Merge git://git.infradead.org/mtd-2.6
[deliverable/linux.git] / drivers / ata / sata_mv.c
1 /*
2 * sata_mv.c - Marvell SATA support
3 *
4 * Copyright 2005: EMC Corporation, all rights reserved.
5 * Copyright 2005 Red Hat, Inc. All rights reserved.
6 *
7 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; version 2 of the License.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 */
23
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/pci.h>
27 #include <linux/init.h>
28 #include <linux/blkdev.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/sched.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/device.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_cmnd.h>
36 #include <linux/libata.h>
37 #include <asm/io.h>
38
39 #define DRV_NAME "sata_mv"
40 #define DRV_VERSION "0.7"
41
42 enum {
43 /* BAR's are enumerated in terms of pci_resource_start() terms */
44 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
45 MV_IO_BAR = 2, /* offset 0x18: IO space */
46 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
47
48 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
49 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
50
51 MV_PCI_REG_BASE = 0,
52 MV_IRQ_COAL_REG_BASE = 0x18000, /* 6xxx part only */
53 MV_IRQ_COAL_CAUSE = (MV_IRQ_COAL_REG_BASE + 0x08),
54 MV_IRQ_COAL_CAUSE_LO = (MV_IRQ_COAL_REG_BASE + 0x88),
55 MV_IRQ_COAL_CAUSE_HI = (MV_IRQ_COAL_REG_BASE + 0x8c),
56 MV_IRQ_COAL_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xcc),
57 MV_IRQ_COAL_TIME_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xd0),
58
59 MV_SATAHC0_REG_BASE = 0x20000,
60 MV_FLASH_CTL = 0x1046c,
61 MV_GPIO_PORT_CTL = 0x104f0,
62 MV_RESET_CFG = 0x180d8,
63
64 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
65 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
66 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
67 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
68
69 MV_USE_Q_DEPTH = ATA_DEF_QUEUE,
70
71 MV_MAX_Q_DEPTH = 32,
72 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
73
74 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
75 * CRPB needs alignment on a 256B boundary. Size == 256B
76 * SG count of 176 leads to MV_PORT_PRIV_DMA_SZ == 4KB
77 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
78 */
79 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
80 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
81 MV_MAX_SG_CT = 176,
82 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
83 MV_PORT_PRIV_DMA_SZ = (MV_CRQB_Q_SZ + MV_CRPB_Q_SZ + MV_SG_TBL_SZ),
84
85 MV_PORTS_PER_HC = 4,
86 /* == (port / MV_PORTS_PER_HC) to determine HC from 0-7 port */
87 MV_PORT_HC_SHIFT = 2,
88 /* == (port % MV_PORTS_PER_HC) to determine hard port from 0-7 port */
89 MV_PORT_MASK = 3,
90
91 /* Host Flags */
92 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
93 MV_FLAG_IRQ_COALESCE = (1 << 29), /* IRQ coalescing capability */
94 MV_COMMON_FLAGS = (ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
95 ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO |
96 ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING),
97 MV_6XXX_FLAGS = MV_FLAG_IRQ_COALESCE,
98
99 CRQB_FLAG_READ = (1 << 0),
100 CRQB_TAG_SHIFT = 1,
101 CRQB_CMD_ADDR_SHIFT = 8,
102 CRQB_CMD_CS = (0x2 << 11),
103 CRQB_CMD_LAST = (1 << 15),
104
105 CRPB_FLAG_STATUS_SHIFT = 8,
106
107 EPRD_FLAG_END_OF_TBL = (1 << 31),
108
109 /* PCI interface registers */
110
111 PCI_COMMAND_OFS = 0xc00,
112
113 PCI_MAIN_CMD_STS_OFS = 0xd30,
114 STOP_PCI_MASTER = (1 << 2),
115 PCI_MASTER_EMPTY = (1 << 3),
116 GLOB_SFT_RST = (1 << 4),
117
118 MV_PCI_MODE = 0xd00,
119 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
120 MV_PCI_DISC_TIMER = 0xd04,
121 MV_PCI_MSI_TRIGGER = 0xc38,
122 MV_PCI_SERR_MASK = 0xc28,
123 MV_PCI_XBAR_TMOUT = 0x1d04,
124 MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
125 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
126 MV_PCI_ERR_ATTRIBUTE = 0x1d48,
127 MV_PCI_ERR_COMMAND = 0x1d50,
128
129 PCI_IRQ_CAUSE_OFS = 0x1d58,
130 PCI_IRQ_MASK_OFS = 0x1d5c,
131 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
132
133 HC_MAIN_IRQ_CAUSE_OFS = 0x1d60,
134 HC_MAIN_IRQ_MASK_OFS = 0x1d64,
135 PORT0_ERR = (1 << 0), /* shift by port # */
136 PORT0_DONE = (1 << 1), /* shift by port # */
137 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
138 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
139 PCI_ERR = (1 << 18),
140 TRAN_LO_DONE = (1 << 19), /* 6xxx: IRQ coalescing */
141 TRAN_HI_DONE = (1 << 20), /* 6xxx: IRQ coalescing */
142 PORTS_0_7_COAL_DONE = (1 << 21), /* 6xxx: IRQ coalescing */
143 GPIO_INT = (1 << 22),
144 SELF_INT = (1 << 23),
145 TWSI_INT = (1 << 24),
146 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
147 HC_MAIN_MASKED_IRQS = (TRAN_LO_DONE | TRAN_HI_DONE |
148 PORTS_0_7_COAL_DONE | GPIO_INT | TWSI_INT |
149 HC_MAIN_RSVD),
150
151 /* SATAHC registers */
152 HC_CFG_OFS = 0,
153
154 HC_IRQ_CAUSE_OFS = 0x14,
155 CRPB_DMA_DONE = (1 << 0), /* shift by port # */
156 HC_IRQ_COAL = (1 << 4), /* IRQ coalescing */
157 DEV_IRQ = (1 << 8), /* shift by port # */
158
159 /* Shadow block registers */
160 SHD_BLK_OFS = 0x100,
161 SHD_CTL_AST_OFS = 0x20, /* ofs from SHD_BLK_OFS */
162
163 /* SATA registers */
164 SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */
165 SATA_ACTIVE_OFS = 0x350,
166 PHY_MODE3 = 0x310,
167 PHY_MODE4 = 0x314,
168 PHY_MODE2 = 0x330,
169 MV5_PHY_MODE = 0x74,
170 MV5_LT_MODE = 0x30,
171 MV5_PHY_CTL = 0x0C,
172 SATA_INTERFACE_CTL = 0x050,
173
174 MV_M2_PREAMP_MASK = 0x7e0,
175
176 /* Port registers */
177 EDMA_CFG_OFS = 0,
178 EDMA_CFG_Q_DEPTH = 0, /* queueing disabled */
179 EDMA_CFG_NCQ = (1 << 5),
180 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
181 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
182 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
183
184 EDMA_ERR_IRQ_CAUSE_OFS = 0x8,
185 EDMA_ERR_IRQ_MASK_OFS = 0xc,
186 EDMA_ERR_D_PAR = (1 << 0),
187 EDMA_ERR_PRD_PAR = (1 << 1),
188 EDMA_ERR_DEV = (1 << 2),
189 EDMA_ERR_DEV_DCON = (1 << 3),
190 EDMA_ERR_DEV_CON = (1 << 4),
191 EDMA_ERR_SERR = (1 << 5),
192 EDMA_ERR_SELF_DIS = (1 << 7),
193 EDMA_ERR_BIST_ASYNC = (1 << 8),
194 EDMA_ERR_CRBQ_PAR = (1 << 9),
195 EDMA_ERR_CRPB_PAR = (1 << 10),
196 EDMA_ERR_INTRL_PAR = (1 << 11),
197 EDMA_ERR_IORDY = (1 << 12),
198 EDMA_ERR_LNK_CTRL_RX = (0xf << 13),
199 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15),
200 EDMA_ERR_LNK_DATA_RX = (0xf << 17),
201 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21),
202 EDMA_ERR_LNK_DATA_TX = (0x1f << 26),
203 EDMA_ERR_TRANS_PROTO = (1 << 31),
204 EDMA_ERR_FATAL = (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
205 EDMA_ERR_DEV_DCON | EDMA_ERR_CRBQ_PAR |
206 EDMA_ERR_CRPB_PAR | EDMA_ERR_INTRL_PAR |
207 EDMA_ERR_IORDY | EDMA_ERR_LNK_CTRL_RX_2 |
208 EDMA_ERR_LNK_DATA_RX |
209 EDMA_ERR_LNK_DATA_TX |
210 EDMA_ERR_TRANS_PROTO),
211
212 EDMA_REQ_Q_BASE_HI_OFS = 0x10,
213 EDMA_REQ_Q_IN_PTR_OFS = 0x14, /* also contains BASE_LO */
214
215 EDMA_REQ_Q_OUT_PTR_OFS = 0x18,
216 EDMA_REQ_Q_PTR_SHIFT = 5,
217
218 EDMA_RSP_Q_BASE_HI_OFS = 0x1c,
219 EDMA_RSP_Q_IN_PTR_OFS = 0x20,
220 EDMA_RSP_Q_OUT_PTR_OFS = 0x24, /* also contains BASE_LO */
221 EDMA_RSP_Q_PTR_SHIFT = 3,
222
223 EDMA_CMD_OFS = 0x28,
224 EDMA_EN = (1 << 0),
225 EDMA_DS = (1 << 1),
226 ATA_RST = (1 << 2),
227
228 EDMA_IORDY_TMOUT = 0x34,
229 EDMA_ARB_CFG = 0x38,
230
231 /* Host private flags (hp_flags) */
232 MV_HP_FLAG_MSI = (1 << 0),
233 MV_HP_ERRATA_50XXB0 = (1 << 1),
234 MV_HP_ERRATA_50XXB2 = (1 << 2),
235 MV_HP_ERRATA_60X1B2 = (1 << 3),
236 MV_HP_ERRATA_60X1C0 = (1 << 4),
237 MV_HP_ERRATA_XX42A0 = (1 << 5),
238 MV_HP_50XX = (1 << 6),
239 MV_HP_GEN_IIE = (1 << 7),
240
241 /* Port private flags (pp_flags) */
242 MV_PP_FLAG_EDMA_EN = (1 << 0),
243 MV_PP_FLAG_EDMA_DS_ACT = (1 << 1),
244 };
245
246 #define IS_50XX(hpriv) ((hpriv)->hp_flags & MV_HP_50XX)
247 #define IS_60XX(hpriv) (((hpriv)->hp_flags & MV_HP_50XX) == 0)
248 #define IS_GEN_I(hpriv) IS_50XX(hpriv)
249 #define IS_GEN_II(hpriv) IS_60XX(hpriv)
250 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
251
252 enum {
253 /* Our DMA boundary is determined by an ePRD being unable to handle
254 * anything larger than 64KB
255 */
256 MV_DMA_BOUNDARY = 0xffffU,
257
258 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
259
260 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
261 };
262
263 enum chip_type {
264 chip_504x,
265 chip_508x,
266 chip_5080,
267 chip_604x,
268 chip_608x,
269 chip_6042,
270 chip_7042,
271 };
272
273 /* Command ReQuest Block: 32B */
274 struct mv_crqb {
275 __le32 sg_addr;
276 __le32 sg_addr_hi;
277 __le16 ctrl_flags;
278 __le16 ata_cmd[11];
279 };
280
281 struct mv_crqb_iie {
282 __le32 addr;
283 __le32 addr_hi;
284 __le32 flags;
285 __le32 len;
286 __le32 ata_cmd[4];
287 };
288
289 /* Command ResPonse Block: 8B */
290 struct mv_crpb {
291 __le16 id;
292 __le16 flags;
293 __le32 tmstmp;
294 };
295
296 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
297 struct mv_sg {
298 __le32 addr;
299 __le32 flags_size;
300 __le32 addr_hi;
301 __le32 reserved;
302 };
303
304 struct mv_port_priv {
305 struct mv_crqb *crqb;
306 dma_addr_t crqb_dma;
307 struct mv_crpb *crpb;
308 dma_addr_t crpb_dma;
309 struct mv_sg *sg_tbl;
310 dma_addr_t sg_tbl_dma;
311 u32 pp_flags;
312 };
313
314 struct mv_port_signal {
315 u32 amps;
316 u32 pre;
317 };
318
319 struct mv_host_priv;
320 struct mv_hw_ops {
321 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
322 unsigned int port);
323 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
324 void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
