Merge branch 'hwmon-for-linus' of git://jdelvare.pck.nerim.net/jdelvare-2.6
[deliverable/linux.git] / drivers / block / loop.c
1 /*
2 * linux/drivers/block/loop.c
3 *
4 * Written by Theodore Ts'o, 3/29/93
5 *
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
8 *
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11 *
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14 *
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16 *
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18 *
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20 *
21 * Loadable modules and other fixes by AK, 1998
22 *
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
26 *
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
29 *
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33 *
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
38 *
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41 *
42 * Support for falling back on the write file operation when the address space
43 * operations prepare_write and/or commit_write are not available on the
44 * backing filesystem.
45 * Anton Altaparmakov, 16 Feb 2005
46 *
47 * Still To Fix:
48 * - Advisory locking is ignored here.
49 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
50 *
51 */
52
53 #include <linux/module.h>
54 #include <linux/moduleparam.h>
55 #include <linux/sched.h>
56 #include <linux/fs.h>
57 #include <linux/file.h>
58 #include <linux/stat.h>
59 #include <linux/errno.h>
60 #include <linux/major.h>
61 #include <linux/wait.h>
62 #include <linux/blkdev.h>
63 #include <linux/blkpg.h>
64 #include <linux/init.h>
65 #include <linux/smp_lock.h>
66 #include <linux/swap.h>
67 #include <linux/slab.h>
68 #include <linux/loop.h>
69 #include <linux/compat.h>
70 #include <linux/suspend.h>
71 #include <linux/writeback.h>
72 #include <linux/buffer_head.h> /* for invalidate_bdev() */
73 #include <linux/completion.h>
74 #include <linux/highmem.h>
75 #include <linux/gfp.h>
76 #include <linux/kthread.h>
77
78 #include <asm/uaccess.h>
79
80 static LIST_HEAD(loop_devices);
81 static DEFINE_MUTEX(loop_devices_mutex);
82
83 /*
84 * Transfer functions
85 */
86 static int transfer_none(struct loop_device *lo, int cmd,
87 struct page *raw_page, unsigned raw_off,
88 struct page *loop_page, unsigned loop_off,
89 int size, sector_t real_block)
90 {
91 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
92 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
93
94 if (cmd == READ)
95 memcpy(loop_buf, raw_buf, size);
96 else
97 memcpy(raw_buf, loop_buf, size);
98
99 kunmap_atomic(raw_buf, KM_USER0);
100 kunmap_atomic(loop_buf, KM_USER1);
101 cond_resched();
102 return 0;
103 }
104
105 static int transfer_xor(struct loop_device *lo, int cmd,
106 struct page *raw_page, unsigned raw_off,
107 struct page *loop_page, unsigned loop_off,
108 int size, sector_t real_block)
109 {
110 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
111 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
112 char *in, *out, *key;
113 int i, keysize;
114
115 if (cmd == READ) {
116 in = raw_buf;
117 out = loop_buf;
118 } else {
119 in = loop_buf;
120 out = raw_buf;
121 }
122
123 key = lo->lo_encrypt_key;
124 keysize = lo->lo_encrypt_key_size;
125 for (i = 0; i < size; i++)
126 *out++ = *in++ ^ key[(i & 511) % keysize];
127
128 kunmap_atomic(raw_buf, KM_USER0);
129 kunmap_atomic(loop_buf, KM_USER1);
130 cond_resched();
131 return 0;
132 }
133
134 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
135 {
136 if (unlikely(info->lo_encrypt_key_size <= 0))
137 return -EINVAL;
138 return 0;
139 }
140
141 static struct loop_func_table none_funcs = {
142 .number = LO_CRYPT_NONE,
143 .transfer = transfer_none,
144 };
145
146 static struct loop_func_table xor_funcs = {
147 .number = LO_CRYPT_XOR,
148 .transfer = transfer_xor,
149 .init = xor_init
150 };
151
152 /* xfer_funcs[0] is special - its release function is never called */
153 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
154 &none_funcs,
155 &xor_funcs
156 };
157
158 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
159 {
160 loff_t size, offset, loopsize;
161
162 /* Compute loopsize in bytes */
163 size = i_size_read(file->f_mapping->host);
164 offset = lo->lo_offset;
165 loopsize = size - offset;
166 if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
167 loopsize = lo->lo_sizelimit;
168
169 /*
170 * Unfortunately, if we want to do I/O on the device,
171 * the number of 512-byte sectors has to fit into a sector_t.
172 */
173 return loopsize >> 9;
174 }
175
176 static int
177 figure_loop_size(struct loop_device *lo)
178 {
179 loff_t size = get_loop_size(lo, lo->lo_backing_file);
180 sector_t x = (sector_t)size;
181
182 if (unlikely((loff_t)x != size))
183 return -EFBIG;
184
185 set_capacity(lo->lo_disk, x);
186 return 0;
187 }
188
189 static inline int
190 lo_do_transfer(struct loop_device *lo, int cmd,
191 struct page *rpage, unsigned roffs,
192 struct page *lpage, unsigned loffs,
193 int size, sector_t rblock)
194 {
195 if (unlikely(!lo->transfer))
196 return 0;
197
198 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
199 }
200
201 /**
202 * do_lo_send_aops - helper for writing data to a loop device
203 *
204 * This is the fast version for backing filesystems which implement the address
205 * space operations prepare_write and commit_write.
