NVMe: Version 0.6
[deliverable/linux.git] / drivers / block / nvme.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/delay.h>
24 #include <linux/errno.h>
25 #include <linux/fs.h>
26 #include <linux/genhd.h>
27 #include <linux/idr.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kdev_t.h>
32 #include <linux/kthread.h>
33 #include <linux/kernel.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/pci.h>
38 #include <linux/poison.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/version.h>
43
44 #define NVME_Q_DEPTH 1024
45 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
46 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
47 #define NVME_MINORS 64
48 #define IO_TIMEOUT (5 * HZ)
49 #define ADMIN_TIMEOUT (60 * HZ)
50
51 static int nvme_major;
52 module_param(nvme_major, int, 0);
53
54 static int use_threaded_interrupts;
55 module_param(use_threaded_interrupts, int, 0);
56
57 static DEFINE_SPINLOCK(dev_list_lock);
58 static LIST_HEAD(dev_list);
59 static struct task_struct *nvme_thread;
60
61 /*
62 * Represents an NVM Express device. Each nvme_dev is a PCI function.
63 */
64 struct nvme_dev {
65 struct list_head node;
66 struct nvme_queue **queues;
67 u32 __iomem *dbs;
68 struct pci_dev *pci_dev;
69 struct dma_pool *prp_page_pool;
70 struct dma_pool *prp_small_pool;
71 int instance;
72 int queue_count;
73 u32 ctrl_config;
74 struct msix_entry *entry;
75 struct nvme_bar __iomem *bar;
76 struct list_head namespaces;
77 char serial[20];
78 char model[40];
79 char firmware_rev[8];
80 };
81
82 /*
83 * An NVM Express namespace is equivalent to a SCSI LUN
84 */
85 struct nvme_ns {
86 struct list_head list;
87
88 struct nvme_dev *dev;
89 struct request_queue *queue;
90 struct gendisk *disk;
91
92 int ns_id;
93 int lba_shift;
94 };
95
96 /*
97 * An NVM Express queue. Each device has at least two (one for admin
98 * commands and one for I/O commands).
99 */
100 struct nvme_queue {
101 struct device *q_dmadev;
102 struct nvme_dev *dev;
103 spinlock_t q_lock;
104 struct nvme_command *sq_cmds;
105 volatile struct nvme_completion *cqes;
106 dma_addr_t sq_dma_addr;
107 dma_addr_t cq_dma_addr;
108 wait_queue_head_t sq_full;
109 wait_queue_t sq_cong_wait;
110 struct bio_list sq_cong;
111 u32 __iomem *q_db;
112 u16 q_depth;
113 u16 cq_vector;
114 u16 sq_head;
115 u16 sq_tail;
116 u16 cq_head;
117 u16 cq_phase;
118 unsigned long cmdid_data[];
119 };
120
121 /*
122 * Check we didin't inadvertently grow the command struct
123 */
124 static inline void _nvme_check_size(void)
125 {
126 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
127 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
128 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
129 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
130 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
131 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
132 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
133 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
134 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
135 }
136
137 struct nvme_cmd_info {
138 unsigned long ctx;
139 unsigned long timeout;
140 };
141
142 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
143 {
144 return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
145 }
146
147 /**
148 * alloc_cmdid() - Allocate a Command ID
149 * @nvmeq: The queue that will be used for this command
150 * @ctx: A pointer that will be passed to the handler
151 * @handler: The ID of the handler to call
152 *
153 * Allocate a Command ID for a queue. The data passed in will
154 * be passed to the completion handler. This is implemented by using
155 * the bottom two bits of the ctx pointer to store the handler ID.
156 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
157 * We can change this if it becomes a problem.
158 *
159 * May be called with local interrupts disabled and the q_lock held,
160 * or with interrupts enabled and no locks held.
161 */
162 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler,
163 unsigned timeout)
164 {
165 int depth = nvmeq->q_depth - 1;
166 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
167 int cmdid;
168
169 BUG_ON((unsigned long)ctx & 3);
170
171 do {
172 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
173 if (cmdid >= depth)
174 return -EBUSY;
175 } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
176
177 info[cmdid].ctx = (unsigned long)ctx | handler;
178 info[cmdid].timeout = jiffies + timeout;
179 return cmdid;
180 }
181
182 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
183 int handler, unsigned timeout)
184 {
185 int cmdid;
186 wait_event_killable(nvmeq->sq_full,
187 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
188 return (cmdid < 0) ? -EINTR : cmdid;
189 }
190
191 /*
192 * If you need more than four handlers, you'll need to change how
193 * alloc_cmdid and nvme_process_cq work. Consider using a special
194 * CMD_CTX value instead, if that works for your situation.
195 */
196 enum {
197 sync_completion_id = 0,
198 bio_completion_id,
199 };
200
201 /* Special values must be a multiple of 4, and less than 0x1000 */
202 #define CMD_CTX_BASE (POISON_POINTER_DELTA + sync_completion_id)
203 #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
204 #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
205 #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
206 #define CMD_CTX_FLUSH (0x318 + CMD_CTX_BASE)
207
208 /*
209 * Called with local interrupts disabled and the q_lock held. May not sleep.