325 void __iomem *mmio);
326 int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
327 unsigned int n_hc);
328 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
329 void (*reset_bus)(struct pci_dev *pdev, void __iomem *mmio);
330 };
331
332 struct mv_host_priv {
333 u32 hp_flags;
334 struct mv_port_signal signal[8];
335 const struct mv_hw_ops *ops;
336 };
337
338 static void mv_irq_clear(struct ata_port *ap);
339 static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in);
340 static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
341 static u32 mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in);
342 static void mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
343 static void mv_phy_reset(struct ata_port *ap);
344 static void __mv_phy_reset(struct ata_port *ap, int can_sleep);
345 static void mv_host_stop(struct ata_host *host);
346 static int mv_port_start(struct ata_port *ap);
347 static void mv_port_stop(struct ata_port *ap);
348 static void mv_qc_prep(struct ata_queued_cmd *qc);
349 static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
350 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
351 static irqreturn_t mv_interrupt(int irq, void *dev_instance);
352 static void mv_eng_timeout(struct ata_port *ap);
353 static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent);
354
355 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
356 unsigned int port);
357 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
358 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
359 void __iomem *mmio);
360 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
361 unsigned int n_hc);
362 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
363 static void mv5_reset_bus(struct pci_dev *pdev, void __iomem *mmio);
364
365 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
366 unsigned int port);
367 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
368 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
369 void __iomem *mmio);
370 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
371 unsigned int n_hc);
372 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
373 static void mv_reset_pci_bus(struct pci_dev *pdev, void __iomem *mmio);
374 static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio,
375 unsigned int port_no);
376 static void mv_stop_and_reset(struct ata_port *ap);
377
378 static struct scsi_host_template mv_sht = {
379 .module = THIS_MODULE,
380 .name = DRV_NAME,
381 .ioctl = ata_scsi_ioctl,
382 .queuecommand = ata_scsi_queuecmd,
383 .can_queue = MV_USE_Q_DEPTH,
384 .this_id = ATA_SHT_THIS_ID,
385 .sg_tablesize = MV_MAX_SG_CT / 2,
386 .cmd_per_lun = ATA_SHT_CMD_PER_LUN,
387 .emulated = ATA_SHT_EMULATED,
388 .use_clustering = ATA_SHT_USE_CLUSTERING,
389 .proc_name = DRV_NAME,
390 .dma_boundary = MV_DMA_BOUNDARY,
391 .slave_configure = ata_scsi_slave_config,
392 .slave_destroy = ata_scsi_slave_destroy,
393 .bios_param = ata_std_bios_param,
394 };
395
396 static const struct ata_port_operations mv5_ops = {
397 .port_disable = ata_port_disable,
398
399 .tf_load = ata_tf_load,
400 .tf_read = ata_tf_read,
401 .check_status = ata_check_status,
402 .exec_command = ata_exec_command,
403 .dev_select = ata_std_dev_select,
404
405 .phy_reset = mv_phy_reset,
406
407 .qc_prep = mv_qc_prep,
408 .qc_issue = mv_qc_issue,
409 .data_xfer = ata_mmio_data_xfer,
410
411 .eng_timeout = mv_eng_timeout,
412
413 .irq_handler = mv_interrupt,
414 .irq_clear = mv_irq_clear,
415
416 .scr_read = mv5_scr_read,
417 .scr_write = mv5_scr_write,
418
419 .port_start = mv_port_start,
420 .port_stop = mv_port_stop,
421 .host_stop = mv_host_stop,
422 };
423
424 static const struct ata_port_operations mv6_ops = {
425 .port_disable = ata_port_disable,
426
427 .tf_load = ata_tf_load,
428 .tf_read = ata_tf_read,
429 .check_status = ata_check_status,
430 .exec_command = ata_exec_command,
431 .dev_select = ata_std_dev_select,
432
433 .phy_reset = mv_phy_reset,
434
435 .qc_prep = mv_qc_prep,
436 .qc_issue = mv_qc_issue,
437 .data_xfer = ata_mmio_data_xfer,
438
439 .eng_timeout = mv_eng_timeout,
440
441 .irq_handler = mv_interrupt,
442 .irq_clear = mv_irq_clear,
443
444 .scr_read = mv_scr_read,
445 .scr_write = mv_scr_write,
446
447 .port_start = mv_port_start,
448 .port_stop = mv_port_stop,
449 .host_stop = mv_host_stop,
450 };
451
452 static const struct ata_port_operations mv_iie_ops = {
453 .port_disable = ata_port_disable,
454
455 .tf_load = ata_tf_load,
456 .tf_read = ata_tf_read,
457 .check_status = ata_check_status,
458 .exec_command = ata_exec_command,
459 .dev_select = ata_std_dev_select,
460
461 .phy_reset = mv_phy_reset,
462
463 .qc_prep = mv_qc_prep_iie,
464 .qc_issue = mv_qc_issue,
465 .data_xfer = ata_mmio_data_xfer,
466
467 .eng_timeout = mv_eng_timeout,
468
469 .irq_handler = mv_interrupt,
470 .irq_clear = mv_irq_clear,
471
472 .scr_read = mv_scr_read,
473 .scr_write = mv_scr_write,
474
475 .port_start = mv_port_start,
476 .port_stop = mv_port_stop,
477 .host_stop = mv_host_stop,
478 };
479
480 static const struct ata_port_info mv_port_info[] = {
481 { /* chip_504x */
482 .sht = &mv_sht,
483 .flags = MV_COMMON_FLAGS,
484 .pio_mask = 0x1f, /* pio0-4 */
485 .udma_mask = 0x7f, /* udma0-6 */
486 .port_ops = &mv5_ops,
487 },
488 { /* chip_508x */
489 .sht = &mv_sht,
490 .flags = (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC),
491 .pio_mask = 0x1f, /* pio0-4 */
492 .udma_mask = 0x7f, /* udma0-6 */
493 .port_ops = &mv5_ops,
494 },
495 { /* chip_5080 */
496 .sht = &mv_sht,
497 .flags = (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC),
498 .pio_mask = 0x1f, /* pio0-4 */
499 .udma_mask = 0x7f, /* udma0-6 */
500 .port_ops = &mv5_ops,
501 },
502 { /* chip_604x */
503 .sht = &mv_sht,
504 .flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
505 .pio_mask = 0x1f, /* pio0-4 */
506 .udma_mask = 0x7f, /* udma0-6 */
507 .port_ops = &mv6_ops,
508 },
509 { /* chip_608x */
510 .sht = &mv_sht,
511 .flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS |
512 MV_FLAG_DUAL_HC),
513 .pio_mask = 0x1f, /* pio0-4 */
514 .udma_mask = 0x7f, /* udma0-6 */
515 .port_ops = &mv6_ops,
516 },
517 { /* chip_6042 */
518 .sht = &mv_sht,
519 .flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
520 .pio_mask = 0x1f, /* pio0-4 */
521 .udma_mask = 0x7f, /* udma0-6 */
522 .port_ops = &mv_iie_ops,
523 },
524 { /* chip_7042 */
525 .sht = &mv_sht,
526 .flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
527 .pio_mask = 0x1f, /* pio0-4 */
528 .udma_mask = 0x7f, /* udma0-6 */
529 .port_ops = &mv_iie_ops,
530 },
531 };
532
533 static const struct pci_device_id mv_pci_tbl[] = {
534 { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
535 { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
536 { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
537 { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
538
539 { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
540 { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
541 { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
542 { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
543 { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
544
545 { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
546
547 { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
548
549 { } /* terminate list */
550 };
551
552 static struct pci_driver mv_pci_driver = {
553 .name = DRV_NAME,
554 .id_table = mv_pci_tbl,
555 .probe = mv_init_one,
556 .remove = ata_pci_remove_one,
557 };
558
559 static const struct mv_hw_ops mv5xxx_ops = {
560 .phy_errata = mv5_phy_errata,
561 .enable_leds = mv5_enable_leds,
562 .read_preamp = mv5_read_preamp,
563 .reset_hc = mv5_reset_hc,
564 .reset_flash = mv5_reset_flash,
565 .reset_bus = mv5_reset_bus,
566 };
567
568 static const struct mv_hw_ops mv6xxx_ops = {
569 .phy_errata = mv6_phy_errata,
570 .enable_leds = mv6_enable_leds,
571 .read_preamp = mv6_read_preamp,
572 .reset_hc = mv6_reset_hc,
573 .reset_flash = mv6_reset_flash,
574 .reset_bus = mv_reset_pci_bus,
575 };
576
577 /*
578 * module options
579 */
580 static int msi; /* Use PCI msi; either zero (off, default) or non-zero */
581
582
583 /*
584 * Functions
585 */
586
587 static inline void writelfl(unsigned long data, void __iomem *addr)
588 {
589 writel(data, addr);
590 (void) readl(addr); /* flush to avoid PCI posted write */
591 }
592
593 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
594 {
595 return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
596 }
597
598 static inline unsigned int mv_hc_from_port(unsigned int port)
599 {
600 return port >> MV_PORT_HC_SHIFT;
601 }
602
603 static inline unsigned int mv_hardport_from_port(unsigned int port)
604 {
605 return port & MV_PORT_MASK;
606 }
607
608 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
609 unsigned int port)
610 {
611 return mv_hc_base(base, mv_hc_from_port(port));
612 }
613
614 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
615 {
616 return mv_hc_base_from_port(base, port) +
617 MV_SATAHC_ARBTR_REG_SZ +
618 (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
619 }
620
621 static inline void __iomem *mv_ap_base(struct ata_port *ap)
622 {
623 return mv_port_base(ap->host->mmio_base, ap->port_no);
624 }
625
626 static inline int mv_get_hc_count(unsigned long port_flags)
627 {
628 return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
629 }
630
631 static void mv_irq_clear(struct ata_port *ap)
632 {
633 }
634
635 /**
636 * mv_start_dma - Enable eDMA engine
637 * @base: port base address
638 * @pp: port private data
639 *
640 * Verify the local cache of the eDMA state is accurate with a
641 * WARN_ON.
