[libata] Use ATA_UDMAx standard masks when filling driver's udma_mask info
[deliverable/linux.git] / drivers / ata / sata_svw.c
1 /*
2 * sata_svw.c - ServerWorks / Apple K2 SATA
3 *
4 * Maintained by: Benjamin Herrenschmidt <benh@kernel.crashing.org> and
5 * Jeff Garzik <jgarzik@pobox.com>
6 * Please ALWAYS copy linux-ide@vger.kernel.org
7 * on emails.
8 *
9 * Copyright 2003 Benjamin Herrenschmidt <benh@kernel.crashing.org>
10 *
11 * Bits from Jeff Garzik, Copyright RedHat, Inc.
12 *
13 * This driver probably works with non-Apple versions of the
14 * Broadcom chipset...
15 *
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2, or (at your option)
20 * any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 *
27 * You should have received a copy of the GNU General Public License
28 * along with this program; see the file COPYING. If not, write to
29 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
30 *
31 *
32 * libata documentation is available via 'make {ps|pdf}docs',
33 * as Documentation/DocBook/libata.*
34 *
35 * Hardware documentation available under NDA.
36 *
37 */
38
39 #include <linux/kernel.h>
40 #include <linux/module.h>
41 #include <linux/pci.h>
42 #include <linux/init.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/device.h>
47 #include <scsi/scsi_host.h>
48 #include <linux/libata.h>
49
50 #ifdef CONFIG_PPC_OF
51 #include <asm/prom.h>
52 #include <asm/pci-bridge.h>
53 #endif /* CONFIG_PPC_OF */
54
55 #define DRV_NAME "sata_svw"
56 #define DRV_VERSION "2.2"
57
58 enum {
59 /* ap->flags bits */
60 K2_FLAG_SATA_8_PORTS = (1 << 24),
61 K2_FLAG_NO_ATAPI_DMA = (1 << 25),
62
63 /* Taskfile registers offsets */
64 K2_SATA_TF_CMD_OFFSET = 0x00,
65 K2_SATA_TF_DATA_OFFSET = 0x00,
66 K2_SATA_TF_ERROR_OFFSET = 0x04,
67 K2_SATA_TF_NSECT_OFFSET = 0x08,
68 K2_SATA_TF_LBAL_OFFSET = 0x0c,
69 K2_SATA_TF_LBAM_OFFSET = 0x10,
70 K2_SATA_TF_LBAH_OFFSET = 0x14,
71 K2_SATA_TF_DEVICE_OFFSET = 0x18,
72 K2_SATA_TF_CMDSTAT_OFFSET = 0x1c,
73 K2_SATA_TF_CTL_OFFSET = 0x20,
74
75 /* DMA base */
76 K2_SATA_DMA_CMD_OFFSET = 0x30,
77
78 /* SCRs base */
79 K2_SATA_SCR_STATUS_OFFSET = 0x40,
80 K2_SATA_SCR_ERROR_OFFSET = 0x44,
81 K2_SATA_SCR_CONTROL_OFFSET = 0x48,
82
83 /* Others */
84 K2_SATA_SICR1_OFFSET = 0x80,
85 K2_SATA_SICR2_OFFSET = 0x84,
86 K2_SATA_SIM_OFFSET = 0x88,
87
88 /* Port stride */
89 K2_SATA_PORT_OFFSET = 0x100,
90
91 board_svw4 = 0,
92 board_svw8 = 1,
93 };
94
95 static u8 k2_stat_check_status(struct ata_port *ap);
96
97
98 static int k2_sata_check_atapi_dma(struct ata_queued_cmd *qc)
99 {
100 if (qc->ap->flags & K2_FLAG_NO_ATAPI_DMA)
101 return -1; /* ATAPI DMA not supported */
102
103 return 0;
104 }
105
106 static u32 k2_sata_scr_read (struct ata_port *ap, unsigned int sc_reg)
107 {
108 if (sc_reg > SCR_CONTROL)
109 return 0xffffffffU;
110 return readl(ap->ioaddr.scr_addr + (sc_reg * 4));
111 }
112
113
114 static void k2_sata_scr_write (struct ata_port *ap, unsigned int sc_reg,
115 u32 val)
116 {
117 if (sc_reg > SCR_CONTROL)
118 return;
119 writel(val, ap->ioaddr.scr_addr + (sc_reg * 4));
