drbd: Killed volume0; last step of multi-volume-enablement
[deliverable/linux.git] / drivers / block / drbd / drbd_main.c
1 /*
2 drbd.c
3
4 This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
5
6 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
7 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
8 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
9
10 Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
11 from Logicworks, Inc. for making SDP replication support possible.
12
13 drbd is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2, or (at your option)
16 any later version.
17
18 drbd is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with drbd; see the file COPYING. If not, write to
25 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
26
27 */
28
29 #include <linux/module.h>
30 #include <linux/drbd.h>
31 #include <asm/uaccess.h>
32 #include <asm/types.h>
33 #include <net/sock.h>
34 #include <linux/ctype.h>
35 #include <linux/mutex.h>
36 #include <linux/fs.h>
37 #include <linux/file.h>
38 #include <linux/proc_fs.h>
39 #include <linux/init.h>
40 #include <linux/mm.h>
41 #include <linux/memcontrol.h>
42 #include <linux/mm_inline.h>
43 #include <linux/slab.h>
44 #include <linux/random.h>
45 #include <linux/reboot.h>
46 #include <linux/notifier.h>
47 #include <linux/kthread.h>
48
49 #define __KERNEL_SYSCALLS__
50 #include <linux/unistd.h>
51 #include <linux/vmalloc.h>
52
53 #include <linux/drbd_limits.h>
54 #include "drbd_int.h"
55 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
56
57 #include "drbd_vli.h"
58
59 static DEFINE_MUTEX(drbd_main_mutex);
60 int drbdd_init(struct drbd_thread *);
61 int drbd_worker(struct drbd_thread *);
62 int drbd_asender(struct drbd_thread *);
63
64 int drbd_init(void);
65 static int drbd_open(struct block_device *bdev, fmode_t mode);
66 static int drbd_release(struct gendisk *gd, fmode_t mode);
67 static int w_md_sync(struct drbd_work *w, int unused);
68 static void md_sync_timer_fn(unsigned long data);
69 static int w_bitmap_io(struct drbd_work *w, int unused);
70 static int w_go_diskless(struct drbd_work *w, int unused);
71
72 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
73 "Lars Ellenberg <lars@linbit.com>");
74 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
75 MODULE_VERSION(REL_VERSION);
76 MODULE_LICENSE("GPL");
77 MODULE_PARM_DESC(minor_count, "Maximum number of drbd devices ("
78 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
79 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
80
81 #include <linux/moduleparam.h>
82 /* allow_open_on_secondary */
83 MODULE_PARM_DESC(allow_oos, "DONT USE!");
84 /* thanks to these macros, if compiled into the kernel (not-module),
85 * this becomes the boot parameter drbd.minor_count */
86 module_param(minor_count, uint, 0444);
87 module_param(disable_sendpage, bool, 0644);
88 module_param(allow_oos, bool, 0);
89 module_param(cn_idx, uint, 0444);
90 module_param(proc_details, int, 0644);
91
92 #ifdef CONFIG_DRBD_FAULT_INJECTION
93 int enable_faults;
94 int fault_rate;
95 static int fault_count;
96 int fault_devs;
97 /* bitmap of enabled faults */
98 module_param(enable_faults, int, 0664);
99 /* fault rate % value - applies to all enabled faults */
100 module_param(fault_rate, int, 0664);
101 /* count of faults inserted */
102 module_param(fault_count, int, 0664);
103 /* bitmap of devices to insert faults on */
104 module_param(fault_devs, int, 0644);
105 #endif
106
107 /* module parameter, defined */
108 unsigned int minor_count = DRBD_MINOR_COUNT_DEF;
109 int disable_sendpage;
110 int allow_oos;
111 unsigned int cn_idx = CN_IDX_DRBD;
112 int proc_details; /* Detail level in proc drbd*/
113
114 /* Module parameter for setting the user mode helper program
115 * to run. Default is /sbin/drbdadm */
116 char usermode_helper[80] = "/sbin/drbdadm";
117
118 module_param_string(usermode_helper, usermode_helper, sizeof(usermode_helper), 0644);
119
120 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
121 * as member "struct gendisk *vdisk;"
122 */
123 struct drbd_conf **minor_table;
124 struct list_head drbd_tconns; /* list of struct drbd_tconn */
125
126 struct kmem_cache *drbd_request_cache;
127 struct kmem_cache *drbd_ee_cache; /* peer requests */
128 struct kmem_cache *drbd_bm_ext_cache; /* bitmap extents */
129 struct kmem_cache *drbd_al_ext_cache; /* activity log extents */
130 mempool_t *drbd_request_mempool;
131 mempool_t *drbd_ee_mempool;
132
133 /* I do not use a standard mempool, because:
134 1) I want to hand out the pre-allocated objects first.
135 2) I want to be able to interrupt sleeping allocation with a signal.
136 Note: This is a single linked list, the next pointer is the private
137 member of struct page.
138 */
139 struct page *drbd_pp_pool;
140 spinlock_t drbd_pp_lock;
141 int drbd_pp_vacant;
142 wait_queue_head_t drbd_pp_wait;
143
144 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
145
146 static const struct block_device_operations drbd_ops = {
147 .owner = THIS_MODULE,
148 .open = drbd_open,
149 .release = drbd_release,
150 };
151
152 #define ARRY_SIZE(A) (sizeof(A)/sizeof(A[0]))
153
154 #ifdef __CHECKER__
155 /* When checking with sparse, and this is an inline function, sparse will
156 give tons of false positives. When this is a real functions sparse works.
157 */
158 int _get_ldev_if_state(struct drbd_conf *mdev, enum drbd_disk_state mins)
159 {
160 int io_allowed;
161
162 atomic_inc(&mdev->local_cnt);
163 io_allowed = (mdev->state.disk >= mins);
164 if (!io_allowed) {
165 if (atomic_dec_and_test(&mdev->local_cnt))
166 wake_up(&mdev->misc_wait);
167 }
168 return io_allowed;
169 }
170
171 #endif
172
173 /**
174 * DOC: The transfer log
175 *
176 * The transfer log is a single linked list of &struct drbd_tl_epoch objects.
177 * mdev->tconn->newest_tle points to the head, mdev->tconn->oldest_tle points to the tail
178 * of the list. There is always at least one &struct drbd_tl_epoch object.
179 *
180 * Each &struct drbd_tl_epoch has a circular double linked list of requests
181 * attached.
182 */
183 static int tl_init(struct drbd_conf *mdev)
184 {
185 struct drbd_tl_epoch *b;
186
187 /* during device minor initialization, we may well use GFP_KERNEL */
188 b = kmalloc(sizeof(struct drbd_tl_epoch), GFP_KERNEL);
189 if (!b)
190 return 0;
191 INIT_LIST_HEAD(&b->requests);
192 INIT_LIST_HEAD(&b->w.list);
193 b->next = NULL;
194 b->br_number = 4711;
195 b->n_writes = 0;
196 b->w.cb = NULL; /* if this is != NULL, we need to dec_ap_pending in tl_clear */
197
198 mdev->tconn->oldest_tle = b;
199 mdev->tconn->newest_tle = b;
200 INIT_LIST_HEAD(&mdev->tconn->out_of_sequence_requests);
201
202 return 1;
203 }
204
205 static void tl_cleanup(struct drbd_conf *mdev)
206 {
207 D_ASSERT(mdev->tconn->oldest_tle == mdev->tconn->newest_tle);
208 D_ASSERT(list_empty(&mdev->tconn->out_of_sequence_requests));
209 kfree(mdev->tconn->oldest_tle);
210 mdev->tconn->oldest_tle = NULL;
211 kfree(mdev->tconn->unused_spare_tle);
212 mdev->tconn->unused_spare_tle = NULL;
213 }
214
215 /**
216 * _tl_add_barrier() - Adds a barrier to the transfer log
217 * @mdev: DRBD device.
218 * @new: Barrier to be added before the current head of the TL.
219 *
220 * The caller must hold the req_lock.
221 */
222 void _tl_add_barrier(struct drbd_conf *mdev, struct drbd_tl_epoch *new)
223 {
224 struct drbd_tl_epoch *newest_before;
225
226 INIT_LIST_HEAD(&new->requests);
227 INIT_LIST_HEAD(&new->w.list);
228 new->w.cb = NULL; /* if this is != NULL, we need to dec_ap_pending in tl_clear */
229 new->next = NULL;
230 new->n_writes = 0;
231
232 newest_before = mdev->tconn->newest_tle;
233 /* never send a barrier number == 0, because that is special-cased
234 * when using TCQ for our write ordering code */
235 new->br_number = (newest_before->br_number+1) ?: 1;
236 if (mdev->tconn->newest_tle != new) {
237 mdev->tconn->newest_tle->next = new;
238 mdev->tconn->newest_tle = new;
239 }
240 }
241
242 /**
243 * tl_release() - Free or recycle the oldest &struct drbd_tl_epoch object of the TL
244 * @mdev: DRBD device.
245 * @barrier_nr: Expected identifier of the DRBD write barrier packet.
246 * @set_size: Expected number of requests before that barrier.
247 *
248 * In case the passed barrier_nr or set_size does not match the oldest
249 * &struct drbd_tl_epoch objects this function will cause a termination
250 * of the connection.
251 */
252 void tl_release(struct drbd_conf *mdev, unsigned int barrier_nr,
253 unsigned int set_size)
254 {
255 struct drbd_tl_epoch *b, *nob; /* next old barrier */
256 struct list_head *le, *tle;
257 struct drbd_request *r;
258
259 spin_lock_irq(&mdev->tconn->req_lock);
260
261 b = mdev->tconn->oldest_tle;
262
263 /* first some paranoia code */
264 if (b == NULL) {
265 dev_err(DEV, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
266 barrier_nr);
267 goto bail;
268 }
269 if (b->br_number != barrier_nr) {
270 dev_err(DEV, "BAD! BarrierAck #%u received, expected #%u!\n",
271 barrier_nr, b->br_number);
272 goto bail;
273 }
274 if (b->n_writes != set_size) {
275 dev_err(DEV, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
276 barrier_nr, set_size, b->n_writes);
277 goto bail;
278 }
279
280 /* Clean up list of requests processed during current epoch */
281 list_for_each_safe(le, tle, &b->requests) {
282 r = list_entry(le, struct drbd_request, tl_requests);
283 _req_mod(r, BARRIER_ACKED);
284 }
285 /* There could be requests on the list waiting for completion
286 of the write to the local disk. To avoid corruptions of
287 slab's data structures we have to remove the lists head.
288
289 Also there could have been a barrier ack out of sequence, overtaking
290 the write acks - which would be a bug and violating write ordering.
291 To not deadlock in case we lose connection while such requests are
292 still pending, we need some way to find them for the
293 _req_mode(CONNECTION_LOST_WHILE_PENDING).
294
295 These have been list_move'd to the out_of_sequence_requests list in
296 _req_mod(, BARRIER_ACKED) above.
297 */
298 list_del_init(&b->requests);
299
300 nob = b->next;
301 if (test_and_clear_bit(CREATE_BARRIER, &mdev->flags)) {
302 _tl_add_barrier(mdev, b);
303 if (nob)
304 mdev->tconn->oldest_tle = nob;
305 /* if nob == NULL b was the only barrier, and becomes the new
306 barrier. Therefore mdev->tconn->oldest_tle points already to b */
307 } else {
308 D_ASSERT(nob != NULL);
309 mdev->tconn->oldest_tle = nob;
310 kfree(b);
311 }
312
313 spin_unlock_irq(&mdev->tconn->req_lock);
314 dec_ap_pending(mdev);
315
316 return;
317
318 bail:
319 spin_unlock_irq(&mdev->tconn->req_lock);
320 drbd_force_state(mdev, NS(conn, C_PROTOCOL_ERROR));
321 }
322
323
324 /**
325 * _tl_restart() - Walks the transfer log, and applies an action to all requests
326 * @mdev: DRBD device.
327 * @what: The action/event to perform with all request objects
328 *
329 * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
330 * RESTART_FROZEN_DISK_IO.
331 */
332 void _tl_restart(struct drbd_conf *mdev, enum drbd_req_event what)
333 {
334 struct drbd_tl_epoch *b, *tmp, **pn;
335 struct list_head *le, *tle, carry_reads;
336 struct drbd_request *req;
337 int rv, n_writes, n_reads;
338
339 b = mdev->tconn->oldest_tle;
340 pn = &mdev->tconn->oldest_tle;
341 while (b) {
342 n_writes = 0;
343 n_reads = 0;
344 INIT_LIST_HEAD(&carry_reads);
345 list_for_each_safe(le, tle, &b->requests) {
346 req = list_entry(le, struct drbd_request, tl_requests);
347 rv = _req_mod(req, what);
348
349 n_writes += (rv & MR_WRITE) >> MR_WRITE_SHIFT;
350 n_reads += (rv & MR_READ) >> MR_READ_SHIFT;
351 }
352 tmp = b->next;
353
354 if (n_writes) {
355 if (what == RESEND) {
356 b->n_writes = n_writes;
357 if (b->w.cb == NULL) {
358 b->w.cb = w_send_barrier;
359 inc_ap_pending(mdev);
360 set_bit(CREATE_BARRIER, &mdev->flags);
361 }
362
363 drbd_queue_work(&mdev->tconn->data.work, &b->w);
364 }
365 pn = &b->next;
366 } else {
367 if (n_reads)
368 list_add(&carry_reads, &b->requests);
369 /* there could still be requests on that ring list,
370 * in case local io is still pending */
371 list_del(&b->requests);
372
373 /* dec_ap_pending corresponding to queue_barrier.
374 * the newest barrier may not have been queued yet,
375 * in which case w.cb is still NULL. */
376 if (b->w.cb != NULL)
377 dec_ap_pending(mdev);
378
379 if (b == mdev->tconn->newest_tle) {
380 /* recycle, but reinit! */
381 D_ASSERT(tmp == NULL);
382 INIT_LIST_HEAD(&b->requests);
383 list_splice(&carry_reads, &b->requests);
384 INIT_LIST_HEAD(&b->w.list);
385 b->w.cb = NULL;
386 b->br_number = net_random();
387 b->n_writes = 0;
388
389 *pn = b;
390 break;
391 }
392 *pn = tmp;
393 kfree(b);
394 }
395 b = tmp;
396 list_splice(&carry_reads, &b->requests);
397 }
398 }
399
400
401 /**
402 * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
403 * @mdev: DRBD device.
404 *
405 * This is called after the connection to the peer was lost. The storage covered
406 * by the requests on the transfer gets marked as our of sync. Called from the
407 * receiver thread and the worker thread.
408 */
409 void tl_clear(struct drbd_conf *mdev)
410 {
411 struct list_head *le, *tle;
412 struct drbd_request *r;
413
414 spin_lock_irq(&mdev->tconn->req_lock);
415
416 _tl_restart(mdev, CONNECTION_LOST_WHILE_PENDING);
417
418 /* we expect this list to be empty. */
419 D_ASSERT(list_empty(&mdev->tconn->out_of_sequence_requests));
420
421 /* but just in case, clean it up anyways! */
422 list_for_each_safe(le, tle, &mdev->tconn->out_of_sequence_requests) {
423 r = list_entry(le, struct drbd_request, tl_requests);
424 /* It would be nice to complete outside of spinlock.
