Merge remote-tracking branch 'regulator/topic/tps65910' into regulator-next
[deliverable/linux.git] / drivers / base / regmap / regmap.c
1 /*
2 * Register map access API
3 *
4 * Copyright 2011 Wolfson Microelectronics plc
5 *
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/rbtree.h>
19 #include <linux/sched.h>
20
21 #define CREATE_TRACE_POINTS
22 #include <trace/events/regmap.h>
23
24 #include "internal.h"
25
26 /*
27 * Sometimes for failures during very early init the trace
28 * infrastructure isn't available early enough to be used. For this
29 * sort of problem defining LOG_DEVICE will add printks for basic
30 * register I/O on a specific device.
31 */
32 #undef LOG_DEVICE
33
34 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
35 unsigned int mask, unsigned int val,
36 bool *change);
37
38 static int _regmap_bus_read(void *context, unsigned int reg,
39 unsigned int *val);
40 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
41 unsigned int val);
42 static int _regmap_bus_raw_write(void *context, unsigned int reg,
43 unsigned int val);
44
45 static void async_cleanup(struct work_struct *work)
46 {
47 struct regmap_async *async = container_of(work, struct regmap_async,
48 cleanup);
49
50 kfree(async->work_buf);
51 kfree(async);
52 }
53
54 bool regmap_reg_in_ranges(unsigned int reg,
55 const struct regmap_range *ranges,
56 unsigned int nranges)
57 {
58 const struct regmap_range *r;
59 int i;
60
61 for (i = 0, r = ranges; i < nranges; i++, r++)
62 if (regmap_reg_in_range(reg, r))
63 return true;
64 return false;
65 }
66 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
67
68 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
69 const struct regmap_access_table *table)
70 {
71 /* Check "no ranges" first */
72 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
73 return false;
74
75 /* In case zero "yes ranges" are supplied, any reg is OK */
76 if (!table->n_yes_ranges)
77 return true;
78
79 return regmap_reg_in_ranges(reg, table->yes_ranges,
80 table->n_yes_ranges);
81 }
82 EXPORT_SYMBOL_GPL(regmap_check_range_table);
83
84 bool regmap_writeable(struct regmap *map, unsigned int reg)
85 {
86 if (map->max_register && reg > map->max_register)
87 return false;
88
89 if (map->writeable_reg)
90 return map->writeable_reg(map->dev, reg);
91
92 if (map->wr_table)
93 return regmap_check_range_table(map, reg, map->wr_table);
94
95 return true;
96 }
97
98 bool regmap_readable(struct regmap *map, unsigned int reg)
99 {
100 if (map->max_register && reg > map->max_register)
101 return false;
102
103 if (map->format.format_write)
104 return false;
105
106 if (map->readable_reg)
107 return map->readable_reg(map->dev, reg);
108
109 if (map->rd_table)
110 return regmap_check_range_table(map, reg, map->rd_table);
111
112 return true;
113 }
114
115 bool regmap_volatile(struct regmap *map, unsigned int reg)
116 {
117 if (!regmap_readable(map, reg))
118 return false;
119
120 if (map->volatile_reg)
121 return map->volatile_reg(map->dev, reg);
122
123 if (map->volatile_table)
124 return regmap_check_range_table(map, reg, map->volatile_table);
125
126 if (map->cache_ops)
127 return false;
128 else
129 return true;
130 }
131
132 bool regmap_precious(struct regmap *map, unsigned int reg)
133 {
134 if (!regmap_readable(map, reg))
135 return false;
136
137 if (map->precious_reg)
138 return map->precious_reg(map->dev, reg);
139
140 if (map->precious_table)
141 return regmap_check_range_table(map, reg, map->precious_table);
142
143 return false;
144 }
145
146 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
147 size_t num)
148 {
149 unsigned int i;
150
151 for (i = 0; i < num; i++)
152 if (!regmap_volatile(map, reg + i))
153 return false;
154
155 return true;
156 }
157
158 static void regmap_format_2_6_write(struct regmap *map,
159 unsigned int reg, unsigned int val)
160 {
161 u8 *out = map->work_buf;
162
163 *out = (reg << 6) | val;
164 }
165
166 static void regmap_format_4_12_write(struct regmap *map,
167 unsigned int reg, unsigned int val)
168 {
169 __be16 *out = map->work_buf;
170 *out = cpu_to_be16((reg << 12) | val);
171 }
172
173 static void regmap_format_7_9_write(struct regmap *map,
174 unsigned int reg, unsigned int val)
175 {
176 __be16 *out = map->work_buf;
177 *out = cpu_to_be16((reg << 9) | val);
178 }
179
180 static void regmap_format_10_14_write(struct regmap *map,
181 unsigned int reg, unsigned int val)
182 {
183 u8 *out = map->work_buf;
184
185 out[2] = val;
186 out[1] = (val >> 8) | (reg << 6);
187 out[0] = reg >> 2;
188 }
189
190 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
191 {
192 u8 *b = buf;
193
194 b[0] = val << shift;
195 }
196
197 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
198 {
199 __be16 *b = buf;
200
201 b[0] = cpu_to_be16(val << shift);
202 }
203
204 static void regmap_format_16_native(void *buf, unsigned int val,
205 unsigned int shift)
206 {
207 *(u16 *)buf = val << shift;
208 }
209
210 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
211 {
212 u8 *b = buf;
213
214 val <<= shift;
215
216 b[0] = val >> 16;
217 b[1] = val >> 8;
218 b[2] = val;
219 }
220
221 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
222 {
223 __be32 *b = buf;
224
225 b[0] = cpu_to_be32(val << shift);
226 }
227
228 static void regmap_format_32_native(void *buf, unsigned int val,
229 unsigned int shift)
230 {
231 *(u32 *)buf = val << shift;
232 }
233
234 static void regmap_parse_inplace_noop(void *buf)
235 {
236 }
237
238 static unsigned int regmap_parse_8(const void *buf)
239 {
240 const u8 *b = buf;
241
242 return b[0];
243 }
244
245 static unsigned int regmap_parse_16_be(const void *buf)
246 {
247 const __be16 *b = buf;
248
249 return be16_to_cpu(b[0]);
250 }
251
252 static void regmap_parse_16_be_inplace(void *buf)
253 {
254 __be16 *b = buf;
255
256 b[0] = be16_to_cpu(b[0]);
257 }
258
259 static unsigned int regmap_parse_16_native(const void *buf)
260 {
261 return *(u16 *)buf;
262 }
263
264 static unsigned int regmap_parse_24(const void *buf)
265 {
266 const u8 *b = buf;
267 unsigned int ret = b[2];
268 ret |= ((unsigned int)b[1]) << 8;
269 ret |= ((unsigned int)b[0]) << 16;
270
271 return ret;
272 }
273
274 static unsigned int regmap_parse_32_be(const void *buf)
275 {
276 const __be32 *b = buf;
277
278 return be32_to_cpu(b[0]);
279 }
280
281 static void regmap_parse_32_be_inplace(void *buf)
282 {
283 __be32 *b = buf;
284
285 b[0] = be32_to_cpu(b[0]);
286 }
287
288 static unsigned int regmap_parse_32_native(const void *buf)
289 {
290 return *(u32 *)buf;
291 }
292
293 static void regmap_lock_mutex(void *__map)
294 {
295 struct regmap *map = __map;
296 mutex_lock(&map->mutex);
297 }
298
299 static void regmap_unlock_mutex(void *__map)
300 {
301 struct regmap *map = __map;
302 mutex_unlock(&map->mutex);
303 }
304
305 static void regmap_lock_spinlock(void *__map)
306 __acquires(&map->spinlock)
307 {
308 struct regmap *map = __map;
309 unsigned long flags;
310
311 spin_lock_irqsave(&map->spinlock, flags);
312 map->spinlock_flags = flags;
313 }
314
315 static void regmap_unlock_spinlock(void *__map)
316 __releases(&map->spinlock)
317 {
318 struct regmap *map = __map;
319 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
320 }
321
322 static void dev_get_regmap_release(struct device *dev, void *res)
323 {
324 /*
325 * We don't actually have anything to do here; the goal here
326 * is not to manage the regmap but to provide a simple way to
327 * get the regmap back given a struct device.
