xen-netback: remove page tracking facility
[deliverable/linux.git] / drivers / base / memory.c
1 /*
2 * Memory subsystem support
3 *
4 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
5 * Dave Hansen <haveblue@us.ibm.com>
6 *
7 * This file provides the necessary infrastructure to represent
8 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
9 * All arch-independent code that assumes MEMORY_HOTPLUG requires
10 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
11 */
12
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/topology.h>
16 #include <linux/capability.h>
17 #include <linux/device.h>
18 #include <linux/memory.h>
19 #include <linux/kobject.h>
20 #include <linux/memory_hotplug.h>
21 #include <linux/mm.h>
22 #include <linux/mutex.h>
23 #include <linux/stat.h>
24 #include <linux/slab.h>
25
26 #include <linux/atomic.h>
27 #include <asm/uaccess.h>
28
29 static DEFINE_MUTEX(mem_sysfs_mutex);
30
31 #define MEMORY_CLASS_NAME "memory"
32
33 static int sections_per_block;
34
35 static inline int base_memory_block_id(int section_nr)
36 {
37 return section_nr / sections_per_block;
38 }
39
40 static int memory_subsys_online(struct device *dev);
41 static int memory_subsys_offline(struct device *dev);
42
43 static struct bus_type memory_subsys = {
44 .name = MEMORY_CLASS_NAME,
45 .dev_name = MEMORY_CLASS_NAME,
46 .online = memory_subsys_online,
47 .offline = memory_subsys_offline,
48 };
49
50 static BLOCKING_NOTIFIER_HEAD(memory_chain);
51
52 int register_memory_notifier(struct notifier_block *nb)
53 {
54 return blocking_notifier_chain_register(&memory_chain, nb);
55 }
56 EXPORT_SYMBOL(register_memory_notifier);
57
58 void unregister_memory_notifier(struct notifier_block *nb)
59 {
60 blocking_notifier_chain_unregister(&memory_chain, nb);
61 }
62 EXPORT_SYMBOL(unregister_memory_notifier);
63
64 static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);
65
66 int register_memory_isolate_notifier(struct notifier_block *nb)
67 {
68 return atomic_notifier_chain_register(&memory_isolate_chain, nb);
69 }
70 EXPORT_SYMBOL(register_memory_isolate_notifier);
71
72 void unregister_memory_isolate_notifier(struct notifier_block *nb)
73 {
74 atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
75 }
76 EXPORT_SYMBOL(unregister_memory_isolate_notifier);
77
78 static void memory_block_release(struct device *dev)
79 {
80 struct memory_block *mem = container_of(dev, struct memory_block, dev);
81
82 kfree(mem);
83 }
84
85 unsigned long __weak memory_block_size_bytes(void)
86 {
87 return MIN_MEMORY_BLOCK_SIZE;
88 }
89
90 static unsigned long get_memory_block_size(void)
91 {
92 unsigned long block_sz;
93
94 block_sz = memory_block_size_bytes();
95
96 /* Validate blk_sz is a power of 2 and not less than section size */
97 if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
98 WARN_ON(1);
99 block_sz = MIN_MEMORY_BLOCK_SIZE;
100 }
101
102 return block_sz;
103 }
104
105 /*
106 * use this as the physical section index that this memsection
107 * uses.
