Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[deliverable/linux.git] / drivers / block / pktcdvd.c
1 /*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5 *
6 * May be copied or modified under the terms of the GNU General Public
7 * License. See linux/COPYING for more information.
8 *
9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10 * DVD-RAM devices.
11 *
12 * Theory of operation:
13 *
14 * At the lowest level, there is the standard driver for the CD/DVD device,
15 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16 * but it doesn't know anything about the special restrictions that apply to
17 * packet writing. One restriction is that write requests must be aligned to
18 * packet boundaries on the physical media, and the size of a write request
19 * must be equal to the packet size. Another restriction is that a
20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21 * command, if the previous command was a write.
22 *
23 * The purpose of the packet writing driver is to hide these restrictions from
24 * higher layers, such as file systems, and present a block device that can be
25 * randomly read and written using 2kB-sized blocks.
26 *
27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
28 * Its data is defined by the struct packet_iosched and includes two bio
29 * queues with pending read and write requests. These queues are processed
30 * by the pkt_iosched_process_queue() function. The write requests in this
31 * queue are already properly aligned and sized. This layer is responsible for
32 * issuing the flush cache commands and scheduling the I/O in a good order.
33 *
34 * The next layer transforms unaligned write requests to aligned writes. This
35 * transformation requires reading missing pieces of data from the underlying
36 * block device, assembling the pieces to full packets and queuing them to the
37 * packet I/O scheduler.
38 *
39 * At the top layer there is a custom make_request_fn function that forwards
40 * read requests directly to the iosched queue and puts write requests in the
41 * unaligned write queue. A kernel thread performs the necessary read
42 * gathering to convert the unaligned writes to aligned writes and then feeds
43 * them to the packet I/O scheduler.
44 *
45 *************************************************************************/
46
47 #include <linux/pktcdvd.h>
48 #include <linux/module.h>
49 #include <linux/types.h>
50 #include <linux/kernel.h>
51 #include <linux/kthread.h>
52 #include <linux/errno.h>
53 #include <linux/spinlock.h>
54 #include <linux/file.h>
55 #include <linux/proc_fs.h>
56 #include <linux/seq_file.h>
57 #include <linux/miscdevice.h>
58 #include <linux/freezer.h>
59 #include <linux/mutex.h>
60 #include <scsi/scsi_cmnd.h>
61 #include <scsi/scsi_ioctl.h>
62 #include <scsi/scsi.h>
63 #include <linux/debugfs.h>
64 #include <linux/device.h>
65
66 #include <asm/uaccess.h>
67
68 #define DRIVER_NAME "pktcdvd"
69
70 #if PACKET_DEBUG
71 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
72 #else
73 #define DPRINTK(fmt, args...)
74 #endif
75
76 #if PACKET_DEBUG > 1
77 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
78 #else
79 #define VPRINTK(fmt, args...)
80 #endif
81
82 #define MAX_SPEED 0xffff
83
84 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
85
86 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
87 static struct proc_dir_entry *pkt_proc;
88 static int pktdev_major;
89 static int write_congestion_on = PKT_WRITE_CONGESTION_ON;
90 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
91 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */
92 static mempool_t *psd_pool;
93
94 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */
95 static struct dentry *pkt_debugfs_root = NULL; /* /debug/pktcdvd */
96
97 /* forward declaration */
98 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
99 static int pkt_remove_dev(dev_t pkt_dev);
100 static int pkt_seq_show(struct seq_file *m, void *p);
101
102
103
104 /*
105 * create and register a pktcdvd kernel object.
106 */
107 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
108 const char* name,
109 struct kobject* parent,
110 struct kobj_type* ktype)
111 {
112 struct pktcdvd_kobj *p;
113 p = kzalloc(sizeof(*p), GFP_KERNEL);
114 if (!p)
115 return NULL;
116 kobject_set_name(&p->kobj, "%s", name);
117 p->kobj.parent = parent;
118 p->kobj.ktype = ktype;
119 p->pd = pd;
120 if (kobject_register(&p->kobj) != 0) {
121 kobject_put(&p->kobj);
122 return NULL;
123 }
124 return p;
125 }
126 /*
127 * remove a pktcdvd kernel object.
128 */
129 static void pkt_kobj_remove(struct pktcdvd_kobj *p)
130 {
131 if (p)
132 kobject_unregister(&p->kobj);
133 }
134 /*
135 * default release function for pktcdvd kernel objects.
136 */
137 static void pkt_kobj_release(struct kobject *kobj)
138 {
139 kfree(to_pktcdvdkobj(kobj));
140 }
141
142
143 /**********************************************************
144 *
145 * sysfs interface for pktcdvd
146 * by (C) 2006 Thomas Maier <balagi@justmail.de>
147 *
148 **********************************************************/
149
150 #define DEF_ATTR(_obj,_name,_mode) \
151 static struct attribute _obj = { .name = _name, .mode = _mode }
152
153 /**********************************************************
154 /sys/class/pktcdvd/pktcdvd[0-7]/
155 stat/reset
156 stat/packets_started
157 stat/packets_finished
158 stat/kb_written
159 stat/kb_read
160 stat/kb_read_gather
161 write_queue/size
162 write_queue/congestion_off
163 write_queue/congestion_on
164 **********************************************************/
165
166 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
167 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
168 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
169 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
170 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
171 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
172
173 static struct attribute *kobj_pkt_attrs_stat[] = {
174 &kobj_pkt_attr_st1,
175 &kobj_pkt_attr_st2,
176 &kobj_pkt_attr_st3,
177 &kobj_pkt_attr_st4,
178 &kobj_pkt_attr_st5,
179 &kobj_pkt_attr_st6,
180 NULL
181 };
182
183 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
184 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
185 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644);
186
187 static struct attribute *kobj_pkt_attrs_wqueue[] = {
188 &kobj_pkt_attr_wq1,
189 &kobj_pkt_attr_wq2,
190 &kobj_pkt_attr_wq3,
191 NULL
192 };
193
194 static ssize_t kobj_pkt_show(struct kobject *kobj,
195 struct attribute *attr, char *data)
196 {
197 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
198 int n = 0;
199 int v;
200 if (strcmp(attr->name, "packets_started") == 0) {
201 n = sprintf(data, "%lu\n", pd->stats.pkt_started);
202
203 } else if (strcmp(attr->name, "packets_finished") == 0) {
204 n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
205
206 } else if (strcmp(attr->name, "kb_written") == 0) {
207 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
208
209 } else if (strcmp(attr->name, "kb_read") == 0) {
210 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
211
212 } else if (strcmp(attr->name, "kb_read_gather") == 0) {
213 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
214
215 } else if (strcmp(attr->name, "size") == 0) {
216 spin_lock(&pd->lock);
217 v = pd->bio_queue_size;
218 spin_unlock(&pd->lock);
219 n = sprintf(data, "%d\n", v);
220
221 } else if (strcmp(attr->name, "congestion_off") == 0) {
222 spin_lock(&pd->lock);
223 v = pd->write_congestion_off;
224 spin_unlock(&pd->lock);
225 n = sprintf(data, "%d\n", v);
226
227 } else if (strcmp(attr->name, "congestion_on") == 0) {
228 spin_lock(&pd->lock);
229 v = pd->write_congestion_on;
230 spin_unlock(&pd->lock);
231 n = sprintf(data, "%d\n", v);
232 }
233 return n;
234 }
235
236 static void init_write_congestion_marks(int* lo, int* hi)
237 {
238 if (*hi > 0) {
239 *hi = max(*hi, 500);
240 *hi = min(*hi, 1000000);
241 if (*lo <= 0)
242 *lo = *hi - 100;
243 else {
244 *lo = min(*lo, *hi - 100);
245 *lo = max(*lo, 100);
246 }
247 } else {
248 *hi = -1;
249 *lo = -1;
250 }
251 }
252
253 static ssize_t kobj_pkt_store(struct kobject *kobj,
254 struct attribute *attr,
255 const char *data, size_t len)
256 {
257 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
258 int val;
259
260 if (strcmp(attr->name, "reset") == 0 && len > 0) {
261 pd->stats.pkt_started = 0;
262 pd->stats.pkt_ended = 0;
263 pd->stats.secs_w = 0;
264 pd->stats.secs_rg = 0;
265 pd->stats.secs_r = 0;
266
267 } else if (strcmp(attr->name, "congestion_off") == 0
268 && sscanf(data, "%d", &val) == 1) {
269 spin_lock(&pd->lock);
270 pd->write_congestion_off = val;
271 init_write_congestion_marks(&pd->write_congestion_off,
272 &pd->write_congestion_on);
273 spin_unlock(&pd->lock);
274
275 } else if (strcmp(attr->name, "congestion_on") == 0
276 && sscanf(data, "%d", &val) == 1) {
277 spin_lock(&pd->lock);
278 pd->write_congestion_on = val;
279 init_write_congestion_marks(&pd->write_congestion_off,
280 &pd->write_congestion_on);
281 spin_unlock(&pd->lock);
282 }
283 return len;
284 }
285
286 static struct sysfs_ops kobj_pkt_ops = {
287 .show = kobj_pkt_show,
288 .store = kobj_pkt_store
289 };
290 static struct kobj_type kobj_pkt_type_stat = {
291 .release = pkt_kobj_release,
292 .sysfs_ops = &kobj_pkt_ops,
293 .default_attrs = kobj_pkt_attrs_stat
294 };
295 static struct kobj_type kobj_pkt_type_wqueue = {
296 .release = pkt_kobj_release,
297 .sysfs_ops = &kobj_pkt_ops,
298 .default_attrs = kobj_pkt_attrs_wqueue
299 };
300
301 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
302 {
303 if (class_pktcdvd) {
304 pd->clsdev = class_device_create(class_pktcdvd,
305 NULL, pd->pkt_dev,
306 NULL, "%s", pd->name);
307 if (IS_ERR(pd->clsdev))
308 pd->clsdev = NULL;
309 }
310 if (pd->clsdev) {
311 pd->kobj_stat = pkt_kobj_create(pd, "stat",
312 &pd->clsdev->kobj,
313 &kobj_pkt_type_stat);
314 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
315 &pd->clsdev->kobj,
316 &kobj_pkt_type_wqueue);
317 }
318 }
319
320 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
321 {
322 pkt_kobj_remove(pd->kobj_stat);
323 pkt_kobj_remove(pd->kobj_wqueue);
324 if (class_pktcdvd)
325 class_device_destroy(class_pktcdvd, pd->pkt_dev);
326 }
327
328
329 /********************************************************************
330 /sys/class/pktcdvd/
331 add map block device
332 remove unmap packet dev
333 device_map show mappings
334 *******************************************************************/
335
336 static void class_pktcdvd_release(struct class *cls)
337 {
338 kfree(cls);
339 }
340 static ssize_t class_pktcdvd_show_map(struct class *c, char *data)
341 {
342 int n = 0;
343 int idx;
344 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
345 for (idx = 0; idx < MAX_WRITERS; idx++) {
346 struct pktcdvd_device *pd = pkt_devs[idx];
347 if (!pd)
348 continue;
349 n += sprintf(data+n, "%s %u:%u %u:%u\n",
350 pd->name,
351 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
352 MAJOR(pd->bdev->bd_dev),
353 MINOR(pd->bdev->bd_dev));
354 }
355 mutex_unlock(&ctl_mutex);
356 return n;
357 }
358
359 static ssize_t class_pktcdvd_store_add(struct class *c, const char *buf,
360 size_t count)
361 {
362 unsigned int major, minor;
363
364 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
365 /* pkt_setup_dev() expects caller to hold reference to self */
366 if (!try_module_get(THIS_MODULE))
367 return -ENODEV;
368
369 pkt_setup_dev(MKDEV(major, minor), NULL);
370
371 module_put(THIS_MODULE);
372
373 return count;
374 }
375
376 return -EINVAL;
377 }
378
379 static ssize_t class_pktcdvd_store_remove(struct class *c, const char *buf,
380 size_t count)
381 {
382 unsigned int major, minor;
383 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
384 pkt_remove_dev(MKDEV(major, minor));
385 return count;
386 }
387 return -EINVAL;
388 }
389
390 static struct class_attribute class_pktcdvd_attrs[] = {
391 __ATTR(add, 0200, NULL, class_pktcdvd_store_add),
392 __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove),
393 __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL),
394 __ATTR_NULL
395 };
396
397
398 static int pkt_sysfs_init(void)
399 {
400 int ret = 0;
401
402 /*
403 * create control files in sysfs
404 * /sys/class/pktcdvd/...
