Merge branch 'linus' into core/rcu
[deliverable/linux.git] / drivers / block / cciss.c
1 /*
2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17 * 02111-1307, USA.
18 *
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
20 *
21 */
22
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/bio.h>
33 #include <linux/blkpg.h>
34 #include <linux/timer.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/init.h>
38 #include <linux/hdreg.h>
39 #include <linux/spinlock.h>
40 #include <linux/compat.h>
41 #include <linux/blktrace_api.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44
45 #include <linux/dma-mapping.h>
46 #include <linux/blkdev.h>
47 #include <linux/genhd.h>
48 #include <linux/completion.h>
49 #include <scsi/scsi.h>
50 #include <scsi/sg.h>
51 #include <scsi/scsi_ioctl.h>
52 #include <linux/cdrom.h>
53 #include <linux/scatterlist.h>
54
55 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
56 #define DRIVER_NAME "HP CISS Driver (v 3.6.20)"
57 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20)
58
59 /* Embedded module documentation macros - see modules.h */
60 MODULE_AUTHOR("Hewlett-Packard Company");
61 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
62 MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
63 " SA6i P600 P800 P400 P400i E200 E200i E500 P700m"
64 " Smart Array G2 Series SAS/SATA Controllers");
65 MODULE_VERSION("3.6.20");
66 MODULE_LICENSE("GPL");
67
68 #include "cciss_cmd.h"
69 #include "cciss.h"
70 #include <linux/cciss_ioctl.h>
71
72 /* define the PCI info for the cards we can control */
73 static const struct pci_device_id cciss_pci_device_id[] = {
74 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
75 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
76 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
77 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
78 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
79 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
80 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
81 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
82 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
83 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
84 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
85 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
86 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
99 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
100 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
101 {0,}
102 };
103
104 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
105
106 /* board_id = Subsystem Device ID & Vendor ID
107 * product = Marketing Name for the board
108 * access = Address of the struct of function pointers
109 */
110 static struct board_type products[] = {
111 {0x40700E11, "Smart Array 5300", &SA5_access},
112 {0x40800E11, "Smart Array 5i", &SA5B_access},
113 {0x40820E11, "Smart Array 532", &SA5B_access},
114 {0x40830E11, "Smart Array 5312", &SA5B_access},
115 {0x409A0E11, "Smart Array 641", &SA5_access},
116 {0x409B0E11, "Smart Array 642", &SA5_access},
117 {0x409C0E11, "Smart Array 6400", &SA5_access},
118 {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
119 {0x40910E11, "Smart Array 6i", &SA5_access},
120 {0x3225103C, "Smart Array P600", &SA5_access},
121 {0x3223103C, "Smart Array P800", &SA5_access},
122 {0x3234103C, "Smart Array P400", &SA5_access},
123 {0x3235103C, "Smart Array P400i", &SA5_access},
124 {0x3211103C, "Smart Array E200i", &SA5_access},
125 {0x3212103C, "Smart Array E200", &SA5_access},
126 {0x3213103C, "Smart Array E200i", &SA5_access},
127 {0x3214103C, "Smart Array E200i", &SA5_access},
128 {0x3215103C, "Smart Array E200i", &SA5_access},
129 {0x3237103C, "Smart Array E500", &SA5_access},
130 {0x323D103C, "Smart Array P700m", &SA5_access},
131 {0x3241103C, "Smart Array P212", &SA5_access},
132 {0x3243103C, "Smart Array P410", &SA5_access},
133 {0x3245103C, "Smart Array P410i", &SA5_access},
134 {0x3247103C, "Smart Array P411", &SA5_access},
135 {0x3249103C, "Smart Array P812", &SA5_access},
136 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
137 };
138
139 /* How long to wait (in milliseconds) for board to go into simple mode */
140 #define MAX_CONFIG_WAIT 30000
141 #define MAX_IOCTL_CONFIG_WAIT 1000
142
143 /*define how many times we will try a command because of bus resets */
144 #define MAX_CMD_RETRIES 3
145
146 #define MAX_CTLR 32
147
148 /* Originally cciss driver only supports 8 major numbers */
149 #define MAX_CTLR_ORIG 8
150
151 static ctlr_info_t *hba[MAX_CTLR];
152
153 static void do_cciss_request(struct request_queue *q);
154 static irqreturn_t do_cciss_intr(int irq, void *dev_id);
155 static int cciss_open(struct inode *inode, struct file *filep);
156 static int cciss_release(struct inode *inode, struct file *filep);
157 static int cciss_ioctl(struct inode *inode, struct file *filep,
158 unsigned int cmd, unsigned long arg);
159 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
160
161 static int cciss_revalidate(struct gendisk *disk);
162 static int rebuild_lun_table(ctlr_info_t *h, struct gendisk *del_disk);
163 static int deregister_disk(struct gendisk *disk, drive_info_struct *drv,
164 int clear_all);
165
166 static void cciss_read_capacity(int ctlr, int logvol, int withirq,
167 sector_t *total_size, unsigned int *block_size);
168 static void cciss_read_capacity_16(int ctlr, int logvol, int withirq,
169 sector_t *total_size, unsigned int *block_size);
170 static void cciss_geometry_inquiry(int ctlr, int logvol,
171 int withirq, sector_t total_size,
172 unsigned int block_size, InquiryData_struct *inq_buff,
173 drive_info_struct *drv);
174 static void cciss_getgeometry(int cntl_num);
175 static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
176 __u32);
177 static void start_io(ctlr_info_t *h);
178 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
179 unsigned int use_unit_num, unsigned int log_unit,
180 __u8 page_code, unsigned char *scsi3addr, int cmd_type);
181 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
182 unsigned int use_unit_num, unsigned int log_unit,
183 __u8 page_code, int cmd_type);
184
185 static void fail_all_cmds(unsigned long ctlr);
186
187 #ifdef CONFIG_PROC_FS
188 static void cciss_procinit(int i);
189 #else
190 static void cciss_procinit(int i)
191 {
192 }
193 #endif /* CONFIG_PROC_FS */
194
195 #ifdef CONFIG_COMPAT
196 static long cciss_compat_ioctl(struct file *f, unsigned cmd, unsigned long arg);
197 #endif
198
199 static struct block_device_operations cciss_fops = {
200 .owner = THIS_MODULE,
201 .open = cciss_open,
202 .release = cciss_release,
203 .ioctl = cciss_ioctl,
204 .getgeo = cciss_getgeo,
205 #ifdef CONFIG_COMPAT
206 .compat_ioctl = cciss_compat_ioctl,
207 #endif
208 .revalidate_disk = cciss_revalidate,
209 };
210
211 /*
212 * Enqueuing and dequeuing functions for cmdlists.
213 */
214 static inline void addQ(CommandList_struct **Qptr, CommandList_struct *c)
215 {
216 if (*Qptr == NULL) {
217 *Qptr = c;
218 c->next = c->prev = c;
219 } else {
220 c->prev = (*Qptr)->prev;
221 c->next = (*Qptr);
222 (*Qptr)->prev->next = c;
223 (*Qptr)->prev = c;
224 }
225 }
226
227 static inline CommandList_struct *removeQ(CommandList_struct **Qptr,
228 CommandList_struct *c)
229 {
230 if (c && c->next != c) {
231 if (*Qptr == c)
232 *Qptr = c->next;
233 c->prev->next = c->next;
234 c->next->prev = c->prev;
235 } else {
236 *Qptr = NULL;
237 }
238 return c;
239 }
240
241 #include "cciss_scsi.c" /* For SCSI tape support */
242
243 #define RAID_UNKNOWN 6
244
245 #ifdef CONFIG_PROC_FS
246
247 /*
248 * Report information about this controller.
249 */
250 #define ENG_GIG 1000000000
251 #define ENG_GIG_FACTOR (ENG_GIG/512)
252 #define ENGAGE_SCSI "engage scsi"
253 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
254 "UNKNOWN"
255 };
256
257 static struct proc_dir_entry *proc_cciss;
258
259 static void cciss_seq_show_header(struct seq_file *seq)
260 {
261 ctlr_info_t *h = seq->private;
262
263 seq_printf(seq, "%s: HP %s Controller\n"
264 "Board ID: 0x%08lx\n"
265 "Firmware Version: %c%c%c%c\n"
266 "IRQ: %d\n"
267 "Logical drives: %d\n"
268 "Current Q depth: %d\n"
269 "Current # commands on controller: %d\n"
270 "Max Q depth since init: %d\n"
271 "Max # commands on controller since init: %d\n"
272 "Max SG entries since init: %d\n",
273 h->devname,
274 h->product_name,
275 (unsigned long)h->board_id,
276 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
277 h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT],
278 h->num_luns,
279 h->Qdepth, h->commands_outstanding,
280 h->maxQsinceinit, h->max_outstanding, h->maxSG);
281
282 #ifdef CONFIG_CISS_SCSI_TAPE
283 cciss_seq_tape_report(seq, h->ctlr);
284 #endif /* CONFIG_CISS_SCSI_TAPE */
285 }
286
287 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
288 {
289 ctlr_info_t *h = seq->private;
290 unsigned ctlr = h->ctlr;
291 unsigned long flags;
292
293 /* prevent displaying bogus info during configuration
294 * or deconfiguration of a logical volume
295 */
296 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
297 if (h->busy_configuring) {
298 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
299 return ERR_PTR(-EBUSY);
300 }
301 h->busy_configuring = 1;
302 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
303
304 if (*pos == 0)
305 cciss_seq_show_header(seq);
306
307 return pos;
308 }
309
310 static int cciss_seq_show(struct seq_file *seq, void *v)
311 {
312 sector_t vol_sz, vol_sz_frac;
313 ctlr_info_t *h = seq->private;
314 unsigned ctlr = h->ctlr;
315 loff_t *pos = v;
316 drive_info_struct *drv = &h->drv[*pos];
317
318 if (*pos > h->highest_lun)
319 return 0;
320
321 if (drv->heads == 0)
322 return 0;
323
324 vol_sz = drv->nr_blocks;
325 vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
326 vol_sz_frac *= 100;
327 sector_div(vol_sz_frac, ENG_GIG_FACTOR);
328
329 if (drv->raid_level > 5)
330 drv->raid_level = RAID_UNKNOWN;
331 seq_printf(seq, "cciss/c%dd%d:"
332 "\t%4u.%02uGB\tRAID %s\n",
333 ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
334 raid_label[drv->raid_level]);
335 return 0;
336 }
337
338 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
339 {
340 ctlr_info_t *h = seq->private;
341
342 if (*pos > h->highest_lun)
343 return NULL;
344 *pos += 1;
345
346 return pos;
347 }
348
349 static void cciss_seq_stop(struct seq_file *seq, void *v)
350 {
351 ctlr_info_t *h = seq->private;
352
353 /* Only reset h->busy_configuring if we succeeded in setting
354 * it during cciss_seq_start. */
355 if (v == ERR_PTR(-EBUSY))
356 return;
357
358 h->busy_configuring = 0;
359 }
360
361 static struct seq_operations cciss_seq_ops = {
362 .start = cciss_seq_start,
363 .show = cciss_seq_show,
364 .next = cciss_seq_next,
365 .stop = cciss_seq_stop,
366 };
367
368 static int cciss_seq_open(struct inode *inode, struct file *file)
369 {
370 int ret = seq_open(file, &cciss_seq_ops);
371 struct seq_file *seq = file->private_data;
372
373 if (!ret)
374 seq->private = PDE(inode)->data;
375
376 return ret;
377 }
378
379 static ssize_t
380 cciss_proc_write(struct file *file, const char __user *buf,
381 size_t length, loff_t *ppos)
382 {
383 int err;
384 char *buffer;
385
386 #ifndef CONFIG_CISS_SCSI_TAPE
387 return -EINVAL;
388 #endif
389
390 if (!buf || length > PAGE_SIZE - 1)
391 return -EINVAL;
392
393 buffer = (char *)__get_free_page(GFP_KERNEL);
394 if (!buffer)
395 return -ENOMEM;
396
397 err = -EFAULT;
398 if (copy_from_user(buffer, buf, length))
399 goto out;
400 buffer[length] = '\0';
401
402 #ifdef CONFIG_CISS_SCSI_TAPE
403 if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
404 struct seq_file *seq = file->private_data;
405 ctlr_info_t *h = seq->private;
406 int rc;
407
408 rc = cciss_engage_scsi(h->ctlr);
409 if (rc != 0)
410 err = -rc;
411 else
412 err = length;
413 } else
414 #endif /* CONFIG_CISS_SCSI_TAPE */
415 err = -EINVAL;
416 /* might be nice to have "disengage" too, but it's not
417 safely possible. (only 1 module use count, lock issues.) */
418
419 out:
420 free_page((unsigned long)buffer);
421 return err;
422 }
423
424 static struct file_operations cciss_proc_fops = {
425 .owner = THIS_MODULE,
426 .open = cciss_seq_open,
427 .read = seq_read,
428 .llseek = seq_lseek,
429 .release = seq_release,
430 .write = cciss_proc_write,
431 };
432
433 static void __devinit cciss_procinit(int i)
434 {
435 struct proc_dir_entry *pde;
436
437 if (proc_cciss == NULL)
438 proc_cciss = proc_mkdir("driver/cciss", NULL);
439 if (!proc_cciss)
440 return;
441 pde = proc_create_data(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP |
442 S_IROTH, proc_cciss,
443 &cciss_proc_fops, hba[i]);
444 }
445 #endif /* CONFIG_PROC_FS */
446
447 /*
448 * For operations that cannot sleep, a command block is allocated at init,
449 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
450 * which ones are free or in use. For operations that can wait for kmalloc
451 * to possible sleep, this routine can be called with get_from_pool set to 0.
452 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
453 */
454 static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
455 {
456 CommandList_struct *c;
457 int i;
458 u64bit temp64;
459 dma_addr_t cmd_dma_handle, err_dma_handle;
460
461 if (!get_from_pool) {
462 c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
463 sizeof(CommandList_struct), &cmd_dma_handle);
464 if (c == NULL)
465 return NULL;
466 memset(c, 0, sizeof(CommandList_struct));
467
468 c->cmdindex = -1;
469
470 c->err_info = (ErrorInfo_struct *)
471 pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
472 &err_dma_handle);
473
474 if (c->err_info == NULL) {
475 pci_free_consistent(h->pdev,
476 sizeof(CommandList_struct), c, cmd_dma_handle);
477 return NULL;
478 }
479 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
480 } else { /* get it out of the controllers pool */
481
482 do {
483 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
484 if (i == h->nr_cmds)
485 return NULL;
486 } while (test_and_set_bit
487 (i & (BITS_PER_LONG - 1),
488 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
489 #ifdef CCISS_DEBUG
490 printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
491 #endif
492 c = h->cmd_pool + i;
493 memset(c, 0, sizeof(CommandList_struct));
494 cmd_dma_handle = h->cmd_pool_dhandle
495 + i * sizeof(CommandList_struct);
496 c->err_info = h->errinfo_pool + i;
497 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
498 err_dma_handle = h->errinfo_pool_dhandle
499 + i * sizeof(ErrorInfo_struct);
500 h->nr_allocs++;
501
502 c->cmdindex = i;
503 }
504
505 c->busaddr = (__u32) cmd_dma_handle;
506 temp64.val = (__u64) err_dma_handle;
507 c->ErrDesc.Addr.lower = temp64.val32.lower;
508 c->ErrDesc.Addr.upper = temp64.val32.upper;
509 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
510
511 c->ctlr = h->ctlr;
512 return c;
513 }
514
515 /*
516 * Frees a command block that was previously allocated with cmd_alloc().
517 */
518 static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
519 {
520 int i;
521 u64bit temp64;
522
523 if (!got_from_pool) {
524 temp64.val32.lower = c->ErrDesc.Addr.lower;
525 temp64.val32.upper = c->ErrDesc.Addr.upper;
526 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
527 c->err_info, (dma_addr_t) temp64.val);
528 pci_free_consistent(h->pdev, sizeof(CommandList_struct),
529 c, (dma_addr_t) c->busaddr);
530 } else {
531 i = c - h->cmd_pool;
532 clear_bit(i & (BITS_PER_LONG - 1),
533 h->cmd_pool_bits + (i / BITS_PER_LONG));
534 h->nr_frees++;
535 }
536 }
537
538 static inline ctlr_info_t *get_host(struct gendisk *disk)
539 {
540 return disk->queue->queuedata;
541 }
542
543 static inline drive_info_struct *get_drv(struct gendisk *disk)
544 {
545 return disk->private_data;
546 }
547
548 /*
549 * Open. Make sure the device is really there.