642 *
643 * LOCKING:
644 * Inherited from caller.
645 */
646 static void mv_start_dma(void __iomem *base, struct mv_port_priv *pp)
647 {
648 if (!(MV_PP_FLAG_EDMA_EN & pp->pp_flags)) {
649 writelfl(EDMA_EN, base + EDMA_CMD_OFS);
650 pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
651 }
652 WARN_ON(!(EDMA_EN & readl(base + EDMA_CMD_OFS)));
653 }
654
655 /**
656 * mv_stop_dma - Disable eDMA engine
657 * @ap: ATA channel to manipulate
658 *
659 * Verify the local cache of the eDMA state is accurate with a
660 * WARN_ON.
661 *
662 * LOCKING:
663 * Inherited from caller.
664 */
665 static void mv_stop_dma(struct ata_port *ap)
666 {
667 void __iomem *port_mmio = mv_ap_base(ap);
668 struct mv_port_priv *pp = ap->private_data;
669 u32 reg;
670 int i;
671
672 if (MV_PP_FLAG_EDMA_EN & pp->pp_flags) {
673 /* Disable EDMA if active. The disable bit auto clears.
674 */
675 writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
676 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
677 } else {
678 WARN_ON(EDMA_EN & readl(port_mmio + EDMA_CMD_OFS));
679 }
680
681 /* now properly wait for the eDMA to stop */
682 for (i = 1000; i > 0; i--) {
683 reg = readl(port_mmio + EDMA_CMD_OFS);
684 if (!(EDMA_EN & reg)) {
685 break;
686 }
687 udelay(100);
688 }
689
690 if (EDMA_EN & reg) {
691 ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
692 /* FIXME: Consider doing a reset here to recover */
693 }
694 }
695
696 #ifdef ATA_DEBUG
697 static void mv_dump_mem(void __iomem *start, unsigned bytes)
698 {
699 int b, w;
700 for (b = 0; b < bytes; ) {
701 DPRINTK("%p: ", start + b);
702 for (w = 0; b < bytes && w < 4; w++) {
703 printk("%08x ",readl(start + b));
704 b += sizeof(u32);
705 }
706 printk("\n");
707 }
708 }
709 #endif
710
711 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
712 {
713 #ifdef ATA_DEBUG
714 int b, w;
715 u32 dw;
716 for (b = 0; b < bytes; ) {
717 DPRINTK("%02x: ", b);
718 for (w = 0; b < bytes && w < 4; w++) {
719 (void) pci_read_config_dword(pdev,b,&dw);
720 printk("%08x ",dw);
721 b += sizeof(u32);
722 }
723 printk("\n");
724 }
725 #endif
726 }
727 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
728 struct pci_dev *pdev)
729 {
730 #ifdef ATA_DEBUG
731 void __iomem *hc_base = mv_hc_base(mmio_base,
732 port >> MV_PORT_HC_SHIFT);
733 void __iomem *port_base;
734 int start_port, num_ports, p, start_hc, num_hcs, hc;
735
736 if (0 > port) {
737 start_hc = start_port = 0;
738 num_ports = 8; /* shld be benign for 4 port devs */
739 num_hcs = 2;
740 } else {
741 start_hc = port >> MV_PORT_HC_SHIFT;
742 start_port = port;
743 num_ports = num_hcs = 1;
744 }
745 DPRINTK("All registers for port(s) %u-%u:\n", start_port,
746 num_ports > 1 ? num_ports - 1 : start_port);
747
748 if (NULL != pdev) {
749 DPRINTK("PCI config space regs:\n");
750 mv_dump_pci_cfg(pdev, 0x68);
751 }
752 DPRINTK("PCI regs:\n");
753 mv_dump_mem(mmio_base+0xc00, 0x3c);
754 mv_dump_mem(mmio_base+0xd00, 0x34);
755 mv_dump_mem(mmio_base+0xf00, 0x4);
756 mv_dump_mem(mmio_base+0x1d00, 0x6c);
757 for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
758 hc_base = mv_hc_base(mmio_base, hc);
759 DPRINTK("HC regs (HC %i):\n", hc);
760 mv_dump_mem(hc_base, 0x1c);
761 }
762 for (p = start_port; p < start_port + num_ports; p++) {
763 port_base = mv_port_base(mmio_base, p);
764 DPRINTK("EDMA regs (port %i):\n",p);
765 mv_dump_mem(port_base, 0x54);
766 DPRINTK("SATA regs (port %i):\n",p);
767 mv_dump_mem(port_base+0x300, 0x60);
768 }
769 #endif
770 }
771
772 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
773 {
774 unsigned int ofs;
775
776 switch (sc_reg_in) {
777 case SCR_STATUS:
778 case SCR_CONTROL:
779 case SCR_ERROR:
780 ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
781 break;
782 case SCR_ACTIVE:
783 ofs = SATA_ACTIVE_OFS; /* active is not with the others */
784 break;
785 default:
786 ofs = 0xffffffffU;
787 break;
788 }
789 return ofs;
790 }
791
792 static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in)
793 {
794 unsigned int ofs = mv_scr_offset(sc_reg_in);
795
796 if (0xffffffffU != ofs) {
797 return readl(mv_ap_base(ap) + ofs);
798 } else {
799 return (u32) ofs;
800 }
801 }
802
803 static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
804 {
805 unsigned int ofs = mv_scr_offset(sc_reg_in);
806
807 if (0xffffffffU != ofs) {
808 writelfl(val, mv_ap_base(ap) + ofs);
809 }
810 }
811
812 /**
813 * mv_host_stop - Host specific cleanup/stop routine.
814 * @host: host data structure
815 *
816 * Disable ints, cleanup host memory, call general purpose
817 * host_stop.
818 *
819 * LOCKING:
820 * Inherited from caller.
821 */
822 static void mv_host_stop(struct ata_host *host)
823 {
824 struct mv_host_priv *hpriv = host->private_data;
825 struct pci_dev *pdev = to_pci_dev(host->dev);
826
827 if (hpriv->hp_flags & MV_HP_FLAG_MSI) {
828 pci_disable_msi(pdev);
829 } else {
830 pci_intx(pdev, 0);
831 }
832 kfree(hpriv);
833 ata_host_stop(host);
834 }
835
836 static inline void mv_priv_free(struct mv_port_priv *pp, struct device *dev)
837 {
838 dma_free_coherent(dev, MV_PORT_PRIV_DMA_SZ, pp->crpb, pp->crpb_dma);
839 }
840
841 static void mv_edma_cfg(struct mv_host_priv *hpriv, void __iomem *port_mmio)
842 {
843 u32 cfg = readl(port_mmio + EDMA_CFG_OFS);
844
845 /* set up non-NCQ EDMA configuration */
846 cfg &= ~0x1f; /* clear queue depth */
847 cfg &= ~EDMA_CFG_NCQ; /* clear NCQ mode */
848 cfg &= ~(1 << 9); /* disable equeue */
849
850 if (IS_GEN_I(hpriv))
851 cfg |= (1 << 8); /* enab config burst size mask */
852
853 else if (IS_GEN_II(hpriv))
854 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
855
856 else if (IS_GEN_IIE(hpriv)) {
857 cfg |= (1 << 23); /* dis RX PM port mask */
858 cfg &= ~(1 << 16); /* dis FIS-based switching (for now) */
859 cfg &= ~(1 << 19); /* dis 128-entry queue (for now?) */
860 cfg |= (1 << 18); /* enab early completion */
861 cfg |= (1 << 17); /* enab host q cache */
862 cfg |= (1 << 22); /* enab cutthrough */
863 }
864
865 writelfl(cfg, port_mmio + EDMA_CFG_OFS);
866 }
867
868 /**
869 * mv_port_start - Port specific init/start routine.
870 * @ap: ATA channel to manipulate
871 *
872 * Allocate and point to DMA memory, init port private memory,
873 * zero indices.
874 *
875 * LOCKING:
876 * Inherited from caller.
877 */
878 static int mv_port_start(struct ata_port *ap)
879 {
880 struct device *dev = ap->host->dev;
881 struct mv_host_priv *hpriv = ap->host->private_data;
882 struct mv_port_priv *pp;
883 void __iomem *port_mmio = mv_ap_base(ap);
884 void *mem;
885 dma_addr_t mem_dma;
886 int rc = -ENOMEM;
887
888 pp = kmalloc(sizeof(*pp), GFP_KERNEL);
889 if (!pp)
890 goto err_out;
891 memset(pp, 0, sizeof(*pp));
892
893 mem = dma_alloc_coherent(dev, MV_PORT_PRIV_DMA_SZ, &mem_dma,
894 GFP_KERNEL);
895 if (!mem)
896 goto err_out_pp;
897 memset(mem, 0, MV_PORT_PRIV_DMA_SZ);
898
899 rc = ata_pad_alloc(ap, dev);
900 if (rc)
901 goto err_out_priv;
902
903 /* First item in chunk of DMA memory:
904 * 32-slot command request table (CRQB), 32 bytes each in size
905 */
906 pp->crqb = mem;
907 pp->crqb_dma = mem_dma;
908 mem += MV_CRQB_Q_SZ;
909 mem_dma += MV_CRQB_Q_SZ;
910
911 /* Second item:
912 * 32-slot command response table (CRPB), 8 bytes each in size
913 */
914 pp->crpb = mem;
915 pp->crpb_dma = mem_dma;
916 mem += MV_CRPB_Q_SZ;
917 mem_dma += MV_CRPB_Q_SZ;
918
919 /* Third item:
920 * Table of scatter-gather descriptors (ePRD), 16 bytes each
921 */
922 pp->sg_tbl = mem;
923 pp->sg_tbl_dma = mem_dma;
924
925 mv_edma_cfg(hpriv, port_mmio);
926
927 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
928 writelfl(pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK,
929 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
930
931 if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
932 writelfl(pp->crqb_dma & 0xffffffff,
933 port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
934 else
935 writelfl(0, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
936
937 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
938
939 if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
940 writelfl(pp->crpb_dma & 0xffffffff,
941 port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
942 else
943 writelfl(0, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
944
945 writelfl(pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK,
946 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
947
948 /* Don't turn on EDMA here...do it before DMA commands only. Else
949 * we'll be unable to send non-data, PIO, etc due to restricted access
950 * to shadow regs.
