Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64...
[deliverable/linux.git] / drivers / block / brd.c
1 /*
2 * Ram backed block device driver.
3 *
4 * Copyright (C) 2007 Nick Piggin
5 * Copyright (C) 2007 Novell Inc.
6 *
7 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
8 * of their respective owners.
9 */
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/moduleparam.h>
14 #include <linux/major.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/highmem.h>
18 #include <linux/mutex.h>
19 #include <linux/radix-tree.h>
20 #include <linux/fs.h>
21 #include <linux/slab.h>
22
23 #include <asm/uaccess.h>
24
25 #define SECTOR_SHIFT 9
26 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
27 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
28
29 /*
30 * Each block ramdisk device has a radix_tree brd_pages of pages that stores
31 * the pages containing the block device's contents. A brd page's ->index is
32 * its offset in PAGE_SIZE units. This is similar to, but in no way connected
33 * with, the kernel's pagecache or buffer cache (which sit above our block
34 * device).
35 */
36 struct brd_device {
37 int brd_number;
38
39 struct request_queue *brd_queue;
40 struct gendisk *brd_disk;
41 struct list_head brd_list;
42
43 /*
44 * Backing store of pages and lock to protect it. This is the contents
45 * of the block device.
46 */
47 spinlock_t brd_lock;
48 struct radix_tree_root brd_pages;
49 };
50
51 /*
52 * Look up and return a brd's page for a given sector.
53 */
54 static DEFINE_MUTEX(brd_mutex);
55 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
56 {
57 pgoff_t idx;
58 struct page *page;
59
60 /*
61 * The page lifetime is protected by the fact that we have opened the
62 * device node -- brd pages will never be deleted under us, so we
63 * don't need any further locking or refcounting.
64 *
65 * This is strictly true for the radix-tree nodes as well (ie. we
66 * don't actually need the rcu_read_lock()), however that is not a
67 * documented feature of the radix-tree API so it is better to be
68 * safe here (we don't have total exclusion from radix tree updates
69 * here, only deletes).
70 */
71 rcu_read_lock();
72 idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
73 page = radix_tree_lookup(&brd->brd_pages, idx);
74 rcu_read_unlock();
75
76 BUG_ON(page && page->index != idx);
77
78 return page;
79 }
80
81 /*
82 * Look up and return a brd's page for a given sector.
83 * If one does not exist, allocate an empty page, and insert that. Then
84 * return it.
85 */
86 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
87 {
88 pgoff_t idx;
89 struct page *page;
90 gfp_t gfp_flags;
91
92 page = brd_lookup_page(brd, sector);
93 if (page)
94 return page;
95
96 /*
97 * Must use NOIO because we don't want to recurse back into the
98 * block or filesystem layers from page reclaim.
99 *
100 * Cannot support XIP and highmem, because our ->direct_access
101 * routine for XIP must return memory that is always addressable.
102 * If XIP was reworked to use pfns and kmap throughout, this
103 * restriction might be able to be lifted.
104 */
105 gfp_flags = GFP_NOIO | __GFP_ZERO;
106 #ifndef CONFIG_BLK_DEV_XIP
107 gfp_flags |= __GFP_HIGHMEM;
108 #endif
109 page = alloc_page(gfp_flags);
110 if (!page)
111 return NULL;
112
113 if (radix_tree_preload(GFP_NOIO)) {
114 __free_page(page);
115 return NULL;
116 }
117
118 spin_lock(&brd->brd_lock);
119 idx = sector >> PAGE_SECTORS_SHIFT;
120 page->index = idx;
121 if (radix_tree_insert(&brd->brd_pages, idx, page)) {
122 __free_page(page);
123 page = radix_tree_lookup(&brd->brd_pages, idx);
124 BUG_ON(!page);
125 BUG_ON(page->index != idx);
126 }
127 spin_unlock(&brd->brd_lock);
128
129 radix_tree_preload_end();
130
131 return page;
132 }
133
134 static void brd_free_page(struct brd_device *brd, sector_t sector)
135 {
136 struct page *page;
137 pgoff_t idx;
138
139 spin_lock(&brd->brd_lock);
140 idx = sector >> PAGE_SECTORS_SHIFT;
141 page = radix_tree_delete(&brd->brd_pages, idx);
142 spin_unlock(&brd->brd_lock);
143 if (page)
144 __free_page(page);
145 }
146
147 static void brd_zero_page(struct brd_device *brd, sector_t sector)
148 {
149 struct page *page;
150
151 page = brd_lookup_page(brd, sector);
152 if (page)
153 clear_highpage(page);
154 }
155
156 /*
157 * Free all backing store pages and radix tree. This must only be called when
158 * there are no other users of the device.