206 */
207 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
208 int bsize, loff_t pos, struct page *page)
209 {
210 struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
211 struct address_space *mapping = file->f_mapping;
212 const struct address_space_operations *aops = mapping->a_ops;
213 pgoff_t index;
214 unsigned offset, bv_offs;
215 int len, ret;
216
217 mutex_lock(&mapping->host->i_mutex);
218 index = pos >> PAGE_CACHE_SHIFT;
219 offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
220 bv_offs = bvec->bv_offset;
221 len = bvec->bv_len;
222 while (len > 0) {
223 sector_t IV;
224 unsigned size;
225 int transfer_result;
226
227 IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
228 size = PAGE_CACHE_SIZE - offset;
229 if (size > len)
230 size = len;
231 page = grab_cache_page(mapping, index);
232 if (unlikely(!page))
233 goto fail;
234 ret = aops->prepare_write(file, page, offset,
235 offset + size);
236 if (unlikely(ret)) {
237 if (ret == AOP_TRUNCATED_PAGE) {
238 page_cache_release(page);
239 continue;
240 }
241 goto unlock;
242 }
243 transfer_result = lo_do_transfer(lo, WRITE, page, offset,
244 bvec->bv_page, bv_offs, size, IV);
245 if (unlikely(transfer_result)) {
246 char *kaddr;
247
248 /*
249 * The transfer failed, but we still write the data to
250 * keep prepare/commit calls balanced.
251 */
252 printk(KERN_ERR "loop: transfer error block %llu\n",
253 (unsigned long long)index);
254 kaddr = kmap_atomic(page, KM_USER0);
255 memset(kaddr + offset, 0, size);
256 kunmap_atomic(kaddr, KM_USER0);
257 }
258 flush_dcache_page(page);
259 ret = aops->commit_write(file, page, offset,
260 offset + size);
261 if (unlikely(ret)) {
262 if (ret == AOP_TRUNCATED_PAGE) {
263 page_cache_release(page);
264 continue;
265 }
266 goto unlock;
267 }
268 if (unlikely(transfer_result))
269 goto unlock;
270 bv_offs += size;
271 len -= size;
272 offset = 0;
273 index++;
274 pos += size;
275 unlock_page(page);
276 page_cache_release(page);
277 }
278 ret = 0;
279 out:
280 mutex_unlock(&mapping->host->i_mutex);
281 return ret;
282 unlock:
283 unlock_page(page);
284 page_cache_release(page);
285 fail:
286 ret = -1;
287 goto out;
288 }
289
290 /**
291 * __do_lo_send_write - helper for writing data to a loop device
292 *
293 * This helper just factors out common code between do_lo_send_direct_write()
294 * and do_lo_send_write().
295 */
296 static int __do_lo_send_write(struct file *file,
297 u8 *buf, const int len, loff_t pos)
298 {
299 ssize_t bw;
300 mm_segment_t old_fs = get_fs();
301
302 set_fs(get_ds());
303 bw = file->f_op->write(file, buf, len, &pos);
304 set_fs(old_fs);
305 if (likely(bw == len))
306 return 0;
307 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
308 (unsigned long long)pos, len);
309 if (bw >= 0)
310 bw = -EIO;
311 return bw;
312 }
313
314 /**
315 * do_lo_send_direct_write - helper for writing data to a loop device
316 *
317 * This is the fast, non-transforming version for backing filesystems which do
318 * not implement the address space operations prepare_write and commit_write.
319 * It uses the write file operation which should be present on all writeable
320 * filesystems.
321 */
322 static int do_lo_send_direct_write(struct loop_device *lo,
323 struct bio_vec *bvec, int bsize, loff_t pos, struct page *page)
324 {
325 ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
326 kmap(bvec->bv_page) + bvec->bv_offset,
327 bvec->bv_len, pos);
328 kunmap(bvec->bv_page);
329 cond_resched();
330 return bw;
331 }
332
333 /**
334 * do_lo_send_write - helper for writing data to a loop device
335 *
336 * This is the slow, transforming version for filesystems which do not
337 * implement the address space operations prepare_write and commit_write. It
338 * uses the write file operation which should be present on all writeable
339 * filesystems.
340 *
341 * Using fops->write is slower than using aops->{prepare,commit}_write in the
342 * transforming case because we need to double buffer the data as we cannot do
343 * the transformations in place as we do not have direct access to the
344 * destination pages of the backing file.
