ata: use CONFIG_PM_SLEEP instead of CONFIG_PM where applicable in host drivers
[deliverable/linux.git] / drivers / ata / sata_mv.c
1 /*
2 * sata_mv.c - Marvell SATA support
3 *
4 * Copyright 2008-2009: Marvell Corporation, all rights reserved.
5 * Copyright 2005: EMC Corporation, all rights reserved.
6 * Copyright 2005 Red Hat, Inc. All rights reserved.
7 *
8 * Originally written by Brett Russ.
9 * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
10 *
11 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; version 2 of the License.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 *
26 */
27
28 /*
29 * sata_mv TODO list:
30 *
31 * --> Develop a low-power-consumption strategy, and implement it.
32 *
33 * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
34 *
35 * --> [Experiment, Marvell value added] Is it possible to use target
36 * mode to cross-connect two Linux boxes with Marvell cards? If so,
37 * creating LibATA target mode support would be very interesting.
38 *
39 * Target mode, for those without docs, is the ability to directly
40 * connect two SATA ports.
41 */
42
43 /*
44 * 80x1-B2 errata PCI#11:
45 *
46 * Users of the 6041/6081 Rev.B2 chips (current is C0)
47 * should be careful to insert those cards only onto PCI-X bus #0,
48 * and only in device slots 0..7, not higher. The chips may not
49 * work correctly otherwise (note: this is a pretty rare condition).
50 */
51
52 #include <linux/kernel.h>
53 #include <linux/module.h>
54 #include <linux/pci.h>
55 #include <linux/init.h>
56 #include <linux/blkdev.h>
57 #include <linux/delay.h>
58 #include <linux/interrupt.h>
59 #include <linux/dmapool.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/device.h>
62 #include <linux/clk.h>
63 #include <linux/phy/phy.h>
64 #include <linux/platform_device.h>
65 #include <linux/ata_platform.h>
66 #include <linux/mbus.h>
67 #include <linux/bitops.h>
68 #include <linux/gfp.h>
69 #include <linux/of.h>
70 #include <linux/of_irq.h>
71 #include <scsi/scsi_host.h>
72 #include <scsi/scsi_cmnd.h>
73 #include <scsi/scsi_device.h>
74 #include <linux/libata.h>
75
76 #define DRV_NAME "sata_mv"
77 #define DRV_VERSION "1.28"
78
79 /*
80 * module options
81 */
82
83 #ifdef CONFIG_PCI
84 static int msi;
85 module_param(msi, int, S_IRUGO);
86 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
87 #endif
88
89 static int irq_coalescing_io_count;
90 module_param(irq_coalescing_io_count, int, S_IRUGO);
91 MODULE_PARM_DESC(irq_coalescing_io_count,
92 "IRQ coalescing I/O count threshold (0..255)");
93
94 static int irq_coalescing_usecs;
95 module_param(irq_coalescing_usecs, int, S_IRUGO);
96 MODULE_PARM_DESC(irq_coalescing_usecs,
97 "IRQ coalescing time threshold in usecs");
98
99 enum {
100 /* BAR's are enumerated in terms of pci_resource_start() terms */
101 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
102 MV_IO_BAR = 2, /* offset 0x18: IO space */
103 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
104
105 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
106 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
107
108 /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
109 COAL_CLOCKS_PER_USEC = 150, /* for calculating COAL_TIMEs */
110 MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */
111 MAX_COAL_IO_COUNT = 255, /* completed I/O count */
112
113 MV_PCI_REG_BASE = 0,
114
115 /*
116 * Per-chip ("all ports") interrupt coalescing feature.
117 * This is only for GEN_II / GEN_IIE hardware.
118 *
119 * Coalescing defers the interrupt until either the IO_THRESHOLD
120 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
121 */
122 COAL_REG_BASE = 0x18000,
123 IRQ_COAL_CAUSE = (COAL_REG_BASE + 0x08),
124 ALL_PORTS_COAL_IRQ = (1 << 4), /* all ports irq event */
125
126 IRQ_COAL_IO_THRESHOLD = (COAL_REG_BASE + 0xcc),
127 IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
128
129 /*
130 * Registers for the (unused here) transaction coalescing feature:
131 */
132 TRAN_COAL_CAUSE_LO = (COAL_REG_BASE + 0x88),
133 TRAN_COAL_CAUSE_HI = (COAL_REG_BASE + 0x8c),
134
135 SATAHC0_REG_BASE = 0x20000,
136 FLASH_CTL = 0x1046c,
137 GPIO_PORT_CTL = 0x104f0,
138 RESET_CFG = 0x180d8,
139
140 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
141 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
142 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
143 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
144
145 MV_MAX_Q_DEPTH = 32,
146 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
147
148 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
149 * CRPB needs alignment on a 256B boundary. Size == 256B
150 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
151 */
152 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
153 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
154 MV_MAX_SG_CT = 256,
155 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
156
157 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
158 MV_PORT_HC_SHIFT = 2,
159 MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */
160 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
161 MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */
162
163 /* Host Flags */
164 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
165
166 MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_PIO_POLLING,
167
168 MV_GEN_I_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
169
170 MV_GEN_II_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NCQ |
171 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
172
173 MV_GEN_IIE_FLAGS = MV_GEN_II_FLAGS | ATA_FLAG_AN,
174
175 CRQB_FLAG_READ = (1 << 0),
176 CRQB_TAG_SHIFT = 1,
177 CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */
178 CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */
179 CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */
180 CRQB_CMD_ADDR_SHIFT = 8,
181 CRQB_CMD_CS = (0x2 << 11),
182 CRQB_CMD_LAST = (1 << 15),
183
184 CRPB_FLAG_STATUS_SHIFT = 8,
185 CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */
186 CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */
187
188 EPRD_FLAG_END_OF_TBL = (1 << 31),
189
190 /* PCI interface registers */
191
192 MV_PCI_COMMAND = 0xc00,
193 MV_PCI_COMMAND_MWRCOM = (1 << 4), /* PCI Master Write Combining */
194 MV_PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */
195
196 PCI_MAIN_CMD_STS = 0xd30,
197 STOP_PCI_MASTER = (1 << 2),
198 PCI_MASTER_EMPTY = (1 << 3),
199 GLOB_SFT_RST = (1 << 4),
200
201 MV_PCI_MODE = 0xd00,
202 MV_PCI_MODE_MASK = 0x30,
203
204 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
205 MV_PCI_DISC_TIMER = 0xd04,
206 MV_PCI_MSI_TRIGGER = 0xc38,
207 MV_PCI_SERR_MASK = 0xc28,
208 MV_PCI_XBAR_TMOUT = 0x1d04,
209 MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
210 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
211 MV_PCI_ERR_ATTRIBUTE = 0x1d48,
212 MV_PCI_ERR_COMMAND = 0x1d50,
213
214 PCI_IRQ_CAUSE = 0x1d58,
215 PCI_IRQ_MASK = 0x1d5c,
216 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
217
218 PCIE_IRQ_CAUSE = 0x1900,
219 PCIE_IRQ_MASK = 0x1910,
220 PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */
221
222 /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
223 PCI_HC_MAIN_IRQ_CAUSE = 0x1d60,
224 PCI_HC_MAIN_IRQ_MASK = 0x1d64,
225 SOC_HC_MAIN_IRQ_CAUSE = 0x20020,
226 SOC_HC_MAIN_IRQ_MASK = 0x20024,
227 ERR_IRQ = (1 << 0), /* shift by (2 * port #) */
228 DONE_IRQ = (1 << 1), /* shift by (2 * port #) */
229 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
230 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
231 DONE_IRQ_0_3 = 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */
232 DONE_IRQ_4_7 = (DONE_IRQ_0_3 << HC_SHIFT), /* 4,5,6,7 */
233 PCI_ERR = (1 << 18),
234 TRAN_COAL_LO_DONE = (1 << 19), /* transaction coalescing */
235 TRAN_COAL_HI_DONE = (1 << 20), /* transaction coalescing */
236 PORTS_0_3_COAL_DONE = (1 << 8), /* HC0 IRQ coalescing */
237 PORTS_4_7_COAL_DONE = (1 << 17), /* HC1 IRQ coalescing */
238 ALL_PORTS_COAL_DONE = (1 << 21), /* GEN_II(E) IRQ coalescing */
239 GPIO_INT = (1 << 22),
240 SELF_INT = (1 << 23),
241 TWSI_INT = (1 << 24),
242 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
243 HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */
244 HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */
245
246 /* SATAHC registers */
247 HC_CFG = 0x00,
248
249 HC_IRQ_CAUSE = 0x14,
250 DMA_IRQ = (1 << 0), /* shift by port # */
251 HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */
252 DEV_IRQ = (1 << 8), /* shift by port # */
253
254 /*
255 * Per-HC (Host-Controller) interrupt coalescing feature.
256 * This is present on all chip generations.
257 *
258 * Coalescing defers the interrupt until either the IO_THRESHOLD
259 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
260 */
261 HC_IRQ_COAL_IO_THRESHOLD = 0x000c,
262 HC_IRQ_COAL_TIME_THRESHOLD = 0x0010,
263
264 SOC_LED_CTRL = 0x2c,
265 SOC_LED_CTRL_BLINK = (1 << 0), /* Active LED blink */
266 SOC_LED_CTRL_ACT_PRESENCE = (1 << 2), /* Multiplex dev presence */
267 /* with dev activity LED */
268
269 /* Shadow block registers */
270 SHD_BLK = 0x100,
271 SHD_CTL_AST = 0x20, /* ofs from SHD_BLK */
272
273 /* SATA registers */
274 SATA_STATUS = 0x300, /* ctrl, err regs follow status */
275 SATA_ACTIVE = 0x350,
276 FIS_IRQ_CAUSE = 0x364,
277 FIS_IRQ_CAUSE_AN = (1 << 9), /* async notification */
278
279 LTMODE = 0x30c, /* requires read-after-write */
280 LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */
281
282 PHY_MODE2 = 0x330,
283 PHY_MODE3 = 0x310,
284
285 PHY_MODE4 = 0x314, /* requires read-after-write */
286 PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */
287 PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */
288 PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */
289 PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */
290
291 SATA_IFCTL = 0x344,
292 SATA_TESTCTL = 0x348,
293 SATA_IFSTAT = 0x34c,
294 VENDOR_UNIQUE_FIS = 0x35c,
295
296 FISCFG = 0x360,
297 FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */
298 FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */
299
300 PHY_MODE9_GEN2 = 0x398,
301 PHY_MODE9_GEN1 = 0x39c,
302 PHYCFG_OFS = 0x3a0, /* only in 65n devices */
303
304 MV5_PHY_MODE = 0x74,
305 MV5_LTMODE = 0x30,
306 MV5_PHY_CTL = 0x0C,
307 SATA_IFCFG = 0x050,
308 LP_PHY_CTL = 0x058,
309
310 MV_M2_PREAMP_MASK = 0x7e0,
311
312 /* Port registers */
313 EDMA_CFG = 0,
314 EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */
315 EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */
316 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
317 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
318 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
319 EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */
320 EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */
321
322 EDMA_ERR_IRQ_CAUSE = 0x8,
323 EDMA_ERR_IRQ_MASK = 0xc,
324 EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */
325 EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */
326 EDMA_ERR_DEV = (1 << 2), /* device error */
327 EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */
328 EDMA_ERR_DEV_CON = (1 << 4), /* device connected */
329 EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */
330 EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */
331 EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */
332 EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */
333 EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */
334 EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */
335 EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */
336 EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */
337 EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */
338
339 EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */
340 EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */
341 EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */
342 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */
343 EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */
344
345 EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */
346
347 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */
348 EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */
349 EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */
350 EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */
351 EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */
352 EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */
353
354 EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */
355
356 EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */
357 EDMA_ERR_OVERRUN_5 = (1 << 5),
358 EDMA_ERR_UNDERRUN_5 = (1 << 6),
359
360 EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 |
361 EDMA_ERR_LNK_CTRL_RX_1 |
362 EDMA_ERR_LNK_CTRL_RX_3 |
363 EDMA_ERR_LNK_CTRL_TX,
364
365 EDMA_EH_FREEZE = EDMA_ERR_D_PAR |
366 EDMA_ERR_PRD_PAR |
367 EDMA_ERR_DEV_DCON |
368 EDMA_ERR_DEV_CON |
369 EDMA_ERR_SERR |
370 EDMA_ERR_SELF_DIS |
371 EDMA_ERR_CRQB_PAR |
372 EDMA_ERR_CRPB_PAR |
373 EDMA_ERR_INTRL_PAR |
374 EDMA_ERR_IORDY |
375 EDMA_ERR_LNK_CTRL_RX_2 |
376 EDMA_ERR_LNK_DATA_RX |
377 EDMA_ERR_LNK_DATA_TX |
378 EDMA_ERR_TRANS_PROTO,
379
380 EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR |
381 EDMA_ERR_PRD_PAR |
382 EDMA_ERR_DEV_DCON |
383 EDMA_ERR_DEV_CON |
384 EDMA_ERR_OVERRUN_5 |
385 EDMA_ERR_UNDERRUN_5 |
386 EDMA_ERR_SELF_DIS_5 |
387 EDMA_ERR_CRQB_PAR |
388 EDMA_ERR_CRPB_PAR |
389 EDMA_ERR_INTRL_PAR |
390 EDMA_ERR_IORDY,
391
392 EDMA_REQ_Q_BASE_HI = 0x10,
393 EDMA_REQ_Q_IN_PTR = 0x14, /* also contains BASE_LO */
394
395 EDMA_REQ_Q_OUT_PTR = 0x18,
396 EDMA_REQ_Q_PTR_SHIFT = 5,
397
398 EDMA_RSP_Q_BASE_HI = 0x1c,
399 EDMA_RSP_Q_IN_PTR = 0x20,
400 EDMA_RSP_Q_OUT_PTR = 0x24, /* also contains BASE_LO */
401 EDMA_RSP_Q_PTR_SHIFT = 3,
402
403 EDMA_CMD = 0x28, /* EDMA command register */
404 EDMA_EN = (1 << 0), /* enable EDMA */
405 EDMA_DS = (1 << 1), /* disable EDMA; self-negated */
406 EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */
407
408 EDMA_STATUS = 0x30, /* EDMA engine status */
409 EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */
410 EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */
411
412 EDMA_IORDY_TMOUT = 0x34,
413 EDMA_ARB_CFG = 0x38,
414
415 EDMA_HALTCOND = 0x60, /* GenIIe halt conditions */
416 EDMA_UNKNOWN_RSVD = 0x6C, /* GenIIe unknown/reserved */
417
418 BMDMA_CMD = 0x224, /* bmdma command register */
419 BMDMA_STATUS = 0x228, /* bmdma status register */
420 BMDMA_PRD_LOW = 0x22c, /* bmdma PRD addr 31:0 */
421 BMDMA_PRD_HIGH = 0x230, /* bmdma PRD addr 63:32 */
422
423 /* Host private flags (hp_flags) */
424 MV_HP_FLAG_MSI = (1 << 0),
425 MV_HP_ERRATA_50XXB0 = (1 << 1),
426 MV_HP_ERRATA_50XXB2 = (1 << 2),
427 MV_HP_ERRATA_60X1B2 = (1 << 3),
428 MV_HP_ERRATA_60X1C0 = (1 << 4),
429 MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */
430 MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */
431 MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */
432 MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */
433 MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */
434 MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */
435 MV_HP_QUIRK_LED_BLINK_EN = (1 << 12), /* is led blinking enabled? */
436 MV_HP_FIX_LP_PHY_CTL = (1 << 13), /* fix speed in LP_PHY_CTL ? */
437
438 /* Port private flags (pp_flags) */
439 MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */
440 MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */
441 MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */
442 MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */
443 MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4), /* ignore initial ATA_DRDY */
444 };
445
446 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
447 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
448 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
449 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
450 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
451
452 #define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
453 #define WINDOW_BASE(i) (0x20034 + ((i) << 4))
454
455 enum {
456 /* DMA boundary 0xffff is required by the s/g splitting
457 * we need on /length/ in mv_fill-sg().
458 */
459 MV_DMA_BOUNDARY = 0xffffU,
460
461 /* mask of register bits containing lower 32 bits
462 * of EDMA request queue DMA address
463 */
464 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
465
466 /* ditto, for response queue */
467 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
468 };
469
470 enum chip_type {
471 chip_504x,
472 chip_508x,
473 chip_5080,
474 chip_604x,
475 chip_608x,
476 chip_6042,
477 chip_7042,
478 chip_soc,
479 };
480
481 /* Command ReQuest Block: 32B */
482 struct mv_crqb {
483 __le32 sg_addr;
484 __le32 sg_addr_hi;
485 __le16 ctrl_flags;
486 __le16 ata_cmd[11];
487 };
488
489 struct mv_crqb_iie {
490 __le32 addr;
491 __le32 addr_hi;
492 __le32 flags;
493 __le32 len;
494 __le32 ata_cmd[4];
495 };
496
497 /* Command ResPonse Block: 8B */
498 struct mv_crpb {
499 __le16 id;
500 __le16 flags;
501 __le32 tmstmp;
502 };
503
504 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
505 struct mv_sg {
506 __le32 addr;
507 __le32 flags_size;
508 __le32 addr_hi;
509 __le32 reserved;
510 };
511
512 /*
513 * We keep a local cache of a few frequently accessed port
514 * registers here, to avoid having to read them (very slow)
515 * when switching between EDMA and non-EDMA modes.
516 */
517 struct mv_cached_regs {
518 u32 fiscfg;
519 u32 ltmode;
520 u32 haltcond;
521 u32 unknown_rsvd;
522 };
523
524 struct mv_port_priv {
525 struct mv_crqb *crqb;
526 dma_addr_t crqb_dma;
527 struct mv_crpb *crpb;
528 dma_addr_t crpb_dma;
529 struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH];
530 dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH];
531
532 unsigned int req_idx;
533 unsigned int resp_idx;
534
535 u32 pp_flags;
536 struct mv_cached_regs cached;
537 unsigned int delayed_eh_pmp_map;
538 };
539
540 struct mv_port_signal {
541 u32 amps;
542 u32 pre;
543 };
544
545 struct mv_host_priv {
546 u32 hp_flags;
547 unsigned int board_idx;
548 u32 main_irq_mask;
549 struct mv_port_signal signal[8];
550 const struct mv_hw_ops *ops;
551 int n_ports;
552 void __iomem *base;
553 void __iomem *main_irq_cause_addr;
554 void __iomem *main_irq_mask_addr;
555 u32 irq_cause_offset;
556 u32 irq_mask_offset;
557 u32 unmask_all_irqs;
558
559 /*
560 * Needed on some devices that require their clocks to be enabled.