405 */
406 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
407 if (!class_pktcdvd)
408 return -ENOMEM;
409 class_pktcdvd->name = DRIVER_NAME;
410 class_pktcdvd->owner = THIS_MODULE;
411 class_pktcdvd->class_release = class_pktcdvd_release;
412 class_pktcdvd->class_attrs = class_pktcdvd_attrs;
413 ret = class_register(class_pktcdvd);
414 if (ret) {
415 kfree(class_pktcdvd);
416 class_pktcdvd = NULL;
417 printk(DRIVER_NAME": failed to create class pktcdvd\n");
418 return ret;
419 }
420 return 0;
421 }
422
423 static void pkt_sysfs_cleanup(void)
424 {
425 if (class_pktcdvd)
426 class_destroy(class_pktcdvd);
427 class_pktcdvd = NULL;
428 }
429
430 /********************************************************************
431 entries in debugfs
432
433 /debugfs/pktcdvd[0-7]/
434 info
435
436 *******************************************************************/
437
438 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
439 {
440 return pkt_seq_show(m, p);
441 }
442
443 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
444 {
445 return single_open(file, pkt_debugfs_seq_show, inode->i_private);
446 }
447
448 static const struct file_operations debug_fops = {
449 .open = pkt_debugfs_fops_open,
450 .read = seq_read,
451 .llseek = seq_lseek,
452 .release = single_release,
453 .owner = THIS_MODULE,
454 };
455
456 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
457 {
458 if (!pkt_debugfs_root)
459 return;
460 pd->dfs_f_info = NULL;
461 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
462 if (IS_ERR(pd->dfs_d_root)) {
463 pd->dfs_d_root = NULL;
464 return;
465 }
466 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
467 pd->dfs_d_root, pd, &debug_fops);
468 if (IS_ERR(pd->dfs_f_info)) {
469 pd->dfs_f_info = NULL;
470 return;
471 }
472 }
473
474 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
475 {
476 if (!pkt_debugfs_root)
477 return;
478 if (pd->dfs_f_info)
479 debugfs_remove(pd->dfs_f_info);
480 pd->dfs_f_info = NULL;
481 if (pd->dfs_d_root)
482 debugfs_remove(pd->dfs_d_root);
483 pd->dfs_d_root = NULL;
484 }
485
486 static void pkt_debugfs_init(void)
487 {
488 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
489 if (IS_ERR(pkt_debugfs_root)) {
490 pkt_debugfs_root = NULL;
491 return;
492 }
493 }
494
495 static void pkt_debugfs_cleanup(void)
496 {
497 if (!pkt_debugfs_root)
498 return;
499 debugfs_remove(pkt_debugfs_root);
500 pkt_debugfs_root = NULL;
501 }
502
503 /* ----------------------------------------------------------*/
504
505
506 static void pkt_bio_finished(struct pktcdvd_device *pd)
507 {
508 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
509 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
510 VPRINTK(DRIVER_NAME": queue empty\n");
511 atomic_set(&pd->iosched.attention, 1);
512 wake_up(&pd->wqueue);
513 }
514 }
515
516 static void pkt_bio_destructor(struct bio *bio)
517 {
518 kfree(bio->bi_io_vec);
519 kfree(bio);
520 }
521
522 static struct bio *pkt_bio_alloc(int nr_iovecs)
523 {
524 struct bio_vec *bvl = NULL;
525 struct bio *bio;
526
527 bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
528 if (!bio)
529 goto no_bio;
530 bio_init(bio);
531
532 bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL);
533 if (!bvl)
534 goto no_bvl;
535
536 bio->bi_max_vecs = nr_iovecs;
537 bio->bi_io_vec = bvl;
538 bio->bi_destructor = pkt_bio_destructor;
539
540 return bio;
541
542 no_bvl:
543 kfree(bio);
544 no_bio:
545 return NULL;
546 }
547
548 /*
549 * Allocate a packet_data struct
550 */
551 static struct packet_data *pkt_alloc_packet_data(int frames)
552 {
553 int i;
554 struct packet_data *pkt;
555
556 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
557 if (!pkt)
558 goto no_pkt;
559
560 pkt->frames = frames;
561 pkt->w_bio = pkt_bio_alloc(frames);
562 if (!pkt->w_bio)
563 goto no_bio;
564
565 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
566 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
567 if (!pkt->pages[i])
568 goto no_page;
569 }
570
571 spin_lock_init(&pkt->lock);
572
573 for (i = 0; i < frames; i++) {
574 struct bio *bio = pkt_bio_alloc(1);
575 if (!bio)
576 goto no_rd_bio;
577 pkt->r_bios[i] = bio;
578 }
579
580 return pkt;
581
582 no_rd_bio:
583 for (i = 0; i < frames; i++) {
584 struct bio *bio = pkt->r_bios[i];
585 if (bio)
586 bio_put(bio);
587 }
588
589 no_page:
590 for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
591 if (pkt->pages[i])
592 __free_page(pkt->pages[i]);
593 bio_put(pkt->w_bio);
594 no_bio:
595 kfree(pkt);
596 no_pkt:
597 return NULL;
598 }
599
600 /*
601 * Free a packet_data struct
602 */
603 static void pkt_free_packet_data(struct packet_data *pkt)
604 {
605 int i;
606
607 for (i = 0; i < pkt->frames; i++) {
608 struct bio *bio = pkt->r_bios[i];
609 if (bio)
610 bio_put(bio);
611 }
612 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
613 __free_page(pkt->pages[i]);
614 bio_put(pkt->w_bio);
615 kfree(pkt);
616 }
617
618 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
619 {
620 struct packet_data *pkt, *next;
621
622 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
623
624 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
625 pkt_free_packet_data(pkt);
626 }
627 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
628 }
629
630 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
631 {
632 struct packet_data *pkt;
633
634 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
635
636 while (nr_packets > 0) {
637 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
638 if (!pkt) {
639 pkt_shrink_pktlist(pd);
640 return 0;
641 }
642 pkt->id = nr_packets;
643 pkt->pd = pd;
644 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
645 nr_packets--;
646 }
647 return 1;
648 }
649
650 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
651 {
652 struct rb_node *n = rb_next(&node->rb_node);
653 if (!n)
654 return NULL;
655 return rb_entry(n, struct pkt_rb_node, rb_node);
656 }
657
658 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
659 {
660 rb_erase(&node->rb_node, &pd->bio_queue);
661 mempool_free(node, pd->rb_pool);
662 pd->bio_queue_size--;
663 BUG_ON(pd->bio_queue_size < 0);
664 }
665
666 /*
667 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
668 */
669 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
670 {
671 struct rb_node *n = pd->bio_queue.rb_node;
672 struct rb_node *next;
673 struct pkt_rb_node *tmp;
674
675 if (!n) {
676 BUG_ON(pd->bio_queue_size > 0);
677 return NULL;
678 }
679
680 for (;;) {
681 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
682 if (s <= tmp->bio->bi_sector)
683 next = n->rb_left;
684 else
685 next = n->rb_right;
686 if (!next)
687 break;
688 n = next;
689 }
690
691 if (s > tmp->bio->bi_sector) {
692 tmp = pkt_rbtree_next(tmp);
693 if (!tmp)
694 return NULL;
695 }
696 BUG_ON(s > tmp->bio->bi_sector);
697 return tmp;
698 }
699
700 /*
701 * Insert a node into the pd->bio_queue rb tree.
702 */
703 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
704 {
705 struct rb_node **p = &pd->bio_queue.rb_node;
706 struct rb_node *parent = NULL;
707 sector_t s = node->bio->bi_sector;
708 struct pkt_rb_node *tmp;
709
710 while (*p) {
711 parent = *p;
712 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
713 if (s < tmp->bio->bi_sector)
714 p = &(*p)->rb_left;
715 else
716 p = &(*p)->rb_right;
717 }
718 rb_link_node(&node->rb_node, parent, p);
719 rb_insert_color(&node->rb_node, &pd->bio_queue);
720 pd->bio_queue_size++;
721 }
722
723 /*
724 * Add a bio to a single linked list defined by its head and tail pointers.
725 */
726 static void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail)
727 {
728 bio->bi_next = NULL;
729 if (*list_tail) {
730 BUG_ON((*list_head) == NULL);
731 (*list_tail)->bi_next = bio;
732 (*list_tail) = bio;
733 } else {
734 BUG_ON((*list_head) != NULL);
735 (*list_head) = bio;
736 (*list_tail) = bio;
737 }
738 }
739
740 /*
741 * Remove and return the first bio from a single linked list defined by its
742 * head and tail pointers.
743 */
744 static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail)
745 {
746 struct bio *bio;
747
748 if (*list_head == NULL)
749 return NULL;
750
751 bio = *list_head;
752 *list_head = bio->bi_next;
753 if (*list_head == NULL)
754 *list_tail = NULL;
755
756 bio->bi_next = NULL;
757 return bio;
758 }
759
760 /*
761 * Send a packet_command to the underlying block device and
762 * wait for completion.
763 */
764 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
765 {
766 struct request_queue *q = bdev_get_queue(pd->bdev);
767 struct request *rq;
768 int ret = 0;
769
770 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
771 WRITE : READ, __GFP_WAIT);
772
773 if (cgc->buflen) {
774 if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT))
775 goto out;
776 }
777
778 rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
779 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
780 if (sizeof(rq->cmd) > CDROM_PACKET_SIZE)
781 memset(rq->cmd + CDROM_PACKET_SIZE, 0, sizeof(rq->cmd) - CDROM_PACKET_SIZE);
782
783 rq->timeout = 60*HZ;
784 rq->cmd_type = REQ_TYPE_BLOCK_PC;
785 rq->cmd_flags |= REQ_HARDBARRIER;
786 if (cgc->quiet)
787 rq->cmd_flags |= REQ_QUIET;
788
789 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
790 if (rq->errors)
791 ret = -EIO;
792 out:
793 blk_put_request(rq);
794 return ret;
795 }
796
797 /*
798 * A generic sense dump / resolve mechanism should be implemented across
799 * all ATAPI + SCSI devices.