120 }
121
122
123 static void k2_sata_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
124 {
125 struct ata_ioports *ioaddr = &ap->ioaddr;
126 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
127
128 if (tf->ctl != ap->last_ctl) {
129 writeb(tf->ctl, ioaddr->ctl_addr);
130 ap->last_ctl = tf->ctl;
131 ata_wait_idle(ap);
132 }
133 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
134 writew(tf->feature | (((u16)tf->hob_feature) << 8),
135 ioaddr->feature_addr);
136 writew(tf->nsect | (((u16)tf->hob_nsect) << 8),
137 ioaddr->nsect_addr);
138 writew(tf->lbal | (((u16)tf->hob_lbal) << 8),
139 ioaddr->lbal_addr);
140 writew(tf->lbam | (((u16)tf->hob_lbam) << 8),
141 ioaddr->lbam_addr);
142 writew(tf->lbah | (((u16)tf->hob_lbah) << 8),
143 ioaddr->lbah_addr);
144 } else if (is_addr) {
145 writew(tf->feature, ioaddr->feature_addr);
146 writew(tf->nsect, ioaddr->nsect_addr);
147 writew(tf->lbal, ioaddr->lbal_addr);
148 writew(tf->lbam, ioaddr->lbam_addr);
149 writew(tf->lbah, ioaddr->lbah_addr);
150 }
151
152 if (tf->flags & ATA_TFLAG_DEVICE)
153 writeb(tf->device, ioaddr->device_addr);
154
155 ata_wait_idle(ap);
156 }
157
158
159 static void k2_sata_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
160 {
161 struct ata_ioports *ioaddr = &ap->ioaddr;
162 u16 nsect, lbal, lbam, lbah, feature;
163
164 tf->command = k2_stat_check_status(ap);
165 tf->device = readw(ioaddr->device_addr);
166 feature = readw(ioaddr->error_addr);
167 nsect = readw(ioaddr->nsect_addr);
168 lbal = readw(ioaddr->lbal_addr);
169 lbam = readw(ioaddr->lbam_addr);
170 lbah = readw(ioaddr->lbah_addr);
171
172 tf->feature = feature;
173 tf->nsect = nsect;
174 tf->lbal = lbal;
175 tf->lbam = lbam;
176 tf->lbah = lbah;
177
178 if (tf->flags & ATA_TFLAG_LBA48) {
179 tf->hob_feature = feature >> 8;
180 tf->hob_nsect = nsect >> 8;
181 tf->hob_lbal = lbal >> 8;
182 tf->hob_lbam = lbam >> 8;
183 tf->hob_lbah = lbah >> 8;
184 }
185 }
186
187 /**
188 * k2_bmdma_setup_mmio - Set up PCI IDE BMDMA transaction (MMIO)
189 * @qc: Info associated with this ATA transaction.
190 *
191 * LOCKING:
192 * spin_lock_irqsave(host lock)
193 */
194
195 static void k2_bmdma_setup_mmio (struct ata_queued_cmd *qc)
196 {
197 struct ata_port *ap = qc->ap;
198 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
199 u8 dmactl;
200 void __iomem *mmio = ap->ioaddr.bmdma_addr;
201
202 /* load PRD table addr. */
203 mb(); /* make sure PRD table writes are visible to controller */
204 writel(ap->prd_dma, mmio + ATA_DMA_TABLE_OFS);
205
206 /* specify data direction, triple-check start bit is clear */
207 dmactl = readb(mmio + ATA_DMA_CMD);
208 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
209 if (!rw)
210 dmactl |= ATA_DMA_WR;
211 writeb(dmactl, mmio + ATA_DMA_CMD);
212
213 /* issue r/w command if this is not a ATA DMA command*/
214 if (qc->tf.protocol != ATA_PROT_DMA)
215 ap->ops->exec_command(ap, &qc->tf);
216 }
217
218 /**
219 * k2_bmdma_start_mmio - Start a PCI IDE BMDMA transaction (MMIO)
220 * @qc: Info associated with this ATA transaction.
