2 * linux/drivers/block/loop.c
4 * Written by Theodore Ts'o, 3/29/93
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
21 * Loadable modules and other fixes by AK, 1998
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
37 * Jens Axboe <axboe@suse.de>, Nov 2000
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
80 #include <asm/uaccess.h>
82 static DEFINE_IDR(loop_index_idr
);
83 static DEFINE_MUTEX(loop_index_mutex
);
86 static int part_shift
;
91 static int transfer_none(struct loop_device
*lo
, int cmd
,
92 struct page
*raw_page
, unsigned raw_off
,
93 struct page
*loop_page
, unsigned loop_off
,
94 int size
, sector_t real_block
)
96 char *raw_buf
= kmap_atomic(raw_page
) + raw_off
;
97 char *loop_buf
= kmap_atomic(loop_page
) + loop_off
;
100 memcpy(loop_buf
, raw_buf
, size
);
102 memcpy(raw_buf
, loop_buf
, size
);
104 kunmap_atomic(loop_buf
);
105 kunmap_atomic(raw_buf
);
110 static int transfer_xor(struct loop_device
*lo
, int cmd
,
111 struct page
*raw_page
, unsigned raw_off
,
112 struct page
*loop_page
, unsigned loop_off
,
113 int size
, sector_t real_block
)
115 char *raw_buf
= kmap_atomic(raw_page
) + raw_off
;
116 char *loop_buf
= kmap_atomic(loop_page
) + loop_off
;
117 char *in
, *out
, *key
;
128 key
= lo
->lo_encrypt_key
;
129 keysize
= lo
->lo_encrypt_key_size
;
130 for (i
= 0; i
< size
; i
++)
131 *out
++ = *in
++ ^ key
[(i
& 511) % keysize
];
133 kunmap_atomic(loop_buf
);
134 kunmap_atomic(raw_buf
);
139 static int xor_init(struct loop_device
*lo
, const struct loop_info64
*info
)
141 if (unlikely(info
->lo_encrypt_key_size
<= 0))
146 static struct loop_func_table none_funcs
= {
147 .number
= LO_CRYPT_NONE
,
148 .transfer
= transfer_none
,
151 static struct loop_func_table xor_funcs
= {
152 .number
= LO_CRYPT_XOR
,
153 .transfer
= transfer_xor
,
157 /* xfer_funcs[0] is special - its release function is never called */
158 static struct loop_func_table
*xfer_funcs
[MAX_LO_CRYPT
] = {
163 static loff_t
get_size(loff_t offset
, loff_t sizelimit
, struct file
*file
)
167 /* Compute loopsize in bytes */
168 loopsize
= i_size_read(file
->f_mapping
->host
);
171 /* offset is beyond i_size, weird but possible */
175 if (sizelimit
> 0 && sizelimit
< loopsize
)
176 loopsize
= sizelimit
;
178 * Unfortunately, if we want to do I/O on the device,
179 * the number of 512-byte sectors has to fit into a sector_t.
181 return loopsize
>> 9;
184 static loff_t
get_loop_size(struct loop_device
*lo
, struct file
*file
)
186 return get_size(lo
->lo_offset
, lo
->lo_sizelimit
, file
);
190 figure_loop_size(struct loop_device
*lo
, loff_t offset
, loff_t sizelimit
)
192 loff_t size
= get_size(offset
, sizelimit
, lo
->lo_backing_file
);
193 sector_t x
= (sector_t
)size
;
194 struct block_device
*bdev
= lo
->lo_device
;
196 if (unlikely((loff_t
)x
!= size
))
198 if (lo
->lo_offset
!= offset
)
199 lo
->lo_offset
= offset
;
200 if (lo
->lo_sizelimit
!= sizelimit
)
201 lo
->lo_sizelimit
= sizelimit
;
202 set_capacity(lo
->lo_disk
, x
);
203 bd_set_size(bdev
, (loff_t
)get_capacity(bdev
->bd_disk
) << 9);
204 /* let user-space know about the new size */
205 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
210 lo_do_transfer(struct loop_device
*lo
, int cmd
,
211 struct page
*rpage
, unsigned roffs
,
212 struct page
*lpage
, unsigned loffs
,
213 int size
, sector_t rblock
)
215 if (unlikely(!lo
->transfer
))
218 return lo
->transfer(lo
, cmd
, rpage
, roffs
, lpage
, loffs
, size
, rblock
);
222 * __do_lo_send_write - helper for writing data to a loop device
224 * This helper just factors out common code between do_lo_send_direct_write()
225 * and do_lo_send_write().
227 static int __do_lo_send_write(struct file
*file
,
228 u8
*buf
, const int len
, loff_t pos
)
231 mm_segment_t old_fs
= get_fs();
233 file_start_write(file
);
235 bw
= file
->f_op
->write(file
, buf
, len
, &pos
);
237 file_end_write(file
);
238 if (likely(bw
== len
))
240 printk_ratelimited(KERN_ERR
"loop: Write error at byte offset %llu, length %i.\n",
241 (unsigned long long)pos
, len
);
248 * do_lo_send_direct_write - helper for writing data to a loop device
250 * This is the fast, non-transforming version that does not need double
253 static int do_lo_send_direct_write(struct loop_device
*lo
,
254 struct bio_vec
*bvec
, loff_t pos
, struct page
*page
)
256 ssize_t bw
= __do_lo_send_write(lo
->lo_backing_file
,
257 kmap(bvec
->bv_page
) + bvec
->bv_offset
,
259 kunmap(bvec
->bv_page
);
265 * do_lo_send_write - helper for writing data to a loop device
267 * This is the slow, transforming version that needs to double buffer the
268 * data as it cannot do the transformations in place without having direct
269 * access to the destination pages of the backing file.