425 * But this is easier for now. */
426 _req_mod(r, CONNECTION_LOST_WHILE_PENDING);
427 }
428
429 /* ensure bit indicating barrier is required is clear */
430 clear_bit(CREATE_BARRIER, &mdev->flags);
431
432 spin_unlock_irq(&mdev->tconn->req_lock);
433 }
434
435 void tl_restart(struct drbd_conf *mdev, enum drbd_req_event what)
436 {
437 spin_lock_irq(&mdev->tconn->req_lock);
438 _tl_restart(mdev, what);
439 spin_unlock_irq(&mdev->tconn->req_lock);
440 }
441
442 static int drbd_thread_setup(void *arg)
443 {
444 struct drbd_thread *thi = (struct drbd_thread *) arg;
445 struct drbd_tconn *tconn = thi->tconn;
446 unsigned long flags;
447 int retval;
448
449 snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
450 thi->name[0], thi->tconn->name);
451
452 restart:
453 retval = thi->function(thi);
454
455 spin_lock_irqsave(&thi->t_lock, flags);
456
457 /* if the receiver has been "EXITING", the last thing it did
458 * was set the conn state to "StandAlone",
459 * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
460 * and receiver thread will be "started".
461 * drbd_thread_start needs to set "RESTARTING" in that case.
462 * t_state check and assignment needs to be within the same spinlock,
463 * so either thread_start sees EXITING, and can remap to RESTARTING,
464 * or thread_start see NONE, and can proceed as normal.
465 */
466
467 if (thi->t_state == RESTARTING) {
468 conn_info(tconn, "Restarting %s thread\n", thi->name);
469 thi->t_state = RUNNING;
470 spin_unlock_irqrestore(&thi->t_lock, flags);
471 goto restart;
472 }
473
474 thi->task = NULL;
475 thi->t_state = NONE;
476 smp_mb();
477 complete(&thi->stop);
478 spin_unlock_irqrestore(&thi->t_lock, flags);
479
480 conn_info(tconn, "Terminating %s\n", current->comm);
481
482 /* Release mod reference taken when thread was started */
483 module_put(THIS_MODULE);
484 return retval;
485 }
486
487 static void drbd_thread_init(struct drbd_tconn *tconn, struct drbd_thread *thi,
488 int (*func) (struct drbd_thread *), char *name)
489 {
490 spin_lock_init(&thi->t_lock);
491 thi->task = NULL;
492 thi->t_state = NONE;
493 thi->function = func;
494 thi->tconn = tconn;
495 strncpy(thi->name, name, ARRAY_SIZE(thi->name));
496 }
497
498 int drbd_thread_start(struct drbd_thread *thi)
499 {
500 struct drbd_tconn *tconn = thi->tconn;
501 struct task_struct *nt;
502 unsigned long flags;
503
504 /* is used from state engine doing drbd_thread_stop_nowait,
505 * while holding the req lock irqsave */
506 spin_lock_irqsave(&thi->t_lock, flags);
507
508 switch (thi->t_state) {
509 case NONE:
510 conn_info(tconn, "Starting %s thread (from %s [%d])\n",
511 thi->name, current->comm, current->pid);
512
513 /* Get ref on module for thread - this is released when thread exits */
514 if (!try_module_get(THIS_MODULE)) {
515 conn_err(tconn, "Failed to get module reference in drbd_thread_start\n");
516 spin_unlock_irqrestore(&thi->t_lock, flags);
517 return false;
518 }
519
520 init_completion(&thi->stop);
521 thi->reset_cpu_mask = 1;
522 thi->t_state = RUNNING;
523 spin_unlock_irqrestore(&thi->t_lock, flags);
524 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
525
526 nt = kthread_create(drbd_thread_setup, (void *) thi,
527 "drbd_%c_%s", thi->name[0], thi->tconn->name);
528
529 if (IS_ERR(nt)) {
530 conn_err(tconn, "Couldn't start thread\n");
531
532 module_put(THIS_MODULE);
533 return false;
534 }
535 spin_lock_irqsave(&thi->t_lock, flags);
536 thi->task = nt;
537 thi->t_state = RUNNING;
538 spin_unlock_irqrestore(&thi->t_lock, flags);
539 wake_up_process(nt);
540 break;
541 case EXITING:
542 thi->t_state = RESTARTING;
543 conn_info(tconn, "Restarting %s thread (from %s [%d])\n",
544 thi->name, current->comm, current->pid);
545 /* fall through */
546 case RUNNING:
547 case RESTARTING:
548 default:
549 spin_unlock_irqrestore(&thi->t_lock, flags);
550 break;
551 }
552
553 return true;
554 }
555
556
557 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
558 {
559 unsigned long flags;
560
561 enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
562
563 /* may be called from state engine, holding the req lock irqsave */
564 spin_lock_irqsave(&thi->t_lock, flags);
565
566 if (thi->t_state == NONE) {
567 spin_unlock_irqrestore(&thi->t_lock, flags);
568 if (restart)
569 drbd_thread_start(thi);
570 return;
571 }
572
573 if (thi->t_state != ns) {
574 if (thi->task == NULL) {
575 spin_unlock_irqrestore(&thi->t_lock, flags);
576 return;
577 }
578
579 thi->t_state = ns;
580 smp_mb();
581 init_completion(&thi->stop);
582 if (thi->task != current)
583 force_sig(DRBD_SIGKILL, thi->task);
584 }
585
586 spin_unlock_irqrestore(&thi->t_lock, flags);
587
588 if (wait)
589 wait_for_completion(&thi->stop);
590 }
591
592 static struct drbd_thread *drbd_task_to_thread(struct drbd_tconn *tconn, struct task_struct *task)
593 {
594 struct drbd_thread *thi =
595 task == tconn->receiver.task ? &tconn->receiver :
596 task == tconn->asender.task ? &tconn->asender :
597 task == tconn->worker.task ? &tconn->worker : NULL;
598
599 return thi;
600 }
601
602 char *drbd_task_to_thread_name(struct drbd_tconn *tconn, struct task_struct *task)
603 {
604 struct drbd_thread *thi = drbd_task_to_thread(tconn, task);
605 return thi ? thi->name : task->comm;
606 }
607
608 #ifdef CONFIG_SMP
609 static int conn_lowest_minor(struct drbd_tconn *tconn)
610 {
611 int minor = 0;
612 idr_get_next(&tconn->volumes, &minor);
613 return minor;
614 }
615 /**
616 * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
617 * @mdev: DRBD device.
618 *
619 * Forces all threads of a device onto the same CPU. This is beneficial for
620 * DRBD's performance. May be overwritten by user's configuration.
621 */
622 void drbd_calc_cpu_mask(struct drbd_tconn *tconn)
623 {
624 int ord, cpu;
625
626 /* user override. */
627 if (cpumask_weight(tconn->cpu_mask))
628 return;
629
630 ord = conn_lowest_minor(tconn) % cpumask_weight(cpu_online_mask);
631 for_each_online_cpu(cpu) {
632 if (ord-- == 0) {
633 cpumask_set_cpu(cpu, tconn->cpu_mask);
634 return;
635 }
636 }
637 /* should not be reached */
638 cpumask_setall(tconn->cpu_mask);
639 }
640
641 /**
642 * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
643 * @mdev: DRBD device.
644 * @thi: drbd_thread object
645 *
646 * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
647 * prematurely.
648 */
649 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
650 {
651 struct task_struct *p = current;
652
653 if (!thi->reset_cpu_mask)
654 return;
655 thi->reset_cpu_mask = 0;
656 set_cpus_allowed_ptr(p, thi->tconn->cpu_mask);
657 }
658 #endif
659
660 static void prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
661 {
662 h->magic = cpu_to_be32(DRBD_MAGIC);
663 h->command = cpu_to_be16(cmd);
664 h->length = cpu_to_be16(size);
665 }
666
667 static void prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
668 {
669 h->magic = cpu_to_be16(DRBD_MAGIC_BIG);
670 h->command = cpu_to_be16(cmd);
671 h->length = cpu_to_be32(size);
672 }
673
674 static void _prepare_header(struct drbd_tconn *tconn, int vnr, struct p_header *h,
675 enum drbd_packet cmd, int size)
676 {
677 if (tconn->agreed_pro_version >= 100 || size > DRBD_MAX_SIZE_H80_PACKET)
678 prepare_header95(&h->h95, cmd, size);
679 else
680 prepare_header80(&h->h80, cmd, size);
681 }
682
683 static void prepare_header(struct drbd_conf *mdev, struct p_header *h,
684 enum drbd_packet cmd, int size)
685 {
686 _prepare_header(mdev->tconn, mdev->vnr, h, cmd, size);
687 }
688
689 /* the appropriate socket mutex must be held already */
690 int _conn_send_cmd(struct drbd_tconn *tconn, int vnr, struct socket *sock,
691 enum drbd_packet cmd, struct p_header *h, size_t size,
692 unsigned msg_flags)
693 {
694 int sent, ok;
695
696 _prepare_header(tconn, vnr, h, cmd, size - sizeof(struct p_header));
697
698 sent = drbd_send(tconn, sock, h, size, msg_flags);
699
700 ok = (sent == size);
701 if (!ok && !signal_pending(current))
702 conn_warn(tconn, "short sent %s size=%d sent=%d\n",
703 cmdname(cmd), (int)size, sent);
704 return ok;
705 }
706
707 /* don't pass the socket. we may only look at it
708 * when we hold the appropriate socket mutex.
709 */
710 int conn_send_cmd(struct drbd_tconn *tconn, int vnr, int use_data_socket,
711 enum drbd_packet cmd, struct p_header *h, size_t size)
712 {
713 int ok = 0;
714 struct socket *sock;
715
716 if (use_data_socket) {
717 mutex_lock(&tconn->data.mutex);
718 sock = tconn->data.socket;
719 } else {
720 mutex_lock(&tconn->meta.mutex);
721 sock = tconn->meta.socket;
722 }
723
724 /* drbd_disconnect() could have called drbd_free_sock()
725 * while we were waiting in down()... */
726 if (likely(sock != NULL))
727 ok = _conn_send_cmd(tconn, vnr, sock, cmd, h, size, 0);
728
729 if (use_data_socket)
730 mutex_unlock(&tconn->data.mutex);
731 else
732 mutex_unlock(&tconn->meta.mutex);
733 return ok;
734 }
735
736 int conn_send_cmd2(struct drbd_tconn *tconn, enum drbd_packet cmd, char *data,
737 size_t size)
738 {
739 struct p_header80 h;
740 int ok;
741
742 prepare_header80(&h, cmd, size);
743
744 if (!drbd_get_data_sock(tconn))
745 return 0;
746
747 ok = (sizeof(h) ==
748 drbd_send(tconn, tconn->data.socket, &h, sizeof(h), 0));
749 ok = ok && (size ==
750 drbd_send(tconn, tconn->data.socket, data, size, 0));
751
752 drbd_put_data_sock(tconn);
753
754 return ok;
755 }
756
757 int drbd_send_sync_param(struct drbd_conf *mdev, struct syncer_conf *sc)
758 {
759 struct p_rs_param_95 *p;
760 struct socket *sock;
761 int size, rv;
762 const int apv = mdev->tconn->agreed_pro_version;
763
764 size = apv <= 87 ? sizeof(struct p_rs_param)
765 : apv == 88 ? sizeof(struct p_rs_param)
766 + strlen(mdev->sync_conf.verify_alg) + 1
767 : apv <= 94 ? sizeof(struct p_rs_param_89)
768 : /* apv >= 95 */ sizeof(struct p_rs_param_95);
769
770 /* used from admin command context and receiver/worker context.
