sata_sil24: separate out sil24_do_softreset()
[deliverable/linux.git] / drivers / ata / sata_mv.c
1 /*
2 * sata_mv.c - Marvell SATA support
3 *
4 * Copyright 2005: EMC Corporation, all rights reserved.
5 * Copyright 2005 Red Hat, Inc. All rights reserved.
6 *
7 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; version 2 of the License.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 */
23
24 /*
25 sata_mv TODO list:
26
27 1) Needs a full errata audit for all chipsets. I implemented most
28 of the errata workarounds found in the Marvell vendor driver, but
29 I distinctly remember a couple workarounds (one related to PCI-X)
30 are still needed.
31
32 4) Add NCQ support (easy to intermediate, once new-EH support appears)
33
34 5) Investigate problems with PCI Message Signalled Interrupts (MSI).
35
36 6) Add port multiplier support (intermediate)
37
38 8) Develop a low-power-consumption strategy, and implement it.
39
40 9) [Experiment, low priority] See if ATAPI can be supported using
41 "unknown FIS" or "vendor-specific FIS" support, or something creative
42 like that.
43
44 10) [Experiment, low priority] Investigate interrupt coalescing.
45 Quite often, especially with PCI Message Signalled Interrupts (MSI),
46 the overhead reduced by interrupt mitigation is quite often not
47 worth the latency cost.
48
49 11) [Experiment, Marvell value added] Is it possible to use target
50 mode to cross-connect two Linux boxes with Marvell cards? If so,
51 creating LibATA target mode support would be very interesting.
52
53 Target mode, for those without docs, is the ability to directly
54 connect two SATA controllers.
55
56 13) Verify that 7042 is fully supported. I only have a 6042.
57
58 */
59
60
61 #include <linux/kernel.h>
62 #include <linux/module.h>
63 #include <linux/pci.h>
64 #include <linux/init.h>
65 #include <linux/blkdev.h>
66 #include <linux/delay.h>
67 #include <linux/interrupt.h>
68 #include <linux/dma-mapping.h>
69 #include <linux/device.h>
70 #include <scsi/scsi_host.h>
71 #include <scsi/scsi_cmnd.h>
72 #include <linux/libata.h>
73
74 #define DRV_NAME "sata_mv"
75 #define DRV_VERSION "0.81"
76
77 enum {
78 /* BAR's are enumerated in terms of pci_resource_start() terms */
79 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
80 MV_IO_BAR = 2, /* offset 0x18: IO space */
81 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
82
83 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
84 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
85
86 MV_PCI_REG_BASE = 0,
87 MV_IRQ_COAL_REG_BASE = 0x18000, /* 6xxx part only */
88 MV_IRQ_COAL_CAUSE = (MV_IRQ_COAL_REG_BASE + 0x08),
89 MV_IRQ_COAL_CAUSE_LO = (MV_IRQ_COAL_REG_BASE + 0x88),
90 MV_IRQ_COAL_CAUSE_HI = (MV_IRQ_COAL_REG_BASE + 0x8c),
91 MV_IRQ_COAL_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xcc),
92 MV_IRQ_COAL_TIME_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xd0),
93
94 MV_SATAHC0_REG_BASE = 0x20000,
95 MV_FLASH_CTL = 0x1046c,
96 MV_GPIO_PORT_CTL = 0x104f0,
97 MV_RESET_CFG = 0x180d8,
98
99 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
100 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
101 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
102 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
103
104 MV_MAX_Q_DEPTH = 32,
105 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
106
107 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
108 * CRPB needs alignment on a 256B boundary. Size == 256B
109 * SG count of 176 leads to MV_PORT_PRIV_DMA_SZ == 4KB
110 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
111 */
112 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
113 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
114 MV_MAX_SG_CT = 176,
115 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
116 MV_PORT_PRIV_DMA_SZ = (MV_CRQB_Q_SZ + MV_CRPB_Q_SZ + MV_SG_TBL_SZ),
117
118 MV_PORTS_PER_HC = 4,
119 /* == (port / MV_PORTS_PER_HC) to determine HC from 0-7 port */
120 MV_PORT_HC_SHIFT = 2,
121 /* == (port % MV_PORTS_PER_HC) to determine hard port from 0-7 port */
122 MV_PORT_MASK = 3,
123
124 /* Host Flags */
125 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
126 MV_FLAG_IRQ_COALESCE = (1 << 29), /* IRQ coalescing capability */
127 MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
128 ATA_FLAG_MMIO | ATA_FLAG_NO_ATAPI |
129 ATA_FLAG_PIO_POLLING,
130 MV_6XXX_FLAGS = MV_FLAG_IRQ_COALESCE,
131
132 CRQB_FLAG_READ = (1 << 0),
133 CRQB_TAG_SHIFT = 1,
134 CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */
135 CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */
136 CRQB_CMD_ADDR_SHIFT = 8,
137 CRQB_CMD_CS = (0x2 << 11),
138 CRQB_CMD_LAST = (1 << 15),
139
140 CRPB_FLAG_STATUS_SHIFT = 8,
141 CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */
142 CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */
143
144 EPRD_FLAG_END_OF_TBL = (1 << 31),
145
146 /* PCI interface registers */
147
148 PCI_COMMAND_OFS = 0xc00,
149
150 PCI_MAIN_CMD_STS_OFS = 0xd30,
151 STOP_PCI_MASTER = (1 << 2),
152 PCI_MASTER_EMPTY = (1 << 3),
153 GLOB_SFT_RST = (1 << 4),
154
155 MV_PCI_MODE = 0xd00,
156 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
157 MV_PCI_DISC_TIMER = 0xd04,
158 MV_PCI_MSI_TRIGGER = 0xc38,
159 MV_PCI_SERR_MASK = 0xc28,
160 MV_PCI_XBAR_TMOUT = 0x1d04,
161 MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
162 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
163 MV_PCI_ERR_ATTRIBUTE = 0x1d48,
164 MV_PCI_ERR_COMMAND = 0x1d50,
165
166 PCI_IRQ_CAUSE_OFS = 0x1d58,
167 PCI_IRQ_MASK_OFS = 0x1d5c,
168 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
169
170 HC_MAIN_IRQ_CAUSE_OFS = 0x1d60,
171 HC_MAIN_IRQ_MASK_OFS = 0x1d64,
172 PORT0_ERR = (1 << 0), /* shift by port # */
173 PORT0_DONE = (1 << 1), /* shift by port # */
174 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
175 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
176 PCI_ERR = (1 << 18),
177 TRAN_LO_DONE = (1 << 19), /* 6xxx: IRQ coalescing */
178 TRAN_HI_DONE = (1 << 20), /* 6xxx: IRQ coalescing */
179 PORTS_0_3_COAL_DONE = (1 << 8),
180 PORTS_4_7_COAL_DONE = (1 << 17),
181 PORTS_0_7_COAL_DONE = (1 << 21), /* 6xxx: IRQ coalescing */
182 GPIO_INT = (1 << 22),
183 SELF_INT = (1 << 23),
184 TWSI_INT = (1 << 24),
185 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
186 HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */
187 HC_MAIN_MASKED_IRQS = (TRAN_LO_DONE | TRAN_HI_DONE |
188 PORTS_0_7_COAL_DONE | GPIO_INT | TWSI_INT |
189 HC_MAIN_RSVD),
190 HC_MAIN_MASKED_IRQS_5 = (PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
191 HC_MAIN_RSVD_5),
192
193 /* SATAHC registers */
194 HC_CFG_OFS = 0,
195
196 HC_IRQ_CAUSE_OFS = 0x14,
197 CRPB_DMA_DONE = (1 << 0), /* shift by port # */
198 HC_IRQ_COAL = (1 << 4), /* IRQ coalescing */
199 DEV_IRQ = (1 << 8), /* shift by port # */
200
201 /* Shadow block registers */
202 SHD_BLK_OFS = 0x100,
203 SHD_CTL_AST_OFS = 0x20, /* ofs from SHD_BLK_OFS */
204
205 /* SATA registers */
206 SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */
207 SATA_ACTIVE_OFS = 0x350,
208 PHY_MODE3 = 0x310,
209 PHY_MODE4 = 0x314,
210 PHY_MODE2 = 0x330,
211 MV5_PHY_MODE = 0x74,
212 MV5_LT_MODE = 0x30,
213 MV5_PHY_CTL = 0x0C,
214 SATA_INTERFACE_CTL = 0x050,
215
216 MV_M2_PREAMP_MASK = 0x7e0,
217
218 /* Port registers */
219 EDMA_CFG_OFS = 0,
220 EDMA_CFG_Q_DEPTH = 0, /* queueing disabled */
221 EDMA_CFG_NCQ = (1 << 5),
222 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
223 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
224 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
225
226 EDMA_ERR_IRQ_CAUSE_OFS = 0x8,
227 EDMA_ERR_IRQ_MASK_OFS = 0xc,
228 EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */
229 EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */
230 EDMA_ERR_DEV = (1 << 2), /* device error */
231 EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */
232 EDMA_ERR_DEV_CON = (1 << 4), /* device connected */
233 EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */
234 EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */
235 EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */
236 EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */
237 EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */
238 EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */
239 EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */
240 EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */
241 EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */
242 EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */
243 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15),
244 EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */
245 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */
246 EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */
247 EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */
248 EDMA_ERR_OVERRUN_5 = (1 << 5),
249 EDMA_ERR_UNDERRUN_5 = (1 << 6),
250 EDMA_EH_FREEZE = EDMA_ERR_D_PAR |
251 EDMA_ERR_PRD_PAR |
252 EDMA_ERR_DEV_DCON |
253 EDMA_ERR_DEV_CON |
254 EDMA_ERR_SERR |
255 EDMA_ERR_SELF_DIS |
256 EDMA_ERR_CRQB_PAR |
257 EDMA_ERR_CRPB_PAR |
258 EDMA_ERR_INTRL_PAR |
259 EDMA_ERR_IORDY |
260 EDMA_ERR_LNK_CTRL_RX_2 |
261 EDMA_ERR_LNK_DATA_RX |
262 EDMA_ERR_LNK_DATA_TX |
263 EDMA_ERR_TRANS_PROTO,
264 EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR |
265 EDMA_ERR_PRD_PAR |
266 EDMA_ERR_DEV_DCON |
267 EDMA_ERR_DEV_CON |
268 EDMA_ERR_OVERRUN_5 |
269 EDMA_ERR_UNDERRUN_5 |
270 EDMA_ERR_SELF_DIS_5 |
271 EDMA_ERR_CRQB_PAR |
272 EDMA_ERR_CRPB_PAR |
273 EDMA_ERR_INTRL_PAR |
274 EDMA_ERR_IORDY,
275
276 EDMA_REQ_Q_BASE_HI_OFS = 0x10,
277 EDMA_REQ_Q_IN_PTR_OFS = 0x14, /* also contains BASE_LO */
278
279 EDMA_REQ_Q_OUT_PTR_OFS = 0x18,
280 EDMA_REQ_Q_PTR_SHIFT = 5,
281
282 EDMA_RSP_Q_BASE_HI_OFS = 0x1c,
283 EDMA_RSP_Q_IN_PTR_OFS = 0x20,
284 EDMA_RSP_Q_OUT_PTR_OFS = 0x24, /* also contains BASE_LO */
285 EDMA_RSP_Q_PTR_SHIFT = 3,
286
287 EDMA_CMD_OFS = 0x28, /* EDMA command register */
288 EDMA_EN = (1 << 0), /* enable EDMA */
289 EDMA_DS = (1 << 1), /* disable EDMA; self-negated */
290 ATA_RST = (1 << 2), /* reset trans/link/phy */
291
292 EDMA_IORDY_TMOUT = 0x34,
293 EDMA_ARB_CFG = 0x38,
294
295 /* Host private flags (hp_flags) */
296 MV_HP_FLAG_MSI = (1 << 0),
297 MV_HP_ERRATA_50XXB0 = (1 << 1),
298 MV_HP_ERRATA_50XXB2 = (1 << 2),
