977 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1978 udelay(20); /* FIXME: flush */
1979 iowrite8(ap->ctl, ioaddr->ctl_addr);
1980 ap->last_ctl = ap->ctl;
1981
1982 /* wait the port to become ready */
1983 return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
1984 }
1985
1986 /**
1987 * ata_sff_softreset - reset host port via ATA SRST
1988 * @link: ATA link to reset
1989 * @classes: resulting classes of attached devices
1990 * @deadline: deadline jiffies for the operation
1991 *
1992 * Reset host port using ATA SRST.
1993 *
1994 * LOCKING:
1995 * Kernel thread context (may sleep)
1996 *
1997 * RETURNS:
1998 * 0 on success, -errno otherwise.
1999 */
2000 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
2001 unsigned long deadline)
2002 {
2003 struct ata_port *ap = link->ap;
2004 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2005 unsigned int devmask = 0;
2006 int rc;
2007 u8 err;
2008
2009 DPRINTK("ENTER\n");
2010
2011 /* determine if device 0/1 are present */
2012 if (ata_devchk(ap, 0))
2013 devmask |= (1 << 0);
2014 if (slave_possible && ata_devchk(ap, 1))
2015 devmask |= (1 << 1);
2016
2017 /* select device 0 again */
2018 ap->ops->sff_dev_select(ap, 0);
2019
2020 /* issue bus reset */
2021 DPRINTK("about to softreset, devmask=%x\n", devmask);
2022 rc = ata_bus_softreset(ap, devmask, deadline);
2023 /* if link is occupied, -ENODEV too is an error */
2024 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2025 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
2026 return rc;
2027 }
2028
2029 /* determine by signature whether we have ATA or ATAPI devices */
2030 classes[0] = ata_sff_dev_classify(&link->device[0],
2031 devmask & (1 << 0), &err);
2032 if (slave_possible && err != 0x81)
2033 classes[1] = ata_sff_dev_classify(&link->device[1],
2034 devmask & (1 << 1), &err);
2035
2036 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2037 return 0;
2038 }
2039 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2040
2041 /**
2042 * sata_sff_hardreset - reset host port via SATA phy reset
2043 * @link: link to reset
2044 * @class: resulting class of attached device
2045 * @deadline: deadline jiffies for the operation
2046 *
2047 * SATA phy-reset host port using DET bits of SControl register,
2048 * wait for !BSY and classify the attached device.
2049 *
2050 * LOCKING:
2051 * Kernel thread context (may sleep)
2052 *
2053 * RETURNS:
2054 * 0 on success, -errno otherwise.
2055 */
2056 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2057 unsigned long deadline)
2058 {
2059 struct ata_eh_context *ehc = &link->eh_context;
2060 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2061 bool online;
2062 int rc;
2063
2064 rc = sata_link_hardreset(link, timing, deadline, &online,
2065 ata_sff_check_ready);
2066 if (online)
2067 *class = ata_sff_dev_classify(link->device, 1, NULL);
2068
2069 DPRINTK("EXIT, class=%u\n", *class);
2070 return rc;
2071 }
2072 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2073
2074 /**
2075 * ata_sff_postreset - SFF postreset callback
2076 * @link: the target SFF ata_link
2077 * @classes: classes of attached devices
2078 *
2079 * This function is invoked after a successful reset. It first
2080 * calls ata_std_postreset() and performs SFF specific postreset
2081 * processing.
2082 *
2083 * LOCKING:
2084 * Kernel thread context (may sleep)
2085 */
2086 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2087 {
2088 struct ata_port *ap = link->ap;
2089
2090 ata_std_postreset(link, classes);
2091
2092 /* is double-select really necessary? */
2093 if (classes[0] != ATA_DEV_NONE)
2094 ap->ops->sff_dev_select(ap, 1);
2095 if (classes[1] != ATA_DEV_NONE)
2096 ap->ops->sff_dev_select(ap, 0);
2097
2098 /* bail out if no device is present */
2099 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2100 DPRINTK("EXIT, no device\n");
2101 return;
2102 }
2103
2104 /* set up device control */
2105 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2106 ata_sff_set_devctl(ap, ap->ctl);
2107 ap->last_ctl = ap->ctl;
2108 }
2109 }
2110 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2111
2112 /**
2113 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2114 * @qc: command
2115 *
2116 * Drain the FIFO and device of any stuck data following a command
2117 * failing to complete. In some cases this is necessary before a
2118 * reset will recover the device.
