Merge branch 'next/cleanup2' of git://git.linaro.org/people/arnd/arm-soc
[deliverable/linux.git] / drivers / base / memory.c
1 /*
2 * drivers/base/memory.c - basic Memory class support
3 *
4 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
5 * Dave Hansen <haveblue@us.ibm.com>
6 *
7 * This file provides the necessary infrastructure to represent
8 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
9 * All arch-independent code that assumes MEMORY_HOTPLUG requires
10 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
11 */
12
13 #include <linux/sysdev.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/topology.h>
17 #include <linux/capability.h>
18 #include <linux/device.h>
19 #include <linux/memory.h>
20 #include <linux/kobject.h>
21 #include <linux/memory_hotplug.h>
22 #include <linux/mm.h>
23 #include <linux/mutex.h>
24 #include <linux/stat.h>
25 #include <linux/slab.h>
26
27 #include <linux/atomic.h>
28 #include <asm/uaccess.h>
29
30 static DEFINE_MUTEX(mem_sysfs_mutex);
31
32 #define MEMORY_CLASS_NAME "memory"
33
34 static int sections_per_block;
35
36 static inline int base_memory_block_id(int section_nr)
37 {
38 return section_nr / sections_per_block;
39 }
40
41 static struct sysdev_class memory_sysdev_class = {
42 .name = MEMORY_CLASS_NAME,
43 };
44
45 static const char *memory_uevent_name(struct kset *kset, struct kobject *kobj)
46 {
47 return MEMORY_CLASS_NAME;
48 }
49
50 static int memory_uevent(struct kset *kset, struct kobject *obj,
51 struct kobj_uevent_env *env)
52 {
53 int retval = 0;
54
55 return retval;
56 }
57
58 static const struct kset_uevent_ops memory_uevent_ops = {
59 .name = memory_uevent_name,
60 .uevent = memory_uevent,
61 };
62
63 static BLOCKING_NOTIFIER_HEAD(memory_chain);
64
65 int register_memory_notifier(struct notifier_block *nb)
66 {
67 return blocking_notifier_chain_register(&memory_chain, nb);
68 }
69 EXPORT_SYMBOL(register_memory_notifier);
70
71 void unregister_memory_notifier(struct notifier_block *nb)
72 {
73 blocking_notifier_chain_unregister(&memory_chain, nb);
74 }
75 EXPORT_SYMBOL(unregister_memory_notifier);
76
77 static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);
78
79 int register_memory_isolate_notifier(struct notifier_block *nb)
80 {
81 return atomic_notifier_chain_register(&memory_isolate_chain, nb);
82 }
83 EXPORT_SYMBOL(register_memory_isolate_notifier);
84
85 void unregister_memory_isolate_notifier(struct notifier_block *nb)
86 {
87 atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
88 }
89 EXPORT_SYMBOL(unregister_memory_isolate_notifier);
90
91 /*
92 * register_memory - Setup a sysfs device for a memory block
93 */
94 static
95 int register_memory(struct memory_block *memory)
96 {
97 int error;
98
99 memory->sysdev.cls = &memory_sysdev_class;
100 memory->sysdev.id = memory->start_section_nr / sections_per_block;
101
102 error = sysdev_register(&memory->sysdev);
103 return error;
104 }
105
106 static void
107 unregister_memory(struct memory_block *memory)
108 {
109 BUG_ON(memory->sysdev.cls != &memory_sysdev_class);
110
111 /* drop the ref. we got in remove_memory_block() */
112 kobject_put(&memory->sysdev.kobj);
113 sysdev_unregister(&memory->sysdev);
114 }
115
116 unsigned long __weak memory_block_size_bytes(void)
117 {
118 return MIN_MEMORY_BLOCK_SIZE;
119 }
120
121 static unsigned long get_memory_block_size(void)
122 {
123 unsigned long block_sz;
124
125 block_sz = memory_block_size_bytes();
126
127 /* Validate blk_sz is a power of 2 and not less than section size */
128 if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
129 WARN_ON(1);
130 block_sz = MIN_MEMORY_BLOCK_SIZE;
131 }
132
133 return block_sz;
134 }
135
136 /*
137 * use this as the physical section index that this memsection
138 * uses.