299 MV_HP_ERRATA_60X1B2 = (1 << 3),
300 MV_HP_ERRATA_60X1C0 = (1 << 4),
301 MV_HP_ERRATA_XX42A0 = (1 << 5),
302 MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */
303 MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */
304 MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */
305
306 /* Port private flags (pp_flags) */
307 MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */
308 MV_PP_FLAG_HAD_A_RESET = (1 << 2), /* 1st hard reset complete? */
309 };
310
311 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
312 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
313 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
314
315 enum {
316 MV_DMA_BOUNDARY = 0xffffffffU,
317
318 /* mask of register bits containing lower 32 bits
319 * of EDMA request queue DMA address
320 */
321 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
322
323 /* ditto, for response queue */
324 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
325 };
326
327 enum chip_type {
328 chip_504x,
329 chip_508x,
330 chip_5080,
331 chip_604x,
332 chip_608x,
333 chip_6042,
334 chip_7042,
335 };
336
337 /* Command ReQuest Block: 32B */
338 struct mv_crqb {
339 __le32 sg_addr;
340 __le32 sg_addr_hi;
341 __le16 ctrl_flags;
342 __le16 ata_cmd[11];
343 };
344
345 struct mv_crqb_iie {
346 __le32 addr;
347 __le32 addr_hi;
348 __le32 flags;
349 __le32 len;
350 __le32 ata_cmd[4];
351 };
352
353 /* Command ResPonse Block: 8B */
354 struct mv_crpb {
355 __le16 id;
356 __le16 flags;
357 __le32 tmstmp;
358 };
359
360 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
361 struct mv_sg {
362 __le32 addr;
363 __le32 flags_size;
364 __le32 addr_hi;
365 __le32 reserved;
366 };
367
368 struct mv_port_priv {
369 struct mv_crqb *crqb;
370 dma_addr_t crqb_dma;
371 struct mv_crpb *crpb;
372 dma_addr_t crpb_dma;
373 struct mv_sg *sg_tbl;
374 dma_addr_t sg_tbl_dma;
375
376 unsigned int req_idx;
377 unsigned int resp_idx;
378
379 u32 pp_flags;
380 };
381
382 struct mv_port_signal {
383 u32 amps;
384 u32 pre;
385 };
386
387 struct mv_host_priv;
388 struct mv_hw_ops {
389 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
390 unsigned int port);
391 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
392 void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
393 void __iomem *mmio);
394 int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
395 unsigned int n_hc);
396 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
397 void (*reset_bus)(struct pci_dev *pdev, void __iomem *mmio);
398 };
399
400 struct mv_host_priv {
401 u32 hp_flags;
402 struct mv_port_signal signal[8];
403 const struct mv_hw_ops *ops;
404 };
405
406 static void mv_irq_clear(struct ata_port *ap);
407 static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in);
408 static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
409 static u32 mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in);
410 static void mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
411 static int mv_port_start(struct ata_port *ap);
412 static void mv_port_stop(struct ata_port *ap);
413 static void mv_qc_prep(struct ata_queued_cmd *qc);
414 static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
415 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
416 static void mv_error_handler(struct ata_port *ap);
417 static void mv_post_int_cmd(struct ata_queued_cmd *qc);
418 static void mv_eh_freeze(struct ata_port *ap);
419 static void mv_eh_thaw(struct ata_port *ap);
420 static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent);
421
422 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
423 unsigned int port);
424 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
425 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
426 void __iomem *mmio);
427 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
428 unsigned int n_hc);
429 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
430 static void mv5_reset_bus(struct pci_dev *pdev, void __iomem *mmio);
431
432 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
433 unsigned int port);
434 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
435 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
436 void __iomem *mmio);
437 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
438 unsigned int n_hc);
439 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
440 static void mv_reset_pci_bus(struct pci_dev *pdev, void __iomem *mmio);
441 static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio,
442 unsigned int port_no);
443
444 static struct scsi_host_template mv5_sht = {
445 .module = THIS_MODULE,
446 .name = DRV_NAME,
447 .ioctl = ata_scsi_ioctl,
448 .queuecommand = ata_scsi_queuecmd,
449 .can_queue = ATA_DEF_QUEUE,
450 .this_id = ATA_SHT_THIS_ID,
451 .sg_tablesize = MV_MAX_SG_CT,
452 .cmd_per_lun = ATA_SHT_CMD_PER_LUN,
453 .emulated = ATA_SHT_EMULATED,
454 .use_clustering = 1,
455 .proc_name = DRV_NAME,
456 .dma_boundary = MV_DMA_BOUNDARY,
457 .slave_configure = ata_scsi_slave_config,
458 .slave_destroy = ata_scsi_slave_destroy,
459 .bios_param = ata_std_bios_param,
460 };
461
462 static struct scsi_host_template mv6_sht = {
463 .module = THIS_MODULE,
464 .name = DRV_NAME,
465 .ioctl = ata_scsi_ioctl,
466 .queuecommand = ata_scsi_queuecmd,
467 .can_queue = ATA_DEF_QUEUE,
468 .this_id = ATA_SHT_THIS_ID,
469 .sg_tablesize = MV_MAX_SG_CT,
470 .cmd_per_lun = ATA_SHT_CMD_PER_LUN,
471 .emulated = ATA_SHT_EMULATED,
472 .use_clustering = 1,
473 .proc_name = DRV_NAME,
474 .dma_boundary = MV_DMA_BOUNDARY,
475 .slave_configure = ata_scsi_slave_config,
476 .slave_destroy = ata_scsi_slave_destroy,
477 .bios_param = ata_std_bios_param,
478 };
479
480 static const struct ata_port_operations mv5_ops = {
481 .port_disable = ata_port_disable,
482
483 .tf_load = ata_tf_load,
484 .tf_read = ata_tf_read,
485 .check_status = ata_check_status,
486 .exec_command = ata_exec_command,
487 .dev_select = ata_std_dev_select,
488
489 .cable_detect = ata_cable_sata,
490
491 .qc_prep = mv_qc_prep,
492 .qc_issue = mv_qc_issue,
493 .data_xfer = ata_data_xfer,
494
495 .irq_clear = mv_irq_clear,
496 .irq_on = ata_irq_on,
497 .irq_ack = ata_irq_ack,
498
499 .error_handler = mv_error_handler,
500 .post_internal_cmd = mv_post_int_cmd,
501 .freeze = mv_eh_freeze,
502 .thaw = mv_eh_thaw,
503
504 .scr_read = mv5_scr_read,
505 .scr_write = mv5_scr_write,
506
507 .port_start = mv_port_start,
508 .port_stop = mv_port_stop,
509 };
510
511 static const struct ata_port_operations mv6_ops = {
512 .port_disable = ata_port_disable,
513
514 .tf_load = ata_tf_load,
515 .tf_read = ata_tf_read,
516 .check_status = ata_check_status,
517 .exec_command = ata_exec_command,
518 .dev_select = ata_std_dev_select,
519
520 .cable_detect = ata_cable_sata,
521
522 .qc_prep = mv_qc_prep,
523 .qc_issue = mv_qc_issue,
524 .data_xfer = ata_data_xfer,
525
526 .irq_clear = mv_irq_clear,
527 .irq_on = ata_irq_on,
528 .irq_ack = ata_irq_ack,
529
530 .error_handler = mv_error_handler,
531 .post_internal_cmd = mv_post_int_cmd,
532 .freeze = mv_eh_freeze,
533 .thaw = mv_eh_thaw,
534
535 .scr_read = mv_scr_read,
536 .scr_write = mv_scr_write,
537
538 .port_start = mv_port_start,
539 .port_stop = mv_port_stop,
540 };
541
542 static const struct ata_port_operations mv_iie_ops = {
543 .port_disable = ata_port_disable,
544
545 .tf_load = ata_tf_load,
546 .tf_read = ata_tf_read,
547 .check_status = ata_check_status,
548 .exec_command = ata_exec_command,
549 .dev_select = ata_std_dev_select,
550
551 .cable_detect = ata_cable_sata,
552
553 .qc_prep = mv_qc_prep_iie,
554 .qc_issue = mv_qc_issue,
555 .data_xfer = ata_data_xfer,
556
557 .irq_clear = mv_irq_clear,
558 .irq_on = ata_irq_on,
559 .irq_ack = ata_irq_ack,
560
561 .error_handler = mv_error_handler,
562 .post_internal_cmd = mv_post_int_cmd,
563 .freeze = mv_eh_freeze,
564 .thaw = mv_eh_thaw,
565
566 .scr_read = mv_scr_read,
567 .scr_write = mv_scr_write,
568
569 .port_start = mv_port_start,
570 .port_stop = mv_port_stop,
571 };
572
573 static const struct ata_port_info mv_port_info[] = {
574 { /* chip_504x */
575 .flags = MV_COMMON_FLAGS,
576 .pio_mask = 0x1f, /* pio0-4 */
577 .udma_mask = ATA_UDMA6,
578 .port_ops = &mv5_ops,
579 },
580 { /* chip_508x */
581 .flags = MV_COMMON_FLAGS | MV_FLAG_DUAL_HC,
582 .pio_mask = 0x1f, /* pio0-4 */
583 .udma_mask = ATA_UDMA6,
584 .port_ops = &mv5_ops,
585 },
586 { /* chip_5080 */
587 .flags = MV_COMMON_FLAGS | MV_FLAG_DUAL_HC,
588 .pio_mask = 0x1f, /* pio0-4 */
589 .udma_mask = ATA_UDMA6,
590 .port_ops = &mv5_ops,
591 },
592 { /* chip_604x */
593 .flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS,
594 .pio_mask = 0x1f, /* pio0-4 */
595 .udma_mask = ATA_UDMA6,
596 .port_ops = &mv6_ops,
597 },
598 { /* chip_608x */
599 .flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
600 MV_FLAG_DUAL_HC,
601 .pio_mask = 0x1f, /* pio0-4 */
602 .udma_mask = ATA_UDMA6,
603 .port_ops = &mv6_ops,
604 },
605 { /* chip_6042 */
606 .flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS,
607 .pio_mask = 0x1f, /* pio0-4 */
608 .udma_mask = ATA_UDMA6,
609 .port_ops = &mv_iie_ops,
610 },
611 { /* chip_7042 */
612 .flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS,
613 .pio_mask = 0x1f, /* pio0-4 */
614 .udma_mask = ATA_UDMA6,
615 .port_ops = &mv_iie_ops,
616 },
617 };
618
619 static const struct pci_device_id mv_pci_tbl[] = {
620 { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
621 { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
622 { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
623 { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
624
625 { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
626 { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
627 { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
628 { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
629 { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
630
631 { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
632
633 /* Adaptec 1430SA */
634 { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
635
636 { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
637
638 /* add Marvell 7042 support */
639 { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
640
641 { } /* terminate list */
642 };
643
644 static struct pci_driver mv_pci_driver = {
645 .name = DRV_NAME,
646 .id_table = mv_pci_tbl,