561 * These are optional: if the platform device does not have any
562 * clocks, they won't be used. Also, if the underlying hardware
563 * does not support the common clock framework (CONFIG_HAVE_CLK=n),
564 * all the clock operations become no-ops (see clk.h).
565 */
566 struct clk *clk;
567 struct clk **port_clks;
568 /*
569 * Some devices have a SATA PHY which can be enabled/disabled
570 * in order to save power. These are optional: if the platform
571 * devices does not have any phy, they won't be used.
572 */
573 struct phy **port_phys;
574 /*
575 * These consistent DMA memory pools give us guaranteed
576 * alignment for hardware-accessed data structures,
577 * and less memory waste in accomplishing the alignment.
578 */
579 struct dma_pool *crqb_pool;
580 struct dma_pool *crpb_pool;
581 struct dma_pool *sg_tbl_pool;
582 };
583
584 struct mv_hw_ops {
585 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
586 unsigned int port);
587 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
588 void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
589 void __iomem *mmio);
590 int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
591 unsigned int n_hc);
592 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
593 void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
594 };
595
596 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
597 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
598 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
599 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
600 static int mv_port_start(struct ata_port *ap);
601 static void mv_port_stop(struct ata_port *ap);
602 static int mv_qc_defer(struct ata_queued_cmd *qc);
603 static void mv_qc_prep(struct ata_queued_cmd *qc);
604 static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
605 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
606 static int mv_hardreset(struct ata_link *link, unsigned int *class,
607 unsigned long deadline);
608 static void mv_eh_freeze(struct ata_port *ap);
609 static void mv_eh_thaw(struct ata_port *ap);
610 static void mv6_dev_config(struct ata_device *dev);
611
612 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
613 unsigned int port);
614 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
615 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
616 void __iomem *mmio);
617 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
618 unsigned int n_hc);
619 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
620 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
621
622 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
623 unsigned int port);
624 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
625 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
626 void __iomem *mmio);
627 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
628 unsigned int n_hc);
629 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
630 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
631 void __iomem *mmio);
632 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
633 void __iomem *mmio);
634 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
635 void __iomem *mmio, unsigned int n_hc);
636 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
637 void __iomem *mmio);
638 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
639 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
640 void __iomem *mmio, unsigned int port);
641 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
642 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
643 unsigned int port_no);
644 static int mv_stop_edma(struct ata_port *ap);
645 static int mv_stop_edma_engine(void __iomem *port_mmio);
646 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
647
648 static void mv_pmp_select(struct ata_port *ap, int pmp);
649 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
650 unsigned long deadline);
651 static int mv_softreset(struct ata_link *link, unsigned int *class,
652 unsigned long deadline);
653 static void mv_pmp_error_handler(struct ata_port *ap);
654 static void mv_process_crpb_entries(struct ata_port *ap,
655 struct mv_port_priv *pp);
656
657 static void mv_sff_irq_clear(struct ata_port *ap);
658 static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
659 static void mv_bmdma_setup(struct ata_queued_cmd *qc);
660 static void mv_bmdma_start(struct ata_queued_cmd *qc);
661 static void mv_bmdma_stop(struct ata_queued_cmd *qc);
662 static u8 mv_bmdma_status(struct ata_port *ap);
663 static u8 mv_sff_check_status(struct ata_port *ap);
664
665 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
666 * because we have to allow room for worst case splitting of
667 * PRDs for 64K boundaries in mv_fill_sg().
668 */
669 #ifdef CONFIG_PCI
670 static struct scsi_host_template mv5_sht = {
671 ATA_BASE_SHT(DRV_NAME),
672 .sg_tablesize = MV_MAX_SG_CT / 2,
673 .dma_boundary = MV_DMA_BOUNDARY,
674 };
675 #endif
676 static struct scsi_host_template mv6_sht = {
677 ATA_NCQ_SHT(DRV_NAME),
678 .can_queue = MV_MAX_Q_DEPTH - 1,
679 .sg_tablesize = MV_MAX_SG_CT / 2,
680 .dma_boundary = MV_DMA_BOUNDARY,
681 };
682
683 static struct ata_port_operations mv5_ops = {
684 .inherits = &ata_sff_port_ops,
685
686 .lost_interrupt = ATA_OP_NULL,
687
688 .qc_defer = mv_qc_defer,
689 .qc_prep = mv_qc_prep,
690 .qc_issue = mv_qc_issue,
691
692 .freeze = mv_eh_freeze,
693 .thaw = mv_eh_thaw,
694 .hardreset = mv_hardreset,
695
696 .scr_read = mv5_scr_read,
697 .scr_write = mv5_scr_write,
698
699 .port_start = mv_port_start,
700 .port_stop = mv_port_stop,
701 };
702
703 static struct ata_port_operations mv6_ops = {
704 .inherits = &ata_bmdma_port_ops,
705
706 .lost_interrupt = ATA_OP_NULL,
707
708 .qc_defer = mv_qc_defer,
709 .qc_prep = mv_qc_prep,
710 .qc_issue = mv_qc_issue,
711
712 .dev_config = mv6_dev_config,
713
714 .freeze = mv_eh_freeze,
715 .thaw = mv_eh_thaw,
716 .hardreset = mv_hardreset,
717 .softreset = mv_softreset,
718 .pmp_hardreset = mv_pmp_hardreset,
719 .pmp_softreset = mv_softreset,
720 .error_handler = mv_pmp_error_handler,
721
722 .scr_read = mv_scr_read,
723 .scr_write = mv_scr_write,
724
725 .sff_check_status = mv_sff_check_status,
726 .sff_irq_clear = mv_sff_irq_clear,
727 .check_atapi_dma = mv_check_atapi_dma,
728 .bmdma_setup = mv_bmdma_setup,
729 .bmdma_start = mv_bmdma_start,
730 .bmdma_stop = mv_bmdma_stop,
731 .bmdma_status = mv_bmdma_status,
732
733 .port_start = mv_port_start,
734 .port_stop = mv_port_stop,
735 };
736
737 static struct ata_port_operations mv_iie_ops = {
738 .inherits = &mv6_ops,
739 .dev_config = ATA_OP_NULL,
740 .qc_prep = mv_qc_prep_iie,
741 };
742
743 static const struct ata_port_info mv_port_info[] = {
744 { /* chip_504x */
745 .flags = MV_GEN_I_FLAGS,
746 .pio_mask = ATA_PIO4,
747 .udma_mask = ATA_UDMA6,
748 .port_ops = &mv5_ops,
749 },
750 { /* chip_508x */
751 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
752 .pio_mask = ATA_PIO4,
753 .udma_mask = ATA_UDMA6,
754 .port_ops = &mv5_ops,
755 },
756 { /* chip_5080 */
757 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
758 .pio_mask = ATA_PIO4,
759 .udma_mask = ATA_UDMA6,
760 .port_ops = &mv5_ops,
761 },
762 { /* chip_604x */
763 .flags = MV_GEN_II_FLAGS,
764 .pio_mask = ATA_PIO4,
765 .udma_mask = ATA_UDMA6,
766 .port_ops = &mv6_ops,
767 },
768 { /* chip_608x */
769 .flags = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
770 .pio_mask = ATA_PIO4,
771 .udma_mask = ATA_UDMA6,
772 .port_ops = &mv6_ops,
773 },
774 { /* chip_6042 */
775 .flags = MV_GEN_IIE_FLAGS,
776 .pio_mask = ATA_PIO4,
777 .udma_mask = ATA_UDMA6,
778 .port_ops = &mv_iie_ops,
779 },
780 { /* chip_7042 */
781 .flags = MV_GEN_IIE_FLAGS,
782 .pio_mask = ATA_PIO4,
783 .udma_mask = ATA_UDMA6,
784 .port_ops = &mv_iie_ops,
785 },
786 { /* chip_soc */
787 .flags = MV_GEN_IIE_FLAGS,
788 .pio_mask = ATA_PIO4,
789 .udma_mask = ATA_UDMA6,
790 .port_ops = &mv_iie_ops,
791 },
792 };
793
794 static const struct pci_device_id mv_pci_tbl[] = {
795 { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
796 { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
797 { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
798 { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
799 /* RocketRAID 1720/174x have different identifiers */
800 { PCI_VDEVICE(TTI, 0x1720), chip_6042 },
801 { PCI_VDEVICE(TTI, 0x1740), chip_6042 },
802 { PCI_VDEVICE(TTI, 0x1742), chip_6042 },
803
804 { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
805 { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
806 { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
807 { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
808 { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
809
810 { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
811
812 /* Adaptec 1430SA */
813 { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
814
815 /* Marvell 7042 support */
816 { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
817
818 /* Highpoint RocketRAID PCIe series */
819 { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
820 { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
821
822 { } /* terminate list */
823 };
824
825 static const struct mv_hw_ops mv5xxx_ops = {
826 .phy_errata = mv5_phy_errata,
827 .enable_leds = mv5_enable_leds,
828 .read_preamp = mv5_read_preamp,
829 .reset_hc = mv5_reset_hc,
830 .reset_flash = mv5_reset_flash,
831 .reset_bus = mv5_reset_bus,
832 };
833
834 static const struct mv_hw_ops mv6xxx_ops = {
835 .phy_errata = mv6_phy_errata,
836 .enable_leds = mv6_enable_leds,
837 .read_preamp = mv6_read_preamp,
838 .reset_hc = mv6_reset_hc,
839 .reset_flash = mv6_reset_flash,
840 .reset_bus = mv_reset_pci_bus,
841 };
842
843 static const struct mv_hw_ops mv_soc_ops = {
844 .phy_errata = mv6_phy_errata,
845 .enable_leds = mv_soc_enable_leds,
846 .read_preamp = mv_soc_read_preamp,
847 .reset_hc = mv_soc_reset_hc,
848 .reset_flash = mv_soc_reset_flash,
849 .reset_bus = mv_soc_reset_bus,
850 };
851
852 static const struct mv_hw_ops mv_soc_65n_ops = {
853 .phy_errata = mv_soc_65n_phy_errata,
854 .enable_leds = mv_soc_enable_leds,
855 .reset_hc = mv_soc_reset_hc,
856 .reset_flash = mv_soc_reset_flash,
857 .reset_bus = mv_soc_reset_bus,
858 };
859
860 /*
861 * Functions
862 */
863
864 static inline void writelfl(unsigned long data, void __iomem *addr)
865 {
866 writel(data, addr);
867 (void) readl(addr); /* flush to avoid PCI posted write */
868 }
869
870 static inline unsigned int mv_hc_from_port(unsigned int port)
871 {
872 return port >> MV_PORT_HC_SHIFT;
873 }
874
875 static inline unsigned int mv_hardport_from_port(unsigned int port)
876 {
877 return port & MV_PORT_MASK;
878 }
879
880 /*
881 * Consolidate some rather tricky bit shift calculations.
882 * This is hot-path stuff, so not a function.
883 * Simple code, with two return values, so macro rather than inline.
884 *
885 * port is the sole input, in range 0..7.
886 * shift is one output, for use with main_irq_cause / main_irq_mask registers.
887 * hardport is the other output, in range 0..3.
888 *
889 * Note that port and hardport may be the same variable in some cases.
890 */
891 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
892 { \
893 shift = mv_hc_from_port(port) * HC_SHIFT; \
894 hardport = mv_hardport_from_port(port); \
895 shift += hardport * 2; \
896 }
897
898 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
899 {
900 return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
901 }
902
903 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
904 unsigned int port)
905 {
906 return mv_hc_base(base, mv_hc_from_port(port));
907 }
908
909 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
910 {
911 return mv_hc_base_from_port(base, port) +
912 MV_SATAHC_ARBTR_REG_SZ +
913 (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
914 }
915
916 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
917 {
918 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
919 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
920
921 return hc_mmio + ofs;
922 }
923
924 static inline void __iomem *mv_host_base(struct ata_host *host)
925 {
926 struct mv_host_priv *hpriv = host->private_data;
927 return hpriv->base;
928 }
929
930 static inline void __iomem *mv_ap_base(struct ata_port *ap)
931 {
932 return mv_port_base(mv_host_base(ap->host), ap->port_no);
933 }
934
935 static inline int mv_get_hc_count(unsigned long port_flags)
936 {
937 return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
938 }
939
940 /**
941 * mv_save_cached_regs - (re-)initialize cached port registers
942 * @ap: the port whose registers we are caching
943 *
944 * Initialize the local cache of port registers,
945 * so that reading them over and over again can
946 * be avoided on the hotter paths of this driver.
947 * This saves a few microseconds each time we switch
948 * to/from EDMA mode to perform (eg.) a drive cache flush.
949 */
950 static void mv_save_cached_regs(struct ata_port *ap)
951 {
952 void __iomem *port_mmio = mv_ap_base(ap);
953 struct mv_port_priv *pp = ap->private_data;
954
955 pp->cached.fiscfg = readl(port_mmio + FISCFG);
956 pp->cached.ltmode = readl(port_mmio + LTMODE);
957 pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
958 pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
959 }
960
961 /**
962 * mv_write_cached_reg - write to a cached port register
963 * @addr: hardware address of the register
964 * @old: pointer to cached value of the register
965 * @new: new value for the register
966 *
967 * Write a new value to a cached register,
968 * but only if the value is different from before.
969 */
970 static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
971 {
972 if (new != *old) {
973 unsigned long laddr;
974 *old = new;
975 /*
976 * Workaround for 88SX60x1-B2 FEr SATA#13:
977 * Read-after-write is needed to prevent generating 64-bit
978 * write cycles on the PCI bus for SATA interface registers
979 * at offsets ending in 0x4 or 0xc.
980 *
981 * Looks like a lot of fuss, but it avoids an unnecessary
982 * +1 usec read-after-write delay for unaffected registers.
983 */
984 laddr = (long)addr & 0xffff;
985 if (laddr >= 0x300 && laddr <= 0x33c) {
986 laddr &= 0x000f;
987 if (laddr == 0x4 || laddr == 0xc) {
988 writelfl(new, addr); /* read after write */
989 return;
990 }
991 }
992 writel(new, addr); /* unaffected by the errata */
993 }
994 }
995
996 static void mv_set_edma_ptrs(void __iomem *port_mmio,
997 struct mv_host_priv *hpriv,
998 struct mv_port_priv *pp)
999 {
1000 u32 index;
1001
1002 /*
1003 * initialize request queue
1004 */
1005 pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
1006 index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
1007
1008 WARN_ON(pp->crqb_dma & 0x3ff);
1009 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
1010 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
1011 port_mmio + EDMA_REQ_Q_IN_PTR);
1012 writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
1013
1014 /*
1015 * initialize response queue
1016 */
1017 pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
1018 index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
1019
1020 WARN_ON(pp->crpb_dma & 0xff);
1021 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
1022 writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
1023 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
1024 port_mmio + EDMA_RSP_Q_OUT_PTR);
1025 }
1026
1027 static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
1028 {
1029 /*
1030 * When writing to the main_irq_mask in hardware,
1031 * we must ensure exclusivity between the interrupt coalescing bits
1032 * and the corresponding individual port DONE_IRQ bits.
1033 *
1034 * Note that this register is really an "IRQ enable" register,
1035 * not an "IRQ mask" register as Marvell's naming might suggest.
1036 */
1037 if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
1038 mask &= ~DONE_IRQ_0_3;
1039 if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
1040 mask &= ~DONE_IRQ_4_7;
1041 writelfl(mask, hpriv->main_irq_mask_addr);
1042 }
1043
1044 static void mv_set_main_irq_mask(struct ata_host *host,
1045 u32 disable_bits, u32 enable_bits)
1046 {
1047 struct mv_host_priv *hpriv = host->private_data;
1048 u32 old_mask, new_mask;
1049
1050 old_mask = hpriv->main_irq_mask;
1051 new_mask = (old_mask & ~disable_bits) | enable_bits;
1052 if (new_mask != old_mask) {
1053 hpriv->main_irq_mask = new_mask;
1054 mv_write_main_irq_mask(new_mask, hpriv);
1055 }
1056 }
1057
1058 static void mv_enable_port_irqs(struct ata_port *ap,
1059 unsigned int port_bits)
1060 {
1061 unsigned int shift, hardport, port = ap->port_no;
1062 u32 disable_bits, enable_bits;
1063
1064 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1065
1066 disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
1067 enable_bits = port_bits << shift;
1068 mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
1069 }
1070
1071 static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
1072 void __iomem *port_mmio,
1073 unsigned int port_irqs)
1074 {
1075 struct mv_host_priv *hpriv = ap->host->private_data;
1076 int hardport = mv_hardport_from_port(ap->port_no);
1077 void __iomem *hc_mmio = mv_hc_base_from_port(
1078 mv_host_base(ap->host), ap->port_no);
1079 u32 hc_irq_cause;
1080
1081 /* clear EDMA event indicators, if any */
1082 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
1083
1084 /* clear pending irq events */
1085 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
1086 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
1087
1088 /* clear FIS IRQ Cause */
1089 if (IS_GEN_IIE(hpriv))
1090 writelfl(0, port_mmio + FIS_IRQ_CAUSE);
1091
1092 mv_enable_port_irqs(ap, port_irqs);
1093 }
1094
1095 static void mv_set_irq_coalescing(struct ata_host *host,
1096 unsigned int count, unsigned int usecs)
1097 {
1098 struct mv_host_priv *hpriv = host->private_data;
1099 void __iomem *mmio = hpriv->base, *hc_mmio;
1100 u32 coal_enable = 0;
1101 unsigned long flags;
1102 unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
1103 const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
1104 ALL_PORTS_COAL_DONE;
1105
1106 /* Disable IRQ coalescing if either threshold is zero */
1107 if (!usecs || !count) {
1108 clks = count = 0;
1109 } else {
1110 /* Respect maximum limits of the hardware */
1111 clks = usecs * COAL_CLOCKS_PER_USEC;
1112 if (clks > MAX_COAL_TIME_THRESHOLD)
1113 clks = MAX_COAL_TIME_THRESHOLD;
1114 if (count > MAX_COAL_IO_COUNT)
1115 count = MAX_COAL_IO_COUNT;
1116 }
1117
1118 spin_lock_irqsave(&host->lock, flags);
1119 mv_set_main_irq_mask(host, coal_disable, 0);
1120
1121 if (is_dual_hc && !IS_GEN_I(hpriv)) {
1122 /*
1123 * GEN_II/GEN_IIE with dual host controllers:
1124 * one set of global thresholds for the entire chip.