271 static int do_lo_send_write(struct loop_device
*lo
, struct bio_vec
*bvec
,
272 loff_t pos
, struct page
*page
)
274 int ret
= lo_do_transfer(lo
, WRITE
, page
, 0, bvec
->bv_page
,
275 bvec
->bv_offset
, bvec
->bv_len
, pos
>> 9);
277 return __do_lo_send_write(lo
->lo_backing_file
,
278 page_address(page
), bvec
->bv_len
,
280 printk_ratelimited(KERN_ERR
"loop: Transfer error at byte offset %llu, "
281 "length %i.\n", (unsigned long long)pos
, bvec
->bv_len
);
287 static int lo_send(struct loop_device
*lo
, struct bio
*bio
, loff_t pos
)
289 int (*do_lo_send
)(struct loop_device
*, struct bio_vec
*, loff_t
,
292 struct bvec_iter iter
;
293 struct page
*page
= NULL
;
296 if (lo
->transfer
!= transfer_none
) {
297 page
= alloc_page(GFP_NOIO
| __GFP_HIGHMEM
);
301 do_lo_send
= do_lo_send_write
;
303 do_lo_send
= do_lo_send_direct_write
;
306 bio_for_each_segment(bvec
, bio
, iter
) {
307 ret
= do_lo_send(lo
, &bvec
, pos
, page
);
319 printk_ratelimited(KERN_ERR
"loop: Failed to allocate temporary page for write.\n");
324 struct lo_read_data
{
325 struct loop_device
*lo
;
332 lo_splice_actor(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
,
333 struct splice_desc
*sd
)
335 struct lo_read_data
*p
= sd
->u
.data
;
336 struct loop_device
*lo
= p
->lo
;
337 struct page
*page
= buf
->page
;
341 IV
= ((sector_t
) page
->index
<< (PAGE_CACHE_SHIFT
- 9)) +
347 if (lo_do_transfer(lo
, READ
, page
, buf
->offset
, p
->page
, p
->offset
, size
, IV
)) {
348 printk_ratelimited(KERN_ERR
"loop: transfer error block %ld\n",
353 flush_dcache_page(p
->page
);
362 lo_direct_splice_actor(struct pipe_inode_info
*pipe
, struct splice_desc
*sd
)
364 return __splice_from_pipe(pipe
, sd
, lo_splice_actor
);
368 do_lo_receive(struct loop_device
*lo
,
369 struct bio_vec
*bvec
, int bsize
, loff_t pos
)
371 struct lo_read_data cookie
;
372 struct splice_desc sd
;
377 cookie
.page
= bvec
->bv_page
;
378 cookie
.offset
= bvec
->bv_offset
;
379 cookie
.bsize
= bsize
;
382 sd
.total_len
= bvec
->bv_len
;
387 file
= lo
->lo_backing_file
;
388 retval
= splice_direct_to_actor(file
, &sd
, lo_direct_splice_actor
);
394 lo_receive(struct loop_device
*lo
, struct bio
*bio
, int bsize
, loff_t pos
)
397 struct bvec_iter iter
;
400 bio_for_each_segment(bvec
, bio
, iter
) {
401 s
= do_lo_receive(lo
, &bvec
, bsize
, pos
);
405 if (s
!= bvec
.bv_len
) {
414 static int do_bio_filebacked(struct loop_device
*lo
, struct bio
*bio
)
419 pos
= ((loff_t
) bio
->bi_iter
.bi_sector
<< 9) + lo
->lo_offset
;
421 if (bio_rw(bio
) == WRITE
) {
422 struct file
*file
= lo
->lo_backing_file
;
424 if (bio
->bi_rw
& REQ_FLUSH
) {
425 ret
= vfs_fsync(file
, 0);
426 if (unlikely(ret
&& ret
!= -EINVAL
)) {
433 * We use punch hole to reclaim the free space used by the
434 * image a.k.a. discard. However we do not support discard if
435 * encryption is enabled, because it may give an attacker
436 * useful information.
438 if (bio
->bi_rw
& REQ_DISCARD
) {
439 struct file
*file
= lo
->lo_backing_file
;
440 int mode
= FALLOC_FL_PUNCH_HOLE
| FALLOC_FL_KEEP_SIZE
;
442 if ((!file
->f_op
->fallocate
) ||
443 lo
->lo_encrypt_key_size
) {
447 ret
= file
->f_op
->fallocate(file
, mode
, pos
,
448 bio
->bi_iter
.bi_size
);
449 if (unlikely(ret
&& ret
!= -EINVAL
&&
455 ret
= lo_send(lo
, bio
, pos
);
457 if ((bio
->bi_rw
& REQ_FUA
) && !ret
) {
458 ret
= vfs_fsync(file
, 0);
459 if (unlikely(ret
&& ret
!= -EINVAL
))
463 ret
= lo_receive(lo
, bio
, lo
->lo_blocksize
, pos
);
470 * Add bio to back of pending list
472 static void loop_add_bio(struct loop_device
*lo
, struct bio
*bio
)
475 bio_list_add(&lo
->lo_bio_list
, bio
);
479 * Grab first pending buffer
481 static struct bio
*loop_get_bio(struct loop_device
*lo
)
484 return bio_list_pop(&lo
->lo_bio_list
);
487 static void loop_make_request(struct request_queue
*q
, struct bio
*old_bio
)
489 struct loop_device
*lo
= q
->queuedata
;
490 int rw
= bio_rw(old_bio
);
495 BUG_ON(!lo
|| (rw
!= READ
&& rw
!= WRITE
));
497 spin_lock_irq(&lo
->lo_lock
);
498 if (lo
->lo_state
!= Lo_bound
)
500 if (unlikely(rw
== WRITE
&& (lo
->lo_flags
& LO_FLAGS_READ_ONLY
)))
502 if (lo
->lo_bio_count
>= q
->nr_congestion_on
)
503 wait_event_lock_irq(lo
->lo_req_wait
,
504 lo
->lo_bio_count
< q
->nr_congestion_off
,
506 loop_add_bio(lo
, old_bio
);
507 wake_up(&lo
->lo_event
);
508 spin_unlock_irq(&lo
->lo_lock
);
512 spin_unlock_irq(&lo
->lo_lock
);
513 bio_io_error(old_bio
);
516 struct switch_request
{
518 struct completion wait
;
521 static void do_loop_switch(struct loop_device
*, struct switch_request
*);
523 static inline void loop_handle_bio(struct loop_device
*lo
, struct bio
*bio
)
525 if (unlikely(!bio
->bi_bdev
)) {
526 do_loop_switch(lo
, bio
->bi_private
);
529 int ret
= do_bio_filebacked(lo
, bio
);
535 * worker thread that handles reads/writes to file backed loop devices,
536 * to avoid blocking in our make_request_fn. it also does loop decrypting
537 * on reads for block backed loop, as that is too heavy to do from
538 * b_end_io context where irqs may be disabled.
540 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before
541 * calling kthread_stop(). Therefore once kthread_should_stop() is
542 * true, make_request will not place any more requests. Therefore
543 * once kthread_should_stop() is true and lo_bio is NULL, we are
544 * done with the loop.
546 static int loop_thread(void *data
)
548 struct loop_device
*lo
= data
;
551 set_user_nice(current
, MIN_NICE
);
553 while (!kthread_should_stop() || !bio_list_empty(&lo
->lo_bio_list
)) {
555 wait_event_interruptible(lo
->lo_event
,
556 !bio_list_empty(&lo
->lo_bio_list
) ||
557 kthread_should_stop());
559 if (bio_list_empty(&lo
->lo_bio_list
))
561 spin_lock_irq(&lo
->lo_lock
);
562 bio
= loop_get_bio(lo
);
563 if (lo
->lo_bio_count
< lo
->lo_queue
->nr_congestion_off
)
564 wake_up(&lo
->lo_req_wait
);
565 spin_unlock_irq(&lo
->lo_lock
);
568 loop_handle_bio(lo
, bio
);
575 * loop_switch performs the hard work of switching a backing store.
576 * First it needs to flush existing IO, it does this by sending a magic
577 * BIO down the pipe. The completion of this BIO does the actual switch.