328 */
329 }
330
331 static bool _regmap_range_add(struct regmap *map,
332 struct regmap_range_node *data)
333 {
334 struct rb_root *root = &map->range_tree;
335 struct rb_node **new = &(root->rb_node), *parent = NULL;
336
337 while (*new) {
338 struct regmap_range_node *this =
339 container_of(*new, struct regmap_range_node, node);
340
341 parent = *new;
342 if (data->range_max < this->range_min)
343 new = &((*new)->rb_left);
344 else if (data->range_min > this->range_max)
345 new = &((*new)->rb_right);
346 else
347 return false;
348 }
349
350 rb_link_node(&data->node, parent, new);
351 rb_insert_color(&data->node, root);
352
353 return true;
354 }
355
356 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
357 unsigned int reg)
358 {
359 struct rb_node *node = map->range_tree.rb_node;
360
361 while (node) {
362 struct regmap_range_node *this =
363 container_of(node, struct regmap_range_node, node);
364
365 if (reg < this->range_min)
366 node = node->rb_left;
367 else if (reg > this->range_max)
368 node = node->rb_right;
369 else
370 return this;
371 }
372
373 return NULL;
374 }
375
376 static void regmap_range_exit(struct regmap *map)
377 {
378 struct rb_node *next;
379 struct regmap_range_node *range_node;
380
381 next = rb_first(&map->range_tree);
382 while (next) {
383 range_node = rb_entry(next, struct regmap_range_node, node);
384 next = rb_next(&range_node->node);
385 rb_erase(&range_node->node, &map->range_tree);
386 kfree(range_node);
387 }
388
389 kfree(map->selector_work_buf);
390 }
391
392 /**
393 * regmap_init(): Initialise register map
394 *
395 * @dev: Device that will be interacted with
396 * @bus: Bus-specific callbacks to use with device
397 * @bus_context: Data passed to bus-specific callbacks
398 * @config: Configuration for register map
399 *
400 * The return value will be an ERR_PTR() on error or a valid pointer to
401 * a struct regmap. This function should generally not be called
402 * directly, it should be called by bus-specific init functions.
403 */
404 struct regmap *regmap_init(struct device *dev,
405 const struct regmap_bus *bus,
406 void *bus_context,
407 const struct regmap_config *config)
408 {
409 struct regmap *map, **m;
410 int ret = -EINVAL;
411 enum regmap_endian reg_endian, val_endian;
412 int i, j;
413
414 if (!config)
415 goto err;
416
417 map = kzalloc(sizeof(*map), GFP_KERNEL);
418 if (map == NULL) {
419 ret = -ENOMEM;
420 goto err;
421 }
422
423 if (config->lock && config->unlock) {
424 map->lock = config->lock;
425 map->unlock = config->unlock;
426 map->lock_arg = config->lock_arg;
427 } else {
428 if ((bus && bus->fast_io) ||
429 config->fast_io) {
430 spin_lock_init(&map->spinlock);
431 map->lock = regmap_lock_spinlock;
432 map->unlock = regmap_unlock_spinlock;
433 } else {
434 mutex_init(&map->mutex);
435 map->lock = regmap_lock_mutex;
436 map->unlock = regmap_unlock_mutex;
437 }
438 map->lock_arg = map;
439 }
440 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
441 map->format.pad_bytes = config->pad_bits / 8;
442 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
443 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
444 config->val_bits + config->pad_bits, 8);
445 map->reg_shift = config->pad_bits % 8;
446 if (config->reg_stride)
447 map->reg_stride = config->reg_stride;
448 else
449 map->reg_stride = 1;
450 map->use_single_rw = config->use_single_rw;
451 map->dev = dev;
452 map->bus = bus;
453 map->bus_context = bus_context;
454 map->max_register = config->max_register;
455 map->wr_table = config->wr_table;
456 map->rd_table = config->rd_table;
457 map->volatile_table = config->volatile_table;
458 map->precious_table = config->precious_table;
459 map->writeable_reg = config->writeable_reg;
460 map->readable_reg = config->readable_reg;
461 map->volatile_reg = config->volatile_reg;
462 map->precious_reg = config->precious_reg;
463 map->cache_type = config->cache_type;
464 map->name = config->name;
465
466 spin_lock_init(&map->async_lock);
467 INIT_LIST_HEAD(&map->async_list);
468 init_waitqueue_head(&map->async_waitq);
469
470 if (config->read_flag_mask || config->write_flag_mask) {
471 map->read_flag_mask = config->read_flag_mask;
472 map->write_flag_mask = config->write_flag_mask;
473 } else if (bus) {
474 map->read_flag_mask = bus->read_flag_mask;
475 }
476
477 if (!bus) {
478 map->reg_read = config->reg_read;
479 map->reg_write = config->reg_write;
480
481 map->defer_caching = false;
482 goto skip_format_initialization;
483 } else {
484 map->reg_read = _regmap_bus_read;
485 }
486
487 reg_endian = config->reg_format_endian;
488 if (reg_endian == REGMAP_ENDIAN_DEFAULT)
489 reg_endian = bus->reg_format_endian_default;
490 if (reg_endian == REGMAP_ENDIAN_DEFAULT)
491 reg_endian = REGMAP_ENDIAN_BIG;
492
493 val_endian = config->val_format_endian;
494 if (val_endian == REGMAP_ENDIAN_DEFAULT)
495 val_endian = bus->val_format_endian_default;
496 if (val_endian == REGMAP_ENDIAN_DEFAULT)
497 val_endian = REGMAP_ENDIAN_BIG;
498
499 switch (config->reg_bits + map->reg_shift) {
500 case 2:
501 switch (config->val_bits) {
502 case 6:
503 map->format.format_write = regmap_format_2_6_write;
504 break;
505 default:
506 goto err_map;
507 }
508 break;
509
510 case 4:
511 switch (config->val_bits) {
512 case 12:
513 map->format.format_write = regmap_format_4_12_write;
514 break;
515 default:
516 goto err_map;
517 }
518 break;
519
520 case 7:
521 switch (config->val_bits) {
522 case 9:
523 map->format.format_write = regmap_format_7_9_write;
524 break;
525 default:
526 goto err_map;
527 }
528 break;
529
530 case 10:
531 switch (config->val_bits) {
532 case 14:
533 map->format.format_write = regmap_format_10_14_write;
534 break;
535 default:
536 goto err_map;
537 }
538 break;
539
540 case 8:
541 map->format.format_reg = regmap_format_8;
542 break;
543
544 case 16:
545 switch (reg_endian) {
546 case REGMAP_ENDIAN_BIG:
547 map->format.format_reg = regmap_format_16_be;
548 break;
549 case REGMAP_ENDIAN_NATIVE:
550 map->format.format_reg = regmap_format_16_native;
551 break;
552 default:
553 goto err_map;
554 }
555 break;
556
557 case 24:
558 if (reg_endian != REGMAP_ENDIAN_BIG)
559 goto err_map;
560 map->format.format_reg = regmap_format_24;
561 break;
562
563 case 32:
564 switch (reg_endian) {
565 case REGMAP_ENDIAN_BIG:
566 map->format.format_reg = regmap_format_32_be;
567 break;
568 case REGMAP_ENDIAN_NATIVE:
569 map->format.format_reg = regmap_format_32_native;
570 break;
571 default:
572 goto err_map;
573 }
574 break;
575
576 default:
577 goto err_map;
578 }
579
580 if (val_endian == REGMAP_ENDIAN_NATIVE)
581 map->format.parse_inplace = regmap_parse_inplace_noop;
582
583 switch (config->val_bits) {
584 case 8:
585 map->format.format_val = regmap_format_8;
586 map->format.parse_val = regmap_parse_8;
587 map->format.parse_inplace = regmap_parse_inplace_noop;
588 break;
589 case 16:
590 switch (val_endian) {
591 case REGMAP_ENDIAN_BIG:
592 map->format.format_val = regmap_format_16_be;
593 map->format.parse_val = regmap_parse_16_be;
594 map->format.parse_inplace = regmap_parse_16_be_inplace;
595 break;
596 case REGMAP_ENDIAN_NATIVE:
597 map->format.format_val = regmap_format_16_native;
598 map->format.parse_val = regmap_parse_16_native;
599 break;
600 default:
601 goto err_map;
602 }
603 break;
604 case 24:
605 if (val_endian != REGMAP_ENDIAN_BIG)
606 goto err_map;
607 map->format.format_val = regmap_format_24;
608 map->format.parse_val = regmap_parse_24;
609 break;
610 case 32:
611 switch (val_endian) {
612 case REGMAP_ENDIAN_BIG:
613 map->format.format_val = regmap_format_32_be;
614 map->format.parse_val = regmap_parse_32_be;
615 map->format.parse_inplace = regmap_parse_32_be_inplace;
616 break;
617 case REGMAP_ENDIAN_NATIVE:
618 map->format.format_val = regmap_format_32_native;
619 map->format.parse_val = regmap_parse_32_native;
620 break;
621 default:
622 goto err_map;
623 }
624 break;
625 }
626
627 if (map->format.format_write) {
628 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
629 (val_endian != REGMAP_ENDIAN_BIG))
630 goto err_map;
631 map->use_single_rw = true;
632 }
633
634 if (!map->format.format_write &&
635 !(map->format.format_reg && map->format.format_val))
636 goto err_map;
637
638 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
639 if (map->work_buf == NULL) {
640 ret = -ENOMEM;
641 goto err_map;
642 }
643
644 if (map->format.format_write) {
645 map->defer_caching = false;
646 map->reg_write = _regmap_bus_formatted_write;
647 } else if (map->format.format_val) {
648 map->defer_caching = true;
649 map->reg_write = _regmap_bus_raw_write;
650 }
651
652 skip_format_initialization:
653
654 map->range_tree = RB_ROOT;
655 for (i = 0; i < config->num_ranges; i++) {
656 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
657 struct regmap_range_node *new;
658
659 /* Sanity check */
660 if (range_cfg->range_max < range_cfg->range_min) {
661 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
662 range_cfg->range_max, range_cfg->range_min);
663 goto err_range;
664 }
665
666 if (range_cfg->range_max > map->max_register) {
667 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
668 range_cfg->range_max, map->max_register);
669 goto err_range;
670 }
671
672 if (range_cfg->selector_reg > map->max_register) {
673 dev_err(map->dev,
674 "Invalid range %d: selector out of map\n", i);
675 goto err_range;
676 }
677
678 if (range_cfg->window_len == 0) {
679 dev_err(map->dev, "Invalid range %d: window_len 0\n",
680 i);
681 goto err_range;
682 }
683
684 /* Make sure, that this register range has no selector
685 or data window within its boundary */
686 for (j = 0; j < config->num_ranges; j++) {
687 unsigned sel_reg = config->ranges[j].selector_reg;
688 unsigned win_min = config->ranges[j].window_start;
689 unsigned win_max = win_min +
690 config->ranges[j].window_len - 1;
691
692 /* Allow data window inside its own virtual range */
693 if (j == i)
694 continue;
695
696 if (range_cfg->range_min <= sel_reg &&
697 sel_reg <= range_cfg->range_max) {
698 dev_err(map->dev,
699 "Range %d: selector for %d in window\n",
700 i, j);
701 goto err_range;
702 }
703
704 if (!(win_max < range_cfg->range_min ||
705 win_min > range_cfg->range_max)) {
706 dev_err(map->dev,
707 "Range %d: window for %d in window\n",
708 i, j);
709 goto err_range;
710 }
711 }
712
713 new = kzalloc(sizeof(*new), GFP_KERNEL);
714 if (new == NULL) {
715 ret = -ENOMEM;
716 goto err_range;
717 }
718
719 new->map = map;
720 new->name = range_cfg->name;
721 new->range_min = range_cfg->range_min;
722 new->range_max = range_cfg->range_max;
723 new->selector_reg = range_cfg->selector_reg;
724 new->selector_mask = range_cfg->selector_mask;
725 new->selector_shift = range_cfg->selector_shift;
726 new->window_start = range_cfg->window_start;
727 new->window_len = range_cfg->window_len;
728
729 if (_regmap_range_add(map, new) == false) {
730 dev_err(map->dev, "Failed to add range %d\n", i);
731 kfree(new);
732 goto err_range;
733 }
734
735 if (map->selector_work_buf == NULL) {
736 map->selector_work_buf =
737 kzalloc(map->format.buf_size, GFP_KERNEL);
738 if (map->selector_work_buf == NULL) {
739 ret = -ENOMEM;
740 goto err_range;
741 }
742 }
743 }
744
745 regmap_debugfs_init(map, config->name);
746
747 ret = regcache_init(map, config);
748 if (ret != 0)
749 goto err_range;
750
751 /* Add a devres resource for dev_get_regmap() */
752 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
753 if (!m) {
754 ret = -ENOMEM;
755 goto err_debugfs;
756 }
757 *m = map;
758 devres_add(dev, m);
759
760 return map;
761
762 err_debugfs:
763 regmap_debugfs_exit(map);
764 regcache_exit(map);
765 err_range:
766 regmap_range_exit(map);
767 kfree(map->work_buf);
768 err_map:
769 kfree(map);
770 err:
771 return ERR_PTR(ret);
772 }
773 EXPORT_SYMBOL_GPL(regmap_init);
774
775 static void devm_regmap_release(struct device *dev, void *res)
776 {
777 regmap_exit(*(struct regmap **)res);
778 }
779
780 /**
781 * devm_regmap_init(): Initialise managed register map
782 *
783 * @dev: Device that will be interacted with
784 * @bus: Bus-specific callbacks to use with device
785 * @bus_context: Data passed to bus-specific callbacks
786 * @config: Configuration for register map
787 *
788 * The return value will be an ERR_PTR() on error or a valid pointer
789 * to a struct regmap. This function should generally not be called
790 * directly, it should be called by bus-specific init functions. The
791 * map will be automatically freed by the device management code.