1125 */
1126 writel(clks, mmio + IRQ_COAL_TIME_THRESHOLD);
1127 writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
1128 /* clear leftover coal IRQ bit */
1129 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
1130 if (count)
1131 coal_enable = ALL_PORTS_COAL_DONE;
1132 clks = count = 0; /* force clearing of regular regs below */
1133 }
1134
1135 /*
1136 * All chips: independent thresholds for each HC on the chip.
1137 */
1138 hc_mmio = mv_hc_base_from_port(mmio, 0);
1139 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1140 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1141 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1142 if (count)
1143 coal_enable |= PORTS_0_3_COAL_DONE;
1144 if (is_dual_hc) {
1145 hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
1146 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1147 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1148 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1149 if (count)
1150 coal_enable |= PORTS_4_7_COAL_DONE;
1151 }
1152
1153 mv_set_main_irq_mask(host, 0, coal_enable);
1154 spin_unlock_irqrestore(&host->lock, flags);
1155 }
1156
1157 /**
1158 * mv_start_edma - Enable eDMA engine
1159 * @base: port base address
1160 * @pp: port private data
1161 *
1162 * Verify the local cache of the eDMA state is accurate with a
1163 * WARN_ON.
1164 *
1165 * LOCKING:
1166 * Inherited from caller.
1167 */
1168 static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
1169 struct mv_port_priv *pp, u8 protocol)
1170 {
1171 int want_ncq = (protocol == ATA_PROT_NCQ);
1172
1173 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1174 int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
1175 if (want_ncq != using_ncq)
1176 mv_stop_edma(ap);
1177 }
1178 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
1179 struct mv_host_priv *hpriv = ap->host->private_data;
1180
1181 mv_edma_cfg(ap, want_ncq, 1);
1182
1183 mv_set_edma_ptrs(port_mmio, hpriv, pp);
1184 mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
1185
1186 writelfl(EDMA_EN, port_mmio + EDMA_CMD);
1187 pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
1188 }
1189 }
1190
1191 static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
1192 {
1193 void __iomem *port_mmio = mv_ap_base(ap);
1194 const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
1195 const int per_loop = 5, timeout = (15 * 1000 / per_loop);
1196 int i;
1197
1198 /*
1199 * Wait for the EDMA engine to finish transactions in progress.
1200 * No idea what a good "timeout" value might be, but measurements
1201 * indicate that it often requires hundreds of microseconds
1202 * with two drives in-use. So we use the 15msec value above
1203 * as a rough guess at what even more drives might require.
1204 */
1205 for (i = 0; i < timeout; ++i) {
1206 u32 edma_stat = readl(port_mmio + EDMA_STATUS);
1207 if ((edma_stat & empty_idle) == empty_idle)
1208 break;
1209 udelay(per_loop);
1210 }
1211 /* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */
1212 }
1213
1214 /**
1215 * mv_stop_edma_engine - Disable eDMA engine
1216 * @port_mmio: io base address
1217 *
1218 * LOCKING:
1219 * Inherited from caller.
1220 */
1221 static int mv_stop_edma_engine(void __iomem *port_mmio)
1222 {
1223 int i;
1224
1225 /* Disable eDMA. The disable bit auto clears. */
1226 writelfl(EDMA_DS, port_mmio + EDMA_CMD);
1227
1228 /* Wait for the chip to confirm eDMA is off. */
1229 for (i = 10000; i > 0; i--) {
1230 u32 reg = readl(port_mmio + EDMA_CMD);
1231 if (!(reg & EDMA_EN))
1232 return 0;
1233 udelay(10);
1234 }
1235 return -EIO;
1236 }
1237
1238 static int mv_stop_edma(struct ata_port *ap)
1239 {
1240 void __iomem *port_mmio = mv_ap_base(ap);
1241 struct mv_port_priv *pp = ap->private_data;
1242 int err = 0;
1243
1244 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1245 return 0;
1246 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1247 mv_wait_for_edma_empty_idle(ap);
1248 if (mv_stop_edma_engine(port_mmio)) {
1249 ata_port_err(ap, "Unable to stop eDMA\n");
1250 err = -EIO;
1251 }
1252 mv_edma_cfg(ap, 0, 0);
1253 return err;
1254 }
1255
1256 #ifdef ATA_DEBUG
1257 static void mv_dump_mem(void __iomem *start, unsigned bytes)
1258 {
1259 int b, w;
1260 for (b = 0; b < bytes; ) {
1261 DPRINTK("%p: ", start + b);
1262 for (w = 0; b < bytes && w < 4; w++) {
1263 printk("%08x ", readl(start + b));
1264 b += sizeof(u32);
1265 }
1266 printk("\n");
1267 }
1268 }
1269 #endif
1270 #if defined(ATA_DEBUG) || defined(CONFIG_PCI)
1271 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
1272 {
1273 #ifdef ATA_DEBUG
1274 int b, w;
1275 u32 dw;
1276 for (b = 0; b < bytes; ) {
1277 DPRINTK("%02x: ", b);
1278 for (w = 0; b < bytes && w < 4; w++) {
1279 (void) pci_read_config_dword(pdev, b, &dw);
1280 printk("%08x ", dw);
1281 b += sizeof(u32);
1282 }
1283 printk("\n");
1284 }
1285 #endif
1286 }
1287 #endif
1288 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
1289 struct pci_dev *pdev)
1290 {
1291 #ifdef ATA_DEBUG
1292 void __iomem *hc_base = mv_hc_base(mmio_base,
1293 port >> MV_PORT_HC_SHIFT);
1294 void __iomem *port_base;
1295 int start_port, num_ports, p, start_hc, num_hcs, hc;
1296
1297 if (0 > port) {
1298 start_hc = start_port = 0;
1299 num_ports = 8; /* shld be benign for 4 port devs */
1300 num_hcs = 2;
1301 } else {
1302 start_hc = port >> MV_PORT_HC_SHIFT;
1303 start_port = port;
1304 num_ports = num_hcs = 1;
1305 }
1306 DPRINTK("All registers for port(s) %u-%u:\n", start_port,
1307 num_ports > 1 ? num_ports - 1 : start_port);
1308
1309 if (NULL != pdev) {
1310 DPRINTK("PCI config space regs:\n");
1311 mv_dump_pci_cfg(pdev, 0x68);
1312 }
1313 DPRINTK("PCI regs:\n");
1314 mv_dump_mem(mmio_base+0xc00, 0x3c);
1315 mv_dump_mem(mmio_base+0xd00, 0x34);
1316 mv_dump_mem(mmio_base+0xf00, 0x4);
1317 mv_dump_mem(mmio_base+0x1d00, 0x6c);
1318 for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1319 hc_base = mv_hc_base(mmio_base, hc);
1320 DPRINTK("HC regs (HC %i):\n", hc);
1321 mv_dump_mem(hc_base, 0x1c);
1322 }
1323 for (p = start_port; p < start_port + num_ports; p++) {
1324 port_base = mv_port_base(mmio_base, p);
1325 DPRINTK("EDMA regs (port %i):\n", p);
1326 mv_dump_mem(port_base, 0x54);
1327 DPRINTK("SATA regs (port %i):\n", p);
1328 mv_dump_mem(port_base+0x300, 0x60);
1329 }
1330 #endif
1331 }
1332
1333 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1334 {
1335 unsigned int ofs;
1336
1337 switch (sc_reg_in) {
1338 case SCR_STATUS:
1339 case SCR_CONTROL:
1340 case SCR_ERROR:
1341 ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
1342 break;
1343 case SCR_ACTIVE:
1344 ofs = SATA_ACTIVE; /* active is not with the others */
1345 break;
1346 default:
1347 ofs = 0xffffffffU;
1348 break;
1349 }
1350 return ofs;
1351 }
1352
1353 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
1354 {
1355 unsigned int ofs = mv_scr_offset(sc_reg_in);
1356
1357 if (ofs != 0xffffffffU) {
1358 *val = readl(mv_ap_base(link->ap) + ofs);
1359 return 0;
1360 } else
1361 return -EINVAL;
1362 }
1363
1364 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
1365 {
1366 unsigned int ofs = mv_scr_offset(sc_reg_in);
1367
1368 if (ofs != 0xffffffffU) {
1369 void __iomem *addr = mv_ap_base(link->ap) + ofs;
1370 struct mv_host_priv *hpriv = link->ap->host->private_data;
1371 if (sc_reg_in == SCR_CONTROL) {
1372 /*
1373 * Workaround for 88SX60x1 FEr SATA#26:
1374 *
1375 * COMRESETs have to take care not to accidentally
1376 * put the drive to sleep when writing SCR_CONTROL.
1377 * Setting bits 12..15 prevents this problem.
1378 *
1379 * So if we see an outbound COMMRESET, set those bits.
1380 * Ditto for the followup write that clears the reset.
1381 *
1382 * The proprietary driver does this for
1383 * all chip versions, and so do we.
1384 */
1385 if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
1386 val |= 0xf000;
1387
1388 if (hpriv->hp_flags & MV_HP_FIX_LP_PHY_CTL) {
1389 void __iomem *lp_phy_addr =
1390 mv_ap_base(link->ap) + LP_PHY_CTL;
1391 /*
1392 * Set PHY speed according to SControl speed.
1393 */
1394 if ((val & 0xf0) == 0x10)
1395 writelfl(0x7, lp_phy_addr);
1396 else
1397 writelfl(0x227, lp_phy_addr);
1398 }
1399 }
1400 writelfl(val, addr);
1401 return 0;
1402 } else
1403 return -EINVAL;
1404 }
1405
1406 static void mv6_dev_config(struct ata_device *adev)
1407 {
1408 /*
1409 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1410 *
1411 * Gen-II does not support NCQ over a port multiplier
1412 * (no FIS-based switching).
1413 */
1414 if (adev->flags & ATA_DFLAG_NCQ) {
1415 if (sata_pmp_attached(adev->link->ap)) {
1416 adev->flags &= ~ATA_DFLAG_NCQ;
1417 ata_dev_info(adev,
1418 "NCQ disabled for command-based switching\n");
1419 }
1420 }
1421 }
1422
1423 static int mv_qc_defer(struct ata_queued_cmd *qc)
1424 {
1425 struct ata_link *link = qc->dev->link;
1426 struct ata_port *ap = link->ap;
1427 struct mv_port_priv *pp = ap->private_data;
1428
1429 /*
1430 * Don't allow new commands if we're in a delayed EH state
1431 * for NCQ and/or FIS-based switching.
1432 */
1433 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1434 return ATA_DEFER_PORT;
1435
1436 /* PIO commands need exclusive link: no other commands [DMA or PIO]
1437 * can run concurrently.
1438 * set excl_link when we want to send a PIO command in DMA mode
1439 * or a non-NCQ command in NCQ mode.
1440 * When we receive a command from that link, and there are no
1441 * outstanding commands, mark a flag to clear excl_link and let
1442 * the command go through.
1443 */
1444 if (unlikely(ap->excl_link)) {
1445 if (link == ap->excl_link) {
1446 if (ap->nr_active_links)
1447 return ATA_DEFER_PORT;
1448 qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
1449 return 0;
1450 } else
1451 return ATA_DEFER_PORT;
1452 }
1453
1454 /*
1455 * If the port is completely idle, then allow the new qc.
1456 */
1457 if (ap->nr_active_links == 0)
1458 return 0;
1459
1460 /*
1461 * The port is operating in host queuing mode (EDMA) with NCQ
1462 * enabled, allow multiple NCQ commands. EDMA also allows
1463 * queueing multiple DMA commands but libata core currently
1464 * doesn't allow it.
1465 */
1466 if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
1467 (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
1468 if (ata_is_ncq(qc->tf.protocol))
1469 return 0;
1470 else {
1471 ap->excl_link = link;
1472 return ATA_DEFER_PORT;
1473 }
1474 }
1475
1476 return ATA_DEFER_PORT;
1477 }
1478
1479 static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
1480 {
1481 struct mv_port_priv *pp = ap->private_data;
1482 void __iomem *port_mmio;
1483
1484 u32 fiscfg, *old_fiscfg = &pp->cached.fiscfg;
1485 u32 ltmode, *old_ltmode = &pp->cached.ltmode;
1486 u32 haltcond, *old_haltcond = &pp->cached.haltcond;
1487
1488 ltmode = *old_ltmode & ~LTMODE_BIT8;
1489 haltcond = *old_haltcond | EDMA_ERR_DEV;
1490
1491 if (want_fbs) {
1492 fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
1493 ltmode = *old_ltmode | LTMODE_BIT8;
1494 if (want_ncq)
1495 haltcond &= ~EDMA_ERR_DEV;
1496 else
1497 fiscfg |= FISCFG_WAIT_DEV_ERR;
1498 } else {
1499 fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1500 }
1501
1502 port_mmio = mv_ap_base(ap);
1503 mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
1504 mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
1505 mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
1506 }
1507
1508 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1509 {
1510 struct mv_host_priv *hpriv = ap->host->private_data;
1511 u32 old, new;
1512
1513 /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1514 old = readl(hpriv->base + GPIO_PORT_CTL);
1515 if (want_ncq)
1516 new = old | (1 << 22);
1517 else
1518 new = old & ~(1 << 22);
1519 if (new != old)
1520 writel(new, hpriv->base + GPIO_PORT_CTL);
1521 }
1522
1523 /**
1524 * mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1525 * @ap: Port being initialized
1526 *
1527 * There are two DMA modes on these chips: basic DMA, and EDMA.
1528 *
1529 * Bit-0 of the "EDMA RESERVED" register enables/disables use
1530 * of basic DMA on the GEN_IIE versions of the chips.
1531 *
1532 * This bit survives EDMA resets, and must be set for basic DMA
1533 * to function, and should be cleared when EDMA is active.
1534 */
1535 static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
1536 {
1537 struct mv_port_priv *pp = ap->private_data;
1538 u32 new, *old = &pp->cached.unknown_rsvd;
1539
1540 if (enable_bmdma)
1541 new = *old | 1;
1542 else
1543 new = *old & ~1;
1544 mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
1545 }
1546
1547 /*
1548 * SOC chips have an issue whereby the HDD LEDs don't always blink
1549 * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1550 * of the SOC takes care of it, generating a steady blink rate when
1551 * any drive on the chip is active.
1552 *
1553 * Unfortunately, the blink mode is a global hardware setting for the SOC,
1554 * so we must use it whenever at least one port on the SOC has NCQ enabled.
1555 *
1556 * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1557 * LED operation works then, and provides better (more accurate) feedback.
1558 *
1559 * Note that this code assumes that an SOC never has more than one HC onboard.
1560 */
1561 static void mv_soc_led_blink_enable(struct ata_port *ap)
1562 {
1563 struct ata_host *host = ap->host;
1564 struct mv_host_priv *hpriv = host->private_data;
1565 void __iomem *hc_mmio;
1566 u32 led_ctrl;
1567
1568 if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
1569 return;
1570 hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
1571 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1572 led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1573 writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1574 }
1575
1576 static void mv_soc_led_blink_disable(struct ata_port *ap)
1577 {
1578 struct ata_host *host = ap->host;
1579 struct mv_host_priv *hpriv = host->private_data;
1580 void __iomem *hc_mmio;
1581 u32 led_ctrl;
1582 unsigned int port;
1583
1584 if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
1585 return;
1586
1587 /* disable led-blink only if no ports are using NCQ */
1588 for (port = 0; port < hpriv->n_ports; port++) {
1589 struct ata_port *this_ap = host->ports[port];
1590 struct mv_port_priv *pp = this_ap->private_data;
1591
1592 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1593 return;
1594 }
1595
1596 hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
1597 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1598 led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1599 writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1600 }
1601
1602 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
1603 {
1604 u32 cfg;
1605 struct mv_port_priv *pp = ap->private_data;
1606 struct mv_host_priv *hpriv = ap->host->private_data;
1607 void __iomem *port_mmio = mv_ap_base(ap);
1608
1609 /* set up non-NCQ EDMA configuration */
1610 cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */
1611 pp->pp_flags &=
1612 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
1613
1614 if (IS_GEN_I(hpriv))
1615 cfg |= (1 << 8); /* enab config burst size mask */
1616
1617 else if (IS_GEN_II(hpriv)) {
1618 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1619 mv_60x1_errata_sata25(ap, want_ncq);
1620
1621 } else if (IS_GEN_IIE(hpriv)) {
1622 int want_fbs = sata_pmp_attached(ap);
1623 /*
1624 * Possible future enhancement:
1625 *
1626 * The chip can use FBS with non-NCQ, if we allow it,
1627 * But first we need to have the error handling in place
1628 * for this mode (datasheet section 7.3.15.4.2.3).
1629 * So disallow non-NCQ FBS for now.
1630 */
1631 want_fbs &= want_ncq;
1632
1633 mv_config_fbs(ap, want_ncq, want_fbs);
1634
1635 if (want_fbs) {
1636 pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1637 cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1638 }
1639
1640 cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */
1641 if (want_edma) {
1642 cfg |= (1 << 22); /* enab 4-entry host queue cache */
1643 if (!IS_SOC(hpriv))
1644 cfg |= (1 << 18); /* enab early completion */
1645 }
1646 if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1647 cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1648 mv_bmdma_enable_iie(ap, !want_edma);
1649
1650 if (IS_SOC(hpriv)) {
1651 if (want_ncq)
1652 mv_soc_led_blink_enable(ap);
1653 else
1654 mv_soc_led_blink_disable(ap);
1655 }
1656 }
1657
1658 if (want_ncq) {
1659 cfg |= EDMA_CFG_NCQ;
1660 pp->pp_flags |= MV_PP_FLAG_NCQ_EN;
1661 }
1662
1663 writelfl(cfg, port_mmio + EDMA_CFG);
1664 }
1665
1666 static void mv_port_free_dma_mem(struct ata_port *ap)
1667 {
1668 struct mv_host_priv *hpriv = ap->host->private_data;
1669 struct mv_port_priv *pp = ap->private_data;
1670 int tag;
1671
1672 if (pp->crqb) {
1673 dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1674 pp->crqb = NULL;
1675 }
1676 if (pp->crpb) {
1677 dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1678 pp->crpb = NULL;
1679 }
1680 /*
1681 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1682 * For later hardware, we have one unique sg_tbl per NCQ tag.