579 static int loop_switch(struct loop_device
*lo
, struct file
*file
)
581 struct switch_request w
;
582 struct bio
*bio
= bio_alloc(GFP_KERNEL
, 0);
585 init_completion(&w
.wait
);
587 bio
->bi_private
= &w
;
589 loop_make_request(lo
->lo_queue
, bio
);
590 wait_for_completion(&w
.wait
);
595 * Helper to flush the IOs in loop, but keeping loop thread running
597 static int loop_flush(struct loop_device
*lo
)
599 /* loop not yet configured, no running thread, nothing to flush */
603 return loop_switch(lo
, NULL
);
607 * Do the actual switch; called from the BIO completion routine
609 static void do_loop_switch(struct loop_device
*lo
, struct switch_request
*p
)
611 struct file
*file
= p
->file
;
612 struct file
*old_file
= lo
->lo_backing_file
;
613 struct address_space
*mapping
;
615 /* if no new file, only flush of queued bios requested */
619 mapping
= file
->f_mapping
;
620 mapping_set_gfp_mask(old_file
->f_mapping
, lo
->old_gfp_mask
);
621 lo
->lo_backing_file
= file
;
622 lo
->lo_blocksize
= S_ISBLK(mapping
->host
->i_mode
) ?
623 mapping
->host
->i_bdev
->bd_block_size
: PAGE_SIZE
;
624 lo
->old_gfp_mask
= mapping_gfp_mask(mapping
);
625 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
632 * loop_change_fd switched the backing store of a loopback device to
633 * a new file. This is useful for operating system installers to free up
634 * the original file and in High Availability environments to switch to
635 * an alternative location for the content in case of server meltdown.
636 * This can only work if the loop device is used read-only, and if the
637 * new backing store is the same size and type as the old backing store.
639 static int loop_change_fd(struct loop_device
*lo
, struct block_device
*bdev
,
642 struct file
*file
, *old_file
;
647 if (lo
->lo_state
!= Lo_bound
)
650 /* the loop device has to be read-only */
652 if (!(lo
->lo_flags
& LO_FLAGS_READ_ONLY
))
660 inode
= file
->f_mapping
->host
;
661 old_file
= lo
->lo_backing_file
;
665 if (!S_ISREG(inode
->i_mode
) && !S_ISBLK(inode
->i_mode
))
668 /* size of the new backing store needs to be the same */
669 if (get_loop_size(lo
, file
) != get_loop_size(lo
, old_file
))
673 error
= loop_switch(lo
, file
);
678 if (lo
->lo_flags
& LO_FLAGS_PARTSCAN
)
679 ioctl_by_bdev(bdev
, BLKRRPART
, 0);
688 static inline int is_loop_device(struct file
*file
)
690 struct inode
*i
= file
->f_mapping
->host
;
692 return i
&& S_ISBLK(i
->i_mode
) && MAJOR(i
->i_rdev
) == LOOP_MAJOR
;
695 /* loop sysfs attributes */
697 static ssize_t
loop_attr_show(struct device
*dev
, char *page
,
698 ssize_t (*callback
)(struct loop_device
*, char *))
700 struct gendisk
*disk
= dev_to_disk(dev
);
701 struct loop_device
*lo
= disk
->private_data
;
703 return callback(lo
, page
);
706 #define LOOP_ATTR_RO(_name) \
707 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
708 static ssize_t loop_attr_do_show_##_name(struct device *d, \
709 struct device_attribute *attr, char *b) \
711 return loop_attr_show(d, b, loop_attr_##_name##_show); \
713 static struct device_attribute loop_attr_##_name = \
714 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
716 static ssize_t
loop_attr_backing_file_show(struct loop_device
*lo
, char *buf
)
721 spin_lock_irq(&lo
->lo_lock
);
722 if (lo
->lo_backing_file
)
723 p
= d_path(&lo
->lo_backing_file
->f_path
, buf
, PAGE_SIZE
- 1);
724 spin_unlock_irq(&lo
->lo_lock
);
726 if (IS_ERR_OR_NULL(p
))
730 memmove(buf
, p
, ret
);
738 static ssize_t
loop_attr_offset_show(struct loop_device
*lo
, char *buf
)
740 return sprintf(buf
, "%llu\n", (unsigned long long)lo
->lo_offset
);
743 static ssize_t
loop_attr_sizelimit_show(struct loop_device
*lo
, char *buf
)
745 return sprintf(buf
, "%llu\n", (unsigned long long)lo
->lo_sizelimit
);
748 static ssize_t
loop_attr_autoclear_show(struct loop_device
*lo
, char *buf
)
750 int autoclear
= (lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
);
752 return sprintf(buf
, "%s\n", autoclear
? "1" : "0");
755 static ssize_t
loop_attr_partscan_show(struct loop_device
*lo
, char *buf
)
757 int partscan
= (lo
->lo_flags
& LO_FLAGS_PARTSCAN
);
759 return sprintf(buf
, "%s\n", partscan
? "1" : "0");
762 LOOP_ATTR_RO(backing_file
);
763 LOOP_ATTR_RO(offset
);
764 LOOP_ATTR_RO(sizelimit
);
765 LOOP_ATTR_RO(autoclear
);
766 LOOP_ATTR_RO(partscan
);
768 static struct attribute
*loop_attrs
[] = {
769 &loop_attr_backing_file
.attr
,
770 &loop_attr_offset
.attr
,
771 &loop_attr_sizelimit
.attr
,
772 &loop_attr_autoclear
.attr
,
773 &loop_attr_partscan
.attr
,
777 static struct attribute_group loop_attribute_group
= {
782 static int loop_sysfs_init(struct loop_device
*lo
)
784 return sysfs_create_group(&disk_to_dev(lo
->lo_disk
)->kobj
,
785 &loop_attribute_group
);
788 static void loop_sysfs_exit(struct loop_device
*lo
)
790 sysfs_remove_group(&disk_to_dev(lo
->lo_disk
)->kobj
,
791 &loop_attribute_group
);
794 static void loop_config_discard(struct loop_device
*lo
)
796 struct file
*file
= lo
->lo_backing_file
;
797 struct inode
*inode
= file
->f_mapping
->host
;
798 struct request_queue
*q
= lo
->lo_queue
;
801 * We use punch hole to reclaim the free space used by the
802 * image a.k.a. discard. However we do not support discard if
803 * encryption is enabled, because it may give an attacker
804 * useful information.
