Merge branch 'drm-next' of git://people.freedesktop.org/~airlied/linux
[deliverable/linux.git] / drivers / block / nvme-scsi.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 /*
16 * Refer to the SCSI-NVMe Translation spec for details on how
17 * each command is translated.
18 */
19
20 #include <linux/nvme.h>
21 #include <linux/bio.h>
22 #include <linux/bitops.h>
23 #include <linux/blkdev.h>
24 #include <linux/compat.h>
25 #include <linux/delay.h>
26 #include <linux/errno.h>
27 #include <linux/fs.h>
28 #include <linux/genhd.h>
29 #include <linux/idr.h>
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/io.h>
33 #include <linux/kdev_t.h>
34 #include <linux/kthread.h>
35 #include <linux/kernel.h>
36 #include <linux/mm.h>
37 #include <linux/module.h>
38 #include <linux/moduleparam.h>
39 #include <linux/pci.h>
40 #include <linux/poison.h>
41 #include <linux/sched.h>
42 #include <linux/slab.h>
43 #include <linux/types.h>
44 #include <asm/unaligned.h>
45 #include <scsi/sg.h>
46 #include <scsi/scsi.h>
47
48
49 static int sg_version_num = 30534; /* 2 digits for each component */
50
51 /* VPD Page Codes */
52 #define VPD_SUPPORTED_PAGES 0x00
53 #define VPD_SERIAL_NUMBER 0x80
54 #define VPD_DEVICE_IDENTIFIERS 0x83
55 #define VPD_EXTENDED_INQUIRY 0x86
56 #define VPD_BLOCK_LIMITS 0xB0
57 #define VPD_BLOCK_DEV_CHARACTERISTICS 0xB1
58
59 /* format unit paramter list offsets */
60 #define FORMAT_UNIT_SHORT_PARM_LIST_LEN 4
61 #define FORMAT_UNIT_LONG_PARM_LIST_LEN 8
62 #define FORMAT_UNIT_PROT_INT_OFFSET 3
63 #define FORMAT_UNIT_PROT_FIELD_USAGE_OFFSET 0
64 #define FORMAT_UNIT_PROT_FIELD_USAGE_MASK 0x07
65
66 /* Misc. defines */
67 #define FIXED_SENSE_DATA 0x70
68 #define DESC_FORMAT_SENSE_DATA 0x72
69 #define FIXED_SENSE_DATA_ADD_LENGTH 10
70 #define LUN_ENTRY_SIZE 8
71 #define LUN_DATA_HEADER_SIZE 8
72 #define ALL_LUNS_RETURNED 0x02
73 #define ALL_WELL_KNOWN_LUNS_RETURNED 0x01
74 #define RESTRICTED_LUNS_RETURNED 0x00
75 #define NVME_POWER_STATE_START_VALID 0x00
76 #define NVME_POWER_STATE_ACTIVE 0x01
77 #define NVME_POWER_STATE_IDLE 0x02
78 #define NVME_POWER_STATE_STANDBY 0x03
79 #define NVME_POWER_STATE_LU_CONTROL 0x07
80 #define POWER_STATE_0 0
81 #define POWER_STATE_1 1
82 #define POWER_STATE_2 2
83 #define POWER_STATE_3 3
84 #define DOWNLOAD_SAVE_ACTIVATE 0x05
85 #define DOWNLOAD_SAVE_DEFER_ACTIVATE 0x0E
86 #define ACTIVATE_DEFERRED_MICROCODE 0x0F
87 #define FORMAT_UNIT_IMMED_MASK 0x2
88 #define FORMAT_UNIT_IMMED_OFFSET 1
89 #define KELVIN_TEMP_FACTOR 273
90 #define FIXED_FMT_SENSE_DATA_SIZE 18
91 #define DESC_FMT_SENSE_DATA_SIZE 8
92
93 /* SCSI/NVMe defines and bit masks */
94 #define INQ_STANDARD_INQUIRY_PAGE 0x00
95 #define INQ_SUPPORTED_VPD_PAGES_PAGE 0x00
96 #define INQ_UNIT_SERIAL_NUMBER_PAGE 0x80
97 #define INQ_DEVICE_IDENTIFICATION_PAGE 0x83
98 #define INQ_EXTENDED_INQUIRY_DATA_PAGE 0x86
99 #define INQ_BDEV_LIMITS_PAGE 0xB0
100 #define INQ_BDEV_CHARACTERISTICS_PAGE 0xB1
101 #define INQ_SERIAL_NUMBER_LENGTH 0x14
102 #define INQ_NUM_SUPPORTED_VPD_PAGES 6
103 #define VERSION_SPC_4 0x06
104 #define ACA_UNSUPPORTED 0
105 #define STANDARD_INQUIRY_LENGTH 36
106 #define ADDITIONAL_STD_INQ_LENGTH 31
107 #define EXTENDED_INQUIRY_DATA_PAGE_LENGTH 0x3C
108 #define RESERVED_FIELD 0
109
110 /* Mode Sense/Select defines */
111 #define MODE_PAGE_INFO_EXCEP 0x1C
112 #define MODE_PAGE_CACHING 0x08
113 #define MODE_PAGE_CONTROL 0x0A
114 #define MODE_PAGE_POWER_CONDITION 0x1A
115 #define MODE_PAGE_RETURN_ALL 0x3F
116 #define MODE_PAGE_BLK_DES_LEN 0x08
117 #define MODE_PAGE_LLBAA_BLK_DES_LEN 0x10
118 #define MODE_PAGE_CACHING_LEN 0x14
119 #define MODE_PAGE_CONTROL_LEN 0x0C
120 #define MODE_PAGE_POW_CND_LEN 0x28
121 #define MODE_PAGE_INF_EXC_LEN 0x0C
122 #define MODE_PAGE_ALL_LEN 0x54
123 #define MODE_SENSE6_MPH_SIZE 4
124 #define MODE_SENSE_PAGE_CONTROL_MASK 0xC0
125 #define MODE_SENSE_PAGE_CODE_OFFSET 2
126 #define MODE_SENSE_PAGE_CODE_MASK 0x3F
127 #define MODE_SENSE_LLBAA_MASK 0x10
128 #define MODE_SENSE_LLBAA_SHIFT 4
129 #define MODE_SENSE_DBD_MASK 8
130 #define MODE_SENSE_DBD_SHIFT 3
131 #define MODE_SENSE10_MPH_SIZE 8
132 #define MODE_SELECT_CDB_PAGE_FORMAT_MASK 0x10
133 #define MODE_SELECT_CDB_SAVE_PAGES_MASK 0x1
134 #define MODE_SELECT_6_BD_OFFSET 3
135 #define MODE_SELECT_10_BD_OFFSET 6
136 #define MODE_SELECT_10_LLBAA_OFFSET 4
137 #define MODE_SELECT_10_LLBAA_MASK 1
138 #define MODE_SELECT_6_MPH_SIZE 4
139 #define MODE_SELECT_10_MPH_SIZE 8
140 #define CACHING_MODE_PAGE_WCE_MASK 0x04
141 #define MODE_SENSE_BLK_DESC_ENABLED 0
142 #define MODE_SENSE_BLK_DESC_COUNT 1
143 #define MODE_SELECT_PAGE_CODE_MASK 0x3F
144 #define SHORT_DESC_BLOCK 8
145 #define LONG_DESC_BLOCK 16
146 #define MODE_PAGE_POW_CND_LEN_FIELD 0x26
147 #define MODE_PAGE_INF_EXC_LEN_FIELD 0x0A
148 #define MODE_PAGE_CACHING_LEN_FIELD 0x12
149 #define MODE_PAGE_CONTROL_LEN_FIELD 0x0A
150 #define MODE_SENSE_PC_CURRENT_VALUES 0
151
152 /* Log Sense defines */
153 #define LOG_PAGE_SUPPORTED_LOG_PAGES_PAGE 0x00
154 #define LOG_PAGE_SUPPORTED_LOG_PAGES_LENGTH 0x07
155 #define LOG_PAGE_INFORMATIONAL_EXCEPTIONS_PAGE 0x2F
156 #define LOG_PAGE_TEMPERATURE_PAGE 0x0D
157 #define LOG_SENSE_CDB_SP_NOT_ENABLED 0
158 #define LOG_SENSE_CDB_PC_MASK 0xC0
159 #define LOG_SENSE_CDB_PC_SHIFT 6
160 #define LOG_SENSE_CDB_PC_CUMULATIVE_VALUES 1
161 #define LOG_SENSE_CDB_PAGE_CODE_MASK 0x3F
162 #define REMAINING_INFO_EXCP_PAGE_LENGTH 0x8
163 #define LOG_INFO_EXCP_PAGE_LENGTH 0xC
164 #define REMAINING_TEMP_PAGE_LENGTH 0xC
165 #define LOG_TEMP_PAGE_LENGTH 0x10
166 #define LOG_TEMP_UNKNOWN 0xFF
167 #define SUPPORTED_LOG_PAGES_PAGE_LENGTH 0x3
168
169 /* Read Capacity defines */
170 #define READ_CAP_10_RESP_SIZE 8
171 #define READ_CAP_16_RESP_SIZE 32
172
173 /* NVMe Namespace and Command Defines */
174 #define BYTES_TO_DWORDS 4
175 #define NVME_MAX_FIRMWARE_SLOT 7
176
177 /* Report LUNs defines */
178 #define REPORT_LUNS_FIRST_LUN_OFFSET 8
179
180 /* SCSI ADDITIONAL SENSE Codes */
181
182 #define SCSI_ASC_NO_SENSE 0x00
183 #define SCSI_ASC_PERIPHERAL_DEV_WRITE_FAULT 0x03
184 #define SCSI_ASC_LUN_NOT_READY 0x04
185 #define SCSI_ASC_WARNING 0x0B
186 #define SCSI_ASC_LOG_BLOCK_GUARD_CHECK_FAILED 0x10
187 #define SCSI_ASC_LOG_BLOCK_APPTAG_CHECK_FAILED 0x10
188 #define SCSI_ASC_LOG_BLOCK_REFTAG_CHECK_FAILED 0x10
189 #define SCSI_ASC_UNRECOVERED_READ_ERROR 0x11
190 #define SCSI_ASC_MISCOMPARE_DURING_VERIFY 0x1D
191 #define SCSI_ASC_ACCESS_DENIED_INVALID_LUN_ID 0x20
192 #define SCSI_ASC_ILLEGAL_COMMAND 0x20
193 #define SCSI_ASC_ILLEGAL_BLOCK 0x21
194 #define SCSI_ASC_INVALID_CDB 0x24
195 #define SCSI_ASC_INVALID_LUN 0x25
196 #define SCSI_ASC_INVALID_PARAMETER 0x26
197 #define SCSI_ASC_FORMAT_COMMAND_FAILED 0x31
198 #define SCSI_ASC_INTERNAL_TARGET_FAILURE 0x44
199
200 /* SCSI ADDITIONAL SENSE Code Qualifiers */
201
202 #define SCSI_ASCQ_CAUSE_NOT_REPORTABLE 0x00
203 #define SCSI_ASCQ_FORMAT_COMMAND_FAILED 0x01
204 #define SCSI_ASCQ_LOG_BLOCK_GUARD_CHECK_FAILED 0x01
205 #define SCSI_ASCQ_LOG_BLOCK_APPTAG_CHECK_FAILED 0x02
206 #define SCSI_ASCQ_LOG_BLOCK_REFTAG_CHECK_FAILED 0x03
207 #define SCSI_ASCQ_FORMAT_IN_PROGRESS 0x04
208 #define SCSI_ASCQ_POWER_LOSS_EXPECTED 0x08
209 #define SCSI_ASCQ_INVALID_LUN_ID 0x09
210
211 /* copied from drivers/usb/gadget/function/storage_common.h */
212 static inline u32 get_unaligned_be24(u8 *buf)
213 {
214 return 0xffffff & (u32) get_unaligned_be32(buf - 1);
215 }
216
217 /* Struct to gather data that needs to be extracted from a SCSI CDB.