159 */
160 #define FREE_BATCH 16
161 static void brd_free_pages(struct brd_device *brd)
162 {
163 unsigned long pos = 0;
164 struct page *pages[FREE_BATCH];
165 int nr_pages;
166
167 do {
168 int i;
169
170 nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
171 (void **)pages, pos, FREE_BATCH);
172
173 for (i = 0; i < nr_pages; i++) {
174 void *ret;
175
176 BUG_ON(pages[i]->index < pos);
177 pos = pages[i]->index;
178 ret = radix_tree_delete(&brd->brd_pages, pos);
179 BUG_ON(!ret || ret != pages[i]);
180 __free_page(pages[i]);
181 }
182
183 pos++;
184
185 /*
186 * This assumes radix_tree_gang_lookup always returns as
187 * many pages as possible. If the radix-tree code changes,
188 * so will this have to.
189 */
190 } while (nr_pages == FREE_BATCH);
191 }
192
193 /*
194 * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
195 */
196 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
197 {
198 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
199 size_t copy;
200
201 copy = min_t(size_t, n, PAGE_SIZE - offset);
202 if (!brd_insert_page(brd, sector))
203 return -ENOSPC;
204 if (copy < n) {
205 sector += copy >> SECTOR_SHIFT;
206 if (!brd_insert_page(brd, sector))
207 return -ENOSPC;
208 }
209 return 0;
210 }
211
212 static void discard_from_brd(struct brd_device *brd,
213 sector_t sector, size_t n)
214 {
215 while (n >= PAGE_SIZE) {
216 /*
217 * Don't want to actually discard pages here because
218 * re-allocating the pages can result in writeback
219 * deadlocks under heavy load.
220 */
221 if (0)
222 brd_free_page(brd, sector);
223 else
224 brd_zero_page(brd, sector);
225 sector += PAGE_SIZE >> SECTOR_SHIFT;
226 n -= PAGE_SIZE;
227 }
228 }
229
230 /*
231 * Copy n bytes from src to the brd starting at sector. Does not sleep.
232 */
233 static void copy_to_brd(struct brd_device *brd, const void *src,
234 sector_t sector, size_t n)
235 {
236 struct page *page;
237 void *dst;
238 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
239 size_t copy;
240
241 copy = min_t(size_t, n, PAGE_SIZE - offset);
242 page = brd_lookup_page(brd, sector);
243 BUG_ON(!page);
244
245 dst = kmap_atomic(page);
246 memcpy(dst + offset, src, copy);
247 kunmap_atomic(dst);
248
249 if (copy < n) {
250 src += copy;
251 sector += copy >> SECTOR_SHIFT;
252 copy = n - copy;
253 page = brd_lookup_page(brd, sector);
254 BUG_ON(!page);
255
256 dst = kmap_atomic(page);
257 memcpy(dst, src, copy);
258 kunmap_atomic(dst);
259 }
260 }
261
262 /*
263 * Copy n bytes to dst from the brd starting at sector. Does not sleep.
264 */
265 static void copy_from_brd(void *dst, struct brd_device *brd,
266 sector_t sector, size_t n)
267 {
268 struct page *page;
269 void *src;
270 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
271 size_t copy;
272
273 copy = min_t(size_t, n, PAGE_SIZE - offset);
274 page = brd_lookup_page(brd, sector);
275 if (page) {
276 src = kmap_atomic(page);
277 memcpy(dst, src + offset, copy);
278 kunmap_atomic(src);
279 } else
280 memset(dst, 0, copy);
281
282 if (copy < n) {
283 dst += copy;
284 sector += copy >> SECTOR_SHIFT;
285 copy = n - copy;
286 page = brd_lookup_page(brd, sector);
287 if (page) {
288 src = kmap_atomic(page);
289 memcpy(dst, src, copy);
290 kunmap_atomic(src);
291 } else
292 memset(dst, 0, copy);
293 }
294 }
295
296 /*
297 * Process a single bvec of a bio.