806 if ((!file
->f_op
->fallocate
) ||
807 lo
->lo_encrypt_key_size
) {
808 q
->limits
.discard_granularity
= 0;
809 q
->limits
.discard_alignment
= 0;
810 q
->limits
.max_discard_sectors
= 0;
811 q
->limits
.discard_zeroes_data
= 0;
812 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD
, q
);
816 q
->limits
.discard_granularity
= inode
->i_sb
->s_blocksize
;
817 q
->limits
.discard_alignment
= 0;
818 q
->limits
.max_discard_sectors
= UINT_MAX
>> 9;
819 q
->limits
.discard_zeroes_data
= 1;
820 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, q
);
823 static int loop_set_fd(struct loop_device
*lo
, fmode_t mode
,
824 struct block_device
*bdev
, unsigned int arg
)
826 struct file
*file
, *f
;
828 struct address_space
*mapping
;
829 unsigned lo_blocksize
;
834 /* This is safe, since we have a reference from open(). */
835 __module_get(THIS_MODULE
);
843 if (lo
->lo_state
!= Lo_unbound
)
846 /* Avoid recursion */
848 while (is_loop_device(f
)) {
849 struct loop_device
*l
;
851 if (f
->f_mapping
->host
->i_bdev
== bdev
)
854 l
= f
->f_mapping
->host
->i_bdev
->bd_disk
->private_data
;
855 if (l
->lo_state
== Lo_unbound
) {
859 f
= l
->lo_backing_file
;
862 mapping
= file
->f_mapping
;
863 inode
= mapping
->host
;
866 if (!S_ISREG(inode
->i_mode
) && !S_ISBLK(inode
->i_mode
))
869 if (!(file
->f_mode
& FMODE_WRITE
) || !(mode
& FMODE_WRITE
) ||
871 lo_flags
|= LO_FLAGS_READ_ONLY
;
873 lo_blocksize
= S_ISBLK(inode
->i_mode
) ?
874 inode
->i_bdev
->bd_block_size
: PAGE_SIZE
;
877 size
= get_loop_size(lo
, file
);
878 if ((loff_t
)(sector_t
)size
!= size
)
883 set_device_ro(bdev
, (lo_flags
& LO_FLAGS_READ_ONLY
) != 0);
885 lo
->lo_blocksize
= lo_blocksize
;
886 lo
->lo_device
= bdev
;
887 lo
->lo_flags
= lo_flags
;
888 lo
->lo_backing_file
= file
;
889 lo
->transfer
= transfer_none
;
891 lo
->lo_sizelimit
= 0;
892 lo
->lo_bio_count
= 0;
893 lo
->old_gfp_mask
= mapping_gfp_mask(mapping
);
894 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
896 bio_list_init(&lo
->lo_bio_list
);
898 if (!(lo_flags
& LO_FLAGS_READ_ONLY
) && file
->f_op
->fsync
)
899 blk_queue_flush(lo
->lo_queue
, REQ_FLUSH
);
901 set_capacity(lo
->lo_disk
, size
);
902 bd_set_size(bdev
, size
<< 9);
904 /* let user-space know about the new size */
905 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
907 set_blocksize(bdev
, lo_blocksize
);
909 lo
->lo_thread
= kthread_create(loop_thread
, lo
, "loop%d",
911 if (IS_ERR(lo
->lo_thread
)) {
912 error
= PTR_ERR(lo
->lo_thread
);
915 lo
->lo_state
= Lo_bound
;
916 wake_up_process(lo
->lo_thread
);
918 lo
->lo_flags
|= LO_FLAGS_PARTSCAN
;
919 if (lo
->lo_flags
& LO_FLAGS_PARTSCAN
)
920 ioctl_by_bdev(bdev
, BLKRRPART
, 0);
922 /* Grab the block_device to prevent its destruction after we
923 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
930 lo
->lo_thread
= NULL
;
931 lo
->lo_device
= NULL
;
932 lo
->lo_backing_file
= NULL
;
934 set_capacity(lo
->lo_disk
, 0);
935 invalidate_bdev(bdev
);
936 bd_set_size(bdev
, 0);
937 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
938 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
);
939 lo
->lo_state
= Lo_unbound
;
943 /* This is safe: open() is still holding a reference. */
944 module_put(THIS_MODULE
);
949 loop_release_xfer(struct loop_device
*lo
)
952 struct loop_func_table
*xfer
= lo
->lo_encryption
;
956 err
= xfer
->release(lo
);
958 lo
->lo_encryption
= NULL
;
959 module_put(xfer
->owner
);
965 loop_init_xfer(struct loop_device
*lo
, struct loop_func_table
*xfer
,
966 const struct loop_info64
*i
)
971 struct module
*owner
= xfer
->owner
;
973 if (!try_module_get(owner
))
976 err
= xfer
->init(lo
, i
);
980 lo
->lo_encryption
= xfer
;
985 static int loop_clr_fd(struct loop_device
*lo
)
987 struct file
*filp
= lo
->lo_backing_file
;
988 gfp_t gfp
= lo
->old_gfp_mask
;
989 struct block_device
*bdev
= lo
->lo_device
;
991 if (lo
->lo_state
!= Lo_bound
)
995 * If we've explicitly asked to tear down the loop device,
996 * and it has an elevated reference count, set it for auto-teardown when
997 * the last reference goes away. This stops $!~#$@ udev from
998 * preventing teardown because it decided that it needs to run blkid on
999 * the loopback device whenever they appear. xfstests is notorious for
1000 * failing tests because blkid via udev races with a losetup
1001 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1002 * command to fail with EBUSY.
1004 if (lo
->lo_refcnt
> 1) {
1005 lo
->lo_flags
|= LO_FLAGS_AUTOCLEAR
;
1006 mutex_unlock(&lo
->lo_ctl_mutex
);
1013 spin_lock_irq(&lo
->lo_lock
);
1014 lo
->lo_state
= Lo_rundown
;
1015 spin_unlock_irq(&lo
->lo_lock
);
1017 kthread_stop(lo
->lo_thread
);
1019 spin_lock_irq(&lo
->lo_lock
);
1020 lo
->lo_backing_file
= NULL
;
1021 spin_unlock_irq(&lo
->lo_lock
);
1023 loop_release_xfer(lo
);
1024 lo
->transfer
= NULL
;
1026 lo
->lo_device
= NULL
;
1027 lo
->lo_encryption
= NULL
;
1029 lo
->lo_sizelimit
= 0;
1030 lo
->lo_encrypt_key_size
= 0;
1031 lo
->lo_thread
= NULL
;
1032 memset(lo
->lo_encrypt_key
, 0, LO_KEY_SIZE
);
1033 memset(lo
->lo_crypt_name
, 0, LO_NAME_SIZE
);
1034 memset(lo
->lo_file_name
, 0, LO_NAME_SIZE
);
1037 invalidate_bdev(bdev
);
1039 set_capacity(lo
->lo_disk
, 0);
1040 loop_sysfs_exit(lo
);
1042 bd_set_size(bdev
, 0);
1043 /* let user-space know about this change */
1044 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
1046 mapping_set_gfp_mask(filp
->f_mapping
, gfp
);
1047 lo
->lo_state
= Lo_unbound
;
1048 /* This is safe: open() is still holding a reference. */
1049 module_put(THIS_MODULE
);
1050 if (lo
->lo_flags
& LO_FLAGS_PARTSCAN
&& bdev
)
1051 ioctl_by_bdev(bdev
, BLKRRPART
, 0);
1054 lo
->lo_disk
->flags
|= GENHD_FL_NO_PART_SCAN
;
1055 mutex_unlock(&lo
->lo_ctl_mutex
);
1057 * Need not hold lo_ctl_mutex to fput backing file.
1058 * Calling fput holding lo_ctl_mutex triggers a circular
1059 * lock dependency possibility warning as fput can take
1060 * bd_mutex which is usually taken before lo_ctl_mutex.