550 */
551 static int cciss_open(struct inode *inode, struct file *filep)
552 {
553 ctlr_info_t *host = get_host(inode->i_bdev->bd_disk);
554 drive_info_struct *drv = get_drv(inode->i_bdev->bd_disk);
555
556 #ifdef CCISS_DEBUG
557 printk(KERN_DEBUG "cciss_open %s\n", inode->i_bdev->bd_disk->disk_name);
558 #endif /* CCISS_DEBUG */
559
560 if (host->busy_initializing || drv->busy_configuring)
561 return -EBUSY;
562 /*
563 * Root is allowed to open raw volume zero even if it's not configured
564 * so array config can still work. Root is also allowed to open any
565 * volume that has a LUN ID, so it can issue IOCTL to reread the
566 * disk information. I don't think I really like this
567 * but I'm already using way to many device nodes to claim another one
568 * for "raw controller".
569 */
570 if (drv->heads == 0) {
571 if (iminor(inode) != 0) { /* not node 0? */
572 /* if not node 0 make sure it is a partition = 0 */
573 if (iminor(inode) & 0x0f) {
574 return -ENXIO;
575 /* if it is, make sure we have a LUN ID */
576 } else if (drv->LunID == 0) {
577 return -ENXIO;
578 }
579 }
580 if (!capable(CAP_SYS_ADMIN))
581 return -EPERM;
582 }
583 drv->usage_count++;
584 host->usage_count++;
585 return 0;
586 }
587
588 /*
589 * Close. Sync first.
590 */
591 static int cciss_release(struct inode *inode, struct file *filep)
592 {
593 ctlr_info_t *host = get_host(inode->i_bdev->bd_disk);
594 drive_info_struct *drv = get_drv(inode->i_bdev->bd_disk);
595
596 #ifdef CCISS_DEBUG
597 printk(KERN_DEBUG "cciss_release %s\n",
598 inode->i_bdev->bd_disk->disk_name);
599 #endif /* CCISS_DEBUG */
600
601 drv->usage_count--;
602 host->usage_count--;
603 return 0;
604 }
605
606 #ifdef CONFIG_COMPAT
607
608 static int do_ioctl(struct file *f, unsigned cmd, unsigned long arg)
609 {
610 int ret;
611 lock_kernel();
612 ret = cciss_ioctl(f->f_path.dentry->d_inode, f, cmd, arg);
613 unlock_kernel();
614 return ret;
615 }
616
617 static int cciss_ioctl32_passthru(struct file *f, unsigned cmd,
618 unsigned long arg);
619 static int cciss_ioctl32_big_passthru(struct file *f, unsigned cmd,
620 unsigned long arg);
621
622 static long cciss_compat_ioctl(struct file *f, unsigned cmd, unsigned long arg)
623 {
624 switch (cmd) {
625 case CCISS_GETPCIINFO:
626 case CCISS_GETINTINFO:
627 case CCISS_SETINTINFO:
628 case CCISS_GETNODENAME:
629 case CCISS_SETNODENAME:
630 case CCISS_GETHEARTBEAT:
631 case CCISS_GETBUSTYPES:
632 case CCISS_GETFIRMVER:
633 case CCISS_GETDRIVVER:
634 case CCISS_REVALIDVOLS:
635 case CCISS_DEREGDISK:
636 case CCISS_REGNEWDISK:
637 case CCISS_REGNEWD:
638 case CCISS_RESCANDISK:
639 case CCISS_GETLUNINFO:
640 return do_ioctl(f, cmd, arg);
641
642 case CCISS_PASSTHRU32:
643 return cciss_ioctl32_passthru(f, cmd, arg);
644 case CCISS_BIG_PASSTHRU32:
645 return cciss_ioctl32_big_passthru(f, cmd, arg);
646
647 default:
648 return -ENOIOCTLCMD;
649 }
650 }
651
652 static int cciss_ioctl32_passthru(struct file *f, unsigned cmd,
653 unsigned long arg)
654 {
655 IOCTL32_Command_struct __user *arg32 =
656 (IOCTL32_Command_struct __user *) arg;
657 IOCTL_Command_struct arg64;
658 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
659 int err;
660 u32 cp;
661
662 err = 0;
663 err |=
664 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
665 sizeof(arg64.LUN_info));
666 err |=
667 copy_from_user(&arg64.Request, &arg32->Request,
668 sizeof(arg64.Request));
669 err |=
670 copy_from_user(&arg64.error_info, &arg32->error_info,
671 sizeof(arg64.error_info));
672 err |= get_user(arg64.buf_size, &arg32->buf_size);
673 err |= get_user(cp, &arg32->buf);
674 arg64.buf = compat_ptr(cp);
675 err |= copy_to_user(p, &arg64, sizeof(arg64));
676
677 if (err)
678 return -EFAULT;
679
680 err = do_ioctl(f, CCISS_PASSTHRU, (unsigned long)p);
681 if (err)
682 return err;
683 err |=
684 copy_in_user(&arg32->error_info, &p->error_info,
685 sizeof(arg32->error_info));
686 if (err)
687 return -EFAULT;
688 return err;
689 }
690
691 static int cciss_ioctl32_big_passthru(struct file *file, unsigned cmd,
692 unsigned long arg)
693 {
694 BIG_IOCTL32_Command_struct __user *arg32 =
695 (BIG_IOCTL32_Command_struct __user *) arg;
696 BIG_IOCTL_Command_struct arg64;
697 BIG_IOCTL_Command_struct __user *p =
698 compat_alloc_user_space(sizeof(arg64));
699 int err;
700 u32 cp;
701
702 err = 0;
703 err |=
704 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
705 sizeof(arg64.LUN_info));
706 err |=
707 copy_from_user(&arg64.Request, &arg32->Request,
708 sizeof(arg64.Request));
709 err |=
710 copy_from_user(&arg64.error_info, &arg32->error_info,
711 sizeof(arg64.error_info));
712 err |= get_user(arg64.buf_size, &arg32->buf_size);
713 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
714 err |= get_user(cp, &arg32->buf);
715 arg64.buf = compat_ptr(cp);
716 err |= copy_to_user(p, &arg64, sizeof(arg64));
717
718 if (err)
719 return -EFAULT;
720
721 err = do_ioctl(file, CCISS_BIG_PASSTHRU, (unsigned long)p);
722 if (err)
723 return err;
724 err |=
725 copy_in_user(&arg32->error_info, &p->error_info,
726 sizeof(arg32->error_info));
727 if (err)
728 return -EFAULT;
729 return err;
730 }
731 #endif
732
733 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
734 {
735 drive_info_struct *drv = get_drv(bdev->bd_disk);
736
737 if (!drv->cylinders)
738 return -ENXIO;
739
740 geo->heads = drv->heads;
741 geo->sectors = drv->sectors;
742 geo->cylinders = drv->cylinders;
743 return 0;
744 }
745
746 /*
747 * ioctl
748 */
749 static int cciss_ioctl(struct inode *inode, struct file *filep,
750 unsigned int cmd, unsigned long arg)
751 {
752 struct block_device *bdev = inode->i_bdev;
753 struct gendisk *disk = bdev->bd_disk;
754 ctlr_info_t *host = get_host(disk);
755 drive_info_struct *drv = get_drv(disk);
756 int ctlr = host->ctlr;
757 void __user *argp = (void __user *)arg;
758
759 #ifdef CCISS_DEBUG
760 printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
761 #endif /* CCISS_DEBUG */
762
763 switch (cmd) {
764 case CCISS_GETPCIINFO:
765 {
766 cciss_pci_info_struct pciinfo;
767
768 if (!arg)
769 return -EINVAL;
770 pciinfo.domain = pci_domain_nr(host->pdev->bus);
771 pciinfo.bus = host->pdev->bus->number;
772 pciinfo.dev_fn = host->pdev->devfn;
773 pciinfo.board_id = host->board_id;
774 if (copy_to_user
775 (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
776 return -EFAULT;
777 return 0;
778 }
779 case CCISS_GETINTINFO:
780 {
781 cciss_coalint_struct intinfo;
782 if (!arg)
783 return -EINVAL;
784 intinfo.delay =
785 readl(&host->cfgtable->HostWrite.CoalIntDelay);
786 intinfo.count =
787 readl(&host->cfgtable->HostWrite.CoalIntCount);
788 if (copy_to_user
789 (argp, &intinfo, sizeof(cciss_coalint_struct)))
790 return -EFAULT;
791 return 0;
792 }
793 case CCISS_SETINTINFO:
794 {
795 cciss_coalint_struct intinfo;
796 unsigned long flags;
797 int i;
798
799 if (!arg)
800 return -EINVAL;
801 if (!capable(CAP_SYS_ADMIN))
802 return -EPERM;
803 if (copy_from_user
804 (&intinfo, argp, sizeof(cciss_coalint_struct)))
805 return -EFAULT;
806 if ((intinfo.delay == 0) && (intinfo.count == 0))
807 {
808 // printk("cciss_ioctl: delay and count cannot be 0\n");
809 return -EINVAL;
810 }
811 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
812 /* Update the field, and then ring the doorbell */
813 writel(intinfo.delay,
814 &(host->cfgtable->HostWrite.CoalIntDelay));
815 writel(intinfo.count,
816 &(host->cfgtable->HostWrite.CoalIntCount));
817 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
818
819 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
820 if (!(readl(host->vaddr + SA5_DOORBELL)
821 & CFGTBL_ChangeReq))
822 break;
823 /* delay and try again */
824 udelay(1000);
825 }
826 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
827 if (i >= MAX_IOCTL_CONFIG_WAIT)
828 return -EAGAIN;
829 return 0;
830 }
831 case CCISS_GETNODENAME:
832 {
833 NodeName_type NodeName;
834 int i;
835
836 if (!arg)
837 return -EINVAL;
838 for (i = 0; i < 16; i++)
839 NodeName[i] =
840 readb(&host->cfgtable->ServerName[i]);
841 if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
842 return -EFAULT;
843 return 0;
844 }
845 case CCISS_SETNODENAME:
846 {
847 NodeName_type NodeName;
848 unsigned long flags;
849 int i;
850
851 if (!arg)
852 return -EINVAL;
853 if (!capable(CAP_SYS_ADMIN))
854 return -EPERM;
855
856 if (copy_from_user
857 (NodeName, argp, sizeof(NodeName_type)))
858 return -EFAULT;
859
860 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
861
862 /* Update the field, and then ring the doorbell */
863 for (i = 0; i < 16; i++)
864 writeb(NodeName[i],
865 &host->cfgtable->ServerName[i]);
866
867 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
868
869 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
870 if (!(readl(host->vaddr + SA5_DOORBELL)
871 & CFGTBL_ChangeReq))
872 break;
873 /* delay and try again */
874 udelay(1000);
875 }
876 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
877 if (i >= MAX_IOCTL_CONFIG_WAIT)
878 return -EAGAIN;
879 return 0;
880 }
881
882 case CCISS_GETHEARTBEAT:
883 {
884 Heartbeat_type heartbeat;
885
886 if (!arg)
887 return -EINVAL;
888 heartbeat = readl(&host->cfgtable->HeartBeat);
889 if (copy_to_user
890 (argp, &heartbeat, sizeof(Heartbeat_type)))
891 return -EFAULT;
892 return 0;
893 }
894 case CCISS_GETBUSTYPES:
895 {
896 BusTypes_type BusTypes;
897
898 if (!arg)
899 return -EINVAL;
900 BusTypes = readl(&host->cfgtable->BusTypes);
901 if (copy_to_user
902 (argp, &BusTypes, sizeof(BusTypes_type)))
903 return -EFAULT;
904 return 0;
905 }
906 case CCISS_GETFIRMVER:
907 {
908 FirmwareVer_type firmware;
909
910 if (!arg)
911 return -EINVAL;
912 memcpy(firmware, host->firm_ver, 4);
913
914 if (copy_to_user
915 (argp, firmware, sizeof(FirmwareVer_type)))
916 return -EFAULT;
917 return 0;
918 }
919 case CCISS_GETDRIVVER:
920 {
921 DriverVer_type DriverVer = DRIVER_VERSION;
922
923 if (!arg)
924 return -EINVAL;
925
926 if (copy_to_user
927 (argp, &DriverVer, sizeof(DriverVer_type)))
928 return -EFAULT;
929 return 0;
930 }
931
932 case CCISS_REVALIDVOLS:
933 return rebuild_lun_table(host, NULL);
934
935 case CCISS_GETLUNINFO:{
936 LogvolInfo_struct luninfo;
937
938 luninfo.LunID = drv->LunID;
939 luninfo.num_opens = drv->usage_count;
940 luninfo.num_parts = 0;
941 if (copy_to_user(argp, &luninfo,
942 sizeof(LogvolInfo_struct)))
943 return -EFAULT;
944 return 0;
945 }
946 case CCISS_DEREGDISK:
947 return rebuild_lun_table(host, disk);
948
949 case CCISS_REGNEWD:
950 return rebuild_lun_table(host, NULL);
951
952 case CCISS_PASSTHRU:
953 {
954 IOCTL_Command_struct iocommand;
955 CommandList_struct *c;
956 char *buff = NULL;
957 u64bit temp64;
958 unsigned long flags;
959 DECLARE_COMPLETION_ONSTACK(wait);
960
961 if (!arg)
962 return -EINVAL;
963
964 if (!capable(CAP_SYS_RAWIO))
965 return -EPERM;
966
967 if (copy_from_user
968 (&iocommand, argp, sizeof(IOCTL_Command_struct)))
969 return -EFAULT;
970 if ((iocommand.buf_size < 1) &&
971 (iocommand.Request.Type.Direction != XFER_NONE)) {
972 return -EINVAL;
973 }
974 #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
975 /* Check kmalloc limits */
976 if (iocommand.buf_size > 128000)
977 return -EINVAL;
978 #endif
979 if (iocommand.buf_size > 0) {
980 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
981 if (buff == NULL)
982 return -EFAULT;
983 }
984 if (iocommand.Request.Type.Direction == XFER_WRITE) {
985 /* Copy the data into the buffer we created */
986 if (copy_from_user
987 (buff, iocommand.buf, iocommand.buf_size)) {
988 kfree(buff);
989 return -EFAULT;
990 }
991 } else {
992 memset(buff, 0, iocommand.buf_size);
993 }
994 if ((c = cmd_alloc(host, 0)) == NULL) {
995 kfree(buff);
996 return -ENOMEM;
997 }
998 // Fill in the command type
999 c->cmd_type = CMD_IOCTL_PEND;
1000 // Fill in Command Header
1001 c->Header.ReplyQueue = 0; // unused in simple mode
1002 if (iocommand.buf_size > 0) // buffer to fill
1003 {
1004 c->Header.SGList = 1;
1005 c->Header.SGTotal = 1;
1006 } else // no buffers to fill
1007 {
1008 c->Header.SGList = 0;
1009 c->Header.SGTotal = 0;
1010 }
1011 c->Header.LUN = iocommand.LUN_info;
1012 c->Header.Tag.lower = c->busaddr; // use the kernel address the cmd block for tag
1013
1014 // Fill in Request block
1015 c->Request = iocommand.Request;
1016
1017 // Fill in the scatter gather information
1018 if (iocommand.buf_size > 0) {
1019 temp64.val = pci_map_single(host->pdev, buff,
1020 iocommand.buf_size,
1021 PCI_DMA_BIDIRECTIONAL);
1022 c->SG[0].Addr.lower = temp64.val32.lower;
1023 c->SG[0].Addr.upper = temp64.val32.upper;
1024 c->SG[0].Len = iocommand.buf_size;
1025 c->SG[0].Ext = 0; // we are not chaining
1026 }
1027 c->waiting = &wait;
1028
1029 /* Put the request on the tail of the request queue */
1030 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1031 addQ(&host->reqQ, c);
1032 host->Qdepth++;
1033 start_io(host);
1034 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1035
1036 wait_for_completion(&wait);
1037
1038 /* unlock the buffers from DMA */
1039 temp64.val32.lower = c->SG[0].Addr.lower;
1040 temp64.val32.upper = c->SG[0].Addr.upper;
1041 pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
1042 iocommand.buf_size,
1043 PCI_DMA_BIDIRECTIONAL);
1044
1045 /* Copy the error information out */
1046 iocommand.error_info = *(c->err_info);
1047 if (copy_to_user
1048 (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1049 kfree(buff);
1050 cmd_free(host, c, 0);
1051 return -EFAULT;
1052 }
1053
1054 if (iocommand.Request.Type.Direction == XFER_READ) {
1055 /* Copy the data out of the buffer we created */
1056 if (copy_to_user
1057 (iocommand.buf, buff, iocommand.buf_size)) {
1058 kfree(buff);
1059 cmd_free(host, c, 0);
1060 return -EFAULT;
1061 }
1062 }
1063 kfree(buff);
1064 cmd_free(host, c, 0);
1065 return 0;
1066 }
1067 case CCISS_BIG_PASSTHRU:{
1068 BIG_IOCTL_Command_struct *ioc;
1069 CommandList_struct *c;
1070 unsigned char **buff = NULL;
1071 int *buff_size = NULL;
1072 u64bit temp64;
1073 unsigned long flags;
1074 BYTE sg_used = 0;
1075 int status = 0;
1076 int i;
1077 DECLARE_COMPLETION_ONSTACK(wait);
1078 __u32 left;
1079 __u32 sz;
1080 BYTE __user *data_ptr;
1081
1082 if (!arg)
1083 return -EINVAL;
1084 if (!capable(CAP_SYS_RAWIO))
1085 return -EPERM;
1086 ioc = (BIG_IOCTL_Command_struct *)
1087 kmalloc(sizeof(*ioc), GFP_KERNEL);
1088 if (!ioc) {
1089 status = -ENOMEM;