139 */
140
141 static ssize_t show_mem_start_phys_index(struct sys_device *dev,
142 struct sysdev_attribute *attr, char *buf)
143 {
144 struct memory_block *mem =
145 container_of(dev, struct memory_block, sysdev);
146 unsigned long phys_index;
147
148 phys_index = mem->start_section_nr / sections_per_block;
149 return sprintf(buf, "%08lx\n", phys_index);
150 }
151
152 static ssize_t show_mem_end_phys_index(struct sys_device *dev,
153 struct sysdev_attribute *attr, char *buf)
154 {
155 struct memory_block *mem =
156 container_of(dev, struct memory_block, sysdev);
157 unsigned long phys_index;
158
159 phys_index = mem->end_section_nr / sections_per_block;
160 return sprintf(buf, "%08lx\n", phys_index);
161 }
162
163 /*
164 * Show whether the section of memory is likely to be hot-removable
165 */
166 static ssize_t show_mem_removable(struct sys_device *dev,
167 struct sysdev_attribute *attr, char *buf)
168 {
169 unsigned long i, pfn;
170 int ret = 1;
171 struct memory_block *mem =
172 container_of(dev, struct memory_block, sysdev);
173
174 for (i = 0; i < sections_per_block; i++) {
175 pfn = section_nr_to_pfn(mem->start_section_nr + i);
176 ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
177 }
178
179 return sprintf(buf, "%d\n", ret);
180 }
181
182 /*
183 * online, offline, going offline, etc.
184 */
185 static ssize_t show_mem_state(struct sys_device *dev,
186 struct sysdev_attribute *attr, char *buf)
187 {
188 struct memory_block *mem =
189 container_of(dev, struct memory_block, sysdev);
190 ssize_t len = 0;
191
192 /*
193 * We can probably put these states in a nice little array
194 * so that they're not open-coded
195 */
196 switch (mem->state) {
197 case MEM_ONLINE:
198 len = sprintf(buf, "online\n");
199 break;
200 case MEM_OFFLINE:
201 len = sprintf(buf, "offline\n");
202 break;
203 case MEM_GOING_OFFLINE:
204 len = sprintf(buf, "going-offline\n");
205 break;
206 default:
207 len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
208 mem->state);
209 WARN_ON(1);
210 break;
211 }
212
213 return len;
214 }
215
216 int memory_notify(unsigned long val, void *v)
217 {
218 return blocking_notifier_call_chain(&memory_chain, val, v);
219 }
220
221 int memory_isolate_notify(unsigned long val, void *v)
222 {
223 return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
224 }
225
226 /*
227 * The probe routines leave the pages reserved, just as the bootmem code does.
228 * Make sure they're still that way.
229 */
230 static bool pages_correctly_reserved(unsigned long start_pfn,
231 unsigned long nr_pages)
232 {
233 int i, j;
234 struct page *page;
235 unsigned long pfn = start_pfn;
236
237 /*
238 * memmap between sections is not contiguous except with
239 * SPARSEMEM_VMEMMAP. We lookup the page once per section
240 * and assume memmap is contiguous within each section
241 */
242 for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
243 if (WARN_ON_ONCE(!pfn_valid(pfn)))
244 return false;
245 page = pfn_to_page(pfn);
246
247 for (j = 0; j < PAGES_PER_SECTION; j++) {
248 if (PageReserved(page + j))
249 continue;
250
251 printk(KERN_WARNING "section number %ld page number %d "
252 "not reserved, was it already online?\n",
253 pfn_to_section_nr(pfn), j);
254
255 return false;
256 }
257 }
258
259 return true;
260 }
261
262 /*
263 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
264 * OK to have direct references to sparsemem variables in here.