1067 loop_set_status(struct loop_device
*lo
, const struct loop_info64
*info
)
1070 struct loop_func_table
*xfer
;
1071 kuid_t uid
= current_uid();
1073 if (lo
->lo_encrypt_key_size
&&
1074 !uid_eq(lo
->lo_key_owner
, uid
) &&
1075 !capable(CAP_SYS_ADMIN
))
1077 if (lo
->lo_state
!= Lo_bound
)
1079 if ((unsigned int) info
->lo_encrypt_key_size
> LO_KEY_SIZE
)
1082 err
= loop_release_xfer(lo
);
1086 if (info
->lo_encrypt_type
) {
1087 unsigned int type
= info
->lo_encrypt_type
;
1089 if (type
>= MAX_LO_CRYPT
)
1091 xfer
= xfer_funcs
[type
];
1097 err
= loop_init_xfer(lo
, xfer
, info
);
1101 if (lo
->lo_offset
!= info
->lo_offset
||
1102 lo
->lo_sizelimit
!= info
->lo_sizelimit
)
1103 if (figure_loop_size(lo
, info
->lo_offset
, info
->lo_sizelimit
))
1106 loop_config_discard(lo
);
1108 memcpy(lo
->lo_file_name
, info
->lo_file_name
, LO_NAME_SIZE
);
1109 memcpy(lo
->lo_crypt_name
, info
->lo_crypt_name
, LO_NAME_SIZE
);
1110 lo
->lo_file_name
[LO_NAME_SIZE
-1] = 0;
1111 lo
->lo_crypt_name
[LO_NAME_SIZE
-1] = 0;
1115 lo
->transfer
= xfer
->transfer
;
1116 lo
->ioctl
= xfer
->ioctl
;
1118 if ((lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
) !=
1119 (info
->lo_flags
& LO_FLAGS_AUTOCLEAR
))
1120 lo
->lo_flags
^= LO_FLAGS_AUTOCLEAR
;
1122 if ((info
->lo_flags
& LO_FLAGS_PARTSCAN
) &&
1123 !(lo
->lo_flags
& LO_FLAGS_PARTSCAN
)) {
1124 lo
->lo_flags
|= LO_FLAGS_PARTSCAN
;
1125 lo
->lo_disk
->flags
&= ~GENHD_FL_NO_PART_SCAN
;
1126 ioctl_by_bdev(lo
->lo_device
, BLKRRPART
, 0);
1129 lo
->lo_encrypt_key_size
= info
->lo_encrypt_key_size
;
1130 lo
->lo_init
[0] = info
->lo_init
[0];
1131 lo
->lo_init
[1] = info
->lo_init
[1];
1132 if (info
->lo_encrypt_key_size
) {
1133 memcpy(lo
->lo_encrypt_key
, info
->lo_encrypt_key
,
1134 info
->lo_encrypt_key_size
);
1135 lo
->lo_key_owner
= uid
;
1142 loop_get_status(struct loop_device
*lo
, struct loop_info64
*info
)
1144 struct file
*file
= lo
->lo_backing_file
;
1148 if (lo
->lo_state
!= Lo_bound
)
1150 error
= vfs_getattr(&file
->f_path
, &stat
);
1153 memset(info
, 0, sizeof(*info
));
1154 info
->lo_number
= lo
->lo_number
;
1155 info
->lo_device
= huge_encode_dev(stat
.dev
);
1156 info
->lo_inode
= stat
.ino
;
1157 info
->lo_rdevice
= huge_encode_dev(lo
->lo_device
? stat
.rdev
: stat
.dev
);
1158 info
->lo_offset
= lo
->lo_offset
;
1159 info
->lo_sizelimit
= lo
->lo_sizelimit
;
1160 info
->lo_flags
= lo
->lo_flags
;
1161 memcpy(info
->lo_file_name
, lo
->lo_file_name
, LO_NAME_SIZE
);
1162 memcpy(info
->lo_crypt_name
, lo
->lo_crypt_name
, LO_NAME_SIZE
);
1163 info
->lo_encrypt_type
=
1164 lo
->lo_encryption
? lo
->lo_encryption
->number
: 0;
1165 if (lo
->lo_encrypt_key_size
&& capable(CAP_SYS_ADMIN
)) {
1166 info
->lo_encrypt_key_size
= lo
->lo_encrypt_key_size
;
1167 memcpy(info
->lo_encrypt_key
, lo
->lo_encrypt_key
,
1168 lo
->lo_encrypt_key_size
);
1174 loop_info64_from_old(const struct loop_info
*info
, struct loop_info64
*info64
)
1176 memset(info64
, 0, sizeof(*info64
));
1177 info64
->lo_number
= info
->lo_number
;
1178 info64
->lo_device
= info
->lo_device
;
1179 info64
->lo_inode
= info
->lo_inode
;
1180 info64
->lo_rdevice
= info
->lo_rdevice
;
1181 info64
->lo_offset
= info
->lo_offset
;
1182 info64
->lo_sizelimit
= 0;
1183 info64
->lo_encrypt_type
= info
->lo_encrypt_type
;
1184 info64
->lo_encrypt_key_size
= info
->lo_encrypt_key_size
;
1185 info64
->lo_flags
= info
->lo_flags
;
1186 info64
->lo_init
[0] = info
->lo_init
[0];
1187 info64
->lo_init
[1] = info
->lo_init
[1];
1188 if (info
->lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1189 memcpy(info64
->lo_crypt_name
, info
->lo_name
, LO_NAME_SIZE
);
1191 memcpy(info64
->lo_file_name
, info
->lo_name
, LO_NAME_SIZE
);
1192 memcpy(info64
->lo_encrypt_key
, info
->lo_encrypt_key
, LO_KEY_SIZE
);
1196 loop_info64_to_old(const struct loop_info64
*info64
, struct loop_info
*info
)
1198 memset(info
, 0, sizeof(*info
));
1199 info
->lo_number
= info64
->lo_number
;
1200 info
->lo_device
= info64
->lo_device
;
1201 info
->lo_inode
= info64
->lo_inode
;
1202 info
->lo_rdevice
= info64
->lo_rdevice
;
1203 info
->lo_offset
= info64
->lo_offset
;
1204 info
->lo_encrypt_type
= info64
->lo_encrypt_type
;
1205 info
->lo_encrypt_key_size
= info64
->lo_encrypt_key_size
;
1206 info
->lo_flags
= info64
->lo_flags
;
1207 info
->lo_init
[0] = info64
->lo_init
[0];
1208 info
->lo_init
[1] = info64
->lo_init
[1];
1209 if (info
->lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1210 memcpy(info
->lo_name
, info64
->lo_crypt_name
, LO_NAME_SIZE
);
1212 memcpy(info
->lo_name
, info64
->lo_file_name
, LO_NAME_SIZE
);
1213 memcpy(info
->lo_encrypt_key
, info64
->lo_encrypt_key
, LO_KEY_SIZE
);
1215 /* error in case values were truncated */
1216 if (info
->lo_device
!= info64
->lo_device
||
1217 info
->lo_rdevice
!= info64
->lo_rdevice
||
1218 info
->lo_inode
!= info64
->lo_inode
||
1219 info
->lo_offset
!= info64
->lo_offset
)
1226 loop_set_status_old(struct loop_device
*lo
, const struct loop_info __user
*arg
)
1228 struct loop_info info
;
1229 struct loop_info64 info64
;
1231 if (copy_from_user(&info