792 */
793 struct regmap *devm_regmap_init(struct device *dev,
794 const struct regmap_bus *bus,
795 void *bus_context,
796 const struct regmap_config *config)
797 {
798 struct regmap **ptr, *regmap;
799
800 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
801 if (!ptr)
802 return ERR_PTR(-ENOMEM);
803
804 regmap = regmap_init(dev, bus, bus_context, config);
805 if (!IS_ERR(regmap)) {
806 *ptr = regmap;
807 devres_add(dev, ptr);
808 } else {
809 devres_free(ptr);
810 }
811
812 return regmap;
813 }
814 EXPORT_SYMBOL_GPL(devm_regmap_init);
815
816 static void regmap_field_init(struct regmap_field *rm_field,
817 struct regmap *regmap, struct reg_field reg_field)
818 {
819 int field_bits = reg_field.msb - reg_field.lsb + 1;
820 rm_field->regmap = regmap;
821 rm_field->reg = reg_field.reg;
822 rm_field->shift = reg_field.lsb;
823 rm_field->mask = ((BIT(field_bits) - 1) << reg_field.lsb);
824 }
825
826 /**
827 * devm_regmap_field_alloc(): Allocate and initialise a register field
828 * in a register map.
829 *
830 * @dev: Device that will be interacted with
831 * @regmap: regmap bank in which this register field is located.
832 * @reg_field: Register field with in the bank.
833 *
834 * The return value will be an ERR_PTR() on error or a valid pointer
835 * to a struct regmap_field. The regmap_field will be automatically freed
836 * by the device management code.
837 */
838 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
839 struct regmap *regmap, struct reg_field reg_field)
840 {
841 struct regmap_field *rm_field = devm_kzalloc(dev,
842 sizeof(*rm_field), GFP_KERNEL);
843 if (!rm_field)
844 return ERR_PTR(-ENOMEM);
845
846 regmap_field_init(rm_field, regmap, reg_field);
847
848 return rm_field;
849
850 }
851 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
852
853 /**
854 * devm_regmap_field_free(): Free register field allocated using
855 * devm_regmap_field_alloc. Usally drivers need not call this function,
856 * as the memory allocated via devm will be freed as per device-driver
857 * life-cyle.
858 *
859 * @dev: Device that will be interacted with
860 * @field: regmap field which should be freed.
861 */
862 void devm_regmap_field_free(struct device *dev,
863 struct regmap_field *field)
864 {
865 devm_kfree(dev, field);
866 }
867 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
868
869 /**
870 * regmap_field_alloc(): Allocate and initialise a register field
871 * in a register map.
872 *
873 * @regmap: regmap bank in which this register field is located.
874 * @reg_field: Register field with in the bank.
875 *
876 * The return value will be an ERR_PTR() on error or a valid pointer
877 * to a struct regmap_field. The regmap_field should be freed by the
878 * user once its finished working with it using regmap_field_free().
879 */
880 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
881 struct reg_field reg_field)
882 {
883 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
884
885 if (!rm_field)
886 return ERR_PTR(-ENOMEM);
887
888 regmap_field_init(rm_field, regmap, reg_field);
889
890 return rm_field;
891 }
892 EXPORT_SYMBOL_GPL(regmap_field_alloc);
893
894 /**
895 * regmap_field_free(): Free register field allocated using regmap_field_alloc
896 *
897 * @field: regmap field which should be freed.
898 */
899 void regmap_field_free(struct regmap_field *field)
900 {
901 kfree(field);
902 }
903 EXPORT_SYMBOL_GPL(regmap_field_free);
904
905 /**
906 * regmap_reinit_cache(): Reinitialise the current register cache
907 *
908 * @map: Register map to operate on.
909 * @config: New configuration. Only the cache data will be used.
910 *
911 * Discard any existing register cache for the map and initialize a
912 * new cache. This can be used to restore the cache to defaults or to
913 * update the cache configuration to reflect runtime discovery of the
914 * hardware.
915 *
916 * No explicit locking is done here, the user needs to ensure that
917 * this function will not race with other calls to regmap.
918 */
919 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
920 {
921 regcache_exit(map);
922 regmap_debugfs_exit(map);
923
924 map->max_register = config->max_register;
925 map->writeable_reg = config->writeable_reg;
926 map->readable_reg = config->readable_reg;
927 map->volatile_reg = config->volatile_reg;
928 map->precious_reg = config->precious_reg;
929 map->cache_type = config->cache_type;
930
931 regmap_debugfs_init(map, config->name);
932
933 map->cache_bypass = false;
934 map->cache_only = false;
935
936 return regcache_init(map, config);
937 }
938 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
939
940 /**
941 * regmap_exit(): Free a previously allocated register map
942 */
943 void regmap_exit(struct regmap *map)
944 {
945 regcache_exit(map);
946 regmap_debugfs_exit(map);
947 regmap_range_exit(map);
948 if (map->bus && map->bus->free_context)
949 map->bus->free_context(map->bus_context);
950 kfree(map->work_buf);
951 kfree(map);
952 }
953 EXPORT_SYMBOL_GPL(regmap_exit);
954
955 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
956 {
957 struct regmap **r = res;
958 if (!r || !*r) {
959 WARN_ON(!r || !*r);
960 return 0;
961 }
962
963 /* If the user didn't specify a name match any */
964 if (data)
965 return (*r)->name == data;
966 else
967 return 1;
968 }
969
970 /**
971 * dev_get_regmap(): Obtain the regmap (if any) for a device
972 *
973 * @dev: Device to retrieve the map for
974 * @name: Optional name for the register map, usually NULL.
975 *
976 * Returns the regmap for the device if one is present, or NULL. If
977 * name is specified then it must match the name specified when
978 * registering the device, if it is NULL then the first regmap found
979 * will be used. Devices with multiple register maps are very rare,
980 * generic code should normally not need to specify a name.
981 */
982 struct regmap *dev_get_regmap(struct device *dev, const char *name)
983 {
984 struct regmap **r = devres_find(dev, dev_get_regmap_release,
985 dev_get_regmap_match, (void *)name);
986
987 if (!r)
988 return NULL;
989 return *r;
990 }
991 EXPORT_SYMBOL_GPL(dev_get_regmap);
992
993 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
994 struct regmap_range_node *range,
995 unsigned int val_num)
996 {
997 void *orig_work_buf;
998 unsigned int win_offset;
999 unsigned int win_page;
1000 bool page_chg;
1001 int ret;
1002
1003 win_offset = (*reg - range->range_min) % range->window_len;
1004 win_page = (*reg - range->range_min) / range->window_len;
1005
1006 if (val_num > 1) {
1007 /* Bulk write shouldn't cross range boundary */
1008 if (*reg + val_num - 1 > range->range_max)
1009 return -EINVAL;
1010
1011 /* ... or single page boundary */
1012 if (val_num > range->window_len - win_offset)
1013 return -EINVAL;
1014 }
1015
1016 /* It is possible to have selector register inside data window.