210 */
211 static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
212 {
213 unsigned long data;
214 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
215
216 if (cmdid >= nvmeq->q_depth)
217 return CMD_CTX_INVALID;
218 data = info[cmdid].ctx;
219 info[cmdid].ctx = CMD_CTX_COMPLETED;
220 clear_bit(cmdid, nvmeq->cmdid_data);
221 wake_up(&nvmeq->sq_full);
222 return data;
223 }
224
225 static unsigned long cancel_cmdid(struct nvme_queue *nvmeq, int cmdid)
226 {
227 unsigned long data;
228 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
229 data = info[cmdid].ctx;
230 info[cmdid].ctx = CMD_CTX_CANCELLED;
231 return data;
232 }
233
234 static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
235 {
236 return ns->dev->queues[get_cpu() + 1];
237 }
238
239 static void put_nvmeq(struct nvme_queue *nvmeq)
240 {
241 put_cpu();
242 }
243
244 /**
245 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
246 * @nvmeq: The queue to use
247 * @cmd: The command to send
248 *
249 * Safe to use from interrupt context
250 */
251 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
252 {
253 unsigned long flags;
254 u16 tail;
255 spin_lock_irqsave(&nvmeq->q_lock, flags);
256 tail = nvmeq->sq_tail;
257 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
258 if (++tail == nvmeq->q_depth)
259 tail = 0;
260 writel(tail, nvmeq->q_db);
261 nvmeq->sq_tail = tail;
262 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
263
264 return 0;
265 }
266
267 struct nvme_prps {
268 int npages;
269 dma_addr_t first_dma;
270 __le64 *list[0];
271 };
272
273 static void nvme_free_prps(struct nvme_dev *dev, struct nvme_prps *prps)
274 {
275 const int last_prp = PAGE_SIZE / 8 - 1;
276 int i;
277 dma_addr_t prp_dma;
278
279 if (!prps)
280 return;
281
282 prp_dma = prps->first_dma;
283
284 if (prps->npages == 0)
285 dma_pool_free(dev->prp_small_pool, prps->list[0], prp_dma);
286 for (i = 0; i < prps->npages; i++) {
287 __le64 *prp_list = prps->list[i];
288 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
289 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
290 prp_dma = next_prp_dma;
291 }
292 kfree(prps);
293 }
294
295 struct nvme_bio {
296 struct bio *bio;
297 int nents;
298 struct nvme_prps *prps;
299 struct scatterlist sg[0];
300 };
301
302 /* XXX: use a mempool */
303 static struct nvme_bio *alloc_nbio(unsigned nseg, gfp_t gfp)
304 {
305 return kzalloc(sizeof(struct nvme_bio) +
306 sizeof(struct scatterlist) * nseg, gfp);
307 }
308
309 static void free_nbio(struct nvme_queue *nvmeq, struct nvme_bio *nbio)
310 {
311 nvme_free_prps(nvmeq->dev, nbio->prps);
312 kfree(nbio);
313 }
314
315 static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
316 struct nvme_completion *cqe)
317 {
318 struct nvme_bio *nbio = ctx;
319 struct bio *bio = nbio->bio;
320 u16 status = le16_to_cpup(&cqe->status) >> 1;
321
322 dma_unmap_sg(nvmeq->q_dmadev, nbio->sg, nbio->nents,
323 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
324 free_nbio(nvmeq, nbio);
325 if (status) {
326 bio_endio(bio, -EIO);
327 } else if (bio->bi_vcnt > bio->bi_idx) {
328 bio_list_add(&nvmeq->sq_cong, bio);
329 wake_up_process(nvme_thread);
330 } else {
331 bio_endio(bio, 0);
332 }
333 }
334
335 /* length is in bytes. gfp flags indicates whether we may sleep. */
336 static struct nvme_prps *nvme_setup_prps(struct nvme_dev *dev,
337 struct nvme_common_command *cmd,
338 struct scatterlist *sg, int *len,
339 gfp_t gfp)
340 {
341 struct dma_pool *pool;
342 int length = *len;
343 int dma_len = sg_dma_len(sg);
344 u64 dma_addr = sg_dma_address(sg);
345 int offset = offset_in_page(dma_addr);
346 __le64 *prp_list;
347 dma_addr_t prp_dma;
348 int nprps, npages, i, prp_page;
349 struct nvme_prps *prps = NULL;
350
351 cmd->prp1 = cpu_to_le64(dma_addr);
352 length -= (PAGE_SIZE - offset);
353 if (length <= 0)
354 return prps;
355
356 dma_len -= (PAGE_SIZE - offset);
357 if (dma_len) {
358 dma_addr += (PAGE_SIZE - offset);
359 } else {
360 sg = sg_next(sg);
361 dma_addr = sg_dma_address(sg);
362 dma_len = sg_dma_len(sg);
363 }
364
365 if (length <= PAGE_SIZE) {
366 cmd->prp2 = cpu_to_le64(dma_addr);
367 return prps;
368 }
369
370 nprps = DIV_ROUND_UP(length, PAGE_SIZE);
371 npages = DIV_ROUND_UP(8 * nprps, PAGE_SIZE);
372 prps = kmalloc(sizeof(*prps) + sizeof(__le64 *) * npages, gfp);
373 if (!prps) {
374 cmd->prp2 = cpu_to_le64(dma_addr);
375 *len = (*len - length) + PAGE_SIZE;
376 return prps;
377 }
378 prp_page = 0;
379 if (nprps <= (256 / 8)) {
380 pool = dev->prp_small_pool;
381 prps->npages = 0;
382 } else {
383 pool = dev->prp_page_pool;
384 prps->npages = npages;
385 }
386
387 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
388 if (!prp_list) {
389 cmd->prp2 = cpu_to_le64(dma_addr);
390 *len = (*len - length) + PAGE_SIZE;
391 kfree(prps);
392 return NULL;
393 }
394 prps->list[prp_page++] = prp_list;
395 prps->first_dma = prp_dma;
396 cmd->prp2 = cpu_to_le64(prp_dma);
397 i = 0;
398 for (;;) {
399 if (i == PAGE_SIZE / 8) {
400 __le64 *old_prp_list = prp_list;
401 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
402 if (!prp_list) {
403 *len = (*len - length);
404 return prps;
405 }
406 prps->list[prp_page++] = prp_list;
407 prp_list[0] = old_prp_list[i - 1];
408 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
409 i = 1;
410 }
411 prp_list[i++] = cpu_to_le64(dma_addr);
412 dma_len -= PAGE_SIZE;
413 dma_addr += PAGE_SIZE;
414 length -= PAGE_SIZE;
415 if (length <= 0)
416 break;
417 if (dma_len > 0)
418 continue;
419 BUG_ON(dma_len < 0);
420 sg = sg_next(sg);
421 dma_addr = sg_dma_address(sg);
422 dma_len = sg_dma_len(sg);
423 }
424
425 return prps;
426 }
427
428 /* NVMe scatterlists require no holes in the virtual address */
429 #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2) ((vec2)->bv_offset || \
430 (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
431
432 static int nvme_map_bio(struct device *dev, struct nvme_bio *nbio,
433 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
434 {
435 struct bio_vec *bvec, *bvprv = NULL;
436 struct scatterlist *sg = NULL;
437 int i, old_idx, length = 0, nsegs = 0;
438
439 sg_init_table(nbio->sg, psegs);
440 old_idx = bio->bi_idx;
441 bio_for_each_segment(bvec, bio, i) {
442 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
443 sg->length += bvec->bv_len;
444 } else {
445 if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
446 break;
447 sg = sg ? sg + 1 : nbio->sg;
448 sg_set_page(sg, bvec->bv_page, bvec->bv_len,
449 bvec->bv_offset);
450 nsegs++;
451 }
452 length += bvec->bv_len;
453 bvprv = bvec;
454 }
455 bio->bi_idx = i;
456 nbio->nents = nsegs;
457 sg_mark_end(sg);
458 if (dma_map_sg(dev, nbio->sg, nbio->nents, dma_dir) == 0) {
459 bio->bi_idx = old_idx;
460 return -ENOMEM;
461 }
462 return length;
463 }
464
465 static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
466 int cmdid)
467 {
468 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
469
470 memset(cmnd, 0, sizeof(*cmnd));
471 cmnd->common.opcode = nvme_cmd_flush;
472 cmnd->common.command_id = cmdid;
473 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
474
475 if (++nvmeq->sq_tail == nvmeq->q_depth)
476 nvmeq->sq_tail = 0;
477 writel(nvmeq->sq_tail, nvmeq->q_db);
478
479 return 0;
480 }
481
482 static int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
483 {
484 int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
485 sync_completion_id, IO_TIMEOUT);
486 if (unlikely(cmdid < 0))
487 return cmdid;
488
489 return nvme_submit_flush(nvmeq, ns, cmdid);
490 }
491
492 /*
493 * Called with local interrupts disabled and the q_lock held. May not sleep.