298 */
299 static int brd_do_bvec(struct brd_device *brd, struct page *page,
300 unsigned int len, unsigned int off, int rw,
301 sector_t sector)
302 {
303 void *mem;
304 int err = 0;
305
306 if (rw != READ) {
307 err = copy_to_brd_setup(brd, sector, len);
308 if (err)
309 goto out;
310 }
311
312 mem = kmap_atomic(page);
313 if (rw == READ) {
314 copy_from_brd(mem + off, brd, sector, len);
315 flush_dcache_page(page);
316 } else {
317 flush_dcache_page(page);
318 copy_to_brd(brd, mem + off, sector, len);
319 }
320 kunmap_atomic(mem);
321
322 out:
323 return err;
324 }
325
326 static void brd_make_request(struct request_queue *q, struct bio *bio)
327 {
328 struct block_device *bdev = bio->bi_bdev;
329 struct brd_device *brd = bdev->bd_disk->private_data;
330 int rw;
331 struct bio_vec bvec;
332 sector_t sector;
333 struct bvec_iter iter;
334 int err = -EIO;
335
336 sector = bio->bi_iter.bi_sector;
337 if (bio_end_sector(bio) > get_capacity(bdev->bd_disk))
338 goto out;
339
340 if (unlikely(bio->bi_rw & REQ_DISCARD)) {
341 err = 0;
342 discard_from_brd(brd, sector, bio->bi_iter.bi_size);
343 goto out;
344 }
345
346 rw = bio_rw(bio);
347 if (rw == READA)
348 rw = READ;
349
350 bio_for_each_segment(bvec, bio, iter) {
351 unsigned int len = bvec.bv_len;
352 err = brd_do_bvec(brd, bvec.bv_page, len,
353 bvec.bv_offset, rw, sector);
354 if (err)
355 break;
356 sector += len >> SECTOR_SHIFT;
357 }
358
359 out:
360 bio_endio(bio, err);
361 }
362
363 static int brd_rw_page(struct block_device *bdev, sector_t sector,
364 struct page *page, int rw)
365 {
366 struct brd_device *brd = bdev->bd_disk->private_data;
367 int err = brd_do_bvec(brd, page, PAGE_CACHE_SIZE, 0, rw, sector);
368 page_endio(page, rw & WRITE, err);
369 return err;
370 }
371
372 #ifdef CONFIG_BLK_DEV_XIP
373 static int brd_direct_access(struct block_device *bdev, sector_t sector,
374 void **kaddr, unsigned long *pfn)
375 {
376 struct brd_device *brd = bdev->bd_disk->private_data;
377 struct page *page;
378
379 if (!brd)
380 return -ENODEV;
381 if (sector & (PAGE_SECTORS-1))
382 return -EINVAL;
383 if (sector + PAGE_SECTORS > get_capacity(bdev->bd_disk))
384 return -ERANGE;
385 page = brd_insert_page(brd, sector);
386 if (!page)
387 return -ENOSPC;
388 *kaddr = page_address(page);
389 *pfn = page_to_pfn(page);
390
391 return 0;
392 }
393 #endif
394
395 static int brd_ioctl(struct block_device *bdev, fmode_t mode,
396 unsigned int cmd, unsigned long arg)
397 {
398 int error;
399 struct brd_device *brd = bdev->bd_disk->private_data;
400
401 if (cmd != BLKFLSBUF)
402 return -ENOTTY;
403
404 /*
405 * ram device BLKFLSBUF has special semantics, we want to actually
406 * release and destroy the ramdisk data.