1683 */
1684 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1685 if (pp->sg_tbl[tag]) {
1686 if (tag == 0 || !IS_GEN_I(hpriv))
1687 dma_pool_free(hpriv->sg_tbl_pool,
1688 pp->sg_tbl[tag],
1689 pp->sg_tbl_dma[tag]);
1690 pp->sg_tbl[tag] = NULL;
1691 }
1692 }
1693 }
1694
1695 /**
1696 * mv_port_start - Port specific init/start routine.
1697 * @ap: ATA channel to manipulate
1698 *
1699 * Allocate and point to DMA memory, init port private memory,
1700 * zero indices.
1701 *
1702 * LOCKING:
1703 * Inherited from caller.
1704 */
1705 static int mv_port_start(struct ata_port *ap)
1706 {
1707 struct device *dev = ap->host->dev;
1708 struct mv_host_priv *hpriv = ap->host->private_data;
1709 struct mv_port_priv *pp;
1710 unsigned long flags;
1711 int tag;
1712
1713 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1714 if (!pp)
1715 return -ENOMEM;
1716 ap->private_data = pp;
1717
1718 pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1719 if (!pp->crqb)
1720 return -ENOMEM;
1721 memset(pp->crqb, 0, MV_CRQB_Q_SZ);
1722
1723 pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1724 if (!pp->crpb)
1725 goto out_port_free_dma_mem;
1726 memset(pp->crpb, 0, MV_CRPB_Q_SZ);
1727
1728 /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1729 if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1730 ap->flags |= ATA_FLAG_AN;
1731 /*
1732 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1733 * For later hardware, we need one unique sg_tbl per NCQ tag.
1734 */
1735 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1736 if (tag == 0 || !IS_GEN_I(hpriv)) {
1737 pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1738 GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1739 if (!pp->sg_tbl[tag])
1740 goto out_port_free_dma_mem;
1741 } else {
1742 pp->sg_tbl[tag] = pp->sg_tbl[0];
1743 pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1744 }
1745 }
1746
1747 spin_lock_irqsave(ap->lock, flags);
1748 mv_save_cached_regs(ap);
1749 mv_edma_cfg(ap, 0, 0);
1750 spin_unlock_irqrestore(ap->lock, flags);
1751
1752 return 0;
1753
1754 out_port_free_dma_mem:
1755 mv_port_free_dma_mem(ap);
1756 return -ENOMEM;
1757 }
1758
1759 /**
1760 * mv_port_stop - Port specific cleanup/stop routine.
1761 * @ap: ATA channel to manipulate
1762 *
1763 * Stop DMA, cleanup port memory.
1764 *
1765 * LOCKING:
1766 * This routine uses the host lock to protect the DMA stop.
1767 */
1768 static void mv_port_stop(struct ata_port *ap)
1769 {
1770 unsigned long flags;
1771
1772 spin_lock_irqsave(ap->lock, flags);
1773 mv_stop_edma(ap);
1774 mv_enable_port_irqs(ap, 0);
1775 spin_unlock_irqrestore(ap->lock, flags);
1776 mv_port_free_dma_mem(ap);
1777 }
1778
1779 /**
1780 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1781 * @qc: queued command whose SG list to source from
1782 *
1783 * Populate the SG list and mark the last entry.
1784 *
1785 * LOCKING:
1786 * Inherited from caller.
1787 */
1788 static void mv_fill_sg(struct ata_queued_cmd *qc)
1789 {
1790 struct mv_port_priv *pp = qc->ap->private_data;
1791 struct scatterlist *sg;
1792 struct mv_sg *mv_sg, *last_sg = NULL;
1793 unsigned int si;
1794
1795 mv_sg = pp->sg_tbl[qc->tag];
1796 for_each_sg(qc->sg, sg, qc->n_elem, si) {
1797 dma_addr_t addr = sg_dma_address(sg);
1798 u32 sg_len = sg_dma_len(sg);
1799
1800 while (sg_len) {
1801 u32 offset = addr & 0xffff;
1802 u32 len = sg_len;
1803
1804 if (offset + len > 0x10000)
1805 len = 0x10000 - offset;
1806
1807 mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1808 mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1809 mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1810 mv_sg->reserved = 0;
1811
1812 sg_len -= len;
1813 addr += len;
1814
1815 last_sg = mv_sg;
1816 mv_sg++;
1817 }
1818 }
1819
1820 if (likely(last_sg))
1821 last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1822 mb(); /* ensure data structure is visible to the chipset */
1823 }
1824
1825 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1826 {
1827 u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1828 (last ? CRQB_CMD_LAST : 0);
1829 *cmdw = cpu_to_le16(tmp);
1830 }
1831
1832 /**
1833 * mv_sff_irq_clear - Clear hardware interrupt after DMA.
1834 * @ap: Port associated with this ATA transaction.
1835 *
1836 * We need this only for ATAPI bmdma transactions,
1837 * as otherwise we experience spurious interrupts
1838 * after libata-sff handles the bmdma interrupts.
1839 */
1840 static void mv_sff_irq_clear(struct ata_port *ap)
1841 {
1842 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
1843 }
1844
1845 /**
1846 * mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1847 * @qc: queued command to check for chipset/DMA compatibility.
1848 *
1849 * The bmdma engines cannot handle speculative data sizes
1850 * (bytecount under/over flow). So only allow DMA for
1851 * data transfer commands with known data sizes.
1852 *
1853 * LOCKING:
1854 * Inherited from caller.
1855 */
1856 static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
1857 {
1858 struct scsi_cmnd *scmd = qc->scsicmd;
1859
1860 if (scmd) {
1861 switch (scmd->cmnd[0]) {
1862 case READ_6:
1863 case READ_10:
1864 case READ_12:
1865 case WRITE_6:
1866 case WRITE_10:
1867 case WRITE_12:
1868 case GPCMD_READ_CD:
1869 case GPCMD_SEND_DVD_STRUCTURE:
1870 case GPCMD_SEND_CUE_SHEET:
1871 return 0; /* DMA is safe */
1872 }
1873 }
1874 return -EOPNOTSUPP; /* use PIO instead */
1875 }
1876
1877 /**
1878 * mv_bmdma_setup - Set up BMDMA transaction
1879 * @qc: queued command to prepare DMA for.
1880 *
1881 * LOCKING:
1882 * Inherited from caller.
1883 */
1884 static void mv_bmdma_setup(struct ata_queued_cmd *qc)
1885 {
1886 struct ata_port *ap = qc->ap;
1887 void __iomem *port_mmio = mv_ap_base(ap);
1888 struct mv_port_priv *pp = ap->private_data;
1889
1890 mv_fill_sg(qc);
1891
1892 /* clear all DMA cmd bits */
1893 writel(0, port_mmio + BMDMA_CMD);
1894
1895 /* load PRD table addr. */
1896 writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16,
1897 port_mmio + BMDMA_PRD_HIGH);
1898 writelfl(pp->sg_tbl_dma[qc->tag],
1899 port_mmio + BMDMA_PRD_LOW);
1900
1901 /* issue r/w command */
1902 ap->ops->sff_exec_command(ap, &qc->tf);
1903 }
1904
1905 /**
1906 * mv_bmdma_start - Start a BMDMA transaction
1907 * @qc: queued command to start DMA on.
1908 *
1909 * LOCKING:
1910 * Inherited from caller.
1911 */
1912 static void mv_bmdma_start(struct ata_queued_cmd *qc)
1913 {
1914 struct ata_port *ap = qc->ap;
1915 void __iomem *port_mmio = mv_ap_base(ap);
1916 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
1917 u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
1918
1919 /* start host DMA transaction */
1920 writelfl(cmd, port_mmio + BMDMA_CMD);
1921 }
1922
1923 /**
1924 * mv_bmdma_stop - Stop BMDMA transfer
1925 * @qc: queued command to stop DMA on.
1926 *
1927 * Clears the ATA_DMA_START flag in the bmdma control register
1928 *
1929 * LOCKING:
1930 * Inherited from caller.
1931 */
1932 static void mv_bmdma_stop_ap(struct ata_port *ap)
1933 {
1934 void __iomem *port_mmio = mv_ap_base(ap);
1935 u32 cmd;
1936
1937 /* clear start/stop bit */
1938 cmd = readl(port_mmio + BMDMA_CMD);
1939 if (cmd & ATA_DMA_START) {
1940 cmd &= ~ATA_DMA_START;
1941 writelfl(cmd, port_mmio + BMDMA_CMD);
1942
1943 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1944 ata_sff_dma_pause(ap);
1945 }
1946 }
1947
1948 static void mv_bmdma_stop(struct ata_queued_cmd *qc)
1949 {
1950 mv_bmdma_stop_ap(qc->ap);
1951 }
1952
1953 /**
1954 * mv_bmdma_status - Read BMDMA status
1955 * @ap: port for which to retrieve DMA status.
1956 *
1957 * Read and return equivalent of the sff BMDMA status register.
1958 *
1959 * LOCKING:
1960 * Inherited from caller.
1961 */
1962 static u8 mv_bmdma_status(struct ata_port *ap)
1963 {
1964 void __iomem *port_mmio = mv_ap_base(ap);
1965 u32 reg, status;
1966
1967 /*
1968 * Other bits are valid only if ATA_DMA_ACTIVE==0,
1969 * and the ATA_DMA_INTR bit doesn't exist.
1970 */
1971 reg = readl(port_mmio + BMDMA_STATUS);
1972 if (reg & ATA_DMA_ACTIVE)
1973 status = ATA_DMA_ACTIVE;
1974 else if (reg & ATA_DMA_ERR)
1975 status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
1976 else {
1977 /*
1978 * Just because DMA_ACTIVE is 0 (DMA completed),
1979 * this does _not_ mean the device is "done".
1980 * So we should not yet be signalling ATA_DMA_INTR
1981 * in some cases. Eg. DSM/TRIM, and perhaps others.
1982 */
1983 mv_bmdma_stop_ap(ap);
1984 if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY)
1985 status = 0;
1986 else
1987 status = ATA_DMA_INTR;
1988 }
1989 return status;
1990 }
1991
1992 static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
1993 {
1994 struct ata_taskfile *tf = &qc->tf;
1995 /*
1996 * Workaround for 88SX60x1 FEr SATA#24.
1997 *
1998 * Chip may corrupt WRITEs if multi_count >= 4kB.
1999 * Note that READs are unaffected.
2000 *
2001 * It's not clear if this errata really means "4K bytes",
2002 * or if it always happens for multi_count > 7
2003 * regardless of device sector_size.
2004 *
2005 * So, for safety, any write with multi_count > 7
2006 * gets converted here into a regular PIO write instead:
2007 */
2008 if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
2009 if (qc->dev->multi_count > 7) {
2010 switch (tf->command) {
2011 case ATA_CMD_WRITE_MULTI:
2012 tf->command = ATA_CMD_PIO_WRITE;
2013 break;
2014 case ATA_CMD_WRITE_MULTI_FUA_EXT:
2015 tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
2016 /* fall through */
2017 case ATA_CMD_WRITE_MULTI_EXT:
2018 tf->command = ATA_CMD_PIO_WRITE_EXT;
2019 break;
2020 }
2021 }
2022 }
2023 }
2024
2025 /**
2026 * mv_qc_prep - Host specific command preparation.
2027 * @qc: queued command to prepare
2028 *
2029 * This routine simply redirects to the general purpose routine
2030 * if command is not DMA. Else, it handles prep of the CRQB
2031 * (command request block), does some sanity checking, and calls
2032 * the SG load routine.
2033 *
2034 * LOCKING:
2035 * Inherited from caller.
2036 */
2037 static void mv_qc_prep(struct ata_queued_cmd *qc)
2038 {
2039 struct ata_port *ap = qc->ap;
2040 struct mv_port_priv *pp = ap->private_data;
2041 __le16 *cw;
2042 struct ata_taskfile *tf = &qc->tf;
2043 u16 flags = 0;
2044 unsigned in_index;
2045
2046 switch (tf->protocol) {
2047 case ATA_PROT_DMA:
2048 if (tf->command == ATA_CMD_DSM)
2049 return;
2050 /* fall-thru */
2051 case ATA_PROT_NCQ:
2052 break; /* continue below */
2053 case ATA_PROT_PIO:
2054 mv_rw_multi_errata_sata24(qc);
2055 return;
2056 default:
2057 return;
2058 }
2059
2060 /* Fill in command request block
2061 */
2062 if (!(tf->flags & ATA_TFLAG_WRITE))
2063 flags |= CRQB_FLAG_READ;
2064 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
2065 flags |= qc->tag << CRQB_TAG_SHIFT;
2066 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2067
2068 /* get current queue index from software */
2069 in_index = pp->req_idx;
2070
2071 pp->crqb[in_index].sg_addr =
2072 cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2073 pp->crqb[in_index].sg_addr_hi =
2074 cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2075 pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
2076
2077 cw = &pp->crqb[in_index].ata_cmd[0];
2078
2079 /* Sadly, the CRQB cannot accommodate all registers--there are
2080 * only 11 bytes...so we must pick and choose required
2081 * registers based on the command. So, we drop feature and
2082 * hob_feature for [RW] DMA commands, but they are needed for
2083 * NCQ. NCQ will drop hob_nsect, which is not needed there
2084 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
2085 */
2086 switch (tf->command) {
2087 case ATA_CMD_READ:
2088 case ATA_CMD_READ_EXT:
2089 case ATA_CMD_WRITE:
2090 case ATA_CMD_WRITE_EXT:
2091 case ATA_CMD_WRITE_FUA_EXT:
2092 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
2093 break;
2094 case ATA_CMD_FPDMA_READ:
2095 case ATA_CMD_FPDMA_WRITE:
2096 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
2097 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
2098 break;
2099 default:
2100 /* The only other commands EDMA supports in non-queued and
2101 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2102 * of which are defined/used by Linux. If we get here, this
2103 * driver needs work.
2104 *
2105 * FIXME: modify libata to give qc_prep a return value and
2106 * return error here.
2107 */
2108 BUG_ON(tf->command);
2109 break;
2110 }
2111 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
2112 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
2113 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
2114 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
2115 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
2116 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
2117 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
2118 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
2119 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
2120
2121 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2122 return;
2123 mv_fill_sg(qc);
2124 }
2125
2126 /**
2127 * mv_qc_prep_iie - Host specific command preparation.
2128 * @qc: queued command to prepare
2129 *
2130 * This routine simply redirects to the general purpose routine
2131 * if command is not DMA. Else, it handles prep of the CRQB
2132 * (command request block), does some sanity checking, and calls
2133 * the SG load routine.
2134 *
2135 * LOCKING:
2136 * Inherited from caller.
2137 */
2138 static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
2139 {
2140 struct ata_port *ap = qc->ap;
2141 struct mv_port_priv *pp = ap->private_data;
2142 struct mv_crqb_iie *crqb;
2143 struct ata_taskfile *tf = &qc->tf;
2144 unsigned in_index;
2145 u32 flags = 0;
2146
2147 if ((tf->protocol != ATA_PROT_DMA) &&
2148 (tf->protocol != ATA_PROT_NCQ))
2149 return;
2150 if (tf->command == ATA_CMD_DSM)
2151 return; /* use bmdma for this */
2152
2153 /* Fill in Gen IIE command request block */
2154 if (!(tf->flags & ATA_TFLAG_WRITE))
2155 flags |= CRQB_FLAG_READ;
2156
2157 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
2158 flags |= qc->tag << CRQB_TAG_SHIFT;
2159 flags |= qc->tag << CRQB_HOSTQ_SHIFT;
2160 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2161
2162 /* get current queue index from software */
2163 in_index = pp->req_idx;
2164
2165 crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
2166 crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2167 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2168 crqb->flags = cpu_to_le32(flags);
2169
2170 crqb->ata_cmd[0] = cpu_to_le32(
2171 (tf->command << 16) |
2172 (tf->feature << 24)
2173 );
2174 crqb->ata_cmd[1] = cpu_to_le32(
2175 (tf->lbal << 0) |
2176 (tf->lbam << 8) |
2177 (tf->lbah << 16) |
2178 (tf->device << 24)
2179 );
2180 crqb->ata_cmd[2] = cpu_to_le32(
2181 (tf->hob_lbal << 0) |
2182 (tf->hob_lbam << 8) |
2183 (tf->hob_lbah << 16) |
2184 (tf->hob_feature << 24)
2185 );
2186 crqb->ata_cmd[3] = cpu_to_le32(
2187 (tf->nsect << 0) |
2188 (tf->hob_nsect << 8)
2189 );
2190
2191 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2192 return;
2193 mv_fill_sg(qc);
2194 }
2195
2196 /**
2197 * mv_sff_check_status - fetch device status, if valid
2198 * @ap: ATA port to fetch status from
2199 *
2200 * When using command issue via mv_qc_issue_fis(),
2201 * the initial ATA_BUSY state does not show up in the
2202 * ATA status (shadow) register. This can confuse libata!
2203 *
2204 * So we have a hook here to fake ATA_BUSY for that situation,
2205 * until the first time a BUSY, DRQ, or ERR bit is seen.
2206 *
2207 * The rest of the time, it simply returns the ATA status register.
2208 */
2209 static u8 mv_sff_check_status(struct ata_port *ap)
2210 {
2211 u8 stat = ioread8(ap->ioaddr.status_addr);
2212 struct mv_port_priv *pp = ap->private_data;
2213
2214 if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
2215 if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
2216 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
2217 else
2218 stat = ATA_BUSY;
2219 }
2220 return stat;
2221 }
2222
2223 /**
2224 * mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2225 * @fis: fis to be sent
2226 * @nwords: number of 32-bit words in the fis
2227 */
2228 static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
2229 {
2230 void __iomem *port_mmio = mv_ap_base(ap);
2231 u32 ifctl, old_ifctl, ifstat;
2232 int i, timeout = 200, final_word = nwords - 1;
2233
2234 /* Initiate FIS transmission mode */
2235 old_ifctl = readl(port_mmio + SATA_IFCTL);
2236 ifctl = 0x100 | (old_ifctl & 0xf);
2237 writelfl(ifctl, port_mmio + SATA_IFCTL);
2238
2239 /* Send all words of the FIS except for the final word */
2240 for (i = 0; i < final_word; ++i)
2241 writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
2242
2243 /* Flag end-of-transmission, and then send the final word */
2244 writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
2245 writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
2246
2247 /*
2248 * Wait for FIS transmission to complete.