, arg
, sizeof (struct loop_info
)))
1233 loop_info64_from_old(&info
, &info64
);
1234 return loop_set_status(lo
, &info64
);
1238 loop_set_status64(struct loop_device
*lo
, const struct loop_info64 __user
*arg
)
1240 struct loop_info64 info64
;
1242 if (copy_from_user(&info64
, arg
, sizeof (struct loop_info64
)))
1244 return loop_set_status(lo
, &info64
);
1248 loop_get_status_old(struct loop_device
*lo
, struct loop_info __user
*arg
) {
1249 struct loop_info info
;
1250 struct loop_info64 info64
;
1256 err
= loop_get_status(lo
, &info64
);
1258 err
= loop_info64_to_old(&info64
, &info
);
1259 if (!err
&& copy_to_user(arg
, &info
, sizeof(info
)))
1266 loop_get_status64(struct loop_device
*lo
, struct loop_info64 __user
*arg
) {
1267 struct loop_info64 info64
;
1273 err
= loop_get_status(lo
, &info64
);
1274 if (!err
&& copy_to_user(arg
, &info64
, sizeof(info64
)))
1280 static int loop_set_capacity(struct loop_device
*lo
, struct block_device
*bdev
)
1282 if (unlikely(lo
->lo_state
!= Lo_bound
))
1285 return figure_loop_size(lo
, lo
->lo_offset
, lo
->lo_sizelimit
);
1288 static int lo_ioctl(struct block_device
*bdev
, fmode_t mode
,
1289 unsigned int cmd
, unsigned long arg
)
1291 struct loop_device
*lo
= bdev
->bd_disk
->private_data
;
1294 mutex_lock_nested(&lo
->lo_ctl_mutex
, 1);
1297 err
= loop_set_fd(lo
, mode
, bdev
, arg
);
1299 case LOOP_CHANGE_FD
:
1300 err
= loop_change_fd(lo
, bdev
, arg
);
1303 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1304 err
= loop_clr_fd(lo
);
1308 case LOOP_SET_STATUS
:
1310 if ((mode
& FMODE_WRITE
) || capable(CAP_SYS_ADMIN
))
1311 err
= loop_set_status_old(lo
,
1312 (struct loop_info __user
*)arg
);
1314 case LOOP_GET_STATUS
:
1315 err
= loop_get_status_old(lo
, (struct loop_info __user
*) arg
);
1317 case LOOP_SET_STATUS64
:
1319 if ((mode
& FMODE_WRITE
) || capable(CAP_SYS_ADMIN
))
1320 err
= loop_set_status64(lo
,
1321 (struct loop_info64 __user
*) arg
);
1323 case LOOP_GET_STATUS64
:
1324 err
= loop_get_status64(lo
, (struct loop_info64 __user
*) arg
);
1326 case LOOP_SET_CAPACITY
:
1328 if ((mode
& FMODE_WRITE
) || capable(CAP_SYS_ADMIN
))
1329 err
= loop_set_capacity(lo
, bdev
);
1332 err
= lo
->ioctl
? lo
->ioctl(lo
, cmd
, arg
) : -EINVAL
;
1334 mutex_unlock(&lo
->lo_ctl_mutex
);
1340 #ifdef CONFIG_COMPAT
1341 struct compat_loop_info
{
1342 compat_int_t lo_number
; /* ioctl r/o */
1343 compat_dev_t lo_device
; /* ioctl r/o */
1344 compat_ulong_t lo_inode
; /* ioctl r/o */
1345 compat_dev_t lo_rdevice
; /* ioctl r/o */
1346 compat_int_t lo_offset
;
1347 compat_int_t lo_encrypt_type
;
1348 compat_int_t lo_encrypt_key_size
; /* ioctl w/o */
1349 compat_int_t lo_flags
; /* ioctl r/o */
1350 char lo_name
[LO_NAME_SIZE
];
1351 unsigned char lo_encrypt_key
[LO_KEY_SIZE
]; /* ioctl w/o */
1352 compat_ulong_t lo_init
[2];
1357 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1358 * - noinlined to reduce stack space usage in main part of driver
1361 loop_info64_from_compat(const struct compat_loop_info __user
*arg
,
1362 struct loop_info64
*info64
)
1364 struct compat_loop_info info
;
1366 if (copy_from_user(&info
, arg
, sizeof(info
)))
1369 memset(info64
, 0, sizeof(*info64
));
1370 info64
->lo_number
= info
.lo_number
;
1371 info64
->lo_device
= info
.lo_device
;
1372 info64
->lo_inode
= info
.lo_inode
;
1373 info64
->lo_rdevice
= info
.lo_rdevice
;
1374 info64
->lo_offset
= info
.lo_offset
;
1375 info64
->lo_sizelimit
= 0;
1376 info64
->lo_encrypt_type
= info
.lo_encrypt_type
;
1377 info64
->lo_encrypt_key_size
= info
.lo_encrypt_key_size
;
1378 info64
->lo_flags
= info
.lo_flags
;
1379 info64
->lo_init
[0] = info
.lo_init
[0];
1380 info64
->lo_init
[1] = info
.lo_init
[1];
1381 if (info
.lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1382 memcpy(info64
->lo_crypt_name
, info
.lo_name
, LO_NAME_SIZE
);
1384 memcpy(info64
->lo_file_name
, info
.lo_name
, LO_NAME_SIZE
);
1385 memcpy(info64
->lo_encrypt_key
, info
.lo_encrypt_key
, LO_KEY_SIZE
);
1390 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1391 * - noinlined to reduce stack space usage in main part of driver
1394 loop_info64_to_compat(const struct loop_info64
*info64
,
1395 struct compat_loop_info __user
*arg
)
1397 struct compat_loop_info info
;
1399 memset(&info
, 0, sizeof(info
));
1400 info
.lo_number
= info64
->lo_number
;
1401 info
.lo_device
= info64
->lo_device
;
1402 info
.lo_inode
= info64
->lo_inode
;
1403 info
.lo_rdevice
= info64
->lo_rdevice
;
1404 info
.lo_offset
= info64
->lo_offset
;
1405 info
.lo_encrypt_type
= info64
->lo_encrypt_type
;
1406 info
.lo_encrypt_key_size
= info64
->lo_encrypt_key_size
;
1407 info
.lo_flags
= info64
->lo_flags
;
1408 info
.lo_init
[0] = info64
->lo_init
[0];
1409 info
.lo_init
[1] = info64
->lo_init
[1];
1410 if (info
.lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1411 memcpy(info
.lo_name
, info64
->lo_crypt_name
, LO_NAME_SIZE
);
1413 memcpy(info
.lo_name
, info64
->lo_file_name
, LO_NAME_SIZE
);
1414 memcpy(info
.lo_encrypt_key
, info64
->lo_encrypt_key
, LO_KEY_SIZE
);
1416 /* error in case values were truncated */