2119 *
2120 */
2121
2122 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2123 {
2124 int count;
2125 struct ata_port *ap;
2126
2127 /* We only need to flush incoming data when a command was running */
2128 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2129 return;
2130
2131 ap = qc->ap;
2132 /* Drain up to 64K of data before we give up this recovery method */
2133 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2134 && count < 65536; count += 2)
2135 ioread16(ap->ioaddr.data_addr);
2136
2137 /* Can become DEBUG later */
2138 if (count)
2139 ata_port_printk(ap, KERN_DEBUG,
2140 "drained %d bytes to clear DRQ.\n", count);
2141
2142 }
2143 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2144
2145 /**
2146 * ata_sff_error_handler - Stock error handler for SFF controller
2147 * @ap: port to handle error for
2148 *
2149 * Stock error handler for SFF controller. It can handle both
2150 * PATA and SATA controllers. Many controllers should be able to
2151 * use this EH as-is or with some added handling before and
2152 * after.
2153 *
2154 * LOCKING:
2155 * Kernel thread context (may sleep)
2156 */
2157 void ata_sff_error_handler(struct ata_port *ap)
2158 {
2159 ata_reset_fn_t softreset = ap->ops->softreset;
2160 ata_reset_fn_t hardreset = ap->ops->hardreset;
2161 struct ata_queued_cmd *qc;
2162 unsigned long flags;
2163
2164 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2165 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2166 qc = NULL;
2167
2168 spin_lock_irqsave(ap->lock, flags);
2169
2170 /*
2171 * We *MUST* do FIFO draining before we issue a reset as
2172 * several devices helpfully clear their internal state and
2173 * will lock solid if we touch the data port post reset. Pass
2174 * qc in case anyone wants to do different PIO/DMA recovery or
2175 * has per command fixups
2176 */
2177 if (ap->ops->sff_drain_fifo)
2178 ap->ops->sff_drain_fifo(qc);
2179
2180 spin_unlock_irqrestore(ap->lock, flags);
2181
2182 /* ignore ata_sff_softreset if ctl isn't accessible */
2183 if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr)
2184 softreset = NULL;
2185
2186 /* ignore built-in hardresets if SCR access is not available */
2187 if ((hardreset == sata_std_hardreset ||
2188 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2189 hardreset = NULL;
2190
2191 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2192 ap->ops->postreset);
2193 }
2194 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2195
2196 /**
2197 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
2198 * @ioaddr: IO address structure to be initialized
2199 *
2200 * Utility function which initializes data_addr, error_addr,
2201 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2202 * device_addr, status_addr, and command_addr to standard offsets
2203 * relative to cmd_addr.
2204 *
2205 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2206 */
2207 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2208 {
2209 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2210 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2211 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2212 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2213 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2214 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2215 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2216 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2217 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2218 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2219 }
2220 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2221
2222 #ifdef CONFIG_PCI
2223
2224 static int ata_resources_present(struct pci_dev *pdev, int port)
2225 {
2226 int i;
2227
2228 /* Check the PCI resources for this channel are enabled */
2229 port = port * 2;
2230 for (i = 0; i < 2; i++) {
2231 if (pci_resource_start(pdev, port + i) == 0 ||
2232 pci_resource_len(pdev, port + i) == 0)
2233 return 0;
2234 }
2235 return 1;
2236 }
2237
2238 /**
2239 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2240 * @host: target ATA host
2241 *
2242 * Acquire native PCI ATA resources for @host and initialize the
2243 * first two ports of @host accordingly. Ports marked dummy are
2244 * skipped and allocation failure makes the port dummy.
2245 *
2246 * Note that native PCI resources are valid even for legacy hosts
2247 * as we fix up pdev resources array early in boot, so this
2248 * function can be used for both native and legacy SFF hosts.
2249 *
2250 * LOCKING:
2251 * Inherited from calling layer (may sleep).
2252 *
2253 * RETURNS:
2254 * 0 if at least one port is initialized, -ENODEV if no port is
2255 * available.
2256 */
2257 int ata_pci_sff_init_host(struct ata_host *host)
2258 {
2259 struct device *gdev = host->dev;
2260 struct pci_dev *pdev = to_pci_dev(gdev);
2261 unsigned int mask = 0;
2262 int i, rc;
2263
2264 /* request, iomap BARs and init port addresses accordingly */
2265 for (i = 0; i < 2; i++) {
2266 struct ata_port *ap = host->ports[i];
2267 int base = i * 2;
2268 void __iomem * const *iomap;
2269
2270 if (ata_port_is_dummy(ap))
2271 continue;
2272
2273 /* Discard disabled ports. Some controllers show
2274 * their unused channels this way. Disabled ports are
2275 * made dummy.