1090 goto cleanup1;
1091 }
1092 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1093 status = -EFAULT;
1094 goto cleanup1;
1095 }
1096 if ((ioc->buf_size < 1) &&
1097 (ioc->Request.Type.Direction != XFER_NONE)) {
1098 status = -EINVAL;
1099 goto cleanup1;
1100 }
1101 /* Check kmalloc limits using all SGs */
1102 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1103 status = -EINVAL;
1104 goto cleanup1;
1105 }
1106 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1107 status = -EINVAL;
1108 goto cleanup1;
1109 }
1110 buff =
1111 kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1112 if (!buff) {
1113 status = -ENOMEM;
1114 goto cleanup1;
1115 }
1116 buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
1117 GFP_KERNEL);
1118 if (!buff_size) {
1119 status = -ENOMEM;
1120 goto cleanup1;
1121 }
1122 left = ioc->buf_size;
1123 data_ptr = ioc->buf;
1124 while (left) {
1125 sz = (left >
1126 ioc->malloc_size) ? ioc->
1127 malloc_size : left;
1128 buff_size[sg_used] = sz;
1129 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1130 if (buff[sg_used] == NULL) {
1131 status = -ENOMEM;
1132 goto cleanup1;
1133 }
1134 if (ioc->Request.Type.Direction == XFER_WRITE) {
1135 if (copy_from_user
1136 (buff[sg_used], data_ptr, sz)) {
1137 status = -ENOMEM;
1138 goto cleanup1;
1139 }
1140 } else {
1141 memset(buff[sg_used], 0, sz);
1142 }
1143 left -= sz;
1144 data_ptr += sz;
1145 sg_used++;
1146 }
1147 if ((c = cmd_alloc(host, 0)) == NULL) {
1148 status = -ENOMEM;
1149 goto cleanup1;
1150 }
1151 c->cmd_type = CMD_IOCTL_PEND;
1152 c->Header.ReplyQueue = 0;
1153
1154 if (ioc->buf_size > 0) {
1155 c->Header.SGList = sg_used;
1156 c->Header.SGTotal = sg_used;
1157 } else {
1158 c->Header.SGList = 0;
1159 c->Header.SGTotal = 0;
1160 }
1161 c->Header.LUN = ioc->LUN_info;
1162 c->Header.Tag.lower = c->busaddr;
1163
1164 c->Request = ioc->Request;
1165 if (ioc->buf_size > 0) {
1166 int i;
1167 for (i = 0; i < sg_used; i++) {
1168 temp64.val =
1169 pci_map_single(host->pdev, buff[i],
1170 buff_size[i],
1171 PCI_DMA_BIDIRECTIONAL);
1172 c->SG[i].Addr.lower =
1173 temp64.val32.lower;
1174 c->SG[i].Addr.upper =
1175 temp64.val32.upper;
1176 c->SG[i].Len = buff_size[i];
1177 c->SG[i].Ext = 0; /* we are not chaining */
1178 }
1179 }
1180 c->waiting = &wait;
1181 /* Put the request on the tail of the request queue */
1182 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1183 addQ(&host->reqQ, c);
1184 host->Qdepth++;
1185 start_io(host);
1186 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1187 wait_for_completion(&wait);
1188 /* unlock the buffers from DMA */
1189 for (i = 0; i < sg_used; i++) {
1190 temp64.val32.lower = c->SG[i].Addr.lower;
1191 temp64.val32.upper = c->SG[i].Addr.upper;
1192 pci_unmap_single(host->pdev,
1193 (dma_addr_t) temp64.val, buff_size[i],
1194 PCI_DMA_BIDIRECTIONAL);
1195 }
1196 /* Copy the error information out */
1197 ioc->error_info = *(c->err_info);
1198 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1199 cmd_free(host, c, 0);
1200 status = -EFAULT;
1201 goto cleanup1;
1202 }
1203 if (ioc->Request.Type.Direction == XFER_READ) {
1204 /* Copy the data out of the buffer we created */
1205 BYTE __user *ptr = ioc->buf;
1206 for (i = 0; i < sg_used; i++) {
1207 if (copy_to_user
1208 (ptr, buff[i], buff_size[i])) {
1209 cmd_free(host, c, 0);
1210 status = -EFAULT;
1211 goto cleanup1;
1212 }
1213 ptr += buff_size[i];
1214 }
1215 }
1216 cmd_free(host, c, 0);
1217 status = 0;
1218 cleanup1:
1219 if (buff) {
1220 for (i = 0; i < sg_used; i++)
1221 kfree(buff[i]);
1222 kfree(buff);
1223 }
1224 kfree(buff_size);
1225 kfree(ioc);
1226 return status;
1227 }
1228
1229 /* scsi_cmd_ioctl handles these, below, though some are not */
1230 /* very meaningful for cciss. SG_IO is the main one people want. */
1231
1232 case SG_GET_VERSION_NUM:
1233 case SG_SET_TIMEOUT:
1234 case SG_GET_TIMEOUT:
1235 case SG_GET_RESERVED_SIZE:
1236 case SG_SET_RESERVED_SIZE:
1237 case SG_EMULATED_HOST:
1238 case SG_IO:
1239 case SCSI_IOCTL_SEND_COMMAND:
1240 return scsi_cmd_ioctl(filep, disk->queue, disk, cmd, argp);
1241
1242 /* scsi_cmd_ioctl would normally handle these, below, but */
1243 /* they aren't a good fit for cciss, as CD-ROMs are */
1244 /* not supported, and we don't have any bus/target/lun */
1245 /* which we present to the kernel. */
1246
1247 case CDROM_SEND_PACKET:
1248 case CDROMCLOSETRAY:
1249 case CDROMEJECT:
1250 case SCSI_IOCTL_GET_IDLUN:
1251 case SCSI_IOCTL_GET_BUS_NUMBER:
1252 default:
1253 return -ENOTTY;
1254 }
1255 }
1256
1257 static void cciss_check_queues(ctlr_info_t *h)
1258 {
1259 int start_queue = h->next_to_run;
1260 int i;
1261
1262 /* check to see if we have maxed out the number of commands that can
1263 * be placed on the queue. If so then exit. We do this check here
1264 * in case the interrupt we serviced was from an ioctl and did not
1265 * free any new commands.
1266 */
1267 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1268 return;
1269
1270 /* We have room on the queue for more commands. Now we need to queue
1271 * them up. We will also keep track of the next queue to run so
1272 * that every queue gets a chance to be started first.
1273 */
1274 for (i = 0; i < h->highest_lun + 1; i++) {
1275 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1276 /* make sure the disk has been added and the drive is real
1277 * because this can be called from the middle of init_one.
1278 */
1279 if (!(h->drv[curr_queue].queue) || !(h->drv[curr_queue].heads))
1280 continue;
1281 blk_start_queue(h->gendisk[curr_queue]->queue);
1282
1283 /* check to see if we have maxed out the number of commands
1284 * that can be placed on the queue.
1285 */
1286 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1287 if (curr_queue == start_queue) {
1288 h->next_to_run =
1289 (start_queue + 1) % (h->highest_lun + 1);
1290 break;
1291 } else {
1292 h->next_to_run = curr_queue;
1293 break;
1294 }
1295 } else {
1296 curr_queue = (curr_queue + 1) % (h->highest_lun + 1);
1297 }
1298 }
1299 }
1300
1301 static void cciss_softirq_done(struct request *rq)
1302 {
1303 CommandList_struct *cmd = rq->completion_data;
1304 ctlr_info_t *h = hba[cmd->ctlr];
1305 unsigned long flags;
1306 u64bit temp64;
1307 int i, ddir;
1308
1309 if (cmd->Request.Type.Direction == XFER_READ)
1310 ddir = PCI_DMA_FROMDEVICE;
1311 else
1312 ddir = PCI_DMA_TODEVICE;
1313
1314 /* command did not need to be retried */
1315 /* unmap the DMA mapping for all the scatter gather elements */
1316 for (i = 0; i < cmd->Header.SGList; i++) {
1317 temp64.val32.lower = cmd->SG[i].Addr.lower;
1318 temp64.val32.upper = cmd->SG[i].Addr.upper;
1319 pci_unmap_page(h->pdev, temp64.val, cmd->SG[i].Len, ddir);
1320 }
1321
1322 #ifdef CCISS_DEBUG
1323 printk("Done with %p\n", rq);
1324 #endif /* CCISS_DEBUG */
1325
1326 if (blk_end_request(rq, (rq->errors == 0) ? 0 : -EIO, blk_rq_bytes(rq)))
1327 BUG();
1328
1329 spin_lock_irqsave(&h->lock, flags);
1330 cmd_free(h, cmd, 1);
1331 cciss_check_queues(h);
1332 spin_unlock_irqrestore(&h->lock, flags);
1333 }
1334
1335 /* This function will check the usage_count of the drive to be updated/added.
1336 * If the usage_count is zero then the drive information will be updated and
1337 * the disk will be re-registered with the kernel. If not then it will be
1338 * left alone for the next reboot. The exception to this is disk 0 which
1339 * will always be left registered with the kernel since it is also the
1340 * controller node. Any changes to disk 0 will show up on the next
1341 * reboot.
1342 */
1343 static void cciss_update_drive_info(int ctlr, int drv_index)
1344 {
1345 ctlr_info_t *h = hba[ctlr];
1346 struct gendisk *disk;
1347 InquiryData_struct *inq_buff = NULL;
1348 unsigned int block_size;
1349 sector_t total_size;
1350 unsigned long flags = 0;
1351 int ret = 0;
1352
1353 /* if the disk already exists then deregister it before proceeding */
1354 if (h->drv[drv_index].raid_level != -1) {
1355 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1356 h->drv[drv_index].busy_configuring = 1;
1357 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1358
1359 /* deregister_disk sets h->drv[drv_index].queue = NULL */
1360 /* which keeps the interrupt handler from starting */
1361 /* the queue. */
1362 ret = deregister_disk(h->gendisk[drv_index],
1363 &h->drv[drv_index], 0);
1364 h->drv[drv_index].busy_configuring = 0;
1365 }
1366
1367 /* If the disk is in use return */
1368 if (ret)
1369 return;
1370
1371 /* Get information about the disk and modify the driver structure */
1372 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1373 if (inq_buff == NULL)
1374 goto mem_msg;
1375
1376 /* testing to see if 16-byte CDBs are already being used */
1377 if (h->cciss_read == CCISS_READ_16) {
1378 cciss_read_capacity_16(h->ctlr, drv_index, 1,
1379 &total_size, &block_size);
1380 goto geo_inq;
1381 }
1382
1383 cciss_read_capacity(ctlr, drv_index, 1,
1384 &total_size, &block_size);
1385
1386 /* if read_capacity returns all F's this volume is >2TB in size */
1387 /* so we switch to 16-byte CDB's for all read/write ops */
1388 if (total_size == 0xFFFFFFFFULL) {
1389 cciss_read_capacity_16(ctlr, drv_index, 1,
1390 &total_size, &block_size);
1391 h->cciss_read = CCISS_READ_16;
1392 h->cciss_write = CCISS_WRITE_16;
1393 } else {
1394 h->cciss_read = CCISS_READ_10;
1395 h->cciss_write = CCISS_WRITE_10;
1396 }
1397 geo_inq:
1398 cciss_geometry_inquiry(ctlr, drv_index, 1, total_size, block_size,
1399 inq_buff, &h->drv[drv_index]);
1400
1401 ++h->num_luns;
1402 disk = h->gendisk[drv_index];
1403 set_capacity(disk, h->drv[drv_index].nr_blocks);
1404
1405 /* if it's the controller it's already added */
1406 if (drv_index) {
1407 disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1408 sprintf(disk->disk_name, "cciss/c%dd%d", ctlr, drv_index);
1409 disk->major = h->major;
1410 disk->first_minor = drv_index << NWD_SHIFT;
1411 disk->fops = &cciss_fops;
1412 disk->private_data = &h->drv[drv_index];
1413
1414 /* Set up queue information */
1415 blk_queue_bounce_limit(disk->queue, hba[ctlr]->pdev->dma_mask);
1416
1417 /* This is a hardware imposed limit. */
1418 blk_queue_max_hw_segments(disk->queue, MAXSGENTRIES);
1419
1420 /* This is a limit in the driver and could be eliminated. */
1421 blk_queue_max_phys_segments(disk->queue, MAXSGENTRIES);
1422
1423 blk_queue_max_sectors(disk->queue, h->cciss_max_sectors);
1424
1425 blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1426
1427 disk->queue->queuedata = hba[ctlr];
1428
1429 blk_queue_hardsect_size(disk->queue,
1430 hba[ctlr]->drv[drv_index].block_size);
1431
1432 /* Make sure all queue data is written out before */
1433 /* setting h->drv[drv_index].queue, as setting this */
1434 /* allows the interrupt handler to start the queue */
1435 wmb();
1436 h->drv[drv_index].queue = disk->queue;
1437 add_disk(disk);
1438 }
1439
1440 freeret:
1441 kfree(inq_buff);
1442 return;
1443 mem_msg:
1444 printk(KERN_ERR "cciss: out of memory\n");
1445 goto freeret;
1446 }
1447
1448 /* This function will find the first index of the controllers drive array
1449 * that has a -1 for the raid_level and will return that index. This is
1450 * where new drives will be added. If the index to be returned is greater
1451 * than the highest_lun index for the controller then highest_lun is set
1452 * to this new index. If there are no available indexes then -1 is returned.
1453 */
1454 static int cciss_find_free_drive_index(int ctlr)
1455 {
1456 int i;
1457
1458 for (i = 0; i < CISS_MAX_LUN; i++) {
1459 if (hba[ctlr]->drv[i].raid_level == -1) {
1460 if (i > hba[ctlr]->highest_lun)
1461 hba[ctlr]->highest_lun = i;
1462 return i;
1463 }
1464 }
1465 return -1;
1466 }
1467
1468 /* This function will add and remove logical drives from the Logical
1469 * drive array of the controller and maintain persistency of ordering
1470 * so that mount points are preserved until the next reboot. This allows
1471 * for the removal of logical drives in the middle of the drive array
1472 * without a re-ordering of those drives.
1473 * INPUT
1474 * h = The controller to perform the operations on
1475 * del_disk = The disk to remove if specified. If the value given
1476 * is NULL then no disk is removed.
1477 */
1478 static int rebuild_lun_table(ctlr_info_t *h, struct gendisk *del_disk)
1479 {
1480 int ctlr = h->ctlr;
1481 int num_luns;
1482 ReportLunData_struct *ld_buff = NULL;
1483 drive_info_struct *drv = NULL;
1484 int return_code;
1485 int listlength = 0;
1486 int i;
1487 int drv_found;
1488 int drv_index = 0;
1489 __u32 lunid = 0;
1490 unsigned long flags;
1491
1492 /* Set busy_configuring flag for this operation */
1493 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1494 if (h->busy_configuring) {
1495 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1496 return -EBUSY;
1497 }
1498 h->busy_configuring = 1;
1499
1500 /* if del_disk is NULL then we are being called to add a new disk
1501 * and update the logical drive table. If it is not NULL then
1502 * we will check if the disk is in use or not.
1503 */
1504 if (del_disk != NULL) {
1505 drv = get_drv(del_disk);
1506 drv->busy_configuring = 1;
1507 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1508 return_code = deregister_disk(del_disk, drv, 1);
1509 drv->busy_configuring = 0;
1510 h->busy_configuring = 0;
1511 return return_code;
1512 } else {
1513 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1514 if (!capable(CAP_SYS_RAWIO))
1515 return -EPERM;
1516
1517 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
1518 if (ld_buff == NULL)
1519 goto mem_msg;
1520
1521 return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
1522 sizeof(ReportLunData_struct), 0,
1523 0, 0, TYPE_CMD);
1524
1525 if (return_code == IO_OK) {
1526 listlength =
1527 be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
1528 } else { /* reading number of logical volumes failed */
1529 printk(KERN_WARNING "cciss: report logical volume"
1530 " command failed\n");
1531 listlength = 0;
1532 goto freeret;
1533 }
1534
1535 num_luns = listlength / 8; /* 8 bytes per entry */
1536 if (num_luns > CISS_MAX_LUN) {
1537 num_luns = CISS_MAX_LUN;
1538 printk(KERN_WARNING "cciss: more luns configured"
1539 " on controller than can be handled by"
1540 " this driver.\n");
1541 }
1542
1543 /* Compare controller drive array to drivers drive array.