647 .probe = mv_init_one,
648 .remove = ata_pci_remove_one,
649 };
650
651 static const struct mv_hw_ops mv5xxx_ops = {
652 .phy_errata = mv5_phy_errata,
653 .enable_leds = mv5_enable_leds,
654 .read_preamp = mv5_read_preamp,
655 .reset_hc = mv5_reset_hc,
656 .reset_flash = mv5_reset_flash,
657 .reset_bus = mv5_reset_bus,
658 };
659
660 static const struct mv_hw_ops mv6xxx_ops = {
661 .phy_errata = mv6_phy_errata,
662 .enable_leds = mv6_enable_leds,
663 .read_preamp = mv6_read_preamp,
664 .reset_hc = mv6_reset_hc,
665 .reset_flash = mv6_reset_flash,
666 .reset_bus = mv_reset_pci_bus,
667 };
668
669 /*
670 * module options
671 */
672 static int msi; /* Use PCI msi; either zero (off, default) or non-zero */
673
674
675 /* move to PCI layer or libata core? */
676 static int pci_go_64(struct pci_dev *pdev)
677 {
678 int rc;
679
680 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
681 rc = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
682 if (rc) {
683 rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
684 if (rc) {
685 dev_printk(KERN_ERR, &pdev->dev,
686 "64-bit DMA enable failed\n");
687 return rc;
688 }
689 }
690 } else {
691 rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
692 if (rc) {
693 dev_printk(KERN_ERR, &pdev->dev,
694 "32-bit DMA enable failed\n");
695 return rc;
696 }
697 rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
698 if (rc) {
699 dev_printk(KERN_ERR, &pdev->dev,
700 "32-bit consistent DMA enable failed\n");
701 return rc;
702 }
703 }
704
705 return rc;
706 }
707
708 /*
709 * Functions
710 */
711
712 static inline void writelfl(unsigned long data, void __iomem *addr)
713 {
714 writel(data, addr);
715 (void) readl(addr); /* flush to avoid PCI posted write */
716 }
717
718 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
719 {
720 return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
721 }
722
723 static inline unsigned int mv_hc_from_port(unsigned int port)
724 {
725 return port >> MV_PORT_HC_SHIFT;
726 }
727
728 static inline unsigned int mv_hardport_from_port(unsigned int port)
729 {
730 return port & MV_PORT_MASK;
731 }
732
733 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
734 unsigned int port)
735 {
736 return mv_hc_base(base, mv_hc_from_port(port));
737 }
738
739 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
740 {
741 return mv_hc_base_from_port(base, port) +
742 MV_SATAHC_ARBTR_REG_SZ +
743 (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
744 }
745
746 static inline void __iomem *mv_ap_base(struct ata_port *ap)
747 {
748 return mv_port_base(ap->host->iomap[MV_PRIMARY_BAR], ap->port_no);
749 }
750
751 static inline int mv_get_hc_count(unsigned long port_flags)
752 {
753 return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
754 }
755
756 static void mv_irq_clear(struct ata_port *ap)
757 {
758 }
759
760 static void mv_set_edma_ptrs(void __iomem *port_mmio,
761 struct mv_host_priv *hpriv,
762 struct mv_port_priv *pp)
763 {
764 u32 index;
765
766 /*
767 * initialize request queue
768 */
769 index = (pp->req_idx & MV_MAX_Q_DEPTH_MASK) << EDMA_REQ_Q_PTR_SHIFT;
770
771 WARN_ON(pp->crqb_dma & 0x3ff);
772 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
773 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
774 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
775
776 if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
777 writelfl((pp->crqb_dma & 0xffffffff) | index,
778 port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
779 else
780 writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
781
782 /*
783 * initialize response queue
784 */
785 index = (pp->resp_idx & MV_MAX_Q_DEPTH_MASK) << EDMA_RSP_Q_PTR_SHIFT;
786
787 WARN_ON(pp->crpb_dma & 0xff);
788 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
789
790 if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
791 writelfl((pp->crpb_dma & 0xffffffff) | index,
792 port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
793 else
794 writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
795
796 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
797 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
798 }
799
800 /**
801 * mv_start_dma - Enable eDMA engine
802 * @base: port base address
803 * @pp: port private data
804 *
805 * Verify the local cache of the eDMA state is accurate with a
806 * WARN_ON.
807 *
808 * LOCKING:
809 * Inherited from caller.
810 */
811 static void mv_start_dma(void __iomem *base, struct mv_host_priv *hpriv,
812 struct mv_port_priv *pp)
813 {
814 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
815 /* clear EDMA event indicators, if any */
816 writelfl(0, base + EDMA_ERR_IRQ_CAUSE_OFS);
817
818 mv_set_edma_ptrs(base, hpriv, pp);
819
820 writelfl(EDMA_EN, base + EDMA_CMD_OFS);
821 pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
822 }
823 WARN_ON(!(EDMA_EN & readl(base + EDMA_CMD_OFS)));
824 }
825
826 /**
827 * __mv_stop_dma - Disable eDMA engine
828 * @ap: ATA channel to manipulate
829 *
830 * Verify the local cache of the eDMA state is accurate with a
831 * WARN_ON.
832 *
833 * LOCKING:
834 * Inherited from caller.
835 */
836 static int __mv_stop_dma(struct ata_port *ap)
837 {
838 void __iomem *port_mmio = mv_ap_base(ap);
839 struct mv_port_priv *pp = ap->private_data;
840 u32 reg;
841 int i, err = 0;
842
843 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
844 /* Disable EDMA if active. The disable bit auto clears.
845 */
846 writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
847 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
848 } else {
849 WARN_ON(EDMA_EN & readl(port_mmio + EDMA_CMD_OFS));
850 }
851
852 /* now properly wait for the eDMA to stop */
853 for (i = 1000; i > 0; i--) {
854 reg = readl(port_mmio + EDMA_CMD_OFS);
855 if (!(reg & EDMA_EN))
856 break;
857
858 udelay(100);
859 }
860
861 if (reg & EDMA_EN) {
862 ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
863 err = -EIO;
864 }
865
866 return err;
867 }
868
869 static int mv_stop_dma(struct ata_port *ap)
870 {
871 unsigned long flags;
872 int rc;
873
874 spin_lock_irqsave(&ap->host->lock, flags);
875 rc = __mv_stop_dma(ap);
876 spin_unlock_irqrestore(&ap->host->lock, flags);
877
878 return rc;
879 }
880
881 #ifdef ATA_DEBUG
882 static void mv_dump_mem(void __iomem *start, unsigned bytes)
883 {
884 int b, w;
885 for (b = 0; b < bytes; ) {
886 DPRINTK("%p: ", start + b);
887 for (w = 0; b < bytes && w < 4; w++) {
888 printk("%08x ",readl(start + b));
889 b += sizeof(u32);
890 }
891 printk("\n");
892 }
893 }
894 #endif
895
896 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
897 {
898 #ifdef ATA_DEBUG
899 int b, w;
900 u32 dw;
901 for (b = 0; b < bytes; ) {
902 DPRINTK("%02x: ", b);
903 for (w = 0; b < bytes && w < 4; w++) {
904 (void) pci_read_config_dword(pdev,b,&dw);
905 printk("%08x ",dw);
906 b += sizeof(u32);
907 }
908 printk("\n");
909 }
910 #endif
911 }
912 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
913 struct pci_dev *pdev)
914 {
915 #ifdef ATA_DEBUG
916 void __iomem *hc_base = mv_hc_base(mmio_base,
917 port >> MV_PORT_HC_SHIFT);
918 void __iomem *port_base;
919 int start_port, num_ports, p, start_hc, num_hcs, hc;
920
921 if (0 > port) {
922 start_hc = start_port = 0;
923 num_ports = 8; /* shld be benign for 4 port devs */
924 num_hcs = 2;
925 } else {
926 start_hc = port >> MV_PORT_HC_SHIFT;
927 start_port = port;
928 num_ports = num_hcs = 1;
929 }
930 DPRINTK("All registers for port(s) %u-%u:\n", start_port,
931 num_ports > 1 ? num_ports - 1 : start_port);
932
933 if (NULL != pdev) {
934 DPRINTK("PCI config space regs:\n");
935 mv_dump_pci_cfg(pdev, 0x68);
936 }
937 DPRINTK("PCI regs:\n");
938 mv_dump_mem(mmio_base+0xc00, 0x3c);
939 mv_dump_mem(mmio_base+0xd00, 0x34);
940 mv_dump_mem(mmio_base+0xf00, 0x4);
941 mv_dump_mem(mmio_base+0x1d00, 0x6c);
942 for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
943 hc_base = mv_hc_base(mmio_base, hc);
944 DPRINTK("HC regs (HC %i):\n", hc);
945 mv_dump_mem(hc_base, 0x1c);
946 }
947 for (p = start_port; p < start_port + num_ports; p++) {
948 port_base = mv_port_base(mmio_base, p);
949 DPRINTK("EDMA regs (port %i):\n",p);
950 mv_dump_mem(port_base, 0x54);
951 DPRINTK("SATA regs (port %i):\n",p);
952 mv_dump_mem(port_base+0x300, 0x60);
953 }
954 #endif
955 }
956
957 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
958 {
959 unsigned int ofs;
960
961 switch (sc_reg_in) {
962 case SCR_STATUS:
963 case SCR_CONTROL:
964 case SCR_ERROR:
965 ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
966 break;
967 case SCR_ACTIVE:
968 ofs = SATA_ACTIVE_OFS; /* active is not with the others */
969 break;
970 default:
971 ofs = 0xffffffffU;
972 break;
973 }
974 return ofs;
975 }
976
977 static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in)
978 {
979 unsigned int ofs = mv_scr_offset(sc_reg_in);
980
981 if (ofs != 0xffffffffU)
982 return readl(mv_ap_base(ap) + ofs);
983 else
984 return (u32) ofs;
985 }
986
987 static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
988 {
989 unsigned int ofs = mv_scr_offset(sc_reg_in);
990
991 if (ofs != 0xffffffffU)
992 writelfl(val, mv_ap_base(ap) + ofs);
993 }
994
995 static void mv_edma_cfg(struct ata_port *ap, struct mv_host_priv *hpriv,
996 void __iomem *port_mmio)
997 {
998 u32 cfg = readl(port_mmio + EDMA_CFG_OFS);
999
1000 /* set up non-NCQ EDMA configuration */
1001 cfg &= ~(1 << 9); /* disable eQue */
1002
1003 if (IS_GEN_I(hpriv)) {
1004 cfg &= ~0x1f; /* clear queue depth */
1005 cfg |= (1 << 8); /* enab config burst size mask */
1006 }
1007
1008 else if (IS_GEN_II(hpriv)) {
1009 cfg &= ~0x1f; /* clear queue depth */
1010 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1011 cfg &= ~(EDMA_CFG_NCQ | EDMA_CFG_NCQ_GO_ON_ERR); /* clear NCQ */
1012 }
1013
1014 else if (IS_GEN_IIE(hpriv)) {
1015 cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */
1016 cfg |= (1 << 22); /* enab 4-entry host queue cache */
1017 cfg &= ~(1 << 19); /* dis 128-entry queue (for now?) */
1018 cfg |= (1 << 18); /* enab early completion */
1019 cfg |= (1 << 17); /* enab cut-through (dis stor&forwrd) */
1020 cfg &= ~(1 << 16); /* dis FIS-based switching (for now) */
1021 cfg &= ~(EDMA_CFG_NCQ); /* clear NCQ */
1022 }
1023
1024 writelfl(cfg, port_mmio + EDMA_CFG_OFS);
1025 }
1026
1027 /**
1028 * mv_port_start - Port specific init/start routine.