2276 */
2277 if (!ata_resources_present(pdev, i)) {
2278 ap->ops = &ata_dummy_port_ops;
2279 continue;
2280 }
2281
2282 rc = pcim_iomap_regions(pdev, 0x3 << base,
2283 dev_driver_string(gdev));
2284 if (rc) {
2285 dev_printk(KERN_WARNING, gdev,
2286 "failed to request/iomap BARs for port %d "
2287 "(errno=%d)\n", i, rc);
2288 if (rc == -EBUSY)
2289 pcim_pin_device(pdev);
2290 ap->ops = &ata_dummy_port_ops;
2291 continue;
2292 }
2293 host->iomap = iomap = pcim_iomap_table(pdev);
2294
2295 ap->ioaddr.cmd_addr = iomap[base];
2296 ap->ioaddr.altstatus_addr =
2297 ap->ioaddr.ctl_addr = (void __iomem *)
2298 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2299 ata_sff_std_ports(&ap->ioaddr);
2300
2301 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2302 (unsigned long long)pci_resource_start(pdev, base),
2303 (unsigned long long)pci_resource_start(pdev, base + 1));
2304
2305 mask |= 1 << i;
2306 }
2307
2308 if (!mask) {
2309 dev_printk(KERN_ERR, gdev, "no available native port\n");
2310 return -ENODEV;
2311 }
2312
2313 return 0;
2314 }
2315 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2316
2317 /**
2318 * ata_pci_sff_prepare_host - helper to prepare native PCI ATA host
2319 * @pdev: target PCI device
2320 * @ppi: array of port_info, must be enough for two ports
2321 * @r_host: out argument for the initialized ATA host
2322 *
2323 * Helper to allocate ATA host for @pdev, acquire all native PCI
2324 * resources and initialize it accordingly in one go.
2325 *
2326 * LOCKING:
2327 * Inherited from calling layer (may sleep).
2328 *
2329 * RETURNS:
2330 * 0 on success, -errno otherwise.
2331 */
2332 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2333 const struct ata_port_info * const *ppi,
2334 struct ata_host **r_host)
2335 {
2336 struct ata_host *host;
2337 int rc;
2338
2339 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2340 return -ENOMEM;
2341
2342 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2343 if (!host) {
2344 dev_printk(KERN_ERR, &pdev->dev,
2345 "failed to allocate ATA host\n");
2346 rc = -ENOMEM;
2347 goto err_out;
2348 }
2349
2350 rc = ata_pci_sff_init_host(host);
2351 if (rc)
2352 goto err_out;
2353
2354 /* init DMA related stuff */
2355 ata_pci_bmdma_init(host);
2356
2357 devres_remove_group(&pdev->dev, NULL);
2358 *r_host = host;
2359 return 0;
2360
2361 err_out:
2362 devres_release_group(&pdev->dev, NULL);
2363 return rc;
2364 }
2365 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2366
2367 /**
2368 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2369 * @host: target SFF ATA host
2370 * @irq_handler: irq_handler used when requesting IRQ(s)
2371 * @sht: scsi_host_template to use when registering the host
2372 *
2373 * This is the counterpart of ata_host_activate() for SFF ATA
2374 * hosts. This separate helper is necessary because SFF hosts
2375 * use two separate interrupts in legacy mode.
2376 *
2377 * LOCKING:
2378 * Inherited from calling layer (may sleep).
2379 *
2380 * RETURNS:
2381 * 0 on success, -errno otherwise.
2382 */
2383 int ata_pci_sff_activate_host(struct ata_host *host,
2384 irq_handler_t irq_handler,
2385 struct scsi_host_template *sht)
2386 {
2387 struct device *dev = host->dev;
2388 struct pci_dev *pdev = to_pci_dev(dev);
2389 const char *drv_name = dev_driver_string(host->dev);
2390 int legacy_mode = 0, rc;
2391
2392 rc = ata_host_start(host);
2393 if (rc)
2394 return rc;
2395
2396 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2397 u8 tmp8, mask;
2398
2399 /* TODO: What if one channel is in native mode ... */
2400 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2401 mask = (1 << 2) | (1 << 0);
2402 if ((tmp8 & mask) != mask)
2403 legacy_mode = 1;
2404 #if defined(CONFIG_NO_ATA_LEGACY)
2405 /* Some platforms with PCI limits cannot address compat
2406 port space. In that case we punt if their firmware has
2407 left a device in compatibility mode */
2408 if (legacy_mode) {
2409 printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n");
2410 return -EOPNOTSUPP;
2411 }
2412 #endif
2413 }
2414
2415 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2416 return -ENOMEM;
2417
2418 if (!legacy_mode && pdev->irq) {
2419 rc = devm_request_irq(dev, pdev->irq, irq_handler,
2420 IRQF_SHARED, drv_name, host);
2421 if (rc)
2422 goto out;
2423
2424 ata_port_desc(host->ports[0], "irq %d", pdev->irq);
2425 ata_port_desc(host->ports[1], "irq %d", pdev->irq);
2426 } else if (legacy_mode) {
2427 if (!ata_port_is_dummy(host->ports[0])) {
2428 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2429 irq_handler, IRQF_SHARED,
2430 drv_name, host);
2431 if (rc)
2432 goto out;
2433
2434 ata_port_desc(host->ports[0], "irq %d",
2435 ATA_PRIMARY_IRQ(pdev));
2436 }
2437
2438 if (!ata_port_is_dummy(host->ports[1])) {
2439 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2440 irq_handler, IRQF_SHARED,
2441 drv_name, host);
2442 if (rc)
2443 goto out;
2444
2445 ata_port_desc(host->ports[1], "irq %d",
2446 ATA_SECONDARY_IRQ(pdev));
2447 }
2448 }
2449
2450 rc = ata_host_register(host, sht);
2451 out:
2452 if (rc == 0)
2453 devres_remove_group(dev, NULL);
2454 else
2455 devres_release_group(dev, NULL);
2456
2457 return rc;
2458 }
2459 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2460
2461 /**
2462 * ata_pci_sff_init_one - Initialize/register PCI IDE host controller
2463 * @pdev: Controller to be initialized
2464 * @ppi: array of port_info, must be enough for two ports
2465 * @sht: scsi_host_template to use when registering the host
2466 * @host_priv: host private_data
2467 * @hflag: host flags
2468 *
2469 * This is a helper function which can be called from a driver's
2470 * xxx_init_one() probe function if the hardware uses traditional
2471 * IDE taskfile registers.