1544 * Check for updates in the drive information and any new drives
1545 * on the controller.
1546 */
1547 for (i = 0; i < num_luns; i++) {
1548 int j;
1549
1550 drv_found = 0;
1551
1552 lunid = (0xff &
1553 (unsigned int)(ld_buff->LUN[i][3])) << 24;
1554 lunid |= (0xff &
1555 (unsigned int)(ld_buff->LUN[i][2])) << 16;
1556 lunid |= (0xff &
1557 (unsigned int)(ld_buff->LUN[i][1])) << 8;
1558 lunid |= 0xff & (unsigned int)(ld_buff->LUN[i][0]);
1559
1560 /* Find if the LUN is already in the drive array
1561 * of the controller. If so then update its info
1562 * if not is use. If it does not exist then find
1563 * the first free index and add it.
1564 */
1565 for (j = 0; j <= h->highest_lun; j++) {
1566 if (h->drv[j].LunID == lunid) {
1567 drv_index = j;
1568 drv_found = 1;
1569 }
1570 }
1571
1572 /* check if the drive was found already in the array */
1573 if (!drv_found) {
1574 drv_index = cciss_find_free_drive_index(ctlr);
1575 if (drv_index == -1)
1576 goto freeret;
1577
1578 /*Check if the gendisk needs to be allocated */
1579 if (!h->gendisk[drv_index]){
1580 h->gendisk[drv_index] = alloc_disk(1 << NWD_SHIFT);
1581 if (!h->gendisk[drv_index]){
1582 printk(KERN_ERR "cciss: could not allocate new disk %d\n", drv_index);
1583 goto mem_msg;
1584 }
1585 }
1586 }
1587 h->drv[drv_index].LunID = lunid;
1588 cciss_update_drive_info(ctlr, drv_index);
1589 } /* end for */
1590 } /* end else */
1591
1592 freeret:
1593 kfree(ld_buff);
1594 h->busy_configuring = 0;
1595 /* We return -1 here to tell the ACU that we have registered/updated
1596 * all of the drives that we can and to keep it from calling us
1597 * additional times.
1598 */
1599 return -1;
1600 mem_msg:
1601 printk(KERN_ERR "cciss: out of memory\n");
1602 goto freeret;
1603 }
1604
1605 /* This function will deregister the disk and it's queue from the
1606 * kernel. It must be called with the controller lock held and the
1607 * drv structures busy_configuring flag set. It's parameters are:
1608 *
1609 * disk = This is the disk to be deregistered
1610 * drv = This is the drive_info_struct associated with the disk to be
1611 * deregistered. It contains information about the disk used
1612 * by the driver.
1613 * clear_all = This flag determines whether or not the disk information
1614 * is going to be completely cleared out and the highest_lun
1615 * reset. Sometimes we want to clear out information about
1616 * the disk in preparation for re-adding it. In this case
1617 * the highest_lun should be left unchanged and the LunID
1618 * should not be cleared.
1619 */
1620 static int deregister_disk(struct gendisk *disk, drive_info_struct *drv,
1621 int clear_all)
1622 {
1623 int i;
1624 ctlr_info_t *h = get_host(disk);
1625
1626 if (!capable(CAP_SYS_RAWIO))
1627 return -EPERM;
1628
1629 /* make sure logical volume is NOT is use */
1630 if (clear_all || (h->gendisk[0] == disk)) {
1631 if (drv->usage_count > 1)
1632 return -EBUSY;
1633 } else if (drv->usage_count > 0)
1634 return -EBUSY;
1635
1636 /* invalidate the devices and deregister the disk. If it is disk
1637 * zero do not deregister it but just zero out it's values. This
1638 * allows us to delete disk zero but keep the controller registered.
1639 */
1640 if (h->gendisk[0] != disk) {
1641 struct request_queue *q = disk->queue;
1642 if (disk->flags & GENHD_FL_UP)
1643 del_gendisk(disk);
1644 if (q) {
1645 blk_cleanup_queue(q);
1646 /* Set drv->queue to NULL so that we do not try
1647 * to call blk_start_queue on this queue in the
1648 * interrupt handler
1649 */
1650 drv->queue = NULL;
1651 }
1652 /* If clear_all is set then we are deleting the logical
1653 * drive, not just refreshing its info. For drives
1654 * other than disk 0 we will call put_disk. We do not
1655 * do this for disk 0 as we need it to be able to
1656 * configure the controller.
1657 */
1658 if (clear_all){
1659 /* This isn't pretty, but we need to find the
1660 * disk in our array and NULL our the pointer.
1661 * This is so that we will call alloc_disk if
1662 * this index is used again later.
1663 */
1664 for (i=0; i < CISS_MAX_LUN; i++){
1665 if(h->gendisk[i] == disk){
1666 h->gendisk[i] = NULL;
1667 break;
1668 }
1669 }
1670 put_disk(disk);
1671 }
1672 } else {
1673 set_capacity(disk, 0);
1674 }
1675
1676 --h->num_luns;
1677 /* zero out the disk size info */
1678 drv->nr_blocks = 0;
1679 drv->block_size = 0;
1680 drv->heads = 0;
1681 drv->sectors = 0;
1682 drv->cylinders = 0;
1683 drv->raid_level = -1; /* This can be used as a flag variable to
1684 * indicate that this element of the drive
1685 * array is free.
1686 */
1687
1688 if (clear_all) {
1689 /* check to see if it was the last disk */
1690 if (drv == h->drv + h->highest_lun) {
1691 /* if so, find the new hightest lun */
1692 int i, newhighest = -1;
1693 for (i = 0; i < h->highest_lun; i++) {
1694 /* if the disk has size > 0, it is available */
1695 if (h->drv[i].heads)
1696 newhighest = i;
1697 }
1698 h->highest_lun = newhighest;
1699 }
1700
1701 drv->LunID = 0;
1702 }
1703 return 0;
1704 }
1705
1706 static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff, size_t size, unsigned int use_unit_num, /* 0: address the controller,
1707 1: address logical volume log_unit,
1708 2: periph device address is scsi3addr */
1709 unsigned int log_unit, __u8 page_code,
1710 unsigned char *scsi3addr, int cmd_type)
1711 {
1712 ctlr_info_t *h = hba[ctlr];
1713 u64bit buff_dma_handle;
1714 int status = IO_OK;
1715
1716 c->cmd_type = CMD_IOCTL_PEND;
1717 c->Header.ReplyQueue = 0;
1718 if (buff != NULL) {
1719 c->Header.SGList = 1;
1720 c->Header.SGTotal = 1;
1721 } else {
1722 c->Header.SGList = 0;
1723 c->Header.SGTotal = 0;
1724 }
1725 c->Header.Tag.lower = c->busaddr;
1726
1727 c->Request.Type.Type = cmd_type;
1728 if (cmd_type == TYPE_CMD) {
1729 switch (cmd) {
1730 case CISS_INQUIRY:
1731 /* If the logical unit number is 0 then, this is going
1732 to controller so It's a physical command
1733 mode = 0 target = 0. So we have nothing to write.
1734 otherwise, if use_unit_num == 1,
1735 mode = 1(volume set addressing) target = LUNID
1736 otherwise, if use_unit_num == 2,
1737 mode = 0(periph dev addr) target = scsi3addr */
1738 if (use_unit_num == 1) {
1739 c->Header.LUN.LogDev.VolId =
1740 h->drv[log_unit].LunID;
1741 c->Header.LUN.LogDev.Mode = 1;
1742 } else if (use_unit_num == 2) {
1743 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr,
1744 8);
1745 c->Header.LUN.LogDev.Mode = 0;
1746 }
1747 /* are we trying to read a vital product page */
1748 if (page_code != 0) {
1749 c->Request.CDB[1] = 0x01;
1750 c->Request.CDB[2] = page_code;
1751 }
1752 c->Request.CDBLen = 6;
1753 c->Request.Type.Attribute = ATTR_SIMPLE;
1754 c->Request.Type.Direction = XFER_READ;
1755 c->Request.Timeout = 0;
1756 c->Request.CDB[0] = CISS_INQUIRY;
1757 c->Request.CDB[4] = size & 0xFF;
1758 break;
1759 case CISS_REPORT_LOG:
1760 case CISS_REPORT_PHYS:
1761 /* Talking to controller so It's a physical command
1762 mode = 00 target = 0. Nothing to write.
1763 */
1764 c->Request.CDBLen = 12;
1765 c->Request.Type.Attribute = ATTR_SIMPLE;
1766 c->Request.Type.Direction = XFER_READ;
1767 c->Request.Timeout = 0;
1768 c->Request.CDB[0] = cmd;
1769 c->Request.CDB[6] = (size >> 24) & 0xFF; //MSB
1770 c->Request.CDB[7] = (size >> 16) & 0xFF;
1771 c->Request.CDB[8] = (size >> 8) & 0xFF;
1772 c->Request.CDB[9] = size & 0xFF;
1773 break;
1774
1775 case CCISS_READ_CAPACITY:
1776 c->Header.LUN.LogDev.VolId = h->drv[log_unit].LunID;
1777 c->Header.LUN.LogDev.Mode = 1;
1778 c->Request.CDBLen = 10;
1779 c->Request.Type.Attribute = ATTR_SIMPLE;
1780 c->Request.Type.Direction = XFER_READ;
1781 c->Request.Timeout = 0;
1782 c->Request.CDB[0] = cmd;
1783 break;
1784 case CCISS_READ_CAPACITY_16:
1785 c->Header.LUN.LogDev.VolId = h->drv[log_unit].LunID;
1786 c->Header.LUN.LogDev.Mode = 1;
1787 c->Request.CDBLen = 16;
1788 c->Request.Type.Attribute = ATTR_SIMPLE;
1789 c->Request.Type.Direction = XFER_READ;
1790 c->Request.Timeout = 0;
1791 c->Request.CDB[0] = cmd;
1792 c->Request.CDB[1] = 0x10;
1793 c->Request.CDB[10] = (size >> 24) & 0xFF;
1794 c->Request.CDB[11] = (size >> 16) & 0xFF;
1795 c->Request.CDB[12] = (size >> 8) & 0xFF;
1796 c->Request.CDB[13] = size & 0xFF;
1797 c->Request.Timeout = 0;
1798 c->Request.CDB[0] = cmd;
1799 break;
1800 case CCISS_CACHE_FLUSH:
1801 c->Request.CDBLen = 12;
1802 c->Request.Type.Attribute = ATTR_SIMPLE;
1803 c->Request.Type.Direction = XFER_WRITE;
1804 c->Request.Timeout = 0;
1805 c->Request.CDB[0] = BMIC_WRITE;
1806 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
1807 break;
1808 default:
1809 printk(KERN_WARNING
1810 "cciss%d: Unknown Command 0x%c\n", ctlr, cmd);
1811 return IO_ERROR;
1812 }
1813 } else if (cmd_type == TYPE_MSG) {
1814 switch (cmd) {
1815 case 0: /* ABORT message */
1816 c->Request.CDBLen = 12;
1817 c->Request.Type.Attribute = ATTR_SIMPLE;
1818 c->Request.Type.Direction = XFER_WRITE;
1819 c->Request.Timeout = 0;
1820 c->Request.CDB[0] = cmd; /* abort */
1821 c->Request.CDB[1] = 0; /* abort a command */
1822 /* buff contains the tag of the command to abort */
1823 memcpy(&c->Request.CDB[4], buff, 8);
1824 break;
1825 case 1: /* RESET message */
1826 c->Request.CDBLen = 12;
1827 c->Request.Type.Attribute = ATTR_SIMPLE;
1828 c->Request.Type.Direction = XFER_WRITE;
1829 c->Request.Timeout = 0;
1830 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
1831 c->Request.CDB[0] = cmd; /* reset */
1832 c->Request.CDB[1] = 0x04; /* reset a LUN */
1833 break;
1834 case 3: /* No-Op message */
1835 c->Request.CDBLen = 1;
1836 c->Request.Type.Attribute = ATTR_SIMPLE;
1837 c->Request.Type.Direction = XFER_WRITE;
1838 c->Request.Timeout = 0;
1839 c->Request.CDB[0] = cmd;
1840 break;
1841 default:
1842 printk(KERN_WARNING
1843 "cciss%d: unknown message type %d\n", ctlr, cmd);
1844 return IO_ERROR;
1845 }
1846 } else {
1847 printk(KERN_WARNING
1848 "cciss%d: unknown command type %d\n", ctlr, cmd_type);
1849 return IO_ERROR;
1850 }
1851 /* Fill in the scatter gather information */
1852 if (size > 0) {
1853 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
1854 buff, size,
1855 PCI_DMA_BIDIRECTIONAL);
1856 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
1857 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
1858 c->SG[0].Len = size;
1859 c->SG[0].Ext = 0; /* we are not chaining */
1860 }
1861 return status;
1862 }
1863
1864 static int sendcmd_withirq(__u8 cmd,
1865 int ctlr,
1866 void *buff,
1867 size_t size,
1868 unsigned int use_unit_num,
1869 unsigned int log_unit, __u8 page_code, int cmd_type)
1870 {
1871 ctlr_info_t *h = hba[ctlr];
1872 CommandList_struct *c;
1873 u64bit buff_dma_handle;
1874 unsigned long flags;
1875 int return_status;
1876 DECLARE_COMPLETION_ONSTACK(wait);
1877
1878 if ((c = cmd_alloc(h, 0)) == NULL)
1879 return -ENOMEM;
1880 return_status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num,
1881 log_unit, page_code, NULL, cmd_type);
1882 if (return_status != IO_OK) {
1883 cmd_free(h, c, 0);
1884 return return_status;
1885 }
1886 resend_cmd2:
1887 c->waiting = &wait;
1888
1889 /* Put the request on the tail of the queue and send it */
1890 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1891 addQ(&h->reqQ, c);
1892 h->Qdepth++;
1893 start_io(h);
1894 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1895
1896 wait_for_completion(&wait);
1897
1898 if (c->err_info->CommandStatus != 0) { /* an error has occurred */
1899 switch (c->err_info->CommandStatus) {
1900 case CMD_TARGET_STATUS:
1901 printk(KERN_WARNING "cciss: cmd %p has "
1902 " completed with errors\n", c);
1903 if (c->err_info->ScsiStatus) {
1904 printk(KERN_WARNING "cciss: cmd %p "
1905 "has SCSI Status = %x\n",
1906 c, c->err_info->ScsiStatus);
1907 }
1908
1909 break;
1910 case CMD_DATA_UNDERRUN:
1911 case CMD_DATA_OVERRUN:
1912 /* expected for inquire and report lun commands */
1913 break;
1914 case CMD_INVALID:
1915 printk(KERN_WARNING "cciss: Cmd %p is "
1916 "reported invalid\n", c);
1917 return_status = IO_ERROR;
1918 break;
1919 case CMD_PROTOCOL_ERR:
1920 printk(KERN_WARNING "cciss: cmd %p has "
1921 "protocol error \n", c);
1922 return_status = IO_ERROR;
1923 break;
1924 case CMD_HARDWARE_ERR:
1925 printk(KERN_WARNING "cciss: cmd %p had "
1926 " hardware error\n", c);
1927 return_status = IO_ERROR;
1928 break;
1929 case CMD_CONNECTION_LOST:
1930 printk(KERN_WARNING "cciss: cmd %p had "
1931 "connection lost\n", c);
1932 return_status = IO_ERROR;
1933 break;
1934 case CMD_ABORTED:
1935 printk(KERN_WARNING "cciss: cmd %p was "
1936 "aborted\n", c);
1937 return_status = IO_ERROR;
1938 break;
1939 case CMD_ABORT_FAILED:
1940 printk(KERN_WARNING "cciss: cmd %p reports "
1941 "abort failed\n", c);
1942 return_status = IO_ERROR;
1943 break;
1944 case CMD_UNSOLICITED_ABORT:
1945 printk(KERN_WARNING
1946 "cciss%d: unsolicited abort %p\n", ctlr, c);
1947 if (c->retry_count < MAX_CMD_RETRIES) {
1948 printk(KERN_WARNING
1949 "cciss%d: retrying %p\n", ctlr, c);
1950 c->retry_count++;
1951 /* erase the old error information */
1952 memset(c->err_info, 0,
1953 sizeof(ErrorInfo_struct));
1954 return_status = IO_OK;
1955 INIT_COMPLETION(wait);
1956 goto resend_cmd2;
1957 }
1958 return_status = IO_ERROR;
1959 break;
1960 default:
1961 printk(KERN_WARNING "cciss: cmd %p returned "
1962 "unknown status %x\n", c,
1963 c->err_info->CommandStatus);
1964 return_status = IO_ERROR;
1965 }
1966 }
1967 /* unlock the buffers from DMA */
1968 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
1969 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
1970 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
1971 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
1972 cmd_free(h, c, 0);
1973 return return_status;
1974 }
1975
1976 static void cciss_geometry_inquiry(int ctlr, int logvol,
1977 int withirq, sector_t total_size,
1978 unsigned int block_size,
1979 InquiryData_struct *inq_buff,
1980 drive_info_struct *drv)
1981 {
1982 int return_code;
1983 unsigned long t;
1984
1985 memset(inq_buff, 0, sizeof(InquiryData_struct));
1986 if (withirq)
1987 return_code = sendcmd_withirq(CISS_INQUIRY, ctlr,
1988 inq_buff, sizeof(*inq_buff), 1,
1989 logvol, 0xC1, TYPE_CMD);
1990 else
1991 return_code = sendcmd(CISS_INQUIRY, ctlr, inq_buff,
1992 sizeof(*inq_buff), 1, logvol, 0xC1, NULL,
1993 TYPE_CMD);
1994 if (return_code == IO_OK) {
1995 if (inq_buff->data_byte[8] == 0xFF) {
1996 printk(KERN_WARNING
1997 "cciss: reading geometry failed, volume "
1998 "does not support reading geometry\n");
1999 drv->heads = 255;
2000 drv->sectors = 32; // Sectors per track
2001 drv->cylinders = total_size + 1;
2002 drv->raid_level = RAID_UNKNOWN;
2003 } else {
2004 drv->heads = inq_buff->data_byte[6];
2005 drv->sectors = inq_buff->data_byte[7];
2006 drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2007 drv->cylinders += inq_buff->data_byte[5];
2008 drv->raid_level = inq_buff->data_byte[8];
2009 }
2010 drv->block_size = block_size;
2011 drv->nr_blocks = total_size + 1;
2012 t = drv->heads * drv->sectors;
2013 if (t > 1) {
2014 sector_t real_size = total_size + 1;
2015 unsigned long rem = sector_div(real_size, t);
2016 if (rem)
2017 real_size++;
2018 drv->cylinders = real_size;
2019 }
2020 } else { /* Get geometry failed */
2021 printk(KERN_WARNING "cciss: reading geometry failed\n");
2022 }
2023 printk(KERN_INFO " heads=%d, sectors=%d, cylinders=%d\n\n",
2024 drv->heads, drv->sectors, drv->cylinders);
2025 }
2026
2027 static void
2028 cciss_read_capacity(int ctlr, int logvol, int withirq, sector_t *total_size,
2029 unsigned int *block_size)
2030 {
2031 ReadCapdata_struct *buf;
2032 int return_code;
2033
2034 buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2035 if (!buf) {
2036 printk(KERN_WARNING "cciss: out of memory\n");
2037 return;
2038 }
2039
2040 if (withirq)
2041 return_code = sendcmd_withirq(CCISS_READ_CAPACITY,
2042 ctlr, buf, sizeof(ReadCapdata_struct),
2043 1, logvol, 0, TYPE_CMD);
2044 else
2045 return_code = sendcmd(CCISS_READ_CAPACITY,
2046 ctlr, buf, sizeof(ReadCapdata_struct),
2047 1, logvol, 0, NULL, TYPE_CMD);
2048 if (return_code == IO_OK) {
2049 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2050 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2051 } else { /* read capacity command failed */
2052 printk(KERN_WARNING "cciss: read capacity failed\n");
2053 *total_size = 0;
2054 *block_size = BLOCK_SIZE;
2055 }
2056 if (*total_size != 0)
2057 printk(KERN_INFO " blocks= %llu block_size= %d\n",
2058 (unsigned long long)*total_size+1, *block_size);
2059 kfree(buf);
2060 }
2061
2062 static void
2063 cciss_read_capacity_16(int ctlr, int logvol, int withirq, sector_t *total_size, unsigned int *block_size)
2064 {
2065 ReadCapdata_struct_16 *buf;
2066 int return_code;
2067
2068 buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2069 if (!buf) {
2070 printk(KERN_WARNING "cciss: out of memory\n");
2071 return;
2072 }
2073
2074 if (withirq) {
2075 return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
2076 ctlr, buf, sizeof(ReadCapdata_struct_16),
2077 1, logvol, 0, TYPE_CMD);
2078 }
2079 else {
2080 return_code = sendcmd(CCISS_READ_CAPACITY_16,
2081 ctlr, buf, sizeof(ReadCapdata_struct_16),
2082 1, logvol, 0, NULL, TYPE_CMD);
2083 }
2084 if (return_code == IO_OK) {
2085 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2086 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2087 } else { /* read capacity command failed */
2088 printk(KERN_WARNING "cciss: read capacity failed\n");
2089 *total_size = 0;
2090 *block_size = BLOCK_SIZE;
2091 }
2092 printk(KERN_INFO " blocks= %llu block_size= %d\n",
2093 (unsigned long long)*total_size+1, *block_size);
2094 kfree(buf);
2095 }
2096
2097 static int cciss_revalidate(struct gendisk *disk)
2098 {
2099 ctlr_info_t *h = get_host(disk);
2100 drive_info_struct *drv = get_drv(disk);
2101 int logvol;
2102 int FOUND = 0;
2103 unsigned int block_size;
2104 sector_t total_size;
2105 InquiryData_struct *inq_buff = NULL;
2106
2107 for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2108 if (h->drv[logvol].LunID == drv->LunID) {
2109 FOUND = 1;
2110 break;
2111 }
2112 }
2113
2114 if (!FOUND)
2115 return 1;
2116
2117 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2118 if (inq_buff == NULL) {
2119 printk(KERN_WARNING "cciss: out of memory\n");
2120 return 1;
2121 }
2122 if (h->cciss_read == CCISS_READ_10) {
2123 cciss_read_capacity(h->ctlr, logvol, 1,
2124 &total_size, &block_size);
2125 } else {
2126 cciss_read_capacity_16(h->ctlr, logvol, 1,
2127 &total_size, &block_size);
2128 }
2129 cciss_geometry_inquiry(h->ctlr, logvol, 1, total_size, block_size,
2130 inq_buff, drv);
2131
2132 blk_queue_hardsect_size(drv->queue, drv->block_size);
2133 set_capacity(disk, drv->nr_blocks);
2134
2135 kfree(inq_buff);
2136 return 0;
2137 }
2138
2139 /*
2140 * Wait polling for a command to complete.
2141 * The memory mapped FIFO is polled for the completion.
2142 * Used only at init time, interrupts from the HBA are disabled.
2143 */
2144 static unsigned long pollcomplete(int ctlr)
2145 {
2146 unsigned long done;
2147 int i;
2148
2149 /* Wait (up to 20 seconds) for a command to complete */
2150
2151 for (i = 20 * HZ; i > 0; i--) {
2152 done = hba[ctlr]->access.command_completed(hba[ctlr]);
2153 if (done == FIFO_EMPTY)
2154 schedule_timeout_uninterruptible(1);
2155 else
2156 return done;
2157 }
2158 /* Invalid address to tell caller we ran out of time */
2159 return 1;
2160 }
2161
2162 static int add_sendcmd_reject(__u8 cmd, int ctlr, unsigned long complete)
2163 {
2164 /* We get in here if sendcmd() is polling for completions
2165 and gets some command back that it wasn't expecting --
2166 something other than that which it just sent down.
2167 Ordinarily, that shouldn't happen, but it can happen when
2168 the scsi tape stuff gets into error handling mode, and
2169 starts using sendcmd() to try to abort commands and
2170 reset tape drives. In that case, sendcmd may pick up
2171 completions of commands that were sent to logical drives
2172 through the block i/o system, or cciss ioctls completing, etc.
2173 In that case, we need to save those completions for later
2174 processing by the interrupt handler.
2175 */
2176
2177 #ifdef CONFIG_CISS_SCSI_TAPE
2178 struct sendcmd_reject_list *srl = &hba[ctlr]->scsi_rejects;
2179
2180 /* If it's not the scsi tape stuff doing error handling, (abort */
2181 /* or reset) then we don't expect anything weird. */
2182 if (cmd != CCISS_RESET_MSG && cmd != CCISS_ABORT_MSG) {
2183 #endif
2184 printk(KERN_WARNING "cciss cciss%d: SendCmd "
2185 "Invalid command list address returned! (%lx)\n",
2186 ctlr, complete);
2187 /* not much we can do. */
2188 #ifdef CONFIG_CISS_SCSI_TAPE
2189 return 1;
2190 }
2191
2192 /* We've sent down an abort or reset, but something else
2193 has completed */
2194 if (srl->ncompletions >= (hba[ctlr]->nr_cmds + 2)) {
2195 /* Uh oh. No room to save it for later... */
2196 printk(KERN_WARNING "cciss%d: Sendcmd: Invalid command addr, "
2197 "reject list overflow, command lost!\n", ctlr);
2198 return 1;
2199 }
2200 /* Save it for later */
2201 srl->complete[srl->ncompletions] = complete;
2202 srl->ncompletions++;
2203 #endif
2204 return 0;
2205 }
2206
2207 /*
2208 * Send a command to the controller, and wait for it to complete.
2209 * Only used at init time.
2210 */
2211 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size, unsigned int use_unit_num, /* 0: address the controller,
2212 1: address logical volume log_unit,
2213 2: periph device address is scsi3addr */
2214 unsigned int log_unit,
2215 __u8 page_code, unsigned char *scsi3addr, int cmd_type)
2216 {
2217 CommandList_struct *c;
2218 int i;
2219 unsigned long complete;
2220 ctlr_info_t *info_p = hba[ctlr];
2221 u64bit buff_dma_handle;
2222 int status, done = 0;
2223
2224 if ((c = cmd_alloc(info_p, 1)) == NULL) {
2225 printk(KERN_WARNING "cciss: unable to get memory");
2226 return IO_ERROR;
2227 }
2228 status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num,
2229 log_unit, page_code, scsi3addr, cmd_type);
2230 if (status != IO_OK) {
2231 cmd_free(info_p, c, 1);
2232 return status;
2233 }
2234 resend_cmd1:
2235 /*
2236 * Disable interrupt
2237 */
2238 #ifdef CCISS_DEBUG
2239 printk(KERN_DEBUG "cciss: turning intr off\n");
2240 #endif /* CCISS_DEBUG */
2241 info_p->access.set_intr_mask(info_p, CCISS_INTR_OFF);
2242
2243 /* Make sure there is room in the command FIFO */
2244 /* Actually it should be completely empty at this time */
2245 /* unless we are in here doing error handling for the scsi */
2246 /* tape side of the driver. */
2247 for (i = 200000; i > 0; i--) {
2248 /* if fifo isn't full go */
2249 if (!(info_p->access.fifo_full(info_p))) {
2250
2251 break;
2252 }
2253 udelay(10);
2254 printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full,"
2255 " waiting!\n", ctlr);
2256 }
2257 /*
2258 * Send the cmd
2259 */
2260 info_p->access.submit_command(info_p, c);
2261 done = 0;
2262 do {
2263 complete = pollcomplete(ctlr);
2264
2265 #ifdef CCISS_DEBUG
2266 printk(KERN_DEBUG "cciss: command completed\n");
2267 #endif /* CCISS_DEBUG */
2268
2269 if (complete == 1) {
2270 printk(KERN_WARNING
2271 "cciss cciss%d: SendCmd Timeout out, "
2272 "No command list address returned!\n", ctlr);
2273 status = IO_ERROR;
2274 done = 1;
2275 break;
2276 }
2277
2278 /* This will need to change for direct lookup completions */
2279 if ((complete & CISS_ERROR_BIT)
2280 && (complete & ~CISS_ERROR_BIT) == c->busaddr) {
2281 /* if data overrun or underun on Report command
2282 ignore it
2283 */
2284 if (((c->Request.CDB[0] == CISS_REPORT_LOG) ||
2285 (c->Request.CDB[0] == CISS_REPORT_PHYS) ||
2286 (c->Request.CDB[0] == CISS_INQUIRY)) &&
2287 ((c->err_info->CommandStatus ==
2288 CMD_DATA_OVERRUN) ||
2289 (c->err_info->CommandStatus == CMD_DATA_UNDERRUN)
2290 )) {
2291 complete = c->busaddr;
2292 } else {
2293 if (c->err_info->CommandStatus ==
2294 CMD_UNSOLICITED_ABORT) {
2295 printk(KERN_WARNING "cciss%d: "
2296 "unsolicited abort %p\n",
2297 ctlr, c);
2298 if (c->retry_count < MAX_CMD_RETRIES) {
2299 printk(KERN_WARNING
2300 "cciss%d: retrying %p\n",
2301 ctlr, c);
2302 c->retry_count++;
2303 /* erase the old error */
2304 /* information */
2305 memset(c->err_info, 0,
2306 sizeof
2307 (ErrorInfo_struct));
2308 goto resend_cmd1;
2309 } else {
2310 printk(KERN_WARNING
2311 "cciss%d: retried %p too "
2312 "many times\n", ctlr, c);
2313 status = IO_ERROR;
2314 goto cleanup1;
2315 }
2316 } else if (c->err_info->CommandStatus ==
2317 CMD_UNABORTABLE) {
2318 printk(KERN_WARNING
2319 "cciss%d: command could not be aborted.\n",
2320 ctlr);
2321 status = IO_ERROR;
2322 goto cleanup1;
2323 }
2324 printk(KERN_WARNING "ciss ciss%d: sendcmd"
2325 " Error %x \n", ctlr,
2326 c->err_info->CommandStatus);
2327 printk(KERN_WARNING "ciss ciss%d: sendcmd"
2328 " offensive info\n"
2329 " size %x\n num %x value %x\n",
2330 ctlr,
2331 c->err_info->MoreErrInfo.Invalid_Cmd.
2332 offense_size,
2333 c->err_info->MoreErrInfo.Invalid_Cmd.
2334 offense_num,
2335 c->err_info->MoreErrInfo.Invalid_Cmd.
2336 offense_value);
2337 status = IO_ERROR;
2338 goto cleanup1;
2339 }
2340 }
2341 /* This will need changing for direct lookup completions */
2342 if (complete != c->busaddr) {
2343 if (add_sendcmd_reject(cmd, ctlr, complete) != 0) {
2344 BUG(); /* we are pretty much hosed if we get here. */
2345 }
2346 continue;
2347 } else
2348 done = 1;
2349 } while (!done);
2350
2351 cleanup1:
2352 /* unlock the data buffer from DMA */
2353 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2354 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2355 pci_unmap_single(info_p->pdev, (dma_addr_t) buff_dma_handle.val,
2356 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2357 #ifdef CONFIG_CISS_SCSI_TAPE
2358 /* if we saved some commands for later, process them now. */
2359 if (info_p->scsi_rejects.ncompletions > 0)
2360 do_cciss_intr(0, info_p);
2361 #endif
2362 cmd_free(info_p, c, 1);
2363 return status;
2364 }
2365
2366 /*
2367 * Map (physical) PCI mem into (virtual) kernel space
2368 */
2369 static void __iomem *remap_pci_mem(ulong base, ulong size)
2370 {
2371 ulong page_base = ((ulong) base) & PAGE_MASK;
2372 ulong page_offs = ((ulong) base) - page_base;
2373 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2374
2375 return page_remapped ? (page_remapped + page_offs) : NULL;
2376 }
2377
2378 /*
2379 * Takes jobs of the Q and sends them to the hardware, then puts it on
2380 * the Q to wait for completion.