265 */
266 static int
267 memory_block_action(unsigned long phys_index, unsigned long action)
268 {
269 unsigned long start_pfn, start_paddr;
270 unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
271 struct page *first_page;
272 int ret;
273
274 first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT);
275
276 switch (action) {
277 case MEM_ONLINE:
278 start_pfn = page_to_pfn(first_page);
279
280 if (!pages_correctly_reserved(start_pfn, nr_pages))
281 return -EBUSY;
282
283 ret = online_pages(start_pfn, nr_pages);
284 break;
285 case MEM_OFFLINE:
286 start_paddr = page_to_pfn(first_page) << PAGE_SHIFT;
287 ret = remove_memory(start_paddr,
288 nr_pages << PAGE_SHIFT);
289 break;
290 default:
291 WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
292 "%ld\n", __func__, phys_index, action, action);
293 ret = -EINVAL;
294 }
295
296 return ret;
297 }
298
299 static int memory_block_change_state(struct memory_block *mem,
300 unsigned long to_state, unsigned long from_state_req)
301 {
302 int ret = 0;
303
304 mutex_lock(&mem->state_mutex);
305
306 if (mem->state != from_state_req) {
307 ret = -EINVAL;
308 goto out;
309 }
310
311 if (to_state == MEM_OFFLINE)
312 mem->state = MEM_GOING_OFFLINE;
313
314 ret = memory_block_action(mem->start_section_nr, to_state);
315
316 if (ret)
317 mem->state = from_state_req;
318 else
319 mem->state = to_state;
320
321 out:
322 mutex_unlock(&mem->state_mutex);
323 return ret;
324 }
325
326 static ssize_t
327 store_mem_state(struct sys_device *dev,
328 struct sysdev_attribute *attr, const char *buf, size_t count)
329 {
330 struct memory_block *mem;
331 int ret = -EINVAL;
332
333 mem = container_of(dev, struct memory_block, sysdev);
334
335 if (!strncmp(buf, "online", min((int)count, 6)))
336 ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
337 else if(!strncmp(buf, "offline", min((int)count, 7)))
338 ret = memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
339
340 if (ret)
341 return ret;
342 return count;
343 }
344
345 /*
346 * phys_device is a bad name for this. What I really want
347 * is a way to differentiate between memory ranges that
348 * are part of physical devices that constitute
349 * a complete removable unit or fru.
350 * i.e. do these ranges belong to the same physical device,
351 * s.t. if I offline all of these sections I can then
352 * remove the physical device?
353 */
354 static ssize_t show_phys_device(struct sys_device *dev,
355 struct sysdev_attribute *attr, char *buf)
356 {
357 struct memory_block *mem =
358 container_of(dev, struct memory_block, sysdev);
359 return sprintf(buf, "%d\n", mem->phys_device);
360 }
361
362 static SYSDEV_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
363 static SYSDEV_ATTR(end_phys_index, 0444, show_mem_end_phys_index, NULL);
364 static SYSDEV_ATTR(state, 0644, show_mem_state, store_mem_state);
365 static SYSDEV_ATTR(phys_device, 0444, show_phys_device, NULL);
366 static SYSDEV_ATTR(removable, 0444, show_mem_removable, NULL);
367
368 #define mem_create_simple_file(mem, attr_name) \
369 sysdev_create_file(&mem->sysdev, &attr_##attr_name)
370 #define mem_remove_simple_file(mem, attr_name) \
371 sysdev_remove_file(&mem->sysdev, &attr_##attr_name)
372
373 /*
374 * Block size attribute stuff
375 */
376 static ssize_t
377 print_block_size(struct sysdev_class *class, struct sysdev_class_attribute *attr,
378 char *buf)
379 {
380 return sprintf(buf, "%lx\n", get_memory_block_size());
381 }
382
383 static SYSDEV_CLASS_ATTR(block_size_bytes, 0444, print_block_size, NULL);
384
385 static int block_size_init(void)
386 {
387 return sysfs_create_file(&memory_sysdev_class.kset.kobj,
388 &attr_block_size_bytes.attr);
389 }
390
391 /*
392 * Some architectures will have custom drivers to do this, and
393 * will not need to do it from userspace. The fake hot-add code
394 * as well as ppc64 will do all of their discovery in userspace
395 * and will require this interface.