218 Not conforming to any particular CDB variant, but compatible with all. */
219
220 struct nvme_trans_io_cdb {
221 u8 fua;
222 u8 prot_info;
223 u64 lba;
224 u32 xfer_len;
225 };
226
227
228 /* Internal Helper Functions */
229
230
231 /* Copy data to userspace memory */
232
233 static int nvme_trans_copy_to_user(struct sg_io_hdr *hdr, void *from,
234 unsigned long n)
235 {
236 int i;
237 void *index = from;
238 size_t remaining = n;
239 size_t xfer_len;
240
241 if (hdr->iovec_count > 0) {
242 struct sg_iovec sgl;
243
244 for (i = 0; i < hdr->iovec_count; i++) {
245 if (copy_from_user(&sgl, hdr->dxferp +
246 i * sizeof(struct sg_iovec),
247 sizeof(struct sg_iovec)))
248 return -EFAULT;
249 xfer_len = min(remaining, sgl.iov_len);
250 if (copy_to_user(sgl.iov_base, index, xfer_len))
251 return -EFAULT;
252
253 index += xfer_len;
254 remaining -= xfer_len;
255 if (remaining == 0)
256 break;
257 }
258 return 0;
259 }
260
261 if (copy_to_user(hdr->dxferp, from, n))
262 return -EFAULT;
263 return 0;
264 }
265
266 /* Copy data from userspace memory */
267
268 static int nvme_trans_copy_from_user(struct sg_io_hdr *hdr, void *to,
269 unsigned long n)
270 {
271 int i;
272 void *index = to;
273 size_t remaining = n;
274 size_t xfer_len;
275
276 if (hdr->iovec_count > 0) {
277 struct sg_iovec sgl;
278
279 for (i = 0; i < hdr->iovec_count; i++) {
280 if (copy_from_user(&sgl, hdr->dxferp +
281 i * sizeof(struct sg_iovec),
282 sizeof(struct sg_iovec)))
283 return -EFAULT;
284 xfer_len = min(remaining, sgl.iov_len);
285 if (copy_from_user(index, sgl.iov_base, xfer_len))
286 return -EFAULT;
287 index += xfer_len;
288 remaining -= xfer_len;
289 if (remaining == 0)
290 break;
291 }
292 return 0;
293 }
294
295 if (copy_from_user(to, hdr->dxferp, n))
296 return -EFAULT;
297 return 0;
298 }
299
300 /* Status/Sense Buffer Writeback */
301
302 static int nvme_trans_completion(struct sg_io_hdr *hdr, u8 status, u8 sense_key,
303 u8 asc, u8 ascq)
304 {
305 u8 xfer_len;
306 u8 resp[DESC_FMT_SENSE_DATA_SIZE];
307
308 if (scsi_status_is_good(status)) {
309 hdr->status = SAM_STAT_GOOD;
310 hdr->masked_status = GOOD;
311 hdr->host_status = DID_OK;
312 hdr->driver_status = DRIVER_OK;
313 hdr->sb_len_wr = 0;
314 } else {
315 hdr->status = status;
316 hdr->masked_status = status >> 1;
317 hdr->host_status = DID_OK;
318 hdr->driver_status = DRIVER_OK;
319
320 memset(resp, 0, DESC_FMT_SENSE_DATA_SIZE);
321 resp[0] = DESC_FORMAT_SENSE_DATA;
322 resp[1] = sense_key;
323 resp[2] = asc;
324 resp[3] = ascq;
325
326 xfer_len = min_t(u8, hdr->mx_sb_len, DESC_FMT_SENSE_DATA_SIZE);
327 hdr->sb_len_wr = xfer_len;
328 if (copy_to_user(hdr->sbp, resp, xfer_len) > 0)
329 return -EFAULT;
330 }
331
332 return 0;
333 }
334
335 /*
336 * Take a status code from a lowlevel routine, and if it was a positive NVMe
337 * error code update the sense data based on it. In either case the passed
338 * in value is returned again, unless an -EFAULT from copy_to_user overrides
339 * it.
340 */
341 static int nvme_trans_status_code(struct sg_io_hdr *hdr, int nvme_sc)
342 {
343 u8 status, sense_key, asc, ascq;
344 int res;
345
346 /* For non-nvme (Linux) errors, simply return the error code */
347 if (nvme_sc < 0)
348 return nvme_sc;
349
350 /* Mask DNR, More, and reserved fields */
351 switch (nvme_sc & 0x7FF) {
352 /* Generic Command Status */
353 case NVME_SC_SUCCESS:
354 status = SAM_STAT_GOOD;
355 sense_key = NO_SENSE;
356 asc = SCSI_ASC_NO_SENSE;
357 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
358 break;
359 case NVME_SC_INVALID_OPCODE:
360 status = SAM_STAT_CHECK_CONDITION;
361 sense_key = ILLEGAL_REQUEST;
362 asc = SCSI_ASC_ILLEGAL_COMMAND;
363 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
364 break;
365 case NVME_SC_INVALID_FIELD:
366 status = SAM_STAT_CHECK_CONDITION;
367 sense_key = ILLEGAL_REQUEST;
368 asc = SCSI_ASC_INVALID_CDB;
369 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
370 break;
371 case NVME_SC_DATA_XFER_ERROR:
372 status = SAM_STAT_CHECK_CONDITION;
373 sense_key = MEDIUM_ERROR;
374 asc = SCSI_ASC_NO_SENSE;
375 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
376 break;
377 case NVME_SC_POWER_LOSS:
378 status = SAM_STAT_TASK_ABORTED;
379 sense_key = ABORTED_COMMAND;
380 asc = SCSI_ASC_WARNING;
381 ascq = SCSI_ASCQ_POWER_LOSS_EXPECTED;
382 break;
383 case NVME_SC_INTERNAL:
384 status = SAM_STAT_CHECK_CONDITION;
385 sense_key = HARDWARE_ERROR;
386 asc = SCSI_ASC_INTERNAL_TARGET_FAILURE;
387 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
388 break;
389 case NVME_SC_ABORT_REQ:
390 status = SAM_STAT_TASK_ABORTED;
391 sense_key = ABORTED_COMMAND;
392 asc = SCSI_ASC_NO_SENSE;
393 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
394 break;
395 case NVME_SC_ABORT_QUEUE:
396 status = SAM_STAT_TASK_ABORTED;
397 sense_key = ABORTED_COMMAND;
398 asc = SCSI_ASC_NO_SENSE;
399 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
400 break;
401 case NVME_SC_FUSED_FAIL:
402 status = SAM_STAT_TASK_ABORTED;
403 sense_key = ABORTED_COMMAND;
404 asc = SCSI_ASC_NO_SENSE;
405 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
406 break;
407 case NVME_SC_FUSED_MISSING:
408 status = SAM_STAT_TASK_ABORTED;
409 sense_key = ABORTED_COMMAND;
410 asc = SCSI_ASC_NO_SENSE;
411 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
412 break;
413 case NVME_SC_INVALID_NS:
414 status = SAM_STAT_CHECK_CONDITION;
415 sense_key = ILLEGAL_REQUEST;
416 asc = SCSI_ASC_ACCESS_DENIED_INVALID_LUN_ID;
417 ascq = SCSI_ASCQ_INVALID_LUN_ID;
418 break;
419 case NVME_SC_LBA_RANGE:
420 status = SAM_STAT_CHECK_CONDITION;
421 sense_key = ILLEGAL_REQUEST;
422 asc = SCSI_ASC_ILLEGAL_BLOCK;
423 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
424 break;
425 case NVME_SC_CAP_EXCEEDED:
426 status = SAM_STAT_CHECK_CONDITION;
427 sense_key = MEDIUM_ERROR;
428 asc = SCSI_ASC_NO_SENSE;
429 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
430 break;
431 case NVME_SC_NS_NOT_READY:
432 status = SAM_STAT_CHECK_CONDITION;
433 sense_key = NOT_READY;
434 asc = SCSI_ASC_LUN_NOT_READY;
435 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
436 break;
437
438 /* Command Specific Status */
439 case NVME_SC_INVALID_FORMAT:
440 status = SAM_STAT_CHECK_CONDITION;
441 sense_key = ILLEGAL_REQUEST;
442 asc = SCSI_ASC_FORMAT_COMMAND_FAILED;
443 ascq = SCSI_ASCQ_FORMAT_COMMAND_FAILED;
444 break;
445 case NVME_SC_BAD_ATTRIBUTES:
446 status = SAM_STAT_CHECK_CONDITION;
447 sense_key = ILLEGAL_REQUEST;
448 asc = SCSI_ASC_INVALID_CDB;
449 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
450 break;
451
452 /* Media Errors */
453 case NVME_SC_WRITE_FAULT:
454 status = SAM_STAT_CHECK_CONDITION;
455 sense_key = MEDIUM_ERROR;
456 asc = SCSI_ASC_PERIPHERAL_DEV_WRITE_FAULT;
457 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
458 break;
459 case NVME_SC_READ_ERROR:
460 status = SAM_STAT_CHECK_CONDITION;
461 sense_key = MEDIUM_ERROR;
462 asc = SCSI_ASC_UNRECOVERED_READ_ERROR;
463 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
464 break;
465 case NVME_SC_GUARD_CHECK:
466 status = SAM_STAT_CHECK_CONDITION;
467 sense_key = MEDIUM_ERROR;
468 asc = SCSI_ASC_LOG_BLOCK_GUARD_CHECK_FAILED;
469 ascq = SCSI_ASCQ_LOG_BLOCK_GUARD_CHECK_FAILED;
470 break;
471 case NVME_SC_APPTAG_CHECK:
472 status = SAM_STAT_CHECK_CONDITION;
473 sense_key = MEDIUM_ERROR;
474 asc = SCSI_ASC_LOG_BLOCK_APPTAG_CHECK_FAILED;
475 ascq = SCSI_ASCQ_LOG_BLOCK_APPTAG_CHECK_FAILED;
476 break;
477 case NVME_SC_REFTAG_CHECK:
478 status = SAM_STAT_CHECK_CONDITION;
479 sense_key = MEDIUM_ERROR;
480 asc = SCSI_ASC_LOG_BLOCK_REFTAG_CHECK_FAILED;
481 ascq = SCSI_ASCQ_LOG_BLOCK_REFTAG_CHECK_FAILED;
482 break;
483 case NVME_SC_COMPARE_FAILED:
484 status = SAM_STAT_CHECK_CONDITION;
485 sense_key = MISCOMPARE;
486 asc = SCSI_ASC_MISCOMPARE_DURING_VERIFY;
487 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
488 break;
489 case NVME_SC_ACCESS_DENIED:
490 status = SAM_STAT_CHECK_CONDITION;
491 sense_key = ILLEGAL_REQUEST;
492 asc = SCSI_ASC_ACCESS_DENIED_INVALID_LUN_ID;
493 ascq = SCSI_ASCQ_INVALID_LUN_ID;
494 break;
495
496 /* Unspecified/Default */
497 case NVME_SC_CMDID_CONFLICT:
498 case NVME_SC_CMD_SEQ_ERROR:
499 case NVME_SC_CQ_INVALID:
500 case NVME_SC_QID_INVALID:
501 case NVME_SC_QUEUE_SIZE:
502 case NVME_SC_ABORT_LIMIT:
503 case NVME_SC_ABORT_MISSING:
504 case NVME_SC_ASYNC_LIMIT:
505 case NVME_SC_FIRMWARE_SLOT:
506 case NVME_SC_FIRMWARE_IMAGE:
507 case NVME_SC_INVALID_VECTOR:
508 case NVME_SC_INVALID_LOG_PAGE:
509 default:
510 status = SAM_STAT_CHECK_CONDITION;
511 sense_key = ILLEGAL_REQUEST;
512 asc = SCSI_ASC_NO_SENSE;
513 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
514 break;
515 }
516
517 res = nvme_trans_completion(hdr, status, sense_key, asc, ascq);
518 return res ? res : nvme_sc;
519 }
520
521 /* INQUIRY Helper Functions */
522
523 static int nvme_trans_standard_inquiry_page(struct nvme_ns *ns,
524 struct sg_io_hdr *hdr, u8 *inq_response,
525 int alloc_len)
526 {
527 struct nvme_dev *dev = ns->dev;
528 struct nvme_id_ns *id_ns;
529 int res;
530 int nvme_sc;
531 int xfer_len;
532 u8 resp_data_format = 0x02;
533 u8 protect;
534 u8 cmdque = 0x01 << 1;
535 u8 fw_offset = sizeof(dev->firmware_rev);
536
537 /* nvme ns identify - use DPS value for PROTECT field */
538 nvme_sc = nvme_identify_ns(dev, ns->ns_id, &id_ns);
539 res = nvme_trans_status_code(hdr, nvme_sc);
540 if (res)
541 return res;
542
543 if (id_ns->dps)
544 protect = 0x01;
545 else
546 protect = 0;
547 kfree(id_ns);
548
549 memset(inq_response, 0, STANDARD_INQUIRY_LENGTH);
550 inq_response[2] = VERSION_SPC_4;
551 inq_response[3] = resp_data_format; /*normaca=0 | hisup=0 */
552 inq_response[4] = ADDITIONAL_STD_INQ_LENGTH;