2472 *
2473 * This function calls pci_enable_device(), reserves its register
2474 * regions, sets the dma mask, enables bus master mode, and calls
2475 * ata_device_add()
2476 *
2477 * ASSUMPTION:
2478 * Nobody makes a single channel controller that appears solely as
2479 * the secondary legacy port on PCI.
2480 *
2481 * LOCKING:
2482 * Inherited from PCI layer (may sleep).
2483 *
2484 * RETURNS:
2485 * Zero on success, negative on errno-based value on error.
2486 */
2487 int ata_pci_sff_init_one(struct pci_dev *pdev,
2488 const struct ata_port_info * const *ppi,
2489 struct scsi_host_template *sht, void *host_priv, int hflag)
2490 {
2491 struct device *dev = &pdev->dev;
2492 const struct ata_port_info *pi = NULL;
2493 struct ata_host *host = NULL;
2494 int i, rc;
2495
2496 DPRINTK("ENTER\n");
2497
2498 /* look up the first valid port_info */
2499 for (i = 0; i < 2 && ppi[i]; i++) {
2500 if (ppi[i]->port_ops != &ata_dummy_port_ops) {
2501 pi = ppi[i];
2502 break;
2503 }
2504 }
2505
2506 if (!pi) {
2507 dev_printk(KERN_ERR, &pdev->dev,
2508 "no valid port_info specified\n");
2509 return -EINVAL;
2510 }
2511
2512 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2513 return -ENOMEM;
2514
2515 rc = pcim_enable_device(pdev);
2516 if (rc)
2517 goto out;
2518
2519 /* prepare and activate SFF host */
2520 rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2521 if (rc)
2522 goto out;
2523 host->private_data = host_priv;
2524 host->flags |= hflag;
2525
2526 pci_set_master(pdev);
2527 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2528 out:
2529 if (rc == 0)
2530 devres_remove_group(&pdev->dev, NULL);
2531 else
2532 devres_release_group(&pdev->dev, NULL);
2533
2534 return rc;
2535 }
2536 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2537
2538 #endif /* CONFIG_PCI */
2539
2540 const struct ata_port_operations ata_bmdma_port_ops = {
2541 .inherits = &ata_sff_port_ops,
2542
2543 .error_handler = ata_bmdma_error_handler,
2544 .post_internal_cmd = ata_bmdma_post_internal_cmd,
2545
2546 .qc_prep = ata_bmdma_qc_prep,
2547 .qc_issue = ata_bmdma_qc_issue,
2548
2549 .sff_irq_clear = ata_bmdma_irq_clear,
2550 .bmdma_setup = ata_bmdma_setup,
2551 .bmdma_start = ata_bmdma_start,
2552 .bmdma_stop = ata_bmdma_stop,
2553 .bmdma_status = ata_bmdma_status,
2554
2555 .port_start = ata_bmdma_port_start,
2556 };
2557 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2558
2559 const struct ata_port_operations ata_bmdma32_port_ops = {
2560 .inherits = &ata_bmdma_port_ops,
2561
2562 .sff_data_xfer = ata_sff_data_xfer32,
2563 .port_start = ata_bmdma_port_start32,
2564 };
2565 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2566
2567 /**
2568 * ata_bmdma_fill_sg - Fill PCI IDE PRD table
2569 * @qc: Metadata associated with taskfile to be transferred
2570 *
2571 * Fill PCI IDE PRD (scatter-gather) table with segments
2572 * associated with the current disk command.
2573 *
2574 * LOCKING:
2575 * spin_lock_irqsave(host lock)
2576 *
2577 */
2578 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2579 {
2580 struct ata_port *ap = qc->ap;
2581 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2582 struct scatterlist *sg;
2583 unsigned int si, pi;
2584
2585 pi = 0;
2586 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2587 u32 addr, offset;
2588 u32 sg_len, len;
2589
2590 /* determine if physical DMA addr spans 64K boundary.
2591 * Note h/w doesn't support 64-bit, so we unconditionally
2592 * truncate dma_addr_t to u32.