1029 * @ap: ATA channel to manipulate
1030 *
1031 * Allocate and point to DMA memory, init port private memory,
1032 * zero indices.
1033 *
1034 * LOCKING:
1035 * Inherited from caller.
1036 */
1037 static int mv_port_start(struct ata_port *ap)
1038 {
1039 struct device *dev = ap->host->dev;
1040 struct mv_host_priv *hpriv = ap->host->private_data;
1041 struct mv_port_priv *pp;
1042 void __iomem *port_mmio = mv_ap_base(ap);
1043 void *mem;
1044 dma_addr_t mem_dma;
1045 unsigned long flags;
1046 int rc;
1047
1048 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1049 if (!pp)
1050 return -ENOMEM;
1051
1052 mem = dmam_alloc_coherent(dev, MV_PORT_PRIV_DMA_SZ, &mem_dma,
1053 GFP_KERNEL);
1054 if (!mem)
1055 return -ENOMEM;
1056 memset(mem, 0, MV_PORT_PRIV_DMA_SZ);
1057
1058 rc = ata_pad_alloc(ap, dev);
1059 if (rc)
1060 return rc;
1061
1062 /* First item in chunk of DMA memory:
1063 * 32-slot command request table (CRQB), 32 bytes each in size
1064 */
1065 pp->crqb = mem;
1066 pp->crqb_dma = mem_dma;
1067 mem += MV_CRQB_Q_SZ;
1068 mem_dma += MV_CRQB_Q_SZ;
1069
1070 /* Second item:
1071 * 32-slot command response table (CRPB), 8 bytes each in size
1072 */
1073 pp->crpb = mem;
1074 pp->crpb_dma = mem_dma;
1075 mem += MV_CRPB_Q_SZ;
1076 mem_dma += MV_CRPB_Q_SZ;
1077
1078 /* Third item:
1079 * Table of scatter-gather descriptors (ePRD), 16 bytes each
1080 */
1081 pp->sg_tbl = mem;
1082 pp->sg_tbl_dma = mem_dma;
1083
1084 spin_lock_irqsave(&ap->host->lock, flags);
1085
1086 mv_edma_cfg(ap, hpriv, port_mmio);
1087
1088 mv_set_edma_ptrs(port_mmio, hpriv, pp);
1089
1090 spin_unlock_irqrestore(&ap->host->lock, flags);
1091
1092 /* Don't turn on EDMA here...do it before DMA commands only. Else
1093 * we'll be unable to send non-data, PIO, etc due to restricted access
1094 * to shadow regs.
1095 */
1096 ap->private_data = pp;
1097 return 0;
1098 }
1099
1100 /**
1101 * mv_port_stop - Port specific cleanup/stop routine.
1102 * @ap: ATA channel to manipulate
1103 *
1104 * Stop DMA, cleanup port memory.
1105 *
1106 * LOCKING:
1107 * This routine uses the host lock to protect the DMA stop.
1108 */
1109 static void mv_port_stop(struct ata_port *ap)
1110 {
1111 mv_stop_dma(ap);
1112 }
1113
1114 /**
1115 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1116 * @qc: queued command whose SG list to source from
1117 *
1118 * Populate the SG list and mark the last entry.
1119 *
1120 * LOCKING:
1121 * Inherited from caller.
1122 */
1123 static unsigned int mv_fill_sg(struct ata_queued_cmd *qc)
1124 {
1125 struct mv_port_priv *pp = qc->ap->private_data;
1126 unsigned int n_sg = 0;
1127 struct scatterlist *sg;
1128 struct mv_sg *mv_sg;
1129
1130 mv_sg = pp->sg_tbl;
1131 ata_for_each_sg(sg, qc) {
1132 dma_addr_t addr = sg_dma_address(sg);
1133 u32 sg_len = sg_dma_len(sg);
1134
1135 mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1136 mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1137 mv_sg->flags_size = cpu_to_le32(sg_len & 0xffff);
1138
1139 if (ata_sg_is_last(sg, qc))
1140 mv_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1141
1142 mv_sg++;
1143 n_sg++;
1144 }
1145
1146 return n_sg;
1147 }
1148
1149 static inline void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1150 {
1151 u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1152 (last ? CRQB_CMD_LAST : 0);
1153 *cmdw = cpu_to_le16(tmp);
1154 }
1155
1156 /**
1157 * mv_qc_prep - Host specific command preparation.
1158 * @qc: queued command to prepare
1159 *
1160 * This routine simply redirects to the general purpose routine
1161 * if command is not DMA. Else, it handles prep of the CRQB
1162 * (command request block), does some sanity checking, and calls
1163 * the SG load routine.
1164 *
1165 * LOCKING:
1166 * Inherited from caller.
1167 */
1168 static void mv_qc_prep(struct ata_queued_cmd *qc)
1169 {
1170 struct ata_port *ap = qc->ap;
1171 struct mv_port_priv *pp = ap->private_data;
1172 __le16 *cw;
1173 struct ata_taskfile *tf;
1174 u16 flags = 0;
1175 unsigned in_index;
1176
1177 if (qc->tf.protocol != ATA_PROT_DMA)
1178 return;
1179
1180 /* Fill in command request block
1181 */
1182 if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1183 flags |= CRQB_FLAG_READ;
1184 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1185 flags |= qc->tag << CRQB_TAG_SHIFT;
1186 flags |= qc->tag << CRQB_IOID_SHIFT; /* 50xx appears to ignore this*/
1187
1188 /* get current queue index from software */
1189 in_index = pp->req_idx & MV_MAX_Q_DEPTH_MASK;
1190
1191 pp->crqb[in_index].sg_addr =
1192 cpu_to_le32(pp->sg_tbl_dma & 0xffffffff);
1193 pp->crqb[in_index].sg_addr_hi =
1194 cpu_to_le32((pp->sg_tbl_dma >> 16) >> 16);
1195 pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
1196
1197 cw = &pp->crqb[in_index].ata_cmd[0];
1198 tf = &qc->tf;
1199
1200 /* Sadly, the CRQB cannot accomodate all registers--there are
1201 * only 11 bytes...so we must pick and choose required
1202 * registers based on the command. So, we drop feature and
1203 * hob_feature for [RW] DMA commands, but they are needed for
1204 * NCQ. NCQ will drop hob_nsect.
1205 */
1206 switch (tf->command) {
1207 case ATA_CMD_READ:
1208 case ATA_CMD_READ_EXT:
1209 case ATA_CMD_WRITE:
1210 case ATA_CMD_WRITE_EXT:
1211 case ATA_CMD_WRITE_FUA_EXT:
1212 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
1213 break;
1214 #ifdef LIBATA_NCQ /* FIXME: remove this line when NCQ added */
1215 case ATA_CMD_FPDMA_READ:
1216 case ATA_CMD_FPDMA_WRITE:
1217 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
1218 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
1219 break;
1220 #endif /* FIXME: remove this line when NCQ added */
1221 default:
1222 /* The only other commands EDMA supports in non-queued and
1223 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
1224 * of which are defined/used by Linux. If we get here, this
1225 * driver needs work.
1226 *
1227 * FIXME: modify libata to give qc_prep a return value and
1228 * return error here.
1229 */
1230 BUG_ON(tf->command);
1231 break;
1232 }
1233 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
1234 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
1235 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
1236 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
1237 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
1238 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
1239 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
1240 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
1241 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
1242
1243 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1244 return;
1245 mv_fill_sg(qc);
1246 }
1247
1248 /**
1249 * mv_qc_prep_iie - Host specific command preparation.
1250 * @qc: queued command to prepare
1251 *
1252 * This routine simply redirects to the general purpose routine
1253 * if command is not DMA. Else, it handles prep of the CRQB
1254 * (command request block), does some sanity checking, and calls
1255 * the SG load routine.
1256 *
1257 * LOCKING:
1258 * Inherited from caller.
1259 */
1260 static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
1261 {
1262 struct ata_port *ap = qc->ap;
1263 struct mv_port_priv *pp = ap->private_data;
1264 struct mv_crqb_iie *crqb;
1265 struct ata_taskfile *tf;
1266 unsigned in_index;
1267 u32 flags = 0;
1268
1269 if (qc->tf.protocol != ATA_PROT_DMA)
1270 return;
1271
1272 /* Fill in Gen IIE command request block
1273 */
1274 if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1275 flags |= CRQB_FLAG_READ;
1276
1277 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1278 flags |= qc->tag << CRQB_TAG_SHIFT;
1279 flags |= qc->tag << CRQB_IOID_SHIFT; /* "I/O Id" is -really-
1280 what we use as our tag */
1281
1282 /* get current queue index from software */
1283 in_index = pp->req_idx & MV_MAX_Q_DEPTH_MASK;
1284
1285 crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
1286 crqb->addr = cpu_to_le32(pp->sg_tbl_dma & 0xffffffff);
1287 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma >> 16) >> 16);
1288 crqb->flags = cpu_to_le32(flags);
1289
1290 tf = &qc->tf;
1291 crqb->ata_cmd[0] = cpu_to_le32(
1292 (tf->command << 16) |
1293 (tf->feature << 24)
1294 );
1295 crqb->ata_cmd[1] = cpu_to_le32(
1296 (tf->lbal << 0) |
1297 (tf->lbam << 8) |
1298 (tf->lbah << 16) |
1299 (tf->device << 24)
1300 );
1301 crqb->ata_cmd[2] = cpu_to_le32(
1302 (tf->hob_lbal << 0) |
1303 (tf->hob_lbam << 8) |
1304 (tf->hob_lbah << 16) |
1305 (tf->hob_feature << 24)
1306 );
1307 crqb->ata_cmd[3] = cpu_to_le32(
1308 (tf->nsect << 0) |
1309 (tf->hob_nsect << 8)
1310 );
1311
1312 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1313 return;
1314 mv_fill_sg(qc);
1315 }
1316
1317 /**
1318 * mv_qc_issue - Initiate a command to the host
1319 * @qc: queued command to start
1320 *
1321 * This routine simply redirects to the general purpose routine
1322 * if command is not DMA. Else, it sanity checks our local
1323 * caches of the request producer/consumer indices then enables
1324 * DMA and bumps the request producer index.
1325 *
1326 * LOCKING:
1327 * Inherited from caller.
1328 */
1329 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
1330 {
1331 struct ata_port *ap = qc->ap;
1332 void __iomem *port_mmio = mv_ap_base(ap);
1333 struct mv_port_priv *pp = ap->private_data;
1334 struct mv_host_priv *hpriv = ap->host->private_data;
1335 u32 in_index;
1336
1337 if (qc->tf.protocol != ATA_PROT_DMA) {
1338 /* We're about to send a non-EDMA capable command to the
1339 * port. Turn off EDMA so there won't be problems accessing
1340 * shadow block, etc registers.