221 *
222 * LOCKING:
223 * spin_lock_irqsave(host lock)
224 */
225
226 static void k2_bmdma_start_mmio (struct ata_queued_cmd *qc)
227 {
228 struct ata_port *ap = qc->ap;
229 void __iomem *mmio = ap->ioaddr.bmdma_addr;
230 u8 dmactl;
231
232 /* start host DMA transaction */
233 dmactl = readb(mmio + ATA_DMA_CMD);
234 writeb(dmactl | ATA_DMA_START, mmio + ATA_DMA_CMD);
235 /* There is a race condition in certain SATA controllers that can
236 be seen when the r/w command is given to the controller before the
237 host DMA is started. On a Read command, the controller would initiate
238 the command to the drive even before it sees the DMA start. When there
239 are very fast drives connected to the controller, or when the data request
240 hits in the drive cache, there is the possibility that the drive returns a part
241 or all of the requested data to the controller before the DMA start is issued.
242 In this case, the controller would become confused as to what to do with the data.
243 In the worst case when all the data is returned back to the controller, the
244 controller could hang. In other cases it could return partial data returning
245 in data corruption. This problem has been seen in PPC systems and can also appear
246 on an system with very fast disks, where the SATA controller is sitting behind a
247 number of bridges, and hence there is significant latency between the r/w command
248 and the start command. */
249 /* issue r/w command if the access is to ATA*/
250 if (qc->tf.protocol == ATA_PROT_DMA)
251 ap->ops->exec_command(ap, &qc->tf);
252 }
253
254
255 static u8 k2_stat_check_status(struct ata_port *ap)
256 {
257 return readl(ap->ioaddr.status_addr);
258 }
259
260 #ifdef CONFIG_PPC_OF
261 /*
262 * k2_sata_proc_info
263 * inout : decides on the direction of the dataflow and the meaning of the
264 * variables
265 * buffer: If inout==FALSE data is being written to it else read from it
266 * *start: If inout==FALSE start of the valid data in the buffer
267 * offset: If inout==FALSE offset from the beginning of the imaginary file
268 * from which we start writing into the buffer
269 * length: If inout==FALSE max number of bytes to be written into the buffer
270 * else number of bytes in the buffer
271 */
272 static int k2_sata_proc_info(struct Scsi_Host *shost, char *page, char **start,
273 off_t offset, int count, int inout)
274 {
275 struct ata_port *ap;
276 struct device_node *np;
277 int len, index;
278
279 /* Find the ata_port */
280 ap = ata_shost_to_port(shost);
281 if (ap == NULL)
282 return 0;
283
284 /* Find the OF node for the PCI device proper */
285 np = pci_device_to_OF_node(to_pci_dev(ap->host->dev));
286 if (np == NULL)
287 return 0;
288
289 /* Match it to a port node */
290 index = (ap == ap->host->ports[0]) ? 0 : 1;
291 for (np = np->child; np != NULL; np = np->sibling) {
292 const u32 *reg = of_get_property(np, "reg", NULL);
293 if (!reg)
294 continue;
295 if (index == *reg)
296 break;
297 }
298 if (np == NULL)
299 return 0;
300
301 len = sprintf(page, "devspec: %s\n", np->full_name);
302
303 return len;
304 }
305 #endif /* CONFIG_PPC_OF */
306
307
308 static struct scsi_host_template k2_sata_sht = {
309 .module = THIS_MODULE,
310 .name = DRV_NAME,
311 .ioctl = ata_scsi_ioctl,
312 .queuecommand = ata_scsi_queuecmd,