2381 */
2382 static void start_io(ctlr_info_t *h)
2383 {
2384 CommandList_struct *c;
2385
2386 while ((c = h->reqQ) != NULL) {
2387 /* can't do anything if fifo is full */
2388 if ((h->access.fifo_full(h))) {
2389 printk(KERN_WARNING "cciss: fifo full\n");
2390 break;
2391 }
2392
2393 /* Get the first entry from the Request Q */
2394 removeQ(&(h->reqQ), c);
2395 h->Qdepth--;
2396
2397 /* Tell the controller execute command */
2398 h->access.submit_command(h, c);
2399
2400 /* Put job onto the completed Q */
2401 addQ(&(h->cmpQ), c);
2402 }
2403 }
2404
2405 /* Assumes that CCISS_LOCK(h->ctlr) is held. */
2406 /* Zeros out the error record and then resends the command back */
2407 /* to the controller */
2408 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
2409 {
2410 /* erase the old error information */
2411 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2412
2413 /* add it to software queue and then send it to the controller */
2414 addQ(&(h->reqQ), c);
2415 h->Qdepth++;
2416 if (h->Qdepth > h->maxQsinceinit)
2417 h->maxQsinceinit = h->Qdepth;
2418
2419 start_io(h);
2420 }
2421
2422 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
2423 unsigned int msg_byte, unsigned int host_byte,
2424 unsigned int driver_byte)
2425 {
2426 /* inverse of macros in scsi.h */
2427 return (scsi_status_byte & 0xff) |
2428 ((msg_byte & 0xff) << 8) |
2429 ((host_byte & 0xff) << 16) |
2430 ((driver_byte & 0xff) << 24);
2431 }
2432
2433 static inline int evaluate_target_status(CommandList_struct *cmd)
2434 {
2435 unsigned char sense_key;
2436 unsigned char status_byte, msg_byte, host_byte, driver_byte;
2437 int error_value;
2438
2439 /* If we get in here, it means we got "target status", that is, scsi status */
2440 status_byte = cmd->err_info->ScsiStatus;
2441 driver_byte = DRIVER_OK;
2442 msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
2443
2444 if (blk_pc_request(cmd->rq))
2445 host_byte = DID_PASSTHROUGH;
2446 else
2447 host_byte = DID_OK;
2448
2449 error_value = make_status_bytes(status_byte, msg_byte,
2450 host_byte, driver_byte);
2451
2452 if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
2453 if (!blk_pc_request(cmd->rq))
2454 printk(KERN_WARNING "cciss: cmd %p "
2455 "has SCSI Status 0x%x\n",
2456 cmd, cmd->err_info->ScsiStatus);
2457 return error_value;
2458 }
2459
2460 /* check the sense key */
2461 sense_key = 0xf & cmd->err_info->SenseInfo[2];
2462 /* no status or recovered error */
2463 if (((sense_key == 0x0) || (sense_key == 0x1)) && !blk_pc_request(cmd->rq))
2464 error_value = 0;
2465
2466 if (!blk_pc_request(cmd->rq)) { /* Not SG_IO or similar? */
2467 if (error_value != 0)
2468 printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION"
2469 " sense key = 0x%x\n", cmd, sense_key);
2470 return error_value;
2471 }
2472
2473 /* SG_IO or similar, copy sense data back */
2474 if (cmd->rq->sense) {
2475 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
2476 cmd->rq->sense_len = cmd->err_info->SenseLen;
2477 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
2478 cmd->rq->sense_len);
2479 } else
2480 cmd->rq->sense_len = 0;
2481
2482 return error_value;
2483 }
2484
2485 /* checks the status of the job and calls complete buffers to mark all
2486 * buffers for the completed job. Note that this function does not need
2487 * to hold the hba/queue lock.
2488 */
2489 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
2490 int timeout)
2491 {
2492 int retry_cmd = 0;
2493 struct request *rq = cmd->rq;
2494
2495 rq->errors = 0;
2496
2497 if (timeout)
2498 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
2499
2500 if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
2501 goto after_error_processing;
2502
2503 switch (cmd->err_info->CommandStatus) {
2504 case CMD_TARGET_STATUS:
2505 rq->errors = evaluate_target_status(cmd);
2506 break;
2507 case CMD_DATA_UNDERRUN:
2508 if (blk_fs_request(cmd->rq)) {
2509 printk(KERN_WARNING "cciss: cmd %p has"
2510 " completed with data underrun "
2511 "reported\n", cmd);
2512 cmd->rq->data_len = cmd->err_info->ResidualCnt;
2513 }
2514 break;
2515 case CMD_DATA_OVERRUN:
2516 if (blk_fs_request(cmd->rq))
2517 printk(KERN_WARNING "cciss: cmd %p has"
2518 " completed with data overrun "
2519 "reported\n", cmd);
2520 break;
2521 case CMD_INVALID:
2522 printk(KERN_WARNING "cciss: cmd %p is "
2523 "reported invalid\n", cmd);
2524 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2525 cmd->err_info->CommandStatus, DRIVER_OK,
2526 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2527 break;
2528 case CMD_PROTOCOL_ERR:
2529 printk(KERN_WARNING "cciss: cmd %p has "
2530 "protocol error \n", cmd);
2531 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2532 cmd->err_info->CommandStatus, DRIVER_OK,
2533 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2534 break;
2535 case CMD_HARDWARE_ERR:
2536 printk(KERN_WARNING "cciss: cmd %p had "
2537 " hardware error\n", cmd);
2538 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2539 cmd->err_info->CommandStatus, DRIVER_OK,
2540 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2541 break;
2542 case CMD_CONNECTION_LOST:
2543 printk(KERN_WARNING "cciss: cmd %p had "
2544 "connection lost\n", cmd);
2545 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2546 cmd->err_info->CommandStatus, DRIVER_OK,
2547 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2548 break;
2549 case CMD_ABORTED:
2550 printk(KERN_WARNING "cciss: cmd %p was "
2551 "aborted\n", cmd);
2552 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2553 cmd->err_info->CommandStatus, DRIVER_OK,
2554 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
2555 break;
2556 case CMD_ABORT_FAILED:
2557 printk(KERN_WARNING "cciss: cmd %p reports "
2558 "abort failed\n", cmd);
2559 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2560 cmd->err_info->CommandStatus, DRIVER_OK,
2561 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2562 break;
2563 case CMD_UNSOLICITED_ABORT:
2564 printk(KERN_WARNING "cciss%d: unsolicited "
2565 "abort %p\n", h->ctlr, cmd);
2566 if (cmd->retry_count < MAX_CMD_RETRIES) {
2567 retry_cmd = 1;
2568 printk(KERN_WARNING
2569 "cciss%d: retrying %p\n", h->ctlr, cmd);
2570 cmd->retry_count++;
2571 } else
2572 printk(KERN_WARNING
2573 "cciss%d: %p retried too "
2574 "many times\n", h->ctlr, cmd);
2575 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2576 cmd->err_info->CommandStatus, DRIVER_OK,
2577 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
2578 break;
2579 case CMD_TIMEOUT:
2580 printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
2581 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2582 cmd->err_info->CommandStatus, DRIVER_OK,
2583 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2584 break;
2585 default:
2586 printk(KERN_WARNING "cciss: cmd %p returned "
2587 "unknown status %x\n", cmd,
2588 cmd->err_info->CommandStatus);
2589 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2590 cmd->err_info->CommandStatus, DRIVER_OK,
2591 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2592 }
2593
2594 after_error_processing:
2595
2596 /* We need to return this command */
2597 if (retry_cmd) {
2598 resend_cciss_cmd(h, cmd);
2599 return;
2600 }
2601 cmd->rq->completion_data = cmd;
2602 blk_complete_request(cmd->rq);
2603 }
2604
2605 /*
2606 * Get a request and submit it to the controller.
2607 */
2608 static void do_cciss_request(struct request_queue *q)
2609 {
2610 ctlr_info_t *h = q->queuedata;
2611 CommandList_struct *c;
2612 sector_t start_blk;
2613 int seg;
2614 struct request *creq;
2615 u64bit temp64;
2616 struct scatterlist tmp_sg[MAXSGENTRIES];
2617 drive_info_struct *drv;
2618 int i, dir;
2619
2620 /* We call start_io here in case there is a command waiting on the
2621 * queue that has not been sent.
2622 */
2623 if (blk_queue_plugged(q))
2624 goto startio;
2625
2626 queue:
2627 creq = elv_next_request(q);
2628 if (!creq)
2629 goto startio;
2630
2631 BUG_ON(creq->nr_phys_segments > MAXSGENTRIES);
2632
2633 if ((c = cmd_alloc(h, 1)) == NULL)
2634 goto full;
2635
2636 blkdev_dequeue_request(creq);
2637
2638 spin_unlock_irq(q->queue_lock);
2639
2640 c->cmd_type = CMD_RWREQ;
2641 c->rq = creq;
2642
2643 /* fill in the request */
2644 drv = creq->rq_disk->private_data;
2645 c->Header.ReplyQueue = 0; // unused in simple mode
2646 /* got command from pool, so use the command block index instead */
2647 /* for direct lookups. */
2648 /* The first 2 bits are reserved for controller error reporting. */
2649 c->Header.Tag.lower = (c->cmdindex << 3);
2650 c->Header.Tag.lower |= 0x04; /* flag for direct lookup. */
2651 c->Header.LUN.LogDev.VolId = drv->LunID;
2652 c->Header.LUN.LogDev.Mode = 1;
2653 c->Request.CDBLen = 10; // 12 byte commands not in FW yet;
2654 c->Request.Type.Type = TYPE_CMD; // It is a command.
2655 c->Request.Type.Attribute = ATTR_SIMPLE;
2656 c->Request.Type.Direction =
2657 (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
2658 c->Request.Timeout = 0; // Don't time out
2659 c->Request.CDB[0] =
2660 (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
2661 start_blk = creq->sector;
2662 #ifdef CCISS_DEBUG
2663 printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n", (int)creq->sector,
2664 (int)creq->nr_sectors);
2665 #endif /* CCISS_DEBUG */
2666
2667 sg_init_table(tmp_sg, MAXSGENTRIES);
2668 seg = blk_rq_map_sg(q, creq, tmp_sg);
2669
2670 /* get the DMA records for the setup */
2671 if (c->Request.Type.Direction == XFER_READ)
2672 dir = PCI_DMA_FROMDEVICE;
2673 else
2674 dir = PCI_DMA_TODEVICE;
2675
2676 for (i = 0; i < seg; i++) {
2677 c->SG[i].Len = tmp_sg[i].length;
2678 temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
2679 tmp_sg[i].offset,
2680 tmp_sg[i].length, dir);
2681 c->SG[i].Addr.lower = temp64.val32.lower;
2682 c->SG[i].Addr.upper = temp64.val32.upper;
2683 c->SG[i].Ext = 0; // we are not chaining
2684 }
2685 /* track how many SG entries we are using */
2686 if (seg > h->maxSG)
2687 h->maxSG = seg;
2688
2689 #ifdef CCISS_DEBUG
2690 printk(KERN_DEBUG "cciss: Submitting %d sectors in %d segments\n",
2691 creq->nr_sectors, seg);
2692 #endif /* CCISS_DEBUG */
2693
2694 c->Header.SGList = c->Header.SGTotal = seg;
2695 if (likely(blk_fs_request(creq))) {
2696 if(h->cciss_read == CCISS_READ_10) {
2697 c->Request.CDB[1] = 0;
2698 c->Request.CDB[2] = (start_blk >> 24) & 0xff; //MSB
2699 c->Request.CDB[3] = (start_blk >> 16) & 0xff;
2700 c->Request.CDB[4] = (start_blk >> 8) & 0xff;
2701 c->Request.CDB[5] = start_blk & 0xff;
2702 c->Request.CDB[6] = 0; // (sect >> 24) & 0xff; MSB
2703 c->Request.CDB[7] = (creq->nr_sectors >> 8) & 0xff;
2704 c->Request.CDB[8] = creq->nr_sectors & 0xff;
2705 c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
2706 } else {
2707 u32 upper32 = upper_32_bits(start_blk);
2708
2709 c->Request.CDBLen = 16;
2710 c->Request.CDB[1]= 0;
2711 c->Request.CDB[2]= (upper32 >> 24) & 0xff; //MSB
2712 c->Request.CDB[3]= (upper32 >> 16) & 0xff;
2713 c->Request.CDB[4]= (upper32 >> 8) & 0xff;
2714 c->Request.CDB[5]= upper32 & 0xff;
2715 c->Request.CDB[6]= (start_blk >> 24) & 0xff;
2716 c->Request.CDB[7]= (start_blk >> 16) & 0xff;
2717 c->Request.CDB[8]= (start_blk >> 8) & 0xff;
2718 c->Request.CDB[9]= start_blk & 0xff;
2719 c->Request.CDB[10]= (creq->nr_sectors >> 24) & 0xff;
2720 c->Request.CDB[11]= (creq->nr_sectors >> 16) & 0xff;
2721 c->Request.CDB[12]= (creq->nr_sectors >> 8) & 0xff;
2722 c->Request.CDB[13]= creq->nr_sectors & 0xff;
2723 c->Request.CDB[14] = c->Request.CDB[15] = 0;
2724 }
2725 } else if (blk_pc_request(creq)) {
2726 c->Request.CDBLen = creq->cmd_len;
2727 memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
2728 } else {
2729 printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type);
2730 BUG();
2731 }
2732
2733 spin_lock_irq(q->queue_lock);
2734
2735 addQ(&(h->reqQ), c);
2736 h->Qdepth++;
2737 if (h->Qdepth > h->maxQsinceinit)
2738 h->maxQsinceinit = h->Qdepth;
2739
2740 goto queue;
2741 full:
2742 blk_stop_queue(q);
2743 startio:
2744 /* We will already have the driver lock here so not need
2745 * to lock it.
2746 */
2747 start_io(h);
2748 }
2749
2750 static inline unsigned long get_next_completion(ctlr_info_t *h)
2751 {
2752 #ifdef CONFIG_CISS_SCSI_TAPE
2753 /* Any rejects from sendcmd() lying around? Process them first */
2754 if (h->scsi_rejects.ncompletions == 0)
2755 return h->access.command_completed(h);
2756 else {
2757 struct sendcmd_reject_list *srl;
2758 int n;
2759 srl = &h->scsi_rejects;
2760 n = --srl->ncompletions;
2761 /* printk("cciss%d: processing saved reject\n", h->ctlr); */
2762 printk("p");
2763 return srl->complete[n];
2764 }
2765 #else
2766 return h->access.command_completed(h);
2767 #endif
2768 }
2769
2770 static inline int interrupt_pending(ctlr_info_t *h)
2771 {
2772 #ifdef CONFIG_CISS_SCSI_TAPE
2773 return (h->access.intr_pending(h)
2774 || (h->scsi_rejects.ncompletions > 0));
2775 #else
2776 return h->access.intr_pending(h);
2777 #endif
2778 }
2779
2780 static inline long interrupt_not_for_us(ctlr_info_t *h)
2781 {
2782 #ifdef CONFIG_CISS_SCSI_TAPE
2783 return (((h->access.intr_pending(h) == 0) ||
2784 (h->interrupts_enabled == 0))
2785 && (h->scsi_rejects.ncompletions == 0));
2786 #else
2787 return (((h->access.intr_pending(h) == 0) ||
2788 (h->interrupts_enabled == 0)));
2789 #endif
2790 }
2791
2792 static irqreturn_t do_cciss_intr(int irq, void *dev_id)
2793 {
2794 ctlr_info_t *h = dev_id;
2795 CommandList_struct *c;
2796 unsigned long flags;
2797 __u32 a, a1, a2;
2798
2799 if (interrupt_not_for_us(h))
2800 return IRQ_NONE;
2801 /*
2802 * If there are completed commands in the completion queue,
2803 * we had better do something about it.
2804 */
2805 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2806 while (interrupt_pending(h)) {
2807 while ((a = get_next_completion(h)) != FIFO_EMPTY) {
2808 a1 = a;
2809 if ((a & 0x04)) {
2810 a2 = (a >> 3);
2811 if (a2 >= h->nr_cmds) {
2812 printk(KERN_WARNING
2813 "cciss: controller cciss%d failed, stopping.\n",
2814 h->ctlr);
2815 fail_all_cmds(h->ctlr);
2816 return IRQ_HANDLED;
2817 }
2818
2819 c = h->cmd_pool + a2;
2820 a = c->busaddr;
2821
2822 } else {
2823 a &= ~3;
2824 if ((c = h->cmpQ) == NULL) {
2825 printk(KERN_WARNING
2826 "cciss: Completion of %08x ignored\n",
2827 a1);
2828 continue;
2829 }
2830 while (c->busaddr != a) {
2831 c = c->next;
2832 if (c == h->cmpQ)
2833 break;
2834 }
2835 }
2836 /*
2837 * If we've found the command, take it off the
2838 * completion Q and free it
2839 */
2840 if (c->busaddr == a) {
2841 removeQ(&h->cmpQ, c);
2842 if (c->cmd_type == CMD_RWREQ) {
2843 complete_command(h, c, 0);
2844 } else if (c->cmd_type == CMD_IOCTL_PEND) {
2845 complete(c->waiting);
2846 }
2847 # ifdef CONFIG_CISS_SCSI_TAPE
2848 else if (c->cmd_type == CMD_SCSI)
2849 complete_scsi_command(c, 0, a1);
2850 # endif
2851 continue;
2852 }
2853 }
2854 }
2855
2856 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2857 return IRQ_HANDLED;
2858 }
2859
2860 /*
2861 * We cannot read the structure directly, for portability we must use
2862 * the io functions.
2863 * This is for debug only.