951 */
952 ap->private_data = pp;
953 return 0;
954
955 err_out_priv:
956 mv_priv_free(pp, dev);
957 err_out_pp:
958 kfree(pp);
959 err_out:
960 return rc;
961 }
962
963 /**
964 * mv_port_stop - Port specific cleanup/stop routine.
965 * @ap: ATA channel to manipulate
966 *
967 * Stop DMA, cleanup port memory.
968 *
969 * LOCKING:
970 * This routine uses the host lock to protect the DMA stop.
971 */
972 static void mv_port_stop(struct ata_port *ap)
973 {
974 struct device *dev = ap->host->dev;
975 struct mv_port_priv *pp = ap->private_data;
976 unsigned long flags;
977
978 spin_lock_irqsave(&ap->host->lock, flags);
979 mv_stop_dma(ap);
980 spin_unlock_irqrestore(&ap->host->lock, flags);
981
982 ap->private_data = NULL;
983 ata_pad_free(ap, dev);
984 mv_priv_free(pp, dev);
985 kfree(pp);
986 }
987
988 /**
989 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
990 * @qc: queued command whose SG list to source from
991 *
992 * Populate the SG list and mark the last entry.
993 *
994 * LOCKING:
995 * Inherited from caller.
996 */
997 static void mv_fill_sg(struct ata_queued_cmd *qc)
998 {
999 struct mv_port_priv *pp = qc->ap->private_data;
1000 unsigned int i = 0;
1001 struct scatterlist *sg;
1002
1003 ata_for_each_sg(sg, qc) {
1004 dma_addr_t addr;
1005 u32 sg_len, len, offset;
1006
1007 addr = sg_dma_address(sg);
1008 sg_len = sg_dma_len(sg);
1009
1010 while (sg_len) {
1011 offset = addr & MV_DMA_BOUNDARY;
1012 len = sg_len;
1013 if ((offset + sg_len) > 0x10000)
1014 len = 0x10000 - offset;
1015
1016 pp->sg_tbl[i].addr = cpu_to_le32(addr & 0xffffffff);
1017 pp->sg_tbl[i].addr_hi = cpu_to_le32((addr >> 16) >> 16);
1018 pp->sg_tbl[i].flags_size = cpu_to_le32(len & 0xffff);
1019
1020 sg_len -= len;
1021 addr += len;
1022
1023 if (!sg_len && ata_sg_is_last(sg, qc))
1024 pp->sg_tbl[i].flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1025
1026 i++;
1027 }
1028 }
1029 }
1030
1031 static inline unsigned mv_inc_q_index(unsigned index)
1032 {
1033 return (index + 1) & MV_MAX_Q_DEPTH_MASK;
1034 }
1035
1036 static inline void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1037 {
1038 u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1039 (last ? CRQB_CMD_LAST : 0);
1040 *cmdw = cpu_to_le16(tmp);
1041 }
1042
1043 /**
1044 * mv_qc_prep - Host specific command preparation.
1045 * @qc: queued command to prepare
1046 *
1047 * This routine simply redirects to the general purpose routine
1048 * if command is not DMA. Else, it handles prep of the CRQB
1049 * (command request block), does some sanity checking, and calls
1050 * the SG load routine.
1051 *
1052 * LOCKING:
1053 * Inherited from caller.
1054 */
1055 static void mv_qc_prep(struct ata_queued_cmd *qc)
1056 {
1057 struct ata_port *ap = qc->ap;
1058 struct mv_port_priv *pp = ap->private_data;
1059 __le16 *cw;
1060 struct ata_taskfile *tf;
1061 u16 flags = 0;
1062 unsigned in_index;
1063
1064 if (ATA_PROT_DMA != qc->tf.protocol)
1065 return;
1066
1067 /* Fill in command request block
1068 */
1069 if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1070 flags |= CRQB_FLAG_READ;
1071 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1072 flags |= qc->tag << CRQB_TAG_SHIFT;
1073
1074 /* get current queue index from hardware */
1075 in_index = (readl(mv_ap_base(ap) + EDMA_REQ_Q_IN_PTR_OFS)
1076 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1077
1078 pp->crqb[in_index].sg_addr =
1079 cpu_to_le32(pp->sg_tbl_dma & 0xffffffff);
1080 pp->crqb[in_index].sg_addr_hi =
1081 cpu_to_le32((pp->sg_tbl_dma >> 16) >> 16);
1082 pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
1083
1084 cw = &pp->crqb[in_index].ata_cmd[0];
1085 tf = &qc->tf;
1086
1087 /* Sadly, the CRQB cannot accomodate all registers--there are
1088 * only 11 bytes...so we must pick and choose required
1089 * registers based on the command. So, we drop feature and
1090 * hob_feature for [RW] DMA commands, but they are needed for
1091 * NCQ. NCQ will drop hob_nsect.
1092 */
1093 switch (tf->command) {
1094 case ATA_CMD_READ:
1095 case ATA_CMD_READ_EXT:
1096 case ATA_CMD_WRITE:
1097 case ATA_CMD_WRITE_EXT:
1098 case ATA_CMD_WRITE_FUA_EXT:
1099 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
1100 break;
1101 #ifdef LIBATA_NCQ /* FIXME: remove this line when NCQ added */
1102 case ATA_CMD_FPDMA_READ:
1103 case ATA_CMD_FPDMA_WRITE:
1104 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
1105 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
1106 break;
1107 #endif /* FIXME: remove this line when NCQ added */
1108 default:
1109 /* The only other commands EDMA supports in non-queued and
1110 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
1111 * of which are defined/used by Linux. If we get here, this
1112 * driver needs work.
1113 *
1114 * FIXME: modify libata to give qc_prep a return value and
1115 * return error here.
1116 */
1117 BUG_ON(tf->command);
1118 break;
1119 }
1120 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
1121 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
1122 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
1123 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
1124 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
1125 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
1126 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
1127 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
1128 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
1129
1130 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1131 return;
1132 mv_fill_sg(qc);
1133 }
1134
1135 /**
1136 * mv_qc_prep_iie - Host specific command preparation.
1137 * @qc: queued command to prepare
1138 *
1139 * This routine simply redirects to the general purpose routine
1140 * if command is not DMA. Else, it handles prep of the CRQB
1141 * (command request block), does some sanity checking, and calls
1142 * the SG load routine.
1143 *
1144 * LOCKING:
1145 * Inherited from caller.
1146 */
1147 static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
1148 {
1149 struct ata_port *ap = qc->ap;
1150 struct mv_port_priv *pp = ap->private_data;
1151 struct mv_crqb_iie *crqb;
1152 struct ata_taskfile *tf;
1153 unsigned in_index;
1154 u32 flags = 0;
1155
1156 if (ATA_PROT_DMA != qc->tf.protocol)
1157 return;
1158
1159 /* Fill in Gen IIE command request block
1160 */
1161 if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1162 flags |= CRQB_FLAG_READ;
1163
1164 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1165 flags |= qc->tag << CRQB_TAG_SHIFT;
1166
1167 /* get current queue index from hardware */
1168 in_index = (readl(mv_ap_base(ap) + EDMA_REQ_Q_IN_PTR_OFS)
1169 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1170
1171 crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
1172 crqb->addr = cpu_to_le32(pp->sg_tbl_dma & 0xffffffff);
1173 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma >> 16) >> 16);
1174 crqb->flags = cpu_to_le32(flags);
1175
1176 tf = &qc->tf;
1177 crqb->ata_cmd[0] = cpu_to_le32(
1178 (tf->command << 16) |
1179 (tf->feature << 24)
1180 );
1181 crqb->ata_cmd[1] = cpu_to_le32(
1182 (tf->lbal << 0) |
1183 (tf->lbam << 8) |
1184 (tf->lbah << 16) |
1185 (tf->device << 24)
1186 );
1187 crqb->ata_cmd[2] = cpu_to_le32(
1188 (tf->hob_lbal << 0) |
1189 (tf->hob_lbam << 8) |
1190 (tf->hob_lbah << 16) |
1191 (tf->hob_feature << 24)
1192 );
1193 crqb->ata_cmd[3] = cpu_to_le32(
1194 (tf->nsect << 0) |
1195 (tf->hob_nsect << 8)
1196 );
1197
1198 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1199 return;
1200 mv_fill_sg(qc);
1201 }
1202
1203 /**
1204 * mv_qc_issue - Initiate a command to the host
1205 * @qc: queued command to start
1206 *
1207 * This routine simply redirects to the general purpose routine
1208 * if command is not DMA. Else, it sanity checks our local
1209 * caches of the request producer/consumer indices then enables
1210 * DMA and bumps the request producer index.
1211 *
1212 * LOCKING:
1213 * Inherited from caller.
1214 */
1215 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
1216 {
1217 void __iomem *port_mmio = mv_ap_base(qc->ap);
1218 struct mv_port_priv *pp = qc->ap->private_data;
1219 unsigned in_index;
1220 u32 in_ptr;
1221
1222 if (ATA_PROT_DMA != qc->tf.protocol) {
1223 /* We're about to send a non-EDMA capable command to the
1224 * port. Turn off EDMA so there won't be problems accessing
1225 * shadow block, etc registers.
1226 */
1227 mv_stop_dma(qc->ap);
1228 return ata_qc_issue_prot(qc);
1229 }
1230
1231 in_ptr = readl(port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
1232 in_index = (in_ptr >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1233
1234 /* until we do queuing, the queue should be empty at this point */
1235 WARN_ON(in_index != ((readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS)
1236 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK));
1237
1238 in_index = mv_inc_q_index(in_index); /* now incr producer index */
1239
1240 mv_start_dma(port_mmio, pp);
1241
1242 /* and write the request in pointer to kick the EDMA to life */
1243 in_ptr &= EDMA_REQ_Q_BASE_LO_MASK;
1244 in_ptr |= in_index << EDMA_REQ_Q_PTR_SHIFT;
1245 writelfl(in_ptr, port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
1246
1247 return 0;
1248 }
1249
1250 /**
1251 * mv_get_crpb_status - get status from most recently completed cmd
1252 * @ap: ATA channel to manipulate
1253 *
1254 * This routine is for use when the port is in DMA mode, when it
1255 * will be using the CRPB (command response block) method of
1256 * returning command completion information. We check indices
1257 * are good, grab status, and bump the response consumer index to
1258 * prove that we're up to date.