2593 */
2594 addr = (u32) sg_dma_address(sg);
2595 sg_len = sg_dma_len(sg);
2596
2597 while (sg_len) {
2598 offset = addr & 0xffff;
2599 len = sg_len;
2600 if ((offset + sg_len) > 0x10000)
2601 len = 0x10000 - offset;
2602
2603 prd[pi].addr = cpu_to_le32(addr);
2604 prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2605 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2606
2607 pi++;
2608 sg_len -= len;
2609 addr += len;
2610 }
2611 }
2612
2613 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2614 }
2615
2616 /**
2617 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2618 * @qc: Metadata associated with taskfile to be transferred
2619 *
2620 * Fill PCI IDE PRD (scatter-gather) table with segments
2621 * associated with the current disk command. Perform the fill
2622 * so that we avoid writing any length 64K records for
2623 * controllers that don't follow the spec.
2624 *
2625 * LOCKING:
2626 * spin_lock_irqsave(host lock)
2627 *
2628 */
2629 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2630 {
2631 struct ata_port *ap = qc->ap;
2632 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2633 struct scatterlist *sg;
2634 unsigned int si, pi;
2635
2636 pi = 0;
2637 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2638 u32 addr, offset;
2639 u32 sg_len, len, blen;
2640
2641 /* determine if physical DMA addr spans 64K boundary.
2642 * Note h/w doesn't support 64-bit, so we unconditionally
2643 * truncate dma_addr_t to u32.
2644 */
2645 addr = (u32) sg_dma_address(sg);
2646 sg_len = sg_dma_len(sg);
2647
2648 while (sg_len) {
2649 offset = addr & 0xffff;
2650 len = sg_len;
2651 if ((offset + sg_len) > 0x10000)
2652 len = 0x10000 - offset;
2653
2654 blen = len & 0xffff;
2655 prd[pi].addr = cpu_to_le32(addr);
2656 if (blen == 0) {
2657 /* Some PATA chipsets like the CS5530 can't
2658 cope with 0x0000 meaning 64K as the spec
2659 says */
2660 prd[pi].flags_len = cpu_to_le32(0x8000);
2661 blen = 0x8000;
2662 prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2663 }
2664 prd[pi].flags_len = cpu_to_le32(blen);
2665 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2666
2667 pi++;
2668 sg_len -= len;
2669 addr += len;
2670 }
2671 }
2672
2673 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2674 }
2675
2676 /**
2677 * ata_bmdma_qc_prep - Prepare taskfile for submission
2678 * @qc: Metadata associated with taskfile to be prepared
2679 *
2680 * Prepare ATA taskfile for submission.
2681 *
2682 * LOCKING:
2683 * spin_lock_irqsave(host lock)
2684 */
2685 void ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2686 {
2687 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2688 return;
2689
2690 ata_bmdma_fill_sg(qc);
2691 }
2692 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2693
2694 /**
2695 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2696 * @qc: Metadata associated with taskfile to be prepared
2697 *
2698 * Prepare ATA taskfile for submission.
2699 *
2700 * LOCKING:
2701 * spin_lock_irqsave(host lock)
2702 */
2703 void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2704 {
2705 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2706 return;
2707
2708 ata_bmdma_fill_sg_dumb(qc);
2709 }
2710 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2711
2712 /**
2713 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2714 * @qc: command to issue to device
2715 *
2716 * This function issues a PIO, NODATA or DMA command to a
2717 * SFF/BMDMA controller. PIO and NODATA are handled by
2718 * ata_sff_qc_issue().
2719 *
2720 * LOCKING:
2721 * spin_lock_irqsave(host lock)
2722 *
2723 * RETURNS:
2724 * Zero on success, AC_ERR_* mask on failure
2725 */
2726 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2727 {
2728 struct ata_port *ap = qc->ap;
2729
2730 /* see ata_dma_blacklisted() */
2731 BUG_ON((ap->flags & ATA_FLAG_PIO_POLLING) &&
2732 qc->tf.protocol == ATAPI_PROT_DMA);
2733
2734 /* defer PIO handling to sff_qc_issue */
2735 if (!ata_is_dma(qc->tf.protocol))
2736 return ata_sff_qc_issue(qc);
2737
2738 /* select the device */
2739 ata_dev_select(ap, qc->dev->devno, 1, 0);
2740
2741 /* start the command */
2742 switch (qc->tf.protocol) {
2743 case ATA_PROT_DMA:
2744 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2745
2746 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2747 ap->ops->bmdma_setup(qc); /* set up bmdma */
2748 ap->ops->bmdma_start(qc); /* initiate bmdma */
2749 ap->hsm_task_state = HSM_ST_LAST;
2750 break;
2751
2752 case ATAPI_PROT_DMA:
2753 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2754
2755 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2756 ap->ops->bmdma_setup(qc); /* set up bmdma */
2757 ap->hsm_task_state = HSM_ST_FIRST;
2758
2759 /* send cdb by polling if no cdb interrupt */
2760 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2761 ata_sff_queue_pio_task(ap, 0);
2762 break;
2763
2764 default:
2765 WARN_ON(1);
2766 return AC_ERR_SYSTEM;
2767 }
2768
2769 return 0;
2770 }
2771 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2772
2773 /**
2774 * ata_bmdma_port_intr - Handle BMDMA port interrupt
2775 * @ap: Port on which interrupt arrived (possibly...)
