Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/gerg/m68knommu
[deliverable/linux.git] / drivers / base / regmap / regmap-irq.c
1 /*
2 * regmap based irq_chip
3 *
4 * Copyright 2011 Wolfson Microelectronics plc
5 *
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/device.h>
14 #include <linux/export.h>
15 #include <linux/interrupt.h>
16 #include <linux/irq.h>
17 #include <linux/irqdomain.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/regmap.h>
20 #include <linux/slab.h>
21
22 #include "internal.h"
23
24 struct regmap_irq_chip_data {
25 struct mutex lock;
26 struct irq_chip irq_chip;
27
28 struct regmap *map;
29 const struct regmap_irq_chip *chip;
30
31 int irq_base;
32 struct irq_domain *domain;
33
34 int irq;
35 int wake_count;
36
37 void *status_reg_buf;
38 unsigned int *status_buf;
39 unsigned int *mask_buf;
40 unsigned int *mask_buf_def;
41 unsigned int *wake_buf;
42
43 unsigned int irq_reg_stride;
44 };
45
46 static inline const
47 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
48 int irq)
49 {
50 return &data->chip->irqs[irq];
51 }
52
53 static void regmap_irq_lock(struct irq_data *data)
54 {
55 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
56
57 mutex_lock(&d->lock);
58 }
59
60 static void regmap_irq_sync_unlock(struct irq_data *data)
61 {
62 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
63 struct regmap *map = d->map;
64 int i, ret;
65 u32 reg;
66
67 if (d->chip->runtime_pm) {
68 ret = pm_runtime_get_sync(map->dev);
69 if (ret < 0)
70 dev_err(map->dev, "IRQ sync failed to resume: %d\n",
71 ret);
72 }
73
74 /*
75 * If there's been a change in the mask write it back to the
76 * hardware. We rely on the use of the regmap core cache to
77 * suppress pointless writes.
78 */
79 for (i = 0; i < d->chip->num_regs; i++) {
80 reg = d->chip->mask_base +
81 (i * map->reg_stride * d->irq_reg_stride);
82 if (d->chip->mask_invert)
83 ret = regmap_update_bits(d->map, reg,
84 d->mask_buf_def[i], ~d->mask_buf[i]);
85 else
86 ret = regmap_update_bits(d->map, reg,
87 d->mask_buf_def[i], d->mask_buf[i]);
88 if (ret != 0)
89 dev_err(d->map->dev, "Failed to sync masks in %x\n",
90 reg);
91
92 reg = d->chip->wake_base +
93 (i * map->reg_stride * d->irq_reg_stride);
94 if (d->wake_buf) {
95 if (d->chip->wake_invert)
96 ret = regmap_update_bits(d->map, reg,
97 d->mask_buf_def[i],
98 ~d->wake_buf[i]);
99 else
100 ret = regmap_update_bits(d->map, reg,
101 d->mask_buf_def[i],
102 d->wake_buf[i]);
103 if (ret != 0)
104 dev_err(d->map->dev,
105 "Failed to sync wakes in %x: %d\n",
106 reg, ret);
107 }
108
109 if (!d->chip->init_ack_masked)
110 continue;
111 /*
112 * Ack all the masked interrupts uncondictionly,
113 * OR if there is masked interrupt which hasn't been Acked,
114 * it'll be ignored in irq handler, then may introduce irq storm
115 */
116 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
117 reg = d->chip->ack_base +
118 (i * map->reg_stride * d->irq_reg_stride);
119 ret = regmap_write(map, reg, d->mask_buf[i]);
120 if (ret != 0)
121 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
122 reg, ret);
123 }
124 }
125
126 if (d->chip->runtime_pm)
127 pm_runtime_put(map->dev);
128
129 /* If we've changed our wakeup count propagate it to the parent */
130 if (d->wake_count < 0)
131 for (i = d->wake_count; i < 0; i++)
132 irq_set_irq_wake(d->irq, 0);
133 else if (d->wake_count > 0)
134 for (i = 0; i < d->wake_count; i++)
135 irq_set_irq_wake(d->irq, 1);
136
137 d->wake_count = 0;
138
139 mutex_unlock(&d->lock);
140 }
141
142 static void regmap_irq_enable(struct irq_data *data)
143 {
144 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
145 struct regmap *map = d->map;
146 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
147
148 d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~irq_data->mask;
149 }
150
151 static void regmap_irq_disable(struct irq_data *data)
152 {
153 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
154 struct regmap *map = d->map;
155 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
156
157 d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
158 }
159
160 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
161 {
162 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
163 struct regmap *map = d->map;