1417 if (info
.lo_device
!= info64
->lo_device
||
1418 info
.lo_rdevice
!= info64
->lo_rdevice
||
1419 info
.lo_inode
!= info64
->lo_inode
||
1420 info
.lo_offset
!= info64
->lo_offset
||
1421 info
.lo_init
[0] != info64
->lo_init
[0] ||
1422 info
.lo_init
[1] != info64
->lo_init
[1])
1425 if (copy_to_user(arg
, &info
, sizeof(info
)))
1431 loop_set_status_compat(struct loop_device
*lo
,
1432 const struct compat_loop_info __user
*arg
)
1434 struct loop_info64 info64
;
1437 ret
= loop_info64_from_compat(arg
, &info64
);
1440 return loop_set_status(lo
, &info64
);
1444 loop_get_status_compat(struct loop_device
*lo
,
1445 struct compat_loop_info __user
*arg
)
1447 struct loop_info64 info64
;
1453 err
= loop_get_status(lo
, &info64
);
1455 err
= loop_info64_to_compat(&info64
, arg
);
1459 static int lo_compat_ioctl(struct block_device
*bdev
, fmode_t mode
,
1460 unsigned int cmd
, unsigned long arg
)
1462 struct loop_device
*lo
= bdev
->bd_disk
->private_data
;
1466 case LOOP_SET_STATUS
:
1467 mutex_lock(&lo
->lo_ctl_mutex
);
1468 err
= loop_set_status_compat(
1469 lo
, (const struct compat_loop_info __user
*) arg
);
1470 mutex_unlock(&lo
->lo_ctl_mutex
);
1472 case LOOP_GET_STATUS
:
1473 mutex_lock(&lo
->lo_ctl_mutex
);
1474 err
= loop_get_status_compat(
1475 lo
, (struct compat_loop_info __user
*) arg
);
1476 mutex_unlock(&lo
->lo_ctl_mutex
);
1478 case LOOP_SET_CAPACITY
:
1480 case LOOP_GET_STATUS64
:
1481 case LOOP_SET_STATUS64
:
1482 arg
= (unsigned long) compat_ptr(arg
);
1484 case LOOP_CHANGE_FD
:
1485 err
= lo_ioctl(bdev
, mode
, cmd
, arg
);
1495 static int lo_open(struct block_device
*bdev
, fmode_t mode
)
1497 struct loop_device
*lo
;
1500 mutex_lock(&loop_index_mutex
);
1501 lo
= bdev
->bd_disk
->private_data
;
1507 mutex_lock(&lo
->lo_ctl_mutex
);
1509 mutex_unlock(&lo
->lo_ctl_mutex
);
1511 mutex_unlock(&loop_index_mutex
);
1515 static void lo_release(struct gendisk
*disk
, fmode_t mode
)
1517 struct loop_device
*lo
= disk
->private_data
;
1520 mutex_lock(&lo
->lo_ctl_mutex
);
1522 if (--lo
->lo_refcnt
)
1525 if (lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
) {
1527 * In autoclear mode, stop the loop thread
1528 * and remove configuration after last close.
1530 err
= loop_clr_fd(lo
);
1535 * Otherwise keep thread (if running) and config,
1536 * but flush possible ongoing bios in thread.
1542 mutex_unlock(&lo
->lo_ctl_mutex
);
1545 static const struct block_device_operations lo_fops
= {
1546 .owner
= THIS_MODULE
,
1548 .release
= lo_release
,
1550 #ifdef CONFIG_COMPAT
1551 .compat_ioctl
= lo_compat_ioctl
,
1556 * And now the modules code and kernel interface.
1558 static int max_loop
;
1559 module_param(max_loop
, int, S_IRUGO
);
1560 MODULE_PARM_DESC(max_loop
, "Maximum number of loop devices");
1561 module_param(max_part
, int, S_IRUGO
);
1562 MODULE_PARM_DESC(max_part
, "Maximum number of partitions per loop device");
1563 MODULE_LICENSE("GPL");
1564 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR
);
1566 int loop_register_transfer(struct loop_func_table
*funcs
)
1568 unsigned int n
= funcs
->number
;
1570 if (n
>= MAX_LO_CRYPT
|| xfer_funcs
[n
])
1572 xfer_funcs
[n
] = funcs
;
1576 static int unregister_transfer_cb(int id
, void *ptr
, void *data
)
1578 struct loop_device
*lo
= ptr
;
1579 struct loop_func_table
*xfer
= data
;
1581 mutex_lock(&lo
->lo_ctl_mutex
);
1582 if (lo
->lo_encryption
== xfer
)
1583 loop_release_xfer(lo
);
1584 mutex_unlock(&lo
->lo_ctl_mutex
);
1588 int loop_unregister_transfer(int number
)
1590 unsigned int n
= number
;
1591 struct loop_func_table
*xfer
;
1593 if (n
== 0 || n
>= MAX_LO_CRYPT
|| (xfer
= xfer_funcs
[n
]) == NULL
)
1596 xfer_funcs
[n
] = NULL
;
1597 idr_for_each(&loop_index_idr
, &unregister_transfer_cb
, xfer
);
1601 EXPORT_SYMBOL(loop_register_transfer
);
1602 EXPORT_SYMBOL(loop_unregister_transfer
);
1604 static int loop_add(struct loop_device
**l
, int i
)
1606 struct loop_device
*lo
;
1607 struct gendisk
*disk
;
1611 lo
= kzalloc(sizeof(*lo
), GFP_KERNEL
);
1615 lo
->lo_state
= Lo_unbound
;
1617 /* allocate id, if @id >= 0, we're requesting that specific id */
1619 err
= idr_alloc(&loop_index_idr
, lo
, i
, i
+ 1, GFP_KERNEL
);
1623 err
= idr_alloc(&loop_index_idr
, lo
, 0, 0, GFP_KERNEL
);
1630 lo
->lo_queue
= blk_alloc_queue(GFP_KERNEL
);
1635 * set queue make_request_fn
1637 blk_queue_make_request(lo
->lo_queue
, loop_make_request
);
1638 lo
->lo_queue
->queuedata
= lo
;
1640 disk
= lo
->lo_disk
= alloc_disk(1 << part_shift
);
1642 goto out_free_queue
;
1645 * Disable partition scanning by default. The in-kernel partition
1646 * scanning can be requested individually per-device during its
1647 * setup. Userspace can always add and remove partitions from all
1648 * devices. The needed partition minors are allocated from the
1649 * extended minor space, the main loop device numbers will continue
1650 * to match the loop minors, regardless of the number of partitions
1653 * If max_part is given, partition scanning is globally enabled for
1654 * all loop devices. The minors for the main loop devices will be
1655 * multiples of max_part.