1017 In that case, selector register is located on every page and
1018 it needs no page switching, when accessed alone. */
1019 if (val_num > 1 ||
1020 range->window_start + win_offset != range->selector_reg) {
1021 /* Use separate work_buf during page switching */
1022 orig_work_buf = map->work_buf;
1023 map->work_buf = map->selector_work_buf;
1024
1025 ret = _regmap_update_bits(map, range->selector_reg,
1026 range->selector_mask,
1027 win_page << range->selector_shift,
1028 &page_chg);
1029
1030 map->work_buf = orig_work_buf;
1031
1032 if (ret != 0)
1033 return ret;
1034 }
1035
1036 *reg = range->window_start + win_offset;
1037
1038 return 0;
1039 }
1040
1041 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1042 const void *val, size_t val_len, bool async)
1043 {
1044 struct regmap_range_node *range;
1045 unsigned long flags;
1046 u8 *u8 = map->work_buf;
1047 void *work_val = map->work_buf + map->format.reg_bytes +
1048 map->format.pad_bytes;
1049 void *buf;
1050 int ret = -ENOTSUPP;
1051 size_t len;
1052 int i;
1053
1054 WARN_ON(!map->bus);
1055
1056 /* Check for unwritable registers before we start */
1057 if (map->writeable_reg)
1058 for (i = 0; i < val_len / map->format.val_bytes; i++)
1059 if (!map->writeable_reg(map->dev,
1060 reg + (i * map->reg_stride)))
1061 return -EINVAL;
1062
1063 if (!map->cache_bypass && map->format.parse_val) {
1064 unsigned int ival;
1065 int val_bytes = map->format.val_bytes;
1066 for (i = 0; i < val_len / val_bytes; i++) {
1067 ival = map->format.parse_val(val + (i * val_bytes));
1068 ret = regcache_write(map, reg + (i * map->reg_stride),
1069 ival);
1070 if (ret) {
1071 dev_err(map->dev,
1072 "Error in caching of register: %x ret: %d\n",
1073 reg + i, ret);
1074 return ret;
1075 }
1076 }
1077 if (map->cache_only) {
1078 map->cache_dirty = true;
1079 return 0;
1080 }
1081 }
1082
1083 range = _regmap_range_lookup(map, reg);
1084 if (range) {
1085 int val_num = val_len / map->format.val_bytes;
1086 int win_offset = (reg - range->range_min) % range->window_len;
1087 int win_residue = range->window_len - win_offset;
1088
1089 /* If the write goes beyond the end of the window split it */
1090 while (val_num > win_residue) {
1091 dev_dbg(map->dev, "Writing window %d/%zu\n",
1092 win_residue, val_len / map->format.val_bytes);
1093 ret = _regmap_raw_write(map, reg, val, win_residue *
1094 map->format.val_bytes, async);
1095 if (ret != 0)
1096 return ret;
1097
1098 reg += win_residue;
1099 val_num -= win_residue;
1100 val += win_residue * map->format.val_bytes;
1101 val_len -= win_residue * map->format.val_bytes;
1102
1103 win_offset = (reg - range->range_min) %
1104 range->window_len;
1105 win_residue = range->window_len - win_offset;
1106 }
1107
1108 ret = _regmap_select_page(map, &reg, range, val_num);
1109 if (ret != 0)
1110 return ret;
1111 }
1112
1113 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1114
1115 u8[0] |= map->write_flag_mask;
1116
1117 if (async && map->bus->async_write) {
1118 struct regmap_async *async = map->bus->async_alloc();
1119 if (!async)
1120 return -ENOMEM;
1121
1122 trace_regmap_async_write_start(map->dev, reg, val_len);
1123
1124 async->work_buf = kzalloc(map->format.buf_size,
1125 GFP_KERNEL | GFP_DMA);
1126 if (!async->work_buf) {
1127 kfree(async);
1128 return -ENOMEM;
1129 }
1130
1131 INIT_WORK(&async->cleanup, async_cleanup);
1132 async->map = map;
1133
1134 /* If the caller supplied the value we can use it safely. */
1135 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1136 map->format.reg_bytes + map->format.val_bytes);
1137 if (val == work_val)
1138 val = async->work_buf + map->format.pad_bytes +
1139 map->format.reg_bytes;
1140
1141 spin_lock_irqsave(&map->async_lock, flags);
1142 list_add_tail(&async->list, &map->async_list);
1143 spin_unlock_irqrestore(&map->async_lock, flags);
1144
1145 ret = map->bus->async_write(map->bus_context, async->work_buf,
1146 map->format.reg_bytes +
1147 map->format.pad_bytes,
1148 val, val_len, async);
1149
1150 if (ret != 0) {
1151 dev_err(map->dev, "Failed to schedule write: %d\n",
1152 ret);
1153
1154 spin_lock_irqsave(&map->async_lock, flags);
1155 list_del(&async->list);
1156 spin_unlock_irqrestore(&map->async_lock, flags);
1157
1158 kfree(async->work_buf);
1159 kfree(async);
1160 }
1161
1162 return ret;
1163 }
1164
1165 trace_regmap_hw_write_start(map->dev, reg,
1166 val_len / map->format.val_bytes);
1167
1168 /* If we're doing a single register write we can probably just
1169 * send the work_buf directly, otherwise try to do a gather
1170 * write.
1171 */
1172 if (val == work_val)
1173 ret = map->bus->write(map->bus_context, map->work_buf,
1174 map->format.reg_bytes +
1175 map->format.pad_bytes +
1176 val_len);
1177 else if (map->bus->gather_write)
1178 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1179 map->format.reg_bytes +
1180 map->format.pad_bytes,
1181 val, val_len);
1182
1183 /* If that didn't work fall back on linearising by hand. */
1184 if (ret == -ENOTSUPP) {
1185 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1186 buf = kzalloc(len, GFP_KERNEL);
1187 if (!buf)
1188 return -ENOMEM;
1189
1190 memcpy(buf, map->work_buf, map->format.reg_bytes);
1191 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1192 val, val_len);
1193 ret = map->bus->write(map->bus_context, buf, len);
1194
1195 kfree(buf);
1196 }
1197
1198 trace_regmap_hw_write_done(map->dev, reg,
1199 val_len / map->format.val_bytes);
1200
1201 return ret;
1202 }
1203
1204 /**
1205 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1206 *
1207 * @map: Map to check.