345 */
346 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
347 int bsize, loff_t pos, struct page *page)
348 {
349 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
350 bvec->bv_offset, bvec->bv_len, pos >> 9);
351 if (likely(!ret))
352 return __do_lo_send_write(lo->lo_backing_file,
353 page_address(page), bvec->bv_len,
354 pos);
355 printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
356 "length %i.\n", (unsigned long long)pos, bvec->bv_len);
357 if (ret > 0)
358 ret = -EIO;
359 return ret;
360 }
361
362 static int lo_send(struct loop_device *lo, struct bio *bio, int bsize,
363 loff_t pos)
364 {
365 int (*do_lo_send)(struct loop_device *, struct bio_vec *, int, loff_t,
366 struct page *page);
367 struct bio_vec *bvec;
368 struct page *page = NULL;
369 int i, ret = 0;
370
371 do_lo_send = do_lo_send_aops;
372 if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
373 do_lo_send = do_lo_send_direct_write;
374 if (lo->transfer != transfer_none) {
375 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
376 if (unlikely(!page))
377 goto fail;
378 kmap(page);
379 do_lo_send = do_lo_send_write;
380 }
381 }
382 bio_for_each_segment(bvec, bio, i) {
383 ret = do_lo_send(lo, bvec, bsize, pos, page);
384 if (ret < 0)
385 break;
386 pos += bvec->bv_len;
387 }
388 if (page) {
389 kunmap(page);
390 __free_page(page);
391 }
392 out:
393 return ret;
394 fail:
395 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
396 ret = -ENOMEM;
397 goto out;
398 }
399
400 struct lo_read_data {
401 struct loop_device *lo;
402 struct page *page;
403 unsigned offset;
404 int bsize;
405 };
406
407 static int
408 lo_read_actor(read_descriptor_t *desc, struct page *page,
409 unsigned long offset, unsigned long size)
410 {
411 unsigned long count = desc->count;
412 struct lo_read_data *p = desc->arg.data;
413 struct loop_device *lo = p->lo;
414 sector_t IV;
415
416 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
417
418 if (size > count)
419 size = count;
420
421 if (lo_do_transfer(lo, READ, page, offset, p->page, p->offset, size, IV)) {
422 size = 0;
423 printk(KERN_ERR "loop: transfer error block %ld\n",
424 page->index);
425 desc->error = -EINVAL;
426 }
427
428 flush_dcache_page(p->page);
429
430 desc->count = count - size;
431 desc->written += size;
432 p->offset += size;
433 return size;
434 }
435
436 static int
437 do_lo_receive(struct loop_device *lo,
438 struct bio_vec *bvec, int bsize, loff_t pos)
439 {
440 struct lo_read_data cookie;
441 struct file *file;
442 int retval;
443
444 cookie.lo = lo;
445 cookie.page = bvec->bv_page;
446 cookie.offset = bvec->bv_offset;
447 cookie.bsize = bsize;
448 file = lo->lo_backing_file;
449 retval = file->f_op->sendfile(file, &pos, bvec->bv_len,
450 lo_read_actor, &cookie);
451 return (retval < 0)? retval: 0;
452 }
453
454 static int
455 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
456 {
457 struct bio_vec *bvec;
458 int i, ret = 0;
459
460 bio_for_each_segment(bvec, bio, i) {
461 ret = do_lo_receive(lo, bvec, bsize, pos);
462 if (ret < 0)
463 break;
464 pos += bvec->bv_len;
465 }
466 return ret;
467 }
468
469 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
470 {
471 loff_t pos;
472 int ret;
473
474 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
475 if (bio_rw(bio) == WRITE)
476 ret = lo_send(lo, bio, lo->lo_blocksize, pos);
477 else
478 ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
479 return ret;
480 }
481
482 /*
483 * Add bio to back of pending list
484 */
485 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
486 {
487 if (lo->lo_biotail) {
488 lo->lo_biotail->bi_next = bio;
489 lo->lo_biotail = bio;
490 } else
491 lo->lo_bio = lo->lo_biotail = bio;
492 }
493
494 /*
495 * Grab first pending buffer
496 */
497 static struct bio *loop_get_bio(struct loop_device *lo)
498 {
499 struct bio *bio;
500
501 if ((bio = lo->lo_bio)) {
502 if (bio == lo->lo_biotail)
503 lo->lo_biotail = NULL;
504 lo->lo_bio = bio->bi_next;
505 bio->bi_next = NULL;
506 }
507
508 return bio;
509 }
510
511 static int loop_make_request(request_queue_t *q, struct bio *old_bio)
512 {
513 struct loop_device *lo = q->queuedata;
514 int rw = bio_rw(old_bio);
515
516 if (rw == READA)
517 rw = READ;
518
519 BUG_ON(!lo || (rw != READ && rw != WRITE));
520
521 spin_lock_irq(&lo->lo_lock);
522 if (lo->lo_state != Lo_bound)
523 goto out;
524 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
525 goto out;
526 loop_add_bio(lo, old_bio);
527 wake_up(&lo->lo_event);
528 spin_unlock_irq(&lo->lo_lock);
529 return 0;
530
531 out:
532 spin_unlock_irq(&lo->lo_lock);
533 bio_io_error(old_bio, old_bio->bi_size);
534 return 0;
535 }
536
537 /*
538 * kick off io on the underlying address space
539 */
540 static void loop_unplug(request_queue_t *q)
541 {
542 struct loop_device *lo = q->queuedata;
543
544 clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags);
545 blk_run_address_space(lo->lo_backing_file->f_mapping);
546 }
547
548 struct switch_request {
549 struct file *file;
550 struct completion wait;
551 };
552
553 static void do_loop_switch(struct loop_device *, struct switch_request *);
554
555 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
556 {
557 if (unlikely(!bio->bi_bdev)) {
558 do_loop_switch(lo, bio->bi_private);
559 bio_put(bio);
560 } else {
561 int ret = do_bio_filebacked(lo, bio);
562 bio_endio(bio, bio->bi_size, ret);
563 }
564 }
565
566 /*
567 * worker thread that handles reads/writes to file backed loop devices,
568 * to avoid blocking in our make_request_fn. it also does loop decrypting
569 * on reads for block backed loop, as that is too heavy to do from
570 * b_end_io context where irqs may be disabled.
571 *
572 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before
573 * calling kthread_stop(). Therefore once kthread_should_stop() is
574 * true, make_request will not place any more requests. Therefore
575 * once kthread_should_stop() is true and lo_bio is NULL, we are
576 * done with the loop.
577 */
578 static int loop_thread(void *data)
579 {
580 struct loop_device *lo = data;
581 struct bio *bio;
582
583 /*
584 * loop can be used in an encrypted device,
585 * hence, it mustn't be stopped at all
586 * because it could be indirectly used during suspension
587 */
588 current->flags |= PF_NOFREEZE;
589
590 set_user_nice(current, -20);
591
592 while (!kthread_should_stop() || lo->lo_bio) {
593
594 wait_event_interruptible(lo->lo_event,
595 lo->lo_bio || kthread_should_stop());
596
597 if (!lo->lo_bio)
598 continue;
599 spin_lock_irq(&lo->lo_lock);
600 bio = loop_get_bio(lo);
601 spin_unlock_irq(&lo->lo_lock);
602
603 BUG_ON(!bio);
604 loop_handle_bio(lo, bio);
605 }
606
607 return 0;
608 }
609
610 /*
611 * loop_switch performs the hard work of switching a backing store.