396 */
397 #ifdef CONFIG_ARCH_MEMORY_PROBE
398 static ssize_t
399 memory_probe_store(struct class *class, struct class_attribute *attr,
400 const char *buf, size_t count)
401 {
402 u64 phys_addr;
403 int nid;
404 int i, ret;
405 unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
406
407 phys_addr = simple_strtoull(buf, NULL, 0);
408
409 if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
410 return -EINVAL;
411
412 for (i = 0; i < sections_per_block; i++) {
413 nid = memory_add_physaddr_to_nid(phys_addr);
414 ret = add_memory(nid, phys_addr,
415 PAGES_PER_SECTION << PAGE_SHIFT);
416 if (ret)
417 goto out;
418
419 phys_addr += MIN_MEMORY_BLOCK_SIZE;
420 }
421
422 ret = count;
423 out:
424 return ret;
425 }
426 static CLASS_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
427
428 static int memory_probe_init(void)
429 {
430 return sysfs_create_file(&memory_sysdev_class.kset.kobj,
431 &class_attr_probe.attr);
432 }
433 #else
434 static inline int memory_probe_init(void)
435 {
436 return 0;
437 }
438 #endif
439
440 #ifdef CONFIG_MEMORY_FAILURE
441 /*
442 * Support for offlining pages of memory
443 */
444
445 /* Soft offline a page */
446 static ssize_t
447 store_soft_offline_page(struct class *class,
448 struct class_attribute *attr,
449 const char *buf, size_t count)
450 {
451 int ret;
452 u64 pfn;
453 if (!capable(CAP_SYS_ADMIN))
454 return -EPERM;
455 if (strict_strtoull(buf, 0, &pfn) < 0)
456 return -EINVAL;
457 pfn >>= PAGE_SHIFT;
458 if (!pfn_valid(pfn))
459 return -ENXIO;
460 ret = soft_offline_page(pfn_to_page(pfn), 0);
461 return ret == 0 ? count : ret;
462 }
463
464 /* Forcibly offline a page, including killing processes. */
465 static ssize_t
466 store_hard_offline_page(struct class *class,
467 struct class_attribute *attr,
468 const char *buf, size_t count)
469 {
470 int ret;
471 u64 pfn;
472 if (!capable(CAP_SYS_ADMIN))
473 return -EPERM;
474 if (strict_strtoull(buf, 0, &pfn) < 0)
475 return -EINVAL;
476 pfn >>= PAGE_SHIFT;
477 ret = __memory_failure(pfn, 0, 0);
478 return ret ? ret : count;
479 }
480
481 static CLASS_ATTR(soft_offline_page, 0644, NULL, store_soft_offline_page);
482 static CLASS_ATTR(hard_offline_page, 0644, NULL, store_hard_offline_page);
483
484 static __init int memory_fail_init(void)
485 {
486 int err;
487
488 err = sysfs_create_file(&memory_sysdev_class.kset.kobj,
489 &class_attr_soft_offline_page.attr);
490 if (!err)
491 err = sysfs_create_file(&memory_sysdev_class.kset.kobj,
492 &class_attr_hard_offline_page.attr);
493 return err;
494 }
495 #else
496 static inline int memory_fail_init(void)
497 {
498 return 0;
499 }
500 #endif
501
502 /*
503 * Note that phys_device is optional. It is here to allow for
504 * differentiation between which *physical* devices each
505 * section belongs to...
506 */
507 int __weak arch_get_memory_phys_device(unsigned long start_pfn)
508 {
509 return 0;
510 }
511
512 struct memory_block *find_memory_block_hinted(struct mem_section *section,
513 struct memory_block *hint)
514 {
515 struct kobject *kobj;
516 struct sys_device *sysdev;
517 struct memory_block *mem;
518 char name[sizeof(MEMORY_CLASS_NAME) + 9 + 1];
519 int block_id = base_memory_block_id(__section_nr(section));
520
521 kobj = hint ? &hint->sysdev.kobj : NULL;
522
523 /*
524 * This only works because we know that section == sysdev->id
525 * slightly redundant with sysdev_register()
526 */
527 sprintf(&name[0], "%s%d", MEMORY_CLASS_NAME, block_id);
528
529 kobj = kset_find_obj_hinted(&memory_sysdev_class.kset, name, kobj);
530 if (!kobj)
531 return NULL;
532
533 sysdev = container_of(kobj, struct sys_device, kobj);
534 mem = container_of(sysdev, struct memory_block, sysdev);
535
536 return mem;
537 }
538
539 /*
540 * For now, we have a linear search to go find the appropriate
541 * memory_block corresponding to a particular phys_index. If
542 * this gets to be a real problem, we can always use a radix
543 * tree or something here.
544 *
545 * This could be made generic for all sysdev classes.