1259 *
1260 * LOCKING:
1261 * Inherited from caller.
1262 */
1263 static u8 mv_get_crpb_status(struct ata_port *ap)
1264 {
1265 void __iomem *port_mmio = mv_ap_base(ap);
1266 struct mv_port_priv *pp = ap->private_data;
1267 unsigned out_index;
1268 u32 out_ptr;
1269 u8 ata_status;
1270
1271 out_ptr = readl(port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
1272 out_index = (out_ptr >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1273
1274 ata_status = le16_to_cpu(pp->crpb[out_index].flags)
1275 >> CRPB_FLAG_STATUS_SHIFT;
1276
1277 /* increment our consumer index... */
1278 out_index = mv_inc_q_index(out_index);
1279
1280 /* and, until we do NCQ, there should only be 1 CRPB waiting */
1281 WARN_ON(out_index != ((readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS)
1282 >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK));
1283
1284 /* write out our inc'd consumer index so EDMA knows we're caught up */
1285 out_ptr &= EDMA_RSP_Q_BASE_LO_MASK;
1286 out_ptr |= out_index << EDMA_RSP_Q_PTR_SHIFT;
1287 writelfl(out_ptr, port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
1288
1289 /* Return ATA status register for completed CRPB */
1290 return ata_status;
1291 }
1292
1293 /**
1294 * mv_err_intr - Handle error interrupts on the port
1295 * @ap: ATA channel to manipulate
1296 * @reset_allowed: bool: 0 == don't trigger from reset here
1297 *
1298 * In most cases, just clear the interrupt and move on. However,
1299 * some cases require an eDMA reset, which is done right before
1300 * the COMRESET in mv_phy_reset(). The SERR case requires a
1301 * clear of pending errors in the SATA SERROR register. Finally,
1302 * if the port disabled DMA, update our cached copy to match.
1303 *
1304 * LOCKING:
1305 * Inherited from caller.
1306 */
1307 static void mv_err_intr(struct ata_port *ap, int reset_allowed)
1308 {
1309 void __iomem *port_mmio = mv_ap_base(ap);
1310 u32 edma_err_cause, serr = 0;
1311
1312 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1313
1314 if (EDMA_ERR_SERR & edma_err_cause) {
1315 sata_scr_read(ap, SCR_ERROR, &serr);
1316 sata_scr_write_flush(ap, SCR_ERROR, serr);
1317 }
1318 if (EDMA_ERR_SELF_DIS & edma_err_cause) {
1319 struct mv_port_priv *pp = ap->private_data;
1320 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1321 }
1322 DPRINTK(KERN_ERR "ata%u: port error; EDMA err cause: 0x%08x "
1323 "SERR: 0x%08x\n", ap->id, edma_err_cause, serr);
1324
1325 /* Clear EDMA now that SERR cleanup done */
1326 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1327
1328 /* check for fatal here and recover if needed */
1329 if (reset_allowed && (EDMA_ERR_FATAL & edma_err_cause))
1330 mv_stop_and_reset(ap);
1331 }
1332
1333 /**
1334 * mv_host_intr - Handle all interrupts on the given host controller
1335 * @host: host specific structure
1336 * @relevant: port error bits relevant to this host controller
1337 * @hc: which host controller we're to look at
1338 *
1339 * Read then write clear the HC interrupt status then walk each
1340 * port connected to the HC and see if it needs servicing. Port
1341 * success ints are reported in the HC interrupt status reg, the
1342 * port error ints are reported in the higher level main
1343 * interrupt status register and thus are passed in via the
1344 * 'relevant' argument.
1345 *
1346 * LOCKING:
1347 * Inherited from caller.
1348 */
1349 static void mv_host_intr(struct ata_host *host, u32 relevant, unsigned int hc)
1350 {
1351 void __iomem *mmio = host->mmio_base;
1352 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
1353 struct ata_queued_cmd *qc;
1354 u32 hc_irq_cause;
1355 int shift, port, port0, hard_port, handled;
1356 unsigned int err_mask;
1357
1358 if (hc == 0) {
1359 port0 = 0;
1360 } else {
1361 port0 = MV_PORTS_PER_HC;
1362 }
1363
1364 /* we'll need the HC success int register in most cases */
1365 hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
1366 if (hc_irq_cause) {
1367 writelfl(~hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
1368 }
1369
1370 VPRINTK("ENTER, hc%u relevant=0x%08x HC IRQ cause=0x%08x\n",
1371 hc,relevant,hc_irq_cause);
1372
1373 for (port = port0; port < port0 + MV_PORTS_PER_HC; port++) {
1374 u8 ata_status = 0;
1375 struct ata_port *ap = host->ports[port];
1376 struct mv_port_priv *pp = ap->private_data;
1377
1378 hard_port = mv_hardport_from_port(port); /* range 0..3 */
1379 handled = 0; /* ensure ata_status is set if handled++ */
1380
1381 /* Note that DEV_IRQ might happen spuriously during EDMA,
1382 * and should be ignored in such cases.
1383 * The cause of this is still under investigation.
1384 */
1385 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1386 /* EDMA: check for response queue interrupt */
1387 if ((CRPB_DMA_DONE << hard_port) & hc_irq_cause) {
1388 ata_status = mv_get_crpb_status(ap);
1389 handled = 1;
1390 }
1391 } else {
1392 /* PIO: check for device (drive) interrupt */
1393 if ((DEV_IRQ << hard_port) & hc_irq_cause) {
1394 ata_status = readb((void __iomem *)
1395 ap->ioaddr.status_addr);
1396 handled = 1;
1397 /* ignore spurious intr if drive still BUSY */
1398 if (ata_status & ATA_BUSY) {
1399 ata_status = 0;
1400 handled = 0;
1401 }
1402 }
1403 }
1404
1405 if (ap && (ap->flags & ATA_FLAG_DISABLED))
1406 continue;
1407
1408 err_mask = ac_err_mask(ata_status);
1409
1410 shift = port << 1; /* (port * 2) */
1411 if (port >= MV_PORTS_PER_HC) {
1412 shift++; /* skip bit 8 in the HC Main IRQ reg */
1413 }
1414 if ((PORT0_ERR << shift) & relevant) {
1415 mv_err_intr(ap, 1);
1416 err_mask |= AC_ERR_OTHER;
1417 handled = 1;
1418 }
1419
1420 if (handled) {
1421 qc = ata_qc_from_tag(ap, ap->active_tag);
1422 if (qc && (qc->flags & ATA_QCFLAG_ACTIVE)) {
1423 VPRINTK("port %u IRQ found for qc, "
1424 "ata_status 0x%x\n", port,ata_status);
1425 /* mark qc status appropriately */
1426 if (!(qc->tf.flags & ATA_TFLAG_POLLING)) {
1427 qc->err_mask |= err_mask;
1428 ata_qc_complete(qc);
1429 }
1430 }
1431 }
1432 }
1433 VPRINTK("EXIT\n");
1434 }
1435
1436 /**
1437 * mv_interrupt -
1438 * @irq: unused
1439 * @dev_instance: private data; in this case the host structure
1440 * @regs: unused
1441 *
1442 * Read the read only register to determine if any host
1443 * controllers have pending interrupts. If so, call lower level
1444 * routine to handle. Also check for PCI errors which are only
1445 * reported here.
1446 *
1447 * LOCKING:
1448 * This routine holds the host lock while processing pending
1449 * interrupts.