771 * to avoid kmalloc, grab the socket right here,
772 * then use the pre-allocated sbuf there */
773 mutex_lock(&mdev->tconn->data.mutex);
774 sock = mdev->tconn->data.socket;
775
776 if (likely(sock != NULL)) {
777 enum drbd_packet cmd =
778 apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
779
780 p = &mdev->tconn->data.sbuf.rs_param_95;
781
782 /* initialize verify_alg and csums_alg */
783 memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
784
785 p->rate = cpu_to_be32(sc->rate);
786 p->c_plan_ahead = cpu_to_be32(sc->c_plan_ahead);
787 p->c_delay_target = cpu_to_be32(sc->c_delay_target);
788 p->c_fill_target = cpu_to_be32(sc->c_fill_target);
789 p->c_max_rate = cpu_to_be32(sc->c_max_rate);
790
791 if (apv >= 88)
792 strcpy(p->verify_alg, mdev->sync_conf.verify_alg);
793 if (apv >= 89)
794 strcpy(p->csums_alg, mdev->sync_conf.csums_alg);
795
796 rv = _drbd_send_cmd(mdev, sock, cmd, &p->head, size, 0);
797 } else
798 rv = 0; /* not ok */
799
800 mutex_unlock(&mdev->tconn->data.mutex);
801
802 return rv;
803 }
804
805 int drbd_send_protocol(struct drbd_tconn *tconn)
806 {
807 struct p_protocol *p;
808 int size, cf, rv;
809
810 size = sizeof(struct p_protocol);
811
812 if (tconn->agreed_pro_version >= 87)
813 size += strlen(tconn->net_conf->integrity_alg) + 1;
814
815 /* we must not recurse into our own queue,
816 * as that is blocked during handshake */
817 p = kmalloc(size, GFP_NOIO);
818 if (p == NULL)
819 return 0;
820
821 p->protocol = cpu_to_be32(tconn->net_conf->wire_protocol);
822 p->after_sb_0p = cpu_to_be32(tconn->net_conf->after_sb_0p);
823 p->after_sb_1p = cpu_to_be32(tconn->net_conf->after_sb_1p);
824 p->after_sb_2p = cpu_to_be32(tconn->net_conf->after_sb_2p);
825 p->two_primaries = cpu_to_be32(tconn->net_conf->two_primaries);
826
827 cf = 0;
828 if (tconn->net_conf->want_lose)
829 cf |= CF_WANT_LOSE;
830 if (tconn->net_conf->dry_run) {
831 if (tconn->agreed_pro_version >= 92)
832 cf |= CF_DRY_RUN;
833 else {
834 conn_err(tconn, "--dry-run is not supported by peer");
835 kfree(p);
836 return -1;
837 }
838 }
839 p->conn_flags = cpu_to_be32(cf);
840
841 if (tconn->agreed_pro_version >= 87)
842 strcpy(p->integrity_alg, tconn->net_conf->integrity_alg);
843
844 rv = conn_send_cmd2(tconn, P_PROTOCOL, p->head.payload, size - sizeof(struct p_header));
845 kfree(p);
846 return rv;
847 }
848
849 int _drbd_send_uuids(struct drbd_conf *mdev, u64 uuid_flags)
850 {
851 struct p_uuids p;
852 int i;
853
854 if (!get_ldev_if_state(mdev, D_NEGOTIATING))
855 return 1;
856
857 for (i = UI_CURRENT; i < UI_SIZE; i++)
858 p.uuid[i] = mdev->ldev ? cpu_to_be64(mdev->ldev->md.uuid[i]) : 0;
859
860 mdev->comm_bm_set = drbd_bm_total_weight(mdev);
861 p.uuid[UI_SIZE] = cpu_to_be64(mdev->comm_bm_set);
862 uuid_flags |= mdev->tconn->net_conf->want_lose ? 1 : 0;
863 uuid_flags |= test_bit(CRASHED_PRIMARY, &mdev->flags) ? 2 : 0;
864 uuid_flags |= mdev->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
865 p.uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
866
867 put_ldev(mdev);
868
869 return drbd_send_cmd(mdev, USE_DATA_SOCKET, P_UUIDS, &p.head, sizeof(p));
870 }
871
872 int drbd_send_uuids(struct drbd_conf *mdev)
873 {
874 return _drbd_send_uuids(mdev, 0);
875 }
876
877 int drbd_send_uuids_skip_initial_sync(struct drbd_conf *mdev)
878 {
879 return _drbd_send_uuids(mdev, 8);
880 }
881
882 void drbd_print_uuids(struct drbd_conf *mdev, const char *text)
883 {
884 if (get_ldev_if_state(mdev, D_NEGOTIATING)) {
885 u64 *uuid = mdev->ldev->md.uuid;
886 dev_info(DEV, "%s %016llX:%016llX:%016llX:%016llX\n",
887 text,
888 (unsigned long long)uuid[UI_CURRENT],
889 (unsigned long long)uuid[UI_BITMAP],
890 (unsigned long long)uuid[UI_HISTORY_START],
891 (unsigned long long)uuid[UI_HISTORY_END]);
892 put_ldev(mdev);
893 } else {
894 dev_info(DEV, "%s effective data uuid: %016llX\n",
895 text,
896 (unsigned long long)mdev->ed_uuid);
897 }
898 }
899
900 int drbd_gen_and_send_sync_uuid(struct drbd_conf *mdev)
901 {
902 struct p_rs_uuid p;
903 u64 uuid;
904
905 D_ASSERT(mdev->state.disk == D_UP_TO_DATE);
906
907 uuid = mdev->ldev->md.uuid[UI_BITMAP] + UUID_NEW_BM_OFFSET;
908 drbd_uuid_set(mdev, UI_BITMAP, uuid);
909 drbd_print_uuids(mdev, "updated sync UUID");
910 drbd_md_sync(mdev);
911 p.uuid = cpu_to_be64(uuid);
912
913 return drbd_send_cmd(mdev, USE_DATA_SOCKET, P_SYNC_UUID, &p.head, sizeof(p));
914 }
915
916 int drbd_send_sizes(struct drbd_conf *mdev, int trigger_reply, enum dds_flags flags)
917 {
918 struct p_sizes p;
919 sector_t d_size, u_size;
920 int q_order_type, max_bio_size;
921 int ok;
922
923 if (get_ldev_if_state(mdev, D_NEGOTIATING)) {
924 D_ASSERT(mdev->ldev->backing_bdev);
925 d_size = drbd_get_max_capacity(mdev->ldev);
926 u_size = mdev->ldev->dc.disk_size;
927 q_order_type = drbd_queue_order_type(mdev);
928 max_bio_size = queue_max_hw_sectors(mdev->ldev->backing_bdev->bd_disk->queue) << 9;
929 max_bio_size = min_t(int, max_bio_size, DRBD_MAX_BIO_SIZE);
930 put_ldev(mdev);
931 } else {
932 d_size = 0;
933 u_size = 0;
934 q_order_type = QUEUE_ORDERED_NONE;
935 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
936 }
937
938 p.d_size = cpu_to_be64(d_size);
939 p.u_size = cpu_to_be64(u_size);
940 p.c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(mdev->this_bdev));
941 p.max_bio_size = cpu_to_be32(max_bio_size);
942 p.queue_order_type = cpu_to_be16(q_order_type);
943 p.dds_flags = cpu_to_be16(flags);
944
945 ok = drbd_send_cmd(mdev, USE_DATA_SOCKET, P_SIZES, &p.head, sizeof(p));
946 return ok;
947 }
948
949 /**
950 * drbd_send_state() - Sends the drbd state to the peer
951 * @mdev: DRBD device.
952 */
953 int drbd_send_state(struct drbd_conf *mdev)
954 {
955 struct socket *sock;
956 struct p_state p;
957 int ok = 0;
958
959 mutex_lock(&mdev->tconn->data.mutex);
960
961 p.state = cpu_to_be32(mdev->state.i); /* Within the send mutex */
962 sock = mdev->tconn->data.socket;
963
964 if (likely(sock != NULL)) {
965 ok = _drbd_send_cmd(mdev, sock, P_STATE, &p.head, sizeof(p), 0);
966 }
967
968 mutex_unlock(&mdev->tconn->data.mutex);
969
970 return ok;
971 }
972
973 int drbd_send_state_req(struct drbd_conf *mdev,
974 union drbd_state mask, union drbd_state val)
975 {
976 struct p_req_state p;
977
978 p.mask = cpu_to_be32(mask.i);
979 p.val = cpu_to_be32(val.i);
980
981 return drbd_send_cmd(mdev, USE_DATA_SOCKET, P_STATE_CHG_REQ, &p.head, sizeof(p));
982 }
983
984 int drbd_send_sr_reply(struct drbd_conf *mdev, enum drbd_state_rv retcode)
985 {
986 struct p_req_state_reply p;
987
988 p.retcode = cpu_to_be32(retcode);
989
990 return drbd_send_cmd(mdev, USE_META_SOCKET, P_STATE_CHG_REPLY, &p.head, sizeof(p));
991 }
992
993 int fill_bitmap_rle_bits(struct drbd_conf *mdev,
994 struct p_compressed_bm *p,
995 struct bm_xfer_ctx *c)
996 {
997 struct bitstream bs;
998 unsigned long plain_bits;
999 unsigned long tmp;
1000 unsigned long rl;
1001 unsigned len;
1002 unsigned toggle;
1003 int bits;
1004
1005 /* may we use this feature? */
1006 if ((mdev->sync_conf.use_rle == 0) ||
1007 (mdev->tconn->agreed_pro_version < 90))
1008 return 0;
1009
1010 if (c->bit_offset >= c->bm_bits)
1011 return 0; /* nothing to do. */
1012
1013 /* use at most thus many bytes */
1014 bitstream_init(&bs, p->code, BM_PACKET_VLI_BYTES_MAX, 0);
1015 memset(p->code, 0, BM_PACKET_VLI_BYTES_MAX);
1016 /* plain bits covered in this code string */
1017 plain_bits = 0;
1018
1019 /* p->encoding & 0x80 stores whether the first run length is set.
1020 * bit offset is implicit.
1021 * start with toggle == 2 to be able to tell the first iteration */
1022 toggle = 2;
1023
1024 /* see how much plain bits we can stuff into one packet
1025 * using RLE and VLI. */
1026 do {
1027 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(mdev, c->bit_offset)
1028 : _drbd_bm_find_next(mdev, c->bit_offset);
1029 if (tmp == -1UL)
1030 tmp = c->bm_bits;
1031 rl = tmp - c->bit_offset;
1032
1033 if (toggle == 2) { /* first iteration */
1034 if (rl == 0) {
1035 /* the first checked bit was set,
1036 * store start value, */
1037 DCBP_set_start(p, 1);
1038 /* but skip encoding of zero run length */
1039 toggle = !toggle;
1040 continue;
1041 }
1042 DCBP_set_start(p, 0);
1043 }
1044
1045 /* paranoia: catch zero runlength.
1046 * can only happen if bitmap is modified while we scan it. */
1047 if (rl == 0) {
1048 dev_err(DEV, "unexpected zero runlength while encoding bitmap "
1049 "t:%u bo:%lu\n", toggle, c->bit_offset);
1050 return -1;
1051 }
1052
1053 bits = vli_encode_bits(&bs, rl);
1054 if (bits == -ENOBUFS) /* buffer full */
1055 break;
1056 if (bits <= 0) {
1057 dev_err(DEV, "error while encoding bitmap: %d\n", bits);
1058 return 0;
1059 }
1060
1061 toggle = !toggle;
1062 plain_bits += rl;
1063 c->bit_offset = tmp;
1064 } while (c->bit_offset < c->bm_bits);
1065
1066 len = bs.cur.b - p->code + !!bs.cur.bit;
1067
1068 if (plain_bits < (len << 3)) {
1069 /* incompressible with this method.
1070 * we need to rewind both word and bit position. */
1071 c->bit_offset -= plain_bits;
1072 bm_xfer_ctx_bit_to_word_offset(c);
1073 c->bit_offset = c->word_offset * BITS_PER_LONG;
1074 return 0;
1075 }
1076
1077 /* RLE + VLI was able to compress it just fine.
1078 * update c->word_offset. */
1079 bm_xfer_ctx_bit_to_word_offset(c);
1080
1081 /* store pad_bits */
1082 DCBP_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1083
1084 return len;
1085 }
1086
1087 /**
1088 * send_bitmap_rle_or_plain
1089 *
1090 * Return 0 when done, 1 when another iteration is needed, and a negative error
1091 * code upon failure.
1092 */
1093 static int
1094 send_bitmap_rle_or_plain(struct drbd_conf *mdev,
1095 struct p_header *h, struct bm_xfer_ctx *c)
1096 {
1097 struct p_compressed_bm *p = (void*)h;
1098 unsigned long num_words;
1099 int len;
1100 int ok;
1101
1102 len = fill_bitmap_rle_bits(mdev, p, c);
1103
1104 if (len < 0)
1105 return -EIO;
1106
1107 if (len) {
1108 DCBP_set_code(p, RLE_VLI_Bits);
1109 ok = _drbd_send_cmd(mdev, mdev->tconn->data.socket, P_COMPRESSED_BITMAP, h,
1110 sizeof(*p) + len, 0);
1111
1112 c->packets[0]++;
1113 c->bytes[0] += sizeof(*p) + len;
1114
1115 if (c->bit_offset >= c->bm_bits)
1116 len = 0; /* DONE */
1117 } else {
1118 /* was not compressible.
1119 * send a buffer full of plain text bits instead. */
1120 num_words = min_t(size_t, BM_PACKET_WORDS, c->bm_words - c->word_offset);
1121 len = num_words * sizeof(long);
1122 if (len)
1123 drbd_bm_get_lel(mdev, c->word_offset, num_words, (unsigned long*)h->payload);
1124 ok = _drbd_send_cmd(mdev, mdev->tconn->data.socket, P_BITMAP,
1125 h, sizeof(struct p_header80) + len, 0);
1126 c->word_offset += num_words;
1127 c->bit_offset = c->word_offset * BITS_PER_LONG;
1128
1129 c->packets[1]++;
1130 c->bytes[1] += sizeof(struct p_header80) + len;
1131
1132 if (c->bit_offset > c->bm_bits)
1133 c->bit_offset = c->bm_bits;
1134 }
1135 if (ok) {
1136 if (len == 0) {
1137 INFO_bm_xfer_stats(mdev, "send", c);
1138 return 0;
1139 } else
1140 return 1;
1141 }
1142 return -EIO;
1143 }
1144
1145 /* See the comment at receive_bitmap() */
1146 int _drbd_send_bitmap(struct drbd_conf *mdev)
1147 {
1148 struct bm_xfer_ctx c;
1149 struct p_header *p;
1150 int err;
1151
1152 if (!expect(mdev->bitmap))
1153 return false;
1154
1155 /* maybe we should use some per thread scratch page,
1156 * and allocate that during initial device creation? */
1157 p = (struct p_header *) __get_free_page(GFP_NOIO);
1158 if (!p) {
1159 dev_err(DEV, "failed to allocate one page buffer in %s\n", __func__);
1160 return false;
1161 }
1162
1163 if (get_ldev(mdev)) {
1164 if (drbd_md_test_flag(mdev->ldev, MDF_FULL_SYNC)) {
1165 dev_info(DEV, "Writing the whole bitmap, MDF_FullSync was set.\n");
1166 drbd_bm_set_all(mdev);
1167 if (drbd_bm_write(mdev)) {
1168 /* write_bm did fail! Leave full sync flag set in Meta P_DATA
1169 * but otherwise process as per normal - need to tell other
1170 * side that a full resync is required! */
1171 dev_err(DEV, "Failed to write bitmap to disk!\n");
1172 } else {
1173 drbd_md_clear_flag(mdev, MDF_FULL_SYNC);
1174 drbd_md_sync(mdev);
1175 }
1176 }
1177 put_ldev(mdev);
1178 }
1179
1180 c = (struct bm_xfer_ctx) {
1181 .bm_bits = drbd_bm_bits(mdev),
1182 .bm_words = drbd_bm_words(mdev),
1183 };
1184
1185 do {
1186 err = send_bitmap_rle_or_plain(mdev, p, &c);
1187 } while (err > 0);
1188
1189 free_page((unsigned long) p);
1190 return err == 0;
1191 }
1192
1193 int drbd_send_bitmap(struct drbd_conf *mdev)
1194 {
1195 int err;
1196
1197 if (!drbd_get_data_sock(mdev->tconn))
1198 return -1;
1199 err = !_drbd_send_bitmap(mdev);
1200 drbd_put_data_sock(mdev->tconn);
1201 return err;
1202 }
1203
1204 int drbd_send_b_ack(struct drbd_conf *mdev, u32 barrier_nr, u32 set_size)
1205 {
1206 int ok;
1207 struct p_barrier_ack p;
1208
1209 p.barrier = barrier_nr;
1210 p.set_size = cpu_to_be32(set_size);
1211
1212 if (mdev->state.conn < C_CONNECTED)
1213 return false;
1214 ok = drbd_send_cmd(mdev, USE_META_SOCKET, P_BARRIER_ACK, &p.head, sizeof(p));
1215 return ok;
1216 }
1217
1218 /**
1219 * _drbd_send_ack() - Sends an ack packet
1220 * @mdev: DRBD device.
1221 * @cmd: Packet command code.
1222 * @sector: sector, needs to be in big endian byte order
1223 * @blksize: size in byte, needs to be in big endian byte order
1224 * @block_id: Id, big endian byte order
1225 */
1226 static int _drbd_send_ack(struct drbd_conf *mdev, enum drbd_packet cmd,
1227 u64 sector, u32 blksize, u64 block_id)
1228 {
1229 int ok;
1230 struct p_block_ack p;
1231
1232 p.sector = sector;
1233 p.block_id = block_id;
1234 p.blksize = blksize;
1235 p.seq_num = cpu_to_be32(atomic_add_return(1, &mdev->packet_seq));
1236
1237 if (!mdev->tconn->meta.socket || mdev->state.conn < C_CONNECTED)
1238 return false;
1239 ok = drbd_send_cmd(mdev, USE_META_SOCKET, cmd, &p.head, sizeof(p));
1240 return ok;
1241 }
1242
1243 /* dp->sector and dp->block_id already/still in network byte order,
1244 * data_size is payload size according to dp->head,
1245 * and may need to be corrected for digest size. */
1246 int drbd_send_ack_dp(struct drbd_conf *mdev, enum drbd_packet cmd,
1247 struct p_data *dp, int data_size)
1248 {
1249 data_size -= (mdev->tconn->agreed_pro_version >= 87 && mdev->tconn->integrity_r_tfm) ?