164 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
165
166 if (on) {
167 if (d->wake_buf)
168 d->wake_buf[irq_data->reg_offset / map->reg_stride]
169 &= ~irq_data->mask;
170 d->wake_count++;
171 } else {
172 if (d->wake_buf)
173 d->wake_buf[irq_data->reg_offset / map->reg_stride]
174 |= irq_data->mask;
175 d->wake_count--;
176 }
177
178 return 0;
179 }
180
181 static const struct irq_chip regmap_irq_chip = {
182 .irq_bus_lock = regmap_irq_lock,
183 .irq_bus_sync_unlock = regmap_irq_sync_unlock,
184 .irq_disable = regmap_irq_disable,
185 .irq_enable = regmap_irq_enable,
186 .irq_set_wake = regmap_irq_set_wake,
187 };
188
189 static irqreturn_t regmap_irq_thread(int irq, void *d)
190 {
191 struct regmap_irq_chip_data *data = d;
192 const struct regmap_irq_chip *chip = data->chip;
193 struct regmap *map = data->map;
194 int ret, i;
195 bool handled = false;
196 u32 reg;
197
198 if (chip->runtime_pm) {
199 ret = pm_runtime_get_sync(map->dev);
200 if (ret < 0) {
201 dev_err(map->dev, "IRQ thread failed to resume: %d\n",
202 ret);
203 pm_runtime_put(map->dev);
204 return IRQ_NONE;
205 }
206 }
207
208 /*
209 * Read in the statuses, using a single bulk read if possible
210 * in order to reduce the I/O overheads.
211 */
212 if (!map->use_single_rw && map->reg_stride == 1 &&
213 data->irq_reg_stride == 1) {
214 u8 *buf8 = data->status_reg_buf;
215 u16 *buf16 = data->status_reg_buf;
216 u32 *buf32 = data->status_reg_buf;
217
218 BUG_ON(!data->status_reg_buf);
219
220 ret = regmap_bulk_read(map, chip->status_base,
221 data->status_reg_buf,
222 chip->num_regs);
223 if (ret != 0) {
224 dev_err(map->dev, "Failed to read IRQ status: %d\n",
225 ret);
226 return IRQ_NONE;
227 }
228
229 for (i = 0; i < data->chip->num_regs; i++) {
230 switch (map->format.val_bytes) {
231 case 1:
232 data->status_buf[i] = buf8[i];
233 break;
234 case 2:
235 data->status_buf[i] = buf16[i];
236 break;
237 case 4:
238 data->status_buf[i] = buf32[i];
239 break;
240 default:
241 BUG();
242 return IRQ_NONE;
243 }
244 }
245
246 } else {
247 for (i = 0; i < data->chip->num_regs; i++) {
248 ret = regmap_read(map, chip->status_base +
249 (i * map->reg_stride
250 * data->irq_reg_stride),
251 &data->status_buf[i]);
252
253 if (ret != 0) {
254 dev_err(map->dev,
255 "Failed to read IRQ status: %d\n",
256 ret);
257 if (chip->runtime_pm)
258 pm_runtime_put(map->dev);
259 return IRQ_NONE;
260 }
261 }
262 }
263
264 /*
265 * Ignore masked IRQs and ack if we need to; we ack early so
266 * there is no race between handling and acknowleding the
267 * interrupt. We assume that typically few of the interrupts
268 * will fire simultaneously so don't worry about overhead from
269 * doing a write per register.
270 */
271 for (i = 0; i < data->chip->num_regs; i++) {
272 data->status_buf[i] &= ~data->mask_buf[i];
273
274 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
275 reg = chip->ack_base +
276 (i * map->reg_stride * data->irq_reg_stride);
277 ret = regmap_write(map, reg, data->status_buf[i]);
278 if (ret != 0)
279 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
280 reg, ret);
281 }
282 }
283
284 for (i = 0; i < chip->num_irqs; i++) {
285 if (data->status_buf[chip->irqs[i].reg_offset /
286 map->reg_stride] & chip->irqs[i].mask) {
287 handle_nested_irq(irq_find_mapping(data->domain, i));
288 handled = true;
289 }
290 }
291
292 if (chip->runtime_pm)
293 pm_runtime_put(map->dev);
294
295 if (handled)
296 return IRQ_HANDLED;
297 else
298 return IRQ_NONE;
299 }
300
301 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
302 irq_hw_number_t hw)
303 {
304 struct regmap_irq_chip_data *data = h->host_data;
305
306 irq_set_chip_data(virq, data);
307 irq_set_chip(virq, &data->irq_chip);
308 irq_set_nested_thread(virq, 1);
309
310 /* ARM needs us to explicitly flag the IRQ as valid
311 * and will set them noprobe when we do so. */
312 #ifdef CONFIG_ARM
313 set_irq_flags(virq, IRQF_VALID);
314 #else
315 irq_set_noprobe(virq);
316 #endif
317
318 return 0;
319 }
320
321 static struct irq_domain_ops regmap_domain_ops = {
322 .map = regmap_irq_map,
323 .xlate = irq_domain_xlate_twocell,
324 };
325
326 /**
327 * regmap_add_irq_chip(): Use standard regmap IRQ controller handling
328 *
329 * map: The regmap for the device.