2776 * @qc: Taskfile currently active in engine
2777 *
2778 * Handle port interrupt for given queued command.
2779 *
2780 * LOCKING:
2781 * spin_lock_irqsave(host lock)
2782 *
2783 * RETURNS:
2784 * One if interrupt was handled, zero if not (shared irq).
2785 */
2786 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2787 {
2788 struct ata_eh_info *ehi = &ap->link.eh_info;
2789 u8 host_stat = 0;
2790 bool bmdma_stopped = false;
2791 unsigned int handled;
2792
2793 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2794 /* check status of DMA engine */
2795 host_stat = ap->ops->bmdma_status(ap);
2796 VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
2797
2798 /* if it's not our irq... */
2799 if (!(host_stat & ATA_DMA_INTR))
2800 return ata_sff_idle_irq(ap);
2801
2802 /* before we do anything else, clear DMA-Start bit */
2803 ap->ops->bmdma_stop(qc);
2804 bmdma_stopped = true;
2805
2806 if (unlikely(host_stat & ATA_DMA_ERR)) {
2807 /* error when transfering data to/from memory */
2808 qc->err_mask |= AC_ERR_HOST_BUS;
2809 ap->hsm_task_state = HSM_ST_ERR;
2810 }
2811 }
2812
2813 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2814
2815 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2816 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2817
2818 return handled;
2819 }
2820 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2821
2822 /**
2823 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2824 * @irq: irq line (unused)
2825 * @dev_instance: pointer to our ata_host information structure
2826 *
2827 * Default interrupt handler for PCI IDE devices. Calls
2828 * ata_bmdma_port_intr() for each port that is not disabled.
2829 *
2830 * LOCKING:
2831 * Obtains host lock during operation.
2832 *
2833 * RETURNS:
2834 * IRQ_NONE or IRQ_HANDLED.
2835 */
2836 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2837 {
2838 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2839 }
2840 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2841
2842 /**
2843 * ata_bmdma_error_handler - Stock error handler for BMDMA controller
2844 * @ap: port to handle error for
2845 *
2846 * Stock error handler for BMDMA controller. It can handle both
2847 * PATA and SATA controllers. Most BMDMA controllers should be
2848 * able to use this EH as-is or with some added handling before
2849 * and after.
2850 *
2851 * LOCKING:
2852 * Kernel thread context (may sleep)
2853 */
2854 void ata_bmdma_error_handler(struct ata_port *ap)
2855 {
2856 struct ata_queued_cmd *qc;
2857 unsigned long flags;
2858 bool thaw = false;
2859
2860 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2861 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2862 qc = NULL;
2863
2864 /* reset PIO HSM and stop DMA engine */
2865 spin_lock_irqsave(ap->lock, flags);
2866
2867 if (qc && ata_is_dma(qc->tf.protocol)) {
2868 u8 host_stat;
2869
2870 host_stat = ap->ops->bmdma_status(ap);
2871
2872 /* BMDMA controllers indicate host bus error by
2873 * setting DMA_ERR bit and timing out. As it wasn't
2874 * really a timeout event, adjust error mask and
2875 * cancel frozen state.
2876 */
2877 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2878 qc->err_mask = AC_ERR_HOST_BUS;
2879 thaw = true;
2880 }
2881
2882 ap->ops->bmdma_stop(qc);
2883
2884 /* if we're gonna thaw, make sure IRQ is clear */
2885 if (thaw) {
2886 ap->ops->sff_check_status(ap);
2887 if (ap->ops->sff_irq_clear)
2888 ap->ops->sff_irq_clear(ap);
2889 }
2890 }
2891
2892 spin_unlock_irqrestore(ap->lock, flags);
2893
2894 if (thaw)
2895 ata_eh_thaw_port(ap);
2896
2897 ata_sff_error_handler(ap);
2898 }
2899 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2900
2901 /**
2902 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2903 * @qc: internal command to clean up
2904 *
2905 * LOCKING:
2906 * Kernel thread context (may sleep)
2907 */
2908 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2909 {
2910 struct ata_port *ap = qc->ap;
2911 unsigned long flags;
2912
2913 if (ata_is_dma(qc->tf.protocol)) {
2914 spin_lock_irqsave(ap->lock, flags);
2915 ap->ops->bmdma_stop(qc);
2916 spin_unlock_irqrestore(ap->lock, flags);
2917 }
2918 }
2919 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2920
2921 /**
2922 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2923 * @ap: Port associated with this ATA transaction.