800 */
801 static void pkt_dump_sense(struct packet_command *cgc)
802 {
803 static char *info[9] = { "No sense", "Recovered error", "Not ready",
804 "Medium error", "Hardware error", "Illegal request",
805 "Unit attention", "Data protect", "Blank check" };
806 int i;
807 struct request_sense *sense = cgc->sense;
808
809 printk(DRIVER_NAME":");
810 for (i = 0; i < CDROM_PACKET_SIZE; i++)
811 printk(" %02x", cgc->cmd[i]);
812 printk(" - ");
813
814 if (sense == NULL) {
815 printk("no sense\n");
816 return;
817 }
818
819 printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
820
821 if (sense->sense_key > 8) {
822 printk(" (INVALID)\n");
823 return;
824 }
825
826 printk(" (%s)\n", info[sense->sense_key]);
827 }
828
829 /*
830 * flush the drive cache to media
831 */
832 static int pkt_flush_cache(struct pktcdvd_device *pd)
833 {
834 struct packet_command cgc;
835
836 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
837 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
838 cgc.quiet = 1;
839
840 /*
841 * the IMMED bit -- we default to not setting it, although that
842 * would allow a much faster close, this is safer
843 */
844 #if 0
845 cgc.cmd[1] = 1 << 1;
846 #endif
847 return pkt_generic_packet(pd, &cgc);
848 }
849
850 /*
851 * speed is given as the normal factor, e.g. 4 for 4x
852 */
853 static int pkt_set_speed(struct pktcdvd_device *pd, unsigned write_speed, unsigned read_speed)
854 {
855 struct packet_command cgc;
856 struct request_sense sense;
857 int ret;
858
859 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
860 cgc.sense = &sense;
861 cgc.cmd[0] = GPCMD_SET_SPEED;
862 cgc.cmd[2] = (read_speed >> 8) & 0xff;
863 cgc.cmd[3] = read_speed & 0xff;
864 cgc.cmd[4] = (write_speed >> 8) & 0xff;
865 cgc.cmd[5] = write_speed & 0xff;
866
867 if ((ret = pkt_generic_packet(pd, &cgc)))
868 pkt_dump_sense(&cgc);
869
870 return ret;
871 }
872
873 /*
874 * Queue a bio for processing by the low-level CD device. Must be called
875 * from process context.
876 */
877 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
878 {
879 spin_lock(&pd->iosched.lock);
880 if (bio_data_dir(bio) == READ) {
881 pkt_add_list_last(bio, &pd->iosched.read_queue,
882 &pd->iosched.read_queue_tail);
883 } else {
884 pkt_add_list_last(bio, &pd->iosched.write_queue,
885 &pd->iosched.write_queue_tail);
886 }
887 spin_unlock(&pd->iosched.lock);
888
889 atomic_set(&pd->iosched.attention, 1);
890 wake_up(&pd->wqueue);
891 }
892
893 /*
894 * Process the queued read/write requests. This function handles special
895 * requirements for CDRW drives:
896 * - A cache flush command must be inserted before a read request if the
897 * previous request was a write.
898 * - Switching between reading and writing is slow, so don't do it more often
899 * than necessary.
900 * - Optimize for throughput at the expense of latency. This means that streaming
901 * writes will never be interrupted by a read, but if the drive has to seek
902 * before the next write, switch to reading instead if there are any pending
903 * read requests.
904 * - Set the read speed according to current usage pattern. When only reading
905 * from the device, it's best to use the highest possible read speed, but
906 * when switching often between reading and writing, it's better to have the
907 * same read and write speeds.
908 */
909 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
910 {
911
912 if (atomic_read(&pd->iosched.attention) == 0)
913 return;
914 atomic_set(&pd->iosched.attention, 0);
915
916 for (;;) {
917 struct bio *bio;
918 int reads_queued, writes_queued;
919
920 spin_lock(&pd->iosched.lock);
921 reads_queued = (pd->iosched.read_queue != NULL);
922 writes_queued = (pd->iosched.write_queue != NULL);
923 spin_unlock(&pd->iosched.lock);
924
925 if (!reads_queued && !writes_queued)
926 break;
927
928 if (pd->iosched.writing) {
929 int need_write_seek = 1;
930 spin_lock(&pd->iosched.lock);
931 bio = pd->iosched.write_queue;
932 spin_unlock(&pd->iosched.lock);
933 if (bio && (bio->bi_sector == pd->iosched.last_write))
934 need_write_seek = 0;
935 if (need_write_seek && reads_queued) {
936 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
937 VPRINTK(DRIVER_NAME": write, waiting\n");
938 break;
939 }
940 pkt_flush_cache(pd);
941 pd->iosched.writing = 0;
942 }
943 } else {
944 if (!reads_queued && writes_queued) {
945 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
946 VPRINTK(DRIVER_NAME": read, waiting\n");
947 break;
948 }
949 pd->iosched.writing = 1;
950 }
951 }
952
953 spin_lock(&pd->iosched.lock);
954 if (pd->iosched.writing) {
955 bio = pkt_get_list_first(&pd->iosched.write_queue,
956 &pd->iosched.write_queue_tail);
957 } else {
958 bio = pkt_get_list_first(&pd->iosched.read_queue,
959 &pd->iosched.read_queue_tail);
960 }
961 spin_unlock(&pd->iosched.lock);
962
963 if (!bio)
964 continue;
965
966 if (bio_data_dir(bio) == READ)
967 pd->iosched.successive_reads += bio->bi_size >> 10;
968 else {
969 pd->iosched.successive_reads = 0;
970 pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
971 }
972 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
973 if (pd->read_speed == pd->write_speed) {
974 pd->read_speed = MAX_SPEED;
975 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
976 }
977 } else {
978 if (pd->read_speed != pd->write_speed) {
979 pd->read_speed = pd->write_speed;
980 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
981 }
982 }
983
984 atomic_inc(&pd->cdrw.pending_bios);
985 generic_make_request(bio);
986 }
987 }
988
989 /*
990 * Special care is needed if the underlying block device has a small
991 * max_phys_segments value.
992 */
993 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
994 {
995 if ((pd->settings.size << 9) / CD_FRAMESIZE <= q->max_phys_segments) {
996 /*
997 * The cdrom device can handle one segment/frame
998 */
999 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
1000 return 0;
1001 } else if ((pd->settings.size << 9) / PAGE_SIZE <= q->max_phys_segments) {
1002 /*
1003 * We can handle this case at the expense of some extra memory
1004 * copies during write operations
1005 */
1006 set_bit(PACKET_MERGE_SEGS, &pd->flags);
1007 return 0;
1008 } else {
1009 printk(DRIVER_NAME": cdrom max_phys_segments too small\n");
1010 return -EIO;
1011 }
1012 }
1013
1014 /*
1015 * Copy CD_FRAMESIZE bytes from src_bio into a destination page
1016 */
1017 static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
1018 {
1019 unsigned int copy_size = CD_FRAMESIZE;
1020
1021 while (copy_size > 0) {
1022 struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
1023 void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
1024 src_bvl->bv_offset + offs;
1025 void *vto = page_address(dst_page) + dst_offs;
1026 int len = min_t(int, copy_size, src_bvl->bv_len - offs);
1027
1028 BUG_ON(len < 0);
1029 memcpy(vto, vfrom, len);
1030 kunmap_atomic(vfrom, KM_USER0);
1031
1032 seg++;
1033 offs = 0;
1034 dst_offs += len;
1035 copy_size -= len;
1036 }
1037 }
1038
1039 /*
1040 * Copy all data for this packet to pkt->pages[], so that
1041 * a) The number of required segments for the write bio is minimized, which
1042 * is necessary for some scsi controllers.
1043 * b) The data can be used as cache to avoid read requests if we receive a
1044 * new write request for the same zone.
1045 */
1046 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
1047 {
1048 int f, p, offs;
1049
1050 /* Copy all data to pkt->pages[] */
1051 p = 0;
1052 offs = 0;
1053 for (f = 0; f < pkt->frames; f++) {
1054 if (bvec[f].bv_page != pkt->pages[p]) {
1055 void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset;
1056 void *vto = page_address(pkt->pages[p]) + offs;
1057 memcpy(vto, vfrom, CD_FRAMESIZE);
1058 kunmap_atomic(vfrom, KM_USER0);
1059 bvec[f].bv_page = pkt->pages[p];
1060 bvec[f].bv_offset = offs;
1061 } else {
1062 BUG_ON(bvec[f].bv_offset != offs);
1063 }
1064 offs += CD_FRAMESIZE;
1065 if (offs >= PAGE_SIZE) {
1066 offs = 0;
1067 p++;
1068 }
1069 }
1070 }
1071
1072 static void pkt_end_io_read(struct bio *bio, int err)
1073 {
1074 struct packet_data *pkt = bio->bi_private;
1075 struct pktcdvd_device *pd = pkt->pd;
1076 BUG_ON(!pd);
1077
1078 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
1079 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
1080
1081 if (err)
1082 atomic_inc(&pkt->io_errors);
1083 if (atomic_dec_and_test(&pkt->io_wait)) {
1084 atomic_inc(&pkt->run_sm);
1085 wake_up(&pd->wqueue);
1086 }
1087 pkt_bio_finished(pd);
1088 }
1089
1090 static void pkt_end_io_packet_write(struct bio *bio, int err)
1091 {
1092 struct packet_data *pkt = bio->bi_private;
1093 struct pktcdvd_device *pd = pkt->pd;
1094 BUG_ON(!pd);
1095
1096 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
1097
1098 pd->stats.pkt_ended++;
1099
1100 pkt_bio_finished(pd);
1101 atomic_dec(&pkt->io_wait);
1102 atomic_inc(&pkt->run_sm);
1103 wake_up(&pd->wqueue);
1104 }
1105
1106 /*
1107 * Schedule reads for the holes in a packet
1108 */
1109 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1110 {
1111 int frames_read = 0;
1112 struct bio *bio;
1113 int f;
1114 char written[PACKET_MAX_SIZE];
1115
1116 BUG_ON(!pkt->orig_bios);
1117
1118 atomic_set(&pkt->io_wait, 0);
1119 atomic_set(&pkt->io_errors, 0);
1120
1121 /*
1122 * Figure out which frames we need to read before we can write.
1123 */
1124 memset(written, 0, sizeof(written));
1125 spin_lock(&pkt->lock);
1126 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
1127 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1128 int num_frames = bio->bi_size / CD_FRAMESIZE;
1129 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1130 BUG_ON(first_frame < 0);
1131 BUG_ON(first_frame + num_frames > pkt->frames);
1132 for (f = first_frame; f < first_frame + num_frames; f++)
1133 written[f] = 1;
1134 }
1135 spin_unlock(&pkt->lock);
1136
1137 if (pkt->cache_valid) {
1138 VPRINTK("pkt_gather_data: zone %llx cached\n",
1139 (unsigned long long)pkt->sector);
1140 goto out_account;
1141 }
1142
1143 /*
1144 * Schedule reads for missing parts of the packet.
1145 */
1146 for (f = 0; f < pkt->frames; f++) {
1147 struct bio_vec *vec;
1148
1149 int p, offset;
1150 if (written[f])
1151 continue;
1152 bio = pkt->r_bios[f];
1153 vec = bio->bi_io_vec;
1154 bio_init(bio);
1155 bio->bi_max_vecs = 1;
1156 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1157 bio->bi_bdev = pd->bdev;
1158 bio->bi_end_io = pkt_end_io_read;
1159 bio->bi_private = pkt;
1160 bio->bi_io_vec = vec;
1161 bio->bi_destructor = pkt_bio_destructor;
1162
1163 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1164 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1165 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
1166 f, pkt->pages[p], offset);
1167 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1168 BUG();
1169
1170 atomic_inc(&pkt->io_wait);
1171 bio->bi_rw = READ;
1172 pkt_queue_bio(pd, bio);
1173 frames_read++;
1174 }
1175
1176 out_account:
1177 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
1178 frames_read, (unsigned long long)pkt->sector);
1179 pd->stats.pkt_started++;
1180 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1181 }
1182
1183 /*
1184 * Find a packet matching zone, or the least recently used packet if
1185 * there is no match.