1657 * Note: Global-for-all-devices, set-only-at-init, read-only module
1658 * parameteters like 'max_loop' and 'max_part' make things needlessly
1659 * complicated, are too static, inflexible and may surprise
1660 * userspace tools. Parameters like this in general should be avoided.
1663 disk
->flags
|= GENHD_FL_NO_PART_SCAN
;
1664 disk
->flags
|= GENHD_FL_EXT_DEVT
;
1665 mutex_init(&lo
->lo_ctl_mutex
);
1667 lo
->lo_thread
= NULL
;
1668 init_waitqueue_head(&lo
->lo_event
);
1669 init_waitqueue_head(&lo
->lo_req_wait
);
1670 spin_lock_init(&lo
->lo_lock
);
1671 disk
->major
= LOOP_MAJOR
;
1672 disk
->first_minor
= i
<< part_shift
;
1673 disk
->fops
= &lo_fops
;
1674 disk
->private_data
= lo
;
1675 disk
->queue
= lo
->lo_queue
;
1676 sprintf(disk
->disk_name
, "loop%d", i
);
1679 return lo
->lo_number
;
1682 blk_cleanup_queue(lo
->lo_queue
);
1684 idr_remove(&loop_index_idr
, i
);
1691 static void loop_remove(struct loop_device
*lo
)
1693 del_gendisk(lo
->lo_disk
);
1694 blk_cleanup_queue(lo
->lo_queue
);
1695 put_disk(lo
->lo_disk
);
1699 static int find_free_cb(int id
, void *ptr
, void *data
)
1701 struct loop_device
*lo
= ptr
;
1702 struct loop_device
**l
= data
;
1704 if (lo
->lo_state
== Lo_unbound
) {
1711 static int loop_lookup(struct loop_device
**l
, int i
)
1713 struct loop_device
*lo
;
1719 err
= idr_for_each(&loop_index_idr
, &find_free_cb
, &lo
);
1722 ret
= lo
->lo_number
;
1727 /* lookup and return a specific i */
1728 lo
= idr_find(&loop_index_idr
, i
);
1731 ret
= lo
->lo_number
;
1737 static struct kobject
*loop_probe(dev_t dev
, int *part
, void *data
)
1739 struct loop_device
*lo
;
1740 struct kobject
*kobj
;
1743 mutex_lock(&loop_index_mutex
);
1744 err
= loop_lookup(&lo
, MINOR(dev
) >> part_shift
);
1746 err
= loop_add(&lo
, MINOR(dev
) >> part_shift
);
1750 kobj
= get_disk(lo
->lo_disk
);
1751 mutex_unlock(&loop_index_mutex
);
1757 static long loop_control_ioctl(struct file
*file
, unsigned int cmd
,
1760 struct loop_device
*lo
;
1763 mutex_lock(&loop_index_mutex
);
1766 ret
= loop_lookup(&lo
, parm
);
1771 ret
= loop_add(&lo
, parm
);
1773 case LOOP_CTL_REMOVE
:
1774 ret
= loop_lookup(&lo
, parm
);
1777 mutex_lock(&lo
->lo_ctl_mutex
);
1778 if (lo
->lo_state
!= Lo_unbound
) {
1780 mutex_unlock(&lo
->lo_ctl_mutex
);
1783 if (lo
->lo_refcnt
> 0) {
1785 mutex_unlock(&lo
->lo_ctl_mutex
);
1788 lo
->lo_disk
->private_data
= NULL
;
1789 mutex_unlock(&lo
->lo_ctl_mutex
);
1790 idr_remove(&loop_index_idr
, lo
->lo_number
);
1793 case LOOP_CTL_GET_FREE
:
1794 ret
= loop_lookup(&lo
, -1);
1797 ret
= loop_add(&lo
, -1);
1799 mutex_unlock(&loop_index_mutex
);
1804 static const struct file_operations loop_ctl_fops
= {
1805 .open
= nonseekable_open
,
1806 .unlocked_ioctl
= loop_control_ioctl
,
1807 .compat_ioctl
= loop_control_ioctl
,
1808 .owner
= THIS_MODULE
,
1809 .llseek
= noop_llseek
,
1812 static struct miscdevice loop_misc
= {
1813 .minor
= LOOP_CTRL_MINOR
,
1814 .name
= "loop-control",
1815 .fops
= &loop_ctl_fops
,
1818 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR
);
1819 MODULE_ALIAS("devname:loop-control");
1821 static int __init
loop_init(void)
1824 unsigned long range
;
1825 struct loop_device
*lo
;
1828 err
= misc_register(&loop_misc
);
1834 part_shift
= fls(max_part
);
1837 * Adjust max_part according to part_shift as it is exported
1838 * to user space so that user can decide correct minor number
1839 * if [s]he want to create more devices.
1841 * Note that -1 is required because partition 0 is reserved
1842 * for the whole disk.
1844 max_part
= (1UL << part_shift
) - 1;
1847 if ((1UL << part_shift
) > DISK_MAX_PARTS
) {
1852 if (max_loop
> 1UL << (MINORBITS
- part_shift
)) {
1858 * If max_loop is specified, create that many devices upfront.
1859 * This also becomes a hard limit. If max_loop is not specified,
1860 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1861 * init time. Loop devices can be requested on-demand with the
1862 * /dev/loop-control interface, or be instantiated by accessing
1863 * a 'dead' device node.
1867 range
= max_loop
<< part_shift
;
1869 nr
= CONFIG_BLK_DEV_LOOP_MIN_COUNT
;
1870 range
= 1UL << MINORBITS
;
1873 if (register_blkdev(LOOP_MAJOR
, "loop")) {
1878 blk_register_region(MKDEV(LOOP_MAJOR
, 0), range
,
1879 THIS_MODULE
, loop_probe
, NULL
, NULL
);
1881 /* pre-create number of devices given by config or max_loop */
1882 mutex_lock(&loop_index_mutex
);
1883 for (i
= 0; i
< nr
; i
++)
1885 mutex_unlock(&loop_index_mutex
);
1887 printk(KERN_INFO
"loop: module loaded\n");
1891 misc_deregister(&loop_misc
);
1895 static int loop_exit_cb(int id
, void *ptr
, void *data
)
1897 struct loop_device
*lo
= ptr
;
1903 static void __exit
loop_exit(void)
1905 unsigned long range
;
1907 range
= max_loop
? max_loop
<< part_shift
: 1UL << MINORBITS
;
1909 idr_for_each(&loop_index_idr
, &loop_exit_cb
, NULL
);
1910 idr_destroy(&loop_index_idr
);
1912 blk_unregister_region(MKDEV(LOOP_MAJOR
, 0), range
);
1913 unregister_blkdev(LOOP_MAJOR
, "loop");
1915 misc_deregister(&loop_misc
);
1918 module_init(loop_init
);
1919 module_exit(loop_exit
);
1922 static int __init
max_loop_setup(char *str
)
1924 max_loop
= simple_strtol(str
, NULL
, 0);
1928 __setup("max_loop=", max_loop_setup
);