330 * irq: The IRQ the device uses to signal interrupts
331 * irq_flags: The IRQF_ flags to use for the primary interrupt.
332 * chip: Configuration for the interrupt controller.
333 * data: Runtime data structure for the controller, allocated on success
334 *
335 * Returns 0 on success or an errno on failure.
336 *
337 * In order for this to be efficient the chip really should use a
338 * register cache. The chip driver is responsible for restoring the
339 * register values used by the IRQ controller over suspend and resume.
340 */
341 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
342 int irq_base, const struct regmap_irq_chip *chip,
343 struct regmap_irq_chip_data **data)
344 {
345 struct regmap_irq_chip_data *d;
346 int i;
347 int ret = -ENOMEM;
348 u32 reg;
349
350 if (chip->num_regs <= 0)
351 return -EINVAL;
352
353 for (i = 0; i < chip->num_irqs; i++) {
354 if (chip->irqs[i].reg_offset % map->reg_stride)
355 return -EINVAL;
356 if (chip->irqs[i].reg_offset / map->reg_stride >=
357 chip->num_regs)
358 return -EINVAL;
359 }
360
361 if (irq_base) {
362 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
363 if (irq_base < 0) {
364 dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
365 irq_base);
366 return irq_base;
367 }
368 }
369
370 d = kzalloc(sizeof(*d), GFP_KERNEL);
371 if (!d)
372 return -ENOMEM;
373
374 d->status_buf = kzalloc(sizeof(unsigned int) * chip->num_regs,
375 GFP_KERNEL);
376 if (!d->status_buf)
377 goto err_alloc;
378
379 d->mask_buf = kzalloc(sizeof(unsigned int) * chip->num_regs,
380 GFP_KERNEL);
381 if (!d->mask_buf)
382 goto err_alloc;
383
384 d->mask_buf_def = kzalloc(sizeof(unsigned int) * chip->num_regs,
385 GFP_KERNEL);
386 if (!d->mask_buf_def)
387 goto err_alloc;
388
389 if (chip->wake_base) {
390 d->wake_buf = kzalloc(sizeof(unsigned int) * chip->num_regs,
391 GFP_KERNEL);
392 if (!d->wake_buf)
393 goto err_alloc;
394 }
395
396 d->irq_chip = regmap_irq_chip;
397 d->irq_chip.name = chip->name;
398 d->irq = irq;
399 d->map = map;
400 d->chip = chip;
401 d->irq_base = irq_base;
402
403 if (chip->irq_reg_stride)
404 d->irq_reg_stride = chip->irq_reg_stride;
405 else
406 d->irq_reg_stride = 1;
407
408 if (!map->use_single_rw && map->reg_stride == 1 &&
409 d->irq_reg_stride == 1) {
410 d->status_reg_buf = kmalloc(map->format.val_bytes *
411 chip->num_regs, GFP_KERNEL);
412 if (!d->status_reg_buf)
413 goto err_alloc;
414 }
415
416 mutex_init(&d->lock);
417
418 for (i = 0; i < chip->num_irqs; i++)
419 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
420 |= chip->irqs[i].mask;
421
422 /* Mask all the interrupts by default */
423 for (i = 0; i < chip->num_regs; i++) {
424 d->mask_buf[i] = d->mask_buf_def[i];
425 reg = chip->mask_base +
426 (i * map->reg_stride * d->irq_reg_stride);
427 if (chip->mask_invert)
428 ret = regmap_update_bits(map, reg,
429 d->mask_buf[i], ~d->mask_buf[i]);
430 else
431 ret = regmap_update_bits(map, reg,
432 d->mask_buf[i], d->mask_buf[i]);
433 if (ret != 0) {
434 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
435 reg, ret);
436 goto err_alloc;
437 }
438
439 if (!chip->init_ack_masked)
440 continue;
441
442 /* Ack masked but set interrupts */
443 reg = chip->status_base +
444 (i * map->reg_stride * d->irq_reg_stride);
445 ret = regmap_read(map, reg, &d->status_buf[i]);
446 if (ret != 0) {
447 dev_err(map->dev, "Failed to read IRQ status: %d\n",
448 ret);
449 goto err_alloc;
450 }
451
452 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
453 reg = chip->ack_base +
454 (i * map->reg_stride * d->irq_reg_stride);
455 ret = regmap_write(map, reg,
456 d->status_buf[i] & d->mask_buf[i]);
457 if (ret != 0) {
458 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