2864 */
2865 #ifdef CCISS_DEBUG
2866 static void print_cfg_table(CfgTable_struct *tb)
2867 {
2868 int i;
2869 char temp_name[17];
2870
2871 printk("Controller Configuration information\n");
2872 printk("------------------------------------\n");
2873 for (i = 0; i < 4; i++)
2874 temp_name[i] = readb(&(tb->Signature[i]));
2875 temp_name[4] = '\0';
2876 printk(" Signature = %s\n", temp_name);
2877 printk(" Spec Number = %d\n", readl(&(tb->SpecValence)));
2878 printk(" Transport methods supported = 0x%x\n",
2879 readl(&(tb->TransportSupport)));
2880 printk(" Transport methods active = 0x%x\n",
2881 readl(&(tb->TransportActive)));
2882 printk(" Requested transport Method = 0x%x\n",
2883 readl(&(tb->HostWrite.TransportRequest)));
2884 printk(" Coalesce Interrupt Delay = 0x%x\n",
2885 readl(&(tb->HostWrite.CoalIntDelay)));
2886 printk(" Coalesce Interrupt Count = 0x%x\n",
2887 readl(&(tb->HostWrite.CoalIntCount)));
2888 printk(" Max outstanding commands = 0x%d\n",
2889 readl(&(tb->CmdsOutMax)));
2890 printk(" Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
2891 for (i = 0; i < 16; i++)
2892 temp_name[i] = readb(&(tb->ServerName[i]));
2893 temp_name[16] = '\0';
2894 printk(" Server Name = %s\n", temp_name);
2895 printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
2896 }
2897 #endif /* CCISS_DEBUG */
2898
2899 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
2900 {
2901 int i, offset, mem_type, bar_type;
2902 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
2903 return 0;
2904 offset = 0;
2905 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
2906 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
2907 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
2908 offset += 4;
2909 else {
2910 mem_type = pci_resource_flags(pdev, i) &
2911 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
2912 switch (mem_type) {
2913 case PCI_BASE_ADDRESS_MEM_TYPE_32:
2914 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
2915 offset += 4; /* 32 bit */
2916 break;
2917 case PCI_BASE_ADDRESS_MEM_TYPE_64:
2918 offset += 8;
2919 break;
2920 default: /* reserved in PCI 2.2 */
2921 printk(KERN_WARNING
2922 "Base address is invalid\n");
2923 return -1;
2924 break;
2925 }
2926 }
2927 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
2928 return i + 1;
2929 }
2930 return -1;
2931 }
2932
2933 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
2934 * controllers that are capable. If not, we use IO-APIC mode.
2935 */
2936
2937 static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
2938 struct pci_dev *pdev, __u32 board_id)
2939 {
2940 #ifdef CONFIG_PCI_MSI
2941 int err;
2942 struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
2943 {0, 2}, {0, 3}
2944 };
2945
2946 /* Some boards advertise MSI but don't really support it */
2947 if ((board_id == 0x40700E11) ||
2948 (board_id == 0x40800E11) ||
2949 (board_id == 0x40820E11) || (board_id == 0x40830E11))
2950 goto default_int_mode;
2951
2952 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
2953 err = pci_enable_msix(pdev, cciss_msix_entries, 4);
2954 if (!err) {
2955 c->intr[0] = cciss_msix_entries[0].vector;
2956 c->intr[1] = cciss_msix_entries[1].vector;
2957 c->intr[2] = cciss_msix_entries[2].vector;
2958 c->intr[3] = cciss_msix_entries[3].vector;
2959 c->msix_vector = 1;
2960 return;
2961 }
2962 if (err > 0) {
2963 printk(KERN_WARNING "cciss: only %d MSI-X vectors "
2964 "available\n", err);
2965 goto default_int_mode;
2966 } else {
2967 printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
2968 err);
2969 goto default_int_mode;
2970 }
2971 }
2972 if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
2973 if (!pci_enable_msi(pdev)) {
2974 c->msi_vector = 1;
2975 } else {
2976 printk(KERN_WARNING "cciss: MSI init failed\n");
2977 }
2978 }
2979 default_int_mode:
2980 #endif /* CONFIG_PCI_MSI */
2981 /* if we get here we're going to use the default interrupt mode */
2982 c->intr[SIMPLE_MODE_INT] = pdev->irq;
2983 return;
2984 }
2985
2986 static int __devinit cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
2987 {
2988 ushort subsystem_vendor_id, subsystem_device_id, command;
2989 __u32 board_id, scratchpad = 0;
2990 __u64 cfg_offset;
2991 __u32 cfg_base_addr;
2992 __u64 cfg_base_addr_index;
2993 int i, err;
2994
2995 /* check to see if controller has been disabled */
2996 /* BEFORE trying to enable it */
2997 (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
2998 if (!(command & 0x02)) {
2999 printk(KERN_WARNING
3000 "cciss: controller appears to be disabled\n");
3001 return -ENODEV;
3002 }
3003
3004 err = pci_enable_device(pdev);
3005 if (err) {
3006 printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
3007 return err;
3008 }
3009
3010 err = pci_request_regions(pdev, "cciss");
3011 if (err) {
3012 printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
3013 "aborting\n");
3014 return err;
3015 }
3016
3017 subsystem_vendor_id = pdev->subsystem_vendor;
3018 subsystem_device_id = pdev->subsystem_device;
3019 board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
3020 subsystem_vendor_id);
3021
3022 #ifdef CCISS_DEBUG
3023 printk("command = %x\n", command);
3024 printk("irq = %x\n", pdev->irq);
3025 printk("board_id = %x\n", board_id);
3026 #endif /* CCISS_DEBUG */
3027
3028 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
3029 * else we use the IO-APIC interrupt assigned to us by system ROM.
3030 */
3031 cciss_interrupt_mode(c, pdev, board_id);
3032
3033 /*
3034 * Memory base addr is first addr , the second points to the config
3035 * table
3036 */
3037
3038 c->paddr = pci_resource_start(pdev, 0); /* addressing mode bits already removed */
3039 #ifdef CCISS_DEBUG
3040 printk("address 0 = %x\n", c->paddr);
3041 #endif /* CCISS_DEBUG */
3042 c->vaddr = remap_pci_mem(c->paddr, 0x250);
3043
3044 /* Wait for the board to become ready. (PCI hotplug needs this.)
3045 * We poll for up to 120 secs, once per 100ms. */
3046 for (i = 0; i < 1200; i++) {
3047 scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
3048 if (scratchpad == CCISS_FIRMWARE_READY)
3049 break;
3050 set_current_state(TASK_INTERRUPTIBLE);
3051 schedule_timeout(HZ / 10); /* wait 100ms */
3052 }
3053 if (scratchpad != CCISS_FIRMWARE_READY) {
3054 printk(KERN_WARNING "cciss: Board not ready. Timed out.\n");
3055 err = -ENODEV;
3056 goto err_out_free_res;
3057 }
3058
3059 /* get the address index number */
3060 cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
3061 cfg_base_addr &= (__u32) 0x0000ffff;
3062 #ifdef CCISS_DEBUG
3063 printk("cfg base address = %x\n", cfg_base_addr);
3064 #endif /* CCISS_DEBUG */
3065 cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
3066 #ifdef CCISS_DEBUG
3067 printk("cfg base address index = %x\n", cfg_base_addr_index);
3068 #endif /* CCISS_DEBUG */
3069 if (cfg_base_addr_index == -1) {
3070 printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
3071 err = -ENODEV;
3072 goto err_out_free_res;
3073 }
3074
3075 cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
3076 #ifdef CCISS_DEBUG
3077 printk("cfg offset = %x\n", cfg_offset);
3078 #endif /* CCISS_DEBUG */
3079 c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
3080 cfg_base_addr_index) +
3081 cfg_offset, sizeof(CfgTable_struct));
3082 c->board_id = board_id;
3083
3084 #ifdef CCISS_DEBUG
3085 print_cfg_table(c->cfgtable);
3086 #endif /* CCISS_DEBUG */
3087
3088 /* Some controllers support Zero Memory Raid (ZMR).
3089 * When configured in ZMR mode the number of supported
3090 * commands drops to 64. So instead of just setting an
3091 * arbitrary value we make the driver a little smarter.
3092 * We read the config table to tell us how many commands
3093 * are supported on the controller then subtract 4 to
3094 * leave a little room for ioctl calls.
3095 */
3096 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3097 for (i = 0; i < ARRAY_SIZE(products); i++) {
3098 if (board_id == products[i].board_id) {
3099 c->product_name = products[i].product_name;
3100 c->access = *(products[i].access);
3101 c->nr_cmds = c->max_commands - 4;
3102 break;
3103 }
3104 }
3105 if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
3106 (readb(&c->cfgtable->Signature[1]) != 'I') ||
3107 (readb(&c->cfgtable->Signature[2]) != 'S') ||
3108 (readb(&c->cfgtable->Signature[3]) != 'S')) {
3109 printk("Does not appear to be a valid CISS config table\n");
3110 err = -ENODEV;
3111 goto err_out_free_res;
3112 }
3113 /* We didn't find the controller in our list. We know the
3114 * signature is valid. If it's an HP device let's try to
3115 * bind to the device and fire it up. Otherwise we bail.
3116 */
3117 if (i == ARRAY_SIZE(products)) {
3118 if (subsystem_vendor_id == PCI_VENDOR_ID_HP) {
3119 c->product_name = products[i-1].product_name;
3120 c->access = *(products[i-1].access);
3121 c->nr_cmds = c->max_commands - 4;
3122 printk(KERN_WARNING "cciss: This is an unknown "
3123 "Smart Array controller.\n"
3124 "cciss: Please update to the latest driver "
3125 "available from www.hp.com.\n");
3126 } else {
3127 printk(KERN_WARNING "cciss: Sorry, I don't know how"
3128 " to access the Smart Array controller %08lx\n"
3129 , (unsigned long)board_id);
3130 err = -ENODEV;
3131 goto err_out_free_res;
3132 }
3133 }
3134 #ifdef CONFIG_X86
3135 {
3136 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3137 __u32 prefetch;
3138 prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
3139 prefetch |= 0x100;
3140 writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
3141 }
3142 #endif
3143
3144 /* Disabling DMA prefetch and refetch for the P600.
3145 * An ASIC bug may result in accesses to invalid memory addresses.
3146 * We've disabled prefetch for some time now. Testing with XEN
3147 * kernels revealed a bug in the refetch if dom0 resides on a P600.
3148 */
3149 if(board_id == 0x3225103C) {
3150 __u32 dma_prefetch;
3151 __u32 dma_refetch;
3152 dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
3153 dma_prefetch |= 0x8000;
3154 writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
3155 pci_read_config_dword(pdev, PCI_COMMAND_PARITY, &dma_refetch);
3156 dma_refetch |= 0x1;
3157 pci_write_config_dword(pdev, PCI_COMMAND_PARITY, dma_refetch);
3158 }
3159
3160 #ifdef CCISS_DEBUG
3161 printk("Trying to put board into Simple mode\n");
3162 #endif /* CCISS_DEBUG */
3163 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3164 /* Update the field, and then ring the doorbell */
3165 writel(CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest));
3166 writel(CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
3167
3168 /* under certain very rare conditions, this can take awhile.
3169 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3170 * as we enter this code.) */
3171 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3172 if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3173 break;
3174 /* delay and try again */
3175 set_current_state(TASK_INTERRUPTIBLE);
3176 schedule_timeout(10);
3177 }
3178
3179 #ifdef CCISS_DEBUG
3180 printk(KERN_DEBUG "I counter got to %d %x\n", i,
3181 readl(c->vaddr + SA5_DOORBELL));
3182 #endif /* CCISS_DEBUG */
3183 #ifdef CCISS_DEBUG
3184 print_cfg_table(c->cfgtable);
3185 #endif /* CCISS_DEBUG */
3186
3187 if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3188 printk(KERN_WARNING "cciss: unable to get board into"
3189 " simple mode\n");
3190 err = -ENODEV;
3191 goto err_out_free_res;
3192 }
3193 return 0;
3194
3195 err_out_free_res:
3196 /*
3197 * Deliberately omit pci_disable_device(): it does something nasty to
3198 * Smart Array controllers that pci_enable_device does not undo
3199 */
3200 pci_release_regions(pdev);
3201 return err;
3202 }
3203
3204 /*
3205 * Gets information about the local volumes attached to the controller.
3206 */
3207 static void cciss_getgeometry(int cntl_num)
3208 {
3209 ReportLunData_struct *ld_buff;
3210 InquiryData_struct *inq_buff;
3211 int return_code;
3212 int i;
3213 int listlength = 0;
3214 __u32 lunid = 0;
3215 unsigned block_size;
3216 sector_t total_size;
3217
3218 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
3219 if (ld_buff == NULL) {
3220 printk(KERN_ERR "cciss: out of memory\n");
3221 return;
3222 }
3223 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
3224 if (inq_buff == NULL) {
3225 printk(KERN_ERR "cciss: out of memory\n");
3226 kfree(ld_buff);
3227 return;
3228 }
3229 /* Get the firmware version */
3230 return_code = sendcmd(CISS_INQUIRY, cntl_num, inq_buff,
3231 sizeof(InquiryData_struct), 0, 0, 0, NULL,
3232 TYPE_CMD);
3233 if (return_code == IO_OK) {
3234 hba[cntl_num]->firm_ver[0] = inq_buff->data_byte[32];
3235 hba[cntl_num]->firm_ver[1] = inq_buff->data_byte[33];
3236 hba[cntl_num]->firm_ver[2] = inq_buff->data_byte[34];
3237 hba[cntl_num]->firm_ver[3] = inq_buff->data_byte[35];
3238 } else { /* send command failed */
3239
3240 printk(KERN_WARNING "cciss: unable to determine firmware"
3241 " version of controller\n");
3242 }
3243 /* Get the number of logical volumes */
3244 return_code = sendcmd(CISS_REPORT_LOG, cntl_num, ld_buff,
3245 sizeof(ReportLunData_struct), 0, 0, 0, NULL,
3246 TYPE_CMD);
3247
3248 if (return_code == IO_OK) {
3249 #ifdef CCISS_DEBUG
3250 printk("LUN Data\n--------------------------\n");
3251 #endif /* CCISS_DEBUG */
3252
3253 listlength |=
3254 (0xff & (unsigned int)(ld_buff->LUNListLength[0])) << 24;
3255 listlength |=
3256 (0xff & (unsigned int)(ld_buff->LUNListLength[1])) << 16;
3257 listlength |=
3258 (0xff & (unsigned int)(ld_buff->LUNListLength[2])) << 8;
3259 listlength |= 0xff & (unsigned int)(ld_buff->LUNListLength[3]);
3260 } else { /* reading number of logical volumes failed */
3261
3262 printk(KERN_WARNING "cciss: report logical volume"
3263 " command failed\n");
3264 listlength = 0;
3265 }
3266 hba[cntl_num]->num_luns = listlength / 8; // 8 bytes pre entry
3267 if (hba[cntl_num]->num_luns > CISS_MAX_LUN) {
3268 printk(KERN_ERR
3269 "ciss: only %d number of logical volumes supported\n",
3270 CISS_MAX_LUN);
3271 hba[cntl_num]->num_luns = CISS_MAX_LUN;
3272 }
3273 #ifdef CCISS_DEBUG
3274 printk(KERN_DEBUG "Length = %x %x %x %x = %d\n",
3275 ld_buff->LUNListLength[0], ld_buff->LUNListLength[1],
3276 ld_buff->LUNListLength[2], ld_buff->LUNListLength[3],
3277 hba[cntl_num]->num_luns);
3278 #endif /* CCISS_DEBUG */
3279
3280 hba[cntl_num]->highest_lun = hba[cntl_num]->num_luns - 1;
3281 for (i = 0; i < CISS_MAX_LUN; i++) {
3282 if (i < hba[cntl_num]->num_luns) {
3283 lunid = (0xff & (unsigned int)(ld_buff->LUN[i][3]))
3284 << 24;
3285 lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][2]))
3286 << 16;
3287 lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][1]))
3288 << 8;
3289 lunid |= 0xff & (unsigned int)(ld_buff->LUN[i][0]);
3290
3291 hba[cntl_num]->drv[i].LunID = lunid;
3292
3293 #ifdef CCISS_DEBUG
3294 printk(KERN_DEBUG "LUN[%d]: %x %x %x %x = %x\n", i,
3295 ld_buff->LUN[i][0], ld_buff->LUN[i][1],
3296 ld_buff->LUN[i][2], ld_buff->LUN[i][3],
3297 hba[cntl_num]->drv[i].LunID);
3298 #endif /* CCISS_DEBUG */
3299
3300 /* testing to see if 16-byte CDBs are already being used */
3301 if(hba[cntl_num]->cciss_read == CCISS_READ_16) {
3302 cciss_read_capacity_16(cntl_num, i, 0,
3303 &total_size, &block_size);
3304 goto geo_inq;
3305 }
3306 cciss_read_capacity(cntl_num, i, 0, &total_size, &block_size);
3307
3308 /* If read_capacity returns all F's the logical is >2TB */
3309 /* so we switch to 16-byte CDBs for all read/write ops */
3310 if(total_size == 0xFFFFFFFFULL) {
3311 cciss_read_capacity_16(cntl_num, i, 0,
3312 &total_size, &block_size);
3313 hba[cntl_num]->cciss_read = CCISS_READ_16;
3314 hba[cntl_num]->cciss_write = CCISS_WRITE_16;
3315 } else {
3316 hba[cntl_num]->cciss_read = CCISS_READ_10;
3317 hba[cntl_num]->cciss_write = CCISS_WRITE_10;
3318 }
3319 geo_inq:
3320 cciss_geometry_inquiry(cntl_num, i, 0, total_size,
3321 block_size, inq_buff,
3322 &hba[cntl_num]->drv[i]);
3323 } else {
3324 /* initialize raid_level to indicate a free space */
3325 hba[cntl_num]->drv[i].raid_level = -1;
3326 }
3327 }
3328 kfree(ld_buff);
3329 kfree(inq_buff);
3330 }
3331
3332 /* Function to find the first free pointer into our hba[] array */
3333 /* Returns -1 if no free entries are left. */
3334 static int alloc_cciss_hba(void)
3335 {
3336 int i;
3337
3338 for (i = 0; i < MAX_CTLR; i++) {
3339 if (!hba[i]) {
3340 ctlr_info_t *p;
3341
3342 p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
3343 if (!p)
3344 goto Enomem;
3345 p->gendisk[0] = alloc_disk(1 << NWD_SHIFT);
3346 if (!p->gendisk[0]) {
3347 kfree(p);
3348 goto Enomem;
3349 }
3350 hba[i] = p;
3351 return i;
3352 }
3353 }
3354 printk(KERN_WARNING "cciss: This driver supports a maximum"
3355 " of %d controllers.\n", MAX_CTLR);
3356 return -1;
3357 Enomem:
3358 printk(KERN_ERR "cciss: out of memory.\n");
3359 return -1;
3360 }
3361
3362 static void free_hba(int i)
3363 {
3364 ctlr_info_t *p = hba[i];
3365 int n;
3366
3367 hba[i] = NULL;
3368 for (n = 0; n < CISS_MAX_LUN; n++)
3369 put_disk(p->gendisk[n]);
3370 kfree(p);
3371 }
3372
3373 /*
3374 * This is it. Find all the controllers and register them. I really hate
3375 * stealing all these major device numbers.