1208 */
1209 bool regmap_can_raw_write(struct regmap *map)
1210 {
1211 return map->bus && map->format.format_val && map->format.format_reg;
1212 }
1213 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1214
1215 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1216 unsigned int val)
1217 {
1218 int ret;
1219 struct regmap_range_node *range;
1220 struct regmap *map = context;
1221
1222 WARN_ON(!map->bus || !map->format.format_write);
1223
1224 range = _regmap_range_lookup(map, reg);
1225 if (range) {
1226 ret = _regmap_select_page(map, &reg, range, 1);
1227 if (ret != 0)
1228 return ret;
1229 }
1230
1231 map->format.format_write(map, reg, val);
1232
1233 trace_regmap_hw_write_start(map->dev, reg, 1);
1234
1235 ret = map->bus->write(map->bus_context, map->work_buf,
1236 map->format.buf_size);
1237
1238 trace_regmap_hw_write_done(map->dev, reg, 1);
1239
1240 return ret;
1241 }
1242
1243 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1244 unsigned int val)
1245 {
1246 struct regmap *map = context;
1247
1248 WARN_ON(!map->bus || !map->format.format_val);
1249
1250 map->format.format_val(map->work_buf + map->format.reg_bytes
1251 + map->format.pad_bytes, val, 0);
1252 return _regmap_raw_write(map, reg,
1253 map->work_buf +
1254 map->format.reg_bytes +
1255 map->format.pad_bytes,
1256 map->format.val_bytes, false);
1257 }
1258
1259 static inline void *_regmap_map_get_context(struct regmap *map)
1260 {
1261 return (map->bus) ? map : map->bus_context;
1262 }
1263
1264 int _regmap_write(struct regmap *map, unsigned int reg,
1265 unsigned int val)
1266 {
1267 int ret;
1268 void *context = _regmap_map_get_context(map);
1269
1270 if (!regmap_writeable(map, reg))
1271 return -EIO;
1272
1273 if (!map->cache_bypass && !map->defer_caching) {
1274 ret = regcache_write(map, reg, val);
1275 if (ret != 0)
1276 return ret;
1277 if (map->cache_only) {
1278 map->cache_dirty = true;
1279 return 0;
1280 }
1281 }
1282
1283 #ifdef LOG_DEVICE
1284 if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1285 dev_info(map->dev, "%x <= %x\n", reg, val);
1286 #endif
1287
1288 trace_regmap_reg_write(map->dev, reg, val);
1289
1290 return map->reg_write(context, reg, val);
1291 }
1292
1293 /**
1294 * regmap_write(): Write a value to a single register
1295 *
1296 * @map: Register map to write to
1297 * @reg: Register to write to
1298 * @val: Value to be written
1299 *
1300 * A value of zero will be returned on success, a negative errno will
1301 * be returned in error cases.
1302 */
1303 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1304 {
1305 int ret;
1306
1307 if (reg % map->reg_stride)
1308 return -EINVAL;
1309
1310 map->lock(map->lock_arg);
1311
1312 ret = _regmap_write(map, reg, val);
1313
1314 map->unlock(map->lock_arg);
1315
1316 return ret;
1317 }
1318 EXPORT_SYMBOL_GPL(regmap_write);
1319
1320 /**
1321 * regmap_raw_write(): Write raw values to one or more registers
1322 *
1323 * @map: Register map to write to
1324 * @reg: Initial register to write to
1325 * @val: Block of data to be written, laid out for direct transmission to the
1326 * device
1327 * @val_len: Length of data pointed to by val.
1328 *
1329 * This function is intended to be used for things like firmware
1330 * download where a large block of data needs to be transferred to the
1331 * device. No formatting will be done on the data provided.
1332 *
1333 * A value of zero will be returned on success, a negative errno will
1334 * be returned in error cases.
1335 */
1336 int regmap_raw_write(struct regmap *map, unsigned int reg,
1337 const void *val, size_t val_len)
1338 {
1339 int ret;
1340
1341 if (!regmap_can_raw_write(map))
1342 return -EINVAL;
1343 if (val_len % map->format.val_bytes)
1344 return -EINVAL;
1345
1346 map->lock(map->lock_arg);
1347
1348 ret = _regmap_raw_write(map, reg, val, val_len, false);
1349
1350 map->unlock(map->lock_arg);
1351
1352 return ret;
1353 }
1354 EXPORT_SYMBOL_GPL(regmap_raw_write);
1355
1356 /**
1357 * regmap_field_write(): Write a value to a single register field
1358 *
1359 * @field: Register field to write to
1360 * @val: Value to be written
1361 *
1362 * A value of zero will be returned on success, a negative errno will
1363 * be returned in error cases.
1364 */
1365 int regmap_field_write(struct regmap_field *field, unsigned int val)
1366 {
1367 return regmap_update_bits(field->regmap, field->reg,
1368 field->mask, val << field->shift);
1369 }
1370 EXPORT_SYMBOL_GPL(regmap_field_write);
1371
1372 /*
1373 * regmap_bulk_write(): Write multiple registers to the device
1374 *
1375 * @map: Register map to write to
1376 * @reg: First register to be write from
1377 * @val: Block of data to be written, in native register size for device
1378 * @val_count: Number of registers to write
1379 *
1380 * This function is intended to be used for writing a large block of
1381 * data to the device either in single transfer or multiple transfer.
1382 *
1383 * A value of zero will be returned on success, a negative errno will
1384 * be returned in error cases.
1385 */
1386 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1387 size_t val_count)
1388 {
1389 int ret = 0, i;
1390 size_t val_bytes = map->format.val_bytes;
1391 void *wval;
1392
1393 if (!map->bus)
1394 return -EINVAL;
1395 if (!map->format.parse_inplace)
1396 return -EINVAL;
1397 if (reg % map->reg_stride)
1398 return -EINVAL;
1399
1400 map->lock(map->lock_arg);
1401
1402 /* No formatting is require if val_byte is 1 */
1403 if (val_bytes == 1) {
1404 wval = (void *)val;
1405 } else {
1406 wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
1407 if (!wval) {
1408 ret = -ENOMEM;
1409 dev_err(map->dev, "Error in memory allocation\n");
1410 goto out;
1411 }
1412 for (i = 0; i < val_count * val_bytes; i += val_bytes)
1413 map->format.parse_inplace(wval + i);
1414 }
1415 /*
1416 * Some devices does not support bulk write, for
1417 * them we have a series of single write operations.
1418 */
1419 if (map->use_single_rw) {
1420 for (i = 0; i < val_count; i++) {
1421 ret = regmap_raw_write(map,
1422 reg + (i * map->reg_stride),
1423 val + (i * val_bytes),
1424 val_bytes);
1425 if (ret != 0)
1426 return ret;
1427 }
1428 } else {
1429 ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count,
1430 false);
1431 }
1432
1433 if (val_bytes != 1)
1434 kfree(wval);
1435
1436 out:
1437 map->unlock(map->lock_arg);
1438 return ret;
1439 }
1440 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1441
1442 /**
1443 * regmap_raw_write_async(): Write raw values to one or more registers
1444 * asynchronously
1445 *
1446 * @map: Register map to write to
1447 * @reg: Initial register to write to
1448 * @val: Block of data to be written, laid out for direct transmission to the
1449 * device. Must be valid until regmap_async_complete() is called.
1450 * @val_len: Length of data pointed to by val.
1451 *
1452 * This function is intended to be used for things like firmware
1453 * download where a large block of data needs to be transferred to the
1454 * device. No formatting will be done on the data provided.
1455 *
1456 * If supported by the underlying bus the write will be scheduled
1457 * asynchronously, helping maximise I/O speed on higher speed buses
1458 * like SPI. regmap_async_complete() can be called to ensure that all
1459 * asynchrnous writes have been completed.
1460 *
1461 * A value of zero will be returned on success, a negative errno will
1462 * be returned in error cases.