1450 */
1451 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
1452 {
1453 struct ata_host *host = dev_instance;
1454 unsigned int hc, handled = 0, n_hcs;
1455 void __iomem *mmio = host->mmio_base;
1456 struct mv_host_priv *hpriv;
1457 u32 irq_stat;
1458
1459 irq_stat = readl(mmio + HC_MAIN_IRQ_CAUSE_OFS);
1460
1461 /* check the cases where we either have nothing pending or have read
1462 * a bogus register value which can indicate HW removal or PCI fault
1463 */
1464 if (!irq_stat || (0xffffffffU == irq_stat)) {
1465 return IRQ_NONE;
1466 }
1467
1468 n_hcs = mv_get_hc_count(host->ports[0]->flags);
1469 spin_lock(&host->lock);
1470
1471 for (hc = 0; hc < n_hcs; hc++) {
1472 u32 relevant = irq_stat & (HC0_IRQ_PEND << (hc * HC_SHIFT));
1473 if (relevant) {
1474 mv_host_intr(host, relevant, hc);
1475 handled++;
1476 }
1477 }
1478
1479 hpriv = host->private_data;
1480 if (IS_60XX(hpriv)) {
1481 /* deal with the interrupt coalescing bits */
1482 if (irq_stat & (TRAN_LO_DONE | TRAN_HI_DONE | PORTS_0_7_COAL_DONE)) {
1483 writelfl(0, mmio + MV_IRQ_COAL_CAUSE_LO);
1484 writelfl(0, mmio + MV_IRQ_COAL_CAUSE_HI);
1485 writelfl(0, mmio + MV_IRQ_COAL_CAUSE);
1486 }
1487 }
1488
1489 if (PCI_ERR & irq_stat) {
1490 printk(KERN_ERR DRV_NAME ": PCI ERROR; PCI IRQ cause=0x%08x\n",
1491 readl(mmio + PCI_IRQ_CAUSE_OFS));
1492
1493 DPRINTK("All regs @ PCI error\n");
1494 mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
1495
1496 writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
1497 handled++;
1498 }
1499 spin_unlock(&host->lock);
1500
1501 return IRQ_RETVAL(handled);
1502 }
1503
1504 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
1505 {
1506 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
1507 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
1508
1509 return hc_mmio + ofs;
1510 }
1511
1512 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
1513 {
1514 unsigned int ofs;
1515
1516 switch (sc_reg_in) {
1517 case SCR_STATUS:
1518 case SCR_ERROR:
1519 case SCR_CONTROL:
1520 ofs = sc_reg_in * sizeof(u32);
1521 break;
1522 default:
1523 ofs = 0xffffffffU;
1524 break;
1525 }
1526 return ofs;
1527 }
1528
1529 static u32 mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in)
1530 {
1531 void __iomem *mmio = mv5_phy_base(ap->host->mmio_base, ap->port_no);
1532 unsigned int ofs = mv5_scr_offset(sc_reg_in);
1533
1534 if (ofs != 0xffffffffU)
1535 return readl(mmio + ofs);
1536 else
1537 return (u32) ofs;
1538 }
1539
1540 static void mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
1541 {
1542 void __iomem *mmio = mv5_phy_base(ap->host->mmio_base, ap->port_no);
1543 unsigned int ofs = mv5_scr_offset(sc_reg_in);
1544
1545 if (ofs != 0xffffffffU)
1546 writelfl(val, mmio + ofs);
1547 }
1548
1549 static void mv5_reset_bus(struct pci_dev *pdev, void __iomem *mmio)
1550 {
1551 u8 rev_id;
1552 int early_5080;
1553
1554 pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
1555
1556 early_5080 = (pdev->device == 0x5080) && (rev_id == 0);
1557
1558 if (!early_5080) {
1559 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
1560 tmp |= (1 << 0);
1561 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
1562 }
1563
1564 mv_reset_pci_bus(pdev, mmio);
1565 }
1566
1567 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
1568 {
1569 writel(0x0fcfffff, mmio + MV_FLASH_CTL);
1570 }
1571
1572 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
1573 void __iomem *mmio)
1574 {
1575 void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
1576 u32 tmp;
1577
1578 tmp = readl(phy_mmio + MV5_PHY_MODE);
1579
1580 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
1581 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
1582 }
1583
1584 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
1585 {
1586 u32 tmp;
1587
1588 writel(0, mmio + MV_GPIO_PORT_CTL);
1589
1590 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
1591
1592 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
1593 tmp |= ~(1 << 0);
1594 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
1595 }
1596
1597 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
1598 unsigned int port)
1599 {
1600 void __iomem *phy_mmio = mv5_phy_base(mmio, port);
1601 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
1602 u32 tmp;
1603 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
1604
1605 if (fix_apm_sq) {
1606 tmp = readl(phy_mmio + MV5_LT_MODE);
1607 tmp |= (1 << 19);
1608 writel(tmp, phy_mmio + MV5_LT_MODE);
1609
1610 tmp = readl(phy_mmio + MV5_PHY_CTL);
1611 tmp &= ~0x3;
1612 tmp |= 0x1;
1613 writel(tmp, phy_mmio + MV5_PHY_CTL);
1614 }
1615
1616 tmp = readl(phy_mmio + MV5_PHY_MODE);
1617 tmp &= ~mask;
1618 tmp |= hpriv->signal[port].pre;
1619 tmp |= hpriv->signal[port].amps;
1620 writel(tmp, phy_mmio + MV5_PHY_MODE);
1621 }
1622
1623
1624 #undef ZERO
1625 #define ZERO(reg) writel(0, port_mmio + (reg))
1626 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
1627 unsigned int port)
1628 {
1629 void __iomem *port_mmio = mv_port_base(mmio, port);
1630
1631 writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
1632
1633 mv_channel_reset(hpriv, mmio, port);
1634
1635 ZERO(0x028); /* command */
1636 writel(0x11f, port_mmio + EDMA_CFG_OFS);
1637 ZERO(0x004); /* timer */
1638 ZERO(0x008); /* irq err cause */
1639 ZERO(0x00c); /* irq err mask */
1640 ZERO(0x010); /* rq bah */
1641 ZERO(0x014); /* rq inp */
1642 ZERO(0x018); /* rq outp */
1643 ZERO(0x01c); /* respq bah */
1644 ZERO(0x024); /* respq outp */
1645 ZERO(0x020); /* respq inp */
1646 ZERO(0x02c); /* test control */
1647 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
1648 }
1649 #undef ZERO
1650
1651 #define ZERO(reg) writel(0, hc_mmio + (reg))
1652 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
1653 unsigned int hc)
1654 {
1655 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
1656 u32 tmp;
1657
1658 ZERO(0x00c);
1659 ZERO(0x010);
1660 ZERO(0x014);
1661 ZERO(0x018);
1662
1663 tmp = readl(hc_mmio + 0x20);
1664 tmp &= 0x1c1c1c1c;
1665 tmp |= 0x03030303;
1666 writel(tmp, hc_mmio + 0x20);
1667 }
1668 #undef ZERO
1669
1670 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
1671 unsigned int n_hc)
1672 {
1673 unsigned int hc, port;
1674
1675 for (hc = 0; hc < n_hc; hc++) {
1676 for (port = 0; port < MV_PORTS_PER_HC; port++)
1677 mv5_reset_hc_port(hpriv, mmio,
1678 (hc * MV_PORTS_PER_HC) + port);
1679
1680 mv5_reset_one_hc(hpriv, mmio, hc);
1681 }
1682
1683 return 0;
1684 }
1685
1686 #undef ZERO
1687 #define ZERO(reg) writel(0, mmio + (reg))
1688 static void mv_reset_pci_bus(struct pci_dev *pdev, void __iomem *mmio)
1689 {
1690 u32 tmp;
1691
1692 tmp = readl(mmio + MV_PCI_MODE);
1693 tmp &= 0xff00ffff;
1694 writel(tmp, mmio + MV_PCI_MODE);
1695
1696 ZERO(MV_PCI_DISC_TIMER);
1697 ZERO(MV_PCI_MSI_TRIGGER);
1698 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
1699 ZERO(HC_MAIN_IRQ_MASK_OFS);
1700 ZERO(MV_PCI_SERR_MASK);
1701 ZERO(PCI_IRQ_CAUSE_OFS);
1702 ZERO(PCI_IRQ_MASK_OFS);
1703 ZERO(MV_PCI_ERR_LOW_ADDRESS);
1704 ZERO(MV_PCI_ERR_HIGH_ADDRESS);
1705 ZERO(MV_PCI_ERR_ATTRIBUTE);
1706 ZERO(MV_PCI_ERR_COMMAND);
1707 }
1708 #undef ZERO
1709
1710 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
1711 {
1712 u32 tmp;
1713
1714 mv5_reset_flash(hpriv, mmio);
1715
1716 tmp = readl(mmio + MV_GPIO_PORT_CTL);
1717 tmp &= 0x3;
1718 tmp |= (1 << 5) | (1 << 6);
1719 writel(tmp, mmio + MV_GPIO_PORT_CTL);
1720 }
1721
1722 /**
1723 * mv6_reset_hc - Perform the 6xxx global soft reset
1724 * @mmio: base address of the HBA
1725 *
1726 * This routine only applies to 6xxx parts.
1727 *
1728 * LOCKING:
1729 * Inherited from caller.
1730 */
1731 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
1732 unsigned int n_hc)
1733 {
1734 void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS;
1735 int i, rc = 0;
1736 u32 t;
1737
1738 /* Following procedure defined in PCI "main command and status
1739 * register" table.
1740 */
1741 t = readl(reg);
1742 writel(t | STOP_PCI_MASTER, reg);
1743
1744 for (i = 0; i < 1000; i++) {
1745 udelay(1);
1746 t = readl(reg);
1747 if (PCI_MASTER_EMPTY & t) {
1748 break;
1749 }
1750 }
1751 if (!(PCI_MASTER_EMPTY & t)) {
1752 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
1753 rc = 1;
1754 goto done;
1755 }
1756
1757 /* set reset */
1758 i = 5;
1759 do {
1760 writel(t | GLOB_SFT_RST, reg);
1761 t = readl(reg);
1762 udelay(1);
1763 } while (!(GLOB_SFT_RST & t) && (i-- > 0));
1764
1765 if (!(GLOB_SFT_RST & t)) {
1766 printk(KERN_ERR DRV_NAME ": can't set global reset\n");
1767 rc = 1;
1768 goto done;
1769 }
1770
1771 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
1772 i = 5;
1773 do {
1774 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
1775 t = readl(reg);
1776 udelay(1);
1777 } while ((GLOB_SFT_RST & t) && (i-- > 0));
1778
1779 if (GLOB_SFT_RST & t) {
1780 printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
1781 rc = 1;
1782 }
1783 done:
1784 return rc;
1785 }
1786
1787 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
1788 void __iomem *mmio)
1789 {
1790 void __iomem *port_mmio;
1791 u32 tmp;
1792
1793 tmp = readl(mmio + MV_RESET_CFG);
1794 if ((tmp & (1 << 0)) == 0) {
1795 hpriv->signal[idx].amps = 0x7 << 8;
1796 hpriv->signal[idx].pre = 0x1 << 5;
1797 return;
1798 }
1799
1800 port_mmio = mv_port_base(mmio, idx);
1801 tmp = readl(port_mmio + PHY_MODE2);
1802
1803 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
1804 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
1805 }
1806
1807 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
1808 {
1809 writel(0x00000060, mmio + MV_GPIO_PORT_CTL);
1810 }
1811
1812 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
1813 unsigned int port)
1814 {
1815 void __iomem *port_mmio = mv_port_base(mmio, port);
1816
1817 u32 hp_flags = hpriv->hp_flags;
1818 int fix_phy_mode2 =
1819 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
1820 int fix_phy_mode4 =
1821 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
1822 u32 m2, tmp;
1823
1824 if (fix_phy_mode2) {
1825 m2 = readl(port_mmio + PHY_MODE2);
1826 m2 &= ~(1 << 16);
1827 m2 |= (1 << 31);
1828 writel(m2, port_mmio + PHY_MODE2);
1829
1830 udelay(200);
1831
1832 m2 = readl(port_mmio + PHY_MODE2);
1833 m2 &= ~((1 << 16) | (1 << 31));
1834 writel(m2, port_mmio + PHY_MODE2);
1835
1836 udelay(200);
1837 }
1838
1839 /* who knows what this magic does */
1840 tmp = readl(port_mmio + PHY_MODE3);
1841 tmp &= ~0x7F800000;
1842 tmp |= 0x2A800000;
1843 writel(tmp, port_mmio + PHY_MODE3);
1844
1845 if (fix_phy_mode4) {
1846 u32 m4;
1847
1848 m4 = readl(port_mmio + PHY_MODE4);
1849
1850 if (hp_flags & MV_HP_ERRATA_60X1B2)
1851 tmp = readl(port_mmio + 0x310);
1852
1853 m4 = (m4 & ~(1 << 1)) | (1 << 0);
1854
1855 writel(m4, port_mmio + PHY_MODE4);
1856
1857 if (hp_flags & MV_HP_ERRATA_60X1B2)
1858 writel(tmp, port_mmio + 0x310);
1859 }
1860
1861 /* Revert values of pre-emphasis and signal amps to the saved ones */
1862 m2 = readl(port_mmio + PHY_MODE2);
1863
1864 m2 &= ~MV_M2_PREAMP_MASK;
1865 m2 |= hpriv->signal[port].amps;
1866 m2 |= hpriv->signal[port].pre;
1867 m2 &= ~(1 << 16);
1868
1869 /* according to mvSata 3.6.1, some IIE values are fixed */
1870 if (IS_GEN_IIE(hpriv)) {
1871 m2 &= ~0xC30FF01F;
1872 m2 |= 0x0000900F;
1873 }
1874
1875 writel(m2, port_mmio + PHY_MODE2);
1876 }
1877
1878 static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio,
1879 unsigned int port_no)
1880 {
1881 void __iomem *port_mmio = mv_port_base(mmio, port_no);
1882
1883 writelfl(ATA_RST, port_mmio + EDMA_CMD_OFS);
1884
1885 if (IS_60XX(hpriv)) {
1886 u32 ifctl = readl(port_mmio + SATA_INTERFACE_CTL);
1887 ifctl |= (1 << 7); /* enable gen2i speed */
1888 ifctl = (ifctl & 0xfff) | 0x9b1000; /* from chip spec */
1889 writelfl(ifctl, port_mmio + SATA_INTERFACE_CTL);
1890 }
1891
1892 udelay(25); /* allow reset propagation */
1893
1894 /* Spec never mentions clearing the bit. Marvell's driver does
1895 * clear the bit, however.