407 */
408 mutex_lock(&brd_mutex);
409 mutex_lock(&bdev->bd_mutex);
410 error = -EBUSY;
411 if (bdev->bd_openers <= 1) {
412 /*
413 * Kill the cache first, so it isn't written back to the
414 * device.
415 *
416 * Another thread might instantiate more buffercache here,
417 * but there is not much we can do to close that race.
418 */
419 kill_bdev(bdev);
420 brd_free_pages(brd);
421 error = 0;
422 }
423 mutex_unlock(&bdev->bd_mutex);
424 mutex_unlock(&brd_mutex);
425
426 return error;
427 }
428
429 static const struct block_device_operations brd_fops = {
430 .owner = THIS_MODULE,
431 .rw_page = brd_rw_page,
432 .ioctl = brd_ioctl,
433 #ifdef CONFIG_BLK_DEV_XIP
434 .direct_access = brd_direct_access,
435 #endif
436 };
437
438 /*
439 * And now the modules code and kernel interface.
440 */
441 static int rd_nr;
442 int rd_size = CONFIG_BLK_DEV_RAM_SIZE;
443 static int max_part;
444 static int part_shift;
445 static int part_show = 0;
446 module_param(rd_nr, int, S_IRUGO);
447 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
448 module_param(rd_size, int, S_IRUGO);
449 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
450 module_param(max_part, int, S_IRUGO);
451 MODULE_PARM_DESC(max_part, "Maximum number of partitions per RAM disk");
452 module_param(part_show, int, S_IRUGO);
453 MODULE_PARM_DESC(part_show, "Control RAM disk visibility in /proc/partitions");
454 MODULE_LICENSE("GPL");
455 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
456 MODULE_ALIAS("rd");
457
458 #ifndef MODULE
459 /* Legacy boot options - nonmodular */
460 static int __init ramdisk_size(char *str)
461 {
462 rd_size = simple_strtol(str, NULL, 0);
463 return 1;
464 }
465 __setup("ramdisk_size=", ramdisk_size);
466 #endif
467
468 /*
469 * The device scheme is derived from loop.c. Keep them in synch where possible
470 * (should share code eventually).
471 */
472 static LIST_HEAD(brd_devices);
473 static DEFINE_MUTEX(brd_devices_mutex);
474
475 static struct brd_device *brd_alloc(int i)
476 {
477 struct brd_device *brd;
478 struct gendisk *disk;
479
480 brd = kzalloc(sizeof(*brd), GFP_KERNEL);
481 if (!brd)
482 goto out;
483 brd->brd_number = i;
484 spin_lock_init(&brd->brd_lock);
485 INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
486
487 brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
488 if (!brd->brd_queue)
489 goto out_free_dev;
490 blk_queue_make_request(brd->brd_queue, brd_make_request);
491 blk_queue_max_hw_sectors(brd->brd_queue, 1024);
492 blk_queue_bounce_limit(brd->brd_queue, BLK_BOUNCE_ANY);
493
494 brd->brd_queue->limits.discard_granularity = PAGE_SIZE;
495 brd->brd_queue->limits.max_discard_sectors = UINT_MAX;
496 brd->brd_queue->limits.discard_zeroes_data = 1;
497 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, brd->brd_queue);
498
499 disk = brd->brd_disk = alloc_disk(1 << part_shift);
500 if (!disk)
501 goto out_free_queue;
502 disk->major = RAMDISK_MAJOR;
503 disk->first_minor = i << part_shift;
504 disk->fops = &brd_fops;
505 disk->private_data = brd;
506 disk->queue = brd->brd_queue;
507 if (!part_show)
508 disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO;
509 sprintf(disk->disk_name, "ram%d", i);
510 set_capacity(disk, rd_size * 2);
511
512 return brd;
513
514 out_free_queue:
515 blk_cleanup_queue(brd->brd_queue);
516 out_free_dev:
517 kfree(brd);
518 out:
519 return NULL;
520 }
521
522 static void brd_free(struct brd_device *brd)
523 {
524 put_disk(brd->brd_disk);
525 blk_cleanup_queue(brd->brd_queue);
526 brd_free_pages(brd);
527 kfree(brd);
528 }
529
530 static struct brd_device *brd_init_one(int i)