1186 */
1187 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1188 {
1189 struct packet_data *pkt;
1190
1191 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1192 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1193 list_del_init(&pkt->list);
1194 if (pkt->sector != zone)
1195 pkt->cache_valid = 0;
1196 return pkt;
1197 }
1198 }
1199 BUG();
1200 return NULL;
1201 }
1202
1203 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1204 {
1205 if (pkt->cache_valid) {
1206 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1207 } else {
1208 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1209 }
1210 }
1211
1212 /*
1213 * recover a failed write, query for relocation if possible
1214 *
1215 * returns 1 if recovery is possible, or 0 if not
1216 *
1217 */
1218 static int pkt_start_recovery(struct packet_data *pkt)
1219 {
1220 /*
1221 * FIXME. We need help from the file system to implement
1222 * recovery handling.
1223 */
1224 return 0;
1225 #if 0
1226 struct request *rq = pkt->rq;
1227 struct pktcdvd_device *pd = rq->rq_disk->private_data;
1228 struct block_device *pkt_bdev;
1229 struct super_block *sb = NULL;
1230 unsigned long old_block, new_block;
1231 sector_t new_sector;
1232
1233 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1234 if (pkt_bdev) {
1235 sb = get_super(pkt_bdev);
1236 bdput(pkt_bdev);
1237 }
1238
1239 if (!sb)
1240 return 0;
1241
1242 if (!sb->s_op || !sb->s_op->relocate_blocks)
1243 goto out;
1244
1245 old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1246 if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1247 goto out;
1248
1249 new_sector = new_block * (CD_FRAMESIZE >> 9);
1250 pkt->sector = new_sector;
1251
1252 pkt->bio->bi_sector = new_sector;
1253 pkt->bio->bi_next = NULL;
1254 pkt->bio->bi_flags = 1 << BIO_UPTODATE;
1255 pkt->bio->bi_idx = 0;
1256
1257 BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW));
1258 BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
1259 BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
1260 BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
1261 BUG_ON(pkt->bio->bi_private != pkt);
1262
1263 drop_super(sb);
1264 return 1;
1265
1266 out:
1267 drop_super(sb);
1268 return 0;
1269 #endif
1270 }
1271
1272 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1273 {
1274 #if PACKET_DEBUG > 1
1275 static const char *state_name[] = {
1276 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1277 };
1278 enum packet_data_state old_state = pkt->state;
1279 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
1280 state_name[old_state], state_name[state]);
1281 #endif
1282 pkt->state = state;
1283 }
1284
1285 /*
1286 * Scan the work queue to see if we can start a new packet.
1287 * returns non-zero if any work was done.
1288 */
1289 static int pkt_handle_queue(struct pktcdvd_device *pd)
1290 {
1291 struct packet_data *pkt, *p;
1292 struct bio *bio = NULL;
1293 sector_t zone = 0; /* Suppress gcc warning */
1294 struct pkt_rb_node *node, *first_node;
1295 struct rb_node *n;
1296 int wakeup;
1297
1298 VPRINTK("handle_queue\n");
1299
1300 atomic_set(&pd->scan_queue, 0);
1301
1302 if (list_empty(&pd->cdrw.pkt_free_list)) {
1303 VPRINTK("handle_queue: no pkt\n");
1304 return 0;
1305 }
1306
1307 /*
1308 * Try to find a zone we are not already working on.
1309 */
1310 spin_lock(&pd->lock);
1311 first_node = pkt_rbtree_find(pd, pd->current_sector);
1312 if (!first_node) {
1313 n = rb_first(&pd->bio_queue);
1314 if (n)
1315 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1316 }
1317 node = first_node;
1318 while (node) {
1319 bio = node->bio;
1320 zone = ZONE(bio->bi_sector, pd);
1321 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1322 if (p->sector == zone) {
1323 bio = NULL;
1324 goto try_next_bio;
1325 }
1326 }
1327 break;
1328 try_next_bio:
1329 node = pkt_rbtree_next(node);
1330 if (!node) {
1331 n = rb_first(&pd->bio_queue);
1332 if (n)
1333 node = rb_entry(n, struct pkt_rb_node, rb_node);
1334 }
1335 if (node == first_node)
1336 node = NULL;
1337 }
1338 spin_unlock(&pd->lock);
1339 if (!bio) {
1340 VPRINTK("handle_queue: no bio\n");
1341 return 0;
1342 }
1343
1344 pkt = pkt_get_packet_data(pd, zone);
1345
1346 pd->current_sector = zone + pd->settings.size;
1347 pkt->sector = zone;
1348 BUG_ON(pkt->frames != pd->settings.size >> 2);
1349 pkt->write_size = 0;
1350
1351 /*
1352 * Scan work queue for bios in the same zone and link them
1353 * to this packet.
1354 */
1355 spin_lock(&pd->lock);
1356 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
1357 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1358 bio = node->bio;
1359 VPRINTK("pkt_handle_queue: found zone=%llx\n",
1360 (unsigned long long)ZONE(bio->bi_sector, pd));
1361 if (ZONE(bio->bi_sector, pd) != zone)
1362 break;
1363 pkt_rbtree_erase(pd, node);
1364 spin_lock(&pkt->lock);
1365 pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail);
1366 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
1367 spin_unlock(&pkt->lock);
1368 }
1369 /* check write congestion marks, and if bio_queue_size is
1370 below, wake up any waiters */
1371 wakeup = (pd->write_congestion_on > 0
1372 && pd->bio_queue_size <= pd->write_congestion_off);
1373 spin_unlock(&pd->lock);
1374 if (wakeup)
1375 clear_bdi_congested(&pd->disk->queue->backing_dev_info, WRITE);
1376
1377 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1378 pkt_set_state(pkt, PACKET_WAITING_STATE);
1379 atomic_set(&pkt->run_sm, 1);
1380
1381 spin_lock(&pd->cdrw.active_list_lock);
1382 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1383 spin_unlock(&pd->cdrw.active_list_lock);
1384
1385 return 1;
1386 }
1387
1388 /*
1389 * Assemble a bio to write one packet and queue the bio for processing
1390 * by the underlying block device.
1391 */
1392 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1393 {
1394 struct bio *bio;
1395 int f;
1396 int frames_write;
1397 struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1398
1399 for (f = 0; f < pkt->frames; f++) {
1400 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1401 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1402 }
1403
1404 /*
1405 * Fill-in bvec with data from orig_bios.
1406 */
1407 frames_write = 0;
1408 spin_lock(&pkt->lock);
1409 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
1410 int segment = bio->bi_idx;
1411 int src_offs = 0;
1412 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1413 int num_frames = bio->bi_size / CD_FRAMESIZE;
1414 BUG_ON(first_frame < 0);
1415 BUG_ON(first_frame + num_frames > pkt->frames);
1416 for (f = first_frame; f < first_frame + num_frames; f++) {
1417 struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
1418
1419 while (src_offs >= src_bvl->bv_len) {
1420 src_offs -= src_bvl->bv_len;
1421 segment++;
1422 BUG_ON(segment >= bio->bi_vcnt);
1423 src_bvl = bio_iovec_idx(bio, segment);
1424 }
1425
1426 if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
1427 bvec[f].bv_page = src_bvl->bv_page;
1428 bvec[f].bv_offset = src_bvl->bv_offset + src_offs;
1429 } else {
1430 pkt_copy_bio_data(bio, segment, src_offs,
1431 bvec[f].bv_page, bvec[f].bv_offset);
1432 }
1433 src_offs += CD_FRAMESIZE;
1434 frames_write++;
1435 }
1436 }
1437 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1438 spin_unlock(&pkt->lock);
1439
1440 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1441 frames_write, (unsigned long long)pkt->sector);
1442 BUG_ON(frames_write != pkt->write_size);
1443
1444 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1445 pkt_make_local_copy(pkt, bvec);
1446 pkt->cache_valid = 1;
1447 } else {
1448 pkt->cache_valid = 0;
1449 }
1450
1451 /* Start the write request */
1452 bio_init(pkt->w_bio);
1453 pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
1454 pkt->w_bio->bi_sector = pkt->sector;
1455 pkt->w_bio->bi_bdev = pd->bdev;
1456 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1457 pkt->w_bio->bi_private = pkt;
1458 pkt->w_bio->bi_io_vec = bvec;
1459 pkt->w_bio->bi_destructor = pkt_bio_destructor;
1460 for (f = 0; f < pkt->frames; f++)
1461 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1462 BUG();
1463 VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt);
1464
1465 atomic_set(&pkt->io_wait, 1);
1466 pkt->w_bio->bi_rw = WRITE;
1467 pkt_queue_bio(pd, pkt->w_bio);
1468 }
1469
1470 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1471 {
1472 struct bio *bio, *next;
1473
1474 if (!uptodate)
1475 pkt->cache_valid = 0;
1476
1477 /* Finish all bios corresponding to this packet */
1478 bio = pkt->orig_bios;
1479 while (bio) {
1480 next = bio->bi_next;
1481 bio->bi_next = NULL;
1482 bio_endio(bio, uptodate ? 0 : -EIO);
1483 bio = next;
1484 }
1485 pkt->orig_bios = pkt->orig_bios_tail = NULL;
1486 }
1487
1488 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1489 {
1490 int uptodate;
1491
1492 VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1493
1494 for (;;) {
1495 switch (pkt->state) {
1496 case PACKET_WAITING_STATE:
1497 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1498 return;
1499
1500 pkt->sleep_time = 0;
1501 pkt_gather_data(pd, pkt);
1502 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1503 break;
1504
1505 case PACKET_READ_WAIT_STATE:
1506 if (atomic_read(&pkt->io_wait) > 0)
1507 return;
1508
1509 if (atomic_read(&pkt->io_errors) > 0) {
1510 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1511 } else {
1512 pkt_start_write(pd, pkt);
1513 }
1514 break;
1515
1516 case PACKET_WRITE_WAIT_STATE:
1517 if (atomic_read(&pkt->io_wait) > 0)
1518 return;
1519
1520 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1521 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1522 } else {
1523 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1524 }
1525 break;
1526
1527 case PACKET_RECOVERY_STATE:
1528 if (pkt_start_recovery(pkt)) {
1529 pkt_start_write(pd, pkt);
1530 } else {
1531 VPRINTK("No recovery possible\n");
1532 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1533 }
1534 break;
1535
1536 case PACKET_FINISHED_STATE:
1537 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1538 pkt_finish_packet(pkt, uptodate);
1539 return;
1540
1541 default:
1542 BUG();
1543 break;
1544 }
1545 }
1546 }
1547
1548 static void pkt_handle_packets(struct pktcdvd_device *pd)
1549 {
1550 struct packet_data *pkt, *next;
1551
1552 VPRINTK("pkt_handle_packets\n");
1553
1554 /*
1555 * Run state machine for active packets
1556 */
1557 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1558 if (atomic_read(&pkt->run_sm) > 0) {
1559 atomic_set(&pkt->run_sm, 0);
1560 pkt_run_state_machine(pd, pkt);
1561 }
1562 }
1563
1564 /*
1565 * Move no longer active packets to the free list
1566 */
1567 spin_lock(&pd->cdrw.active_list_lock);
1568 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1569 if (pkt->state == PACKET_FINISHED_STATE) {
1570 list_del(&pkt->list);
1571 pkt_put_packet_data(pd, pkt);
1572 pkt_set_state(pkt, PACKET_IDLE_STATE);
1573 atomic_set(&pd->scan_queue, 1);
1574 }
1575 }
1576 spin_unlock(&pd->cdrw.active_list_lock);
1577 }
1578
1579 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1580 {
1581 struct packet_data *pkt;
1582 int i;
1583
1584 for (i = 0; i < PACKET_NUM_STATES; i++)
1585 states[i] = 0;
1586
1587 spin_lock(&pd->cdrw.active_list_lock);
1588 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1589 states[pkt->state]++;
1590 }
1591 spin_unlock(&pd->cdrw.active_list_lock);
1592 }
1593
1594 /*
1595 * kcdrwd is woken up when writes have been queued for one of our
1596 * registered devices
1597 */
1598 static int kcdrwd(void *foobar)
1599 {
1600 struct pktcdvd_device *pd = foobar;
1601 struct packet_data *pkt;
1602 long min_sleep_time, residue;
1603
1604 set_user_nice(current, -20);
1605 set_freezable();
1606
1607 for (;;) {
1608 DECLARE_WAITQUEUE(wait, current);
1609
1610 /*
1611 * Wait until there is something to do
1612 */
1613 add_wait_queue(&pd->wqueue, &wait);
1614 for (;;) {
1615 set_current_state(TASK_INTERRUPTIBLE);
1616
1617 /* Check if we need to run pkt_handle_queue */
1618 if (atomic_read(&pd->scan_queue) > 0)
1619 goto work_to_do;
1620
1621 /* Check if we need to run the state machine for some packet */
1622 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1623 if (atomic_read(&pkt->run_sm) > 0)
1624 goto work_to_do;
1625 }
1626
1627 /* Check if we need to process the iosched queues */
1628 if (atomic_read(&pd->iosched.attention) != 0)
1629 goto work_to_do;
1630
1631 /* Otherwise, go to sleep */
1632 if (PACKET_DEBUG > 1) {
1633 int states[PACKET_NUM_STATES];
1634 pkt_count_states(pd, states);
1635 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1636 states[0], states[1], states[2], states[3],
1637 states[4], states[5]);
1638 }
1639
1640 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1641 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1642 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1643 min_sleep_time = pkt->sleep_time;
1644 }
1645
1646 generic_unplug_device(bdev_get_queue(pd->bdev));
1647
1648 VPRINTK("kcdrwd: sleeping\n");
1649 residue = schedule_timeout(min_sleep_time);
1650 VPRINTK("kcdrwd: wake up\n");
1651
1652 /* make swsusp happy with our thread */
1653 try_to_freeze();
1654
1655 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1656 if (!pkt->sleep_time)
1657 continue;
1658 pkt->sleep_time -= min_sleep_time - residue;
1659 if (pkt->sleep_time <= 0) {
1660 pkt->sleep_time = 0;
1661 atomic_inc(&pkt->run_sm);
1662 }
1663 }
1664
1665 if (kthread_should_stop())
1666 break;
1667 }
1668 work_to_do:
1669 set_current_state(TASK_RUNNING);
1670 remove_wait_queue(&pd->wqueue, &wait);
1671
1672 if (kthread_should_stop())
1673 break;
1674
1675 /*
1676 * if pkt_handle_queue returns true, we can queue
1677 * another request.