553 inq_response[5] = protect; /* sccs=0 | acc=0 | tpgs=0 | pc3=0 */
554 inq_response[7] = cmdque; /* wbus16=0 | sync=0 | vs=0 */
555 strncpy(&inq_response[8], "NVMe ", 8);
556 strncpy(&inq_response[16], dev->model, 16);
557
558 while (dev->firmware_rev[fw_offset - 1] == ' ' && fw_offset > 4)
559 fw_offset--;
560 fw_offset -= 4;
561 strncpy(&inq_response[32], dev->firmware_rev + fw_offset, 4);
562
563 xfer_len = min(alloc_len, STANDARD_INQUIRY_LENGTH);
564 return nvme_trans_copy_to_user(hdr, inq_response, xfer_len);
565 }
566
567 static int nvme_trans_supported_vpd_pages(struct nvme_ns *ns,
568 struct sg_io_hdr *hdr, u8 *inq_response,
569 int alloc_len)
570 {
571 int xfer_len;
572
573 memset(inq_response, 0, STANDARD_INQUIRY_LENGTH);
574 inq_response[1] = INQ_SUPPORTED_VPD_PAGES_PAGE; /* Page Code */
575 inq_response[3] = INQ_NUM_SUPPORTED_VPD_PAGES; /* Page Length */
576 inq_response[4] = INQ_SUPPORTED_VPD_PAGES_PAGE;
577 inq_response[5] = INQ_UNIT_SERIAL_NUMBER_PAGE;
578 inq_response[6] = INQ_DEVICE_IDENTIFICATION_PAGE;
579 inq_response[7] = INQ_EXTENDED_INQUIRY_DATA_PAGE;
580 inq_response[8] = INQ_BDEV_CHARACTERISTICS_PAGE;
581 inq_response[9] = INQ_BDEV_LIMITS_PAGE;
582
583 xfer_len = min(alloc_len, STANDARD_INQUIRY_LENGTH);
584 return nvme_trans_copy_to_user(hdr, inq_response, xfer_len);
585 }
586
587 static int nvme_trans_unit_serial_page(struct nvme_ns *ns,
588 struct sg_io_hdr *hdr, u8 *inq_response,
589 int alloc_len)
590 {
591 struct nvme_dev *dev = ns->dev;
592 int xfer_len;
593
594 memset(inq_response, 0, STANDARD_INQUIRY_LENGTH);
595 inq_response[1] = INQ_UNIT_SERIAL_NUMBER_PAGE; /* Page Code */
596 inq_response[3] = INQ_SERIAL_NUMBER_LENGTH; /* Page Length */
597 strncpy(&inq_response[4], dev->serial, INQ_SERIAL_NUMBER_LENGTH);
598
599 xfer_len = min(alloc_len, STANDARD_INQUIRY_LENGTH);
600 return nvme_trans_copy_to_user(hdr, inq_response, xfer_len);
601 }
602
603 static int nvme_trans_device_id_page(struct nvme_ns *ns, struct sg_io_hdr *hdr,
604 u8 *inq_response, int alloc_len)
605 {
606 struct nvme_dev *dev = ns->dev;
607 int res;
608 int nvme_sc;
609 int xfer_len;
610 __be32 tmp_id = cpu_to_be32(ns->ns_id);
611
612 memset(inq_response, 0, alloc_len);
613 inq_response[1] = INQ_DEVICE_IDENTIFICATION_PAGE; /* Page Code */
614 if (readl(&dev->bar->vs) >= NVME_VS(1, 1)) {
615 struct nvme_id_ns *id_ns;
616 void *eui;
617 int len;
618
619 nvme_sc = nvme_identify_ns(dev, ns->ns_id, &id_ns);
620 res = nvme_trans_status_code(hdr, nvme_sc);
621 if (res)
622 return res;
623
624 eui = id_ns->eui64;
625 len = sizeof(id_ns->eui64);
626 if (readl(&dev->bar->vs) >= NVME_VS(1, 2)) {
627 if (bitmap_empty(eui, len * 8)) {
628 eui = id_ns->nguid;
629 len = sizeof(id_ns->nguid);
630 }
631 }
632 if (bitmap_empty(eui, len * 8)) {
633 kfree(id_ns);
634 goto scsi_string;
635 }
636
637 inq_response[3] = 4 + len; /* Page Length */
638 /* Designation Descriptor start */
639 inq_response[4] = 0x01; /* Proto ID=0h | Code set=1h */
640 inq_response[5] = 0x02; /* PIV=0b | Asso=00b | Designator Type=2h */
641 inq_response[6] = 0x00; /* Rsvd */
642 inq_response[7] = len; /* Designator Length */
643 memcpy(&inq_response[8], eui, len);
644 kfree(id_ns);
645 } else {
646 scsi_string:
647 if (alloc_len < 72) {
648 return nvme_trans_completion(hdr,
649 SAM_STAT_CHECK_CONDITION,
650 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
651 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
652 }
653 inq_response[3] = 0x48; /* Page Length */
654 /* Designation Descriptor start */
655 inq_response[4] = 0x03; /* Proto ID=0h | Code set=3h */
656 inq_response[5] = 0x08; /* PIV=0b | Asso=00b | Designator Type=8h */
657 inq_response[6] = 0x00; /* Rsvd */
658 inq_response[7] = 0x44; /* Designator Length */
659
660 sprintf(&inq_response[8], "%04x", to_pci_dev(dev->dev)->vendor);
661 memcpy(&inq_response[12], dev->model, sizeof(dev->model));
662 sprintf(&inq_response[52], "%04x", tmp_id);
663 memcpy(&inq_response[56], dev->serial, sizeof(dev->serial));
664 }
665 xfer_len = alloc_len;
666 return nvme_trans_copy_to_user(hdr, inq_response, xfer_len);
667 }
668
669 static int nvme_trans_ext_inq_page(struct nvme_ns *ns, struct sg_io_hdr *hdr,
670 int alloc_len)
671 {
672 u8 *inq_response;
673 int res;
674 int nvme_sc;
675 struct nvme_dev *dev = ns->dev;
676 struct nvme_id_ctrl *id_ctrl;
677 struct nvme_id_ns *id_ns;
678 int xfer_len;
679 u8 microcode = 0x80;
680 u8 spt;
681 u8 spt_lut[8] = {0, 0, 2, 1, 4, 6, 5, 7};
682 u8 grd_chk, app_chk, ref_chk, protect;
683 u8 uask_sup = 0x20;
684 u8 v_sup;
685 u8 luiclr = 0x01;
686
687 inq_response = kmalloc(EXTENDED_INQUIRY_DATA_PAGE_LENGTH, GFP_KERNEL);
688 if (inq_response == NULL)
689 return -ENOMEM;
690
691 nvme_sc = nvme_identify_ns(dev, ns->ns_id, &id_ns);
692 res = nvme_trans_status_code(hdr, nvme_sc);
693 if (res)
694 goto out_free_inq;
695
696 spt = spt_lut[id_ns->dpc & 0x07] << 3;
697 if (id_ns->dps)
698 protect = 0x01;
699 else
700 protect = 0;
701 kfree(id_ns);
702
703 grd_chk = protect << 2;
704 app_chk = protect << 1;
705 ref_chk = protect;
706
707 nvme_sc = nvme_identify_ctrl(dev, &id_ctrl);
708 res = nvme_trans_status_code(hdr, nvme_sc);
709 if (res)
710 goto out_free_inq;
711
712 v_sup = id_ctrl->vwc;
713 kfree(id_ctrl);
714
715 memset(inq_response, 0, EXTENDED_INQUIRY_DATA_PAGE_LENGTH);
716 inq_response[1] = INQ_EXTENDED_INQUIRY_DATA_PAGE; /* Page Code */
717 inq_response[2] = 0x00; /* Page Length MSB */
718 inq_response[3] = 0x3C; /* Page Length LSB */
719 inq_response[4] = microcode | spt | grd_chk | app_chk | ref_chk;
720 inq_response[5] = uask_sup;
721 inq_response[6] = v_sup;
722 inq_response[7] = luiclr;
723 inq_response[8] = 0;
724 inq_response[9] = 0;
725
726 xfer_len = min(alloc_len, EXTENDED_INQUIRY_DATA_PAGE_LENGTH);
727 res = nvme_trans_copy_to_user(hdr, inq_response, xfer_len);
728
729 out_free_inq:
730 kfree(inq_response);
731 return res;
732 }
733
734 static int nvme_trans_bdev_limits_page(struct nvme_ns *ns, struct sg_io_hdr *hdr,
735 u8 *inq_response, int alloc_len)
736 {
737 __be32 max_sectors = cpu_to_be32(
738 nvme_block_nr(ns, queue_max_hw_sectors(ns->queue)));
739 __be32 max_discard = cpu_to_be32(ns->queue->limits.max_discard_sectors);
740 __be32 discard_desc_count = cpu_to_be32(0x100);
741
742 memset(inq_response, 0, STANDARD_INQUIRY_LENGTH);
743 inq_response[1] = VPD_BLOCK_LIMITS;
744 inq_response[3] = 0x3c; /* Page Length */
745 memcpy(&inq_response[8], &max_sectors, sizeof(u32));
746 memcpy(&inq_response[20], &max_discard, sizeof(u32));
747
748 if (max_discard)
749 memcpy(&inq_response[24], &discard_desc_count, sizeof(u32));
750
751 return nvme_trans_copy_to_user(hdr, inq_response, 0x3c);
752 }
753
754 static int nvme_trans_bdev_char_page(struct nvme_ns *ns, struct sg_io_hdr *hdr,
755 int alloc_len)
756 {
757 u8 *inq_response;
758 int res;
759 int xfer_len;
760
761 inq_response = kzalloc(EXTENDED_INQUIRY_DATA_PAGE_LENGTH, GFP_KERNEL);
762 if (inq_response == NULL) {
763 res = -ENOMEM;
764 goto out_mem;
765 }
766
767 inq_response[1] = INQ_BDEV_CHARACTERISTICS_PAGE; /* Page Code */
768 inq_response[2] = 0x00; /* Page Length MSB */
769 inq_response[3] = 0x3C; /* Page Length LSB */
770 inq_response[4] = 0x00; /* Medium Rotation Rate MSB */
771 inq_response[5] = 0x01; /* Medium Rotation Rate LSB */
772 inq_response[6] = 0x00; /* Form Factor */
773
774 xfer_len = min(alloc_len, EXTENDED_INQUIRY_DATA_PAGE_LENGTH);
775 res = nvme_trans_copy_to_user(hdr, inq_response, xfer_len);
776
777 kfree(inq_response);
778 out_mem:
779 return res;
780 }
781
782 /* LOG SENSE Helper Functions */
783
784 static int nvme_trans_log_supp_pages(struct nvme_ns *ns, struct sg_io_hdr *hdr,
785 int alloc_len)
786 {
787 int res;
788 int xfer_len;
789 u8 *log_response;
790
791 log_response = kzalloc(LOG_PAGE_SUPPORTED_LOG_PAGES_LENGTH, GFP_KERNEL);
792 if (log_response == NULL) {
793 res = -ENOMEM;
794 goto out_mem;
795 }
796
797 log_response[0] = LOG_PAGE_SUPPORTED_LOG_PAGES_PAGE;
798 /* Subpage=0x00, Page Length MSB=0 */
799 log_response[3] = SUPPORTED_LOG_PAGES_PAGE_LENGTH;
800 log_response[4] = LOG_PAGE_SUPPORTED_LOG_PAGES_PAGE;
801 log_response[5] = LOG_PAGE_INFORMATIONAL_EXCEPTIONS_PAGE;
802 log_response[6] = LOG_PAGE_TEMPERATURE_PAGE;
803
804 xfer_len = min(alloc_len, LOG_PAGE_SUPPORTED_LOG_PAGES_LENGTH);
805 res = nvme_trans_copy_to_user(hdr, log_response, xfer_len);
806
807 kfree(log_response);
808 out_mem:
809 return res;
810 }
811
812 static int nvme_trans_log_info_exceptions(struct nvme_ns *ns,
813 struct sg_io_hdr *hdr, int alloc_len)
814 {
815 int res;
816 int xfer_len;
817 u8 *log_response;
818 struct nvme_dev *dev = ns->dev;
819 struct nvme_smart_log *smart_log;
820 u8 temp_c;
821 u16 temp_k;
822
823 log_response = kzalloc(LOG_INFO_EXCP_PAGE_LENGTH, GFP_KERNEL);
824 if (log_response == NULL)
825 return -ENOMEM;
826
827 res = nvme_get_log_page(dev, &smart_log);
828 if (res < 0)
829 goto out_free_response;
830
831 if (res != NVME_SC_SUCCESS) {
832 temp_c = LOG_TEMP_UNKNOWN;
833 } else {
834 temp_k = (smart_log->temperature[1] << 8) +
835 (smart_log->temperature[0]);
836 temp_c = temp_k - KELVIN_TEMP_FACTOR;
837 }
838 kfree(smart_log);
839
840 log_response[0] = LOG_PAGE_INFORMATIONAL_EXCEPTIONS_PAGE;
841 /* Subpage=0x00, Page Length MSB=0 */
842 log_response[3] = REMAINING_INFO_EXCP_PAGE_LENGTH;
843 /* Informational Exceptions Log Parameter 1 Start */
844 /* Parameter Code=0x0000 bytes 4,5 */
845 log_response[6] = 0x23; /* DU=0, TSD=1, ETC=0, TMC=0, FMT_AND_LNK=11b */
846 log_response[7] = 0x04; /* PARAMETER LENGTH */
847 /* Add sense Code and qualifier = 0x00 each */
848 /* Use Temperature from NVMe Get Log Page, convert to C from K */
849 log_response[10] = temp_c;
850
851 xfer_len = min(alloc_len, LOG_INFO_EXCP_PAGE_LENGTH);