612 * First it needs to flush existing IO, it does this by sending a magic
613 * BIO down the pipe. The completion of this BIO does the actual switch.
614 */
615 static int loop_switch(struct loop_device *lo, struct file *file)
616 {
617 struct switch_request w;
618 struct bio *bio = bio_alloc(GFP_KERNEL, 1);
619 if (!bio)
620 return -ENOMEM;
621 init_completion(&w.wait);
622 w.file = file;
623 bio->bi_private = &w;
624 bio->bi_bdev = NULL;
625 loop_make_request(lo->lo_queue, bio);
626 wait_for_completion(&w.wait);
627 return 0;
628 }
629
630 /*
631 * Do the actual switch; called from the BIO completion routine
632 */
633 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
634 {
635 struct file *file = p->file;
636 struct file *old_file = lo->lo_backing_file;
637 struct address_space *mapping = file->f_mapping;
638
639 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
640 lo->lo_backing_file = file;
641 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
642 mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
643 lo->old_gfp_mask = mapping_gfp_mask(mapping);
644 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
645 complete(&p->wait);
646 }
647
648
649 /*
650 * loop_change_fd switched the backing store of a loopback device to
651 * a new file. This is useful for operating system installers to free up
652 * the original file and in High Availability environments to switch to
653 * an alternative location for the content in case of server meltdown.
654 * This can only work if the loop device is used read-only, and if the
655 * new backing store is the same size and type as the old backing store.
656 */
657 static int loop_change_fd(struct loop_device *lo, struct file *lo_file,
658 struct block_device *bdev, unsigned int arg)
659 {
660 struct file *file, *old_file;
661 struct inode *inode;
662 int error;
663
664 error = -ENXIO;
665 if (lo->lo_state != Lo_bound)
666 goto out;
667
668 /* the loop device has to be read-only */
669 error = -EINVAL;
670 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
671 goto out;
672
673 error = -EBADF;
674 file = fget(arg);
675 if (!file)
676 goto out;
677
678 inode = file->f_mapping->host;
679 old_file = lo->lo_backing_file;
680
681 error = -EINVAL;
682
683 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
684 goto out_putf;
685
686 /* new backing store needs to support loop (eg sendfile) */
687 if (!inode->i_fop->sendfile)
688 goto out_putf;
689
690 /* size of the new backing store needs to be the same */
691 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
692 goto out_putf;
693
694 /* and ... switch */
695 error = loop_switch(lo, file);
696 if (error)
697 goto out_putf;
698
699 fput(old_file);
700 return 0;
701
702 out_putf:
703 fput(file);
704 out:
705 return error;
706 }
707
708 static inline int is_loop_device(struct file *file)
709 {
710 struct inode *i = file->f_mapping->host;
711
712 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
713 }
714
715 static int loop_set_fd(struct loop_device *lo, struct file *lo_file,
716 struct block_device *bdev, unsigned int arg)
717 {
718 struct file *file, *f;
719 struct inode *inode;
720 struct address_space *mapping;
721 unsigned lo_blocksize;
722 int lo_flags = 0;
723 int error;
724 loff_t size;
725
726 /* This is safe, since we have a reference from open(). */
727 __module_get(THIS_MODULE);
728
729 error = -EBADF;
730 file = fget(arg);
731 if (!file)
732 goto out;
733
734 error = -EBUSY;
735 if (lo->lo_state != Lo_unbound)
736 goto out_putf;
737
738 /* Avoid recursion */
739 f = file;
740 while (is_loop_device(f)) {
741 struct loop_device *l;
742
743 if (f->f_mapping->host->i_rdev == lo_file->f_mapping->host->i_rdev)
744 goto out_putf;
745
746 l = f->f_mapping->host->i_bdev->bd_disk->private_data;
747 if (l->lo_state == Lo_unbound) {
748 error = -EINVAL;
749 goto out_putf;
750 }
751 f = l->lo_backing_file;
752 }
753
754 mapping = file->f_mapping;
755 inode = mapping->host;
756
757 if (!(file->f_mode & FMODE_WRITE))
758 lo_flags |= LO_FLAGS_READ_ONLY;
759
760 error = -EINVAL;
761 if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
762 const struct address_space_operations *aops = mapping->a_ops;
763 /*
764 * If we can't read - sorry. If we only can't write - well,
765 * it's going to be read-only.
766 */
767 if (!file->f_op->sendfile)
768 goto out_putf;
769 if (aops->prepare_write && aops->commit_write)
770 lo_flags |= LO_FLAGS_USE_AOPS;
771 if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
772 lo_flags |= LO_FLAGS_READ_ONLY;
773
774 lo_blocksize = S_ISBLK(inode->i_mode) ?