108 */
109
110 static ssize_t show_mem_start_phys_index(struct device *dev,
111 struct device_attribute *attr, char *buf)
112 {
113 struct memory_block *mem =
114 container_of(dev, struct memory_block, dev);
115 unsigned long phys_index;
116
117 phys_index = mem->start_section_nr / sections_per_block;
118 return sprintf(buf, "%08lx\n", phys_index);
119 }
120
121 static ssize_t show_mem_end_phys_index(struct device *dev,
122 struct device_attribute *attr, char *buf)
123 {
124 struct memory_block *mem =
125 container_of(dev, struct memory_block, dev);
126 unsigned long phys_index;
127
128 phys_index = mem->end_section_nr / sections_per_block;
129 return sprintf(buf, "%08lx\n", phys_index);
130 }
131
132 /*
133 * Show whether the section of memory is likely to be hot-removable
134 */
135 static ssize_t show_mem_removable(struct device *dev,
136 struct device_attribute *attr, char *buf)
137 {
138 unsigned long i, pfn;
139 int ret = 1;
140 struct memory_block *mem =
141 container_of(dev, struct memory_block, dev);
142
143 for (i = 0; i < sections_per_block; i++) {
144 pfn = section_nr_to_pfn(mem->start_section_nr + i);
145 ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
146 }
147
148 return sprintf(buf, "%d\n", ret);
149 }
150
151 /*
152 * online, offline, going offline, etc.
153 */
154 static ssize_t show_mem_state(struct device *dev,
155 struct device_attribute *attr, char *buf)
156 {
157 struct memory_block *mem =
158 container_of(dev, struct memory_block, dev);
159 ssize_t len = 0;
160
161 /*
162 * We can probably put these states in a nice little array
163 * so that they're not open-coded
164 */
165 switch (mem->state) {
166 case MEM_ONLINE:
167 len = sprintf(buf, "online\n");
168 break;
169 case MEM_OFFLINE:
170 len = sprintf(buf, "offline\n");
171 break;
172 case MEM_GOING_OFFLINE:
173 len = sprintf(buf, "going-offline\n");
174 break;
175 default:
176 len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
177 mem->state);
178 WARN_ON(1);
179 break;
180 }
181
182 return len;
183 }
184
185 int memory_notify(unsigned long val, void *v)
186 {
187 return blocking_notifier_call_chain(&memory_chain, val, v);
188 }
189
190 int memory_isolate_notify(unsigned long val, void *v)
191 {
192 return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
193 }
194
195 /*
196 * The probe routines leave the pages reserved, just as the bootmem code does.
197 * Make sure they're still that way.
198 */
199 static bool pages_correctly_reserved(unsigned long start_pfn)
200 {
201 int i, j;
202 struct page *page;
203 unsigned long pfn = start_pfn;
204
205 /*
206 * memmap between sections is not contiguous except with
207 * SPARSEMEM_VMEMMAP. We lookup the page once per section
208 * and assume memmap is contiguous within each section
209 */
210 for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
211 if (WARN_ON_ONCE(!pfn_valid(pfn)))
212 return false;
213 page = pfn_to_page(pfn);
214
215 for (j = 0; j < PAGES_PER_SECTION; j++) {
216 if (PageReserved(page + j))
217 continue;
218
219 printk(KERN_WARNING "section number %ld page number %d "
220 "not reserved, was it already online?\n",
221 pfn_to_section_nr(pfn), j);
222
223 return false;
224 }
225 }
226
227 return true;
228 }
229
230 /*
231 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
232 * OK to have direct references to sparsemem variables in here.