459 reg, ret);
460 goto err_alloc;
461 }
462 }
463 }
464
465 /* Wake is disabled by default */
466 if (d->wake_buf) {
467 for (i = 0; i < chip->num_regs; i++) {
468 d->wake_buf[i] = d->mask_buf_def[i];
469 reg = chip->wake_base +
470 (i * map->reg_stride * d->irq_reg_stride);
471
472 if (chip->wake_invert)
473 ret = regmap_update_bits(map, reg,
474 d->mask_buf_def[i],
475 0);
476 else
477 ret = regmap_update_bits(map, reg,
478 d->mask_buf_def[i],
479 d->wake_buf[i]);
480 if (ret != 0) {
481 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
482 reg, ret);
483 goto err_alloc;
484 }
485 }
486 }
487
488 if (irq_base)
489 d->domain = irq_domain_add_legacy(map->dev->of_node,
490 chip->num_irqs, irq_base, 0,
491 &regmap_domain_ops, d);
492 else
493 d->domain = irq_domain_add_linear(map->dev->of_node,
494 chip->num_irqs,
495 &regmap_domain_ops, d);
496 if (!d->domain) {
497 dev_err(map->dev, "Failed to create IRQ domain\n");
498 ret = -ENOMEM;
499 goto err_alloc;
500 }
501
502 ret = request_threaded_irq(irq, NULL, regmap_irq_thread, irq_flags,
503 chip->name, d);
504 if (ret != 0) {
505 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
506 irq, chip->name, ret);
507 goto err_domain;
508 }
509
510 *data = d;
511
512 return 0;
513
514 err_domain:
515 /* Should really dispose of the domain but... */
516 err_alloc:
517 kfree(d->wake_buf);
518 kfree(d->mask_buf_def);
519 kfree(d->mask_buf);
520 kfree(d->status_buf);
521 kfree(d->status_reg_buf);
522 kfree(d);
523 return ret;
524 }
525 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
526
527 /**
528 * regmap_del_irq_chip(): Stop interrupt handling for a regmap IRQ chip
529 *
530 * @irq: Primary IRQ for the device
531 * @d: regmap_irq_chip_data allocated by regmap_add_irq_chip()
532 */
533 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
534 {
535 if (!d)
536 return;
537
538 free_irq(irq, d);
539 irq_domain_remove(d->domain);
540 kfree(d->wake_buf);
541 kfree(d->mask_buf_def);
542 kfree(d->mask_buf);
543 kfree(d->status_reg_buf);
544 kfree(d->status_buf);
545 kfree(d);
546 }
547 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
548
549 /**
550 * regmap_irq_chip_get_base(): Retrieve interrupt base for a regmap IRQ chip
551 *
552 * Useful for drivers to request their own IRQs.
553 *
554 * @data: regmap_irq controller to operate on.
555 */
556 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
557 {
558 WARN_ON(!data->irq_base);
559 return data->irq_base;
560 }
561 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
562
563 /**
564 * regmap_irq_get_virq(): Map an interrupt on a chip to a virtual IRQ
565 *
566 * Useful for drivers to request their own IRQs.
567 *
568 * @data: regmap_irq controller to operate on.
569 * @irq: index of the interrupt requested in the chip IRQs
570 */
571 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
572 {
573 /* Handle holes in the IRQ list */
574 if (!data->chip->irqs[irq].mask)
575 return -EINVAL;
576
577 return irq_create_mapping(data->domain, irq);
578 }
579 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
580
581 /**
582 * regmap_irq_get_domain(): Retrieve the irq_domain for the chip
583 *
584 * Useful for drivers to request their own IRQs and for integration
585 * with subsystems. For ease of integration NULL is accepted as a
586 * domain, allowing devices to just call this even if no domain is
587 * allocated.
588 *
589 * @data: regmap_irq controller to operate on.
590 */
591 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
592 {
593 if (data)
594 return data->domain;
595 else
596 return NULL;
597 }
598 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
This page took 0.044787 seconds and 5 git commands to generate.