1341 */
1342 __mv_stop_dma(ap);
1343 return ata_qc_issue_prot(qc);
1344 }
1345
1346 mv_start_dma(port_mmio, hpriv, pp);
1347
1348 in_index = pp->req_idx & MV_MAX_Q_DEPTH_MASK;
1349
1350 /* until we do queuing, the queue should be empty at this point */
1351 WARN_ON(in_index != ((readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS)
1352 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK));
1353
1354 pp->req_idx++;
1355
1356 in_index = (pp->req_idx & MV_MAX_Q_DEPTH_MASK) << EDMA_REQ_Q_PTR_SHIFT;
1357
1358 /* and write the request in pointer to kick the EDMA to life */
1359 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
1360 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
1361
1362 return 0;
1363 }
1364
1365 /**
1366 * mv_err_intr - Handle error interrupts on the port
1367 * @ap: ATA channel to manipulate
1368 * @reset_allowed: bool: 0 == don't trigger from reset here
1369 *
1370 * In most cases, just clear the interrupt and move on. However,
1371 * some cases require an eDMA reset, which is done right before
1372 * the COMRESET in mv_phy_reset(). The SERR case requires a
1373 * clear of pending errors in the SATA SERROR register. Finally,
1374 * if the port disabled DMA, update our cached copy to match.
1375 *
1376 * LOCKING:
1377 * Inherited from caller.
1378 */
1379 static void mv_err_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1380 {
1381 void __iomem *port_mmio = mv_ap_base(ap);
1382 u32 edma_err_cause, eh_freeze_mask, serr = 0;
1383 struct mv_port_priv *pp = ap->private_data;
1384 struct mv_host_priv *hpriv = ap->host->private_data;
1385 unsigned int edma_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
1386 unsigned int action = 0, err_mask = 0;
1387 struct ata_eh_info *ehi = &ap->eh_info;
1388
1389 ata_ehi_clear_desc(ehi);
1390
1391 if (!edma_enabled) {
1392 /* just a guess: do we need to do this? should we
1393 * expand this, and do it in all cases?
1394 */
1395 sata_scr_read(ap, SCR_ERROR, &serr);
1396 sata_scr_write_flush(ap, SCR_ERROR, serr);
1397 }
1398
1399 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1400
1401 ata_ehi_push_desc(ehi, "edma_err 0x%08x", edma_err_cause);
1402
1403 /*
1404 * all generations share these EDMA error cause bits
1405 */
1406
1407 if (edma_err_cause & EDMA_ERR_DEV)
1408 err_mask |= AC_ERR_DEV;
1409 if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
1410 EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
1411 EDMA_ERR_INTRL_PAR)) {
1412 err_mask |= AC_ERR_ATA_BUS;
1413 action |= ATA_EH_HARDRESET;
1414 ata_ehi_push_desc(ehi, ", parity error");
1415 }
1416 if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
1417 ata_ehi_hotplugged(ehi);
1418 ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
1419 ", dev disconnect" : ", dev connect");
1420 }
1421
1422 if (IS_GEN_I(hpriv)) {
1423 eh_freeze_mask = EDMA_EH_FREEZE_5;
1424
1425 if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
1426 struct mv_port_priv *pp = ap->private_data;
1427 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1428 ata_ehi_push_desc(ehi, ", EDMA self-disable");
1429 }
1430 } else {
1431 eh_freeze_mask = EDMA_EH_FREEZE;
1432
1433 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
1434 struct mv_port_priv *pp = ap->private_data;
1435 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1436 ata_ehi_push_desc(ehi, ", EDMA self-disable");
1437 }
1438
1439 if (edma_err_cause & EDMA_ERR_SERR) {
1440 sata_scr_read(ap, SCR_ERROR, &serr);
1441 sata_scr_write_flush(ap, SCR_ERROR, serr);
1442 err_mask = AC_ERR_ATA_BUS;
1443 action |= ATA_EH_HARDRESET;
1444 }
1445 }
1446
1447 /* Clear EDMA now that SERR cleanup done */
1448 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1449
1450 if (!err_mask) {
1451 err_mask = AC_ERR_OTHER;
1452 action |= ATA_EH_HARDRESET;
1453 }
1454
1455 ehi->serror |= serr;
1456 ehi->action |= action;
1457
1458 if (qc)
1459 qc->err_mask |= err_mask;
1460 else
1461 ehi->err_mask |= err_mask;
1462
1463 if (edma_err_cause & eh_freeze_mask)
1464 ata_port_freeze(ap);
1465 else
1466 ata_port_abort(ap);
1467 }
1468
1469 static void mv_intr_pio(struct ata_port *ap)
1470 {
1471 struct ata_queued_cmd *qc;
1472 u8 ata_status;
1473
1474 /* ignore spurious intr if drive still BUSY */
1475 ata_status = readb(ap->ioaddr.status_addr);
1476 if (unlikely(ata_status & ATA_BUSY))
1477 return;
1478
1479 /* get active ATA command */
1480 qc = ata_qc_from_tag(ap, ap->active_tag);
1481 if (unlikely(!qc)) /* no active tag */
1482 return;
1483 if (qc->tf.flags & ATA_TFLAG_POLLING) /* polling; we don't own qc */
1484 return;
1485
1486 /* and finally, complete the ATA command */
1487 qc->err_mask |= ac_err_mask(ata_status);
1488 ata_qc_complete(qc);
1489 }
1490
1491 static void mv_intr_edma(struct ata_port *ap)
1492 {
1493 void __iomem *port_mmio = mv_ap_base(ap);
1494 struct mv_host_priv *hpriv = ap->host->private_data;
1495 struct mv_port_priv *pp = ap->private_data;
1496 struct ata_queued_cmd *qc;
1497 u32 out_index, in_index;
1498 bool work_done = false;
1499
1500 /* get h/w response queue pointer */
1501 in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS)
1502 >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1503
1504 while (1) {
1505 u16 status;
1506 unsigned int tag;
1507
1508 /* get s/w response queue last-read pointer, and compare */
1509 out_index = pp->resp_idx & MV_MAX_Q_DEPTH_MASK;
1510 if (in_index == out_index)
1511 break;
1512
1513 /* 50xx: get active ATA command */
1514 if (IS_GEN_I(hpriv))
1515 tag = ap->active_tag;
1516
1517 /* Gen II/IIE: get active ATA command via tag, to enable
1518 * support for queueing. this works transparently for
1519 * queued and non-queued modes.
1520 */
1521 else if (IS_GEN_II(hpriv))
1522 tag = (le16_to_cpu(pp->crpb[out_index].id)
1523 >> CRPB_IOID_SHIFT_6) & 0x3f;
1524
1525 else /* IS_GEN_IIE */
1526 tag = (le16_to_cpu(pp->crpb[out_index].id)
1527 >> CRPB_IOID_SHIFT_7) & 0x3f;
1528
1529 qc = ata_qc_from_tag(ap, tag);
1530
1531 /* lower 8 bits of status are EDMA_ERR_IRQ_CAUSE_OFS
1532 * bits (WARNING: might not necessarily be associated
1533 * with this command), which -should- be clear
1534 * if all is well
1535 */
1536 status = le16_to_cpu(pp->crpb[out_index].flags);
1537 if (unlikely(status & 0xff)) {
1538 mv_err_intr(ap, qc);
1539 return;
1540 }
1541
1542 /* and finally, complete the ATA command */
1543 if (qc) {
1544 qc->err_mask |=
1545 ac_err_mask(status >> CRPB_FLAG_STATUS_SHIFT);
1546 ata_qc_complete(qc);
1547 }
1548
1549 /* advance software response queue pointer, to
1550 * indicate (after the loop completes) to hardware
1551 * that we have consumed a response queue entry.
1552 */
1553 work_done = true;
1554 pp->resp_idx++;
1555 }
1556
1557 if (work_done)
1558 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
1559 (out_index << EDMA_RSP_Q_PTR_SHIFT),
1560 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
1561 }
1562
1563 /**
1564 * mv_host_intr - Handle all interrupts on the given host controller
1565 * @host: host specific structure
1566 * @relevant: port error bits relevant to this host controller
1567 * @hc: which host controller we're to look at
1568 *
1569 * Read then write clear the HC interrupt status then walk each
1570 * port connected to the HC and see if it needs servicing. Port
1571 * success ints are reported in the HC interrupt status reg, the
1572 * port error ints are reported in the higher level main
1573 * interrupt status register and thus are passed in via the
1574 * 'relevant' argument.
1575 *
1576 * LOCKING:
1577 * Inherited from caller.
1578 */
1579 static void mv_host_intr(struct ata_host *host, u32 relevant, unsigned int hc)
1580 {
1581 void __iomem *mmio = host->iomap[MV_PRIMARY_BAR];
1582 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
1583 u32 hc_irq_cause;
1584 int port, port0;
1585
1586 if (hc == 0)
1587 port0 = 0;
1588 else
1589 port0 = MV_PORTS_PER_HC;
1590
1591 /* we'll need the HC success int register in most cases */
1592 hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
1593 if (!hc_irq_cause)
1594 return;
1595
1596 writelfl(~hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
1597
1598 VPRINTK("ENTER, hc%u relevant=0x%08x HC IRQ cause=0x%08x\n",
1599 hc,relevant,hc_irq_cause);
1600
1601 for (port = port0; port < port0 + MV_PORTS_PER_HC; port++) {
1602 struct ata_port *ap = host->ports[port];
1603 struct mv_port_priv *pp = ap->private_data;
1604 int have_err_bits, hard_port, shift;
1605
1606 if ((!ap) || (ap->flags & ATA_FLAG_DISABLED))
1607 continue;
1608
1609 shift = port << 1; /* (port * 2) */
1610 if (port >= MV_PORTS_PER_HC) {
1611 shift++; /* skip bit 8 in the HC Main IRQ reg */
1612 }
1613 have_err_bits = ((PORT0_ERR << shift) & relevant);
1614
1615 if (unlikely(have_err_bits)) {
1616 struct ata_queued_cmd *qc;
1617
1618 qc = ata_qc_from_tag(ap, ap->active_tag);
1619 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
1620 continue;
1621
1622 mv_err_intr(ap, qc);
1623 continue;
1624 }
1625
1626 hard_port = mv_hardport_from_port(port); /* range 0..3 */
1627
1628 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1629 if ((CRPB_DMA_DONE << hard_port) & hc_irq_cause)
1630 mv_intr_edma(ap);
1631 } else {
1632 if ((DEV_IRQ << hard_port) & hc_irq_cause)
1633 mv_intr_pio(ap);
1634 }
1635 }
1636 VPRINTK("EXIT\n");
1637 }
1638
1639 static void mv_pci_error(struct ata_host *host, void __iomem *mmio)
1640 {
1641 struct ata_port *ap;
1642 struct ata_queued_cmd *qc;
1643 struct ata_eh_info *ehi;
1644 unsigned int i, err_mask, printed = 0;
1645 u32 err_cause;
1646
1647 err_cause = readl(mmio + PCI_IRQ_CAUSE_OFS);
1648
1649 dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n",
1650 err_cause);
1651
1652 DPRINTK("All regs @ PCI error\n");
1653 mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
1654
1655 writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
1656
1657 for (i = 0; i < host->n_ports; i++) {
1658 ap = host->ports[i];
1659 if (!ata_port_offline(ap)) {
1660 ehi = &ap->eh_info;
1661 ata_ehi_clear_desc(ehi);
1662 if (!printed++)
1663 ata_ehi_push_desc(ehi,
1664 "PCI err cause 0x%08x", err_cause);
1665 err_mask = AC_ERR_HOST_BUS;
1666 ehi->action = ATA_EH_HARDRESET;
1667 qc = ata_qc_from_tag(ap, ap->active_tag);
1668 if (qc)
1669 qc->err_mask |= err_mask;
1670 else
1671 ehi->err_mask |= err_mask;
1672
1673 ata_port_freeze(ap);
1674 }
1675 }
1676 }
1677
1678 /**
1679 * mv_interrupt - Main interrupt event handler
1680 * @irq: unused
1681 * @dev_instance: private data; in this case the host structure
1682 *
1683 * Read the read only register to determine if any host
1684 * controllers have pending interrupts. If so, call lower level
1685 * routine to handle. Also check for PCI errors which are only
1686 * reported here.