2249 * This typically takes just a single iteration.
2250 */
2251 do {
2252 ifstat = readl(port_mmio + SATA_IFSTAT);
2253 } while (!(ifstat & 0x1000) && --timeout);
2254
2255 /* Restore original port configuration */
2256 writelfl(old_ifctl, port_mmio + SATA_IFCTL);
2257
2258 /* See if it worked */
2259 if ((ifstat & 0x3000) != 0x1000) {
2260 ata_port_warn(ap, "%s transmission error, ifstat=%08x\n",
2261 __func__, ifstat);
2262 return AC_ERR_OTHER;
2263 }
2264 return 0;
2265 }
2266
2267 /**
2268 * mv_qc_issue_fis - Issue a command directly as a FIS
2269 * @qc: queued command to start
2270 *
2271 * Note that the ATA shadow registers are not updated
2272 * after command issue, so the device will appear "READY"
2273 * if polled, even while it is BUSY processing the command.
2274 *
2275 * So we use a status hook to fake ATA_BUSY until the drive changes state.
2276 *
2277 * Note: we don't get updated shadow regs on *completion*
2278 * of non-data commands. So avoid sending them via this function,
2279 * as they will appear to have completed immediately.
2280 *
2281 * GEN_IIE has special registers that we could get the result tf from,
2282 * but earlier chipsets do not. For now, we ignore those registers.
2283 */
2284 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
2285 {
2286 struct ata_port *ap = qc->ap;
2287 struct mv_port_priv *pp = ap->private_data;
2288 struct ata_link *link = qc->dev->link;
2289 u32 fis[5];
2290 int err = 0;
2291
2292 ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
2293 err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
2294 if (err)
2295 return err;
2296
2297 switch (qc->tf.protocol) {
2298 case ATAPI_PROT_PIO:
2299 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2300 /* fall through */
2301 case ATAPI_PROT_NODATA:
2302 ap->hsm_task_state = HSM_ST_FIRST;
2303 break;
2304 case ATA_PROT_PIO:
2305 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2306 if (qc->tf.flags & ATA_TFLAG_WRITE)
2307 ap->hsm_task_state = HSM_ST_FIRST;
2308 else
2309 ap->hsm_task_state = HSM_ST;
2310 break;
2311 default:
2312 ap->hsm_task_state = HSM_ST_LAST;
2313 break;
2314 }
2315
2316 if (qc->tf.flags & ATA_TFLAG_POLLING)
2317 ata_sff_queue_pio_task(link, 0);
2318 return 0;
2319 }
2320
2321 /**
2322 * mv_qc_issue - Initiate a command to the host
2323 * @qc: queued command to start
2324 *
2325 * This routine simply redirects to the general purpose routine
2326 * if command is not DMA. Else, it sanity checks our local
2327 * caches of the request producer/consumer indices then enables
2328 * DMA and bumps the request producer index.
2329 *
2330 * LOCKING:
2331 * Inherited from caller.
2332 */
2333 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
2334 {
2335 static int limit_warnings = 10;
2336 struct ata_port *ap = qc->ap;
2337 void __iomem *port_mmio = mv_ap_base(ap);
2338 struct mv_port_priv *pp = ap->private_data;
2339 u32 in_index;
2340 unsigned int port_irqs;
2341
2342 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
2343
2344 switch (qc->tf.protocol) {
2345 case ATA_PROT_DMA:
2346 if (qc->tf.command == ATA_CMD_DSM) {
2347 if (!ap->ops->bmdma_setup) /* no bmdma on GEN_I */
2348 return AC_ERR_OTHER;
2349 break; /* use bmdma for this */
2350 }
2351 /* fall thru */
2352 case ATA_PROT_NCQ:
2353 mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
2354 pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2355 in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
2356
2357 /* Write the request in pointer to kick the EDMA to life */
2358 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
2359 port_mmio + EDMA_REQ_Q_IN_PTR);
2360 return 0;
2361
2362 case ATA_PROT_PIO:
2363 /*
2364 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2365 *
2366 * Someday, we might implement special polling workarounds
2367 * for these, but it all seems rather unnecessary since we
2368 * normally use only DMA for commands which transfer more
2369 * than a single block of data.
2370 *
2371 * Much of the time, this could just work regardless.
2372 * So for now, just log the incident, and allow the attempt.
2373 */
2374 if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
2375 --limit_warnings;
2376 ata_link_warn(qc->dev->link, DRV_NAME
2377 ": attempting PIO w/multiple DRQ: "
2378 "this may fail due to h/w errata\n");
2379 }
2380 /* drop through */
2381 case ATA_PROT_NODATA:
2382 case ATAPI_PROT_PIO:
2383 case ATAPI_PROT_NODATA:
2384 if (ap->flags & ATA_FLAG_PIO_POLLING)
2385 qc->tf.flags |= ATA_TFLAG_POLLING;
2386 break;
2387 }
2388
2389 if (qc->tf.flags & ATA_TFLAG_POLLING)
2390 port_irqs = ERR_IRQ; /* mask device interrupt when polling */
2391 else
2392 port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */
2393
2394 /*
2395 * We're about to send a non-EDMA capable command to the
2396 * port. Turn off EDMA so there won't be problems accessing
2397 * shadow block, etc registers.
2398 */
2399 mv_stop_edma(ap);
2400 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
2401 mv_pmp_select(ap, qc->dev->link->pmp);
2402
2403 if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
2404 struct mv_host_priv *hpriv = ap->host->private_data;
2405 /*
2406 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
2407 *
2408 * After any NCQ error, the READ_LOG_EXT command
2409 * from libata-eh *must* use mv_qc_issue_fis().
2410 * Otherwise it might fail, due to chip errata.
2411 *
2412 * Rather than special-case it, we'll just *always*
2413 * use this method here for READ_LOG_EXT, making for
2414 * easier testing.
2415 */
2416 if (IS_GEN_II(hpriv))
2417 return mv_qc_issue_fis(qc);
2418 }
2419 return ata_bmdma_qc_issue(qc);
2420 }
2421
2422 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
2423 {
2424 struct mv_port_priv *pp = ap->private_data;
2425 struct ata_queued_cmd *qc;
2426
2427 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
2428 return NULL;
2429 qc = ata_qc_from_tag(ap, ap->link.active_tag);
2430 if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
2431 return qc;
2432 return NULL;
2433 }
2434
2435 static void mv_pmp_error_handler(struct ata_port *ap)
2436 {
2437 unsigned int pmp, pmp_map;
2438 struct mv_port_priv *pp = ap->private_data;
2439
2440 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
2441 /*
2442 * Perform NCQ error analysis on failed PMPs
2443 * before we freeze the port entirely.
2444 *
2445 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2446 */
2447 pmp_map = pp->delayed_eh_pmp_map;
2448 pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
2449 for (pmp = 0; pmp_map != 0; pmp++) {
2450 unsigned int this_pmp = (1 << pmp);
2451 if (pmp_map & this_pmp) {
2452 struct ata_link *link = &ap->pmp_link[pmp];
2453 pmp_map &= ~this_pmp;
2454 ata_eh_analyze_ncq_error(link);
2455 }
2456 }
2457 ata_port_freeze(ap);
2458 }
2459 sata_pmp_error_handler(ap);
2460 }
2461
2462 static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
2463 {
2464 void __iomem *port_mmio = mv_ap_base(ap);
2465
2466 return readl(port_mmio + SATA_TESTCTL) >> 16;
2467 }
2468
2469 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
2470 {
2471 struct ata_eh_info *ehi;
2472 unsigned int pmp;
2473
2474 /*
2475 * Initialize EH info for PMPs which saw device errors
2476 */
2477 ehi = &ap->link.eh_info;
2478 for (pmp = 0; pmp_map != 0; pmp++) {
2479 unsigned int this_pmp = (1 << pmp);
2480 if (pmp_map & this_pmp) {
2481 struct ata_link *link = &ap->pmp_link[pmp];
2482
2483 pmp_map &= ~this_pmp;
2484 ehi = &link->eh_info;
2485 ata_ehi_clear_desc(ehi);
2486 ata_ehi_push_desc(ehi, "dev err");
2487 ehi->err_mask |= AC_ERR_DEV;
2488 ehi->action |= ATA_EH_RESET;
2489 ata_link_abort(link);
2490 }
2491 }
2492 }
2493
2494 static int mv_req_q_empty(struct ata_port *ap)
2495 {
2496 void __iomem *port_mmio = mv_ap_base(ap);
2497 u32 in_ptr, out_ptr;
2498
2499 in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
2500 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2501 out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
2502 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2503 return (in_ptr == out_ptr); /* 1 == queue_is_empty */
2504 }
2505
2506 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
2507 {
2508 struct mv_port_priv *pp = ap->private_data;
2509 int failed_links;
2510 unsigned int old_map, new_map;
2511
2512 /*
2513 * Device error during FBS+NCQ operation:
2514 *
2515 * Set a port flag to prevent further I/O being enqueued.
2516 * Leave the EDMA running to drain outstanding commands from this port.
2517 * Perform the post-mortem/EH only when all responses are complete.
2518 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2519 */
2520 if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
2521 pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
2522 pp->delayed_eh_pmp_map = 0;
2523 }
2524 old_map = pp->delayed_eh_pmp_map;
2525 new_map = old_map | mv_get_err_pmp_map(ap);
2526
2527 if (old_map != new_map) {
2528 pp->delayed_eh_pmp_map = new_map;
2529 mv_pmp_eh_prep(ap, new_map & ~old_map);
2530 }
2531 failed_links = hweight16(new_map);
2532
2533 ata_port_info(ap,
2534 "%s: pmp_map=%04x qc_map=%04x failed_links=%d nr_active_links=%d\n",
2535 __func__, pp->delayed_eh_pmp_map,
2536 ap->qc_active, failed_links,
2537 ap->nr_active_links);
2538
2539 if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
2540 mv_process_crpb_entries(ap, pp);
2541 mv_stop_edma(ap);
2542 mv_eh_freeze(ap);
2543 ata_port_info(ap, "%s: done\n", __func__);
2544 return 1; /* handled */
2545 }
2546 ata_port_info(ap, "%s: waiting\n", __func__);
2547 return 1; /* handled */
2548 }
2549
2550 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
2551 {
2552 /*
2553 * Possible future enhancement:
2554 *
2555 * FBS+non-NCQ operation is not yet implemented.
2556 * See related notes in mv_edma_cfg().
2557 *
2558 * Device error during FBS+non-NCQ operation:
2559 *
2560 * We need to snapshot the shadow registers for each failed command.
2561 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2562 */
2563 return 0; /* not handled */
2564 }
2565
2566 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
2567 {
2568 struct mv_port_priv *pp = ap->private_data;
2569
2570 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
2571 return 0; /* EDMA was not active: not handled */
2572 if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
2573 return 0; /* FBS was not active: not handled */
2574
2575 if (!(edma_err_cause & EDMA_ERR_DEV))
2576 return 0; /* non DEV error: not handled */
2577 edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
2578 if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
2579 return 0; /* other problems: not handled */
2580
2581 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
2582 /*
2583 * EDMA should NOT have self-disabled for this case.
2584 * If it did, then something is wrong elsewhere,
2585 * and we cannot handle it here.
2586 */
2587 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2588 ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2589 __func__, edma_err_cause, pp->pp_flags);
2590 return 0; /* not handled */
2591 }
2592 return mv_handle_fbs_ncq_dev_err(ap);
2593 } else {
2594 /*
2595 * EDMA should have self-disabled for this case.
2596 * If it did not, then something is wrong elsewhere,
2597 * and we cannot handle it here.
2598 */
2599 if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
2600 ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2601 __func__, edma_err_cause, pp->pp_flags);
2602 return 0; /* not handled */
2603 }
2604 return mv_handle_fbs_non_ncq_dev_err(ap);
2605 }
2606 return 0; /* not handled */
2607 }
2608
2609 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
2610 {
2611 struct ata_eh_info *ehi = &ap->link.eh_info;
2612 char *when = "idle";
2613
2614 ata_ehi_clear_desc(ehi);
2615 if (edma_was_enabled) {
2616 when = "EDMA enabled";
2617 } else {
2618 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
2619 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
2620 when = "polling";
2621 }
2622 ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
2623 ehi->err_mask |= AC_ERR_OTHER;
2624 ehi->action |= ATA_EH_RESET;
2625 ata_port_freeze(ap);
2626 }
2627
2628 /**
2629 * mv_err_intr - Handle error interrupts on the port
2630 * @ap: ATA channel to manipulate
2631 *
2632 * Most cases require a full reset of the chip's state machine,
2633 * which also performs a COMRESET.
2634 * Also, if the port disabled DMA, update our cached copy to match.
2635 *
2636 * LOCKING:
2637 * Inherited from caller.
2638 */
2639 static void mv_err_intr(struct ata_port *ap)
2640 {
2641 void __iomem *port_mmio = mv_ap_base(ap);
2642 u32 edma_err_cause, eh_freeze_mask, serr = 0;
2643 u32 fis_cause = 0;
2644 struct mv_port_priv *pp = ap->private_data;
2645 struct mv_host_priv *hpriv = ap->host->private_data;
2646 unsigned int action = 0, err_mask = 0;
2647 struct ata_eh_info *ehi = &ap->link.eh_info;
2648 struct ata_queued_cmd *qc;
2649 int abort = 0;
2650
2651 /*
2652 * Read and clear the SError and err_cause bits.
2653 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2654 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
2655 */
2656 sata_scr_read(&ap->link, SCR_ERROR, &serr);
2657 sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
2658
2659 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
2660 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2661 fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
2662 writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
2663 }
2664 writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
2665
2666 if (edma_err_cause & EDMA_ERR_DEV) {
2667 /*
2668 * Device errors during FIS-based switching operation
2669 * require special handling.
2670 */
2671 if (mv_handle_dev_err(ap, edma_err_cause))
2672 return;
2673 }
2674
2675 qc = mv_get_active_qc(ap);
2676 ata_ehi_clear_desc(ehi);
2677 ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
2678 edma_err_cause, pp->pp_flags);
2679
2680 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2681 ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
2682 if (fis_cause & FIS_IRQ_CAUSE_AN) {
2683 u32 ec = edma_err_cause &
2684 ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
2685 sata_async_notification(ap);
2686 if (!ec)
2687 return; /* Just an AN; no need for the nukes */
2688 ata_ehi_push_desc(ehi, "SDB notify");
2689 }
2690 }
2691 /*
2692 * All generations share these EDMA error cause bits:
2693 */
2694 if (edma_err_cause & EDMA_ERR_DEV) {
2695 err_mask |= AC_ERR_DEV;
2696 action |= ATA_EH_RESET;
2697 ata_ehi_push_desc(ehi, "dev error");
2698 }
2699 if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
2700 EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
2701 EDMA_ERR_INTRL_PAR)) {
2702 err_mask |= AC_ERR_ATA_BUS;
2703 action |= ATA_EH_RESET;
2704 ata_ehi_push_desc(ehi, "parity error");
2705 }
2706 if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
2707 ata_ehi_hotplugged(ehi);
2708 ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
2709 "dev disconnect" : "dev connect");
2710 action |= ATA_EH_RESET;
2711 }
2712
2713 /*
2714 * Gen-I has a different SELF_DIS bit,
2715 * different FREEZE bits, and no SERR bit:
2716 */
2717 if (IS_GEN_I(hpriv)) {
2718 eh_freeze_mask = EDMA_EH_FREEZE_5;
2719 if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
2720 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2721 ata_ehi_push_desc(ehi, "EDMA self-disable");
2722 }
2723 } else {
2724 eh_freeze_mask = EDMA_EH_FREEZE;
2725 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2726 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2727 ata_ehi_push_desc(ehi, "EDMA self-disable");
2728 }
2729 if (edma_err_cause & EDMA_ERR_SERR) {
2730 ata_ehi_push_desc(ehi, "SError=%08x", serr);
2731 err_mask |= AC_ERR_ATA_BUS;
2732 action |= ATA_EH_RESET;
2733 }
2734 }
2735
2736 if (!err_mask) {
2737 err_mask = AC_ERR_OTHER;
2738 action |= ATA_EH_RESET;
2739 }
2740
2741 ehi->serror |= serr;
2742 ehi->action |= action;
2743
2744 if (qc)
2745 qc->err_mask |= err_mask;
2746 else
2747 ehi->err_mask |= err_mask;
2748
2749 if (err_mask == AC_ERR_DEV) {
2750 /*
2751 * Cannot do ata_port_freeze() here,
2752 * because it would kill PIO access,
2753 * which is needed for further diagnosis.
2754 */
2755 mv_eh_freeze(ap);
2756 abort = 1;
2757 } else if (edma_err_cause & eh_freeze_mask) {
2758 /*
2759 * Note to self: ata_port_freeze() calls ata_port_abort()
2760 */
2761 ata_port_freeze(ap);
2762 } else {
2763 abort = 1;
2764 }
2765
2766 if (abort) {
2767 if (qc)
2768 ata_link_abort(qc->dev->link);
2769 else
2770 ata_port_abort(ap);
2771 }
2772 }
2773
2774 static bool mv_process_crpb_response(struct ata_port *ap,
2775 struct mv_crpb *response, unsigned int tag, int ncq_enabled)
2776 {
2777 u8 ata_status;
2778 u16 edma_status = le16_to_cpu(response->flags);
2779
2780 /*
2781 * edma_status from a response queue entry:
2782 * LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2783 * MSB is saved ATA status from command completion.
2784 */
2785 if (!ncq_enabled) {
2786 u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2787 if (err_cause) {
2788 /*
2789 * Error will be seen/handled by
2790 * mv_err_intr(). So do nothing at all here.