1250 crypto_hash_digestsize(mdev->tconn->integrity_r_tfm) : 0;
1251 return _drbd_send_ack(mdev, cmd, dp->sector, cpu_to_be32(data_size),
1252 dp->block_id);
1253 }
1254
1255 int drbd_send_ack_rp(struct drbd_conf *mdev, enum drbd_packet cmd,
1256 struct p_block_req *rp)
1257 {
1258 return _drbd_send_ack(mdev, cmd, rp->sector, rp->blksize, rp->block_id);
1259 }
1260
1261 /**
1262 * drbd_send_ack() - Sends an ack packet
1263 * @mdev: DRBD device
1264 * @cmd: packet command code
1265 * @peer_req: peer request
1266 */
1267 int drbd_send_ack(struct drbd_conf *mdev, enum drbd_packet cmd,
1268 struct drbd_peer_request *peer_req)
1269 {
1270 return _drbd_send_ack(mdev, cmd,
1271 cpu_to_be64(peer_req->i.sector),
1272 cpu_to_be32(peer_req->i.size),
1273 peer_req->block_id);
1274 }
1275
1276 /* This function misuses the block_id field to signal if the blocks
1277 * are is sync or not. */
1278 int drbd_send_ack_ex(struct drbd_conf *mdev, enum drbd_packet cmd,
1279 sector_t sector, int blksize, u64 block_id)
1280 {
1281 return _drbd_send_ack(mdev, cmd,
1282 cpu_to_be64(sector),
1283 cpu_to_be32(blksize),
1284 cpu_to_be64(block_id));
1285 }
1286
1287 int drbd_send_drequest(struct drbd_conf *mdev, int cmd,
1288 sector_t sector, int size, u64 block_id)
1289 {
1290 int ok;
1291 struct p_block_req p;
1292
1293 p.sector = cpu_to_be64(sector);
1294 p.block_id = block_id;
1295 p.blksize = cpu_to_be32(size);
1296
1297 ok = drbd_send_cmd(mdev, USE_DATA_SOCKET, cmd, &p.head, sizeof(p));
1298 return ok;
1299 }
1300
1301 int drbd_send_drequest_csum(struct drbd_conf *mdev, sector_t sector, int size,
1302 void *digest, int digest_size, enum drbd_packet cmd)
1303 {
1304 int ok;
1305 struct p_block_req p;
1306
1307 prepare_header(mdev, &p.head, cmd, sizeof(p) - sizeof(struct p_header) + digest_size);
1308 p.sector = cpu_to_be64(sector);
1309 p.block_id = ID_SYNCER /* unused */;
1310 p.blksize = cpu_to_be32(size);
1311
1312 mutex_lock(&mdev->tconn->data.mutex);
1313
1314 ok = (sizeof(p) == drbd_send(mdev->tconn, mdev->tconn->data.socket, &p, sizeof(p), 0));
1315 ok = ok && (digest_size == drbd_send(mdev->tconn, mdev->tconn->data.socket, digest, digest_size, 0));
1316
1317 mutex_unlock(&mdev->tconn->data.mutex);
1318
1319 return ok;
1320 }
1321
1322 int drbd_send_ov_request(struct drbd_conf *mdev, sector_t sector, int size)
1323 {
1324 int ok;
1325 struct p_block_req p;
1326
1327 p.sector = cpu_to_be64(sector);
1328 p.block_id = ID_SYNCER /* unused */;
1329 p.blksize = cpu_to_be32(size);
1330
1331 ok = drbd_send_cmd(mdev, USE_DATA_SOCKET, P_OV_REQUEST, &p.head, sizeof(p));
1332 return ok;
1333 }
1334
1335 /* called on sndtimeo
1336 * returns false if we should retry,
1337 * true if we think connection is dead
1338 */
1339 static int we_should_drop_the_connection(struct drbd_tconn *tconn, struct socket *sock)
1340 {
1341 int drop_it;
1342 /* long elapsed = (long)(jiffies - mdev->last_received); */
1343
1344 drop_it = tconn->meta.socket == sock
1345 || !tconn->asender.task
1346 || get_t_state(&tconn->asender) != RUNNING
1347 || tconn->cstate < C_WF_REPORT_PARAMS;
1348
1349 if (drop_it)
1350 return true;
1351
1352 drop_it = !--tconn->ko_count;
1353 if (!drop_it) {
1354 conn_err(tconn, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1355 current->comm, current->pid, tconn->ko_count);
1356 request_ping(tconn);
1357 }
1358
1359 return drop_it; /* && (mdev->state == R_PRIMARY) */;
1360 }
1361
1362 static void drbd_update_congested(struct drbd_tconn *tconn)
1363 {
1364 struct sock *sk = tconn->data.socket->sk;
1365 if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1366 set_bit(NET_CONGESTED, &tconn->flags);
1367 }
1368
1369 /* The idea of sendpage seems to be to put some kind of reference
1370 * to the page into the skb, and to hand it over to the NIC. In
1371 * this process get_page() gets called.
1372 *
1373 * As soon as the page was really sent over the network put_page()
1374 * gets called by some part of the network layer. [ NIC driver? ]
1375 *
1376 * [ get_page() / put_page() increment/decrement the count. If count
1377 * reaches 0 the page will be freed. ]
1378 *
1379 * This works nicely with pages from FSs.
1380 * But this means that in protocol A we might signal IO completion too early!
1381 *
1382 * In order not to corrupt data during a resync we must make sure
1383 * that we do not reuse our own buffer pages (EEs) to early, therefore
1384 * we have the net_ee list.
1385 *
1386 * XFS seems to have problems, still, it submits pages with page_count == 0!
1387 * As a workaround, we disable sendpage on pages
1388 * with page_count == 0 or PageSlab.
1389 */
1390 static int _drbd_no_send_page(struct drbd_conf *mdev, struct page *page,
1391 int offset, size_t size, unsigned msg_flags)
1392 {
1393 int sent = drbd_send(mdev->tconn, mdev->tconn->data.socket, kmap(page) + offset, size, msg_flags);
1394 kunmap(page);
1395 if (sent == size)
1396 mdev->send_cnt += size>>9;
1397 return sent == size;
1398 }
1399
1400 static int _drbd_send_page(struct drbd_conf *mdev, struct page *page,
1401 int offset, size_t size, unsigned msg_flags)
1402 {
1403 mm_segment_t oldfs = get_fs();
1404 int sent, ok;
1405 int len = size;
1406
1407 /* e.g. XFS meta- & log-data is in slab pages, which have a
1408 * page_count of 0 and/or have PageSlab() set.
1409 * we cannot use send_page for those, as that does get_page();
1410 * put_page(); and would cause either a VM_BUG directly, or
1411 * __page_cache_release a page that would actually still be referenced
1412 * by someone, leading to some obscure delayed Oops somewhere else. */
1413 if (disable_sendpage || (page_count(page) < 1) || PageSlab(page))
1414 return _drbd_no_send_page(mdev, page, offset, size, msg_flags);
1415
1416 msg_flags |= MSG_NOSIGNAL;
1417 drbd_update_congested(mdev->tconn);
1418 set_fs(KERNEL_DS);
1419 do {
1420 sent = mdev->tconn->data.socket->ops->sendpage(mdev->tconn->data.socket, page,
1421 offset, len,
1422 msg_flags);
1423 if (sent == -EAGAIN) {
1424 if (we_should_drop_the_connection(mdev->tconn,
1425 mdev->tconn->data.socket))
1426 break;
1427 else
1428 continue;
1429 }
1430 if (sent <= 0) {
1431 dev_warn(DEV, "%s: size=%d len=%d sent=%d\n",
1432 __func__, (int)size, len, sent);
1433 break;
1434 }
1435 len -= sent;
1436 offset += sent;
1437 } while (len > 0 /* THINK && mdev->cstate >= C_CONNECTED*/);
1438 set_fs(oldfs);
1439 clear_bit(NET_CONGESTED, &mdev->tconn->flags);
1440
1441 ok = (len == 0);
1442 if (likely(ok))
1443 mdev->send_cnt += size>>9;
1444 return ok;
1445 }
1446
1447 static int _drbd_send_bio(struct drbd_conf *mdev, struct bio *bio)
1448 {
1449 struct bio_vec *bvec;
1450 int i;
1451 /* hint all but last page with MSG_MORE */
1452 __bio_for_each_segment(bvec, bio, i, 0) {
1453 if (!_drbd_no_send_page(mdev, bvec->bv_page,
1454 bvec->bv_offset, bvec->bv_len,
1455 i == bio->bi_vcnt -1 ? 0 : MSG_MORE))
1456 return 0;
1457 }
1458 return 1;
1459 }
1460
1461 static int _drbd_send_zc_bio(struct drbd_conf *mdev, struct bio *bio)
1462 {
1463 struct bio_vec *bvec;
1464 int i;
1465 /* hint all but last page with MSG_MORE */
1466 __bio_for_each_segment(bvec, bio, i, 0) {
1467 if (!_drbd_send_page(mdev, bvec->bv_page,
1468 bvec->bv_offset, bvec->bv_len,
1469 i == bio->bi_vcnt -1 ? 0 : MSG_MORE))
1470 return 0;
1471 }
1472 return 1;
1473 }
1474
1475 static int _drbd_send_zc_ee(struct drbd_conf *mdev,
1476 struct drbd_peer_request *peer_req)
1477 {
1478 struct page *page = peer_req->pages;
1479 unsigned len = peer_req->i.size;
1480
1481 /* hint all but last page with MSG_MORE */
1482 page_chain_for_each(page) {
1483 unsigned l = min_t(unsigned, len, PAGE_SIZE);
1484 if (!_drbd_send_page(mdev, page, 0, l,
1485 page_chain_next(page) ? MSG_MORE : 0))
1486 return 0;
1487 len -= l;
1488 }
1489 return 1;
1490 }
1491
1492 static u32 bio_flags_to_wire(struct drbd_conf *mdev, unsigned long bi_rw)
1493 {
1494 if (mdev->tconn->agreed_pro_version >= 95)
1495 return (bi_rw & REQ_SYNC ? DP_RW_SYNC : 0) |
1496 (bi_rw & REQ_FUA ? DP_FUA : 0) |
1497 (bi_rw & REQ_FLUSH ? DP_FLUSH : 0) |
1498 (bi_rw & REQ_DISCARD ? DP_DISCARD : 0);
1499 else
1500 return bi_rw & REQ_SYNC ? DP_RW_SYNC : 0;
1501 }
1502
1503 /* Used to send write requests
1504 * R_PRIMARY -> Peer (P_DATA)
1505 */
1506 int drbd_send_dblock(struct drbd_conf *mdev, struct drbd_request *req)
1507 {
1508 int ok = 1;
1509 struct p_data p;
1510 unsigned int dp_flags = 0;
1511 void *dgb;
1512 int dgs;
1513
1514 if (!drbd_get_data_sock(mdev->tconn))
1515 return 0;
1516
1517 dgs = (mdev->tconn->agreed_pro_version >= 87 && mdev->tconn->integrity_w_tfm) ?
1518 crypto_hash_digestsize(mdev->tconn->integrity_w_tfm) : 0;
1519
1520 prepare_header(mdev, &p.head, P_DATA, sizeof(p) - sizeof(struct p_header) + dgs + req->i.size);
1521 p.sector = cpu_to_be64(req->i.sector);
1522 p.block_id = (unsigned long)req;
1523 p.seq_num = cpu_to_be32(req->seq_num = atomic_add_return(1, &mdev->packet_seq));
1524
1525 dp_flags = bio_flags_to_wire(mdev, req->master_bio->bi_rw);
1526
1527 if (mdev->state.conn >= C_SYNC_SOURCE &&
1528 mdev->state.conn <= C_PAUSED_SYNC_T)
1529 dp_flags |= DP_MAY_SET_IN_SYNC;
1530
1531 p.dp_flags = cpu_to_be32(dp_flags);
1532 set_bit(UNPLUG_REMOTE, &mdev->flags);
1533 ok = (sizeof(p) ==
1534 drbd_send(mdev->tconn, mdev->tconn->data.socket, &p, sizeof(p), dgs ? MSG_MORE : 0));
1535 if (ok && dgs) {
1536 dgb = mdev->tconn->int_dig_out;
1537 drbd_csum_bio(mdev, mdev->tconn->integrity_w_tfm, req->master_bio, dgb);
1538 ok = dgs == drbd_send(mdev->tconn, mdev->tconn->data.socket, dgb, dgs, 0);
1539 }
1540 if (ok) {
1541 /* For protocol A, we have to memcpy the payload into
1542 * socket buffers, as we may complete right away
1543 * as soon as we handed it over to tcp, at which point the data
1544 * pages may become invalid.
1545 *
1546 * For data-integrity enabled, we copy it as well, so we can be
1547 * sure that even if the bio pages may still be modified, it
1548 * won't change the data on the wire, thus if the digest checks
1549 * out ok after sending on this side, but does not fit on the
1550 * receiving side, we sure have detected corruption elsewhere.
1551 */
1552 if (mdev->tconn->net_conf->wire_protocol == DRBD_PROT_A || dgs)
1553 ok = _drbd_send_bio(mdev, req->master_bio);
1554 else
1555 ok = _drbd_send_zc_bio(mdev, req->master_bio);
1556
1557 /* double check digest, sometimes buffers have been modified in flight. */
1558 if (dgs > 0 && dgs <= 64) {
1559 /* 64 byte, 512 bit, is the largest digest size
1560 * currently supported in kernel crypto. */
1561 unsigned char digest[64];
1562 drbd_csum_bio(mdev, mdev->tconn->integrity_w_tfm, req->master_bio, digest);
1563 if (memcmp(mdev->tconn->int_dig_out, digest, dgs)) {
1564 dev_warn(DEV,
1565 "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1566 (unsigned long long)req->i.sector, req->i.size);
1567 }
1568 } /* else if (dgs > 64) {
1569 ... Be noisy about digest too large ...
1570 } */
1571 }
1572
1573 drbd_put_data_sock(mdev->tconn);
1574
1575 return ok;
1576 }
1577
1578 /* answer packet, used to send data back for read requests:
1579 * Peer -> (diskless) R_PRIMARY (P_DATA_REPLY)
1580 * C_SYNC_SOURCE -> C_SYNC_TARGET (P_RS_DATA_REPLY)
1581 */
1582 int drbd_send_block(struct drbd_conf *mdev, enum drbd_packet cmd,
1583 struct drbd_peer_request *peer_req)
1584 {
1585 int ok;
1586 struct p_data p;
1587 void *dgb;
1588 int dgs;
1589
1590 dgs = (mdev->tconn->agreed_pro_version >= 87 && mdev->tconn->integrity_w_tfm) ?
1591 crypto_hash_digestsize(mdev->tconn->integrity_w_tfm) : 0;
1592
1593 prepare_header(mdev, &p.head, cmd, sizeof(p) -
1594 sizeof(struct p_header80) +
1595 dgs + peer_req->i.size);
1596 p.sector = cpu_to_be64(peer_req->i.sector);
1597 p.block_id = peer_req->block_id;
1598 p.seq_num = 0; /* unused */
1599
1600 /* Only called by our kernel thread.