494 */
495 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
496 struct bio *bio)
497 {
498 struct nvme_command *cmnd;
499 struct nvme_bio *nbio;
500 enum dma_data_direction dma_dir;
501 int cmdid, length, result = -ENOMEM;
502 u16 control;
503 u32 dsmgmt;
504 int psegs = bio_phys_segments(ns->queue, bio);
505
506 if ((bio->bi_rw & REQ_FLUSH) && psegs) {
507 result = nvme_submit_flush_data(nvmeq, ns);
508 if (result)
509 return result;
510 }
511
512 nbio = alloc_nbio(psegs, GFP_ATOMIC);
513 if (!nbio)
514 goto nomem;
515 nbio->bio = bio;
516
517 result = -EBUSY;
518 cmdid = alloc_cmdid(nvmeq, nbio, bio_completion_id, IO_TIMEOUT);
519 if (unlikely(cmdid < 0))
520 goto free_nbio;
521
522 if ((bio->bi_rw & REQ_FLUSH) && !psegs)
523 return nvme_submit_flush(nvmeq, ns, cmdid);
524
525 control = 0;
526 if (bio->bi_rw & REQ_FUA)
527 control |= NVME_RW_FUA;
528 if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
529 control |= NVME_RW_LR;
530
531 dsmgmt = 0;
532 if (bio->bi_rw & REQ_RAHEAD)
533 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
534
535 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
536
537 memset(cmnd, 0, sizeof(*cmnd));
538 if (bio_data_dir(bio)) {
539 cmnd->rw.opcode = nvme_cmd_write;
540 dma_dir = DMA_TO_DEVICE;
541 } else {
542 cmnd->rw.opcode = nvme_cmd_read;
543 dma_dir = DMA_FROM_DEVICE;
544 }
545
546 result = nvme_map_bio(nvmeq->q_dmadev, nbio, bio, dma_dir, psegs);
547 if (result < 0)
548 goto free_nbio;
549 length = result;
550
551 cmnd->rw.command_id = cmdid;
552 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
553 nbio->prps = nvme_setup_prps(nvmeq->dev, &cmnd->common, nbio->sg,
554 &length, GFP_ATOMIC);
555 cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
556 cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
557 cmnd->rw.control = cpu_to_le16(control);
558 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
559
560 bio->bi_sector += length >> 9;
561
562 if (++nvmeq->sq_tail == nvmeq->q_depth)
563 nvmeq->sq_tail = 0;
564 writel(nvmeq->sq_tail, nvmeq->q_db);
565
566 return 0;
567
568 free_nbio:
569 free_nbio(nvmeq, nbio);
570 nomem:
571 return result;
572 }
573
574 /*
575 * NB: return value of non-zero would mean that we were a stacking driver.
576 * make_request must always succeed.
577 */
578 static int nvme_make_request(struct request_queue *q, struct bio *bio)
579 {
580 struct nvme_ns *ns = q->queuedata;
581 struct nvme_queue *nvmeq = get_nvmeq(ns);
582 int result = -EBUSY;
583
584 spin_lock_irq(&nvmeq->q_lock);
585 if (bio_list_empty(&nvmeq->sq_cong))
586 result = nvme_submit_bio_queue(nvmeq, ns, bio);
587 if (unlikely(result)) {
588 if (bio_list_empty(&nvmeq->sq_cong))
589 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
590 bio_list_add(&nvmeq->sq_cong, bio);
591 }
592
593 spin_unlock_irq(&nvmeq->q_lock);
594 put_nvmeq(nvmeq);
595
596 return 0;
597 }
598
599 struct sync_cmd_info {
600 struct task_struct *task;
601 u32 result;
602 int status;
603 };
604
605 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
606 struct nvme_completion *cqe)
607 {
608 struct sync_cmd_info *cmdinfo = ctx;
609 if (unlikely((unsigned long)cmdinfo == CMD_CTX_CANCELLED))
610 return;
611 if ((unsigned long)cmdinfo == CMD_CTX_FLUSH)
612 return;
613 if (unlikely((unsigned long)cmdinfo == CMD_CTX_COMPLETED)) {
614 dev_warn(nvmeq->q_dmadev,
615 "completed id %d twice on queue %d\n",
616 cqe->command_id, le16_to_cpup(&cqe->sq_id));
617 return;
618 }
619 if (unlikely((unsigned long)cmdinfo == CMD_CTX_INVALID)) {
620 dev_warn(nvmeq->q_dmadev,
621 "invalid id %d completed on queue %d\n",
622 cqe->command_id, le16_to_cpup(&cqe->sq_id));
623 return;
624 }
625 cmdinfo->result = le32_to_cpup(&cqe->result);
626 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
627 wake_up_process(cmdinfo->task);
628 }
629
630 typedef void (*completion_fn)(struct nvme_queue *, void *,
631 struct nvme_completion *);
632
633 static const completion_fn nvme_completions[4] = {
634 [sync_completion_id] = sync_completion,
635 [bio_completion_id] = bio_completion,
636 };
637
638 static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
639 {
640 u16 head, phase;
641
642 head = nvmeq->cq_head;
643 phase = nvmeq->cq_phase;
644
645 for (;;) {
646 unsigned long data;
647 void *ptr;
648 unsigned char handler;
649 struct nvme_completion cqe = nvmeq->cqes[head];
650 if ((le16_to_cpu(cqe.status) & 1) != phase)
651 break;
652 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
653 if (++head == nvmeq->q_depth) {
654 head = 0;
655 phase = !phase;
656 }
657
658 data = free_cmdid(nvmeq, cqe.command_id);
659 handler = data & 3;
660 ptr = (void *)(data & ~3UL);
661 nvme_completions[handler](nvmeq, ptr, &cqe);
662 }
663
664 /* If the controller ignores the cq head doorbell and continuously
665 * writes to the queue, it is theoretically possible to wrap around
666 * the queue twice and mistakenly return IRQ_NONE. Linux only
667 * requires that 0.1% of your interrupts are handled, so this isn't
668 * a big problem.