775 inode->i_bdev->bd_block_size : PAGE_SIZE;
776
777 error = 0;
778 } else {
779 goto out_putf;
780 }
781
782 size = get_loop_size(lo, file);
783
784 if ((loff_t)(sector_t)size != size) {
785 error = -EFBIG;
786 goto out_putf;
787 }
788
789 if (!(lo_file->f_mode & FMODE_WRITE))
790 lo_flags |= LO_FLAGS_READ_ONLY;
791
792 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
793
794 lo->lo_blocksize = lo_blocksize;
795 lo->lo_device = bdev;
796 lo->lo_flags = lo_flags;
797 lo->lo_backing_file = file;
798 lo->transfer = transfer_none;
799 lo->ioctl = NULL;
800 lo->lo_sizelimit = 0;
801 lo->old_gfp_mask = mapping_gfp_mask(mapping);
802 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
803
804 lo->lo_bio = lo->lo_biotail = NULL;
805
806 /*
807 * set queue make_request_fn, and add limits based on lower level
808 * device
809 */
810 blk_queue_make_request(lo->lo_queue, loop_make_request);
811 lo->lo_queue->queuedata = lo;
812 lo->lo_queue->unplug_fn = loop_unplug;
813
814 set_capacity(lo->lo_disk, size);
815 bd_set_size(bdev, size << 9);
816
817 set_blocksize(bdev, lo_blocksize);
818
819 lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
820 lo->lo_number);
821 if (IS_ERR(lo->lo_thread)) {
822 error = PTR_ERR(lo->lo_thread);
823 goto out_clr;
824 }
825 lo->lo_state = Lo_bound;
826 wake_up_process(lo->lo_thread);
827 return 0;
828
829 out_clr:
830 lo->lo_thread = NULL;
831 lo->lo_device = NULL;
832 lo->lo_backing_file = NULL;
833 lo->lo_flags = 0;
834 set_capacity(lo->lo_disk, 0);
835 invalidate_bdev(bdev);
836 bd_set_size(bdev, 0);
837 mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
838 lo->lo_state = Lo_unbound;
839 out_putf:
840 fput(file);
841 out:
842 /* This is safe: open() is still holding a reference. */
843 module_put(THIS_MODULE);
844 return error;
845 }
846
847 static int
848 loop_release_xfer(struct loop_device *lo)
849 {
850 int err = 0;
851 struct loop_func_table *xfer = lo->lo_encryption;
852
853 if (xfer) {
854 if (xfer->release)
855 err = xfer->release(lo);
856 lo->transfer = NULL;
857 lo->lo_encryption = NULL;
858 module_put(xfer->owner);
859 }
860 return err;
861 }
862
863 static int
864 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
865 const struct loop_info64 *i)
866 {
867 int err = 0;
868
869 if (xfer) {
870 struct module *owner = xfer->owner;
871
872 if (!try_module_get(owner))
873 return -EINVAL;
874 if (xfer->init)
875 err = xfer->init(lo, i);
876 if (err)
877 module_put(owner);
878 else
879 lo->lo_encryption = xfer;
880 }
881 return err;
882 }
883
884 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
885 {
886 struct file *filp = lo->lo_backing_file;
887 gfp_t gfp = lo->old_gfp_mask;
888
889 if (lo->lo_state != Lo_bound)
890 return -ENXIO;
891
892 if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */
893 return -EBUSY;
894
895 if (filp == NULL)
896 return -EINVAL;
897
898 spin_lock_irq(&lo->lo_lock);
899 lo->lo_state = Lo_rundown;
900 spin_unlock_irq(&lo->lo_lock);
901
902 kthread_stop(lo->lo_thread);
903
904 lo->lo_backing_file = NULL;
905
906 loop_release_xfer(lo);
907 lo->transfer = NULL;
908 lo->ioctl = NULL;
909 lo->lo_device = NULL;
910 lo->lo_encryption = NULL;
911 lo->lo_offset = 0;
912 lo->lo_sizelimit = 0;
913 lo->lo_encrypt_key_size = 0;
914 lo->lo_flags = 0;
915 lo->lo_thread = NULL;
916 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
917 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
918 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
919 invalidate_bdev(bdev);
920 set_capacity(lo->lo_disk, 0);
921 bd_set_size(bdev, 0);
922 mapping_set_gfp_mask(filp->f_mapping, gfp);
923 lo->lo_state = Lo_unbound;
924 fput(filp);
925 /* This is safe: open() is still holding a reference. */
926 module_put(THIS_MODULE);
927 return 0;
928 }
929
930 static int
931 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
932 {
933 int err;
934 struct loop_func_table *xfer;
935
936 if (lo->lo_encrypt_key_size && lo->lo_key_owner != current->uid &&
937 !capable(CAP_SYS_ADMIN))
938 return -EPERM;
939 if (lo->lo_state != Lo_bound)
940 return -ENXIO;
941 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
942 return -EINVAL;
943
944 err = loop_release_xfer(lo);
945 if (err)
946 return err;
947
948 if (info->lo_encrypt_type) {
949 unsigned int type = info->lo_encrypt_type;
950
951 if (type >= MAX_LO_CRYPT)
952 return -EINVAL;
953 xfer = xfer_funcs[type];
954 if (xfer == NULL)
955 return -EINVAL;
956 } else
957 xfer = NULL;
958
959 err = loop_init_xfer(lo, xfer, info);
960 if (err)
961 return err;
962
963 if (lo->lo_offset != info->lo_offset ||
964 lo->lo_sizelimit != info->lo_sizelimit) {
965 lo->lo_offset = info->lo_offset;
966 lo->lo_sizelimit = info->lo_sizelimit;
967 if (figure_loop_size(lo))
968 return -EFBIG;
969 }
970
971 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
972 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
973 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
974 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
975
976 if (!xfer)
977 xfer = &none_funcs;
978 lo->transfer = xfer->transfer;
979 lo->ioctl = xfer->ioctl;
980
981 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
982 lo->lo_init[0] = info->lo_init[0];
983 lo->lo_init[1] = info->lo_init[1];
984 if (info->lo_encrypt_key_size) {
985 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
986 info->lo_encrypt_key_size);
987 lo->lo_key_owner = current->uid;
988 }
989
990 return 0;
991 }
992
993 static int
994 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
995 {
996 struct file *file = lo->lo_backing_file;
997 struct kstat stat;
998 int error;
999
1000 if (lo->lo_state != Lo_bound)
1001 return -ENXIO;