1687 *
1688 * LOCKING:
1689 * This routine holds the host lock while processing pending
1690 * interrupts.
1691 */
1692 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
1693 {
1694 struct ata_host *host = dev_instance;
1695 unsigned int hc, handled = 0, n_hcs;
1696 void __iomem *mmio = host->iomap[MV_PRIMARY_BAR];
1697 u32 irq_stat;
1698
1699 irq_stat = readl(mmio + HC_MAIN_IRQ_CAUSE_OFS);
1700
1701 /* check the cases where we either have nothing pending or have read
1702 * a bogus register value which can indicate HW removal or PCI fault
1703 */
1704 if (!irq_stat || (0xffffffffU == irq_stat))
1705 return IRQ_NONE;
1706
1707 n_hcs = mv_get_hc_count(host->ports[0]->flags);
1708 spin_lock(&host->lock);
1709
1710 if (unlikely(irq_stat & PCI_ERR)) {
1711 mv_pci_error(host, mmio);
1712 handled = 1;
1713 goto out_unlock; /* skip all other HC irq handling */
1714 }
1715
1716 for (hc = 0; hc < n_hcs; hc++) {
1717 u32 relevant = irq_stat & (HC0_IRQ_PEND << (hc * HC_SHIFT));
1718 if (relevant) {
1719 mv_host_intr(host, relevant, hc);
1720 handled = 1;
1721 }
1722 }
1723
1724 out_unlock:
1725 spin_unlock(&host->lock);
1726
1727 return IRQ_RETVAL(handled);
1728 }
1729
1730 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
1731 {
1732 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
1733 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
1734
1735 return hc_mmio + ofs;
1736 }
1737
1738 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
1739 {
1740 unsigned int ofs;
1741
1742 switch (sc_reg_in) {
1743 case SCR_STATUS:
1744 case SCR_ERROR:
1745 case SCR_CONTROL:
1746 ofs = sc_reg_in * sizeof(u32);
1747 break;
1748 default:
1749 ofs = 0xffffffffU;
1750 break;
1751 }
1752 return ofs;
1753 }
1754
1755 static u32 mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in)
1756 {
1757 void __iomem *mmio = ap->host->iomap[MV_PRIMARY_BAR];
1758 void __iomem *addr = mv5_phy_base(mmio, ap->port_no);
1759 unsigned int ofs = mv5_scr_offset(sc_reg_in);
1760
1761 if (ofs != 0xffffffffU)
1762 return readl(addr + ofs);
1763 else
1764 return (u32) ofs;
1765 }
1766
1767 static void mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
1768 {
1769 void __iomem *mmio = ap->host->iomap[MV_PRIMARY_BAR];
1770 void __iomem *addr = mv5_phy_base(mmio, ap->port_no);
1771 unsigned int ofs = mv5_scr_offset(sc_reg_in);
1772
1773 if (ofs != 0xffffffffU)
1774 writelfl(val, addr + ofs);
1775 }
1776
1777 static void mv5_reset_bus(struct pci_dev *pdev, void __iomem *mmio)
1778 {
1779 int early_5080;
1780
1781 early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
1782
1783 if (!early_5080) {
1784 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
1785 tmp |= (1 << 0);
1786 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
1787 }
1788
1789 mv_reset_pci_bus(pdev, mmio);
1790 }
1791
1792 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
1793 {
1794 writel(0x0fcfffff, mmio + MV_FLASH_CTL);
1795 }
1796
1797 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
1798 void __iomem *mmio)
1799 {
1800 void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
1801 u32 tmp;
1802
1803 tmp = readl(phy_mmio + MV5_PHY_MODE);
1804
1805 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
1806 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
1807 }
1808
1809 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
1810 {
1811 u32 tmp;
1812
1813 writel(0, mmio + MV_GPIO_PORT_CTL);
1814
1815 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
1816
1817 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
1818 tmp |= ~(1 << 0);
1819 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
1820 }
1821
1822 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
1823 unsigned int port)
1824 {
1825 void __iomem *phy_mmio = mv5_phy_base(mmio, port);
1826 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
1827 u32 tmp;
1828 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
1829
1830 if (fix_apm_sq) {
1831 tmp = readl(phy_mmio + MV5_LT_MODE);
1832 tmp |= (1 << 19);
1833 writel(tmp, phy_mmio + MV5_LT_MODE);
1834
1835 tmp = readl(phy_mmio + MV5_PHY_CTL);
1836 tmp &= ~0x3;
1837 tmp |= 0x1;
1838 writel(tmp, phy_mmio + MV5_PHY_CTL);
1839 }
1840
1841 tmp = readl(phy_mmio + MV5_PHY_MODE);
1842 tmp &= ~mask;
1843 tmp |= hpriv->signal[port].pre;
1844 tmp |= hpriv->signal[port].amps;
1845 writel(tmp, phy_mmio + MV5_PHY_MODE);
1846 }
1847
1848
1849 #undef ZERO
1850 #define ZERO(reg) writel(0, port_mmio + (reg))
1851 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
1852 unsigned int port)
1853 {
1854 void __iomem *port_mmio = mv_port_base(mmio, port);
1855
1856 writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
1857
1858 mv_channel_reset(hpriv, mmio, port);
1859
1860 ZERO(0x028); /* command */
1861 writel(0x11f, port_mmio + EDMA_CFG_OFS);
1862 ZERO(0x004); /* timer */
1863 ZERO(0x008); /* irq err cause */
1864 ZERO(0x00c); /* irq err mask */
1865 ZERO(0x010); /* rq bah */
1866 ZERO(0x014); /* rq inp */
1867 ZERO(0x018); /* rq outp */
1868 ZERO(0x01c); /* respq bah */
1869 ZERO(0x024); /* respq outp */
1870 ZERO(0x020); /* respq inp */
1871 ZERO(0x02c); /* test control */
1872 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
1873 }
1874 #undef ZERO
1875
1876 #define ZERO(reg) writel(0, hc_mmio + (reg))
1877 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
1878 unsigned int hc)
1879 {
1880 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
1881 u32 tmp;
1882
1883 ZERO(0x00c);
1884 ZERO(0x010);
1885 ZERO(0x014);
1886 ZERO(0x018);
1887
1888 tmp = readl(hc_mmio + 0x20);
1889 tmp &= 0x1c1c1c1c;
1890 tmp |= 0x03030303;
1891 writel(tmp, hc_mmio + 0x20);
1892 }
1893 #undef ZERO
1894
1895 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
1896 unsigned int n_hc)
1897 {
1898 unsigned int hc, port;
1899
1900 for (hc = 0; hc < n_hc; hc++) {
1901 for (port = 0; port < MV_PORTS_PER_HC; port++)
1902 mv5_reset_hc_port(hpriv, mmio,
1903 (hc * MV_PORTS_PER_HC) + port);
1904
1905 mv5_reset_one_hc(hpriv, mmio, hc);
1906 }
1907
1908 return 0;
1909 }
1910
1911 #undef ZERO
1912 #define ZERO(reg) writel(0, mmio + (reg))
1913 static void mv_reset_pci_bus(struct pci_dev *pdev, void __iomem *mmio)
1914 {
1915 u32 tmp;
1916
1917 tmp = readl(mmio + MV_PCI_MODE);
1918 tmp &= 0xff00ffff;
1919 writel(tmp, mmio + MV_PCI_MODE);
1920
1921 ZERO(MV_PCI_DISC_TIMER);
1922 ZERO(MV_PCI_MSI_TRIGGER);
1923 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
1924 ZERO(HC_MAIN_IRQ_MASK_OFS);
1925 ZERO(MV_PCI_SERR_MASK);
1926 ZERO(PCI_IRQ_CAUSE_OFS);
1927 ZERO(PCI_IRQ_MASK_OFS);
1928 ZERO(MV_PCI_ERR_LOW_ADDRESS);
1929 ZERO(MV_PCI_ERR_HIGH_ADDRESS);
1930 ZERO(MV_PCI_ERR_ATTRIBUTE);
1931 ZERO(MV_PCI_ERR_COMMAND);
1932 }
1933 #undef ZERO
1934
1935 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
1936 {
1937 u32 tmp;
1938
1939 mv5_reset_flash(hpriv, mmio);
1940
1941 tmp = readl(mmio + MV_GPIO_PORT_CTL);
1942 tmp &= 0x3;
1943 tmp |= (1 << 5) | (1 << 6);
1944 writel(tmp, mmio + MV_GPIO_PORT_CTL);
1945 }
1946
1947 /**
1948 * mv6_reset_hc - Perform the 6xxx global soft reset
1949 * @mmio: base address of the HBA
1950 *
1951 * This routine only applies to 6xxx parts.
1952 *
1953 * LOCKING:
1954 * Inherited from caller.
1955 */
1956 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
1957 unsigned int n_hc)
1958 {
1959 void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS;
1960 int i, rc = 0;
1961 u32 t;
1962
1963 /* Following procedure defined in PCI "main command and status
1964 * register" table.