852 res = nvme_trans_copy_to_user(hdr, log_response, xfer_len);
853
854 out_free_response:
855 kfree(log_response);
856 return res;
857 }
858
859 static int nvme_trans_log_temperature(struct nvme_ns *ns, struct sg_io_hdr *hdr,
860 int alloc_len)
861 {
862 int res;
863 int xfer_len;
864 u8 *log_response;
865 struct nvme_dev *dev = ns->dev;
866 struct nvme_smart_log *smart_log;
867 u32 feature_resp;
868 u8 temp_c_cur, temp_c_thresh;
869 u16 temp_k;
870
871 log_response = kzalloc(LOG_TEMP_PAGE_LENGTH, GFP_KERNEL);
872 if (log_response == NULL)
873 return -ENOMEM;
874
875 res = nvme_get_log_page(dev, &smart_log);
876 if (res < 0)
877 goto out_free_response;
878
879 if (res != NVME_SC_SUCCESS) {
880 temp_c_cur = LOG_TEMP_UNKNOWN;
881 } else {
882 temp_k = (smart_log->temperature[1] << 8) +
883 (smart_log->temperature[0]);
884 temp_c_cur = temp_k - KELVIN_TEMP_FACTOR;
885 }
886 kfree(smart_log);
887
888 /* Get Features for Temp Threshold */
889 res = nvme_get_features(dev, NVME_FEAT_TEMP_THRESH, 0, 0,
890 &feature_resp);
891 if (res != NVME_SC_SUCCESS)
892 temp_c_thresh = LOG_TEMP_UNKNOWN;
893 else
894 temp_c_thresh = (feature_resp & 0xFFFF) - KELVIN_TEMP_FACTOR;
895
896 log_response[0] = LOG_PAGE_TEMPERATURE_PAGE;
897 /* Subpage=0x00, Page Length MSB=0 */
898 log_response[3] = REMAINING_TEMP_PAGE_LENGTH;
899 /* Temperature Log Parameter 1 (Temperature) Start */
900 /* Parameter Code = 0x0000 */
901 log_response[6] = 0x01; /* Format and Linking = 01b */
902 log_response[7] = 0x02; /* Parameter Length */
903 /* Use Temperature from NVMe Get Log Page, convert to C from K */
904 log_response[9] = temp_c_cur;
905 /* Temperature Log Parameter 2 (Reference Temperature) Start */
906 log_response[11] = 0x01; /* Parameter Code = 0x0001 */
907 log_response[12] = 0x01; /* Format and Linking = 01b */
908 log_response[13] = 0x02; /* Parameter Length */
909 /* Use Temperature Thresh from NVMe Get Log Page, convert to C from K */
910 log_response[15] = temp_c_thresh;
911
912 xfer_len = min(alloc_len, LOG_TEMP_PAGE_LENGTH);
913 res = nvme_trans_copy_to_user(hdr, log_response, xfer_len);
914
915 out_free_response:
916 kfree(log_response);
917 return res;
918 }
919
920 /* MODE SENSE Helper Functions */
921
922 static int nvme_trans_fill_mode_parm_hdr(u8 *resp, int len, u8 cdb10, u8 llbaa,
923 u16 mode_data_length, u16 blk_desc_len)
924 {
925 /* Quick check to make sure I don't stomp on my own memory... */
926 if ((cdb10 && len < 8) || (!cdb10 && len < 4))
927 return -EINVAL;
928
929 if (cdb10) {
930 resp[0] = (mode_data_length & 0xFF00) >> 8;
931 resp[1] = (mode_data_length & 0x00FF);
932 resp[3] = 0x10 /* DPOFUA */;
933 resp[4] = llbaa;
934 resp[5] = RESERVED_FIELD;
935 resp[6] = (blk_desc_len & 0xFF00) >> 8;
936 resp[7] = (blk_desc_len & 0x00FF);
937 } else {
938 resp[0] = (mode_data_length & 0x00FF);
939 resp[2] = 0x10 /* DPOFUA */;
940 resp[3] = (blk_desc_len & 0x00FF);
941 }
942
943 return 0;
944 }
945
946 static int nvme_trans_fill_blk_desc(struct nvme_ns *ns, struct sg_io_hdr *hdr,
947 u8 *resp, int len, u8 llbaa)
948 {
949 int res;
950 int nvme_sc;
951 struct nvme_dev *dev = ns->dev;
952 struct nvme_id_ns *id_ns;
953 u8 flbas;
954 u32 lba_length;
955
956 if (llbaa == 0 && len < MODE_PAGE_BLK_DES_LEN)
957 return -EINVAL;
958 else if (llbaa > 0 && len < MODE_PAGE_LLBAA_BLK_DES_LEN)
959 return -EINVAL;
960
961 nvme_sc = nvme_identify_ns(dev, ns->ns_id, &id_ns);
962 res = nvme_trans_status_code(hdr, nvme_sc);
963 if (res)
964 return res;
965
966 flbas = (id_ns->flbas) & 0x0F;
967 lba_length = (1 << (id_ns->lbaf[flbas].ds));
968
969 if (llbaa == 0) {
970 __be32 tmp_cap = cpu_to_be32(le64_to_cpu(id_ns->ncap));
971 /* Byte 4 is reserved */
972 __be32 tmp_len = cpu_to_be32(lba_length & 0x00FFFFFF);
973
974 memcpy(resp, &tmp_cap, sizeof(u32));
975 memcpy(&resp[4], &tmp_len, sizeof(u32));
976 } else {
977 __be64 tmp_cap = cpu_to_be64(le64_to_cpu(id_ns->ncap));
978 __be32 tmp_len = cpu_to_be32(lba_length);
979
980 memcpy(resp, &tmp_cap, sizeof(u64));
981 /* Bytes 8, 9, 10, 11 are reserved */
982 memcpy(&resp[12], &tmp_len, sizeof(u32));
983 }
984
985 kfree(id_ns);
986 return res;
987 }
988
989 static int nvme_trans_fill_control_page(struct nvme_ns *ns,
990 struct sg_io_hdr *hdr, u8 *resp,
991 int len)
992 {
993 if (len < MODE_PAGE_CONTROL_LEN)
994 return -EINVAL;
995
996 resp[0] = MODE_PAGE_CONTROL;
997 resp[1] = MODE_PAGE_CONTROL_LEN_FIELD;
998 resp[2] = 0x0E; /* TST=000b, TMF_ONLY=0, DPICZ=1,
999 * D_SENSE=1, GLTSD=1, RLEC=0 */
1000 resp[3] = 0x12; /* Q_ALGO_MODIFIER=1h, NUAR=0, QERR=01b */
1001 /* Byte 4: VS=0, RAC=0, UA_INT=0, SWP=0 */
1002 resp[5] = 0x40; /* ATO=0, TAS=1, ATMPE=0, RWWP=0, AUTOLOAD=0 */
1003 /* resp[6] and [7] are obsolete, thus zero */
1004 resp[8] = 0xFF; /* Busy timeout period = 0xffff */
1005 resp[9] = 0xFF;
1006 /* Bytes 10,11: Extended selftest completion time = 0x0000 */
1007
1008 return 0;
1009 }
1010
1011 static int nvme_trans_fill_caching_page(struct nvme_ns *ns,
1012 struct sg_io_hdr *hdr,
1013 u8 *resp, int len)
1014 {
1015 int res = 0;
1016 int nvme_sc;
1017 struct nvme_dev *dev = ns->dev;
1018 u32 feature_resp;
1019 u8 vwc;
1020
1021 if (len < MODE_PAGE_CACHING_LEN)
1022 return -EINVAL;
1023
1024 nvme_sc = nvme_get_features(dev, NVME_FEAT_VOLATILE_WC, 0, 0,
1025 &feature_resp);
1026 res = nvme_trans_status_code(hdr, nvme_sc);
1027 if (res)
1028 return res;
1029
1030 vwc = feature_resp & 0x00000001;
1031
1032 resp[0] = MODE_PAGE_CACHING;
1033 resp[1] = MODE_PAGE_CACHING_LEN_FIELD;
1034 resp[2] = vwc << 2;
1035 return 0;
1036 }
1037
1038 static int nvme_trans_fill_pow_cnd_page(struct nvme_ns *ns,
1039 struct sg_io_hdr *hdr, u8 *resp,
1040 int len)
1041 {
1042 if (len < MODE_PAGE_POW_CND_LEN)
1043 return -EINVAL;
1044
1045 resp[0] = MODE_PAGE_POWER_CONDITION;
1046 resp[1] = MODE_PAGE_POW_CND_LEN_FIELD;
1047 /* All other bytes are zero */
1048
1049 return 0;
1050 }
1051
1052 static int nvme_trans_fill_inf_exc_page(struct nvme_ns *ns,
1053 struct sg_io_hdr *hdr, u8 *resp,
1054 int len)
1055 {
1056 if (len < MODE_PAGE_INF_EXC_LEN)
1057 return -EINVAL;
1058
1059 resp[0] = MODE_PAGE_INFO_EXCEP;
1060 resp[1] = MODE_PAGE_INF_EXC_LEN_FIELD;
1061 resp[2] = 0x88;
1062 /* All other bytes are zero */
1063
1064 return 0;
1065 }
1066
1067 static int nvme_trans_fill_all_pages(struct nvme_ns *ns, struct sg_io_hdr *hdr,
1068 u8 *resp, int len)
1069 {
1070 int res;
1071 u16 mode_pages_offset_1 = 0;
1072 u16 mode_pages_offset_2, mode_pages_offset_3, mode_pages_offset_4;
1073
1074 mode_pages_offset_2 = mode_pages_offset_1 + MODE_PAGE_CACHING_LEN;
1075 mode_pages_offset_3 = mode_pages_offset_2 + MODE_PAGE_CONTROL_LEN;
1076 mode_pages_offset_4 = mode_pages_offset_3 + MODE_PAGE_POW_CND_LEN;
1077
1078 res = nvme_trans_fill_caching_page(ns, hdr, &resp[mode_pages_offset_1],
1079 MODE_PAGE_CACHING_LEN);
1080 if (res)
1081 return res;
1082 res = nvme_trans_fill_control_page(ns, hdr, &resp[mode_pages_offset_2],
1083 MODE_PAGE_CONTROL_LEN);
1084 if (res)
1085 return res;
1086 res = nvme_trans_fill_pow_cnd_page(ns, hdr, &resp[mode_pages_offset_3],
1087 MODE_PAGE_POW_CND_LEN);
1088 if (res)
1089 return res;
1090 return nvme_trans_fill_inf_exc_page(ns, hdr, &resp[mode_pages_offset_4],
1091 MODE_PAGE_INF_EXC_LEN);
1092 }
1093
1094 static inline int nvme_trans_get_blk_desc_len(u8 dbd, u8 llbaa)
1095 {
1096 if (dbd == MODE_SENSE_BLK_DESC_ENABLED) {
1097 /* SPC-4: len = 8 x Num_of_descriptors if llbaa = 0, 16x if 1 */
1098 return 8 * (llbaa + 1) * MODE_SENSE_BLK_DESC_COUNT;
1099 } else {
1100 return 0;
1101 }
1102 }
1103
1104 static int nvme_trans_mode_page_create(struct nvme_ns *ns,
1105 struct sg_io_hdr *hdr, u8 *cmd,
1106 u16 alloc_len, u8 cdb10,
1107 int (*mode_page_fill_func)
1108 (struct nvme_ns *,
1109 struct sg_io_hdr *hdr, u8 *, int),
1110 u16 mode_pages_tot_len)
1111 {
1112 int res;
1113 int xfer_len;
1114 u8 *response;
1115 u8 dbd, llbaa;
1116 u16 resp_size;
1117 int mph_size;
1118 u16 mode_pages_offset_1;
1119 u16 blk_desc_len, blk_desc_offset, mode_data_length;
1120
1121 dbd = (cmd[1] & MODE_SENSE_DBD_MASK) >> MODE_SENSE_DBD_SHIFT;
1122 llbaa = (cmd[1] & MODE_SENSE_LLBAA_MASK) >> MODE_SENSE_LLBAA_SHIFT;
1123 mph_size = cdb10 ? MODE_SENSE10_MPH_SIZE : MODE_SENSE6_MPH_SIZE;
1124
1125 blk_desc_len = nvme_trans_get_blk_desc_len(dbd, llbaa);
1126
1127 resp_size = mph_size + blk_desc_len + mode_pages_tot_len;
1128 /* Refer spc4r34 Table 440 for calculation of Mode data Length field */
1129 mode_data_length = 3 + (3 * cdb10) + blk_desc_len + mode_pages_tot_len;
1130
1131 blk_desc_offset = mph_size;
1132 mode_pages_offset_1 = blk_desc_offset + blk_desc_len;
1133
1134 response = kzalloc(resp_size, GFP_KERNEL);
1135 if (response == NULL) {
1136 res = -ENOMEM;
1137 goto out_mem;
1138 }
1139
1140 res = nvme_trans_fill_mode_parm_hdr(&response[0], mph_size, cdb10,
1141 llbaa, mode_data_length, blk_desc_len);
1142 if (res)
1143 goto out_free;
1144 if (blk_desc_len > 0) {
1145 res = nvme_trans_fill_blk_desc(ns, hdr,
1146 &response[blk_desc_offset],
1147 blk_desc_len, llbaa);
1148 if (res)
1149 goto out_free;
1150 }
1151 res = mode_page_fill_func(ns, hdr, &response[mode_pages_offset_1],
1152 mode_pages_tot_len);
1153 if (res)
1154 goto out_free;
1155
1156 xfer_len = min(alloc_len, resp_size);
1157 res = nvme_trans_copy_to_user(hdr, response, xfer_len);
1158
1159 out_free:
1160 kfree(response);
1161 out_mem:
1162 return res;
1163 }
1164
1165 /* Read Capacity Helper Functions */
1166
1167 static void nvme_trans_fill_read_cap(u8 *response, struct nvme_id_ns *id_ns,
1168 u8 cdb16)
1169 {
1170 u8 flbas;
1171 u32 lba_length;
1172 u64 rlba;
1173 u8 prot_en;
1174 u8 p_type_lut[4] = {0, 0, 1, 2};
1175 __be64 tmp_rlba;
1176 __be32 tmp_rlba_32;
1177 __be32 tmp_len;