1601 * This one may be interrupted by DRBD_SIG and/or DRBD_SIGKILL
1602 * in response to admin command or module unload.
1603 */
1604 if (!drbd_get_data_sock(mdev->tconn))
1605 return 0;
1606
1607 ok = sizeof(p) == drbd_send(mdev->tconn, mdev->tconn->data.socket, &p, sizeof(p), dgs ? MSG_MORE : 0);
1608 if (ok && dgs) {
1609 dgb = mdev->tconn->int_dig_out;
1610 drbd_csum_ee(mdev, mdev->tconn->integrity_w_tfm, peer_req, dgb);
1611 ok = dgs == drbd_send(mdev->tconn, mdev->tconn->data.socket, dgb, dgs, 0);
1612 }
1613 if (ok)
1614 ok = _drbd_send_zc_ee(mdev, peer_req);
1615
1616 drbd_put_data_sock(mdev->tconn);
1617
1618 return ok;
1619 }
1620
1621 int drbd_send_oos(struct drbd_conf *mdev, struct drbd_request *req)
1622 {
1623 struct p_block_desc p;
1624
1625 p.sector = cpu_to_be64(req->i.sector);
1626 p.blksize = cpu_to_be32(req->i.size);
1627
1628 return drbd_send_cmd(mdev, USE_DATA_SOCKET, P_OUT_OF_SYNC, &p.head, sizeof(p));
1629 }
1630
1631 /*
1632 drbd_send distinguishes two cases:
1633
1634 Packets sent via the data socket "sock"
1635 and packets sent via the meta data socket "msock"
1636
1637 sock msock
1638 -----------------+-------------------------+------------------------------
1639 timeout conf.timeout / 2 conf.timeout / 2
1640 timeout action send a ping via msock Abort communication
1641 and close all sockets
1642 */
1643
1644 /*
1645 * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1646 */
1647 int drbd_send(struct drbd_tconn *tconn, struct socket *sock,
1648 void *buf, size_t size, unsigned msg_flags)
1649 {
1650 struct kvec iov;
1651 struct msghdr msg;
1652 int rv, sent = 0;
1653
1654 if (!sock)
1655 return -1000;
1656
1657 /* THINK if (signal_pending) return ... ? */
1658
1659 iov.iov_base = buf;
1660 iov.iov_len = size;
1661
1662 msg.msg_name = NULL;
1663 msg.msg_namelen = 0;
1664 msg.msg_control = NULL;
1665 msg.msg_controllen = 0;
1666 msg.msg_flags = msg_flags | MSG_NOSIGNAL;
1667
1668 if (sock == tconn->data.socket) {
1669 tconn->ko_count = tconn->net_conf->ko_count;
1670 drbd_update_congested(tconn);
1671 }
1672 do {
1673 /* STRANGE
1674 * tcp_sendmsg does _not_ use its size parameter at all ?
1675 *
1676 * -EAGAIN on timeout, -EINTR on signal.
1677 */
1678 /* THINK
1679 * do we need to block DRBD_SIG if sock == &meta.socket ??
1680 * otherwise wake_asender() might interrupt some send_*Ack !
1681 */
1682 rv = kernel_sendmsg(sock, &msg, &iov, 1, size);
1683 if (rv == -EAGAIN) {
1684 if (we_should_drop_the_connection(tconn, sock))
1685 break;
1686 else
1687 continue;
1688 }
1689 if (rv == -EINTR) {
1690 flush_signals(current);
1691 rv = 0;
1692 }
1693 if (rv < 0)
1694 break;
1695 sent += rv;
1696 iov.iov_base += rv;
1697 iov.iov_len -= rv;
1698 } while (sent < size);
1699
1700 if (sock == tconn->data.socket)
1701 clear_bit(NET_CONGESTED, &tconn->flags);
1702
1703 if (rv <= 0) {
1704 if (rv != -EAGAIN) {
1705 conn_err(tconn, "%s_sendmsg returned %d\n",
1706 sock == tconn->meta.socket ? "msock" : "sock",
1707 rv);
1708 conn_request_state(tconn, NS(conn, C_BROKEN_PIPE), CS_HARD);
1709 } else
1710 conn_request_state(tconn, NS(conn, C_TIMEOUT), CS_HARD);
1711 }
1712
1713 return sent;
1714 }
1715
1716 static int drbd_open(struct block_device *bdev, fmode_t mode)
1717 {
1718 struct drbd_conf *mdev = bdev->bd_disk->private_data;
1719 unsigned long flags;
1720 int rv = 0;
1721
1722 mutex_lock(&drbd_main_mutex);
1723 spin_lock_irqsave(&mdev->tconn->req_lock, flags);
1724 /* to have a stable mdev->state.role
1725 * and no race with updating open_cnt */
1726
1727 if (mdev->state.role != R_PRIMARY) {
1728 if (mode & FMODE_WRITE)
1729 rv = -EROFS;
1730 else if (!allow_oos)
1731 rv = -EMEDIUMTYPE;
1732 }
1733
1734 if (!rv)
1735 mdev->open_cnt++;
1736 spin_unlock_irqrestore(&mdev->tconn->req_lock, flags);
1737 mutex_unlock(&drbd_main_mutex);
1738
1739 return rv;
1740 }
1741
1742 static int drbd_release(struct gendisk *gd, fmode_t mode)
1743 {
1744 struct drbd_conf *mdev = gd->private_data;
1745 mutex_lock(&drbd_main_mutex);
1746 mdev->open_cnt--;
1747 mutex_unlock(&drbd_main_mutex);
1748 return 0;
1749 }
1750
1751 static void drbd_set_defaults(struct drbd_conf *mdev)
1752 {
1753 /* This way we get a compile error when sync_conf grows,
1754 and we forgot to initialize it here */
1755 mdev->sync_conf = (struct syncer_conf) {
1756 /* .rate = */ DRBD_RATE_DEF,
1757 /* .after = */ DRBD_AFTER_DEF,
1758 /* .al_extents = */ DRBD_AL_EXTENTS_DEF,
1759 /* .verify_alg = */ {}, 0,
1760 /* .cpu_mask = */ {}, 0,
1761 /* .csums_alg = */ {}, 0,
1762 /* .use_rle = */ 0,
1763 /* .on_no_data = */ DRBD_ON_NO_DATA_DEF,
1764 /* .c_plan_ahead = */ DRBD_C_PLAN_AHEAD_DEF,
1765 /* .c_delay_target = */ DRBD_C_DELAY_TARGET_DEF,
1766 /* .c_fill_target = */ DRBD_C_FILL_TARGET_DEF,
1767 /* .c_max_rate = */ DRBD_C_MAX_RATE_DEF,
1768 /* .c_min_rate = */ DRBD_C_MIN_RATE_DEF
1769 };
1770
1771 /* Have to use that way, because the layout differs between
1772 big endian and little endian */
1773 mdev->state = (union drbd_state) {
1774 { .role = R_SECONDARY,
1775 .peer = R_UNKNOWN,
1776 .conn = C_STANDALONE,
1777 .disk = D_DISKLESS,
1778 .pdsk = D_UNKNOWN,
1779 .susp = 0,
1780 .susp_nod = 0,
1781 .susp_fen = 0
1782 } };
1783 }
1784
1785 void drbd_init_set_defaults(struct drbd_conf *mdev)
1786 {
1787 /* the memset(,0,) did most of this.
1788 * note: only assignments, no allocation in here */
1789
1790 drbd_set_defaults(mdev);
1791
1792 atomic_set(&mdev->ap_bio_cnt, 0);
1793 atomic_set(&mdev->ap_pending_cnt, 0);
1794 atomic_set(&mdev->rs_pending_cnt, 0);
1795 atomic_set(&mdev->unacked_cnt, 0);
1796 atomic_set(&mdev->local_cnt, 0);
1797 atomic_set(&mdev->pp_in_use, 0);
1798 atomic_set(&mdev->pp_in_use_by_net, 0);
1799 atomic_set(&mdev->rs_sect_in, 0);
1800 atomic_set(&mdev->rs_sect_ev, 0);
1801 atomic_set(&mdev->ap_in_flight, 0);
1802
1803 mutex_init(&mdev->md_io_mutex);
1804 mutex_init(&mdev->state_mutex);
1805
1806 spin_lock_init(&mdev->al_lock);
1807 spin_lock_init(&mdev->peer_seq_lock);
1808 spin_lock_init(&mdev->epoch_lock);
1809
1810 INIT_LIST_HEAD(&mdev->active_ee);
1811 INIT_LIST_HEAD(&mdev->sync_ee);
1812 INIT_LIST_HEAD(&mdev->done_ee);
1813 INIT_LIST_HEAD(&mdev->read_ee);
1814 INIT_LIST_HEAD(&mdev->net_ee);
1815 INIT_LIST_HEAD(&mdev->resync_reads);
1816 INIT_LIST_HEAD(&mdev->resync_work.list);
1817 INIT_LIST_HEAD(&mdev->unplug_work.list);
1818 INIT_LIST_HEAD(&mdev->go_diskless.list);
1819 INIT_LIST_HEAD(&mdev->md_sync_work.list);
1820 INIT_LIST_HEAD(&mdev->start_resync_work.list);
1821 INIT_LIST_HEAD(&mdev->bm_io_work.w.list);
1822
1823 mdev->resync_work.cb = w_resync_timer;
1824 mdev->unplug_work.cb = w_send_write_hint;
1825 mdev->go_diskless.cb = w_go_diskless;
1826 mdev->md_sync_work.cb = w_md_sync;
1827 mdev->bm_io_work.w.cb = w_bitmap_io;
1828 mdev->start_resync_work.cb = w_start_resync;
1829
1830 mdev->resync_work.mdev = mdev;
1831 mdev->unplug_work.mdev = mdev;
1832 mdev->go_diskless.mdev = mdev;
1833 mdev->md_sync_work.mdev = mdev;
1834 mdev->bm_io_work.w.mdev = mdev;
1835 mdev->start_resync_work.mdev = mdev;
1836
1837 init_timer(&mdev->resync_timer);
1838 init_timer(&mdev->md_sync_timer);
1839 init_timer(&mdev->start_resync_timer);
1840 init_timer(&mdev->request_timer);
1841 mdev->resync_timer.function = resync_timer_fn;
1842 mdev->resync_timer.data = (unsigned long) mdev;
1843 mdev->md_sync_timer.function = md_sync_timer_fn;
1844 mdev->md_sync_timer.data = (unsigned long) mdev;
1845 mdev->start_resync_timer.function = start_resync_timer_fn;
1846 mdev->start_resync_timer.data = (unsigned long) mdev;
1847 mdev->request_timer.function = request_timer_fn;
1848 mdev->request_timer.data = (unsigned long) mdev;
1849
1850 init_waitqueue_head(&mdev->misc_wait);
1851 init_waitqueue_head(&mdev->state_wait);
1852 init_waitqueue_head(&mdev->ee_wait);
1853 init_waitqueue_head(&mdev->al_wait);
1854 init_waitqueue_head(&mdev->seq_wait);
1855
1856 /* mdev->tconn->agreed_pro_version gets initialized in drbd_connect() */
1857 mdev->write_ordering = WO_bdev_flush;
1858 mdev->resync_wenr = LC_FREE;
1859 mdev->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1860 mdev->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1861 }
1862
1863 void drbd_mdev_cleanup(struct drbd_conf *mdev)
1864 {
1865 int i;
1866 if (mdev->tconn->receiver.t_state != NONE)
1867 dev_err(DEV, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
1868 mdev->tconn->receiver.t_state);
1869
1870 /* no need to lock it, I'm the only thread alive */
1871 if (atomic_read(&mdev->current_epoch->epoch_size) != 0)
1872 dev_err(DEV, "epoch_size:%d\n", atomic_read(&mdev->current_epoch->epoch_size));
1873 mdev->al_writ_cnt =
1874 mdev->bm_writ_cnt =
1875 mdev->read_cnt =
1876 mdev->recv_cnt =
1877 mdev->send_cnt =
1878 mdev->writ_cnt =
1879 mdev->p_size =
1880 mdev->rs_start =
1881 mdev->rs_total =
1882 mdev->rs_failed = 0;
1883 mdev->rs_last_events = 0;
1884 mdev->rs_last_sect_ev = 0;
1885 for (i = 0; i < DRBD_SYNC_MARKS; i++) {
1886 mdev->rs_mark_left[i] = 0;
1887 mdev->rs_mark_time[i] = 0;
1888 }
1889 D_ASSERT(mdev->tconn->net_conf == NULL);
1890
1891 drbd_set_my_capacity(mdev, 0);
1892 if (mdev->bitmap) {
1893 /* maybe never allocated. */
1894 drbd_bm_resize(mdev, 0, 1);
1895 drbd_bm_cleanup(mdev);
1896 }
1897
1898 drbd_free_resources(mdev);
1899 clear_bit(AL_SUSPENDED, &mdev->flags);
1900
1901 /*
1902 * currently we drbd_init_ee only on module load, so
1903 * we may do drbd_release_ee only on module unload!