233 */
234 static int
235 memory_block_action(unsigned long phys_index, unsigned long action, int online_type)
236 {
237 unsigned long start_pfn;
238 unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
239 struct page *first_page;
240 int ret;
241
242 first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT);
243 start_pfn = page_to_pfn(first_page);
244
245 switch (action) {
246 case MEM_ONLINE:
247 if (!pages_correctly_reserved(start_pfn))
248 return -EBUSY;
249
250 ret = online_pages(start_pfn, nr_pages, online_type);
251 break;
252 case MEM_OFFLINE:
253 ret = offline_pages(start_pfn, nr_pages);
254 break;
255 default:
256 WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
257 "%ld\n", __func__, phys_index, action, action);
258 ret = -EINVAL;
259 }
260
261 return ret;
262 }
263
264 static int __memory_block_change_state(struct memory_block *mem,
265 unsigned long to_state, unsigned long from_state_req,
266 int online_type)
267 {
268 int ret = 0;
269
270 if (mem->state != from_state_req)
271 return -EINVAL;
272
273 if (to_state == MEM_OFFLINE)
274 mem->state = MEM_GOING_OFFLINE;
275
276 ret = memory_block_action(mem->start_section_nr, to_state, online_type);
277 mem->state = ret ? from_state_req : to_state;
278 return ret;
279 }
280
281 static int memory_subsys_online(struct device *dev)
282 {
283 struct memory_block *mem = container_of(dev, struct memory_block, dev);
284 int ret;
285
286 mutex_lock(&mem->state_mutex);
287
288 ret = mem->state == MEM_ONLINE ? 0 :
289 __memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE,
290 ONLINE_KEEP);
291
292 mutex_unlock(&mem->state_mutex);
293 return ret;
294 }
295
296 static int memory_subsys_offline(struct device *dev)
297 {
298 struct memory_block *mem = container_of(dev, struct memory_block, dev);
299 int ret;
300
301 mutex_lock(&mem->state_mutex);
302
303 ret = mem->state == MEM_OFFLINE ? 0 :
304 __memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE, -1);
305
306 mutex_unlock(&mem->state_mutex);
307 return ret;
308 }
309
310 static int __memory_block_change_state_uevent(struct memory_block *mem,
311 unsigned long to_state, unsigned long from_state_req,
312 int online_type)
313 {
314 int ret = __memory_block_change_state(mem, to_state, from_state_req,
315 online_type);
316 if (!ret) {
317 switch (mem->state) {
318 case MEM_OFFLINE:
319 kobject_uevent(&mem->dev.kobj, KOBJ_OFFLINE);
320 break;
321 case MEM_ONLINE:
322 kobject_uevent(&mem->dev.kobj, KOBJ_ONLINE);
323 break;
324 default:
325 break;
326 }
327 }
328 return ret;
329 }
330
331 static int memory_block_change_state(struct memory_block *mem,
332 unsigned long to_state, unsigned long from_state_req,
333 int online_type)
334 {
335 int ret;
336
337 mutex_lock(&mem->state_mutex);
338 ret = __memory_block_change_state_uevent(mem, to_state, from_state_req,
339 online_type);
340 mutex_unlock(&mem->state_mutex);
341
342 return ret;
343 }
344 static ssize_t
345 store_mem_state(struct device *dev,
346 struct device_attribute *attr, const char *buf, size_t count)
347 {
348 struct memory_block *mem;
349 bool offline;
350 int ret = -EINVAL;
351
352 mem = container_of(dev, struct memory_block, dev);
353
354 lock_device_hotplug();
355
356 if (!strncmp(buf, "online_kernel", min_t(int, count, 13))) {
357 offline = false;
358 ret = memory_block_change_state(mem, MEM_ONLINE,
359 MEM_OFFLINE, ONLINE_KERNEL);
360 } else if (!strncmp(buf, "online_movable", min_t(int, count, 14))) {
361 offline = false;
362 ret = memory_block_change_state(mem, MEM_ONLINE,
363 MEM_OFFLINE, ONLINE_MOVABLE);
364 } else if (!strncmp(buf, "online", min_t(int, count, 6))) {
365 offline = false;
366 ret = memory_block_change_state(mem, MEM_ONLINE,
367 MEM_OFFLINE, ONLINE_KEEP);
368 } else if(!strncmp(buf, "offline", min_t(int, count, 7))) {
369 offline = true;
370 ret = memory_block_change_state(mem, MEM_OFFLINE,
371 MEM_ONLINE, -1);
372 }
373 if (!ret)
374 dev->offline = offline;
375
376 unlock_device_hotplug();
377
378 if (ret)
379 return ret;
380 return count;
381 }
382
383 /*
384 * phys_device is a bad name for this. What I really want
385 * is a way to differentiate between memory ranges that
386 * are part of physical devices that constitute
387 * a complete removable unit or fru.