1678 */
1679 while (pkt_handle_queue(pd))
1680 ;
1681
1682 /*
1683 * Handle packet state machine
1684 */
1685 pkt_handle_packets(pd);
1686
1687 /*
1688 * Handle iosched queues
1689 */
1690 pkt_iosched_process_queue(pd);
1691 }
1692
1693 return 0;
1694 }
1695
1696 static void pkt_print_settings(struct pktcdvd_device *pd)
1697 {
1698 printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1699 printk("%u blocks, ", pd->settings.size >> 2);
1700 printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1701 }
1702
1703 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1704 {
1705 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1706
1707 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1708 cgc->cmd[2] = page_code | (page_control << 6);
1709 cgc->cmd[7] = cgc->buflen >> 8;
1710 cgc->cmd[8] = cgc->buflen & 0xff;
1711 cgc->data_direction = CGC_DATA_READ;
1712 return pkt_generic_packet(pd, cgc);
1713 }
1714
1715 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1716 {
1717 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1718 memset(cgc->buffer, 0, 2);
1719 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1720 cgc->cmd[1] = 0x10; /* PF */
1721 cgc->cmd[7] = cgc->buflen >> 8;
1722 cgc->cmd[8] = cgc->buflen & 0xff;
1723 cgc->data_direction = CGC_DATA_WRITE;
1724 return pkt_generic_packet(pd, cgc);
1725 }
1726
1727 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1728 {
1729 struct packet_command cgc;
1730 int ret;
1731
1732 /* set up command and get the disc info */
1733 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1734 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1735 cgc.cmd[8] = cgc.buflen = 2;
1736 cgc.quiet = 1;
1737
1738 if ((ret = pkt_generic_packet(pd, &cgc)))
1739 return ret;
1740
1741 /* not all drives have the same disc_info length, so requeue
1742 * packet with the length the drive tells us it can supply
1743 */
1744 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1745 sizeof(di->disc_information_length);
1746
1747 if (cgc.buflen > sizeof(disc_information))
1748 cgc.buflen = sizeof(disc_information);
1749
1750 cgc.cmd[8] = cgc.buflen;
1751 return pkt_generic_packet(pd, &cgc);
1752 }
1753
1754 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1755 {
1756 struct packet_command cgc;
1757 int ret;
1758
1759 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1760 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1761 cgc.cmd[1] = type & 3;
1762 cgc.cmd[4] = (track & 0xff00) >> 8;
1763 cgc.cmd[5] = track & 0xff;
1764 cgc.cmd[8] = 8;
1765 cgc.quiet = 1;
1766
1767 if ((ret = pkt_generic_packet(pd, &cgc)))
1768 return ret;
1769
1770 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1771 sizeof(ti->track_information_length);
1772
1773 if (cgc.buflen > sizeof(track_information))
1774 cgc.buflen = sizeof(track_information);
1775
1776 cgc.cmd[8] = cgc.buflen;
1777 return pkt_generic_packet(pd, &cgc);
1778 }
1779
1780 static int pkt_get_last_written(struct pktcdvd_device *pd, long *last_written)
1781 {
1782 disc_information di;
1783 track_information ti;
1784 __u32 last_track;
1785 int ret = -1;
1786
1787 if ((ret = pkt_get_disc_info(pd, &di)))
1788 return ret;
1789
1790 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1791 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1792 return ret;
1793
1794 /* if this track is blank, try the previous. */
1795 if (ti.blank) {
1796 last_track--;
1797 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1798 return ret;
1799 }
1800
1801 /* if last recorded field is valid, return it. */
1802 if (ti.lra_v) {
1803 *last_written = be32_to_cpu(ti.last_rec_address);
1804 } else {
1805 /* make it up instead */
1806 *last_written = be32_to_cpu(ti.track_start) +
1807 be32_to_cpu(ti.track_size);
1808 if (ti.free_blocks)
1809 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1810 }
1811 return 0;
1812 }
1813
1814 /*
1815 * write mode select package based on pd->settings
1816 */
1817 static int pkt_set_write_settings(struct pktcdvd_device *pd)
1818 {
1819 struct packet_command cgc;
1820 struct request_sense sense;
1821 write_param_page *wp;
1822 char buffer[128];
1823 int ret, size;
1824
1825 /* doesn't apply to DVD+RW or DVD-RAM */
1826 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1827 return 0;
1828
1829 memset(buffer, 0, sizeof(buffer));
1830 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1831 cgc.sense = &sense;
1832 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1833 pkt_dump_sense(&cgc);
1834 return ret;
1835 }
1836
1837 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1838 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1839 if (size > sizeof(buffer))
1840 size = sizeof(buffer);
1841
1842 /*
1843 * now get it all
1844 */
1845 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1846 cgc.sense = &sense;
1847 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1848 pkt_dump_sense(&cgc);
1849 return ret;
1850 }
1851
1852 /*
1853 * write page is offset header + block descriptor length
1854 */
1855 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1856
1857 wp->fp = pd->settings.fp;
1858 wp->track_mode = pd->settings.track_mode;
1859 wp->write_type = pd->settings.write_type;
1860 wp->data_block_type = pd->settings.block_mode;
1861
1862 wp->multi_session = 0;
1863
1864 #ifdef PACKET_USE_LS
1865 wp->link_size = 7;
1866 wp->ls_v = 1;
1867 #endif
1868
1869 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1870 wp->session_format = 0;
1871 wp->subhdr2 = 0x20;
1872 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1873 wp->session_format = 0x20;
1874 wp->subhdr2 = 8;
1875 #if 0
1876 wp->mcn[0] = 0x80;
1877 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1878 #endif
1879 } else {
1880 /*
1881 * paranoia
1882 */
1883 printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type);
1884 return 1;
1885 }
1886 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1887
1888 cgc.buflen = cgc.cmd[8] = size;
1889 if ((ret = pkt_mode_select(pd, &cgc))) {
1890 pkt_dump_sense(&cgc);
1891 return ret;
1892 }
1893
1894 pkt_print_settings(pd);
1895 return 0;
1896 }
1897
1898 /*
1899 * 1 -- we can write to this track, 0 -- we can't
1900 */
1901 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1902 {
1903 switch (pd->mmc3_profile) {
1904 case 0x1a: /* DVD+RW */
1905 case 0x12: /* DVD-RAM */
1906 /* The track is always writable on DVD+RW/DVD-RAM */
1907 return 1;
1908 default:
1909 break;
1910 }
1911
1912 if (!ti->packet || !ti->fp)
1913 return 0;
1914
1915 /*
1916 * "good" settings as per Mt Fuji.
1917 */
1918 if (ti->rt == 0 && ti->blank == 0)
1919 return 1;
1920
1921 if (ti->rt == 0 && ti->blank == 1)
1922 return 1;
1923
1924 if (ti->rt == 1 && ti->blank == 0)
1925 return 1;
1926
1927 printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1928 return 0;
1929 }
1930
1931 /*
1932 * 1 -- we can write to this disc, 0 -- we can't
1933 */
1934 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1935 {
1936 switch (pd->mmc3_profile) {
1937 case 0x0a: /* CD-RW */
1938 case 0xffff: /* MMC3 not supported */
1939 break;
1940 case 0x1a: /* DVD+RW */
1941 case 0x13: /* DVD-RW */
1942 case 0x12: /* DVD-RAM */
1943 return 1;
1944 default:
1945 VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile);
1946 return 0;
1947 }
1948
1949 /*
1950 * for disc type 0xff we should probably reserve a new track.
1951 * but i'm not sure, should we leave this to user apps? probably.
1952 */
1953 if (di->disc_type == 0xff) {
1954 printk(DRIVER_NAME": Unknown disc. No track?\n");
1955 return 0;
1956 }
1957
1958 if (di->disc_type != 0x20 && di->disc_type != 0) {
1959 printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type);
1960 return 0;
1961 }
1962
1963 if (di->erasable == 0) {
1964 printk(DRIVER_NAME": Disc not erasable\n");
1965 return 0;
1966 }
1967
1968 if (di->border_status == PACKET_SESSION_RESERVED) {
1969 printk(DRIVER_NAME": Can't write to last track (reserved)\n");
1970 return 0;
1971 }
1972
1973 return 1;
1974 }
1975
1976 static int pkt_probe_settings(struct pktcdvd_device *pd)
1977 {
1978 struct packet_command cgc;
1979 unsigned char buf[12];
1980 disc_information di;
1981 track_information ti;
1982 int ret, track;
1983
1984 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1985 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1986 cgc.cmd[8] = 8;
1987 ret = pkt_generic_packet(pd, &cgc);
1988 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1989
1990 memset(&di, 0, sizeof(disc_information));
1991 memset(&ti, 0, sizeof(track_information));
1992
1993 if ((ret = pkt_get_disc_info(pd, &di))) {
1994 printk("failed get_disc\n");
1995 return ret;
1996 }
1997
1998 if (!pkt_writable_disc(pd, &di))
1999 return -EROFS;
2000
2001 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
2002
2003 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
2004 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
2005 printk(DRIVER_NAME": failed get_track\n");
2006 return ret;
2007 }
2008
2009 if (!pkt_writable_track(pd, &ti)) {
2010 printk(DRIVER_NAME": can't write to this track\n");
2011 return -EROFS;
2012 }
2013
2014 /*
2015 * we keep packet size in 512 byte units, makes it easier to
2016 * deal with request calculations.