1904 */
1905 D_ASSERT(list_empty(&mdev->active_ee));
1906 D_ASSERT(list_empty(&mdev->sync_ee));
1907 D_ASSERT(list_empty(&mdev->done_ee));
1908 D_ASSERT(list_empty(&mdev->read_ee));
1909 D_ASSERT(list_empty(&mdev->net_ee));
1910 D_ASSERT(list_empty(&mdev->resync_reads));
1911 D_ASSERT(list_empty(&mdev->tconn->data.work.q));
1912 D_ASSERT(list_empty(&mdev->tconn->meta.work.q));
1913 D_ASSERT(list_empty(&mdev->resync_work.list));
1914 D_ASSERT(list_empty(&mdev->unplug_work.list));
1915 D_ASSERT(list_empty(&mdev->go_diskless.list));
1916
1917 drbd_set_defaults(mdev);
1918 }
1919
1920
1921 static void drbd_destroy_mempools(void)
1922 {
1923 struct page *page;
1924
1925 while (drbd_pp_pool) {
1926 page = drbd_pp_pool;
1927 drbd_pp_pool = (struct page *)page_private(page);
1928 __free_page(page);
1929 drbd_pp_vacant--;
1930 }
1931
1932 /* D_ASSERT(atomic_read(&drbd_pp_vacant)==0); */
1933
1934 if (drbd_ee_mempool)
1935 mempool_destroy(drbd_ee_mempool);
1936 if (drbd_request_mempool)
1937 mempool_destroy(drbd_request_mempool);
1938 if (drbd_ee_cache)
1939 kmem_cache_destroy(drbd_ee_cache);
1940 if (drbd_request_cache)
1941 kmem_cache_destroy(drbd_request_cache);
1942 if (drbd_bm_ext_cache)
1943 kmem_cache_destroy(drbd_bm_ext_cache);
1944 if (drbd_al_ext_cache)
1945 kmem_cache_destroy(drbd_al_ext_cache);
1946
1947 drbd_ee_mempool = NULL;
1948 drbd_request_mempool = NULL;
1949 drbd_ee_cache = NULL;
1950 drbd_request_cache = NULL;
1951 drbd_bm_ext_cache = NULL;
1952 drbd_al_ext_cache = NULL;
1953
1954 return;
1955 }
1956
1957 static int drbd_create_mempools(void)
1958 {
1959 struct page *page;
1960 const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * minor_count;
1961 int i;
1962
1963 /* prepare our caches and mempools */
1964 drbd_request_mempool = NULL;
1965 drbd_ee_cache = NULL;
1966 drbd_request_cache = NULL;
1967 drbd_bm_ext_cache = NULL;
1968 drbd_al_ext_cache = NULL;
1969 drbd_pp_pool = NULL;
1970
1971 /* caches */
1972 drbd_request_cache = kmem_cache_create(
1973 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
1974 if (drbd_request_cache == NULL)
1975 goto Enomem;
1976
1977 drbd_ee_cache = kmem_cache_create(
1978 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
1979 if (drbd_ee_cache == NULL)
1980 goto Enomem;
1981
1982 drbd_bm_ext_cache = kmem_cache_create(
1983 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
1984 if (drbd_bm_ext_cache == NULL)
1985 goto Enomem;
1986
1987 drbd_al_ext_cache = kmem_cache_create(
1988 "drbd_al", sizeof(struct lc_element), 0, 0, NULL);
1989 if (drbd_al_ext_cache == NULL)
1990 goto Enomem;
1991
1992 /* mempools */
1993 drbd_request_mempool = mempool_create(number,
1994 mempool_alloc_slab, mempool_free_slab, drbd_request_cache);
1995 if (drbd_request_mempool == NULL)
1996 goto Enomem;
1997
1998 drbd_ee_mempool = mempool_create(number,
1999 mempool_alloc_slab, mempool_free_slab, drbd_ee_cache);
2000 if (drbd_ee_mempool == NULL)
2001 goto Enomem;
2002
2003 /* drbd's page pool */
2004 spin_lock_init(&drbd_pp_lock);
2005
2006 for (i = 0; i < number; i++) {
2007 page = alloc_page(GFP_HIGHUSER);
2008 if (!page)
2009 goto Enomem;
2010 set_page_private(page, (unsigned long)drbd_pp_pool);
2011 drbd_pp_pool = page;
2012 }
2013 drbd_pp_vacant = number;
2014
2015 return 0;
2016
2017 Enomem:
2018 drbd_destroy_mempools(); /* in case we allocated some */
2019 return -ENOMEM;
2020 }
2021
2022 static int drbd_notify_sys(struct notifier_block *this, unsigned long code,
2023 void *unused)
2024 {
2025 /* just so we have it. you never know what interesting things we
2026 * might want to do here some day...
2027 */
2028
2029 return NOTIFY_DONE;
2030 }
2031
2032 static struct notifier_block drbd_notifier = {
2033 .notifier_call = drbd_notify_sys,
2034 };
2035
2036 static void drbd_release_ee_lists(struct drbd_conf *mdev)
2037 {
2038 int rr;
2039
2040 rr = drbd_release_ee(mdev, &mdev->active_ee);
2041 if (rr)
2042 dev_err(DEV, "%d EEs in active list found!\n", rr);
2043
2044 rr = drbd_release_ee(mdev, &mdev->sync_ee);
2045 if (rr)
2046 dev_err(DEV, "%d EEs in sync list found!\n", rr);
2047
2048 rr = drbd_release_ee(mdev, &mdev->read_ee);
2049 if (rr)
2050 dev_err(DEV, "%d EEs in read list found!\n", rr);
2051
2052 rr = drbd_release_ee(mdev, &mdev->done_ee);
2053 if (rr)
2054 dev_err(DEV, "%d EEs in done list found!\n", rr);
2055
2056 rr = drbd_release_ee(mdev, &mdev->net_ee);
2057 if (rr)
2058 dev_err(DEV, "%d EEs in net list found!\n", rr);
2059 }
2060
2061 /* caution. no locking.
2062 * currently only used from module cleanup code. */
2063 static void drbd_delete_device(unsigned int minor)
2064 {
2065 struct drbd_conf *mdev = minor_to_mdev(minor);
2066
2067 if (!mdev)
2068 return;
2069
2070 /* paranoia asserts */
2071 D_ASSERT(mdev->open_cnt == 0);
2072 D_ASSERT(list_empty(&mdev->tconn->data.work.q));
2073 /* end paranoia asserts */
2074
2075 del_gendisk(mdev->vdisk);
2076
2077 /* cleanup stuff that may have been allocated during
2078 * device (re-)configuration or state changes */
2079
2080 if (mdev->this_bdev)
2081 bdput(mdev->this_bdev);
2082
2083 drbd_free_resources(mdev);
2084 drbd_free_tconn(mdev->tconn);
2085
2086 drbd_release_ee_lists(mdev);
2087
2088 lc_destroy(mdev->act_log);
2089 lc_destroy(mdev->resync);
2090
2091 kfree(mdev->p_uuid);
2092 /* mdev->p_uuid = NULL; */
2093
2094 /* cleanup the rest that has been
2095 * allocated from drbd_new_device
2096 * and actually free the mdev itself */
2097 drbd_free_mdev(mdev);
2098 }
2099
2100 static void drbd_cleanup(void)
2101 {
2102 unsigned int i;
2103
2104 unregister_reboot_notifier(&drbd_notifier);
2105
2106 /* first remove proc,
2107 * drbdsetup uses it's presence to detect
2108 * whether DRBD is loaded.
2109 * If we would get stuck in proc removal,
2110 * but have netlink already deregistered,
2111 * some drbdsetup commands may wait forever
2112 * for an answer.
2113 */
2114 if (drbd_proc)
2115 remove_proc_entry("drbd", NULL);
2116
2117 drbd_nl_cleanup();
2118
2119 if (minor_table) {
2120 i = minor_count;
2121 while (i--)
2122 drbd_delete_device(i);
2123 drbd_destroy_mempools();
2124 }
2125
2126 kfree(minor_table);
2127
2128 unregister_blkdev(DRBD_MAJOR, "drbd");
2129
2130 printk(KERN_INFO "drbd: module cleanup done.\n");
2131 }
2132
2133 /**
2134 * drbd_congested() - Callback for pdflush
2135 * @congested_data: User data
2136 * @bdi_bits: Bits pdflush is currently interested in
2137 *
2138 * Returns 1<<BDI_async_congested and/or 1<<BDI_sync_congested if we are congested.
2139 */
2140 static int drbd_congested(void *congested_data, int bdi_bits)
2141 {
2142 struct drbd_conf *mdev = congested_data;
2143 struct request_queue *q;
2144 char reason = '-';
2145 int r = 0;
2146
2147 if (!may_inc_ap_bio(mdev)) {
2148 /* DRBD has frozen IO */
2149 r = bdi_bits;
2150 reason = 'd';
2151 goto out;
2152 }
2153
2154 if (get_ldev(mdev)) {
2155 q = bdev_get_queue(mdev->ldev->backing_bdev);
2156 r = bdi_congested(&q->backing_dev_info, bdi_bits);
2157 put_ldev(mdev);
2158 if (r)
2159 reason = 'b';
2160 }
2161
2162 if (bdi_bits & (1 << BDI_async_congested) && test_bit(NET_CONGESTED, &mdev->tconn->flags)) {
2163 r |= (1 << BDI_async_congested);
2164 reason = reason == 'b' ? 'a' : 'n';
2165 }
2166
2167 out:
2168 mdev->congestion_reason = reason;
2169 return r;
2170 }
2171
2172 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2173 {
2174 sema_init(&wq->s, 0);
2175 spin_lock_init(&wq->q_lock);
2176 INIT_LIST_HEAD(&wq->q);
2177 }
2178
2179 struct drbd_tconn *drbd_new_tconn(char *name)
2180 {
2181 struct drbd_tconn *tconn;
2182
2183 tconn = kzalloc(sizeof(struct drbd_tconn), GFP_KERNEL);
2184 if (!tconn)
2185 return NULL;
2186
2187 tconn->name = kstrdup(name, GFP_KERNEL);
2188 if (!tconn->name)
2189 goto fail;
2190
2191 tconn->cstate = C_STANDALONE;
2192 spin_lock_init(&tconn->req_lock);
2193 atomic_set(&tconn->net_cnt, 0);
2194 init_waitqueue_head(&tconn->net_cnt_wait);
2195 init_waitqueue_head(&tconn->ping_wait);
2196 idr_init(&tconn->volumes);
2197
2198 drbd_init_workqueue(&tconn->data.work);
2199 mutex_init(&tconn->data.mutex);
2200
2201 drbd_init_workqueue(&tconn->meta.work);
2202 mutex_init(&tconn->meta.mutex);
2203
2204 drbd_thread_init(tconn, &tconn->receiver, drbdd_init, "receiver");
2205 drbd_thread_init(tconn, &tconn->worker, drbd_worker, "worker");
2206 drbd_thread_init(tconn, &tconn->asender, drbd_asender, "asender");
2207
2208 write_lock_irq(&global_state_lock);
2209 list_add(&tconn->all_tconn, &drbd_tconns);
2210 write_unlock_irq(&global_state_lock);
2211
2212 return tconn;
2213
2214 fail:
2215 kfree(tconn->name);
2216 kfree(tconn);
2217
2218 return NULL;
2219 }
2220
2221 void drbd_free_tconn(struct drbd_tconn *tconn)
2222 {
2223 write_lock_irq(&global_state_lock);
2224 list_del(&tconn->all_tconn);
2225 write_unlock_irq(&global_state_lock);
2226 idr_destroy(&tconn->volumes);
2227
2228 kfree(tconn->name);
2229 kfree(tconn->int_dig_out);
2230 kfree(tconn->int_dig_in);
2231 kfree(tconn->int_dig_vv);
2232 kfree(tconn);
2233 }
2234
2235 struct drbd_conf *drbd_new_device(unsigned int minor)
2236 {
2237 struct drbd_conf *mdev;
2238 struct gendisk *disk;
2239 struct request_queue *q;
2240 char conn_name[9]; /* drbd1234N */
2241 int vnr;
2242
2243 /* GFP_KERNEL, we are outside of all write-out paths */
2244 mdev = kzalloc(sizeof(struct drbd_conf), GFP_KERNEL);
2245 if (!mdev)
2246 return NULL;
2247 sprintf(conn_name, "drbd%d", minor);
2248 mdev->tconn = drbd_new_tconn(conn_name);
2249 if (!mdev->tconn)
2250 goto out_no_tconn;
2251 if (!idr_pre_get(&mdev->tconn->volumes, GFP_KERNEL))
2252 goto out_no_cpumask;
2253 if (idr_get_new(&mdev->tconn->volumes, mdev, &vnr))
2254 goto out_no_cpumask;
2255 if (vnr != 0) {
2256 dev_err(DEV, "vnr = %d\n", vnr);
2257 goto out_no_cpumask;
2258 }
2259 if (!zalloc_cpumask_var(&mdev->tconn->cpu_mask, GFP_KERNEL))
2260 goto out_no_cpumask;
2261
2262 mdev->minor = minor;
2263
2264 drbd_init_set_defaults(mdev);
2265
2266 q = blk_alloc_queue(GFP_KERNEL);
2267 if (!q)
2268 goto out_no_q;
2269 mdev->rq_queue = q;
2270 q->queuedata = mdev;
2271
2272 disk = alloc_disk(1);
2273 if (!disk)
2274 goto out_no_disk;
2275 mdev->vdisk = disk;
2276
2277 set_disk_ro(disk, true);
2278
2279 disk->queue = q;
2280 disk->major = DRBD_MAJOR;
2281 disk->first_minor = minor;
2282 disk->fops = &drbd_ops;
2283 sprintf(disk->disk_name, "drbd%d", minor);
2284 disk->private_data = mdev;
2285
2286 mdev->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor));
2287 /* we have no partitions. we contain only ourselves. */
2288 mdev->this_bdev->bd_contains = mdev->this_bdev;
2289
2290 q->backing_dev_info.congested_fn = drbd_congested;
2291 q->backing_dev_info.congested_data = mdev;
2292
2293 blk_queue_make_request(q, drbd_make_request);
2294 /* Setting the max_hw_sectors to an odd value of 8kibyte here
2295 This triggers a max_bio_size message upon first attach or connect */
2296 blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2297 blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
2298 blk_queue_merge_bvec(q, drbd_merge_bvec);
2299 q->queue_lock = &mdev->tconn->req_lock; /* needed since we use */
2300
2301 mdev->md_io_page = alloc_page(GFP_KERNEL);
2302 if (!mdev->md_io_page)
2303 goto out_no_io_page;
2304
2305 if (drbd_bm_init(mdev))
2306 goto out_no_bitmap;
2307 /* no need to lock access, we are still initializing this minor device. */
2308 if (!tl_init(mdev))
2309 goto out_no_tl;
2310 mdev->read_requests = RB_ROOT;
2311 mdev->write_requests = RB_ROOT;
2312
2313 mdev->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2314 if (!mdev->current_epoch)
2315 goto out_no_epoch;
2316
2317 INIT_LIST_HEAD(&mdev->current_epoch->list);
2318 mdev->epochs = 1;
2319
2320 return mdev;
2321
2322 /* out_whatever_else:
2323 kfree(mdev->current_epoch); */
2324 out_no_epoch:
2325 tl_cleanup(mdev);
2326 out_no_tl:
2327 drbd_bm_cleanup(mdev);
2328 out_no_bitmap:
2329 __free_page(mdev->md_io_page);
2330 out_no_io_page:
2331 put_disk(disk);
2332 out_no_disk:
2333 blk_cleanup_queue(q);
2334 out_no_q:
2335 free_cpumask_var(mdev->tconn->cpu_mask);
2336 out_no_cpumask:
2337 drbd_free_tconn(mdev->tconn);
2338 out_no_tconn:
2339 kfree(mdev);
2340 return NULL;
2341 }
2342
2343 /* counterpart of drbd_new_device.