1896 */
1897 writelfl(0, port_mmio + EDMA_CMD_OFS);
1898
1899 hpriv->ops->phy_errata(hpriv, mmio, port_no);
1900
1901 if (IS_50XX(hpriv))
1902 mdelay(1);
1903 }
1904
1905 static void mv_stop_and_reset(struct ata_port *ap)
1906 {
1907 struct mv_host_priv *hpriv = ap->host->private_data;
1908 void __iomem *mmio = ap->host->mmio_base;
1909
1910 mv_stop_dma(ap);
1911
1912 mv_channel_reset(hpriv, mmio, ap->port_no);
1913
1914 __mv_phy_reset(ap, 0);
1915 }
1916
1917 static inline void __msleep(unsigned int msec, int can_sleep)
1918 {
1919 if (can_sleep)
1920 msleep(msec);
1921 else
1922 mdelay(msec);
1923 }
1924
1925 /**
1926 * __mv_phy_reset - Perform eDMA reset followed by COMRESET
1927 * @ap: ATA channel to manipulate
1928 *
1929 * Part of this is taken from __sata_phy_reset and modified to
1930 * not sleep since this routine gets called from interrupt level.
1931 *
1932 * LOCKING:
1933 * Inherited from caller. This is coded to safe to call at
1934 * interrupt level, i.e. it does not sleep.
1935 */
1936 static void __mv_phy_reset(struct ata_port *ap, int can_sleep)
1937 {
1938 struct mv_port_priv *pp = ap->private_data;
1939 struct mv_host_priv *hpriv = ap->host->private_data;
1940 void __iomem *port_mmio = mv_ap_base(ap);
1941 struct ata_taskfile tf;
1942 struct ata_device *dev = &ap->device[0];
1943 unsigned long timeout;
1944 int retry = 5;
1945 u32 sstatus;
1946
1947 VPRINTK("ENTER, port %u, mmio 0x%p\n", ap->port_no, port_mmio);
1948
1949 DPRINTK("S-regs after ATA_RST: SStat 0x%08x SErr 0x%08x "
1950 "SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
1951 mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
1952
1953 /* Issue COMRESET via SControl */
1954 comreset_retry:
1955 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1956 __msleep(1, can_sleep);
1957
1958 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1959 __msleep(20, can_sleep);
1960
1961 timeout = jiffies + msecs_to_jiffies(200);
1962 do {
1963 sata_scr_read(ap, SCR_STATUS, &sstatus);
1964 if (((sstatus & 0x3) == 3) || ((sstatus & 0x3) == 0))
1965 break;
1966
1967 __msleep(1, can_sleep);
1968 } while (time_before(jiffies, timeout));
1969
1970 /* work around errata */
1971 if (IS_60XX(hpriv) &&
1972 (sstatus != 0x0) && (sstatus != 0x113) && (sstatus != 0x123) &&
1973 (retry-- > 0))
1974 goto comreset_retry;
1975
1976 DPRINTK("S-regs after PHY wake: SStat 0x%08x SErr 0x%08x "
1977 "SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
1978 mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
1979
1980 if (ata_port_online(ap)) {
1981 ata_port_probe(ap);
1982 } else {
1983 sata_scr_read(ap, SCR_STATUS, &sstatus);
1984 ata_port_printk(ap, KERN_INFO,
1985 "no device found (phy stat %08x)\n", sstatus);
1986 ata_port_disable(ap);
1987 return;
1988 }
1989 ap->cbl = ATA_CBL_SATA;
1990
1991 /* even after SStatus reflects that device is ready,
1992 * it seems to take a while for link to be fully
1993 * established (and thus Status no longer 0x80/0x7F),
1994 * so we poll a bit for that, here.
1995 */
1996 retry = 20;
1997 while (1) {
1998 u8 drv_stat = ata_check_status(ap);
1999 if ((drv_stat != 0x80) && (drv_stat != 0x7f))
2000 break;
2001 __msleep(500, can_sleep);
2002 if (retry-- <= 0)
2003 break;
2004 }
2005
2006 tf.lbah = readb((void __iomem *) ap->ioaddr.lbah_addr);
2007 tf.lbam = readb((void __iomem *) ap->ioaddr.lbam_addr);
2008 tf.lbal = readb((void __iomem *) ap->ioaddr.lbal_addr);
2009 tf.nsect = readb((void __iomem *) ap->ioaddr.nsect_addr);
2010
2011 dev->class = ata_dev_classify(&tf);
2012 if (!ata_dev_enabled(dev)) {
2013 VPRINTK("Port disabled post-sig: No device present.\n");
2014 ata_port_disable(ap);
2015 }
2016
2017 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2018
2019 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2020
2021 VPRINTK("EXIT\n");
2022 }
2023
2024 static void mv_phy_reset(struct ata_port *ap)
2025 {
2026 __mv_phy_reset(ap, 1);
2027 }
2028
2029 /**
2030 * mv_eng_timeout - Routine called by libata when SCSI times out I/O
2031 * @ap: ATA channel to manipulate
2032 *
2033 * Intent is to clear all pending error conditions, reset the
2034 * chip/bus, fail the command, and move on.
2035 *
2036 * LOCKING:
2037 * This routine holds the host lock while failing the command.
2038 */
2039 static void mv_eng_timeout(struct ata_port *ap)
2040 {
2041 struct ata_queued_cmd *qc;
2042 unsigned long flags;
2043
2044 ata_port_printk(ap, KERN_ERR, "Entering mv_eng_timeout\n");
2045 DPRINTK("All regs @ start of eng_timeout\n");
2046 mv_dump_all_regs(ap->host->mmio_base, ap->port_no,
2047 to_pci_dev(ap->host->dev));
2048
2049 qc = ata_qc_from_tag(ap, ap->active_tag);
2050 printk(KERN_ERR "mmio_base %p ap %p qc %p scsi_cmnd %p &cmnd %p\n",
2051 ap->host->mmio_base, ap, qc, qc->scsicmd, &qc->scsicmd->cmnd);
2052
2053 spin_lock_irqsave(&ap->host->lock, flags);
2054 mv_err_intr(ap, 0);
2055 mv_stop_and_reset(ap);
2056 spin_unlock_irqrestore(&ap->host->lock, flags);
2057
2058 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
2059 if (qc->flags & ATA_QCFLAG_ACTIVE) {
2060 qc->err_mask |= AC_ERR_TIMEOUT;
2061 ata_eh_qc_complete(qc);
2062 }
2063 }
2064
2065 /**
2066 * mv_port_init - Perform some early initialization on a single port.
2067 * @port: libata data structure storing shadow register addresses
2068 * @port_mmio: base address of the port
2069 *
2070 * Initialize shadow register mmio addresses, clear outstanding
2071 * interrupts on the port, and unmask interrupts for the future
2072 * start of the port.
2073 *
2074 * LOCKING:
2075 * Inherited from caller.
2076 */
2077 static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
2078 {
2079 unsigned long shd_base = (unsigned long) port_mmio + SHD_BLK_OFS;
2080 unsigned serr_ofs;
2081
2082 /* PIO related setup
2083 */
2084 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
2085 port->error_addr =
2086 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
2087 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
2088 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
2089 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
2090 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
2091 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
2092 port->status_addr =
2093 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
2094 /* special case: control/altstatus doesn't have ATA_REG_ address */
2095 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;
2096
2097 /* unused: */
2098 port->cmd_addr = port->bmdma_addr = port->scr_addr = 0;
2099
2100 /* Clear any currently outstanding port interrupt conditions */
2101 serr_ofs = mv_scr_offset(SCR_ERROR);
2102 writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
2103 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2104
2105 /* unmask all EDMA error interrupts */
2106 writelfl(~0, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
2107
2108 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
2109 readl(port_mmio + EDMA_CFG_OFS),
2110 readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
2111 readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
2112 }
2113
2114 static int mv_chip_id(struct pci_dev *pdev, struct mv_host_priv *hpriv,
2115 unsigned int board_idx)
2116 {
2117 u8 rev_id;
2118 u32 hp_flags = hpriv->hp_flags;
2119
2120 pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
2121
2122 switch(board_idx) {
2123 case chip_5080:
2124 hpriv->ops = &mv5xxx_ops;
2125 hp_flags |= MV_HP_50XX;
2126
2127 switch (rev_id) {
2128 case 0x1:
2129 hp_flags |= MV_HP_ERRATA_50XXB0;
2130 break;
2131 case 0x3:
2132 hp_flags |= MV_HP_ERRATA_50XXB2;
2133 break;
2134 default:
2135 dev_printk(KERN_WARNING, &pdev->dev,
2136 "Applying 50XXB2 workarounds to unknown rev\n");
2137 hp_flags |= MV_HP_ERRATA_50XXB2;
2138 break;
2139 }
2140 break;
2141
2142 case chip_504x:
2143 case chip_508x:
2144 hpriv->ops = &mv5xxx_ops;
2145 hp_flags |= MV_HP_50XX;
2146
2147 switch (rev_id) {
2148 case 0x0:
2149 hp_flags |= MV_HP_ERRATA_50XXB0;
2150 break;
2151 case 0x3:
2152 hp_flags |= MV_HP_ERRATA_50XXB2;
2153 break;
2154 default:
2155 dev_printk(KERN_WARNING, &pdev->dev,
2156 "Applying B2 workarounds to unknown rev\n");
2157 hp_flags |= MV_HP_ERRATA_50XXB2;
2158 break;
2159 }
2160 break;
2161
2162 case chip_604x:
2163 case chip_608x:
2164 hpriv->ops = &mv6xxx_ops;
2165
2166 switch (rev_id) {
2167 case 0x7:
2168 hp_flags |= MV_HP_ERRATA_60X1B2;
2169 break;
2170 case 0x9:
2171 hp_flags |= MV_HP_ERRATA_60X1C0;
2172 break;
2173 default:
2174 dev_printk(KERN_WARNING, &pdev->dev,
2175 "Applying B2 workarounds to unknown rev\n");
2176 hp_flags |= MV_HP_ERRATA_60X1B2;
2177 break;
2178 }
2179 break;
2180
2181 case chip_7042:
2182 case chip_6042:
2183 hpriv->ops = &mv6xxx_ops;
2184
2185 hp_flags |= MV_HP_GEN_IIE;
2186
2187 switch (rev_id) {
2188 case 0x0:
2189 hp_flags |= MV_HP_ERRATA_XX42A0;
2190 break;
2191 case 0x1:
2192 hp_flags |= MV_HP_ERRATA_60X1C0;
2193 break;
2194 default:
2195 dev_printk(KERN_WARNING, &pdev->dev,
2196 "Applying 60X1C0 workarounds to unknown rev\n");
2197 hp_flags |= MV_HP_ERRATA_60X1C0;
2198 break;
2199 }
2200 break;
2201
2202 default:
2203 printk(KERN_ERR DRV_NAME ": BUG: invalid board index %u\n", board_idx);
2204 return 1;
2205 }
2206
2207 hpriv->hp_flags = hp_flags;
2208
2209 return 0;
2210 }
2211
2212 /**
2213 * mv_init_host - Perform some early initialization of the host.