313 .can_queue = ATA_DEF_QUEUE,
314 .this_id = ATA_SHT_THIS_ID,
315 .sg_tablesize = LIBATA_MAX_PRD,
316 .cmd_per_lun = ATA_SHT_CMD_PER_LUN,
317 .emulated = ATA_SHT_EMULATED,
318 .use_clustering = ATA_SHT_USE_CLUSTERING,
319 .proc_name = DRV_NAME,
320 .dma_boundary = ATA_DMA_BOUNDARY,
321 .slave_configure = ata_scsi_slave_config,
322 .slave_destroy = ata_scsi_slave_destroy,
323 #ifdef CONFIG_PPC_OF
324 .proc_info = k2_sata_proc_info,
325 #endif
326 .bios_param = ata_std_bios_param,
327 };
328
329
330 static const struct ata_port_operations k2_sata_ops = {
331 .port_disable = ata_port_disable,
332 .tf_load = k2_sata_tf_load,
333 .tf_read = k2_sata_tf_read,
334 .check_status = k2_stat_check_status,
335 .exec_command = ata_exec_command,
336 .dev_select = ata_std_dev_select,
337 .check_atapi_dma = k2_sata_check_atapi_dma,
338 .bmdma_setup = k2_bmdma_setup_mmio,
339 .bmdma_start = k2_bmdma_start_mmio,
340 .bmdma_stop = ata_bmdma_stop,
341 .bmdma_status = ata_bmdma_status,
342 .qc_prep = ata_qc_prep,
343 .qc_issue = ata_qc_issue_prot,
344 .data_xfer = ata_data_xfer,
345 .freeze = ata_bmdma_freeze,
346 .thaw = ata_bmdma_thaw,
347 .error_handler = ata_bmdma_error_handler,
348 .post_internal_cmd = ata_bmdma_post_internal_cmd,
349 .irq_clear = ata_bmdma_irq_clear,
350 .irq_on = ata_irq_on,
351 .irq_ack = ata_irq_ack,
352 .scr_read = k2_sata_scr_read,
353 .scr_write = k2_sata_scr_write,
354 .port_start = ata_port_start,
355 };
356
357 static const struct ata_port_info k2_port_info[] = {
358 /* board_svw4 */
359 {
360 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
361 ATA_FLAG_MMIO | K2_FLAG_NO_ATAPI_DMA,
362 .pio_mask = 0x1f,
363 .mwdma_mask = 0x07,
364 .udma_mask = ATA_UDMA6,
365 .port_ops = &k2_sata_ops,
366 },
367 /* board_svw8 */
368 {
369 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
370 ATA_FLAG_MMIO | K2_FLAG_NO_ATAPI_DMA |
371 K2_FLAG_SATA_8_PORTS,
372 .pio_mask = 0x1f,
373 .mwdma_mask = 0x07,
374 .udma_mask = ATA_UDMA6,
375 .port_ops = &k2_sata_ops,
376 },
377 };
378
379 static void k2_sata_setup_port(struct ata_ioports *port, void __iomem *base)
380 {
381 port->cmd_addr = base + K2_SATA_TF_CMD_OFFSET;
382 port->data_addr = base + K2_SATA_TF_DATA_OFFSET;
383 port->feature_addr =
384 port->error_addr = base + K2_SATA_TF_ERROR_OFFSET;
385 port->nsect_addr = base + K2_SATA_TF_NSECT_OFFSET;
386 port->lbal_addr = base + K2_SATA_TF_LBAL_OFFSET;
387 port->lbam_addr = base + K2_SATA_TF_LBAM_OFFSET;
388 port->lbah_addr = base + K2_SATA_TF_LBAH_OFFSET;
389 port->device_addr = base + K2_SATA_TF_DEVICE_OFFSET;
390 port->command_addr =
391 port->status_addr = base + K2_SATA_TF_CMDSTAT_OFFSET;
392 port->altstatus_addr =
393 port->ctl_addr = base + K2_SATA_TF_CTL_OFFSET;
394 port->bmdma_addr = base + K2_SATA_DMA_CMD_OFFSET;
395 port->scr_addr = base + K2_SATA_SCR_STATUS_OFFSET;
396 }
397
398
399 static int k2_sata_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
400 {
401 static int printed_version;
402 const struct ata_port_info *ppi[] =
403 { &k2_port_info[ent->driver_data], NULL };
404 struct ata_host *host;
405 void __iomem *mmio_base;
406 int n_ports, i, rc;
407
408 if (!printed_version++)
409 dev_printk(KERN_DEBUG, &pdev->dev, "version " DRV_VERSION "\n");
410
411 /* allocate host */
412 n_ports = 4;