1178
1179 flbas = (id_ns->flbas) & 0x0F;
1180 lba_length = (1 << (id_ns->lbaf[flbas].ds));
1181 rlba = le64_to_cpup(&id_ns->nsze) - 1;
1182 (id_ns->dps) ? (prot_en = 0x01) : (prot_en = 0);
1183
1184 if (!cdb16) {
1185 if (rlba > 0xFFFFFFFF)
1186 rlba = 0xFFFFFFFF;
1187 tmp_rlba_32 = cpu_to_be32(rlba);
1188 tmp_len = cpu_to_be32(lba_length);
1189 memcpy(response, &tmp_rlba_32, sizeof(u32));
1190 memcpy(&response[4], &tmp_len, sizeof(u32));
1191 } else {
1192 tmp_rlba = cpu_to_be64(rlba);
1193 tmp_len = cpu_to_be32(lba_length);
1194 memcpy(response, &tmp_rlba, sizeof(u64));
1195 memcpy(&response[8], &tmp_len, sizeof(u32));
1196 response[12] = (p_type_lut[id_ns->dps & 0x3] << 1) | prot_en;
1197 /* P_I_Exponent = 0x0 | LBPPBE = 0x0 */
1198 /* LBPME = 0 | LBPRZ = 0 | LALBA = 0x00 */
1199 /* Bytes 16-31 - Reserved */
1200 }
1201 }
1202
1203 /* Start Stop Unit Helper Functions */
1204
1205 static int nvme_trans_power_state(struct nvme_ns *ns, struct sg_io_hdr *hdr,
1206 u8 pc, u8 pcmod, u8 start)
1207 {
1208 int res;
1209 int nvme_sc;
1210 struct nvme_dev *dev = ns->dev;
1211 struct nvme_id_ctrl *id_ctrl;
1212 int lowest_pow_st; /* max npss = lowest power consumption */
1213 unsigned ps_desired = 0;
1214
1215 nvme_sc = nvme_identify_ctrl(dev, &id_ctrl);
1216 res = nvme_trans_status_code(hdr, nvme_sc);
1217 if (res)
1218 return res;
1219
1220 lowest_pow_st = max(POWER_STATE_0, (int)(id_ctrl->npss - 1));
1221 kfree(id_ctrl);
1222
1223 switch (pc) {
1224 case NVME_POWER_STATE_START_VALID:
1225 /* Action unspecified if POWER CONDITION MODIFIER != 0 */
1226 if (pcmod == 0 && start == 0x1)
1227 ps_desired = POWER_STATE_0;
1228 if (pcmod == 0 && start == 0x0)
1229 ps_desired = lowest_pow_st;
1230 break;
1231 case NVME_POWER_STATE_ACTIVE:
1232 /* Action unspecified if POWER CONDITION MODIFIER != 0 */
1233 if (pcmod == 0)
1234 ps_desired = POWER_STATE_0;
1235 break;
1236 case NVME_POWER_STATE_IDLE:
1237 /* Action unspecified if POWER CONDITION MODIFIER != [0,1,2] */
1238 if (pcmod == 0x0)
1239 ps_desired = POWER_STATE_1;
1240 else if (pcmod == 0x1)
1241 ps_desired = POWER_STATE_2;
1242 else if (pcmod == 0x2)
1243 ps_desired = POWER_STATE_3;
1244 break;
1245 case NVME_POWER_STATE_STANDBY:
1246 /* Action unspecified if POWER CONDITION MODIFIER != [0,1] */
1247 if (pcmod == 0x0)
1248 ps_desired = max(POWER_STATE_0, (lowest_pow_st - 2));
1249 else if (pcmod == 0x1)
1250 ps_desired = max(POWER_STATE_0, (lowest_pow_st - 1));
1251 break;
1252 case NVME_POWER_STATE_LU_CONTROL:
1253 default:
1254 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
1255 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
1256 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1257 break;
1258 }
1259 nvme_sc = nvme_set_features(dev, NVME_FEAT_POWER_MGMT, ps_desired, 0,
1260 NULL);
1261 return nvme_trans_status_code(hdr, nvme_sc);
1262 }
1263
1264 static int nvme_trans_send_activate_fw_cmd(struct nvme_ns *ns, struct sg_io_hdr *hdr,
1265 u8 buffer_id)
1266 {
1267 struct nvme_command c;
1268 int nvme_sc;
1269
1270 memset(&c, 0, sizeof(c));
1271 c.common.opcode = nvme_admin_activate_fw;
1272 c.common.cdw10[0] = cpu_to_le32(buffer_id | NVME_FWACT_REPL_ACTV);
1273
1274 nvme_sc = nvme_submit_sync_cmd(ns->queue, &c, NULL, 0);
1275 return nvme_trans_status_code(hdr, nvme_sc);
1276 }
1277
1278 static int nvme_trans_send_download_fw_cmd(struct nvme_ns *ns, struct sg_io_hdr *hdr,
1279 u8 opcode, u32 tot_len, u32 offset,
1280 u8 buffer_id)
1281 {
1282 int nvme_sc;
1283 struct nvme_dev *dev = ns->dev;
1284 struct nvme_command c;
1285
1286 if (hdr->iovec_count > 0) {
1287 /* Assuming SGL is not allowed for this command */
1288 return nvme_trans_completion(hdr,
1289 SAM_STAT_CHECK_CONDITION,
1290 ILLEGAL_REQUEST,
1291 SCSI_ASC_INVALID_CDB,
1292 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1293 }
1294
1295 memset(&c, 0, sizeof(c));
1296 c.common.opcode = nvme_admin_download_fw;
1297 c.dlfw.numd = cpu_to_le32((tot_len/BYTES_TO_DWORDS) - 1);
1298 c.dlfw.offset = cpu_to_le32(offset/BYTES_TO_DWORDS);
1299
1300 nvme_sc = __nvme_submit_sync_cmd(dev->admin_q, &c, NULL,
1301 hdr->dxferp, tot_len, NULL, 0);
1302 return nvme_trans_status_code(hdr, nvme_sc);
1303 }
1304
1305 /* Mode Select Helper Functions */
1306
1307 static inline void nvme_trans_modesel_get_bd_len(u8 *parm_list, u8 cdb10,
1308 u16 *bd_len, u8 *llbaa)
1309 {
1310 if (cdb10) {
1311 /* 10 Byte CDB */
1312 *bd_len = (parm_list[MODE_SELECT_10_BD_OFFSET] << 8) +
1313 parm_list[MODE_SELECT_10_BD_OFFSET + 1];
1314 *llbaa = parm_list[MODE_SELECT_10_LLBAA_OFFSET] &
1315 MODE_SELECT_10_LLBAA_MASK;
1316 } else {
1317 /* 6 Byte CDB */
1318 *bd_len = parm_list[MODE_SELECT_6_BD_OFFSET];
1319 }
1320 }
1321
1322 static void nvme_trans_modesel_save_bd(struct nvme_ns *ns, u8 *parm_list,
1323 u16 idx, u16 bd_len, u8 llbaa)
1324 {
1325 u16 bd_num;
1326
1327 bd_num = bd_len / ((llbaa == 0) ?
1328 SHORT_DESC_BLOCK : LONG_DESC_BLOCK);
1329 /* Store block descriptor info if a FORMAT UNIT comes later */
1330 /* TODO Saving 1st BD info; what to do if multiple BD received? */
1331 if (llbaa == 0) {
1332 /* Standard Block Descriptor - spc4r34 7.5.5.1 */
1333 ns->mode_select_num_blocks =
1334 (parm_list[idx + 1] << 16) +
1335 (parm_list[idx + 2] << 8) +
1336 (parm_list[idx + 3]);
1337
1338 ns->mode_select_block_len =
1339 (parm_list[idx + 5] << 16) +
1340 (parm_list[idx + 6] << 8) +
1341 (parm_list[idx + 7]);
1342 } else {
1343 /* Long LBA Block Descriptor - sbc3r27 6.4.2.3 */
1344 ns->mode_select_num_blocks =
1345 (((u64)parm_list[idx + 0]) << 56) +
1346 (((u64)parm_list[idx + 1]) << 48) +
1347 (((u64)parm_list[idx + 2]) << 40) +
1348 (((u64)parm_list[idx + 3]) << 32) +
1349 (((u64)parm_list[idx + 4]) << 24) +
1350 (((u64)parm_list[idx + 5]) << 16) +
1351 (((u64)parm_list[idx + 6]) << 8) +
1352 ((u64)parm_list[idx + 7]);
1353
1354 ns->mode_select_block_len =
1355 (parm_list[idx + 12] << 24) +
1356 (parm_list[idx + 13] << 16) +
1357 (parm_list[idx + 14] << 8) +
1358 (parm_list[idx + 15]);
1359 }
1360 }
1361
1362 static int nvme_trans_modesel_get_mp(struct nvme_ns *ns, struct sg_io_hdr *hdr,
1363 u8 *mode_page, u8 page_code)
1364 {
1365 int res = 0;
1366 int nvme_sc;
1367 struct nvme_dev *dev = ns->dev;
1368 unsigned dword11;
1369
1370 switch (page_code) {
1371 case MODE_PAGE_CACHING:
1372 dword11 = ((mode_page[2] & CACHING_MODE_PAGE_WCE_MASK) ? 1 : 0);
1373 nvme_sc = nvme_set_features(dev, NVME_FEAT_VOLATILE_WC, dword11,
1374 0, NULL);
1375 res = nvme_trans_status_code(hdr, nvme_sc);
1376 break;
1377 case MODE_PAGE_CONTROL:
1378 break;
1379 case MODE_PAGE_POWER_CONDITION:
1380 /* Verify the OS is not trying to set timers */
1381 if ((mode_page[2] & 0x01) != 0 || (mode_page[3] & 0x0F) != 0) {
1382 res = nvme_trans_completion(hdr,
1383 SAM_STAT_CHECK_CONDITION,
1384 ILLEGAL_REQUEST,
1385 SCSI_ASC_INVALID_PARAMETER,
1386 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1387 break;
1388 }
1389 break;
1390 default:
1391 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
1392 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
1393 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1394 break;
1395 }
1396
1397 return res;
1398 }
1399
1400 static int nvme_trans_modesel_data(struct nvme_ns *ns, struct sg_io_hdr *hdr,
1401 u8 *cmd, u16 parm_list_len, u8 pf,
1402 u8 sp, u8 cdb10)
1403 {
1404 int res;
1405 u8 *parm_list;
1406 u16 bd_len;
1407 u8 llbaa = 0;
1408 u16 index, saved_index;
1409 u8 page_code;
1410 u16 mp_size;
1411
1412 /* Get parm list from data-in/out buffer */
1413 parm_list = kmalloc(parm_list_len, GFP_KERNEL);
1414 if (parm_list == NULL) {
1415 res = -ENOMEM;
1416 goto out;
1417 }
1418
1419 res = nvme_trans_copy_from_user(hdr, parm_list, parm_list_len);
1420 if (res)
1421 goto out_mem;
1422
1423 nvme_trans_modesel_get_bd_len(parm_list, cdb10, &bd_len, &llbaa);
1424 index = (cdb10) ? (MODE_SELECT_10_MPH_SIZE) : (MODE_SELECT_6_MPH_SIZE);
1425
1426 if (bd_len != 0) {
1427 /* Block Descriptors present, parse */
1428 nvme_trans_modesel_save_bd(ns, parm_list, index, bd_len, llbaa);
1429 index += bd_len;
1430 }
1431 saved_index = index;
1432
1433 /* Multiple mode pages may be present; iterate through all */
1434 /* In 1st Iteration, don't do NVME Command, only check for CDB errors */
1435 do {
1436 page_code = parm_list[index] & MODE_SELECT_PAGE_CODE_MASK;
1437 mp_size = parm_list[index + 1] + 2;
1438 if ((page_code != MODE_PAGE_CACHING) &&
1439 (page_code != MODE_PAGE_CONTROL) &&
1440 (page_code != MODE_PAGE_POWER_CONDITION)) {
1441 res = nvme_trans_completion(hdr,
1442 SAM_STAT_CHECK_CONDITION,
1443 ILLEGAL_REQUEST,
1444 SCSI_ASC_INVALID_CDB,
1445 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1446 goto out_mem;
1447 }
1448 index += mp_size;
1449 } while (index < parm_list_len);
1450
1451 /* In 2nd Iteration, do the NVME Commands */
1452 index = saved_index;
1453 do {
1454 page_code = parm_list[index] & MODE_SELECT_PAGE_CODE_MASK;
1455 mp_size = parm_list[index + 1] + 2;
1456 res = nvme_trans_modesel_get_mp(ns, hdr, &parm_list[index],
1457 page_code);
1458 if (res)
1459 break;
1460 index += mp_size;
1461 } while (index < parm_list_len);
1462
1463 out_mem:
1464 kfree(parm_list);
1465 out:
1466 return res;
1467 }
1468
1469 /* Format Unit Helper Functions */
1470
1471 static int nvme_trans_fmt_set_blk_size_count(struct nvme_ns *ns,
1472 struct sg_io_hdr *hdr)
1473 {
1474 int res = 0;
1475 int nvme_sc;
1476 struct nvme_dev *dev = ns->dev;
1477 u8 flbas;
1478
1479 /*
1480 * SCSI Expects a MODE SELECT would have been issued prior to
1481 * a FORMAT UNIT, and the block size and number would be used
1482 * from the block descriptor in it. If a MODE SELECT had not
1483 * been issued, FORMAT shall use the current values for both.