388 * i.e. do these ranges belong to the same physical device,
389 * s.t. if I offline all of these sections I can then
390 * remove the physical device?
391 */
392 static ssize_t show_phys_device(struct device *dev,
393 struct device_attribute *attr, char *buf)
394 {
395 struct memory_block *mem =
396 container_of(dev, struct memory_block, dev);
397 return sprintf(buf, "%d\n", mem->phys_device);
398 }
399
400 static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
401 static DEVICE_ATTR(end_phys_index, 0444, show_mem_end_phys_index, NULL);
402 static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
403 static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
404 static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
405
406 /*
407 * Block size attribute stuff
408 */
409 static ssize_t
410 print_block_size(struct device *dev, struct device_attribute *attr,
411 char *buf)
412 {
413 return sprintf(buf, "%lx\n", get_memory_block_size());
414 }
415
416 static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
417
418 /*
419 * Some architectures will have custom drivers to do this, and
420 * will not need to do it from userspace. The fake hot-add code
421 * as well as ppc64 will do all of their discovery in userspace
422 * and will require this interface.
423 */
424 #ifdef CONFIG_ARCH_MEMORY_PROBE
425 static ssize_t
426 memory_probe_store(struct device *dev, struct device_attribute *attr,
427 const char *buf, size_t count)
428 {
429 u64 phys_addr;
430 int nid;
431 int i, ret;
432 unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
433
434 phys_addr = simple_strtoull(buf, NULL, 0);
435
436 if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
437 return -EINVAL;
438
439 for (i = 0; i < sections_per_block; i++) {
440 nid = memory_add_physaddr_to_nid(phys_addr);
441 ret = add_memory(nid, phys_addr,
442 PAGES_PER_SECTION << PAGE_SHIFT);
443 if (ret)
444 goto out;
445
446 phys_addr += MIN_MEMORY_BLOCK_SIZE;
447 }
448
449 ret = count;
450 out:
451 return ret;
452 }
453
454 static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
455 #endif
456
457 #ifdef CONFIG_MEMORY_FAILURE
458 /*
459 * Support for offlining pages of memory
460 */
461
462 /* Soft offline a page */
463 static ssize_t
464 store_soft_offline_page(struct device *dev,
465 struct device_attribute *attr,
466 const char *buf, size_t count)
467 {
468 int ret;
469 u64 pfn;
470 if (!capable(CAP_SYS_ADMIN))
471 return -EPERM;
472 if (strict_strtoull(buf, 0, &pfn) < 0)
473 return -EINVAL;
474 pfn >>= PAGE_SHIFT;
475 if (!pfn_valid(pfn))
476 return -ENXIO;
477 ret = soft_offline_page(pfn_to_page(pfn), 0);
478 return ret == 0 ? count : ret;
479 }
480
481 /* Forcibly offline a page, including killing processes. */
482 static ssize_t
483 store_hard_offline_page(struct device *dev,
484 struct device_attribute *attr,
485 const char *buf, size_t count)
486 {
487 int ret;
488 u64 pfn;
489 if (!capable(CAP_SYS_ADMIN))
490 return -EPERM;
491 if (strict_strtoull(buf, 0, &pfn) < 0)
492 return -EINVAL;
493 pfn >>= PAGE_SHIFT;
494 ret = memory_failure(pfn, 0, 0);
495 return ret ? ret : count;
496 }
497
498 static DEVICE_ATTR(soft_offline_page, S_IWUSR, NULL, store_soft_offline_page);
499 static DEVICE_ATTR(hard_offline_page, S_IWUSR, NULL, store_hard_offline_page);
500 #endif
501
502 /*
503 * Note that phys_device is optional. It is here to allow for
504 * differentiation between which *physical* devices each
505 * section belongs to...