546 */
547 struct memory_block *find_memory_block(struct mem_section *section)
548 {
549 return find_memory_block_hinted(section, NULL);
550 }
551
552 static int init_memory_block(struct memory_block **memory,
553 struct mem_section *section, unsigned long state)
554 {
555 struct memory_block *mem;
556 unsigned long start_pfn;
557 int scn_nr;
558 int ret = 0;
559
560 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
561 if (!mem)
562 return -ENOMEM;
563
564 scn_nr = __section_nr(section);
565 mem->start_section_nr =
566 base_memory_block_id(scn_nr) * sections_per_block;
567 mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
568 mem->state = state;
569 mem->section_count++;
570 mutex_init(&mem->state_mutex);
571 start_pfn = section_nr_to_pfn(mem->start_section_nr);
572 mem->phys_device = arch_get_memory_phys_device(start_pfn);
573
574 ret = register_memory(mem);
575 if (!ret)
576 ret = mem_create_simple_file(mem, phys_index);
577 if (!ret)
578 ret = mem_create_simple_file(mem, end_phys_index);
579 if (!ret)
580 ret = mem_create_simple_file(mem, state);
581 if (!ret)
582 ret = mem_create_simple_file(mem, phys_device);
583 if (!ret)
584 ret = mem_create_simple_file(mem, removable);
585
586 *memory = mem;
587 return ret;
588 }
589
590 static int add_memory_section(int nid, struct mem_section *section,
591 unsigned long state, enum mem_add_context context)
592 {
593 struct memory_block *mem;
594 int ret = 0;
595
596 mutex_lock(&mem_sysfs_mutex);
597
598 mem = find_memory_block(section);
599 if (mem) {
600 mem->section_count++;
601 kobject_put(&mem->sysdev.kobj);
602 } else
603 ret = init_memory_block(&mem, section, state);
604
605 if (!ret) {
606 if (context == HOTPLUG &&
607 mem->section_count == sections_per_block)
608 ret = register_mem_sect_under_node(mem, nid);
609 }
610
611 mutex_unlock(&mem_sysfs_mutex);
612 return ret;
613 }
614
615 int remove_memory_block(unsigned long node_id, struct mem_section *section,
616 int phys_device)
617 {
618 struct memory_block *mem;
619
620 mutex_lock(&mem_sysfs_mutex);
621 mem = find_memory_block(section);
622 unregister_mem_sect_under_nodes(mem, __section_nr(section));
623
624 mem->section_count--;
625 if (mem->section_count == 0) {
626 mem_remove_simple_file(mem, phys_index);
627 mem_remove_simple_file(mem, end_phys_index);
628 mem_remove_simple_file(mem, state);
629 mem_remove_simple_file(mem, phys_device);
630 mem_remove_simple_file(mem, removable);
631 unregister_memory(mem);
632 kfree(mem);
633 } else
634 kobject_put(&mem->sysdev.kobj);
635
636 mutex_unlock(&mem_sysfs_mutex);
637 return 0;
638 }
639
640 /*
641 * need an interface for the VM to add new memory regions,
642 * but without onlining it.
643 */
644 int register_new_memory(int nid, struct mem_section *section)
645 {
646 return add_memory_section(nid, section, MEM_OFFLINE, HOTPLUG);
647 }
648
649 int unregister_memory_section(struct mem_section *section)
650 {
651 if (!present_section(section))
652 return -EINVAL;
653
654 return remove_memory_block(0, section, 0);
655 }
656
657 /*
658 * Initialize the sysfs support for memory devices...
659 */
660 int __init memory_dev_init(void)
661 {
662 unsigned int i;
663 int ret;
664 int err;
665 unsigned long block_sz;
666
667 memory_sysdev_class.kset.uevent_ops = &memory_uevent_ops;
668 ret = sysdev_class_register(&memory_sysdev_class);
669 if (ret)
670 goto out;
671
672 block_sz = get_memory_block_size();
673 sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
674
675 /*
676 * Create entries for memory sections that were found
677 * during boot and have been initialized
678 */
679 for (i = 0; i < NR_MEM_SECTIONS; i++) {
680 if (!present_section_nr(i))
681 continue;
682 err = add_memory_section(0, __nr_to_section(i), MEM_ONLINE,
683 BOOT);
684 if (!ret)
685 ret = err;
686 }
687
688 err = memory_probe_init();
689 if (!ret)
690 ret = err;
691 err = memory_fail_init();
692 if (!ret)
693 ret = err;
694 err = block_size_init();
695 if (!ret)
696 ret = err;
697 out:
698 if (ret)
699 printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
700 return ret;
701 }
This page took 0.060874 seconds and 6 git commands to generate.