1484 */
1485
1486 if (ns->mode_select_num_blocks == 0 || ns->mode_select_block_len == 0) {
1487 struct nvme_id_ns *id_ns;
1488
1489 nvme_sc = nvme_identify_ns(dev, ns->ns_id, &id_ns);
1490 res = nvme_trans_status_code(hdr, nvme_sc);
1491 if (res)
1492 return res;
1493
1494 if (ns->mode_select_num_blocks == 0)
1495 ns->mode_select_num_blocks = le64_to_cpu(id_ns->ncap);
1496 if (ns->mode_select_block_len == 0) {
1497 flbas = (id_ns->flbas) & 0x0F;
1498 ns->mode_select_block_len =
1499 (1 << (id_ns->lbaf[flbas].ds));
1500 }
1501
1502 kfree(id_ns);
1503 }
1504
1505 return 0;
1506 }
1507
1508 static int nvme_trans_fmt_get_parm_header(struct sg_io_hdr *hdr, u8 len,
1509 u8 format_prot_info, u8 *nvme_pf_code)
1510 {
1511 int res;
1512 u8 *parm_list;
1513 u8 pf_usage, pf_code;
1514
1515 parm_list = kmalloc(len, GFP_KERNEL);
1516 if (parm_list == NULL) {
1517 res = -ENOMEM;
1518 goto out;
1519 }
1520 res = nvme_trans_copy_from_user(hdr, parm_list, len);
1521 if (res)
1522 goto out_mem;
1523
1524 if ((parm_list[FORMAT_UNIT_IMMED_OFFSET] &
1525 FORMAT_UNIT_IMMED_MASK) != 0) {
1526 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
1527 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
1528 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1529 goto out_mem;
1530 }
1531
1532 if (len == FORMAT_UNIT_LONG_PARM_LIST_LEN &&
1533 (parm_list[FORMAT_UNIT_PROT_INT_OFFSET] & 0x0F) != 0) {
1534 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
1535 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
1536 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1537 goto out_mem;
1538 }
1539 pf_usage = parm_list[FORMAT_UNIT_PROT_FIELD_USAGE_OFFSET] &
1540 FORMAT_UNIT_PROT_FIELD_USAGE_MASK;
1541 pf_code = (pf_usage << 2) | format_prot_info;
1542 switch (pf_code) {
1543 case 0:
1544 *nvme_pf_code = 0;
1545 break;
1546 case 2:
1547 *nvme_pf_code = 1;
1548 break;
1549 case 3:
1550 *nvme_pf_code = 2;
1551 break;
1552 case 7:
1553 *nvme_pf_code = 3;
1554 break;
1555 default:
1556 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
1557 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
1558 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1559 break;
1560 }
1561
1562 out_mem:
1563 kfree(parm_list);
1564 out:
1565 return res;
1566 }
1567
1568 static int nvme_trans_fmt_send_cmd(struct nvme_ns *ns, struct sg_io_hdr *hdr,
1569 u8 prot_info)
1570 {
1571 int res;
1572 int nvme_sc;
1573 struct nvme_dev *dev = ns->dev;
1574 struct nvme_id_ns *id_ns;
1575 u8 i;
1576 u8 flbas, nlbaf;
1577 u8 selected_lbaf = 0xFF;
1578 u32 cdw10 = 0;
1579 struct nvme_command c;
1580
1581 /* Loop thru LBAF's in id_ns to match reqd lbaf, put in cdw10 */
1582 nvme_sc = nvme_identify_ns(dev, ns->ns_id, &id_ns);
1583 res = nvme_trans_status_code(hdr, nvme_sc);
1584 if (res)
1585 return res;
1586
1587 flbas = (id_ns->flbas) & 0x0F;
1588 nlbaf = id_ns->nlbaf;
1589
1590 for (i = 0; i < nlbaf; i++) {
1591 if (ns->mode_select_block_len == (1 << (id_ns->lbaf[i].ds))) {
1592 selected_lbaf = i;
1593 break;
1594 }
1595 }
1596 if (selected_lbaf > 0x0F) {
1597 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
1598 ILLEGAL_REQUEST, SCSI_ASC_INVALID_PARAMETER,
1599 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1600 }
1601 if (ns->mode_select_num_blocks != le64_to_cpu(id_ns->ncap)) {
1602 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
1603 ILLEGAL_REQUEST, SCSI_ASC_INVALID_PARAMETER,
1604 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1605 }
1606
1607 cdw10 |= prot_info << 5;
1608 cdw10 |= selected_lbaf & 0x0F;
1609 memset(&c, 0, sizeof(c));
1610 c.format.opcode = nvme_admin_format_nvm;
1611 c.format.nsid = cpu_to_le32(ns->ns_id);
1612 c.format.cdw10 = cpu_to_le32(cdw10);
1613
1614 nvme_sc = nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1615 res = nvme_trans_status_code(hdr, nvme_sc);
1616
1617 kfree(id_ns);
1618 return res;
1619 }
1620
1621 static inline u32 nvme_trans_io_get_num_cmds(struct sg_io_hdr *hdr,
1622 struct nvme_trans_io_cdb *cdb_info,
1623 u32 max_blocks)
1624 {
1625 /* If using iovecs, send one nvme command per vector */
1626 if (hdr->iovec_count > 0)
1627 return hdr->iovec_count;
1628 else if (cdb_info->xfer_len > max_blocks)
1629 return ((cdb_info->xfer_len - 1) / max_blocks) + 1;
1630 else
1631 return 1;
1632 }
1633
1634 static u16 nvme_trans_io_get_control(struct nvme_ns *ns,
1635 struct nvme_trans_io_cdb *cdb_info)
1636 {
1637 u16 control = 0;
1638
1639 /* When Protection information support is added, implement here */
1640
1641 if (cdb_info->fua > 0)
1642 control |= NVME_RW_FUA;
1643
1644 return control;
1645 }
1646
1647 static int nvme_trans_do_nvme_io(struct nvme_ns *ns, struct sg_io_hdr *hdr,
1648 struct nvme_trans_io_cdb *cdb_info, u8 is_write)
1649 {
1650 int nvme_sc = NVME_SC_SUCCESS;
1651 u32 num_cmds;
1652 u64 unit_len;
1653 u64 unit_num_blocks; /* Number of blocks to xfer in each nvme cmd */
1654 u32 retcode;
1655 u32 i = 0;
1656 u64 nvme_offset = 0;
1657 void __user *next_mapping_addr;
1658 struct nvme_command c;
1659 u8 opcode = (is_write ? nvme_cmd_write : nvme_cmd_read);
1660 u16 control;
1661 u32 max_blocks = queue_max_hw_sectors(ns->queue);
1662
1663 num_cmds = nvme_trans_io_get_num_cmds(hdr, cdb_info, max_blocks);
1664
1665 /*
1666 * This loop handles two cases.
1667 * First, when an SGL is used in the form of an iovec list:
1668 * - Use iov_base as the next mapping address for the nvme command_id
1669 * - Use iov_len as the data transfer length for the command.
1670 * Second, when we have a single buffer
1671 * - If larger than max_blocks, split into chunks, offset
1672 * each nvme command accordingly.
1673 */
1674 for (i = 0; i < num_cmds; i++) {
1675 memset(&c, 0, sizeof(c));
1676 if (hdr->iovec_count > 0) {
1677 struct sg_iovec sgl;
1678
1679 retcode = copy_from_user(&sgl, hdr->dxferp +
1680 i * sizeof(struct sg_iovec),
1681 sizeof(struct sg_iovec));
1682 if (retcode)
1683 return -EFAULT;
1684 unit_len = sgl.iov_len;
1685 unit_num_blocks = unit_len >> ns->lba_shift;
1686 next_mapping_addr = sgl.iov_base;
1687 } else {
1688 unit_num_blocks = min((u64)max_blocks,
1689 (cdb_info->xfer_len - nvme_offset));
1690 unit_len = unit_num_blocks << ns->lba_shift;
1691 next_mapping_addr = hdr->dxferp +
1692 ((1 << ns->lba_shift) * nvme_offset);
1693 }
1694
1695 c.rw.opcode = opcode;
1696 c.rw.nsid = cpu_to_le32(ns->ns_id);
1697 c.rw.slba = cpu_to_le64(cdb_info->lba + nvme_offset);
1698 c.rw.length = cpu_to_le16(unit_num_blocks - 1);
1699 control = nvme_trans_io_get_control(ns, cdb_info);
1700 c.rw.control = cpu_to_le16(control);
1701
1702 if (get_capacity(ns->disk) - unit_num_blocks <
1703 cdb_info->lba + nvme_offset) {
1704 nvme_sc = NVME_SC_LBA_RANGE;
1705 break;
1706 }
1707 nvme_sc = __nvme_submit_sync_cmd(ns->queue, &c, NULL,
1708 next_mapping_addr, unit_len, NULL, 0);
1709 if (nvme_sc)
1710 break;
1711
1712 nvme_offset += unit_num_blocks;
1713 }
1714
1715 return nvme_trans_status_code(hdr, nvme_sc);
1716 }
1717
1718
1719 /* SCSI Command Translation Functions */
1720
1721 static int nvme_trans_io(struct nvme_ns *ns, struct sg_io_hdr *hdr, u8 is_write,
1722 u8 *cmd)
1723 {
1724 int res = 0;
1725 struct nvme_trans_io_cdb cdb_info = { 0, };
1726 u8 opcode = cmd[0];
1727 u64 xfer_bytes;
1728 u64 sum_iov_len = 0;
1729 struct sg_iovec sgl;
1730 int i;
1731 size_t not_copied;
1732
1733 /*
1734 * The FUA and WPROTECT fields are not supported in 6-byte CDBs,
1735 * but always in the same place for all others.
1736 */
1737 switch (opcode) {
1738 case WRITE_6:
1739 case READ_6:
1740 break;
1741 default:
1742 cdb_info.fua = cmd[1] & 0x8;
1743 cdb_info.prot_info = (cmd[1] & 0xe0) >> 5;
1744 if (cdb_info.prot_info && !ns->pi_type) {
1745 return nvme_trans_completion(hdr,
1746 SAM_STAT_CHECK_CONDITION,
1747 ILLEGAL_REQUEST,
1748 SCSI_ASC_INVALID_CDB,
1749 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1750 }
1751 }
1752
1753 switch (opcode) {
1754 case WRITE_6:
1755 case READ_6:
1756 cdb_info.lba = get_unaligned_be24(&cmd[1]);
1757 cdb_info.xfer_len = cmd[4];
1758 if (cdb_info.xfer_len == 0)
1759 cdb_info.xfer_len = 256;
1760 break;
1761 case WRITE_10:
1762 case READ_10:
1763 cdb_info.lba = get_unaligned_be32(&cmd[2]);
1764 cdb_info.xfer_len = get_unaligned_be16(&cmd[7]);
1765 break;
1766 case WRITE_12:
1767 case READ_12:
1768 cdb_info.lba = get_unaligned_be32(&cmd[2]);
1769 cdb_info.xfer_len = get_unaligned_be32(&cmd[6]);
1770 break;
1771 case WRITE_16:
1772 case READ_16:
1773 cdb_info.lba = get_unaligned_be64(&cmd[2]);
1774 cdb_info.xfer_len = get_unaligned_be32(&cmd[10]);
1775 break;
1776 default:
1777 /* Will never really reach here */
1778 res = -EIO;
1779 goto out;
1780 }
1781
1782 /* Calculate total length of transfer (in bytes) */
1783 if (hdr->iovec_count > 0) {
1784 for (i = 0; i < hdr->iovec_count; i++) {
1785 not_copied = copy_from_user(&sgl, hdr->dxferp +
1786 i * sizeof(struct sg_iovec),
1787 sizeof(struct sg_iovec));
1788 if (not_copied)
1789 return -EFAULT;
1790 sum_iov_len += sgl.iov_len;
1791 /* IO vector sizes should be multiples of block size */
1792 if (sgl.iov_len % (1 << ns->lba_shift) != 0) {
1793 res = nvme_trans_completion(hdr,
1794 SAM_STAT_CHECK_CONDITION,
1795 ILLEGAL_REQUEST,
1796 SCSI_ASC_INVALID_PARAMETER,
1797 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1798 goto out;