2924 *
2925 * Clear interrupt and error flags in DMA status register.
2926 *
2927 * May be used as the irq_clear() entry in ata_port_operations.
2928 *
2929 * LOCKING:
2930 * spin_lock_irqsave(host lock)
2931 */
2932 void ata_bmdma_irq_clear(struct ata_port *ap)
2933 {
2934 void __iomem *mmio = ap->ioaddr.bmdma_addr;
2935
2936 if (!mmio)
2937 return;
2938
2939 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2940 }
2941 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2942
2943 /**
2944 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2945 * @qc: Info associated with this ATA transaction.
2946 *
2947 * LOCKING:
2948 * spin_lock_irqsave(host lock)
2949 */
2950 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2951 {
2952 struct ata_port *ap = qc->ap;
2953 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2954 u8 dmactl;
2955
2956 /* load PRD table addr. */
2957 mb(); /* make sure PRD table writes are visible to controller */
2958 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2959
2960 /* specify data direction, triple-check start bit is clear */
2961 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2962 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2963 if (!rw)
2964 dmactl |= ATA_DMA_WR;
2965 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2966
2967 /* issue r/w command */
2968 ap->ops->sff_exec_command(ap, &qc->tf);
2969 }
2970 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2971
2972 /**
2973 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
2974 * @qc: Info associated with this ATA transaction.
2975 *
2976 * LOCKING:
2977 * spin_lock_irqsave(host lock)
2978 */
2979 void ata_bmdma_start(struct ata_queued_cmd *qc)
2980 {
2981 struct ata_port *ap = qc->ap;
2982 u8 dmactl;
2983
2984 /* start host DMA transaction */
2985 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2986 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2987
2988 /* Strictly, one may wish to issue an ioread8() here, to
2989 * flush the mmio write. However, control also passes
2990 * to the hardware at this point, and it will interrupt
2991 * us when we are to resume control. So, in effect,
2992 * we don't care when the mmio write flushes.
2993 * Further, a read of the DMA status register _immediately_
2994 * following the write may not be what certain flaky hardware
2995 * is expected, so I think it is best to not add a readb()
2996 * without first all the MMIO ATA cards/mobos.
2997 * Or maybe I'm just being paranoid.
2998 *
2999 * FIXME: The posting of this write means I/O starts are
3000 * unneccessarily delayed for MMIO
3001 */
3002 }
3003 EXPORT_SYMBOL_GPL(ata_bmdma_start);
3004
3005 /**
3006 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3007 * @qc: Command we are ending DMA for
3008 *
3009 * Clears the ATA_DMA_START flag in the dma control register
3010 *
3011 * May be used as the bmdma_stop() entry in ata_port_operations.
3012 *
3013 * LOCKING:
3014 * spin_lock_irqsave(host lock)
3015 */
3016 void ata_bmdma_stop(struct ata_queued_cmd *qc)
3017 {
3018 struct ata_port *ap = qc->ap;
3019 void __iomem *mmio = ap->ioaddr.bmdma_addr;
3020
3021 /* clear start/stop bit */
3022 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3023 mmio + ATA_DMA_CMD);
3024
3025 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3026 ata_sff_dma_pause(ap);
3027 }
3028 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3029
3030 /**
3031 * ata_bmdma_status - Read PCI IDE BMDMA status
3032 * @ap: Port associated with this ATA transaction.
3033 *
3034 * Read and return BMDMA status register.
3035 *
3036 * May be used as the bmdma_status() entry in ata_port_operations.
3037 *
3038 * LOCKING:
3039 * spin_lock_irqsave(host lock)
3040 */
3041 u8 ata_bmdma_status(struct ata_port *ap)
3042 {
3043 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3044 }
3045 EXPORT_SYMBOL_GPL(ata_bmdma_status);
3046
3047
3048 /**
3049 * ata_bmdma_port_start - Set port up for bmdma.
3050 * @ap: Port to initialize
3051 *
3052 * Called just after data structures for each port are
3053 * initialized. Allocates space for PRD table.
3054 *
3055 * May be used as the port_start() entry in ata_port_operations.
3056 *
3057 * LOCKING:
3058 * Inherited from caller.
3059 */
3060 int ata_bmdma_port_start(struct ata_port *ap)
3061 {
3062 if (ap->mwdma_mask || ap->udma_mask) {
3063 ap->bmdma_prd =
3064 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3065 &ap->bmdma_prd_dma, GFP_KERNEL);
3066 if (!ap->bmdma_prd)
3067 return -ENOMEM;
3068 }
3069
3070 return 0;
3071 }
3072 EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3073
3074 /**
3075 * ata_bmdma_port_start32 - Set port up for dma.
3076 * @ap: Port to initialize
3077 *
3078 * Called just after data structures for each port are
3079 * initialized. Enables 32bit PIO and allocates space for PRD
3080 * table.
3081 *
3082 * May be used as the port_start() entry in ata_port_operations for
3083 * devices that are capable of 32bit PIO.