669 */
670 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
671 return IRQ_NONE;
672
673 writel(head, nvmeq->q_db + 1);
674 nvmeq->cq_head = head;
675 nvmeq->cq_phase = phase;
676
677 return IRQ_HANDLED;
678 }
679
680 static irqreturn_t nvme_irq(int irq, void *data)
681 {
682 irqreturn_t result;
683 struct nvme_queue *nvmeq = data;
684 spin_lock(&nvmeq->q_lock);
685 result = nvme_process_cq(nvmeq);
686 spin_unlock(&nvmeq->q_lock);
687 return result;
688 }
689
690 static irqreturn_t nvme_irq_check(int irq, void *data)
691 {
692 struct nvme_queue *nvmeq = data;
693 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
694 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
695 return IRQ_NONE;
696 return IRQ_WAKE_THREAD;
697 }
698
699 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
700 {
701 spin_lock_irq(&nvmeq->q_lock);
702 cancel_cmdid(nvmeq, cmdid);
703 spin_unlock_irq(&nvmeq->q_lock);
704 }
705
706 /*
707 * Returns 0 on success. If the result is negative, it's a Linux error code;
708 * if the result is positive, it's an NVM Express status code
709 */
710 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
711 struct nvme_command *cmd, u32 *result, unsigned timeout)
712 {
713 int cmdid;
714 struct sync_cmd_info cmdinfo;
715
716 cmdinfo.task = current;
717 cmdinfo.status = -EINTR;
718
719 cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion_id,
720 timeout);
721 if (cmdid < 0)
722 return cmdid;
723 cmd->common.command_id = cmdid;
724
725 set_current_state(TASK_KILLABLE);
726 nvme_submit_cmd(nvmeq, cmd);
727 schedule();
728
729 if (cmdinfo.status == -EINTR) {
730 nvme_abort_command(nvmeq, cmdid);
731 return -EINTR;
732 }
733
734 if (result)
735 *result = cmdinfo.result;
736
737 return cmdinfo.status;
738 }
739
740 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
741 u32 *result)
742 {
743 return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
744 }
745
746 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
747 {
748 int status;
749 struct nvme_command c;
750
751 memset(&c, 0, sizeof(c));
752 c.delete_queue.opcode = opcode;
753 c.delete_queue.qid = cpu_to_le16(id);
754
755 status = nvme_submit_admin_cmd(dev, &c, NULL);
756 if (status)
757 return -EIO;
758 return 0;
759 }
760
761 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
762 struct nvme_queue *nvmeq)
763 {
764 int status;
765 struct nvme_command c;
766 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
767
768 memset(&c, 0, sizeof(c));
769 c.create_cq.opcode = nvme_admin_create_cq;
770 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
771 c.create_cq.cqid = cpu_to_le16(qid);
772 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
773 c.create_cq.cq_flags = cpu_to_le16(flags);
774 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
775
776 status = nvme_submit_admin_cmd(dev, &c, NULL);
777 if (status)
778 return -EIO;
779 return 0;
780 }
781
782 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
783 struct nvme_queue *nvmeq)
784 {
785 int status;
786 struct nvme_command c;
787 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
788
789 memset(&c, 0, sizeof(c));
790 c.create_sq.opcode = nvme_admin_create_sq;
791 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
792 c.create_sq.sqid = cpu_to_le16(qid);
793 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
794 c.create_sq.sq_flags = cpu_to_le16(flags);
795 c.create_sq.cqid = cpu_to_le16(qid);
796
797 status = nvme_submit_admin_cmd(dev, &c, NULL);
798 if (status)
799 return -EIO;
800 return 0;
801 }
802
803 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
804 {
805 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
806 }
807
808 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
809 {
810 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
811 }
812
813 static void nvme_free_queue(struct nvme_dev *dev, int qid)
814 {
815 struct nvme_queue *nvmeq = dev->queues[qid];
816 int vector = dev->entry[nvmeq->cq_vector].vector;
817
818 irq_set_affinity_hint(vector, NULL);
819 free_irq(vector, nvmeq);
820
821 /* Don't tell the adapter to delete the admin queue */
822 if (qid) {
823 adapter_delete_sq(dev, qid);
824 adapter_delete_cq(dev, qid);
825 }
826
827 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
828 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
829 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
830 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
831 kfree(nvmeq);
832 }
833
834 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
835 int depth, int vector)
836 {
837 struct device *dmadev = &dev->pci_dev->dev;
838 unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info));
839 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
840 if (!nvmeq)
841 return NULL;
842
843 nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
844 &nvmeq->cq_dma_addr, GFP_KERNEL);
845 if (!nvmeq->cqes)
846 goto free_nvmeq;
847 memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
848
849 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
850 &nvmeq->sq_dma_addr, GFP_KERNEL);
851 if (!nvmeq->sq_cmds)
852 goto free_cqdma;
853
854 nvmeq->q_dmadev = dmadev;
855 nvmeq->dev = dev;
856 spin_lock_init(&nvmeq->q_lock);
857 nvmeq->cq_head = 0;
858 nvmeq->cq_phase = 1;
859 init_waitqueue_head(&nvmeq->sq_full);
860 init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
861 bio_list_init(&nvmeq->sq_cong);
862 nvmeq->q_db = &dev->dbs[qid * 2];
863 nvmeq->q_depth = depth;
864 nvmeq->cq_vector = vector;
865
866 return nvmeq;
867
868 free_cqdma:
869 dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
870 nvmeq->cq_dma_addr);
871 free_nvmeq:
872 kfree(nvmeq);
873 return NULL;
874 }
875
876 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
877 const char *name)
878 {
879 if (use_threaded_interrupts)
880 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
881 nvme_irq_check, nvme_irq,
882 IRQF_DISABLED | IRQF_SHARED,
883 name, nvmeq);
884 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
885 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
886 }
887
888 static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
889 int qid, int cq_size, int vector)
890 {
891 int result;
892 struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
893
894 if (!nvmeq)
895 return NULL;
896
897 result = adapter_alloc_cq(dev, qid, nvmeq);
898 if (result < 0)
899 goto free_nvmeq;
900
901 result = adapter_alloc_sq(dev, qid, nvmeq);
902 if (result < 0)
903 goto release_cq;
904