2791 */
2792 return false;
2793 }
2794 }
2795 ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2796 if (!ac_err_mask(ata_status))
2797 return true;
2798 /* else: leave it for mv_err_intr() */
2799 return false;
2800 }
2801
2802 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2803 {
2804 void __iomem *port_mmio = mv_ap_base(ap);
2805 struct mv_host_priv *hpriv = ap->host->private_data;
2806 u32 in_index;
2807 bool work_done = false;
2808 u32 done_mask = 0;
2809 int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2810
2811 /* Get the hardware queue position index */
2812 in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
2813 >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2814
2815 /* Process new responses from since the last time we looked */
2816 while (in_index != pp->resp_idx) {
2817 unsigned int tag;
2818 struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2819
2820 pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2821
2822 if (IS_GEN_I(hpriv)) {
2823 /* 50xx: no NCQ, only one command active at a time */
2824 tag = ap->link.active_tag;
2825 } else {
2826 /* Gen II/IIE: get command tag from CRPB entry */
2827 tag = le16_to_cpu(response->id) & 0x1f;
2828 }
2829 if (mv_process_crpb_response(ap, response, tag, ncq_enabled))
2830 done_mask |= 1 << tag;
2831 work_done = true;
2832 }
2833
2834 if (work_done) {
2835 ata_qc_complete_multiple(ap, ap->qc_active ^ done_mask);
2836
2837 /* Update the software queue position index in hardware */
2838 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2839 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2840 port_mmio + EDMA_RSP_Q_OUT_PTR);
2841 }
2842 }
2843
2844 static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2845 {
2846 struct mv_port_priv *pp;
2847 int edma_was_enabled;
2848
2849 /*
2850 * Grab a snapshot of the EDMA_EN flag setting,
2851 * so that we have a consistent view for this port,
2852 * even if something we call of our routines changes it.
2853 */
2854 pp = ap->private_data;
2855 edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2856 /*
2857 * Process completed CRPB response(s) before other events.
2858 */
2859 if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2860 mv_process_crpb_entries(ap, pp);
2861 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2862 mv_handle_fbs_ncq_dev_err(ap);
2863 }
2864 /*
2865 * Handle chip-reported errors, or continue on to handle PIO.
2866 */
2867 if (unlikely(port_cause & ERR_IRQ)) {
2868 mv_err_intr(ap);
2869 } else if (!edma_was_enabled) {
2870 struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2871 if (qc)
2872 ata_bmdma_port_intr(ap, qc);
2873 else
2874 mv_unexpected_intr(ap, edma_was_enabled);
2875 }
2876 }
2877
2878 /**
2879 * mv_host_intr - Handle all interrupts on the given host controller
2880 * @host: host specific structure
2881 * @main_irq_cause: Main interrupt cause register for the chip.
2882 *
2883 * LOCKING:
2884 * Inherited from caller.
2885 */
2886 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2887 {
2888 struct mv_host_priv *hpriv = host->private_data;
2889 void __iomem *mmio = hpriv->base, *hc_mmio;
2890 unsigned int handled = 0, port;
2891
2892 /* If asserted, clear the "all ports" IRQ coalescing bit */
2893 if (main_irq_cause & ALL_PORTS_COAL_DONE)
2894 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
2895
2896 for (port = 0; port < hpriv->n_ports; port++) {
2897 struct ata_port *ap = host->ports[port];
2898 unsigned int p, shift, hardport, port_cause;
2899
2900 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2901 /*
2902 * Each hc within the host has its own hc_irq_cause register,
2903 * where the interrupting ports bits get ack'd.
2904 */
2905 if (hardport == 0) { /* first port on this hc ? */
2906 u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2907 u32 port_mask, ack_irqs;
2908 /*
2909 * Skip this entire hc if nothing pending for any ports
2910 */
2911 if (!hc_cause) {
2912 port += MV_PORTS_PER_HC - 1;
2913 continue;
2914 }
2915 /*
2916 * We don't need/want to read the hc_irq_cause register,
2917 * because doing so hurts performance, and
2918 * main_irq_cause already gives us everything we need.
2919 *
2920 * But we do have to *write* to the hc_irq_cause to ack
2921 * the ports that we are handling this time through.
2922 *
2923 * This requires that we create a bitmap for those
2924 * ports which interrupted us, and use that bitmap
2925 * to ack (only) those ports via hc_irq_cause.
2926 */
2927 ack_irqs = 0;
2928 if (hc_cause & PORTS_0_3_COAL_DONE)
2929 ack_irqs = HC_COAL_IRQ;
2930 for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2931 if ((port + p) >= hpriv->n_ports)
2932 break;
2933 port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2934 if (hc_cause & port_mask)
2935 ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2936 }
2937 hc_mmio = mv_hc_base_from_port(mmio, port);
2938 writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
2939 handled = 1;
2940 }
2941 /*
2942 * Handle interrupts signalled for this port:
2943 */
2944 port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2945 if (port_cause)
2946 mv_port_intr(ap, port_cause);
2947 }
2948 return handled;
2949 }
2950
2951 static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2952 {
2953 struct mv_host_priv *hpriv = host->private_data;
2954 struct ata_port *ap;
2955 struct ata_queued_cmd *qc;
2956 struct ata_eh_info *ehi;
2957 unsigned int i, err_mask, printed = 0;
2958 u32 err_cause;
2959
2960 err_cause = readl(mmio + hpriv->irq_cause_offset);
2961
2962 dev_err(host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause);
2963
2964 DPRINTK("All regs @ PCI error\n");
2965 mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2966
2967 writelfl(0, mmio + hpriv->irq_cause_offset);
2968
2969 for (i = 0; i < host->n_ports; i++) {
2970 ap = host->ports[i];
2971 if (!ata_link_offline(&ap->link)) {
2972 ehi = &ap->link.eh_info;
2973 ata_ehi_clear_desc(ehi);
2974 if (!printed++)
2975 ata_ehi_push_desc(ehi,
2976 "PCI err cause 0x%08x", err_cause);
2977 err_mask = AC_ERR_HOST_BUS;
2978 ehi->action = ATA_EH_RESET;
2979 qc = ata_qc_from_tag(ap, ap->link.active_tag);
2980 if (qc)
2981 qc->err_mask |= err_mask;
2982 else
2983 ehi->err_mask |= err_mask;
2984
2985 ata_port_freeze(ap);
2986 }
2987 }
2988 return 1; /* handled */
2989 }
2990
2991 /**
2992 * mv_interrupt - Main interrupt event handler
2993 * @irq: unused
2994 * @dev_instance: private data; in this case the host structure
2995 *
2996 * Read the read only register to determine if any host
2997 * controllers have pending interrupts. If so, call lower level
2998 * routine to handle. Also check for PCI errors which are only
2999 * reported here.
3000 *
3001 * LOCKING:
3002 * This routine holds the host lock while processing pending
3003 * interrupts.
3004 */
3005 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
3006 {
3007 struct ata_host *host = dev_instance;
3008 struct mv_host_priv *hpriv = host->private_data;
3009 unsigned int handled = 0;
3010 int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
3011 u32 main_irq_cause, pending_irqs;
3012
3013 spin_lock(&host->lock);
3014
3015 /* for MSI: block new interrupts while in here */
3016 if (using_msi)
3017 mv_write_main_irq_mask(0, hpriv);
3018
3019 main_irq_cause = readl(hpriv->main_irq_cause_addr);
3020 pending_irqs = main_irq_cause & hpriv->main_irq_mask;
3021 /*
3022 * Deal with cases where we either have nothing pending, or have read
3023 * a bogus register value which can indicate HW removal or PCI fault.
3024 */
3025 if (pending_irqs && main_irq_cause != 0xffffffffU) {
3026 if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
3027 handled = mv_pci_error(host, hpriv->base);
3028 else
3029 handled = mv_host_intr(host, pending_irqs);
3030 }
3031
3032 /* for MSI: unmask; interrupt cause bits will retrigger now */
3033 if (using_msi)
3034 mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
3035
3036 spin_unlock(&host->lock);
3037
3038 return IRQ_RETVAL(handled);
3039 }
3040
3041 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
3042 {
3043 unsigned int ofs;
3044
3045 switch (sc_reg_in) {
3046 case SCR_STATUS:
3047 case SCR_ERROR:
3048 case SCR_CONTROL:
3049 ofs = sc_reg_in * sizeof(u32);
3050 break;
3051 default:
3052 ofs = 0xffffffffU;
3053 break;
3054 }
3055 return ofs;
3056 }
3057
3058 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
3059 {
3060 struct mv_host_priv *hpriv = link->ap->host->private_data;
3061 void __iomem *mmio = hpriv->base;
3062 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3063 unsigned int ofs = mv5_scr_offset(sc_reg_in);
3064
3065 if (ofs != 0xffffffffU) {
3066 *val = readl(addr + ofs);
3067 return 0;
3068 } else
3069 return -EINVAL;
3070 }
3071
3072 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
3073 {
3074 struct mv_host_priv *hpriv = link->ap->host->private_data;
3075 void __iomem *mmio = hpriv->base;
3076 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3077 unsigned int ofs = mv5_scr_offset(sc_reg_in);
3078
3079 if (ofs != 0xffffffffU) {
3080 writelfl(val, addr + ofs);
3081 return 0;
3082 } else
3083 return -EINVAL;
3084 }
3085
3086 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
3087 {
3088 struct pci_dev *pdev = to_pci_dev(host->dev);
3089 int early_5080;
3090
3091 early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
3092
3093 if (!early_5080) {
3094 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3095 tmp |= (1 << 0);
3096 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3097 }
3098
3099 mv_reset_pci_bus(host, mmio);
3100 }
3101
3102 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3103 {
3104 writel(0x0fcfffff, mmio + FLASH_CTL);
3105 }
3106
3107 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
3108 void __iomem *mmio)
3109 {
3110 void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
3111 u32 tmp;
3112
3113 tmp = readl(phy_mmio + MV5_PHY_MODE);
3114
3115 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
3116 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
3117 }
3118
3119 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3120 {
3121 u32 tmp;
3122
3123 writel(0, mmio + GPIO_PORT_CTL);
3124
3125 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3126
3127 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3128 tmp |= ~(1 << 0);
3129 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3130 }
3131
3132 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3133 unsigned int port)
3134 {
3135 void __iomem *phy_mmio = mv5_phy_base(mmio, port);
3136 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3137 u32 tmp;
3138 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
3139
3140 if (fix_apm_sq) {
3141 tmp = readl(phy_mmio + MV5_LTMODE);
3142 tmp |= (1 << 19);
3143 writel(tmp, phy_mmio + MV5_LTMODE);
3144
3145 tmp = readl(phy_mmio + MV5_PHY_CTL);
3146 tmp &= ~0x3;
3147 tmp |= 0x1;
3148 writel(tmp, phy_mmio + MV5_PHY_CTL);
3149 }
3150
3151 tmp = readl(phy_mmio + MV5_PHY_MODE);
3152 tmp &= ~mask;
3153 tmp |= hpriv->signal[port].pre;
3154 tmp |= hpriv->signal[port].amps;
3155 writel(tmp, phy_mmio + MV5_PHY_MODE);
3156 }
3157
3158
3159 #undef ZERO
3160 #define ZERO(reg) writel(0, port_mmio + (reg))
3161 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
3162 unsigned int port)
3163 {
3164 void __iomem *port_mmio = mv_port_base(mmio, port);
3165
3166 mv_reset_channel(hpriv, mmio, port);
3167
3168 ZERO(0x028); /* command */
3169 writel(0x11f, port_mmio + EDMA_CFG);
3170 ZERO(0x004); /* timer */
3171 ZERO(0x008); /* irq err cause */
3172 ZERO(0x00c); /* irq err mask */
3173 ZERO(0x010); /* rq bah */
3174 ZERO(0x014); /* rq inp */
3175 ZERO(0x018); /* rq outp */
3176 ZERO(0x01c); /* respq bah */
3177 ZERO(0x024); /* respq outp */
3178 ZERO(0x020); /* respq inp */
3179 ZERO(0x02c); /* test control */
3180 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
3181 }
3182 #undef ZERO
3183
3184 #define ZERO(reg) writel(0, hc_mmio + (reg))
3185 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3186 unsigned int hc)
3187 {
3188 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3189 u32 tmp;
3190
3191 ZERO(0x00c);
3192 ZERO(0x010);
3193 ZERO(0x014);
3194 ZERO(0x018);
3195
3196 tmp = readl(hc_mmio + 0x20);
3197 tmp &= 0x1c1c1c1c;
3198 tmp |= 0x03030303;
3199 writel(tmp, hc_mmio + 0x20);
3200 }
3201 #undef ZERO
3202
3203 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3204 unsigned int n_hc)
3205 {
3206 unsigned int hc, port;
3207
3208 for (hc = 0; hc < n_hc; hc++) {
3209 for (port = 0; port < MV_PORTS_PER_HC; port++)
3210 mv5_reset_hc_port(hpriv, mmio,
3211 (hc * MV_PORTS_PER_HC) + port);
3212
3213 mv5_reset_one_hc(hpriv, mmio, hc);
3214 }
3215
3216 return 0;
3217 }
3218
3219 #undef ZERO
3220 #define ZERO(reg) writel(0, mmio + (reg))
3221 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
3222 {
3223 struct mv_host_priv *hpriv = host->private_data;
3224 u32 tmp;
3225
3226 tmp = readl(mmio + MV_PCI_MODE);
3227 tmp &= 0xff00ffff;
3228 writel(tmp, mmio + MV_PCI_MODE);
3229
3230 ZERO(MV_PCI_DISC_TIMER);
3231 ZERO(MV_PCI_MSI_TRIGGER);
3232 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
3233 ZERO(MV_PCI_SERR_MASK);
3234 ZERO(hpriv->irq_cause_offset);
3235 ZERO(hpriv->irq_mask_offset);
3236 ZERO(MV_PCI_ERR_LOW_ADDRESS);
3237 ZERO(MV_PCI_ERR_HIGH_ADDRESS);
3238 ZERO(MV_PCI_ERR_ATTRIBUTE);
3239 ZERO(MV_PCI_ERR_COMMAND);
3240 }
3241 #undef ZERO
3242
3243 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3244 {
3245 u32 tmp;
3246
3247 mv5_reset_flash(hpriv, mmio);
3248
3249 tmp = readl(mmio + GPIO_PORT_CTL);
3250 tmp &= 0x3;
3251 tmp |= (1 << 5) | (1 << 6);
3252 writel(tmp, mmio + GPIO_PORT_CTL);
3253 }
3254
3255 /**
3256 * mv6_reset_hc - Perform the 6xxx global soft reset
3257 * @mmio: base address of the HBA
3258 *
3259 * This routine only applies to 6xxx parts.
3260 *
3261 * LOCKING:
3262 * Inherited from caller.
3263 */
3264 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3265 unsigned int n_hc)
3266 {
3267 void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
3268 int i, rc = 0;
3269 u32 t;
3270
3271 /* Following procedure defined in PCI "main command and status
3272 * register" table.
3273 */
3274 t = readl(reg);
3275 writel(t | STOP_PCI_MASTER, reg);
3276
3277 for (i = 0; i < 1000; i++) {
3278 udelay(1);
3279 t = readl(reg);
3280 if (PCI_MASTER_EMPTY & t)
3281 break;
3282 }
3283 if (!(PCI_MASTER_EMPTY & t)) {
3284 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
3285 rc = 1;
3286 goto done;
3287 }
3288
3289 /* set reset */
3290 i = 5;
3291 do {
3292 writel(t | GLOB_SFT_RST, reg);
3293 t = readl(reg);
3294 udelay(1);
3295 } while (!(GLOB_SFT_RST & t) && (i-- > 0));
3296
3297 if (!(GLOB_SFT_RST & t)) {
3298 printk(KERN_ERR DRV_NAME ": can't set global reset\n");
3299 rc = 1;
3300 goto done;
3301 }
3302
3303 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
3304 i = 5;
3305 do {
3306 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
3307 t = readl(reg);
3308 udelay(1);
3309 } while ((GLOB_SFT_RST & t) && (i-- > 0));
3310
3311 if (GLOB_SFT_RST & t) {
3312 printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
3313 rc = 1;
3314 }
3315 done:
3316 return rc;
3317 }
3318
3319 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
3320 void __iomem *mmio)
3321 {
3322 void __iomem *port_mmio;
3323 u32 tmp;
3324
3325 tmp = readl(mmio + RESET_CFG);
3326 if ((tmp & (1 << 0)) == 0) {
3327 hpriv->signal[idx].amps = 0x7 << 8;
3328 hpriv->signal[idx].pre = 0x1 << 5;
3329 return;
3330 }
3331
3332 port_mmio = mv_port_base(mmio, idx);
3333 tmp = readl(port_mmio + PHY_MODE2);
3334
3335 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
3336 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
3337 }
3338
3339 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3340 {
3341 writel(0x00000060, mmio + GPIO_PORT_CTL);
3342 }
3343
3344 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3345 unsigned int port)
3346 {
3347 void __iomem *port_mmio = mv_port_base(mmio, port);
3348
3349 u32 hp_flags = hpriv->hp_flags;
3350 int fix_phy_mode2 =
3351 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3352 int fix_phy_mode4 =
3353 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3354 u32 m2, m3;
3355
3356 if (fix_phy_mode2) {
3357 m2 = readl(port_mmio + PHY_MODE2);
3358 m2 &= ~(1 << 16);
3359 m2 |= (1 << 31);
3360 writel(m2, port_mmio + PHY_MODE2);
3361
3362 udelay(200);
3363
3364 m2 = readl(port_mmio + PHY_MODE2);
3365 m2 &= ~((1 << 16) | (1 << 31));
3366 writel(m2, port_mmio + PHY_MODE2);
3367
3368 udelay(200);
3369 }
3370
3371 /*
3372 * Gen-II/IIe PHY_MODE3 errata RM#2:
3373 * Achieves better receiver noise performance than the h/w default:
3374 */
3375 m3 = readl(port_mmio + PHY_MODE3);
3376 m3 = (m3 & 0x1f) | (0x5555601 << 5);
3377
3378 /* Guideline 88F5182 (GL# SATA-S11) */
3379 if (IS_SOC(hpriv))
3380 m3 &= ~0x1c;
3381
3382 if (fix_phy_mode4) {
3383 u32 m4 = readl(port_mmio + PHY_MODE4);
3384 /*
3385 * Enforce reserved-bit restrictions on GenIIe devices only.
3386 * For earlier chipsets, force only the internal config field
3387 * (workaround for errata FEr SATA#10 part 1).
3388 */
3389 if (IS_GEN_IIE(hpriv))
3390 m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
3391 else
3392 m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
3393 writel(m4, port_mmio + PHY_MODE4);
3394 }
3395 /*
3396 * Workaround for 60x1-B2 errata SATA#13:
3397 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3398 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
3399 * Or ensure we use writelfl() when writing PHY_MODE4.