3084 *
3085 * LOCKING:
3086 * Inherited from caller.
3087 */
3088 int ata_bmdma_port_start32(struct ata_port *ap)
3089 {
3090 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3091 return ata_bmdma_port_start(ap);
3092 }
3093 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3094
3095 #ifdef CONFIG_PCI
3096
3097 /**
3098 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
3099 * @pdev: PCI device
3100 *
3101 * Some PCI ATA devices report simplex mode but in fact can be told to
3102 * enter non simplex mode. This implements the necessary logic to
3103 * perform the task on such devices. Calling it on other devices will
3104 * have -undefined- behaviour.
3105 */
3106 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3107 {
3108 unsigned long bmdma = pci_resource_start(pdev, 4);
3109 u8 simplex;
3110
3111 if (bmdma == 0)
3112 return -ENOENT;
3113
3114 simplex = inb(bmdma + 0x02);
3115 outb(simplex & 0x60, bmdma + 0x02);
3116 simplex = inb(bmdma + 0x02);
3117 if (simplex & 0x80)
3118 return -EOPNOTSUPP;
3119 return 0;
3120 }
3121 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3122
3123 static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3124 {
3125 int i;
3126
3127 dev_printk(KERN_ERR, host->dev, "BMDMA: %s, falling back to PIO\n",
3128 reason);
3129
3130 for (i = 0; i < 2; i++) {
3131 host->ports[i]->mwdma_mask = 0;
3132 host->ports[i]->udma_mask = 0;
3133 }
3134 }
3135
3136 /**
3137 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3138 * @host: target ATA host
3139 *
3140 * Acquire PCI BMDMA resources and initialize @host accordingly.
3141 *
3142 * LOCKING:
3143 * Inherited from calling layer (may sleep).
3144 */
3145 void ata_pci_bmdma_init(struct ata_host *host)
3146 {
3147 struct device *gdev = host->dev;
3148 struct pci_dev *pdev = to_pci_dev(gdev);
3149 int i, rc;
3150
3151 /* No BAR4 allocation: No DMA */
3152 if (pci_resource_start(pdev, 4) == 0) {
3153 ata_bmdma_nodma(host, "BAR4 is zero");
3154 return;
3155 }
3156
3157 /*
3158 * Some controllers require BMDMA region to be initialized
3159 * even if DMA is not in use to clear IRQ status via
3160 * ->sff_irq_clear method. Try to initialize bmdma_addr
3161 * regardless of dma masks.
3162 */
3163 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
3164 if (rc)
3165 ata_bmdma_nodma(host, "failed to set dma mask");
3166 if (!rc) {
3167 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
3168 if (rc)
3169 ata_bmdma_nodma(host,
3170 "failed to set consistent dma mask");
3171 }
3172
3173 /* request and iomap DMA region */
3174 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3175 if (rc) {
3176 ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3177 return;
3178 }
3179 host->iomap = pcim_iomap_table(pdev);
3180
3181 for (i = 0; i < 2; i++) {
3182 struct ata_port *ap = host->ports[i];
3183 void __iomem *bmdma = host->iomap[4] + 8 * i;
3184
3185 if (ata_port_is_dummy(ap))
3186 continue;
3187
3188 ap->ioaddr.bmdma_addr = bmdma;
3189 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3190 (ioread8(bmdma + 2) & 0x80))
3191 host->flags |= ATA_HOST_SIMPLEX;
3192
3193 ata_port_desc(ap, "bmdma 0x%llx",
3194 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3195 }
3196 }
3197 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3198
3199 #endif /* CONFIG_PCI */
3200
3201 /**
3202 * ata_sff_port_init - Initialize SFF/BMDMA ATA port
3203 * @ap: Port to initialize
3204 *
3205 * Called on port allocation to initialize SFF/BMDMA specific
3206 * fields.
3207 *
3208 * LOCKING:
3209 * None.
3210 */
3211 void ata_sff_port_init(struct ata_port *ap)
3212 {
3213 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3214 ap->ctl = ATA_DEVCTL_OBS;
3215 ap->last_ctl = 0xFF;
3216 }
3217
3218 int __init ata_sff_init(void)
3219 {
3220 /*
3221 * FIXME: In UP case, there is only one workqueue thread and if you
3222 * have more than one PIO device, latency is bloody awful, with
3223 * occasional multi-second "hiccups" as one PIO device waits for
3224 * another. It's an ugly wart that users DO occasionally complain
3225 * about; luckily most users have at most one PIO polled device.
3226 */
3227 ata_sff_wq = create_workqueue("ata_sff");
3228 if (!ata_sff_wq)
3229 return -ENOMEM;
3230
3231 return 0;
3232 }
3233
3234 void __exit ata_sff_exit(void)
3235 {
3236 destroy_workqueue(ata_sff_wq);
3237 }
This page took 0.113835 seconds and 5 git commands to generate.