905 result = queue_request_irq(dev, nvmeq, "nvme");
906 if (result < 0)
907 goto release_sq;
908
909 return nvmeq;
910
911 release_sq:
912 adapter_delete_sq(dev, qid);
913 release_cq:
914 adapter_delete_cq(dev, qid);
915 free_nvmeq:
916 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
917 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
918 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
919 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
920 kfree(nvmeq);
921 return NULL;
922 }
923
924 static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
925 {
926 int result;
927 u32 aqa;
928 u64 cap;
929 unsigned long timeout;
930 struct nvme_queue *nvmeq;
931
932 dev->dbs = ((void __iomem *)dev->bar) + 4096;
933
934 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
935 if (!nvmeq)
936 return -ENOMEM;
937
938 aqa = nvmeq->q_depth - 1;
939 aqa |= aqa << 16;
940
941 dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
942 dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
943 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
944 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
945
946 writel(0, &dev->bar->cc);
947 writel(aqa, &dev->bar->aqa);
948 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
949 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
950 writel(dev->ctrl_config, &dev->bar->cc);
951
952 cap = readq(&dev->bar->cap);
953 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
954
955 while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
956 msleep(100);
957 if (fatal_signal_pending(current))
958 return -EINTR;
959 if (time_after(jiffies, timeout)) {
960 dev_err(&dev->pci_dev->dev,
961 "Device not ready; aborting initialisation\n");
962 return -ENODEV;
963 }
964 }
965
966 result = queue_request_irq(dev, nvmeq, "nvme admin");
967 dev->queues[0] = nvmeq;
968 return result;
969 }
970
971 static int nvme_map_user_pages(struct nvme_dev *dev, int write,
972 unsigned long addr, unsigned length,
973 struct scatterlist **sgp)
974 {
975 int i, err, count, nents, offset;
976 struct scatterlist *sg;
977 struct page **pages;
978
979 if (addr & 3)
980 return -EINVAL;
981 if (!length)
982 return -EINVAL;
983
984 offset = offset_in_page(addr);
985 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
986 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
987
988 err = get_user_pages_fast(addr, count, 1, pages);
989 if (err < count) {
990 count = err;
991 err = -EFAULT;
992 goto put_pages;
993 }
994
995 sg = kcalloc(count, sizeof(*sg), GFP_KERNEL);
996 sg_init_table(sg, count);
997 sg_set_page(&sg[0], pages[0], PAGE_SIZE - offset, offset);
998 length -= (PAGE_SIZE - offset);
999 for (i = 1; i < count; i++) {
1000 sg_set_page(&sg[i], pages[i], min_t(int, length, PAGE_SIZE), 0);
1001 length -= PAGE_SIZE;
1002 }
1003
1004 err = -ENOMEM;
1005 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1006 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1007 if (!nents)
1008 goto put_pages;
1009
1010 kfree(pages);
1011 *sgp = sg;
1012 return nents;
1013
1014 put_pages:
1015 for (i = 0; i < count; i++)
1016 put_page(pages[i]);
1017 kfree(pages);
1018 return err;
1019 }
1020
1021 static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1022 unsigned long addr, int length,
1023 struct scatterlist *sg, int nents)
1024 {
1025 int i, count;
1026
1027 count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE);
1028 dma_unmap_sg(&dev->pci_dev->dev, sg, nents, DMA_FROM_DEVICE);
1029
1030 for (i = 0; i < count; i++)
1031 put_page(sg_page(&sg[i]));
1032 }
1033
1034 static int nvme_submit_user_admin_command(struct nvme_dev *dev,
1035 unsigned long addr, unsigned length,
1036 struct nvme_command *cmd)
1037 {
1038 int err, nents, tmplen = length;
1039 struct scatterlist *sg;
1040 struct nvme_prps *prps;
1041
1042 nents = nvme_map_user_pages(dev, 0, addr, length, &sg);
1043 if (nents < 0)
1044 return nents;
1045 prps = nvme_setup_prps(dev, &cmd->common, sg, &tmplen, GFP_KERNEL);
1046 if (tmplen != length)
1047 err = -ENOMEM;
1048 else
1049 err = nvme_submit_admin_cmd(dev, cmd, NULL);
1050 nvme_unmap_user_pages(dev, 0, addr, length, sg, nents);
1051 nvme_free_prps(dev, prps);
1052 return err ? -EIO : 0;
1053 }
1054
1055 static int nvme_identify(struct nvme_ns *ns, unsigned long addr, int cns)
1056 {
1057 struct nvme_command c;
1058
1059 memset(&c, 0, sizeof(c));
1060 c.identify.opcode = nvme_admin_identify;
1061 c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id);
1062 c.identify.cns = cpu_to_le32(cns);
1063
1064 return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
1065 }
1066
1067 static int nvme_get_range_type(struct nvme_ns *ns, unsigned long addr)
1068 {
1069 struct nvme_command c;
1070
1071 memset(&c, 0, sizeof(c));
1072 c.features.opcode = nvme_admin_get_features;
1073 c.features.nsid = cpu_to_le32(ns->ns_id);
1074 c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1075
1076 return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
1077 }
1078
1079 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1080 {
1081 struct nvme_dev *dev = ns->dev;
1082 struct nvme_queue *nvmeq;
1083 struct nvme_user_io io;
1084 struct nvme_command c;
1085 unsigned length;
1086 int nents, status;
1087 struct scatterlist *sg;
1088 struct nvme_prps *prps;
1089
1090 if (copy_from_user(&io, uio, sizeof(io)))
1091 return -EFAULT;
1092 length = (io.nblocks + 1) << ns->lba_shift;
1093
1094 switch (io.opcode) {
1095 case nvme_cmd_write:
1096 case nvme_cmd_read:
1097 nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr,
1098 length, &sg);
1099 default:
1100 return -EFAULT;
1101 }
1102
1103 if (nents < 0)
1104 return nents;
1105
1106 memset(&c, 0, sizeof(c));
1107 c.rw.opcode = io.opcode;
1108 c.rw.flags = io.flags;
1109 c.rw.nsid = cpu_to_le32(ns->ns_id);
1110 c.rw.slba = cpu_to_le64(io.slba);
1111 c.rw.length = cpu_to_le16(io.nblocks);
1112 c.rw.control = cpu_to_le16(io.control);
1113 c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
1114 c.rw.reftag = io.reftag;
1115 c.rw.apptag = io.apptag;
1116 c.rw.appmask = io.appmask;
1117 /* XXX: metadata */
1118 prps = nvme_setup_prps(dev, &c.common, sg, &length, GFP_KERNEL);
1119
1120 nvmeq = get_nvmeq(ns);
1121 /*
1122 * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1123 * disabled. We may be preempted at any point, and be rescheduled
1124 * to a different CPU. That will cause cacheline bouncing, but no
1125 * additional races since q_lock already protects against other CPUs.