2214 * @pdev: host PCI device
2215 * @probe_ent: early data struct representing the host
2216 *
2217 * If possible, do an early global reset of the host. Then do
2218 * our port init and clear/unmask all/relevant host interrupts.
2219 *
2220 * LOCKING:
2221 * Inherited from caller.
2222 */
2223 static int mv_init_host(struct pci_dev *pdev, struct ata_probe_ent *probe_ent,
2224 unsigned int board_idx)
2225 {
2226 int rc = 0, n_hc, port, hc;
2227 void __iomem *mmio = probe_ent->mmio_base;
2228 struct mv_host_priv *hpriv = probe_ent->private_data;
2229
2230 /* global interrupt mask */
2231 writel(0, mmio + HC_MAIN_IRQ_MASK_OFS);
2232
2233 rc = mv_chip_id(pdev, hpriv, board_idx);
2234 if (rc)
2235 goto done;
2236
2237 n_hc = mv_get_hc_count(probe_ent->port_flags);
2238 probe_ent->n_ports = MV_PORTS_PER_HC * n_hc;
2239
2240 for (port = 0; port < probe_ent->n_ports; port++)
2241 hpriv->ops->read_preamp(hpriv, port, mmio);
2242
2243 rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
2244 if (rc)
2245 goto done;
2246
2247 hpriv->ops->reset_flash(hpriv, mmio);
2248 hpriv->ops->reset_bus(pdev, mmio);
2249 hpriv->ops->enable_leds(hpriv, mmio);
2250
2251 for (port = 0; port < probe_ent->n_ports; port++) {
2252 if (IS_60XX(hpriv)) {
2253 void __iomem *port_mmio = mv_port_base(mmio, port);
2254
2255 u32 ifctl = readl(port_mmio + SATA_INTERFACE_CTL);
2256 ifctl |= (1 << 7); /* enable gen2i speed */
2257 ifctl = (ifctl & 0xfff) | 0x9b1000; /* from chip spec */
2258 writelfl(ifctl, port_mmio + SATA_INTERFACE_CTL);
2259 }
2260
2261 hpriv->ops->phy_errata(hpriv, mmio, port);
2262 }
2263
2264 for (port = 0; port < probe_ent->n_ports; port++) {
2265 void __iomem *port_mmio = mv_port_base(mmio, port);
2266 mv_port_init(&probe_ent->port[port], port_mmio);
2267 }
2268
2269 for (hc = 0; hc < n_hc; hc++) {
2270 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
2271
2272 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
2273 "(before clear)=0x%08x\n", hc,
2274 readl(hc_mmio + HC_CFG_OFS),
2275 readl(hc_mmio + HC_IRQ_CAUSE_OFS));
2276
2277 /* Clear any currently outstanding hc interrupt conditions */
2278 writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
2279 }
2280
2281 /* Clear any currently outstanding host interrupt conditions */
2282 writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
2283
2284 /* and unmask interrupt generation for host regs */
2285 writelfl(PCI_UNMASK_ALL_IRQS, mmio + PCI_IRQ_MASK_OFS);
2286 writelfl(~HC_MAIN_MASKED_IRQS, mmio + HC_MAIN_IRQ_MASK_OFS);
2287
2288 VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x "
2289 "PCI int cause/mask=0x%08x/0x%08x\n",
2290 readl(mmio + HC_MAIN_IRQ_CAUSE_OFS),
2291 readl(mmio + HC_MAIN_IRQ_MASK_OFS),
2292 readl(mmio + PCI_IRQ_CAUSE_OFS),
2293 readl(mmio + PCI_IRQ_MASK_OFS));
2294
2295 done:
2296 return rc;
2297 }
2298
2299 /**
2300 * mv_print_info - Dump key info to kernel log for perusal.
2301 * @probe_ent: early data struct representing the host
2302 *
2303 * FIXME: complete this.
2304 *
2305 * LOCKING:
2306 * Inherited from caller.
2307 */
2308 static void mv_print_info(struct ata_probe_ent *probe_ent)
2309 {
2310 struct pci_dev *pdev = to_pci_dev(probe_ent->dev);
2311 struct mv_host_priv *hpriv = probe_ent->private_data;
2312 u8 rev_id, scc;
2313 const char *scc_s;
2314
2315 /* Use this to determine the HW stepping of the chip so we know
2316 * what errata to workaround
2317 */
2318 pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
2319
2320 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
2321 if (scc == 0)
2322 scc_s = "SCSI";
2323 else if (scc == 0x01)
2324 scc_s = "RAID";
2325 else
2326 scc_s = "unknown";
2327
2328 dev_printk(KERN_INFO, &pdev->dev,
2329 "%u slots %u ports %s mode IRQ via %s\n",
2330 (unsigned)MV_MAX_Q_DEPTH, probe_ent->n_ports,
2331 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
2332 }
2333
2334 /**
2335 * mv_init_one - handle a positive probe of a Marvell host
2336 * @pdev: PCI device found
2337 * @ent: PCI device ID entry for the matched host
2338 *
2339 * LOCKING:
2340 * Inherited from caller.
2341 */
2342 static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2343 {
2344 static int printed_version = 0;
2345 struct ata_probe_ent *probe_ent = NULL;
2346 struct mv_host_priv *hpriv;
2347 unsigned int board_idx = (unsigned int)ent->driver_data;
2348 void __iomem *mmio_base;
2349 int pci_dev_busy = 0, rc;
2350
2351 if (!printed_version++)
2352 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
2353
2354 rc = pci_enable_device(pdev);
2355 if (rc) {
2356 return rc;
2357 }
2358 pci_set_master(pdev);
2359
2360 rc = pci_request_regions(pdev, DRV_NAME);
2361 if (rc) {
2362 pci_dev_busy = 1;
2363 goto err_out;
2364 }
2365
2366 probe_ent = kmalloc(sizeof(*probe_ent), GFP_KERNEL);
2367 if (probe_ent == NULL) {
2368 rc = -ENOMEM;
2369 goto err_out_regions;
2370 }
2371
2372 memset(probe_ent, 0, sizeof(*probe_ent));
2373 probe_ent->dev = pci_dev_to_dev(pdev);
2374 INIT_LIST_HEAD(&probe_ent->node);
2375
2376 mmio_base = pci_iomap(pdev, MV_PRIMARY_BAR, 0);
2377 if (mmio_base == NULL) {
2378 rc = -ENOMEM;
2379 goto err_out_free_ent;
2380 }
2381
2382 hpriv = kmalloc(sizeof(*hpriv), GFP_KERNEL);
2383 if (!hpriv) {
2384 rc = -ENOMEM;
2385 goto err_out_iounmap;
2386 }
2387 memset(hpriv, 0, sizeof(*hpriv));
2388
2389 probe_ent->sht = mv_port_info[board_idx].sht;
2390 probe_ent->port_flags = mv_port_info[board_idx].flags;
2391 probe_ent->pio_mask = mv_port_info[board_idx].pio_mask;
2392 probe_ent->udma_mask = mv_port_info[board_idx].udma_mask;
2393 probe_ent->port_ops = mv_port_info[board_idx].port_ops;
2394
2395 probe_ent->irq = pdev->irq;
2396 probe_ent->irq_flags = IRQF_SHARED;
2397 probe_ent->mmio_base = mmio_base;
2398 probe_ent->private_data = hpriv;
2399
2400 /* initialize adapter */
2401 rc = mv_init_host(pdev, probe_ent, board_idx);
2402 if (rc) {
2403 goto err_out_hpriv;
2404 }
2405
2406 /* Enable interrupts */
2407 if (msi && pci_enable_msi(pdev) == 0) {
2408 hpriv->hp_flags |= MV_HP_FLAG_MSI;
2409 } else {
2410 pci_intx(pdev, 1);
2411 }
2412
2413 mv_dump_pci_cfg(pdev, 0x68);
2414 mv_print_info(probe_ent);
2415
2416 if (ata_device_add(probe_ent) == 0) {
2417 rc = -ENODEV; /* No devices discovered */
2418 goto err_out_dev_add;
2419 }
2420
2421 kfree(probe_ent);
2422 return 0;
2423
2424 err_out_dev_add:
2425 if (MV_HP_FLAG_MSI & hpriv->hp_flags) {
2426 pci_disable_msi(pdev);
2427 } else {
2428 pci_intx(pdev, 0);
2429 }
2430 err_out_hpriv:
2431 kfree(hpriv);
2432 err_out_iounmap:
2433 pci_iounmap(pdev, mmio_base);
2434 err_out_free_ent:
2435 kfree(probe_ent);
2436 err_out_regions:
2437 pci_release_regions(pdev);
2438 err_out:
2439 if (!pci_dev_busy) {
2440 pci_disable_device(pdev);
2441 }
2442
2443 return rc;
2444 }
2445
2446 static int __init mv_init(void)
2447 {
2448 return pci_register_driver(&mv_pci_driver);
2449 }
2450
2451 static void __exit mv_exit(void)
2452 {
2453 pci_unregister_driver(&mv_pci_driver);
2454 }
2455
2456 MODULE_AUTHOR("Brett Russ");
2457 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
2458 MODULE_LICENSE("GPL");
2459 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
2460 MODULE_VERSION(DRV_VERSION);
2461
2462 module_param(msi, int, 0444);
2463 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
2464
2465 module_init(mv_init);
2466 module_exit(mv_exit);
This page took 0.083603 seconds and 6 git commands to generate.