2344 * last part of drbd_delete_device. */
2345 void drbd_free_mdev(struct drbd_conf *mdev)
2346 {
2347 kfree(mdev->current_epoch);
2348 tl_cleanup(mdev);
2349 if (mdev->bitmap) /* should no longer be there. */
2350 drbd_bm_cleanup(mdev);
2351 __free_page(mdev->md_io_page);
2352 put_disk(mdev->vdisk);
2353 blk_cleanup_queue(mdev->rq_queue);
2354 kfree(mdev);
2355 }
2356
2357
2358 int __init drbd_init(void)
2359 {
2360 int err;
2361
2362 BUILD_BUG_ON(sizeof(struct p_header80) != sizeof(struct p_header95));
2363 BUILD_BUG_ON(sizeof(struct p_handshake) != 80);
2364
2365 if (minor_count < DRBD_MINOR_COUNT_MIN || minor_count > DRBD_MINOR_COUNT_MAX) {
2366 printk(KERN_ERR
2367 "drbd: invalid minor_count (%d)\n", minor_count);
2368 #ifdef MODULE
2369 return -EINVAL;
2370 #else
2371 minor_count = 8;
2372 #endif
2373 }
2374
2375 err = drbd_nl_init();
2376 if (err)
2377 return err;
2378
2379 err = register_blkdev(DRBD_MAJOR, "drbd");
2380 if (err) {
2381 printk(KERN_ERR
2382 "drbd: unable to register block device major %d\n",
2383 DRBD_MAJOR);
2384 return err;
2385 }
2386
2387 register_reboot_notifier(&drbd_notifier);
2388
2389 /*
2390 * allocate all necessary structs
2391 */
2392 err = -ENOMEM;
2393
2394 init_waitqueue_head(&drbd_pp_wait);
2395
2396 drbd_proc = NULL; /* play safe for drbd_cleanup */
2397 minor_table = kzalloc(sizeof(struct drbd_conf *)*minor_count,
2398 GFP_KERNEL);
2399 if (!minor_table)
2400 goto Enomem;
2401
2402 err = drbd_create_mempools();
2403 if (err)
2404 goto Enomem;
2405
2406 drbd_proc = proc_create_data("drbd", S_IFREG | S_IRUGO , NULL, &drbd_proc_fops, NULL);
2407 if (!drbd_proc) {
2408 printk(KERN_ERR "drbd: unable to register proc file\n");
2409 goto Enomem;
2410 }
2411
2412 rwlock_init(&global_state_lock);
2413 INIT_LIST_HEAD(&drbd_tconns);
2414
2415 printk(KERN_INFO "drbd: initialized. "
2416 "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
2417 API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
2418 printk(KERN_INFO "drbd: %s\n", drbd_buildtag());
2419 printk(KERN_INFO "drbd: registered as block device major %d\n",
2420 DRBD_MAJOR);
2421 printk(KERN_INFO "drbd: minor_table @ 0x%p\n", minor_table);
2422
2423 return 0; /* Success! */
2424
2425 Enomem:
2426 drbd_cleanup();
2427 if (err == -ENOMEM)
2428 /* currently always the case */
2429 printk(KERN_ERR "drbd: ran out of memory\n");
2430 else
2431 printk(KERN_ERR "drbd: initialization failure\n");
2432 return err;
2433 }
2434
2435 void drbd_free_bc(struct drbd_backing_dev *ldev)
2436 {
2437 if (ldev == NULL)
2438 return;
2439
2440 blkdev_put(ldev->backing_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2441 blkdev_put(ldev->md_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2442
2443 kfree(ldev);
2444 }
2445
2446 void drbd_free_sock(struct drbd_tconn *tconn)
2447 {
2448 if (tconn->data.socket) {
2449 mutex_lock(&tconn->data.mutex);
2450 kernel_sock_shutdown(tconn->data.socket, SHUT_RDWR);
2451 sock_release(tconn->data.socket);
2452 tconn->data.socket = NULL;
2453 mutex_unlock(&tconn->data.mutex);
2454 }
2455 if (tconn->meta.socket) {
2456 mutex_lock(&tconn->meta.mutex);
2457 kernel_sock_shutdown(tconn->meta.socket, SHUT_RDWR);
2458 sock_release(tconn->meta.socket);
2459 tconn->meta.socket = NULL;
2460 mutex_unlock(&tconn->meta.mutex);
2461 }
2462 }
2463
2464
2465 void drbd_free_resources(struct drbd_conf *mdev)
2466 {
2467 crypto_free_hash(mdev->csums_tfm);
2468 mdev->csums_tfm = NULL;
2469 crypto_free_hash(mdev->verify_tfm);
2470 mdev->verify_tfm = NULL;
2471 crypto_free_hash(mdev->tconn->cram_hmac_tfm);
2472 mdev->tconn->cram_hmac_tfm = NULL;
2473 crypto_free_hash(mdev->tconn->integrity_w_tfm);
2474 mdev->tconn->integrity_w_tfm = NULL;
2475 crypto_free_hash(mdev->tconn->integrity_r_tfm);
2476 mdev->tconn->integrity_r_tfm = NULL;
2477
2478 drbd_free_sock(mdev->tconn);
2479
2480 __no_warn(local,
2481 drbd_free_bc(mdev->ldev);
2482 mdev->ldev = NULL;);
2483 }
2484
2485 /* meta data management */
2486
2487 struct meta_data_on_disk {
2488 u64 la_size; /* last agreed size. */
2489 u64 uuid[UI_SIZE]; /* UUIDs. */
2490 u64 device_uuid;
2491 u64 reserved_u64_1;
2492 u32 flags; /* MDF */
2493 u32 magic;
2494 u32 md_size_sect;
2495 u32 al_offset; /* offset to this block */
2496 u32 al_nr_extents; /* important for restoring the AL */
2497 /* `-- act_log->nr_elements <-- sync_conf.al_extents */
2498 u32 bm_offset; /* offset to the bitmap, from here */
2499 u32 bm_bytes_per_bit; /* BM_BLOCK_SIZE */
2500 u32 la_peer_max_bio_size; /* last peer max_bio_size */
2501 u32 reserved_u32[3];
2502
2503 } __packed;
2504
2505 /**
2506 * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
2507 * @mdev: DRBD device.
2508 */
2509 void drbd_md_sync(struct drbd_conf *mdev)
2510 {
2511 struct meta_data_on_disk *buffer;
2512 sector_t sector;
2513 int i;
2514
2515 del_timer(&mdev->md_sync_timer);
2516 /* timer may be rearmed by drbd_md_mark_dirty() now. */
2517 if (!test_and_clear_bit(MD_DIRTY, &mdev->flags))
2518 return;
2519
2520 /* We use here D_FAILED and not D_ATTACHING because we try to write
2521 * metadata even if we detach due to a disk failure! */
2522 if (!get_ldev_if_state(mdev, D_FAILED))
2523 return;
2524
2525 mutex_lock(&mdev->md_io_mutex);
2526 buffer = (struct meta_data_on_disk *)page_address(mdev->md_io_page);
2527 memset(buffer, 0, 512);
2528
2529 buffer->la_size = cpu_to_be64(drbd_get_capacity(mdev->this_bdev));
2530 for (i = UI_CURRENT; i < UI_SIZE; i++)
2531 buffer->uuid[i] = cpu_to_be64(mdev->ldev->md.uuid[i]);
2532 buffer->flags = cpu_to_be32(mdev->ldev->md.flags);
2533 buffer->magic = cpu_to_be32(DRBD_MD_MAGIC);
2534
2535 buffer->md_size_sect = cpu_to_be32(mdev->ldev->md.md_size_sect);
2536 buffer->al_offset = cpu_to_be32(mdev->ldev->md.al_offset);
2537 buffer->al_nr_extents = cpu_to_be32(mdev->act_log->nr_elements);
2538 buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
2539 buffer->device_uuid = cpu_to_be64(mdev->ldev->md.device_uuid);
2540
2541 buffer->bm_offset = cpu_to_be32(mdev->ldev->md.bm_offset);
2542 buffer->la_peer_max_bio_size = cpu_to_be32(mdev->peer_max_bio_size);
2543
2544 D_ASSERT(drbd_md_ss__(mdev, mdev->ldev) == mdev->ldev->md.md_offset);
2545 sector = mdev->ldev->md.md_offset;
2546
2547 if (!drbd_md_sync_page_io(mdev, mdev->ldev, sector, WRITE)) {
2548 /* this was a try anyways ... */
2549 dev_err(DEV, "meta data update failed!\n");
2550 drbd_chk_io_error(mdev, 1, true);
2551 }
2552
2553 /* Update mdev->ldev->md.la_size_sect,
2554 * since we updated it on metadata. */
2555 mdev->ldev->md.la_size_sect = drbd_get_capacity(mdev->this_bdev);
2556
2557 mutex_unlock(&mdev->md_io_mutex);
2558 put_ldev(mdev);
2559 }
2560
2561 /**
2562 * drbd_md_read() - Reads in the meta data super block
2563 * @mdev: DRBD device.
2564 * @bdev: Device from which the meta data should be read in.
2565 *
2566 * Return 0 (NO_ERROR) on success, and an enum drbd_ret_code in case
2567 * something goes wrong. Currently only: ERR_IO_MD_DISK, ERR_MD_INVALID.
2568 */
2569 int drbd_md_read(struct drbd_conf *mdev, struct drbd_backing_dev *bdev)
2570 {
2571 struct meta_data_on_disk *buffer;
2572 int i, rv = NO_ERROR;
2573
2574 if (!get_ldev_if_state(mdev, D_ATTACHING))
2575 return ERR_IO_MD_DISK;
2576
2577 mutex_lock(&mdev->md_io_mutex);
2578 buffer = (struct meta_data_on_disk *)page_address(mdev->md_io_page);
2579
2580 if (!drbd_md_sync_page_io(mdev, bdev, bdev->md.md_offset, READ)) {
2581 /* NOTE: can't do normal error processing here as this is
2582 called BEFORE disk is attached */
2583 dev_err(DEV, "Error while reading metadata.\n");
2584 rv = ERR_IO_MD_DISK;
2585 goto err;
2586 }
2587
2588 if (buffer->magic != cpu_to_be32(DRBD_MD_MAGIC)) {
2589 dev_err(DEV, "Error while reading metadata, magic not found.\n");
2590 rv = ERR_MD_INVALID;
2591 goto err;
2592 }
2593 if (be32_to_cpu(buffer->al_offset) != bdev->md.al_offset) {
2594 dev_err(DEV, "unexpected al_offset: %d (expected %d)\n",
2595 be32_to_cpu(buffer->al_offset), bdev->md.al_offset);
2596 rv = ERR_MD_INVALID;
2597 goto err;
2598 }
2599 if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
2600 dev_err(DEV, "unexpected bm_offset: %d (expected %d)\n",
2601 be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
2602 rv = ERR_MD_INVALID;
2603 goto err;
2604 }
2605 if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
2606 dev_err(DEV, "unexpected md_size: %u (expected %u)\n",
2607 be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
2608 rv = ERR_MD_INVALID;
2609 goto err;
2610 }
2611
2612 if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
2613 dev_err(DEV, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
2614 be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
2615 rv = ERR_MD_INVALID;
2616 goto err;
2617 }
2618
2619 bdev->md.la_size_sect = be64_to_cpu(buffer->la_size);
2620 for (i = UI_CURRENT; i < UI_SIZE; i++)
2621 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
2622 bdev->md.flags = be32_to_cpu(buffer->flags);
2623 mdev->sync_conf.al_extents = be32_to_cpu(buffer->al_nr_extents);
2624 bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
2625
2626 spin_lock_irq(&mdev->tconn->req_lock);
2627 if (mdev->state.conn < C_CONNECTED) {
2628 int peer;
2629 peer = be32_to_cpu(buffer->la_peer_max_bio_size);
2630 peer = max_t(int, peer, DRBD_MAX_BIO_SIZE_SAFE);
2631 mdev->peer_max_bio_size = peer;
2632 }
2633 spin_unlock_irq(&mdev->tconn->req_lock);
2634
2635 if (mdev->sync_conf.al_extents < 7)
2636 mdev->sync_conf.al_extents = 127;
2637
2638 err:
2639 mutex_unlock(&mdev->md_io_mutex);
2640 put_ldev(mdev);
2641
2642 return rv;
2643 }
2644
2645 /**
2646 * drbd_md_mark_dirty() - Mark meta data super block as dirty
2647 * @mdev: DRBD device.
2648 *
2649 * Call this function if you change anything that should be written to
2650 * the meta-data super block. This function sets MD_DIRTY, and starts a
2651 * timer that ensures that within five seconds you have to call drbd_md_sync().
2652 */
2653 #ifdef DEBUG
2654 void drbd_md_mark_dirty_(struct drbd_conf *mdev, unsigned int line, const char *func)
2655 {
2656 if (!test_and_set_bit(MD_DIRTY, &mdev->flags)) {
2657 mod_timer(&mdev->md_sync_timer, jiffies + HZ);
2658 mdev->last_md_mark_dirty.line = line;
2659 mdev->last_md_mark_dirty.func = func;
2660 }
2661 }
2662 #else
2663 void drbd_md_mark_dirty(struct drbd_conf *mdev)
2664 {
2665 if (!test_and_set_bit(MD_DIRTY, &mdev->flags))
2666 mod_timer(&mdev->md_sync_timer, jiffies + 5*HZ);
2667 }
2668 #endif
2669
2670 static void drbd_uuid_move_history(struct drbd_conf *mdev) __must_hold(local)
2671 {
2672 int i;
2673
2674 for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
2675 mdev->ldev->md.uuid[i+1] = mdev->ldev->md.uuid[i];
2676 }
2677
2678 void _drbd_uuid_set(struct drbd_conf *mdev, int idx, u64 val) __must_hold(local)
2679 {
2680 if (idx == UI_CURRENT) {
2681 if (mdev->state.role == R_PRIMARY)
2682 val |= 1;
2683 else
2684 val &= ~((u64)1);
2685
2686 drbd_set_ed_uuid(mdev, val);
2687 }
2688
2689 mdev->ldev->md.uuid[idx] = val;
2690 drbd_md_mark_dirty(mdev);
2691 }
2692
2693
2694 void drbd_uuid_set(struct drbd_conf *mdev, int idx, u64 val) __must_hold(local)
2695 {
2696 if (mdev->ldev->md.uuid[idx]) {
2697 drbd_uuid_move_history(mdev);
2698 mdev->ldev->md.uuid[UI_HISTORY_START] = mdev->ldev->md.uuid[idx];
2699 }
2700 _drbd_uuid_set(mdev, idx, val);
2701 }
2702
2703 /**
2704 * drbd_uuid_new_current() - Creates a new current UUID
2705 * @mdev: DRBD device.
2706 *
2707 * Creates a new current UUID, and rotates the old current UUID into
2708 * the bitmap slot. Causes an incremental resync upon next connect.
2709 */
2710 void drbd_uuid_new_current(struct drbd_conf *mdev) __must_hold(local)
2711 {
2712 u64 val;
2713 unsigned long long bm_uuid = mdev->ldev->md.uuid[UI_BITMAP];
2714
2715 if (bm_uuid)
2716 dev_warn(DEV, "bm UUID was already set: %llX\n", bm_uuid);
2717
2718 mdev->ldev->md.uuid[UI_BITMAP] = mdev->ldev->md.uuid[UI_CURRENT];
2719
2720 get_random_bytes(&val, sizeof(u64));
2721 _drbd_uuid_set(mdev, UI_CURRENT, val);
2722 drbd_print_uuids(mdev, "new current UUID");
2723 /* get it to stable storage _now_ */
2724 drbd_md_sync(mdev);
2725 }
2726
2727 void drbd_uuid_set_bm(struct drbd_conf *mdev, u64 val) __must_hold(local)
2728 {
2729 if (mdev->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
2730 return;
2731
2732 if (val == 0) {
2733 drbd_uuid_move_history(mdev);
2734 mdev->ldev->md.uuid[UI_HISTORY_START] = mdev->ldev->md.uuid[UI_BITMAP];
2735 mdev->ldev->md.uuid[UI_BITMAP] = 0;
2736 } else {
2737 unsigned long long bm_uuid = mdev->ldev->md.uuid[UI_BITMAP];
2738 if (bm_uuid)
2739 dev_warn(DEV, "bm UUID was already set: %llX\n", bm_uuid);
2740
2741 mdev->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
2742 }
2743 drbd_md_mark_dirty(mdev);
2744 }
2745
2746 /**
2747 * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
2748 * @mdev: DRBD device.