1126 */
1127 put_nvmeq(nvmeq);
1128 if (length != (io.nblocks + 1) << ns->lba_shift)
1129 status = -ENOMEM;
1130 else
1131 status = nvme_submit_sync_cmd(nvmeq, &c, NULL, IO_TIMEOUT);
1132
1133 nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg, nents);
1134 nvme_free_prps(dev, prps);
1135 return status;
1136 }
1137
1138 static int nvme_download_firmware(struct nvme_ns *ns,
1139 struct nvme_dlfw __user *udlfw)
1140 {
1141 struct nvme_dev *dev = ns->dev;
1142 struct nvme_dlfw dlfw;
1143 struct nvme_command c;
1144 int nents, status, length;
1145 struct scatterlist *sg;
1146 struct nvme_prps *prps;
1147
1148 if (copy_from_user(&dlfw, udlfw, sizeof(dlfw)))
1149 return -EFAULT;
1150 if (dlfw.length >= (1 << 30))
1151 return -EINVAL;
1152 length = dlfw.length * 4;
1153
1154 nents = nvme_map_user_pages(dev, 1, dlfw.addr, length, &sg);
1155 if (nents < 0)
1156 return nents;
1157
1158 memset(&c, 0, sizeof(c));
1159 c.dlfw.opcode = nvme_admin_download_fw;
1160 c.dlfw.numd = cpu_to_le32(dlfw.length);
1161 c.dlfw.offset = cpu_to_le32(dlfw.offset);
1162 prps = nvme_setup_prps(dev, &c.common, sg, &length, GFP_KERNEL);
1163 if (length != dlfw.length * 4)
1164 status = -ENOMEM;
1165 else
1166 status = nvme_submit_admin_cmd(dev, &c, NULL);
1167 nvme_unmap_user_pages(dev, 0, dlfw.addr, dlfw.length * 4, sg, nents);
1168 nvme_free_prps(dev, prps);
1169 return status;
1170 }
1171
1172 static int nvme_activate_firmware(struct nvme_ns *ns, unsigned long arg)
1173 {
1174 struct nvme_dev *dev = ns->dev;
1175 struct nvme_command c;
1176
1177 memset(&c, 0, sizeof(c));
1178 c.common.opcode = nvme_admin_activate_fw;
1179 c.common.rsvd10[0] = cpu_to_le32(arg);
1180
1181 return nvme_submit_admin_cmd(dev, &c, NULL);
1182 }
1183
1184 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1185 unsigned long arg)
1186 {
1187 struct nvme_ns *ns = bdev->bd_disk->private_data;
1188
1189 switch (cmd) {
1190 case NVME_IOCTL_IDENTIFY_NS:
1191 return nvme_identify(ns, arg, 0);
1192 case NVME_IOCTL_IDENTIFY_CTRL:
1193 return nvme_identify(ns, arg, 1);
1194 case NVME_IOCTL_GET_RANGE_TYPE:
1195 return nvme_get_range_type(ns, arg);
1196 case NVME_IOCTL_SUBMIT_IO:
1197 return nvme_submit_io(ns, (void __user *)arg);
1198 case NVME_IOCTL_DOWNLOAD_FW:
1199 return nvme_download_firmware(ns, (void __user *)arg);
1200 case NVME_IOCTL_ACTIVATE_FW:
1201 return nvme_activate_firmware(ns, arg);
1202 default:
1203 return -ENOTTY;
1204 }
1205 }
1206
1207 static const struct block_device_operations nvme_fops = {
1208 .owner = THIS_MODULE,
1209 .ioctl = nvme_ioctl,
1210 .compat_ioctl = nvme_ioctl,
1211 };
1212
1213 static void nvme_timeout_ios(struct nvme_queue *nvmeq)
1214 {
1215 int depth = nvmeq->q_depth - 1;
1216 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1217 unsigned long now = jiffies;
1218 int cmdid;
1219
1220 for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
1221 unsigned long data;
1222 void *ptr;
1223 unsigned char handler;
1224 static struct nvme_completion cqe = { .status = cpu_to_le16(NVME_SC_ABORT_REQ) << 1, };
1225
1226 if (!time_after(now, info[cmdid].timeout))
1227 continue;
1228 dev_warn(nvmeq->q_dmadev, "Timing out I/O %d\n", cmdid);
1229 data = cancel_cmdid(nvmeq, cmdid);
1230 handler = data & 3;
1231 ptr = (void *)(data & ~3UL);
1232 nvme_completions[handler](nvmeq, ptr, &cqe);
1233 }
1234 }
1235
1236 static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1237 {
1238 while (bio_list_peek(&nvmeq->sq_cong)) {
1239 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1240 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1241 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1242 bio_list_add_head(&nvmeq->sq_cong, bio);
1243 break;
1244 }
1245 if (bio_list_empty(&nvmeq->sq_cong))
1246 remove_wait_queue(&nvmeq->sq_full,
1247 &nvmeq->sq_cong_wait);
1248 }
1249 }
1250
1251 static int nvme_kthread(void *data)
1252 {
1253 struct nvme_dev *dev;
1254
1255 while (!kthread_should_stop()) {
1256 __set_current_state(TASK_RUNNING);
1257 spin_lock(&dev_list_lock);
1258 list_for_each_entry(dev, &dev_list, node) {
1259 int i;
1260 for (i = 0; i < dev->queue_count; i++) {
1261 struct nvme_queue *nvmeq = dev->queues[i];
1262 if (!nvmeq)
1263 continue;
1264 spin_lock_irq(&nvmeq->q_lock);
1265 if (nvme_process_cq(nvmeq))
1266 printk("process_cq did something\n");
1267 nvme_timeout_ios(nvmeq);
1268 nvme_resubmit_bios(nvmeq);
1269 spin_unlock_irq(&nvmeq->q_lock);
1270 }
1271 }
1272 spin_unlock(&dev_list_lock);
1273 set_current_state(TASK_INTERRUPTIBLE);
1274 schedule_timeout(HZ);
1275 }
1276 return 0;
1277 }
1278
1279 static DEFINE_IDA(nvme_index_ida);
1280
1281 static int nvme_get_ns_idx(void)
1282 {
1283 int index, error;
1284
1285 do {
1286 if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
1287 return -1;
1288
1289 spin_lock(&dev_list_lock);
1290 error = ida_get_new(&nvme_index_ida, &index);
1291 spin_unlock(&dev_list_lock);
1292 } while (error == -EAGAIN);
1293
1294 if (error)
1295 index = -1;
1296 return index;
1297 }
1298
1299 static void nvme_put_ns_idx(int index)
1300 {
1301 spin_lock(&dev_list_lock);
1302 ida_remove(&nvme_index_ida, index);
1303 spin_unlock(&dev_list_lock);
1304 }
1305
1306 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid,
1307 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1308 {
1309 struct nvme_ns *ns;
1310 struct gendisk *disk;
1311 int lbaf;
1312
1313 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1314 return NULL;
1315
1316 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1317 if (!ns)
1318 return NULL;
1319 ns->queue = blk_alloc_queue(GFP_KERNEL);
1320 if (!ns->queue)
1321 goto out_free_ns;
1322 ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