531 {
532 struct brd_device *brd;
533
534 list_for_each_entry(brd, &brd_devices, brd_list) {
535 if (brd->brd_number == i)
536 goto out;
537 }
538
539 brd = brd_alloc(i);
540 if (brd) {
541 add_disk(brd->brd_disk);
542 list_add_tail(&brd->brd_list, &brd_devices);
543 }
544 out:
545 return brd;
546 }
547
548 static void brd_del_one(struct brd_device *brd)
549 {
550 list_del(&brd->brd_list);
551 del_gendisk(brd->brd_disk);
552 brd_free(brd);
553 }
554
555 static struct kobject *brd_probe(dev_t dev, int *part, void *data)
556 {
557 struct brd_device *brd;
558 struct kobject *kobj;
559
560 mutex_lock(&brd_devices_mutex);
561 brd = brd_init_one(MINOR(dev) >> part_shift);
562 kobj = brd ? get_disk(brd->brd_disk) : NULL;
563 mutex_unlock(&brd_devices_mutex);
564
565 *part = 0;
566 return kobj;
567 }
568
569 static int __init brd_init(void)
570 {
571 int i, nr;
572 unsigned long range;
573 struct brd_device *brd, *next;
574
575 /*
576 * brd module now has a feature to instantiate underlying device
577 * structure on-demand, provided that there is an access dev node.
578 * However, this will not work well with user space tool that doesn't
579 * know about such "feature". In order to not break any existing
580 * tool, we do the following:
581 *
582 * (1) if rd_nr is specified, create that many upfront, and this
583 * also becomes a hard limit.
584 * (2) if rd_nr is not specified, create CONFIG_BLK_DEV_RAM_COUNT
585 * (default 16) rd device on module load, user can further
586 * extend brd device by create dev node themselves and have
587 * kernel automatically instantiate actual device on-demand.
588 */
589
590 part_shift = 0;
591 if (max_part > 0) {
592 part_shift = fls(max_part);
593
594 /*
595 * Adjust max_part according to part_shift as it is exported
596 * to user space so that user can decide correct minor number
597 * if [s]he want to create more devices.
598 *
599 * Note that -1 is required because partition 0 is reserved
600 * for the whole disk.
601 */
602 max_part = (1UL << part_shift) - 1;
603 }
604
605 if ((1UL << part_shift) > DISK_MAX_PARTS)
606 return -EINVAL;
607
608 if (rd_nr > 1UL << (MINORBITS - part_shift))
609 return -EINVAL;
610
611 if (rd_nr) {
612 nr = rd_nr;
613 range = rd_nr << part_shift;
614 } else {
615 nr = CONFIG_BLK_DEV_RAM_COUNT;
616 range = 1UL << MINORBITS;
617 }
618
619 if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
620 return -EIO;
621
622 for (i = 0; i < nr; i++) {
623 brd = brd_alloc(i);
624 if (!brd)
625 goto out_free;
626 list_add_tail(&brd->brd_list, &brd_devices);
627 }
628
629 /* point of no return */
630
631 list_for_each_entry(brd, &brd_devices, brd_list)
632 add_disk(brd->brd_disk);
633
634 blk_register_region(MKDEV(RAMDISK_MAJOR, 0), range,
635 THIS_MODULE, brd_probe, NULL, NULL);
636
637 printk(KERN_INFO "brd: module loaded\n");
638 return 0;
639
640 out_free:
641 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
642 list_del(&brd->brd_list);
643 brd_free(brd);
644 }
645 unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
646
647 return -ENOMEM;
648 }
649
650 static void __exit brd_exit(void)
651 {
652 unsigned long range;
653 struct brd_device *brd, *next;
654
655 range = rd_nr ? rd_nr << part_shift : 1UL << MINORBITS;
656
657 list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
658 brd_del_one(brd);
659
660 blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), range);
661 unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
662 }
663
664 module_init(brd_init);
665 module_exit(brd_exit);
666
This page took 0.063426 seconds and 5 git commands to generate.