1463 */
1464 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
1465 const void *val, size_t val_len)
1466 {
1467 int ret;
1468
1469 if (val_len % map->format.val_bytes)
1470 return -EINVAL;
1471 if (reg % map->reg_stride)
1472 return -EINVAL;
1473
1474 map->lock(map->lock_arg);
1475
1476 ret = _regmap_raw_write(map, reg, val, val_len, true);
1477
1478 map->unlock(map->lock_arg);
1479
1480 return ret;
1481 }
1482 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
1483
1484 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1485 unsigned int val_len)
1486 {
1487 struct regmap_range_node *range;
1488 u8 *u8 = map->work_buf;
1489 int ret;
1490
1491 WARN_ON(!map->bus);
1492
1493 range = _regmap_range_lookup(map, reg);
1494 if (range) {
1495 ret = _regmap_select_page(map, &reg, range,
1496 val_len / map->format.val_bytes);
1497 if (ret != 0)
1498 return ret;
1499 }
1500
1501 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1502
1503 /*
1504 * Some buses or devices flag reads by setting the high bits in the
1505 * register addresss; since it's always the high bits for all
1506 * current formats we can do this here rather than in
1507 * formatting. This may break if we get interesting formats.
1508 */
1509 u8[0] |= map->read_flag_mask;
1510
1511 trace_regmap_hw_read_start(map->dev, reg,
1512 val_len / map->format.val_bytes);
1513
1514 ret = map->bus->read(map->bus_context, map->work_buf,
1515 map->format.reg_bytes + map->format.pad_bytes,
1516 val, val_len);
1517
1518 trace_regmap_hw_read_done(map->dev, reg,
1519 val_len / map->format.val_bytes);
1520
1521 return ret;
1522 }
1523
1524 static int _regmap_bus_read(void *context, unsigned int reg,
1525 unsigned int *val)
1526 {
1527 int ret;
1528 struct regmap *map = context;
1529
1530 if (!map->format.parse_val)
1531 return -EINVAL;
1532
1533 ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
1534 if (ret == 0)
1535 *val = map->format.parse_val(map->work_buf);
1536
1537 return ret;
1538 }
1539
1540 static int _regmap_read(struct regmap *map, unsigned int reg,
1541 unsigned int *val)
1542 {
1543 int ret;
1544 void *context = _regmap_map_get_context(map);
1545
1546 WARN_ON(!map->reg_read);
1547
1548 if (!map->cache_bypass) {
1549 ret = regcache_read(map, reg, val);
1550 if (ret == 0)
1551 return 0;
1552 }
1553
1554 if (map->cache_only)
1555 return -EBUSY;
1556
1557 ret = map->reg_read(context, reg, val);
1558 if (ret == 0) {
1559 #ifdef LOG_DEVICE
1560 if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1561 dev_info(map->dev, "%x => %x\n", reg, *val);
1562 #endif
1563
1564 trace_regmap_reg_read(map->dev, reg, *val);
1565
1566 if (!map->cache_bypass)
1567 regcache_write(map, reg, *val);
1568 }
1569
1570 return ret;
1571 }
1572
1573 /**
1574 * regmap_read(): Read a value from a single register
1575 *
1576 * @map: Register map to write to
1577 * @reg: Register to be read from
1578 * @val: Pointer to store read value
1579 *
1580 * A value of zero will be returned on success, a negative errno will
1581 * be returned in error cases.
1582 */
1583 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
1584 {
1585 int ret;
1586
1587 if (reg % map->reg_stride)
1588 return -EINVAL;
1589
1590 map->lock(map->lock_arg);
1591
1592 ret = _regmap_read(map, reg, val);
1593
1594 map->unlock(map->lock_arg);
1595
1596 return ret;
1597 }
1598 EXPORT_SYMBOL_GPL(regmap_read);
1599
1600 /**
1601 * regmap_raw_read(): Read raw data from the device
1602 *
1603 * @map: Register map to write to
1604 * @reg: First register to be read from
1605 * @val: Pointer to store read value
1606 * @val_len: Size of data to read
1607 *
1608 * A value of zero will be returned on success, a negative errno will
1609 * be returned in error cases.
1610 */
1611 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1612 size_t val_len)
1613 {
1614 size_t val_bytes = map->format.val_bytes;
1615 size_t val_count = val_len / val_bytes;
1616 unsigned int v;
1617 int ret, i;
1618
1619 if (!map->bus)
1620 return -EINVAL;
1621 if (val_len % map->format.val_bytes)
1622 return -EINVAL;
1623 if (reg % map->reg_stride)
1624 return -EINVAL;
1625
1626 map->lock(map->lock_arg);
1627
1628 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
1629 map->cache_type == REGCACHE_NONE) {
1630 /* Physical block read if there's no cache involved */
1631 ret = _regmap_raw_read(map, reg, val, val_len);
1632
1633 } else {
1634 /* Otherwise go word by word for the cache; should be low
1635 * cost as we expect to hit the cache.
1636 */
1637 for (i = 0; i < val_count; i++) {
1638 ret = _regmap_read(map, reg + (i * map->reg_stride),
1639 &v);
1640 if (ret != 0)
1641 goto out;
1642
1643 map->format.format_val(val + (i * val_bytes), v, 0);
1644 }
1645 }
1646
1647 out:
1648 map->unlock(map->lock_arg);
1649
1650 return ret;
1651 }
1652 EXPORT_SYMBOL_GPL(regmap_raw_read);
1653
1654 /**
1655 * regmap_field_read(): Read a value to a single register field
1656 *
1657 * @field: Register field to read from
1658 * @val: Pointer to store read value
1659 *
1660 * A value of zero will be returned on success, a negative errno will
1661 * be returned in error cases.
1662 */
1663 int regmap_field_read(struct regmap_field *field, unsigned int *val)
1664 {
1665 int ret;
1666 unsigned int reg_val;
1667 ret = regmap_read(field->regmap, field->reg, &reg_val);
1668 if (ret != 0)
1669 return ret;
1670
1671 reg_val &= field->mask;
1672 reg_val >>= field->shift;
1673 *val = reg_val;
1674
1675 return ret;
1676 }
1677 EXPORT_SYMBOL_GPL(regmap_field_read);
1678
1679 /**
1680 * regmap_bulk_read(): Read multiple registers from the device
1681 *
1682 * @map: Register map to write to
1683 * @reg: First register to be read from
1684 * @val: Pointer to store read value, in native register size for device
1685 * @val_count: Number of registers to read
1686 *
1687 * A value of zero will be returned on success, a negative errno will
1688 * be returned in error cases.
1689 */
1690 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
1691 size_t val_count)
1692 {
1693 int ret, i;
1694 size_t val_bytes = map->format.val_bytes;
1695 bool vol = regmap_volatile_range(map, reg, val_count);
1696
1697 if (!map->bus)
1698 return -EINVAL;
1699 if (!map->format.parse_inplace)
1700 return -EINVAL;
1701 if (reg % map->reg_stride)
1702 return -EINVAL;
1703
1704 if (vol || map->cache_type == REGCACHE_NONE) {
1705 /*
1706 * Some devices does not support bulk read, for
1707 * them we have a series of single read operations.