1323 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
1324 blk_queue_make_request(ns->queue, nvme_make_request);
1325 ns->dev = dev;
1326 ns->queue->queuedata = ns;
1327
1328 disk = alloc_disk(NVME_MINORS);
1329 if (!disk)
1330 goto out_free_queue;
1331 ns->ns_id = nsid;
1332 ns->disk = disk;
1333 lbaf = id->flbas & 0xf;
1334 ns->lba_shift = id->lbaf[lbaf].ds;
1335
1336 disk->major = nvme_major;
1337 disk->minors = NVME_MINORS;
1338 disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
1339 disk->fops = &nvme_fops;
1340 disk->private_data = ns;
1341 disk->queue = ns->queue;
1342 disk->driverfs_dev = &dev->pci_dev->dev;
1343 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1344 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1345
1346 return ns;
1347
1348 out_free_queue:
1349 blk_cleanup_queue(ns->queue);
1350 out_free_ns:
1351 kfree(ns);
1352 return NULL;
1353 }
1354
1355 static void nvme_ns_free(struct nvme_ns *ns)
1356 {
1357 int index = ns->disk->first_minor / NVME_MINORS;
1358 put_disk(ns->disk);
1359 nvme_put_ns_idx(index);
1360 blk_cleanup_queue(ns->queue);
1361 kfree(ns);
1362 }
1363
1364 static int set_queue_count(struct nvme_dev *dev, int count)
1365 {
1366 int status;
1367 u32 result;
1368 struct nvme_command c;
1369 u32 q_count = (count - 1) | ((count - 1) << 16);
1370
1371 memset(&c, 0, sizeof(c));
1372 c.features.opcode = nvme_admin_get_features;
1373 c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES);
1374 c.features.dword11 = cpu_to_le32(q_count);
1375
1376 status = nvme_submit_admin_cmd(dev, &c, &result);
1377 if (status)
1378 return -EIO;
1379 return min(result & 0xffff, result >> 16) + 1;
1380 }
1381
1382 static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1383 {
1384 int result, cpu, i, nr_io_queues;
1385
1386 nr_io_queues = num_online_cpus();
1387 result = set_queue_count(dev, nr_io_queues);
1388 if (result < 0)
1389 return result;
1390 if (result < nr_io_queues)
1391 nr_io_queues = result;
1392
1393 /* Deregister the admin queue's interrupt */
1394 free_irq(dev->entry[0].vector, dev->queues[0]);
1395
1396 for (i = 0; i < nr_io_queues; i++)
1397 dev->entry[i].entry = i;
1398 for (;;) {
1399 result = pci_enable_msix(dev->pci_dev, dev->entry,
1400 nr_io_queues);
1401 if (result == 0) {
1402 break;
1403 } else if (result > 0) {
1404 nr_io_queues = result;
1405 continue;
1406 } else {
1407 nr_io_queues = 1;
1408 break;
1409 }
1410 }
1411
1412 result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1413 /* XXX: handle failure here */
1414
1415 cpu = cpumask_first(cpu_online_mask);
1416 for (i = 0; i < nr_io_queues; i++) {
1417 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1418 cpu = cpumask_next(cpu, cpu_online_mask);
1419 }
1420
1421 for (i = 0; i < nr_io_queues; i++) {
1422 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1423 NVME_Q_DEPTH, i);
1424 if (!dev->queues[i + 1])
1425 return -ENOMEM;
1426 dev->queue_count++;
1427 }
1428
1429 for (; i < num_possible_cpus(); i++) {
1430 int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1431 dev->queues[i + 1] = dev->queues[target + 1];
1432 }
1433
1434 return 0;
1435 }
1436
1437 static void nvme_free_queues(struct nvme_dev *dev)
1438 {
1439 int i;
1440
1441 for (i = dev->queue_count - 1; i >= 0; i--)
1442 nvme_free_queue(dev, i);
1443 }
1444
1445 static int __devinit nvme_dev_add(struct nvme_dev *dev)
1446 {
1447 int res, nn, i;
1448 struct nvme_ns *ns, *next;
1449 struct nvme_id_ctrl *ctrl;
1450 void *id;
1451 dma_addr_t dma_addr;
1452 struct nvme_command cid, crt;
1453
1454 res = nvme_setup_io_queues(dev);
1455 if (res)
1456 return res;
1457
1458 /* XXX: Switch to a SG list once prp2 works */
1459 id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1460 GFP_KERNEL);
1461
1462 memset(&cid, 0, sizeof(cid));
1463 cid.identify.opcode = nvme_admin_identify;
1464 cid.identify.nsid = 0;
1465 cid.identify.prp1 = cpu_to_le64(dma_addr);
1466 cid.identify.cns = cpu_to_le32(1);
1467
1468 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1469 if (res) {
1470 res = -EIO;
1471 goto out_free;
1472 }
1473
1474 ctrl = id;
1475 nn = le32_to_cpup(&ctrl->nn);
1476 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1477 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1478 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1479
1480 cid.identify.cns = 0;
1481 memset(&crt, 0, sizeof(crt));
1482 crt.features.opcode = nvme_admin_get_features;
1483 crt.features.prp1 = cpu_to_le64(dma_addr + 4096);
1484 crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1485
1486 for (i = 0; i <= nn; i++) {
1487 cid.identify.nsid = cpu_to_le32(i);
1488 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1489 if (res)
1490 continue;
1491
1492 if (((struct nvme_id_ns *)id)->ncap == 0)
1493 continue;
1494
1495 crt.features.nsid = cpu_to_le32(i);
1496 res = nvme_submit_admin_cmd(dev, &crt, NULL);
1497 if (res)
1498 continue;
1499
1500 ns = nvme_alloc_ns(dev, i, id, id + 4096);
1501 if (ns)
1502 list_add_tail(&ns->list, &dev->namespaces);
1503 }
1504 list_for_each_entry(ns, &dev->namespaces, list)
1505 add_disk(ns->disk);
1506
1507 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1508 return 0;
1509
1510 out_free:
1511 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1512 list_del(&ns->list);
1513 nvme_ns_free(ns);
1514 }
1515
1516 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1517 return res;
1518 }
1519
1520 static int nvme_dev_remove(struct nvme_dev *dev)
1521 {
1522 struct nvme_ns *ns, *next;
1523
1524 spin_lock(&dev_list_lock);
1525 list_del(&dev->node);
1526 spin_unlock(&dev_list_lock);
1527
1528 /* TODO: wait all I/O finished or cancel them */
1529