506 */
507 int __weak arch_get_memory_phys_device(unsigned long start_pfn)
508 {
509 return 0;
510 }
511
512 /*
513 * A reference for the returned object is held and the reference for the
514 * hinted object is released.
515 */
516 struct memory_block *find_memory_block_hinted(struct mem_section *section,
517 struct memory_block *hint)
518 {
519 int block_id = base_memory_block_id(__section_nr(section));
520 struct device *hintdev = hint ? &hint->dev : NULL;
521 struct device *dev;
522
523 dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
524 if (hint)
525 put_device(&hint->dev);
526 if (!dev)
527 return NULL;
528 return container_of(dev, struct memory_block, dev);
529 }
530
531 /*
532 * For now, we have a linear search to go find the appropriate
533 * memory_block corresponding to a particular phys_index. If
534 * this gets to be a real problem, we can always use a radix
535 * tree or something here.
536 *
537 * This could be made generic for all device subsystems.
538 */
539 struct memory_block *find_memory_block(struct mem_section *section)
540 {
541 return find_memory_block_hinted(section, NULL);
542 }
543
544 static struct attribute *memory_memblk_attrs[] = {
545 &dev_attr_phys_index.attr,
546 &dev_attr_end_phys_index.attr,
547 &dev_attr_state.attr,
548 &dev_attr_phys_device.attr,
549 &dev_attr_removable.attr,
550 NULL
551 };
552
553 static struct attribute_group memory_memblk_attr_group = {
554 .attrs = memory_memblk_attrs,
555 };
556
557 static const struct attribute_group *memory_memblk_attr_groups[] = {
558 &memory_memblk_attr_group,
559 NULL,
560 };
561
562 /*
563 * register_memory - Setup a sysfs device for a memory block
564 */
565 static
566 int register_memory(struct memory_block *memory)
567 {
568 int error;
569
570 memory->dev.bus = &memory_subsys;
571 memory->dev.id = memory->start_section_nr / sections_per_block;
572 memory->dev.release = memory_block_release;
573 memory->dev.groups = memory_memblk_attr_groups;
574 memory->dev.offline = memory->state == MEM_OFFLINE;
575
576 error = device_register(&memory->dev);
577 return error;
578 }
579
580 static int init_memory_block(struct memory_block **memory,
581 struct mem_section *section, unsigned long state)
582 {
583 struct memory_block *mem;
584 unsigned long start_pfn;
585 int scn_nr;
586 int ret = 0;
587
588 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
589 if (!mem)
590 return -ENOMEM;
591
592 scn_nr = __section_nr(section);
593 mem->start_section_nr =
594 base_memory_block_id(scn_nr) * sections_per_block;
595 mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
596 mem->state = state;
597 mem->section_count++;
598 mutex_init(&mem->state_mutex);
599 start_pfn = section_nr_to_pfn(mem->start_section_nr);
600 mem->phys_device = arch_get_memory_phys_device(start_pfn);
601
602 ret = register_memory(mem);
603
604 *memory = mem;
605 return ret;
606 }
607
608 static int add_memory_section(int nid, struct mem_section *section,
609 struct memory_block **mem_p,
610 unsigned long state, enum mem_add_context context)
611 {
612 struct memory_block *mem = NULL;
613 int scn_nr = __section_nr(section);
614 int ret = 0;
615
616 mutex_lock(&mem_sysfs_mutex);
617
618 if (context == BOOT) {
619 /* same memory block ? */
620 if (mem_p && *mem_p)
621 if (scn_nr >= (*mem_p)->start_section_nr &&
622 scn_nr <= (*mem_p)->end_section_nr) {
623 mem = *mem_p;
624 kobject_get(&mem->dev.kobj);
625 }
626 } else
627 mem = find_memory_block(section);
628
629 if (mem) {
630 mem->section_count++;
631 kobject_put(&mem->dev.kobj);
632 } else {
633 ret = init_memory_block(&mem, section, state);
634 /* store memory_block pointer for next loop */
635 if (!ret && context == BOOT)
636 if (mem_p)
637 *mem_p = mem;
638 }
639
640 if (!ret) {
641 if (context == HOTPLUG &&
642 mem->section_count == sections_per_block)
643 ret = register_mem_sect_under_node(mem, nid);
644 }
645
646 mutex_unlock(&mem_sysfs_mutex);
647 return ret;
648 }
649
650 /*
651 * need an interface for the VM to add new memory regions,
652 * but without onlining it.