2017 */
2018 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
2019 if (pd->settings.size == 0) {
2020 printk(DRIVER_NAME": detected zero packet size!\n");
2021 return -ENXIO;
2022 }
2023 if (pd->settings.size > PACKET_MAX_SECTORS) {
2024 printk(DRIVER_NAME": packet size is too big\n");
2025 return -EROFS;
2026 }
2027 pd->settings.fp = ti.fp;
2028 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
2029
2030 if (ti.nwa_v) {
2031 pd->nwa = be32_to_cpu(ti.next_writable);
2032 set_bit(PACKET_NWA_VALID, &pd->flags);
2033 }
2034
2035 /*
2036 * in theory we could use lra on -RW media as well and just zero
2037 * blocks that haven't been written yet, but in practice that
2038 * is just a no-go. we'll use that for -R, naturally.
2039 */
2040 if (ti.lra_v) {
2041 pd->lra = be32_to_cpu(ti.last_rec_address);
2042 set_bit(PACKET_LRA_VALID, &pd->flags);
2043 } else {
2044 pd->lra = 0xffffffff;
2045 set_bit(PACKET_LRA_VALID, &pd->flags);
2046 }
2047
2048 /*
2049 * fine for now
2050 */
2051 pd->settings.link_loss = 7;
2052 pd->settings.write_type = 0; /* packet */
2053 pd->settings.track_mode = ti.track_mode;
2054
2055 /*
2056 * mode1 or mode2 disc
2057 */
2058 switch (ti.data_mode) {
2059 case PACKET_MODE1:
2060 pd->settings.block_mode = PACKET_BLOCK_MODE1;
2061 break;
2062 case PACKET_MODE2:
2063 pd->settings.block_mode = PACKET_BLOCK_MODE2;
2064 break;
2065 default:
2066 printk(DRIVER_NAME": unknown data mode\n");
2067 return -EROFS;
2068 }
2069 return 0;
2070 }
2071
2072 /*
2073 * enable/disable write caching on drive
2074 */
2075 static int pkt_write_caching(struct pktcdvd_device *pd, int set)
2076 {
2077 struct packet_command cgc;
2078 struct request_sense sense;
2079 unsigned char buf[64];
2080 int ret;
2081
2082 memset(buf, 0, sizeof(buf));
2083 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
2084 cgc.sense = &sense;
2085 cgc.buflen = pd->mode_offset + 12;
2086
2087 /*
2088 * caching mode page might not be there, so quiet this command
2089 */
2090 cgc.quiet = 1;
2091
2092 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
2093 return ret;
2094
2095 buf[pd->mode_offset + 10] |= (!!set << 2);
2096
2097 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
2098 ret = pkt_mode_select(pd, &cgc);
2099 if (ret) {
2100 printk(DRIVER_NAME": write caching control failed\n");
2101 pkt_dump_sense(&cgc);
2102 } else if (!ret && set)
2103 printk(DRIVER_NAME": enabled write caching on %s\n", pd->name);
2104 return ret;
2105 }
2106
2107 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
2108 {
2109 struct packet_command cgc;
2110
2111 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2112 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
2113 cgc.cmd[4] = lockflag ? 1 : 0;
2114 return pkt_generic_packet(pd, &cgc);
2115 }
2116
2117 /*
2118 * Returns drive maximum write speed
2119 */
2120 static int pkt_get_max_speed(struct pktcdvd_device *pd, unsigned *write_speed)
2121 {
2122 struct packet_command cgc;
2123 struct request_sense sense;
2124 unsigned char buf[256+18];
2125 unsigned char *cap_buf;
2126 int ret, offset;
2127
2128 memset(buf, 0, sizeof(buf));
2129 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
2130 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
2131 cgc.sense = &sense;
2132
2133 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2134 if (ret) {
2135 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
2136 sizeof(struct mode_page_header);
2137 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2138 if (ret) {
2139 pkt_dump_sense(&cgc);
2140 return ret;
2141 }
2142 }
2143
2144 offset = 20; /* Obsoleted field, used by older drives */
2145 if (cap_buf[1] >= 28)
2146 offset = 28; /* Current write speed selected */
2147 if (cap_buf[1] >= 30) {
2148 /* If the drive reports at least one "Logical Unit Write
2149 * Speed Performance Descriptor Block", use the information
2150 * in the first block. (contains the highest speed)
2151 */
2152 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2153 if (num_spdb > 0)
2154 offset = 34;
2155 }
2156
2157 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2158 return 0;
2159 }
2160
2161 /* These tables from cdrecord - I don't have orange book */
2162 /* standard speed CD-RW (1-4x) */
2163 static char clv_to_speed[16] = {
2164 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2165 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2166 };
2167 /* high speed CD-RW (-10x) */
2168 static char hs_clv_to_speed[16] = {
2169 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2170 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2171 };
2172 /* ultra high speed CD-RW */
2173 static char us_clv_to_speed[16] = {
2174 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2175 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2176 };
2177
2178 /*
2179 * reads the maximum media speed from ATIP
2180 */
2181 static int pkt_media_speed(struct pktcdvd_device *pd, unsigned *speed)
2182 {
2183 struct packet_command cgc;
2184 struct request_sense sense;
2185 unsigned char buf[64];
2186 unsigned int size, st, sp;
2187 int ret;
2188
2189 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2190 cgc.sense = &sense;
2191 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2192 cgc.cmd[1] = 2;
2193 cgc.cmd[2] = 4; /* READ ATIP */
2194 cgc.cmd[8] = 2;
2195 ret = pkt_generic_packet(pd, &cgc);
2196 if (ret) {
2197 pkt_dump_sense(&cgc);
2198 return ret;
2199 }
2200 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2201 if (size > sizeof(buf))
2202 size = sizeof(buf);
2203
2204 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2205 cgc.sense = &sense;
2206 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2207 cgc.cmd[1] = 2;
2208 cgc.cmd[2] = 4;
2209 cgc.cmd[8] = size;
2210 ret = pkt_generic_packet(pd, &cgc);
2211 if (ret) {
2212 pkt_dump_sense(&cgc);
2213 return ret;
2214 }
2215
2216 if (!buf[6] & 0x40) {
2217 printk(DRIVER_NAME": Disc type is not CD-RW\n");
2218 return 1;
2219 }
2220 if (!buf[6] & 0x4) {
2221 printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n");
2222 return 1;
2223 }
2224
2225 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2226
2227 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2228
2229 /* Info from cdrecord */
2230 switch (st) {
2231 case 0: /* standard speed */
2232 *speed = clv_to_speed[sp];
2233 break;
2234 case 1: /* high speed */
2235 *speed = hs_clv_to_speed[sp];
2236 break;
2237 case 2: /* ultra high speed */
2238 *speed = us_clv_to_speed[sp];
2239 break;
2240 default:
2241 printk(DRIVER_NAME": Unknown disc sub-type %d\n",st);
2242 return 1;
2243 }
2244 if (*speed) {
2245 printk(DRIVER_NAME": Max. media speed: %d\n",*speed);
2246 return 0;
2247 } else {
2248 printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st);
2249 return 1;
2250 }
2251 }
2252
2253 static int pkt_perform_opc(struct pktcdvd_device *pd)
2254 {
2255 struct packet_command cgc;
2256 struct request_sense sense;
2257 int ret;
2258
2259 VPRINTK(DRIVER_NAME": Performing OPC\n");
2260
2261 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2262 cgc.sense = &sense;
2263 cgc.timeout = 60*HZ;
2264 cgc.cmd[0] = GPCMD_SEND_OPC;
2265 cgc.cmd[1] = 1;
2266 if ((ret = pkt_generic_packet(pd, &cgc)))
2267 pkt_dump_sense(&cgc);
2268 return ret;
2269 }
2270
2271 static int pkt_open_write(struct pktcdvd_device *pd)
2272 {
2273 int ret;
2274 unsigned int write_speed, media_write_speed, read_speed;
2275
2276 if ((ret = pkt_probe_settings(pd))) {
2277 VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name);
2278 return ret;
2279 }
2280
2281 if ((ret = pkt_set_write_settings(pd))) {
2282 DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name);
2283 return -EIO;
2284 }
2285
2286 pkt_write_caching(pd, USE_WCACHING);
2287
2288 if ((ret = pkt_get_max_speed(pd, &write_speed)))
2289 write_speed = 16 * 177;
2290 switch (pd->mmc3_profile) {
2291 case 0x13: /* DVD-RW */
2292 case 0x1a: /* DVD+RW */
2293 case 0x12: /* DVD-RAM */
2294 DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed);
2295 break;
2296 default:
2297 if ((ret = pkt_media_speed(pd, &media_write_speed)))
2298 media_write_speed = 16;
2299 write_speed = min(write_speed, media_write_speed * 177);
2300 DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176);
2301 break;
2302 }
2303 read_speed = write_speed;
2304
2305 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2306 DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name);
2307 return -EIO;
2308 }
2309 pd->write_speed = write_speed;
2310 pd->read_speed = read_speed;
2311
2312 if ((ret = pkt_perform_opc(pd))) {
2313 DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name);
2314 }
2315
2316 return 0;
2317 }
2318
2319 /*
2320 * called at open time.
2321 */
2322 static int pkt_open_dev(struct pktcdvd_device *pd, int write)
2323 {
2324 int ret;
2325 long lba;
2326 struct request_queue *q;
2327
2328 /*
2329 * We need to re-open the cdrom device without O_NONBLOCK to be able
2330 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2331 * so bdget() can't fail.
2332 */
2333 bdget(pd->bdev->bd_dev);
2334 if ((ret = blkdev_get(pd->bdev, FMODE_READ, O_RDONLY)))
2335 goto out;
2336
2337 if ((ret = bd_claim(pd->bdev, pd)))
2338 goto out_putdev;
2339
2340 if ((ret = pkt_get_last_written(pd, &lba))) {
2341 printk(DRIVER_NAME": pkt_get_last_written failed\n");
2342 goto out_unclaim;
2343 }
2344
2345 set_capacity(pd->disk, lba << 2);
2346 set_capacity(pd->bdev->bd_disk, lba << 2);
2347 bd_set_size(pd->bdev, (loff_t)lba << 11);
2348
2349 q = bdev_get_queue(pd->bdev);
2350 if (write) {
2351 if ((ret = pkt_open_write(pd)))
2352 goto out_unclaim;
2353 /*
2354 * Some CDRW drives can not handle writes larger than one packet,
2355 * even if the size is a multiple of the packet size.
2356 */
2357 spin_lock_irq(q->queue_lock);
2358 blk_queue_max_sectors(q, pd->settings.size);
2359 spin_unlock_irq(q->queue_lock);
2360 set_bit(PACKET_WRITABLE, &pd->flags);
2361 } else {
2362 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2363 clear_bit(PACKET_WRITABLE, &pd->flags);
2364 }
2365
2366 if ((ret = pkt_set_segment_merging(pd, q)))
2367 goto out_unclaim;
2368
2369 if (write) {
2370 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2371 printk(DRIVER_NAME": not enough memory for buffers\n");
2372 ret = -ENOMEM;
2373 goto out_unclaim;
2374 }
2375 printk(DRIVER_NAME": %lukB available on disc\n", lba << 1);
2376 }
2377
2378 return 0;
2379
2380 out_unclaim:
2381 bd_release(pd->bdev);
2382 out_putdev:
2383 blkdev_put(pd->bdev);
2384 out:
2385 return ret;
2386 }
2387
2388 /*
2389 * called when the device is closed. makes sure that the device flushes
2390 * the internal cache before we close.