1002 error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1003 if (error)
1004 return error;
1005 memset(info, 0, sizeof(*info));
1006 info->lo_number = lo->lo_number;
1007 info->lo_device = huge_encode_dev(stat.dev);
1008 info->lo_inode = stat.ino;
1009 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1010 info->lo_offset = lo->lo_offset;
1011 info->lo_sizelimit = lo->lo_sizelimit;
1012 info->lo_flags = lo->lo_flags;
1013 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1014 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1015 info->lo_encrypt_type =
1016 lo->lo_encryption ? lo->lo_encryption->number : 0;
1017 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1018 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1019 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1020 lo->lo_encrypt_key_size);
1021 }
1022 return 0;
1023 }
1024
1025 static void
1026 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1027 {
1028 memset(info64, 0, sizeof(*info64));
1029 info64->lo_number = info->lo_number;
1030 info64->lo_device = info->lo_device;
1031 info64->lo_inode = info->lo_inode;
1032 info64->lo_rdevice = info->lo_rdevice;
1033 info64->lo_offset = info->lo_offset;
1034 info64->lo_sizelimit = 0;
1035 info64->lo_encrypt_type = info->lo_encrypt_type;
1036 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1037 info64->lo_flags = info->lo_flags;
1038 info64->lo_init[0] = info->lo_init[0];
1039 info64->lo_init[1] = info->lo_init[1];
1040 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1041 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1042 else
1043 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1044 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1045 }
1046
1047 static int
1048 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1049 {
1050 memset(info, 0, sizeof(*info));
1051 info->lo_number = info64->lo_number;
1052 info->lo_device = info64->lo_device;
1053 info->lo_inode = info64->lo_inode;
1054 info->lo_rdevice = info64->lo_rdevice;
1055 info->lo_offset = info64->lo_offset;
1056 info->lo_encrypt_type = info64->lo_encrypt_type;
1057 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1058 info->lo_flags = info64->lo_flags;
1059 info->lo_init[0] = info64->lo_init[0];
1060 info->lo_init[1] = info64->lo_init[1];
1061 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1062 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1063 else
1064 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1065 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1066
1067 /* error in case values were truncated */
1068 if (info->lo_device != info64->lo_device ||
1069 info->lo_rdevice != info64->lo_rdevice ||
1070 info->lo_inode != info64->lo_inode ||
1071 info->lo_offset != info64->lo_offset)
1072 return -EOVERFLOW;
1073
1074 return 0;
1075 }
1076
1077 static int
1078 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1079 {
1080 struct loop_info info;
1081 struct loop_info64 info64;
1082
1083 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1084 return -EFAULT;
1085 loop_info64_from_old(&info, &info64);
1086 return loop_set_status(lo, &info64);
1087 }
1088
1089 static int
1090 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1091 {
1092 struct loop_info64 info64;
1093
1094 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1095 return -EFAULT;
1096 return loop_set_status(lo, &info64);
1097 }
1098
1099 static int
1100 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1101 struct loop_info info;
1102 struct loop_info64 info64;
1103 int err = 0;
1104
1105 if (!arg)
1106 err = -EINVAL;
1107 if (!err)
1108 err = loop_get_status(lo, &info64);
1109 if (!err)
1110 err = loop_info64_to_old(&info64, &info);
1111 if (!err && copy_to_user(arg, &info, sizeof(info)))
1112 err = -EFAULT;
1113
1114 return err;
1115 }
1116
1117 static int
1118 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1119 struct loop_info64 info64;
1120 int err = 0;
1121
1122 if (!arg)
1123 err = -EINVAL;
1124 if (!err)
1125 err = loop_get_status(lo, &info64);
1126 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1127 err = -EFAULT;
1128
1129 return err;
1130 }
1131
1132 static int lo_ioctl(struct inode * inode, struct file * file,
1133 unsigned int cmd, unsigned long arg)
1134 {
1135 struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
1136 int err;
1137
1138 mutex_lock(&lo->lo_ctl_mutex);
1139 switch (cmd) {
1140 case LOOP_SET_FD:
1141 err = loop_set_fd(lo, file, inode->i_bdev, arg);
1142 break;
1143 case LOOP_CHANGE_FD:
1144 err = loop_change_fd(lo, file, inode->i_bdev, arg);
1145 break;
1146 case LOOP_CLR_FD:
1147 err = loop_clr_fd(lo, inode->i_bdev);
1148 break;
1149 case LOOP_SET_STATUS:
1150 err = loop_set_status_old(lo, (struct loop_info __user *) arg);
1151 break;
1152 case LOOP_GET_STATUS:
1153 err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1154 break;
1155 case LOOP_SET_STATUS64:
1156 err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
1157 break;
1158 case LOOP_GET_STATUS64:
1159 err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1160 break;
1161 default:
1162 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1163 }
1164 mutex_unlock(&lo->lo_ctl_mutex);
1165 return err;
1166 }
1167
1168 #ifdef CONFIG_COMPAT
1169 struct compat_loop_info {
1170 compat_int_t lo_number; /* ioctl r/o */
1171 compat_dev_t lo_device; /* ioctl r/o */
1172 compat_ulong_t lo_inode; /* ioctl r/o */
1173 compat_dev_t lo_rdevice; /* ioctl r/o */
1174 compat_int_t lo_offset;
1175 compat_int_t lo_encrypt_type;
1176 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1177 compat_int_t lo_flags; /* ioctl r/o */
1178 char lo_name[LO_NAME_SIZE];
1179 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1180 compat_ulong_t lo_init[2];