413 if (ppi[0]->flags & K2_FLAG_SATA_8_PORTS)
414 n_ports = 8;
415
416 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
417 if (!host)
418 return -ENOMEM;
419
420 /*
421 * If this driver happens to only be useful on Apple's K2, then
422 * we should check that here as it has a normal Serverworks ID
423 */
424 rc = pcim_enable_device(pdev);
425 if (rc)
426 return rc;
427
428 /*
429 * Check if we have resources mapped at all (second function may
430 * have been disabled by firmware)
431 */
432 if (pci_resource_len(pdev, 5) == 0)
433 return -ENODEV;
434
435 /* Request and iomap PCI regions */
436 rc = pcim_iomap_regions(pdev, 1 << 5, DRV_NAME);
437 if (rc == -EBUSY)
438 pcim_pin_device(pdev);
439 if (rc)
440 return rc;
441 host->iomap = pcim_iomap_table(pdev);
442 mmio_base = host->iomap[5];
443
444 /* different controllers have different number of ports - currently 4 or 8 */
445 /* All ports are on the same function. Multi-function device is no
446 * longer available. This should not be seen in any system. */
447 for (i = 0; i < host->n_ports; i++)
448 k2_sata_setup_port(&host->ports[i]->ioaddr,
449 mmio_base + i * K2_SATA_PORT_OFFSET);
450
451 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
452 if (rc)
453 return rc;
454 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
455 if (rc)
456 return rc;
457
458 /* Clear a magic bit in SCR1 according to Darwin, those help
459 * some funky seagate drives (though so far, those were already
460 * set by the firmware on the machines I had access to)
461 */
462 writel(readl(mmio_base + K2_SATA_SICR1_OFFSET) & ~0x00040000,
463 mmio_base + K2_SATA_SICR1_OFFSET);
464
465 /* Clear SATA error & interrupts we don't use */
466 writel(0xffffffff, mmio_base + K2_SATA_SCR_ERROR_OFFSET);
467 writel(0x0, mmio_base + K2_SATA_SIM_OFFSET);
468
469 pci_set_master(pdev);
470 return ata_host_activate(host, pdev->irq, ata_interrupt, IRQF_SHARED,
471 &k2_sata_sht);
472 }
473
474 /* 0x240 is device ID for Apple K2 device
475 * 0x241 is device ID for Serverworks Frodo4
476 * 0x242 is device ID for Serverworks Frodo8
477 * 0x24a is device ID for BCM5785 (aka HT1000) HT southbridge integrated SATA
478 * controller
479 * */
480 static const struct pci_device_id k2_sata_pci_tbl[] = {
481 { PCI_VDEVICE(SERVERWORKS, 0x0240), board_svw4 },
482 { PCI_VDEVICE(SERVERWORKS, 0x0241), board_svw4 },
483 { PCI_VDEVICE(SERVERWORKS, 0x0242), board_svw8 },
484 { PCI_VDEVICE(SERVERWORKS, 0x024a), board_svw4 },
485 { PCI_VDEVICE(SERVERWORKS, 0x024b), board_svw4 },
486
487 { }
488 };
489
490 static struct pci_driver k2_sata_pci_driver = {
491 .name = DRV_NAME,
492 .id_table = k2_sata_pci_tbl,
493 .probe = k2_sata_init_one,
494 .remove = ata_pci_remove_one,
495 };
496
497 static int __init k2_sata_init(void)
498 {
499 return pci_register_driver(&k2_sata_pci_driver);
500 }
501
502 static void __exit k2_sata_exit(void)
503 {
504 pci_unregister_driver(&k2_sata_pci_driver);
505 }
506
507 MODULE_AUTHOR("Benjamin Herrenschmidt");
508 MODULE_DESCRIPTION("low-level driver for K2 SATA controller");
509 MODULE_LICENSE("GPL");
510 MODULE_DEVICE_TABLE(pci, k2_sata_pci_tbl);
511 MODULE_VERSION(DRV_VERSION);
512
513 module_init(k2_sata_init);
514 module_exit(k2_sata_exit);
This page took 0.040889 seconds and 5 git commands to generate.