2391 */
2392 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2393 {
2394 if (flush && pkt_flush_cache(pd))
2395 DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name);
2396
2397 pkt_lock_door(pd, 0);
2398
2399 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2400 bd_release(pd->bdev);
2401 blkdev_put(pd->bdev);
2402
2403 pkt_shrink_pktlist(pd);
2404 }
2405
2406 static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor)
2407 {
2408 if (dev_minor >= MAX_WRITERS)
2409 return NULL;
2410 return pkt_devs[dev_minor];
2411 }
2412
2413 static int pkt_open(struct inode *inode, struct file *file)
2414 {
2415 struct pktcdvd_device *pd = NULL;
2416 int ret;
2417
2418 VPRINTK(DRIVER_NAME": entering open\n");
2419
2420 mutex_lock(&ctl_mutex);
2421 pd = pkt_find_dev_from_minor(iminor(inode));
2422 if (!pd) {
2423 ret = -ENODEV;
2424 goto out;
2425 }
2426 BUG_ON(pd->refcnt < 0);
2427
2428 pd->refcnt++;
2429 if (pd->refcnt > 1) {
2430 if ((file->f_mode & FMODE_WRITE) &&
2431 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2432 ret = -EBUSY;
2433 goto out_dec;
2434 }
2435 } else {
2436 ret = pkt_open_dev(pd, file->f_mode & FMODE_WRITE);
2437 if (ret)
2438 goto out_dec;
2439 /*
2440 * needed here as well, since ext2 (among others) may change
2441 * the blocksize at mount time
2442 */
2443 set_blocksize(inode->i_bdev, CD_FRAMESIZE);
2444 }
2445
2446 mutex_unlock(&ctl_mutex);
2447 return 0;
2448
2449 out_dec:
2450 pd->refcnt--;
2451 out:
2452 VPRINTK(DRIVER_NAME": failed open (%d)\n", ret);
2453 mutex_unlock(&ctl_mutex);
2454 return ret;
2455 }
2456
2457 static int pkt_close(struct inode *inode, struct file *file)
2458 {
2459 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2460 int ret = 0;
2461
2462 mutex_lock(&ctl_mutex);
2463 pd->refcnt--;
2464 BUG_ON(pd->refcnt < 0);
2465 if (pd->refcnt == 0) {
2466 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2467 pkt_release_dev(pd, flush);
2468 }
2469 mutex_unlock(&ctl_mutex);
2470 return ret;
2471 }
2472
2473
2474 static void pkt_end_io_read_cloned(struct bio *bio, int err)
2475 {
2476 struct packet_stacked_data *psd = bio->bi_private;
2477 struct pktcdvd_device *pd = psd->pd;
2478
2479 bio_put(bio);
2480 bio_endio(psd->bio, err);
2481 mempool_free(psd, psd_pool);
2482 pkt_bio_finished(pd);
2483 }
2484
2485 static int pkt_make_request(struct request_queue *q, struct bio *bio)
2486 {
2487 struct pktcdvd_device *pd;
2488 char b[BDEVNAME_SIZE];
2489 sector_t zone;
2490 struct packet_data *pkt;
2491 int was_empty, blocked_bio;
2492 struct pkt_rb_node *node;
2493
2494 pd = q->queuedata;
2495 if (!pd) {
2496 printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2497 goto end_io;
2498 }
2499
2500 /*
2501 * Clone READ bios so we can have our own bi_end_io callback.
2502 */
2503 if (bio_data_dir(bio) == READ) {
2504 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2505 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2506
2507 psd->pd = pd;
2508 psd->bio = bio;
2509 cloned_bio->bi_bdev = pd->bdev;
2510 cloned_bio->bi_private = psd;
2511 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2512 pd->stats.secs_r += bio->bi_size >> 9;
2513 pkt_queue_bio(pd, cloned_bio);
2514 return 0;
2515 }
2516
2517 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2518 printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n",
2519 pd->name, (unsigned long long)bio->bi_sector);
2520 goto end_io;
2521 }
2522
2523 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2524 printk(DRIVER_NAME": wrong bio size\n");
2525 goto end_io;
2526 }
2527
2528 blk_queue_bounce(q, &bio);
2529
2530 zone = ZONE(bio->bi_sector, pd);
2531 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2532 (unsigned long long)bio->bi_sector,
2533 (unsigned long long)(bio->bi_sector + bio_sectors(bio)));
2534
2535 /* Check if we have to split the bio */
2536 {
2537 struct bio_pair *bp;
2538 sector_t last_zone;
2539 int first_sectors;
2540
2541 last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
2542 if (last_zone != zone) {
2543 BUG_ON(last_zone != zone + pd->settings.size);
2544 first_sectors = last_zone - bio->bi_sector;
2545 bp = bio_split(bio, bio_split_pool, first_sectors);
2546 BUG_ON(!bp);
2547 pkt_make_request(q, &bp->bio1);
2548 pkt_make_request(q, &bp->bio2);
2549 bio_pair_release(bp);
2550 return 0;
2551 }
2552 }
2553
2554 /*
2555 * If we find a matching packet in state WAITING or READ_WAIT, we can
2556 * just append this bio to that packet.
2557 */
2558 spin_lock(&pd->cdrw.active_list_lock);
2559 blocked_bio = 0;
2560 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2561 if (pkt->sector == zone) {
2562 spin_lock(&pkt->lock);
2563 if ((pkt->state == PACKET_WAITING_STATE) ||
2564 (pkt->state == PACKET_READ_WAIT_STATE)) {
2565 pkt_add_list_last(bio, &pkt->orig_bios,
2566 &pkt->orig_bios_tail);
2567 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2568 if ((pkt->write_size >= pkt->frames) &&
2569 (pkt->state == PACKET_WAITING_STATE)) {
2570 atomic_inc(&pkt->run_sm);
2571 wake_up(&pd->wqueue);
2572 }
2573 spin_unlock(&pkt->lock);
2574 spin_unlock(&pd->cdrw.active_list_lock);
2575 return 0;
2576 } else {
2577 blocked_bio = 1;
2578 }
2579 spin_unlock(&pkt->lock);
2580 }
2581 }
2582 spin_unlock(&pd->cdrw.active_list_lock);
2583
2584 /*
2585 * Test if there is enough room left in the bio work queue
2586 * (queue size >= congestion on mark).
2587 * If not, wait till the work queue size is below the congestion off mark.
2588 */
2589 spin_lock(&pd->lock);
2590 if (pd->write_congestion_on > 0
2591 && pd->bio_queue_size >= pd->write_congestion_on) {
2592 set_bdi_congested(&q->backing_dev_info, WRITE);
2593 do {
2594 spin_unlock(&pd->lock);
2595 congestion_wait(WRITE, HZ);
2596 spin_lock(&pd->lock);
2597 } while(pd->bio_queue_size > pd->write_congestion_off);
2598 }
2599 spin_unlock(&pd->lock);
2600
2601 /*
2602 * No matching packet found. Store the bio in the work queue.
2603 */
2604 node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2605 node->bio = bio;
2606 spin_lock(&pd->lock);
2607 BUG_ON(pd->bio_queue_size < 0);
2608 was_empty = (pd->bio_queue_size == 0);
2609 pkt_rbtree_insert(pd, node);
2610 spin_unlock(&pd->lock);
2611
2612 /*
2613 * Wake up the worker thread.
2614 */
2615 atomic_set(&pd->scan_queue, 1);
2616 if (was_empty) {
2617 /* This wake_up is required for correct operation */
2618 wake_up(&pd->wqueue);
2619 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2620 /*
2621 * This wake up is not required for correct operation,
2622 * but improves performance in some cases.
2623 */
2624 wake_up(&pd->wqueue);
2625 }
2626 return 0;
2627 end_io:
2628 bio_io_error(bio);
2629 return 0;
2630 }
2631
2632
2633
2634 static int pkt_merge_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *bvec)
2635 {
2636 struct pktcdvd_device *pd = q->queuedata;
2637 sector_t zone = ZONE(bio->bi_sector, pd);
2638 int used = ((bio->bi_sector - zone) << 9) + bio->bi_size;
2639 int remaining = (pd->settings.size << 9) - used;
2640 int remaining2;
2641
2642 /*
2643 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2644 * boundary, pkt_make_request() will split the bio.
2645 */
2646 remaining2 = PAGE_SIZE - bio->bi_size;
2647 remaining = max(remaining, remaining2);
2648
2649 BUG_ON(remaining < 0);
2650 return remaining;
2651 }
2652
2653 static void pkt_init_queue(struct pktcdvd_device *pd)
2654 {
2655 struct request_queue *q = pd->disk->queue;
2656
2657 blk_queue_make_request(q, pkt_make_request);
2658 blk_queue_hardsect_size(q, CD_FRAMESIZE);
2659 blk_queue_max_sectors(q, PACKET_MAX_SECTORS);
2660 blk_queue_merge_bvec(q, pkt_merge_bvec);
2661 q->queuedata = pd;
2662 }
2663
2664 static int pkt_seq_show(struct seq_file *m, void *p)
2665 {
2666 struct pktcdvd_device *pd = m->private;
2667 char *msg;
2668 char bdev_buf[BDEVNAME_SIZE];
2669 int states[PACKET_NUM_STATES];
2670
2671 seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2672 bdevname(pd->bdev, bdev_buf));
2673
2674 seq_printf(m, "\nSettings:\n");
2675 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2676
2677 if (pd->settings.write_type == 0)
2678 msg = "Packet";
2679 else
2680 msg = "Unknown";
2681 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2682
2683 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2684 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2685
2686 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2687
2688 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2689 msg = "Mode 1";
2690 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2691 msg = "Mode 2";
2692 else
2693 msg = "Unknown";
2694 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2695
2696 seq_printf(m, "\nStatistics:\n");
2697 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2698 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2699 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2700 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2701 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2702
2703 seq_printf(m, "\nMisc:\n");
2704 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2705 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2706 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2707 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2708 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2709 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2710
2711 seq_printf(m, "\nQueue state:\n");
2712 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2713 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2714 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2715
2716 pkt_count_states(pd, states);
2717 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2718 states[0], states[1], states[2], states[3], states[4], states[5]);
2719
2720 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2721 pd->write_congestion_off,
2722 pd->write_congestion_on);
2723 return 0;
2724 }
2725
2726 static int pkt_seq_open(struct inode *inode, struct file *file)
2727 {
2728 return single_open(file, pkt_seq_show, PDE(inode)->data);
2729 }
2730
2731 static const struct file_operations pkt_proc_fops = {
2732 .open = pkt_seq_open,
2733 .read = seq_read,
2734 .llseek = seq_lseek,
2735 .release = single_release
2736 };
2737
2738 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2739 {
2740 int i;
2741 int ret = 0;
2742 char b[BDEVNAME_SIZE];
2743 struct proc_dir_entry *proc;
2744 struct block_device *bdev;
2745
2746 if (pd->pkt_dev == dev) {
2747 printk(DRIVER_NAME": Recursive setup not allowed\n");
2748 return -EBUSY;
2749 }
2750 for (i = 0; i < MAX_WRITERS; i++) {
2751 struct pktcdvd_device *pd2 = pkt_devs[i];
2752 if (!pd2)
2753 continue;
2754 if (pd2->bdev->bd_dev == dev) {
2755 printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b));
2756 return -EBUSY;
2757 }
2758 if (pd2->pkt_dev == dev) {
2759 printk(DRIVER_NAME": Can't chain pktcdvd devices\n");
2760 return -EBUSY;
2761 }
2762 }
2763
2764 bdev = bdget(dev);
2765 if (!bdev)
2766 return -ENOMEM;
2767 ret = blkdev_get(bdev, FMODE_READ, O_RDONLY | O_NONBLOCK);
2768 if (ret)
2769 return ret;
2770
2771 /* This is safe, since we have a reference from open(). */
2772 __module_get(THIS_MODULE);
2773
2774 pd->bdev = bdev;
2775 set_blocksize(bdev, CD_FRAMESIZE);
2776
2777 pkt_init_queue(pd);
2778
2779 atomic_set(&pd->cdrw.pending_bios, 0);
2780 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2781 if (IS_ERR(pd->cdrw.thread)) {
2782 printk(DRIVER_NAME": can't start kernel thread\n");
2783 ret = -ENOMEM;
2784 goto out_mem;
2785 }
2786
2787 proc = create_proc_entry(pd->name, 0, pkt_proc);
2788 if (proc) {
2789 proc->data = pd;
2790 proc->proc_fops = &pkt_proc_fops;
2791 }
2792 DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2793 return 0;
2794
2795 out_mem:
2796 blkdev_put(bdev);
2797 /* This is safe: open() is still holding a reference. */
2798 module_put(THIS_MODULE);
2799 return ret;
2800 }
2801
2802 static int pkt_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
2803 {
2804 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2805
2806 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd, imajor(inode), iminor(inode));
2807
2808 switch (cmd) {
2809 /*
2810 * forward selected CDROM ioctls to CD-ROM, for UDF
2811 */
2812 case CDROMMULTISESSION:
2813 case CDROMREADTOCENTRY:
2814 case CDROM_LAST_WRITTEN:
2815 case CDROM_SEND_PACKET:
2816 case SCSI_IOCTL_SEND_COMMAND:
2817 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
2818
2819 case CDROMEJECT:
2820 /*
2821 * The door gets locked when the device is opened, so we
2822 * have to unlock it or else the eject command fails.