1181 char reserved[4];
1182 };
1183
1184 /*
1185 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1186 * - noinlined to reduce stack space usage in main part of driver
1187 */
1188 static noinline int
1189 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1190 struct loop_info64 *info64)
1191 {
1192 struct compat_loop_info info;
1193
1194 if (copy_from_user(&info, arg, sizeof(info)))
1195 return -EFAULT;
1196
1197 memset(info64, 0, sizeof(*info64));
1198 info64->lo_number = info.lo_number;
1199 info64->lo_device = info.lo_device;
1200 info64->lo_inode = info.lo_inode;
1201 info64->lo_rdevice = info.lo_rdevice;
1202 info64->lo_offset = info.lo_offset;
1203 info64->lo_sizelimit = 0;
1204 info64->lo_encrypt_type = info.lo_encrypt_type;
1205 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1206 info64->lo_flags = info.lo_flags;
1207 info64->lo_init[0] = info.lo_init[0];
1208 info64->lo_init[1] = info.lo_init[1];
1209 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1210 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1211 else
1212 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1213 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1214 return 0;
1215 }
1216
1217 /*
1218 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1219 * - noinlined to reduce stack space usage in main part of driver
1220 */
1221 static noinline int
1222 loop_info64_to_compat(const struct loop_info64 *info64,
1223 struct compat_loop_info __user *arg)
1224 {
1225 struct compat_loop_info info;
1226
1227 memset(&info, 0, sizeof(info));
1228 info.lo_number = info64->lo_number;
1229 info.lo_device = info64->lo_device;
1230 info.lo_inode = info64->lo_inode;
1231 info.lo_rdevice = info64->lo_rdevice;
1232 info.lo_offset = info64->lo_offset;
1233 info.lo_encrypt_type = info64->lo_encrypt_type;
1234 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1235 info.lo_flags = info64->lo_flags;
1236 info.lo_init[0] = info64->lo_init[0];
1237 info.lo_init[1] = info64->lo_init[1];
1238 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1239 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1240 else
1241 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1242 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1243
1244 /* error in case values were truncated */
1245 if (info.lo_device != info64->lo_device ||
1246 info.lo_rdevice != info64->lo_rdevice ||
1247 info.lo_inode != info64->lo_inode ||
1248 info.lo_offset != info64->lo_offset ||
1249 info.lo_init[0] != info64->lo_init[0] ||
1250 info.lo_init[1] != info64->lo_init[1])
1251 return -EOVERFLOW;
1252
1253 if (copy_to_user(arg, &info, sizeof(info)))
1254 return -EFAULT;
1255 return 0;
1256 }
1257
1258 static int
1259 loop_set_status_compat(struct loop_device *lo,
1260 const struct compat_loop_info __user *arg)
1261 {
1262 struct loop_info64 info64;
1263 int ret;
1264
1265 ret = loop_info64_from_compat(arg, &info64);
1266 if (ret < 0)
1267 return ret;
1268 return loop_set_status(lo, &info64);
1269 }
1270
1271 static int
1272 loop_get_status_compat(struct loop_device *lo,
1273 struct compat_loop_info __user *arg)
1274 {
1275 struct loop_info64 info64;
1276 int err = 0;
1277
1278 if (!arg)
1279 err = -EINVAL;
1280 if (!err)
1281 err = loop_get_status(lo, &info64);
1282 if (!err)
1283 err = loop_info64_to_compat(&info64, arg);
1284 return err;
1285 }
1286
1287 static long lo_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1288 {
1289 struct inode *inode = file->f_path.dentry->d_inode;
1290 struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
1291 int err;
1292
1293 lock_kernel();
1294 switch(cmd) {
1295 case LOOP_SET_STATUS:
1296 mutex_lock(&lo->lo_ctl_mutex);
1297 err = loop_set_status_compat(
1298 lo, (const struct compat_loop_info __user *) arg);
1299 mutex_unlock(&lo->lo_ctl_mutex);
1300 break;
1301 case LOOP_GET_STATUS:
1302 mutex_lock(&lo->lo_ctl_mutex);
1303 err = loop_get_status_compat(
1304 lo, (struct compat_loop_info __user *) arg);
1305 mutex_unlock(&lo->lo_ctl_mutex);
1306 break;
1307 case LOOP_CLR_FD:
1308 case LOOP_GET_STATUS64:
1309 case LOOP_SET_STATUS64:
1310 arg = (unsigned long) compat_ptr(arg);
1311 case LOOP_SET_FD:
1312 case LOOP_CHANGE_FD:
1313 err = lo_ioctl(inode, file, cmd, arg);
1314 break;
1315 default:
1316 err = -ENOIOCTLCMD;
1317 break;
1318 }
1319 unlock_kernel();
1320 return err;
1321 }
1322 #endif
1323
1324 static struct loop_device *loop_find_dev(int number)
1325 {
1326 struct loop_device *lo;
1327
1328 list_for_each_entry(lo, &loop_devices, lo_list) {
1329 if (lo->lo_number == number)
1330 return lo;
1331 }
1332 return NULL;
1333 }
1334
1335 static struct loop_device *loop_init_one(int i);
1336 static int lo_open(struct inode *inode, struct file *file)
1337 {
1338 struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
1339
1340 mutex_lock(&lo->lo_ctl_mutex);
1341 lo->lo_refcnt++;
1342 mutex_unlock(&lo->lo_ctl_mutex);
1343
1344 mutex_lock(&loop_devices_mutex);
1345 if (!loop_find_dev(lo->lo_number + 1))
1346 loop_init_one(lo->lo_number + 1);
1347 mutex_unlock(&loop_devices_mutex);
1348
1349 return 0;
1350 }
1351
1352 static int lo_release(struct inode *inode, struct file *file)
1353 {
1354 struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
1355
1356 mutex_lock(&lo->lo_ctl_mutex);
1357 --lo->lo_refcnt;
1358 mutex_unlock(&lo->lo_ctl_mutex);
1359
1360 return 0;
1361 }
1362
1363 static struct block_device_operations lo_fops = {
1364 .owner = THIS_MODULE,
1365 .open = lo_open,
1366 .release = lo_release,
1367 .ioctl = lo_ioctl,
1368 #ifdef CONFIG_COMPAT
1369 .compat_ioctl = lo_compat_ioctl,
1370 #endif
1371 };
1372
1373 /*
1374 * And now the modules code and kernel interface.