3400 */
3401 writel(m3, port_mmio + PHY_MODE3);
3402
3403 /* Revert values of pre-emphasis and signal amps to the saved ones */
3404 m2 = readl(port_mmio + PHY_MODE2);
3405
3406 m2 &= ~MV_M2_PREAMP_MASK;
3407 m2 |= hpriv->signal[port].amps;
3408 m2 |= hpriv->signal[port].pre;
3409 m2 &= ~(1 << 16);
3410
3411 /* according to mvSata 3.6.1, some IIE values are fixed */
3412 if (IS_GEN_IIE(hpriv)) {
3413 m2 &= ~0xC30FF01F;
3414 m2 |= 0x0000900F;
3415 }
3416
3417 writel(m2, port_mmio + PHY_MODE2);
3418 }
3419
3420 /* TODO: use the generic LED interface to configure the SATA Presence */
3421 /* & Acitivy LEDs on the board */
3422 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
3423 void __iomem *mmio)
3424 {
3425 return;
3426 }
3427
3428 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
3429 void __iomem *mmio)
3430 {
3431 void __iomem *port_mmio;
3432 u32 tmp;
3433
3434 port_mmio = mv_port_base(mmio, idx);
3435 tmp = readl(port_mmio + PHY_MODE2);
3436
3437 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
3438 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
3439 }
3440
3441 #undef ZERO
3442 #define ZERO(reg) writel(0, port_mmio + (reg))
3443 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
3444 void __iomem *mmio, unsigned int port)
3445 {
3446 void __iomem *port_mmio = mv_port_base(mmio, port);
3447
3448 mv_reset_channel(hpriv, mmio, port);
3449
3450 ZERO(0x028); /* command */
3451 writel(0x101f, port_mmio + EDMA_CFG);
3452 ZERO(0x004); /* timer */
3453 ZERO(0x008); /* irq err cause */
3454 ZERO(0x00c); /* irq err mask */
3455 ZERO(0x010); /* rq bah */
3456 ZERO(0x014); /* rq inp */
3457 ZERO(0x018); /* rq outp */
3458 ZERO(0x01c); /* respq bah */
3459 ZERO(0x024); /* respq outp */
3460 ZERO(0x020); /* respq inp */
3461 ZERO(0x02c); /* test control */
3462 writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
3463 }
3464
3465 #undef ZERO
3466
3467 #define ZERO(reg) writel(0, hc_mmio + (reg))
3468 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
3469 void __iomem *mmio)
3470 {
3471 void __iomem *hc_mmio = mv_hc_base(mmio, 0);
3472
3473 ZERO(0x00c);
3474 ZERO(0x010);
3475 ZERO(0x014);
3476
3477 }
3478
3479 #undef ZERO
3480
3481 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
3482 void __iomem *mmio, unsigned int n_hc)
3483 {
3484 unsigned int port;
3485
3486 for (port = 0; port < hpriv->n_ports; port++)
3487 mv_soc_reset_hc_port(hpriv, mmio, port);
3488
3489 mv_soc_reset_one_hc(hpriv, mmio);
3490
3491 return 0;
3492 }
3493
3494 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
3495 void __iomem *mmio)
3496 {
3497 return;
3498 }
3499
3500 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
3501 {
3502 return;
3503 }
3504
3505 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
3506 void __iomem *mmio, unsigned int port)
3507 {
3508 void __iomem *port_mmio = mv_port_base(mmio, port);
3509 u32 reg;
3510
3511 reg = readl(port_mmio + PHY_MODE3);
3512 reg &= ~(0x3 << 27); /* SELMUPF (bits 28:27) to 1 */
3513 reg |= (0x1 << 27);
3514 reg &= ~(0x3 << 29); /* SELMUPI (bits 30:29) to 1 */
3515 reg |= (0x1 << 29);
3516 writel(reg, port_mmio + PHY_MODE3);
3517
3518 reg = readl(port_mmio + PHY_MODE4);
3519 reg &= ~0x1; /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3520 reg |= (0x1 << 16);
3521 writel(reg, port_mmio + PHY_MODE4);
3522
3523 reg = readl(port_mmio + PHY_MODE9_GEN2);
3524 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3525 reg |= 0x8;
3526 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3527 writel(reg, port_mmio + PHY_MODE9_GEN2);
3528
3529 reg = readl(port_mmio + PHY_MODE9_GEN1);
3530 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3531 reg |= 0x8;
3532 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3533 writel(reg, port_mmio + PHY_MODE9_GEN1);
3534 }
3535
3536 /**
3537 * soc_is_65 - check if the soc is 65 nano device
3538 *
3539 * Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3540 * register, this register should contain non-zero value and it exists only
3541 * in the 65 nano devices, when reading it from older devices we get 0.
3542 */
3543 static bool soc_is_65n(struct mv_host_priv *hpriv)
3544 {
3545 void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
3546
3547 if (readl(port0_mmio + PHYCFG_OFS))
3548 return true;
3549 return false;
3550 }
3551
3552 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
3553 {
3554 u32 ifcfg = readl(port_mmio + SATA_IFCFG);
3555
3556 ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */
3557 if (want_gen2i)
3558 ifcfg |= (1 << 7); /* enable gen2i speed */
3559 writelfl(ifcfg, port_mmio + SATA_IFCFG);
3560 }
3561
3562 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
3563 unsigned int port_no)
3564 {
3565 void __iomem *port_mmio = mv_port_base(mmio, port_no);
3566
3567 /*
3568 * The datasheet warns against setting EDMA_RESET when EDMA is active
3569 * (but doesn't say what the problem might be). So we first try
3570 * to disable the EDMA engine before doing the EDMA_RESET operation.
3571 */
3572 mv_stop_edma_engine(port_mmio);
3573 writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3574
3575 if (!IS_GEN_I(hpriv)) {
3576 /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3577 mv_setup_ifcfg(port_mmio, 1);
3578 }
3579 /*
3580 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
3581 * link, and physical layers. It resets all SATA interface registers
3582 * (except for SATA_IFCFG), and issues a COMRESET to the dev.
3583 */
3584 writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3585 udelay(25); /* allow reset propagation */
3586 writelfl(0, port_mmio + EDMA_CMD);
3587
3588 hpriv->ops->phy_errata(hpriv, mmio, port_no);
3589
3590 if (IS_GEN_I(hpriv))
3591 mdelay(1);
3592 }
3593
3594 static void mv_pmp_select(struct ata_port *ap, int pmp)
3595 {
3596 if (sata_pmp_supported(ap)) {
3597 void __iomem *port_mmio = mv_ap_base(ap);
3598 u32 reg = readl(port_mmio + SATA_IFCTL);
3599 int old = reg & 0xf;
3600
3601 if (old != pmp) {
3602 reg = (reg & ~0xf) | pmp;
3603 writelfl(reg, port_mmio + SATA_IFCTL);
3604 }
3605 }
3606 }
3607
3608 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
3609 unsigned long deadline)
3610 {
3611 mv_pmp_select(link->ap, sata_srst_pmp(link));
3612 return sata_std_hardreset(link, class, deadline);
3613 }
3614
3615 static int mv_softreset(struct ata_link *link, unsigned int *class,
3616 unsigned long deadline)
3617 {
3618 mv_pmp_select(link->ap, sata_srst_pmp(link));
3619 return ata_sff_softreset(link, class, deadline);
3620 }
3621
3622 static int mv_hardreset(struct ata_link *link, unsigned int *class,
3623 unsigned long deadline)
3624 {
3625 struct ata_port *ap = link->ap;
3626 struct mv_host_priv *hpriv = ap->host->private_data;
3627 struct mv_port_priv *pp = ap->private_data;
3628 void __iomem *mmio = hpriv->base;
3629 int rc, attempts = 0, extra = 0;
3630 u32 sstatus;
3631 bool online;
3632
3633 mv_reset_channel(hpriv, mmio, ap->port_no);
3634 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
3635 pp->pp_flags &=
3636 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
3637
3638 /* Workaround for errata FEr SATA#10 (part 2) */
3639 do {
3640 const unsigned long *timing =
3641 sata_ehc_deb_timing(&link->eh_context);
3642
3643 rc = sata_link_hardreset(link, timing, deadline + extra,
3644 &online, NULL);
3645 rc = online ? -EAGAIN : rc;
3646 if (rc)
3647 return rc;
3648 sata_scr_read(link, SCR_STATUS, &sstatus);
3649 if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
3650 /* Force 1.5gb/s link speed and try again */
3651 mv_setup_ifcfg(mv_ap_base(ap), 0);
3652 if (time_after(jiffies + HZ, deadline))
3653 extra = HZ; /* only extend it once, max */
3654 }
3655 } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
3656 mv_save_cached_regs(ap);
3657 mv_edma_cfg(ap, 0, 0);
3658
3659 return rc;
3660 }
3661
3662 static void mv_eh_freeze(struct ata_port *ap)
3663 {
3664 mv_stop_edma(ap);
3665 mv_enable_port_irqs(ap, 0);
3666 }
3667
3668 static void mv_eh_thaw(struct ata_port *ap)
3669 {
3670 struct mv_host_priv *hpriv = ap->host->private_data;
3671 unsigned int port = ap->port_no;
3672 unsigned int hardport = mv_hardport_from_port(port);
3673 void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
3674 void __iomem *port_mmio = mv_ap_base(ap);
3675 u32 hc_irq_cause;
3676
3677 /* clear EDMA errors on this port */
3678 writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3679
3680 /* clear pending irq events */
3681 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
3682 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
3683
3684 mv_enable_port_irqs(ap, ERR_IRQ);
3685 }
3686
3687 /**
3688 * mv_port_init - Perform some early initialization on a single port.
3689 * @port: libata data structure storing shadow register addresses
3690 * @port_mmio: base address of the port
3691 *
3692 * Initialize shadow register mmio addresses, clear outstanding
3693 * interrupts on the port, and unmask interrupts for the future
3694 * start of the port.
3695 *
3696 * LOCKING:
3697 * Inherited from caller.
3698 */
3699 static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
3700 {
3701 void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
3702
3703 /* PIO related setup
3704 */
3705 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
3706 port->error_addr =
3707 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
3708 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
3709 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
3710 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
3711 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
3712 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
3713 port->status_addr =
3714 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
3715 /* special case: control/altstatus doesn't have ATA_REG_ address */
3716 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
3717
3718 /* Clear any currently outstanding port interrupt conditions */
3719 serr = port_mmio + mv_scr_offset(SCR_ERROR);
3720 writelfl(readl(serr), serr);
3721 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3722
3723 /* unmask all non-transient EDMA error interrupts */
3724 writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
3725
3726 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
3727 readl(port_mmio + EDMA_CFG),
3728 readl(port_mmio + EDMA_ERR_IRQ_CAUSE),
3729 readl(port_mmio + EDMA_ERR_IRQ_MASK));
3730 }
3731
3732 static unsigned int mv_in_pcix_mode(struct ata_host *host)
3733 {
3734 struct mv_host_priv *hpriv = host->private_data;
3735 void __iomem *mmio = hpriv->base;
3736 u32 reg;
3737
3738 if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
3739 return 0; /* not PCI-X capable */
3740 reg = readl(mmio + MV_PCI_MODE);
3741 if ((reg & MV_PCI_MODE_MASK) == 0)
3742 return 0; /* conventional PCI mode */
3743 return 1; /* chip is in PCI-X mode */
3744 }
3745
3746 static int mv_pci_cut_through_okay(struct ata_host *host)
3747 {
3748 struct mv_host_priv *hpriv = host->private_data;
3749 void __iomem *mmio = hpriv->base;
3750 u32 reg;
3751
3752 if (!mv_in_pcix_mode(host)) {
3753 reg = readl(mmio + MV_PCI_COMMAND);
3754 if (reg & MV_PCI_COMMAND_MRDTRIG)
3755 return 0; /* not okay */
3756 }
3757 return 1; /* okay */
3758 }
3759
3760 static void mv_60x1b2_errata_pci7(struct ata_host *host)
3761 {
3762 struct mv_host_priv *hpriv = host->private_data;
3763 void __iomem *mmio = hpriv->base;
3764
3765 /* workaround for 60x1-B2 errata PCI#7 */
3766 if (mv_in_pcix_mode(host)) {
3767 u32 reg = readl(mmio + MV_PCI_COMMAND);
3768 writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
3769 }
3770 }
3771
3772 static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
3773 {
3774 struct pci_dev *pdev = to_pci_dev(host->dev);
3775 struct mv_host_priv *hpriv = host->private_data;
3776 u32 hp_flags = hpriv->hp_flags;
3777
3778 switch (board_idx) {
3779 case chip_5080:
3780 hpriv->ops = &mv5xxx_ops;
3781 hp_flags |= MV_HP_GEN_I;
3782
3783 switch (pdev->revision) {
3784 case 0x1:
3785 hp_flags |= MV_HP_ERRATA_50XXB0;
3786 break;
3787 case 0x3:
3788 hp_flags |= MV_HP_ERRATA_50XXB2;
3789 break;
3790 default:
3791 dev_warn(&pdev->dev,
3792 "Applying 50XXB2 workarounds to unknown rev\n");
3793 hp_flags |= MV_HP_ERRATA_50XXB2;
3794 break;
3795 }
3796 break;
3797
3798 case chip_504x:
3799 case chip_508x:
3800 hpriv->ops = &mv5xxx_ops;
3801 hp_flags |= MV_HP_GEN_I;
3802
3803 switch (pdev->revision) {
3804 case 0x0:
3805 hp_flags |= MV_HP_ERRATA_50XXB0;
3806 break;
3807 case 0x3:
3808 hp_flags |= MV_HP_ERRATA_50XXB2;
3809 break;
3810 default:
3811 dev_warn(&pdev->dev,
3812 "Applying B2 workarounds to unknown rev\n");
3813 hp_flags |= MV_HP_ERRATA_50XXB2;
3814 break;
3815 }
3816 break;
3817
3818 case chip_604x:
3819 case chip_608x:
3820 hpriv->ops = &mv6xxx_ops;
3821 hp_flags |= MV_HP_GEN_II;
3822
3823 switch (pdev->revision) {
3824 case 0x7:
3825 mv_60x1b2_errata_pci7(host);
3826 hp_flags |= MV_HP_ERRATA_60X1B2;
3827 break;
3828 case 0x9:
3829 hp_flags |= MV_HP_ERRATA_60X1C0;
3830 break;
3831 default:
3832 dev_warn(&pdev->dev,
3833 "Applying B2 workarounds to unknown rev\n");
3834 hp_flags |= MV_HP_ERRATA_60X1B2;
3835 break;
3836 }
3837 break;
3838
3839 case chip_7042:
3840 hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
3841 if (pdev->vendor == PCI_VENDOR_ID_TTI &&
3842 (pdev->device == 0x2300 || pdev->device == 0x2310))
3843 {
3844 /*
3845 * Highpoint RocketRAID PCIe 23xx series cards:
3846 *
3847 * Unconfigured drives are treated as "Legacy"
3848 * by the BIOS, and it overwrites sector 8 with
3849 * a "Lgcy" metadata block prior to Linux boot.
3850 *
3851 * Configured drives (RAID or JBOD) leave sector 8
3852 * alone, but instead overwrite a high numbered
3853 * sector for the RAID metadata. This sector can
3854 * be determined exactly, by truncating the physical
3855 * drive capacity to a nice even GB value.
3856 *
3857 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3858 *
3859 * Warn the user, lest they think we're just buggy.
3860 */
3861 printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
3862 " BIOS CORRUPTS DATA on all attached drives,"
3863 " regardless of if/how they are configured."
3864 " BEWARE!\n");
3865 printk(KERN_WARNING DRV_NAME ": For data safety, do not"
3866 " use sectors 8-9 on \"Legacy\" drives,"
3867 " and avoid the final two gigabytes on"
3868 " all RocketRAID BIOS initialized drives.\n");
3869 }
3870 /* drop through */
3871 case chip_6042:
3872 hpriv->ops = &mv6xxx_ops;
3873 hp_flags |= MV_HP_GEN_IIE;
3874 if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3875 hp_flags |= MV_HP_CUT_THROUGH;
3876
3877 switch (pdev->revision) {
3878 case 0x2: /* Rev.B0: the first/only public release */
3879 hp_flags |= MV_HP_ERRATA_60X1C0;
3880 break;
3881 default:
3882 dev_warn(&pdev->dev,
3883 "Applying 60X1C0 workarounds to unknown rev\n");
3884 hp_flags |= MV_HP_ERRATA_60X1C0;
3885 break;
3886 }
3887 break;
3888 case chip_soc:
3889 if (soc_is_65n(hpriv))
3890 hpriv->ops = &mv_soc_65n_ops;
3891 else
3892 hpriv->ops = &mv_soc_ops;
3893 hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3894 MV_HP_ERRATA_60X1C0;
3895 break;
3896
3897 default:
3898 dev_err(host->dev, "BUG: invalid board index %u\n", board_idx);
3899 return 1;
3900 }
3901
3902 hpriv->hp_flags = hp_flags;
3903 if (hp_flags & MV_HP_PCIE) {
3904 hpriv->irq_cause_offset = PCIE_IRQ_CAUSE;
3905 hpriv->irq_mask_offset = PCIE_IRQ_MASK;
3906 hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS;
3907 } else {
3908 hpriv->irq_cause_offset = PCI_IRQ_CAUSE;
3909 hpriv->irq_mask_offset = PCI_IRQ_MASK;
3910 hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS;
3911 }
3912
3913 return 0;
3914 }
3915
3916 /**
3917 * mv_init_host - Perform some early initialization of the host.
3918 * @host: ATA host to initialize
3919 *
3920 * If possible, do an early global reset of the host. Then do
3921 * our port init and clear/unmask all/relevant host interrupts.
3922 *
3923 * LOCKING:
3924 * Inherited from caller.