653 */
654 int register_new_memory(int nid, struct mem_section *section)
655 {
656 return add_memory_section(nid, section, NULL, MEM_OFFLINE, HOTPLUG);
657 }
658
659 #ifdef CONFIG_MEMORY_HOTREMOVE
660 static void
661 unregister_memory(struct memory_block *memory)
662 {
663 BUG_ON(memory->dev.bus != &memory_subsys);
664
665 /* drop the ref. we got in remove_memory_block() */
666 kobject_put(&memory->dev.kobj);
667 device_unregister(&memory->dev);
668 }
669
670 static int remove_memory_block(unsigned long node_id,
671 struct mem_section *section, int phys_device)
672 {
673 struct memory_block *mem;
674
675 mutex_lock(&mem_sysfs_mutex);
676 mem = find_memory_block(section);
677 unregister_mem_sect_under_nodes(mem, __section_nr(section));
678
679 mem->section_count--;
680 if (mem->section_count == 0)
681 unregister_memory(mem);
682 else
683 kobject_put(&mem->dev.kobj);
684
685 mutex_unlock(&mem_sysfs_mutex);
686 return 0;
687 }
688
689 int unregister_memory_section(struct mem_section *section)
690 {
691 if (!present_section(section))
692 return -EINVAL;
693
694 return remove_memory_block(0, section, 0);
695 }
696 #endif /* CONFIG_MEMORY_HOTREMOVE */
697
698 /* return true if the memory block is offlined, otherwise, return false */
699 bool is_memblock_offlined(struct memory_block *mem)
700 {
701 return mem->state == MEM_OFFLINE;
702 }
703
704 static struct attribute *memory_root_attrs[] = {
705 #ifdef CONFIG_ARCH_MEMORY_PROBE
706 &dev_attr_probe.attr,
707 #endif
708
709 #ifdef CONFIG_MEMORY_FAILURE
710 &dev_attr_soft_offline_page.attr,
711 &dev_attr_hard_offline_page.attr,
712 #endif
713
714 &dev_attr_block_size_bytes.attr,
715 NULL
716 };
717
718 static struct attribute_group memory_root_attr_group = {
719 .attrs = memory_root_attrs,
720 };
721
722 static const struct attribute_group *memory_root_attr_groups[] = {
723 &memory_root_attr_group,
724 NULL,
725 };
726
727 /*
728 * Initialize the sysfs support for memory devices...
729 */
730 int __init memory_dev_init(void)
731 {
732 unsigned int i;
733 int ret;
734 int err;
735 unsigned long block_sz;
736 struct memory_block *mem = NULL;
737
738 ret = subsys_system_register(&memory_subsys, memory_root_attr_groups);
739 if (ret)
740 goto out;
741
742 block_sz = get_memory_block_size();
743 sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
744
745 /*
746 * Create entries for memory sections that were found
747 * during boot and have been initialized
748 */
749 for (i = 0; i < NR_MEM_SECTIONS; i++) {
750 if (!present_section_nr(i))
751 continue;
752 /* don't need to reuse memory_block if only one per block */
753 err = add_memory_section(0, __nr_to_section(i),
754 (sections_per_block == 1) ? NULL : &mem,
755 MEM_ONLINE,
756 BOOT);
757 if (!ret)
758 ret = err;
759 }
760
761 out:
762 if (ret)
763 printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
764 return ret;
765 }
This page took 0.048888 seconds and 5 git commands to generate.