1965 */
1966 t = readl(reg);
1967 writel(t | STOP_PCI_MASTER, reg);
1968
1969 for (i = 0; i < 1000; i++) {
1970 udelay(1);
1971 t = readl(reg);
1972 if (PCI_MASTER_EMPTY & t) {
1973 break;
1974 }
1975 }
1976 if (!(PCI_MASTER_EMPTY & t)) {
1977 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
1978 rc = 1;
1979 goto done;
1980 }
1981
1982 /* set reset */
1983 i = 5;
1984 do {
1985 writel(t | GLOB_SFT_RST, reg);
1986 t = readl(reg);
1987 udelay(1);
1988 } while (!(GLOB_SFT_RST & t) && (i-- > 0));
1989
1990 if (!(GLOB_SFT_RST & t)) {
1991 printk(KERN_ERR DRV_NAME ": can't set global reset\n");
1992 rc = 1;
1993 goto done;
1994 }
1995
1996 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
1997 i = 5;
1998 do {
1999 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
2000 t = readl(reg);
2001 udelay(1);
2002 } while ((GLOB_SFT_RST & t) && (i-- > 0));
2003
2004 if (GLOB_SFT_RST & t) {
2005 printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
2006 rc = 1;
2007 }
2008 done:
2009 return rc;
2010 }
2011
2012 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
2013 void __iomem *mmio)
2014 {
2015 void __iomem *port_mmio;
2016 u32 tmp;
2017
2018 tmp = readl(mmio + MV_RESET_CFG);
2019 if ((tmp & (1 << 0)) == 0) {
2020 hpriv->signal[idx].amps = 0x7 << 8;
2021 hpriv->signal[idx].pre = 0x1 << 5;
2022 return;
2023 }
2024
2025 port_mmio = mv_port_base(mmio, idx);
2026 tmp = readl(port_mmio + PHY_MODE2);
2027
2028 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
2029 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
2030 }
2031
2032 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
2033 {
2034 writel(0x00000060, mmio + MV_GPIO_PORT_CTL);
2035 }
2036
2037 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
2038 unsigned int port)
2039 {
2040 void __iomem *port_mmio = mv_port_base(mmio, port);
2041
2042 u32 hp_flags = hpriv->hp_flags;
2043 int fix_phy_mode2 =
2044 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
2045 int fix_phy_mode4 =
2046 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
2047 u32 m2, tmp;
2048
2049 if (fix_phy_mode2) {
2050 m2 = readl(port_mmio + PHY_MODE2);
2051 m2 &= ~(1 << 16);
2052 m2 |= (1 << 31);
2053 writel(m2, port_mmio + PHY_MODE2);
2054
2055 udelay(200);
2056
2057 m2 = readl(port_mmio + PHY_MODE2);
2058 m2 &= ~((1 << 16) | (1 << 31));
2059 writel(m2, port_mmio + PHY_MODE2);
2060
2061 udelay(200);
2062 }
2063
2064 /* who knows what this magic does */
2065 tmp = readl(port_mmio + PHY_MODE3);
2066 tmp &= ~0x7F800000;
2067 tmp |= 0x2A800000;
2068 writel(tmp, port_mmio + PHY_MODE3);
2069
2070 if (fix_phy_mode4) {
2071 u32 m4;
2072
2073 m4 = readl(port_mmio + PHY_MODE4);
2074
2075 if (hp_flags & MV_HP_ERRATA_60X1B2)
2076 tmp = readl(port_mmio + 0x310);
2077
2078 m4 = (m4 & ~(1 << 1)) | (1 << 0);
2079
2080 writel(m4, port_mmio + PHY_MODE4);
2081
2082 if (hp_flags & MV_HP_ERRATA_60X1B2)
2083 writel(tmp, port_mmio + 0x310);
2084 }
2085
2086 /* Revert values of pre-emphasis and signal amps to the saved ones */
2087 m2 = readl(port_mmio + PHY_MODE2);
2088
2089 m2 &= ~MV_M2_PREAMP_MASK;
2090 m2 |= hpriv->signal[port].amps;
2091 m2 |= hpriv->signal[port].pre;
2092 m2 &= ~(1 << 16);
2093
2094 /* according to mvSata 3.6.1, some IIE values are fixed */
2095 if (IS_GEN_IIE(hpriv)) {
2096 m2 &= ~0xC30FF01F;
2097 m2 |= 0x0000900F;
2098 }
2099
2100 writel(m2, port_mmio + PHY_MODE2);
2101 }
2102
2103 static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio,
2104 unsigned int port_no)
2105 {
2106 void __iomem *port_mmio = mv_port_base(mmio, port_no);
2107
2108 writelfl(ATA_RST, port_mmio + EDMA_CMD_OFS);
2109
2110 if (IS_GEN_II(hpriv)) {
2111 u32 ifctl = readl(port_mmio + SATA_INTERFACE_CTL);
2112 ifctl |= (1 << 7); /* enable gen2i speed */
2113 ifctl = (ifctl & 0xfff) | 0x9b1000; /* from chip spec */
2114 writelfl(ifctl, port_mmio + SATA_INTERFACE_CTL);
2115 }
2116
2117 udelay(25); /* allow reset propagation */
2118
2119 /* Spec never mentions clearing the bit. Marvell's driver does
2120 * clear the bit, however.
2121 */
2122 writelfl(0, port_mmio + EDMA_CMD_OFS);
2123
2124 hpriv->ops->phy_errata(hpriv, mmio, port_no);
2125
2126 if (IS_GEN_I(hpriv))
2127 mdelay(1);
2128 }
2129
2130 /**
2131 * mv_phy_reset - Perform eDMA reset followed by COMRESET
2132 * @ap: ATA channel to manipulate
2133 *
2134 * Part of this is taken from __sata_phy_reset and modified to
2135 * not sleep since this routine gets called from interrupt level.
2136 *
2137 * LOCKING:
2138 * Inherited from caller. This is coded to safe to call at
2139 * interrupt level, i.e. it does not sleep.
2140 */
2141 static void mv_phy_reset(struct ata_port *ap, unsigned int *class,
2142 unsigned long deadline)
2143 {
2144 struct mv_port_priv *pp = ap->private_data;
2145 struct mv_host_priv *hpriv = ap->host->private_data;
2146 void __iomem *port_mmio = mv_ap_base(ap);
2147 int retry = 5;
2148 u32 sstatus;
2149
2150 VPRINTK("ENTER, port %u, mmio 0x%p\n", ap->port_no, port_mmio);
2151
2152 DPRINTK("S-regs after ATA_RST: SStat 0x%08x SErr 0x%08x "
2153 "SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
2154 mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
2155
2156 /* Issue COMRESET via SControl */
2157 comreset_retry:
2158 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
2159 msleep(1);
2160
2161 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
2162 msleep(20);
2163
2164 do {
2165 sata_scr_read(ap, SCR_STATUS, &sstatus);
2166 if (((sstatus & 0x3) == 3) || ((sstatus & 0x3) == 0))
2167 break;
2168
2169 msleep(1);
2170 } while (time_before(jiffies, deadline));
2171
2172 /* work around errata */
2173 if (IS_GEN_II(hpriv) &&
2174 (sstatus != 0x0) && (sstatus != 0x113) && (sstatus != 0x123) &&
2175 (retry-- > 0))
2176 goto comreset_retry;
2177
2178 DPRINTK("S-regs after PHY wake: SStat 0x%08x SErr 0x%08x "
2179 "SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
2180 mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
2181
2182 if (ata_port_offline(ap)) {
2183 *class = ATA_DEV_NONE;
2184 return;
2185 }
2186
2187 /* even after SStatus reflects that device is ready,
2188 * it seems to take a while for link to be fully
2189 * established (and thus Status no longer 0x80/0x7F),
2190 * so we poll a bit for that, here.
2191 */
2192 retry = 20;
2193 while (1) {
2194 u8 drv_stat = ata_check_status(ap);
2195 if ((drv_stat != 0x80) && (drv_stat != 0x7f))
2196 break;
2197 msleep(500);
2198 if (retry-- <= 0)
2199 break;
2200 if (time_after(jiffies, deadline))
2201 break;
2202 }
2203
2204 /* FIXME: if we passed the deadline, the following
2205 * code probably produces an invalid result
2206 */
2207
2208 /* finally, read device signature from TF registers */
2209 *class = ata_dev_try_classify(ap, 0, NULL);
2210
2211 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2212
2213 WARN_ON(pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2214
2215 VPRINTK("EXIT\n");
2216 }
2217
2218 static int mv_prereset(struct ata_port *ap, unsigned long deadline)
2219 {
2220 struct mv_port_priv *pp = ap->private_data;
2221 struct ata_eh_context *ehc = &ap->eh_context;
2222 int rc;
2223
2224 rc = mv_stop_dma(ap);
2225 if (rc)
2226 ehc->i.action |= ATA_EH_HARDRESET;
2227
2228 if (!(pp->pp_flags & MV_PP_FLAG_HAD_A_RESET)) {
2229 pp->pp_flags |= MV_PP_FLAG_HAD_A_RESET;
2230 ehc->i.action |= ATA_EH_HARDRESET;
2231 }
2232
2233 /* if we're about to do hardreset, nothing more to do */
2234 if (ehc->i.action & ATA_EH_HARDRESET)
2235 return 0;
2236
2237 if (ata_port_online(ap))
2238 rc = ata_wait_ready(ap, deadline);
2239 else
2240 rc = -ENODEV;
2241
2242 return rc;
2243 }
2244
2245 static int mv_hardreset(struct ata_port *ap, unsigned int *class,
2246 unsigned long deadline)
2247 {
2248 struct mv_host_priv *hpriv = ap->host->private_data;
2249 void __iomem *mmio = ap->host->iomap[MV_PRIMARY_BAR];
2250
2251 mv_stop_dma(ap);
2252
2253 mv_channel_reset(hpriv, mmio, ap->port_no);
2254
2255 mv_phy_reset(ap, class, deadline);
2256
2257 return 0;
2258 }
2259
2260 static void mv_postreset(struct ata_port *ap, unsigned int *classes)
2261 {
2262 u32 serr;
2263
2264 /* print link status */
2265 sata_print_link_status(ap);
2266
2267 /* clear SError */
2268 sata_scr_read(ap, SCR_ERROR, &serr);
2269 sata_scr_write_flush(ap, SCR_ERROR, serr);
2270
2271 /* bail out if no device is present */
2272 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2273 DPRINTK("EXIT, no device\n");
2274 return;
2275 }
2276
2277 /* set up device control */
2278 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
2279 }
2280
2281 static void mv_error_handler(struct ata_port *ap)
2282 {
2283 ata_do_eh(ap, mv_prereset, ata_std_softreset,
2284 mv_hardreset, mv_postreset);
2285 }
2286
2287 static void mv_post_int_cmd(struct ata_queued_cmd *qc)
2288 {
2289 mv_stop_dma(qc->ap);
2290 }
2291
2292 static void mv_eh_freeze(struct ata_port *ap)
2293 {
2294 void __iomem *mmio = ap->host->iomap[MV_PRIMARY_BAR];
2295 unsigned int hc = (ap->port_no > 3) ? 1 : 0;
2296 u32 tmp, mask;
2297 unsigned int shift;
2298
2299 /* FIXME: handle coalescing completion events properly */
2300
2301 shift = ap->port_no * 2;
2302 if (hc > 0)
2303 shift++;
2304
2305 mask = 0x3 << shift;
2306
2307 /* disable assertion of portN err, done events */
2308 tmp = readl(mmio + HC_MAIN_IRQ_MASK_OFS);
2309 writelfl(tmp & ~mask, mmio + HC_MAIN_IRQ_MASK_OFS);
2310 }
2311
2312 static void mv_eh_thaw(struct ata_port *ap)
2313 {
2314 void __iomem *mmio = ap->host->iomap[MV_PRIMARY_BAR];
2315 unsigned int hc = (ap->port_no > 3) ? 1 : 0;
2316 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
2317 void __iomem *port_mmio = mv_ap_base(ap);
2318 u32 tmp, mask, hc_irq_cause;
2319 unsigned int shift, hc_port_no = ap->port_no;
2320
2321 /* FIXME: handle coalescing completion events properly */
2322
2323 shift = ap->port_no * 2;
2324 if (hc > 0) {
2325 shift++;
2326 hc_port_no -= 4;
2327 }
2328
2329 mask = 0x3 << shift;
2330
2331 /* clear EDMA errors on this port */
2332 writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2333
2334 /* clear pending irq events */
2335 hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
2336 hc_irq_cause &= ~(1 << hc_port_no); /* clear CRPB-done */
2337 hc_irq_cause &= ~(1 << (hc_port_no + 8)); /* clear Device int */
2338 writel(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
2339
2340 /* enable assertion of portN err, done events */
2341 tmp = readl(mmio + HC_MAIN_IRQ_MASK_OFS);
2342 writelfl(tmp | mask, mmio + HC_MAIN_IRQ_MASK_OFS);
2343 }
2344
2345 /**
2346 * mv_port_init - Perform some early initialization on a single port.
2347 * @port: libata data structure storing shadow register addresses
2348 * @port_mmio: base address of the port
2349 *
2350 * Initialize shadow register mmio addresses, clear outstanding
2351 * interrupts on the port, and unmask interrupts for the future
2352 * start of the port.
2353 *
2354 * LOCKING:
2355 * Inherited from caller.