3925 */
3926 static int mv_init_host(struct ata_host *host)
3927 {
3928 int rc = 0, n_hc, port, hc;
3929 struct mv_host_priv *hpriv = host->private_data;
3930 void __iomem *mmio = hpriv->base;
3931
3932 rc = mv_chip_id(host, hpriv->board_idx);
3933 if (rc)
3934 goto done;
3935
3936 if (IS_SOC(hpriv)) {
3937 hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
3938 hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK;
3939 } else {
3940 hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
3941 hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK;
3942 }
3943
3944 /* initialize shadow irq mask with register's value */
3945 hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3946
3947 /* global interrupt mask: 0 == mask everything */
3948 mv_set_main_irq_mask(host, ~0, 0);
3949
3950 n_hc = mv_get_hc_count(host->ports[0]->flags);
3951
3952 for (port = 0; port < host->n_ports; port++)
3953 if (hpriv->ops->read_preamp)
3954 hpriv->ops->read_preamp(hpriv, port, mmio);
3955
3956 rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
3957 if (rc)
3958 goto done;
3959
3960 hpriv->ops->reset_flash(hpriv, mmio);
3961 hpriv->ops->reset_bus(host, mmio);
3962 hpriv->ops->enable_leds(hpriv, mmio);
3963
3964 for (port = 0; port < host->n_ports; port++) {
3965 struct ata_port *ap = host->ports[port];
3966 void __iomem *port_mmio = mv_port_base(mmio, port);
3967
3968 mv_port_init(&ap->ioaddr, port_mmio);
3969 }
3970
3971 for (hc = 0; hc < n_hc; hc++) {
3972 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3973
3974 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3975 "(before clear)=0x%08x\n", hc,
3976 readl(hc_mmio + HC_CFG),
3977 readl(hc_mmio + HC_IRQ_CAUSE));
3978
3979 /* Clear any currently outstanding hc interrupt conditions */
3980 writelfl(0, hc_mmio + HC_IRQ_CAUSE);
3981 }
3982
3983 if (!IS_SOC(hpriv)) {
3984 /* Clear any currently outstanding host interrupt conditions */
3985 writelfl(0, mmio + hpriv->irq_cause_offset);
3986
3987 /* and unmask interrupt generation for host regs */
3988 writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
3989 }
3990
3991 /*
3992 * enable only global host interrupts for now.
3993 * The per-port interrupts get done later as ports are set up.
3994 */
3995 mv_set_main_irq_mask(host, 0, PCI_ERR);
3996 mv_set_irq_coalescing(host, irq_coalescing_io_count,
3997 irq_coalescing_usecs);
3998 done:
3999 return rc;
4000 }
4001
4002 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
4003 {
4004 hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
4005 MV_CRQB_Q_SZ, 0);
4006 if (!hpriv->crqb_pool)
4007 return -ENOMEM;
4008
4009 hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
4010 MV_CRPB_Q_SZ, 0);
4011 if (!hpriv->crpb_pool)
4012 return -ENOMEM;
4013
4014 hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
4015 MV_SG_TBL_SZ, 0);
4016 if (!hpriv->sg_tbl_pool)
4017 return -ENOMEM;
4018
4019 return 0;
4020 }
4021
4022 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
4023 const struct mbus_dram_target_info *dram)
4024 {
4025 int i;
4026
4027 for (i = 0; i < 4; i++) {
4028 writel(0, hpriv->base + WINDOW_CTRL(i));
4029 writel(0, hpriv->base + WINDOW_BASE(i));
4030 }
4031
4032 for (i = 0; i < dram->num_cs; i++) {
4033 const struct mbus_dram_window *cs = dram->cs + i;
4034
4035 writel(((cs->size - 1) & 0xffff0000) |
4036 (cs->mbus_attr << 8) |
4037 (dram->mbus_dram_target_id << 4) | 1,
4038 hpriv->base + WINDOW_CTRL(i));
4039 writel(cs->base, hpriv->base + WINDOW_BASE(i));
4040 }
4041 }
4042
4043 /**
4044 * mv_platform_probe - handle a positive probe of an soc Marvell
4045 * host
4046 * @pdev: platform device found
4047 *
4048 * LOCKING:
4049 * Inherited from caller.
4050 */
4051 static int mv_platform_probe(struct platform_device *pdev)
4052 {
4053 const struct mv_sata_platform_data *mv_platform_data;
4054 const struct mbus_dram_target_info *dram;
4055 const struct ata_port_info *ppi[] =
4056 { &mv_port_info[chip_soc], NULL };
4057 struct ata_host *host;
4058 struct mv_host_priv *hpriv;
4059 struct resource *res;
4060 int n_ports = 0, irq = 0;
4061 int rc;
4062 int port;
4063
4064 ata_print_version_once(&pdev->dev, DRV_VERSION);
4065
4066 /*
4067 * Simple resource validation ..
4068 */
4069 if (unlikely(pdev->num_resources != 2)) {
4070 dev_err(&pdev->dev, "invalid number of resources\n");
4071 return -EINVAL;
4072 }
4073
4074 /*
4075 * Get the register base first
4076 */
4077 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4078 if (res == NULL)
4079 return -EINVAL;
4080
4081 /* allocate host */
4082 if (pdev->dev.of_node) {
4083 of_property_read_u32(pdev->dev.of_node, "nr-ports", &n_ports);
4084 irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
4085 } else {
4086 mv_platform_data = dev_get_platdata(&pdev->dev);
4087 n_ports = mv_platform_data->n_ports;
4088 irq = platform_get_irq(pdev, 0);
4089 }
4090
4091 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4092 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4093
4094 if (!host || !hpriv)
4095 return -ENOMEM;
4096 hpriv->port_clks = devm_kzalloc(&pdev->dev,
4097 sizeof(struct clk *) * n_ports,
4098 GFP_KERNEL);
4099 if (!hpriv->port_clks)
4100 return -ENOMEM;
4101 hpriv->port_phys = devm_kzalloc(&pdev->dev,
4102 sizeof(struct phy *) * n_ports,
4103 GFP_KERNEL);
4104 if (!hpriv->port_phys)
4105 return -ENOMEM;
4106 host->private_data = hpriv;
4107 hpriv->board_idx = chip_soc;
4108
4109 host->iomap = NULL;
4110 hpriv->base = devm_ioremap(&pdev->dev, res->start,
4111 resource_size(res));
4112 hpriv->base -= SATAHC0_REG_BASE;
4113
4114 hpriv->clk = clk_get(&pdev->dev, NULL);
4115 if (IS_ERR(hpriv->clk))
4116 dev_notice(&pdev->dev, "cannot get optional clkdev\n");
4117 else
4118 clk_prepare_enable(hpriv->clk);
4119
4120 for (port = 0; port < n_ports; port++) {
4121 char port_number[16];
4122 sprintf(port_number, "%d", port);
4123 hpriv->port_clks[port] = clk_get(&pdev->dev, port_number);
4124 if (!IS_ERR(hpriv->port_clks[port]))
4125 clk_prepare_enable(hpriv->port_clks[port]);
4126
4127 sprintf(port_number, "port%d", port);
4128 hpriv->port_phys[port] = devm_phy_optional_get(&pdev->dev,
4129 port_number);
4130 if (IS_ERR(hpriv->port_phys[port])) {
4131 rc = PTR_ERR(hpriv->port_phys[port]);
4132 hpriv->port_phys[port] = NULL;
4133 if (rc != -EPROBE_DEFER)
4134 dev_warn(&pdev->dev, "error getting phy %d", rc);
4135
4136 /* Cleanup only the initialized ports */
4137 hpriv->n_ports = port;
4138 goto err;
4139 } else
4140 phy_power_on(hpriv->port_phys[port]);
4141 }
4142
4143 /* All the ports have been initialized */
4144 hpriv->n_ports = n_ports;
4145
4146 /*
4147 * (Re-)program MBUS remapping windows if we are asked to.
4148 */
4149 dram = mv_mbus_dram_info();
4150 if (dram)
4151 mv_conf_mbus_windows(hpriv, dram);
4152
4153 rc = mv_create_dma_pools(hpriv, &pdev->dev);
4154 if (rc)
4155 goto err;
4156
4157 /*
4158 * To allow disk hotplug on Armada 370/XP SoCs, the PHY speed must be
4159 * updated in the LP_PHY_CTL register.
4160 */
4161 if (pdev->dev.of_node &&
4162 of_device_is_compatible(pdev->dev.of_node,
4163 "marvell,armada-370-sata"))
4164 hpriv->hp_flags |= MV_HP_FIX_LP_PHY_CTL;
4165
4166 /* initialize adapter */
4167 rc = mv_init_host(host);
4168 if (rc)
4169 goto err;
4170
4171 dev_info(&pdev->dev, "slots %u ports %d\n",
4172 (unsigned)MV_MAX_Q_DEPTH, host->n_ports);
4173
4174 rc = ata_host_activate(host, irq, mv_interrupt, IRQF_SHARED, &mv6_sht);
4175 if (!rc)
4176 return 0;
4177
4178 err:
4179 if (!IS_ERR(hpriv->clk)) {
4180 clk_disable_unprepare(hpriv->clk);
4181 clk_put(hpriv->clk);
4182 }
4183 for (port = 0; port < hpriv->n_ports; port++) {
4184 if (!IS_ERR(hpriv->port_clks[port])) {
4185 clk_disable_unprepare(hpriv->port_clks[port]);
4186 clk_put(hpriv->port_clks[port]);
4187 }
4188 if (hpriv->port_phys[port])
4189 phy_power_off(hpriv->port_phys[port]);
4190 }
4191
4192 return rc;
4193 }
4194
4195 /*
4196 *
4197 * mv_platform_remove - unplug a platform interface
4198 * @pdev: platform device
4199 *
4200 * A platform bus SATA device has been unplugged. Perform the needed
4201 * cleanup. Also called on module unload for any active devices.
4202 */
4203 static int mv_platform_remove(struct platform_device *pdev)
4204 {
4205 struct ata_host *host = platform_get_drvdata(pdev);
4206 struct mv_host_priv *hpriv = host->private_data;
4207 int port;
4208 ata_host_detach(host);
4209
4210 if (!IS_ERR(hpriv->clk)) {
4211 clk_disable_unprepare(hpriv->clk);
4212 clk_put(hpriv->clk);
4213 }
4214 for (port = 0; port < host->n_ports; port++) {
4215 if (!IS_ERR(hpriv->port_clks[port])) {
4216 clk_disable_unprepare(hpriv->port_clks[port]);
4217 clk_put(hpriv->port_clks[port]);
4218 }
4219 if (hpriv->port_phys[port])
4220 phy_power_off(hpriv->port_phys[port]);
4221 }
4222 return 0;
4223 }
4224
4225 #ifdef CONFIG_PM_SLEEP
4226 static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
4227 {
4228 struct ata_host *host = platform_get_drvdata(pdev);
4229 if (host)
4230 return ata_host_suspend(host, state);
4231 else
4232 return 0;
4233 }
4234
4235 static int mv_platform_resume(struct platform_device *pdev)
4236 {
4237 struct ata_host *host = platform_get_drvdata(pdev);
4238 const struct mbus_dram_target_info *dram;
4239 int ret;
4240
4241 if (host) {
4242 struct mv_host_priv *hpriv = host->private_data;
4243
4244 /*
4245 * (Re-)program MBUS remapping windows if we are asked to.
4246 */
4247 dram = mv_mbus_dram_info();
4248 if (dram)
4249 mv_conf_mbus_windows(hpriv, dram);
4250
4251 /* initialize adapter */
4252 ret = mv_init_host(host);
4253 if (ret) {
4254 printk(KERN_ERR DRV_NAME ": Error during HW init\n");
4255 return ret;
4256 }
4257 ata_host_resume(host);
4258 }
4259
4260 return 0;
4261 }
4262 #else
4263 #define mv_platform_suspend NULL
4264 #define mv_platform_resume NULL
4265 #endif
4266
4267 #ifdef CONFIG_OF
4268 static struct of_device_id mv_sata_dt_ids[] = {
4269 { .compatible = "marvell,armada-370-sata", },
4270 { .compatible = "marvell,orion-sata", },
4271 {},
4272 };
4273 MODULE_DEVICE_TABLE(of, mv_sata_dt_ids);
4274 #endif
4275
4276 static struct platform_driver mv_platform_driver = {
4277 .probe = mv_platform_probe,
4278 .remove = mv_platform_remove,
4279 .suspend = mv_platform_suspend,
4280 .resume = mv_platform_resume,
4281 .driver = {
4282 .name = DRV_NAME,
4283 .owner = THIS_MODULE,
4284 .of_match_table = of_match_ptr(mv_sata_dt_ids),
4285 },
4286 };
4287
4288
4289 #ifdef CONFIG_PCI
4290 static int mv_pci_init_one(struct pci_dev *pdev,
4291 const struct pci_device_id *ent);
4292 #ifdef CONFIG_PM_SLEEP
4293 static int mv_pci_device_resume(struct pci_dev *pdev);
4294 #endif
4295
4296
4297 static struct pci_driver mv_pci_driver = {
4298 .name = DRV_NAME,
4299 .id_table = mv_pci_tbl,
4300 .probe = mv_pci_init_one,
4301 .remove = ata_pci_remove_one,
4302 #ifdef CONFIG_PM_SLEEP
4303 .suspend = ata_pci_device_suspend,
4304 .resume = mv_pci_device_resume,
4305 #endif
4306
4307 };
4308
4309 /* move to PCI layer or libata core? */
4310 static int pci_go_64(struct pci_dev *pdev)
4311 {
4312 int rc;
4313
4314 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4315 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4316 if (rc) {
4317 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4318 if (rc) {
4319 dev_err(&pdev->dev,
4320 "64-bit DMA enable failed\n");
4321 return rc;
4322 }
4323 }
4324 } else {
4325 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4326 if (rc) {
4327 dev_err(&pdev->dev, "32-bit DMA enable failed\n");
4328 return rc;
4329 }
4330 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4331 if (rc) {
4332 dev_err(&pdev->dev,
4333 "32-bit consistent DMA enable failed\n");
4334 return rc;
4335 }
4336 }
4337
4338 return rc;
4339 }
4340
4341 /**
4342 * mv_print_info - Dump key info to kernel log for perusal.
4343 * @host: ATA host to print info about
4344 *
4345 * FIXME: complete this.
4346 *
4347 * LOCKING:
4348 * Inherited from caller.
4349 */
4350 static void mv_print_info(struct ata_host *host)
4351 {
4352 struct pci_dev *pdev = to_pci_dev(host->dev);
4353 struct mv_host_priv *hpriv = host->private_data;
4354 u8 scc;
4355 const char *scc_s, *gen;
4356
4357 /* Use this to determine the HW stepping of the chip so we know
4358 * what errata to workaround
4359 */
4360 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
4361 if (scc == 0)
4362 scc_s = "SCSI";
4363 else if (scc == 0x01)
4364 scc_s = "RAID";
4365 else
4366 scc_s = "?";
4367
4368 if (IS_GEN_I(hpriv))
4369 gen = "I";
4370 else if (IS_GEN_II(hpriv))
4371 gen = "II";
4372 else if (IS_GEN_IIE(hpriv))
4373 gen = "IIE";
4374 else
4375 gen = "?";
4376
4377 dev_info(&pdev->dev, "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4378 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
4379 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
4380 }
4381
4382 /**
4383 * mv_pci_init_one - handle a positive probe of a PCI Marvell host
4384 * @pdev: PCI device found
4385 * @ent: PCI device ID entry for the matched host
4386 *
4387 * LOCKING:
4388 * Inherited from caller.
4389 */
4390 static int mv_pci_init_one(struct pci_dev *pdev,
4391 const struct pci_device_id *ent)
4392 {
4393 unsigned int board_idx = (unsigned int)ent->driver_data;
4394 const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
4395 struct ata_host *host;
4396 struct mv_host_priv *hpriv;
4397 int n_ports, port, rc;
4398
4399 ata_print_version_once(&pdev->dev, DRV_VERSION);
4400
4401 /* allocate host */
4402 n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
4403
4404 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4405 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4406 if (!host || !hpriv)
4407 return -ENOMEM;
4408 host->private_data = hpriv;
4409 hpriv->n_ports = n_ports;
4410 hpriv->board_idx = board_idx;
4411
4412 /* acquire resources */
4413 rc = pcim_enable_device(pdev);
4414 if (rc)
4415 return rc;
4416
4417 rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
4418 if (rc == -EBUSY)
4419 pcim_pin_device(pdev);
4420 if (rc)
4421 return rc;
4422 host->iomap = pcim_iomap_table(pdev);
4423 hpriv->base = host->iomap[MV_PRIMARY_BAR];
4424
4425 rc = pci_go_64(pdev);
4426 if (rc)
4427 return rc;
4428
4429 rc = mv_create_dma_pools(hpriv, &pdev->dev);
4430 if (rc)
4431 return rc;
4432
4433 for (port = 0; port < host->n_ports; port++) {
4434 struct ata_port *ap = host->ports[port];
4435 void __iomem *port_mmio = mv_port_base(hpriv->base, port);
4436 unsigned int offset = port_mmio - hpriv->base;
4437
4438 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
4439 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
4440 }
4441
4442 /* initialize adapter */
4443 rc = mv_init_host(host);
4444 if (rc)
4445 return rc;
4446
4447 /* Enable message-switched interrupts, if requested */
4448 if (msi && pci_enable_msi(pdev) == 0)
4449 hpriv->hp_flags |= MV_HP_FLAG_MSI;
4450
4451 mv_dump_pci_cfg(pdev, 0x68);
4452 mv_print_info(host);
4453
4454 pci_set_master(pdev);
4455 pci_try_set_mwi(pdev);
4456 return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
4457 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
4458 }
4459
4460 #ifdef CONFIG_PM_SLEEP
4461 static int mv_pci_device_resume(struct pci_dev *pdev)
4462 {
4463 struct ata_host *host = pci_get_drvdata(pdev);
4464 int rc;
4465
4466 rc = ata_pci_device_do_resume(pdev);
4467 if (rc)
4468 return rc;
4469
4470 /* initialize adapter */
4471 rc = mv_init_host(host);
4472 if (rc)
4473 return rc;
4474
4475 ata_host_resume(host);
4476
4477 return 0;
4478 }
4479 #endif
4480 #endif
4481
4482 static int __init mv_init(void)
4483 {
4484 int rc = -ENODEV;
4485 #ifdef CONFIG_PCI
4486 rc = pci_register_driver(&mv_pci_driver);
4487 if (rc < 0)
4488 return rc;
4489 #endif
4490 rc = platform_driver_register(&mv_platform_driver);
4491
4492 #ifdef CONFIG_PCI
4493 if (rc < 0)
4494 pci_unregister_driver(&mv_pci_driver);
4495 #endif
4496 return rc;
4497 }
4498
4499 static void __exit mv_exit(void)
4500 {
4501 #ifdef CONFIG_PCI
4502 pci_unregister_driver(&mv_pci_driver);
4503 #endif
4504 platform_driver_unregister(&mv_platform_driver);
4505 }
4506
4507 MODULE_AUTHOR("Brett Russ");
4508 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4509 MODULE_LICENSE("GPL");
4510 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
4511 MODULE_VERSION(DRV_VERSION);
4512 MODULE_ALIAS("platform:" DRV_NAME);
4513
4514 module_init(mv_init);
4515 module_exit(mv_exit);
This page took 0.205511 seconds and 5 git commands to generate.