1530 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1531 list_del(&ns->list);
1532 del_gendisk(ns->disk);
1533 nvme_ns_free(ns);
1534 }
1535
1536 nvme_free_queues(dev);
1537
1538 return 0;
1539 }
1540
1541 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1542 {
1543 struct device *dmadev = &dev->pci_dev->dev;
1544 dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1545 PAGE_SIZE, PAGE_SIZE, 0);
1546 if (!dev->prp_page_pool)
1547 return -ENOMEM;
1548
1549 /* Optimisation for I/Os between 4k and 128k */
1550 dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1551 256, 256, 0);
1552 if (!dev->prp_small_pool) {
1553 dma_pool_destroy(dev->prp_page_pool);
1554 return -ENOMEM;
1555 }
1556 return 0;
1557 }
1558
1559 static void nvme_release_prp_pools(struct nvme_dev *dev)
1560 {
1561 dma_pool_destroy(dev->prp_page_pool);
1562 dma_pool_destroy(dev->prp_small_pool);
1563 }
1564
1565 /* XXX: Use an ida or something to let remove / add work correctly */
1566 static void nvme_set_instance(struct nvme_dev *dev)
1567 {
1568 static int instance;
1569 dev->instance = instance++;
1570 }
1571
1572 static void nvme_release_instance(struct nvme_dev *dev)
1573 {
1574 }
1575
1576 static int __devinit nvme_probe(struct pci_dev *pdev,
1577 const struct pci_device_id *id)
1578 {
1579 int bars, result = -ENOMEM;
1580 struct nvme_dev *dev;
1581
1582 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1583 if (!dev)
1584 return -ENOMEM;
1585 dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1586 GFP_KERNEL);
1587 if (!dev->entry)
1588 goto free;
1589 dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1590 GFP_KERNEL);
1591 if (!dev->queues)
1592 goto free;
1593
1594 if (pci_enable_device_mem(pdev))
1595 goto free;
1596 pci_set_master(pdev);
1597 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1598 if (pci_request_selected_regions(pdev, bars, "nvme"))
1599 goto disable;
1600
1601 INIT_LIST_HEAD(&dev->namespaces);
1602 dev->pci_dev = pdev;
1603 pci_set_drvdata(pdev, dev);
1604 dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1605 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1606 nvme_set_instance(dev);
1607 dev->entry[0].vector = pdev->irq;
1608
1609 result = nvme_setup_prp_pools(dev);
1610 if (result)
1611 goto disable_msix;
1612
1613 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1614 if (!dev->bar) {
1615 result = -ENOMEM;
1616 goto disable_msix;
1617 }
1618
1619 result = nvme_configure_admin_queue(dev);
1620 if (result)
1621 goto unmap;
1622 dev->queue_count++;
1623
1624 spin_lock(&dev_list_lock);
1625 list_add(&dev->node, &dev_list);
1626 spin_unlock(&dev_list_lock);
1627
1628 result = nvme_dev_add(dev);
1629 if (result)
1630 goto delete;
1631
1632 return 0;
1633
1634 delete:
1635 spin_lock(&dev_list_lock);
1636 list_del(&dev->node);
1637 spin_unlock(&dev_list_lock);
1638
1639 nvme_free_queues(dev);
1640 unmap:
1641 iounmap(dev->bar);
1642 disable_msix:
1643 pci_disable_msix(pdev);
1644 nvme_release_instance(dev);
1645 nvme_release_prp_pools(dev);
1646 disable:
1647 pci_disable_device(pdev);
1648 pci_release_regions(pdev);
1649 free:
1650 kfree(dev->queues);
1651 kfree(dev->entry);
1652 kfree(dev);
1653 return result;
1654 }
1655
1656 static void __devexit nvme_remove(struct pci_dev *pdev)
1657 {
1658 struct nvme_dev *dev = pci_get_drvdata(pdev);
1659 nvme_dev_remove(dev);
1660 pci_disable_msix(pdev);
1661 iounmap(dev->bar);
1662 nvme_release_instance(dev);
1663 nvme_release_prp_pools(dev);
1664 pci_disable_device(pdev);
1665 pci_release_regions(pdev);
1666 kfree(dev->queues);
1667 kfree(dev->entry);
1668 kfree(dev);
1669 }
1670
1671 /* These functions are yet to be implemented */
1672 #define nvme_error_detected NULL
1673 #define nvme_dump_registers NULL
1674 #define nvme_link_reset NULL
1675 #define nvme_slot_reset NULL
1676 #define nvme_error_resume NULL
1677 #define nvme_suspend NULL
1678 #define nvme_resume NULL
1679
1680 static struct pci_error_handlers nvme_err_handler = {
1681 .error_detected = nvme_error_detected,
1682 .mmio_enabled = nvme_dump_registers,
1683 .link_reset = nvme_link_reset,
1684 .slot_reset = nvme_slot_reset,
1685 .resume = nvme_error_resume,
1686 };
1687
1688 /* Move to pci_ids.h later */
1689 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
1690
1691 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1692 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1693 { 0, }
1694 };
1695 MODULE_DEVICE_TABLE(pci, nvme_id_table);
1696
1697 static struct pci_driver nvme_driver = {
1698 .name = "nvme",
1699 .id_table = nvme_id_table,
1700 .probe = nvme_probe,
1701 .remove = __devexit_p(nvme_remove),
1702 .suspend = nvme_suspend,
1703 .resume = nvme_resume,
1704 .err_handler = &nvme_err_handler,
1705 };
1706
1707 static int __init nvme_init(void)
1708 {
1709 int result = -EBUSY;
1710
1711 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1712 if (IS_ERR(nvme_thread))
1713 return PTR_ERR(nvme_thread);
1714
1715 nvme_major = register_blkdev(nvme_major, "nvme");
1716 if (nvme_major <= 0)
1717 goto kill_kthread;
1718
1719 result = pci_register_driver(&nvme_driver);
1720 if (result)
1721 goto unregister_blkdev;
1722 return 0;
1723
1724 unregister_blkdev:
1725 unregister_blkdev(nvme_major, "nvme");
1726 kill_kthread:
1727 kthread_stop(nvme_thread);
1728 return result;
1729 }
1730
1731 static void __exit nvme_exit(void)
1732 {
1733 pci_unregister_driver(&nvme_driver);
1734 unregister_blkdev(nvme_major, "nvme");
1735 kthread_stop(nvme_thread);
1736 }
1737
1738 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1739 MODULE_LICENSE("GPL");
1740 MODULE_VERSION("0.6");
1741 module_init(nvme_init);
1742 module_exit(nvme_exit);
This page took 0.068048 seconds and 5 git commands to generate.