1708 */
1709 if (map->use_single_rw) {
1710 for (i = 0; i < val_count; i++) {
1711 ret = regmap_raw_read(map,
1712 reg + (i * map->reg_stride),
1713 val + (i * val_bytes),
1714 val_bytes);
1715 if (ret != 0)
1716 return ret;
1717 }
1718 } else {
1719 ret = regmap_raw_read(map, reg, val,
1720 val_bytes * val_count);
1721 if (ret != 0)
1722 return ret;
1723 }
1724
1725 for (i = 0; i < val_count * val_bytes; i += val_bytes)
1726 map->format.parse_inplace(val + i);
1727 } else {
1728 for (i = 0; i < val_count; i++) {
1729 unsigned int ival;
1730 ret = regmap_read(map, reg + (i * map->reg_stride),
1731 &ival);
1732 if (ret != 0)
1733 return ret;
1734 memcpy(val + (i * val_bytes), &ival, val_bytes);
1735 }
1736 }
1737
1738 return 0;
1739 }
1740 EXPORT_SYMBOL_GPL(regmap_bulk_read);
1741
1742 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
1743 unsigned int mask, unsigned int val,
1744 bool *change)
1745 {
1746 int ret;
1747 unsigned int tmp, orig;
1748
1749 ret = _regmap_read(map, reg, &orig);
1750 if (ret != 0)
1751 return ret;
1752
1753 tmp = orig & ~mask;
1754 tmp |= val & mask;
1755
1756 if (tmp != orig) {
1757 ret = _regmap_write(map, reg, tmp);
1758 *change = true;
1759 } else {
1760 *change = false;
1761 }
1762
1763 return ret;
1764 }
1765
1766 /**
1767 * regmap_update_bits: Perform a read/modify/write cycle on the register map
1768 *
1769 * @map: Register map to update
1770 * @reg: Register to update
1771 * @mask: Bitmask to change
1772 * @val: New value for bitmask
1773 *
1774 * Returns zero for success, a negative number on error.
1775 */
1776 int regmap_update_bits(struct regmap *map, unsigned int reg,
1777 unsigned int mask, unsigned int val)
1778 {
1779 bool change;
1780 int ret;
1781
1782 map->lock(map->lock_arg);
1783 ret = _regmap_update_bits(map, reg, mask, val, &change);
1784 map->unlock(map->lock_arg);
1785
1786 return ret;
1787 }
1788 EXPORT_SYMBOL_GPL(regmap_update_bits);
1789
1790 /**
1791 * regmap_update_bits_check: Perform a read/modify/write cycle on the
1792 * register map and report if updated
1793 *
1794 * @map: Register map to update
1795 * @reg: Register to update
1796 * @mask: Bitmask to change
1797 * @val: New value for bitmask
1798 * @change: Boolean indicating if a write was done
1799 *
1800 * Returns zero for success, a negative number on error.
1801 */
1802 int regmap_update_bits_check(struct regmap *map, unsigned int reg,
1803 unsigned int mask, unsigned int val,
1804 bool *change)
1805 {
1806 int ret;
1807
1808 map->lock(map->lock_arg);
1809 ret = _regmap_update_bits(map, reg, mask, val, change);
1810 map->unlock(map->lock_arg);
1811 return ret;
1812 }
1813 EXPORT_SYMBOL_GPL(regmap_update_bits_check);
1814
1815 void regmap_async_complete_cb(struct regmap_async *async, int ret)
1816 {
1817 struct regmap *map = async->map;
1818 bool wake;
1819
1820 trace_regmap_async_io_complete(map->dev);
1821
1822 spin_lock(&map->async_lock);
1823
1824 list_del(&async->list);
1825 wake = list_empty(&map->async_list);
1826
1827 if (ret != 0)
1828 map->async_ret = ret;
1829
1830 spin_unlock(&map->async_lock);
1831
1832 schedule_work(&async->cleanup);
1833
1834 if (wake)
1835 wake_up(&map->async_waitq);
1836 }
1837 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
1838
1839 static int regmap_async_is_done(struct regmap *map)
1840 {
1841 unsigned long flags;
1842 int ret;
1843
1844 spin_lock_irqsave(&map->async_lock, flags);
1845 ret = list_empty(&map->async_list);
1846 spin_unlock_irqrestore(&map->async_lock, flags);
1847
1848 return ret;
1849 }
1850
1851 /**
1852 * regmap_async_complete: Ensure all asynchronous I/O has completed.
1853 *
1854 * @map: Map to operate on.
1855 *
1856 * Blocks until any pending asynchronous I/O has completed. Returns
1857 * an error code for any failed I/O operations.
1858 */
1859 int regmap_async_complete(struct regmap *map)
1860 {
1861 unsigned long flags;
1862 int ret;
1863
1864 /* Nothing to do with no async support */
1865 if (!map->bus || !map->bus->async_write)
1866 return 0;
1867
1868 trace_regmap_async_complete_start(map->dev);
1869
1870 wait_event(map->async_waitq, regmap_async_is_done(map));
1871
1872 spin_lock_irqsave(&map->async_lock, flags);
1873 ret = map->async_ret;
1874 map->async_ret = 0;
1875 spin_unlock_irqrestore(&map->async_lock, flags);
1876
1877 trace_regmap_async_complete_done(map->dev);
1878
1879 return ret;
1880 }
1881 EXPORT_SYMBOL_GPL(regmap_async_complete);
1882
1883 /**
1884 * regmap_register_patch: Register and apply register updates to be applied
1885 * on device initialistion
1886 *
1887 * @map: Register map to apply updates to.
1888 * @regs: Values to update.
1889 * @num_regs: Number of entries in regs.
1890 *
1891 * Register a set of register updates to be applied to the device
1892 * whenever the device registers are synchronised with the cache and
1893 * apply them immediately. Typically this is used to apply
1894 * corrections to be applied to the device defaults on startup, such
1895 * as the updates some vendors provide to undocumented registers.
1896 */
1897 int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
1898 int num_regs)
1899 {
1900 struct reg_default *p;
1901 int i, ret;
1902 bool bypass;
1903
1904 map->lock(map->lock_arg);
1905
1906 bypass = map->cache_bypass;
1907
1908 map->cache_bypass = true;
1909
1910 /* Write out first; it's useful to apply even if we fail later. */
1911 for (i = 0; i < num_regs; i++) {
1912 ret = _regmap_write(map, regs[i].reg, regs[i].def);
1913 if (ret != 0) {
1914 dev_err(map->dev, "Failed to write %x = %x: %d\n",
1915 regs[i].reg, regs[i].def, ret);
1916 goto out;
1917 }
1918 }
1919
1920 p = krealloc(map->patch,
1921 sizeof(struct reg_default) * (map->patch_regs + num_regs),
1922 GFP_KERNEL);
1923 if (p) {
1924 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
1925 map->patch = p;
1926 map->patch_regs += num_regs;
1927 } else {
1928 ret = -ENOMEM;
1929 }
1930
1931 out:
1932 map->cache_bypass = bypass;
1933
1934 map->unlock(map->lock_arg);
1935
1936 return ret;
1937 }
1938 EXPORT_SYMBOL_GPL(regmap_register_patch);
1939
1940 /*
1941 * regmap_get_val_bytes(): Report the size of a register value
1942 *
1943 * Report the size of a register value, mainly intended to for use by
1944 * generic infrastructure built on top of regmap.
1945 */
1946 int regmap_get_val_bytes(struct regmap *map)
1947 {
1948 if (map->format.format_write)
1949 return -EINVAL;
1950
1951 return map->format.val_bytes;
1952 }
1953 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
1954
1955 static int __init regmap_initcall(void)
1956 {
1957 regmap_debugfs_initcall();
1958
1959 return 0;
1960 }
1961 postcore_initcall(regmap_initcall);
This page took 0.129259 seconds and 5 git commands to generate.