2749 *
2750 * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
2751 */
2752 int drbd_bmio_set_n_write(struct drbd_conf *mdev)
2753 {
2754 int rv = -EIO;
2755
2756 if (get_ldev_if_state(mdev, D_ATTACHING)) {
2757 drbd_md_set_flag(mdev, MDF_FULL_SYNC);
2758 drbd_md_sync(mdev);
2759 drbd_bm_set_all(mdev);
2760
2761 rv = drbd_bm_write(mdev);
2762
2763 if (!rv) {
2764 drbd_md_clear_flag(mdev, MDF_FULL_SYNC);
2765 drbd_md_sync(mdev);
2766 }
2767
2768 put_ldev(mdev);
2769 }
2770
2771 return rv;
2772 }
2773
2774 /**
2775 * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
2776 * @mdev: DRBD device.
2777 *
2778 * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
2779 */
2780 int drbd_bmio_clear_n_write(struct drbd_conf *mdev)
2781 {
2782 int rv = -EIO;
2783
2784 drbd_resume_al(mdev);
2785 if (get_ldev_if_state(mdev, D_ATTACHING)) {
2786 drbd_bm_clear_all(mdev);
2787 rv = drbd_bm_write(mdev);
2788 put_ldev(mdev);
2789 }
2790
2791 return rv;
2792 }
2793
2794 static int w_bitmap_io(struct drbd_work *w, int unused)
2795 {
2796 struct bm_io_work *work = container_of(w, struct bm_io_work, w);
2797 struct drbd_conf *mdev = w->mdev;
2798 int rv = -EIO;
2799
2800 D_ASSERT(atomic_read(&mdev->ap_bio_cnt) == 0);
2801
2802 if (get_ldev(mdev)) {
2803 drbd_bm_lock(mdev, work->why, work->flags);
2804 rv = work->io_fn(mdev);
2805 drbd_bm_unlock(mdev);
2806 put_ldev(mdev);
2807 }
2808
2809 clear_bit(BITMAP_IO, &mdev->flags);
2810 smp_mb__after_clear_bit();
2811 wake_up(&mdev->misc_wait);
2812
2813 if (work->done)
2814 work->done(mdev, rv);
2815
2816 clear_bit(BITMAP_IO_QUEUED, &mdev->flags);
2817 work->why = NULL;
2818 work->flags = 0;
2819
2820 return 1;
2821 }
2822
2823 void drbd_ldev_destroy(struct drbd_conf *mdev)
2824 {
2825 lc_destroy(mdev->resync);
2826 mdev->resync = NULL;
2827 lc_destroy(mdev->act_log);
2828 mdev->act_log = NULL;
2829 __no_warn(local,
2830 drbd_free_bc(mdev->ldev);
2831 mdev->ldev = NULL;);
2832
2833 if (mdev->md_io_tmpp) {
2834 __free_page(mdev->md_io_tmpp);
2835 mdev->md_io_tmpp = NULL;
2836 }
2837 clear_bit(GO_DISKLESS, &mdev->flags);
2838 }
2839
2840 static int w_go_diskless(struct drbd_work *w, int unused)
2841 {
2842 struct drbd_conf *mdev = w->mdev;
2843
2844 D_ASSERT(mdev->state.disk == D_FAILED);
2845 /* we cannot assert local_cnt == 0 here, as get_ldev_if_state will
2846 * inc/dec it frequently. Once we are D_DISKLESS, no one will touch
2847 * the protected members anymore, though, so once put_ldev reaches zero
2848 * again, it will be safe to free them. */
2849 drbd_force_state(mdev, NS(disk, D_DISKLESS));
2850 return 1;
2851 }
2852
2853 void drbd_go_diskless(struct drbd_conf *mdev)
2854 {
2855 D_ASSERT(mdev->state.disk == D_FAILED);
2856 if (!test_and_set_bit(GO_DISKLESS, &mdev->flags))
2857 drbd_queue_work(&mdev->tconn->data.work, &mdev->go_diskless);
2858 }
2859
2860 /**
2861 * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
2862 * @mdev: DRBD device.
2863 * @io_fn: IO callback to be called when bitmap IO is possible
2864 * @done: callback to be called after the bitmap IO was performed
2865 * @why: Descriptive text of the reason for doing the IO
2866 *
2867 * While IO on the bitmap happens we freeze application IO thus we ensure
2868 * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
2869 * called from worker context. It MUST NOT be used while a previous such
2870 * work is still pending!
2871 */
2872 void drbd_queue_bitmap_io(struct drbd_conf *mdev,
2873 int (*io_fn)(struct drbd_conf *),
2874 void (*done)(struct drbd_conf *, int),
2875 char *why, enum bm_flag flags)
2876 {
2877 D_ASSERT(current == mdev->tconn->worker.task);
2878
2879 D_ASSERT(!test_bit(BITMAP_IO_QUEUED, &mdev->flags));
2880 D_ASSERT(!test_bit(BITMAP_IO, &mdev->flags));
2881 D_ASSERT(list_empty(&mdev->bm_io_work.w.list));
2882 if (mdev->bm_io_work.why)
2883 dev_err(DEV, "FIXME going to queue '%s' but '%s' still pending?\n",
2884 why, mdev->bm_io_work.why);
2885
2886 mdev->bm_io_work.io_fn = io_fn;
2887 mdev->bm_io_work.done = done;
2888 mdev->bm_io_work.why = why;
2889 mdev->bm_io_work.flags = flags;
2890
2891 spin_lock_irq(&mdev->tconn->req_lock);
2892 set_bit(BITMAP_IO, &mdev->flags);
2893 if (atomic_read(&mdev->ap_bio_cnt) == 0) {
2894 if (!test_and_set_bit(BITMAP_IO_QUEUED, &mdev->flags))
2895 drbd_queue_work(&mdev->tconn->data.work, &mdev->bm_io_work.w);
2896 }
2897 spin_unlock_irq(&mdev->tconn->req_lock);
2898 }
2899
2900 /**
2901 * drbd_bitmap_io() - Does an IO operation on the whole bitmap
2902 * @mdev: DRBD device.
2903 * @io_fn: IO callback to be called when bitmap IO is possible
2904 * @why: Descriptive text of the reason for doing the IO
2905 *
2906 * freezes application IO while that the actual IO operations runs. This
2907 * functions MAY NOT be called from worker context.
2908 */
2909 int drbd_bitmap_io(struct drbd_conf *mdev, int (*io_fn)(struct drbd_conf *),
2910 char *why, enum bm_flag flags)
2911 {
2912 int rv;
2913
2914 D_ASSERT(current != mdev->tconn->worker.task);
2915
2916 if ((flags & BM_LOCKED_SET_ALLOWED) == 0)
2917 drbd_suspend_io(mdev);
2918
2919 drbd_bm_lock(mdev, why, flags);
2920 rv = io_fn(mdev);
2921 drbd_bm_unlock(mdev);
2922
2923 if ((flags & BM_LOCKED_SET_ALLOWED) == 0)
2924 drbd_resume_io(mdev);
2925
2926 return rv;
2927 }
2928
2929 void drbd_md_set_flag(struct drbd_conf *mdev, int flag) __must_hold(local)
2930 {
2931 if ((mdev->ldev->md.flags & flag) != flag) {
2932 drbd_md_mark_dirty(mdev);
2933 mdev->ldev->md.flags |= flag;
2934 }
2935 }
2936
2937 void drbd_md_clear_flag(struct drbd_conf *mdev, int flag) __must_hold(local)
2938 {
2939 if ((mdev->ldev->md.flags & flag) != 0) {
2940 drbd_md_mark_dirty(mdev);
2941 mdev->ldev->md.flags &= ~flag;
2942 }
2943 }
2944 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
2945 {
2946 return (bdev->md.flags & flag) != 0;
2947 }
2948
2949 static void md_sync_timer_fn(unsigned long data)
2950 {
2951 struct drbd_conf *mdev = (struct drbd_conf *) data;
2952
2953 drbd_queue_work_front(&mdev->tconn->data.work, &mdev->md_sync_work);
2954 }
2955
2956 static int w_md_sync(struct drbd_work *w, int unused)
2957 {
2958 struct drbd_conf *mdev = w->mdev;
2959
2960 dev_warn(DEV, "md_sync_timer expired! Worker calls drbd_md_sync().\n");
2961 #ifdef DEBUG
2962 dev_warn(DEV, "last md_mark_dirty: %s:%u\n",
2963 mdev->last_md_mark_dirty.func, mdev->last_md_mark_dirty.line);
2964 #endif
2965 drbd_md_sync(mdev);
2966 return 1;
2967 }
2968
2969 const char *cmdname(enum drbd_packet cmd)
2970 {
2971 /* THINK may need to become several global tables
2972 * when we want to support more than
2973 * one PRO_VERSION */
2974 static const char *cmdnames[] = {
2975 [P_DATA] = "Data",
2976 [P_DATA_REPLY] = "DataReply",
2977 [P_RS_DATA_REPLY] = "RSDataReply",
2978 [P_BARRIER] = "Barrier",
2979 [P_BITMAP] = "ReportBitMap",
2980 [P_BECOME_SYNC_TARGET] = "BecomeSyncTarget",
2981 [P_BECOME_SYNC_SOURCE] = "BecomeSyncSource",
2982 [P_UNPLUG_REMOTE] = "UnplugRemote",
2983 [P_DATA_REQUEST] = "DataRequest",
2984 [P_RS_DATA_REQUEST] = "RSDataRequest",
2985 [P_SYNC_PARAM] = "SyncParam",
2986 [P_SYNC_PARAM89] = "SyncParam89",
2987 [P_PROTOCOL] = "ReportProtocol",
2988 [P_UUIDS] = "ReportUUIDs",
2989 [P_SIZES] = "ReportSizes",
2990 [P_STATE] = "ReportState",
2991 [P_SYNC_UUID] = "ReportSyncUUID",
2992 [P_AUTH_CHALLENGE] = "AuthChallenge",
2993 [P_AUTH_RESPONSE] = "AuthResponse",
2994 [P_PING] = "Ping",
2995 [P_PING_ACK] = "PingAck",
2996 [P_RECV_ACK] = "RecvAck",
2997 [P_WRITE_ACK] = "WriteAck",
2998 [P_RS_WRITE_ACK] = "RSWriteAck",
2999 [P_DISCARD_ACK] = "DiscardAck",
3000 [P_NEG_ACK] = "NegAck",
3001 [P_NEG_DREPLY] = "NegDReply",
3002 [P_NEG_RS_DREPLY] = "NegRSDReply",
3003 [P_BARRIER_ACK] = "BarrierAck",
3004 [P_STATE_CHG_REQ] = "StateChgRequest",
3005 [P_STATE_CHG_REPLY] = "StateChgReply",
3006 [P_OV_REQUEST] = "OVRequest",
3007 [P_OV_REPLY] = "OVReply",
3008 [P_OV_RESULT] = "OVResult",
3009 [P_CSUM_RS_REQUEST] = "CsumRSRequest",
3010 [P_RS_IS_IN_SYNC] = "CsumRSIsInSync",
3011 [P_COMPRESSED_BITMAP] = "CBitmap",
3012 [P_DELAY_PROBE] = "DelayProbe",
3013 [P_OUT_OF_SYNC] = "OutOfSync",
3014 [P_MAX_CMD] = NULL,
3015 };
3016
3017 if (cmd == P_HAND_SHAKE_M)
3018 return "HandShakeM";
3019 if (cmd == P_HAND_SHAKE_S)
3020 return "HandShakeS";
3021 if (cmd == P_HAND_SHAKE)
3022 return "HandShake";
3023 if (cmd >= P_MAX_CMD)
3024 return "Unknown";
3025 return cmdnames[cmd];
3026 }
3027
3028 #ifdef CONFIG_DRBD_FAULT_INJECTION
3029 /* Fault insertion support including random number generator shamelessly
3030 * stolen from kernel/rcutorture.c */
3031 struct fault_random_state {
3032 unsigned long state;
3033 unsigned long count;
3034 };
3035
3036 #define FAULT_RANDOM_MULT 39916801 /* prime */
3037 #define FAULT_RANDOM_ADD 479001701 /* prime */
3038 #define FAULT_RANDOM_REFRESH 10000
3039
3040 /*
3041 * Crude but fast random-number generator. Uses a linear congruential
3042 * generator, with occasional help from get_random_bytes().
3043 */
3044 static unsigned long
3045 _drbd_fault_random(struct fault_random_state *rsp)
3046 {
3047 long refresh;
3048
3049 if (!rsp->count--) {
3050 get_random_bytes(&refresh, sizeof(refresh));
3051 rsp->state += refresh;
3052 rsp->count = FAULT_RANDOM_REFRESH;
3053 }
3054 rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3055 return swahw32(rsp->state);
3056 }
3057
3058 static char *
3059 _drbd_fault_str(unsigned int type) {
3060 static char *_faults[] = {
3061 [DRBD_FAULT_MD_WR] = "Meta-data write",
3062 [DRBD_FAULT_MD_RD] = "Meta-data read",
3063 [DRBD_FAULT_RS_WR] = "Resync write",
3064 [DRBD_FAULT_RS_RD] = "Resync read",
3065 [DRBD_FAULT_DT_WR] = "Data write",
3066 [DRBD_FAULT_DT_RD] = "Data read",
3067 [DRBD_FAULT_DT_RA] = "Data read ahead",
3068 [DRBD_FAULT_BM_ALLOC] = "BM allocation",
3069 [DRBD_FAULT_AL_EE] = "EE allocation",
3070 [DRBD_FAULT_RECEIVE] = "receive data corruption",
3071 };
3072
3073 return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3074 }
3075
3076 unsigned int
3077 _drbd_insert_fault(struct drbd_conf *mdev, unsigned int type)
3078 {
3079 static struct fault_random_state rrs = {0, 0};
3080
3081 unsigned int ret = (
3082 (fault_devs == 0 ||
3083 ((1 << mdev_to_minor(mdev)) & fault_devs) != 0) &&
3084 (((_drbd_fault_random(&rrs) % 100) + 1) <= fault_rate));
3085
3086 if (ret) {
3087 fault_count++;
3088
3089 if (__ratelimit(&drbd_ratelimit_state))
3090 dev_warn(DEV, "***Simulating %s failure\n",
3091 _drbd_fault_str(type));
3092 }
3093
3094 return ret;
3095 }
3096 #endif
3097
3098 const char *drbd_buildtag(void)
3099 {
3100 /* DRBD built from external sources has here a reference to the
3101 git hash of the source code. */
3102
3103 static char buildtag[38] = "\0uilt-in";
3104
3105 if (buildtag[0] == 0) {
3106 #ifdef CONFIG_MODULES
3107 if (THIS_MODULE != NULL)
3108 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3109 else
3110 #endif
3111 buildtag[0] = 'b';
3112 }
3113
3114 return buildtag;
3115 }
3116
3117 module_init(drbd_init)
3118 module_exit(drbd_cleanup)
3119
3120 EXPORT_SYMBOL(drbd_conn_str);
3121 EXPORT_SYMBOL(drbd_role_str);
3122 EXPORT_SYMBOL(drbd_disk_str);
3123 EXPORT_SYMBOL(drbd_set_st_err_str);
This page took 0.200049 seconds and 5 git commands to generate.