1375 */
1376 static int max_loop;
1377 module_param(max_loop, int, 0);
1378 MODULE_PARM_DESC(max_loop, "obsolete, loop device is created on-demand");
1379 MODULE_LICENSE("GPL");
1380 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1381
1382 int loop_register_transfer(struct loop_func_table *funcs)
1383 {
1384 unsigned int n = funcs->number;
1385
1386 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1387 return -EINVAL;
1388 xfer_funcs[n] = funcs;
1389 return 0;
1390 }
1391
1392 int loop_unregister_transfer(int number)
1393 {
1394 unsigned int n = number;
1395 struct loop_device *lo;
1396 struct loop_func_table *xfer;
1397
1398 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1399 return -EINVAL;
1400
1401 xfer_funcs[n] = NULL;
1402
1403 list_for_each_entry(lo, &loop_devices, lo_list) {
1404 mutex_lock(&lo->lo_ctl_mutex);
1405
1406 if (lo->lo_encryption == xfer)
1407 loop_release_xfer(lo);
1408
1409 mutex_unlock(&lo->lo_ctl_mutex);
1410 }
1411
1412 return 0;
1413 }
1414
1415 EXPORT_SYMBOL(loop_register_transfer);
1416 EXPORT_SYMBOL(loop_unregister_transfer);
1417
1418 static struct loop_device *loop_init_one(int i)
1419 {
1420 struct loop_device *lo;
1421 struct gendisk *disk;
1422
1423 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1424 if (!lo)
1425 goto out;
1426
1427 lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1428 if (!lo->lo_queue)
1429 goto out_free_dev;
1430
1431 disk = lo->lo_disk = alloc_disk(1);
1432 if (!disk)
1433 goto out_free_queue;
1434
1435 mutex_init(&lo->lo_ctl_mutex);
1436 lo->lo_number = i;
1437 lo->lo_thread = NULL;
1438 init_waitqueue_head(&lo->lo_event);
1439 spin_lock_init(&lo->lo_lock);
1440 disk->major = LOOP_MAJOR;
1441 disk->first_minor = i;
1442 disk->fops = &lo_fops;
1443 disk->private_data = lo;
1444 disk->queue = lo->lo_queue;
1445 sprintf(disk->disk_name, "loop%d", i);
1446 add_disk(disk);
1447 list_add_tail(&lo->lo_list, &loop_devices);
1448 return lo;
1449
1450 out_free_queue:
1451 blk_cleanup_queue(lo->lo_queue);
1452 out_free_dev:
1453 kfree(lo);
1454 out:
1455 return ERR_PTR(-ENOMEM);
1456 }
1457
1458 static void loop_del_one(struct loop_device *lo)
1459 {
1460 del_gendisk(lo->lo_disk);
1461 blk_cleanup_queue(lo->lo_queue);
1462 put_disk(lo->lo_disk);
1463 list_del(&lo->lo_list);
1464 kfree(lo);
1465 }
1466
1467 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1468 {
1469 unsigned int number = dev & MINORMASK;
1470 struct loop_device *lo;
1471
1472 mutex_lock(&loop_devices_mutex);
1473 lo = loop_find_dev(number);
1474 if (lo == NULL)
1475 lo = loop_init_one(number);
1476 mutex_unlock(&loop_devices_mutex);
1477
1478 *part = 0;
1479 if (IS_ERR(lo))
1480 return (void *)lo;
1481 else
1482 return &lo->lo_disk->kobj;
1483 }
1484
1485 static int __init loop_init(void)
1486 {
1487 struct loop_device *lo;
1488
1489 if (register_blkdev(LOOP_MAJOR, "loop"))
1490 return -EIO;
1491 blk_register_region(MKDEV(LOOP_MAJOR, 0), 1UL << MINORBITS,
1492 THIS_MODULE, loop_probe, NULL, NULL);
1493
1494 lo = loop_init_one(0);
1495 if (IS_ERR(lo))
1496 goto out;
1497
1498 if (max_loop) {
1499 printk(KERN_INFO "loop: the max_loop option is obsolete "
1500 "and will be removed in March 2008\n");
1501
1502 }
1503 printk(KERN_INFO "loop: module loaded\n");
1504 return 0;
1505
1506 out:
1507 unregister_blkdev(LOOP_MAJOR, "loop");
1508 printk(KERN_ERR "loop: ran out of memory\n");
1509 return -ENOMEM;
1510 }
1511
1512 static void __exit loop_exit(void)
1513 {
1514 struct loop_device *lo, *next;
1515
1516 list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1517 loop_del_one(lo);
1518
1519 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), 1UL << MINORBITS);
1520 if (unregister_blkdev(LOOP_MAJOR, "loop"))
1521 printk(KERN_WARNING "loop: cannot unregister blkdev\n");
1522 }
1523
1524 module_init(loop_init);
1525 module_exit(loop_exit);
1526
1527 #ifndef MODULE
1528 static int __init max_loop_setup(char *str)
1529 {
1530 max_loop = simple_strtol(str, NULL, 0);
1531 return 1;
1532 }
1533
1534 __setup("max_loop=", max_loop_setup);
1535 #endif
This page took 0.061486 seconds and 6 git commands to generate.