1799 }
1800 }
1801 } else {
1802 sum_iov_len = hdr->dxfer_len;
1803 }
1804
1805 /* As Per sg ioctl howto, if the lengths differ, use the lower one */
1806 xfer_bytes = min(((u64)hdr->dxfer_len), sum_iov_len);
1807
1808 /* If block count and actual data buffer size dont match, error out */
1809 if (xfer_bytes != (cdb_info.xfer_len << ns->lba_shift)) {
1810 res = -EINVAL;
1811 goto out;
1812 }
1813
1814 /* Check for 0 length transfer - it is not illegal */
1815 if (cdb_info.xfer_len == 0)
1816 goto out;
1817
1818 /* Send NVMe IO Command(s) */
1819 res = nvme_trans_do_nvme_io(ns, hdr, &cdb_info, is_write);
1820 if (res)
1821 goto out;
1822
1823 out:
1824 return res;
1825 }
1826
1827 static int nvme_trans_inquiry(struct nvme_ns *ns, struct sg_io_hdr *hdr,
1828 u8 *cmd)
1829 {
1830 int res = 0;
1831 u8 evpd;
1832 u8 page_code;
1833 int alloc_len;
1834 u8 *inq_response;
1835
1836 evpd = cmd[1] & 0x01;
1837 page_code = cmd[2];
1838 alloc_len = get_unaligned_be16(&cmd[3]);
1839
1840 inq_response = kmalloc(max(alloc_len, STANDARD_INQUIRY_LENGTH),
1841 GFP_KERNEL);
1842 if (inq_response == NULL) {
1843 res = -ENOMEM;
1844 goto out_mem;
1845 }
1846
1847 if (evpd == 0) {
1848 if (page_code == INQ_STANDARD_INQUIRY_PAGE) {
1849 res = nvme_trans_standard_inquiry_page(ns, hdr,
1850 inq_response, alloc_len);
1851 } else {
1852 res = nvme_trans_completion(hdr,
1853 SAM_STAT_CHECK_CONDITION,
1854 ILLEGAL_REQUEST,
1855 SCSI_ASC_INVALID_CDB,
1856 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1857 }
1858 } else {
1859 switch (page_code) {
1860 case VPD_SUPPORTED_PAGES:
1861 res = nvme_trans_supported_vpd_pages(ns, hdr,
1862 inq_response, alloc_len);
1863 break;
1864 case VPD_SERIAL_NUMBER:
1865 res = nvme_trans_unit_serial_page(ns, hdr, inq_response,
1866 alloc_len);
1867 break;
1868 case VPD_DEVICE_IDENTIFIERS:
1869 res = nvme_trans_device_id_page(ns, hdr, inq_response,
1870 alloc_len);
1871 break;
1872 case VPD_EXTENDED_INQUIRY:
1873 res = nvme_trans_ext_inq_page(ns, hdr, alloc_len);
1874 break;
1875 case VPD_BLOCK_LIMITS:
1876 res = nvme_trans_bdev_limits_page(ns, hdr, inq_response,
1877 alloc_len);
1878 break;
1879 case VPD_BLOCK_DEV_CHARACTERISTICS:
1880 res = nvme_trans_bdev_char_page(ns, hdr, alloc_len);
1881 break;
1882 default:
1883 res = nvme_trans_completion(hdr,
1884 SAM_STAT_CHECK_CONDITION,
1885 ILLEGAL_REQUEST,
1886 SCSI_ASC_INVALID_CDB,
1887 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1888 break;
1889 }
1890 }
1891 kfree(inq_response);
1892 out_mem:
1893 return res;
1894 }
1895
1896 static int nvme_trans_log_sense(struct nvme_ns *ns, struct sg_io_hdr *hdr,
1897 u8 *cmd)
1898 {
1899 int res;
1900 u16 alloc_len;
1901 u8 pc;
1902 u8 page_code;
1903
1904 if (cmd[1] != LOG_SENSE_CDB_SP_NOT_ENABLED) {
1905 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
1906 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
1907 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1908 goto out;
1909 }
1910
1911 page_code = cmd[2] & LOG_SENSE_CDB_PAGE_CODE_MASK;
1912 pc = (cmd[2] & LOG_SENSE_CDB_PC_MASK) >> LOG_SENSE_CDB_PC_SHIFT;
1913 if (pc != LOG_SENSE_CDB_PC_CUMULATIVE_VALUES) {
1914 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
1915 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
1916 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1917 goto out;
1918 }
1919 alloc_len = get_unaligned_be16(&cmd[7]);
1920 switch (page_code) {
1921 case LOG_PAGE_SUPPORTED_LOG_PAGES_PAGE:
1922 res = nvme_trans_log_supp_pages(ns, hdr, alloc_len);
1923 break;
1924 case LOG_PAGE_INFORMATIONAL_EXCEPTIONS_PAGE:
1925 res = nvme_trans_log_info_exceptions(ns, hdr, alloc_len);
1926 break;
1927 case LOG_PAGE_TEMPERATURE_PAGE:
1928 res = nvme_trans_log_temperature(ns, hdr, alloc_len);
1929 break;
1930 default:
1931 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
1932 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
1933 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1934 break;
1935 }
1936
1937 out:
1938 return res;
1939 }
1940
1941 static int nvme_trans_mode_select(struct nvme_ns *ns, struct sg_io_hdr *hdr,
1942 u8 *cmd)
1943 {
1944 u8 cdb10 = 0;
1945 u16 parm_list_len;
1946 u8 page_format;
1947 u8 save_pages;
1948
1949 page_format = cmd[1] & MODE_SELECT_CDB_PAGE_FORMAT_MASK;
1950 save_pages = cmd[1] & MODE_SELECT_CDB_SAVE_PAGES_MASK;
1951
1952 if (cmd[0] == MODE_SELECT) {
1953 parm_list_len = cmd[4];
1954 } else {
1955 parm_list_len = cmd[7];
1956 cdb10 = 1;
1957 }
1958
1959 if (parm_list_len != 0) {
1960 /*
1961 * According to SPC-4 r24, a paramter list length field of 0
1962 * shall not be considered an error
1963 */
1964 return nvme_trans_modesel_data(ns, hdr, cmd, parm_list_len,
1965 page_format, save_pages, cdb10);
1966 }
1967
1968 return 0;
1969 }
1970
1971 static int nvme_trans_mode_sense(struct nvme_ns *ns, struct sg_io_hdr *hdr,
1972 u8 *cmd)
1973 {
1974 int res = 0;
1975 u16 alloc_len;
1976 u8 cdb10 = 0;
1977
1978 if (cmd[0] == MODE_SENSE) {
1979 alloc_len = cmd[4];
1980 } else {
1981 alloc_len = get_unaligned_be16(&cmd[7]);
1982 cdb10 = 1;
1983 }
1984
1985 if ((cmd[2] & MODE_SENSE_PAGE_CONTROL_MASK) !=
1986 MODE_SENSE_PC_CURRENT_VALUES) {
1987 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
1988 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
1989 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1990 goto out;
1991 }
1992
1993 switch (cmd[2] & MODE_SENSE_PAGE_CODE_MASK) {
1994 case MODE_PAGE_CACHING:
1995 res = nvme_trans_mode_page_create(ns, hdr, cmd, alloc_len,
1996 cdb10,
1997 &nvme_trans_fill_caching_page,
1998 MODE_PAGE_CACHING_LEN);
1999 break;
2000 case MODE_PAGE_CONTROL:
2001 res = nvme_trans_mode_page_create(ns, hdr, cmd, alloc_len,
2002 cdb10,
2003 &nvme_trans_fill_control_page,
2004 MODE_PAGE_CONTROL_LEN);
2005 break;
2006 case MODE_PAGE_POWER_CONDITION:
2007 res = nvme_trans_mode_page_create(ns, hdr, cmd, alloc_len,
2008 cdb10,
2009 &nvme_trans_fill_pow_cnd_page,
2010 MODE_PAGE_POW_CND_LEN);
2011 break;
2012 case MODE_PAGE_INFO_EXCEP:
2013 res = nvme_trans_mode_page_create(ns, hdr, cmd, alloc_len,
2014 cdb10,
2015 &nvme_trans_fill_inf_exc_page,
2016 MODE_PAGE_INF_EXC_LEN);
2017 break;
2018 case MODE_PAGE_RETURN_ALL:
2019 res = nvme_trans_mode_page_create(ns, hdr, cmd, alloc_len,
2020 cdb10,
2021 &nvme_trans_fill_all_pages,
2022 MODE_PAGE_ALL_LEN);
2023 break;
2024 default:
2025 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2026 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2027 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2028 break;
2029 }
2030
2031 out:
2032 return res;
2033 }
2034
2035 static int nvme_trans_read_capacity(struct nvme_ns *ns, struct sg_io_hdr *hdr,
2036 u8 *cmd, u8 cdb16)
2037 {
2038 int res;
2039 int nvme_sc;
2040 u32 alloc_len;
2041 u32 resp_size;
2042 u32 xfer_len;
2043 struct nvme_dev *dev = ns->dev;
2044 struct nvme_id_ns *id_ns;
2045 u8 *response;
2046
2047 if (cdb16) {
2048 alloc_len = get_unaligned_be32(&cmd[10]);
2049 resp_size = READ_CAP_16_RESP_SIZE;
2050 } else {
2051 alloc_len = READ_CAP_10_RESP_SIZE;
2052 resp_size = READ_CAP_10_RESP_SIZE;
2053 }
2054
2055 nvme_sc = nvme_identify_ns(dev, ns->ns_id, &id_ns);
2056 res = nvme_trans_status_code(hdr, nvme_sc);
2057 if (res)
2058 return res;
2059
2060 response = kzalloc(resp_size, GFP_KERNEL);
2061 if (response == NULL) {
2062 res = -ENOMEM;
2063 goto out_free_id;
2064 }
2065 nvme_trans_fill_read_cap(response, id_ns, cdb16);
2066
2067 xfer_len = min(alloc_len, resp_size);
2068 res = nvme_trans_copy_to_user(hdr, response, xfer_len);
2069
2070 kfree(response);
2071 out_free_id:
2072 kfree(id_ns);
2073 return res;
2074 }
2075
2076 static int nvme_trans_report_luns(struct nvme_ns *ns, struct sg_io_hdr *hdr,
2077 u8 *cmd)
2078 {
2079 int res;
2080 int nvme_sc;
2081 u32 alloc_len, xfer_len, resp_size;
2082 u8 *response;
2083 struct nvme_dev *dev = ns->dev;
2084 struct nvme_id_ctrl *id_ctrl;
2085 u32 ll_length, lun_id;
2086 u8 lun_id_offset = REPORT_LUNS_FIRST_LUN_OFFSET;
2087 __be32 tmp_len;
2088
2089 switch (cmd[2]) {
2090 default:
2091 return nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2092 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2093 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2094 case ALL_LUNS_RETURNED:
2095 case ALL_WELL_KNOWN_LUNS_RETURNED:
2096 case RESTRICTED_LUNS_RETURNED:
2097 nvme_sc = nvme_identify_ctrl(dev, &id_ctrl);
2098 res = nvme_trans_status_code(hdr, nvme_sc);
2099 if (res)
2100 return res;
2101
2102 ll_length = le32_to_cpu(id_ctrl->nn) * LUN_ENTRY_SIZE;
2103 resp_size = ll_length + LUN_DATA_HEADER_SIZE;
2104
2105 alloc_len = get_unaligned_be32(&cmd[6]);
2106 if (alloc_len < resp_size) {
2107 res = nvme_trans_completion(hdr,
2108 SAM_STAT_CHECK_CONDITION,
2109 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2110 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2111 goto out_free_id;
2112 }
2113
2114 response = kzalloc(resp_size, GFP_KERNEL);
2115 if (response == NULL) {
2116 res = -ENOMEM;
2117 goto out_free_id;
2118 }
2119
2120 /* The first LUN ID will always be 0 per the SAM spec */
2121 for (lun_id = 0; lun_id < le32_to_cpu(id_ctrl->nn); lun_id++) {
2122 /*
2123 * Set the LUN Id and then increment to the next LUN
2124 * location in the parameter data.