3376 * returns the number of block devices registered.
3377 */
3378 static int __devinit cciss_init_one(struct pci_dev *pdev,
3379 const struct pci_device_id *ent)
3380 {
3381 int i;
3382 int j = 0;
3383 int rc;
3384 int dac;
3385
3386 i = alloc_cciss_hba();
3387 if (i < 0)
3388 return -1;
3389
3390 hba[i]->busy_initializing = 1;
3391
3392 if (cciss_pci_init(hba[i], pdev) != 0)
3393 goto clean1;
3394
3395 sprintf(hba[i]->devname, "cciss%d", i);
3396 hba[i]->ctlr = i;
3397 hba[i]->pdev = pdev;
3398
3399 /* configure PCI DMA stuff */
3400 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK))
3401 dac = 1;
3402 else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK))
3403 dac = 0;
3404 else {
3405 printk(KERN_ERR "cciss: no suitable DMA available\n");
3406 goto clean1;
3407 }
3408
3409 /*
3410 * register with the major number, or get a dynamic major number
3411 * by passing 0 as argument. This is done for greater than
3412 * 8 controller support.
3413 */
3414 if (i < MAX_CTLR_ORIG)
3415 hba[i]->major = COMPAQ_CISS_MAJOR + i;
3416 rc = register_blkdev(hba[i]->major, hba[i]->devname);
3417 if (rc == -EBUSY || rc == -EINVAL) {
3418 printk(KERN_ERR
3419 "cciss: Unable to get major number %d for %s "
3420 "on hba %d\n", hba[i]->major, hba[i]->devname, i);
3421 goto clean1;
3422 } else {
3423 if (i >= MAX_CTLR_ORIG)
3424 hba[i]->major = rc;
3425 }
3426
3427 /* make sure the board interrupts are off */
3428 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
3429 if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intr,
3430 IRQF_DISABLED | IRQF_SHARED, hba[i]->devname, hba[i])) {
3431 printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
3432 hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname);
3433 goto clean2;
3434 }
3435
3436 printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
3437 hba[i]->devname, pdev->device, pci_name(pdev),
3438 hba[i]->intr[SIMPLE_MODE_INT], dac ? "" : " not");
3439
3440 hba[i]->cmd_pool_bits =
3441 kmalloc(((hba[i]->nr_cmds + BITS_PER_LONG -
3442 1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
3443 hba[i]->cmd_pool = (CommandList_struct *)
3444 pci_alloc_consistent(hba[i]->pdev,
3445 hba[i]->nr_cmds * sizeof(CommandList_struct),
3446 &(hba[i]->cmd_pool_dhandle));
3447 hba[i]->errinfo_pool = (ErrorInfo_struct *)
3448 pci_alloc_consistent(hba[i]->pdev,
3449 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
3450 &(hba[i]->errinfo_pool_dhandle));
3451 if ((hba[i]->cmd_pool_bits == NULL)
3452 || (hba[i]->cmd_pool == NULL)
3453 || (hba[i]->errinfo_pool == NULL)) {
3454 printk(KERN_ERR "cciss: out of memory");
3455 goto clean4;
3456 }
3457 #ifdef CONFIG_CISS_SCSI_TAPE
3458 hba[i]->scsi_rejects.complete =
3459 kmalloc(sizeof(hba[i]->scsi_rejects.complete[0]) *
3460 (hba[i]->nr_cmds + 5), GFP_KERNEL);
3461 if (hba[i]->scsi_rejects.complete == NULL) {
3462 printk(KERN_ERR "cciss: out of memory");
3463 goto clean4;
3464 }
3465 #endif
3466 spin_lock_init(&hba[i]->lock);
3467
3468 /* Initialize the pdev driver private data.
3469 have it point to hba[i]. */
3470 pci_set_drvdata(pdev, hba[i]);
3471 /* command and error info recs zeroed out before
3472 they are used */
3473 memset(hba[i]->cmd_pool_bits, 0,
3474 ((hba[i]->nr_cmds + BITS_PER_LONG -
3475 1) / BITS_PER_LONG) * sizeof(unsigned long));
3476
3477 #ifdef CCISS_DEBUG
3478 printk(KERN_DEBUG "Scanning for drives on controller cciss%d\n", i);
3479 #endif /* CCISS_DEBUG */
3480
3481 cciss_getgeometry(i);
3482
3483 cciss_scsi_setup(i);
3484
3485 /* Turn the interrupts on so we can service requests */
3486 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
3487
3488 cciss_procinit(i);
3489
3490 hba[i]->cciss_max_sectors = 2048;
3491
3492 hba[i]->busy_initializing = 0;
3493
3494 do {
3495 drive_info_struct *drv = &(hba[i]->drv[j]);
3496 struct gendisk *disk = hba[i]->gendisk[j];
3497 struct request_queue *q;
3498
3499 /* Check if the disk was allocated already */
3500 if (!disk){
3501 hba[i]->gendisk[j] = alloc_disk(1 << NWD_SHIFT);
3502 disk = hba[i]->gendisk[j];
3503 }
3504
3505 /* Check that the disk was able to be allocated */
3506 if (!disk) {
3507 printk(KERN_ERR "cciss: unable to allocate memory for disk %d\n", j);
3508 goto clean4;
3509 }
3510
3511 q = blk_init_queue(do_cciss_request, &hba[i]->lock);
3512 if (!q) {
3513 printk(KERN_ERR
3514 "cciss: unable to allocate queue for disk %d\n",
3515 j);
3516 goto clean4;
3517 }
3518 drv->queue = q;
3519
3520 blk_queue_bounce_limit(q, hba[i]->pdev->dma_mask);
3521
3522 /* This is a hardware imposed limit. */
3523 blk_queue_max_hw_segments(q, MAXSGENTRIES);
3524
3525 /* This is a limit in the driver and could be eliminated. */
3526 blk_queue_max_phys_segments(q, MAXSGENTRIES);
3527
3528 blk_queue_max_sectors(q, hba[i]->cciss_max_sectors);
3529
3530 blk_queue_softirq_done(q, cciss_softirq_done);
3531
3532 q->queuedata = hba[i];
3533 sprintf(disk->disk_name, "cciss/c%dd%d", i, j);
3534 disk->major = hba[i]->major;
3535 disk->first_minor = j << NWD_SHIFT;
3536 disk->fops = &cciss_fops;
3537 disk->queue = q;
3538 disk->private_data = drv;
3539 disk->driverfs_dev = &pdev->dev;
3540 /* we must register the controller even if no disks exist */
3541 /* this is for the online array utilities */
3542 if (!drv->heads && j)
3543 continue;
3544 blk_queue_hardsect_size(q, drv->block_size);
3545 set_capacity(disk, drv->nr_blocks);
3546 j++;
3547 } while (j <= hba[i]->highest_lun);
3548
3549 /* Make sure all queue data is written out before */
3550 /* interrupt handler, triggered by add_disk, */
3551 /* is allowed to start them. */
3552 wmb();
3553
3554 for (j = 0; j <= hba[i]->highest_lun; j++)
3555 add_disk(hba[i]->gendisk[j]);
3556
3557 /* we must register the controller even if no disks exist */
3558 if (hba[i]->highest_lun == -1)
3559 add_disk(hba[i]->gendisk[0]);
3560
3561 return 1;
3562
3563 clean4:
3564 #ifdef CONFIG_CISS_SCSI_TAPE
3565 kfree(hba[i]->scsi_rejects.complete);
3566 #endif
3567 kfree(hba[i]->cmd_pool_bits);
3568 if (hba[i]->cmd_pool)
3569 pci_free_consistent(hba[i]->pdev,
3570 hba[i]->nr_cmds * sizeof(CommandList_struct),
3571 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
3572 if (hba[i]->errinfo_pool)
3573 pci_free_consistent(hba[i]->pdev,
3574 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
3575 hba[i]->errinfo_pool,
3576 hba[i]->errinfo_pool_dhandle);
3577 free_irq(hba[i]->intr[SIMPLE_MODE_INT], hba[i]);
3578 clean2:
3579 unregister_blkdev(hba[i]->major, hba[i]->devname);
3580 clean1:
3581 hba[i]->busy_initializing = 0;
3582 /* cleanup any queues that may have been initialized */
3583 for (j=0; j <= hba[i]->highest_lun; j++){
3584 drive_info_struct *drv = &(hba[i]->drv[j]);
3585 if (drv->queue)
3586 blk_cleanup_queue(drv->queue);
3587 }
3588 /*
3589 * Deliberately omit pci_disable_device(): it does something nasty to
3590 * Smart Array controllers that pci_enable_device does not undo
3591 */
3592 pci_release_regions(pdev);
3593 pci_set_drvdata(pdev, NULL);
3594 free_hba(i);
3595 return -1;
3596 }
3597
3598 static void cciss_shutdown(struct pci_dev *pdev)
3599 {
3600 ctlr_info_t *tmp_ptr;
3601 int i;
3602 char flush_buf[4];
3603 int return_code;
3604
3605 tmp_ptr = pci_get_drvdata(pdev);
3606 if (tmp_ptr == NULL)
3607 return;
3608 i = tmp_ptr->ctlr;
3609 if (hba[i] == NULL)
3610 return;
3611
3612 /* Turn board interrupts off and send the flush cache command */
3613 /* sendcmd will turn off interrupt, and send the flush...
3614 * To write all data in the battery backed cache to disks */
3615 memset(flush_buf, 0, 4);
3616 return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0, 0, 0, NULL,
3617 TYPE_CMD);
3618 if (return_code == IO_OK) {
3619 printk(KERN_INFO "Completed flushing cache on controller %d\n", i);
3620 } else {
3621 printk(KERN_WARNING "Error flushing cache on controller %d\n", i);
3622 }
3623 free_irq(hba[i]->intr[2], hba[i]);
3624 }
3625
3626 static void __devexit cciss_remove_one(struct pci_dev *pdev)
3627 {
3628 ctlr_info_t *tmp_ptr;
3629 int i, j;
3630
3631 if (pci_get_drvdata(pdev) == NULL) {
3632 printk(KERN_ERR "cciss: Unable to remove device \n");
3633 return;
3634 }
3635 tmp_ptr = pci_get_drvdata(pdev);
3636 i = tmp_ptr->ctlr;
3637 if (hba[i] == NULL) {
3638 printk(KERN_ERR "cciss: device appears to "
3639 "already be removed \n");
3640 return;
3641 }
3642
3643 remove_proc_entry(hba[i]->devname, proc_cciss);
3644 unregister_blkdev(hba[i]->major, hba[i]->devname);
3645
3646 /* remove it from the disk list */
3647 for (j = 0; j < CISS_MAX_LUN; j++) {
3648 struct gendisk *disk = hba[i]->gendisk[j];
3649 if (disk) {
3650 struct request_queue *q = disk->queue;
3651
3652 if (disk->flags & GENHD_FL_UP)
3653 del_gendisk(disk);
3654 if (q)
3655 blk_cleanup_queue(q);
3656 }
3657 }
3658
3659 cciss_unregister_scsi(i); /* unhook from SCSI subsystem */
3660
3661 cciss_shutdown(pdev);
3662
3663 #ifdef CONFIG_PCI_MSI
3664 if (hba[i]->msix_vector)
3665 pci_disable_msix(hba[i]->pdev);
3666 else if (hba[i]->msi_vector)
3667 pci_disable_msi(hba[i]->pdev);
3668 #endif /* CONFIG_PCI_MSI */
3669
3670 iounmap(hba[i]->vaddr);
3671
3672 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
3673 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
3674 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
3675 hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
3676 kfree(hba[i]->cmd_pool_bits);
3677 #ifdef CONFIG_CISS_SCSI_TAPE
3678 kfree(hba[i]->scsi_rejects.complete);
3679 #endif
3680 /*
3681 * Deliberately omit pci_disable_device(): it does something nasty to
3682 * Smart Array controllers that pci_enable_device does not undo
3683 */
3684 pci_release_regions(pdev);
3685 pci_set_drvdata(pdev, NULL);
3686 free_hba(i);
3687 }
3688
3689 static struct pci_driver cciss_pci_driver = {
3690 .name = "cciss",
3691 .probe = cciss_init_one,
3692 .remove = __devexit_p(cciss_remove_one),
3693 .id_table = cciss_pci_device_id, /* id_table */
3694 .shutdown = cciss_shutdown,
3695 };
3696
3697 /*
3698 * This is it. Register the PCI driver information for the cards we control
3699 * the OS will call our registered routines when it finds one of our cards.
3700 */
3701 static int __init cciss_init(void)
3702 {
3703 printk(KERN_INFO DRIVER_NAME "\n");
3704
3705 /* Register for our PCI devices */
3706 return pci_register_driver(&cciss_pci_driver);
3707 }
3708
3709 static void __exit cciss_cleanup(void)
3710 {
3711 int i;
3712
3713 pci_unregister_driver(&cciss_pci_driver);
3714 /* double check that all controller entrys have been removed */
3715 for (i = 0; i < MAX_CTLR; i++) {
3716 if (hba[i] != NULL) {
3717 printk(KERN_WARNING "cciss: had to remove"
3718 " controller %d\n", i);
3719 cciss_remove_one(hba[i]->pdev);
3720 }
3721 }
3722 remove_proc_entry("driver/cciss", NULL);
3723 }
3724
3725 static void fail_all_cmds(unsigned long ctlr)
3726 {
3727 /* If we get here, the board is apparently dead. */
3728 ctlr_info_t *h = hba[ctlr];
3729 CommandList_struct *c;
3730 unsigned long flags;
3731
3732 printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr);
3733 h->alive = 0; /* the controller apparently died... */
3734
3735 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
3736
3737 pci_disable_device(h->pdev); /* Make sure it is really dead. */
3738
3739 /* move everything off the request queue onto the completed queue */
3740 while ((c = h->reqQ) != NULL) {
3741 removeQ(&(h->reqQ), c);
3742 h->Qdepth--;
3743 addQ(&(h->cmpQ), c);
3744 }
3745
3746 /* Now, fail everything on the completed queue with a HW error */
3747 while ((c = h->cmpQ) != NULL) {
3748 removeQ(&h->cmpQ, c);
3749 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
3750 if (c->cmd_type == CMD_RWREQ) {
3751 complete_command(h, c, 0);
3752 } else if (c->cmd_type == CMD_IOCTL_PEND)
3753 complete(c->waiting);
3754 #ifdef CONFIG_CISS_SCSI_TAPE
3755 else if (c->cmd_type == CMD_SCSI)
3756 complete_scsi_command(c, 0, 0);
3757 #endif
3758 }
3759 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
3760 return;
3761 }
3762
3763 module_init(cciss_init);
3764 module_exit(cciss_cleanup);
This page took 0.147028 seconds and 6 git commands to generate.