2356 */
2357 static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
2358 {
2359 void __iomem *shd_base = port_mmio + SHD_BLK_OFS;
2360 unsigned serr_ofs;
2361
2362 /* PIO related setup
2363 */
2364 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
2365 port->error_addr =
2366 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
2367 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
2368 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
2369 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
2370 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
2371 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
2372 port->status_addr =
2373 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
2374 /* special case: control/altstatus doesn't have ATA_REG_ address */
2375 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;
2376
2377 /* unused: */
2378 port->cmd_addr = port->bmdma_addr = port->scr_addr = NULL;
2379
2380 /* Clear any currently outstanding port interrupt conditions */
2381 serr_ofs = mv_scr_offset(SCR_ERROR);
2382 writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
2383 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2384
2385 /* unmask all EDMA error interrupts */
2386 writelfl(~0, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
2387
2388 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
2389 readl(port_mmio + EDMA_CFG_OFS),
2390 readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
2391 readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
2392 }
2393
2394 static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
2395 {
2396 struct pci_dev *pdev = to_pci_dev(host->dev);
2397 struct mv_host_priv *hpriv = host->private_data;
2398 u32 hp_flags = hpriv->hp_flags;
2399
2400 switch(board_idx) {
2401 case chip_5080:
2402 hpriv->ops = &mv5xxx_ops;
2403 hp_flags |= MV_HP_GEN_I;
2404
2405 switch (pdev->revision) {
2406 case 0x1:
2407 hp_flags |= MV_HP_ERRATA_50XXB0;
2408 break;
2409 case 0x3:
2410 hp_flags |= MV_HP_ERRATA_50XXB2;
2411 break;
2412 default:
2413 dev_printk(KERN_WARNING, &pdev->dev,
2414 "Applying 50XXB2 workarounds to unknown rev\n");
2415 hp_flags |= MV_HP_ERRATA_50XXB2;
2416 break;
2417 }
2418 break;
2419
2420 case chip_504x:
2421 case chip_508x:
2422 hpriv->ops = &mv5xxx_ops;
2423 hp_flags |= MV_HP_GEN_I;
2424
2425 switch (pdev->revision) {
2426 case 0x0:
2427 hp_flags |= MV_HP_ERRATA_50XXB0;
2428 break;
2429 case 0x3:
2430 hp_flags |= MV_HP_ERRATA_50XXB2;
2431 break;
2432 default:
2433 dev_printk(KERN_WARNING, &pdev->dev,
2434 "Applying B2 workarounds to unknown rev\n");
2435 hp_flags |= MV_HP_ERRATA_50XXB2;
2436 break;
2437 }
2438 break;
2439
2440 case chip_604x:
2441 case chip_608x:
2442 hpriv->ops = &mv6xxx_ops;
2443 hp_flags |= MV_HP_GEN_II;
2444
2445 switch (pdev->revision) {
2446 case 0x7:
2447 hp_flags |= MV_HP_ERRATA_60X1B2;
2448 break;
2449 case 0x9:
2450 hp_flags |= MV_HP_ERRATA_60X1C0;
2451 break;
2452 default:
2453 dev_printk(KERN_WARNING, &pdev->dev,
2454 "Applying B2 workarounds to unknown rev\n");
2455 hp_flags |= MV_HP_ERRATA_60X1B2;
2456 break;
2457 }
2458 break;
2459
2460 case chip_7042:
2461 case chip_6042:
2462 hpriv->ops = &mv6xxx_ops;
2463 hp_flags |= MV_HP_GEN_IIE;
2464
2465 switch (pdev->revision) {
2466 case 0x0:
2467 hp_flags |= MV_HP_ERRATA_XX42A0;
2468 break;
2469 case 0x1:
2470 hp_flags |= MV_HP_ERRATA_60X1C0;
2471 break;
2472 default:
2473 dev_printk(KERN_WARNING, &pdev->dev,
2474 "Applying 60X1C0 workarounds to unknown rev\n");
2475 hp_flags |= MV_HP_ERRATA_60X1C0;
2476 break;
2477 }
2478 break;
2479
2480 default:
2481 printk(KERN_ERR DRV_NAME ": BUG: invalid board index %u\n", board_idx);
2482 return 1;
2483 }
2484
2485 hpriv->hp_flags = hp_flags;
2486
2487 return 0;
2488 }
2489
2490 /**
2491 * mv_init_host - Perform some early initialization of the host.
2492 * @host: ATA host to initialize
2493 * @board_idx: controller index
2494 *
2495 * If possible, do an early global reset of the host. Then do
2496 * our port init and clear/unmask all/relevant host interrupts.
2497 *
2498 * LOCKING:
2499 * Inherited from caller.
2500 */
2501 static int mv_init_host(struct ata_host *host, unsigned int board_idx)
2502 {
2503 int rc = 0, n_hc, port, hc;
2504 struct pci_dev *pdev = to_pci_dev(host->dev);
2505 void __iomem *mmio = host->iomap[MV_PRIMARY_BAR];
2506 struct mv_host_priv *hpriv = host->private_data;
2507
2508 /* global interrupt mask */
2509 writel(0, mmio + HC_MAIN_IRQ_MASK_OFS);
2510
2511 rc = mv_chip_id(host, board_idx);
2512 if (rc)
2513 goto done;
2514
2515 n_hc = mv_get_hc_count(host->ports[0]->flags);
2516
2517 for (port = 0; port < host->n_ports; port++)
2518 hpriv->ops->read_preamp(hpriv, port, mmio);
2519
2520 rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
2521 if (rc)
2522 goto done;
2523
2524 hpriv->ops->reset_flash(hpriv, mmio);
2525 hpriv->ops->reset_bus(pdev, mmio);
2526 hpriv->ops->enable_leds(hpriv, mmio);
2527
2528 for (port = 0; port < host->n_ports; port++) {
2529 if (IS_GEN_II(hpriv)) {
2530 void __iomem *port_mmio = mv_port_base(mmio, port);
2531
2532 u32 ifctl = readl(port_mmio + SATA_INTERFACE_CTL);
2533 ifctl |= (1 << 7); /* enable gen2i speed */
2534 ifctl = (ifctl & 0xfff) | 0x9b1000; /* from chip spec */
2535 writelfl(ifctl, port_mmio + SATA_INTERFACE_CTL);
2536 }
2537
2538 hpriv->ops->phy_errata(hpriv, mmio, port);
2539 }
2540
2541 for (port = 0; port < host->n_ports; port++) {
2542 void __iomem *port_mmio = mv_port_base(mmio, port);
2543 mv_port_init(&host->ports[port]->ioaddr, port_mmio);
2544 }
2545
2546 for (hc = 0; hc < n_hc; hc++) {
2547 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
2548
2549 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
2550 "(before clear)=0x%08x\n", hc,
2551 readl(hc_mmio + HC_CFG_OFS),
2552 readl(hc_mmio + HC_IRQ_CAUSE_OFS));
2553
2554 /* Clear any currently outstanding hc interrupt conditions */
2555 writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
2556 }
2557
2558 /* Clear any currently outstanding host interrupt conditions */
2559 writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
2560
2561 /* and unmask interrupt generation for host regs */
2562 writelfl(PCI_UNMASK_ALL_IRQS, mmio + PCI_IRQ_MASK_OFS);
2563
2564 if (IS_GEN_I(hpriv))
2565 writelfl(~HC_MAIN_MASKED_IRQS_5, mmio + HC_MAIN_IRQ_MASK_OFS);
2566 else
2567 writelfl(~HC_MAIN_MASKED_IRQS, mmio + HC_MAIN_IRQ_MASK_OFS);
2568
2569 VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x "
2570 "PCI int cause/mask=0x%08x/0x%08x\n",
2571 readl(mmio + HC_MAIN_IRQ_CAUSE_OFS),
2572 readl(mmio + HC_MAIN_IRQ_MASK_OFS),
2573 readl(mmio + PCI_IRQ_CAUSE_OFS),
2574 readl(mmio + PCI_IRQ_MASK_OFS));
2575
2576 done:
2577 return rc;
2578 }
2579
2580 /**
2581 * mv_print_info - Dump key info to kernel log for perusal.
2582 * @host: ATA host to print info about
2583 *
2584 * FIXME: complete this.
2585 *
2586 * LOCKING:
2587 * Inherited from caller.
2588 */
2589 static void mv_print_info(struct ata_host *host)
2590 {
2591 struct pci_dev *pdev = to_pci_dev(host->dev);
2592 struct mv_host_priv *hpriv = host->private_data;
2593 u8 scc;
2594 const char *scc_s, *gen;
2595
2596 /* Use this to determine the HW stepping of the chip so we know
2597 * what errata to workaround
2598 */
2599 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
2600 if (scc == 0)
2601 scc_s = "SCSI";
2602 else if (scc == 0x01)
2603 scc_s = "RAID";
2604 else
2605 scc_s = "?";
2606
2607 if (IS_GEN_I(hpriv))
2608 gen = "I";
2609 else if (IS_GEN_II(hpriv))
2610 gen = "II";
2611 else if (IS_GEN_IIE(hpriv))
2612 gen = "IIE";
2613 else
2614 gen = "?";
2615
2616 dev_printk(KERN_INFO, &pdev->dev,
2617 "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
2618 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
2619 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
2620 }
2621
2622 /**
2623 * mv_init_one - handle a positive probe of a Marvell host
2624 * @pdev: PCI device found
2625 * @ent: PCI device ID entry for the matched host
2626 *
2627 * LOCKING:
2628 * Inherited from caller.
2629 */
2630 static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2631 {
2632 static int printed_version = 0;
2633 unsigned int board_idx = (unsigned int)ent->driver_data;
2634 const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
2635 struct ata_host *host;
2636 struct mv_host_priv *hpriv;
2637 int n_ports, rc;
2638
2639 if (!printed_version++)
2640 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
2641
2642 /* allocate host */
2643 n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
2644
2645 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
2646 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
2647 if (!host || !hpriv)
2648 return -ENOMEM;
2649 host->private_data = hpriv;
2650
2651 /* acquire resources */
2652 rc = pcim_enable_device(pdev);
2653 if (rc)
2654 return rc;
2655
2656 rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
2657 if (rc == -EBUSY)
2658 pcim_pin_device(pdev);
2659 if (rc)
2660 return rc;
2661 host->iomap = pcim_iomap_table(pdev);
2662
2663 rc = pci_go_64(pdev);
2664 if (rc)
2665 return rc;
2666
2667 /* initialize adapter */
2668 rc = mv_init_host(host, board_idx);
2669 if (rc)
2670 return rc;
2671
2672 /* Enable interrupts */
2673 if (msi && pci_enable_msi(pdev))
2674 pci_intx(pdev, 1);
2675
2676 mv_dump_pci_cfg(pdev, 0x68);
2677 mv_print_info(host);
2678
2679 pci_set_master(pdev);
2680 pci_try_set_mwi(pdev);
2681 return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
2682 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
2683 }
2684
2685 static int __init mv_init(void)
2686 {
2687 return pci_register_driver(&mv_pci_driver);
2688 }
2689
2690 static void __exit mv_exit(void)
2691 {
2692 pci_unregister_driver(&mv_pci_driver);
2693 }
2694
2695 MODULE_AUTHOR("Brett Russ");
2696 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
2697 MODULE_LICENSE("GPL");
2698 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
2699 MODULE_VERSION(DRV_VERSION);
2700
2701 module_param(msi, int, 0444);
2702 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
2703
2704 module_init(mv_init);
2705 module_exit(mv_exit);
This page took 0.10327 seconds and 6 git commands to generate.