2125 */
2126 __be64 tmp_id = cpu_to_be64(lun_id);
2127 memcpy(&response[lun_id_offset], &tmp_id, sizeof(u64));
2128 lun_id_offset += LUN_ENTRY_SIZE;
2129 }
2130 tmp_len = cpu_to_be32(ll_length);
2131 memcpy(response, &tmp_len, sizeof(u32));
2132 }
2133
2134 xfer_len = min(alloc_len, resp_size);
2135 res = nvme_trans_copy_to_user(hdr, response, xfer_len);
2136
2137 kfree(response);
2138 out_free_id:
2139 kfree(id_ctrl);
2140 return res;
2141 }
2142
2143 static int nvme_trans_request_sense(struct nvme_ns *ns, struct sg_io_hdr *hdr,
2144 u8 *cmd)
2145 {
2146 int res;
2147 u8 alloc_len, xfer_len, resp_size;
2148 u8 desc_format;
2149 u8 *response;
2150
2151 desc_format = cmd[1] & 0x01;
2152 alloc_len = cmd[4];
2153
2154 resp_size = ((desc_format) ? (DESC_FMT_SENSE_DATA_SIZE) :
2155 (FIXED_FMT_SENSE_DATA_SIZE));
2156 response = kzalloc(resp_size, GFP_KERNEL);
2157 if (response == NULL) {
2158 res = -ENOMEM;
2159 goto out;
2160 }
2161
2162 if (desc_format) {
2163 /* Descriptor Format Sense Data */
2164 response[0] = DESC_FORMAT_SENSE_DATA;
2165 response[1] = NO_SENSE;
2166 /* TODO How is LOW POWER CONDITION ON handled? (byte 2) */
2167 response[2] = SCSI_ASC_NO_SENSE;
2168 response[3] = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
2169 /* SDAT_OVFL = 0 | Additional Sense Length = 0 */
2170 } else {
2171 /* Fixed Format Sense Data */
2172 response[0] = FIXED_SENSE_DATA;
2173 /* Byte 1 = Obsolete */
2174 response[2] = NO_SENSE; /* FM, EOM, ILI, SDAT_OVFL = 0 */
2175 /* Bytes 3-6 - Information - set to zero */
2176 response[7] = FIXED_SENSE_DATA_ADD_LENGTH;
2177 /* Bytes 8-11 - Cmd Specific Information - set to zero */
2178 response[12] = SCSI_ASC_NO_SENSE;
2179 response[13] = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
2180 /* Byte 14 = Field Replaceable Unit Code = 0 */
2181 /* Bytes 15-17 - SKSV=0; Sense Key Specific = 0 */
2182 }
2183
2184 xfer_len = min(alloc_len, resp_size);
2185 res = nvme_trans_copy_to_user(hdr, response, xfer_len);
2186
2187 kfree(response);
2188 out:
2189 return res;
2190 }
2191
2192 static int nvme_trans_security_protocol(struct nvme_ns *ns,
2193 struct sg_io_hdr *hdr,
2194 u8 *cmd)
2195 {
2196 return nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2197 ILLEGAL_REQUEST, SCSI_ASC_ILLEGAL_COMMAND,
2198 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2199 }
2200
2201 static int nvme_trans_synchronize_cache(struct nvme_ns *ns,
2202 struct sg_io_hdr *hdr)
2203 {
2204 int nvme_sc;
2205 struct nvme_command c;
2206
2207 memset(&c, 0, sizeof(c));
2208 c.common.opcode = nvme_cmd_flush;
2209 c.common.nsid = cpu_to_le32(ns->ns_id);
2210
2211 nvme_sc = nvme_submit_sync_cmd(ns->queue, &c, NULL, 0);
2212 return nvme_trans_status_code(hdr, nvme_sc);
2213 }
2214
2215 static int nvme_trans_start_stop(struct nvme_ns *ns, struct sg_io_hdr *hdr,
2216 u8 *cmd)
2217 {
2218 u8 immed, pcmod, pc, no_flush, start;
2219
2220 immed = cmd[1] & 0x01;
2221 pcmod = cmd[3] & 0x0f;
2222 pc = (cmd[4] & 0xf0) >> 4;
2223 no_flush = cmd[4] & 0x04;
2224 start = cmd[4] & 0x01;
2225
2226 if (immed != 0) {
2227 return nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2228 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2229 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2230 } else {
2231 if (no_flush == 0) {
2232 /* Issue NVME FLUSH command prior to START STOP UNIT */
2233 int res = nvme_trans_synchronize_cache(ns, hdr);
2234 if (res)
2235 return res;
2236 }
2237 /* Setup the expected power state transition */
2238 return nvme_trans_power_state(ns, hdr, pc, pcmod, start);
2239 }
2240 }
2241
2242 static int nvme_trans_format_unit(struct nvme_ns *ns, struct sg_io_hdr *hdr,
2243 u8 *cmd)
2244 {
2245 int res;
2246 u8 parm_hdr_len = 0;
2247 u8 nvme_pf_code = 0;
2248 u8 format_prot_info, long_list, format_data;
2249
2250 format_prot_info = (cmd[1] & 0xc0) >> 6;
2251 long_list = cmd[1] & 0x20;
2252 format_data = cmd[1] & 0x10;
2253
2254 if (format_data != 0) {
2255 if (format_prot_info != 0) {
2256 if (long_list == 0)
2257 parm_hdr_len = FORMAT_UNIT_SHORT_PARM_LIST_LEN;
2258 else
2259 parm_hdr_len = FORMAT_UNIT_LONG_PARM_LIST_LEN;
2260 }
2261 } else if (format_data == 0 && format_prot_info != 0) {
2262 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2263 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2264 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2265 goto out;
2266 }
2267
2268 /* Get parm header from data-in/out buffer */
2269 /*
2270 * According to the translation spec, the only fields in the parameter
2271 * list we are concerned with are in the header. So allocate only that.
2272 */
2273 if (parm_hdr_len > 0) {
2274 res = nvme_trans_fmt_get_parm_header(hdr, parm_hdr_len,
2275 format_prot_info, &nvme_pf_code);
2276 if (res)
2277 goto out;
2278 }
2279
2280 /* Attempt to activate any previously downloaded firmware image */
2281 res = nvme_trans_send_activate_fw_cmd(ns, hdr, 0);
2282
2283 /* Determine Block size and count and send format command */
2284 res = nvme_trans_fmt_set_blk_size_count(ns, hdr);
2285 if (res)
2286 goto out;
2287
2288 res = nvme_trans_fmt_send_cmd(ns, hdr, nvme_pf_code);
2289
2290 out:
2291 return res;
2292 }
2293
2294 static int nvme_trans_test_unit_ready(struct nvme_ns *ns,
2295 struct sg_io_hdr *hdr,
2296 u8 *cmd)
2297 {
2298 struct nvme_dev *dev = ns->dev;
2299
2300 if (!(readl(&dev->bar->csts) & NVME_CSTS_RDY))
2301 return nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2302 NOT_READY, SCSI_ASC_LUN_NOT_READY,
2303 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2304 else
2305 return nvme_trans_completion(hdr, SAM_STAT_GOOD, NO_SENSE, 0, 0);
2306 }
2307
2308 static int nvme_trans_write_buffer(struct nvme_ns *ns, struct sg_io_hdr *hdr,
2309 u8 *cmd)
2310 {
2311 int res = 0;
2312 u32 buffer_offset, parm_list_length;
2313 u8 buffer_id, mode;
2314
2315 parm_list_length = get_unaligned_be24(&cmd[6]);
2316 if (parm_list_length % BYTES_TO_DWORDS != 0) {
2317 /* NVMe expects Firmware file to be a whole number of DWORDS */
2318 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2319 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2320 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2321 goto out;
2322 }
2323 buffer_id = cmd[2];
2324 if (buffer_id > NVME_MAX_FIRMWARE_SLOT) {
2325 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2326 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2327 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2328 goto out;
2329 }
2330 mode = cmd[1] & 0x1f;
2331 buffer_offset = get_unaligned_be24(&cmd[3]);
2332
2333 switch (mode) {
2334 case DOWNLOAD_SAVE_ACTIVATE:
2335 res = nvme_trans_send_download_fw_cmd(ns, hdr, nvme_admin_download_fw,
2336 parm_list_length, buffer_offset,
2337 buffer_id);
2338 if (res)
2339 goto out;
2340 res = nvme_trans_send_activate_fw_cmd(ns, hdr, buffer_id);
2341 break;
2342 case DOWNLOAD_SAVE_DEFER_ACTIVATE:
2343 res = nvme_trans_send_download_fw_cmd(ns, hdr, nvme_admin_download_fw,
2344 parm_list_length, buffer_offset,
2345 buffer_id);
2346 break;
2347 case ACTIVATE_DEFERRED_MICROCODE:
2348 res = nvme_trans_send_activate_fw_cmd(ns, hdr, buffer_id);
2349 break;
2350 default:
2351 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2352 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2353 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2354 break;
2355 }
2356
2357 out:
2358 return res;
2359 }
2360
2361 struct scsi_unmap_blk_desc {
2362 __be64 slba;
2363 __be32 nlb;
2364 u32 resv;
2365 };
2366
2367 struct scsi_unmap_parm_list {
2368 __be16 unmap_data_len;
2369 __be16 unmap_blk_desc_data_len;
2370 u32 resv;
2371 struct scsi_unmap_blk_desc desc[0];
2372 };
2373
2374 static int nvme_trans_unmap(struct nvme_ns *ns, struct sg_io_hdr *hdr,
2375 u8 *cmd)
2376 {
2377 struct scsi_unmap_parm_list *plist;
2378 struct nvme_dsm_range *range;
2379 struct nvme_command c;
2380 int i, nvme_sc, res;
2381 u16 ndesc, list_len;
2382
2383 list_len = get_unaligned_be16(&cmd[7]);
2384 if (!list_len)
2385 return -EINVAL;
2386
2387 plist = kmalloc(list_len, GFP_KERNEL);
2388 if (!plist)
2389 return -ENOMEM;
2390
2391 res = nvme_trans_copy_from_user(hdr, plist, list_len);
2392 if (res)
2393 goto out;
2394
2395 ndesc = be16_to_cpu(plist->unmap_blk_desc_data_len) >> 4;
2396 if (!ndesc || ndesc > 256) {
2397 res = -EINVAL;
2398 goto out;
2399 }
2400
2401 range = kcalloc(ndesc, sizeof(*range), GFP_KERNEL);
2402 if (!range) {
2403 res = -ENOMEM;
2404 goto out;
2405 }
2406
2407 for (i = 0; i < ndesc; i++) {
2408 range[i].nlb = cpu_to_le32(be32_to_cpu(plist->desc[i].nlb));
2409 range[i].slba = cpu_to_le64(be64_to_cpu(plist->desc[i].slba));
2410 range[i].cattr = 0;
2411 }
2412
2413 memset(&c, 0, sizeof(c));
2414 c.dsm.opcode = nvme_cmd_dsm;
2415 c.dsm.nsid = cpu_to_le32(ns->ns_id);
2416 c.dsm.nr = cpu_to_le32(ndesc - 1);
2417 c.dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
2418
2419 nvme_sc = nvme_submit_sync_cmd(ns->queue, &c, range,
2420 ndesc * sizeof(*range));
2421 res = nvme_trans_status_code(hdr, nvme_sc);
2422
2423 kfree(range);
2424 out:
2425 kfree(plist);
2426 return res;
2427 }
2428
2429 static int nvme_scsi_translate(struct nvme_ns *ns, struct sg_io_hdr *hdr)
2430 {
2431 u8 cmd[BLK_MAX_CDB];
2432 int retcode;
2433 unsigned int opcode;
2434
2435 if (hdr->cmdp == NULL)
2436 return -EMSGSIZE;
2437 if (copy_from_user(cmd, hdr->cmdp, hdr->cmd_len))
2438 return -EFAULT;
2439
2440 /*
2441 * Prime the hdr with good status for scsi commands that don't require
2442 * an nvme command for translation.
2443 */
2444 retcode = nvme_trans_status_code(hdr, NVME_SC_SUCCESS);
2445 if (retcode)
2446 return retcode;
2447
2448 opcode = cmd[0];
2449
2450 switch (opcode) {
2451 case READ_6:
2452 case READ_10:
2453 case READ_12:
2454 case READ_16:
2455 retcode = nvme_trans_io(ns, hdr, 0, cmd);
2456 break;
2457 case WRITE_6:
2458 case WRITE_10:
2459 case WRITE_12:
2460 case WRITE_16:
2461 retcode = nvme_trans_io(ns, hdr, 1, cmd);
2462 break;
2463 case INQUIRY:
2464 retcode = nvme_trans_inquiry(ns, hdr, cmd);
2465 break;
2466 case LOG_SENSE:
2467 retcode = nvme_trans_log_sense(ns, hdr, cmd);
2468 break;
2469 case MODE_SELECT:
2470 case MODE_SELECT_10:
2471 retcode = nvme_trans_mode_select(ns, hdr, cmd);
2472 break;
2473 case MODE_SENSE:
2474 case MODE_SENSE_10:
2475 retcode = nvme_trans_mode_sense(ns, hdr, cmd);
2476 break;
2477 case READ_CAPACITY:
2478 retcode = nvme_trans_read_capacity(ns, hdr, cmd, 0);
2479 break;
2480 case SERVICE_ACTION_IN_16:
2481 switch (cmd[1]) {
2482 case SAI_READ_CAPACITY_16:
2483 retcode = nvme_trans_read_capacity(ns, hdr, cmd, 1);
2484 break;
2485 default:
2486 goto out;
2487 }
2488 break;
2489 case REPORT_LUNS:
2490 retcode = nvme_trans_report_luns(ns, hdr, cmd);
2491 break;
2492 case REQUEST_SENSE:
2493 retcode = nvme_trans_request_sense(ns, hdr, cmd);
2494 break;
2495 case SECURITY_PROTOCOL_IN:
2496 case SECURITY_PROTOCOL_OUT:
2497 retcode = nvme_trans_security_protocol(ns, hdr, cmd);
2498 break;
2499 case START_STOP:
2500 retcode = nvme_trans_start_stop(ns, hdr, cmd);
2501 break;
2502 case SYNCHRONIZE_CACHE:
2503 retcode = nvme_trans_synchronize_cache(ns, hdr);
2504 break;
2505 case FORMAT_UNIT:
2506 retcode = nvme_trans_format_unit(ns, hdr, cmd);
2507 break;
2508 case TEST_UNIT_READY:
2509 retcode = nvme_trans_test_unit_ready(ns, hdr, cmd);
2510 break;
2511 case WRITE_BUFFER:
2512 retcode = nvme_trans_write_buffer(ns, hdr, cmd);
2513 break;
2514 case UNMAP:
2515 retcode = nvme_trans_unmap(ns, hdr, cmd);
2516 break;
2517 default:
2518 out:
2519 retcode = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2520 ILLEGAL_REQUEST, SCSI_ASC_ILLEGAL_COMMAND,
2521 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2522 break;
2523 }
2524 return retcode;
2525 }
2526
2527 int nvme_sg_io(struct nvme_ns *ns, struct sg_io_hdr __user *u_hdr)
2528 {
2529 struct sg_io_hdr hdr;
2530 int retcode;
2531
2532 if (!capable(CAP_SYS_ADMIN))
2533 return -EACCES;
2534 if (copy_from_user(&hdr, u_hdr, sizeof(hdr)))
2535 return -EFAULT;
2536 if (hdr.interface_id != 'S')
2537 return -EINVAL;
2538 if (hdr.cmd_len > BLK_MAX_CDB)
2539 return -EINVAL;
2540
2541 /*
2542 * A positive return code means a NVMe status, which has been
2543 * translated to sense data.
2544 */
2545 retcode = nvme_scsi_translate(ns, &hdr);
2546 if (retcode < 0)
2547 return retcode;
2548 if (copy_to_user(u_hdr, &hdr, sizeof(sg_io_hdr_t)) > 0)
2549 return -EFAULT;
2550 return 0;
2551 }
2552
2553 int nvme_sg_get_version_num(int __user *ip)
2554 {
2555 return put_user(sg_version_num, ip);
2556 }
This page took 0.087415 seconds and 5 git commands to generate.