2823 */
2824 if (pd->refcnt == 1)
2825 pkt_lock_door(pd, 0);
2826 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
2827
2828 default:
2829 VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd);
2830 return -ENOTTY;
2831 }
2832
2833 return 0;
2834 }
2835
2836 static int pkt_media_changed(struct gendisk *disk)
2837 {
2838 struct pktcdvd_device *pd = disk->private_data;
2839 struct gendisk *attached_disk;
2840
2841 if (!pd)
2842 return 0;
2843 if (!pd->bdev)
2844 return 0;
2845 attached_disk = pd->bdev->bd_disk;
2846 if (!attached_disk)
2847 return 0;
2848 return attached_disk->fops->media_changed(attached_disk);
2849 }
2850
2851 static struct block_device_operations pktcdvd_ops = {
2852 .owner = THIS_MODULE,
2853 .open = pkt_open,
2854 .release = pkt_close,
2855 .ioctl = pkt_ioctl,
2856 .media_changed = pkt_media_changed,
2857 };
2858
2859 /*
2860 * Set up mapping from pktcdvd device to CD-ROM device.
2861 */
2862 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2863 {
2864 int idx;
2865 int ret = -ENOMEM;
2866 struct pktcdvd_device *pd;
2867 struct gendisk *disk;
2868
2869 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2870
2871 for (idx = 0; idx < MAX_WRITERS; idx++)
2872 if (!pkt_devs[idx])
2873 break;
2874 if (idx == MAX_WRITERS) {
2875 printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS);
2876 ret = -EBUSY;
2877 goto out_mutex;
2878 }
2879
2880 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2881 if (!pd)
2882 goto out_mutex;
2883
2884 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2885 sizeof(struct pkt_rb_node));
2886 if (!pd->rb_pool)
2887 goto out_mem;
2888
2889 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2890 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2891 spin_lock_init(&pd->cdrw.active_list_lock);
2892
2893 spin_lock_init(&pd->lock);
2894 spin_lock_init(&pd->iosched.lock);
2895 sprintf(pd->name, DRIVER_NAME"%d", idx);
2896 init_waitqueue_head(&pd->wqueue);
2897 pd->bio_queue = RB_ROOT;
2898
2899 pd->write_congestion_on = write_congestion_on;
2900 pd->write_congestion_off = write_congestion_off;
2901
2902 disk = alloc_disk(1);
2903 if (!disk)
2904 goto out_mem;
2905 pd->disk = disk;
2906 disk->major = pktdev_major;
2907 disk->first_minor = idx;
2908 disk->fops = &pktcdvd_ops;
2909 disk->flags = GENHD_FL_REMOVABLE;
2910 strcpy(disk->disk_name, pd->name);
2911 disk->private_data = pd;
2912 disk->queue = blk_alloc_queue(GFP_KERNEL);
2913 if (!disk->queue)
2914 goto out_mem2;
2915
2916 pd->pkt_dev = MKDEV(disk->major, disk->first_minor);
2917 ret = pkt_new_dev(pd, dev);
2918 if (ret)
2919 goto out_new_dev;
2920
2921 add_disk(disk);
2922
2923 pkt_sysfs_dev_new(pd);
2924 pkt_debugfs_dev_new(pd);
2925
2926 pkt_devs[idx] = pd;
2927 if (pkt_dev)
2928 *pkt_dev = pd->pkt_dev;
2929
2930 mutex_unlock(&ctl_mutex);
2931 return 0;
2932
2933 out_new_dev:
2934 blk_cleanup_queue(disk->queue);
2935 out_mem2:
2936 put_disk(disk);
2937 out_mem:
2938 if (pd->rb_pool)
2939 mempool_destroy(pd->rb_pool);
2940 kfree(pd);
2941 out_mutex:
2942 mutex_unlock(&ctl_mutex);
2943 printk(DRIVER_NAME": setup of pktcdvd device failed\n");
2944 return ret;
2945 }
2946
2947 /*
2948 * Tear down mapping from pktcdvd device to CD-ROM device.
2949 */
2950 static int pkt_remove_dev(dev_t pkt_dev)
2951 {
2952 struct pktcdvd_device *pd;
2953 int idx;
2954 int ret = 0;
2955
2956 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2957
2958 for (idx = 0; idx < MAX_WRITERS; idx++) {
2959 pd = pkt_devs[idx];
2960 if (pd && (pd->pkt_dev == pkt_dev))
2961 break;
2962 }
2963 if (idx == MAX_WRITERS) {
2964 DPRINTK(DRIVER_NAME": dev not setup\n");
2965 ret = -ENXIO;
2966 goto out;
2967 }
2968
2969 if (pd->refcnt > 0) {
2970 ret = -EBUSY;
2971 goto out;
2972 }
2973 if (!IS_ERR(pd->cdrw.thread))
2974 kthread_stop(pd->cdrw.thread);
2975
2976 pkt_devs[idx] = NULL;
2977
2978 pkt_debugfs_dev_remove(pd);
2979 pkt_sysfs_dev_remove(pd);
2980
2981 blkdev_put(pd->bdev);
2982
2983 remove_proc_entry(pd->name, pkt_proc);
2984 DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name);
2985
2986 del_gendisk(pd->disk);
2987 blk_cleanup_queue(pd->disk->queue);
2988 put_disk(pd->disk);
2989
2990 mempool_destroy(pd->rb_pool);
2991 kfree(pd);
2992
2993 /* This is safe: open() is still holding a reference. */
2994 module_put(THIS_MODULE);
2995
2996 out:
2997 mutex_unlock(&ctl_mutex);
2998 return ret;
2999 }
3000
3001 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
3002 {
3003 struct pktcdvd_device *pd;
3004
3005 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3006
3007 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
3008 if (pd) {
3009 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
3010 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
3011 } else {
3012 ctrl_cmd->dev = 0;
3013 ctrl_cmd->pkt_dev = 0;
3014 }
3015 ctrl_cmd->num_devices = MAX_WRITERS;
3016
3017 mutex_unlock(&ctl_mutex);
3018 }
3019
3020 static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
3021 {
3022 void __user *argp = (void __user *)arg;
3023 struct pkt_ctrl_command ctrl_cmd;
3024 int ret = 0;
3025 dev_t pkt_dev = 0;
3026
3027 if (cmd != PACKET_CTRL_CMD)
3028 return -ENOTTY;
3029
3030 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
3031 return -EFAULT;
3032
3033 switch (ctrl_cmd.command) {
3034 case PKT_CTRL_CMD_SETUP:
3035 if (!capable(CAP_SYS_ADMIN))
3036 return -EPERM;
3037 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
3038 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
3039 break;
3040 case PKT_CTRL_CMD_TEARDOWN:
3041 if (!capable(CAP_SYS_ADMIN))
3042 return -EPERM;
3043 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
3044 break;
3045 case PKT_CTRL_CMD_STATUS:
3046 pkt_get_status(&ctrl_cmd);
3047 break;
3048 default:
3049 return -ENOTTY;
3050 }
3051
3052 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
3053 return -EFAULT;
3054 return ret;
3055 }
3056
3057
3058 static const struct file_operations pkt_ctl_fops = {
3059 .ioctl = pkt_ctl_ioctl,
3060 .owner = THIS_MODULE,
3061 };
3062
3063 static struct miscdevice pkt_misc = {
3064 .minor = MISC_DYNAMIC_MINOR,
3065 .name = DRIVER_NAME,
3066 .fops = &pkt_ctl_fops
3067 };
3068
3069 static int __init pkt_init(void)
3070 {
3071 int ret;
3072
3073 mutex_init(&ctl_mutex);
3074
3075 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
3076 sizeof(struct packet_stacked_data));
3077 if (!psd_pool)
3078 return -ENOMEM;
3079
3080 ret = register_blkdev(pktdev_major, DRIVER_NAME);
3081 if (ret < 0) {
3082 printk(DRIVER_NAME": Unable to register block device\n");
3083 goto out2;
3084 }
3085 if (!pktdev_major)
3086 pktdev_major = ret;
3087
3088 ret = pkt_sysfs_init();
3089 if (ret)
3090 goto out;
3091
3092 pkt_debugfs_init();
3093
3094 ret = misc_register(&pkt_misc);
3095 if (ret) {
3096 printk(DRIVER_NAME": Unable to register misc device\n");
3097 goto out_misc;
3098 }
3099
3100 pkt_proc = proc_mkdir(DRIVER_NAME, proc_root_driver);
3101
3102 return 0;
3103
3104 out_misc:
3105 pkt_debugfs_cleanup();
3106 pkt_sysfs_cleanup();
3107 out:
3108 unregister_blkdev(pktdev_major, DRIVER_NAME);
3109 out2:
3110 mempool_destroy(psd_pool);
3111 return ret;
3112 }
3113
3114 static void __exit pkt_exit(void)
3115 {
3116 remove_proc_entry(DRIVER_NAME, proc_root_driver);
3117 misc_deregister(&pkt_misc);
3118
3119 pkt_debugfs_cleanup();
3120 pkt_sysfs_cleanup();
3121
3122 unregister_blkdev(pktdev_major, DRIVER_NAME);
3123 mempool_destroy(psd_pool);
3124 }
3125
3126 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3127 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3128 MODULE_LICENSE("GPL");
3129
3130 module_init(pkt_init);
3131 module_exit(pkt_exit);
This page took 0.136792 seconds and 6 git commands to generate.